
María J. Blesa
Christian Blum
Paola Festa
Andrea Roli
Michael Sampels (Eds.)

 123

LN
CS

 7
91

9

8th International Workshop, HM 2013
Ischia, Italy, May 2013
Proceedings

Hybrid
Metaheuristics

Lecture Notes in Computer Science 7919
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

María J. Blesa Christian Blum Paola Festa
Andrea Roli Michael Sampels (Eds.)

Hybrid
Metaheuristics
8th International Workshop, HM 2013
Ischia, Italy, May 23-25, 2013
Proceedings

13

Volume Editors

María J. Blesa
Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
E-mail: mjblesa@lsi.upc.edu

Christian Blum
University of the Basque Country, 20018 San Sebastian, Spain
E-mail: christian.blum@ehu.es

Paola Festa
University of Naples Federico II, 80126 Naples, Italy
E-mail: paola.festa@unina.it

Andrea Roli
Università di Bologna, 47521 Cesena, Italy
E-mail: andrea.roli@unibo.it

Michael Sampels
Université Libre de Bruxelles, 1050 Bruxelles, Belgium
E-mail: msampels@ulb.ac.be

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38515-5 e-ISBN 978-3-642-38516-2
DOI 10.1007/978-3-642-38516-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938275

CR Subject Classification (1998): I.2.8, G.1.6, I.2, F.2, F.1, J.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The research field of hybrid metaheuristics is today established as a reference
field in the areas of optimization and problem solving. Hybrid metaheuristics
have a strong impact on applications because they provide efficient and pow-
erful problem-solving techniques for optimization problems in science and in-
dustry. The interdisciplinary research community with scientists from various
backgrounds provides a fertile environment where innovative techniques are pre-
sented and discussed.

The International Workshop on Hybrid Metaheuristics (HM) pursues the
direction of combining application-oriented and fundamental research. This is
demonstrated by the papers in the proceedings of this eighth edition of HM.
The contributions selected for this volume represent an important sample of cur-
rent research in hybrid metaheuristics. It is worth emphasizing that the selected
papers cover both theoretical and experimental results, including new paradig-
matic hybrid solvers, and automatic design approaches as well as applications
to logistics and public transport.

As is the tradition of the workshop, special care was exercised in the review
process: out of 30 submissions received, 16 papers were selected on the basis
of the reviews by the Program Committee members and evaluations by the
Program Chairs. Reviews were in great depth: reviewers provided authors with
constructive suggestions for improvement. Special thanks are extended to the
Program Committee members who devoted their time and effort.

We believe that this selection of papers will be of interest not only to re-
searchers working in the area of optimization and problem solving. We hope
that, by showing the success of ideas generated from connections between dif-
ferent research fields, we can stimulate the cross-fertilization between computer
science, mathematics, engineering, biology, operations research, economics, and
others.

April 2013 Maŕıa J. Blesa
Christian Blum

Paola Festa
Andrea Roli

Michael Sampels

Organization

General Chair

Paola Festa Università degli Studi di Napoli Federico II,
Italy

Program Chairs

Maŕıa J. Blesa Universitat Politècnica de Catalunya,
Barcelona, Spain

Christian Blum IKERBASQUE, Basque Foundation for
Science, and University of the Basque
Country, San Sebastian, Spain

Andrea Roli Università di Bologna, Italy
Michael Sampels Université Libre de Bruxelles, Belgium

Program Committee

Massimo Benerecetti Università degli Studi di Napoli Federico II,
Italy

Mauro Birattari Université Libre de Bruxelles, Belgium
Marco Chiarandini Syddansk Universitet, Denmark
Luca Di Gaspero Università di Udine, Italy
Karl F. Doerner Universität Wien, Austria
Andreas T. Ernst CSIRO, Australia
Antonio J. Fernández Universidad de Málaga, Spain
Oliver Kramer Universität Oldenburg, Germany
Andrea Lodi Università di Bologna, Italy
Vittorio Maniezzo Università di Bologna, Italy
Rafael Mart́ı Universitat de València, Spain
Daniel Merkle Syddansk Universitet, Denmark
Bernd Meyer Monash University, Australia
Panos M. Pardalos University of Florida, USA
Günther R. Raidl Technische Universität Wien, Austria
Helena Ramalhinho

Lourenço Universitat Pompeu Fabra, Barcelona, Spain
Andreas Reinholz Deutsches Zentrum für Luft- und Raumfahrt,

Germany
Mauricio G.C. Resende AT&T Labs Research, USA
Celso C. Ribeiro Universidade Federal Fluminense, Niterói,

Brazil
Andrea Schaerf Università di Udine, Italy

VIII Organization

Marc Sevaux Université Européenne de Bretagne, France
Patrick Siarry Université Paris-Est Créteil, France
Kenneth Sörensen Universiteit Antwerpen, Belgium
Thomas Stützle Université Libre de Bruxelles, Belgium

Éric Taillard Haute École Spécialisée de Suisse Occidentale,
Switzerland

El-Ghazali Talbi Université de Lille, France
Stefan Voß Universität Hamburg, Germany

Local Organization

Daniele Ferone Università degli Studi di Napoli Federico II,
Italy

Paola Festa (Chair) Università degli Studi di Napoli Federico II,
Italy

Demetrio Laganà Università della Calabria, Italy

Sponsoring Institutions

– Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università
degli Studi di Napoli Federico II, Italy

– Università degli Studi di Napoli Federico II, Italy

Table of Contents

A Pre-processing Aware RINS Based MIP Heuristic 1
Thiago M. Gomes, Haroldo G. Santos, and Marcone J.F. Souza

A Hybrid Simulated Annealing Algorithm for Location of Cross-Docking
Centers in a Supply Chain . 12

S.M. Mousavi, R. Tavakkoli-Moghaddam, A. Siadat, and B. Vahdani

Intensification/Diversification in Decomposition Guided VNS 22
Samir Loudni, Mathieu Fontaine, and Patrice Boizumault

A Hybridized Particle Swarm Optimization with Expanding
Neighborhood Topology for the Feature Selection Problem 37

Yannis Marinakis and Magdalene Marinaki

Interleaving Constraint Propagation: An Efficient Cooperative Search
with Branch and Bound . 52

Eric Monfroy, Broderick Crawford, and Ricardo Soto

Automatic Tuning of GRASP with Evolutionary Path-Relinking 62
L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

Combining Genetic Algorithm and Simulated Annealing Methods
for Reconstructing Hv-Convex Binary Matrices . 78

Hadded Mohamed and Hasni Hamadi

Experimental Analysis of Pheromone-Based Heuristic Column
Generation Using irace . 92

Florence Massen, Manuel López-Ibáñez, Thomas Stützle, and
Yves Deville

A New Hybrid Metaheuristic – Combining Stochastic Tunneling and
Energy Landscape Paving . 107

Kay Hamacher

Workgroups Diversity Maximization: A Metaheuristic Approach 118
Marco Caserta and Stefan Voß

Balancing Bicycle Sharing Systems: Improving a VNS by Efficiently
Determining Optimal Loading Operations . 130

Günther R. Raidl, Bin Hu, Marian Rainer-Harbach, and
Petrina Papazek

X Table of Contents

Automatic Design of Hybrid Stochastic Local Search Algorithms 144
Marie-Eléonore Marmion, Franco Mascia,
Manuel López-Ibáñez, and Thomas Stützle

GRASP and Variable Neighborhood Search for the Virtual Network
Mapping Problem . 159

Johannes Inführ and Günther R. Raidl

Hybrid Metaheuristics for the Far From Most String Problem 174
Daniele Ferone, Paola Festa, and Mauricio G.C. Resende

On Missing Data Hybridizations for Dimensionality Reduction 189
Oliver Kramer

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 198
Luca Di Gaspero, Andrea Rendl, and Tommaso Urli

Author Index . 213

A Pre-processing Aware RINS Based MIP

Heuristic

Thiago M. Gomes, Haroldo G. Santos, and Marcone J.F. Souza

Departamento de Computação, Universidade Federal de Ouro Preto (UFOP)
Ouro Preto, MG, Brasil

Abstract. This paper proposes an adaptation of the RINS MIP
heuristic which explicitly explores pre-processing techniques. The method
systematically searches for the ideal number of fixations to produce sub-
problems of controlled size. These problems are explored in a Variable
Neighborhood Descent fashion until a stopping criterion is met. Pre-
liminary experiments implemented upon the open source MIP solver
COIN-OR CBC are presented.

1 Introduction

One of the most important techniques for solving complex optimization problems
is Mixed Integer Programming (MIP). A MIP problem involves a set of variables,
a set of constraints on these variables, a set of integrality constraints and a linear
objective function to optimize.

MIPs are typically solved by branch-and-bound or branch-and-cut techniques.
These approaches explore a tree of relaxations of the original MIP, in which each
node in the tree is divided into two disjointed sets by imposing limiting restric-
tions upon an integer variable. Even tough MIP solvers can be applied to a
variety of problems, their performance in producing good feasible solutions and
strong dual bounds greatly differs for different applications and their respective
formulations. Thus, operations research practitioners often consider the use of
specifically tailored heuristics such as Tabu Search [1], Genetic Algorithms [2],
[3], Reconnect paths [4], among others, which objective is only in the produc-
tion and improvement of feasible solutions. In recent years, the application of
MIP solvers in different domains has motivated the development of many MIP
heuristics, such as Feasibility Pump [12][13], Local Branching [14] and RINS[11].

Among the solvers which have their source code available, we can highlight
the COIN-OR CBC [16] [17]. It is a solver of linear and integer programs. The
package includes features such as pre-processing, cutting planes, heuristics and
branching strategies. Although it was initially designed to be used as a library,
it includes an independent solver callable by the command line. It is possible to
use the file formats .lp and .mps. It can also run in parallel to take advantage of
multi-core computers.

In this paper we propose modifications in MIP heuristic Relaxation Induced
Neighborhood Search (RINS) proposed by [11] in the literature. The idea is to

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 T.M. Gomes, H.G. Santos, and M.J.F. Souza

search for an ideal number of variables to be fixed in a specific problem. If this
number is too small, the search space may be too large to be searched efficienly.
On the other hand, a large number of fixations may restrict the search space
so much that no improved solution will be found. All our implementations were
coded using the COIN-OR CBC libraries.

The remainder of this paper is divided as follows. Section 2 presents the
literature review considering integer programming problems and metaheuris-
tics. Section 3 describes the proposed adaptive heuristics RINS(pRins) and
the methodology used. In section 4, the test instances are described, while in
Section 5 the experiments and computational results are presented. The last
section concludes the paper and suggests possible improvements.

2 Literature Review

The heuristics were originated in Operations Research and Artificial Intelligence
communities. At first, combinations of heuristics were not explored, since they
worked well separately. The motivation for hybridization emerged aiming at
exploring the benefits of the synergy between the methods. However, it is not
trivial to find good combinations [5].

[5] presents a survey on hybridization of metaheuristics with other optimiza-
tion methods for solving problems of combinatorial nature. The authors em-
phasize the importance of hybrid methods combining features of diversification
and intensification when searching for a solution. Among the methods of inte-
ger programming, we highlight those based on Lagrangian relaxation, as well as
iterative heuristic (LPA, and IIRH IRH), which fix and solve the subproblems
encountered at every stage.

For [6], the reason for using heuristics is that they must help MIP finding
good solutions earlier, thus avoiding search in regions of low quality in the tree,
and at the same time, they must enhance the search for promising regions.
In his paper it is presented a 0-1 heuristic , stand-alone implementation, in
other words, that is independent of branch-and-bound. It is built around a merit
function by measuring the completeness of the solution. The method involves
four steps: gradient-based pivoting, pivoting poll, cuts convexity/intersection
and exploration of the tree of variables blocks.

While solving a problem in a Linear Programming based branch-and-bound
algorithm, there are usually two solutions available, one that meets the require-
ments of completeness of variables, but is not optimal, and another one that
is a fractional solution which doesn’t meet the requirements of variables com-
pleteness, however has a better value. The Relaxation Induced Neighborhood
Search(RINS) method, proposed by [11], is based upon this assumption and
fixes the variables that are equal in both solutions, as they meet both criteria.
Then a cut is added, based on the current value of the objective function and
the subproblem is solved with the remaining variables. The method has charac-
teristics which are similar to Path Relinking [4], since it is also connecting two
solutions.

A Pre-processing Aware RINS Based MIP Heuristic 3

In [7], the authors apply two tree search techniques to the Traveling Salesman
Problem: Local Branching (LB) and Sliced Neighborhood Search(SNS). While
LB produces intensification in the region of the incumbent solution exploring
nearby space, the SNS technique works diversifying the search. The SNS tech-
nique improves the incumbent solution by the random exploration of distant
spaces in the neighborhood. It explores the space considering the disparities
between the incumbent solution and the neighbors. At each iteration, a piece
of the neighborhood is explored by choosing a set of variables or using short
time limits. The combined result of the two techniques has proven itself to be
satisfactory, finding better quality solutions.

[8] presents the heuristic Distance Induced Neighborhood Search (DINS). The
idea of this heuristic is to use a metric distance between the linear relaxation
solution and the current integer solution, exploring the nodes generated by the
search. The DINS method incorporates hard-fixating and soft-fixating, rounding
variables according to the metric defined. It follows the intuition that good
solutions are close to the relaxed solution. The method also considers a criterion
to avoid excessive fixations, in case many integer variables are fixed.

[15] describes an evolutionary approach to improve solutions to mixed integer
programming (MIP) models. Evolutionary algorithms adopt a natural-selection
analogy, exploring concepts such as population, combination, mutation, and se-
lection to explore a diverse space of possible solutions to combinatorial opti-
mization problems while, at the same time, retaining desirable properties from
known solutions. The proposed method maintains a fixed-size pool of the P best
distinct solutions found so far, to perform the operations of combination and
mutation. For mutation, a solution is chosen, and then a percentage of variables
are fixed. The resulting sub-MIP is solved, the best solution is added to the pool
and the percentage of fixation is updated. The combination chooses a pair of
solutions, fix variables whose values agree in all of the chosen solutions. Then
the sub-MIP is solved and adds the best solution found to the solution pool. The
experiments showed satisfactory results.

The heuristic Relaxation Enforced Neighborhood Search (RENS) presented
in [9], works with large neighborhood search. The method builds a sub-problem
considering the viable rounding of some fractional point - usually the optimal
LP relaxation of the original MIP. The current solution is the starting point and
neighborhoods are defined by using fixations and adding restrictions. The RENS
idea is fixing variables with integer value in the relaxed solution and searching
the remaining solutions, rounding to the nearest integer.

In [10] a beverage production plant is modeled using mixed-integer program-
ming, and it involves lot sizing, decisions planning and dependent time machine
preparation. It proposes a fixation and relaxation heuristic to explore the prob-
lem, since CPLEX does not satisfactorily resolve instances of the problem. In
this procedure, the set of integer variables is divided into disjunctive sets. At
each iteration, the variables of one of the sets are fixed, while the others are re-
laxed, and the resulting submodel is resolved. The sets were divided considering
the production periods.

4 T.M. Gomes, H.G. Santos, and M.J.F. Souza

3 The pRINS MIP Heuristic

The heuristic developed in this work is based on the method RINS. In this
method, the following steps are taken at each node in the branch-and-cut tree:

1. fix the variables with the same value of the incumbent solution and the
relaxed solution;

2. set a cut based on the value of the objective function in the current incum-
bent solution;

3. solve the sub-MIP with the remaining variables.

The RINS sets all the variables that are equal in both solutions. Depending on
how many fractional variables appear on the fractional solution, the number
of the fixes in the resulting neighborhood can be too small or too large. The
proposed method explores existing pre-processing techniques to quickly generate
sub-problems of controled size. These sub-problems are solved in a VND(Variable
Neighborhood Descend) [18].

Algorithm 1. pRINS

Input: Solf , Soli,mip,Reqsize, Natpmax, Difp
Output: Sol∗

Sol∗ ← Soli;
Xp receives the sort of the variables according to their priority for fixing
considering the integer and fractional solution (Soli, Solf);
repeat

fixsize ← buildSizes(Xi, Xp, Natpmax, Reqsize, Difp, LimRel);
mip′′ ← createProblem(Xi, Xp, f ixsize,mip);
if mip′′ relaxation cost indicates possible improvement then

Solrins ← solve mip′′;
if found better solution then

Sol∗ ← Solrins;
Recalculate the vector of priorities (Xp) considering Sol∗, Solf ;

else
Increase the required size Reqsize;

end

else
Increase the required size Reqsize;

end

until the required size is smaller than the total number of variables and
time limit not exceeded ;
return Sol∗;

The method pRINS(pre-processing aware RINS), algorithm 1, establishes
a stopping criterion when applying this adapted heuristic. Given an integer
solution (Soli), fractional solution (Solf), a required size to created

A Pre-processing Aware RINS Based MIP Heuristic 5

problem (Reqsize), maximum number of attempts for building a subproblem
with the desired size(Natpmax), acceptable percentage difference between desired
and founded size (Difp) and the original problem MIP (mip). Initially an or-
dered array indicating the priorities of variables for fixation is created. To define
them, these vector variables are ordered according to the difference in magnitude
between the value in the integer solution and fractional solution. The variables
whose difference in (Sol∗) and (Solf) is zero are the first ones of this vector and
the others are placed in this array in ascending order of difference. Then the
method buildSizes, defined in algorithm 2, is used to determine the number of
fixations (fixsize) necessary to achieve the required size problem. It is created
a new problem(mip′′) which is pre-processed, considering the number of fixa-
tions determined previously. If the relaxation cost does not indicates possible
improvement, then the size of the problem increases. Otherwise, the problem is
solved, if the best solution is found, the integer solution is updated, priorities
recalculated, trying to solve the new problem. If the solution is worse, the size of
the problem increases (Reqsize) in percentage to consider a larger search space.

Algorithm 2. buildSizes

Input: Xi, Xp, Natpmax, Ndes, Difp, LimRel

Output: Nfix

Na ← 0 ;
Ll ← 0 ;
Lu ← maxSizelast ;
Nfix ← (Ll + Lu)/2 ;
Difmax ← 0 ;
repeat

Na ++;
mip′′ ← createProblem(Xi, Xp, Nfix,mip);
Probsize ← nvars(mip′′);
if |Ndes − Probsize| ≤ Ndes ∗Difp then

return Nfix;
end
if Probsize == 0 or Probsize < Ndes or LimRel ≥ 0.99 ∗ cost(Si)
then

Lu ← Nfix ;
Ll ← Nfix/2 ;
Nfix ← (Ll + Lu)/2 ;

else
Ll ← Nfix ;
Nfix ← (Ll + Lu)/2 ;

end

until Na < Natpmax or Ll < Lu ;
return Nfix;

The method buildSizes, is used to determine the ideal number of fixations.
Given the desired size of the problem (Ndes), which in the beginning is the size

6 T.M. Gomes, H.G. Santos, and M.J.F. Souza

of a mip that is small enough to be quickly solved, the total number of vari-
ables (size(Xi)), maximum number of retries (Natpmax), the vector of priorities
fixation (Xp), vector of integer variables (Xi), the MIPs are created and the
number of fixations is found. To reach the desired size, the number of fixations
is changed according to a binary search until the number of attempts is ex-
hausted, the binary search ends or size is achieved. Initially, the upper limit
of fixation is the total number of variables in the problem. This upper limit
is changed at the end of each binary search, being upgraded to the number of
fixations used in the last sub-problem solved. This control is made through the
variable (maxSizelast). This method calls another one (createProblem, defined
in algorithm 3) which checks the feasibility of the resulting subproblem. After the
problem is built, nvars function returns the number of free variables of the prob-
lem. The search ends when the number of free variables(Probsize) approaches
the desired size(Ndes), taking a percentage of tolerance(Difp). Otherwise, the
search terminates if the maximum number of attempts(Natpmax) is reached, or
the upper limit(Lu) is less than or equal to lower limit(Ll).

Algorithm 3. createProblem

Input: Xi, Xp, Nfix,mip

Output: mip
′

mip′ ← fix(mip,Nfix, Xp, Xi) ;
mip′′ ← preprocessed(mip′) ;
if mip′′notfeasible then

mip′′ ← null ;
end
return mip′′;

The method createProblem, in algorithm 3, will build mip problems, consid-
ering a number of variables to be fixed (Nfix), the vector of priorities (Xp). The
function fix(mip,Nfix, Xp, Xi) will create a new problem, from the fixing of
(Nfix) first variables of vector (Xp), through the definition of upper and lower
limits of each one by the value in Xi. Next, the created problem is preprocessed,
generating another (mip′′). If the mip (mip′′) is viable, the method returns the
size of the new problem. However if unfeasible, returns 0 as the size.

4 Characterization of Instances

The models (instances) to be used in this work are all related to binary problems.
They were obtained from two groups:

– 25 MIPLIB library problems http://miplib.zib.de/ [20].
– 12 nurse scheduling problems used in the International Nurse Rostering Com-
petition 2010 [19]

A detailed description of the instances, containing the number of binary vari-
ables, the number of constraints and number of non-zero values in constraints,
is available in table 1.

http://miplib.zib.de/

A Pre-processing Aware RINS Based MIP Heuristic 7

Table 1. Nurse Scheduling and MIPLIB Library Instances

instance binary variables constraints non-zero

long01 51,695 17,241 1,011,556
long-hidden01 61,950 28,370 1,064,380
long-hint01 61,550 27,480 1,061,430
long-late01 61,750 27,875 1,062,795
medium01 29,605 8,668 621,829
medium-hidden01 36,690 16,070 635,220
medium-hint01 34,050 14,062 622,800
medium-late01 34,050 14,062 622,800
sprint01 3,522 10,230 204,000
sprint-hidden01 10,308 3,332 202,420
sprint-hint01 11,630 5,032 208,410
sprint-late01 11,630 5,032 208,410

air04 8,904 823 72,965
bley-xl1 5,831 175,620 869,391
cov1075 120 637 14,280
eil33-2 4,516 32 44,243
eilB101 2,818 100 24,120
iis-100-0-cov 100 3,831 22,986
iis-bupa-cov 345 4,803 38,392
iss-pima-cov 768 7,201 71,941
macrophage 2,260 3,164 9,492
mine-166-5 830 8,429 19,412
mine-90-10 900 6,270 15,407
n3div36 22,120 4,484 340,740
n3seq24 119,856 6,044 3,232,340
neos-1109824 1,520 28,979 89,528
neos-1337307 2,840 5,687 30,799
neos18 3,312 11,402 24,614
netdiversion 129,180 119,589 615,282
ns1688347 2,685 4,191 66,908
opm2-z7-s2 2,023 31,798 79,762
reblock67 670 2,523 7,495
rmine6 1,096 7,078 18,084
sp98ic 10,894 825 316,317
tanglegram1 34,759 68,342 205,026
tanglegram2 4,714 8,980 26,940
vpphard 51,471 47,280 372,305

8 T.M. Gomes, H.G. Santos, and M.J.F. Souza

We can see the diversity of binary problems that will be used, with this number
of constraints and variables quite different.

5 Experiments and Results

The proposed heuristic in this work reads a series of test instances (initially
applied to binary problems, as described in the previous section), the fractional
solution and an initial integer feasible solution to the problem. This initial so-
lution was generated using Feasibility Pump and is informed as initial solution
for all tested MIP heuristics.

For most of the practical operations research applications, solution methods
are only useful if they are able to produce satisfatory solutions in short periods
of time. Thus, we imposed a time limit of 300 seconds. The initial size parameter
of the problem to be solved in these tests was defined as 100 (the number of free
variables). Another parameter is the percentage of increase in the size of the
problem(in this case, it was used 50). The tests were run using the following
hardware configuration: Intel (R) Core (TM) i7 CPU, 1.90GHz, 6 GB RAM.

Preliminary results described below, consider the implementation of themethod
RINS adapted as proposed in this work. The instances used in the tests are de-
scribed in Table 1.

We compare our results with the standalone CBC solver as well, with an
implementation method RINS in original form. Both CBC and RINS use the
same initial solution that our method uses.

In Table 2 the values found for each instances are described, considering the
implementations used. For each instance, the best value found is highlighted in
bold. Comparing the values obtained, we can notice that the proposed method
achieves better results on 14 instances when compared to CBC and is better in
18 instances when compared to the original form of RINS. In 15 instances, the
method obtains the same value achieved when the problem is solved using the
CBC, while the result is the same in 15 cases when compared to the original
RINS.

Tables 3 and 4 present the results considering the number of wins, draws and
defeats comparing the implementations tested. In all groups of instances, the
proposed method has achieved good results, reaching better solutions than or
equal to the comparison method. For example, the group of MIPLib instance,
the pRINS obtains 76% of equal or better values when compared to CBC, and
88% compared to RINS.

Table 5 shows the results for each tested implementation considering the sum
and the average of gaps (percentage difference between the obtained value and
the best known value). The proposed method was the one that was closest, on
average, to the best values. The metric gap solution was calculated according to
the following expression: min(100, (z − best)÷ best× 100).

A Pre-processing Aware RINS Based MIP Heuristic 9

T
a
b
le

2
.
R
es
u
lt
s

In
st
a
n
ce
s

p
R
IN

S
C
B
C

R
IN

S
B
es
t

z
g
a
p
%

z
g
a
p
%

z
g
a
p
%

z

lo
n
g
0
1

1
6
1

0
.0

1
6
1

0
.0

1
6
1

0
.0

1
6
1

lo
n
g
-h
id
d
en

0
1

2
,7
4
5

1
0
0
.0

2
,7
4
7

1
0
0
.0

2
,6
0
6

1
0
0
.0

3
4
6

lo
n
g
-h
in
t0
1

7
4

0
.0

7
4

0
.0

7
4

0
.0

7
4

lo
n
g
-l
a
te
0
1

2
,8
9
5

1
0
0
.0

2
,8
9
5

1
0
0
.0

2
,8
9
5

1
0
0
.0

2
3
5

m
ed

iu
m
0
1

3
7
4

0
.0

3
8
3

2
.4

3
8
3

2
.4

3
7
4

m
ed

iu
m
-h
id
d
en

0
1

1
,2
8
7

1
0
0
.0

1
,2
8
7

1
0
0
.0

1
,2
8
7

1
0
0
.0

1
1
1

m
ed

iu
m
-h
in
t0
1

2
4
5

0
.0

2
5
5

4
.0

2
5
0

2
.0

2
4
5

m
ed

iu
m
-l
a
te
0
1

7
7
9

1
0
0
.0

9
7
0

1
0
0
.0

9
6
6

1
0
0
.0

1
5
7

sp
ri
n
t0
1

9
1

2
2
.9

7
4

0
.0

9
6

2
9
.7

7
4

sp
ri
n
t-
h
id
d
en

0
1

9
2

1
0
0
.0

8
0

1
0
0
.0

9
9

1
0
0
.0

3
2

sp
ri
n
t-
h
in
t0
1

2
9
7

0
.0

4
0
0

3
4
.6

4
9
6

6
7
.0

2
9
7

sp
ri
n
t-
la
te
0
1

7
4

0
.0

8
1

9
.4

8
4

1
3
.5

7
4

a
ir
0
4

5
6
,1
3
7

0
.0

5
6
,1
3
8

0
.0

6
0
,0
9
3

7
.0

5
6
,1
3
7

b
le
y
-x
l1

2
3
0

2
1
.0

2
3
0

2
1
.0

2
1
5

1
3
.1

1
9
0

co
v
1
0
7
5

2
0

0
.0

2
0

0
.0

2
0

0
.0

2
0

ei
l3
3
-2

1
,0
1
1

8
.2

1
,0
0
0
.2
4

7
.0

1
,8
5
8

9
8
.9

9
3
4

ei
lB

1
0
1

2
,0
9
3

7
2
.1

1
,5
2
9
.8
8

2
5
.7

2
,2
9
8

8
8
.9

1
2
1
6

ii
s-
1
0
0
-0
-c
ov

3
0

3
.4

2
9

0
.0

3
2

1
0
.3

2
9

ii
s-
b
u
p
a
-c
ov

3
7

2
.7

3
8

5
.5

3
8

5
.5

3
6

is
s-
p
im

a
-c
ov

3
4

3
.0

3
4

3
.0

3
3

0
.0

3
3

m
a
cr
o
p
h
a
g
e

4
4
7

1
9
.5

8
0
9

1
0
0
.0

5
9
6

5
9
.3

3
7
4

m
in
e-
1
6
6
-5

-3
.9
8
7
4
0
e
+
0
8

2
9
.6

-3
.9
8
7
4
0
e
+
0
8

2
9
.6

-3
.9
8
7
4
0
e
+
0
8

2
9
.6

-5
.6
6
3
9
6
e+

0
8

m
in
e-
9
0
-1
0

-3
.9
8
7
4
0
e
+
0
8

4
9
.1

-3
.9
8
7
4
0
e
+
0
8

4
9
.1

-3
.9
8
7
4
0
e
+
0
8

4
9
.1

-7
.8
4
3
0
2
e+

0
8

n
3
d
iv
3
6

1
3
6
,0
0
0

3
.9

1
4
8
,6
0
0

1
3
.6

1
4
9
,8
0
0

1
4
.5

1
3
0
,8
0
0

n
3
se
q
2
4

7
3
,2
0
0

4
0
.2

6
2
,8
0
0

2
0
.3

6
9
,4
0
0

3
2
.9

5
2
,2
0
0

n
eo
s-
1
1
0
9
8
2
4

4
6
7

2
3
.5

3
8
0

0
.5

7
6
0

1
0
0
.0

3
7
8

n
eo
s-
1
3
3
7
3
0
7

-2
0
1
,4
4
7

0
.4

-2
0
1
,4
6
6

0
.4

-2
0
1
,4
4
7

0
.4

-2
0
2
3
1
9

n
eo
s1
8

1
6

0
.0

1
6

0
.0

1
6

0
.0

1
6

n
et
d
iv
er
si
o
n

3
7
0

5
2
.8

4
5
1

8
6
.3

4
5
1

8
6
.3

2
4
2

n
s1
6
8
8
3
4
7

3
5

2
9
.6

3
5

2
9
.6

3
5

2
9
.6

2
7

o
p
m
2
-z
7
-s
2

-1
,3
1
7

8
7
.1

-9
,3
6
5

8
.9

-1
,3
1
7

8
7
.1

-1
0
,2
8
0

re
b
lo
ck
6
7

-2
.1
9
7
0
4
+
e
0
7

3
6
.5

-2
.1
9
7
0
4
+
e
0
7

3
6
.5

-2
.1
9
7
0
4
+
e
0
7

3
6
.5

-3
.4
6
3
0
6
+
e0
7

rm
in
e6

-4
4
9
.2
5

1
.7

-4
4
9
.2
5

1
.7

-4
4
9
.2
5

1
.7

-4
5
7
.1
8

sp
9
8
ic

4
.5
0
3
0
7
+
e
0
8

0
.2

4
.8
7
0
7
1
+
e0
8

8
.4

4
.6
8
9
4
7
+
e0
8

4
.4

4
.4
9
1
4
5
+
e0
8

ta
n
g
le
g
ra
m
1

5
,4
9
4

6
.0

5
,4
9
4

6
.0

5
,4
9
4

6
.0

5
1
8
2

ta
n
g
le
g
ra
m
2

4
4
3

0
.0

4
4
3

0
.0

4
4
3

0
.0

4
4
3

v
p
p
h
a
rd

1
6

6
8
.7

2
2

1
0
0
.0

2
2

1
0
0
.0

5

10 T.M. Gomes, H.G. Santos, and M.J.F. Souza

Table 3. Number of victories and defeats for each group of instances

Group Best Value
pRINS Equal CBC

MIPLIB library 8 11 6
nurse scheduling 6 4 2

Table 4. Number of victories and defeats for each group of instances

Group Best Value
pRINS Equal RINS

MIPLIB library 11 11 3
nurse scheduling 7 4 1

Table 5. Sum and average of gaps

p-RINS CBC RINS

Sum 1,082.10 1,103.52 1,475.70
Average 29.24 29.82 39.88

6 Final Remarks

Even tough this work is still being developed, encouraging results were obtained
for the proposed RINS variant, denoted here as pRINS. Adjustments are being
made in the algorithm to speed up the execution of multiple pre-processing
phases, which can produce further speedups. Our computational results show
that pRINS is already better or equal to other methods (using only CBC or
original RINS) in most cases, considering the production good feasible solutions
in a restricted period of time.

References

[1] Glover, F.: Tabu Search and adaptive memory programming - advances, applica-
tions and challenges. In: Interfaces in Computer Sciences and Operations Research,
pp. 1–75 (1996)

[2] Reeves, C.R.: Genetic Algorithms Modern Heuristic Techniques for Combinato-
rial Problems. Advanced Topics in Computer Science Series, ch. 4, pp. 151–196.
Blackwell Scientific Publications (1993)

[3] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley (1989)

A Pre-processing Aware RINS Based MIP Heuristic 11

[4] Glover, F.: Future paths for Integer Programming and links to Artificial Intelli-
gence. COR 13(5), 533–549 (1986)

[5] Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinato-
rial optimization: A survey. Applied Soft Computing 11, 4135–4151 (2011)

[6] Eckstein, J., Nediak, M.: Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer
programming. Journal Heuristics 13, 471–503 (2007)

[7] Parisini, F., Milano, M.: Improving CP-based Local Branching via Sliced Neigh-
borhood Search. In: Proceedings of the 2011 ACM Symposium on Applied Com-
puting, pp. 887–892 (2011)

[8] Ghosh, S.: DINS, a MIP Improvement Heuristic. In: Fischetti, M., Williamson,
D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 310–323. Springer, Heidelberg (2007)

[9] Berthold, T.: Rens: The Relaxation Enforced Neighborhood Search (2009)
[10] Ferreira, D., Morabito, R., Rangel, S.: Relax and fix heuristics to solve one-stage

one-machine lot-scheduling models for small-scale soft drink plants. Computers
and Operations Research 37, 684–691 (2009)

[11] Danna, E., Rothberg, E., Pape, C.: Exploring relaxation induced neighborhoods
to improve MIP solutions 102, 71–90 (2005)

[12] Fischetti, M., Bertacco, L., Lodi, A.: A feasibility pump heuristic for general
mixed-integer problems. Technical report, Università di Bologna D.E.I.S. Opera-
tions Research (2005)

[13] Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Mathematical Program-
ming 104(1), 9104 (2005)

[14] Fischetti, M., Lodi, A.: Local branching. Mathematics Programming, ser. B 98,
23–47 (2003)

[15] Rothberg, E.: An Evolutionary Algorithm for Polishing Mixed Integer Program-
ming Solutions. INFORMS Journal on Computing 19(4), 534–541 (2007)

[16] Forrest, J., Lougee-Heimer, R.: INFORMS Tutorials in Operations Research. CBC
User Guide, pp. 257–277 (2005)

[17] Lougee-Heimer, R.: The Common Optimization Interface for Operations Research:
Promoting open-source software in the operations research community. IBM Jour-
nal of Research and Development 47(1), 57–66 (2003)

[18] Mladenovic, N., Hansen, P.: Variable Neighborhood Search. Computers and Op-
erations Research 24, 1097–1100 (1997)

[19] Haspeslagh, S., De Causmaecker, P., Stolevik, M., Schaerf, A.: First interna-
tional nurse rostering competition 2010. CODeS, Department of Computer Sci-
ence. KULeuven Campus Kortrijk, Belgium (2010)

[20] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby,R., Danna,
E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T.,
Salvagnin, D., Steffy, D., Wolter, K.: MIPLIB 2010. Mathematical Programming
Computation. Mathematics and Statistics 3, 103–163 (2011), http://dx.doi.org/
10.1007/s12532-011-0025-9

http://dx.doi.org/10.1007/s12532-011-0025-9
http://dx.doi.org/10.1007/s12532-011-0025-9

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 12–21, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Hybrid Simulated Annealing Algorithm
for Location of Cross-Docking Centers in a Supply Chain

S.M. Mousavi1, R. Tavakkoli-Moghaddam1, A. Siadat2, and B. Vahdani1

1 Dep. of Industrial Engineering, College of Engineering, University of Tehran,
and National Elite Foundation Tehran, Iran

{sm.mousavi,tavakoli,b.vahdani}@ut.ac.ir
2 LCFC, Arts et Métier Paris Tech, Metz, France

ali.siadat@ensam.eu

Abstract. In this paper, cross-docking centers are designed at a strategic level
for distribution planning in a supply chain. To make the strategic decision, a
zero-one programming (ZOP) model is presented for the location to determine
the minimum number of cross-docks among a set of location centers so that
each retailer demand should be met. Then, a hybrid simulated annealing (HSA)
algorithm embedded with tabu search (TS) is proposed to solve the presented
model. A number of test problems in small and large sizes are examined to
illustrate the performance of the proposed HSA algorithm in terms of the
solution quality and computational time. Moreover, its efficiency is compared
with the classical SA and TS algorithms in detail. Finally, computational results
demonstrate that the proposed HSA algorithm outperforms the two classical
algorithms and converges fast to high-quality solutions.

Keywords: Supply chain, Location, Cross-docking centers, Hybrid simulated
annealing, Tabu search.

1 Introduction

Cross-docking warehousing systems involve holding no inventory in the warehousing
center but simply moving them through the warehousing center when it arrives from
suppliers, orders are disaggregated and sent to different retailers based on their orders
[1]. In supply chain management, the location of cross-docking centers has an
important role for the strategic planning. In fact, the cross-docking location problem
includes a set of service facilities to serve a set of retailers which have to be located
according to one or several objective functions by considering the interaction between
retailers' demands and cross-docking centers.

In the last decade, there were some studies considering the location of cross-
docking center problems. Ratliff et al. [2] addressed a load-driven network problem in
a railroad context in order to determine the number and location of the mixing centers
by minimizing the total delay in the automotive delivery system. Donaldson et al. [3]
studied on schedule-driven transportation planning in the design of cross-docking
distribution networks. Jayaraman and Ross [4] introduced a two-stage network

 A Hybrid Simulated Annealing Algorithm for Location of Cross-Docking Centers 13

planning that have determined the location of cross-docks and distribution centers in a
supply chain network, and then the proposed model solved by a simulated annealing
(SA) algorithm under various scenarios. Sung and Song [5] presented an integer
programming model to provide the optimal location of cross-docking and the
allocation of vehicles in the context of service network by minimizing the cost of
locating cross-docking and the cost of allocating vehicles. Then, the model is solved
by a tabu search (TS) algorithm. Makui et al. [1] addressed a cross-docking location
allocation problem by considering on the classical capacitated facility location
presented by Klose et al. [6] and the analytic hierarchy process (AHP) method. Ross
and Jayaraman [7] continued the previous study [4] and provided an evaluation of the
meta-heuristics solution. Lim et al. [8] extended the traditional transshipment problem
that involved a number of supply, transshipment and demand nodes. Ma et al. [9]
addressed the shipment consolidation and transportation problem in cross-docking
systems. In this study, the setup cost and time window constraint were taken into
consideration.

In this paper, the location problem is formulated for multi-period multi-cross-dock
to determine the minimum number of cross-docks among a set of location centers by
assigning suppliers to cross-docks and assigning cross-docks to retailers so that three
types of costs are minimized. These costs include a fixed cost for cross-docks,
operating cost for cross-docks to handle product, and transportation cost for moving
the product from suppliers to cross-docks and from cross-docks to retailers. By
considering the uncertainties in this cross-docking warehousing system, and the
diversification of demands as well as the needed quantities in the pickup and delivery
nodes, this paper aims to present a new multi-period location model at strategic level
by introducing a zero-one programming (ZOP) method in order to show the results to
be close to real-life applications in the long-term planning.

The outline of this paper is as follows. The location problem is defined and then
concerned formulation of the presented model is demonstrated in Section 2. In
Section 3, the proposed HSA algorithm is presented as the problem-solving approach.
Computational experiments are provided in Section 4. Finally, conclusions are
provided in Section 5.

2 Problem Description and Formulation

The problem considered in this paper is depicted in Fig. 1. In this figure, a white cycle
represents a supplier (i.e., pickup node), and a black cycle represents a retailer (i.e.,
delivery node). The limitations are as follows. Each demand of a pickup or delivery
node should be satisfy in each period by one of the potential cross-docking centers.
The total quantity of pickup (supply quantities) should equal the quantity to be
delivered (total demands). The number of cross-docks should be less than R.

14 S.M. Mousavi et al.

Fig. 1. Proposed network for multiple cross-docking centers

2.1 Proposed Model

The following notations are used in the formulation of the ZOP model for the location
problem of multiple cross-docking centers.

Sets and input parameters:

P Set of suppliers in the pickup process
 Set of cross-dock centers
 Set of retailers in the delivery process
 Set of periods Cost to transport product from supplier i to cross-dock center p in period t
′ Cost to transport product from cross-dock center p to retailer ′ in period t

 Operating cost at cross-dock center p in period t
 Fixed cost to open cross-dock p

 Capacity of cross-dock center p to handle product
 Demand of retailer in period t Quantity of product from supplier i in period t

R Maximum number of cross-dock centers to be opened

Decision variables: 1 if supplier is assigned to cross dock for product in period ,0 otherwise,
′

1 if cross dock is assigned to retailer ′ for product in period ,0 otherwise, 1 if cross dock is open,0 otherwise,

In terms of the above notations, the location problem with multiple cross-docking
centers is formulated as follows:

 A Hybrid Simulated Annealing Algorithm for Location of Cross-Docking Centers 15

Min ∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ′′ (1)

s.t.

 ∑ ′ 1 ′ 1,2, … , and 1,2, … , (2)

 ∑ 1 1,2, … , and 1,2, … , (3)
 ∑ (4)
 ∑ ∑ 1,2, … , (5)
 ∑ ∑ 1,2, … , (6)
 , ′ , 0,1 1,2, … , , 1,2, … , ,

′ 1,2, … , , and 1,2, … , (7)

The objective function (1) minimizes the fixed cost to open cross-docking centers, the
operating cost for cross-docking centers to handle product, and costs to transport a
product from suppliers to cross-docking centers in the pickup process as well as costs
to supply the product from cross-docking centers to satisfy the demand of retailers in
the delivery process. Constraint (2) ensures that the demand of each retailer in the
delivery process during each period is only satisfied by one of the open cross-docking
centers. Constraint (3) ensures that the quantity of product from each supplier during
each period is only satisfied by one of the open cross-docking centers. Constraint (4)
limits the number of cross-docks that can be located. Constraint (5) and (6) ensure
that the quantity or demand of product from each supplier or retailer during all
periods should be equal/ less than capacities of open cross-docking centers in the
pickup process. Also, these constraints ensure that transporting product from suppliers
to cross-docking center, and from cross-docking center to retailers in the pickup and
delivery processes can be performed only when the corresponding cross-docking
center is open. Finally, constraint (7) enforces the binary restrictions on the decision
variables.

3 Proposed Hybrid Meta-heuristic Algorithm

The proposed hybrid meta-heuristic algorithm is presented for the location problem
based on the hybridization of two famous algorithms, namely SA and TS. The
proposed hybrid simulated annealing (HSA) algorithm has a number of advantages,
including stochastic feature avoiding cycling and tabu list to escape from local
optima. These characteristics limit the search from a previously visited solution and
improve the performance of classical SA properly. The SA is regarded as a random

16 S.M. Mousavi et al.

search optimization algorithm. It was first introduced by Metropolis et al. [10] and
popularized by Kirkpatrick et al. [11]. The algorithm works based on the annealing
process that is applied to the metallurgical industry. In addition, the TS is regarded as
a local search algorithm applied to combinatorial optimization problems. It was first
introduced by Glover [12]. The algorithm is able to escape the local optima occurred
during the search via the list of prohibited neighboring solutions, called tabu list. Both
algorithms (i.e., SA and TS) have been used in a wide variety of conventional and
practical optimization problems in real-life applications [e.g., 7, 12-14].

The steps of the proposed HSA algorithm with a tabu list taken from TS are
described for the optimal location problem. The search is conducted for least-cost
solutions by a control parameter, called temperature and the cooling schedule that
determines the number of iterations (i.e., epochs) for the algorithm. A randomly
generated initial configuration is first regarded in the proposed HSA algorithm that
denotes the cross-docking centers to be opened, the suppliers and retailers assigned to
the cross-docking centers. Then, the total cost is calculated by the objective function
in the proposed ZOP model.

Step 1: Initialization. Initial and final values are taken into account for the control
parameter temperature, known as and , respectively, and is the number of a
particular iteration and is the total number of iterations. An initial cross-docking
center solution is randomly obtained by allocating adequate supply of suppliers and
demand flows of retailers between cross-docking centers and delivery nodes in the
cross-docking distribution network. It leads to an initial feasible solution that involves
the product flows. The objective function value for the solution can be regarded as the
objective function value for the best configuration obtained (), current
configuration and the newest configuration . All counters are set
to 1.

Step 2: Check feasibilities. The algorithm investigates product flow assignments for
cross-docking centers to assure the capacity of cross-docking, fixed costs and number
of potential cross-docking centers. Furthermore, the quantity of the product and
demand of retailers should be considered to be met. If the configuration is not
feasible, we return to Step 1.

Step 3: Provide a feasible neighboring solution. Once the location problem has been
initialized, the objective function value is calculated and feasibility is considered.
Then, the current feasible configuration of cross-docking warehousing system is
updated by choosing a supplier and reassigning the amount of product between a
cross-docking center and supplier. Additionally, this method can be utilized for
retailers. It is executed by randomly choosing a supplier and a retailer to perturb. Its
flow is randomly allocated to another combination of pickup/cross-docking center
/delivery nodes. All feasibilities must be investigated once again. Finally, the value of
objective function is obtained for the neighboring solution .

Step 4: Assess current solution with neighboring solution. If the objective function
value for the neighboring solution is higher than the current solution (i.e.,

, proceed to Step 5. Otherwise, if the objective function value for the
newest configuration enhances the current solution (i.e., , the

 A Hybrid Simulated Annealing Algorithm for Location of Cross-Docking Centers 17

neighboring solution can be regarded as the current solution. Then, this solution is
compared to the best solution obtained (). If the objective function value for the
newest configuration is lower than the best one determined so far (i.e.,

, then replace the best solution with this neighboring solution. Proceed to Step 8.

Step 5: Investigate Metropolis condition. The difference between the neighboring
solution and the current solution is calculated, . Then,
the Metropolis criterion is employed to obtain the probability, in which the relatively
inferior neighboring solution can be accepted, P(A). This probability is calculated by
[7]:

 exp / , (8)

where is the present temperature. Then, a random number is determined from the
interval (0, 1). If the random number is lower than P(A), then the neighboring solution
is substituted for the current solution. Proceed to Step 8.

Step 6: Tabu list. The tabu list can investigate for each step of the algorithm whether
the obtained solution is latterly visited or not. Hence, this leads to the restriction of the
algorithm regarding revisiting the pre-visited solutions. This characteristic of the
proposed HSA algorithm decreases the CPU time of algorithm to achieve reasonable
solutions.

Step 7: Aspiration. Aspiration is linked to the TS. It attempts to restrict the search of
the algorithm from being trapped at a solution, which is surrounded by tabu
neighbors. If an obtained solution has a neighborhood of the tabu solutions, the
solution via the value of objective function higher than the aspiration is selected for
further exploring.

Step 8: Increase counters. Memory and variables are updated. The counters can be
incremented by one. If the iteration counter value is lower than or equal to the
maximum iterations for the temperature level, then return to Step 3. Otherwise, go to
Step 9.

Step 9: Adjust temperature. Temperature is adapted in iteration using the cooling
schedule:

 1 tanh 5 . (9)

If the new value of is higher than or equal to the stopping value (), then iteration
counters are restarted from one and return to Step 3. Otherwise, the procedure stops.

4 Computational Results

Computational experiments in this section are reported to verify and examine the
performance of the proposed HSA algorithm for solving the location problem of
cross-docking centers in the cross-docking warehousing system. For this purpose, ten

18 S.M. Mousavi et al.

test problems in a supply chain environment with varying sizes generated at random
in small and large-scale cases. Hence, five test problems are solved in small sizes by
the branch-and-bound method using the GAMS software for the presented model.
Sizes of the test problems are given in Table 1. All parameters are given in Table 2.
Some parameters are generated randomly in uniform distributions. It is noteworthy
that the SA, TS and proposed HSA are tuned for the test problems based on the
authors’ experience and related literature. Also, the problem-solving approach by the
proposed HSA algorithm is coded in the MATLAB®. All small and large-sized test
problems are run by using the Intel Dual Core, 2.8 GHz compiler and 2 GB of RAM.

Table 1. Sizes of small-sized problems

Problem no.
No. of

suppliers

No. of potential
cross-docking

centers

No. of customers

1 4 3 5

2 8 4 7

3 10 5 9

4 11 6 10

5 12 7 12

Table 2. Sources of random generations for the presented location model

Parameters Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

5 7 9 10 12

4 8 10 11 12

3 4 5 6 7

′ ~Uniform
(10,40)

~Uniform
(5,45)

~Uniform
(5,50)

~Uniform
(5,55)

~Uniform
(5,60)

 ~Uniform
(600,1000)

~Uniform
(500,1100)

~Uniform
(400,1200)

~Uniform
(400,1400)

~Uniform
(500,1500)

~Uniform

(10,30)
~Uniform

(5,40)
~Uniform

(5,45)
~Uniform

(5,50)
~Uniform

(5,55)

 ~Uniform
(300,4000)

~Uniform
(200, 5000)

~Uniform
(200,6000)

~Uniform
(100,6500)

~Uniform
(50,7000)

 ~Uniform
(40,300)

~Uniform
(50,500)

~Uniform
(100,500)

~Uniform
(40,550)

~Uniform
(30,600)

′ ~Uniform
(25,300)

~Uniform
(70,550)

~Uniform
(80,520)

~Uniform
(70,600)

~Uniform
(80,650)

TC ~Uniform
(5000,30000)

~Uniform
(4000,35000)

~Uniform
(3000,40000)

~Uniform
(3000,45000)

~Uniform
(3000,50000)

For five small-sized test problems, the reported results in these tables are
calculated by Eq. (10), which denotes the gap between the optimal solutions and
meta-heuristic solutions obtained by the proposed HSA algorithm.

 100. (10)

 A Hybrid Simulated Annealing Algorithm for Location of Cross-Docking Centers 19

Furthermore, the objective function values, CPU times and the gaps of the objective
function values are reported in Table 3 for the given seven small-sized problems that
are solved by the proposed HSA meta-heuristic algorithm, the classical SA and TS
algorithms and branch-and-bound method using the GAMS software.

The comparison of the branch-and-bound method with the proposed hybrid HSA
algorithm illustrates that the HSA can approximately obtain a near-optimal solution in
less time than the branch-and-bound method. The average gap between the optimal
and meta-heuristic solutions is 4.16% indicating the efficiency of the proposed HSA
algorithm supplementary with a tabu list in the cross-docking warehousing system.

Table 3. Results in small-sized test problems for the location of cross docking center problem

In Table 4, the computational results are given in large-sized test problems for the
presented ZOP model. The average time of the proposed hybrid HSA algorithm based
on the combination of SA and TS for five large-sized test problems in 300 and 500
iterations are 280.7 and 409.1 seconds, respectively. The run time of the proposed
HSA meta-heuristic algorithm is acceptable for solving these problems.

In addition, the convergence rate of the proposed hybrid HSA meta-heuristic
algorithm is depicted in Fig. 2 for this test problem. Finally, the results illustrate that
this algorithm for solving the location problem of cross-docking centers can perform
well and converge fast to reasonable solutions.

Table 4. Results in large-sized test problems for the location of cross docking center problem

Proposed HSA
(300 iterations)

TS
(300 iterations)

SA
(300 iterations)

Branch-and-
bound method

No. of
test

problems
Gap
(%)

Time
(s)

Best
solution

Gap
(%)

Time
(s)

Best
solution

Gap
(%)

Time
(s)

Best
solution

Time
(s)

Best
solution

2.64 7.8 6154.9 6.53 9 6388.5 4.44 8.3 6263.2 2.8 5996.8 1
1.96 8.4 16723.1 4.29 10 17105.3 6.42 9.3 17454.4 7.0 16401.0 2
5.28 11.6 24271.1 11.87 11.4 25789.3 7.56 12.4 24797.4 12.7 23053.8 3
6.59 11.4 27009.6 16.72 12.7 29577.1 8.18 11.8 27411.6 14.3 25339.2 4
4.32 12 28099.2 10.37 14.3 29728.6 8.21 13.2 29145.7 17.9 26935.2 5

4.16 10.2 20451.6 9.96 11.5 21717.8 6.96 11.1 21014.4 10.8 19545.2 Average

Proposed HSA
 (500 iterations)

Proposed HSA
(300 iterations)

TS
 (500 iterations)

SA
 (500 iterations)

No. of
customers

No. of
cross-

docking
centers

No. of
supplier

s

No. of
problems

Time
(s)

Best solutionTime (s) Best solution Time (s)
Best

solution
Time (s)

Best
solution

307.7 32541.9 244.4 33104.1 343 35173.9 317.5 34149.5 25 10 20 1
434.2 37123 268.9 39620 441 43291.2 445.2 39716.7 30 12 30 2
447.5 34247.5 299.2 35589.6 545.3 36632.7 506.5 37002.9 35 15 30 3
432 50832.5 329.6 51246 457.1 58861.8 443.9 60063.1 40 18 40 4

424.1 48847 261.4 57238 484.8 66716.8 473.1 62940.4 45 20 50 5

409.1 40718.4 280.7 43359.5 454.2 48135.3 437.2 46774.5 35 15 34 Average

20 S.M. Mousavi et al.

Fig. 2. Convergence rate for the fifth large-sized problem

5 Conclusion

This paper has introduced a zero-one programming (ZOP) model for the location
problem of cross-docking centers in a supply chain. Three types of costs have been
considered that minimize the fixed cost for cross-docks, the operating cost for cross-
docks to handle product and the transportation cost for moving the product from
suppliers to cross-docks and from cross-docks to retailers. Then, a hybrid simulated
annealing (HSA) algorithm with a tabu list has been proposed to solve the presented
ZOP model. In the presented HSA by the combination of simulated annealing (SA)
and tabu search (TS), not only the number of solution revisits but also computational
time to obtain a near-optimal solution has been considerably decreased. To validate
the proposed hybrid HSA algorithm, different test problems have been solved in order
to evaluate its performance and reliability in comparison with the classical SA. The
computational results have demonstrated that the proposed HSA algorithm can be
employed in situations, in which popular commercial solvers cannot solve the optimal
location model for large-sized problems in real-life applications for cross-docking
warehousing systems.

Acknowledgment. This work has been partially supported by the Center for International
Scientific Studies & Collaboration (CISSC) and the French Embassy in Tehran. The
authors are also grateful for the financial support from the Égide Program in France.

References

1. Makui, A., Haerian, L., Eftekhar, M.: Designing a multi-objective nonlinear cross-docking
location allocation model using genetic algorithm. Journal of Industrial Engineering
International 2(3), 27–42 (2006)

2. Ratliff, H.D., Vate, J.V., Zhang, M.: Network design for load-driven cross-docking
systems. Technical report, Georgia Institute of Technology (1998),
http://www.isye.gatech.edu/research/files/misc9914.pdf

 A Hybrid Simulated Annealing Algorithm for Location of Cross-Docking Centers 21

3. Donaldson, H., Johnson, E.L., Ratliff, H.D., Zhang, M.: Schedule-driven crossdocking
networks. Technical report, Georgia Institute of Technology (1999),
http://www.isye.gatech.edu/apps/research-papers/
papers/misc9904.pdf

4. Jayaraman, V., Ross, A.: A simulated annealing methodology to distribution network
design and management. European Journal of Operational Research 144, 629–645 (2003)

5. Sung, C.S., Song, S.H.: Integrated service network design for a cross-docking supply chain
network. Journal of the Operational Research Society 54(12), 1283–1295 (2003)

6. Klose, A., Drexl, A.: Facility location models for distribution system design. European
Journal of Operational Research 162(1), 4–29 (2005)

7. Ross, A., Jayaraman, V.: An evaluation of new heuristics for the location of cross-docks
distribution centers in supply chain network design. Computers & Industrial
Engineering 55, 64–79 (2008)

8. Lim, A., Miao, Z., Rodrigues, B., Xu, Z.: Transshipment through crossdocks with
inventory and time windows. Naval Research Logistics 52(8), 724–733 (2005)

9. Ma, H., Miao, Z., Lim, A., Rodrigues, B.: Cross docking distribution networks with setup
cost and time window constraint. Omega 39, 64–72 (2011)

10. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of
state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092
(1953)

11. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

12. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)
13. Ghodratnama, A., Rabbani, M., Tavakkoli-Moghaddam, R., Baboli, A.: Solving a single-

machine scheduling problem with maintenance, job deterioration and learning effect by
simulated annealing. Journal of Manufacturing Systems 29, 1–9 (2010)

14. Liao, T.W., Egbelu, P.J., Chang, P.C.: Simultaneous dock assignment and sequencing of
inbound trucks under a fixed outbound truck schedule in multi-door cross docking
operations. International Journal of Production Economics 141, 212–229 (2013)

Intensification/Diversification

in Decomposition Guided VNS

Samir Loudni, Mathieu Fontaine, and Patrice Boizumault

Université de Caen Basse-Normandie, UMR 6072 GREYC, F-14032 Caen, France
CNRS, UMR 6072 GREYC, F-14032 Caen, France

Abstract. Tree decomposition introduced by Robertson and Seymour
aims to decompose a problem into clusters constituting an acyclic graph.
In a previous paper, we have introduced DGVNS (Decomposition Guided
VNS) which uses the graph of clusters to manage the exploration of large
neighborhoods. In this paper, we go one step further by proposing three
new strategies that exploit the graph of clusters enabling a better intensi-
fication and diversification in DGVNS. Experiments performed on random
instances (GRAPH) and real life instances (RLFAP, SPOT5 and tagSNP) show
the appropriateness and the efficiency of our proposals.

1 Introduction

Many real-life problems, such as frequency assignment [4], or the daily manage-
ment of an earth observation satellite [3], are very large and exhibit a highly
structured constraints graph. Exploiting such structural properties may lead
these problems to be tractable.

Tree decomposition introduced by Robertson and Seymour [21] aims to decom-
pose a problem into subproblems (called clusters) constituting an acyclic graph.
Each cluster corresponds to a subset of variables that are strongly connected.
As each subproblem is significantly smaller in size than the original one, it can
be solved more efficiently. The interest for exploiting structural properties of a
problem has been attested in various domains: for checking satisfiability in SAT
[20], for solving CSP [6], in Bayesian or probabilistic networks [17], in relational
databases [9], for constraint optimization [5,22,25]). All these proposals exploit
tree decomposition for complete search methods.

For local search methods that use large neighborhoods, as Large Neighborhood
Search (LNS) [23] or Variable Neighborhood Search (VNS) [18], the design of neigh-
borhood structures is crucial, since they provide a way to intensify/diversify the
search in order to explore promising regions of the search space. In a previous
paper [8], we have introduced DGVNS (Decomposition Guided VNS) which uses
the graph of clusters provided by a tree decomposition of the constraints graph
to guide the exploration of large neighborhoods in VNS.

In this paper, we go one step further by proposing three new strategies
(DGVNS-1, DGVNS-2 and DGVNS-3) that exploit the graph of clusters enabling a
better intensification and diversification in DGVNS. They correspond to different

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 22–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Intensification/Diversification in Decomposition Guided VNS 23

schemes for moving between clusters according to the quality of the new solu-
tion found. Our main idea is to ensure a wider coverage of different parts of the
problem associated to clusters of the tree decomposition, whilst focusing more in-
tensively within promising regions. Experiments performed on random instances
(GRAPH) and on real life instances (RLFAP, SPOT5 and tagSNP, see Section 5.2)
show that achieving a better compromise of intensification and diversification, as
performed by DGVNS-2, leads to better results compared to DGVNS-1 and DGVNS-3.
Moreover, comparisons made with VNS/LDS+CP [16] and ID-Walk [19], one of the
most performing local search methods on RLFAP instances (see Section 5.3) show
that our approaches (i.e. DGVNS-1 and DGVNS-2) are very effective.

Section 2 introduces the context. Section 3 details our strategies for intensifi-
cation and diversification in DGVNS. Section 4 presents the problem instances we
used for our experiments. Section 5 is devoted to experimentations. Finally, we
conclude and draw some perspectives.

2 Context and Definitions

First, we recall the definition of a Cost Functions Network, the framework we
have retained for modeling all problems considered for our experiments (see
Section 4). Then, we present the MCS tree decomposition method that relies on
the concept of graph triangulation. Finally, we detail the DGVNS method.

2.1 Cost Functions Network

A Cost Functions Network (CFN) [14] is a generic framework used to model
and solve constrained optimization problems which allows to deal with over-
constrained problems. It is defined as a pair (X,W) where X = {x1, . . . , xn} is
a set of n variables (with a maximum domain size d) and W is a set of e cost
functions. Each variable xi ∈ X has a finite domain Di of values that can be
assigned to it. A value a in Di is denoted (xi, a). For a set of variables S ⊆ X , DS

denotes the cartesian product of the domains of the variables in S. A complete
assignment t=(a1, ..., an) is an assignment of all variables; on the contrary, it will
be called a partial assignment. For a given complete assignment t, t[S] denotes
the projection of t over S. A cost function wS ∈ W , with scope S ⊆ X , is a
function wS : DS �→ [0, k�] where, k� is a maximum integer cost (finite or not)
used to represent forbidden assignments (expressing hard constraints). Costs are
combined using the bounded addition defined by α⊕β = min(k�, α+β). Solving
a CFN consists in finding a complete assignment t minimizing ⊕wS∈WwS(t[S]).

2.2 Tree Decomposition

The constraints graph of a CFN is a graph G=(X , E) with one vertex for each
variable and one edge (u, v) for every cost function wS ∈ W, such that u, v ∈ S.

24 S. Loudni, M. Fontaine, and P. Boizumault

A

B C

D

E

F

(a) Initial graph G.

A

B C

D

E

F

(b) Example of a triangulation of G.

A,B,C

B,C,D

A,B,E

D,F

B,C

A,B

D

B

(c) Maximal cliques corresponding to the
triangulated graph (graph of clusters).

A,B,C

B,C,D A,B,E

D,F

B,C A,B

D

(d) Tree decomposition of G with
width 2.

Fig. 1. Steps for computing a tree decomposition of a graph G

Definition 1. A tree decomposition [21] of G=(X,E) is a pair (CT , T) where:

– T = (I, A) is a tree with nodes set I and edges set A,
– CT = {Ci | i ∈ I} is a family of subsets of X (called clusters) such that:

• ∪i∈I Ci = X,
• ∀ (u, v) ∈ E, ∃Ci ∈ CT s.t. u, v ∈ Ci,
• ∀ i, j, k ∈ I, if j is on the path from i to k in T , then Ci ∩Ck ⊆ Cj .

Definition 2. The intersection of two clusters Ci and Cj is called a separator,
and noted sep(Ci, Cj). Two clusters Ci and Cj are adjacent if sep(Ci, Cj)�= ∅.
Variables belonging to one, and only one, cluster are called proper variables.

Definition 3. A graph of clusters for a tree decomposition (CT , T) is an undi-
rected graph GT = (CT , ET) that has a vertex for each cluster Ci ∈ CT , and
there is an edge (Ci, Cj) ∈ ET when sep(Ci, Cj)�= ∅. The edges are labeled by
the shared variables.

Definition 4. The width of a tree decomposition is defined as w− = maxi∈I(|
Ci | −1). The treewidth tw(G) of a graph G is defined as the smallest width of
all possible tree decompositions of G.

As finding an optimal tree decomposition is NP-hard [2], approximate tree de-
compositions using triangulation of a given graph are often exploited. Several
effective heuristics that rely on the notion of graph triangulation have been
proposed (see [13] for an introduction to triangulated graphs). Such heuristics
provide upper bounds for the treewidth.

Computing a tree decomposition for a graph is equivalent to finding a trian-
gulation of this graph, i.e. finding a suitable set of edges to add to the graph to
obtain a chordal graph [13].

Intensification/Diversification in Decomposition Guided VNS 25

Algorithm 1. Pseudo-code of DGVNS

function DGVNS(X,W, kinit, kmax, δmax);
begin

let G be the constraints graph of (X,W) ;1

let (CT , T) be a tree decomposition of G ;2

let CT = {C1, C2, ..., Cp} ;
S ← genInitSol() ;3

k ← kinit ;4

i← 1 ;5

while (k < kmax) ∧ (notT imeOut) do6

Cs ← CompleteCluster(Ci, k) ;7

Xun ← Hneighborhood(Cs, Nk,i, S) ;8

A ← S\{(xi, a) |xi ∈ Xun} ;9

S′ ← Rebuild(A, Xun, δmax, f(S), S) ;10

NeighbourhoodChangeDGVNS(S,S′, k, i);11

return S ;12

end

Fig. 1 depicts the three steps for computing a tree decomposition of a graph G
(see Part a). First, triangulation is performed on G by adding edge BC (see Part
b). Then, maximal cliques in the chordal graph are determined in order to build
the graph of clusters (see Part c). Finally, tree decomposition is achieved (see
Part d). In this paper, we have used the heuristic called Maximum Cardinality
Search (MCS) [24]. This heuristic provides a good compromise between the width
of the tree decomposition and the time required to compute it [13].

2.3 Decomposition Guided VNS (DGVNS)

DGVNS (Decomposition Guided VNS) [8] extends the Variable Neighborhood De-
composition Search (VNDS1) method [11], by exploiting the graph of clusters in
order to guide the exploration of large neighborhoods. Neighborhoods are ob-
tained by unfixing a part of the current solution according to a neighborhood
heuristic. Then the exploration of the search space, related to the unfixed part
of the current solution, is performed by a partial tree search LDS (Limited Dis-
crepancy Search, [12]) with Constraint Propagation (CP).

Definition 5 (Neighborhood Structure Nk,i). Let G be a constraint graph
and GT=(CT ,ET) its associated graph of clusters. Let Ci ∈ CT be a cluster of
GT and k the neighborhood dimension. Nk,i denotes the set of all subsets of k
variables from Ci.

Figure 1 depicts the pseudo-code of DGVNS. It starts from a tree decomposi-
tion of G (line 2) and from an initial solution S which is randomly generated

1 VNDS extends the basic VNS into a two-level VNS scheme based upon decomposition
of the problem.

26 S. Loudni, M. Fontaine, and P. Boizumault

(line 3). To favor moves on regions that are closely linked, DGVNS uses neigh-
borhood structures Nk,i (see Definition 5). Indeed, the concept of cluster em-
bodies this criterion, because of its size (smaller than the original problem), and
by the strong connection of the variables it contains. Thus, the set of candi-
date variables Cs to be unassigned are selected from cluster Ci. If (k > |Ci|),
then we complete Cs by adding the clusters Cj adjacent to Ci in order to take
into account the topology of the graph of clusters. This treatment is achieved
by function CompleteCluster(Ci, k) (line 7). Moreover, thank to the strong
connection of the selected variables, the rebuilding step will benefit from an ef-
fective pruning and a better computing of lower bounds. A subset of k variables
Xun is randomly selected in Cs among conflicted ones2 by the neighborhood
heuristic Hneighborhood (line 8). Such a heuristic which is mainly based on ran-
dom choices, allows to diversify the search. A partial assignment A is generated
from the current solution S by unassigning the k selected variables; the (n− k)
non-selected variables keep their current value in S (line 9). Then, unassigned
variables are rebuilt by a partial tree search (LDS) combined with Constraint
Propagation (CP) (line 10). The search stops when the maximal dimension size
allowed or the T imeOut is reached (line 6). Function NeighborhoodChangeDGVNS

determines the way to intensify and diversify the search according to the quality
of the new solution found S′ (line 11). It will be detailed in the next section.

3 Strategies for Intensification/Diversification in DGVNS

We propose three new strategies that exploit the graph of clusters enabling
a better intensification and diversification in DGVNS. They correspond to dif-
ferent schemes for moving between clusters according to the quality of the
new solution found. Our aim is to ensure a wider coverage of different parts
of the problem, whilst focusing more intensively within promising regions. In
the following, we denote by DGVNS-i, the DGVNS method using the function
NeighborhoodChangeDGVNS-i.

First, we discuss the role of intensification and diversification for local search
methods. Then, we detail our strategies for intensification/diversification.

3.1 Intensification versus Diversification

One of the most crucial points which greatly impacts the performance of lo-
cal search methods is their capability to exhibit high intensification and high
diversification. The aim of intensification is to focus more intensively within a
relatively small region to converge towards a local optimum, while the goal of
diversification is to sample a large number of different regions to ensure that
the search space has been properly explored, and to locate the region contain-
ing the global optimum. In DGVNS, intensification is performed by rebuilding the
partial solutions using LDS+CP and by resetting the size of the neighborhood to

2 A variable is said to be conflicted if it occurs in at least one unsatisfied constraint.

Intensification/Diversification in Decomposition Guided VNS 27

(a)

Procedure NeighborhoodChangeDGVNS-1(S,S′, k, i);

(1) begin

(2) if f(S′) < f(S) then
(3) S ← S′;
(4) k ← kinit;
(5) i← succ(i);
(6) else

(7) k ← k + 1;
(8) i← succ(i)
(9) endif

(10) return ;

(11) end

(b)

Procedure NeighborhoodChangeDGVNS-2(S,S′, k, i);

(1) begin

(2) if f(S′) < f(S) then
(3) S ← S′;
(4) k ← kinit;
(5) else

(6) k ← k + 1;
(7) i← succ(i)
(8) endif

(9) return;

(10) end

(c)

Procedure NeighborhoodChangeDGVNS-3(S,S′, k, i);

(1) begin

(2) if f(S′) < f(S) then
(3) S ← S′;
(4) k ← kinit;
(5) i← succ(i);
(6) else

(7) k ← k + 1;
(8) endif

(9) return;

(10) end

Fig. 2. Strategies for intensification/diversification in DGVNS

kinit at each improvement. This will accelerate the search for complete assign-
ments in small neighborhoods. The diversification is ensured by enlarging the
neighborhood dimension (i.e. moving from k to (k+1)).

However, as stated in [15], most local search methods handle diversification
and intensification as two opposite objectives: as one gets more intensification,
one can loose diversification. So, more coordination is required between these
two main components.

3.2 DGVNS-1: Move Systematically to the Next Cluster

DGVNS-1 considers successively all the Ci. Fig. 2 (Part (a)) depicts the pseudo-
code of the function NeighborhoodChangeDGVNS-1. Let p be the total number of
clusters, succ a successor function3, andNk,i the current neighborhood structure.
If LDS+CP fails to find a solution of better quality S′ in the neighborhood of S,
DGVNS-1 looks for improvements in N(k+1),succ(i) (neighborhood structure where
(k + 1) variables of Cs will be unassigned) (lines 7-8). First, diversification per-
formed by moving from cluster Ci to cluster Csucc(i) enables to favor the search
to visit new parts of the search space and to try to find higher quality solutions

3 if i < p then succ(i) = i+ 1 else succ(p) = 1.

28 S. Loudni, M. Fontaine, and P. Boizumault

that reside elsewhere. Second, when a local minimum is found in the current
neighborhood, moving from k to (k+1) will also provide some diversification by
enlarging the neighborhood size.

However, when a solution of better quality S′ is found by LDS+CP in the
current neighborhood Nk,i, we reset k to kinit (line 4), and we consider the next
cluster (line 5). Indeed, remaining in the same cluster makes it more difficult to
improve: selecting a new cluster will enable to diversify the exploration around
the new solution S′. Clearly DGVNS-1 favors a more ”aggressive” diversification
of the search space.

3.3 DGVNS-2: Move to the Next Cluster If No Improvement Is Made

The pseudo-code of function NeighborhoodChangeDGVNS-2 is depicted Fig. 2
(Part (b)). In this strategy, we move to cluster Csucc(i) if no improvement of
the current solution is made (lines 6-7). However, unlike to DGVNS-1, if LDS+CP
finds a solution of better quality S′ in the neighborhood of S (line 2), k is reset
to kinit (line 4), and DGVNS-2 looks for new improvements in Nkinit,i (lines 3-4).
This enables to intensify the exploration in the neighborhood of S′ in subsequent
iterations in the rebuilding step of DGVNS-2. First, remaining in the same cluster
will enable to propagate, over variables of Cs, the consequences of the new re-
assignments of variables in S′. Second, resetting k to kinit will favor search to
perform small moves within the neighborhood of S′.

Contrary to DGVNS-1, DGVNS-2 seems to favor a balance between intensification
and diversification. Indeed, as long as no improvement is made, DGVNS-2 considers
successively all the Ci (i.e. diversification effort), but as soon as a solution is
improved, DGVNS-2 switches to an intensification scheme.

3.4 DGVNS-3: Move to the Next Cluster after Each Improvement

To evaluate the impact of our diversification process by considering Csucc(i) as
the next cluster, we propose a third strategy DGVNS-3 which consists in remaining
in the same cluster as long as no improvement is performed (see the pseudo-code
depicted in Fig. 2, Part (c)). DGVNS-3 restricts the diversification effort by only
increasing the neighborhood dimension (line 7). As for DGVNS-2, when a solution
of better quality S′ is found, DGVNS-3 looks for improvements in Nkinit,succ(i)

(lines 4-5). This strategy can be seen as a kind of compromise between the two
previous ones.

4 Benchmark Problems

Experiments have been performed on instances of four different problems mod-
eled as CFNs (see Section 2.1).

RLFAP Instances: The CELAR (Centre d’Electronique de l’Armement) has made
available a set of instances for the Radio Link Frequency Assignment Problem
(RLFAP) [4]. They consist in assigning a limited number of frequencies to a set
of radio links defined between pairs of sites, in order to minimize interferences

Intensification/Diversification in Decomposition Guided VNS 29

due to the re-use of frequencies. We report experiments on the most difficult
instances: Scen06, Scen07 and Scen08.

GRAPH Instances: The GRAPH generator (Generating Radio link frequency As-
signment Problems Heuristically) has been developed by the CALMA project
[26] in order to provide structured random instances close to RLFAP ones.

SPOT5 Instances: The daily management of an earth observation satellite such
as SPOT5 consists in selecting a subset of candidate photographs to fit physical
limitations and maximize their importance [3]. We report experiments on seven
instances from those without hard capacity constraint.

tagSNP Instances:A Single Nucleotide Polymorphism (SNP) is a DNA sequence
variation occurring when a single nucleotide - A, T, C or G - in the genome differs
between members of a biological species or paired chromosomes in an individ-
ual [7]. SNPs act as biological markers that may help predict risk of developing
particular diseases. The tagSNP problem consists in selecting a small subset of
SNPs, called tagSNPs, that captures most of the genetic information. This prob-
lem is known to be very hard to solve, due to its close relation to the set covering
problem (NP-Hard) [22]. We report experiments on twelve challenging instances
derived from human chromosome-1-data4 with r0=0.5 (up to n=1, 550 variables
with maximum domain size d ranging from 30 to 266, and up to e=250, 000 cost
functions). Eight instances are medium-sized, while the four other instances are
large ones.

5 Experiments

First, we compare the three strategies for managing intensification and diver-
sification and discuss their impact (see Section 5.2). Then, we compare DGVNS

with VNS/LDS+CP5[16] and ID-Walk [19], one of the most performing local search
methods on RLFAP instances (see Section 5.3). Finally, note that comparing CPU
times for our approach with those for complete methods that exploit tree de-
compositions would be rather difficult. In fact, all reported CPU times include
both finding an optimal solution and proving its optimality. These two tasks take
generally about a few days [22]. Experiments we performed clearly demonstrate:

1. The relevance of exploiting the graph of clusters to achieve better intensifi-
cation and diversification. Moreover, DGVNS-2 gets better results on most of
the instances, except for tagSNP instances where DGVNS-1 is the best one.

2. The efficiency of DGVNS-1 and DGVNS-2 compared with both VNS/LDS+CP

and ID-Walk on structured problems like RLFAP, SPOT5 and tagSNP. For
GRAPH instances, the results show the limits of MCS decomposition method
(see Section 2.2) to reveal pertinent neighborhood structures.

4 http://www.costfunction.org/benchmark
5 For both DGVNS and VNS/LDS+CP, the rebuilding step is performed using LDS+CP, but
VNS/LDS+CP uses neighborhood structures Nk of dimension k.

http://www.costfunction.org/benchmark

30 S. Loudni, M. Fontaine, and P. Boizumault

Instance Method Succ. Time Avg
Scen06 DGVNS-3 50/50 521 3, 389
n = 100, d = 44, e = 1, 222 DGVNS-2 50/50 146 3, 389
S∗ = 3, 389 DGVNS-1 50/50 112 3, 389
Scen07 DGVNS-3 4/50 2, 752 347, 583
n = 200, d = 44, e = 2, 665 DGVNS-2 46/50 901 344,012
S∗ = 343, 592 DGVNS-1 40/50 317 345, 614
Scen08 DGVNS-3 - - 519 (500)
n = 458, d = 44, e = 5, 286 DGVNS-2 5/50 595 277
S∗ = 262 DGVNS-1 3/50 1, 811 275

Graph06 DGVNS-3 50/50 654 4, 123
n = 200, e = 1, 970 DGVNS-2 50/50 413 4, 123
S∗ = 4, 123 DGVNS-1 50/50 367 4, 123
Graph11 DGVNS-3 1/50 3, 507 6, 637
n = 340, e = 3, 417 DGVNS-2 23/50 3, 031 3, 480
S∗ = 3, 080 DGVNS-1 8/50 3, 046 4, 234
Graph13 DGVNS-3 - - 31, 180 (28, 585)
n = 458, e = 4, 915 DGVNS-2 - - 21, 796 (18, 323)
S∗ =10, 110 DGVNS-1 - - 22, 489 (18, 639)

Fig. 3. Comparing the three strategies on RLFAP and GRAPH instances

5.1 Experimental Protocol

Each instance has been solved by each method, with a discrepancy of 3 for LDS,
which is the best value found on RLFAP instances (see [16]). kmin and kmax

have been respectively set to 4 and n (the total number of variables) so that all
variables of the problem will be covered, and T imeOut fixed to 3, 600 seconds.
For tagSNP instances, T imeOut was set to 2 hours (resp. 4 hours) for medium-
sized (resp. large) instances. A set of 50 runs per instance has been performed on
an AMD opteron with 2.1 GHz CPU and 256 GB of RAM. All search strategies
have been implemented in C++ using the library toulbar26.

For each instance and each method, we report the number of successful runs to
reach the optimum, “succ. runs/total runs”, the average CPU time (in seconds)
for the successful runs, the average cost over the 50 runs and the best cost
(between brackets) for unsuccessful runs.

5.2 Comparing the Three Strategies

First, we compare the different DGVNS-i (i=1,2,3) on each of the four problems
considered (see Section 4). Then, we summarize the results obtained.

RLFAP Instances. The impact of the neighborhood change strategy is very sig-
nificant, particularly on the two challenging instances Scen07 and Scen08 (see
Fig. 3) for which very large improvements are gained by DGVNS-2 compared
to DGVNS-1. For Scen07, DGVNS-2 improves the success rate about 12% (from
80% to 92%) and obtains solutions with a mean deviation (percentage deviation
from the optimum) of 0.12% above the optimum against 0.55% for DGVNS-1. For
Scen08, the success rate is improved about 4% (from 6% to 10%) and DGVNS-2 is

6 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

Intensification/Diversification in Decomposition Guided VNS 31

Instance Method Succ. Time Avg
#408 DGVNS-3 50/50 1, 697 6, 228
n = 200, d = 4, e = 2, 232 DGVNS-2 50/50 81 6, 228
S∗ =6, 228 DGVNS-1 49/50 117 6,228
#412 DGVNS-3 - - 32, 384 (32, 383)
n = 300, d = 4, e = 4, 348 DGVNS-2 48/50 484 32,381
S∗ =32, 381 DGVNS-1 36/50 84 32,381
#414 DGVNS-3 - - 38, 486 (38, 482)
n = 364, d = 4, e = 10, 108 DGVNS-2 45/50 670 38,478
S∗ =38, 478 DGVNS-1 38/ 50 554 38, 478
#505 DGVNS-3 36/50 3, 094 21, 253
n = 240, d = 4, e = 2, 242 DGVNS-2 50/50 90 21, 253
S∗ =21, 253 DGVNS-1 50/50 63 21,253
#507 DGVNS-3 - - 27, 396 (27, 393)
n = 311, d = 4, e = 5, 732 DGVNS-2 45/50 463 27,390
S∗ =27, 390 DGVNS-1 33/50 71 27, 390
#509 DGVNS-3 - - 36, 454 (36, 450)
n = 348, d = 4, e = 8, 624 DGVNS-2 47/50 509 36,446
S∗ =36, 446 DGVNS-1 40/50 265 36, 446

Fig. 4. Comparing the three strategies on SPOT5 instances

3 times faster than DGVNS-1. Let us note that, on this instance, DGVNS-1 gets best
results on average, with a mean deviation above the optimum of 0.5% against
0.57% for DGVNS-2. For Scen06, results obtained by both methods are quite sim-
ilar, but DGVNS-1 is slightly faster. Finally, DGVNS-3 is less effective, particularly
on Scen08: it is not able to reach the optimum and the best found solution has a
cost 500. This confirms the importance of strengthening the diversification effort
by covering a large part of clusters as performed by DGVNS-1 and DGVNS-2.

SPOT5 Instances. This trend is confirmed by SPOT5 instances (see Fig. 4),
where DGVNS-2 clearly outperforms DGVNS-1. On the four largest instances (#412,
#414, #507 et #509), DGVNS-2 improves the success rate about 19% on average,
but DGVNS-1 is faster. For instances #408 and #505, both methods reach the
optimum with success rates of 100%. However, for instance #408, DGVNS-2 is 1.4
times faster, while for #505 DGVNS-1 is the best one. Once again, DGVNS-3 is less
effective: it reaches the optimum for only 2 instances among 6.

GRAPH Instances. Once again, DGVNS-2 outperforms DGVNS-1 and DGVNS-3 (see
Fig. 3), both in terms of success rates and CPU times, particularly on the two
challenging instances Graph11 and Graph13. Indeed, for Graph11, the success
rate for DGVNS-2 is 3 times as high as for DGVNS-1 (from 14% to 46%). The
mean deviation above the optimum decreases from 29% to 12% (gain of 16%).
For Graph13, even though no method reaches the optimum, DGVNS-2 obtains
solutions with a mean deviation about 115%, against 135% for DGVNS-1. Fur-
thermore, DGVNS-2 finds the best solution with cost 18, 323. For comparison, the
best solution found by DGVNS-1 has a cost 20, 956.

tagSNP Instances. The results are in favor of DGVNS-1 (see Fig. 5). Indeed, for
the two medium-sized instances #6835 and #8956, DGVNS-1 clearly outperforms

32 S. Loudni, M. Fontaine, and P. Boizumault

Instance Method Succ. Time Avg
#3792 DGVNS-3 14/50 4,509 6,360,029
n = 528, d = 59, e = 12, 084 DGVNS-2 50/50 1,564 6,359,805
S∗ = 6359805 DGVNS-1 50/50 954 6,359,805
#4449 DGVNS-3 9/50 3,371 5,094,261
n = 464, d = 64, e = 12, 540 DGVNS-2 50/50 1,186 5,094,256
S∗ = 5, 094, 256 DGVNS-1 50/50 665 5,094,256
#6835 DGVNS-3 3/50 6,746 4,571,344
n = 496, d = 90, e = 18, 003 DGVNS-2 34/50 3,568 4,730,484
S∗ = 4571108 DGVNS-1 50/50 2,409 4,571,108
#8956 DGVNS-3 - - 6,966,493 (6,660,336)
n = 486, d = 106, e = 20, 832 DGVNS-2 34/50 5,138 6,660,383
S∗ = 6, 660, 308 DGVNS-1 50/50 4,911 6,660,308
#9319 DGVNS-3 - - 6,477,395 (6,477,242)
n = 562, d = 58, e = 14, 811 DGVNS-2 50/50 1,248 6,477,229
S∗ = 6, 477, 229 DGVNS-1 50/50 788 6,477,229
#15757 DGVNS-3 50/50 2,041 2,278,611
n = 342, d = 47, e = 5, 091 DGVNS-2 50/50 127 2,278,611
S∗ = 2, 278, 611 DGVNS-1 50/50 60 2,278,611
#16421 DGVNS-3 8/50 5,552 3,437,125
n = 404, d = 75, e = 12, 138 DGVNS-2 50/50 2,001 3,436,849
S∗ = 3, 436, 849 DGVNS-1 50/50 2,673 3,436,849
#16706 DGVNS-3 - - 2,632,319 (2,632,319)
n = 438, d = 30, e = 6, 321 DGVNS-2 50/50 127 2,632,310
S∗ = 2, 632, 310 DGVNS-1 49/50 153 2,632,310

#10442 DGVNS-3 - - 22,491,631 (22,491,496)
n = 908, d = 76, e = 28, 554 DGVNS-2 48 / 50 8,257 21,591,915
S∗ = 21, 591, 913 DGVNS-1 50/50 4,552 21,591,913
#14226 DGVNS-3 - - 29,256,033 (27,996,275)
n = 1, 058, d = 95, e = 36, 801 DGVNS-2 50/50 8,237 25,665,437
S∗ = 25, 665, 437 DGVNS-1 46/50 7,606 25,688,751
#17034 DGVNS-3 - - 41,016,388 (39,852,093)
n = 1, 142, d = 123, e = 47, 967 DGVNS-2 35/50 10,288 38,777,581
S∗ = 38, 318, 224 DGVNS-1 41/50 8,900 38,563,232
#9150 DGVNS-3 - - 51,510,783 (50,281,105)
n = 1, 352, d = 121, e = 44, 217 DGVNS-2 - - 46,123,257 (44,697,387)
S∗ = 43, 301, 891 DGVNS-1 - - 44,754,916 (43,302,028)

Fig. 5. Comparing the three strategies on tagSNP instances

DGVNS-2 both in terms of success rates (gain of 32%) and CPU times. For the
other instances (except for instances #16421 and #16706), both methods reach
the optimum for each of the 50 runs, however DGVNS-1 is in average 2 times
faster. For the two instances #16421 and #16706, DGVNS-2 obtains better CPU
times. For large-size instances (except for instance #14226), DGVNS-1 obtains
better results than DGVNS-2 on three instances.

Synthesis. These experiments show clearly the impact of the neighborhood
change strategy on the performances of DGVNS. First, diversification performed
by considering Csucc(i) as the next cluster is necessary. Second, DGVNS-2 gets
better success rates on most of the instances (except for tagSNP instances), but
DGVNS-1 is faster. The results of DGVNS-2 on tagSNP instances can be explained
by the size of the instances and the CPU times which are 2 to 4 times larger
compared to RLFAP and SPOT5 instances. For these instances, remaining in the
same cluster when a better solution is found requires much more time to find a

Intensification/Diversification in Decomposition Guided VNS 33

Instance Method Succ. Time Avg
Scen06 DGVNS-2 50/50 146 3,389

VNS/LDS+CP 15/50 83 3,399
S∗ = 3, 389 ID-Walk NA 840 3,447 (3,389)
Scen07 DGVNS-2 46/50 901 344,012

VNS/LDS+CP 1/50 461 355,982
S∗ = 343, 592 ID-Walk NA 360 373,334 (343,998)
Scen08 DGVNS-2 5/50 595 277

VNS/LDS+CP 0/50 - 394 (357)
S∗ = 262 ID-Walk NA 3,000 291 (267)

Graph06 DGVNS-2 50/50 413 4,123
VNS/LDS+CP 50/50 218 4, 123

S∗ = 4, 123 ID-Walk 0/50 - 18, 949 (13, 001)
Graph11 DGVNS-2 23/50 3, 031 4, 234

VNS/LDS+CP 44/50 2,403 3, 090
S∗ = 3, 080 ID-Walk 0/50 - 41, 604 (27, 894)
Graph13 DGVNS-2 0/50 - 21, 796 (18, 323)

VNS/LDS+CP 3/50 3,477 14, 522
S∗ = 10110 ID-Walk 0/50 - 58, 590 (47, 201)

Instance Method Succ. Time Avg
#408 DGVNS-2 50/50 89 6,228

VNS/LDS+CP 26/50 149 6,228
S∗ = 6, 228 ID-Walk 50/50 3 6,228
#412 DGVNS-2 48/50 484 32,381

VNS/LDS+CP 32/50 130 32,381
S∗ = 32, 381 ID-Walk 10/50 2102 3,238
#414 DGVNS-2 45/50 670 38,478

VNS/LDS+CP 12/50 434 38,481
S∗ = 38, 478 ID-Walk 0/50 - 38,481
#505 DGVNS-2 50/50 90 21,253

VNS/LDS+CP 41/50 143 21,253
S∗ = 21, 253 ID-Walk 50/50 358 21,253
#507 DGVNS-2 45/50 463 27,390

VNS/LDS+CP 11/50 232 27,391
S∗ = 27, 390 ID-Walk 7/50 1,862 27,391
#509 DGVNS-2 47/50 265 36,446

VNS/LDS+CP 12/50 598 36,448
S∗ = 36, 446 ID-Walk 0/50 - 36,450

Fig. 6. Comparing with other approaches on RLFAP, GRAPH and SPOT5 instances

new improvement, due to the important size of neighborhoods. This significantly
reduces the speed improvement of the quality of solutions provided by DGVNS-2.
This is not the case for DGVNS-1, which benefits from the systematic change of
neighborhood structures for improving solutions faster. This helps DGVNS-1 to
cut branches earlier in subsequent iterations of the rebuilding step.

5.3 Comparing with Other Approaches

First, we compare DGVNS-2 with VNS/LDS+CP and ID-Walk on each of the four
problems considered. Then, we summarize the results obtained.

RLFAP Instances. First, DGVNS-2 clearly outperforms VNS/LDS+CP on RLFAP in-
stances (see Fig. 6). DGVNS-2 reaches the optimum with success rates of 100%,
92% and 10% on Scen06, Scen07 and Scen08 respectively. VNS/LDS+CP gets suc-
cessful runs only very few times on the first two instances, and is not able to
find the optimum for Scen08: the best solution found has a cost 357.

Second, DGVNS-2 clearly outperforms ID-Walk7, particularly on the two chal-
lenging instances Scen07 and Scen08 (see Fig. 6). For Scen07 (resp. Scen08),
DGVNS-2 obtains solutions with a mean deviation (percentage deviation from the
optimum) of 0.12% (resp. 5.7%) above the optimum, while ID-Walk only finds
solutions whose average costs are respectively 8% and 11% above the optimum.

SPOT5 instances. This trend is confirmed by SPOT5 instances (see Fig. 6), where
DGVNS-2 outperforms VNS/LDS+CP, both in terms of success rates (with a gain of
50% on average) and CPU times. Indeed, DGVNS-2 reaches the optimum for each
run on two instances (#408 and #505). For the other instances, the success rate

7 Results for RLFAP instances are taken from [19]. The number of successful runs and
the CPU times are not available (NA in Fig. 6), Thus, we only report the time per
trial, the average cost over 10 trials and the best cost found. For other instances
(SPOT5, GRAPH and tagSNP) results were obtained using ID-Walk in the library IN-
COP [1], with the same experimental protocol as described above.

34 S. Loudni, M. Fontaine, and P. Boizumault

Instance Method Succ. Time Avg
#3792, n = 528, d = 59, e = 12, 084 DGVNS-2 50/50 954 6,359,805
S∗ = 6, 359, 805 VNS/LDS+CP 15/50 2,806 6,359,856
#4449, n = 464, d = 64, e = 12, 540 DGVNS-2 50/50 1,186 5,094,256
S∗ = 5, 094, 256 VNS/LDS+CP 48/50 2,616 5,094256
#6835, n = 496, d = 90, e = 18, 003 DGVNS-2 34/50 3,568 4,730,484
S∗ = 4, 571, 108 VNS/LDS+CP 50/50 7,095 4,571,108
#8956, n = 486, d = 106, e = 20, 832 DGVNS-2 34/50 5,138 6,660,308
S∗ = 6, 660, 308 VNS/LDS+CP 12/50 8,665 6,660327
#9319, n = 562, d = 58, e = 14, 811 DGVNS-2 50/50 1,248 6,477,229
S∗ = 6, 477, 229 VNS/LDS+CP 47/50 2,434 6,477,229
#15757, n = 342, d = 47, e = 5, 091 DGVNS-2 50/50 127 2,278,611
S∗ = 2, 278, 611 VNS/LDS+CP 50/50 229 2,278,611
#16421, n = 404, d = 75, e = 12, 138 DGVNS-2 50/50 2,001 3,436,849
S∗ = 3, 436, 849 VNS/LDS+CP 37/50 3,146 3,436,924
#16706, n = 438, d = 30, e = 6, 321 DGVNS-2 50/50 127 2,632,310
S∗ = 2, 632, 310 VNS/LDS+CP 50/50 629 2,632,310

#9150, n = 13, 52, d = 121, e = 44, 217 DGVNS-2 0/50 - 44,754,916 (43,302,028)
S∗ = 43, 301, 891 VNS/LDS+CP 0/50 - 52,989,981 (51,677,673)
#10442, n = 908, d = 76, e = 28, 554 DGVNS-2 48/50 8,257 21,591,913
S∗ = 21, 591, 913 VNS/LDS+CP 0/50 - 22,778,811 (22,490,938)
#14226, n = 1, 058, d = 95, e = 36, 801 DGVNS-2 50/50 8,237 25,688,437
S∗ = 25, 665, 437 VNS/LDS+CP 0/50 - 28,299,904 (26,830,579)
#17034, n = 1142, d = 123, e = 47, 967 DGVNS-2 35/50 10,288 38,777,581
S∗ = 38, 318, 224 VNS/LDS+CP 0/50 - 41,352,709 (39,850,974)

Fig. 7. Comparing DGVNS-2 and VNS/LDS+CP on tagSNP instances

is at least 90%. VNS/LDS+CP gets an average success rate of 67% on instances
#408 and #505, while for the other instances (except for instance #412), the
success rate is at most 24%.

Once again, DGVNS-2 clearly dominates ID-Walk (except for instance #408)
(see Fig. 6), particularly on the two large instances #414 and #509 where
ID-Walk does not reach the optimum. For these two instances, the best
solution found has a cost 38, 479 and 36, 447 respectively.

tagSNP Instances. Fig. 7 compares DGVNS-2 with VNS/LDS+CP on tagSNP in-
stances. As ID-Walk exhibited poor performances, they are not reported here.
For medium-sized instances (except for instance #6835), DGVNS-2 clearly outper-
forms VNS/LDS+CP: the optimum is reached for each of the 50 runs. VNS/LDS+CP
improves the success rates about 32% on instance #6835 and gets the same
success rates on two instances #15757 and #16706, but DGVNS-2 is on average
3.4 times faster. For the two instances #3792 and #8956, VNS/LDS+CP gets suc-
cessful runs only very few times (i.e. success rate of 30% and 24% respectively).
For comparison, DGVNS-2 improves very significantly this success rate about 70%
(from 30% to 100%) for instance #3792 and 44% (from 24% to 68%) for instance
#8956. For the other instances, VNS/LDS+CP remains less competitive both in
terms of success rates and CPU times.

For large instances, DGVNS-2 clearly dominates VNS/LDS+CP (see Fig. 7), par-
ticularly on the three instances #10442, #14226 and #17034, where VNS/LDS+CP
is not able to find the optimum. For these three instances, the best costs found
(between brackets) are about 4% above the optimum. For instance #9150,
even though no method reaches the optimum, DGVNS-2 performs better than

Intensification/Diversification in Decomposition Guided VNS 35

VNS/LDS+CP. For this instance, the deviation (resp. mean deviation) above the
optimum of the best (resp. average) cost found decreases from 19% to 0.0003%
(resp. from 22% to 3.35%).

GRAPH Instances. DGVNS-2 clearly outperforms ID-Walk but is less competitive
than VNS/LDS+CP (see Fig. 6). For Graph06, both methods perform similarly in
terms of success rates and solution quality, but VNS/LDS+CP is faster. For Graph11
and Graph13, VNS/LDS+CP is clearly the best one. This is certainly due to the fact
that clusters are very large and strongly connected. Thus, the impact of our diver-
sification mechanism is weaker since most clusters have few proper variables and
tend to be quite similar. These results show the limits of MCS to reveal pertinents
structures (i.e. weakly connected clusters of reasonable size).

Synthesis. These experiments clearly demonstrate the efficiency of DGVNS-
2 compared with both VNS/LDS+CP and ID-Walk on structured problems like
RLFAP, SPOT5 and tagSNP. The same holds for DGVNS-1, i.e., DGVNS-1 clearly
outperforms both VNS/LDS+CP and ID-Walk on the same instances. For GRAPH
instances, the results show the limits of the MCS decomposition method to provide
pertinent neighborhood structures.

6 Conclusions

In this paper we have introduced three new strategies enabling better intensi-
fication and diversification in DGVNS. Experiments show that, achieving better
compromise between these two components leads to very good results. Moreover,
comparisons made with VNS/LDS+CP and ID-Walk show the relevance of our two
schemes DGVNS-1 and DGVNS-2 to efficiently guide the exploration of the search
space.

We are currently investigating two directions: parallelizing the exploration
of clusters and using hyper-tree decomposition methods [10]. Contrary to tree
decomposition, which consists in grouping the vertices in clusters (i.e. variables
in subproblems), hyper-tree decomposition consists in grouping the constraints
(or hyper-edges) in nodes of the hyper-tree.

Acknowledgements. This work is partly supported by the ANR (French Re-
search National Agency) funded project FiCOLOFO ANR-10-BLA-0214.

References

1. http://www-sop.inria.fr/coprin/neveu/incop/presentation-incop.html

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM. J. on Algebraic and Discrete Methods 8, 277–284 (1987)

3. Bensana, E., Lemâıtre, M., Verfaillie, G.: Earth observation satellite management.
Constraints 4(3), 293–299 (1999)

4. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency
assignment. Constraints 4(1), 79–89 (1999)

http://www-sop.inria.fr/coprin/neveu/incop/presentation-incop.html

36 S. Loudni, M. Fontaine, and P. Boizumault

5. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local
consistency in weighted CSP. In: AAAI, pp. 22–27. AAAI Press (2006)

6. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38(3),
353–366 (1989)

7. Carlson, C.S., et al.: Selecting a maximally informative set of single-nucleotide
polymorphisms for association analyses using linkage disequilibrium. Am. J. of
Hum. Genetics 74(1), 106–120 (2004)

8. Fontaine, M., Loudni, S., Boizumault, P.: Guiding VNS with tree decomposition.
In: ICTAI, pp. 505–512. IEEE (2011)

9. Gottlob, G., Lee, S.T., Valiant, G.: Size and treewidth bounds for conjunctive
queries. In: PODS, pp. 45–54 (2009)

10. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions:
Np-hardness and tractable variants. J. ACM 56(6) (2009)

11. Hansen, P., Mladenovic, N., Perez-Brito, D.: Variable neighborhood decomposition
search. Journal of Heuristics 7(4), 335–350 (2001)

12. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1),
pp. 607–615. Morgan Kaufmann (1995)

13. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computa-
tional experiments. ENDM 8, 54–57 (2001)

14. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for
Weighted CSP. In: IJCAI, pp. 239–244 (2003)

15. Linhares, A., Yanasse, H.H.: Search intensity versus search diversity: a false trade
off? Appl. Intell. 32(3), 279–291 (2010)

16. Loudni, S., Boizumault, P.: Combining VNS with constraint programming for solv-
ing anytime optimization problems. EJOR 191, 705–735 (2008)

17. Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for combinatorial
optimization in graphical models. Artif. Intell. 173(16-17), 1457–1491 (2009)

18. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24, 1097–1100 (1997)

19. Neveu, B., Trombettoni, G., Glover, F.: ID Walk: A candidate list strategy with
a simple diversification device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258,
pp. 423–437. Springer, Heidelberg (2004)

20. Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. J. Autom.
Reasoning 24(1/2), 225–275 (2000)

21. Robertson, N., Seymour, P.D.: Graph minors. ii. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

22. Sánchez, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree
decomposition. In: Boutilier, C. (ed.) IJCAI, pp. 603–608 (2009)

23. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

24. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

25. Terrioux, C., Jégou, P.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. Artificial Intelligence 146(1), 43–75 (2003)

26. van Benthem, H.: GRAPH: Generating radiolink frequency assignment problems
heuristically (1995)

A Hybridized Particle Swarm Optimization

with Expanding Neighborhood Topology
for the Feature Selection Problem

Yannis Marinakis1 and Magdalene Marinaki2

1 Decision Support Systems Laboratory, Department of Production Engineering
and Management, Technical University of Crete, Chania, Greece

marinakis@ergasya.tuc.gr
2 Industrial Systems Control Laboratory, Department of Production Engineering

and Management, Technical University of Crete, Chania, Greece
magda@dssl.tuc.gr

Abstract. This paper introduces a new algorithmic nature inspired ap-
proach that uses a hybridized Particle Swarm Optimization algorithm
with a new neighborhood topology for successfully solving the Feature
Selection Problem (FSP). The Feature Selection Problem is an inter-
esting and important topic which is relevant for a variety of database
applications. The proposed algorithm for the solution of the FSP, the
Particle Swarm Optimization with Expanding Neighborhood Topology
(PSOENT), combines a Particle Swarm Optimization (PSO) algorithm
and the Variable Neighborhood Search (VNS) strategy. As, in general,
the structure of the social network affects strongly a PSO algorithm, the
proposed method by using an expanding neighborhood topology man-
ages to increase the performance of the algorithm. As the algorithm
starts from a small size neighborhood and by increasing (expanding) the
size of the neighborhood, it ends to a neighborhood that includes all
the swarm, it manages to take advantage of the exploration capabilities
of a global neighborhood structure and of the exploitation abilities of a
local neighborhood structure. In order to test the effectiveness and the
efficiency of the proposed method we use data sets of different sizes and
compare the proposed method with a number of other PSO algorithms
and other algorithms from the literature.

Keywords: Feature Selection Problem, Particle Swarm Optimization,
Expanding Neighborhood Topology, Variable Neighborhood Search.

1 Introduction

Particle Swarm Optimization (PSO) is a population-based swarm intel-
ligence algorithm that was originally proposed by Kennedy and Eberhart [8].
PSO simulates the social behavior of social organisms by using the physical
movements of the individuals in the swarm. Its mechanism enhances and adapts
to the global and local exploration.

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 37–51, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 Y. Marinakis and M. Marinaki

There are two kinds of population topologies for the PSO algorithm: the
global best population topology and the local best population topology [6].
In the global best PSO, the neighborhood for each particle is the entire swarm.
In the local best PSO, each particle has a smaller neighborhood. Thus, as it is
mentioned in [6], the performance of the PSO depends strongly on the structure
of the social network. If a highly connected social network is adapted, then, it will
achieve a faster convergence to a solution compared to a less connected network.
However, the faster convergence may lead the algorithm to be stuck to a local
optimum. On the other hand, if a low connected social network is used, then,
the swarm converges slower which allows larger parts of the search space to be
explored. To combine the advantages of the better exploration by neighborhood
structures and the faster convergence of highly connected networks, Suganthan
[20] combined the two approaches. The search is initialized with an lbest PSO
with n = 2 (i.e. with the smallest neighborhoods). The neighborhood sizes are,
then, increased as iterations increase until each neighborhood contains the entire
swarm.

In [16], an improvement of the idea proposed in [20] and an application to
a combinatorial optimization problem was presented. In this paper, a Parti-
cle Swarm Optimization with Expanding Neighborhood Topology (PSOENT)
algorithm was presented and used for the solution of the Permutation Flow-
shop Scheduling Problem (PFSP). In this algorithm, the advantages of a local
search neighborhood topology and of a global search neighborhood topology are
used. The algorithm started with a local search neighborhood topology where
the neighborhoods for each particle were equal to 2 and in each iteration the
neighborhood was increased (expanded) until it became equal to the number of
particles. Then, if the maximum number of iterations had not yet been reached,
the neighborhood was initialized again and it followed the same procedure until
the maximum number of iterations had been reached. Thus, there were no con-
secutive iterations in which the size of the neighborhood was the same. With this
procedure each particle had more exploitation abilities by moving for a number
of iterations in small swarms inside the whole swarm. Also, this procedure in-
creased the exploration capabilities as for a number of iterations all the particles
were moving as a single swarm. By using an expanding neighborhood topology,
each particle participated in each iteration in more than one swarm and, thus,
the interchange of the information between the swarms was becoming easier.

In this paper, we modify the neighborhood topology presented in [16]. In [16],
the neighborhood was expanding with the number of iterations, while in the
proposed algorithm the neighborhood is expanding based on the quality of the
solutions. Each particle has its own neighborhood. Thus, while all particles be-
gin with the same neighborhood topology when a solution of a particle is not
improved for a consecutive number of iterations (itnum), then, only its neighbor-
hood is expanding. With this strategy there is a possibility of having different
neighborhood topologies for each particle which is a novelty of the proposed
algorithm. This idea of changing the neighborhood topology of the swarm not
with the number of iterations but when the swarm can not improve the global or

PSOENT for FSP 39

personal best solution is inspired by the basic idea of changing a neighborhood
when the algorithm is trapped in a local optimum in the Variable Neighborhood
Search (VNS) Algorithm [7]. Thus, as in VNS algorithm the neighborhood is ex-
panding in order to find a better local optimum, in the proposed algorithm the
search of a better direction that the particle will move in its neighborhood is ex-
panding in order to search in a larger neighborhood when the particle is trapped
in a local optimum. This incorporation of one of the basic characteristics of
Variable Neighborhood Search algorithm in the Particle Swarm Optimization
gave a more powerful version of PSO algorithm. Another characteristic of VNS
algorithm that is incorporated in the PSO is the reinitialization of the search
of the local best neighborhood. In the proposed algorithm, when the number
of neighbors becomes equal to the number of particles, then, the search of the
local best neighborhood is reinitialized from a very small neighborhood. In each
iteration of the algorithm the search is realized from a different point (shaking
procedure of the VNS) as the current position of each particle is different in each
iteration.

The VNS algorithm is, also, applied in order to optimize the particles. The
basic idea of the VNS algorithm is the successive search in a number of neighbor-
hoods of a solution. It should be noted that in a Particle Swarm Optimization
algorithm with the term “neighborhood” it is meant the topology of the swarm
(the particles that affect another particle in the process of finding the optimum),
while in a Variable Neighborhood Search algorithm with the term “neighbor-
hood” it is meant different numbers of local search algorithms. In the rest of the
paper when the term “neighborhood” is used together with the term “topology”
we will refer to the Particle Swarm Optimization part of the algorithm and when
it is used together with the term “structure” we will refer to the local search al-
gorithms that are used inside the Variable Neighborhood Search algorithm. The
proposed algorithm is used for the solution of the Feature Selection Problem
(FSP). A number of data sets are used and the results are compared with other
evolutionary and nature inspired algorithms. The proposed algorithm performs
better than the other PSO-based techniques from the literature and better or
equally good with other evolutionary algorithms from the literature. The rest of
the paper is organized as follows: In the next section, a description of the FSP
is presented. In the third section, the proposed algorithm, the Particle Swarm
Optimization with Expanding Neighborhood Topology (PSOENT), is presented
and analyzed in detail. Computational results are presented and analyzed in the
fourth section while in the last section conclusions and future research are given.

2 Feature Selection Problem

Recently, there has been an increasing need for novel data-mining methodologies
that can analyze and interpret large volumes of data. The proper selection of the
right set of features for classification is one of the most important problems in
designing a good classifier. The basic feature selection problem is an optimization
problem with a performance measure for each subset of features to measure its
ability to classify the samples.

40 Y. Marinakis and M. Marinaki

A formulation of the problem is the following [1]:

– V is the original set of features with cardinality m.
– d represents the desired number of features in the selected subset, X , where
X ⊆ V .

– F (X) is the feature selection criterion function for the set X .

Let us consider a high value of F to indicate a better feature subset. Formally,
the problem of feature selection is to find a subset X ⊆ V such that | X |= d
and

F (X) = max
Z⊆V,|Z|=d

F (Z) (1)

In the literature, many successful feature selection algorithms have been pro-
posed. These algorithms can be classified into two categories. If feature selection
depends on learning algorithm, the approach is referred to as a wrapper model.
Otherwise, it is said to be a filter model. Filters, such as mutual information
(MI), are based on the statistical tools. Wrappers assess subsets of features ac-
cording to their usefulness to a given classifier [15,21]. Unfortunately, finding the
optimum feature subset has been proved to be NP-hard. Many algorithms are,
thus, proposed to find suboptimal solutions in comparably smaller amount of
time.

3 Particle Swarm Optimization with Expanding
Neighborhood Topology Algorithm

3.1 General Description

In this paper, an algorithm for the solution of the feature selection problem based
on the Particle Swarm Optimization (PSO) algorithm is presented. This algo-
rithm is combined with three nearest neighbor-based classifiers, the 1-Nearest
Neighbor, the k-Nearest Neighbor and the Weighted k (wk)-Nearest Neighbor
classifier. As it was mentioned earlier, there are two kinds of population topolo-
gies for the PSO algorithm: the global best (gbest) population topology and the
local best (lbest) population topology [6]. In the gbest PSO, the neighborhood
for each particle is the entire swarm. The social network employed by the gbest
PSO reflects the star topology in which all particles are interconnected. Thus,
the velocities of each particle are updated based on the information obtained
from the best particle of the whole swarm. In the lbest PSO, each particle has
a smaller neighborhood. In this case, the network topology corresponds to the
ring topology where each particle communicates with only a limited number
of other members of the swarm. The communication is usually achieved using
the particles’ indices. Thus, if the size of the neighborhood is equal to three,
the selected neighbors for the particle i are the particles i − 1 and i + 1. Thus,
the velocities of each particle are updated based on the information obtained
from the best particle of the neighborhood. The use of particle’s indices for the

PSOENT for FSP 41

creation of the neighborhood is preferred because it is very difficult and compu-
tationally expensive to calculate distances between all the particles to find the
neighbors of each particle. Furthermore, if the indices are used, then, a particle
may belong to more than one neighborhood having the possibility of spreading a
good solution among different neighborhoods. Usually, the gbest PSO converges
faster than the lbest PSO. On the other hand, the lbest PSO has larger diversity
in its solutions and, thus, it is more difficult to be trapped in local minima [6].

Initially, we have to choose the population of the particles. Each particle is
randomly placed in the d-dimensional space as a candidate solution (in the fea-
ture selection problem d corresponds to the number of activated features). One
of the key issues in designing a successful algorithm for Feature Selection Prob-
lem is to find a suitable mapping between Feature Selection Problem solutions’
and particles in Particle Swarm Optimization algorithm. Every candidate fea-
ture in PSO is mapped into a binary particle where the bit 1 denotes that the
corresponding feature is selected and the bit 0 denotes that the feature is not
selected. Afterwards, the fitness of each particle is calculated using the following
equation:

OCA =

E∑
m=1

emm

E∑
m=1

E∑
l=1

eml

%. (2)

The fitness function measures the quality of the members of the swarm. In
this problem, the quality is measured with the overall classification accuracy.
Thus, for each particle the classifiers (1-Nearest Neighbor, k-Nearest Neighbor
or wk-Nearest Neighbor [5]) are called and the produced overall classification
accuracy (OCA) gives the fitness function. In the fitness function we would
like to maximize the OCA. The previously mentioned formula for OCA (Eq.
2) is defined taking into account that the accuracy of a E class problem can
be described using a E × E confusion matrix. The element eml in row m and
column l describes the number of samples of true class l classified as class m,
i.e., all correctly classified samples are placed in the diagonal and the remaining
misclassified cases in the upper and lower triangular parts.

In the Particle Swarm Optimization algorithm, the velocity of the i-th par-
ticle vi = (vi1, vi2, ..., vid) is defined as the change of its position. The flying
direction of each particle is the dynamical interaction of individual and social
flying experience. The algorithm completes the optimization through following
the personal best solution of each particle and the global best value of the whole
swarm. The position of each particle is represented by a n-dimensional vector
in problem space xi = (xi1, xi2, ..., xin), i = 1, 2, ..., N (N is the population size
and n is the vector size), and its performance is evaluated on the predefined
fitness function. The velocity vij represents the changes that will be made to
move the particle from one position to another. Where the particle will move

42 Y. Marinakis and M. Marinaki

depends on the dynamic interaction of its own experience and the experience
of the whole swarm. Depending on the method used, there are three possible
directions that a particle can follow: to follow its own path, to move towards
the best position it had during the iterations (pbestij) or to move to the best
particle’s position (gbestj if a global neighborhood topology is used or lbestij if
a local neighborhood topology is used). The velocity equation in the constriction
Particle Swarm Optimization algorithm is given by [4]:

vij(t+ 1) = χ(vij(t) + c1rand1(pbestij − xij(t)) + c2rand2(gbestj − xij(t))) (3)

where

χ =
2

|2− c−√
c2 − 4c| and c = c1 + c2, c > 4. (4)

c1 and c2 are the acceleration coefficients, t is the number of the current iteration,
rand1 and rand2 are two random variables in the interval [0, 1]. The acceleration
coefficients c1 and c2 control how far a particle will move in a single iteration. Low
values allow particles to roam far from target regions before being tugged back,
while high values result in abrupt movement towards, or past, target regions [8].
A limiting factor (χ), called constriction factor, is used. The constriction factor
is used in order to prevent explosion, to ensure convergence of the algorithm and
to eliminate the factors that limit the velocities of the particles.

In the proposed algorithm the velocity equation is almost the same as the one
used in constriction PSO. What changes is the term gbest which is replaced by
the term lbest. The neighborhood may consist of three particles, five particles
or more. The velocity equation is [6]:

vij(t+ 1) = χ(vij(t) + c1rand1(pbestij − xij(t)) + c2rand2(lbestij − xij(t))) (5)

where

lbestij ∈ {Ni|f(lbestij) = min{f(xij)}, ∀x ∈ Ni} (6)

where f is the objective function value and the neighbor Ni is defined by [6]:

Ni = {pbesti−nNi
(t), pbesti−nNi

+1(t), · · · , pbesti−1(t),

pbesti(t), pbesti+1(t), · · · , pbesti+nNi
(t)}. (7)

The basic PSO and its variants have successfully operated for continuous opti-
mization functions. In order to extend the application to discrete space, Kennedy
and Eberhart proposed a discrete binary version of PSO [9] where a particle
moves in a state space restricted to zero and one on each dimension where each

PSOENT for FSP 43

vij represents the probability of bit xij taking the value 1. Thus, the particles’
trajectories are defined as the changes in the probability and vij is a measure of
individual’s current probability of taking 1. If the velocity is higher it is more
likely to choose 1, and lower values favor choosing 0. A sigmoid function is
applied to transform the velocity from real number space to probability space:

sig(vij) =
1

1 + exp(−vij)
(8)

Thus, the position of a particle is updated using the following equation:

xij(t+ 1) =

{
1, if rand3 < sig(vij)
0, if rand3 ≥ sig(vij)

(9)

where xij is the valued of the j-th dimension of particle xi, and xij ∈ {0, 1};
sig(vij) is calculated according to Equation (8), rand3 is a random number
distributed in [0, 1]. As in basic PSO, a parameter Vmax is incorporated to
limit the vij so that sig(vij) does not approach too closely 0 or 1 [10]. Such
implementation can ensure that the bit can transfer between 1 and 0 with a
positive probability. In practice, Vmax is often set at ±4.

A Variable Neighborhood Search (VNS) [7] algorithm is applied in order to
optimize the particles. The basic idea of the method is the successive search in a
number of neighborhoods of a solution. With the term neighborhood it is meant
different number of local search algorithms. The search is applied either with
random or with a more systematic manner in order to escape the solution from
a local optimum. This method takes advantage of the fact that different local
search algorithms will lead to different local optimum. In this paper, the VNS
algorithm is used in the following way. Initially, the number of local search algo-
rithms is selected. The local search strategies for the Feature Selection Problem
are the 2-opt, 1-0 insert, 2-0 insert, 1-1 interchange and 2-2 interchange neigh-
borhoods. As we do not want to increase the complexity of the algorithm, it
is decided to apply in each particle one local search combination of algorithms
per iteration. For this reason, a VNS operator CV NS is selected that controls
which local search algorithm is applied. The CV NS value is compared with the
output of a random number generator, randi(0, 1). If the random number is less
or equal to the CV NS , then, the first local search algorithm is used. Then, if the
random number is less or equal to the 2∗CV NS, then, the second local search al-
gorithm is used, and so on. As we would like to have not only simple local search
algorithms but also their combinations we select ten local search algorithms, the
five previously mentioned methods and five combinations (2-opt and 1-1 inter-
change, 2-opt and 1-0 insert, 1-0 insert and 2-2 interchange, 2-0 insert and 1-1
interchange and, finally, 2-opt, 1-1 interchange, 1-0 insert, 2-2 interchange and
2-0 insert). The CV NS operator is set equal to 0.1. The algorithm stops when a
maximum number of iterations has been reached.

44 Y. Marinakis and M. Marinaki

4 Computational Results

The performance of the proposed methodology is tested on 8 data sets taken from
the UCI Machine Learning Repository. The data sets were chosen to include a
wide range of domains and their characteristics are given in Table 1. The data
vary in terms of the number of observations from very small samples (Hepatitis
with 80 observations) up to larger data sets (Spambase with 4601 observations).
In two cases (Breast Cancer Wisconsin, Hepatitis) the data sets are appeared
with different size of observations. This is performed because in these data sets
there is a number of missing values. Two different ways were used to cope with
the problem of missing values. In the first way where all the observations are
used, we took the mean values of all the observations in the corresponding feature
while in the second way where we have less values in the observations, we did
not take into account the observations that had missing values. Some data sets
involve only numerical features, and the remaining include both numerical and
categorical features. For each data set, Table 1 reports the total number of
features and the number of categorical features in parentheses. All the data sets
involve 2-class problems and they are analyzed with 10-fold cross validation. The
algorithm was implemented in Fortran 90 and was compiled using the Lahey f95.

As it has already beenmentioned, three approaches that use different classifiers,
the 1nn, the knn and the wknn, are used. In all algorithms the value of k is changed
dynamically depending on the number of iterations. Each iteration uses different
k. The reason why k does not have a constant value is that we would like to ensure
the diversity of solutions in each iteration of the algorithm. The determination of
k is done by using a random number generator with a uniform distribution (0, 1)
in each iteration. Then, the produced number is converted to an integer k (e.g., if
the produced number is in the interval 0.2− 0.3, then k = 3).

Table 1. Data Sets Characteristics

Data Sets Observations Features
Australian Credit (AC) 690 14(8)
Breast Cancer Wisconsin 1 (BCW1) 699 9
Breast Cancer Wisconsin 2 (BCW2) 683 9
German Credit (GC) 1000 24 (13)
Heart Disease (HD) 270 13(7)
Hepatitis 1 (Hep1) 155 19 (13)
Hepatitis 2 (Hep2) 80 19 (13)
Ionosphere (Ion) 351 34
Spambase (spam) 4601 57
Pima Indian Diabetes (PID) 768 8

PSOENT for FSP 45

For comparison purposes, three other algorithms have been developed using
the Particle Swarm Optimization algorithm with different neighborhood topolo-
gies or different velocities equation. Two of these algorithms, the Particle Swarm
Optimization with Global Neighborhood Topology (PSOGNT) and the inertial
Particle Swarm Optimization (iPSO), use a global neighborhood topology while
the other, the Particle Swarm Optimization with Local Neighborhood Topology
(PSOLNT), uses a local neighborhood topology. PSOGNT uses the constric-
tion velocities equation while iPSO uses the inertia velocities equation. In the
PSOLNT, a local search neighborhood topology is used with a constant neigh-
borhood for all particles in all iterations. For the selection of the size of the
neighborhood, a number of different experiments with different neighborhoods
were conducted and the one that gave better results for the Feature Selection
Problem was selected. The reason that the PSOGNT and the PSOLNT are used
is that we would like to compare the algorithm with algorithms that have the
same characteristics with the proposed algorithm but they do not use the main
characteristic of the proposed algorithm, the Expanding Neighborhood Topolo-
gy. Also, an Ant Colony Optimization algorithm and a Genetic Algorithm were
developed. All these algorithms use the same local search strategy (VNS) with
the one used in the proposed algorithm (PSOENT). For analytical description
of the iPSO, the Ant Colony Optimization algorithm and the Genetic Algorithm
used in this paper and how they are designed and applied for the solution of the
Feature Selection Problem please see [17].

Table 2. Parameters for all algorithms

PSOENT PSOLNT PSOGNT iPSO ACO GA

particles/ants/individuals 200 200 200 200 200 200

iterations/generations 50 50 50 50 50 50

VNS iterations 20 20 20 20 20 20

c1 2.05 2.05 2.05 2 - -

c2 2.05 2.05 2.05 2 - -

wmax - - - 0.9 - -

wmin - - - 0.01 - -

Neighborhoods 2 to 50 5 50 50 - -

Evaporation parameter q - - - - 0.5 -

Probability of crossover - - - - - 0.8

Probability of mutation - - - - - 0.2

The parameters of all algorithms were selected after thorough testing. A num-
ber of different alternative values were tested and the ones selected are those that
gave the best computational results concerning both the quality of the solution
and the computational time needed to achieve this solution. After the selection
of the final parameters, 10 different runs with the selected parameters were per-
formed for each data set. The results presented in the tables are the best results
found for each data set. The selected parameters for all algorithms are presented

46 Y. Marinakis and M. Marinaki

in Table 2. In this Table, in the places where there are not any values, these
parameters are not used in the corresponding algorithm. In the first column the
name of the parameter is given. In the cases where more than one names exist
it means that in each algorithm the parameter is used with different name, for
example, the members of the population in the PSO implementations are called
particles, in the ACO implementations are called ants and in GA implementa-
tions are called individuals.

Table 3 shows the Overall Classification Accuracy (OCA) and the average se-
lected features (SNF) for the proposed algorithm and for all algorithms used in
the comparisons. As it can be seen, the proposed algorithm gives superior results
compared to the results of the other five algorithms as the average overall clas-
sification accuracy is 92.48%, while the average overall classification accuracies
for the other five algorithms are 91.25% for the PSOGNT algorithm, 91.07% for
the PSOLNT algorithm, 90.78% for the inertia Particle Swarm Optimization,
90.33% for the Ant Colony Optimization and 88.58% for the Genetic Algorithm.

If we examine the performance of each classifier separately, the results of the
proposed algorithm are always better as in the 1nn classifier the average overall
classification accuracy of the proposed algorithm is 92.17%, while the avera-
ge overall classification accuracies of the other five algorithms are 91.00% for
the PSOGNT algorithm, 90.91% for the PSOLNT algorithm, 90.78% for the
inertia Particle Swarm Optimization, 90.28% for the Ant Colony Optimization
and 88.45% for the Genetic Algorithm. For the knn classifier the average overall
classification accuracy of the proposed algorithm is 92.7%, while the average
overall classification accuracies of the other five algorithms are 91.53% for the
PSOGNT algorithm, 91.33% for the PSOLNT algorithm, 91.05% for the inertia
Particle Swarm Optimization, 90.59% for the Ant Colony Optimization and
88.6% for the Genetic Algorithm. Finally, for the wknn classifier the average
overall classification accuracy of the proposed algorithm is 92.59%, while the
average overall classification accuracies of the other five algorithms are 91.21%
for the PSOGNT algorithm, 90.99% for the PSOLNT algorithm, 90.49% for the
inertia Particle Swarm Optimization, 90.18% for the Ant Colony Optimization
and 88.70% for the Genetic Algorithm.

As it can be seen the ranking of the algorithms based on the average classi-
fication accuracies is the same in all cases (all classifiers). The most important
remark taken from these results is that the results of PSOGNT and PSOLNT
are equally efficient. However, the results of PSOENT are better compared to
the results of these algorithms as the expanding neighborhood topology gives
to the particle more exploration and exploitation capabilities and, thus, makes
the algorithm more effective with better results in all cases. Another important
conclusion is that all algorithms which use the constriction factor perform better
than the one that uses the inertia factor.

The average selected features for all algorithms in all runs of the algorithms
are presented in Table 3. In general, there are 2numberoffeatures − 1 possible fea-
ture combinations and, thus, in our cases the problem with the fewest number of
feature combinations is the Pima Indian Diabetes (namely 28−1), while the most

PSOENT for FSP 47

difficult problem is the Spambase where the number of feature combinations is
257−1. The significance of the solution of the feature selection problem using the
proposed method is demonstrated by the fact that with the PSOENT algorithm
the best solutions were found by using less features than the other algorithms
used in the comparisons. More precisely, in the most difficult instance, the Spam-
base instance, the PSOENT algorithm needed between 21.25 to 21.85 average
number of features in order to find their best solutions, while the other three
PSO inspired algorithms (PSOLNT, PSOGNT, iPSO) needed between 21.28 -
24.32 average number of features to find their best solutions and the two other
evolutionary algorithms (ACO and GA) needed between 22.85 to 25.01 average
number of features. For all data sets, the proposed algorithm needs 10.11 aver-
age number of features, the three PSO inspired algorithms need between 10.24
to 10.63 average number of features and the two other evolutionary algorithms
need between 10.62 to 10.71 average number of features.

Table 3. Classification Results (OCA(%)) and average selected number of features
(SNF) for all algorithms

Data Sets Classifier PSOENT PSOLNT PSOGNT iPSO ACO GA
OCA SNF OCA SNF OCA SNF OCA SNF OCA SNF OCA SNF

AC 1nn 88.25 7.48 86.98 7.75 87.15 7.78 86.95 8.17 87.88 8.21 86.42 8.12
knn 93.18 7.52 91.15 7.82 92.05 7.85 90.01 7.98 89.37 8.05 87.12 8.11
wknn 91.57 7.45 90.25 7.95 90.88 8.05 89.39 8.12 88.18 8.23 86.12 8.07

BCW1 1nn 99.2 4.55 98.37 4.57 98.15 4.95 99.15 4.98 98.65 5.01 98.01 4.57
knn 99.25 4.85 99.05 5.15 99.21 5.07 98.85 4.95 98.41 5.07 97.37 5.12
wknn 99.38 4.79 99.17 5.21 98.89 4.85 99.05 4.84 98.08 5.18 97.48 5.01

BCW2 1nn 99.42 5.15 99.15 5.18 99.28 5.21 99.23 5.15 99.17 5.21 98.55 5.34
knn 99.17 5.08 99.21 5.16 99.15 5.48 99.09 5.43 98.79 5.73 97.88 5.66
wknn 99.05 5.21 98.54 5.35 98.57 5.65 97.65 5.53 98.03 5.49 97.45 5.87

GC 1nn 78.52 13.88 76.35 14.28 77.31 15.58 76.23 15.28 75.37 15.52 70.96 15.31
knn 80.21 14.25 77.28 14.31 78.17 15.42 78.01 15.31 77.57 15.01 76.01 14.87
wknn 79.48 14.28 78.35 14.15 78.21 15.28 77.11 15.31 78.27 15.12 77.35 14.32

HD 1nn 93.21 6.89 92.12 7.05 91.15 6.95 90.49 6.88 90.38 6.92 88.45 6.91
knn 92.57 6.95 90.18 6.85 92.14 6.51 91.24 6.91 91.78 6.98 87.45 6.87
wknn 92.48 6.57 91.25 6.45 90.75 6.57 90.88 6.77 91.22 6.88 89.39 6.94

Hep1 1nn 98.65 11.35 97.35 11.21 98.24 10.58 98.15 11.17 97.08 11.02 94.37 10.78
knn 97.68 11.22 96.88 10.88 96.75 10.61 96.92 10.79 96.23 10.88 94.32 11.12
wknn 97.85 11.18 97.25 10.95 97.17 10.85 97.12 10.98 96.23 11.09 95.31 11.23

Hep2 1nn 100 9.85 100 10.25 100 10.08 100 9.88 100 9.85 98.85 10.88
knn 98.63 10.15 98.14 10.17 98.34 10.25 98.23 10.95 97.15 10.85 95.23 10.87
wknn 98.45 10.28 98.25 9.95 98.17 10.78 98.18 10.95 96.75 10.82 94.29 10.74

Ion 1nn 98.62 15.85 98.17 16.25 98.21 16.15 98.17 16.21 97.12 16.34 95.08 16.05
knn 97.55 16.28 96.75 16.14 97.01 16.28 96.14 16.21 96.37 16.38 95.11 16.45
wknn 97.52 15.57 95.49 15.28 96.85 15.98 97.01 16.02 96.44 15.85 94.21 15.91

Spam 1nn 86.57 21.85 84.32 22.31 85.24 22.17 84.28 22.98 83.01 22.85 82.23 23.12
knn 87.21 21.35 85.21 21.28 84.18 22.24 83.79 24.32 83.44 24.65 81.32 22.76
wknn 87.45 21.25 84.18 22.15 85.29 23.08 83.18 23.88 82.11 24.97 81.18 25.01

PID 1nn 79.24 4.18 76.31 4.41 75.28 4.35 75.18 4.28 74.11 4.37 71.57 4.21
knn 81.55 4.08 79.41 4.35 78.34 4.41 78.21 4.37 76.37 4.26 74.19 4.23
wknn 82.68 4.05 77.25 4.28 77.29 4.25 75.39 4.25 76.47 4.37 74.24 4.28

Average Total 92.48 10.11 91.07 10.24 91.25 10.44 90.78 10.63 90.33 10.71 88.58 10.62
1nn 92.17 10.10 90.91 10.33 91.00 10.38 90.78 10.49 90.28 10.53 88.45 10.53
knn 92.7 10.17 91.33 10.21 91.53 10.41 91.05 10.72 90.59 10.78 88.6 10.61
wknn 92.59 10.06 90.99 10.17 91.21 10.54 90.49 10.66 90.18 10.8 88.70 10.74

48 Y. Marinakis and M. Marinaki

If we examine each classifier separately the proposed algorithm performs al-
ways better as in the 1nn classifier the proposed algorithm needs 10.10 average
number of features, the three PSO inspired algorithms need between 10.33 to
10.49 average number of features and the two other evolutionary algorithms need
10.53 average number of features, in the knn classifier the proposed algorithm
needs 10.17 average number of features, the three PSO inspired algorithms need
between 10.21 to 10.72 average number of features and the two evolutionary
algorithms need between 10.61 to 10.78 average number of features, and in the
wknn classifier the proposed algorithm needs 10.06 average number of features,
the three PSO inspired algorithms need between 10.17 to 10.66 average number
of features and the two other evolutionary algorithms need between 10.74 to 10.8
average number of features.

A statistical analysis based on the Mann-Whitney U-test for all algorithms,
in all runs, is presented in Table 4. In this Table, a value equal to 1 indicates a
rejection of the null hypothesis at the 5% significance level, which means that the
method is statistically significant different from the other methods. On the other
hand, a value equal to 0 indicates a failure to reject the null hypothesis at the 5%
significance level, meaning that no statistical significant difference exists between
the two methods. As it can be seen from this Table, at the 5% significance
level the results with the PSOENT are statistically significant different from
the results with the PSOGNT, iPSO, ACO and GA and there is no statistical
significant differences with the results of PSOLNT.

Table 4. Results of Mann - Whitney test for all algorithms

5% significance level

PSOENT PSOLNT PSOGNT iPSO ACO GA

PSOENT - 0 0 1 1 1

PSOLNT 0 - 0 1 1 1

PSOGNT 0 0 - 0 1 1

iPSO 1 1 0 - 1 1

ACO 1 1 1 1 - 1

GA 1 1 1 1 1 -

The results of the algorithm are, also, compared (Table 5) with the results of a
number ofmetaheuristic approaches from the literature. In these implementations,
the same data sets are used as the ones used in this paper and, thus, comparisons of
the results can be performed. More precisely, in Table 5 the results of the proposed
algorithm are compared with the results of the following algorithms:

1. The Parallel Scatter Search algorithm proposed by Garcia Lopez et al. [14].
In this paper, three different versions of Scatter Search are proposed, named
Sequential Scatter Search Greedy Combination (SSSGC), Sequential Scatter
Search Reduced Greedy Combination (SSSRGC) and Parallel Scatter Search
(PSS).

PSOENT for FSP 49

2. The Particle Swarm Optimization Linear Discriminant Analysis (PSOLDA)
proposed by Lin and Chen [11].

3. The Particle Swarm Optimization Support Vector Machines (PSOSVM1,
PSOSVM2) proposed by Lin et al. [13].

4. The Simulated Annealing Support Vector Machines (SASVM1, SASVM2)
proposed by Lin et al. [12].

5. A Particle Swarm Optimization algorithm with a Nearest Neighbour classi-
fier (PSONN) proposed by Pedrycz et al. [18].

6. A Genetic Algorithm using an adjacency matrix-encoding, GWC operator,
and fitness function based on the VC dimension of multiple ODTs combined
with naive Bayes (GOV - genetic algorithm for ODTs using VC dimension
upper bound) proposed by Rokach [19].

7. A Scatter Search (SS-ensemble) with different classifiers like Support Vec-
tor Machines (SVM), Decision Trees (DT) and Back Propagation Networks
(BPN) proposed by Chen et al. [2].

8. Three different metaheuristics (GRASP, Tabu Search and a Memetic algo-
rithm) proposed by Casado Yusta [1].

Table 5. Comparison of the proposed algorithm with other metaheuristic approaches
from the literature (OCA (%))

Method Data Set Average

AC BCW GC HD Hep Ion Spam PID

PSOENT-1nn 88.25 99.42 78.52 93.21 100 98.62 86.57 79.24 90.48
PSOENT-knn 93.18 99.25 80.21 92.57 98.63 97.55 87.21 81.55 91.27
PSOENT-wknn 91.57 99.38 79.48 92.48 98.45 97.52 87.45 82.68 91.13

SSSGC - 95.22 - 74.99 - 87.75 - 67.92 81.47
SSSRGC - 94.88 - 74.99 - 87.12 - 67.66 81.16

PSS - 95.11 - 74.91 - 87.35 - 68.10 81.37
PSOLDA 84.5 96.5 75.6 84.7 - 92.2 - 76.7 85.03
PSOSVM1 91.03 99.18 81.62 92.83 - 99.01 - 82.68 91.06
PSOSVM2 88.09 97.95 79.00 88.17 - 97.50 - 80.19 88.48
SASVM1 92.19 99.38 - 93.33 - 99.07 - 82.22 93.24
SASVM2 88.34 97.95 - 87.97 - 97.50 - 80.19 90.39
PSONN - - 74.7 83.9 - 94.6 - - 84.4
GOV 85.35 97.13 - - 81.29 - - - 87.92

SS-ensemble 91.74 99.46 85.49 96.24 97.46 - - 83.92 92.39
GRASP - 93 92.7 - - 90.4 84.6 - 90.18

Tabu Search - 92.6 92.7 - - 90.6 82.64 - 89.64
Memetic - 91.8 92.6 - - 89 79.76 - 88.29

More precisely, the proposed PSOENT algorithm gives better results in three
data sets, the Australian Credit (AC), the spambase (Spam) and the Hepatitis.
For the other five data sets, the algorithms that perform better are: for the Breast
Cancer Wisconsin, the Pima Indian Diabetes and the Heart Disease, the Scatter
Search - ensemble proposed by [2], for the German Credit, the GRASP and the

50 Y. Marinakis and M. Marinaki

Tabu Search proposed by [1], and for the ionosphere, the Simulated Annealing
Support Vector Machines (SASVM1) proposed by [12]. In the last column of
Table 5 the average values of the results of all algorithms are presented. The
proposed algorithm with the knn classifier is ranked third (91.27%) in twenty
three algorithms in total after the SASVM1 algorithm (93.24%) and the SS-
ensemble algorithm (92.39%). The other two versions of the algorithm the one
with the 1nn classifier (90.48%) and the other with the wknn classifier (91.13%)
are ranked in sixth and fourth places respectively. Another remark is that the
proposed algorithm performs better than the four other algorithms that are
based on Particle Swarm Optimization.

5 Conclusions

In this paper, a new algorithm based on the Particle Swarm Optimization for
the solution of the Feature Selection Problem is presented. This algorithm is
a hybridization of the Particle Swarm Optimization algorithm with the Vari-
able Neighborhood Search algorithm. The algorithm uses a local neighborhood
topology where the size of the neighborhood begins with a small size of the
neighborhood and it is expanding as the number of iterations increases. As a
number of different variants of the Particle Swarm Optimization algorithm has
been published, mainly using a different equation for the calculation of the ve-
locities, we used a constriction factor for the velocities equation. Another issue
that we have to deal with was the fact that the PSO algorithm is suitable for
continuous optimization problems. Thus, it was a challenge to find an effective
transformation of the solutions of PSO in discrete values without loosing infor-
mation from this procedure. The algorithm was tested in 8 data sets that are
usually used in the literature and gave very good results. The main challenge
was to give an algorithm that it could combine the advantages of the exploration
capabilities of a global neighborhood structure with the exploitation abilities of
a local neighborhood structure. This was achieved as the algorithm gave better
results when it was compared with a global neighborhood version of PSO and
a local neighborhood version of PSO (with constant size of the neighborhood).
This fact demonstrates the efficiency of the algorithm when it is used for the
solution of an NP-hard problem, like FSP. In the future, this algorithm will be
used for the solution of other NP-hard combinatorial optimization problems.

References

1. Casado Yusta, S.: Different metaheuristic strategies to solve the feature selection
problem. Pattern Recognition Letters 30, 525–534 (2009)

2. Chen, S.C., Lin, S.W., Chou, S.Y.: Enhancing the classification accuracy
by scatter-search-based ensemble approach. Applied Soft Computing (2010),
doi:10.1016/j.asoc.2010.01.024

3. Chen, Y., Miao, D., Wang, R.: A rough set approach to feature selection based on
ant colony optimization. Pattern Recognition Letters 31, 226–233 (2010)

PSOENT for FSP 51

4. Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability and convergence
in a multi-dimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6, 58–73 (2002)

5. Duda, R.O., Hart, P.E., Stork, D.G.:Pattern Classification and Scene Analysis, 2nd
edn. John Wiley and Sons, New York (2001)

6. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. John
Wiley and Sons, England (2007)

7. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130, 449–467 (2001)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

9. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algo-
rithm. In: Proceedings of 1997 IEEE International Conference on Systems, Man,
and Cybernetics, vol. 5, pp. 4104–4108 (1997)

10. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Pub-
lisher, San Francisco (2001)

11. Lin, S.W., Chen, S.C.: PSOLDA: A Particle swarm optimization approach for
enhancing classification accurate rate of linear discriminant analysis. Applied Soft
Computing 9, 1008–1015 (2009)

12. Lin, S.W., Lee, Z.J., Chen, S.C., Tseng, T.Y.: Parameter determination of support
vector machine and feature selection using simulated annealing approach. Applied
Soft Computing 8, 1505–1512 (2008)

13. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for pa-
rameter determination and feature selection of support vector machines. Expert
Systems with Applications 35, 1817–1824 (2008)

14. Garcia Lopez, F., Garcia Torres, M., Melian Batista, B., Moreno Perez, J.A.,
Moreno Vega, J.M.: Solving feature subset selection problem by a parallel scat-
ter search. European Journal of Operational Research 169, 477–489 (2006)

15. Maldonado, S., Weber, R.: A wrapper method for feature selection using support
vector machines. Information Sciences 179(13), 2208–2217 (2009)

16. Marinakis, Y., Marinaki, M.: Particle swarm optimization with expanding neigh-
borhood topology for the permutation flowshop scheduling problem. Soft Comput-
ing (2013), doi:10.1007/s00500-013-0992-z

17. Marinakis, Y., Marinaki, M., Doumpos, M., Zopounidis, C.: Ant colony and parti-
cle swarm optimization for financial classification problems. Expert Systems with
Applications 36(7), 10604–10611 (2009)

18. Pedrycz, W., Park, B.J., Pizzi, N.J.: Identifying core sets of discriminatory features
using particle swarm optimization. Expert Systems with Applications 36, 4610–4616
(2009)

19. Rokach, L.: Genetic algorithm-based feature set partitioning for classification prob-
lems. Pattern Recognition Letters 41, 1676–1700 (2008)

20. Suganthan, P.N.: Particle swarm optimiser with neighborhood operator. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, pp. 1958–1962
(1999)

21. Uncu, O., Turksen, I.B.: A novel feature selection approach: Combining feature
wrappers and filters. Information Sciences 177(2), 449–466 (2007)

Interleaving Constraint Propagation:

An Efficient Cooperative Search
with Branch and Bound

Eric Monfroy1, Broderick Crawford2,3 and Ricardo Soto2,4

1 LINA, Université de Nantes, France
FirstName.Name@univ-nantes.fr

2 Pontificia Universidad Católica de Valparáıso, Chile
FirstName.Name@ucv.cl

3 Universidad Finis Terrae, Chile
4 Universidad Autónoma de Chile, Chile

Abstract. The main characteristic of any constraint solver is Constraint
propagation. Then it is very important to be able to manage constraint
propagation as efficiently as possible, we present a hybrid solver based
on a Branch and Bound algorithm combined with constraint propagation
to reduce the search space. Based on some observations of the solving
process constraint propagation is triggered by some rules. The results
show that constraint propagation is profitable, but also that it is too
costly to be executed at each node of the search tree, we show that is
possible to make reasonable use of constraint propagation.

1 Introduction

The correct setting and proper selection of the most appropriate algorithm for
solving a given problem has been investigated many years ago [14]. As well
the considerations of [14] are still valid and can be considered at least from
two complementary points of view. These two points of view are: 1) selecting
solving techniques or algorithms from a set of possible available techniques, and
2) tuning an algorithm with respect to a given instance of a problem.

Furthermore, to adapt them to the process during solving their settings should
be changed. An Autonomous Search [10] system should provide the ability to ad-
vantageously modify its internal components when exposed to changing external
forces and opportunities. It corresponds to a particular case of adaptive systems
with the objective of improving its problem solving performance by adapting its
search strategy to the problem at hand.

In [9], a general definition and a taxonomy of search processes with respect
to their computation characteristics (solver that are able to modify or adjust
their strategies and parameters either a priori or adaptively, self-adaptation or
supervised adaptation, . . .) is given. In [5], a framework for dynamic adapta-
tion of enumeration strategies of a constraint propagation-based solver was pro-
posed. In this paper, we use a subsequent instantiation of the framework [12]1.

1 We use the term framework instantiation to refer to any code that uses the framework.

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 52–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Interleaving Constraint Propagation 53

This instantiation manages dynamically some strategies and components of a
hybrid solver based on Branch and Bound (B&B) combined with Constraint
Propagation in order to reduce the search space. To this end, the framework we
propose observes the resolution process, analyses the observations, and makes
some decision to possibly dynamically adapt strategies and trigger some func-
tions of the solver. With respect to the classification of [9] we propose an au-
tonomous and supervised adaptive solving framework.

According [4], our proposal is a kind of cooperative search technique too.
Cooperative search consists of a search performed by agents that exchange in-
formation about states, models, entire sub-problems, solutions or other search
space characteristics.

In [7], many classification schemes were proposed for hybrid and parallel meta-
heuristics. According the first taxonomy proposed for cooperative search algo-
rithms (based on the types of algorithms being used in the cooperative system
and the implementation) our proposal is in the category of serial heterogenous
algorithms. This class involves having different algorithms running in a pipeline
fashion. The output of each algorithm supplied as an input to the next algorithm.
This class is identified in the hybrid taxonomy as a high-level relay technique.

With our cooperative search we don’t focus on improving the resolution of a
single problem, but we are interested in quickly finding solutions on average for
a set of problems. The experimental results are more than promising.

This paper is organized as follows. We present our proposal in Section 2.
Experimental results are discussed in Section 3 and we conclude in Section 4.

2 Cooperative Search Framework

The framework is based on 4 components exchanging information: the first com-
ponent runs a solver or a solver cooperation/hybridization based on some tunable
modules/functions and on some solving strategies; the second one observes res-
olution and takes snapshots, i.e., some kind of quantitative summaries of the
observations; the third one analyses snapshots and draws some indicators (that
may be qualitative) about strategy and function quality; and the fourth one
makes decisions to update strategy priorities and trigger functions [11,12].

2.1 The SOLVE Component

It is a solver, or an hybrid solver for solving constraint problems. This (hybrid)
solver has at disposal several possible strategies and several functions that can
be changed or triggered using some rules of the UPDATE component. For the
experimentations, we consider a branch and bound algorithm: while there re-
main subproblems, choose one (depth-first selection in our case) and treat it.
Compared to an usual B&B, this algorithm is hybrid (Algorithm 1): each sub-
problem P may be reduced by a propagation phase (e.g., [1]) to reduce the search
space by eliminating values of variables that cannot participate in a solution.

54 E. Monfroy, B. Crawford, and R. Soto

Algorithm 1. Sketch of the hybrid algorithm

1: procedure Hybrid B&B
2: Optimum← −∞
3: Nodes← (P0,−∞)
4: while Nodes �= ∅ do
5: P ← getSubproblem(Nodes)
6: PropagationPhase(P) (conditional)
7: RelaxationPhase(P)
8: checkSolution(P)
9: branching(P, (P1, . . . , Pk))
10: for (1 ≤ i ≤ k) do
11: Nodes← Nodes ∪ (Pi, bound(P))
12: end for
13: OptimumSolution← Solution
14: OptimumV alue← Optimum
15: end while
16: end procedure

This technique is rather common (e.g., [15]), thus, we just give an overview of
the method. We consider two models of the problem to be solved. The first
one, MCSP is based on Constraint Satisfaction Problem (CSP) and uses fi-
nite domain variables (i.e., XCSP ∈ {v1, . . . , vn}), and the second one, MLPM ,
is a Linear Programming Model (LPM) (i.e., based on continuous variables
v1 < XLPM < vn). The two models are equivalent: at each node of the search
tree, the problem is modeled by both techniques. Information discovered in a
model is communicated to the other one (e.g., if XCSP is reduced to the do-
main {v1, . . . , vn}, then the corresponding variable XLPM can be constrained
by v1 < XLPM < vn, and so on for objective functions and in the opposite way).

The (conditional) propagation phase is applied to the MCSP model to reduce
the search space by removing values of variables that cannot satisfy some con-
straints. The obtained information (reduction of domains) is communicated to
the MLPM model; the relaxation phase is applied to the relaxation of the MLPM

model (i.e., MLPM without integrity constraints). In case there is no propagation
phase, the algorithm acts as a usual B&B: the relaxation is solved to determine
the unsatisfiability of the problem or an integer solution.

Then, when checking solution, the algorithm evaluates if the solution is fea-
sible. If the solution is an integer with a better value than the actual one, the
optimum value and the optimal actual solution are updated. If the solution is
integer, but not better, it is discarded. If it is not integer, the branching is
done on non integer variables, generating the respective subproblems w.r.t. the
enumeration strategy (in this case, after some preliminary tests, we fixed the
lexicographic order to select the variable, and the largest value of the variable).

In the following, we use our framework to (de)activate the propagation phase:
by just changing the updating rules we obtain different types of hybridization.

Interleaving Constraint Propagation 55

2.2 The OBSERVATION Component

It aims at observing and recording information of the current search tree, i.e., it
spies the solving process of the SOLVE component. These observations (called
snapshots) can be seen as an abstraction of the resolution state at a time t.
Taking a snapshot consists in extracting (since search trees are too large) some
information from a solving state.

In our experimentations, snapshots are taken at each node of the search tree
and they contain the following data:

– Characteristic of the problem:
• Vtotal : total number of variables
• Req (Rleq , Rgeq resp.): number of constraints of type = (≤, ≥ resp.)

– Measures of the search tree
• Nexpl : number of explored nodes
• Nfailed : failed nodes (not leading to a solution)
• Nsol : nodes with solutions
• Backs : number of backtrackings
• Nprop : nodes in which the propagation phase happened
• Depth : current depth of the tree search

– Measures of the solving process
• Tprop : CPU time used in the propagation phase
• Trelax : CPU time used in the relaxation phase
• Vfixen : variables fixed by enumeration
• Vfprop : variables fixed by propagation
• V F : total of fixed variables (i.e., Vfixen + Vfprop)

2.3 The ANALYSE Component

It analyses the snapshots taken by the OBSERVATION: it evaluates the strate-
gies and functions, and provides indicators to the UPDATE component. They
can be extracted, computed, or deduced from one or several snapshots.

Numeric indicators (δn) are quantitative results computed from snapshots.:
e.g., the depth of the search (δndepth), the number of fixed variables (δnfix),
or fixed by enumeration (δnfixen). Indicators can be more complex: e.g., the
difference of depth between 2 snapshots to give information on the progress in
the search tree, or the difference between the depth (δndepth) of the search and
the variables fixed by enumeration (δnfixen) which gives the indicator (δngap)
on how many unsuccessful enumerations were performed on the last variable.

Boolean indicators (δb) reflect properties. Simple ones can be related to prob-
lems (e.g., there is a univariate constraint or a hard variable was fixed). More
complex properties can be related to a quantitative or qualitative analysis of the
snapshots, such as thrashing in the case of a constraint propagation based solver
[5,6].

Indicators that we used for our experimentations are described later on.

56 E. Monfroy, B. Crawford, and R. Soto

2.4 The UPDATE Component

It makes decisions using the indicators: it makes interpretations of the indicators,
and then updates the strategies priorities and/or triggers some functions of the
SOLVE component. The knowledge of the UPDATE component is contained in
a set of rules. The head of such a rule is a conjunction of conditions on the
indicators (disjunctions can be handled by several rules). There are two types of
rules: for priority update (⇒rules) and for function call (→rules).

For priority update rules (⇒rules), the body is a conjunction of updates of
strategies priorities:

l∧
i=1

(
∑
j∈Ji

ωj × δnj) op cj ∧
k∧

i=1

δbi ⇒
l∧

i=1

pi = pi + fi(δn1, ..., δnl)

where:
– the ωj are the weights of each numeric indicator δnj in the condition, the cj

are constants, the Ji are subsets of all the indicators, and op ∈ {≤,≥,=};
– the δbi are some Boolean indicators;
– the fi are functions over the indicators that returns real numbers to increase

or decrease the priority pi of the strategy i;
– and the

∧l
i=1 in the body of the rule is an abuse of language to mean that

the l priorities can be updated.

For function rules (→rules) the body requests the application of a function,
possibly with some parameters:

l∧
i=1

(
∑
j∈Ji

ωj × δnj) op cj ∧
k∧

i=1

δbi → function(...))

When the head of a rule is fulfilled (i.e., conditions are verified), its body is
executed: for ⇒rules, the priorities of the strategies (e.g., enumeration strate-
gies) are updated in the SOLVE component. Whereas for →rules, functions are
triggered in the SOLVE component.

3 B&B + Constraint Propagation Solver

We now experiment with a B&B + Constraint Propagation solver: snapshots,
indicators, and rules enable us to simply change the strategies of hybridiza-
tion. Here, we do not use priority of strategies (See [13] for other strategies and
rules). We use rules of the second type to activate (propagation()) or deactivate
(nopropagation()) propagation phases. Our goal is not to design the best solver,
but 1) to show how simple it is to change hybridization strategies in our frame-
work, 2) to observe the role of propagation on various problems, and 3) to give
some hints on how to manage propagation.

The solving process was written in Gecode [16]; the propagation is achieved by
the propagators of Gecode while the components of the B&B algorithm (e.g., re-
laxation) are achievedby lp solve [3] is a linear (integer) programming solver based

Interleaving Constraint Propagation 57

Table 1. Problem instances

Problem Variables Constraints Best known sol. Time

mbacp1 572 473 1 0.81
mbacp2 714 656 0 8.44
mbacp3 856 346 - 3.05
mbacp12 717 570 - -
mbacp13 859 578 - -
mbacp23 859 650 - -
mbacp123 862 882 - -

scp65 1000 200 161 -
scpa1 3000 300 253 -
scpb1 3000 300 69 -

sppaa01 8904 823 56138 238.76
sppaa03 8627 825 49649 12.47
sppaa04 7195 426 26402 319.19
sppnw18 10757 124 340160 2.19

mknapcb4a 250 5 59312 -
mknapcb4b 100 10 23064 -
mknapcb4c 100 10 22801 -
mknapcb2-1 100 10 22131 -

on the revised simplexmethod and the B&Bmethod for the integers; it can be used
as a library. The tests were run on an Intel Xeon 1.6GHz computer, with 4GB of
memory. Each run was stopped after a time out of 1200 seconds.

The measures to evaluate the performance of the various hybridizations are:
value of the f irst-found integer solution and CPU time (in s.) to obtain it; the
same measures for the best-found integer solution; and CPU time (in s.) to
prove optimality. The solvers and their hybridizations were tested with various
instances of 4 types of problems: the Multiple Balanced Academic Curriculum
Problem (mbacp), the set covering problem (scp), the set partitioning prob-
lem (spp), the multidimensional knapsack problem (mknap). The instances and
model of MBACP can be found in [8], and of the other problems in [2]. The size
of the instances, in terms of variables and constraints, together with the best
known solution and the best known CPU time are given in Table 1.

As a reference, Table 2 shows the results obtained with lp solve alone. The
columns show the value of the first solution and the time required to compute it;
the best solution; the time required for proving optimality (”-” when optimality
is not proven before the 1200 s. of timeout). With the same model, Gecode is
faster to find a first solution, but of worse quality; it thus must explore a larger
search space to find the optimum which it never reached before the timeout.

3.1 Basic Hybridization

In basic hybridization we do not consider any updating rule: propagation is
triggered at each node of the search tree and the snapshots and indicators are

58 E. Monfroy, B. Crawford, and R. Soto

Table 2. Results for lp solve and the basic hybridization

lp solve Basic hybridization

Problem First solution Best solution Opt. First solution Best solution Opt.
Value Time Value Time Time Value Time Value Time Time

mbacp1 4 4.2 1 17.6 326.2 4 2.8 1 6.1 212.5
mbacp2 4 15.1 0 315.5 320.1 4 2.2 0 10.4 11.7
mbacp3 4 2.2 1 20.4 - 4 1.0 1 86.3 -
mbacp12 4 34.9 1 213.0 594.2 4 9.5 1 133.1 340.8
mbacp13 4 32.4 1 210.9 222.6 4 3.2 1 35.1 39.2
mbacp23 4 3.4 1 175.4 191.7 4 2.3 1 79.3 84.3
mbacp123 4 157.5 4 157.5 - 4 56.9 3 395.6 -

scp65 166 0.2 161 9.0 23.4 166 0.2 161 10.4 26.1
scpa1 271 0.8 253 107.0 167.5 271 0.9 253 118.6 184.7
scpb1 75 0.9 69 11.4 33.1 75 1.2 69 13.9 38.8

sppaa01 56363 25.1 56363 25.1 - 56363 33.4 56363 33.4 -
sppaa03 49734 11.8 49649 54.3 71.7 49734 17.1 49649 97.2 127.0
sppaa04 27802 10.6 27507 121.6 - 27802 16.8 27507 150.6 -
sppnw18 342950 1.1 340160 28.5 28.5 342950 1.7 340160 39.3 39.5

mknapcb4a 21277 0.1 23057 956.6 - 21277 0.0 23050 466.3 -
mknapcb4b 20189 0.1 22704 878.8 - 20189 0.0 22704 1182.8 -
mknapcb4c 20978 0.1 22131 858.6 1115.7 20978 0.0 22131 1124.3 -
mknapcb2-1 57318 0.2 59015 1140.7 - 57318 0.1 59013 1018.1 -

not used. The results are presented in Table 2 and following we give few com-
ments since this basic hybridization should be seen as a reference for the next
hybridizations that make use of our updating rules.

MBACP. Times for proving optimality are significantly better than with the
individual solvers (up to 29 times quicker for mbacp2). The cost of propagation
is rather small, between 2% to 4% (depending on the instance) of the total
execution time. However, propagation is quite inefficient.

SCP. The basic hybridization worsen the CPU times to get both the first and
best solution. The propagation cost is around 5%: however, the reason is that
propagation is quite inefficient for these problems and thus stops quickly.

SPP. Propagation is here more efficient, but costs between 26% to 40% of the
total time.

MKNAP. These are the most difficult problems for the solvers. It seems that
numerous valid solutions must be evaluated and the search tree is much larger.

3.2 Hybridization Based on Propagation Rate

This idea is coming from previous experimental observations of the number of
variables fixed by propagation w.r.t. the depth of the tree search. We perceived
that for the MBACP instances, propagation fixes numerous variables in the first
level of the search tree; deeper, propagation is not so effective, even not at all

Interleaving Constraint Propagation 59

after a while. For SPP, this behavior is even more obvious, especially in the first
levels. The behavior is a bit different for the MKNAP instances: propagation is
not effective in the first levels because the instances are less constrained, and
thus offer numerous possible solutions. But after some steps and cutting the
problem into subproblems, propagation is effective.

Thus, our idea is to achieve more propagation phases when we observe that
propagation fixes variables, and less propagation phases otherwise. We define
the threshold th as the minimum number of variables fixed by propagation.
In the snapshots, we have the total number of variables fixed by propagation
and the number of nodes we have explored. Hence, we can get an indicator to
reflect the efficiency of propagation at a given depth of the search tree.

These indicators enabled us to implement this idea: F is the snapshot taken
at the father node; snapshots(h) represents the set of snapshots taken at depth
h.

– δn1 = #snapshots(DepthF) represents the quantity of snapshots taken at
depth DepthF of the father node.

– δn2 =
∑

G∈snapshots(DepthF)

(Vfprop)G is the total number of variables fixed by

propagation. Since we know the number of snapshots and the total num-
ber of variables fixed by propagation in each of these observations, we can
determine the effectiveness of propagation at the depth of the father node.

Rule r1 triggers propagation as long as we do not have any observation that
proves the inefficiency of propagation. Rule r2 evaluates the efficiency of propaga-
tion in the observed nodes; if it is greater than th, then propagation is triggered.
If no rule applies, then propagation is deactivated.

r1 : δn1 = 0 → Propagation()
r2 : (δn2/δn1) ≥ th → Propagation()

To test this hybridization (see Table 3), the parameter th will vary from 0 to
20: with th = 0, propagation is triggered at each node of the search tree; exper-
imentally, we observed that if th > 20 then propagation is never triggered.

MBACP. For the larger instances (e.g., m12, m13 y m123) this hybridization
improves the results w.r.t. the basic hybrid. With a low threshold, we could
shorten CPU times from 30% to 40%. As observed initially in the basic hybrid,
propagation is fast but rather inefficient for MBACP: thus, to trigger propaga-
tion, a low threshold is required.

SCP. There is no improvement for proving optimality: the timings are similar
to the ones of the basic hybrid, and the ”best” th produces the same results as
lp solve alone. This confirms the idea that propagation does not improve this
type of problems and slows down the solving process.

SPP. The results are better than for the basic hybridization, but a little bit
worse than lp solve alone. Except for the instance sppnw18, for which this hy-
bridization improves time for optimality w.r.t. to all the other solvers (hybrid

60 E. Monfroy, B. Crawford, and R. Soto

Table 3. Hybridization triggering propagation w.r.t. to propagation efficiency

Problem Best First solution Best solution Opt.
th Value Time Value Time Time

mbacp1 1 4 2.8 1 6.1 212.2
mbacp2 1 4 2.2 0 10.4 11.7
mbacp3 4 4 1.0 1 6.8 -
mbacp12 4 4 6.2 1 43.8 234.7
mbacp13 6 4 3.1 1 22.3 26.2
mbacp23 2 4 2.3 1 50.9 56.2
mbacp123 2 4 65.5 3 155.8 -

scp65 13 166 0.2 161 9.0 23.1
scpa1 12 271 0.9 253 107.5 167.9
scpb1 2 75 1.2 69 11.6 33.3

sppaa01 5 56363 33.3 56363 33.3 -
sppaa03 3 49734 17.6 49649 90.1 116.3
sppaa04 5 27802 17.0 27412 960.3 -
sppnw18 6 342950 1.7340160 27.4 27.6

mknapcb4a 6 21277 0.0 23057 991.7 -
mknapcb4b 3 20189 0.0 22704 914.3 -
mknapcb4c 12 20978 0.0 22131 880.4 1145.7
mknapcb2-1 6 57318 0.1 59013 778.9 -

or not). For this type of problems, although propagation effectively reduces the
search space and the search tree, the overhead is higher than the speed-up for
the global solving process.

MKNAP. On average, this hybridization is a bit faster than the best tested
solver (lp solve for these instances). It also gives some good quality solutions.
After a closer look at the mknapcb4b instance, we can tune the threshold in order
to get better solutions than lp solve; however, the cost is to perform propagation
40% of the total time.

4 Conclusion

In this paper, we presented how simple adaptive hybridization strategies can be
designed by just changing some few rules. We experimented on a cooperative
B&B + Constraint Propagation solver in which propagation can be triggered
responding to some observations of the solving process. The results show that
some phases of propagation are beneficial to the B&B algorithm, but also that
propagation is too costly to be executed at each node. The hybridization strate-
gies are thus crucial to tune when to perform or not propagation. Depending
on the types of problems, we have also seen that different hybridizations lead to
different improvements, i.e., none of the hybridization is always the best.

We thus plan to develop a hyperheuristic approach integrating a learning
module that would enable to select the hybridization with respect to the problem
to be solved.

Interleaving Constraint Propagation 61

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge Univ. Press (2003)
2. Beasley, J.E.: Or-library: distributing test problems by electronic mail.

JORS 41(11), 1069–1072 (1990)
3. Berkelaar, M.: lpsolve—simplex-based code for linear and integer programming
4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
5. Castro, C., Monfroy, E., Figueroa, C., Meneses, R.: An approach for dynamic split

strategies in constraint solving. In: Gelbukh, A., de Albornoz, Á., Terashima-Maŕın,
H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 162–174. Springer, Heidelberg
(2005)

6. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter
tuning of a choice-function based hyperheuristic using particle swarm optimization.
Expert Syst. Appl. 40(5), 1690–1695 (2013)

7. El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa,
M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 32–41.
Springer, Heidelberg (2005)

8. Gent, I., Walsh, T.: Csplib: a benchmark library for constraints. Technical report,
APES-09-1999 (1999), http://csplib.cs.strath.ac.uk/

9. Hamadi, Y., Monfroy, E., Saubion, F.: What is autonomous search? In: The Ten
years of CP-AI-OR. Springer (2010) (to appear)

10. Hamadi, Y., Monfroy, E., Saubion, F. (eds.): Autonomous Search. Springer (2012)
11. Monfroy, E., Castro, C., Crawford, B.: Adaptive enumeration strategies and

metabacktracks for constraint solving. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS
2006. LNCS, vol. 4243, pp. 354–363. Springer, Heidelberg (2006)

12. Monfroy, E., Castro, C., Crawford, B., Figueroa, C.: Adaptive hybridization strate-
gies. In: ACM Symposium on Applied Computing, pp. 922–923 (2011)

13. Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., Figueroa, C.: A reac-
tive and hybrid constraint solver. Journal of Experimental and Theoretical Artifi-
cial Intelligence 25(1), 1–22 (2013)

14. Rice, J.: The algorithm selection problem. Technical Report CSD-TR 152, Purdue
Univ. (1975)

15. Rodosek, R., Wallace, M., Hajian, M.: A new approach to integrating mixed integer
programming and clp. Baltzer Journal (1998)

16. Schulte, C., Tack, G., Lagerkvist, M.: Gecode: Generic constraint development
environment. In: INFORMS Annual Meeting (2006)

http://csplib.cs.strath.ac.uk/

Automatic Tuning of GRASP

with Evolutionary Path-Relinking

L.F. Morán-Mirabal1, J.L. González-Velarde1, and M.G.C. Resende2

1 Tecnológico de Monterrey, Monterrey, Mexico
{lmoran,gonzalez.velarde}@itesm.mx

2 AT&T Labs Research, Florham Park, NJ 07932, USA
mgcr@research.att.com

Abstract. Heuristics for combinatorial optimization are often controlled
by discrete and continuous parameters that define its behavior. The
number of possible configurations of the heuristic can be large, result-
ing in a difficult analysis. Manual tuning can be time-consuming, and
usually considers a very limited number of configurations. An alterna-
tive to manual tuning is automatic tuning. In this paper, we present a
scheme for automatic tuning of GRASP with evolutionary path-relinking
heuristics. The proposed scheme uses a biased random-key genetic al-
gorithm (BRKGA) to determine good configurations. We illustrate the
tuning procedure with experiments on three optimization problems: set
covering, maximum cut, and node capacitated graph partitioning. For
each problem we automatically tune a specific GRASP with evolution-
ary path-relinking heuristic to produce fast effective procedures.

Keywords: Randomized heuristics, GRASP, biased random-key genetic
algorithm, automatic tuning.

1 Introduction

Combinatorial optimization problems can often be “hard” to solve optimally
using exact methods. Heuristics have been proved to find optimal or good sub-
optimal solutions in less time than required by exact methods. An example of
this kind of heuristic is GRASP [6,7], which iteratively builds feasible solutions,
and improves them applying a local search procedure. GRASP can be further
hybridized with other intensification procedures, such as path-relinking [11] and
evolutionary path-relinking [10,23].

There are numerous ways to hybridize GRASP with path-relinking and/or
evolutionary path-relinking, resulting in a heuristic that is controlled by pa-
rameters and configurations. Selecting these heuristic settings is usually done
manually through extensive experimentation, which in turn is time-consuming
and only considers a small number of combinations. An approach to address
these difficulties is to use an automatic tuning procedure.

Automatic tuning procedures have been proposed in the literature, and have
been shownto improve theperformance of optimizationalgorithmswhencompared

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 62–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Tuning of GRASP with Evolutionary Path-Relinking 63

with variants usingmanually-tuned settings (see, e.g. [1] and [14]). This paper pro-
poses anautomatic tuningprocedure for parameters in aGRASPwith evolutionary
path-relinking by using a biased random-key genetic algorithm [12].

A BRKGA is an evolutionary algorithm based on the random-key genetic
algorithm of Bean [3]. It evolves a population of solutions encoded as vectors of
random keys applying genetic operators such as crossover and mutation. As a
result, the algorithm returns the fittest individual of an evolved population (i.e.
a best-valued solution). To apply a BRKGA for automatic tuning, we assume
each individual encodes a set of parameters of the algorithm being tuned, and its
fitness is a measure of the algorithm’s performance using the encoded settings.

2 GRASP with Evolutionary Path-Relinking

A greedy randomized adaptive search procedure (GRASP) [6,7] is a multi-start
heuristic for combinatorial optimization. It applies local search to a series of
solutions generated with a greedy randomized algorithm. As initially proposed,
GRASP did not have any memory mechanism. Laguna and Mart́ı [17] introduced
a memory mechanism in GRASP, hybridizing it with path-relinking [11]. In
the resulting heuristic, a pool of the best solutions found during the search is
maintained by the algorithm. After each GRASP local minimum is produced,
a solution is selected at random from the pool, and the solution space spanned
by the two solutions is explored by path-relinking. Evolutionary path-relinking
[2,10,23] uses the path-relinking operator in an attempt to improve the pool of
elite solutions. Given a pool, evolutionary path-relinking applies path-relinking
between pairs of pool solutions, updating the pool if better solutions are found.

The pseudo-code in Algorithm 1 illustrates a GRASP+evPR for a minimiza-
tion problem. The algorithm begins in line 1 by initializing the incumbent so-
lution value f∗ to a large number while in line 2 the pool Es of elite solutions
is initialized empty. The variable it2evPR, which measures the number of iter-
ations left until evolutionary path-relinking is called, is initialized in line 3. All
GRASP+evPR iterations take place in lines 4 to 18 until some stopping criterion
is met. In line 5, a randomized greedy solution x is constructed and local search
is applied to it in line 6. The resulting local minimum is tested for inclusion in
the elite pool Es in line 7. If Es is not yet full, then x is accepted if it differs from
all solutions currently in Es. Otherwise, if Es is full, x is accepted if it is better
than at least one solution in the pool. If x is better than all pool solutions, then
replaces the worst pool solution. Otherwise, if it is better than at least one so-
lution but not all, then it replaces the least different solution having worse cost.
Path-relinking is not applied until the second GRASP iteration. From then on, a
solution xp is selected from Es in line 9 and path-relinking is applied between x
and xp in line 10. The resulting solution x is tested for inclusion in the elite pool
in line 11. Evolutionary path-relinking is invoked every ie GRASP iterations.
This condition is tested in line 13, and if triggered, the updated pool is returned
in line 14. The counter it2evPR is then re-initialized in line 15. At the end of
each iteration in line 17, this counter is reduced by one unit. As a result, an elite
pool solution having minimum cost is returned by the procedure in line 19.

64 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

1 f∗ ←∞;
2 Es ← ∅;
3 it2evPR← ie;
4 while stopping criterion is not satisfied do
5 x← GreedyRandomized();
6 x← LocalSearch(x);
7 Es ← UpdateElite(Es, x);
8 if |Es| ≥ 2 then
9 xp ← SelectPoolSolution(Es, x);

10 x← PathRelinking(x, xp);
11 Es ← UpdateElite(Es, x);

12 end
13 if it2evPR = 0 then
14 Es ← evPathRelinking(Es, x);
15 it2evPR← ie + 1;

16 end
17 it2evPR← it2evPR − 1;

18 end
19 return argmin{f(x) | x ∈ Es}

Algorithm 1. GRASP with evolutionary path-relinking

3 Automatic Tuning Using a BRKGA

Each GRASP+evPR component shown in Algorithm 1, may in fact represent
different algorithms. Discrete and continuous parameters can be used to define
which specific configuration of these components are used. Given that there may
exist a large number of these parameters and that each can potentially take on
many values, tuning the parameters manually may be time-consuming and hard
to specify, making reproduction difficult. An alternative is automatic tuning of
parameters, where an algorithm is used in the tuning process.

Adenso-Diaz and Laguna [1] and Hutter et al. [14] were among the first
to consider automatic tuning procedures. Adenso-Diaz and Laguna proposed
CALIBRA, a framework which combines two different Design of Experiments
approaches along with a local search procedure to tune up to five parameters.
Hutter et al. proposed PARAMILS, a tuning methodology that combines stochas-
tic local search procedures and mechanisms that tackle properties found in
algorithm configuration problems. Both CALIBRA and PARAMILS have been
shown to improve academic solvers and heuristics.

Festa et al. [9] proposed an automatic tuning procedure using a biased random-
key genetic algorithm (BRKGA). They propose the tuning procedure for an
implementation of a GRASP with path-relinking heuristic for the generalized
quadratic assignment problem (GQAP). They consider 30 parameters and show
that their tuning improves algorithm performance with respect to manually
tuned parameters on four out of five instances. Pedrola et al. [21] recently

Automatic Tuning of GRASP with Evolutionary Path-Relinking 65

applied the approach of Festa et al. [9] to automatically tune a GRASP heuristic
for the multilayer IP/MPLS-over-Flexgrid optimization problem. They use five
small traffic instances to tune a simple GRASP with three parameters.

BRKGAs evolve population of vectors of random keys (or individuals) ap-
plying Darwin’s principle of survival of the fittest [12]. A BRKGA works with a
fixed-size population P made up of |P| vectors of n randomly generated numbers
in the real interval (0, 1] (random keys). A decoder is a deterministic algorithm
that takes as input a vector of random keys and outputs its fitness value.

At each generation of a BRKGA, the population is partitioned into a smaller
set Pe of elite individuals and a larger set Pē with the remaining individuals. The
evolutionary dynamics of a BRKGA are as follows. First, all elite individuals are
copied, without change, to the population of the next generation P+. Then, a
set Pm of mutant individuals (i.e. newly generated vectors of random keys) is
inserted into P+. The first two steps account for |Pe| + |Pm| individuals and
therefore px = |P| − |Pe| − |Pm| individuals are required for P+ to be complete.
This is done through mating of px pairs of individuals from the current popula-
tion, one from Pe and another from Pē. Individuals are selected for mating at
random and with replacement.

Let a and b denote the elite and non-elite individuals to be mated, and let
c denote the resulting offspring. Mating is done with parameterized uniform
crossover [24], where a biased coin is tossed n times, to determine from which
parent the offspring will inherit each key. The coin has probability ph > 0.5
to result in heads. For i = 1, . . . , n, the i-th component of c receives the i-th
component of a if the coin toss results in heads or the i-th component of b
otherwise. This way, c has a greater chance to inherit the keys of its elite parent.
Also, since such parent is selected from the smaller set Pe, it has a greater chance
of mating than a non-elite parent. Bean [3] proposed a similar algorithm, except
that parents are selected at random from the entire population and the coin flip
does not necessarily favor the more fit parent.

A BRKGA is summarized in the pseudo-code of Algorithm 2. It takes as input
the sizes of the populationP , the elite set Pe, and mutant set Pm (such that |Pe|+
|Pm| ≤ |P| and 2×|Pe| ≤ |P|), the size of the random-key vector (n), and the coin-
toss probability of heads (ph > 0.5). In line 1 the initial population is generated.
The algorithm runs through several generations, until a stopping criterion is met.
The operations taken in each generation are expressed in lines 2 to 19. In line 3,
the fitnesses of all new individuals in population P are evaluated. Population P
is then partitioned in line 4 into a set Pe of elite individuals and a set Pē with the
remaining population. The population of the next generationP+ is initializedwith
the elite set of the current population in line 5. In lines 6 and 7 the mutant set Pm

is generated and added to P+. The remainder of P+ is completed in lines 8 to 17.
For each remaining individual, parents a and b are selected at random in lines 9
and 10 andmating is applied in lines 11 to 15 to produce offspring c, which is added
to P+ in line 16. A generation is completed in line 18 by making the population of
the current generation that of the next generation. Finally, the fittest individual
of the final population is returned in line 20.

66 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

Data: |P|, |Pe|, |Pm|, n, ph
1 Generate population P with individuals having n random-keys;
2 while stopping criterion is not satisfied do
3 Evaluate fitness of each new individual in P ;
4 Partition P into sets Pe and Pē;
5 Initialize next population: P+ ← Pe;
6 Generate mutants Pm each having n random-keys ∈ (0, 1];
7 P+ ← P+ ∪ Pm;
8 for i← 1 to |P| − |Pe| − |Pm| do
9 Select parent a at random from Pe;

10 Select parent b at random from Pē;
11 for j ← 1 to n do
12 Toss biased coin having probability ph > 0.5 of heads;
13 if Toss is heads then c[j]← a[j];
14 else c[j]← b[j];

15 end
16 P+ ← P+ ∪ {c};
17 end
18 P ← P+;

19 end
20 return argmin{f(x) | x ∈ P}

Algorithm 2. Biased random-key genetic algorithm

3.1 Encoding and Decoding

Letn denote the number of algorithm configurations and parameters.These are en-
coded as a vector χ of n real-valued random keys, each in the range (0, 1]. Suppose
an algorithm configuration consists of a finite set of components, each of which can
take on a single state. For example, path-relinking type is a component which can
take on a single state from the set { forward, backward, back&forth, mixed }. Each
state from these finite sets correspond to a different interval in the range (0, 1]. A
set with s states would associate state 1 with interval (0, 1/s], state 2 with interval
(1/s, 2/s], and so on. To decide which state the i-th component takes, the decoder
identifies which interval contains the random key χ[i] and assigns the state corre-
sponding to that interval to the component. A real-value parameter in the range
(l, u] and encoded asχ[i] is decoded as l+(u− l)×χ[i].For example the i-th param-
eter path-relinking truncation can take on any value in the real interval (0.2, 0.7].
Therefore, the randomkeyχ[i] = 0.44 is decoded as 0.2+(0.7−0.2)×0.44 = 0.42.
Note that eachdecoding of a vector of randomkeys is independent of the other, and
hence can be parallelized to speed up the automatic tuning procedure.

4 GRASP+evPR for Three Optimization Problems

In this section, we describe three GRASP+evPR heuristics for combinatorial
optimization problems, which in turn will be tuned using BRKGA in Section 5.

Automatic Tuning of GRASP with Evolutionary Path-Relinking 67

4.1 Set Covering

Let U = {e1, e2, . . . , en} be a set of n elements (i.e. the universe) and let
J = {J1,J2, . . ., Jm} be a collection of subsets of U with associated costs
c1, c2, . . . , cm, respectively. The set covering problem (SCP) consists in finding a
minimum cost collection of sets S from J , such that the union of the sets in S
is U . The cost of the cover is defined as

∑
Jj∈S cj . Set covering is NP-hard [16].

Feo and Resende [6] introduced a GRASP for set covering. Their construction
procedure is based on the greedy algorithm of Johnson [15]. This greedy algo-
rithm starts with an empty cover S = ∅ and among unselected subsets, selects a
subset J ∗

j that maximizes the ratio κj/cj, where κj is the number of uncovered
elements ei ∈ U that become covered if J ∗

j is added to the solution.
Instead of selecting an element that maximizes the ratio κj/cj , our the con-

struction phase creates a restricted candidate list (RCL) which consists of all
unselected subsets Jj ∈ J \S such that κj/cj ≥ gmax−α× (gmax− gmin), where
gmax = max{κj/cj : Jj ∈ J \ S}, gmin = min{κj/cj : Jj ∈ J \ S}, and α is
a real number such that 0 ≤ α ≤ 1. An element J ∗

j is selected at random from
the RCL and added to S. This is repeated until S is a complete cover.

Three variants of GRASP construction are considered. The first uses a fixed
value for α, while the second selects at random a value of α from the uniform
interval [αmin, αmax] each time construction is called. The third variant uses a
value of α selected at random from a finite set of α values with probabilities
favoring those values that produced better solutions in previous constructions.
The number nα of α values varies from 2 to 10 and the values go from 0 to 0.8.
This approach, called Reactive GRASP, was proposed by Prais and Ribeiro [22].

There are three types of moves in our local search phase of GRASP: remove
one superfluous cover element (remove-1); remove all superfluous cover elements
in increasing order of cost cj (remove-all); swap a cover element J out

j with an

unselected element J in
j such that the cover is kept complete if the swap is made

(swap-2). The swapped elements J out
j and J in

j are determined by scanning S
in decreasing order of cost and J \ S in increasing order of cost, respectively.
Moves are done using one of two options: first improving and best improving.

Our path-relinking strategy defines the symmetric difference δS,St between
any two solutions S and St, as the cover elements present in S but not in St.
At each path-relinking step, S can be in either one of two states: feasible or
infeasible. In the feasible state, the greedy move selects from δS,St , the element
whose inclusion or removal from S results in the largest cost reduction. On the
other hand, in the infeasible state, the greedy move selects from δS,St , the element
whose inclusion or removal results in the largest reduction in infeasibility. Moves
do not necessarily have to be greedy. If path-relinking is greedy randomized,
then a real parameter αp ∈ [0, 1] determines the proportion of best elements in
δS,St that are placed in a RCL so that one can be selected at random.

Path-relinking comes in several flavors. In forward path-relinking, Sl is the
local optimum found by local search and St is a solution selected at random from
the elite pool. In backward path-relinking the roles of Sl and St are reversed. In
back&forth path-relinking, backward is applied first and then forward is applied

68 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

next. In mixed path-relinking a path is started from Sl and another from St,
and both meet in the middle. Finally the entire path need not be explored and
a truncated variant is possible where γ = 20% to 80% of the path is explored.

The evolutionary path-relinking phase is triggered every ie GRASP iterations,
where ie is a tunable parameter. The algorithm produces a sequence of elite pools
E0

s , E
1
s , . . ., starting from the current elite set, i.e. E0

s = Es. At iteration k all
elite solutions in pool Ek

s are copied to pool Ek+1
s . While there are pairs {x, y}

of solutions in Ek
s that have not been considered, a path-relinking operator is

applied to the pair and the resulting solution z becomes a candidate to enter
Ek+1

s . The procedure stops if the sorted solution values of Ek
s and Ek+1

s are
identical, returning set Ek+1

s as a result. Otherwise, k is incremented by one
unit, and another iteration takes place. Evolutionary path-relinking employs a
greedy randomized move strategy with tunable RCL parameter αq ∈ [0, 1].

4.2 Maximum Cut

Let G = (V , E) be an undirected graph, where V = {1, . . . , n} is the set of
vertices and E is the set of edges, and let wi,j be the weights associated with
edges (i, j) ∈ E . The maximum cut problem (max-cut) consists in finding a cut
C ⊆ E of maximum weight which partitions the vertices in V in two non-empty
sets. The weight of the cut C is defined as

∑
(i,j)∈C wi,j . The decision version of

the max-cut problem was proven to be NP-Complete by Karp [16].
Festa et al. [10] introduced a GRASP with path-relinking heuristic for the

max-cut problem. The construction phase of their heuristic uses a greedy func-
tion that takes into account the contribution to the objective function achieved
by assigning a particular vertex into one of the subsets that define the cut, i.e. C
and C̄. The greedy function is related to the sum of the weights of its outgoing
arcs. Their local search procedure works by starting from the first elements of C
and C̄ and in turn checks whether moving the elements from one set to the other
leads to an improvement of the objective function.

In the path-relinking phase of Festa et al. [10], a solution y is represented as
an n-dimensional binary vector, such that yi = 1 if vertex vi ∈ C, and yi = 0
if vertex vi ∈ C̄. The procedure starts by computing the symmetric difference
between the initial solution x and the target solution t, defined to be Δx,t =
{i | xi �= ti, i = 1, . . . , n}. At each path-relinking step, an index from Δyk,t is
selected and used obtain the next solution in the path, i.e. yk+1. This is done by
evaluating, for each i ∈ Δyk,t, the cost change gi resulting from flipping the value
of yki . The greedy move selects from Δx,t, the index corresponding to the largest
gi value. Two path-relinking flavors, forward and backward, are considered. An
evolutionary strategy is used as a post-processing phase.

Our construction phase is similar to the one of Festa et al., except that it starts
by ranking edges in decreasing order of edge weights and creates an RCL, where
an edge (i, j) ∈ E is part of the RCL if wi,j ≤ w∗ − α × (w∗ − w∗) where w∗ =
max{wi,j : (i, j) ∈ E} and w∗ = min{wi,j : (i, j) ∈ E}. An edge (i∗, j∗) ∈ RCL
is selected at random, assigning endpoint i∗ to C and endpoint j∗ to C̄.

Automatic Tuning of GRASP with Evolutionary Path-Relinking 69

The remaining nodes are placed in the partitions as done in Festa et al. As with
the SCP, three variants of construction are proposed: fixed, random, and reactive.

During local search, nodes are scanned in decreasing order of their degrees. We
allow three types of moves: move-1, move-x, and move-max. In move-1, a single
node is moved either from C to C̄ or vice-versa. In move-x, a tunable portion
x ∈ [1%, 20%] of the nodes are allowed to move. Finally, in move-max, there is
no limit on the number of nodes that can change partition during the search.
There are three options for scanning the nodes using the three moves described:
check-once, check-until, and variable. In check-once, each node is scanned only
once during an invocation of local search. In check-until, nodes are scanned until
there is no further improving move available. In variable, a move and an option
are selected at random each time local search is invoked.

Our path-relinking phase allows for greedy or greedy randomized moves. If
greedy randomized, the tunable parameter αp determines the size of the RCL.
We allow for forward, backward, back&forth, and mixed configurations of path-
relinking. As in the SCP, the path explored can be either complete or truncated
according to a tunable parameter γ ∈ [0.2, 0.8]. Evolutionary path-relinking is
triggered every ie GRASP iterations and the path-relinking operator is greedy
randomized with a tunable parameter αq ∈ [0, 1].

4.3 Node Capacitated Graph Partitioning

Given a node- and edge-weighted directed graph G = (V , E) where V is the set
of nodes, and E is the set of arcs. For each node v ∈ V , let pv ∈ Z+ denote
a non-negative integer node weight and for each arc (u, v) ∈ E , let qu,v ∈ Z+

denote a non-negative integer arc weight. In the node capacitated graph parti-
tioning problem (NCGPP) we wish to partition the set of nodes into n clusters
{C1, C2, . . . , Cn} such that, for i = 1, 2, . . . , n, the weight sum of the nodes as-
signed to cluster Ci is no greater than the capacity ci ∈ Z+ of the cluster.
Furthermore, we seek the assignment that minimizes the edge weight sum Q for
all edges having endpoints assigned to different clusters. Mehrotra and Trick [19]
and Ferreira et al. [8] were among the first to study this problem, proposing a
branch and price algorithm and a branch and cut algorithm, respectively. Deng
and Bard [5] proposed a GRASP with path-relinking heuristic for capacitated
clustering, essentially the same problem.

The GRASP+evPR heuristic we consider for the NCGPP was proposed by
Morán-Mirabal et al. [20]. The construction phase builds a solution one node to
cluster assignment at a time. Assignments are made as long as the capacity of the
cluster is not exceeded. Let V̄ be the set of all yet-unassigned nodes. When a clus-
ter k being scanned is empty, a node i ∈ V̄ is assigned to k with a probability
proportional to the sum of edge weights between i and all the nodes in V̄ (e.g. the
greedy choice would select the node in V̄ with the maximum edge-weight sum).
Once an assignment is made, the available capacity of the cluster ck is updated.

When one node is assigned to k, the following assignments are selected using
a greedy function g(i) that considers the edge weight sum between the nodes

70 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

assigned to k and a node i ∈ V̄ . An RCL is formed such that g(i) ≥ g∗ −α(g∗ −
g∗)}, where g∗ = min{g(i) | i ∈ V̄}, g∗ = max{g(i) | i ∈ V̄}, and the tunable
parameter α ∈ R is such that 0 ≤ α ≤ 1. A node in the RCL is selected uniformly
at random and is assigned to cluster k. This implementation considers the same
three variants of construction used in the SCP, i.e. fixed, random, and reactive.

Once the construction phase produces a solution, local search attempts to
reduce the sum of edge weights Q by making changes in the assignment. Morán-
Mirabal et al. [20] propose three local search move types that scan the nodes in
increasing order of their total node weight: move-1, move-max, and swap-2. In
move-1, the procedure is restarted at the first node in the permutation, whereas
in move-max it proceeds to the next node in the permutation. In swap-2, pairs of
node assignments are considered for swapping. The number of pairs considered
for swapping is limited by the tunable parameter β, where 0.01 ≤ β ≤ 0.3.
Three local search options are considered: check-once, check-until, and variable.
In check-once, each node is scanned only once. In check-until, nodes are scanned
until there is no further improving moves. Finally, in variable, at each invocation
of local search a move type and an option are chosen at random.

The path-relinking phase defines the symmetric difference Γ (Πs, Πt) between
solutions Πs and Πt as the set of nodes assigned to different clusters. At each
path-relinking step a greedy function h(i) that considers the ratio between the
change in the sum of edge weights Q and the capacity utilization resulting from
an assignment is used. The function penalizes moves leading to capacity deficits.

An RCL is defined such that h(i) ≥ h∗−αp(h
∗−h∗), where h∗ = min{h(i) | i ∈

Γ (Πs, Πg)}, h∗ = max{h(i) | i ∈ Γ (Πs, Πg)}, and the tunable parameter αp ∈ R
such that 0 ≤ αp ≤ 1. A move is selected from the RCL uniformly at random.
The path-relinking operator of Morán-Mirabal et al. [20] generates a sequence
of neighboring solutions, each of which may be feasible or infeasible, and selects
among the feasible solutions, a solution with the lowest value ofQ. If all solutions
explored are infeasible, then the path-relinking phase is deemed unsuccessful and
GRASP+evPR continues to the next phase.

This implementation allows forward, backward, back&forth, and mixed path-
relinking strategies, each of which explores a complete or truncated path. The
amount of truncation is determined by the tunable parameter γ ∈ [0.2, 0.7].
Evolutionary path-relinking is triggered every ie GRASP iterations, where ie is
a tunable parameter. Evolutionary path-relinking applies the greedy randomized
path-relinking operator using a tunable parameter αq ∈ [0, 1].

5 Experimental Results

In this section we define a set of benchmark instances and test the performance of
theBRKGAtuning procedure for each of the three problems presented in Section 4.

5.1 Instances

For the SCP we consider 20 benchmark instances from Beasley [4]. These in-
stances are from three different problem sets, ten from set 4, eight from set 5,

Automatic Tuning of GRASP with Evolutionary Path-Relinking 71

Table 1. Manual vs. tuned GRASP+evPR performance on set covering instances.
Maximum time and average time-to-target (TTT) values are in seconds.

Instance GRASP+evPR (manual) GRASP+evPR (tuned)
Name Target Max Time Avg. Cost Avg. TTT Avg. Cost Avg. TTT

scp41 429 3000 430.03 701.301 *430.00 38.518
scp42 512 5000 517.56 711.059 513.93 713.783
scp43 516 3000 518.78 633.946 516.36 299.205
scp44 494 400 495.13 114.815 *494.00 20.131
scp45 512 4000 514.70 200.115 512.98 706.002
scp46 560 3500 563.01 470.884 560.71 501.211
scp47 430 3500 430.96 686.634 430.35 591.294
scp48 492 4500 492.99 11.827 492.98 33.537
scp49 641 5000 648.24 1380.262 645.45 780.404
scp410 514 400 514.28 88.411 514.00 17.782

scp51 253 5500 255.00 1096.633 254.06 558.792
scp52 302 5500 307.83 1118.605 305.51 1777.903
scp53 226 4500 227.40 809.426 227.01 844.274
scp54 242 400 242.66 93.672 242.05 49.360
scp55 211 5000 211.98 70.063 211.71 659.301
scp56 213 250 213.18 69.990 213.00 19.600
scp58 288 4000 289.00 848.211 288.40 322.173
scp59 279 4000 279.61 578.748 279.46 662.917

scp61 138 5000 139.87 661.849 139.65 214.398
scp64 131 100 *131.00 8.337 *131.00 5.058

Boldface indicates there is no significant statistical difference when applying a Wilcoxon-Mann-Whitney test.∗ indicates a Wilcoxon-Mann-Whitney test could not be applied since all runs returned the same cover cost.

and two from set 6. All instances have 200 rows, 1000 or 2000 columns, and a
graph density of 2% or 6%.

For max-cut we consider 21 benchmark instances from Helmberg and Rendl
[13]. These instances divide into seven subsets of three which share size and
structure. The subsets range from 800 to 2000 nodes, 1600 to 19900 edges, and
a graph density of 0.2% to 6.0%.

For the NCGPP we use a 20 of the synthetic instances from Morán-Mirabal
et al. [20]. The instances divide into four subsets of five which share size and
structure. Each subset is created combining number of nodes (200, 400) and
number of clusters (15, 25) in the set.

5.2 The Experiments

For each problem, two types of experiments are done, automatic tuning experi-
ments and comparison of algorithm performance using automatically-tuned and
manually-tuned settings. All implementations of GRASP+evPR andBRKGAuse
an implementationof theMersenneTwister algorithm [18] as their random-number
generator. BRKGAwas implemented using theAPI described inToso andResende
[25].All experimentswere done using theCondor job control system [26]which sub-
mitted jobs to either a cluster running Intel Xeon X5650 processors at 2.67 GHz,
or a cluster running Intel Xeon E5530 processors at 2.4 GHz.

A total of 16 tunable parameters are considered for each problem. They include
the many options for construction, local search, path-relinking, and evolutionary
path-relinking described in Section 4. To measure the fitness of individuals during
BRKGA tuning, our decoder makes ns independent GRASP+evPR runs of nit

iterations using the decoded parameters, and returns the average best solution
found as its fitness. Therefore, the fittest individual of a BRKGA tuning procedure
is the combination of GRASP+evPR parameters that return a best result for a
given simulation. We take advantage of the decoding independence of individuals

72 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

and use tmax parallel threads in the tuning experiments. The actual number of
threads used depends on the availability of the cluster to which a job is submitted.

Each GRASP+evPR heuristic was programmed from the ground up and dur-
ing the implementation of each of its components, a manual tuning procedure
was performed. Manual tuning considered a subset of the instances for each
problem, therefore a single set of parameters and configurations were selected
as a result. For ease of notation, from now on we refer to the manually-tuned
parameters as manual and the automatically-tuned parameters as tuned. For
each manual vs. tuned experiment, we use the Wilcoxon-Mann-Whitney test
with confidence level 95% to assess the statistical significance of the results.

Set Covering. Each SCP instance was automatically tuned using a BRKGA
with |P| = 100, |Pe| = 20, |Pm| = 15, ph = 0.7 and a stopping criterion of
20 generations. The fitness of each set of parameters and configurations in an
individual were evaluated with nit = 200, ns = 30 and |Es| = 10. Parameter
tmax was set to 30 parallel decoding threads. On average, tuning of each instance
took about 1900 minutes to complete.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to 0.36% gap of optimal solution

scp46

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to 0.88% gap of optimal solution

scp53

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

Fig. 1. Two examples of set covering GRASP+evPR performance (tuned vs. manual).
Times are in seconds.

Most instances are automatically tuned to either fixed or random construction.
Only two instances were tuned to reactive. All instances are tuned to remove-
all as local search move and most of them are tuned to be best improving. All
instances are tuned to use back&forth path-relinking and most of them are greedy.
Also the majority are tuned to a truncated path with length ≤ 70%. Finally all
instances are tuned to use evolutionary path-relinking with αq values that are
at most 0.57.

To measure the quality of the tuned parameters, a set of experiments was run
for each instance and then compared against the results using a set of previously
defined manual parameters. First a target with gap of 1% or less with respect
to the optimal solution cost was selected and a maximum runtime to achieve

Automatic Tuning of GRASP with Evolutionary Path-Relinking 73

such target was set. Next, a total of 300 independent runs were made and the
final solution costs and times taken were saved. Table 1 shows averages over
the 300 runs. Note that in all but one instance the average solution cost is
less with tuned. The average times vary from one instance to the other but
in half of them a speed up is seen when using tuned. Also, whenever there is
no significant statistical difference between both methods, tuned tends to be
faster. Figure 1 shows examples of empirical runtime distributions for two of
the instances considered. Each distribution shows how tuned GRASP+evPR
either has a performance comparable to manual (scp53)or outperforms manual
noticeably (scp46).

Maximum Cut. Each max-cut instance was automatically tuned using a
BRKGA with |P| = 100, |Pe| = 20, |Pm| = 15, ph = 0.7 and 20 generations. The
fitness of each individual was evaluated with nit = 200, ns = 5 and |Es| = 10.
Parameter tmax was set to 24 threads. The average time taken to tune each
instance was about 960 minutes.

Most instances are tuned to either fixed or random construction. Only three
instances are tuned to reactive. Almost half the instances are tuned to variable
local search, and the rest are tuned to combinations of all types and options. Most
are tuned to be either back&forth or forward path-relinking, and the majority
are tuned to greedy and complete path-relinking. Evolutionary path-relinking is
tuned to be used in all instances but it is mostly triggered every 100 iterations.

For the comparison experiments, a target cut weight was selected and a maxi-
mum runtime of 1000 seconds was set. Next, a total of 300 independent runs were
made and the best solution value and time to target solution were saved. Table 2
shows the results. In all but four instances the average cut weight with tuned is
greater or equal than that with manual. Note, however, that all four instances
have an average cut weight found by tuned that is greater that the target and
a difference of less than 1% from the average cut weight found by manual. Only
two instances show no significant statistical difference when applying aWilcoxon-
Mann-Whitney text. In such two cases, either tuned or manual performed faster,
hence no dominance is noticed. Figure 2 shows examples of empirical runtime
distributions for two of the instances considered. Each distribution shows how
tuned GRASP+evPR performs similarly to manual GRASP+evPR, but tends
to find the target in shorter times.

Node Capacitated Graph Partitioning. Each NCGPP instance was auto-
matically tuned using a BRKGA with |P| = 100, |Pe| = 20, |Pm| = 15, ph = 0.7
and 10 generations. The fitness of each individual was evaluated with nit = 200,
ns = 15 and |Es| = 10. Parameter tmax was set to 16 threads. The average
tuning times for instances with 200 and 400 nodes were of 113 and 1162 minutes
respectively.

The majority of instances are tuned to fixed construction, and only 5 to ran-
dom construction. Most α values are tuned to less than 0.10, which correspond
to less randomized constructions. Most instances were tuned to use check-until
local search with a move-max option, except for two instances that were tuned

74 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

Table 2. Manual vs. tuned GRASP+evPR performance on max-cut instances. Maxi-
mum time and average time-to-target (TTT) values are in seconds.

Instance GRASP+evPR (manual) GRASP+evPR (tuned)
Name Target Max Time Avg. Weight Avg. TTT Avg. Weight Avg. TTT

G1 11511 1000 11514.92 27.409 11535.12 36.629
G2 11498 11503.72 11.035 11507.74 7.724
G3 11515 11519.34 42.338 11529.15 22.635

G11 560 1000 561.56 16.539 560.86 14.343
G12 540 541.64 3.685 548.57 4.895
G13 566 566.41 3.558 567.98 4.063

G14 3030 1000 3030.98 43.272 3030.55 52.808
G15 2998 2999.59 6.628 3003.14 8.811
G16 3011 3012.3 16.155 3015.82 10.414

G22 13073 1000 13084.36 48.150 13092.49 84.789
G23 13124 13128.97 105.886 13152.98 101.529
G24 13138 13141.68 117.601 13147.13 124.904

G32 1368 1000 1371.10 45.979 1379.51 37.154
G33 1354 1358.24 131.353 1357.21 84.214
G34 1356 1360.61 123.018 1359.13 53.654

G35 7570 1000 7572.43 278.599 7575.37 212.086
G36 7564 7566.49 169.284 7567.15 137.809
G37 7549 7551.58 83.163 7558.36 99.105

G43 6568 1000 6571.14 26.686 6579.98 20.054
G44 6548 6552.32 12.877 6552.69 17.501
G45 6566 6568.71 29.672 6578.62 21.662

Boldface indicates there is no significant statistical difference when applying a Wilcoxon-Mann-Whitney test.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 11515 (cut weight)

G3

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 3011 (cut weight)

G16

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

Fig. 2. Two examples of max-cut GRASP+evPR performance (tuned vs. manual).
Times are in seconds.

to use variable, and three that were tuned to move-1. Most instances chose
mixed and forward path-relinking. More than half of the instances are tuned to
use greedy randomized path-relinking with a complete path. Almost half of the
instances are tuned not to use evolutionary path-relinking.

For the comparison experiments, targets with gaps from 0.4% to 15.0% from
the best known solution were selected and a maximum runtime was defined.
Next, a total of 300 independent runs were made and the best solution edge
weight and time to target solution were saved. Table 3 shows average results
over the 300 runs. In all instances, the average solution edge weight is less with
tuned. Moreover, we observe a speed up of up to a factor of 16 of the average
time to target solution for tuned with respect to that of manual. Only one
instance shows no significant statistical difference when applying a Wilcoxon-
Mann-Whitney test, however for such instance, tuned proves to be much faster
than manual. Figure 3 shows examples of empirical runtime distributions for

Automatic Tuning of GRASP with Evolutionary Path-Relinking 75

Table 3. Manual vs. tuned GRASP+evPR performance on node capacitated graph
partitioning instances. Maximum time and average time-to-target (TTT) values are in
seconds.

Instance GRASP+evPR (manual) GRASP+evPR (tuned)
Name Target Max Time Avg. Weight Avg. TTT Avg. Weight Avg. TTT

200 15 1 86730 800 87554.05 274.329 85708.98 45.051
200 15 2 94972 97211.21 317.914 94425.63 41.467
200 15 3 79510 81850.21 346.083 79401.67 63.067
200 15 4 82560 84168.06 368.786 81895.81 24.324
200 15 5 104252 103575.66 215.103 103122.56 12.683

200 25 1 141726 800 142731.91 303.349 140939.68 21.826
200 25 2 144420 144539.23 275.136 143343.53 31.732
200 25 3 146894 146399.04 222.271 145855.27 24.237
200 25 4 138962 139291.66 268.845 138128.82 29.171
200 25 5 158726 160171.68 304.802 157995.25 34.455

400 15 1 426526 1200 422238.09 37.693 419604 13.403
400 15 2 394432 399262.75 488.385 391131.88 80.310
400 15 3 393648 391614.46 234.334 389258.68 16.603
400 15 4 369764 367769.97 373.395 365058.37 51.948
400 15 5 410252 406387.12 122.615 404703.72 18.911

400 25 1 594666 1200 591782.73 207.668 591543.72 14.993
400 25 2 596240 592543.43 49.910 588863.93 4.699
400 25 3 585676 582703.92 73.369 581049.76 8.255
400 25 4 531436 528504.74 114.473 527368.74 12.457
400 25 5 610986 608108.42 168.330 606347.47 24.644

Boldface indicates there is no significant statistical difference when applying a Wilcoxon-Mann-Whitney test.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 141726 (edge weight)

200_25_270001

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 426526 (edge weight)

400_15_270001

GRASP-PR-EVPR
GRASP-PR-EVPR tuned

Fig. 3. Two examples of node capacitated graph partitioning GRASP+evPR perfor-
mance (tuned vs. manual). Times are in seconds.

two of the instances considered. Each distribution shows how tuned outperforms
manual with respect to both time and solution quality.

6 Concluding Remarks

Solving problems with heuristics involves the selection of parameters and con-
figurations that alter the speed and solution quality of the algorithms used.
Manual tuning can be tedious and time consuming without assuring that the
tuned parameters can perform well on a different instance of the same problem.

This paper presents an automatic-tuning procedure of GRASP with evolu-
tionary path-relinking heuristics by using a biased random-key genetic algorithm
(BRKGA). The procedure evolves an initial pool of sets of parameters and con-
figurations by making short runs and learning from the performance of each set
in the pool.

76 L.F. Morán-Mirabal, J.L. González-Velarde, and M.G.C. Resende

The procedure is tested on benchmark instances of three optimization prob-
lems and results show that GRASP heuristics with automatically-tuned parame-
ters tend to have better performance, both in terms of time to target solution and
solution quality, than GRASP heuristics that use manually-tuned parameters.

Acknowledgment. This research was partially funded by Tecnológico de Mon-
terrey Research Fund CAT128. It was done while the first author was a visiting
scholar at AT&T Labs Research, in Florham Park, New Jersey.

References

1. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operations Research 54, 99–114 (2006)

2. Aiex, R., Pardalos, P., Resende, M., Toraldo, G.: GRASP with path-relinking for
three-index assignment. INFORMS J. on Computing 17, 224–247 (2005)

3. Bean, J.: Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing 2, 154–160 (1994)

4. Beasley, J.: An algorithm for set covering problem. European Journal of Opera-
tional Research 31, 85–93 (1987)

5. Deng, Y., Bard, J.: A reactive GRASP with path relinking for capacitated cluster-
ing. J. of Heuristics 17, 119–152 (2011)

6. Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters 8, 67–71 (1989)

7. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. of Global
Optimization 6, 109–133 (1995)

8. Ferreira, C., Martin, A., de Souza, C., Weismantel, R., Wolsey, L.: The node ca-
pacitated graph partitioning problem: A computational study. Mathematical Pro-
gramming 81, 229–256 (1998)

9. Festa, P., Gonçalves, J.F., Resende, M.G.C., Silva, R.M.A.: Automatic tuning of
GRASP with path-relinking heuristics with a biased random-key genetic algorithm.
In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 338–349. Springer, Heidelberg
(2010)

10. Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the
MAX-CUT problem. Optimization Methods and Software 7, 1033–1058 (2002)

11. Glover, F.: Tabu search and adaptive memory programming – Advances, applica-
tions and challenges. In: Barr, R., Helgason, R., Kennington, J. (eds.) Interfaces
in Computer Science and Operations Research, pp. 1–75. Kluwer Academic Pub-
lishers (1996)

12. Gonçalves, J., Resende, M.: Biased random-key genetic algorithms for combinato-
rial optimization. J. of Heuristics 17, 487–525 (2011)

13. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization 10, 673–696 (1997)

14. Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on local
search. In: Proceedings of the Twenty-second Conference on Artificial Intelligence
(AAAI 2007), pp. 1152–1157 (2007)

15. Johnson, D.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

Automatic Tuning of GRASP with Evolutionary Path-Relinking 77

16. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, NY
(1972)

17. Laguna, M., Mart́ı, R.: GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS J. on Computing 11, 44–52 (1999)

18. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Model-
ing and Computer Simulation 8, 3–30 (1998)

19. Mehrotra, A., Trick, M.: Cliques and clustering: A combinatorial approach. Oper-
ations Research Letters 22, 1–12 (1997)

20. Morán-Mirabal, L., Gonzalez-Velarde, J., Resende, M.: Randomized heuristics for
handover minimization in mobility networks. Technical report, AT&T Labs Re-
search, Florham Park, New Jersey (August 2012)

21. Pedrola, O., Castro, A., Velasco, L., Ruiz, M., Fernández-Palacios, J.P., Careglio,
D.: CAPEX study for a multilayer IP/MPLS-over-flexgrid optical network. J. of
Optical Communications and Networking 4, 639–650 (2012)

22. Prais, M., Ribeiro, C.: Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS J. on Computing 12, 164–176
(2000)

23. Resende, M., Werneck, R.: A hybrid heuristic for the p-median problem. J. of
Heuristics 10, 59–88 (2004)

24. Spears, W., DeJong, K.: On the virtues of parameterized uniform crossover.
In: Proceedings of the Fourth International Conference on Genetic Algorithms,
pp. 230–236 (1991)

25. Toso, R., Resende, M.: A C++ application programming interface for biased
random-key genetic algorithms. Technical report, AT&T Labs Research, Florham
Park, NJ (2012)

26. University of Wisconsin: Condor high throughput computing (2012),
http://research.cs.wisc.edu/condor (last visited on June 25, 2012)

http://research.cs.wisc.edu/condor

Combining Genetic Algorithm and Simulated

Annealing Methods for Reconstructing
HV-Convex Binary Matrices

Hadded Mohamed and Hasni Hamadi

National School of Computer Science, Manouba, Tunisia
CRISTAL Laboratory, RAMSIS pole, ENSI, Manouba, Tunisia
HaddedMohamed88@gmail.com, Hamadi.Hasni@ensi.rnu.tn

Abstract. In this paper, we consider the discret tomography problem
(DTP), namely reconstruction convex binary matrices from their row and
column sums respectively H and V , RBM(H,V). This is reformulated
as an integer programming problem. Since the problem is NP-complete,
a new hybrid genetic algorithm with simulated annealing algorithm is
proposed to find an approximate solution.

Keywords: Discret tomography, convex binary matrix, Integer program-
ming, Genetic algorithm, simulated annealing, NP-complete.

1 Introduction

The goal of discrete tomography (DT) is to reconstruct discrete subset of Z ∗ Z
or more generally of Zn from a data set of Z or Zn−1, respectively. DT is applica-
ble in many interesting sectors such as nondestructive testing, image processing,
medical images, electron microscopy, data security, industrial tomography, ma-
terial sciences, mathematical objects and schedules [3]. Among the problems of
discrete tomography (DT) is the reconstruction of binary matrices from its hor-
izontal and vertical projections which give respectively the number of ones in
each row and in each column. This problem is polynomial and reconstruction
algorithms in polynomial time exist[1]. However, possible reconstructions may
exist[2]. To reduce the space of feasible solutions, geometric properties about
the matrix to reconstruct should be considered such as convexity, periodicity
and connectivity, etc. Here we will study the reconstruction of binary matrices
problem under the constraints of horizontal projections H, vertical projections
V and convexity. Since the problem is NP-complete [3], one way to solve it is
to use approximation algorithms. Several solutions methods have been proposed
to find an optimal or approximate solution for RBM(H,V). Dahl and Flatberg
[4] provide an approximate solution based on the Lagrangian decomposition.
Jarray [5] provide an iterative approximation based on a longest path and a
min-cost/max-flow model. Batenburg [6] has proposed a solution method based
on the evolutionary algorithm and a local search method named HillClimbing
to find hv-convex or nearly hv-convex matrices. Recently Jarray, Tlig [7] and

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 78–91, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Combining GA and SA for Reconstructing Convex Binary Matrices 79

Dakhli [8] have used simulated annealing and tabu search algorithm to recon-
struct hv-convex matrices.

The remainder of this paper is organized as follows : In section 2, we introduce
some definitions and notations. In section 3, we present the RBM(H,V) problem
and we reformulate it by using integer programming. In section 4 and 5, we
present respectively simulated annealing and genetic algorithm approaches. In
section 6, we present genetic algorithms based simulated annealing approach for
reconstructing hv-convex binary matrices. In section 7, we present and discuss
the numerical results. Conclusion and perspectives are reported in section 8.

2 Preliminaries

In this paper, we assume that all binary matrices studied are of size m× n. We
will study now the problem of reconstruction a binary matrix from its horizontal
H and vertical V projections denoted by RM(H,V).

Definition 2.1. Let H = (h1, . . . , hm) and V = (v1, . . . , vn) be nonnegative
integral vectors. We denote by BM(H,V) the class of all binary matrices A =
[ai,j] satisfying:

n∑
j=1

ai,j = hi ; i = 1, . . . ,m

m∑
i=1

ai,j = vj ; j = 1, . . . , n

The vectors H and V are called the row and column projections of any matrix
in BM(H,V).

Problem 2.2 (decision prblem). Given H = (h1, . . . , hm) and V = (v1, . . . , vn)
two nonnegative integer vectors.
Is there a m × n binary matrix respecting the horizontal projection H and the
vertical projection V ?

Ryser [1] and Gale [9] derived necessary and sufficient conditions for the exis-
tence of a binary matrix from its orthogonal projections.

Definition 2.3. A switching component is a set of four cells (i, j), (i, j + k),
(i+ h, j) and (i+ h, j + k) such that the cells (i, j) and (i+ h, j + k) taking the
value 1 and the cells (i, j+k) and (i+h, j) the value 0. The switching component
is of the following form.

(
0 1
1 0

)
or

(
1 0
0 1

)

The elementary switching operation is to interchange the 0’s and 1’s for these
four cells. The orthogonal projections do not change after this operation.

80 H. Mohamed and H. Hamadi

Theorem 2.4. [1] Let A and B in BM(H,V),B �= A, Then A is transformable
into B (or vice versa) by finite sequences of switching operations.

we will study now the problem of reconstruction a binary matrix from its or-
thogonal projections (H,V) and more similar to a model matrix M denoted by
RM(M,H, V) problem.

Problem 2.5 (RM(M,H, V)). Let M be a given binary matrix and H, V
be given nonnegative integer vectors. RM(M,H, V) is to find a binary ma-
trix A = [ai,j] in BM(H,V), such that the difference between A and M is
minimal.

This problem consist to maximize the number of common 1’s between A and
M which is equivalent to solve the maximization problem (max

∑
i,j ai,jmi,j)

under the orthogonal projections constraints: (1)
∑n

j=1 ai,j = hi, 1 ≤ i ≤ m and

(2)
∑m

i=1 ai,j = vj , 1 ≤ j ≤ n. Then RM(M,H, V) may be reformulated as an
integer linear program below.

(P)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
∑

i,j ai,jmi,j

s.t∑n
j=1 ai,j = hi ∀i ∈ {1,m}∑m
i=1 ai,j = vj ∀j ∈ {1, n}

A ∈ {0, 1}m×n

We use a max-flow/min-cost model in a complete bipartite graph to solve this
problem, which was introduced by Batunburg [6]. Many standard algorithms
are available for solving the max flow min cost problem in polynomial time as
Busacker and Gowen.

3 HV-Convex Binary Matrix

3.1 Definitions

As the number of solutions in RBM(H,V) may be high, it is important to study
the reconstruction problem where we impose geometric constraints on binary
matrices. A binary matrix is h-convex if the ones in each row are adjacent.
Similarly a binary matrix is v-convex if the ones are adjacent in each column. A
binary matrix is hv-convex if it is h-convex and v-convex (see Figure 1). Barcucci
et al. [11] prove that the consistency problem for h-convex or v-convex is NP-
complete. Woeginger [10] prove that the consistency problem is also NP-complete
for hv-convex binary matrices. The reconstruction of hv-convex binary matrix
problem is denoted by RCBM(H,V).

3.2 Integer Programming Formulation

In this section, we will define the integer program for solving RBM(H,V).

Combining GA and SA for Reconstructing Convex Binary Matrices 81

Fig. 1. {h, v and hv}-convex matrix

RBM(H,V) is to find a binary matrix that respects the orthogonal projec-
tions H and V which maximizes the number of adjacent ones. Let X be a binary
matrix and xi,j denote the entry of the matrix in position (i, j). The following
function f counts the number of adjacent ones:

f(X) =
∑m

i=1

∑n−1
j=1 xi,jxi,j+1 +

∑n
j=1

∑m−1
i=1 xi,jxi+1,j

Thus RBM(H,V) is equivalent to the integer program (P), which consist to
maximize the following function f under constraints of orthogonal projections
H and V .

(P)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max f(X)
s.t∑n

j=1 xi,j = hi ∀i ∈ {1,m} (1)∑m
i=1 xi,j = vj ∀j ∈ {1, n} (2)

ai,j ∈ {0, 1}m×n

Constraint (1) ensures that the sum of ones in row i is equal to the prescribed
horizontal projection hi. Constraint (2) ensures that the sum of ones in column
j is equal to the prescribed vertical projection vj . (1) and (2) ensure that X ∈
BM(H,V).

3.3 Bounds

Let X be a binary matrix with orthogonal projections H and V.

I) f(X) ≤ 2
∑n

j=1 vj −m− n.

II) X is hv-convex if and only if α = f(X) = 2
∑n

j=1 vj −m− n.

Clearly, α is an upper bound for f(X).

Proof. Let X be a binary matrix respecting the projections H and V.
I)

82 H. Mohamed and H. Hamadi

. The number of adjacent ones in the row i satisfies the following condition:∑n−1
j=1 xi,jxi,j+1 ≤ ∑n

j=1 xi,j − 1

⇔ ∑n−1
j=1 xi,jxi,j+1 ≤ hi − 1 (hi =

∑n
j=1 xi,j)

⇔ ∑m
i=1

∑n−1
j=1 xi,jxi,j+1 ≤ ∑m

i=1 (hi − 1)

⇔ ∑m
i=1

∑n−1
j=1 xi,jxi,j+1 ≤ ∑m

i=1 hi −m (1)

. The number of adjacent ones in the column j satisfies the following condi-
tion: ∑m−1

i=1 xi,jxi+1,j ≤
∑m

i=1 xi,j − 1

⇔ ∑m−1
i=1 xi,jxi+1,j ≤ vj − 1 (vj =

∑m
i=1 xi,j)

⇔ ∑n
j=1

∑m−1
i=1 xi,jxi+1,j ≤

∑n
j=1 (vj − 1)

⇔ ∑n
j=1

∑m−1
i=1 xi,jxi+1,j ≤

∑n
j=1 vj − n (2)

(1)+(2)∑m
i=1

∑n−1
j=1 xi,jxi,j+1 +

∑n
j=1

∑m−1
i=1 xi,jxi+1,j ≤

∑m
i=1 hi+

∑n
j=1 vj −m−n

Or X ∈ MB(H,V) ⇔ ∑m
i=1 hi =

∑n
j=1 vj Thus

nx ≤ 2
∑n

j=1 vj −m− n

II). The row i is h-convex if and only if the number of adjacent ones in row i
is equal to hi − 1:∑n−1

j=1 xi,jxi,j+1 = hi − 1

⇔ ∑m
i=1

∑n−1
j=1 xi,jxi,j+1 =

∑m
i=1 hi −m (1)

. The column j is v-convex if and only if the number of adjacent ones in
column j is equal to vj − 1:∑m−1

i=1 xi,jxi+1,j = vj − 1

⇔ ∑n
j=1

∑m−1
i=1 xi,jxi+1,j =

∑n
j=1 vj − n (2)

(1)+(2)∑m
i=1

∑n−1
j=1 xi,jxi,j+1 +

∑n
j=1

∑m−1
i=1 xi,jxi+1,j =

∑m
i=1 hi+

∑n
j=1 vj −m−n

Or X ∈ MB(H,V) Thus
∑m

i=1 hi =
∑n

j=1 vj we deduce That

f1(X) = 2
∑n

j=1 vj −m− n

4 Simulated Annealing

4.1 Overview

Simulated annealing SA is an optimization technique based on the physical pro-
cess of annealing. This method was proposed in 1982 by S. Kirkpatrick et al.
from the Metropolis method (1953) that used to model the physical process of
heating a material and then slowly lowering the temperature to decrease defects,

Combining GA and SA for Reconstructing Convex Binary Matrices 83

thus minimizing the system energy [13]. SA starts from any solution and a tem-
perature T . In each step, SA generates a random neighboring solution to the
current solution. If the neighboring solution is better, it becomes the current so-
lution, otherwise, we calculate the increased cost and we accept it with a certain
probability according to this increase.

4.2 Simulated Annealing for RBM(H,V)

Jarray and Tlig [7] have adopted SA algorithm for approximating hv-convex
matrices. The neighborhood of a solution is defined as the matrix obtained by a
single switching. The objective function is the functions f(X) defined in section
3.2. The initial solution is generated by using the Rysers classical algorithm. SA
algorithm for RBM(H,V) can be described as in algorithm 1:

. Temp : Temperature.. Tm : Minimum temperature.. Nmax : Maximum number of iterations.. β : Heat transfer coefficient.. p : Random variable. (0 < p < 1).

Algorithm 1. Simulated Annealing Algorithm

Input:
Matrix X0, β, Temp, Tm and Nmax.

Ouput:
Matrix X that maximizes the objective function f(X).

1. While ((Temp ≥ Tm)) do
1.1. NbrIteration = 0 ; ;

1.2. while (NbrIteration < Nmax)
1.2.1. Choose a switching component ;
1.2.2. Calculate the evaluation function F ′ of the neighboring solution ;
1.2.3. ΔF = F ′ − F ;
1.2.4. if ((ΔF > 0) or (p < exp−(ΔF/Temp))) then

1.2.4.1. Accept this switching component ;
1.2.4.2. F = F ′ ;

end if ;
1.2.5. NbrIteration = NbrIteration+ 1 ;
end while ;

1.2. Temp = β × Temp ;
end while ;

Although SA is very simple in implementation, Batenburg found that simu-
lated annealing, which only use local search operators, are not well suited for this
task. The main reason for this is that the RBM(H,V) problem usually has a
great number of local optima and moving between different optima may require
a large number of ”uphill” steps [6].

84 H. Mohamed and H. Hamadi

5 Genetic Algorithm

5.1 Overview

Genetic algorithms GA or (Evolutionary Algorithm EA) are heuristics derived
from biological evolution. This algorithm starts from a population of potential
solutions randomly generated called individuals population. It uses an adap-
tive function to evaluate the quality of each individual, optimization operators
”crossover and mutation” to explore the space of feasible solutions and selection
process to direct the population to an optimal solution.

5.2 Genetic Algorithm for RBM(H,V)

In this section we describe the main steps of the genetic algorithm adapted for
the reconstructing of hv-convex matrices problem.

- Population elements coding

Each individual is encoded as a binary matrix (0 and 1).

- Generation of initial population

The first step of GA is the genesis of the initial population formed by a set of
binary matrices in BM(H,V). The initial population generation procedure is to
randomly read a binary matrix M and then apply the max flow min cost algo-
rithm to obtain another matrix in BM(H,V) and more similar to its original
matrix M (BM(M,H, V)). These two steps are repeated T times where T is the
size of the initial population.

- Crossover operator

Once the initial population is obtained, a crossover operator is applied to di-
versify the population in each generation and explore the search space. This
operator randomly selected two parent individuals and generates two children
by combining the genes of these parents. Among the most used types of crossover
operator, uniform crossover, two point crossover. By several tests, we found that
the two point crossover is very effective in terms of the obtained children quality
and in terms of running time.
This operator we implemented may be explicited as follows. Let X and Y be
two binary matrices parents of sizes m×n and a, b two randomly chosen integers
in [1, n] such that a < b. therefor, the two point crossover operator is to swap
genes between a and b for both parents, we obtain two children matrices Z and
T defined as follows.

Z = (zij)1≤i≤m =

⎧⎨
⎩

xi,j , 1 ≤ j ≤ a
yi,j , a < j ≤ b
xi,j , b < j ≤ n

T = (tij)1≤i≤m =

⎧⎨
⎩

yi,j , 1 ≤ j ≤ a
xi,j , a < j ≤ b
yi,j , b < j ≤ n

Although the crossover operator generates two children matrices similar to their
parents, these two children aren’t in BM(H,V) then it is necessary to use the
formulation of a max flow/min cost model to correct the orthogonal projections

Combining GA and SA for Reconstructing Convex Binary Matrices 85

(see figure 3). This operator is applied with a probability indicated by Pc.
Despite the fact that the combined action of crossover operator allows to diver-
sify the population, it is possible that this action might remove the genes of an
individual. For remedy for this problem, a mutation operator is applied because
this operator is able to reintroduce these genes in the individual.

- Mutation operator

This operator can be viewed as a learning phase of the individual to its en-
vironment, The children are significantly improved before constitute the next
generation. This operator exploits the adjaceny contraint of ones in each row
and in each column, it reverses all the cells of value 1 which do not have any
neighbor of value 1 and reverse all the cells of value 0 if the number of their
neighbouring cells of value 1 higher to three. Note that the neighboring cells of
cell (i, j) are the cells (i, j − 1), (i, j + 1), (i− 1, j) and (i+ 1, j). This operator
is applied with a probability indicated by Pm.

Algorithm 2. Mutation operator

Input:
Matrix: M .

Output:
Matrix: M

′
.

1. for each cell mij of M do
1.1. if the sum of neighbouring ones to cell mij greater than 3 then

m
′
ij = 1 ;

else
if the sum of neighbouring ones to cell mij equal to 0 then

m
′
ij = 0 ;

else
m

′
ij = mij ;

end if ;
end if ;

end for ;

- Evaluation

The evaluation of each individual is realized according to the objective function
defined in Section 3.2 (f(x)). This step is performed at each iteration and ac-
cording to this evaluation, individuals will be selected.

- Selection

The selection operator chooses a few individuals from both the old population
and the new group of individuals according to their evaluations. Only individuals
passing the selection test can access to the next generation and will participate
in the production step while the others individuals are deleted.

There are several methods of selection.

86 H. Mohamed and H. Hamadi

- Roulette Wheel selection:
- Ranking selection:
- Selection tournament:
- Elitist selection:

The first three methods use random selection characters does not always guar-
antee that the best solution is retained, however the last method allows to select
only the best individuals, then the new population is not diverse and we would
arrive at a stagnation of the evolution.

To avoid these problems we have proposed another method which is to copy
the 50% of the best individuals to ensure always that the best individuals are
preserved and randomly copy the 50% other individuals to diversify the new
population. Each individual is selected only once.

The GA algorithm for RBM(H,V) is described in algorithm 3. By several
experiments, We found this approach to be inadequate for RBM(H,V). Indeed,
the two crossover and mutation operators generally gives children of lower qual-
ities relative to their parents(see figure 3). A solution To ensure that the child
matrix has sufficient quality, we apply a local search operator called simulated
annealing SA after the crossover or mutation operation.

6 Combining GA and SA Algorithm (GASA) for
RBM(H,V)

The genetic algorithm GA and simulated annealing SA have some disadvan-
tages that can be mitigated by hybridizing in a single architecture.GA is a global
search algorithm based on the principle of diversification(research is remote from
the neighbourhood). However, SA is a local search algorithm based on the prin-
ciple of intensification(research is conducted in a neighborhood). Then the two
methods are complementary because one allows to move quickly in the search
space and thus diversify the research while the other explores intensively these
areas of the search space. Their combination GASA allows to quickly browse
the interesting areas of the search space for explore it in detail. In each gener-
ation, two operators of crossover and mutation are applied with a probability,
for each new configuration (s) thus generated, the simulated annealing SA(s) is
applied to improve the quality of s. Finally, a selection operator decides if the
new individual should be introduced in the new population.

6.1 GASA Algorithm

The hybrid algorithm is proposed to find a binary matrix nearly hv-convex, this is
equivalent to finding a binary matrix in BM(H,V) that minimizes the objective
function defined in section 3.2. This algorithm begins from an initial population
randomly generated then each individual is improved by the simulated annealing.
For each generation, new individuals (children) are produced by crossovor or by
mutation but the latter are not in BM(H,V) then it is necessary to correct
their orthogonal projections by resolution of the RBM(I,H, V) for each child

Combining GA and SA for Reconstructing Convex Binary Matrices 87

Algorithm 3. Genetic Algorithm GA

Inputs:
Size of problem: m,n.
Orthogonal projections: H = (h1, h2, . . . , hm) and V = (v1, v2, . . . , vn).
Size of the initial and new population: T , NT .
Maximum number of generations : NbrGA.
Number of new children per generation: γ.
Probability of crossover and mutation : Pc and Pm .

Output:
Binary matrix of size m× n: M .

1. Itr = 0 ;
2. PI = {∅} ;
3. Initialization the initial population PItr of size T consists of matrices in
BM(H,V);
4.while (Itr < NbrGA) do

4.1.while (t ≤ γ) do
4.1.1. Produce a child matrix E by crossover operator according to the crossover

probability;
4.1.2. Apply the mutation operator according to the mutation probability ;
4.1.3. Correction of orthogonal projections of the matrix E by the resolution

of RBM(E,H,V);
4.1.4. PItr = PItr ∪ {E} ;

end while ;
4.2. Calculate the function evalution for each individual in PItr;
4.3. Evaluation of individuals;
4.4. Creation of the new population PItr+1 containing the selected individuals

from the population PItr ;
4.5. Itr = Itr + 1 ;

end while ;

I thus obtained. Then, the quality of each child is increased by using simulated
operator. Finally, new population is evaluated according to the objective function
and a selection process is applied to direct the entire population to an optimal
solution. This principle is repeated until a solution for this problem is found or
the number of iterations reaches the maximum number allowed. The complete
algorithm of GASA is shown as flowchart in Fig. 2.

7 Computational Results

7.1 Choice of the Parameters

The choice of parameters helps to reduce the run time and to improve the quality
of result. We did several experiments to find the best parameters for GASA. We
found that our approach performs well when :

T = 40, NT = T , NbrGA = 100, Pc = 0, 8, Pm = 0, 05 ,γ = 4,

Nmax = 100, Temp = m+ n, Tm = 5 and β = 0.9.

88 H. Mohamed and H. Hamadi

Fig. 2. Flowchart for GASA algorithm

7.2 Results

We have implemented our algorithms in Java language, using the jdk compiler.
All our experiments were run on a Intel Centrino Duo 3.2GHz PC with 1Gb of
memory.

Combining GA and SA for Reconstructing Convex Binary Matrices 89

We have tested GASA approach by using a set of matrices of different sizes
with a fixed number of hv-convex components described and generated in [12],
[15] and [16]. A component is a maximal hv-convex connected set. The mim-
cost max-flow models used by the algorithm are solved by the CS2 network flow
library [14]. The table 1 shows the results with their run time. The first column
gives the size of the problem and the number of hv-convex components. The
following column α is the upper bound of the number of adjacent ones given in
section 3.2 (α = 2

∑n
j=1 vj−m−n). The column Sol gives the objective function

value for the perfect solution provided By GA,SA and GASA. Gap is the gap
in(%) between the original matrix and the approximate matrix. The last column
T (s) indicates the running time.

For each problem size, GASA algorithm converges to an hv-convex matrices
(Sol = 0) or gives an approximate hv-convex matrix (Gap close to 0), we say that
this approach is efficient. On the other hand, we observe that simulated annealing
gives the best results in terms of quality and running time than GASA and GA
for matrices with a single hv-convex component for example (20× 20, 1), but if

Fig. 3. An example of GASA approach

90 H. Mohamed and H. Hamadi

Table 1. CPU running time and resultats in seconds for GA, SA and GASA

Matrix α Genetic Algorithm Simulated Annealing GASA

Sol GAP(%) Time Sol GAP(%) Time Sol GAP(%) Time

10×10, 1 80 79 0.12 6.79 80 0 0.34 80 0 0.43
10×10, 2 36 34 5.55 3.94 36 0 1 36 0 0.24
10×10, 3 18 13 27.77 2.67 14 22.22 3.24 18 0 0.23
10×10, 4 66 66 0 5.47 45 31.88 5 66 0 0.42

20×20, 1 390 388 3.07 186.4 390 0 8 390 0 10.2
20×20, 2 156 132 15.38 84.6 150∗ 3.48 10 156 0 55.4
20×20, 3 90 72 20 56.3 60 33.33 70 90 0 41.5
20×20, 4 46 32 30.43 37.8 31 32.60 25 46 0 24.2

30×30, 1 954 937 1.77 891.6 954 0 89 954 0 265.3
30×30, 2 310 255 10.64 352.1 271 12.58 101.2 307 0.96 140.1
30×30, 3 256 216 15.62 552.2 217∗ 14.06 93.99 251 1.95 120.7
30×30, 4 164 141 14.02 363.1 120∗ 26.82 115.1 164 0 111.2

40×40, 1 408 341 16.42 520.5 408 0 160.5 408 0 482.2
40×40, 2 622 527 15.27 606 543∗ 12.7 220.2 609 2.09 605.7
40×40, 3 304 265 12.82 670.2 241∗ 20.72 168.1 290 4.61 437
40×40, 4 268 268 0 254 231∗ 9.05 76 268 0 134

50×50, 1 2578 2571 0.27 840.5 2578 0 240 2578 0 840.1
50×50, 2 480 410 14.58 730.3 421∗ 12.29 156.1 445 7.29 730.6
50×50, 3 720 641 11 401 633∗ 12.08 202 706 1.94 400.4
50×50, 4 580 502 13.44 540.1 489∗ 15.68 322.3 564 2.75 522.2
∗ indicates that the algorithm remains in a stagnation state.

the number of components increase the performance of SA decrease and GASA
becomes better than SA.

8 Conclusion

In this paper we have studied a variant of the NP-hard problem of reconstructing
hv-convex binary matrices from horizontal and vertical projections. This problem
is formulated as an integer problem. To solve it, we proposed a genetic algorithms
based simulated annealing approach. For evaluation, We tested this approach on
several matrices with different sizes and number of hv-convex components then
we compared it with other existing methods GA and SA. Although we have used
a few number of test matrices, the results seem to indicate that GASA is more
successful.

GASA can be generalized to solve problems with additional constraints as
periodicity and more than two directions of projections.

Combining GA and SA for Reconstructing Convex Binary Matrices 91

References

1. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J.
Math. 9, 371–377 (1957)

2. Wang, B., Zhang, F.: On the precise number of (0, 1)-matrices in a(r, s). Discrete
Math. 187, 211–220 (1998)

3. Del Lungo, A., Nivat, M.: Reconstruction of connected sets from two projections.
In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms
and Applications, ch. 7, pp. 163–188. Birkhauser, Boston (1999)

4. Dahl, G., Fatberg, T.: Optimization and reconstruction of hv-convex (0,1)-
matrices. Discrete Applied Mathematics 151, 93–105 (2005)

5. Jarray, F., Costa, M.-C., Picouleau, C.: Approximating hv-convex binary matrices
and images from discrete projections. In: Coeurjolly, D., Sivignon, I., Tougne, L.,
Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 413–422. Springer, Heidelberg
(2008)

6. Batenburg, K.J.: An evolutionary algorithm for discrete tomography. Discrete Ap-
plied Mathematics 151, 36–54 (2005)

7. Jarray, F., Tlig, G.: A simulated annealing for reconstructing hv-convex binary
matrices. Electronic Notes in Discrete Mathematics 36, 447–454 (2010)

8. Jarray, F., Tlig, G., Dakhli, A.: Reconstructing hv-convex images by tabu re-
search approach. In: International Conference on Metaheuristics and Nature In-
spired Computing, 3 p. (2010)

9. Gale, D.: A theorem on flows in networks. Discrete Mathematics 187, 1073–1082
(1957)

10. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projec-
tions. Information Processing Letters 77, 225–229 (2001)

11. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: The reconstruction of polyomi-
noes from their orthogonal projections. Theoretical Computer Science 155, 321–347
(1996)

12. Hochstattler, W., Loebl, M., Moll, C.: Generating convex polyominoes at random.
Discrete Mathematics 153, 165–176 (1996)

13. Aria, M.: An Integration of simulated annealing and genetic algorithm for travelling
salesman problem. Journal Majalah Ilmiah Unikom 8 (May 2011)

14. Goldberg, A.V.: An efficient implementation of a scaling minimum-cost flow algo-
rithm. Journal of Algorithms 22, 1–29 (1997)

15. Baläzs, P.: A benchmark set for the reconstructin of hv-convex discrete sets. Dis-
crete Appl. 157, 3447–3456 (2009)

16. Balázs, P.: Reconstruction of canonical hv-convex discrete sets from horizontal and
vertical projections. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS,
vol. 5852, pp. 280–288. Springer, Heidelberg (2009)

Experimental Analysis of Pheromone-Based Heuristic
Column Generation Using irace

Florence Massen1, Manuel López-Ibáñez2, Thomas Stützle2, and Yves Deville1

1 ICTEAM, Université catholique de Louvain, Belgium
{Florence.Massen,Yves.Deville}@uclouvain.be

2 IRIDIA, Université libre de Bruxelles, Belgium
{manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Pheromone-based heuristic column generation (ACO-HCG) is a hy-
brid algorithm that combines ant colony optimization and a MIP solver to tackle
vehicle routing problems (VRP) with black-box feasibility. Traditionally, the ex-
perimental analysis of such a complex algorithm has been carried out manually
by trial and error. Moreover, a full-factorial statistical analysis is infeasible due
to the large number of parameters and the time required for each algorithm run.
In this paper, we first automatically configure the algorithm parameters by using
an automatic algorithm configuration tool. Then, we perform a basic sensitiv-
ity analysis of the tuned configuration in order to understand the significance of
each parameter setting. In this way, we avoid wasting effort analyzing param-
eter settings that do not lead to a high-performing algorithm. Finally, we show
that the tuned parameter settings improve the performance of ACO-HCG on the
multi-pile VRP and the three-dimensional loading capacitated VRP.

1 Introduction

An advantage of metaheuristics is that they can be adapted to different problem variants
by adjusting their algorithmic components and parameter settings. The parameter con-
figuration often has a crucial impact on the performance of an algorithm on a particular
problem. However, complex algorithms typically have many parameters, resulting in a
large number of possible configurations of the algorithm. Testing all possible configu-
rations is typically intractable, particularly on problems where one run of the algorithm
may take several hours. Due to this intractability, only a very limited subset of parame-
ter configurations are tested when designing an algorithm, and such a subset is chosen
by the designer based on her intuitions. This manual approach may easily miss the
best-performing configurations for a metaheuristic.

Automatic algorithm configuration methods aim to identify high-performing config-
urations of an algorithm for a given problem [2,8]. Typically, the method is given a
description of the parametric space of the algorithm (types and domains of the param-
eters), a set of training instances representative of the problem, and a computational
budget (e.g., a maximum number of algorithm runs). The goal of the method is to find
a high-performing parameter configuration for unseen instances of the same problem.
When the goal is not simply to obtain the best performance, but also to understand

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 92–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Experimental Analysis of Pheromone-Based Heuristic Column Generation 93

the effect of parameters, the number of possible configurations that need to be evalu-
ated and analyzed may be extremely large. This is the case even if most configurations
are of little interest, since they produce poor results. In this paper, we propose to use
automatic configuration as a first step before analyzing the effect of parameters.

We use this approach to improve the performance and analyze the parameters of
pheromone-based heuristic column generation (ACO-HCG) for vehicle routing prob-
lems with black box feasibility (VRPBB) [11]. VRPBBs are an abstraction of rich ve-
hicle routing problems. In the VRPBB, the problem structure remains unchanged with
respect to a basic VRP, but a combinatorial side-problem needs to be solved to verify
the feasibility of each route. Examples of such problems combine routing and load-
ing [7] or routing and scheduling [12]. In the VRPBB, the combinatorial side-problem
to be solved for every route is considered to be unknown, but a black-box function al-
lowing to test the feasibility of a route is provided. An optimization procedure for the
VRPBB should be independent of the particular side-problem. An example of such an
optimization procedure is ACO-HCG, which combines ant colony optimization with
an exact solver. At each iteration, ants generate a set of feasible routes probabilisti-
cally according to pheromone values. A solution is obtained by solving a relaxed set
partitioning problem (RMPrelax) over the set of feasible routes. This solution is used
to update the pheromone information, biasing the construction of new feasible routes
by the ants in subsequent iterations. In addition, feasible routes are further improved
using local search. This procedure continues until a time limit is reached, and the final
solution is obtained by solving the integer set partitioning problem over the set of all
feasible routes ever generated.

In this paper, we extend ACO-HCG with new parameters formalizing algorithmic
design choices. Then, we use irace [10] to automatically find a high-performing con-
figuration that improves the results of the original ACO-HCG. In particular, we improve
previous results of ACO-HCG in two VRPBB problems, the multi-pile VRP (MPVRP)
and the three-dimensional loading capacitated VRP (3L-CVRP). The new ACO-HCG
also improves the best-known results from the literature on the MPVRP and the 3L-
CVRP on several instances. Finally, we perform a basic sensitivity analysis of the
parameters of ACO-HCG with the improved configuration generated by irace. This
analysis shows that the new components play a significant role in the effectiveness of
the algorithm.

2 Vehicle Routing Problems with Black Box Feasibility

In this section, we present the capacitated vehicle routing problem (CVRP), extend it to
VRPs with black-box feasibility and present two example applications of the resulting
VRPBB.

2.1 The Capacitated Vehicle Routing Problem and Black-Box Feasibility

The CVRP [17] is defined on a complete undirected and weighted graph G = (V,E).
In the set of vertexes V = {0, 1, . . . , n}, 0 is the depot vertex and vertexes 1, . . . , n

94 F. Massen et al.

correspond to the n customers that must be visited. The set of edges connecting every
pair of vertexes in V is given in E. With each edge (i, j) ∈ E s.t. i, j ∈ V, i �= j is
associated a non-negative weight cij corresponding to the cost of traveling through edge
(i, j), i.e., from vertex i to j. A homogeneous fleet of K vehicles is given for visiting the
customers. All vehicles have a limited capacity Q. Each customer i (i = 1, . . . , n) has
a given demand di. A solution to the CVRP corresponds to a set of routes. Each route is
a sequence of vertexes, where the first and last vertex always correspond to the depot,
while the remaining vertexes correspond to customers. No customer vertex may appear
more than once in a route. Finally, the goal is to find a set of routes Sol such that (i) the
number of routes in Sol does not exceed K; (ii) each customer i ∈ V \ {0} is visited
exactly once; (iii) the sum of the demands of the customers visited on a route does not
exceed the vehicle capacity Q; (iv) the total traveling cost obtained by summing the
weights of the used edges in minimized.

The VRPBB is based on the CVRP and a feasible solution to the VRPBB must
also be feasible for the CVRP. However, in addition to the CVRP constraints, routes
in the VRPBB must satisfy a fixed set of unknown constraints F . A route r is feasible
with respect to F if and only if it satisfies all the constraints in F . We suppose that a
deterministic black-box function is given to verify the feasibility of a route r w.r.t. F .
The function is considered to be computationally expensive in comparison to common
VRP-feasibility functions. In the following, we call a route black-box (BB)-feasible if
it is feasible w.r.t. F , VRP-feasible if it respects the CVRP constraints, and feasible if
it is VRP- and BB-feasible.

2.2 Applications of the VRPBB

In this paper, we consider two applications of the VRPBB, the MPVRP and the 3L-
CVRP, which combine a basic VRP with two different types of loading constraints. We
refer to [9] for an overview of such problems.

The Multi-Pile VRP. The MPVRP [4] is based on the CVRP, but there are no restric-
tions on the capacity nor on the number of vehicles (Q = ∞, K = n). However the
loading space of the vehicles has a limited length L, width W and height H . Further-
more, the loading space is partitioned into p piles. Each customer i demands a set of mi

items Ii. Each item Iik (i = 1, . . . , n; k = 1, . . . ,mi) has a fixed width W , can take
two possible lengths lik ∈ {L/p, L} and has a height hik. A solution to the MPVRP
must respect the CVRP constraints and a feasible loading for the items of the visited
customers must exist. That is, no items must overlap (non-overlapping) and the items
must fit in the loading space (containment). When a customer is visited, all its items
must be directly accessible, i.e., its items are on top of the piles in the back of the
truck (sequential loading). Existing works on the MPVRP use metaheuristic and exact
approaches. Doerner et al. [4] propose heuristic approaches based on the fact that the
loading problem to be solved is a generalization of the P ||Cmax scheduling problem.
Tricoire et al. [18] propose an exact approach to solve the loading problem, and a vari-
able neighborhood search as well as a branch-and-cut method for the routing problem.

Experimental Analysis of Pheromone-Based Heuristic Column Generation 95

The Three-Dimensional Loading VRP. In the 3L-CVRP [7], vehicles in a homoge-
neous fleet have a limited capacity Q. Additionally, the loading space of the vehicles
has a limited length L, a limited width W and a limited height H . With each customer
i is associated a demand di and a set Ii of mi items. An item Iik (i = 1, . . . , n; k =
1, . . . ,mi) corresponds to a three-dimensional box that is either fragile or non-fragile
and has width wik , height hik and length lik. A solution to the 3L-CVRP is feasible if
it respects the CVRP constraints and a feasible loading for the items of customers on a
route exists. In order to be feasible, no items in a loading may overlap (non-overlapping)
and all items need to fit into the volume of the vehicle (containment). Also, each box
must be supported by a surface corresponding to at least 75% of the box’s bottom
surface (support). Moreover, only fragile items may be placed on top of fragile items
(fragility). Finally, when visiting a customer, the unloading of the items of this customer
must not be hindered by items belonging to customers yet to be visited (LIFO policy).
Most of the approaches proposed for the 3L-CVRP are metaheuristics [7,16,6,3,22,15],
except for an exact approach proposed recently [14]. In these approaches, the loading
problem is typically solved using various packing heuristics.

3 Pheromone-Based Heuristic Column Generation for the VRPBB

The pheromone-based heuristic column generation algorithm (ACO-HCG) analyzed
in this paper was originally proposed by Massen et al. [11]. It is based on the idea of
reformulating the VRPBB as a set partitioning problem (SPP). In this section, we briefly
explain this reformulation, summarize the ACO-HCG algorithm, and propose several
extensions.

3.1 Reformulation as Set Partitioning Problem

The VRPBB may be reformulated as a SPP, where the goal is to choose from the set
of all feasible routes (R) a subset of at most K routes such that each customer appears
exactly once and such that the total traveling cost is minimized. However, generating
the set of all feasible routes R is, in general, intractable due to the exponential number
of possible routes and the complexity of the black-box feasibility check. Therefore, a
restricted version of the problem (RMP) is solved using a restricted set of feasible routes
R∗. This problem can be further relaxed, resulting in two variants: the linear relaxation
of the RMP (called RMPrelax) or the integer RMP (called RMPint). In both, customers
may be visited more than once; thus, RMPint is also a reduced form of the SPP to be
solved. In ACO-HCG, collector ants generate new feasible routes that are iteratively
added to R∗.

3.2 Pheromone-Based Heuristic Column Generation (ACO-HCG)

The ACO-HCG algorithm iterates over three steps: (i) collector ants generate new fea-
sible routes according to the pheromone information τ ; (ii) the new routes are added to
R∗ and the corresponding RMPrelax is solved, obtaining a solution Sol; and (iii) Sol is
used to update the pheromone information τ . After a time limit has been reached, the

96 F. Massen et al.

SPP is solved over the set of feasible routes collected (R∗) to produce the final solution
to the VRPBB.

Collector Ants. Collector ants are based on the savings-based ants algorithm [13]. Each
ant iteratively constructs a set of feasible routes, starting from an initial state where each
customer i (i = 1, . . . , n) is visited in a route of its own (0− i−0). At each step, the ant
constructs a set Ω of potential route merges, selects a merge from Ω and executes the
merge. A merge corresponds to the concatenation of two routes 0− i1− i2−· · ·− ie−0
and 0−j1−j2−· · ·−jl−0 producing route 0−i1−i2−· · ·−ie−j1−j2−· · ·−jl−0.
That is, edges (ie, 0) and (0, j1) are dropped and replaced by a new edge (ie, j1). The
gain in cost resulting from this merge is computed as ηiej1 = cie0 + c0j1 − ciej1 .

The set Ω of merges considered by an ant is a subset of the set M of all merges result-
ing in VRP-feasible routes (VRP-feasible merges). The ant computes the attractiveness
of each merge h ∈ M as

attractiveness(h) = ταij + ηβij (1)

where (i, j) is the edge being introduced in merge h. The merges in M are then ordered
by non-increasing attractiveness and considered one by one for inclusion in Ω. Since the
BB-feasibility check is computationally expensive the feasibility information for every
checked route is stored in a feasibility pool. If an ant encounters a merge resulting in a
route that might help to reduce the total traveling cost (see the original paper [11] for
more information) or it is unknown to the feasibility pool, then the ant checks the BB-
feasibility (using either the feasibility pool or the black-box function), and the merge
is added to Ω only if the route is BB-feasible. If the merge will not reduce the total
traveling cost but the resulting route is known to be BB-infeasible, then the merge is
nonetheless added to Ω, since this merge may allow discovering further feasible merges
that would remain undiscovered otherwise. The construction of Ω stops once π feasible
merges have been included, or all merges in M have been considered. Finally, a merge is
selected from Ω and executed using roulette-wheel selection based on the attractiveness
values. The ant stops its process once no further VRP-feasible merge is possible.

During the construction of Ω, the ants ”collect” routes and add them to R∗ only if
they are BB-feasible. In addition, these routes are post-optimized before being inserted
into R∗ using a tabu search (TS) with infinite length tabu list using 2-opt and relocation
moves.

Pheromone Update. After all ants finish collecting routes for R∗, RMPrelax is solved,
and the pheromones are updated using the resulting solution Sol for every edge (i, j) ∈
E using the formula τij = ρτij + σijΔτ . That is, for each edge (i, j) ∈ E, the current
quantity of pheromones is evaporated (ρ is the trail persistence) and new pheromones
are deposited. This quantity is relative to σij , the number of times an edge (i, j) appears
in Sol and a parameter Δτ . Moreover, τij is not allowed to drop below τmin.

Extensions of ACO-HCG. We propose several extensions that were not considered
in the original paper. First, the original algorithm solves RMPrelax at each iteration.
Here, we consider solving RMPint instead, in order to obtain an non-fractional solution

Experimental Analysis of Pheromone-Based Heuristic Column Generation 97

Table 1. Parameters considered for automatic configuration

Parameter Domain Description

π [10, 50] ∈ N # (VRP and BB)-feasible merges in Ω

m [1, 10] ∈ N # ants executed per iteration
α [0, 20] ∈ N exp. factor for τ in merge attractiveness (Eq. 1)
β [0, 20] ∈ N exp. factor for η in merge attractiveness (Eq. 1)

Δτ [0.0, 1.0] ∈ R pheromone update constant
ρ [0, 1] ∈ R trail persistence

τmin [0, 1] ∈ R lower bound on pheromone level
useint {never, always, ν} solve RMPint instead of RMPrelax

ν [2, 10] ∈ N if useint == ν, solve RMPint instead of RMPrelax every ν
iterations

strictness { strict, liberal } strict / liberal ants
post-opt { ILS, TS } ILS / TS for post-optimization

op {+, ·} use addition/multiplication operator in Eq. 1

at the expense of more computation time. This component is controlled by parameter
useint = {never, always, ν}. When useint = ν, RMPint is only used for some iterations,
concretely, every ν iterations. Second, we implement iterated local search (ILS) using
2-opt, relocation and 4-opt double-bridge moves, as an alternative post-optimization
method to the tabu search (TS) proposed in the original ACO-HCG. Third, we con-
sider a stricter variant of the ants (“strict ants”) that only include merges in Ω if they
are both VRP- and BB-feasible. As explained above, the original ants, which we call
“liberal”, included BB-infeasible merges in Ω in some circumstances. Fourth, when
computing the attractiveness (Eq. 1), the original algorithm sums the pheromone and
heuristic values, which is fast to compute but if the ranges of the two values are very
different then one will completely dominate the other. Here, we propose to use the prod-
uct attractiveness(h) = ταij · ηβij , which is potentially slower, but it is more robust if τα

and ηβ have different ranges. These two alternatives are controlled by parameter op. A
summary of all the algorithmic parameters and their domains is given in Table 1.

4 Experimental Setup

We analyze the components of ACO-HCG in a novel way. First, we find a high-performing
parameter configuration by means of irace, an automatic algorithm configuration tool.
Second, we examine the effect of each parameter starting from this high-performing
configuration.

ACO-HCG was implemented in C++, compiled using gcc 4.4.6 and uses CPLEX
12.4 as the MILP solver. The black box for the MPVRP was provided by Tricoire et
al. [18]. We use their exact approach with a time limit of 5 seconds. The black box used
for the 3L-CVRP is a reimplementation of the loading approach proposed by Bort-
feldt [3] using the same parameters. Experiments were run on a single core of an AMD

98 F. Massen et al.

Opteron 6272 CPU (2.1 GHz, 16 MB L2/L3 cache size) running under Cluster Rocks
Linux version 6/CentOS 6.3, 64bits.

As for the automatic algorithm configuration tool, we use irace [10], a publicly avail-
able implementation of Iterated F-Race [1]. Iterated F-Race starts by sampling a num-
ber of parameter configurations of a given algorithm uniformly at random. Then, at
each iteration, it selects a set of elite configurations using a racing procedure and the
non-parametric Friedman test. This racing procedure runs the algorithm configurations
iteratively on a sequence of (training) problem instances, and discards configurations as
soon as there is enough statistical evidence that they perform worse than the best one.
After the race, the elite configurations are used to bias a local sampling model. The next
iteration starts by sampling new configurations from this model, and racing is applied
to these configurations together with the previous elite configurations. This procedure
is repeated until a given budget of runs is exhausted. In this work, we tuned ACO-HCG
using a budget of 5 000 runs.

Ideally, an automatic configuration method should produce an algorithm configura-
tion that performs well on unseen instances of the same problem. In other words, the
method should generalize over the given set of instances, and not overtune the algorithm
to those specific instances. To prevent such overtuning, we use training instances for the
tuning process that are different from the test instances used for comparison and in the
analysis of parameters. The test instances are benchmark instances from the literature
and available online: see [20] for MPVRP, and [19] for 3L-CVRP.

The training instances were generated by perturbing the benchmark instances from
the literature. Only slight perturbations of some customer properties were allowed in
order to not destroy the underlying problem structure. Each customer property was
perturbed with a probability of 95%. A perturbation replaces the value of the property
by current value + r · maxprop, where r is a number selected uniformly at random in
the interval [−δ, δ] and maxprop is the maximal value for the considered property in
the original instance. Different values for δ were considered (δ ∈ {0.05, 0.1, 0.15} for
MPVRP, and δ ∈ {0.1, 0.15} for 3L-CVRP).

For the MPVRP instances only predefined types of items are available [4], and,
hence, the demand of a customer corresponds to the number of items demanded per
type. The following customer properties were considered for perturbation:x-coordinate
and demand of one randomly selected type of item. For the 3L-CVRP, the follow-
ing customer properties were considered: x-coordinate, demand, randomly selected di-
mension of randomly selected item, fragility of randomly selected item. Five different
combinations of these properties were considered.

With each generated instance is associated a time limit (on the route generation
phase). This time limit corresponds to the limit associated with the original instance
in [18] for the MPVRP (1800 seconds) and [7] (1800, 3600 and 7200 seconds based on
the instance size) for the 3L-CVRP.

5 Experimental Results

In this section, we first compare the parameter configuration obtained automatically
using irace with the manual configuration of ACO-HCG. Then, we analyze the param-
eters of ACO-HCG one by one, starting from the automatically obtained configuration.

Experimental Analysis of Pheromone-Based Heuristic Column Generation 99

As mentioned above, the automatic configuration uses a set of training instances, gen-
erated by us, and the comparison and analysis uses a different set of test instances
from the literature. The performance of the algorithm is measured by computing for
each instance the relative percentage deviation (%-deviation) with respect to the best-
known solution from the literature. We only consider best-known solutions obtained
with the same loading algorithms that we use here as black-box functions ([18,11] for
the MPVRP and [3,11] for the 3L-CVRP). We call these solutions best-bb in the re-
mainder of this paper. The %-deviation is computed as 100 · z−zbest

zbest
, where z is the

solution cost obtained by a run of the algorithm and zbest is the best-bb solution cost for
the same instance. We use the Wilcoxon signed-rank test with confidence level 95% to
assess the statistical significance of the results.

5.1 Manual vs. Automatic Parameter Configurations

We carry out the automatic configuration of ACO-HCG using irace, the parameter do-
mains given in Table 1, and the set of training instances. A run of irace stops after 5 000
runs of ACO-HCG. We run irace two times, once for the MPVRP training instances and
another time for the 3L-CVRP training instances. Thus, we obtain two ”automatic” con-
figurations of ACO-HCG. Table 2 shows these automatic configurations and the two
”manual” configurations that were reported in the original paper [11]. However, two
parameters of the original algorithm are different in this manual configuration. First, in
the original paper a sum (op = {+}) was used for computing attractiveness. This has
been changed to a multiplication (op = {·}) in order to be coherent with the standard
attractiveness formulation used in the ACO literature [5]. Second, in the original algo-
rithm the parameter π was implicitly defined in terms of two other parameters and the
instance size, while here π is a single parameter, which simplifies the analysis. The set-
ting of π in the manual configuration is a close approximation to the value that would
be obtained given the default values of the two parameters replaced and typical instance
sizes. The manual configurations were based on preliminary experiments and standard
ACO parameters, and they were found to be competitive with existing approaches.

Some notable differences between the settings of the automatic configurations and
the manual ones are that the former have larger value of β, a larger number of ants (m),
a lower pheromone persistence (ρ), they solve RMPint in some iterations (ν), and the
ants are strict instead of liberal. The last two parameter settings are actually extensions
of the ACO-HCG that we propose in this paper, and selected by irace on its own. In
fact, we also propose ILS as an alternative post-optimization method (post-opt), but
irace did not select it. The parametric analysis in the next section indeed indicates that
ILS does not bring any improvement over TS in any of the two benchmark problems.

The automatic and manual configurations of ACO-HCG are compared in Fig. 1 in
terms of %-deviation from the best-bb cost on the test instances. Each point in the plot
shows the mean %-deviation over 20 independent runs (with different random seeds)
on the same test instance. The two configurations perform equally on the same in-
stance if the point is on the diagonal, the automatic configuration performs better if the
point is under the diagonal, and the manual configuration performs better if the point is
above the diagonal. Moreover, the symbols denote whether the differences observed are
statistically significant.

100 F. Massen et al.

Table 2. Parameter configurations of ACO-HCG

Problem Config. π m α β Δτ ρ τmin useint (ν) strict. post-opt op

MPVRP Manual 13 1 5 5 0.15 0.95 0.20 never liberal TS mult
Automatic 10 9 1 10 0.69 0.34 0.79 ν = 7 strict TS mult

3L-CVRP Manual 13 5 5 5 0.15 0.95 0.20 never liberal TS mult
Automatic 41 10 3 9 0.66 0.45 0.29 ν = 6 strict TS mult

For the MPVRP (Fig. 1(a)), the improvement of the automatic configuration over the
manual one is considerable. In particular, all the differences are statistically significant.
Moreover, for many instances, the automatic configuration obtains an average result
that is better than the best-bb solution. For the 3L-CVRP (Fig. 1(b)), the improvement
is smaller. Nonetheless, the automatic configuration is never worse than the manual
configuration and it is significantly better on a few instances. In Table 3 the manual and
automatic configuration are compared to the best known solutions in literature using
all kinds of loading algorithms (and thus possibly obtained using loading algorithms
different from the ones used as black box functions in this work). The automatic con-
figuration is able to find new best solutions for 16 out of the 21 MPVRP instances and
3 out of the 27 3L-CVRP instances. Complete tables with worst values and standard
deviation are provided as supplementary material [21]

5.2 Experimental Analysis of the ACO-HCG Parameters

In this section, we systematically examine several algorithm parameters. In contrast
to how such parametric analyses are carried out in the literature, we adopt a different
approach that exploits the benefits of automatic configuration tools. In particular, we do
not consider a fully-factorial experimental design, since the number of parameters and
the computation time required by each run make such an approach intractable. Instead,
we start from the high-performing parameter configuration automatically obtained in the
previous section, and examine parameter settings that disable or replace one algorithmic
component at a time.

Pheromone Information (α). By setting α = 0, we disable the influence of the
pheromone information. The result is a noticeable deterioration in quality in most MP-
VRP instances (Fig 2(a)) and some 3L-CVRP instances (Fig 2(e)). This suggests that
the pheromone information plays a positive role in the performance of the algorithm,
probably helping to diversify the routes produced by the ants.

Savings Heuristic (β). By setting β = 0, we disable the use of the savings heuristic
η in the attractiveness equation. The savings heuristic guides the ants to build cost-
efficient routes, and, hence, disabling it leads to a substantial quality deterioration in
both problems (MPVRP, Fig. 2(b), and 3L-CVRP, Fig. 2(f)). For small instances of the
3L-CVRP, however, the differences are typically minor. This is due to the high value
for parameter π. In fact, for small instances with only few customers, setting π, that is,
the number of feasible merges in Ω, to a high value, results in most possible merges

Experimental Analysis of Pheromone-Based Heuristic Column Generation 101

0 1 2 3

0
1

2
3

Manual, % deviation

A
u

to
m

a
ti
c
,

%
 d

e
v
ia

ti
o

n

(a) MPVRP

−2 0 2 4

−
2

0
2

4

Manual, % deviation

A
u

to
m

a
ti
c
,

%
 d

e
v
ia

ti
o

n

−0.5 0.5

−
0

.5
0

.5

(b) 3L-CVRP

Fig. 1. Comparison between manual and automatic configuration. Each point gives the mean %-
deviation from the best-bb solution over 20 runs with different random seed on the same test
instance. The symbols denote whether there is a statistically significant difference (✕) or not (�),
or all the runs obtained the same cost (�).

being included in Ω. These are then checked for feasibility and added to R∗. However,
for large instances, the setting of parameter π excludes many interesting merges that
would have a high heuristic value if β �= 0. In summary, the savings heuristic remains
essential for the generation of high-quality routes.

Learning Mechanism (ρ). By setting ρ = 0, the pheromones are reset at every itera-
tion, and only the amount deposited in the current iteration has an effect. Hence, this
setting disables the learning mechanism of ACO and forces the ants to focus on the
solution found in the current iteration. Given that the results do not show a clear ef-
fect of the learning mechanism (Fig. 2(d) and 2(h)), but that completely disabling the
pheromone information (α = 0, as discussed above) does deteriorate quality, we con-
clude that the pheromone information provides a diversification mechanism rather than
learning the best edges over time.

Strict vs. Liberal Ants. Whereas strict ants may only execute merges resulting in
VRP- and BB-feasible routes, liberal ants may also execute merges resulting in only
VRP-feasible routes. The rationale of liberal ants is that BB-infeasible routes might be
merged in order to produce BB-feasible routes. This, of course, depends on the black
box at hand. In the case of the MPVRP, such a situation cannot arise and, hence, strict
ants produce much better results (Fig. 2(c)). While for the 3L-CVRP two infeasible
routes can theoretically be concatenated to produce a feasible route, such a situation
does not seem to occur frequently in the benchmark instances available (Fig. 2(g)).
Thus, the choice of strict ants rather than liberal ants in the automatic configuration
seems to be justified.

102 F. Massen et al.

MP-VRP

−
0

.5
0

.0
0

.5
1

.0
1

.5

−0.50.00.51.01.5

α
=

0
,

%
 d

e
v
ia

ti
o

n

Automatic, % deviation

(a
)

0
2

0
4

0
6

0
8

0
1

0
0

020406080100

β
=

0
,

%
 d

e
v
ia

ti
o

n

Automatic, % deviation

(b
)

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0

−0.50.00.51.01.52.0

li
b

e
ra

l,
 %

 d
e
v
ia

ti
o

n

Automatic, % deviation

(c
)

−
0

.5
0

.0
0

.5

−0.50.00.5

ρ
=

0
,

%
 d

e
v
ia

ti
o

n

Automatic, % deviation

(d
)

3L-CVRP

−
2

−
1

0
1

2
3

4

−2−101234

α
=

0
,

%
 d

e
v
ia

ti
o

n

Automatic, % deviation

(e
)

0
1

0
2

0
3

0
4

0
5

0
6

0

0102030405060

β
=

0
,

%
 d

e
v
ia

ti
o

n

Automatic, % deviation

0
1

2
3

4
5

012345

(f
)

−
2

−
1

0
1

2
3

4

−2−101234

li
b

e
ra

l,
 %

 d
e
v
ia

ti
o

n

Automatic, % deviation

−
0
.4

0
.0

0
.4

−0.40.00.4

(g
)

−
2

−
1

0
1

2
3

4

−2−101234

ρ
=

0
,

%
 d

e
v
ia

ti
o

n

Automatic, % deviation

−
0
.3

0
.0

0
.3

−0.30.00.3

(h
)

F
ig

.2
.E

ac
h

pl
ot

sh
ow

s
th

e
ef

fe
ct

of
ch

an
gi

ng
on

e
pa

ra
m

et
er

of
th

e
“a

ut
om

at
ic

”
co

nfi
gu

ra
ti

on
.R

es
ul

ts
fo

r
th

e
M

P
-V

R
P

ar
e

in
th

e
up

pe
r

ro
w

;r
es

ul
ts

fo
r

3L
-C

V
R

P
in

th
e

lo
w

er
ro

w
.E

ac
h

po
in

t
gi

ve
s

th
e

m
ea

n
%

-d
ev

ia
ti

on
fr

om
th

e
be

st
-b

b
so

lu
ti

on
ov

er
20

ru
ns

w
it

h
di

ff
er

en
t

ra
nd

om
se

ed
on

th
e

sa
m

e
te

st
in

st
an

ce
.T

he
sy

m
bo

ls
de

no
te

w
he

th
er

th
er

e
is

st
at

is
ti

ca
ll

y
si

gn
ifi

ca
nt

di
ff

er
en

ce
(✕

)
or

no
t(
�

),
or

al
lt

he
ru

ns
ob

ta
in

ed
th

e
sa

m
e

co
st

(�
).

Experimental Analysis of Pheromone-Based Heuristic Column Generation 103

Ta
bl

e
3.

C
om

pa
ri

so
n

of
”m

an
ua

l”
an

d
”a

ut
om

at
ic

”
co

nfi
gu

ra
ti

on
w

it
h

be
st

-k
no

w
n

re
su

lt
s.
z m

in
/
a
v
g
=

be
st

an
d

av
er

ag
e

so
lu

ti
on

va
lu

e,
se
c t

t
=

to
ta

l
ex

e-
cu

ti
on

ti
m

e
in

se
co

nd
s,
g
a
p
a
v
g
=

av
er

ag
e

re
la

tiv
e

pe
rc

en
ta

ge
de

vi
at

io
n

w
.r.

t.
be

st
pu

bl
is

he
d

so
lu

ti
on

.
A

ll
re

su
lt

s
ov

er
20

in
de

pe
nd

en
t

ru
ns

.
T

he
re

la
tiv

e
pe

rc
en

ta
ge

de
vi

at
io

n
fo

r
on

e
ru

n
is

co
m

pu
te

d
as

1
0
0
·z

−
z

be
st

z
be

st
w

he
re

z
is

th
e

so
lu

ti
on

va
lu

e
fo

r
th

e
gi

ve
n

ru
n

an
d
z b

e
s
t

th
e

be
st

pu
bl

is
he

d
so

lu
ti

on
va

lu
e.

Fo
r

th
e

au
to

m
at

ic
co

nfi
gu

ra
ti

on
re

su
lt

s
in

bo
ld

in
di

ca
te

a
ti

e
or

im
pr

ov
em

en
t

ov
er

th
e

be
st

pu
bl

is
he

d
so

lu
ti

on
va

lu
e,

re
su

lt
s

in
it

al
ic

in
di

ca
te

a
ti

e
or

im
pr

ov
em

en
to

ve
r

th
e

av
er

ag
e

so
lu

ti
on

va
lu

e
ob

ta
in

ed
us

in
g

th
e

m
an

ua
lc

on
fi

gu
ra

ti
on

.

(a
)

C
om

pa
ri

so
n

w
it

h
be

st
-k

no
w

n
so

lu
ti

on
s

fo
r

th
e

M
P

V
R

P

B
es

t
M

an
ua

lC
on

f.
A

ut
om

at
ic

C
on

f.

z b
e
s
t

z m
in

z a
v
g

se
c t

t
g a

v
g

z m
in

z a
v
g

se
c t

t
g a

v
g

C
M

T
01

-1
58

7.
29

59
0.

45
59

9.
38

18
20

2.
06

58
7.

29
59

0.
54

18
33

0.
55

C
M

T
01

-2
61

5.
12

61
7.

82
62

8.
99

18
07

2.
25

61
5.

11
61

5.
88

18
11

0.
12

C
M

T
01

-3
62

3.
45

62
3.

91
63

2.
06

18
07

1.
38

62
3.

44
62

4.
35

18
06

0.
14

C
M

T
02

-1
97

8.
66

97
6.

70
98

4.
47

18
11

0.
59

97
4.

47
97

5.
53

18
48

-0
.3

2
C

M
T

02
-2

89
7.

62
90

1.
91

91
1.

51
18

26
1.

55
89

7.
51

90
0.

63
18

25
0.

34
C

M
T

02
-3

88
8.

38
89

5.
49

90
3.

79
18

13
1.

73
88

9.
26

89
0.

39
18

14
0.

23
C

M
T

03
-1

11
88

.1
8

11
98

.0
9

12
18

.0
3

18
33

2.
51

11
80

.2
1

11
84

.9
3

18
19

-0
.2

7
C

M
T

03
-2

12
18

.9
6

12
29

.2
3

12
41

.7
1

18
33

1.
87

12
19

.1
3

12
21

.6
8

19
26

0.
22

C
M

T
03

-3
11

56
.8

4
11

70
.6

3
11

86
.8

2
18

36
2.

59
11

54
.1

1
11

59
.5

2
18

14
0.

23
C

M
T

04
-1

16
24

.9
8

16
31

.7
3

16
60

.1
0

18
81

2.
16

16
07

.6
3

16
15

.6
4

19
00

-0
.5

7
C

M
T

04
-2

15
52

.2
7

15
64

.8
0

15
78

.2
3

18
64

1.
67

15
43

.3
7

15
48

.5
4

19
40

-0
.2

4
C

M
T

04
-3

15
41

.8
1

15
63

.8
7

15
78

.3
0

18
62

2.
37

15
41

.3
5

15
45

.3
2

18
99

0.
23

C
M

T
05

-1
20

35
.7

7
20

52
.0

1
20

74
.4

9
19

50
1.

90
20

19
.8

0
20

27
.9

0
20

29
-0

.3
9

C
M

T
05

-2
18

33
.4

1
18

66
.5

0
18

92
.6

5
19

09
3.

23
18

32
.1

8
18

40
.5

5
20

22
0.

39
C

M
T

05
-3

19
48

.8
4

19
74

.2
5

19
96

.5
4

19
46

2.
45

19
46

.3
0

19
52

.2
3

19
07

0.
17

C
M

T
06

-1
22

40
.5

7
22

42
.6

5
22

92
.5

0
20

72
2.

32
22

38
.5

6
22

49
.9

7
21

11
0.

42
C

M
T

06
-2

20
70

.0
4

21
07

.4
5

21
42

.7
6

20
21

3.
51

20
89

.1
7

20
96

.9
3

20
00

1.
30

C
M

T
06

-3
21

54
.1

9
21

69
.2

9
21

89
.7

8
18

70
1.

65
21

53
.4

5
21

64
.1

1
18

47
0.

46
C

M
T

07
-1

11
36

.5
5

11
51

.8
5

11
60

.3
4

18
55

2.
09

11
40

.1
4

11
44

.2
5

18
35

0.
68

C
M

T
07

-2
12

17
.4

5
12

26
.1

7
12

32
.5

1
18

55
1.

24
12

14
.5

8
12

16
.2

3
18

54
-0

.1
0

C
M

T
07

-3
11

57
.6

7
11

71
.3

7
11

88
.0

0
18

94
2.

62
11

52
.1

6
11

61
.7

9
18

47
0.

36

A
V

G
2.

08
0.

19

(b
)

C
om

pa
ri

so
n

w
it

h
be

st
-k

no
w

n
so

lu
ti

on
s

fo
r

th
e

3L
-C

V
R

P

B
es

t
M

an
ua

lC
on

f.
A

ut
om

at
ic

C
on

f.

z b
e
s
t

z m
in

z a
v
g

se
c t

t
g a

v
g

z m
in

z a
v
g

se
c t

t
g a

v
g

3l
-c

vr
p0

1
29

1.
00

30
2.

02
30

2.
13

18
00

3.
82

30
2.

02
30

2.
02

18
00

3.
79

3l
-c

vr
p0

2
33

4.
96

33
4.

96
33

4.
96

18
00

0.
00

33
4.

96
33

4.
96

18
00

0.
00

3l
-c

vr
p0

3
39

2.
46

38
5.

53
39

2.
23

18
00

-0
.0

6
38

5.
53

39
1.

49
18

00
-0

.2
5

3l
-c

vr
p0

4
43

7.
19

43
7.

19
43

7.
19

18
00

0.
00

43
7.

19
43

7.
19

18
00

0.
00

3l
-c

vr
p0

5
44

3.
61

44
7.

73
44

7.
73

18
00

0.
93

44
7.

73
44

7.
73

18
00

0.
93

3l
-c

vr
p0

6
49

8.
16

49
8.

16
49

8.
27

18
00

0.
02

49
8.

16
49

8.
16

18
00

0.
00

3l
-c

vr
p0

7
76

8.
85

76
9.

68
76

9.
68

18
00

0.
11

76
9.

68
76

9.
68

18
00

0.
11

3l
-c

vr
p0

8
80

5.
35

84
5.

50
85

1.
01

18
00

5.
67

84
5.

50
84

8.
12

18
00

5.
31

3l
-c

vr
p0

9
63

0.
13

63
0.

13
63

0.
67

18
00

0.
09

63
0.

13
63

0.
13

18
00

0.
00

3l
-c

vr
p1

0
81

7.
38

82
6.

66
82

7.
52

36
01

1.
24

82
6.

66
82

6.
66

36
03

1.
14

3l
-c

vr
p1

1
77

8.
10

77
6.

19
77

8.
03

36
00

-0
.0

1
77

6.
19

77
7.

72
36

00
-0

.0
5

3l
-c

vr
p1

2
61

2.
25

61
2.

25
61

2.
88

36
00

0.
10

61
2.

25
61

2.
25

36
00

0.
00

3l
-c

vr
p1

3
26

45
.9

5
26

61
.6

2
26

70
.0

6
36

00
0.

91
26

61
.6

2
26

67
.3

2
36

01
0.

81
3l

-c
vr

p1
4

13
68

.4
2

13
92

.0
6

14
05

.5
6

36
02

2.
71

13
85

.0
0

14
02

.5
8

36
04

2.
50

3l
-c

vr
p1

5
13

41
.1

4
13

36
.2

1
13

43
.3

4
36

11
0.

16
13

36
.2

1
13

39
.4

6
36

18
-0

.1
3

3l
-c

vr
p1

6
69

8.
61

69
8.

61
69

8.
61

36
00

0.
00

69
8.

61
69

8.
61

36
00

0.
00

3l
-c

vr
p1

7
86

6.
40

86
6.

40
86

6.
84

36
00

0.
05

86
6.

40
86

6.
40

36
00

0.
00

3l
-c

vr
p1

8
12

07
.7

2
12

05
.1

1
12

22
.2

5
36

12
1.

20
12

05
.1

1
12

11
.4

6
36

14
0.

31
3l

-c
vr

p1
9

74
1.

74
74

1.
31

74
3.

59
72

03
0.

25
74

1.
31

74
1.

47
72

03
-0

.0
4

3l
-c

vr
p2

0
58

6.
92

58
1.

13
58

6.
12

72
36

-0
.1

4
57

7.
39

58
1.

19
72

15
-0

.9
8

3l
-c

vr
p2

1
10

42
.7

2
10

80
.2

4
10

89
.9

3
72

72
4.

53
10

75
.1

6
10

80
.2

2
72

17
3.

60
3l

-c
vr

p2
2

11
47

.8
0

11
54

.1
2

11
61

.8
9

72
20

1.
23

11
48

.8
2

11
54

.1
8

72
11

0.
56

3l
-c

vr
p2

3
11

19
.0

5
11

04
.0

6
11

18
.1

4
72

29
-0

.0
8

11
01

.4
7

11
10

.6
0

72
13

-0
.7

6
3l

-c
vr

p2
4

10
96

.8
8

11
12

.4
9

11
17

.6
0

72
25

1.
89

11
07

.1
5

11
11

.8
9

72
25

1.
37

3l
-c

vr
p2

5
14

07
.3

6
13

89
.3

5
14

02
.0

2
73

46
-0

.3
8

13
73

.2
4

13
87

.2
7

72
40

-1
.4

3
3l

-c
vr

p2
6

14
30

.1
5

15
53

.0
4

15
68

.2
1

72
91

9.
65

15
44

.4
0

15
55

.9
2

72
16

8.
79

3l
-c

vr
p2

7
14

55
.2

7
14

93
.3

3
15

03
.8

0
73

16
3.

33
14

83
.5

9
14

89
.5

6
72

35
2.

36

A
V

G
1.

38
1.

03

104 F. Massen et al.

Sum vs. Multiplication in Attractiveness Equation. The results clearly worsen when
using a sum (op = +) in the attractiveness equation. Since the values of the savings
heuristic are much larger than the pheromone values, summing both neglects the effect
of the pheromones. In fact, the plots (available as supplementary material [21]) are
almost identical to those where the pheromone information is disabled (α = 0, Fig 2(a)
and 2(e)). Therefore, the use of multiplication is recommended.

We also analyzed other parameters of ACO-HCG, however, for the sake of con-
ciseness, we only briefly summarize our findings here, and provide the full plots as
supplementary material [21]. In particular, we analyzed the parameter useint, which
controls whether the solution used to update the pheromone information is obtained
by solving RMPint or RMPrelax. For the MPVRP, while never using the integer solution
does not have a significant effect on most instances, always using it slightly deterio-
rates the quality in some instances. For the 3L-CVRP, it does not matter whether we
use RMPrelax or RMPint to update the pheromones. When comparing ILS vs. TS as the
post-optimization method, we observe that, in the MPVRP, solution quality does dete-
riorate in some instances when using ILS instead of TS, and in the 3L-CVRP, a slight
deterioration can be observed on a couple of instances. Finally, if the number of ants is
set to one (m = 1), results improve slightly on a few instances and get slightly worse
in others. In the case of the 3L-CVRP, setting m = 1 slightly deteriorates quality in a
majority of the instances.

6 Conclusion

In this paper, we carried out a parametric analysis of ACO-HCG for the VRPBB in a
novel way. As a first step, we obtained a high-performing configuration of ACO-HCG
by means of automatic configuration for two variants of the VRPBB, namely, MPVRP
and 3L-CVRP. This automatic configuration significantly improves the results obtained
by the default configuration of ACO-HCG. The default configuration was developed
based on intuition and a few preliminary experiments, and it was found to be competi-
tive with the state of the art. However, due to the long computation times required and
the large number of parameters, further improving the parameter configuration by tra-
ditional methods was deemed intractable. Automatic configuration tools allowed us to
overcome this difficulty and test new algorithmic components. In fact, the new config-
uration is able to improve the best-known solutions on many instances.

As a second step, we systematically analyzed the parameters of ACO-HCG, starting
from the automatically-found configuration, and disabling or replacing one component
at a time to observe its effect on quality. In this way, we identified four components
that have a large effect on the results, namely, the pheromone information, the savings
heuristic, the strictness of the ants when considering feasible routes, and the equation
used for computing the attractiveness. Moreover, although the use of pheromone infor-
mation is necessary to complement the savings heuristic, we also determined that the
learning mechanism of ACO does not have a strong effect. These insights should lead
to future improvements in the algorithm.

The analysis methodology used here can easily be applied to other algorithms (using
other automatic configuration tools besides irace). We expect that the larger improve-
ments and best insights will be obtained when analyzing hybrid algorithms with many

Experimental Analysis of Pheromone-Based Heuristic Column Generation 105

parameters that require long runs. In that case, the default configuration is probably far
from optimal and previous studies may have missed insights that are only relevant for
high-performing parameter configurations.

Future work should consider new algorithmic components that may improve ACO-
HCG, other black-box functions found in the literature, and the effect of the parameters
on the computation time required by the algorithm. We will also perform a more elabo-
rate sensitivity analysis of the parameters, evaluating the influence of variations in their
values.

Acknowledgments. This work was supported by the META-X project, an Action de
Recherche Concertée funded by the Scientific Research Directorate of the French Com-
munity of Belgium. Manuel López-Ibáñez and Thomas Stützle acknowledge support
from the Belgian F.R.S.-FNRS, of which they are a postdoctoral researcher and a re-
search associate, respectively. The authors also acknowledge support from the FRFC
project “Méthodes de recherche hybrides pour la résolution de problèmes complexes”.
This research and its results have also received funding from the COMEX project within
the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office.
Florence Massen is supported by the National Research Fund, Luxembourg.

References

1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm:
Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J.,
Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771,
pp. 108–122. Springer, Heidelberg (2007)

2. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. SCI, vol. 197.
Springer, Heidelberg (2009)

3. Bortfeldt, A.: A hybrid algorithm for the capacitated vehicle routing problem with three-
dimensional loading constraints. Comp. & Op. Res. 39(9), 2248–2257 (2012)

4. Doerner, K.F., Fuellerer, G., Hartl, R.F., Gronalt, M., Iori, M.: Metaheuristics for the vehicle
routing problem with loading constraints. Networks 49(4), 294–307 (2007)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
6. Fuellerer, G., Doerner, K.F., Hartl, R.F., Iori, M.: Metaheuristics for vehicle routing problems

with three-dimensional loading constraints. EJOR 201(3), 751–759 (2010)
7. Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a routing and

container loading problem. Trans. Sci. 40(3), 342–350 (2006)
8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm

configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)
9. Iori, M., Martello, S.: Routing problems with loading constraints. TOP 18, 4–27 (2010)

10. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated
race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Uni-
versité Libre de Bruxelles, Belgium (2011)

11. Massen, F., Deville, Y., Van Hentenryck, P.: Pheromone-based heuristic column generation
for vehicle routing problems with black box feasibility. In: Beldiceanu, N., Jussien, N., Pin-
son, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 260–274. Springer, Heidelberg (2012)

12. Prescott-Gagnon, E., Desaulniers, G., Drexl, M., Rousseau, L.M.: European driver rules in
vehicle routing with time windows. Trans. Sci. 44(4), 455–473 (2010)

106 F. Massen et al.

13. Reimann, M., Doerner, K., Hartl, R.F.: D-ants: Savings based ants divide and conquer the
vehicle routing problem. Comp. & Op. Res. 31(4), 563–591 (2004)

14. Ren, J., Tian, Y., Sawaragi, T.: A relaxation method for the three-dimensional loading ca-
pacitated vehicle routing problem. In: 2011 IEEE/SICE International Symposium on System
Integration (SII), pp. 750–755. IEEE (2011)

15. Ruan, Q., Zhang, Z., Miao, L., Shen, H.: A hybrid approach for the vehicle routing problem
with three-dimensional loading constraints. Comp. & Op. Res. (2011)

16. Tarantilis, C., Zachariadis, E., Kiranoudis, C.: A hybrid metaheuristic algorithm for the inte-
grated vehicle routing and three-dimensional container-loading problem. IEEE Transactions
on Intelligent Transportation Systems 10(2), 255–271 (2009)

17. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications (2002)

18. Tricoire, F., Doerner, K.F., Hartl, R.F., Iori, M.: Heuristic and exact algorithms for the multi-
pile vehicle routing problem. OR Spectrum 33(4), 931–959 (2011)

19. Benchmark instances for the 3L-CVRP,
http://www.or.deis.unibo.it/research.html

20. Benchmark instances for the MPVRP,
http://prolog.univie.ac.at/research/VRPandBPP/

21. Supp. material,
http://becool.info.ucl.ac.be/resources/ACO-HCG-IRACE

22. Zhu, W., Qin, H., Lim, A., Wang, L.: A two-stage tabu search algorithm with enhanced
packing heuristics for the 3L-CVRP and M3L-CVRP. Comp. & Op. Res. 39(9), 2178–2195
(2012)

http://www.or.deis.unibo.it/research.html
http://prolog.univie.ac.at/research/VRPandBPP/
http://becool.info.ucl.ac.be/resources/ACO-HCG-IRACE

A New Hybrid Metaheuristic – Combining

Stochastic Tunneling and Energy Landscape
Paving

Kay Hamacher

Dept. of Computer Science, Dept. of Physics & Dept. of Biology,
Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany

Abstract. (Hybrid) metaheuristics such as simulated annealing, genetic
algorithms, or extremal optimization play a most prominent role in global
optimization. The performance of these algorithms and their respective
sampling behavior during the search process are themselves interesting
problems. Here, we show that a combination of two approaches – namely
Energy Landscape Paving (ELP) and Stochastic Tunneling (STUN) –
can overcome known problems of other Metropolis-sampling-based pro-
cedures. We show on grounds of non-equilibrium statistical mechanics
and empirical evidence on the synergistic advantages of this combined
approach and discuss simulations for a complex optimization problem.

1 Introduction

Global Optimization (GO) is an active area of research – both from a conceptual
point of view and under experimental analysis. Applications range from the
protein structure prediction problem (see e.g. [19,28] and references therein),
over machine learning [29], vehicle routing [8], assembly line assignments [6], to
quantitative finance [20].

A GO procedure constitutes a search process in configurational and “function
value” space. The search dynamics in these spaces has become an interesting
area of experimental research in itself [21,9,27,14,23].

In particular, with the event of simulated annealing [17] Monte-Carlo/
Metropolis [22] based metaheuristics became more and more popular due their
astonishing success. The tuning of internal parameters such as the cooling sched-
ule is the pitfall for unexperienced users, although a better understanding was
achieved over decades of application, see e.g. [24,3]. In the realm of simulated
annealing research it has become custom to investigate minimization as the
optimization goal. We will stick to this notion and regard optimization as a
minimization task1.

1.1 Previous Work

Previous Work – Combining Metaheuristics. The general idea to combine
successful approaches – either two metaheuristics or a metaheuristic with an

1 Maximization is a trivial transformation to render it a minimization problem.

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 107–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

108 K. Hamacher

analytical method – was developed quite some time ago. E.g., incorporating
tabu search into other approaches was proposed [1,10], multi-level procedures
were suggested [32], and Metropolis sampling on an effective function, which
is locally optimized via, e.g., conjugate gradient methods [26], was successfully
applied [25,31].

Two metaheuristics which we will use are described in the following section.

Previous Work – Stochastic Tunneling & Energy Landscape Paving.
Energy landscape paving (ELP) was suggested to overcome the major problem of
simulated annealing approaches: freezing of the search dynamics in suboptimal
local minima [15]. To this end, the original objective function f(x) is replaced
by the following altered version

fELP(x) := f(x) +
κ∫

H(q′)dq′
·H(q) (1)

where H(q) is a histogram of a quantity q that characterizes potential solutions.
H(q) “counts” the number of times solutions x are visited that are characterized
by the same value of q. We assume that this quantity can be computed by a
function q(t) for all t of the domain of definition of f . To normalize the impact
of the histogram, we divide by the sum of entries of H .

The parameter κ is a scaling parameter and quantifies the importance of the
adaptation procedure via H(q). The function fELP(x) is then sampled with a
Metropolis-criterion based metaheuristic.

In typical applications, q is often chosen to be (a) easy to compute and (b) a
scalar. In particular, property (b) is important to avoid the “curse of dimension-
ality” [7] often encountered in applied computing. Typical examples in regard
to property (a) are, e.g., the number of river crossings in traveling salesperson
problems or the number of secondary structure motifs in protein structures.

However, q := f is a valid choice, too. This particular q is easily implemented,
and is not domain-specific. Due to these reasons, we have used the objective
function value itself as a characteristic q in our new methodology (see Sec. 2).

In Algorithm 1 we show in pseudo-code the ELP metaheuristic.
The rationale of ELP is as follows: whenever a “region” characterized by the

same value of q was visited frequently during the run, the effective function
fELP will show larger values. This effectively makes it easier for the Metropolis
process to leave this region. Thus, a “trapping” can not occur, as – after sufficient
number of re-visits – the function fELP will become larger and larger until the
search process is driven from this region to another one.

Another approach to deal with trapping phenomena in search dynamics was
developed via a non-linear transformation of the objective function: here, the
objective function is mapped to an effective one that “damps” those function
values which have already been visited in the past. The rationale here is, that

A New Hybrid Metaheuristic 109

Algorithm 1. Energy landscape paving (ELP) which runs for G iterations.
Here, rand() is a random number U(0, 1) and N (xg−1) is a vector from the
neighborhood of xg−1. The histogram H(q) keeps track of visited solutions that
are characterized by a quantity q.

Require: randomly chosen start solution x0, an empty histogram H(q)
f0 := f(x0)
fbest := f0
q0 := q(x0)
update H(q0)← H(q0) + 1
for 1 ≤ g ≤ G do

t := draw from N (xg−1)
if exp (−β · (fELP(t)− fELP,g−1)) < rand() then

 Metropolis criterion for fELP of Eq. 1
xg := t
fg = f(t)
qg := q(t)
if fg < fbest then

fbest := fg and xbest := t

else
xg := xg−1 and fg = fg−1 and qg := qg−1

update H(qg)← H(qg) + 1

function values larger than the current best guess fbest of the (global) minimum
are of no interest.

Therefore, the search process during Metropolis sampling can traverse regions
with larger function values than fbest faster to avoid trapping in unimportant –
potentially not seen – minima.

To this end, the objective function f(x) is transformed to

fSTUN (x) := 1− e−γ·(f(x)−fbest) (2)

and sampled via a Metropolis process again. The resulting algorithm is shown
in Algorithm 2. Obviously, there is a subtle connection to the well-know tabu
search approach [11,12].

Note, that we do not need to evaluate f on its whole domain of definition.
Rather, STUN just requires to evaluate an exponential of a specific funtion value.
Therefore, no curse of dimensionality occurs in the computation of fSTUN.

1.2 Our Contribution: Synergistically Combining STUN and ELP

Here, we will propose a different combination of metaheuristics: we will combine
two approaches to avoid “trapping” phenomena which were identified to be of
devastating importance for the suboptimal performance of simulated annealing
in real-world applications [16].

These two approaches – Stochastic Tunneling (STUN) and Energy Landscape
Paving (ELP) – are described above. In Sec. 2 we will motivate our newly devel-
oped procedure and discuss its potential merits. Sec. 4 shows empirical results

110 K. Hamacher

Algorithm 2. Stochastic Tunneling (STUN) which runs for G iterations.
Here, rand() is a random number U(0, 1) and N (xg−1) is a vector from the
neighborhood of xg−1.

Require: randomly chosen start solution x0

f0 := f(x0)
fbest := f0
f̃0 := 1− exp (−γ · (f(x0)− fbest))
for 1 ≤ g ≤ G do

t := draw from N (xg−1)
f̃(t) := 1− exp (−γ · (f(t)− fbest))

if exp
(
−β ·

(
f̃(t)− f̃g−1

))
< rand() then Metropolis criterion for f̃

xg := t
fg = f(t)
f̃g = f̃(t)
if fg < fbest then

fbest := fg and xbest := t

else
xg := xg−1 and fg = fg−1 and f̃g = f̃g−1

on the average performance for a test problem introduced in Sec. 3. The paper
ends with a discussion and some conclusions.

2 A Combined Algorithm

Trapping of stochastic search procedures severely hinders any of these random-
ized algorithms to progress towards better solutions [16]. We propose to combine
the ideas of ELP and STUN to avoid trapping to allow synergistic behavior of
these approaches. At the same time, the ELP approach puts a penalty – via
H(q) in Eq. 1 – on revisiting regions previously frequently looked into. This
might help to cope with a problem of STUN: its progress will saturate after the
non-linear transformation of Eq. 2 has deleted too much structure of the search
space by “flattening” the effective objective function fSTUN too much [13].

Therefore, we will work on the following effective objective function and sam-
ple it with Metropolis-like dynamics:

fTAAO(x) := 1− e−γ·(f(x)−fbest) + κ ·H(q) (3)

That is, we transform with increasingly better fbest the local minima and saddle-
points away, while pushing the search process from too frequently visited regions
away (via H(q)).

In the following, we will refer to this procedure as Tunneling-And-Avoidance-
Optimization (TAAO). We lay out the approach in Algorithm 3.

A New Hybrid Metaheuristic 111

Algorithm 3. Tunneling-And-Avoidance-Optimization (TAAO) which runs for
G iterations. Again, rand() is a random number U(0, 1) and N (xg−1) is – again
– a vector from the neighborhood of xg−1.

Require: randomly chosen start solution x0

f0 := f(x0)
fbest := f0
q0 := q(x0)
f̃0 := 1− exp (−γ · (f(xg)− fbest))
update H(q0)← H(q0) + 1
for 1 ≤ g ≤ G do

t := draw from N (xg−1)
f̃(t) := 1− exp (−γ · (f(t)− fbest)) +

κ∫
H(q′)dq′ ·H(q(t))

if exp
(
−β ·

(
f̃(t)− f̃g−1

))
< rand() then Metropolis criterion for f̃

xg := t
fg = f(t)
f̃g = f̃(t)
qg := q(t)
if fg < fbest then

fbest := fg and xbest := t

else
xg := xg−1 and fg = fg−1 and f̃g = f̃g−1 and qg := qg−1

update H(qg)← H(qg) + 1

3 A Test Instance

In this study, we employ a combinatorial optimization problem to investigate
experimentally the performance of the proposed hybrid algorithm of Sec. 2.

We want to determine the lowest energy of Ising spin-glasses [4] with Gaus-
sian distributed interaction couplings. This problem is well suited as efficient
benchmarks and known solutions are available [30]. The optimization problem
reads

min E(s) =
∑
<i,j>

Jijsisj

∨
i∈{1...N}

si ∈
[
−1

2
;
1

2

]
. (4)

The summation < i, j > in Eq. 4 is restricted to nearest neighbors. Here, we
will restrict ourselves to N spins on a 2D regular lattice of side length

√
N .

All interaction parameters Jij are drawn from a normal distribution. The Ising
ground state problem of Eq. 4 can considered a binary non-linear programming
problem. The optimal solution is contained in the vector s∗ := (s∗1, s∗2, . . . , s∗N).

In the subsequent parts of this study we will always report values obtained
for an ensemble of 50 independently created Ising spin systems; that is, we have
50 times drawn N values Jij , optimized each systems 10 times independently,

112 K. Hamacher

and taken the algebraic mean over these 50 · 10 = 500 runs as an indicator for
the average performance.

4 Results

Here, we present empirical results on (1) the average performance in terms of
relative error, (2) the search dynamics itself, and (3) a first sensitivity analysis
towards a modified mechanism in TAAO. For the latter, we will use a variant
of Algorithm 3: we reset the histogram H(q) whenever we encounter a new
best optimum xbest; thus we use the ELP-behavior only between successive
improvements of our best guess of fbest := xbest – this variant will be called
“TAAO & Reset” in the following.

4.1 Performance Benchmarking – Quality of Solutions

As laid out above, we performed 500 independent runs on a sufficiently large
combinatorial optimization problem. To demonstrate the superior performance
we show in Fig. 1 the relative error in the obtained best function values2.

Clearly, we see superior performance for the obtained minima in the case of
STUN and TAAO. Both are superior than ELP alone. STUN shows the previously
criticized saturation phenomena [13] from 2 · 107 iterations on. If we look closer
into the performance of both STUN and TAAO in Fig. 1b, we observe two effects:
(a) TAAO is obtaining better minima (some factor of two in relative error) and
(b) the saturation sets in at higher iteration numbers (some 8 · 107 iterations).

With these results we have demonstrated that the approach of Algorithm 3
prevents the search dynamics to saturate in terms of relative error. But
the results are event more promising beyond this point: it is known [18] that
the number of states in Ising spin classes is for small energies an exponential in
the energy gap, that is in the value E − E∗ of Eq. 4 where E∗ is the (known)
absolute minimal energy of a particular incarnation of a Ising spin system.

Therefore, the number of states at ε := E − E∗ is close to exp(a · ε). From
the results of Fig. 1b we can conclude that the number of configurations that
the TAAO-result is away from the true ground state is exponentially smaller
than the number of states STUN would have to traverse additionally to reach
TAAO’s performance.

4.2 Statistical Properties of Search Dynamics

Previously, the dynamics of randomized algorithms for optimization were al-
ready subject to analysis [21,9,27,13]. In Fig. 2 we compare the auto-correlation
functions of function values visited by all optimization schemes, where the auto-
correlation function reads

2 Exact solutions were obtained from [30].

A New Hybrid Metaheuristic 113

10
4

10
5

10
6

10
7

10
8

n
iter

 1%

 2%

5%

10%

20%

50%

100%

ε
rel

Generic STUN
TAAO
TAAO & Reset
Energy Landscape Paving

(a) The averaged relative error εrel for the methods under investigation. Error
bars were smaller than symbol sizes and therefore omitted. The results for
Energy Landscape Paving were taken from [14] and the data for the Generic
STUN algorithm from [13].

10
7

10
8

n
iter

 1%

 2%

5%

ε
rel

Generic STUN
TAAO
TAAO & Reset
Energy Landscape Paving

(b) Zoomed version of Fig. 1a

Fig. 1

114 K. Hamacher

σ2 := 〈(f − 〈f〉)2〉T with (5)

〈f(f)〉T :=
1

T

T∑
t=1

f(ft) and thus (6)

σ2 = 〈f2〉T − 〈f〉2T . (7)

This quantity measures the correlations of function values as a time-series: each
search procedure creates such a series during its progress and the more corre-
lated the values are, the more a search procedure exploits structure in search
space. If σ ≈ 0, then there exists hardly any correlation in the function val-
ues and the metaheuristic would randomly choose different function values, thus
effectively perform blind guessing – hardly a promising approach. Now, Fig. 2
shows that TAAO shows always higher σ, thus exploits correlations better than
other approaches.

0.001 0.01 0.1
σ

TAAO

0.001

0.01

0.1

σ
Algo

TAAO vs. STUN
TAAO vs. TAAO & Reset
TAAO vs. Energy Landscape Paving

Higher Variance in Energies
for other Algorithms

Higher Variance
for TAAO

Fig. 2. Comparison of the fluctuations during the runs between the TAAO methodol-
ogy as laid out in the text and the various other procedures investigated. Note that no
point lies in the gray-shaded, upper triangle – therefore we find empirically σTAAO > σa

for all a ∈ [STUN;TAAO&Reset;Adaptation; ELP].

These results suggest that the subtle interplay of STUN transformation and
region avoidance via H(q) of ELP provides for a better exploitation of any struc-
ture in the search problem.

A New Hybrid Metaheuristic 115

4.3 Sensitivity Analysis to H(q) Choices

As mentioned above, we also wanted to partially elucidate the interplay of STUN
transformation and H(q). The effect of using ELP-like behavior between succes-
sive improvements in fbest only and reseting the histogram upon each improve-
ment (and thus a new effective objective function) is also shown in Figs. 1a and
1b with the label “TAAO & Reset”.

Clearly, this variant is significantly worse performing than STUN or TAAO in
its original formulation. From this differential diagnosis we can conclude that it
is not the ELP mechanism on a singular transformed function that improves the
performance. Rather, the ELP-like histogram supports only better performance
when it acts constantly and globally during the whole run. This is only compat-
ible to the insight that H(q) improves the overall performance if applied to the
whole chain of transformations of successive best values fbest. Therefore, H(q)
helps to avoid the previously criticized behavior of STUN to transform “too
much” and leading to a golf-course-like landscape. Rather, H(q) in the original
TAAO builds regions where no golf player is allowed anymore in the future.

5 Conclusions

In the spirit of previous work on hybrid metaheuristics [1,10,32], we have com-
bined two distinct randomized, Monte-Carlo inspired optimization schemes to
synergistically improve the search dynamics. We call this new scheme Tunneling-
And-Avoidance-Optimization (TAAO).

Based on empirical evidence from a very hard optimization problem – the
ground state of Ising spin glasses – we have shown that TAAO performs better
than its isolated ingredients (STUN and ELP) which are related to tabu search.
We were also able to show that previously proposed mechanism to quantify
the search dynamics, namely the auto-correlation function of visited function
values, are applicable and also show the superior performance of TAAO. In
our application, the exponentially distributed local minima values lead to the
conclusion that TAAO has an exponential better performance than STUN alone.

Upon further investigation, we were able to show that the region-tabu property
of the ELP mechanism alleviates STUN’s saturation phenomena after long runs.

Our test instance for a combinatorial optimization problem — the Ising spin
glass of Eq. 4 — shows exponential slowing down for any randomized search dy-
namics and for Metropolis-based optimization procedure in particular [4]. Fur-
thermore, Ising spin glass optimizations were shown to belong to the class of
NP hard problems [2]. These properties make it good candidate to assess the
performance of a newly proposed metaheuristics.

Note, however, that an optimization procedure is never applicable to all op-
timization problems: the strictly proven “no-free-lunch” theorem by Wolpert
and Macready [33] states that all optimization procedures will — averaged over
all optimization problems — show the exact same performance. Therefore, an
improved performance of any metaheuristics can only be shown for a single opti-
mization problem. In this sense, the superior performance of TAAO in the Ising

116 K. Hamacher

spin glass instance implies inferior performance for other problems — as is the
case for all optimization schemes.

Acknowledgments. The author gratefully acknowledge the financial support
from the Deutsche Forschungsgemeinschaft (DFG) Graduiertenkolleg 1657 (Pro-
jekt 3C) at the Technische Universität Darmstadt.

References

1. Arito, F., Leguizamón, G.: Incorporating tabu search principles into aco algorithms.
In: Blesa, et al. (eds.) [5], pp. 130–140

2. Barahona, F.: On the computational complexity of ising spin glass mod-
els. Journal of Physics A: Mathematical and General 15(10), 3241 (1982),
http://stacks.iop.org/0305-4470/15/i=10/a=028

3. Bentner, J., Bauer, G., Obermair, G.M., Morgenstern, I., Schneider, J.: Optimiza-
tion of the time-dependent traveling salesman problem with monte carlo methods.
Phys. Rev. E 64, 036701 (2001)

4. Binder, K., Young, A.: Spin glasses: Experimental facts, theoretical concepts, and
open questions. Rev. Mod. Phys. 58(4), 801–976 (1986)

5. Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.):
HM 2009. LNCS, vol. 5818. Springer, Heidelberg (2009)

6. Chaves, A.A., Lorena, L.A.N., Miralles, C.: Hybrid metaheuristic for the assembly
line worker assignment and balancing problem. In: Blesa, et al. (eds.) [5], pp. 1–14

7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

8. Doerner, K.F., Schmid, V.: Survey: Matheuristics for rich vehicle routing problems.
In: Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds.) HM 2010. LNCS,
vol. 6373, pp. 206–221. Springer, Heidelberg (2010)

9. Doye, J.P.K., Wales, D.J.: Thermodynamics of global optimization. Phys. Rev.
Lett. 80(7), 1357–1360 (1998)

10. Fernandes, S., Lourenço, H.R.: Optimised search heuristic combining valid inequal-
ities and tabu search. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gal-
lardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 87–101.
Springer, Heidelberg (2008)

11. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13, 533–549 (1986)

12. Glover, F., Laguna, M.: Tabu Search. Kluwer, Dordrecht (1997)
13. Hamacher, K.: Adaptation in stochastic tunneling global optimization of complex

potential energy landscapes. Europhys. Lett. 74(6), 944–950 (2006)
14. Hamacher, K.: Energy landscape paving as a perfect optimization approach under

detrended fluctuation analysis. Physica A 378(2), 307–314 (2007)
15. Hansmann, U., Wille, L.T.: Global Optimization by Energy Landscape Paving.

Phys. Rev. Lett. 88(23), 068105 (2002)
16. Ingber, L.: Simulated annealing: Practice versus theory. Mathematical and Com-

puter Modelling 18(11), 29–57 (1993),
http://www.sciencedirect.com/science/article/pii/089571779390204C

17. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

http://stacks.iop.org/0305-4470/15/i=10/a=028
http://www.sciencedirect.com/science/article/pii/089571779390204C

A New Hybrid Metaheuristic 117

18. Klotz, T., Schubert, S., Hoffmann, K.: The state space of short-range Ising spin
glasses: the density of states. The European Physical Journal B-Condensed Matter
and Complex Systems 2(3), 313–317 (1998)

19. Liwo, A., Lee, J., Ripoll, D.R., Pillardy, J., Scheraga, H.A.: Protein structure pre-
diction by global optimization of a potential energy function. PNAS 96(10), 5482–
5485 (1999)

20. Maringer, D., Parpas, P.: Global optimization of higher order moments in portfolio
selection. J. Glob. Opt. 43, 219–230 (2009)

21. Mertens, S.: Random Costs in Combinatorial Optimization. Phys. Rev. Lett. 84(6),
1347–1350 (2000)

22. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

23. Middleton, A.A.: Improved extremal optimization for the ising spin glass. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics) 69(5), 055701 (2004),
http://link.aps.org/abstract/PRE/v69/e055701

24. Munakata, T., Nakamura, Y.: Temperature control for simulated annealing. Phys.
Rev. E 64(4), 046127 (2001)

25. Nayeem, A., Vila, J., Scheraga, H.A.: A comparative study of the simulated-
annealing and monte carlo-with- minimization approaches to the minimum-energy
structures of polypeptides: [met]-enkephalin. J. Comp. Chem. 12(5), 594–605
(1991)

26. Notay, Y.: Flexible conjugate gradients. SIAM Journal on Scientific Comput-
ing 22(4), 1444–1460 (2000)

27. Prügel-Bennett, A., Shapiro, J.L.: Analysis of genetic algorithms using statistical
mechanics. Phys. Rev. Lett. 72(9), 1305–1309 (1994)

28. Schug, A., Wenzel, W., Hansmann, U.: Energy landscape paving simulations of the
trp-cage protein. J. Chem. Phys. 122, 194711 (2005)

29. Sexton, R.S., Dorsey, R.E., Johnson, J.D.: Toward global optimization of neural
networks: A comparison of the genetic algorithm and backpropagation. Decision
Support Systems 22(2), 171–185 (1998)

30. Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G.: Exact ground states of
ising spin glasses: New experimental results with a branch-and-cut algorithm. J.
Stat. Phys. 80, 487 (1995)

31. Wales, D.J., Scheraga, H.A.: Global Optimization of Clusters, Crystals, and
Biomolecules. Science 285(5432), 1368–1372 (1999)

32. Walshaw, C.: Multilevel refinement for combinatorial optimisation: Boosting meta-
heuristic performance. In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.)
Hybrid Metaheuristics. SCI, vol. 114, pp. 261–289. Springer, Heidelberg (2008)

33. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1), 67–82 (1997),
citeseer.ist.psu.edu/wolpert96no.html

http://link.aps.org/abstract/PRE/v69/e055701
citeseer.ist.psu.edu/wolpert96no.html

Workgroups Diversity Maximization:

A Metaheuristic Approach

Marco Caserta1 and Stefan Voß2

1 IE Business School, Maria de Molina 12, 28006, Madrid, Spain
mcaserta@faculty.ie.edu

2 University of Hamburg, Von-Melle-Park 5, 20146, Hamburg, Germany
stefan.voss@uni-hamburg.de

Abstract. Workgroup assignment problems commonly appear in var-
ious settings including international business schools. Especially if di-
verse people, like students, need to be divided into workgroups one
may seek environments where diversity is fostered by generating het-
erogeneous workgroups. We study a problem of workgroups diversity
maximization, i.e., the problem of building workgroups with the goal of
maximizing intra-group diversity, while minimizing inter-group hetero-
geneity. For solving this problem with different objectives we propose a
hybrid metaheuristic approach which combines local search techniques
with a population based metaheuristic, including the cross entropy
method as well as path relinking as ingredients. Numerical results are
presented on some real-world instances.

1 Introduction

In this paper, we study the problem of creating workgroups with the aim of
maximizing intra-group diversity, while minimizing inter-group heterogeneity.
Let us consider an organization whose workforce is composed of a large body
of workers with a diverse set of skills. Each worker is classified along a set of
dimensions, e.g., age, gender, native tongue, educational background, past ex-
perience, etc. The goal of the problem is to create teams maximizing diversity
within each group, while making the set of teams as homogeneous as possible. In
this context, the word “diversity” refers to differences in a range of qualities and
characteristics among individuals. On the other hand, a set of groups is homo-
geneous if the overall set of characteristics of the members of each workgroup is
similar, thus distributing people with similar characteristics as much as possible
over the workgroups.

This study is motivated by the workgroup assignment problem commonly
addressed in international business schools. Typically, business schools are at-
tended by an extremely diverse body of students. Such students are divided in
class sections and, within each section, in workgroups. To expose students to a
richer experience, business schools attempt to create an environment in which
diversity is fostered by generating sections and workgroups with heterogeneity
in mind.

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 118–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Workgroups Diversity Maximization 119

Although the main application of the problem presented in this paper is the
workgroup assignment problem faced by business schools, a number of authors
have pointed out that similar problems are encountered in other realms of ap-
plication, e.g., when assigning employees to project teams, work packets (tours,
routes, etc.) to workers, when scheduling final exams at universities, or in the
VLSI design.

The workgroup assignment problem has been object of study for over two
decades. Previous works on this problem in more or less different settings can
be found, e.g., in [2,11,7,8,12,1,5,6]. To clarify those different settings, let us
consider two among those papers. First, the seminal paper [11] which presents a
decision support system designed to address the students assignment problem.
The authors thoroughly examined the problem in the format arising at one of
the major European business schools and they proposed a constructive heuristic
approach for the assignment of students to class sections and, within each sec-
tion, to workgroups. The guiding criterion was a measure of similarity, i.e., they
iteratively assigned students in such a way that similar students were placed
in different sections and workgroups. Secondly, [12] provided a comparison of
five different heuristic rules for the creation of maximally diverse groups. The
authors compared and contrasted one constructive method arising from the stu-
dents workgroup assignment problem and four switching methods drawn from
the final exam scheduling problem. All methods were driven by the same objec-
tive function, i.e., a measure of overall diversity of the resulting partitioning. In
order to have a measure of the goodness of the final results, they also proposed
an integer bound.

In this paper, we present a hybrid metaheuristic approach for the workgroup
diversity problem that combines local search techniques with a population based
metaheuristic. The major contributions of this paper are:

– We introduce a set of “hard” constraints that limit the way in which teams
are created by preventing individuals with certain attributes to belong to
the same team. In the context of the student assignment problem, it could
be the case that students that were together in the same teams in previous
semesters are not allowed to be assigned to the same team in subsequent
semesters. Such limitations actually change the problem itself, since it is
no longer possible to ensure that instances of such problem have at least a
feasible solution.

– We consider the “general” assignment problem, in which class sections do
not need to be of the same size due to, e.g., limitations in rooms availability.
In line with that, we develop a set of fitness functions that take into account
the relative size of each group.

2 A Mathematical Model for the Workgroup Diversity
Problem

The problem studied in this paper can be seen as belonging to the class of
assignment problems, in which a (larger) set of entities, e.g., students, is assigned

120 M. Caserta and S. Voß

to a (smaller) set of tasks, e.g., class sections. The objective function of the
assignment problem is defined in such a way that maximal diversity is achieved.
Such objective function can be expressed in a number of ways, measuring, e.g.,
the distance among students, the variance of the assignment, etc.

Due to the original motivation behind this work, in the following, we will use
the terms students to refer to the entities to be assigned, and, interchangeably,
teams or sections to identify the groups students are assigned to. Let us assume
we are given a pool of n students, each described by m attributes. Such students
must be assigned to a set of K teams. The basic information about each student
i = 1, . . . , n is collected via a matrix A = {aij}, where aij = 1 indicates that
student i has characteristic, or attribute, j, while aij = 0 indicates that student
i does not have attribute j. Without loss of generality, we assume that each
attribute is of binary nature, given that, whenever an ordinal attribute is given,
this can always be transformed in a set of mutually exclusive binary attributes.
For example, let us assume that we use a′iw ∈ {1, . . . , 10} to indicate the value of
a given nominal attribute w, where the attribute can only take values in the set
{1, . . . , 10}. It is always possible to express such nominal attribute as a collection
of ten binary attributes aij ∈ {0, 1}, with j = 1, . . . , 10, with the additional con-

straints that
∑10

j=1 aij = 1 for every student. Thus, in the following, we assume
that all nominal attributes have been transformed into a set of corresponding
binary attributes.

Given the set of attributes A = {1, . . . ,m}, we partition such set into A =
Ad ∪Af , where Ad is the set of desirable attributes, i.e., students with these at-
tributes should be dispersed over different teams or sections as much as possible,
while Af is the set of forbidden attributes, i.e., students with these attributes
cannot be assigned to the same team or section. In a similar fashion, the at-
tributes’ matrix A can also be partitioned into two submatrices Ad and Af , in
such a way that Ad is a matrix of size n × |Ad| that contains all the values of
the desirable attributes, while Af is a matrix of size n× |Af | containing all the
values of the forbidden attributes.

The following set of constraints can be used to model the workgroup assign-
ment problem:

K∑
k=1

xik = 1, i = 1, . . . , n (1)

n∑
i=1

xik ≥ Lk, k = 1, . . . ,K (2)

n∑
i=1

xik ≤ Uk, k = 1, . . . ,K (3)

n∑
i=1

aijxik ≤ 1, k = 1, . . . ,K, j ∈ Af (4)

xik ∈ {0, 1} , i = 1, . . . , n, k = 1, . . . ,K (5)

Workgroups Diversity Maximization 121

where xik is a binary decision variables, whose value equal to 1 indicates that
student i is assigned to team k. Constraints (1) account for the fact that each
student must be assigned to exactly one team; constraints (2)–(3) define the
minimum (Lk) and maximum (Uk) number of students assigned to each team,
while constraints (4) ensure that no two students with the same “forbidden”
attribute can be assigned to the same team. It is worth noting that, due to
constraints (4), we cannot even ensure that the problem has a feasible solution.

With respect to the objective function, we follow an approach that resembles
that of [1], in which a number of alternative objective functions were proposed
and tested. The peculiarity of our study is that, contrary to what is assumed
by previous works, we do not assume that the team sizes must be the same.
Therefore, we adjust the metric used to define the different objective functions
accordingly.

Z1: Proportional Entropy. This objective function is derived from information
theory concepts and resembles the one introduced in [7]. Let us define

pkj =

∑
i aijxik∑
i xik

the proportion, i.e., percentage, of students assigned to team k that enjoy at-
tribute j, for each team and attribute. The objective function is, thus:

maxZ1 =
K∑

k=1

m∑
j=1

−pkj ln pkj (6)

In Equation (6), we assume that the product p ln p is set to zero whenever the
corresponding p is equal to zero. The difference between the proposed Z1 measure
and the one presented, e.g., in [7], is that the proposed measure takes into account
the relative size of the team, with respect to the overall population. In other
words, to maximize function Z1, students will be distributed over teams taking
into account the size of each team.

Z2: Total Proportional Deviation. This measure is a variation of the Total Ab-
solute Deviation measure presented in [7]. Let us first define

pj =
1

K

K∑
k=1

∑
i aijxik∑
i xik

the average percentage of students with attribute j in each group. We thus define
the following objective function:

minZ2 =

K∑
k=1

m∑
j=1

∣∣∣∣
∑

i aijxik∑
i xik

− pj

∣∣∣∣ (7)

Equation (7) computes the total deviation in percentages with respect to each
team and attribute. Again, the main advantage of this measure is that it takes

122 M. Caserta and S. Voß

into account the size of each team and, therefore, provides a measure of the
percentage of students within each group enjoying a certain attribute. The goal
here is to minimize the deviation of each group percentage from the average per-
centage, in such a way that each group has approximately the same percentage
of students with a given attribute.

Z3: Total Absolute Deviation. This measure is the Total Absolute Deviation
measure presented in [7], except for the fact that we take into account the relative
size of each workgroup within the total population. We thus define the following
objective function:

minZ3 =

K∑
k=1

m∑
j=1

∣∣∣∣∣
∑
i

aijxik −
∑
i

aij

∑
l xlk

n

∣∣∣∣∣ (8)

Equation (8) provides a measure of deviation between the real (first term in
Equation (8)) and theoretically optimal (second term in Equation (8)) number
of students in a group with a given attribute. The theoretically optimal number
of students with a given attribute in a team is computed relative to the size of
the group itself. Thus, the larger the group, the larger the number of students
with an attribute in that team.

The major difference between Equation (7) and Equation (8) lies in the unit
measure: While Equation (8) is expressed in number of people, Equation (7) is
a relative measure and is expressed as percentage. The inherent advantage of
Equation (7) is that, if we divided Z2 by m ×K, we would get a standardized
value, i.e., Z2 would take values between 0 and 1.

Z4: Pairwise Distance. This measure is a modified version of the Z5 presented
in [7]. Here again we take into account the number of students in each team.
The following objective function is thus defined:

minZ4 =
m∑
j=1

K−1∑
k=1

K∑
l=k+1

∣∣∣∣
∑

i aijxik∑
i xik

−
∑

i aijxil∑
i xil

∣∣∣∣ (9)

Equation (9) accounts for the pairwise difference in the number of students with a
given attribute between any two groups. In the equation, the first term accounts
for the number of students with attribute j in team k (relative to the size of
that group), while the second term computes the number of students with that
same attribute j within group l (again weighted with respect to the size of that
group). By minimizing the total sum of pairwise differences, we are aiming at
minimizing the inter-groups difference.

3 A Pool-Based Metaheuristic Algorithm

In this section, we present the relevant features of the proposed algorithm. The
algorithm is composed of four different steps, presented in Figure 1.

Workgroups Diversity Maximization 123

In the initialization phase, we define the pool size |Ω| and the insertion cri-
terion ic. With respect to the proposed approach, we define |Ω| = 10 while the
insertion criterion ic is related to the fitness value, i.e., a solution is inserted into
the pool if its fitness value is better than the fitness value of the worst solution
currently in Ω.

The second step of the algorithm defines a population-based metaheuristic
with the aim of generating a variety of solutions. The best solutions found during
this phase are inserted into Ω. We use a cross entropy scheme to pupulate Ω;
details are provided below.

Once the poolΩ has been populated, wemake an attempt to improve the quality
of the solutions in the pool by means of a simple nested neighborhood search. We
iteratively select a solution from the pool and we perform all the 2-opt exchanges,
using the steepest ascentmethod. In other words, given the current solution, we try
out all the feasible 2-opt exchanges and we select the one that generates the max-
imum improvement in the fitness value. The 2-opt scheme stops when no further
improvement can be obtained with an exchange.

When the 2-opt scheme reaches a local optimum, we perform a 3-opt exchange
using the steepest ascent method. Once again, the 3-opt scheme stops when a
local optimum is reached.

Finally, the last step of the algorithm implements a path relinking approach,
in which a trajectory leading from an incumbent solution xl to a target solution
xt is defined. At each step, the distance between incumbent and target solutions
is reduced by executing a 2-opt swap over xl. Given the two solutions xl =

{
xl
ik

}
and xt = {xt

ik}, we define the distance between the two as a hamming distance:

H
(
xl,xt

)
=

n∑
i=1

K∑
k=1

|xl
ik − xt

ik| (10)

At each iteration of the path relinking, we select the 2-opt swap that, while
reducing the hamming distance (10) by at least one, maximizes the improvement
in the fitness value of the newly obtained solution.

Let us now present the details of the Cross Entropy (CE) scheme used in Step
2. (See [9] and [4] for a tutorial and a comprehensive overview of the CE. See
also [3] for an application and fine-tuning technique for CE.) The assignment
of a student to a team can be seen as a stochastic process governed by a set of
probabilities. Let us suppose we are given an n×K probability matrix P = {pik},
where each term pik ∈ [0, 1] represents the probability of assigning student i to
team k. Matrix P is a stochastic matrix, since the sum of the probabilities per
row is equal to one, i.e.,

∑
k pik = 1. Given such probability matrix P , one could

generate an assignment of students to teams.
In order to ensure the feasibility of the generated solution, the following rules

should be taken into account:

(R1) Each student i should be assigned to a single team, as imposed by Con-
straints (1). Therefore, whenever a student i is assigned to a team k, we set
pik = 1 and piw = 0, for all w �= k.

124 M. Caserta and S. Voß

S1 : Initialize Pool.
– Setup data structure to collect solutions into solution pool Ω.
– Define pool size |Ω| and insertion criterion ic.

S2 : Populate Pool.

– Apply the Cross Entropy scheme to populate the pool Ω.
– Define CE population size N , quantile ratio ρ, and smoothing factor

α using Response Surface Methodology.
– Run the CE algorithm while stopping criteria sc are not verified and

add solution to Ω if ic is satisfied.

S3 : Local Search.

– Apply a 2-opt and 3-opt schemes to improve the quality of the solu-
tions in Ω.

– For each solution in Ω, apply a 2-opt mechanism using steepest-
ascent, i.e., as long as the current solution can be improved with a
2-opt exchange.

– Once the current solution can no longer be improved with a 2-opt
exchange, apply a 3-opt exchange using steepest-ascent.

S4 : Path Relinking.

– Apply a Path Relinking scheme using all the solutions from the pool
Ω.

– Set as target solution the current best solution found so far, i.e., xt.
– For each solution xl ∈ Ω, transform xi into xt via 2-opt swaps.
– If a new best solution is visited, save the new best solution.

Fig. 1. A Pool-based Metaheuristic Algorithm

(R2) Each team k should have a minimum of Lk and a maximum of Uk students,
as indicated by Constraints (2) and (3). Therefore, as long as the minimum
number of students per team is not reached, we need to ensure that there
still exists a positive probability of assigning students to that team, i.e.,∑

i pik > 0. Conversely, once the maximum number of students per team has
been reached, we need to set the probability of assigning further students to
that team to zero, i.e.,

∑
i pik = 0.

(R3) As imposed by Constraints (4), students with the same attribute value for
attributes in the set of forbidden attributes Af should not be assigned to

Workgroups Diversity Maximization 125

the same team. We decided to treat this set of hard constraints as “soft”
constraints, by penalizing, in the fitness functions, assignments for which
Constraints (4) were not satisfied. In other words, Constraints (4) were re-
laxed in a Lagrangean fashion and appropriate values for the multipliers
were determined, to penalize violations of any of the Constraints (4).

To exploit the stochastic nature of the proposed approach, we generate a pop-
ulation of N assignments, e.g., x1, . . . ,xw, . . . ,xN , drawn under the probability
matrix P . Next, using the basic idea of the CE, we use the “Maximum Likeli-
hood Estimator” method to revise the probability matrix and to generate a new
matrix P 1 that better reflects the best individuals within the current population.
Thus, we adjust the current probability values pik to reflect how likely it is that
student i is assigned to team k in a high-quality solution. Once we obtain the
new probability matrix P 1, we draw a new population of size N . Hopefully, such
matrix better describes high quality solutions obtained in the previous gener-
ation and, therefore, the chance of obtaining high quality permutations based
upon the new matrix is higher.

This process of “probability matrix update” and “population generation” can
be iterated until a stopping criterion sc is reached, i.e., either the P matrix con-
verges to a binary matrix (therefore, the process converged to a unique solution
in the solution space) or a pre-specified maximum number of iterations, say 30
(see Section 4), has been reached.

The “Maximum Likelihood Estimator” method is used to modify the prob-
abilities pik in such a way that the new stochastic matrix better reflects the
chance of obtaining high quality solutions. Let us assume that, based upon the
current stochastic matrix P t, we have generated a population of size N , i.e.,
assignments x1, . . . ,xN . Let us now find, within the current population, the ob-
jective function value of the (1− ρ)% quantile, i.e., the value γ for which ρ% of
the population has a better objective function value and (1 − ρ)% has a worse
objective function value.

We modify the transition probability matrix using the following updating rule:

p̂ik =

N∑
w=1

I{xw:xw
ik=1} × I{f(xw)≥γ}

ρN
(11)

where f(xw) is the fitness value of assignment xw, and I{•} is the indicator
function, whose value is 1 if condition • is true, and 0 otherwise. Therefore, we
use the following two indicator functions:

I{xw:xw
ik=1} =

{
1 if student i is assigned to team k in assignment xw,

0 otherwise;

I{f(xw)≥γ} =

{
1 if f(xw) ≥ γ,

0 otherwise.

126 M. Caserta and S. Voß

Remark. As pointed out by [4], in order to prevent the CE from converging
too fast to a suboptimal solution, a smoothing factor α (typically 0.7 ≤ α ≤
0.9) could be used in the updating rule. Therefore, to foster a more thorough
exploration of the solution space, at each iteration t we use the following updating
rule:

pt+1
ik = αp̂ik + (1− α)ptik. (12)

4 Computational Results and Statistical Analysis

In this section, we summarize the results obtained by the proposed algorithm
on real-world instances obtained by IE Business School. We will present how
the algorithm performs when used on six large instances derived from the MBA
program at IE Business School, Madrid, Spain. Those instances are taken from
different semesters, and belong to the international MBA program as well as the
Spanish MBA program. The fact that instances belong to different programs al-
low to test how the algorithm performs when dealing with students with different
profiles. The size of each instance is characterized by two values: The number of
students n, and the number of teams to be formed m. The testbed is composed
of instances whose size spans from n = 316 and m = 10 (the largest instance)
to n = 57 and m = 9 (the smallest one).

The algorithm proposed in this paper was coded in C++ and compiled using
the GNU g++ 4.5.2 compiler on a dual core Pentium 1.8GHz Linux workstation
with 4Gb of RAM. Throughout the computational experiment we kept the pool
size |Ω| constant to ten, while the values of the CE parameters, i.e., N , ρ,
and α were determined using the Response Surface Methodology, as illustrated
in [3]. The maximum number of iterations of the CE was kept constant to 30
throughout the computational experiment phase.

Since each metric is expressed using a different unit measure, a comparison of
fitness values among the functions is not really meaningful. Therefore, we decided
to test the behaviour of each function with respect to the others. In other words,
we wanted to know to which extent the solution found using a given fitness
function was able to produce good values for the other fitness functions. If, for
example, fitness function Z1 produces solutions that are of good quality not only
when evaluated with respect to Z1 but also when evaluated using Z2, . . . , Z4, we
can claim that the fitness function Z1 is robust.

Therefore, to estimate the robustness of a fitness function, we solved each
instance of the problem with each function. Next, for each obtained solution,
we computed the fitness value using all the functions and we determined the
ranking of these solutions with respect to the same function. One might argue
about the use of the term robustness in our context as there are various other
options to define robustness (see, e.g., [10]). In different words we could also
investigate possible correlations between different functions.

As an example, let us consider the case of instance A1.3-2012. The table below
summarizes the results. In Table 1, each row corresponds to an execution of the

Workgroups Diversity Maximization 127

algorithm using the corresponding Zi function. For example, when Z1 was used
as objective function of problem (1)–(5), the algorithm found a solution, i.e.,
x1, whose objective function value, computed using Z1, was Z1(x

1) = 181.321.
However, when the same solution was evaluated using fitness function Z2, we
obtained Z2(x

1) = 89.5733. Similarly, we got Z3(x
1) = 537.44, and Z4(x

1) =
452.867.

We next ran the algorithm using fitness function Z2. Let us indicate the
best solution obtained by the algorithm with x2. The second row of the table
provides the values of Zi(x

2). The same approach was repeated using Z3 and Z4

as objective functions, as presented in Table 1.

Table 1. Objective function values of the different fitness functions on instance
A1.3-2012. Arrows indicate whether a function is to be maximized (Z1) or minimized
(Z2, Z3, Z4).

Fitness Function Functions Evaluation
Used ↑ Z1 ↓ Z2 ↓ Z3 ↓ Z4

Z1 181.321 89.5733 537.44 452.867
Z2 180.137 89.6233 537.74 453.867
Z3 179.794 89.5467 537.28 451.833
Z4 180.289 89.4300 636.58 452.233

Using Table 1, we can provide some information about the robustness (as
well as possible correlations) of a given fitness function. We now want to rank,
columnwise, solutions x1, . . . ,x4, assigning a score of 1 to the best solution and
4 to the worst one. For example, in column Z1, we observe that the best solution
is x1, followed by x4, x2, and x3. A similar process for each column of Table 1
leads to the creating of the ranking, as presented in Table 2.

Table 2. Ranking of the different fitness functions on instance A1.3-2012. Arrows
indicate whether a function is to be maximized (Z1) or minimized (Z2, Z3, Z4).

Fitness Function Functions Ranking
Avg

Used ↑ Z1 ↓ Z2 ↓ Z3 ↓ Z4

Z1 1 3 2 3 2.5
Z2 3 4 3 4 3.75
Z3 4 2 1 1 2.25
Z4 2 1 4 2 1.5

Let us now present the computational results obtained over six real-world
instances. Table 3 presents the results, in terms of ranking, over these instances.
In the table, column one provides the name of the instance, while columns two
and three specify the number of students and the number of teams. Columns

128 M. Caserta and S. Voß

four to seven provide the average rank value of each fitness function. The rank
value is computed as presented in Tables 1 and 2. Values presented in the table
are averaged over 10 runs per instance and fitness function. Therefore, a total of
6× 10× 4 = 240 runs and 240× 4 = 960 function evaluations have been carried
out to fill out Table 3.

Table 3. Computational results on real-world instances. Ranking is computed cross-
evaluating each solution using all the fitness functions. Each instance is solved ten
times using the same fitness function. The table contains a total of 240 runs and 960
evaluations.

Name n m Z1 Z2 Z3 Z4

A1.1-2012 60 9 1.97 2.92 2.31 2.79
F2012a 140 3 2.67 2.77 3.24 2.89
F2012b 80 2 2.75 2.77 3.24 2.95
sA4-2012 57 9 2.23 2.16 2.35 3.25
A1.3-2012 60 9 2.14 2.76 2.37 2.71
F2011 316 10 2.92 3.1 3.15 3.12

From Table 3 we evince that fitness function Z1 is the most robust, since it
produces higher ranking, i.e., higher quality solutions. Interestingly, the user of
the algorithm, when called to select different solutions obtained using different
fitness functions, expressed a clear preference for the solutions generated by
fitness function Z1. Thus, the empirical evidence obtained using the ranking
table and the preference of the user seem to be aligned.

As a final remark, it is worth noting that the best solution found by the
algorithm was found either in step 3 (73% of the time) or in step 4 (21% of the
time). The remaining 7% of the time, the cross entropy scheme, i.e., step 2 of
the algorithm, produced a solution that was not improved by steps 3 and 4.

5 Conclusions and Future Work

In this paper, we presented a model and an hybrid algorithm for the workgroup
diversity maximization problem. This problem aims at finding an assignment of
workers to groups that minimizes the inter-group heterogeneity while maximiz-
ing the intra-group diversity. The problem finds application in different realms,
spanning from the business schools assignment problem to the VLSI design.

The solution approach proposed in the paper is hybrid in nature, where local
search techniques are intertwined with a population-based method. The algo-
rithm has been tested on six real-world instances provided by a business school.
The size of the instances varies, along with the number of teams to be cre-
ated. The testbed has been used to determine the robustness of different fitness
functions in terms of solution quality (which also allows to investigate possible
correlations between the functions). The computational results collected from

Workgroups Diversity Maximization 129

the testbed are in line with the preferences expressed by the user. Both are in
accordance in identifying one fitness function as superior compared with the
others.

Future studies should be focused on a few interesting extensions: (i) generating
a valid bound to objectively determine the quality of a solution; and (ii) using
statistical analysis to rigorously assert whether the proposed fitness functions
present statistically significant differences (and, therefore, to create a robust
ranking of such criteria).

As our problem definition incorporates different ideas compared to how this
type of problem is modeled or operationalized regarding possible objectives and
constraints, it is difficult to directly compare the various problems and related
solution methods. In future research we would also be interested to compare the
proposed concepts once transfered between problem settings. Moreover, a valid
extension would be to combine the first fitness function with one of the other
functions using a bi-level programming approach.

References

1. Baker, K.R., Powell, S.G.: Methods for Assigning Students to Groups: A Study
of Alternative Objective Functions. Journal of the Operational Research Soci-
ety 53(4), 397–404 (2002)

2. Beheshtian-Ardekani, M., Mahmood, M.A.: Development and Validation of a Tool
for Assigning Students to Groups for Class Projects. Decision Sciences 17(1), 92–
113 (1986)

3. Caserta, M., Quiñonez, E.: A Cross Entropy-Lagrangean Hybrid Algorithm for
the Multi-item Capacitated Lot-sizing Problem with Setup Times. Computers &
Operations Research 36(2), 530–548 (2009)

4. De Boer, P., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A Tutorial on the Cross-
Entropy Method. Annals of Operations Research 134, 19–67 (2005)

5. Desrosiers, J., Mladenovic, N., Villeneuve, D.: Design of Balanced MBA Student
Teams. Journal of the Operational Research Society 56(1), 60–66 (2005)

6. Fan, Z.P., Chen, Y., Zeng, S.: A Hybrid Genetic Algorthmic Approach to the
Maximally Diverse Grouping Problem. Journal of the Operational Research Soci-
ety 62(7), 1423–1430 (2011)

7. Mingers, J., O’Brien, F.A.: Creating Students Groups with Similar Characteristics:
A Heuristic Approach. Omega 23(3), 313–321 (1995)

8. O’Brien, F.A., Mingers, J.: A Heuristic Algorithm for the Equitable Partitioning
Problem. Omega 25(2), 215–223 (1997)

9. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach
to Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning.
Springer, Berlin (2004)

10. Scholl, A.: Robuste Planung und Optimierung: Grundlagen - Konzepte und Meth-
oden - Experimentelle Untersuchungen. Physica, Heidelberg (2004)

11. Weitz, R.R., Jelassi, M.T.: Assigning Students to Groups: A Multi-Criteria Deci-
sion Support System Approach. Decision Sciences 23(3), 746–757 (1992)

12. Weitz, R.R., Lakshminarayanan, S.: An Empirical Comparison of Heuristic Meth-
ods for Creating Maximally Diverse Groups. Journal of the Operational Research
Society 49(6), 635–646 (1998)

Balancing Bicycle Sharing Systems:

Improving a VNS by Efficiently Determining
Optimal Loading Operations

Günther R. Raidl, Bin Hu, Marian Rainer-Harbach, and Petrina Papazek

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{raidl,hu,rainer-harbach,papazek}@ads.tuwien.ac.at

Abstract. Public bike sharing systems are important alternatives to
motorized individual traffic and are gaining popularity in larger cities
worldwide. In order to maintain user satisfaction, operators need to ac-
tively rebalance the systems so that there are enough bikes available for
rental as well as sufficient free slots for returning them at each station.
This is done by a vehicle fleet that moves bikes among the stations. In a
previous work we presented a variable neighborhood search metaheuris-
tic for finding effective vehicle routes and three different auxiliary proce-
dures to calculate loading operations for each candidate solution. For the
most flexible auxiliary procedure based on LP, the current work provides
a new, practically more efficient method for calculating proven optimal
loading operations based on two maximum flow computations. The dif-
ferent strategies for determining loading operations are further applied in
combination controlled by an additional neighborhood structure. Exper-
imental results indicate that this combined approach yields significantly
better results than the original variable neighborhood search.

1 Introduction

Public bicycle sharing systems are booming worldwide in many major cities as
they augment public transport very well [1,2]. Modern systems have automated
rental stations where users can easily rent bikes and return them elsewhere. In
order to achieve a high degree of acceptance, operators need to actively rebalance
the system in order to ensure that there are enough bikes as well as parking slots
for returning them at any station at almost all times. This balancing is typically
done by a vehicle fleet with trailers. So far, drivers mostly follow their experience
and intuition when planning the transportation routes. It was not until recently
that researchers have started to consider this transportation planning problem
from an optimization point of view.

The Balancing Bicycle Sharing System (BBSS) problem is related to the well-
studied vehicle routing problem (VRP). However, there are significant differences
such as allowing multiple visits at stations and that an arbitrary number of bikes
may be loaded or unloaded at each visit. We consider the static variant of the

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 130–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Balancing Bicycle Sharing Systems 131

BBSS problem in which user activities during the rebalancing process are ne-
glected. It can be regarded as a capacitated single commodity split pickup and
delivery VRP. So far, only few algorithms have been published for the BBSS
problem, and due to specific application characteristics, they address signifi-
cantly different variants.

Chemla et al. [2] consider the problem with only one vehicle and achieving
perfect balance as hard constraint. They describe a branch-and-cut algorithm
utilizing a relaxed mixed integer linear programming (MIP) model and a tabu
search for locally improving incumbent solutions. Benchimol et al. [3] also assume
balancing as hard constraint and focus on approximation algorithms for selected
special situations. Raviv et al. [4] propose four MIP models for different problem
variants and compare their assets and drawbacks on instances with up to 60
stations. Their objective function minimizes user dissatisfaction and ignores tour
lengths as well as the number of loading operations.

Contardo et al. [5] consider different MIP models for the dynamic scenario
where demands need to be satisfied over time. They propose a hybrid approach
using column generation and Benders decomposition that is able to handle in-
stances with up to 100 stations.

Schuijbroek et al. [6] describe the decomposition of the problem into separate
single-vehicle routing problems by solving a polynomial-size clustering problem.
They apply a clustered MIP heuristic in two versions, with and without ad-
ditional cuts. In addition, they present a constraint programming model that
represents the problem as a scheduling problem. Results on instances of up to
135 stations and five vehicles show that the approaches outperform a MIP model
operating on the full unclustered problem.

In [7], we propose a variable neighborhood search (VNS) metaheuristic for
finding effective vehicle routes that employs an auxiliary algorithm for calculat-
ing meaningful loading operations for each considered candidate set of routes.
Three alternatives have been studied for this auxiliary algorithm, with the most
precise but also slowest one being based on linear programming (LP). While
the first two methods are restricted to the so-called monotonic case, where sta-
tions may not be used as temporary buffers for the redistribution of bikes, the
LP-approach is more flexible.

The current work improves upon these methods by introducing a practically
significantly more efficient method for determining proven optimal loading oper-
ations for the general case based on two maximum flow computations. We also
investigate a unified approach where multiple strategies for determining loading
instructions are applied in combination. This is achieved by an additional neigh-
borhood structure that determines the best suited strategy. Computational tests
are performed on instances derived from real-world scenarios, indicating that the
unified approach performs significantly better. However, it is also shown that in
most cases the quality-loss of restricting the algorithm to monotonicity, i.e., not
allowing buffering, is only small.

132 G.R. Raidl et al.

2 Problem Definition

Formally the BBSS problem is defined on a complete directed graph G0 =
(V0, A0), where node set V0 = V ∪ {0} consists of nodes for the rental sta-
tions V plus the vehicles’ depot 0. Each arc (u, v) ∈ A0 has associated a travel
time tu,v > 0 that includes a surcharge for parking and loading/unloading bikes.
By G = (V,A), A ⊂ A0 we denote the subgraph induced by the stations V only.

Each station v ∈ V has associated a capacity of bikes Cv ≥ 0, i.e., the number
of available parking positions, the number of bikes it initially contains pv ≥ 0,
and a target number of bikes it should contain after rebalancing qv ≥ 0. A fleet
of vehicles L = {1, . . . , |L|} is available for transporting bikes. Each vehicle l ∈ L
has a capacity of bikes Zl > 0 and starts and ends its route at the depot 0.

When serving a station, we must not only consider the traveling time given by
the corresponding arc, but also the duration needed for parking the vehicle at the
station and for performing loading operations. We can simply add the parking
time and the time needed for an average number of loading operations to the
traveling time, and therefore do not need to handle them separately anymore. In
the following sections it is assumed that the traveling times have already been
preprocessed in this sense.

A solution consists of two parts. The first part is the route for each vehicle
l ∈ L specified by an ordered sequence of visited stations rl = (r1l , . . . , r

ρl

l) with
ril ∈ V , i = 1, . . . , ρl and ρl representing the number of stops. Stations may
be visited multiple times by the same or different vehicles. The total time tl of
a route may never exceed a given time limit t̂. As the start and end point of
each tour is the depot 0, it is not explicitly stored but assumed to be prepended
and appended, respectively. The second part are the loading instructions yil,v,∈
{−Zl, . . . , Zl} with l ∈ L, v ∈ V , and i = 1, . . . , ρl, specifying how many bikes
are picked up if yil,v > 0 or delivered if yil,v < 0, respectively, at vehicle l’s i-th
stop at station v.

The following conditions must hold: The number of bikes available at each
station v ∈ V never exceeds Cv, for any vehicle l ∈ L its capacity Zl may never
be exceeded, and the total time tl of a tour

tl = t0,r1l +

ρl∑
i=2

tri−1
l ,ril

+ trρll ,0 (1)

may not exceed the time limit t̂.
Let av be the final number of bikes at each station v ∈ V after rebalancing.

av = pv −
∑
l∈L

ρl∑
i=1

yil,v. (2)

The primary objective is to minimize the deviation from the target number of
bikes δv = |av − qv| at each station v ∈ V , i.e., its disbalance, and secondarily
we aim at minimizing the number of loading/unloading operations as well as the
overall time required for all routes, i.e.,

Balancing Bicycle Sharing Systems 133

min αbal
∑
v∈V

δv + αload
∑
l∈L

ρl∑
i=1

|yi
l,ri

l
|+ αwork

∑
l∈L

tl, (3)

where αbal � αload, αwork ≥ 0 are scaling factors controlling the relative im-
portance of the respective terms. Note that an improvement in the balance is
always considered as better than any improvements in the secondary objectives;
throughout this paper we use αbal = 1, αload = αwork = 1/100 000. Despite this
small weight, in case of equal balance the secondary objectives become important
criteria to distinguish solutions and therefore must not be neglected. Otherwise,
e.g. obviously unnecessary stops or loading and unloading actions may occur.

A natural simplification that may be exploited is to consider monotonicity
regarding the fill levels of stations. Let Vpic = {v ∈ V | pv ≥ qv} denote pickup
stations and Vdel = {v ∈ V | pv < qv} denote delivery stations. A vehicle is
only allowed to load bikes at pickup stations and unload them at delivery sta-
tions. Depending on the excess or shortage of bikes at a station, vehicles are
only allowed to load or unload bikes at it, respectively. In this way the num-
ber of bikes decreases or increases monotonically, and consequently the order in
which different vehicles visit a station does not matter. Monotonicity simplifies
the task of finding optimal loading instructions for a given set of routes consider-
ably [7]. On the downside, enforcing monotonicity may exclude better solutions
that e.g. use stations as buffers to temporarily store bikes or to transfer bikes
between vehicles, see Fig. 1.

a b e

c d

pa = 19
qa = 4

pb = 4
qb = 3

pe = 1
qe = 16

pc = 18
qc = 3

pd = 2
qd = 18

delivery stations:

pickup stations: a b c

d e

vehicle tour: (a, b, c, d, b, e)

station and vehicle capacities: 20

Fig. 1. Example where the restriction to monotonicity yields a worse solution. With
monotonicity, the best possible loading instructions are y1 = (+15,+1,+4,−16, 0,−4)
resulting in a total disbalance of 22. In the general case, node b can be used as buffer
and loading instructions y1 = (+15,−14,+15,−16,+15,−15) yield perfect balance.

3 Variable Neighborhood Search for BBSS

Our metaheuristic for BBSS follows the general variable neighborhood search
(VNS) principle [8] and is described in detail in [7]. An embedded Variable
Neighborhood Descent (VND) is used for deterministic local improvement as
intensification, while the outer VNS relies on stochastic shaking in larger neigh-
borhoods for diversification.

An initial solution is derived by a greedy heuristic that iteratively constructs
vehicle routes by always appending a feasible station for which the possible gain

134 G.R. Raidl et al.

in balance divided by the additional travel time is maximal. As vehicles have to
terminate their routes empty, special attention is paid when considering pickup-
stations: It is estimated how many bikes can still be delivered after the potential
visit of a pickup-station and the possible balance gain is adjusted accordingly, i.e.,
the number of bikes that may be picked up is restricted correspondingly. Thus,
loading instructions are set in this construction heuristic in a purely greedy way,
i.e., by always picking up or delivering as many bikes such that the balance gain
is locally maximized at each station visit.

In contrast, the VNS with its embedded VND searches the space of vehicle
routes exploiting eleven different neighborhood structures only, and correspond-
ing loading instructions are always derived for each considered set of routes by an
auxiliary algorithm. Three alternatives have been investigated in [7]: a greedy
heuristic (GH), a maximum flow approach for the monotonic case (MF-MC),
and a linear programming approach for the general case (LP).

GH considers the stations in the order as they are visited in each tour and tries
to bring each station as far as possible towards balance. Due to its greedy na-
ture, the derived loading instructions do not necessarily provide the best possible
overall balance and/or minimal number of loading/unloading activities. MF-MC
sets up a flow network according to the given routes. By computing a maximum
flow on this network, it is possible to obtain optimal loading instructions yield-
ing the lowest achievable imbalance and a minimal number of loading operations
under the assumption of monotonicity. While GH is fastest, MF-MC still is com-
putationally very efficient, taking only about 1.8 times longer on average in our
experimental evaluation. In order to overcome the monotonicity restriction, LP
solves a minimum cost flow problem on a more sophisticated network via linear
programming. On average our implementation of LP with CPLEX 12.4 needs
about 90 times longer than MF-MC. This huge disadvantage, unfortunately,
implies that the VNS can only perform substantially less iterations, and this
aspect cannot be compensated by the higher quality of the loading instructions.
In Section 4 we will present a new, computationally significantly more efficient
approach to obtain optimal loading instructions for the general case.

The following subsections summarize the VND/VNS neighborhood structures.
We employ several classical neighborhood structures that were already success-
fully applied in various VRPs together with new structures exploiting specifics
of BBSS. Concerning the classical neighborhood structures, we primarily based
our design on the experience from [9].

3.1 VND Neighborhood Structures

The following neighborhoods are applied in the given order and searched in a
best improvement fashion. Preliminary experiments with a dynamic reordering
strategy did not yield any significant advantage. All considered candidate tours
are checked for feasibility, infeasible solutions are discarded. For each feasible
solution one of the above mentioned methods for deriving loading instructions is
applied. Obsolete station visits where no loading actions performed are removed
from the tours.

Balancing Bicycle Sharing Systems 135

Remove station: Considers all single station removals to avoid unnecessary
visits.

Insert unbalanced station: Considers the insertion of any yet unbalanced
station at any possible position.

Intra-route 2-opt: The classical 2-opt neighborhood of the traveling salesman
problem applied individually to each route.

Replace station: Considers the replacement of each single station by another
yet unbalanced station.

Intra or-opt: Considers all solutions in which sequences of one, two, or three
consecutive stations are moved to a different place within the same route.

2-opt* inter-route exchange: Considers all feasible exchanges of arbitrarily
long end segments of two routes.

Intra-route 3-opt: A restricted form of the well-known 3-opt neighborhood,
individually applied to each route: For any partitioning of a route into three
nonempty subsequences rl =(a,b,c), the routes (b,a,c) and (a,c,b) are con-
sidered.

3.2 VNS Neighborhoods Structures

Shaking selects solutions randomly from the following neighborhood, which are
all parameterized by δ, yielding a total of 24 specific neighborhoods. In contrast
to the VND, created routes that violate the time budget are repaired by removing
stations from the end. The neighborhoods are again applied in the given order,
and each derived candidate solution is locally improved by the VND before
deciding upon its acceptance.

Move Sequence: Select a sequence of one to min(δ, ρl) stations at random,
delete it, and reinsert it at a random position of a different route. If the
original route contains less than δ stations, the whole route is inserted at
the target route. Both, source and target routes are selected randomly. δ ∈
{1, . . . , 5, ρl}.

Exchange Sequence: Exchange two randomly selected segments of length one
to min(δ, ρl) between two randomly chosen routes. δ ∈ {1, . . . , 5, ρl}.

Remove Stations: Consider all stations of all routes and remove each station
with probability δ ∈ {10%, 14%, 18%, 22%, 26%, 30%}.

Destroy and Recreate (D&R): Select a random position in a randomly cho-
sen route, remove all nodes from this position up to the end, and recreate a
new end segment by applying a randomized version of the greedy construc-
tion heuristic. The randomization is done in the typical GRASP-like way [10]
with the threshold parameter set to δ ∈ {0%, 4%, 8%, 12%, 16%, 20%}.

4 Maximum Flow Based Method for the General Case

Similarly as in [2,7], we set up a flow network, which is illustrated in Fig. 2. By
t(ril) we denote the time when vehicle l makes its i-th stop at station ril . Let

136 G.R. Raidl et al.

σ

τ

a1

d4

c7

a5
pa

qb

a9

b3 b11pb

pc

pd

qa

qc

qd

Ca Ca

Cb

Z1
Z1

Z1 Z2 Z2

tour r1

tour r2

Fig. 2. Exemplary flow network for vehicle routes r1 = (a, b, a, c) and r2 = (d, a, b)

G
f
= (V

f
, A

f
) be a directed multi-graph with node set V

f
= {σ, τ} ∪ Vt, where

σ and τ are source and target nodes, respectively, and Vt = {vj | v = ril , j =
t(ril), i = 1, . . . , ρl, l ∈ L}; i.e., we have a node vj for each station v and time j
when some vehicle makes a stop at v. Let V first = {vjmin ∈ Vt | jmin = min{j |
vj ∈ Vt}}, i.e., the nodes representing the first visits of all stations among all
routes, and V last = {vjmax ∈ Vt | jmax = max{j | vj ∈ Vt}}, i.e., the nodes
representing the last visits of all stations. Arc set A

f
= Aσ ∪ Aτ ∪ AR ∪ AV

consists of:

– Aσ = {(σ, vj) | vj ∈ V first} with capacities pv.
– Aτ = {(vj , τ) | vj ∈ V last} with capacities qv.
– AR =

⋃
l∈L AR,l with AR,l = {(uj , vk) | u = ril , v = ri+1

l , j = t(ril), k =

t(ri+1
l), i = 1, . . . , ρl − 1}, ∀l ∈ L, i.e., arcs representing the flow induced

by the vehicles. Capacities are Zl. Note that multiple arcs exist between two
nodes if two (or more) vehicles leave and arrive at the same stations exactly
at the same time.

– AV =
⋃

v∈V Av, Av = {(vj1 , vj2), . . . , (vjmax−1 , vjmax)} with (vj1 , . . . , vjmax)
being the sequence of nodes representing visits of station v sorted according
to time. These arcs model the bikes staying at a station, capacities are Cv.

Step 1 – minimizing disbalance: In the first step, we calculate the maximum
(σ, τ)-flow on this network. As argued in [2,7] the value of this maximum flow
corresponds to the maximum achievable reduction of disbalance. In the ideal case
all arcs Aσ ∪ Aτ are fully saturated in the solution, indicating that the target
values qv can be achieved at all visited stations v. Loading instructions yil,v are

obtained by taking the flow differences among successive arcs (uj , vk) ∈ AR for
each vehicle and each stop.

However, these loading instructions may be infeasible if an arc (σ, vj) ∈ Aσ

is not saturated. In this case, there are actually more bikes at station v than
assumed in the flow network, and delivering bikes to this station may exceed the
station’s capacity.

Step 2 – saturating arcs Aσ: To repair the above situation, we perform a sec-
ond stage maximum flow computation, modifying the loading instructions to

Balancing Bicycle Sharing Systems 137

σ

τ

a1

d4

c7

a5

16/16

a9

b3 b112/7 9/9

9/10
2/10

tour r1

tour r2

4/4

6/6

σ

τ

a1

d4

c7

a5 a9

b3 b115

tour r1

tour r2

9/9

12/12

2/2

15/15

Flows on Gf after step 1

Support graph G′
f for step 2

Fig. 3. Example where the arc (σ, b3) is not saturated after the first maximum flow
computation and therefore the solution is infeasible. In step 2 the remaining commodi-
ties of (σ, b3) must be rooted through G′

f
. (Flow and capacity values on several arcs

are omitted for better readability).

become feasible while the total imbalance remains unchanged. The basic idea is
to increase the capacities of the Aτ arcs and push additional flow through the
network in order to saturate all arcs Aσ. Let f(u

j , vk) denote the flow on an arc
(uj , vk). We derive from G

f
= (V

f
, A

f
) a support graph G′

f
= (V

f
, A′

f
) with the

same node set but a modified arc set A′
f
= A′

σ ∪ A′
τ ∪ A′

R ∪ A′
V with:

– A′
σ = {(σ, vj) ∈ Aσ | f(σ, vj) < pv} with capacities Cv − f(σ, vj).

– A′
τ = {(vj , τ) ∈ Aτ} with capacities Cv − f(vj , τ).

– A′
R contains arcs (uj , vk) ∈ AR with residual capacities Zl − f(uj, vk) and

corresponding reverse arcs (vk, uj) with capacities f(uj , vk).
– A′

V contains arcs (vj , vk) ∈ AV with residual capacities Cv − f(vj , vk) and
corresponding reverse arcs (vk, vj) with capacities f(vj , vk).

Subsequently, we perform a second maximum flow computation on G′
f
, which

always saturates every arc in A′
σ since pv ≤ Cv, ∀v ∈ V holds. By modifying the

original flows on AR with the new flows f ′(uj, vk) on (uj , vk) ∈ A′
R, we obtain

corrected flows f
corr

(uj , vk) = f(uj , vk) + f ′(uj , vk) − f ′(vk, uj), ∀(uj , vk) ∈
AR. Loading instructions derived from these flows are feasible and optimal with
respect to the achievable balance. Figure 3 shows an example of G′

f
.

Step 3 – minimizing the number of loading operations: While we cannot do better
with respect to balance, we so far neglected the second term of the objective

138 G.R. Raidl et al.

σ

τ

a1

d4

c7

a5 a9

b3 b11

(qa = 6)

(qc = 11)

4 10

5
2 7

tour r1

tour r2

13

6

σ

τ

a1

d4

c7

a5 a9

b3 b11

(qa = 6)

(qc = 11)

6 12

3
0 5

tour r1

tour r2

11

8

before the adjustments

after the adjustments

Fig. 4. Example of how the flow values can be adjusted in order to decrease the number
of loading operations by 8

function (3) which aims at avoiding unnecessary loading operations. In order
to further optimize this aspect, we adjust the corrected flow values fcorr on G

f

in a way that we do not change the overall flow, but the load is shifted from
transportation arcs AR (which influence the loading instructions) to arcs AV

and Aτ . We aim at reaching the final number of bikes at each station as early as
possible so that the number of loading operations is minimized. The algorithm
works as follows:

(1) Consider all nodes in Vt according to the visiting times:
(2) The next node vj ∈ Vt either has an outgoing arc a = (vj , τ) ∈ Aτ or

a = (vj , vk) ∈ AV , j < k.
(3) Find a path P in G

f
from vj that does not contain arc a and either ends in

a node vk, j < k or in node τ . If no such path exists, continue at (2).
(4) Let P ′ be the alternate path from vj to the end node of P starting with a

and otherwise including only arcs from Av ∪ Aτ . The goal is to adjust the
flows f

corr
on all arcs in P and P ′ by a common value Δ where

– flow values on arcs of P are decreased by Δ and must not become neg-
ative or less than qv, and

– flow values on arcs of P ′ are increased by Δ and may not exceed their
capacity limits.

If P and P ′ do not end at τ , we use Δ directly as the adjustment value.
If the paths end at τ , the situation becomes more complicated since ad-
justments modify the balance of some stations. Let (ui, τ) be the last arc

Balancing Bicycle Sharing Systems 139

in P and (vj , τ) the last arc in P ′. Let bal(P) = f
corr

(ui, τ) − qu and
bal(P ′) = f

corr
(vj , τ) − qv. We have to consider the following four cases.

(a) If bal(P) ≥ 0 and bal(P ′) ≥ 0, adjust by min(Δ, bal(P)).
(b) If bal(P) ≥ 0 and bal(P ′) < 0, adjust by min(Δ,max(bal(P), bal(P ′))).
(c) If bal(P) < 0 and bal(P ′) ≥ 0, do not adjust.
(d) If bal(P) < 0 and bal(P ′) < 0, adjust by min(Δ, bal(P ′)).

(5) Repeat (3) and (4) until no further adjustments are possible. If any adjust-
ments were found, restart the algorithm from (1), else continue at (2).

An example of this procedure is given in Fig. 4. First the arc (a1, a5) is considered
and we can find improvements on paths P = 〈a1, b3, a5〉 and P ′ = 〈a1, a5〉.
Increasing the flow on arcs of P ′ and decreasing the flow on arcs of P by 2
does not change the final balance of any stations, but reduces the number of
loading operations by 4. The second improvement can be found on arc (a5, a9)
and paths P = 〈a5, c7, τ〉 and P ′ = 〈a5, a9, τ〉. Increasing the flow on arcs of P ′

and decreasing the flow on arcs of P by 2 now changes the balance at stations
a and c. However, shifting the two excessive bikes from c to a is cost-neutral in
terms of final balance, but reduces the number of loading operations by 4.

Note that the restart at step (5) is necessary since adjustments on paths
from a station v with later visiting times may have an impact on paths from
an earlier station u by enabling adjustments that were not possible when u was
considered. It can be shown that loading instructions derived from the resulting
flows after this procedure are optimal with respect to balance and the number
of loading operations as long as the route is local optimal with respect to the
VND neighborhoods, i.e., it does not contain any unnecessary stops that can be
removed without increasing the disbalance.

5 Combined Approach

Experiments with the new maximum flow based method for the general case
indicated a substantial speedup in comparison to the LP-based method. Nev-
ertheless, also this strategy is still significantly slower than the simple greedy
method. Experiments shown in the next section indicate that it remains ques-
tionable whether the advantage of potentially better solutions outweighs the
disadvantage of higher running times. We therefore also investigated algorithms,
where the individual strategies for determining loading instructions (except the
LP-based method which is now clearly dominated) are applied in combination.

The following approach turned out to work particularly well: We start with
the fast greedy method as default strategy and introduce an additional VND
neighborhood structure, inserted at the fourth position: All available strategies
for determining loading instructions are applied and their results are compared.
The best strategy, which is the one yielding the best solution or in case of ties
the fastest one, is remembered and from now on also applied as default strategy
for all successively created candidate solutions until the solution for which this
strategy was found best is discarded in a VNS iteration due to a better non-
descending solution. In this latter case, the default strategy is reset to the fast
greedy method.

140 G.R. Raidl et al.

6 Computational Results

We tested our approach on benchmark instances1 from [7]. These instances are
based on real-world data provided by Citybike Wien2 running a bike-sharing
system with currently 92 stations. The instances are characterized by the number
of stations |V | ∈ {10, 20, 30, 60, 90}, the number of vehicles |L| ∈ {1, 2, 3, 5},
and the shift length t̂ ∈ {120, 240, 480}. 30 instances are considered for each
combination of a subset of practically meaningful configurations. The algorithms
have been implemented using GCC 4.6 and each test run was performed on
a single core of an Intel Xeon E5540 machine with 2.53 GHz. Each run was
terminated when no improvement could be achieved within the last 5 000 VNS
iterations or after one hour of CPU time. In the first case we consider the heuristic
search as converged, major further improvements would be highly unlikely. For
all maximum flow calculations we use the push-relabel method by Cherkassky
and Goldberg [11], while CPLEX 12.4 is used in the LP approach.

Table 1 shows average results of our VNS with the five methods for deriving
loading instructions: GH, MF-MC, and LP from [7] and the two new meth-
ods denoted by MF-GC (for “maximum flow based, general case”) and COMB
(for “combined approach”). For each algorithm variant and each instance class
we list the number of instances (runs) for which the algorithm variant yielded
the best results (#best), the mean objective value of the finally best solutions
(obj), the corresponding standard deviation (sd), and the median run time until
the best solutions have been found (time). Note that objective values must be
compared with care due to the small scaling factor for the secondary objectives
(α = 1/100 000). In case of two solutions achieving the same balance, objective
value differences may be very small, but they might nevertheless indicate prac-
tically important differences in the lengths of routes or the number of loading
instructions. Thus, we consider #best to be a better indicator for analyzing per-
formance differences than objective value differences. Maximum #best-values
are printed bold for each instance class. Note that in comparison to the results
published in [7], all former methods exhibit slightly better average objective
values due to some small but significant improvements in the implementation.

As one might expect, we observe that in general GH is clearly the fastest
variant while LP is slowest. On average over the larger instances for which the
runs were terminated by the time limit of one hour, GH could perform 110
times more iterations than LP. MF-MC increased the running time over GH
per iteration on average by about 120% and MF-GC by about 290%. They
are thus substantially faster than LP but still considerably slower than GH. In
contrast, the combined strategy increases the average runtime only moderately
by about 20%. Thus, the number of iterations COMB could perform for the
larger instances where it has been terminated by the run time limit was not
dramatically lower than the iteration number of GH.

1 Available at https://www.ads.tuwien.ac.at/w/Research/Problem_Instances
2 http://www.citybikewien.at/

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances

Balancing Bicycle Sharing Systems 141

T
a
b
le

1
.
R
es
u
lt
s
o
f
th
e
V
N
S
w
it
h
d
iff
er
en

t
va

ri
a
n
ts

fo
r
d
er
iv
in
g
lo
a
d
in
g
in
st
ru
ct
io
n
s

In
st
.
se

t
V
N
S
/
G
H

V
N
S
/
M

F
-M

C
V
N
S
/
L
P

V
N
S
/
M

F
-G

C
V
N
S
/
C
O
M

B

|V
|
|L
|

t̂
#
b
es
t

o
b
j

sd
ti
m
e

#
b
es
t

o
b
j

sd
ti
m
e

#
b
es
t

o
b
j

sd
ti
m
e

#
b
es
t

o
b
j

sd
ti
m
e

#
b
es
t

o
b
j

sd
ti
m
e

1
0

1
1
2
0

2
8

2
8
.3
3
4

9
.9
1
1

0
.0

2
9

2
8
.3
3
4

9
.9
1
1

0
.0

2
9

2
8
.3
3
4

9
.9
1
1

0
.1

3
0

2
8
.3
3
4

9
.9
1
1

0
.0

2
9

2
8
.3
3
4

9
.9
1
1

0
.0

1
0

1
2
4
0

2
8

4
.2
6
9

3
.5
5
1

0
.0

2
9

4
.2
6
9

3
.5
5
1

0
.0

2
9

4
.2
6
9

3
.5
5
1

1
.2

3
0

4
.2
0
2

3
.5
7
5

0
.0

2
8

4
.2
6
9

3
.5
5
1

0
.0

1
0

1
4
8
0

2
6

0
.0
0
3

0
.0
0
0

0
.0

2
9

0
.0
0
3

0
.0
0
0

0
.0

2
9

0
.0
0
3

0
.0
0
0

1
.2

2
9

0
.0
0
3

0
.0
0
0

0
.0

2
7

0
.0
0
3

0
.0
0
0

0
.0

1
0

2
1
2
0

2
7

1
0
.0
0
2

6
.3
0
2

0
.0

2
7

1
0
.0
0
2

6
.3
0
2

0
.0

3
0

9
.9
3
6

6
.2
4
7

0
.4

2
9

9
.9
3
6

6
.2
4
7

0
.0

2
8

1
0
.0
6
9

6
.3
5
6

0
.0

1
0

2
2
4
0

3
0

0
.0
0
3

0
.0
0
0

0
.0

3
0

0
.0
0
3

0
.0
0
0

0
.0

2
9

0
.0
0
3

0
.0
0
0

4
.9

3
0

0
.0
0
3

0
.0
0
0

0
.1

2
8

0
.0
0
3

0
.0
0
0

0
.0

1
0

2
4
8
0

2
6

0
.0
0
3

0
.0
0
0

0
.0

2
9

0
.0
0
3

0
.0
0
0

0
.0

2
8

0
.0
0
3

0
.0
0
0

1
.2

2
8

0
.0
0
3

0
.0
0
0

0
.0

2
7

0
.0
0
3

0
.0
0
0

0
.0

2
0

1
1
2
0

3
0

8
5
.8
6
8

1
4
.7
6
1

0
.0

3
0

8
5
.8
6
8

1
4
.7
6
1

0
.0

3
0

8
5
.8
6
8

1
4
.7
6
1

0
.1

3
0

8
5
.8
6
8

1
4
.7
6
1

0
.0

3
0

8
5
.8
6
8

1
4
.7
6
1

0
.0

2
0

1
2
4
0

2
8

4
3
.0
0
3

1
1
.3
3
5

0
.0

2
8

4
3
.0
0
3

1
1
.3
8
3

0
.0

2
9

4
2
.9
3
6

1
1
.2
9
8

6
.5

2
9

4
3
.0
0
3

1
1
.3
3
5

0
.2

2
9

4
3
.0
0
3

1
1
.3
3
5

0
.0

2
0

1
4
8
0

2
9

1
.6
7
2

2
.1
7
1

0
.7

2
7

1
.6
7
2

2
.1
7
1

1
.7

2
6

1
.8
0
5

2
.1
8
7

1
5
5
.3

2
7

1
.6
7
2

2
.1
7
1

1
2
.7

2
5

1
.6
7
2

2
.1
7
0

0
.6

2
0

2
1
2
0

2
8

5
5
.3
3
6

1
3
.3
7
3

0
.0

2
8

5
5
.3
3
6

1
3
.3
7
3

0
.0

2
9

5
5
.3
3
6

1
3
.3
7
3

2
.8

3
0

5
5
.3
3
6

1
3
.3
7
3

0
.1

3
0

5
5
.3
3
6

1
3
.3
7
3

0
.0

2
0

2
2
4
0

2
0

4
.1
3
9

3
.7
4
8

3
.2

2
2

4
.2
0
5

3
.7
2
6

3
.3

1
6

4
.2
0
5

3
.7
2
6

2
3
7
.3

2
2

4
.2
7
2

3
.7
0
4

1
7
.4

1
8

4
.2
0
5

3
.8
0
0

1
.3

2
0

2
4
8
0

2
2

0
.0
0
6

0
.0
0
0

2
.1

2
5

0
.0
0
6

0
.0
0
0

5
.2

2
0

0
.0
0
6

0
.0
0
0

2
4
0
.9

2
4

0
.0
0
6

0
.0
0
0

7
.9

2
6

0
.0
0
6

0
.0
0
0

2
.0

3
0

2
1
2
0

2
4

1
0
4
.8
0
2

1
7
.8
7
7

0
.0

2
6

1
0
4
.8
0
2

1
7
.8
7
7

0
.0

2
7

1
0
4
.7
3
6

1
7
.7
6
8

7
.9

2
6

1
0
4
.8
0
2

1
7
.7
9
2

0
.2

2
6

1
0
4
.6
0
3

1
7
.6
2
5

0
.0

3
0

2
2
4
0

1
5

3
4
.4
7
2

1
0
.6
8
2

4
.8

1
0

3
4
.6
7
2

1
0
.7
8
1

1
0
.4

1
3

3
5
.0
0
6

1
0
.7
3
5

1
1
5
5
.6

1
8

3
4
.7
3
9

1
0
.8
0
8

5
8
.8

1
5

3
4
.5
3
9

1
0
.9
6
6

3
.7

3
0

2
4
8
0

1
6

0
.0
0
9

0
.0
0
0

2
6
.1

1
7

0
.0
0
9

0
.0
0
0

3
6
.6

5
0
.0
0
9

0
.0
0
0

1
4
9
0
.6

1
6

0
.0
0
9

0
.0
0
0

2
4
0
.6

1
9

0
.0
0
9

0
.0
0
0

3
1
.6

3
0

3
1
2
0

2
1

7
8
.2
0
4

1
7
.3
4
3

0
.1

2
7

7
7
.7
3
7

1
7
.0
6
5

0
.5

2
3

7
8
.2
0
4

1
7
.4
3
8

5
3
.4

2
3

7
8
.0
0
4

1
7
.3
5
6

1
.7

2
3

7
7
.9
3
7

1
7
.2
8
0

0
.3

3
0

3
2
4
0

1
1

7
.2
0
8

4
.4
7
5

2
8
.1

7
7
.1
4
1

4
.5
3
9

3
8
.4

1
7
.6
7
5

4
.5
5
1

1
8
0
8
.4

1
1

6
.8
7
5

4
.3
8
4

3
2
3
.2

7
7
.0
0
8

4
.2
5
9

1
7
.9

3
0

3
4
8
0

1
3

0
.0
0
9

0
.0
0
0

3
2
.9

1
3

0
.0
0
9

0
.0
0
0

4
2
.5

4
0
.0
0
9

0
.0
0
0

1
4
7
9
.0

1
6

0
.0
0
9

0
.0
0
0

3
9
2
.3

1
6

0
.0
0
9

0
.0
0
0

4
6
.3

6
0

1
1
2
0

3
0

3
2
5
.6
0
1

2
6
.3
5
7

0
.0

3
0

3
2
5
.6
0
1

2
6
.3
5
7

0
.0

3
0

3
2
5
.6
0
1

2
6
.3
5
7

0
.7

3
0

3
2
5
.6
0
1

2
6
.3
5
7

0
.0

3
0

3
2
5
.6
0
1

2
6
.3
5
7

0
.0

6
0

1
2
4
0

2
6

2
6
7
.3
3
6

2
3
.8
1
1

0
.5

2
4

2
6
7
.3
3
6

2
3
.7
9
4

0
.6

2
6

2
6
7
.3
3
6

2
4
.2
7
6

7
7
.6

2
8

2
6
7
.1
3
6

2
3
.8
4
2

1
.8

2
6

2
6
7
.2
0
3

2
3
.7
6
6

0
.4

6
0

2
4
8
0

4
6
0
.4
1
2

1
3
.6
2
9

3
0
9
.1

7
6
0
.2
1
2

1
3
.8
8
9

1
0
0
6
.1

0
6
3
.7
4
5

1
3
.8
0
3

2
9
6
9
.3

5
6
1
.4
1
2

1
4
.2
0
2

2
0
9
4
.8

1
4

5
9
.8
7
9

1
3
.8
4
5

4
7
4
.1

6
0

3
2
4
0

8
1
2
6
.7
4
2

2
0
.0
0
3

6
8
.2

1
1

1
2
6
.9
4
2

2
0
.4
7
5

1
2
9
.8

2
1
2
9
.2
0
9

2
0
.8
2
8

2
9
4
6
.9

8
1
2
6
.8
7
6

1
9
.9
2
8

5
9
3
.5

8
1
2
7
.3
4
2

2
0
.1
5
3

6
5
.5

6
0

3
4
8
0

8
6
.2
8
4

3
.9
2
1

9
0
6
.2

7
6
.3
5
0

4
.0
7
1

2
5
0
8
.3

0
1
0
.6
1
7

5
.0
9
6

2
8
5
6
.3

2
6
.8
8
4

3
.4
7
1

2
6
4
8
.4

1
5

5
.9
5
0

3
.8
0
5

9
9
0
.6

6
0

5
1
2
0

8
1
9
6
.9
4
0

2
8
.6
6
5

6
.6

1
3

1
9
6
.4
7
4

2
9
.2
0
3

1
2
.9

6
1
9
7
.0
7
4

2
9
.0
0
5

8
6
5
.1

1
3

1
9
6
.4
7
4

2
9
.1
4
7

9
7
.2

1
8

1
9
6
.2
0
7

2
9
.3
9
0

9
.2

6
0

5
2
4
0

7
4
1
.8
1
4

1
3
.5
6
8

4
0
8
.2

7
4
1
.5
4
8

1
3
.3
0
4

7
2
0
.8

0
4
6
.8
1
4

1
3
.2
9
3

3
0
8
5
.9

4
4
2
.3
4
8

1
2
.2
5
1

2
3
4
2
.3

1
4

4
1
.1
4
8

1
2
.7
1
0

4
2
7
.2

9
0

1
1
2
0

3
0

5
1
9
.8
0
1

2
3
.2
6
6

0
.0

3
0

5
1
9
.8
0
1

2
3
.2
6
6

0
.0

3
0

5
1
9
.8
0
1

2
3
.2
6
6

0
.4

3
0

5
1
9
.8
0
1

2
3
.2
6
6

0
.0

3
0

5
1
9
.8
0
1

2
3
.2
6
6

0
.0

9
0

1
2
4
0

2
9

4
5
6
.9
3
6

2
1
.1
2
5

0
.8

2
8

4
5
6
.9
3
6

2
1
.2
8
1

2
.8

2
9

4
5
6
.8
7
0

2
1
.2
0
9

1
1
0
.2

2
9

4
5
6
.9
3
6

2
1
.1
2
5

6
.7

2
9

4
5
6
.9
3
6

2
1
.1
2
5

0
.9

9
0

1
4
8
0

1
5

3
5
2
.5
4
0

1
7
.7
0
2

1
7
.3

1
4

3
5
2
.6
7
3

1
8
.2
8
0

1
0
2
.4

7
3
5
3
.7
4
0

1
8
.3
6
5

8
1
5
.3

1
6

3
5
2
.6
7
3

1
8
.3
1
7

3
2
8
.7

1
6

3
5
2
.6
7
3

1
8
.0
2
1

3
5
.8

9
0

2
1
2
0

2
5

4
7
8
.7
3
6

2
1
.9
8
7

0
.3

2
3

4
7
8
.9
3
6

2
1
.8
1
8

0
.6

2
5

4
7
8
.8
6
9

2
1
.9
0
0

7
0
.2

2
7

4
7
8
.8
0
3

2
1
.8
8
1

2
.0

2
7

4
7
8
.8
0
3

2
1
.9
7
5

0
.3

9
0

2
2
4
0

1
3

3
6
8
.1
4
0

1
8
.4
7
9

3
2
.0

1
4

3
6
8
.2
0
6

1
8
.1
0
5

8
3
.7

7
3
6
9
.4
0
6

1
8
.1
8
7

1
7
0
8
.2

1
3

3
6
8
.2
7
3

1
8
.3
4
3

2
0
9
.6

1
3

3
6
8
.5
4
0

1
8
.2
9
2

3
7
.0

9
0

2
4
8
0

1
1

2
0
5
.2
7
9

1
3
.2
5
0

4
9
3
.1

6
2
0
5
.0
1
3

1
3
.5
0
0

1
7
3
3
.8

0
2
1
0
.8
7
9

1
4
.0
7
0

2
9
8
7
.4

4
2
0
6
.6
7
9

1
3
.1
0
2

2
6
6
3
.3

9
2
0
5
.1
4
6

1
2
.8
1
9

8
7
5
.2

9
0

3
1
2
0

2
3

4
4
1
.9
3
8

2
0
.9
4
6

1
.2

2
1

4
4
1
.8
7
1

2
0
.7
2
4

3
.3

2
3

4
4
1
.8
0
4

2
1
.3
6
2

2
2
1
.2

2
5

4
4
1
.6
0
4

2
0
.6
4
7

1
1
.4

2
3

4
4
1
.7
3
8

2
0
.8
8
2

2
.9

9
0

3
2
4
0

9
2
9
4
.8
0
9

1
6
.3
2
0

9
9
.6

9
2
9
3
.6
0
9

1
6
.0
2
0

3
0
4
.4

0
2
9
7
.6
0
9

1
5
.3
6
1

2
5
9
8
.0

1
2

2
9
4
.2
7
6

1
6
.1
0
9

1
1
3
3
.2

6
2
9
4
.4
7
6

1
5
.9
7
1

1
9
8
.0

9
0

3
4
8
0

1
1

1
0
0
.3
5
2

9
.5
7
1

2
0
0
7
.1

6
1
0
1
.2
1
8

1
0
.3
0
0

2
5
2
6
.2

0
1
1
0
.4
8
5

9
.9
1
9

2
3
6
4
.8

0
1
0
4
.4
1
8

9
.9
7
0

2
7
5
9
.2

1
3

9
9
.9
5
2

9
.1
1
9

2
3
2
0
.3

9
0

5
1
2
0

5
3
7
6
.1
4
1

2
0
.1
0
9

1
3
.3

9
3
7
6
.1
4
0

1
9
.8
7
4

2
3
.2

1
0

3
7
6
.1
4
1

1
9
.3
3
3

1
6
3
1
.5

1
2

3
7
5
.8
0
7

2
0
.4
0
5

1
6
1
.7

1
0

3
7
5
.7
4
1

2
0
.2
9
9

1
9
.2

9
0

5
2
4
0

1
0

1
7
4
.2
8
2

1
3
.5
4
1

5
9
4
.7

1
0

1
7
4
.4
1
5

1
2
.6
5
3

1
4
5
1
.5

0
1
8
5
.4
8
2

1
3
.1
0
8

3
0
4
0
.4

3
1
7
7
.3
4
8

1
3
.0
0
7

2
4
7
9
.2

9
1
7
4
.1
4
9

1
3
.4
7
2

7
6
9
.2

9
0

5
4
8
0

1
5

0
.9
6
1

1
.6
3
8

2
8
8
8
.7

2
1
.3
6
1

1
.6
8
8

3
0
1
8
.2

0
8
.4
9
4

3
.2
2
3

2
6
5
7
.8

0
3
.0
2
8

2
.1
4
9

3
0
9
1
.2

1
4

1
.0
2
8

1
.3
6
4

3
1
3
9
.7

T
O
T
A
L

7
0
9

5
2
5
2
.4
0
3

7
9
4
4
.9

7
0
4

5
2
5
1
.7
3
7

1
3
7
6
7
.2

5
9
2

5
3
0
8
.3
3
5

3
8
6
5
4
.0

7
0
9

5
2
6
3
.4
8
6

2
1
6
7
9
.4

7
5
5

5
2
4
9
.2
0
3

9
4
6
9
.2

142 G.R. Raidl et al.

Concerning the total number of instances on which an algorithm performed
best (sum of all #best) COMB is the clear winner with 755 instances, followed
by GH and MF-GC with the same value of 709 instances, and closely behind MF-
MC with 704 instances. Final objective values give a similar picture although
observed differences are generally very small. Wilcoxon signed-rank tests indicate
the statistical significance of the superiority of COMB over all other approaches
and that LP is dominated by all other approaches with error probabilities of less
than 3%.

It is relatively hard to derive more detailed conclusions of the performances
w.r.t. the parameters |V |, |L|, and t̂, but we can observe the general tendency
that LP can only compete on small instances, while GH, MF-MC, MF-GC, and
COMB perform comparably well over the whole range of benchmark instances.

7 Conclusions and Future Work

We presented a new method for calculating proven optimal loading instructions
for given routes to be used within a heuristic VNS framework for obtaining ap-
proximate solutions for the static problem of balancing a bicycle sharing system.
This method, called MF-GC, is not restricted by monotonicity and is based on
two sequential maximum-flow calculations and a final phase for minimizing the
number of loading operations. The experiments performed have shown that this
new method is in practice substantially faster than LP. The VNS with MF-GC is
therefore able to perform much more iterations than with LP in reasonable time,
and consequently significantly better final solutions are obtained. Nevertheless,
the greedy heuristic calculation of loading instructions is still a very strong com-
petitor, since it is even faster and yields results that are typically very close
to optimal, despite the fact that it produces only monotonic solutions. These
results also show, that only infrequently significant advantages can be gained
by exploiting non-monotonicity, i.e., by using stations as buffers or transferring
bikes from one vehicle to another.

Finally, we applied the strategies GH, MF-MC, and MF-GC in combination,
controlled by an additionally introduced VND-neighborhood structure. This ap-
proach turned out to exploit the benefits of the individual strategies in a bene-
ficial way – it applies the more expensive MF-MC and MF-GC only on a more
regular basis when an advantage could already be gained in a predecessor solu-
tion. This approach performed best with high statistical significance, although
objective value differences still remain small.

In future work we want to investigate further large neighborhood structures
that might be based on ejection chains or mixed integer programming. Fur-
thermore the underlying problem definition needs to be extended to cover the
dynamic case, in which bikes rented and brought back during the rebalancing
process are also considered. As these demands are not exactly known in advance,
this extended problem variant becomes a stochastic online problem.

Balancing Bicycle Sharing Systems 143

Acknowledgements. This work is supported by the Austrian Research Pro-
motion Agency (FFG) under contract 831740.We thank Matthias Prandtstetter,
Andrea Rendl, and Markus Straub from the Austrian Institute of Technology
(AIT) and City Bike Wien for the collaboration in this project, constructive
comments and for providing the data used in our test instances.

References

1. DeMaio, P.: Bike-sharing: History, impacts, models of provision, and future. Jour-
nal of Public Transportation 12(4), 41–56 (2009)

2. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization 10(2), 120–146 (2013)

3. Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier,
F., Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO –
Operations Research 45(1), 37–61 (2011)

4. Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system:
models and solution approaches. EURO Journal on Transportation and Logistics,
1–43 (2013)

5. Contardo, C., Morency, C., Rousseau, L.M.: Balancing a Dynamic Public Bike-
Sharing System. Technical Report CIRRELT-2012-09, CIRRELT, Montreal,
Canada, submitted to Transportation Science (2012)

6. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Ve-
hicle Routing in Bike Sharing Systems. Technical Report 2013-E1, Tepper School
of Business, Carnegie Mellon University (2013)

7. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing
systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C.
(eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)

8. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24(11), 1097–1100 (1997)

9. Pirkwieser, S., Raidl, G.R.: A variable neighborhood search for the periodic vehicle
routing problem with time windows. In: Prodhon, C., Wolfler-Calvo, R., Labadi,
N., Prins, C. (eds.) Proceedings of the 9th EU/MEeting on Metaheuristics for
Logistics and Vehicle Routing, Troyes, France (2008)

10. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In:
Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249.
Kluwer Academic Publishers (2003)

11. Cherkassky, B.V., Goldberg, A.V.: On implementing the push-relabel method for
the maximum flow problem. Algorithmica 19(4), 390–410 (1997)

Automatic Design

of Hybrid Stochastic Local Search Algorithms

Marie-Eléonore Marmion, Franco Mascia,
Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
{mmarmion,fmascia,manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Many stochastic local search (SLS) methods rely on the ma-
nipulation of single solutions at each of the search steps. Examples are
iterative improvement, iterated local search, simulated annealing, vari-
able neighborhood search, and iterated greedy. These SLS methods are
the basis of many state-of-the-art algorithms for hard combinatorial op-
timization problems. Often, several of these SLS methods are combined
with each other to improve performance. We propose here a practical,
unified structure that encompasses several such SLS methods. The pro-
posed structure is unified because it integrates these metaheuristics into
a single structure from which we can not only instantiate each of them,
but we also can generate complex combinations and variants. Moreover,
the structure is practical since we propose a method to instantiate ac-
tual algorithms for practical problems in a semi-automatic fashion. The
method presented in this work implements a general local search struc-
ture as a grammar; an instantiation of such a grammar is a program that
can be compiled into executable form. We propose to find the appropriate
grammar instantiation for a particular problem by means of automatic
configuration. The result is a semi-automatic system that, with little
human effort, is able to generate powerful hybrid SLS algorithms.

Keywords: Stochastic local search, generalized local search structure,
grammar, automatic algorithm design.

1 Introduction

Many stochastic local search (SLS) methods manipulate a single solution at each
of the search steps [11]. Examples of such SLS methods (also called metaheuris-
tics) include classical iterative best- and first-improvement algorithms [20], iter-
ated local search (ILS) [15], simulated annealing (SA) [13], variable neighborhood
search (VNS) [10], random iterative improvement (RII) [20,11], probabilistic it-
erative improvement (PII) [11], and iterated greedy (IG) [21], among others.
Successful algorithms for hard combinatorial problems are often the result of
an effective engineering of such SLS methods or of an appropriate combination
of ideas from various of these methods. However, despite the plethora of pos-
sibilities, algorithm designers rarely consider but a few methods when tackling

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 144–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Design of Hybrid Stochastic Local Search Algorithms 145

a new problem. We believe that this is due to two main reasons. First, the hy-
bridization of such techniques is not a trivial task in terms of designing how
the different parts should interact and implementing all possible interactions.
Second, the effort required to design and analyze experiments that evaluate the
different components and parameters of a hybrid algorithm is significant, thus
considering a large number of hybrid algorithms may seem prohibitive at first.

In this paper, we propose a semi-automatic system that, with little human
effort, is able to generate powerful hybrid SLS algorithms. We achieve this by
combining two different proposals. First, we propose a unified structure that en-
compasses many of the above mentioned SLS methods proposed in the literature.
We describe this unified structure as a grammar, from which we may instantiate
not only SLS algorithms following one specific SLS methods, but also SLS algo-
rithms that are composed of algorithmic components that are taken from various
of these individual methods. Hence, our proposed grammar defines a very large
space of possible hybrid SLS algorithms.

Our second proposal is to find the best instantiation of the grammar for
a given problem by means of automatic configuration tools. Automatic con-
figuration tools are typically used for tuning the parameters of optimization
algorithms, given a set of training instances and a description of the parame-
ter space [12,14]. However, automatic configuration tools are also effective at
instantiating heuristics from grammars [16].

In our approach, most human effort is devoted to implement and improve the
problem-specific components (neighborhood moves, perturbations, heuristics),
which are often the key to the success of an algorithm in a specific problem. Given
these components and a set of training instances representative of the problem,
the system takes care of generating a large number of hybrid SLS algorithms,
and selects the best-performing on the training instances. This generation and
selection process is mainly limited by the computation power available.

There are other two key characteristics of our proposal. First, the unified
structure embodied by the grammar allows reusing the same few problem-specific
components to generate a large number of different algorithms. The implementa-
tion of reusable components is based on ParadisEO [3], a framework that allows
algorithm designers to reuse basic components to build their own algorithms. The
system we propose in this work goes a step beyond and builds the algorithms
automatically. The second key characteristic is that the algorithms instantiated
from the grammar are stand-alone programs that are compiled to executable
code. Therefore, the overhead introduced by the flexibility of the system is min-
imized, and the resulting automatically-crafted SLS algorithms are competitive
with hand-crafted algorithms.

The paper is structured as follows. Section 2 introduces our unified structure
for SLS algorithms and Section 3 how this structure can be implemented through
a grammar and how SLS algorithms are configured. Section 4 describes our
benchmark problem; experimental results are then given in Section 5 before we
conclude and outline directions for extending our proposals in Section 6.

146 M.-E. Marmion et al.

ILS Algorithm
1: s0 := Initialization()
2: s∗ := ILS(s0)
3: return s∗

Function ILS(s0)
Require: perturbation, ls, acceptanceCriterion, stop
1: s∗ := ls(s0)
2: repeat
3: s′ := perturbation(s∗)
4: s′′ := ls(s′)
5: s∗ := acceptanceCriterion(s′′, s∗)
6: until termination criterion (stop) is satisfied
7: return s∗

Fig. 1. The iterated local search (ILS) algorithm

2 Generalized Local Search Structure

In this paper, we focus on SLS algorithms that work on a single solution at a
time. The algorithm may internally keep a memory of multiple solutions, such
as the best solution found so far, but there is the concept of the current solution,
whose neighborhood is being explored.

We propose a generalized local search (GLS) structure modeled after iterated
local search (ILS) [15]. ILS, as shown in Fig. 1, starts from an initial solution
s0, applies an improvement method (usually referred as local search, ls), and
then three steps are repeated until the termination criterion is met: the current
solution is perturbed to generate a new one, local search is applied to the new
solution, and the acceptance criterion (in the simplest case of acceptance cri-
teria) accepts the new solution or stays with the current one. ILS contains the
most important elements of any hybrid LS algorithm, which are a perturbation
operator, a subsidiary local search, and an acceptance criterion.

The perturbation is a transformation of the input solution. In ILS, this is
typically a small random transformation of the solution but it may also be a
random re-initialization. A perturbation may be one simple move in a neighbor-
hood space, but it may also be composed of k applications of a simple move,
and k may be even vary during the search either based on feedback of the search
process or according to a pre-defined schedule. The local search can range from a
simple iterative improvement over short runs of an SA algorithm to a full-fledged
ILS. It could also be that no local search algorithm is used at all.

The acceptance criterion determines which solution will replace the current
solution. The most basic acceptance criterion (improveAccept) accepts only so-
lutions that are better (strictly or not) than the best solution found so far. Other
acceptance criteria allow worse solutions to be accepted in order to increase the
exploration of the search space. For instance, the probAccept criterion accepts
a worsening solution with a probability p ∈ [0, 1]. For example, if p = 1, every
new solution is accepted (alwaysAccept). A thresholdAccept criterion accepts a
worsening solution if the relative deviation between the best and the current
solution is below a threshold. In simulated annealing, a worse solution is ac-
cepted according to the Metropolis criterion (metropolisAccept). This criterion
uses a cooling schedule that starts from an initial temperature, the temperature

Automatic Design of Hybrid Stochastic Local Search Algorithms 147

Table 1. Classical SLS algorithms modeled after the ILS scheme

Name Perturbation Local Search Acceptance Criterion

SA [13] one move ∅ Metropolis
PII [11] one move ∅ prob.
RII [20,11] one move ∅ probRandom
VNS [10] variable move first-improv. descent improvingStrictly
IG [21] deconstruction-construction “any” “any”

is decreased according to the cooling schedule until the algorithm stops after
reaching a final temperature. Often, the temperature is decreased periodically
after a number of iterations (span).

By considering different alternatives for each of these components, we can
replicate many of the SLS methods proposed in the literature. For instance, sim-
ulated annealing (SA) can be replicated by defining the perturbation operator as
a simple move operator in a neighborhood, using no subsidiary local search, and
using the Metropolis acceptance criterion. With these components, the scheme
given for ILS above will actually replicate a classical SA algorithm.

Another example is variable neighborhood search (VNS) [10]. VNS executes
an iterative improvement method at each iteration, and varies the strength of
the perturbation depending on whether the resulting solution improves the best
so far. This is equivalent to an ILS with a specialized variable move operator, it-
erative improvement as local search, and an improveAccept acceptance criterion.
Other classical SLS algorithms can be modeled after ILS in a similar manner,
as shown in Table 1.

In addition to replicating these classical SLS algorithms, the GLS structure
proposed here can also reproduce more complex combinations of SLS algorithms.
For example, an ILS algorithm can use a different ILS algorithm (with different
perturbation and/or acceptance criterion) as a subsidiary local search, which,
in turn may use SA as its own subsidiary local search. We call recursion the
possibility of an ILS to embed another ILS. The level of recursion is the number
of embedded ILSs. This ability of combining simple components to generate
hybrid local searches allows designing powerful algorithms. However, it raises
the question of how to find high-performing algorithms for a particular problem,
among all the possible combinations. The next section deals with this question.

3 Implementation

3.1 A Practical Implementation of the GLS Structure

In this section, we describe how to implement the GLS structure proposed above
in order to generate practical algorithms for a given problem. Our method con-
sists of three parts. First, we use a generative grammar to describe the design
space defined by the GLS structure. Second, we use a re-usable framework of
source code components as the underlying implementation of the grammar. This
implementation includes both problem-independent code, which can be re-used

148 M.-E. Marmion et al.

in any problem, and problem-specific components, which must be developed for
each problem. Finally, we use automatic algorithm configuration tools to search
the design space and generate high-performing instantiations of the grammar,
given a set of training instances representative of a problem.

3.2 A Grammar Description of the GLS Structure

A practical implementation of the GLS structure will contain many components
that interact. Implementing such a GLS structure as a unique monolithic algo-
rithm is a complex task. Moreover, the fact that a local search can be embedded
within another in arbitrary ways complicates such implementation. The alterna-
tive that we propose here is to implement only the individual components, with
clearly defined interfaces, and directly generate specific algorithms by combin-
ing these components. This is a typical problem in genetic programming, where
grammars are often used to represent the design space of an algorithm [17].

A grammar is a set of derivation rules that describes how the symbols in a
language can be combined to produce valid sentences. In our case, the valid sen-
tences are local search algorithms encoded in C++, but for clarity we will describe
the algorithms in pseudo-code. Fig. 2 shows the grammar that describes the GLS
structure proposed in the previous section. Each line is a production rule of the
form <non-terminal> ::= expression that describes how the non-terminal on
the left-hand side can be replaced by the expression on the right-hand side. Ex-
pressions may contain terminal and/or non-terminals. Alternative expressions
are separated with the symbol “|”. The non-terminal symbol <algorithm> de-
fines the starting point for instantiating an algorithm from the grammar.

The first three rules in the grammar describe the main structure of the GLS
structure proposed earlier (see Fig. 1). The next three rules describe the basic
components of our GLS structure, that is, the perturbation operator (<perturb>),
local search (<ls>), and acceptance criterion (<accept>). Since the rule <ls> can
expand to <ils>which contains again<ls>, a local search can be embeddedwithin
another local search (recursion). The other rules describe the alternatives avail-
able for the various components. Our grammar explicitly contains classical local
search algorithms, but defined in terms of ILS, as detailed in Table 1. Moreover,
the grammar also allows problem-specific components (<pbs_...>), which can be
implemented for each problem tackled.

The possibility of adding problem-specific components is an advantage of our
proposed method. Such components are critical for the success of SLS algorithms.
For example, in this way problem specific construction and destruction mech-
anisms can be incorporated and be used in the destruction/construction phase
(<deconst-construct_perturb>) of an IG algorithm. Hence, our grammar must
account for such components. A practical implementation of our method also
requires to define other problem-specific components in order to describe the
representation of the problem, neighborhood operators, the objective function
and how to read an instance of the problem. For simplicity, we do not include
these in our exposition, but they are implemented in a similar fashion.

Automatic Design of Hybrid Stochastic Local Search Algorithms 149

<algorithm> ::= <initialization> <ils>
<initialization> ::= random | <pbs_initialization>

<ils> ::= ILS(<perturb>, <ls>, <accept>, <stop>)

<perturb> ::= none | <initialization> | <pbs_perturb>
<ls> ::= <ils> | <descent> | <sa> | <rii> | <pii> | <vns> | <ig> | <pbs_ls>

<accept> ::= alwaysAccept | improvingAccept <comparator>
| prob(<value_prob_accept>) | probRandom | <metropolis>
| threshold(<value_threshold_accept>) | <pbs_accept>

<descent> ::= bestDescent(<comparator>, <stop>)
| firstImprDescent(<comparator>, <stop>)

<sa> ::= ILS(<pbs_move>, no_ls, <metropolis>, <stop>)
<rii> ::= ILS(<pbs_move>, no_ls, probRandom, <stop>)
<pii> ::= ILS(<pbs_move>, no_ls, prob(<value_prob_accept>), <stop>)
<vns> ::= ILS(<pbs_variable_move>, firstImprDescent(improvingStrictly),

improvingAccept(improvingStrictly), <stop>)
<ig> ::= ILS(<deconst-construct_perturb>, <ls>, <accept>, <stop>)

<comparator> ::= improvingStrictly | improving
<value_prob_accept> ::= [0, 1]
<value_threshold_accept> ::= [0, 1]
<metropolis> ::= metropolisAccept(<init_temperature>, <final_temperature>,

<decreasing_temperature_ratio>,)
<init_temperature> ::= {1, 2,..., 10000}

<final_temperature> ::= {1, 2,..., 100}
<decreasing_temperature_ratio> ::= [0, 1]
 ::= {1, 2,..., 10000}

Fig. 2. A simplified view of the grammar for the GLS structure

Finally, each ILS in the proposed grammar has its own termination criterion
(<stop>), which is typically a maximum computation time. If there is more than
one level of ILS algorithms, the total computation time must be divided among
them, such that the inner level does not consume all available time. We adopt
here a simple scheme. The top-level ILS stops once the total time is consumed.
Each subsequent level stops after consuming a ratio of the time allocated to
its parent ILS. This ratio is controlled by a parameter tls ∈ {0.1, 0.2, . . . , 1} for
each level of ILS. These ratios have to be tuned in order to generate an efficient
hybrid SLS algorithm.

In practice, an instantiation of the grammar produces an algorithm that is
mapped to source code implementing the individual components. In our case,
the implementation of the components is done using Paradiseo [3], an open-
source C++ framework whose purpose is to facilitate the design of metaheuristics
by providing a library of reusable components. The idea is that an algorithm
designer can re-use the available algorithm components or implement her own
components, and freely combine these components to design new algorithms.
Our proposal goes a step beyond this idea, since in our proposed method the al-
gorithm designer can focus on implementing problem-specific components, while
the grammar takes care of describing the possible algorithm designs given the
available components. The next section describes how to automatically find
a high-performing SLS algorithm for a given problem, among all the possible
algorithm designs that can be generated from the grammar.

150 M.-E. Marmion et al.

3.3 Automatic Generation of Hybrid LS Metaheuristics

Given a particular problem, our goal is to find the highest-performing instan-
tiation of the grammar given above. As mentioned above, techniques such as
genetic programming [17] and grammatical evolution [2] are often used for this
task. Recently, we have shown how to instantiate IG algorithms from a grammar
by means of a parametric representation [16]. The use of a parametric represen-
tation has certain advantages and enables the use of state-of-the-art automatic
configuration tools for offline parameter tuning. In that work, we show that a
parametric representation produced better IG algorithms than the representa-
tion used by grammatical evolution. Here we explore the much larger space of
SLS algorithms defined by the proposed GLS structure.

We follow the method described in our previous work [16] to generate a para-
metric description of the grammar. This requires defining a maximum limit to
the number of ILS levels in the final algorithm, that is, a maximum number of
applications of the rule <ls> in the grammar. This limit has an influence on the
number of parameters required to describe the grammar. In the next section, we
explore the effect of this limit on the results.

From the parameter description and given a set of training instances repre-
sentative of the problem, we apply an automatic configuration tool to search the
space of possible algorithm designs. Here, we use irace [14], a publicly available
implementation of Iterated F-Race [1]. Nonetheless, any automatic configura-
tion tool that handles large numbers of categorical, numerical and conditional
parameters with complex constraints would be appropriate.

Each parameter configuration tested by irace is an instantiation of the gram-
mar, which is mapped to C++ code and compiled into an executable. This exe-
cutable is then run on various training instances by irace in order to determine its
performance. A complete description of the irace procedure is beyond the scope of
the paper. It suffices to say that the irace procedure stops after exhausting a given
budget of algorithm runs, and that it returns the SLS algorithm configuration that
it identified as the best performing one during the tuning.

4 Experimental Setup

We test our proposed method on the permutation flowshop scheduling problem
with weighted tardiness (PFSP-WT). In contrast to our previous work [16],
our aim here is to automatically generate a hybrid SLS algorithm that matches
or outperforms the current state-of-the-art algorithm for the PFSP-WT . First,
we briefly describe the PFSP-WT . Then, we summarize the state-of-the-art
algorithm and the problem-specific components added to our grammar. Finally,
we describe the experimental setup.

4.1 The PFSP-WT

The permutation flowshop scheduling problem (PFSP) encompasses a variety of
problems that are typical of industrial production environments. The common

Automatic Design of Hybrid Stochastic Local Search Algorithms 151

goal of various PFSPs is to schedule n jobs on m machines with the condition
that all jobs must be processed in the same order and jobs are not allowed to
pass each other. Each job i requires, on each machine j, a fixed, non-negative
processing time pij .

In the PFSP-WT , we are asked to determine a schedule that minimizes the
total weighted tardiness. Each job i has a due date di, which denotes the desired
completion time of the job on the last machine, and a priority weight wi, which
denotes its importance. The tardiness of a job i is defined as Ti = max{Ci−di, 0},
where Ci is the completion time of job i on the last machine, and the total
weighted tardiness is given by

∑n
i=1 wi · Ti. This problem is NP -hard even for a

single machine [5].

4.2 Local Search Components for the PFSP-WT

To the best of our knowledge, a state-of-the-art algorithm for the PFSP-WT
was proposed by Dubois-Lacoste et al. [7]. This algorithm, henceforth called
soa-IG, is an iterated greedy algorithm that works as follows. An initial solution
is constructed using a modified version of the well-known NEH algorithm [19]
called NEH-WSLACK. In NEH-WSLACK [6], the WSLACK heuristic provides
the initial order for the NEH algorithm, and the jobs are inserted in the solution
in the order that minimizes the partial objective function, i.e., computed using
the jobs present in the partially constructed solution. The local search in soa-IG
is a first-improvement descent using a swap neighborhood and with a maximum
number of swaps, fixed to 2 · (n− 1) swaps, where n is the number of jobs. The
perturbation operator consists in removing d jobs randomly from the solution.
These jobs are re-inserted one by one to minimize the partial objective function.
Finally, in the acceptance criterion, a new solution that is worse than the current
one is accepted with a probability given by exp(100 · (f(π)− f(π′))/(f(π) · Tc)),
where Tc is a user-defined parameter, f(π) is the objective value of the current
solution and f(π′) is the objective value of the new one. Dubois-Lacoste et al. [7]
suggest the settings d = 5 and Tc = 1.2.

We add the aforementioned components to the grammar of our GLS structure
as additional problem-specific components (Fig. 3). In particular, we add two ini-
tialization methods, NEH with and without the WSLACK heuristic (NEH and
NEH-WSLACK). In addition to the random destruction-construction perturbation
used by soa-IG, we add further problem-specific perturbations based on classical
neighborhood move operators (insert, exchange and swap) and a strength pa-
rameter k that controls the number of random moves applied per perturbation.
The value of k may be fixed or vary during the run (var_) as in VNS. The
problem-specific local search used by SOA is added to the grammar (soa_ls).
Moreover, the pbs(_variable)_move used in the grammar (see Fig 2) are set to
the insert move. Note that, the descents also use the insert move to define the
neighborhood. Finally, we add the acceptance criterion of soa-IG as an additional
acceptance criterion.

152 M.-E. Marmion et al.

<pbs_initialization> ::= NEH | NEH-WSLACK
<pbs_perturb> ::= <deconst-construct_perturb>

| <perturb_move>(<k>)
| var_<perturb_move>(<k>)

<perturb_move> ::= insert | swap | exchange
<k> ::= {1,2,...,10}
<deconst-construct_perturb> ::= soa_ig_perturb(<d>)
<d> ::= {1,2,...,10}
<pbs_ls> ::= soa_ig_ls

<pbs_variable_move> ::= var_<pbs_move>(<k>)
<pbs_move> ::= insert
<pbs_accept> ::= soa_ig_accept(<Tc>)
<Tc> ::= [0,1]

Fig. 3. The extended grammar for the PFSP-WT

4.3 Experimental Protocol

We assess the potential of the proposed method by generating three hybrid SLS
algorithms for the PFSP-WT , and comparing them with soa-IG. In particular,
we generate three algorithms (ALS1, ALS2, and ALS3) for tackling the PFSP-
WT from our GLS structure, by allowing different levels of recursion.

The procedure for generating these three algorithms is as follows. We con-
sider the grammar presented in Fig. 2 and the PFSP-WT -specific extensions
discussed above (Fig. 3). For each level of recursion, we automatically generate
a parameter description. Indeed, the recursion leads to an increasing number of
parameters. With one level of recursion, i.e., a single ILS, the grammar is repre-
sented by 80 parameters. Of these 80 parameters, 27 are categorical and represent
possible algorithmic choices, 25 are integer-valued, and 28 are real-valued. With
two or three levels of recursion, the number of parameters increases to 127 and
174, respectively. Any combination of the values that can be assumed by these
parameters defines a different hybrid SLS algorithm implemented in C++ and
compiled with GCC 4.7.2 with options “-Ofast -flto -march=native”. All
experiments are carried out on a single core of AMD Opteron 6272 processors
(2.1GHz) running CentOS 6.2 Linux.

The parameter description is given to irace together with a number of training
instances. As training instances, we generated 10 random PFSP-WT instances
for each number of jobs in {50, 60, 70, 80, 90, 100} and with 20 machines, following
the procedure described by Minella et al. [18]. Within irace, a specific algorithm,
i.e., a specific parameter configuration, is evaluated by running it on a training
instance with a time limit of 30 CPU-seconds. A single run of irace stops after
exhausting a given budget of evaluations. Since the number of parameters is
different according to the level of recursion, we used different budgets for the
different runs of irace; concretely, 30 000 evaluations for generating ALS1, 40 000
for generating ALS2, and 50 000 for generating ALS3.

The three algorithms ALS1, ALS2 and ALS3 generated by irace are then
run on a set of test instances of size 50x20 and 100x20, different from the
set of training instances. Also soa-IG is run on the same instances. To avoid
differences due to implementation details, we have instantiated soa-IG as one

Automatic Design of Hybrid Stochastic Local Search Algorithms 153

ALS1 Algorithm: ILS(IG)
s0 := NEH-WSLACK()
s∗ := ILS(perturb move insert(k = 6),

ILS(soa ig perturb(d = 9),
firstImprDescent(strict,

tls = 0.5),
soa ig accept(Tc = 0.8956),
tls = 0.8)

improvingAccept,
tls = maxTime)

return s∗

ALS2 Algorithm: ILS(ILS(VNS)) :
s0 := NEH()
s∗ := ILS(perturb none,

ILS(perturb none,
ILS(variable move insert(k = 1),

firstImprDescent(strict,
tls = 0.4),

improvingStrictlyAccept,
tls = 0.4),

metropolisAccept(1548, 56, 0.7447, 7401),
tls = 0.8),

improvingAccept,
tls = maxTime)

return s∗

ALS3 Algorithm: ILS(ILS(VNS)) :
s0 := NEH-WSLACK()
s∗ := ILS(perturb move exchange(k = 7)),

ILS(soa ig perturb(d = 5),
ILS(variable move insert(k = 3),

firstImprDescent(strict, tls = 0.3),
improvingStrictlyAccept, tls = 0.4),

metropolisAccept(4969, 48, 0.8356, 8954), tls = 0.8),
alwaysAccept, tls = maxTime)

return s∗

Fig. 4. Hybrid LS algorithms automatically generated for PFSP-WT

specific SLS algorithm through our grammar, taking care that the algorithm
is implemented correctly in this way. These test instances were generated by
Minella et al. [18] from well-known PFSP instances [22]. Each run is repeated
30 times with different random seeds.

5 Experimental Results

The three algorithm (ALS1, ALS2 and ALS3) generated by irace are shown in
Fig. 4. The first one (ALS1) is an IG algorithm within a classical ILS. It uses
the NEH-WSLACK initialization, then executes a classical ILS with a k-insert
move as perturbation, IG as the subsidiary local search, and an improving

acceptance criterion. The IG has a time limit of 0.8 · maxTime, and it is rep-
resented by an ILS with the construction/deconstruction operator of soa-IG as
the perturbation, a first-improvement descent as the subsidiary local search, and
the IG acceptance criterion. The first-improvement descent has a time limit of
0.5 · 0.8 · maxTime. (Note that the first-improvement descent will actually ter-
minate much before its maximum time limit upon finding a local optimum; in
fact, the time limits mentioned here and in the following do actually not restrict
the computation times of iterative improvement algorithms.)

ALS2 is a VNS algorithm included in an ILS that is itself included in an ILS.
ALS2 uses the NEH initialization, then executes a classical ILS without per-
turbation, an ILS as the subsidiary local search, and an improving acceptance
criterion. The subsidiary ILS has a time limit of 0.8 · maxTime, again no per-
turbation, a VNS as the subsidiary local search, and a Metropolis acceptance
criterion. The VNS has a time limit of 0.4 ·0.8 ·maxTime, and it is represented as

154 M.-E. Marmion et al.

an ILS with a variable insert move perturbation, a first-improvement descent
as the subsidiary local search, and the improvingStrictly acceptance criterion.
The first-improvement descent has a time limit of 0.4 · 0.4 · 0.8 ·maxTime.

ALS3 is also a VNS algorithm included in an ILS that is itself included in an
ILS. Although three levels of recursion were allowed when generating ALS3, this
algorithm only has two levels as ALS2. ALS3 uses the NEH-WSLACK initial-
ization, then executes a classical ILS with a k-exchange move as perturbation,
an ILS as the subsidiary local search, and an acceptance criterion that always
accepts a new solution. The subsidiary ILS has a time limit of 0.8 ·maxTime, and
uses the construction/deconstruction operator of soa-IG as the perturbation, a
VNS as the subsidiary local search, and a Metropolis acceptance criterion. The
VNS has a time limit of 0.4 · 0.8 · maxTime and it is represented as an ILS
with a variable insert move perturbation, a first-improvement descent as the
subsidiary local search, and the improvingStrictly acceptance criterion. The
first-improvement descent has a time limit of 0.3 · 0.4 · 0.8 ·maxTime seconds.

Comparison with the State-of-the-Art Algorithm. To assess the perfor-
mance of the three automatically generated algorithms, we run them 30 times
on the test instances and compare them with soa-IG. Fig. 5 and 6 show the
solution cost reached by each algorithm on each instance. Table 2 gives the best
and mean solution. The behavior of the algorithms is slightly different depending

ALS1 ALS2 ALS3 soa−IG

2
6
6
0
0

2
7
0
0
0

2
7
4
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

2
4
2
0
0

2
4
6
0
0

2
5
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

3
3
0
0
0

3
3
4
0
0

3
3
8
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG3
1
2
0
0

3
1
6
0
0

3
2
0
0
0

3
2
4
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG2
1
9
0
0

2
2
1
0
0

2
2
3
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

1
6
2
0
0

1
6
6
0
0

1
7
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG2
3
6
0
0

2
4
0
0
0

2
4
4
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

2
2
1
0
0

2
2
3
0
0

2
2
5
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

2
7
4
0
0

2
7
8
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

6
3
2
0
0

6
3
6
0
0

6
4
0
0
0

6
4
4
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

Fig. 5. Solution costs obtained by the three automatic SLS algorithms (ALS1, ALS2
and ALS3) and soa-IG on the 50x20 instances

Automatic Design of Hybrid Stochastic Local Search Algorithms 155

ALS1 ALS2 ALS3 soa−IG

4
1
0
0
0
0

4
2
0
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

3
2
5
0
0
0

3
3
5
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

4
9
0
0
0
0

5
0
0
0
0
0

5
1
0
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG5
5
0
0
0
0

5
6
0
0
0
0

5
7
0
0
0
0

5
8
0
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

4
7
5
0
0
0

4
8
5
0
0
0

4
9
5
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG4
8
0
0
0
0

4
9
0
0
0
0

5
0
0
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

3
7
5
0
0
0

3
8
5
0
0
0

3
9
5
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG3
8
5
0
0
0

3
9
5
0
0
0

4
0
5
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG5
6
0
0
0
0

5
7
0
0
0
0

5
8
0
0
0
0

5
9
0
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

ALS1 ALS2 ALS3 soa−IG

4
5
5
0
0
0

4
6
5
0
0
0

4
7
5
0
0
0

Algorithms

F
it
n
e
s
s
 v

a
lu

e

Fig. 6. Solution costs obtained by the three automatic SLS algorithms (ALS1, ALS2
and ALS3) and soa-IG on the 100x20 instances.

on the instance size. The performance of the automatically generated SLS algo-
rithms on the 50x20 instances matches the quality obtained by soa-IG in most
instances, and they are noticeably better on a few. On the 100x20 instances, the
automatic SLS algorithms clearly outperform soa-IG.

In order to assess the performance over each set of instances, we perform a
statistical analysis based on the Friedman test for analyzing non-parametric un-
replicated complete block designs, and its associated post-hoc test for multiple
comparisons [4]. First, we pair the runs performed on the same instance using
the same random seed. This is the blocking factor, and the different algorithms
are the treatment factor. Algorithms are ranked within each block, lower solu-
tion cost corresponds to lower rank. If the Friedman test rejects the hypothesis
that the different algorithms obtain the same mean rank, then we calculate the
difference (ΔR) between the sum of ranks of each algorithm and the best ranked
one (with the lowest sum of ranks). We also calculate the minimum difference be-
tween the sum of ranks of two algorithms that is statistically significant (ΔRα),
given a significance level of α = 0.05. Table 3 gives the results of this analysis,
applied separately to the two sets of instances of size 50x20 and 100x20. We
indicate in bold face the best strategy (the one having the lowest sum of ranks)
and those that are not significantly different from the best one. In both cases,
the best ranked algorithm is significantly better than the rest. However, the best

156 M.-E. Marmion et al.

Table 2. Solution costs obtained by the three automatic SLS algorithms and soa-IG
on the test instances

ALS1 ALS2 ALS3 soa-IG
Instances Best Avg Best Avg Best Avg Best Avg

50x20 ta051 26589 26806.2 26589 26824.9 26589 26756.1 26589 26899.6
ta052 24059 24273.2 24183 24443.2 24096 24390.8 24059 24333.5
ta053 32897 33307.8 32910 33183.7 32910 33206.8 32897 33634.6
ta054 31221 31470.2 31221 31663.3 31221 31572.7 31221 31488.9
ta055 21908 21936.2 21908 21948.3 21908 21975.9 21908 22094.7
ta056 16181 16516.4 16189 16711.6 16189 16740.7 16181 16556.7
ta057 23610 23869 23610 23990.4 23610 23953.9 23974 24211.2
ta058 22091 22207.7 22091 22131.9 22091 22166.8 22091 22262.1
ta059 27333 27521.3 27333 27685.1 27333 27573.1 27333 27577.9
ta060 63078 63286.3 63078 63235.9 63078 63179.9 63117 63456

100x20 ta081 409667 416932.6 409052 415941.5 409697 415306.3 415388 422625
ta082 325472 329803.8 324060 329161.3 323133 327466.6 328014 334437.1
ta083 492455 496922.6 490669 495669.7 487450 494569.8 500142 505772
ta084 553249 562380.8 549600 558824.5 551359 559419.9 550536 568600.5
ta085 472546 480861 474883 481147.7 471402 479941.3 481576 487291.6
ta086 484905 490357.9 480575 489379 480926 488144.7 484892 496511.1
ta087 378567 382931.6 374208 384024.5 376694 382277.9 382122 388511.8
ta088 389673 395809.4 389475 396729.7 385029 394056.2 394226 402836.5
ta089 562109 571495.2 560593 570489.5 561570 568465.7 569769 582829.9
ta090 459232 464206.4 454597 461262.9 457784 462177.3 464264 471961.3

Table 3. Statistical analysis based on the Friedman-test. The second column gives the
minimum difference in the sum of ranks that is statistically significant (ΔRα), given a
significance level of α = 0.05. For each instance set, algorithms are ordered according
to the rank obtained. The numbers in parenthesis are the difference of ranks relative
to the best algorithm. The algorithm that is significantly better than the other ones is
indicated in bold face.

Instances ΔRα Algorithms (ΔR)

50x20 57.92 ALS1, ALS3 (75), ALS2 (115.5), soa-IG (221.5)
100x20 47.04 ALS3, ALS2 (100), ALS1 (143), soa-IG (573)

algorithm is different in each case. Notably, soa-IG is consistently ranked as the
worst by a large margin, especially on the 100x20 instances. These results are
consistent with the observations above. Therefore, our conclusion is that the
current state of the art can be matched and outperformed by the automatically
generated algorithms.

6 Conclusion

Hybridizations of stochastic local search (SLS) methods that manipulate a sin-
gle solution at each step of the search are among the most effective non exact
algorithms for tackling hard combinatorial optimization problems [11]. Nonethe-
less, designing such hybrid SLS algorithms is an arduous task that requires a
significant amount of effort in implementation, experimental setup and analysis.
In practice, algorithm designers only consider a few ad-hoc combinations of SLS

Automatic Design of Hybrid Stochastic Local Search Algorithms 157

algorithms. In this paper, we have shown that the process of designing such algo-
rithms can become mostly automatic. In particular, we have proposed a unified
and practical generalized local search (GLS) structure.

We have shown that the GLS structure unifies the formulation of various sim-
ple SLS methods and their possible combinations (hybridizations) into a single
structure. In fact, the best algorithms generated when applied to the PFSP-
WT are complex hybrids that combine ILS with IG, VNS and even a different
ILS. Our proposal is also practical, in the sense that it generates algorithms
that are as efficient as if they were hand-crafted by a competent programmer.
Two properties of our proposal are key for obtaining such efficiency. First, in-
stead of a complex algorithmic framework with many parameters, our system
generates specific algorithms from a grammar description of the GLS structure.
These specific algorithms, which contain only a small fraction of all the algo-
rithmic components available in the grammar, are generated directly as C++

code and compiled. Second, our grammar description allows algorithm designers
to include problem-specific components, which are often crucial for obtaining
high-performing SLS algorithms. The system takes care of combining, testing
and selecting (or discarding) these problem-specific components among all the
available algorithmic components.

We have evaluated our proposal by applying ourmethod to thePFSP-WT com-
paring it the a state-of-the-art IG algorithm. Our experimental results showed
that the three automatically generated SLS algorithms are able to outperform it
on well-known PFSP-WT instances from the literature.

Despite this initial success, there is considerably room for improvement. First,
we used a moderate amount of computing effort for the automatic generation
of algorithms. Therefore, the real potential of the proposed GLS structure may
not have been exhausted. Second, the definition of the GLS structure is a work
in progress. Future work will extend the GLS structure presented here, and
its implementation, to include additional SLS algorithms, for example, greedy
randomized adaptive search procedure (GRASP) [8] and Tabu Search [9]. Addi-
tionally, possible re-designs of specific aspects of the GLS structure and its im-
plementation may be considered once more computational results are gathered.
Third, additional techniques may prove to be useful for avoiding too complex
SLS algorithm designs. Finally, we will apply the proposed method to other hard
combinatorial problems, with the aim of improving the state of the art.

Acknowledgments. This work was carried out during the tenure of an ERCIM
”Alain Bensoussan” Fellowship Programme. The research leading to these results
has received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 246016.

References

1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race
algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

158 M.-E. Marmion et al.

2. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Transactions on Evolutionary Computation 16(7), 406–417 (2012)

3. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

4. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons,
New York (1999)

5. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard.
Mathematics of Operations Research 15(3), 483–495 (1990)

6. Dubois-Lacoste, J.: A study of Pareto and Two-Phase Local Search Algorithms for
Biobjective Permutation Flowshop Scheduling. Master’s thesis, IRIDIA, Université
Libre de Bruxelles, Belgium (2009)

7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. Computers & Operations Re-
search 38(8), 1219–1236 (2011)

8. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization 6, 109–113 (1995)

9. Glover, F.: Tabu search – Part I. INFORMS Journal on Computing 1(3), 190–206
(1989)

10. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3), 449–467 (2001)

11. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco (2005)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

14. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

15. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and
applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics,
ch. 9, 2nd edn., pp. 363–397. Springer (2010)

16. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars
to parameters: Automatic iterated greedy design for the permutation flow-shop
problem with weighted tardiness. In: 7th International Conference on Learning
and Intelligent Optimization, LION 7. LNCS. Springer (to appear, 2013)

17. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based ge-
netic programming: A survey. Genetic Programming and Evolvable Machines 11(3-
4), 365–396 (2010)

18. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS Journal on Comput-
ing 20(3), 451–471 (2008)

19. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)

20. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization – Algorithms and
Complexity. Prentice Hall, Englewood Cliffs (1982)

21. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Re-
search 177(3), 2033–2049 (2007)

22. Taillard, É.D.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64(2), 278–285 (1993)

GRASP and Variable Neighborhood Search

for the Virtual Network Mapping Problem�

Johannes Inführ and Günther R. Raidl

Vienna University of Technology
Favoritenstraße 9–11/1861, 1040 Vienna, Austria

{infuehr,raidl}@ads.tuwien.ac.at

Abstract. Virtual network mapping considers the problem of fitting
multiple virtual networks into one physical network in a cost-optimal way.
This problem arises in Future Internet research. One of the core ideas is
to utilize different virtual networks to cater to different application classes,
each with customized protocols that deliver the required Quality-of-
Service. In this work we introduce a Greedy Randomized Adaptive Search
Procedure (GRASP) andVariable Neighborhood Search (VNS) algorithm
for solving the Virtual Network Mapping Problem. Both algorithms make
use of a Variable Neighborhood Descent with ruin-and-recreate neighbor-
hoods. We show that the VNS approach significantly outperforms the pre-
viously best known algorithms for this problem.

Keywords: Virtual Network Mapping, Variable Neighborhood Search,
GRASP.

1 Introduction

The Internet as it exists today suffers from ossification [20]. It is hard or even
impossible to introduce new technologies, even though they would bring large
improvements in Quality-of-Service. Examples for such technologies include Ex-
plicit Congestion Notification [21] or Differentiated Services (a Quality-of-Service
framework) [5]. The most prominent example is probably IPV6 [9], which was
first specified in 1998 and is still not implemented completely, despite the obvious
demand. The main reason why upgrades are so problematic is that changes to
the underlying technology, such as employed protocols, would be very disruptive
for the users who depend on the Internet working exactly as it does now.

Network virtualization has been identified as a central technology for alle-
viating the ossification of the Internet in the Future Internet research commu-
nity [3,4]. It is already being successfully employed in scientific network testbeds
such as GENI [1], G-Lab [25] or PlanetLab [8]. In this context, network virtu-
alization is used to share large scale research networks among different research
groups. Each group uses its own virtual network to perform experiments, with-
out fear of interference by other groups even though they are using the same

� This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-027.

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 159–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

160 J. Inführ and G.R. Raidl

underlying physical network. With network virtualization, changes to the Inter-
net technology can be employed in an incremental and non-disruptive manner.
Old and new technologies can coexist in different virtual networks. However,
virtualization does not have to be just a device to gradually move from one
technology to the next. Having multiple virtual networks in place could be the
preferred state, because it allows specialization of the virtual networks to better
cater to the requirements of different application classes. For a survey on network
virtualization, its application and available technologies, see [6].

The Virtual Network Mapping Problem (VNMP) arises in this context. The
multitude of virtual networks (VNs), each with different characteristics and pro-
tocols, still has to be realized by utilizing the available physical network infras-
tructure (the substrate) and the available resources. Additionally, VNs have to
be realized in such a way that they fulfill the required specification with respect
to Quality-of-Service parameters such as available communication bandwidth
and delay.

In this work, we introduce a Greedy Randomized Adaptive Search Procedure
(GRASP) and a Variable Neighborhood Search (VNS) algorithm for solving the
VNMP. Instead of simple Local Search, both algorithms make use of a Variable
Neighborhood Descent with ruin-and-recreate neighborhoods [24]. We will show
that the VNS approach significantly outperforms the previously best known
algorithms from the literature.

The rest of this work is structured as follows: Section 2 defines the VNMP
formally, followed by a discussion of the relevant background in Section 3. The
GRASP and VNS approaches are presented in Sections 4 and 5. Section 6 con-
tains the results of the experimental evaluation of our proposed algorithms and
their comparison to other algorithms presented in the literature. We conclude in
Section 7.

2 The Virtual Network Mapping Problem

Three types of information are required to fully specify a VNMP: The substrate
network (i.e. the physical network) with its available resources, the virtual net-
works (VNs) that need to be realized with their resource requirements and the
location constraints between the nodes of the VNs and the substrate nodes.

A directed graph G = (V,A) with node set V and arc set A models the
substrate network. Each substrate node i ∈ V has a CPU power of ci ∈ N+. This
CPU power is used by the VN nodes mapped to i, but also by all implementations
of VN arcs traversing it. We assume that routing one unit of bandwidth (BW)
requires one unit of CPU power. It is inconsequential whether this BW is simply
relayed or has originated from a virtual node mapped to the substrate node.
Even if both, the sending and receiving virtual node are mapped to the same
substrate node, CPU capacity is required to route traffic from one virtual node
to the other. Substrate arcs e ∈ A have a BW capacity be ∈ N+ and a delay
de ∈ N+ that is incurred when data is sent across e.

GRASP and VNS for Virtual Network Mapping 161

Virtual Network G′

Substrate Network G

3

a′

1

b′

11
a

6

b

12
c

7

d

8
e

(7;12)

(1
3;
6)

(8;6)

(4;
3)

(7;10)

(1
0;
3)

(11;2)

Mapping M

Fig. 1. An illustrative VNMP instance

The disconnected components of another directed graph G′ = (V ′, A′) model
the virtual networks. Each node k ∈ V ′ requires a CPU power ck ∈ N+. Each
arc f ∈ A′ has a bandwidth requirement bf ∈ N+ and a maximum allowed delay
df ∈ N+.

The substrate nodes that a virtual node k is allowed to use are defined by the
set M ⊆ V ′ × V . By s(a) and t(a), ∀a ∈ A ∪ A′, we denote arc a’s source and
target nodes, respectively.

Two components are required to specify a valid VNMP solution: A mapping
m : V ′ → V such that (k,m(k)) ∈ M, ∀k ∈ V ′ and a substrate path Pf ⊆ A
from m(s(f)) to m(t(f)) for every f ∈ A′ that does not exceed df . The total
CPU load on each i ∈ V (caused by virtual nodes hosted on i and traversing
BW) is not allowed to exceed ci and the BW capacities be have to be respected,
too.

The objective of the VNMP is to minimize the total substrate usage cost. A
price of pVi ∈ N+ has to be paid for every i ∈ V that hosts at least one virtual
node. Using a substrate arc e ∈ A costs pAe ∈ N+. The sum of incurred node and
arc usage costs is the total substrate usage cost Cu.

Already finding a valid solution to the VNMP is NP-hard [2]. Therefore we
cannot expect an optimization approach to always be able to find valid solutions
(which may not even exist) within practical time. To get around this problem,
we allow the possibility of adding CPU power to the substrate, each additional
unit costing CCPU, and increasing the available BW on substrate arcs, costing
CBW per additional unit. The sum of the costs for additional resources is the
additional resource cost Ca. For valid solutions to the VNMP, Ca = 0. We call a
VNMP instance solved if a valid solution could be obtained. We set CCPU = 1
and CBW = 5 in this work, which are values we also used in [19], to reflect
the fact that it is cheaper to add additional CPU capacity to a router than to
increase the BW of a network link. We use Ca as primary objective that has to
be minimized. Only if two solutions have the same Ca the one with lower Cu is
preferred. This has the advantage of guiding solutions towards validity during
search.

162 J. Inführ and G.R. Raidl

Figure 1 shows a simple VNMP instance. The virtual network G′ contains
two virtual nodes, showing their CPU requirement, and a virtual arc connect-
ing them, labeled with its BW requirement and allowed delay. The substrate
network G contains the physical network nodes showing their CPU resources
and the available links between the nodes, labeled by their BW capacity and
the delay that is incurred when data is transmitted across them. The dashed
lines show M , i.e. the allowed locations of the virtual nodes. Usage costs have
been omitted for clarity. This example has only one valid solution, as b′ cannot
actually be mapped to c, even though c has enough resources available. The
path implementing the virtual connection cannot use b, because it does not have
enough resources to route the required BW. The direct connection from a to c
lacks the required BW capacity, and the path (a, d, c) incurs too much delay. So
the only valid solution is to map a′ to a, b′ to e and use the path (a, d, e) to
implement the virtual arc between a′ and b′.

3 Background and Related Work

The Greedy Randomized Adaptive Search Procedure (GRASP) [10] is a meta-
heuristic for combinatorial optimization problems. It works by continually re-
peating two steps. The first step is the randomized greedy construction of a
solution to the problem to be solved. A second step is applying a local improve-
ment technique to the constructed solution. These two steps are repeated until a
termination criterion (like runtime or number of iterations) is reached. The best
found solution is the final result of GRASP. How the randomized greedy solution
construction works is a central aspect of GRASP. It iteratively builds a solution
by adding components that seem good (but not necessarily the best) according
to a greedy criterion. All possible components are collected in a candidate list
(CL). The restricted candidate list (RCL) is created from the CL, usually by
selecting all components from CL that are good enough (only a limited devia-
tion from the perceived best alternative) or by selecting the best ones until the
RCL has a specified length. The actual component that is added to the solution
is selected uniformly at random from the RCL. This procedure usually leads to
promising and at the same time diversified solutions for local optimization. A
comprehensive overview of GRASP can be found in [11,22]. For hybridization
techniques see [12].

The General Variable Neighborhood Search (VNS) [13] algorithm is built
around Variable Neighborhood Descent. In Variable Neighborhood Descent, a lo-
cal search is performed systematically switching between a series of neighborhood
structures until a solution is reached that is local optimal w.r.t. all neighborhood
structures. VNS adds diversification by applying random moves, called shaking,
in successively larger neighborhood structures to escape the basins of attraction of
local optima. VNS is a very successful metaheuristic for combinatorial optimiza-
tion problems, for more details and a survey of applications see [14].

The VNMP appears in the literature as Network Testbed Mapping [23], Vir-
tual Network Embedding [7], Virtual Network Assignment [29] and Virtual

GRASP and VNS for Virtual Network Mapping 163

Network Resource Allocation [26]. Embedding virtual networks into a shared
substrate is always the central problem. Differences arise with the considered
resources. For example, the authors of [29] do not consider any resources explic-
itly, [23,26] use bandwidth and [7,27] add CPU power. We extend on the latter
by also considering the interaction between routing and hosting virtual networks
and supporting delay constraints for the virtual connections. There are different
methods for constraining the allowed mapping locations of virtual nodes present
in the literature. The nodes of a VN might be required to be located at different
substrate nodes [29], the mapping might be predetermined [26] or a a distance
limit between a virtual node and the substrate node that hosts it might be in
effect [7]. The VNMP model we utilize in this work can represent all of these
variants and is thus most flexible. As for the paths used to implement a vir-
tual connection, there are two approaches: using a single path or using multiple
paths. Using multiple paths [7,28]) has the advantage that the problem of finding
the implementations for the virtual connections becomes polynomially solvable
when bandwidth may be arbitrarily split. However, using multiple paths to im-
plement a virtual connection makes its observed behavior much more erratic,
as it depends on multiple physical links. Therefore, we utilize here only a single
path to implement virtual connections.

4 GRASP

A key component for a well working GRASP approach is the randomized greedy
heuristic. We use the best identified construction heuristic configuration from our
previous work in [19] as basis for randomization. In a nutshell, as long as virtual
arcs are implementable (its source and target node have been mapped), the
virtual arc f with the smallest fraction of df to shortest possible delay between
m(s(f)) to m(t(f)) is implemented by the path with the least increase in Cu

without increasing Ca. If no such virtual arc exists, the unmapped node with the
highest total CPU requirement (CPU requirement of the virtual node and BW of
connected virtual arcs) is selected from the VN that has the highest sum of total
CPU requirements. It is mapped to the substrate node with the highest amount
of free CPU capacity, ties are broken by using the amount of free incoming and
outgoing bandwidth. Based on our previous work, we know that the substrate
node selection strategy is the most influential for the overall performance of the
construction heuristic. Therefore we concentrate on randomizing this strategy
and keep all other parts of the randomized construction heuristic deterministic.
We introduce a parameter α ∈ [0, 1] that controls the level of randomization.
When selecting a suitable substrate node for a virtual node, we collect a list
of possible targets sorted by the available CPU and BW, the candidate list.
Let fCPU

Best denote the free CPU capacity and fBW
Best the free BW capacity of the

node that would have been selected by the deterministic strategy. We build the
restricted candidate list by selecting all nodes i with fCPU

i ≥ αfCPU
Best ∧ fBW

i ≥
αfBW

Best. If f
CPU
Best or fBW

Best is negative (i.e. more resources are used than actually are
available), α is replaced by 2−α in the relevant acceptance criterion. The actual
mapping target is chosen uniformly at random from the restricted candidate list.

164 J. Inführ and G.R. Raidl

After the randomized greedy solution is generated, a local improvement strat-
egy is applied. For comparison purposes, we choose the same method the Genetic
Algorithm (GA) presented in [18] uses. It is a Variable Neighborhood Descent ap-
proach based on three ruin-and-recreate [24] neighborhoods, which are searched
in a first-improvement fashion. They remove a part of a solution and recon-
struct it using a construction heuristic designed for this rebuilding task (CH3
from [19]). The following short description of the used neighborhoods skips this
rebuilding step. The first neighborhood is the set of all solutions reachable by
removing the mapping of a single virtual node. The second neighborhood is the
set of all solutions reachable by clearing a substrate arc, which means that all
virtual arc implementations using this arc are removed. The third neighborhood
is the set of all solutions reachable by clearing a substrate node. This means
that all virtual nodes mapped to the substrate node, and all virtual arc imple-
mentations using this node, are removed from the solution. This neighborhood
configuration was selected because it offers a good balance between required
runtime and solution quality. Also, preliminary experiments showed that using
simple Local Search is not competitive. In this work, we will call this configu-
ration VND. We use VND without timelimit to improve solutions generated by
the randomized greedy heuristic. If the found solution is better than the best
solution found so far, we keep it. Then we repeat the randomized construction
and improvement steps until the timelimit is reached, the best found solution is
the result of GRASP.

5 VNS

Our proposed VNS algorithm uses a single type of shaking neighborhood in
multiple configurations. Let this neighborhood be called Ns(v), with v ∈ [0, 1]
as parameter controlling the shaking vigor. Ns is based on the idea of clearing
substrate nodes. When Ns(v) is applied to a VNMP solution, Ns randomly
selects �v · |V |� substrate nodes. All virtual arc implementations that traverse
the selected nodes are removed from the solution. All virtual nodes mapped to
the selected substrate nodes are mapped to a substrate node that is allowed by
M but not selected. If no such node exists, the mapping remains unchanged.
The resulting solution is completed and improved by VND to create the final
solution of one VNS iteration. During the execution of VNS we apply Ns with
different values for v. The used values are determined by two parameters, the
base neighborhood size vb and the count of iterations that have not resulted
in an improvement of the best found solution nni. At the beginning of a new
iteration, Ns(vbnni) is applied to the currently best found solution and the
result is improved by VND. If the solution created in this manner is better than
the currently best known solution, nni is reset to one, otherwise nni is increased
by one. The upper limit for nni is nmax. If this value is exceeded, nni is reset
to one. The largest shaking neighborhood applied during VNS is Ns(vbnmax).
Values for vb and nmax have to be chosen such that vbnmax ≤ 1. The shaking and
improvement steps are applied until the timelimit is reached. The initial solution

GRASP and VNS for Virtual Network Mapping 165

VNMPSolution best=initialize();
nni=1;
while(!terminate()){

VNMPSolution candidate=shake(Ns(vbnni),best);
applyVND(candidate);

if(candidate<best){ //New best solution found
best=candidate;
nni=1;

}else{
++nni;
if(nni>nmax)nni=1;

}
}
return best;

Listing 1.1. VNS for the VNMP

for VNS is built by the same method as for GRASP, but without randomization.
Listing 1.1 shows the general outline of the proposed VNS.

6 Results

The proposed GRASP and VNS algorithms have been tested on the instances
available from [16]. This instance set contains VNMP instances from 20 to 1000
substrate nodes, with 30 instances of each size. Every instance includes 40 VNs
that have to be implemented. The VNs have different properties to cover different
use-cases, like high BW requirements for P2P applications or low delays for VoIP
applications. Table 1 shows the main properties of the used instances, for more
information see [19]. To analyze the behaviour of the proposed algorithms in
different load cases, we also tested with instances from the instance set that had
some of their VNs removed. A load of 0.5 means that only 50% of the available
VNs were used. We considered load levels of 0.1, 0.5, 0.8 and 1. This results in

Table 1. Properties of the used VNMP instances: average number of substrate nodes
(V) and arcs (A), virtual nodes (V ′) and arcs (A′) and the average number of allowed
map targets for each virtual node (MV ′)

Size |V | |A| |V ′| |A′| |MV ′ |
20 20 40.8 220.7 431.5 3.8
30 30 65.8 276.9 629.0 4.9
50 50 116.4 398.9 946.9 6.8

100 100 233.4 704.6 1753.1 11.1
200 200 490.2 691.5 1694.7 17.3
500 500 1247.3 707.7 1732.5 30.2

1000 1000 2528.6 700.2 1722.8 47.2

166 J. Inführ and G.R. Raidl

a total of 840 VNMP instances, 120 for every size and 210 for every load level,
so the results presented later in this section are averages of 120 or 210 runs
respectively. All algorithms compared in this section have been run on one core
of an Intel Xeon E5540 multi-core system with 2.53 GHz and 3 GB RAM per
core. A CPU-time limit of 200 seconds was applied for sizes up to 100 nodes, 500
seconds for larger instances. All reported results of statistical tests are based on
a paired Wilcoxon signed rank test with a 5% level of significance.

Our design goal for the proposed algorithms was finding good solutions to
the VNMP with respect to the objective function. This is significantly differ-
ent from finding just valid solutions. The following results will show cases where
algorithms find better results on average while solving fewer instances. To recog-
nize the algorithms that create good solutions, we cannot look for low substrate
usage costs Cu, because higher values might be better if the additional resource
costs Ca are lower. Therefore we use the following ranking procedure as intro-
duced in [19]. The achieved results of each algorithm under comparison for a
specific instance are sorted in ascending order. The algorithm that achieved the
best results gets rank 0, the second best rank 1 and so on. Algorithms with the
same result get the same rank. To have a value that is comparable across differ-
ent instances, the rank is divided by the maximum rank to create the relative
rank Rrel. If all results are the same (i.e. the highest rank is zero), Rrel is zero
as well for all algorithms. A Rrel of 0.1 means that the results of the algorithm
in question are within the top 10% of compared algorithms.

Section 6.1 compares the performance of the GRASP approach for different
values of α, Section 6.2 analyzes the performance of the VNS approach for differ-
ent shaking neighborhood configurations and Section 6.3 shows a comparison of
the best GRASP and VNS approach with other approaches from the literature.

6.1 GRASP

To evaluate the influence of α on the GRASP approach, we tested values for α
from 0 (completely random initial solution) to 0.9 in 0.1 increments and 0.99
(very similar initial solutions). The average performance depending on the in-
stance size can be seen in Table 2. The symbol next to the relative rank shows the
relation to the best Rrel based on a statistical test, > means that the reported
Rrel is significantly larger than the best, = means that no significant difference
could be observed. Immediately visible is the tendency of the best α value to
rise with the instance size. For size 20, α ∈ [0, 0.4] yields the best results w.r.t.
Rrel, while for size 1000 α ∈ [0.5, 0.8].

The reason for this behaviour is that for small instances, the randomized
construction heuristic does not have to make as many random choices as for
the larger instance sizes. Therefore, to get the same search space coverage w.r.t
initial solutions, α has to be small for small instances. The results for the larger
instances show that if α is too small, then the performance degrades, because the
initial solution is far too random. Another contributing factor is that VND takes
longer to optimize a very random initial solution, as can be seen by the iteration
counts. Therefore, fewer iterations can be performed in the same amount of time.

GRASP and VNS for Virtual Network Mapping 167

Table 2. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different values
of α per instance size

Size GR-0.00 GR-0.10 GR-0.20 GR-0.30 GR-0.40 GR-0.50 GR-0.60 GR-0.70 GR-0.80 GR-0.90 GR-0.99

Rrel 20 0.278 = 0.216 = 0.219 = 0.235 = 0.215 = 0.331 > 0.384 > 0.445 > 0.516 > 0.618 > 0.842 >

30 0.431 > 0.337 > 0.318 = 0.288 = 0.266 = 0.341 > 0.337 > 0.461 > 0.551 > 0.626 > 0.826 >

50 0.549 > 0.512 > 0.463 > 0.362 > 0.311 = 0.329 = 0.402 > 0.484 > 0.536 > 0.640 > 0.868 >

100 0.870 > 0.665 > 0.468 > 0.362 = 0.319 = 0.359 = 0.410 > 0.384 > 0.460 > 0.554 > 0.692 >

200 0.889 > 0.737 > 0.488 > 0.361 > 0.301 = 0.301 = 0.313 = 0.339 = 0.436 > 0.531 > 0.740 >

500 0.856 > 0.718 > 0.511 > 0.449 > 0.381 > 0.306 = 0.325 = 0.358 > 0.390 > 0.488 > 0.617 >

1000 0.902 > 0.665 > 0.623 > 0.529 > 0.425 > 0.354 = 0.338 = 0.341 = 0.375 = 0.426 > 0.470 >

Its. 20 1998 2323 2641 2916 3142 3291 3453 3677 3751 3836 3897

30 780 896 1034 1153 1248 1399 1534 1588 1676 1667 1664

50 282 329 390 442 481 497 531 553 565 567 566

100 39 47 56 62 66 71 77 82 83 87 87

200 45 54 66 78 90 98 103 112 116 127 129

500 15 18 22 26 30 33 36 39 41 41 42

1000 4 5 7 7 9 10 11 12 12 12 12

Solv. 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 99.2 98.3 97.5 97.5 99.2 99.2 97.5 95.8

200 95.8 99.2 99.2 99.2 98.3 97.5 97.5 96.7 95.8 95.0 91.7

500 71.7 80.8 81.7 81.7 76.7 80.8 78.3 75.8 77.5 75.0 70.0

1000 34.2 58.3 57.5 55.8 60.0 55.0 54.2 55.8 55.0 55.0 55.8

Note that for finding valid solutions, low α values seem to be beneficial, even for
large instances.

Table 3 shows the influence of α for different load cases. Again we can observe
that higher values of α allow for more iterations, but they do not lead to improved
performance for high load. Instead, a value for α ∈ [0.4, 0.5] seems to be best
suited when performance at a specific load level across different sizes is most
important. Low α values are again beneficial for finding valid solutions.

Based on these results, we select the GRASP approach with α = 0.4 for
further comparisons.

6.2 VNS

To analyze the influence of different shaking neighborhood configurations, we
tested nmax ∈ 2, 5, 10 and vb ∈ 0.01, 0.05, 0.1 to cover the range from very small
changes with few shaking neighborhoods (i.e. few different configurations for Ns)
to large changes with a lot of neighborhoods. Table 4 shows the performance of
different neighborhood configurations based on instance size. The different con-
figurations are labeled as “VNS-nmax.vb”, e.g. VNS-2.05 uses nmax = 2 and
vb = 0.05. We can see a similar behaviour to GRASP. For smaller sizes, large
shaking neighborhoods are beneficial, while large instance sizes require small
neighborhoods for the best levels of performance. Smaller shaking neighborhoods
lead to an increased number of iterations in the same amount of time. Also note
the similarity in number of iterations between VNS-5.05 and VNS-2.10, caused
by the very similar maximum shaking neighborhood sizes. Indeed, between sizes

168 J. Inführ and G.R. Raidl

Table 3. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different values
of α per load

Load GR-0.00 GR-0.10 GR-0.20 GR-0.30 GR-0.40 GR-0.50 GR-0.60 GR-0.70 GR-0.80 GR-0.90 GR-0.99

Rrel 0.10 0.520 > 0.413 > 0.330 > 0.288 = 0.299 = 0.335 = 0.419 > 0.495 > 0.573 > 0.683 > 0.766 >

0.50 0.744 > 0.586 > 0.445 > 0.384 > 0.307 = 0.313 = 0.324 = 0.354 = 0.473 > 0.574 > 0.773 >

0.80 0.782 > 0.634 > 0.521 > 0.430 > 0.305 = 0.318 = 0.312 = 0.350 > 0.397 > 0.482 > 0.695 >

1.00 0.682 > 0.568 > 0.470 > 0.377 = 0.356 = 0.360 = 0.380 = 0.407 > 0.423 > 0.482 > 0.654 >

Its. 0.10 1529 1737 1990 2193 2348 2490 2638 2781 2871 2917 2947

0.50 108 142 173 208 239 267 298 322 330 333 336

0.80 80 105 120 137 155 169 180 190 192 195 201

1.00 90 114 126 139 151 160 167 173 175 176 173

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 0.50 90.0 97.1 97.6 97.1 97.1 96.7 96.7 96.7 96.2 95.7 95.7

0.80 81.0 90.5 89.0 89.5 90.0 87.6 87.6 89.0 88.6 86.7 85.2

1.00 72.9 77.1 78.1 76.7 74.8 76.2 74.3 72.9 73.8 73.3 69.0

Table 4. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different shaking
neighborhood configurations per instance size

Size VNS-2.01 VNS-5.01 VNS-10.01 VNS-2.05 VNS-5.05 VNS-10.05 VNS-2.10 VNS-5.10 VNS-10.10

Rrel 20 0.389 > 0.436 > 0.396 > 0.416 > 0.240 > 0.244 > 0.340 > 0.198 = 0.163 =

30 0.402 > 0.404 > 0.394 > 0.344 > 0.305 > 0.293 > 0.229 = 0.304 > 0.283 =

50 0.457 > 0.390 = 0.356 = 0.396 = 0.333 = 0.368 = 0.338 = 0.390 = 0.472 >

100 0.432 > 0.371 = 0.372 = 0.349 = 0.486 > 0.506 > 0.425 > 0.578 > 0.630 >

200 0.460 > 0.360 = 0.316 = 0.376 > 0.490 > 0.554 > 0.479 > 0.591 > 0.685 >

500 0.467 > 0.420 > 0.344 = 0.395 = 0.500 > 0.520 > 0.547 > 0.658 > 0.624 >

1000 0.468 > 0.339 = 0.366 = 0.462 > 0.459 > 0.518 > 0.579 > 0.596 > 0.665 >

Its. 20 7327 7327 7345 7325 6796 5812 6822 5701 4742

30 3721 3699 3670 3590 3132 2577 3156 2511 2010

50 1766 1758 1664 1583 1321 1042 1327 1001 786

100 415 389 346 311 237 181 233 169 127

200 504 450 399 349 270 208 260 192 147

500 157 143 124 110 85 67 83 62 48

1000 51 44 39 33 25 20 25 18 14

Solv. 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 98.3 99.2 100.0 100.0 99.2 100.0 100.0 100.0 99.2

200 93.3 95.8 97.5 95.8 95.0 99.2 99.2 98.3 100.0

500 74.2 74.2 76.7 79.2 76.7 77.5 80.0 76.7 76.7

1000 55.8 55.0 59.2 53.3 55.0 54.2 55.0 55.0 53.3

50 and 500, there is no significant difference between the two configurations.
Larger shaking neighborhoods seem to increase the chance of finding valid so-
lutions. The results indicate that increasing the shaking neighborhood size in
multiple small steps works better than few large steps. This can be seen with con-
figurations that have the same maximum shaking neighborhood size. VNS-10.01
and VNS-2.05 show no significant difference in Rrel, except for sizes 200 and
1000 where using smaller steps is significantly better. The difference is more
pronounced for VNS-10.05 and VNS-5.10. Until size 50 there is no difference in
performance, for larger instances using smaller steps is significantly better.

GRASP and VNS for Virtual Network Mapping 169

Table 5. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different shaking
neighborhood configurations per load

Load VNS-2.01 VNS-5.01 VNS-10.01 VNS-2.05 VNS-5.05 VNS-10.05 VNS-2.10 VNS-5.10 VNS-10.10

Rrel 0.10 0.393 > 0.289 = 0.253 = 0.242 = 0.239 = 0.250 = 0.250 = 0.304 > 0.390 >

0.50 0.464 > 0.408 = 0.360 = 0.407 > 0.415 > 0.458 > 0.436 > 0.486 > 0.516 >

0.80 0.446 = 0.451 = 0.408 = 0.467 > 0.471 > 0.479 > 0.486 > 0.559 > 0.535 >

1.00 0.454 = 0.407 = 0.432 = 0.449 = 0.482 > 0.528 > 0.506 > 0.546 > 0.572 >

Its. 0.10 6220 6176 6100 5992 5451 4640 5472 4542 3744

0.50 924 905 877 853 712 550 708 526 410

0.80 483 477 458 444 360 274 367 262 204

1.00 339 335 329 312 257 196 256 186 141

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 0.50 95.2 96.7 98.1 96.7 97.1 97.1 97.6 97.1 96.2

0.80 87.1 87.1 88.6 85.7 86.7 87.1 88.6 87.1 88.6

1.00 72.9 72.9 75.2 76.7 73.8 76.2 76.2 75.7 74.8

The influence of the shaking neighborhood configuration across different load
cases can be seen in Table 5. Small shaking neighborhoods lead to the best
performance. Load 0.10 is an exception, as larger shaking neighborhoods achieve
the best results. As for the configurations with the same maximum shaking
neighborhood size, smaller steps are an significant advantage for half of the load
cases.

Based on these results, we chose VNS-10.01 for further comparison.

6.3 Comparison

In this section, we compare our proposed algorithms GR-0.4 and VNS-10.01
with approaches from the literature. These are GA-D-VND, the Genetic Algo-
rithm for the VNMP introduced in [18], B-VND, the Variable Neighborhood
Descent algorithm with the best performance with respect to Rrel from [19] and
FLOW, a multicommodity-flow based integer linear programming formulation
presented in [17] with small modifications to match the VNMP model used in
this work. FLOW was solved by CPLEX 12.4 [15]. We also compare to VND,
the Variable Neighborhood Descent algorithm used within GR-0.4, VNS-10.01
and GA-D-VND. The timelimits used in [18] were the same as the ones used
in this work. The results of VND and B-VND had a timelimit of 1000 seconds
and FLOW had 10000 seconds. Note that we do not directly compare FLOW
to the other algorithms, because it can fail to generate any solution to a VNMP
instance due to runtime or memory limits. This is true starting with instances
of size 50, and for size 1000 FLOW only generates a solution for 30 out of 120
instances. However, for instances with a result generated by FLOW, this result
was used for the calculation of Rrel. For comparison purposes, missing results
were treated as Rrel = 1 and as instance that could not be solved, so these values
can be directly compared with the other reported results. The reported values
for the average runtime and Ca are only based on instances where FLOW gen-
erated a solution and are therefore not directly comparable to the other results.

170 J. Inführ and G.R. Raidl

Table 6. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) or runtime, fraction of solved instances (Solv.) in percent and average
Ca for different solution methods per instance size

Size GR-0.4 VNS-10.01 GA-D-VND VND B-VND FLOW

Rrel 20 0.476 > 0.222 = 0.192 = 0.912 > 0.753 > 0.000

30 0.518 > 0.222 = 0.241 = 0.920 > 0.705 > 0.000

50 0.598 > 0.214 = 0.275 > 0.930 > 0.696 > 0.029

100 0.606 > 0.187 = 0.368 > 0.916 > 0.564 > 0.362

200 0.577 > 0.197 = 0.413 > 0.859 > 0.372 > 0.655

500 0.628 > 0.489 > 0.538 > 0.846 > 0.171 = 0.750

1000 0.623 > 0.592 > 0.589 > 0.569 > 0.228 = 0.817

Its. / 20 3142 7345 8185 0.2 0.4 131.2

t[s] 30 1248 3670 3899 0.7 1.3 1338.8

50 481 1664 1663 2.1 4.2 2832.1

100 66 346 314 16.0 29.7 6117.2

200 90 399 333 40.2 119.7 7140.3

500 30 124 94 126.6 605.1 3211.1

1000 9 39 23 397.1 828.1 9114.5

Solv. 20 100.0 100.0 100.0 96.7 97.5 100.0

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0

50 100.0 100.0 100.0 99.2 98.3 97.5

100 98.3 100.0 100.0 95.0 97.5 64.1

200 98.3 97.5 95.8 90.0 98.3 35.0

500 76.7 76.7 76.7 73.3 90.8 25.0

1000 60.0 59.2 58.3 57.5 61.7 18.3

Ca 20 0.0 0.0 0.0 13.1 4.5 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 4.9 2.1 0.0

100 2.5 0.0 0.0 6.3 3.3 19142.5

200 0.4 6.1 3.0 19.0 1.0 71648.7

500 47.1 68.5 77.3 97.6 13.9 3413.8

1000 245.5 311.2 215.9 184.1 198.9 3952.2

Note that we show the average runtime only for VND, B-VND and FLOW, since
the other algorithms were run until the timelimit was reached, so we show the
performed iterations for them instead. For reference, the average runtime when
considering different load cases is 328.5 seconds.

Table 6 shows the performance of the compared algorithms in relation to each
other. It can be seen that the results achieved by the GR-0.4 are disappointing.
The GRASP approach is significantly outperformed by the VNS and GA algo-
rithms. However, using GRASP around VND is significantly better than using
VND alone, except for size 1000, where both perform equally well. B-VND can
only be beaten or matched up to size 100, then B-VND achieves significantly
better results. The VNS approach works far better, achieving the best solutions

GRASP and VNS for Virtual Network Mapping 171

Table 7. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) or runtime, fraction of solved instances (Solv.) in percent and average
Ca for different solution methods load

Load GR-0.4 VNS-10.01 GA-D-VND VND B-VND FLOW

Rrel 0.10 0.497 > 0.215 = 0.315 > 0.876 > 0.528 > 0.045

0.50 0.616 > 0.294 = 0.384 > 0.913 > 0.450 > 0.393

0.80 0.602 > 0.333 = 0.397 > 0.841 > 0.484 > 0.517

1.00 0.586 > 0.371 = 0.400 = 0.771 > 0.532 > 0.538

Its. / 0.10 2348 6100 6354 5.6 41.7 1946.6

t[s] 0.50 239 877 1016 50.2 218.3 3216.1

0.80 155 458 537 111.2 316.2 4441.3

1.00 151 329 385 166.0 331.6 5668.0

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 95.7

[%] 0.50 97.1 98.1 97.1 95.7 99.0 61.0

0.80 90.0 88.6 88.6 85.7 91.9 48.6

1.00 74.8 75.2 74.8 68.1 77.1 46.2

Ca 0.10 0.0 0.0 0.0 0.0 0.0 567.3

0.50 0.5 6.9 0.6 0.7 0.1 4306.8

0.80 18.3 29.6 21.4 30.0 11.4 20967.5

1.00 150.0 183.9 147.3 155.0 116.3 43651.8

for sizes 30 to 200. For size 20, the GA approach works marginally better. Keep
in mind however, that we selected a shaking configuration for the VNS that
was significantly worse for the smallest instance sizes than the alternatives, so
it should be possible to at least match the GA with a different configuration.
For the two largest sizes, VNS is beaten by B-VND, partly because the B-VND
had more runtime available (and also made use of it) as evidenced by the aver-
age runtimes. Also, it is not a coincidence that there is no significant difference
between the GRASP, VNS, GA and VND approaches for size 1000. They all
use VND as local improvement strategy, and as can be seen by the iteration
count, not enough iterations could be performed to reap the benefits of the more
involved heuristics within the available runtime. FLOW generates the best re-
sults for sizes 20 to 50, but based on the runtimes it is only competitive for size
20. Also note the quick degradation of the number of solved instances and the
average Ca compared to the heuristic approaches.

For solving instances at a specific load level, Table 7 shows that the VNS
approach is the best choice across all load levels, achieving significantly better
results than all of the other compared algorithms. There is no reason to use
GR-0.4, it is matched or outmatched by B-VND within the same or lower run-
time. For the least challenging problem class (load of 0.1), FLOW again achieves
better results than the heuristics. Note however that it does not even find valid
solutions for all instances in this class while requiring a lot more runtime.

172 J. Inführ and G.R. Raidl

7 Conclusions

In this work, we have presented a GRASP and VNS algorithm for solving the
Virtual Network Mapping Problem. We have shown that the VNS algorithm pro-
duces significantly better results than the GA and VND approaches previously
introduced. It also compares favourably against an integer linear programming
approach. Based on the presented results, we can conclude that the main idea
of VNS (successively larger random moves away from local optima) works bet-
ter than learning from a set of good solutions (GA) or improving good random
solutions (GRASP) for the Virtual Network Mapping Problem. The comparison
is fair since the same improvement strategy (VND) was used, the parameters of
all algorithms have been optimized and the same timelimits were employed.

The main direction for future work will be testing the presented algorithms in
an online setting that allows for the arrival and departure of virtual networks. In
particular, the fact that GA produces a set of good solutions instead of a single
one might prove useful.

References

1. GENI.net Global Environment for Network Innovations, http://www.geni.net

2. Andersen, D.: Theoretical Approaches to Node Assignment. Unpublished
Manuscript (December 2002),
http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps

3. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet im-
passe through virtualization. Computer 38(4), 34–41 (2005)

4. Berl, A., Fischer, A., de Meer, H.: Virtualisierung im Future Internet. Informatik-
Spektrum 33, 186–194 (2010)

5. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., Davies, E.: An architecture
for differentiated services. IETF, RFC 2475 (1998)

6. Chowdhury, N., Boutaba, R.: A survey of network virtualization. Computer Net-
works 54(5), 862–876 (2010)

7. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coor-
dinated node and link mapping. In: INFOCOM 2009, pp. 783–791. IEEE (2009)

8. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev. 33, 3–12 (2003)

9. Deering, S., Hinden, R.: Internet protocol, version 6 (ipv6) specification (December
1998), http://tools.ietf.org/html/rfc2460

10. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109–133 (1995)

11. Festa, P., Resende, M.: An annotated bibliography of grasp–part i: Algorithms.
International Transactions in Operational Research 16(1), 1–24 (2009)

12. Festa, P., Resende, M.G.C.: Hybrid GRASP heuristics. In: Abraham, A., Has-
sanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational In-
telligence Volume 3. SCI, vol. 203, pp. 75–100. Springer, Heidelberg (2009)

13. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3), 449–467 (2001)

http://www.geni.net
http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps
http://tools.ietf.org/html/rfc2460

GRASP and VNS for Virtual Network Mapping 173

14. Hansen, P., Mladenović, N., Moreno Pérez, J.: Variable neighbourhood search:
methods and applications. 4OR 6, 319–360 (2008)

15. IBM ILOG: CPLEX 12.4, http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer

16. Inführ, J., Raidl, G.R.: The Virtual Network Mapping Problem benchmark set,
https://www.ads.tuwien.ac.at/projects/optFI/

17. Inführ, J., Raidl, G.R.: Introducing the virtual network mapping problem with
delay, routing and location constraints. In: Pahl, J., Reiners, T., Voß, S. (eds.)
INOC 2011. LNCS, vol. 6701, pp. 105–117. Springer, Heidelberg (2011)

18. Inführ, J., Raidl, G.R.: A memetic algorithm for the virtual network mapping
problem. In: Lau, H., Van Hentenryck, P., Raidl, G. (eds.) The 10th Metaheuristics
International Conference, MIC13, Singapore (2013), submitted for review

19. Inführ, J., Raidl, G.R.: Solving the Virtual Network Mapping Problem with Con-
struction Heuristics, Local Search and Variable Neighborhood Descent. In: Midden-
dorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 250–261. Springer,
Heidelberg (2013)

20. National Research Council: Looking Over the Fence at Networks. National
Academy Press (2001)

21. Ramakrishnan, K.K., Floyd, S., Black, D.: The addition of explicit congestion
notification (ECN) to IP. IETF, RFC 3168 (2001)

22. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In:
Handbook of Metaheuristics, pp. 219–249 (2003)

23. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Comput. Commun. Rev. 33(2), 65–81 (2003)

24. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking op-
timization results using the ruin and recreate principle. Journal of Computational
Physics 159(2), 139–171 (2000)

25. Schwerdel, D., Günther, D., Henjes, R., Reuther, B., Müller, P.: German-lab exper-
imental facility. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.)
FIS 2010. LNCS, vol. 6369, pp. 1–10. Springer, Heidelberg (2010)

26. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to
virtual network resource allocation. In: Global Telecommunications Conference,
GLOBECOM 2003, vol. 6, pp. 3004–3008. IEEE (2003)

27. Yeow, W.L., Westphal, C., Kozat, U.: Designing and embedding reliable virtual
infrastructures. In: Proceedings of the Second ACM SIGCOMM Workshop on Vir-
tualized Infrastructure Systems and Architectures, VISA 2010, pp. 33–40. ACM,
New York (2010)

28. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:
substrate support for path splitting and migration. ACM SIGCOMM Computer
Communication Review 38(2), 17–29 (2008)

29. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: Proceedings of the 25th IEEE International Confer-
ence on Computer Communications, pp. 1–12 (2006)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
https://www.ads.tuwien.ac.at/projects/optFI/

Hybrid Metaheuristics

for the Far From Most String Problem

Daniele Ferone1, Paola Festa1, and Mauricio G.C. Resende2

1 Department of Mathematics and Applications “R. Caccioppoli”
University of Napoli FEDERICO II, Italy

paola.festa@unina.it, danieleferone@gmail.com
2 AT&T Labs Research, Florham Park, NJ, USA

mgcr@research.att.com

Abstract. Among the sequence selection and comparison problems, the
Far From Most String Problem (FFMSP) is one of the computationally
hardest with applications in several fields, including molecular biology
where one is interested in creating diagnostic probes for bacterial infec-
tions or in discovering potential drug targets.

In this article, several hybrid metaheuristics are described and tested.
Extensive comparative experiments on a large set of randomly generated
test instances indicate that these randomized hybrid techniques are both
effective and efficient.

Keywords: Computational biology, Molecular structure prediction,
Protein and sequences alignment, Combinatorial optimization, Hybrid
metaheuristics.

1 The Far From Most String Problem (FFMSP)

The FFMSP is one of the so called string selection and comparison problems,
that belong to the more general class of problems known as sequences consensus,
where a finite set of sequences is given and one is interested in finding their
consensus, i.e. a new sequence that agrees as much as possible with all the
given sequences. In other words, the objective is to determine a sequence called
consensus, because it represents in some way all the given sequences. For the
FFMSP, the objective is to find a sequence that is far from as many as possible
sequences of a given set of sequences having all the same length.

To formally state the problem, the following notation is needed:

– an alphabet Σ = {c1, c2, . . . , ck} is a finite set of elements, called characters;
– si = (si1, s

i
2, . . . , s

i
m) is a sequence of length m (|si| = m) on Σ (sij ∈ Σ, j =

1, 2, . . . ,m);
– given two sequences si and sl on Σ such that |si| = |sl|, dH(si, sl) denotes

their Hamming distance and is given by

dH(si, sl) =

|si|∑
j=1

Φ(sij , s
l
j), (1)

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 174–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Hybrid Metaheuristics for the FFMSP 175

where sij and slj are the characters in position j in si and sl, respectively,
and Φ : Σ ×Σ → {0, 1} is the predicate function such that

Φ(a, b) =

{
0, if a = b;
1, otherwise.

– given a set of sequences Ω = {s1, s2, . . . , sn} on Σ (si ∈ Σm, i = 1, 2, . . . , n)
dΩH denotes the Hamming distance among the sequences in Ω and it is given
by

0 ≤ dΩH = min
i,l=1,...,n | i<l

dH(si, sl) ≤ m. (2)

The FFMSP consists in determining a sequence far from as many as possible
sequences in the input set Ω. This can be formalized by saying that given a
threshold t, a string s must be found maximizing the variable x such that

dH(s, si) ≥ t, for si ∈ P ⊆ Ω and |P | = x, (3)

or, equivalently

d
P∪{s}
H ≥ t, for P ⊆ Ω and |P | = x. (4)

Computational intractability of the general sequences consensus problem was
first proved in 1997 by Frances and Litman [11] and in 1999 by Sim and Park
[22]. Among sequences consensus problems, the FFMSP is one of the hardest
from a computational point of view, as proved in 2003 by Lanctot et al. [18], who
demonstrated that for sequences over an alphabetΣ with |Σ| ≥ 3, approximating
the FFMSP within a polynomial factor is NP-hard.

Given theoretical computational hardness results, polynomial time algorithms
for the FFMSP can yield only solutions with no constant guarantee of approxi-
mation. In such cases, to find good quality solutions in reasonable running times
and to overcome the inner intractability of the problem from a computational
point of view, heuristic methods must be devised. The first attempt in this direc-
tion was done in 2005 by Meneses et al. [19], who proposed a heuristic algorithm
consisting of a simple greedy construction followed by an iterative improvement
phase. Later, in 2007 Festa [5] designed a GRASP and very recently in 2012,
Mousavi et al. [20] devised a new function to be used in alternative to the objec-
tive function when evaluating neighbor solutions during the local search phase.

In this paper, we designed, implemented, and tested several pure and hybrid
metaheuristics. The scope of the hybrid metaheuristics designing has been to
combine the main characteristics of the pure metaheuristics themselves in the
attempt to take advantage of their best properties in terms of computation time
and solution quality.

The remainder of this article is organized as follows. In Section 2, we propose
various randomized heuristics for finding approximate solutions of the FFMSP,
based on the instantiation of several metaheuristics and their hybrids. Computa-
tional results are reported in Section 3. Concluding remarks and insights about
further improvements of the proposed techniques are given in the last section.

176 D. Ferone, P. Festa, and M.G.C. Resende

2 Hybrid Metaheuristics

In the last decades, a considerable amount of scientific papers has empirically
shown that suitable combinations of concepts and characteristics from different
metaheuristics can lead to the design of hybrid robust techniques that produce
higher solution quality than the individual metaheuristics themselves, especially
when solving difficult real-world combinatorial optimization problems.

Following this trend, to find good quality solutions to the FFMSP, we have
considered several types of hybridizations. In particular, we have designed, imple-
mented, and tested the following pure and hybrid multistart iterative heuristics:

� a pure GRASP, inspired by [5];
� a GRASP that uses Path-relinking for intensification;
� a pure VNS;
� a VNS that uses Path-relinking for intensification;
� a GRASP that uses VNS to implement the local search phase; and
� a GRASP that uses VNS to implement the local search phase and Path-
relinking for intensification.

As any multistart iterative heuristic, stopping criteria in all the above listed
techniques could be maximum number of iterations, maximum number of itera-
tions without improvement of the incumbent solution, maximum running time,
or solution quality at least as good as a given target value.

algorithm GRASP(t, m, Σ, ft(·), {Vj(c)}c∈Σ
j∈{1,...,m}, Seed)

1 sbest:=∅; ft(sbest):=−∞;
2 for j = 1 to m→
3 V min

j :=minc∈Σ Vj(c); V
max
j :=maxc∈Σ Vj(c);

4 endfor
5 while stopping criterion not satisfied→
6 [s, {RCLj}mj=1]:=GrRand(m, Σ, {Vj(c)}c∈Σ

j∈{1,...,m}, V
min
j , V max

j , Seed);

7 s:=LocalSearch(t, m, s, ft(·), {RCLj}mj=1);
8 if (ft(s) > ft(sbest)) then
9 sbest:=s;
10 endif
11 endwhile
12 return(sbest);
end GRASP

Fig. 1. Pseudo-code of a GRASP for the FFMSP

2.1 A Pure GRASP

Each GRASP iteration consists of a construction phase [3, 4], where a solution
is built in a greedy, randomized, and adaptive manner, and a local search phase

Hybrid Metaheuristics for the FFMSP 177

which starts at the constructed solution and applies iterative improvement until
a locally optimal solution is found. Repeated applications of the construction
procedure yields diverse starting solutions for the local search and the best overall
local optimal solution is returned as the result. The reader can refer to [8–10]
for a study of a generic GRASP metaheuristic framework and its applications.

function GrRand(m, Σ, {Vj(c)}c∈Σ
j∈{1,...,m}, V

min
j , V max

j , Seed)

1 for j = 1 to m→
2 RCLj :=∅; α:=Random([0, 1], Seed);
3 μ:=V min

j + α · (V max
j − V min

j);
4 for all c ∈ Σ→
5 if (Vj(c) ≤ μ)) then
6 RCLj:=RCLj∪{c};
7 endif
8 endfor
9 sj :=Random(RCLj, Seed);
10 endfor
11 return(s, {RCLj}mj=1);
end GrRand

Fig. 2. Pseudo-code of the GRASP construction for the FFMSP

A complete solution is iteratively constructed in the construction phase, one
element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all candidate elements (i.e. those that can
be added to the solution) in a candidate list C with respect to a greedy function
that measures the (myopic) benefit of selecting each element. The probabilis-
tic component of a GRASP is characterized by randomly choosing one of the
best candidates in the list, but not necessarily the top candidate. The list of
best candidates is called the restricted candidate list (RCL). For the FFMSP,
in 2007 [5] a GRASP has been proposed to find suboptimal solutions for the
FFMSP and Figure 1 depicts its pseudo-code, where ft : Σ

m �→ N denotes the
objective function to be maximized according to (3) and (4).

Figure 2 reports the pseudo-code of the construction procedure that iteratively
builds a sequence s = (s1, . . . , sm) ∈ Σm, selecting one character at time. The
greedy function is related to the occurrence of each character in a given position.
In fact, as in [5], for each position j ∈ {1, . . . ,m} and for each character c ∈ Σ, we
compute Vj(c) as the number of times c appears in position j in any of the strings
in Ω. The pure greedy choice would consist in selecting the character c with the
lowest greedy function value Vj(c). To define the construction mechanism for the
RCL, let

V min
j = min

c∈Σ
Vj(c), V max

j = max
c∈Σ

Vj(c).

178 D. Ferone, P. Festa, and M.G.C. Resende

Denoting by μ = V min
j + α · (V max

j − V min
j) the cut-off value (line 3), where α is

a parameter such that 0 ≤ α ≤ 1 (line 2), the RCL is made up by all characters
whose value of the greedy function is less than or equal to μ (line 6). A character
is then randomly selected from the RCL (line 9).

function LocalSearch(t, m, s, ft(·), {RCLj}mj=1)
1 max:=ft(s); change:=.TRUE.;
2 while (change)→
3 change:=.FALSE.;
4 for j = 1 to m→
5 temp:=sj;
6 for all c ∈RCLj→
7 sj :=c;
8 if (ft(s) > max) then
9 max:=ft(s); temp:=c; change:=.TRUE.; break;
10 endif
11 endfor
12 sj :=temp;
13 endfor
14 endwhile
15 return(s);
end LocalSearch

Fig. 3. Pseudo-code of the GRASP local search for the FFMSP

The basic step of the local search described in Figure 3 is slightly different
from the one implemented in [5]. In our GRASP, it consists in investigating
all positions j ∈ {1, . . . ,m} (loop in lines 4–14) and changing the character in
position j in the sequence s to another character in RCLj . Instead, in [5] the
position j and the new character in position j are selected at random. Moreover,
the random selection of the new character in position j involves the set of all
characters occurring in that position in all the given sequences in Ω.

The current solution is replaced by the first improving neighbor (lines 8–11).
The search stops after all possible moves have been evaluated and no improving
neighbor was found, returning a local optimal solution (line 16).

2.2 A Pure VNS

Contrary to other metaheuristics based on local search methods, VNS [16] is
based on the exploration of a dynamic neighborhood model. It explores increas-
ingly distant neighborhoods of the current best found solution.

Let Nk, k = 1, . . . , kmax, be a set of pre-defined neighborhood structures and
let Nk(s) be the set of solutions in the kth-order neighborhood of a solution s. In
the first phase, a neighbor s′ ∈ Nk(s) of the current solution is applied. Next, a

Hybrid Metaheuristics for the FFMSP 179

solution s′′ is obtained by applying local search to s′. Finally, the current solution
jumps from s to s′′ in case the latter improved the former. Otherwise, the order
of the neighborhood is increased by one and the above steps are repeated until
some stopping condition is satisfied.

algorithm VNS(t, m, Σ, ft(·), kmax, Seed)
1 sbest:=∅; ft(sbest):=−∞;
2 while stopping criterion not satisfied→
3 k:=1; s:=BuildRand(m, Σ, Seed); /* pure randomly */
4 while (k ≤ kmax)→
5 s′:=Random(Nk(s), Seed);
6 s′′:=LocalSearch(t, m, s′, ft(·), {RCLj}mj=1);
7 if (ft(s

′′) > ft(s)) then
8 s:=s′′; k:=1;
9 if (ft(s

′′) > ft(sbest)) then sbest:=s′′;
10 endif
11 else k:=k + 1;
12 endif
13 endwhile
14 endwhile
15 return(sbest);
end VNS

Fig. 4. Pseudo-code of a VNS for the FFMSP

In the case of the FFMSP, the kth-order neighborhood is defined by all se-
quences that can be derived from the current sequence s by selecting k posi-
tions j1, . . . , jk and changing sj1 , . . . , sjk with a character in RCLj1 , . . . ,RCLjk ,
respectively. The same local search strategy used within the pure GRASP algo-
rithm described in Section 2.1 is used in the VNS heuristic, whose pseudo-code
is reported in Figure 4.

2.3 Path-Relinking

Path-relinking is a heuristic proposed in 1996 by Glover [12] as an intensification
strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search [13–15].

Starting from one or more elite solutions, paths in the solution space leading
towards other guiding elite solutions are generated and explored in the search
for better solutions. This is accomplished by selecting moves that introduce
attributes contained in the guiding solutions. At each iteration, all moves that
incorporate attributes of the guiding solution are analyzed and the move that
best improves (or least deteriorates) the initial solution is chosen.

Figure 5 illustrates the pseudo-code of the Path-relinking for the FFMSP. It
is applied to a pair of sequences (s, ŝ), where s is a given input solution and ŝ

180 D. Ferone, P. Festa, and M.G.C. Resende

is a solution (sufficiently different from s – see Section 3) selected at random
(line 1) from an elite set E of solutions that has a fixed size that does not exceed
MaxElite. Their common elements are kept constant, and the space of solutions
spanned by these elements is searched with the objective of finding a better
solution. This search is done by exploring a path in the solution space linking
the worst solution s′ between s and ŝ to the best one (line 3). s′ is called the
initial solution and ŝ the guiding solution.

algorithm Path-relinking(t, m, ft(·), s, E , Seed)
1 ŝ:=Random(E , Seed);
2 f∗ := max{ft(s), ft(ŝ)}; s∗ := argmax{ft(s), ft(ŝ)};
3 s′ := argmin{ft(s), ft(ŝ)}; ŝ:=s∗;
4 Δ(s′, ŝ):={i = 1, . . . ,m | s′i �= ŝi};
5 while (Δ(s′, ŝ) �= ∅) →
6 i∗ := argmax{ft(s′ ⊕ i) | i ∈ Δ(s′, ŝ)};
7 Δ(s′ ⊕ i∗, ŝ) := Δ(s′, ŝ) \ {i∗};
8 s′ := s′ ⊕ i∗;
9 if (ft(s

′) > f∗) then
10 f∗ := ft(s

′); s∗ := s′;
11 endif ;
12 endwhile;
13 return (s∗);
end Path-relinking

Fig. 5. Pseudo-code of a Path-relinking for the FFMSP

The procedure then computes (line 4) the symmetric difference Δ(s′, ŝ) be-
tween the two solutions as the set of components for which the two solutions
differ:

Δ(s′, ŝ) := {i = 1, . . . ,m | s′i �= ŝi}.
Note that, |Δ(s′, ŝ)| = dH(s′, ŝ) and Δ(s′, ŝ) represents the set of moves needed
to reach ŝ from s′, where a move applied to the initial solution s′ consists in
selecting a position i ∈ Δ(s′, ŝ) and replacing s′i with ŝi.

Path-relinking generates a path of solutions s′1, s′2, . . . , s′|Δ(s′,ŝ)| linking s′

and ŝ. The best solution s∗ in this path is returned by the algorithm (line 13).
The path of solutions is computed in the loop in lines 5 through 12. This

is achieved by advancing one solution at a time in a greedy manner. At each
iteration, the procedure examines all moves i ∈ Δ(s′, ŝ) from the current solution
s′ and selects the one which results in the highest cost solution (line 6), i.e. the
one which maximizes ft(s

′⊕i), where s′⊕i is the solution resulting from applying
move i to solution s′. The best move i∗ is made, producing solution s′ ⊕ i∗ (line
8). The set of available moves is updated (line 7). If necessary, the best solution
s∗ is updated (lines 9–11). Clearly, the algorithm stops as soon as Δ(s′, ŝ) = ∅.

Hybrid Metaheuristics for the FFMSP 181

2.4 Hybrid GRASP with Path-Relinking

Since GRASP iterations are independent of one another, it does not make use of
solutions produced throughout the search. One way to add memory to GRASP is
its hybridization with Path-relinking. In 1999 the first proposal of such a hybrid
method was published by Laguna and Mart́ı [17]. It was followed by several
extensions, improvements, and successful applications [2, 6, 7].

Into the pure GRASP algorithm described in Section 2.1 we have integrated
Path-relinking applied at each GRASP iteration to pairs (s, ŝ) of solutions, where
s is the locally optimal solution obtained by GRASP local search and ŝ is ran-
domly chosen from a pool with a limited number MaxElite of high quality so-
lutions found along the search. The pseudo-code for the proposed GRASP with
Path-relinking hybrid algorithm is shown in Figure 6.

algorithm GRASP+PR(t, m, Σ, ft(·), {Vj(c)}c∈Σ
j∈{1,...,m}, Seed, MaxElite)

1 sbest:=∅; ft(sbest):=−∞; E := ∅; iter:=0;
2 for j = 1 to m→
3 V min

j :=minc∈Σ Vj(c); V
max
j :=maxc∈Σ Vj(c);

4 endfor
5 while stopping criterion not satisfied→
6 iter:=iter + 1;
7 [s, {RCLj}mj=1]:=GrRand(m, Σ, {Vj(c)}c∈Σ

j∈{1,...,m}, V
min
j , V max

j , Seed);

8 s:=LocalSearch(t, m, s, ft(·), {RCLj}mj=1);
9 if (iter ≤ MaxElite) then
10 E := E ∪ {s};
11 if (ft(s) > ft(sbest)) then sbest:=s;
13 endif
14 else
10 s:=Path-relinking(t, m, ft(·), s, E , Seed);
15 AddToElite(E , s);
11 if (ft(s) > ft(sbest)) then sbest:=s;
13 endif
13 endif
11 endwhile
12 return(sbest);
end GRASP+PR

Fig. 6. Pseudo-code of a hybrid GRASP with Path-relinking for the FFMSP

The pool of elite solutions is originally empty (line 1). The best solution s
found along the relinking trajectory is considered as a candidate to be inserted
into this pool. If the pool is not full (|E| ≤ MaxElite), the candidate is simply
inserted. Otherwise, if the pool is full, the procedure AddToElite evaluates its
insertion into E . In more detail, if s is better than the best elite solution, then s

182 D. Ferone, P. Festa, and M.G.C. Resende

replaces the worst elite solution. If the candidate is better than the worst elite
solution, but not better than the best, it replaces the worst if it is sufficiently
different (see Section 3) from all elite solutions.

2.5 Hybrid GRASP with VNS

As underlined in Subsection 2.2, until a stopping criterion is met, at each itera-
tion VNS chooses a neighbor sequence s from the neighborhood of the current
solution at random. In our hybrid GRASP with VNS, VNS is applied as local
search and its starting solution is the sequence s output of the GRASP construc-
tion procedure.

2.6 Hybrid VNS with Path-Relinking

As is the case for GRASP, VNS described in Section 2.2 also can be hybridized
with Path-relinking, as intensification phase. At each VNS iteration Path-
relinking is applied to pairs (s, ŝ) of solutions, where s is the locally optimal
solution obtained by VNS and ŝ is randomly chosen from the MaxElite high
quality solutions found along the search.

2.7 Hybrid GRASP with VNS and Path-Relinking

This hybrid procedure is simply obtained by replacing the local search phase of
the GRASP procedure with VNS and applying at the end of each major iteration
Path-relinking as intensification procedure.

3 Experimental Results

In this section, we present numerical results on computational experiments with
the heuristics proposed in this article. We describe first the computer environ-
ment and the problem instances. Then, we describe implementation details and
the used combination of values for the parameters of the heuristics. Finally, we
report on the experimental evaluation of the different algorithms.

Our codes have been written in the C language, compilated with “cc (GCC)
4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)”, and ran on an “Intel
Core i7 Quad core @ 2.67 GHz RAM 6GB” with Linux (Ubuntu 11.10) oper-
ating system.

Problem instances were generated at random. In the set of test instances, the
sequence length m ranges from 300 to 800, the number n of sequences in Ω
ranges from 100 to 200, and threshold t varies from 75%m to 85%m. For each
problem size, the algorithms were run for 100 random instances and average
solution value was computed. The results obtained are summarized in Table 1,
where for each problem type, in the first column the instance size (m, n, and t)
is reported. The remaining columns report the average objective function values
(z) obtained by each algorithm and the corresponding average running times (in
seconds). We make the following observations:

Hybrid Metaheuristics for the FFMSP 183

Table 1. Average objective function values obtained by each algorithm and the corre-
sponding average running times (in seconds)

GRASP GRASP+PR GRASP+VNS+PR VNS VNS+PR

n,m, t z Time z Time z Time z Time z Time

100, 300, 0.75 100 1.37 100 1.41 100 1.71 94.47 72.45 100 7.44

100, 300, 0.80 67.86 1.67 76.17 3.21 76.68 33.28 19.98 71.02 48.58 77.43

100, 300, 0.85 3.56 1.72 10.17 4.17 12.23 31.36 1.12 37.65 3.53 44.19

100, 600, 0.75 100 1.56 100 1.89 100 1.11 91.78 278.94 100 31.91

100, 600, 0.80 65.35 2.31 78.83 11.77 80.47 122.65 8.51 264.66 20.72 295.49

100, 600, 0.85 1.21 1.28 3.58 11.07 4.36 91.87 0.04 152.64 0.91 186.71

100, 800, 0.75 100 1.84 100 1.34 100 2.48 87.36 549.60 100 63.00

100, 800, 0.80 67.76 1.42 80.37 21.10 82.30 251.26 4.41 450.63 10.94 527.76

100, 800, 0.85 0.30 2.98 0.97 31.45 2.51 148.98 0.66 273.98 0.63 329.48

200, 300, 0.75 197.78 1.22 200 1.85 200 3.70 180.08 135.61 200 47.91

200, 300, 0.80 76.50 1.39 93.70 6.52 94.45 65.44 36.71 150.51 66.81 160.37

200, 300, 0.85 2.83 1.59 9.26 8.59 11.12 68.20 2.16 86.60 4.62 104.13

200, 600, 0.75 200 1.94 200 1.61 200 3.39 178.11 545.50 200 75.43

200, 600, 0.80 62.80 1.63 83.91 24.91 86.17 274.93 11.93 588.35 33.41 625.66

200, 600, 0.85 0.98 1.79 1.51 31.22 2.38 174.73 0.71 305.29 0.96 369.29

200, 800, 0.75 200 1.04 200 1.33 200 1.61 175.06 947.80 200 193.30

200, 800, 0.80 44.66 1.75 71.28 43.63 72.44 519.59 6.37 987.35 17.12 1102.47

200, 800, 0.85 0.86 1.55 1.93 59.20 3.71 311.81 0.15 544.21 0.49 659.02

� the stopping criterion for all algorithms was MaxIterations = 500 or the
obtainment of an incumbent solution with objective function value z = n
(i.e., an optimal solution);

� the maximum order kmax in the dynamic neighborhood model used in VNS
and in the hybrid VNS with Path-relinking and the hybrid GRASP with
VNS and Path-relinking was set to 30;

� the maximum number MaxElite of elite solutions in the hybrid heuristics
invoking Path-relinking as intensification procedure was set to 10;

� in Path-relinking, for inclusion of the candidate solution s in the elite set E
when s is better than the worst elite set solution but not better than the
best, s is inserted (replacing the worst solution) if it sufficiently different
from all elite solutions, i.e. if |Δ(s, ε)| ≥ m

2 , for all ε ∈ E ;
� on all instances, the hybrid GRASP with VNS and Path-relinking found a

better quality solution as compared to the competitor heuristics;

� the hybrid GRASP with Path-relinking found best results for 7 out of the 18
instances; hybrid VNS with Path-relinking found best results for 6 instances,
while the pure GRASP and the pure VNS found the best solution for only
5 and 0 instances, respectively;

� at the expense of increased running times, the integration of Path-relinking
in the pure metaheuristics was beneficial in terms of solution quality;

� looking at the objective function values achieved by GRASP with Path-
relinking and GRASP with VNS and Path-relinking, at the expense of

184 D. Ferone, P. Festa, and M.G.C. Resende

increased running times, the use of VNS in the local search phase of GRASP
was beneficial.

Given the random component of each proposed algorithm and since their run-
ning times per iteration vary substantially, we have performed two further ex-
periments.

Table 2. Average objective function values obtained by each algorithm after 90 seconds
of computation

n,m, t GRASP GRASP+PR GRASP+VNS+PR VNS VNS+PR

100, 300, 0.75 100 100 100 94 100

100, 300, 0.8 71.07 79.61 78.12 23.43 49.54

100, 300, 0.85 6.41 13.18 11.86 1.02 3.27

100, 600, 0.75 100 100 100 91.79 100

100, 600, 0.8 70.24 80.13 78.05 6.38 11.29

100, 600, 0.85 2.73 4.98 4.48 0.03 0.12

100, 800, 0.75 100 100 100 85.18 100

100, 800, 0.8 70.07 82.64 79.45 3.71 8.42

100, 800, 0.85 1.17 1.84 1.65 0 0.03

200, 300, 0.75 199.81 200 200 179.34 200

200, 300, 0.8 81.75 100 95.11 34.71 61.67

200, 300, 0.85 4.82 11.90 11.03 2.32 3.70

200, 600, 0.75 200 200 200 172.41 200

200, 600, 0.8 66.23 88.49 80.31 10.25 19.10

200, 600, 0.85 1.03 2.42 1.73 0.09 0.97

200, 800, 0.75 200 200 200 164.01 194.45

200, 800, 0.8 49.87 73.08 62.36 4.23 8.17

200, 800, 0.85 0.08 0.21 0.17 0.06 0.85

First, on the same set of randomly generated problem instances and by using
the same values of the parameters for the algorithms, we have run them for a
given fixed amount of time, set to 90 seconds. For each problem type, Table 2
reports the average objective function values (z) obtained by each algorithm. It
is still evident that the integration of Path-relinking in the pure metaheuristics
is beneficial in terms of solution quality. Moreover, in a given fixed amount of
computation time the number of iterations performed by the hybrid GRASP
with Path-relinking is higher than that performed by the hybrid GRASP with
VNS and Path-relinking. This implies that GRASP with VNS and PR performs
a smaller number of samplings of the solution space with the conclusion that in
this scenario, the hybrid GRASP with PR found better quality solutions.

As further investigation, given the random component of each proposed al-
gorithm and the great variety in their running times per iteration, we plot in
Figures 7–8 the empirical distributions of the random variable time-to-target-
solution-value considering the following four random instances:

1. n = 100, m = 300, t = 240, and target value ẑ = 0.70× n (Figure 7(a));
2. n = 100, m = 300, t = 252, and target value ẑ = 0.12× n (Figure 7(b));

Hybrid Metaheuristics for the FFMSP 185

3. n = 200, m = 300, t = 240, and target value ẑ = 0.40× n (Figure 8(a));
4. n = 300, m = 300, t = 240, and target value ẑ = 0.28× n (Figure 8(b)).

We performed 100 independent runs of each heuristic using 100 different random
number generator seeds and recorded the time taken to find a solution at least
as good as the target value ẑ. As in [1], to plot the empirical distribution we

associate with the ith sorted running time (ti) a probability pi = i−1/2
100 , and

plot the points zi = (ti, pi), for i = 1, . . . , 100. About these further experiments,
looking at Figures 7 and 8, we observe that the relative position of the curves
implies that, given any fixed amount of running time, the hybrid GRASP with
Path-relinking has a higher probability than all competitors of finding a solution
whose objective function value is at least as good as the target objective function
value.

4 Concluding Remarks and Future Work

Given the computational intractability of one of the consensus problems known
as the Far From Most String Problem, we have designed several hybrid meta-
heuristics that guarantee good quality solutions within realistic and acceptable
amount of time. The algorithms were tested on several random instances and
the results show that the hybrid GRASP with VNS and Path-relinking always
finds much better quality solutions compared with the other competitor algo-
rithms, but clearly with higher running times as compared to the pure GRASP
and the hybrid GRASP with Path-relinking. In the following, we summarize our
observations about our computational experience.

– The processing time for the pure GRASP was the smallest but the objective
function values found by the algorithm were worse than those found by its
hybridizations;

– Best objective function values found by GRASP and its hybrids were when
the construction phase was more greedy than random.

– Overall, the hybrid GRASP with VNS and path-relinking found the best
solutions, followed by GRASP with Path-relinking and the pure GRASP;

– Overall, the objective function values found by the pure VNS were the
worst. This bad behavior is not surprising, given the totally random cri-
terion adopted in the VNS construction.

– The integration of Path-relinking as intensification procedure in the pure
metaheuristics was beneficial in terms of solution quality.

– We plot in Figures 7–8 the empirical distributions of the random variable
time-to-target-solution-value considering four different random instances. Our
conclusion after this further investigation is that, given any fixed amount of
computing time, GRASP with Path-relinking has a higher probability than
all competitors of finding a target solution.

As future work, we plan to better investigate the practical behavior of the
proposed algorithms, by introducing the recently published tool designed by

186 D. Ferone, P. Festa, and M.G.C. Resende

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

time

GRASP
GRASP+PR

GRASP+VNS+PR

(a) Random instance with n = 100, m = 300, t = 240,
and target value ẑ = 0.70 × n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

time

GRASP
GRASP+PR

GRASP+VNS+PR

(b) Random instance with n = 100, m = 300, t = 252,
and target value ẑ = 0.12 × n.

Fig. 7. Time to target distributions comparing GRASP, GRASP+PR, and GRASP+VNS+PR

Ribeiro et al. [21] for characterizing stochastic algorithms running times under
the assumption that the running times of the algorithms follow exponential (or
shifted exponential) distributions, as it is the case of our hybrid heuristics.

We plan also to validate the numerical results on computational experiments
with the heuristics proposed in this article, by applying them on a larger dataset
of instances, both randomly generated and taken from real–world applications
of the problem.

Furthermore, it would be also interesting to design some variants of the ap-
proaches proposed in this paper. Three natural extensions would be 1) to perform
at the end of computation a post-optimization phase, for example by invoking
Path-relinking among pairs of elite solutions; 2) to implement alternative linking
strategies in Path-relinking, such as backward, mixed, and randomized Path-

Hybrid Metaheuristics for the FFMSP 187

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

time

GRASP
GRASP+PR

GRASP+VNS+PR

(a) Random instance with n = 200, m = 300, t = 240,
and target value ẑ = 0.40 × n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

time

GRASP
GRASP+PR

GRASP+VNS+PR

(b) Random instance with n = 300, m = 300, t = 240,
and target value ẑ = 0.28 × n.

Fig. 8. Time to target distributions comparing GRASP, GRASP+PR, and GRASP+VNS+PR

relinking; 3) to integrate in the local search of the algorithms the new function
devised by Mousavi et al. [20] and to be used in alternative to the objective
function when evaluating neighbor solutions.

References

1. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution
time in GRASP: an experimental investigation. Journal of Heuristics 8, 343–373
(2002)

2. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for
the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)

3. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult
set covering problem. Oper. Res. Lett. 8, 67–71 (1989)

188 D. Ferone, P. Festa, and M.G.C. Resende

4. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J.
Global Optim. 6, 109–133 (1995)

5. Festa, P.: On some optimization problems in mulecolar biology. Mathematical Bio-
science 207(2), 219–234 (2007)

6. Festa, P., Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C.: GRASP with path-
relinking for the weighted MAXSAT problem. ACM J. of Experimental Algorith-
mics 11, 1–16 (2006)

7. Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics
for the MAX-CUT problem. Optimization Methods and Software 7, 1033–1058
(2002)

8. Festa, P., Resende, M.G.C.: GRASP: An annotated bibliography. In: Ribeiro, C.C.,
Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer Aca-
demic Publishers (2002)

9. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP – Part I: Algo-
rithms. International Transactions in Operational Research 16(1), 1–24 (2009)

10. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP – Part II: Appli-
cations. International Transactions in Operational Research 16(2), 131–172 (2009)

11. Frances, M., Litman, A.: On covering problems of codes. Theory of Computing
Systems 30(2), 113–119 (1997)

12. Glover, F.: Tabu search and adaptive memory programing – Advances, applications
and challenges. In: Barr, R.S., Helgason, R.V., Kennington, J.L. (eds.) Interfaces
in Computer Science and Operations Research, pp. 1–75. Kluwer (1996)

13. Glover, F.: Multi-start and strategic oscillation methods – Principles to exploit
adaptive memory. In: Laguna, M., Gonzáles-Velarde, J.L. (eds.) Computing Tools
for Modeling, Optimization and Simulation: Interfaces in Computer Science and
Operations Research, pp. 1–24. Kluwer (2000)

14. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers (1997)
15. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path relink-

ing. Control and Cybernetics 39, 653–684 (2000)
16. Hansen, P., Mladenović, N.: Developments of variable neighborhood search. In:

Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 415–
439. Kluwer Academic Publishers (2002)

17. Laguna, M., Mart́ı, R.: GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS J. on Computing 11, 44–52 (1999)

18. Lanctot, J., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Information and Computation 185(1), 41–55 (2003)

19. Meneses, C.N., Oliveira, C.A.S., Pardalos, P.M.: Optimization techniques for string
selection and comparison problems in genomics. IEEE Engineering in Medicine and
Biology Magazine 24(3), 81–87 (2005)

20. Mousavi, S.R., Babaie, M., Montazerian, M.: An improved heuristic for the far
from most strings problem. Journal of Heuristics 18, 239–262 (2012)

21. Ribeiro, C.C., Rosseti, I., Vallejos, R.: Exploiting run time distributions to com-
pare sequential and parallel stochastic local search algorithms. Journal of Global
Optimization 54, 405–429 (2012)

22. Sim, J.S., Park, K.: The consensus string problem for a metric is NP -complete. In:
Proceedings of the Annual Australiasian Workshop on Combinatorial Algorithms
(AWOCA), pp. 107–113 (1999)

On Missing Data Hybridizations

for Dimensionality Reduction

Oliver Kramer

Computational Intelligence Group,
Department of Computing Science,
University of Oldenburg, Germany
oliver.kramer@uni-oldenburg.de

Abstract. Missing data is a challenge in machine learning. In this work,
we compare two ways of handling patterns with missing entries in di-
mensionality reduction for the iterative approach unsupervised nearest
neighbors (UNN). Both methods are hybridization of two heuristics as
they combine UNN for dimensionality reduction with K-nearest neigh-
bors (KNN) for repair. The first variant repair-and-embed applies nearest
neighbor regression to iteratively fill the pattern gaps based on known
and complete entries. The second variant embed-and-repair first embeds
incomplete patterns ignoring missing entries and then completes them
with nearest neighbor regression. The experimental analysis shows that
both approaches allow a reasonable embedding with incomplete data,
while embed-and-repair is showing better results.

1 Introduction

In practical data mining scenarios, patterns are noisy and entries may be missing.
This can be caused by failures of sensors or bad environmental conditions that
have an influence on sensors, CPU or memories. Besides modeling of the data
mining process, selection of relevant features and tasks like normalization, the
practitioner often has to preprocess the data, e.g., to complete missing entries.
This preprocessing step is often neglected in machine learning research, but has
an important part to play in practical scenarios.

The data mining task, we concentrate on in this work is dimensionality re-
duction. Although, in dimensionality reduction, the task is to reduce the num-
ber of features that is employed during learning, missing entries can render the
problem even more difficult. The dimensionality reduction method we concen-
trate on is unsupervised nearest neighbors, an iterative solution construction
algorithm based on the simple yet efficient nearest neighbor regression method.
KNN regression will also play an important role for imputation, i.e., repairing
of incomplete patterns. In this paper, we introduce and compare two procedure
that allow to cope missing data for UNN.

– Repair-and-embed is the standard imputation-way that first repairs incom-
plete patterns iteratively with KNN regression and then embeds the repaired

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 189–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190 O. Kramer

patterns employing the dimensionality method UNN. For the imputation
process, the completed patterns are used to predict the missing values itera-
tively, i.e., they serve as part of the training set for the remaining incomplete
patterns.

– Embed-and-repair is a novel method that first embeds incomplete patterns
ignoring the features with missing data. This variant is probably more inter-
esting as it employs the dimensionality reduction process itself for comple-
tion. After embedding, the gaps are filled with KNN regression, so that the
embedded patterns optimally fit into the latent positions, and consequently
minimize the error measure, called data space reconstruction error (DSRE).

With the help of experiments on simple test data sets, we compare the missing
data strategies w.r.t. an increasing rate p of missing values. We consider the im-
putation performance and compare the DSRE with completed manifolds (results
of the dimensionality reduction process).

This work is structured as follows. In Section 2, we will introduce UNN, which
will be extended by missing data handling hybridizations in Section 3. Section
4 experimentally compares both approaches. We draw conclusions in Section 5.

2 Unsupervised Nearest Neighbors

UNN is an approach that we recently introduced for embedding high-dimensional
patterns into discrete [5] and continuous latent space [7]. It is a manifold learning
approach based on KNN regression that computes the mean of the function
values of the K-nearest neighbors in a training set (x1, y1), . . . , (xn, yn). KNN
regression is defined as

f(x′) =
1

K

∑
i∈NK(x′)

yi (1)

with setNK(x′) containing the indices of the K-nearest neighbors of x′. Recently,
we enhanced the approach to evolutionary embeddings [4], a particle swarm-like
approach [6], and kernel functions [7].

2.1 Unsupervised Regression

UNN is based on the framework of unsupervised regression, which is introduce
in the following. Let Y = {y1, . . . ,yN} ⊂ Rd be the set of high-dimensional
patterns with corresponding pattern matrix Y = [yi]

N
i=1 ∈ Rd×N . Let X =

{x1, . . . ,xN} ⊂ Rq be an arbitrary set of low-dimensional representations/latent
points that define a manifold with q < d. Matrix X = [xi]

N
i=1 ∈ Rq×N is the

corresponding latent representation. The pairs (xi,yi) with 1 ≤ i ≤ N are the
patterns with their latent points (positions in latent space). The low-dimensional
representation should represent typical characteristics of the high-dimensional
data and should loose as less information as possible, e.g., data space neighbor-
hood relations and distances. The problem is a hard optimization problem, since
the latent variables X are unknown. The iterative procedure of UNN allows to
cope with the large number of dimensions.

On Missing Data Hybridizations for Dimensionality Reduction 191

2.2 Iterative Unsupervised Regression

Unsupervised nearest neighbors is an approach that constructs the manifold by
iteratively adding locally optimal latent points w.r.t. a growing pattern set. For
the iterative procedure, we define a notation for growing latent matrices X ∈
Rq×n and pattern matrices Y ∈ Rd×n for number 1 ≤ n ≤ N of currently em-
bedded patterns. For this sake, we define the mapping f(·) : Rq×N → Rd×N from
latent space Rq to data space Rd for matrices as follows fX(X) = [fX(xj)]

N
j=1.

For the optimal manifold X∗, the DSRE

E(X) = ‖fX(X) −Y‖2F (2)

is minimal, i.e., it holds X∗ = argmin
X∈Rq×N E(X). For many regression meth-

ods, the optimal solution X∗ is not unique according to the above definition,
as scaling would allow an infinite number of optimal solutions. To avoid this,
a regularization term λ‖X‖2F is added and the optimization problem becomes
X∗ = argmin

X∈Rq×N E(X) + λ‖X‖2F with penalty weight λ ∈ R+ that restricts
latent space extension.

2.3 Latent Sorting

For generation of latent positions, we assume that latent points lie on a lattice
structure in the following. For q = 1, finding appropriate latent positions on a line
is similar to finding the best sorting of patterns. Latent sorting works as follows.
For the first pattern y1, an arbitrary grid position can be chosen, e.g., x1 = [1].
The latent matrix is X = [x1] and the corresponding pattern matrix is Y = [y1].
Let y1, . . . ,yn be the sequence of already considered patterns with associated
embeddings x1, . . . ,xn. For the next pattern yi with i = n+ 1 ≤ N , UNN with
grid sampling generates n + 1 candidate latent positions 0.5, 1.5, . . . , n + 0.5.
The optimal latent position x∗ = i∗ is chosen that minimizes the DSRE. After
choosing the optimal latent position i∗, all latent points get the latent position
that corresponds to their rank in an increasingly sorted order 1, . . . , n+ 1. This
step is called regularize grid in the pseudocode. Finally, the latent matrix is
extended by the novel latent position X = [X, i∗], the pattern yi is added to the
pattern matrix Y = [Y,yi].

3 Missing Data

In practical applications, data sets are often incomplete. Failures of sensors,
matching of databases with disjunct feature sets or conditions, where data can
get lost (e.g., in outer space due to X-ray) are typical examples for practical
scenarios with incomplete patterns. However, it might be desirable to compute a
latent embedding of high-dimensional data. Objective of this section is to show
strategies that allow UNN to cope with missing data. The question arises, if the
embedding approach can exploit useful structural information to reconstruct the
missing entries.

192 O. Kramer

The problem of missing data in feature vectors can be treated in various
kinds of ways. A simple method is to eliminate all patterns with missing entries.
But this may introduce a bias, as the fact that features are missing can be
caused by systematic errors. Further, the elimination of patterns from small
data sets deteriorates the chance to learn good models. A class of methods to
handle incomplete data are imputation methods, i.e., filling the gaps based on
statistics. Incomplete data can be filled based on simple statistical parameters
like the median and the mean of the available entries. Unfortunately, this method
may also introduce a bias. Other imputation methods are based on regression
approaches, similar to the repair step we apply in this work. For this sake,
a training set consisting of the complete patterns is used, missing entries are
the missing labels that have to be predicted, while the entries of the complete
patterns of the corresponding dimensions are employed as labels.

In case the distribution of missingness is conditionally independent of the
missing values given the observed data, the data is called missing at random1.
Schafer and Graham [8] have reviewed methods to handle them. In case of sparse
data sets, joint densities can be computed in a probabilistic framework [3].

If possible, the method can directly deal with missing data. Our embed-and-
repair method that will be introduced in Section 3.2 belongs to this class. For
support vector machine (SVM) classification, such an approach has been intro-
duced by Chechik et al. [1]. It alters the SVM margin interpretation to directly
deal with incomplete patterns. But the method is best suited for features that
are absent than those that are MNAR. An extension has been introduced by
Dick et al. [2]. The approach by Williams et al. [9] employs logistic regression
for classification of incomplete data and performs an analytic integration with
an estimated conditional density function instead of imputation. The approach
does not only take into account the complete patterns, but also the incomplete
patterns in a semi-supervised kind of way.

3.1 Repair-and-Embed

Let Y be the matrix of high-dimensional patterns. In the missing data scenario,
we assume that some patterns in Y are incomplete, i.e., it holds ∃y′ij with y′ij =
n.a. Let Ỹ be the matrix of complete patterns, i.e., it holds �yij with yij = n.a.
In the following, we illustrate the imputation for one missing entry, but the
approach can easily be extended to the multiple case. To complete y′ij , repair-
and-embed trains a regression model f̃ based on Ỹ and first fills the missing
entries of patterns [Y]j with a minimal number of missing entries. Let yij be the

entry to complete. We can employ matrix ỸT
−i as training pattern matrix2, while

ỹi = yi1, . . . , yiÑ comprises the corresponding labels. Entry y′ij is estimated with

1 Missing at random (MAR) means that entries are missing randomly with uniform
distribution, in contrast to missing not at random (MNAR), where dependencies
exist, e.g., the missingness depends on the distribution of the patterns.

2 Ỹ−i = [(yj)−i]
Ñ
j=1 with (yj)−i = (y)j and j = 1, . . . , d, j �= i. Ñ is the number of

complete patterns.

On Missing Data Hybridizations for Dimensionality Reduction 193

f̃ leading to the complete vector [Y]j = ỹj that can be embedded as usual with
UNN. As KNN regression is a non-parametric method, no training is necessary,
only K has to be chosen carefully. After the pattern has been completed, the
next pattern with minimal number of missing entries is chosen and the process
is repeated until all patterns are complete. Then, data set Ỹ can be embedded
as usual with UNN.

3.2 Embed-and-Repair

The second variant for embedding incomplete data is to embed a vector yj

with a missing entry yij at dimension i ignoring the i-th component during the
computation of the DSRE, i.e., minimizing

E−i(X) =
1

N
‖fX(X)−i −Y−i‖2F . (3)

Algorithm 1.1 shows the pseudocode of the embed-and-repair approach. The al-
gorithm starts iteratively with the vector yj = [Y]j with increasing number of
missing values. Starting the dimensionality reduction with complete patterns is
reasonable to get as close as possible to the structure of the complete embed-
ding. Embed-and-repair is a greedy approach that only considers the locally best

Algorithm 1.1. Embed-and-Repair

Require: Y, K
1: repeat
2: choose yj = [Y]j with minimal number of missing entries, yij is missing
3: embed yj with UNN minimizing E−i(X) → xj

4: complete yj with KNN based on X → yj

5: add xj to X̃ with UNN
6: X = [X,xj], Y = [Y,yj]
7: until all patterns embedded

embedding w.r.t. the available information. Embedded patterns can be com-
pleted to take part in the remaining embedding process. The gaps are closed
with entries that ensure that the embedding is minimal w.r.t. eX(x). This is
the average of the K-nearest points for dimension i, i.e., the nearest neighbors
estimation yij = fX(xj)i.

Figure 3.2 illustrates the embed-and-repair strategy for neighborhood size
K = 2. Pattern y = (y1, ·) is incomplete. It is embedded at the position, where
it leads to the lowest DSRE w.r.t. the first dimension: between x′ and x′′. Then,
the gap is filled with the mean of the second dimension of y′ and y′′ yielding
y = (y1, 0.5 · (y′ + y′′)). The difference between KNN imputation and embed-
and-repair imputation is that the embed-and-repair KNN prediction is based on
neighborhoods in latent space. Hence, it is a dimensionality reduction-oriented
imputation method based on characteristics introduced by UNN regression.

194 O. Kramer

y

y

1

2

latent space

data space

(y , .)1

(y , 0.5(y’ + y’’))1

y’

y’’

x’ x’’x

Fig. 1. Embed-and-repair. The incomplete pattern y = (y1, ·) is embedded at position
x leading to the lowest DSRE w.r.t. the first dimension, i.e., between x′ and x′′. Then,
gap y2 is filled with KNN and K = 2.

4 Experimental Comparison of Missing Data Methods

In the following, we describe the experimental setup for the comparison between
both approaches. We generate a missing data matrix Y by removing entries yij
from a complete data matrix Y+ = [y+

j]
N
j=1 ∈ Rd×N at random with uniform

probability p, i.e., each entry yij is set to n.a. with probability p. We exper-
imentally compare the DSRE for embedding Y+ and Y. Further, we analyze
the imputation error Eimp =

∑N
j=1 ‖y+

j − ỹj‖2, which is the deviation from the

original complete patterns y+
j and the repaired counterparts ỹj .

Table 1. Comparison of imputation error Eimp and DSRE between UNN with repair-
and-embed (R-a-E) and UNN with embed-and-repair (E-a-R) on 3D-S and 3D-Sh w.r.t.
increasing data missing rate p

R-a-E E-a-R complete
data p Eimp DSRE Eimp DSRE UNN

3D-S 0.01 0.0507 147.2 0.0269 165.39 142.8
0.1 0.3129 143.8 0.2884 265.2 142.8
0.2 0.6454 149.0 0.6146 369.2 142.8
0.3 0.9557 152.7 0.9265 452.3 142.8

3D-Sh 0.01 0.0235 104.2 0.0309 119.7 105.5
0.1 0.2671 101.9 0.2595 217.6 105.5
0.2 0.5509 122.2 0.5007 296.8 105.5
0.3 0.8226 129.5 0.5285 301.8 105.5

On Missing Data Hybridizations for Dimensionality Reduction 195

(a) R-a-E, p = 0.1 (b) E-a-R, p = 0.1

(c) R-a-E, p = 0.2 (d) E-a-R, p = 0.2

(e) R-a-E, p = 0.4 (f) E-a-R, p = 0.49

Fig. 2. UNN embeddings of 3D-S with missing data for missing rates p = 0.1, 0.2 and
p = 0.4 for repair-and-embed (left column) and for embed-and-repair (right column)

Table 1 shows the experimental results for increasing data missing rates p on
the data set 3D-S. The experimental results show that UNN with repair-and-
embed achieves the lowest DSRE on both data sets. The results are very close
to the DSRE achieved on the data set without missing values (complete). UNN
with embed-and-repair achieves the lowest imputation error Eimp in seven of
the eight cases, but much worse results for the DSRE. While the DSRE results

196 O. Kramer

are still satisfactory with 1% of incomplete data, the approach fails for higher
missing rates. Obviously, it is difficult to first determine the manifold structure
from data sets with a high rate of missing values.

Figure 2 shows the embeddings of UNN on the 3D-S data set for increasingmiss-
ing rates p. The left plots show the embeddings of repair-and-embed, the right
plots the corresponding embeddings of embed-and-repair. The patterns are col-
orized w.r.t. their latent colors, i.e., patterns with similar colors are neighbored in
latent space showing that the embedding has been successful. Figure 2(a) shows
the embedding with a low missing rate of p = 0.1. The 3D-S is almost completely
reconstructed, while the colors of the embedding show that a reasonable learning
process took place. The higher the rate of incomplete data (cf. Figures (c) and (e))
the worse are the embeddings, i.e., different colors are neighbored. Higher missing
rates can also be recognized by deviations from the S-structure.

UNN with embed-and-repair shows a comparatively good embedding for the
low missing rate of p = 0.1. But the colors show that the embeddings are worse
for higher missing rates. For example, Figure 2(f) shows that the embedding of
UNN with repair-and-embed and data missing rate p = 0.4 leads to comparably
bad results, which is consistent with the DSRE of Table 1.

5 Conclusions

Dimensionality reduction is an important task in practical data mining scenarios
with high-dimensional data. In practical scenarios, data sets often suffer from
missing entries. From the perspective of UNN, we have introduced two algo-
rithmic variants that allow the efficient embedding of incomplete data. From
the perspective of imputation, first repairing incomplete data is a straightfor-
ward approach. We introduced an iterative variant that takes into account the
predicted values for completion of entries of patterns with an increasing data
missing rate. First embedding patterns at locations with the lowest DSRE and
then repairing the entries employing the neighbors in latent space is an approach
that makes use of the intrinsic structure UNN regression assumes for imputation.
This leads to comparatively good pattern reconstructions. But UNN employing
repair-and-embed achieves better results, because the structure of the data (that
can be reconstructed with KNN) has an important part to play for a successful
embedding.

As our future work, we plan to compare both approaches in real-world sce-
narios with missing data, and to other hybridizations of repair approaches and
dimensionality reduction algorithms.

References

1. Chechik, G., Heitz, G., Elidan, G., Abbeel, P., Koller, D.: Max-margin classification
of data with absent features. Journal of Machine Learning Research 9, 1–21 (2008)

2. Dick, U., Haider, P., Scheffer, T.: Learning from incomplete data with infinite im-
putations. In: International Conference on Machine Learning (ICML), pp. 232–239
(2008)

On Missing Data Hybridizations for Dimensionality Reduction 197

3. Ghahramani, Z., Jordan, M.I.: Supervised learning from incomplete data via an
EM approach. In: Advances in Neural Information Processing Systems (NIPS), pp.
120–127 (1993)

4. Kramer, O.: On evolutionary approaches to unsupervised nearest neighbor regres-
sion. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp.
346–355. Springer, Heidelberg (2012)

5. Kramer, O.: On unsupervised nearest-neighbor regression and robust loss functions.
In: International Conference on Agents and Artificial Intelligence (ICAART), pp.
164–170 (2012)

6. Kramer, O.: A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality
Reduction. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht,
A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 1–12. Springer,
Heidelberg (2012)

7. Kramer, O.: Unsupervised nearest neighbors with kernels. In: Glimm, B., Krüger,
A. (eds.) KI 2012. LNCS, vol. 7526, pp. 97–106. Springer, Heidelberg (2012)

8. Schafer, J.L., Graham, J.W.: Missing data: Our view of the state of the art. Psy-
chological Methods 7(2), 147–177 (2002)

9. Williams, D., Liao, X., Xue, Y., Carin, L., Krishnapuram, B.: On classification
with incomplete data. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(3), 427–436 (2007)

A Hybrid ACO+CP

for Balancing Bicycle Sharing Systems

Luca Di Gaspero1, Andrea Rendl2, and Tommaso Urli1

1 Department of Electrical, Management and Mechanical Engineering,
University of Udine,

Via Delle Scienze, 206 - 33100 Udine, Italy
{luca.digaspero,tommaso.urli}@uniud.it

2 DTS Mobility Department
Austrian Institute of Technology

Giefinggasse 2, 1210 Vienna, Austria
andrea.rendl@ait.ac.at

Abstract. Balancing bike sharing systems is an increasingly important
problem, because of the rising popularity of this mean of transportation.
Bike sharing systems need to be balanced so that bikes (and empty slots
for returning bikes) are available to the customers, thus ensuring an
adequate level of service.

In this paper, we tackle the problem of balancing a real-world bike
sharing system (BBSP) by means of a hybrid metaheuristic method.
Our main contributions are: (i) a new Constraint Programming (CP)
formulation for the problem, and (ii) a novel hybrid approach which
combines CP techniques with Ant Colony Optimization (ACO). We
validate our approach against real world instances from the Vienna
Citybike system.

1 Introduction

The idea of bike sharing is to provide bikes to the citizens via stations that are
located all around the city. At each station, bikes are stored in special racks,
such that users can easily pick up or return a bike. However, popular stations
are often emptied or filled very quickly, resulting in annoyed users who cannot
return or retrieve bikes. To avoid this, the stations must be balanced.

Bike sharing systems are balanced by distributing bikes from one station to
another by using specific vehicles. Therefore, balancing the system corresponds
to finding a tour for each vehicle, including loading and unloading instructions
per station such that the resulting system is balanced. Clearly, balancing bike
sharing systems is a difficult task, since it requires solving a vehicle routing
problem combined with distributing single commodities (bikes) according to the
target values at the stations.

In the following, we are consistent with the notation introduced in [1]. We
consider balancing a bike sharing system with S stations S = {1, . . . , S} and a
set of depots D = {S + 1, . . . , S +D}, where each station s ∈ S has a capacity

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 198–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 199

Cs > 0, a number of available bikes bs and the number of target bikes ts that
denotes the number of bikes that should be at station s after balancing the
system. We use V vehicles V = {1, . . . , V } with capacity cv > 0 and initial load

b̂v ≥ 0 that distribute the bikes within maximal t̂v > 0 time units. The travel
times between stations (and the depots) is given by a travel time matrix ttu,v
where u, v ∈ S ∪ D, which includes also an estimate of the processing times
needed to serve the station, if v ∈ S.

We want to achieve a maximally balanced system where each vehicle travels
on a minimal route. Therefore, in our cost function, we minimize the sum of
the deviations from the target value for each station and include both the travel
distance and the overall activity of each vehicle as a measure of the work effort.

In this paper, we first introduce a novel Constraint Programming (CP) model
that is based on a vehicle routing formulation. Then we show how we can gen-
erally combine CP with Ant Colony Optimization (ACO) by utilizing ACO as
search engine in the CP solving process. The combination is based on the idea
of tackling the problem as a bi-level optimization problem, in which the routing
variables are handled by ACO, whereas the operation variables (which model
the number of bikes to load or unload) are taken care of by CP. Finally, we show
with an experimental evaluation on real-world instances from Citybike Vienna,
that the hybrid ACO+CP approach outperforms the pure CP formulation.

2 Related Work

A few approaches for integrating ACO and CP are available from the literature.
The first attempt is due to Meyer and Ernst [2], who apply the method for
solving a Job-Shop Scheduling problem. The proposed procedure employs ACO
to learn the learning strategy used by CP in the tree-search. The solutions found
by CP are fed back to ACO, in order to update its probabilistic model. In this
approach, ACO can be conceived as a master online-learning branching heuristic
aimed at enhancing the performance of a slave CP solver.

A slightly different approach has been taken by Khichane et al. [3,4]. Their
algorithm works in two phases. At first CP is employed to sample the space of
feasible solutions and the information collected is processed by the ACO pro-
cedure for updating the pheromone trails. In the second phase, the pheromone
information is employed as the value ordering used for CP branching. Unlike the
previous one, this approach uses the learning capabilities of ACO in an offline
fashion. More standard approaches in which CP is used to keep track of the fea-
sibility of the solution constructed by ACO and to reduce the domains through
Constraint Propagation have been used by a number of authors. This idea has
been applied to Job-Shop Scheduling [2] and Car Sequencing [5].

Our approach also shares some similarities with Large Neighborhood Search
(LNS) [6] in that (i) we exploit constraint propagation to reduce the domains of
the variables and (ii) we handle different subsets of variables separately. However,
unlike LNS, our search process includes a learning component. Moreover, our
separate treatment of variables is motivated by the good performance of ACO on
routing problems, rather than by a need for a better neighborhood exploration.

200 L.D. Gaspero, A. Rendl and T. Urli

Balancing of bike sharing systems has become an increasingly studied prob-
lem in the last few years. Benchimol et al. [7] consider the rebalancing as hard
constraint and the objective is to minimize the travel time. They study dif-
ferent approximation algorithms on various instance types and derive different
approximation factors for certain instance properties. Furthermore, they present
a branch-and-cut approach based on an ILP including subtour elimination con-
straints. Contardo et al. [8] consider the dynamic variant of the problem and
present a MIP model and an alternative Dantzig-Wolfe decomposition and Ben-
ders decomposition method to tackle larger instances. Raviv et al. [9] present two
different MILP formulations for the static BBSP and also consider the stochas-
tic and dynamic factors of the demand. In the approach of Chemla et al. [10], a
branch-and-cut approach based on a relaxed MIP model is used in combination
with a tabu search that provides upper bounds. Rainer-Harbach et al. [1] pro-
pose a heuristic approach for the BBSP in which effective routes are calculated
by a variable neighbourhood search (VNS) metaheuristic and the loading in-
structions are computed by a helper algorithm, where they study three different
alternatives (exact and heuristic) as helper algorithms.

Schuijbroek et al. [11] propose a new cluster-first route-second heuristic, in
which the clustering problem simultaneously considers the service level feasi-
bility constraints and approximate routing costs. Furthermore, they present a
constraint programming model for the BBSP that is based on an scheduling for-
mulation of the problem and therefore differs significantly from our VRP-based
formulation.

3 A Constraint Model for BBSP

Our constraint model is based on the constraint model [12] of the classical Vehicle
Routing Problem (VRP) that is concerned with servicing a set of customers with
a fleet of vehicles with cost-optimal tours. The VRP model employs successor
and precessor variables to represent the path of each vehicle on a special graph
GVRP that consists of three different kinds of nodes: first, the starting node for
each vehicle (typically the respective depot), second, the nodes that should be
visited in the tour, and third, the end nodes for each vehicle, again typically
the respective depot. In summary, GVRP contains 2V +S nodes, where V is the
number of vehicles and S is the number of nodes to visit. This graph structure
allows to easily define successor and predecessor variables to represent paths.

We extend the VRP model to allow unvisited stations and to capture loading
instructions on a per-station basis. To achieve this we introduce a dummy vehicle
that (virtually) visits all the unserviced stations. This formulation allows to treat
unvisited stations as a cost component, and makes it easier to ensure that no
operations are scheduled for unvisited stations by constraining the load of the
dummy vehicle to be always zero. This results in an extension of GVRP to graph
GBBSP that contains 2(V + 1)+ S nodes, where V + 1 is the number of vehicles
including the dummy vehicle. This encoding is illustrated in Figure 1, where
the basic structure is shown on the lower layer, and the encoded GBBSP and a

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 201

6 7
1

2

3

4 5

G

3

4

5

6 7

0v1

1v2

2vdummy

8

9

10

GBBSP

service4 = −5

succ2 = 7

Fig. 1. Graph encoding of the BBSP employed in the routing CP model. The lower
layer shows the original graph, whereas the upper layer shows the encoded graph in
the case of two vehicles, and a solution. The path starting at node 2 and ending at
node 10 (i.e., the dummy vehicle) corresponds to the set of unserved nodes.

possible solution is shown on the upper layer. We represent all nodes in GBBSP

in the ordered set U which is defined as follows:

U = { 0, . . . , V, Vs: start nodes
V + 1, station 1
V + 2, station 2
. . . , . . .
V + S, station S
V + S + 1, . . . , 2V + S + 2 } Ve: end nodes

Thus, U first contains the starting nodes (depots) for the V vehicles and the
dummy vehicle, followed by the S regular stations, and finally the end nodes
(depots) for V vehicles and the dummy. Note, that we denote Vs = {0, . . . , V }
the set of start nodes of vehicles and Ve = {V +S+1, . . . , 2V +S+2} the set of
end nodes of each vehicle. Thus, U = Vs∪S∪Ve. In summary, the tour of vehicle
v ∈ V starts at a depot in Vs, continues to some station nodes in S and ends at
a depot in Ve. In the following, we give a detailed description of our model.

3.1 Variables

The first set of variables are the successor variables that represent the paths by
defining the successor of each node in U . Thus, we have |U| successor variables
succ that range over U , where succi represents the node following node i. In
addition, we define predecessor variables pred where pred i denotes the node
which comes just before node i in the route. Though redundant, predecessor

202 L.D. Gaspero, A. Rendl and T. Urli

Table 1. Variables in the CP Model

name[dimension] domain description

succ [U] U successor of node i ∈ U
pred [U] U predecessor of node i ∈ U
vehicle [U] U vehicle serving node i ∈ U
service [U] [±max(Cmax, cmax)] removed/added bikes at node i ∈ U
load [U] [0, cv] load of vehicle v after serving node i ∈ U
time [U] [0, t̂v] time when vehicle v arrives at node i ∈ U
loadTime [U] [0, L̂] loading time at node i ∈ U
deviation [S] S deviation from target at station s ∈ S
cost [l, u] overall cost of the solution

variables channelled with successor variables result in stronger propagation [12].
Second, we associate a vehicle to each node i by the variable vehicle i that ranges
over {0, . . . , V }. The loading instructions for each node are captured by operation
variables service where servicei represents the number of bikes that are added
or removed at node i ∈ U and ranges over [±max(Cmax, cmax)] where Cmax

and cmax are respectively the maximum capacities of stations and vehicles. We
also introduce load variables load i, which represent the load of the vehicle after
visiting node i ∈ U . Next come the time-related variables: timei constitutes the
arrival time at which a vehicle arrives at node i. In our problem formulation, the
arrival time also includes the processing time, i.e., the time for loading/unloading
the vehicle at that node. Finally, we use S deviation variables deviation where
deviations represents the deviation from the target values at station s ∈ S after
the balancing tours. Variables are summarized in Tab. 1.

3.2 Constraints

We divide the introduction of the constraints in the model by first stating the es-
sential constraints that are required to comprehensively model the problem, and
then discussing some redundant constraints that will help the solution process.

Essential Constraints. We start our description with the routing constraints
for the path: all successors and predecessors take different values.

alldifferent(succ) (1)

alldifferent(pred) (2)

Note that, while these constraints are alone not sufficient to eliminate subtours
from the solutions, according to [12] the presence of a finite time horizon for
vehicles (which is the case for BBSP) ensures the absence of cycles. In the case
of the dummy vehicle, which has no finite horizon, a similar task is carried out
by a symmetry breaking constraint which enforces an ordering of the nodes in
the route, effectively making subtours impossible to occur.

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 203

Then we set the successor-predecessor chain for each regular station

pred succs
= s ∀s ∈ S (3)

succpreds
= s ∀s ∈ S (4)

and the successor-predecessor chain for the start and end nodes where ŝ = V+S
represents the index of first end node in U :

predv = ŝ+ v ∀v ∈ Vs (5)

succ ŝ+v = v ∀v ∈ Vs (6)

Furthermore, no loops are allowed in the paths, i.e.

pred i �= i ∀i ∈ U (7)

succi �= i ∀i ∈ U (8)

We continue with constraints on the vehicle variables. First, we set the respective
vehicle v ∈ Vs for each start- and end-node in the path:

vehiclev = v ∀v ∈ Vs (9)

vehicle ŝ+v = v ∀v ∈ Vs (10)

and second, we set the vehicle-chain over the path variables:

vehiclesucci = vehicle i ∀i ∈ U (11)

vehiclepredi
= vehicle i ∀i ∈ U (12)

For the loading constraints, we first set the initial load b̂v and constrain the
dummy vehicle to be empty

loadv = b̂v ∀v ∈ Vs \ {V } (13)

loadV = 0 (14)

and continue with the loading restrictions along a path

load succi
= load i − servicei ∀i ∈ U (15)

Finally, every vehicle must be completely empty at the end of the route, i.e.:

loadv = 0 ∀v ∈ Ve (16)

Additionally, we constrain the load for vehicles: if station s is not served by the
dummy vehicle (V), then the service must not be zero, and vice versa:

(vehicles �= V) ⇐⇒ (services �= 0) ∀s ∈ S (17)

Furthermore, the load of the vehicle after visiting station s ∈ S may not exceed
its capacity c:

load s ≤ cvehicles ∀s ∈ S (18)

204 L.D. Gaspero, A. Rendl and T. Urli

Next come the operation constraints. At first we impose operation monotonicity,
i.e., services at station s should either force loading or unloading bikes depending
on the current number of bikes bs and the target value of bikes ts:

services ≤ 0 ∀s∈S : bs > ts (19)

services ≥ 0 ∀s∈S : bs < ts (20)

Notice that a service value of 0 is admissible in both cases since a station could
remain unserved (e.g., because of the time budget constraints). The service at
the start and end nodes (depots) i is zero for all vehicles:

service i = 0 ∀i ∈ Vs (21)

servicei = 0 ∀i ∈ Ve (22)

Furthermore, the service is limited by the maximal number of bikes in the station,
and we cannot have a negative number of bikes:

bs + services ≤ Cs ∀s ∈ S (23)

bs + services ≥ 0 ∀s ∈ S (24)

Finally, we state the time constraints, where we begin with setting the arrival
time (and processing time) at the start depots to zero

timev = 0 ∀v ∈ Vs (25)

and set the time chain for the successor and predecessor variables:

timev = timepredv
+ ttpredv ,v ∀v ∈ S ∪ Ve (26)

timesuccv = timev + ttv,succv ∀v ∈ Vs ∪ S (27)

At last, the overall working time for each vehicle must be within its time budget:

time ŝ+v ≤ t̂v ∀v ∈ V (28)

This concludes the description of the essential of our CP model for the BBSP
problem. The model can be enhanced by some redundant constraints, that will
take care of some particular substructure of the problem.

Redundant Constraints. First, because of the monotonicity constraints (19–
20), the stations requiring the unloading of bikes must be removed from the
successors of the starting depots

succi �= j ∀i ∈ Vs, j ∈ {s ∈ S|bs < ts} (29)

Similarly, because of constraint (16), which requires empty vehicles at the end
of the path, the stations requiring the loading of bikes must be removed from
the predecessors of the ending depots

pred i �= j ∀i ∈ Ve, j ∈ {s ∈ S|bs > ts} (30)

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 205

Finally, an early failure detection of the working time constraint (28) is possible.
If the working time of the current partial solution plus the time to reach the
final depot exceeds the total time budget, then the solution can’t be feasible.

timei + tti,ŝ+vehiclei ≤ t̂vehiclei
∀i ∈ S (31)

Cost Function. The cost function of the problem is a hierarchical one, and
comprises two different major components: the level of unbalancing and the
working effort.

The unbalancing component is defined in terms of the deviation variables,
which are set to be the absolute value of the deviation from the target number
of bikes at each station after service has been performed, i.e.:

deviation s = |bs + services − ts| ∀s ∈ S (32)

The working effort is the sum of the total traveling time (i.e., the sum of the
times at which each vehicle reaches its ending depot) plus the overall activity
performed throughout the path (i.e., the absolute value of the service).

The cost function is the weighted aggregation of the two components, i.e.:

cost = w1

∑
s∈S

deviation s + w2(
∑
v∈V

time ŝ+v +
∑
s∈S

|services|) (33)

where w1 = 1 and w2 = 10−5, so that the satisfaction of the first component
prevails over the second one. This cost function, defined in [1], is the scalarization
of a multi-objective problem in nature, thus some points in the Pareto optimal
set are neglected by construction. The main reason for this choice was the need to
compare with the current bests, moreover, to the best of our knowledge, research
in multi-objective propagation techniques is still at an early stage.

4 An ACO+CP Hybrid

Ant Colony Optimization [13] is an iterative constructive metaheuristic, inspired
by the ant foraging behavior. The ACO construction process is driven by a
probabilistic model, based on pheromone trails, which are dynamically adjusted
by a learning mechanism. Constraint Programming(CP) [14] is an exact solving
approach where a constraint model is solved using a customized search strategy
interleaved with strong filtering (propagation) of the variables’ domains.

The hybridization of ACO and CP is described in Algorithm 1 and is, in its
essence, a bi-level optimization process. The basic idea is to partition the set
X of problem variables into two sets XAnts and XCP . The values for the XAnts

variables are dealt with by an ACO procedure and once they are set, a tree-search
(line 12) finds the values for the remaining variables. The tree-search procedure
can be either a branch-and-bound algorithm (exploiting the information of the
cost function F) or a (possibly) faster depth-first-search if we are satisfied with
a good assignment of the XCP variables.

206 L.D. Gaspero, A. Rendl and T. Urli

Algorithm 1. ACO + CP

input : X = XAnts ∪XCP , a set of integer variables partitioned into variables
dealt with ACO and CP, respectively
C, a set of constraints
F , a cost function

1 initialize all pheromone trails to τstart;
2 g ← 0;
3 repeat
4 for k ∈ {1, . . . , n} do
5 Ak ← ∅;
6 repeat
7 select a variable xi ∈ XAnts, so that xi �∈ var(Ak), and a value

j ∈ Dj according to the pheromone trail τij (and possibly the
heuristic information ηij);

8 add {xi := j} to Ak;
9 if Propagate(Ak, C) = Failure then

10 Backtrack(Ak);

11 until var(Ak) = XAnts;
12 TreeSearch(X, C,F);
13 update pheromone trails using {A1, . . . ,An} and F ;
14 g ← g + 1;

15 until TerminateSearch(g,Ai, time);

Once all n ants have found a solution, the pheromone trails are updated ac-
cording to the solution components and their cost value. The overall search is
typically stopped at a given timeout. It is worth noticing that, in the proposed
approach, the interaction between ACO and CP is two-way. The pruning capa-
bilities of constraint propagation are employed both to restrict the number of
alternatives the ants must face at each choice point (see line 7), and as a mech-
anism for early failure detection (see line 9). On the other hand, ACO helps CP
converging faster, by avoiding search paths that lead to unfeasible solutions.

4.1 ACO+CP for BBSP

In our CP model for the BBSP problem, there is a natural partition of the
decision variables into two families, i.e., routing and operation variables.

Handling of Routing Variables. The first set of variables, succi, is handled
very naturally by ACO, which has been shown to be particularly effective in
solving routing problems. In our approach, ACO is embodied by a two-phase
branching strategy which takes care both of variable and value selection. This
process is illustrated in Figure 4.1.

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 207

Variable selection. The first variable to be selected, according to the heuristic,
is the succ of the first vehicle starting depot (Fig. 2(a)). As for the next variable
to assign, we always choose the one indicated by the value of the last assigned
variable, i.e., the succ of the last assigned node (Fig. 2(b)). By following this
heuristic, we enforce the completion of existing paths first. If the successor of the
last assigned node is a final depot (Fig. 2(c)), then we cannot proceed further on
the current path, and we start a new one by assigning the successor of the next
starting depot. Once the paths of all vehicles are set, the remaining unserved
nodes will be assigned to the dummy vehicle (Fig. 2(d)).

Value selection. Once the next variable to assign is chosen, all the values in its
current domain are considered as candidates. Note that, in this, we are in fact
exploiting problem-specific knowledge, as the domain of a variable is, at any
time, determined by the constraint propagations activated earlier in the search.

The next step is where ACO comes into play. For our approach we have chosen
a popular ACO variant known as the hyper-cube framework for ACO (HC-ACO)
[15]. As most other ACO approaches, HC-ACO maintains a pheromone table in
which each 〈Xi, vj〉 (variable, value) pair has a corresponding τi,j pheromone
value indicating the desirability of value vj for the variable Xi. The advantage
of HC-ACO over other ACO variants, is that the update rule for pheromones
involves a normalization factor which makes the approach independent of the
scale of the cost function and doesn’t require to enforce a [τmin, τmax] interval.

In line with the majority of ACO variants, our value selection heuristic is
stochastic, with the probability of choosing a specific value being proportional
to the corresponding τ -value. In particular, the probability P (Xi, vj) of choosing
the value vj for the variable Xi is

P (Xi, vj) =
τi,j∑

vk∈dom(Xi)
τi,k

(34)

Handling of Operation Variables. The operation variables are assigned
through depth-first tree-search, based on deviation variables, which are the main
component of our cost function. This way, employing a min value heuristic, lower
cost solutions are produced before bad ones.

While other choices are possible, e.g. a full exploration of the tree by branch-
and-bound, in this context we aim at finding quickly feasible solutions, so that
they can be used for learning. The rationale behind this choice is that decisions
taken towards the root of the search tree have a greater impact than the ones
taken towards the leaves, and τ -updates are the only way to improve our ACO-
based value selection heuristic.

τ Update. After all n ants have produced a feasible solution (we call this set
of solutions Supd), their cost function value is used to make an update to the
pheromone table. The update rule is the one described in [15] (adapted to be
consistent with our conventions)

208 L.D. Gaspero, A. Rendl and T. Urli

3

4

5

6 7

η0,i

1

2

8

9

10

τ0,3

τ0,4

τ0,5

τ
0,6

τ0,7

τ0,8

(a) The ant is first placed at the start-
ing depot of the first vehicle.

3

4

5

6 7

0

1

2

8

9

10

τ6,
3

τ 6
,4

τ
6
,5

τ6,7

τ6,8

(b) The value of the succi variable is
selected according to the pheromones
τi,j .

3

4

5

6 7

0

1

2

9

10

(c) Once the ending depot is reached,
the ant starts with the route of the
next vehicle.

3

4

5

6 7

0

1

8

9

10

(d) All remaining nodes are assigned
to the dummy vehicle (i.e., they are
left unserved).

Fig. 2. Illustration of the graph traversal performed by one ant

τi,j = (1− ρ) · τi,j + ρ ·
∑

s∈Supd

F (s)∑
s′∈Supd

F (s′)
(35)

where ρ is a learning rate that controls how fast the pheromones adapt to make
the new solutions more likely and F is a quality function that in our case is
defined as F (s) = 1/cost(s). Note that all pheromones are also subject to a
multiplicative evaporation of 1− ρ.

5 Experimental Analysis

In this section we report and discuss the experimental analysis of the algorithms.
The experimental setting is as follows.

For fair comparison, both the CP and the ACO+CP algorithms were im-
plemented in Gecode (v 3.7.3) [16], the ACO variant consisting in specialized
branching and search strategies.

All pheromones were initially set to τmax = 1. The ρ parameter and the
number of ants have been tuned by running an F-Race [17] with a confidence
level of 0.95 over a pool of 210 benchmark instances from Citybike Vienna. Each
instance, featuring a given number of stations, was considered with different
number of vehicles (V ∈ {1, 2, 3, 5}) and time budgets (t̂ ∈ {120, 240, 480}).
Moreover, the algorithms were allowed to run for three different timeouts (30,
60, 120 seconds), totaling 7560 problems.

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 209

Fig. 3. Comparison between ACO+CP (dark, solid lines) and CP (light, thin lines) on
a problem instance with 30 stations. The columns of the graph matrix represent the
vehicle time budget and the rows represent the number of available vehicles.

We tuned the number of ants n ∈ {5, 10, 15, 20} and the learning rate ρ
together, as we expected an interaction between the two parameters. The 8 can-
didate values for ρ were instead sampled from the low-discrepancy Hammersley
point set in [0.4, 0.8]. This interval was chosen according to a preliminary tun-
ing of the parameters, with ρ ∈ [0, 1] and 32 samples. The result of the tuning
process is that, for the considered set of problems, the best setup involves 5 ants
and ρ = 0.65. All the experiments were executed on an Ubuntu Linux 12.04
machine with 16 Intel R© Xeon R© CPU E5-2660 (2.20GHz) cores.

Comparison between CP and ACO+CP. The main goal of this comparison
is to understand if a dynamic branching strategy based on ACO can indeed
outperform a static branching strategy. Figure 3 shows the results on an instance
from the Citybike Vienna benchmark set featuring 30 stations. The choice of this
instance has been driven by the fact that a time budget of 2 minutes was too
low for CP to obtain even a single solution on larger instances.

The results of the comparison show that ACO+CP clearly outperforms the
pure CP approach. In fact, the CP solver is declared significantly inferior by the
F-Race procedure after just 15 iterations. The superior behavior of ACO+CP is
confirmed also from the analysis reported in Figure 3, for the variants of a single
problem instance with 30 stations. Note that the ACO+CP data is based on 5
repetitions of the same experiment, as the process is intrinsically stochastic.

It is possible to see that the cost values achieved by ACO+CP are always
lower than those of CP and in one case (namely time budget 480 and 5 vehicles)
CP is even not able to find a solution within the granted timeout despite the
fact that it is somehow a loosely constrained instance.

210 L.D. Gaspero, A. Rendl and T. Urli

Table 2. Comparison of our CP and ACO+CP solvers with the MIP and the best
VNS approach of [1]

Instance CP ACO+CP MIP [1] VNS [1]

S V t̂ obj30 obj60 obj120 obj30 obj60 obj120 ub lb time obj time

10 1 120 28.3477 28.3477 28.3477 28.5344 28.7477 28.5478 28.3477 28.3477 4 28.3477 2
10 1 240 14.0908 11.4915 9.5589 5.2276 4.7609 4.4810 4.2942 0.0424 3600 4.2941 10
10 1 480 14.8247 13.2922 9.8942 0.4322 0.9120 0.6052 0.0320 0.0276 3600 0.0317 17
10 2 120 10.2266 10.2266 10.2266 10.4001 10.6667 10.4268 9.8269 9.4768 911 9.9601 3
10 2 240 5.3652 4.6987 2.7662 0.4342 0.9274 0.1009 0.0340 0.0322 856 0.0339 19
10 2 480 5.3637 4.8971 3.2976 0.4854 0.4586 0.8584 0.0317 0.0313 1245 0.0317 15
20 2 120 72.4942 70.4279 68.7614 64.2558 62.9492 61.4561 5.8294 26.9012 3600 55.3628 8
20 2 240 74.2422 72.3754 71.5087 18.3904 17.3372 15.3907 19.7884 0.0383 3600 4.2575 58
20 2 480 74.1093 72.7093 72.5756 3.9748 2.7743 2.8943 1.8906 0.0403 3600 0.0615 142
20 3 120 67.5712 64.1051 61.5053 48.4287 47.1622 45.0557 37.3759 1.4770 3600 31.7763 13
20 3 240 74.3813 74.1811 74.1143 7.5511 5.8310 4.7641 6.2083 0.0401 3600 0.0650 65
20 3 480 74.3814 74.1811 74.1144 4.5878 2.5211 2.5874 13.4191 0.0316 3600 0.0614 114
30 2 120 127.5604 126.4939 125.5608 122.4552 119.2022 118.0823 106.9631 56.3908 3600 104.7633 12
30 2 240 117.2520 116.5857 116.3188 75.7637 73.2173 70.4309 74.9886 0.0487 3600 34.6608 109
30 2 480 101.8650 101.8650 101.4652 13.5173 11.1311 9.3847 69.8069 0.0432 3600 0.0925 491
30 3 120 – 117.7058 115.6393 107.7879 105.1748 102.0554 90.4419 16.6454 3600 78.1773 21
30 3 240 104.6052 104.4719 104.0054 46.0564 42.7502 40.5769 61.6715 0.0461 3600 7.1523 191
30 3 480 100.7422 100.6089 100.6089 – 10.7450 8.5595 175.4000 0.0015 3600 0.0925 399
60 3 120 – – – 307.8148 304.4283 300.2154 274.3101 157.7350 3600 253.8462 45
60 3 240 – – – 245.3374 238.1644 233.6585 370.2000 0.0000 3600 126.8282 521
60 3 480 205.8871 205.8871 205.8870 127.2744 122.7286 117.6223 – – 3600 6.7758 3600
60 5 120 – – – 283.0537 278.0540 272.8145 289.3111 34.9784 3600 196.6749 99
60 5 240 – – – 184.7371 179.0572 173.6710 370.2000 0.0000 3600 41.6161 1556
60 5 480 – – – – – – – – 3600 0.1902 3600
90 3 120 – – – 511.8807 507.2943 504.2013 492.2319 290.8990 3600 441.6473 82
90 3 240 – – – 451.7232 445.4705 438.2044 566.2667 0.0000 3600 294.5646 985
90 3 480 – – – 334.6610 326.4350 319.5826 – – 3600 101.1221 3600
90 5 120 – – – 490.3193 480.7739 473.9345 566.2667 0.0000 3600 376.1432 169
90 5 240 – – – 393.4433 383.3375 375.5915 – – 3600 174.3566 3304
90 5 480 – – – 213.3140 202.3017 192.3832 – – 3600 1.6855 3600

Comparison with Other Methods. In this second experiment, we compare
ACO+CP and CP, with state-of-the-art results of [1], who solved the same set of
instances by a Mixed Integer Linear Programming solver (MILP) and a Variable
Neighborhood Search (VNS) strategy. The results of the comparison are reported
in Table 2, where we compare against the best of the three different VNS strate-
gies described in [1]. The results reported are averages across instances with the
same number of stations.

In this respect, the results are still unsatisfactory, since the best VNS approach
of [1] is outperforming our ACO+CP on almost all instances. Nevertheless, our
ACO+CP is able to do better than the MIP approach for mid- and large-sized
instances.

6 Conclusions and Future Work

In this paper we tackle the problem of balancing the Citybike Vienna bike sharing
system by means of a hybrid ACO+CP approach. The contributions of the paper
are twofold.

A Hybrid ACO+CP for Balancing Bicycle Sharing Systems 211

First, we devise a novel CP formulation for the problem based on an extension
of the classical CP vehicle routing model [12]. Up to the best of our knowledge,
this is, together with [11], one of the two available CP formulations. Second, we
propose a novel hybrid ACO+CP approach with the aim of improving the results
of the pure CP solver. The proposed hybridization approach is quite general and
can be applied also to other problems having a similar bi-level optimization
structure. Moreover, the hybrid approach is implemented as an extension of the
Gecode CP system and requires a small customization for handling different
problem models.

From our experiments, it is clear that the ACO+CP approach outperforms
the standard branch-and-bound CP solution method. However, despite these
promising initial results, the performances of ACO+CP are still not as good as
those achieved by the state-of-the-art metaheuristic approaches for this problem.

Among the alternatives we want to explore, there is the validation of the
proposed ACO+CP approach on other bi-level optimization problems such as the
integrated vehicle routing and packing problem. Moreover, we plan to investigate
other methods for combining metaheuristics and CP, e.g., LNS.

Acknowledgements. This work is part of the project BBSP, partially funded by
theAustrianFederalMinistry forTransport, Innovation andTechnology (BMVIT)
within the strategic programme I2VSplus under grant 831740 and it has been also
supported by Google Inc. under the Google Focused Grant Program on “Math-
ematical Optimization and Combinatorial Optimization in Europe”. We thank
Marian Rainer-Harbach, Petrina Papazek, Bin Hu and Günther R. Raidl from the
Vienna University of Technology, andMatthias Prandtstetter andMarkus Straub
from the Austrian Institute of Technology, and City Bike Vienna for the collabo-
ration in this project, constructive comments and for providing the test instances
and the results of the methods they developed.

References

1. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing
systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C.
(eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)

2. Meyer, B., Ernst, A.: Integrating ACO and constraint propagation. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)

3. Khichane, M., Albert, P., Solnon, C.: CP with ACO. In: Perron, L., Trick, M. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 328–332. Springer, Heidelberg (2008)

4. Khichane, M., Albert, P., Solnon, C.: Strong combination of ant colony optimiza-
tion with constraint programming optimization. In: Lodi, A., Milano, M., Toth, P.
(eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 232–245. Springer, Heidelberg (2010)

5. Khichane, M., Albert, P., Solnon, C.: Integration of ACO in a constraint program-
ming language. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T.,
Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 84–95. Springer, Heidel-
berg (2008)

212 L.D. Gaspero, A. Rendl and T. Urli

6. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics. International Series in Operations Research &
Management Science, vol. 146, pp. 399–419. Springer, US (2010)

7. Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier,
F., Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO –
Operations Research 45(1), 37–61 (2011)

8. Contardo, C., Morency, C., Rousseau, L.M.: Balancing a Dynamic Public Bike-
Sharing System. Technical Report CIRRELT-2012-09, CIRRELT, Montreal,
Canada, submitted to Transportation Science (2012)

9. Raviv, T., Tzur, M., Forma, I.A.: Static Repositioning in a Bike-Sharing System:
Models and Solution Approaches. EURO Journal on Transportation and Logistics
(2012), doi:10.1007/s13676-012-0017-6

10. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization 10(2), 120–146 (2013)

11. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Ve-
hicle Routing in Bike Sharing Systems. Technical Report 2013-E1, Tepper School
of Business, Carnegie Mellon University (2013)

12. Kilby, P., Shaw, P.: Vehicle routing. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, pp. 799–834. Elsevier, New York (2006)

13. Dorigo, M., Birattari, M.: Ant colony optimization. In: Encyclopedia of Machine
Learning, pp. 36–39 (2010)

14. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

15. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2),
1161–1172

16. Gecode: Generic constraint development environment (2006),
http://www.gecode.org

17. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: An
overview. In: Experimental Methods for the Analysis of Optimization Algorithms,
pp. 311–336 (2010)

http://www.gecode.org

Author Index

Boizumault, Patrice 22

Caserta, Marco 118
Crawford, Broderick 52

Deville, Yves 92
Di Gaspero, Luca 198

Ferone, Daniele 174
Festa, Paola 174
Fontaine, Mathieu 22

Gomes, Thiago M. 1
González-Velarde, J.L. 62

Hamacher, Kay 107
Hamadi, Hasni 78
Hu, Bin 130

Inführ, Johannes 159

Kramer, Oliver 189

López-Ibáñez, Manuel 92, 144
Loudni, Samir 22

Marinaki, Magdalene 37
Marinakis, Yannis 37

Marmion, Marie-Eléonore 144
Mascia, Franco 144
Massen, Florence 92
Mohamed, Hadded 78
Monfroy, Eric 52
Morán-Mirabal, L.F. 62
Mousavi, S.M. 12

Papazek, Petrina 130

Raidl, Günther R. 130, 159
Rainer-Harbach, Marian 130
Rendl, Andrea 198
Resende, Mauricio G.C. 62, 174

Santos, Haroldo G. 1
Siadat, A. 12
Soto, Ricardo 52
Souza, Marcone J.F. 1
Stützle, Thomas 92, 144

Tavakkoli-Moghaddam, R. 12

Urli, Tommaso 198

Vahdani, B. 12
Voß, Stefan 118

	Preface
	Organization
	Table of Contents
	A Pre-processing Aware RINS Based MIPHeuristic
	1 Introduction
	2 Literature Review
	3 The pRINS MIP Heuristic
	4 Characterization of Instances
	5 Experiments and Results
	6 FinalRemarks
	References

	A Hybrid Simulated Annealing Algorithmfor Location of Cross-Docking Centers in a Supply Chain
	1 Introduction
	2 Problem Description and Formulation
	2.1 Proposed Model

	3 Proposed Hybrid Meta-heuristic Algorithm
	4 Computational Results
	5 Conclusion
	References

	Intensification/Diversificationin Decomposition Guided VNS
	1 Introduction
	2 Context and Definitions
	2.1 Cost Functions Network
	2.2 Tree Decomposition
	2.3 Decomposition Guided VNS (DGVNS)

	3 Strategies for Intensification/Diversification in
	3.1 Intensification versus Diversification
	3.2 DGVNS-1: Move Systematically to the Next Cluster
	3.3 DGVNS-2: Move to the Next Cluster If No Improvement Is Made
	3.4 DGVNS-3: Move to the Next Cluster after Each Improvement

	4 Benchmark Problems
	5 Experiments
	5.1 Experimental Protocol
	5.2 Comparing the Three Strategies
	5.3 Comparing with Other Approaches

	6 Conclusions
	References

	A Hybridized Particle Swarm Optimizationwith Expanding Neighborhood Topologyfor the Feature Selection Problem
	1 Introduction
	2 Feature Selection Problem
	3 Particle Swarm Optimization with Expanding Neighborhood Topology Algorithm
	3.1 General Description

	4 Computational Results
	5 Conclusions
	References

	Interleaving Constraint Propagation:An Efficient Cooperative Searchwith Branch and Bound
	1 Introduction
	2 Cooperative Search Framework
	2.1 The SOLVE Component
	2.2 The OBSERVATION Component
	2.3 The ANALYSE Component
	2.4 The UPDATE Component

	3 B&B + Constraint Propagation Solver
	3.1 Basic Hybridization
	3.2 Hybridization Based on Propagation Rate

	4 Conclusion
	References

	Automatic Tuning of GRASPwith Evolutionary Path-Relinking
	1 Introduction
	2 GRASP with Evolutionary Path-Relinking
	3 Automatic Tuning Using a BRKGA
	3.1 Encoding and Decoding

	4 GRASP+evPR for Three Optimization Problems
	4.1 Set Covering
	4.2 Maximum Cut
	4.3 Node Capacitated Graph Partitioning

	5 Experimental Results
	5.1 Instances
	5.2 The Experiments

	6 Concluding Remarks
	References

	Combining Genetic Algorithm and SimulatedAnnealing Methods for ReconstructingHV-Convex Binary Matrices
	1 Introduction
	2 Preliminaries
	3 HV-ConvexBinaryMatrix
	3.1 Definitions
	3.2 Integer Programming Formulation
	3.3 Bounds

	4 Simulated Annealing
	4.1 Overview
	4.2 Simulated Annealing for RBM(H,V)

	5 Genetic Algorithm
	5.1 Overview
	5.2 Genetic Algorithm for RBM(H,V)

	6 Combining GA and SA Algorithm (GASA) for
	6.1 GASA Algorithm

	7 Computational Results
	7.1 Choice of the Parameters
	7.2 Results

	8 Conclusion
	References

	Experimental Analysis of Pheromone-Based HeuristicColumn Generation Using irace
	1 Introduction
	2 Vehicle Routing Problems with Black Box Feasibility
	2.1 The Capacitated Vehicle Routing Problem and Black-Box Feasibility
	2.2 Applications of the VRPBB

	3 Pheromone-Based Heuristic Column Generation for the VRPBB
	3.1 Reformulation as Set Partitioning Problem
	3.2 Pheromone-Based Heuristic Column Generation (ACO-HCG)

	4 Experimental Setup
	5 Experimental Results
	5.1 Manual vs. Automatic Parameter Configurations
	5.2 Experimental Analysis of the ACO-HCG Parameters

	6 Conclusion
	References

	A New Hybrid Metaheuristic – CombiningStochastic Tunneling and Energy LandscapePaving
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution: Synergistically Combining STUN and ELP

	2 A Combined Algorithm
	3 A Test Instance
	4 Results
	4.1 Performance Benchmarking – Quality of Solutions
	4.2 Statistical Properties of Search Dynamics
	4.3 Sensitivity Analysis to
	Choices

	5 Conclusions
	References

	Workgroups Diversity Maximization:A Metaheuristic Approach
	1 Introduction
	2 A Mathematical Model for the Workgroup Diversity Problem
	3 A Pool-Based Metaheuristic Algorithm
	4 Computational Results and Statistical Analysis
	5 Conclusions and Future Work
	References

	Balancing Bicycle Sharing Systems:Improving a VNS by Efficiently DeterminingOptimal Loading Operations
	1 Introduction
	2 Problem Definition
	3 Variable Neighborhood Search for BBSS
	3.1 VND Neighborhood Structures
	3.2 VNS Neighborhoods Structures

	4 Maximum Flow Based Method for the General Case
	5 Combined Approach
	6 Computational Results
	7 Conclusions and Future Work
	References

	Automatic Designof Hybrid Stochastic Local Search Algorithms
	1 Introduction
	2 Generalized Local Search Structure
	3 Implementation
	3.1 A Practical Implementation of the GLS Structure
	3.2 A Grammar Description of the GLS Structure
	3.3 Automatic Generation of Hybrid LS Metaheuristics

	4 Experimental Setup
	4.1 The PFSP-WT
	4.2 Local Search Components for the PFSP-WT
	4.3 Experimental Protocol

	5 Experimental Results
	6 Conclusion
	References

	GRASP and Variable Neighborhood Searchfor the Virtual Network Mapping Problem
	1 Introduction
	2 The Virtual Network Mapping Problem
	3 Background and Related Work
	4 GRASP
	5 VNS
	6 Results
	6.1 GRASP
	6.2 VNS
	6.3 Comparison

	7 Conclusions
	References

	Hybrid Metaheuristicsfor the Far From Most String Problem
	1 The Far From Most String Problem (FFMSP)
	2 Hybrid Metaheuristics
	2.1 A Pure GRASP
	2.2 A Pure VNS
	2.3 Path-Relinking
	2.4 Hybrid GRASP with Path-Relinking
	2.5 Hybrid GRASP with VNS
	2.6 Hybrid VNS with Path-Relinking
	2.7 Hybrid GRASP with VNS and Path-Relinking

	3 Experimental Results
	4 Concluding Remarks and Future Work
	References

	On Missing Data Hybridizationsfor Dimensionality Reduction
	1 Introduction
	2 Unsupervised Nearest Neighbors
	2.1 Unsupervised Regression
	2.2 Iterative Unsupervised Regression
	2.3 Latent Sorting

	3 Missing Data
	3.1 Repair-and-Embed
	3.2 Embed-and-Repair

	4 Experimental Comparison of Missing Data Methods
	5 Conclusions
	References

	A Hybrid ACO+CPfor Balancing Bicycle Sharing Systems
	1 Introduction
	2 Related Work
	3 A Constraint Model for BBSP
	3.1 Variables
	3.2 Constraints

	4 AnACO+CPHybrid
	4.1 ACO+CP for BBSP

	5 Experimental Analysis
	6 Conclusions and Future Work
	References

	Author Index

