
Data Scheduling in Data Grids and Data

Centers: A Short Taxonomy of Problems
and Intelligent Resolution Techniques

Joanna Ko�lodziej1 and Samee Ullah Khan2

1 Institute of Computer Science
Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

jkolodziej@uck.pk.edu.pl
2 NDSU-CIIT Green Computing and Communications Laboratory,

North Dakota State University,
ND 58108, USA

samee.khan@ndsu.edu

Abstract. Data-aware scheduling in today’s large-scale heterogeneous
environments has become a major research issue. Data Grids (DGs) and
Data Centers arise quite naturally to support needs of scientific commu-
nities to share, access, process, and manage large data collections geo-
graphically distributed. Data scheduling, although similar in nature with
grid scheduling, is given rise to the definition of a new family of optimiza-
tion problems. New requirements such as data transmission, decoupling
of data from processing, data replication, data access and security are
to be added to the scheduling problem are the basis for the definition of
a whole taxonomy of data scheduling problems. In this paper we briefly
survey the state-of-the-art in the domain. We exemplify the model and
methodology for the case of data-aware independent job scheduling in
computational grid and present several heuristic resolution methods for
the problem.

Keywords: Data Grid, Scheduling, Data Center, Expected Time to
Transmit, Data replication.

1 Introduction

Traditional scheduling problems are mainly concerned with high performance pa-
rameters related to task processing (CPU related parameters) such as makespan,
flowtime, resource usage, etc. These parameters usually do no take into account
requirements on data needed for task completion such as data transmission time,
data access rights, data availability (replication) and security issues. In most of
the research on grid and cloud computing data transmission time is assured to
be fast/very fast, data access rights are granted, due to the single domain of
LANs and clusters, so there is no need for special data access management. Sim-
ilarly, security issues are easily handled within the same administrative domain.
Obviously, the situation is very different in current large scale setting, where

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 103–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



104 J. Ko�lodziej and S.U. Khan

data sources needed for task completion could be located at different sites under
different administrative domains.

Although data-aware scheduling has been considered in a significant volume
of the research works, e.g. in parameter sweep applications [2,3], the scheduling
problems in Computational Grids (CGs) and in Data Grids (DGs) is dealing with
in a separated way. Much of the current efforts are focused on scheduling work-
loads in a data center or schedule movement of data and data placement [38] for
efficient resource/storage utilization or energy-effective scheduling in large-scale
data centers [37], [8], [29], [18], [44]. A recent example is that of GridBatch [40]
for large scale data-intensive problems on cloud infrastructures.

Due to advent of DGs and fast development of Cloud Computing, data-aware
scheduling has recently attracted considerable attention of researcher from dis-
tributed computing and optimization communities. In fact, DGs can be seen as
precursors of Data Centers in Cloud Computing platforms, which serve as ba-
sis for collaboration at a large scale. In such computational infrastructures, the
large amount of data to be efficiently processed is a real challenge. One of the
key issues contributing to the efficiency of massive processing is the scheduling
with data transmission requirements.

In this work, we consider the data-aware scheduling aiming to problem for-
mulations that take into account new requirements such as data transmission,
decoupling of data from processing [32], [47], [53],, data replication [7], [10], data
access and security, [33], [16], [17]. The aim is to integrate these new require-
ments into a multi-objective optimization model in a similar way that it has been
addressed for a classical grid scheduling. The grid schedulers must thus take into
account the features of both CG and of DG to achieve desired performance of
grid-enabled applications [34], [35]. We exemplify the approach for the case of
data-aware independent batch task scheduling problem.

The remainder of this paper is structured as follows. We present in Section 2
a high level taxonomy for data scheduling in Data Grids. The data-aware system
model for independent batch scheduling is given in Section 3. Selected heuristic-
based resolution methods for solving data-aware independent batch scheduling
are presented briefly in Section 4. We discuss the most important challenges in
data-aware scheduling in Section 5 and conclude this paper in Section 6.

2 A Short Taxonomy of Data-Aware Scheduling
Problems in Data Grids

Data Grids (GGs) are defined as computational infrastructures that provide
high performance massive aggregated computing resources and distributed data
storage capabilities. DGs support data intensive applications. Among several
types of Data Grids elements four components seem to be fundamental, namely
Grid Organization module, Data Replication mechanism, Data Transfer policy
and infrastructure and Scheduling module (see also [46]) as shown in Fig. 1.

The complex hierarchy of the DG can be then organized as a collection of
four sub-hierarchies, each of them dedicated to one of the DG’s elements. Such



Data Scheduling in Data Grids and Data Centers 105

Data Grid Elements

Scheduling

Data 
Transport

Data
Replication

Organization

Fig. 1. Data Grid elements (based on the full taxonomy presented in [46])

complex DG characteristics are presented in [46]. In fact, each of the areas of
data transport, replica management and resource management pose challenging
research issues and can be analyzed as independent research areas. However,
in the recent studies on grid systems there is a need to analyze the specific
requirements of DG’s users and environments, which in fact tends to a direct
or indirect aggregation of the particular grid elements and methodologies into
wider classes. In this paper we focus on the Scheduling sub-hierarchy.

The requirements for large data files and the presence of multiple replicas of
these data files located at geographically-distributed data hosts makes schedul-
ing of data-intensive tasks different from that of simply computational tasks.
Schedulers have to take into account the network bandwidth availability and
the latency of data transfer between a computational node to which a task is
going to be submitted, and the storage resource(s) from which the data required
is to be retrieved [19], [11]. Therefore, the scheduler needs to be aware of any
replicas “close” to the computation node and if the replication is coupled to the
scheduling, then create a new copy of the data.

A basic taxonomy for scheduling of data-intensive applications is shown in Fig. 2.
There are five main categories in the taxonomy, which can be characterized

in the following paragraphs.

Application Model. Scheduling strategies in DGs can be classified by the ap-
plication models, which are mainly determined by the manner in which the grid
task is composed or distributed for scheduling. The grid tasks may be categorized
into the following classes:

– Process-oriented applications– in this applications the data is manipulated
at the process level (Message Passing Interface (MPI) programs [5]).

– Independent tasks – can have different objectives or may be defined as a
meta-task or a bag-of-tasks. They are scheduled individually and it is ensured
that each of them get the required share of resources for their completion [41].



106 J. Ko�lodziej and S.U. Khan

Scheduling Taxonomy

Utility 
Function

Application 
Model

Data
Replication

Scope

Locality

Fig. 2. Data Grid scheduling taxonomy

– A workflow ( [45]) is a sequence of tasks in which each task is dependent on
the results of its predecessor(-s) tasks. The outputs of the preceding tasks
may be large data files themselves.

Scope. Scope relates to the modification of application of the scheduling strat-
egy within the DG. If the scope is individual, then the scheduling strategy is
concerned only with meeting the objectives from a user’s perspective. In a multi-
user environment, each scheduler would have its own independent view of the
resources that it wants to utilize. A scheduler can be for example aware of fluc-
tuations in resource availability, special security requirements and other policies
set at the Virtual Organization level and enforced at the resource level ( [48]).

Data Replication. This category relates to whether task scheduling is cou-
pled to data replication or not. A comparison analysis of decoupled vs. coupled
strategies performed in [42] has shown that decoupled strategies promise in-
creased performance and reduce the complexity of designing algorithms for DG
environments. Additionally, one can consider replicating full data sets or chunks
of data sets. Related to data replication, there are usually a set of multiple user
QoS. For instance, access time to data, data availability, etc. can be seen as QoS
requirements. Certainly, such requirements should be taken into account by the
grid scheduler [28], [9], [12], [13].

Utility Function. The utility function can vary depending on the require-
ments of the users and architecture of the distributed system that the algorithm
is targeted to. Traditionally, scheduling algorithms have aimed at reducing in
average the total time required for computing all the tasks in a given batch or
set. Load balancing algorithms try to distribute load among the machines so
that maximum work can be obtained out of the systems. Scheduling algorithms
with economic objectives try to maximize the users’ economic utility usually



Data Scheduling in Data Grids and Data Centers 107

expressed as some profit function that takes into account economic costs of exe-
cuting the jobs on the DG. Recently, one of the key objective in green grid, cloud
and high performance computing centers is to optimize the energy utilization by
the system.

Locality. Exploiting the locality of data has been a common technique for
scheduling and load-balancing in parallel programs [6] and in query processing
in databases [43]. Similarly, data grid scheduling algorithms can be categorized as
whether they exploit the spatial or temporal locality of the data requests. Spatial
locality is locating a task in such a way that all the data required for the task
is available on data hosts that are located “close” to the node of computation.
Temporal locality exploits the fact that if data required for a task is close to a
compute node, subsequent tasks which require the same data are scheduled to
the same node to benefit from the data proximity.

3 Data-Aware System Model for Independent Job
Scheduling

Let us consider now the problem of batch scheduling of independent data-
intensive applications onto computational grid’s resources. The applications can
be considered as meta-tasks, which require multiple data sets from different het-
erogeneous data hosts. These data sets may be replicated at various locations
and can be transferred to the computational grid through the networks of various
capabilities. A possible variant of this scenario is presented in Fig. 3.

Formally, the main components of the data-aware grid system can be charac-
terized as follows:

– a meta-task Nbatch = {t1, . . . , tn} defined as a batch of independent tasks,
each of which can be executed just at one or more grid resources (n - is a
total number of tasks in the batch);

– a set of computing grid nodes Mbatch = {m1, . . . ,mk}, (k - is a total number
of machines available in the system for a given batch;

– a set of data-files Fbatch = {f1, . . . , fr} needed for the batch execution;
– a set of data-hosts DH = {dh1, . . . , dhs} dedicated for the data storage

purposes, having the necessary data services capabilities.

3.1 Task Workload and Computing Capacities

The computational load of the batch can be defined as a tasks workload vector
WLbatch = [wl1, . . . , wln], where wlj denotes an estimation of the computational
load of a task tj (in Millions of Instructions –MI). Each task tj requires a set
of files Fj = {f(1,j), . . . , f(r,j)} (Fj ⊆ Fbatch) that are distributed on a subset
DHj of DH . Specifically, for each file f(p,j) ∈ Fj (p ∈ {1, . . . , r}), DHj is the
set of data hosts, on which f(p,j) is replicated, and from which it is available.
We assume that each data host can serve multiple data files at a time and data



108 J. Ko�lodziej and S.U. Khan

...

...
...

...

...
...

Resources Tasks Files Data Hosts

1t

jt

nt

im

1m

km
rf

sd

3d

2d

1d
1f

2f

3f

submit

requires

stored on

Fig. 3. Data-aware meta-task grid scheduling problem

replication is a priori defined as a separate replication process that may take
into consideration various factors such as locality of access, load on the data-host
and available storage space.

The computational power in the grid system can be characterized by its pro-
cessing speed expressed by a clock frequency or by its computing capacity spec-
ified in MIPS (Million Instructions Per Second). The computing capacity of the
resources available for processing a given batch is defined by a computing capacity
vector CCbatch = [cc1, . . . , ccm], in which cci denotes the computing capacity of
machine i. The estimation of the prior load of each machine from Mbatch can be
represented by a ready times vector ready times(batch) = [ready1, . . . , readym].

3.2 Data-Aware Task Execution Time Model

The data-aware task execution time model presented here follows an Expected
Time to Compute (ETC) matrix model [1], in which an ETC matrix is defined,
ETC = [ETC[j][i]]n×m where ETC[j][i] is an expected (estimated) time needed
for the computing the task tj on machine mi. The workload and computing
capacity parameters for tasks and machines are generated by using the Gamma
probability distribution for the expression of tasks and machines heterogeneities
in the grid system. The elements of the ETC matrix can be computed as the
ratio of the coordinates of WL and CC vectors, i.e.:

ETC[j][i] =
wlj
cci

. (1)



Data Scheduling in Data Grids and Data Centers 109

The expected execution time of the task tj in Eq. (1) depends on the processing
speed of the machine mi. However, for the successful task execution we need
to include in the model the time needed for data transfer. For each data file
f(p,j) ∈ Fj (p ∈ {1, . . . , r}), the time required to transfer f(p,j) from the data
host dh(p,j) ∈ Dj to i, denoted TT , is defined by the following formulae:

TT [i][j][f(p,j)] = response time(dh(p,j)) +
Size

[
f(p,j)

]

B(dh(p,j), i)
(2)

where response time(dh(p,j)) is the difference between the time when the request
was made to dh(p,j) and the time when the first byte of the data file f(p,j)
is received at machine mi. This is an increasing function of the load on the
data host. We denote by B(dh(p,j), i) in Eq. (2) the bandwidth of the logical
link between dh(p,j) and mi

1 The estimated completion time for the task tj
on machine mi, completion[j][i], is the wall-clock time taken for the task from
its submission till completion and is a function of computing and transmission
times specified in Eq. (1) and (2). The impact of the data transfer time on the
task completion time depends on the mode, in which the data files are processed
by the task. The are two main such scenarios presented briefly in Fig. 4 (see
also [45]).

...

Time Time

a) b)

ETC[j][i]

(1,j)fT

T
(k,j)f

T
(2,j)f

(3,j)fT

(1,j)fT

T
(2,j)f

ETC[j][i]

T
(k,j)f

...
... ...

Fig. 4. Two variants of estimation of completion time of task tj on machine mi with
the assumption of k data files needed for the task execution

In Fig. 4, for convenience, we denote the times for transferring the files
f(1,j), f(2,j), . . . , f(k,j) by Tf(1,j) , Tf(2,j) , . . . , Tf(k,j)

, respectively. In the first sce-
nario presented in Fig. 4(a) the data files needed for the task execution are
transferred in parallel before the task execution. The number of simultaneous

1 The physical network between the data hosts and resources consists of several en-
tities such as routers, switches, links and hubs. However, the model presented here
abstracts the physical network to consider just a logical network topology where each
machine is connected to every data host by a distinct network link. Thus the band-
width of the logical link between data host and machine is the bottleneck bandwidth
of the actual physical network between them.



110 J. Ko�lodziej and S.U. Khan

data transfers determines the bandwidth available for each transfer. Thus, the
time of completion of the task tj on machine mi can be calculated by using the
following formulae:

completion[j][i] = max
f(p,j)∈Fj

TT [i][j][f(p,j)] + ETC[j][i]. (3)

On the other hand, Fig. 4(b) represents the idea of the second scenario, in which
some of the data files are transferred completely prior to the task execution and
the rest are accessed as streams during the execution. In this case, the transfer
times of the streamed data files are masked by the computation time of the task,
and, in the result, increase this computation time. The completion time of the
task tj on machine mi can be calculated in the following way:

completion[j][i] = maxf(p,j)∈̂Fj
TT [i][j][f(p,j)]+

+
∑

f(l,j)∈[Fj\̂Fj] TT [i][j][f(l,j)]ETC[j][i].
(4)

where F̂j denotes a set of data files which are transferred prior the task execution.
We consider the data hosts as the data storage centers separated from the

computing resources in order to make the system adaptable to various scheduling
scenarios. Of course, in particular cases we can assume that each computing
resource has its own data storage module [14], [20]. In such a case the internal
data transfer times should be rather low and can be omitted in the analysis.
However, for a fair estimation of the data transfers from the other computing
sources there is a need in fact to decouple the data storage module from the
computing module in the resource architecture [15], [22], [24]. The scalability and
effectiveness of the whole system depends strongly on the replication mechanism
and the resource data storage and computation capacities, [30], [23], [25], [21],
which in some cases can be the main barrier in the schedulers’ performance
improvement [26], [27].

3.3 Scheduling Phases and Objectives

Scheduling phases in the data-ware scheduling are similar to Grid scheduling
without data sets, but now it is assumed that Grid information services in-
clude also services for replicas such as replica management, discovery besides file
transfer capabilities. These phases can be resumed as follows:

1. Get the information on available resources ;
2. Get the information on pending tasks ;
3. Get the information on data hosts where data files for tasks completion are

required;
4. Prepare a batch of tasks and compute a schedule for that batch on available

machines and data hosts;
5. Allocate tasks;
6. Monitor (failed tasks are re-scheduled).



Data Scheduling in Data Grids and Data Centers 111

INTERNET

GRID INFORMATION
SERVICE

GRID
SCHEDULER

TASK LAUNCHING
AND MONITORING

Grid
Appl.

Failed Tasks
(Rescheduling)

Data
Servers

Machines

Tasks
Batch Scheduling 

of the 
Tasks' Batch

Data Servers
Pool

Fig. 5. Phases of the data-aware batch scheduler

These steps can be graphically represented as in Fig. 5.
The main objectives in data-aware scheduling are similar to the objectives

formulated for grid scheduling without data files and include minimization of
completion time, makespan, flowtime, etc.:

– Minimizing completion time of the task batch:

∑

tj∈Nbatch;mi∈Mbatch

completion[tj][mi]

where completion[tj][mi] is defined as in Eq. 4).
– Minimizing makespan:

min
Sched

max
mi∈Mbatch

completion[mi]

where completion[mi] is computed as the sum of completion times of tasks
assigned to machine mi.

Additionally, there are objectives related to the data-aware nature of the schedul-
ing, such as access cost, response time, optimized QoS, etc. For example access
cost an be computed as a weighted sum of reading cost and writing cost. Mini-
mizing access cost affects directly the task turnaround time.



112 J. Ko�lodziej and S.U. Khan

3.4 Strategies for Enhancing Data-Aware Schedulers

Several techniques can be used to reduce the transmission and access time in
data-aware scheduling. As mentioned earlier, replication is a primary technique
in this regard, which increases data availability, and therefore, increases sched-
uler’s reliability. Another useful technique is that of parallel downloading of
replicated data. Due to the dynamics of Grid systems, instead of replicating full
data files, chunks of data files are replicated, which can further downloaded in
parallel from different data hosts (see e.g. [52]).

In a similar vein, techniques used in P2P networks for downloading files can
be used within the data-aware scheduling framework. The idea is that we could
defined a virtual overlay on top of the Grid system by defining neighboring rela-
tions among computing sites and data hosts if computing sites contain replicas
of data fragments for execution of a task assigned to the computing site. Then,
we can formulate an optimization problem consisting in finding a subset of peer
neighbors of the computing site from where to download/receive the data frag-
ments [39]. The problem can be formally defined as follows.

Definition 1 (Neighbor-selection problem). A neighbor-selection problem
in P2P networks problem can be defined as

∏
= (N,C,M,F, s), in which N is

the number of peers, C is the entire collection of content fragments, M is the
maximum number of the available online peers, F is a single objective to optimize
the number of swap fragments, or multi-objective to optimize the number of swap
fragments, and to minimize the downloading cost; s denotes the environment
constraints. The key components are operations, machines and data-hosts.

The near-optimal resolution of this problem [39] can be used at the scheduling
phase of selecting data hosts from where to get the data need for completion of
the tasks in the batch.

4 Resolution Methods

4.1 Ad Hoc Methods

Ad hoc heuristics are simple procedures that need not to find even near-optimal
solutions but are very fast and easy to implement. We briefly mention here some
ad hoc heuristics for data-aware scheduling. An exhaustive list presented for
Grid scheduling without data requirements can be found in [50] and [51].

MinMin Heuristic. In [45] the authors propose an extension of MinMin and Suf-
ferage heuristics. In this extension they take into account the distributed data
requirements of the target application model. The basic idea of the modified
MinMin heuristic is to match in the beginning the meta-task to a resource set
that guarantees the minimal completion time for some task in a batch. This is
produced through special matching heuristics. They define Set Covering Problem
(SCP) Tree Search (see also [4]), Greedy Selection, Compute-First or Exhaus-
tive Search heuristics, which allow to select an appropriate combination of data



Data Scheduling in Data Grids and Data Centers 113

hosts and a compute resource that the total completion time for a given com-
ponent of meta-task is minimized2. Then, the task with the optimal (minimal)
completion time in the present allocation is assigned to the compute resource.
This task is then removed from the batch structure. As task assignment changes
the availability of the compute resource with respect to the number of available
slots/processors, the resource information is updated and the process is repeated
until all the components of the meta-task have been allocated to some resource
set. When a task is scheduled for execution on a compute resource, all required
data files which are not available local to the resource, are transferred to the
resource prior to execution. These data files become replicas that can be used
by following meta-task components.

Sufferage Heuristic. The motivation behind the modified Sufferage heuristic is to
allocate a resource set to a meta-task that would be disadvantaged the most (or
”suffer” the most) if that resource set were not allocated to it. This is determined
through a sufferage value computed as the difference between the second best
and the best value of the completion time for the meta-task components. For each
task, the resource that offers the least value of the completion time is determined
through the same mechanisms as that in MinMin. Then another resource with
the second minimal completion time is selected to establish the ’sufferage’ value
for a given task. The selection of the compute resource determines both the
task execution time and the data transfer times. After determining the sufferage
value for each task, the task with the largest sufferage value is then selected and
assigned to its chosen resource. The rest of the heuristic including dispatching
and updating of compute resource and data host information proceeds in the
same manner as MinMin.

Other interesting ad hoc methods are Shortest Turnaround Time (STT), Least
Relative Load (LRL) and Data Present (DP) (see e.g. [52]).

4.2 Meta-heuristic Methods

Dealing with the many constraints and optimization criteria in a dynamic en-
vironment scheduling of data-intensive applications in Computational Grid re-
mains very complex and computationally hard problem [31], [36]. The signifi-
cance of meta-heuristic approaches for designing efficient grid schedulers can be
explained as follows (see also [49]:

Meta-heuristics Are Well Understood. Meta-heuristics have been studied
for a large number of optimization problems, from theoretical, practical and
experimental perspectives.

Computing Near-Optimal Solutions. In the dynamic grid environment, it
is usually impossible to generate the optimal schedules. This is so due to the
fact that grid schedulers run as long as the grid system exists and thus the

2 Referred to as the Minimum Resource Set (MRS) problem.



114 J. Ko�lodziej and S.U. Khan

performance is measured not only for particular applications but also in the long
run. Therefore, in such situation meta-heuristics are among best candidates to
cope with grid scheduling.

Dealing with Multi-objective Nature. Meta-heuristics have proven to effi-
ciently solve the complex multi-objective optimization problems.

Well Designed for Periodic and Batch Scheduling. In the case of periodic
scheduling the resource provisioning can be done with no strong time restrictions.
This means that we can run meta-heuristic-based schedulers for longer execution
times and significantly increase the quality of generated schedules. In batch
scheduling, we could run the meta-heuristic-based scheduler for the time interval
comprised within two successive batches activations.

Hybridization with other Approaches. Meta-heuristics can be easily hy-
bridized with other approaches, which is useful to make grid schedulers better
adapted to various grid scenarios, grid types, specific types of applications, etc.

Designing Robust Grid Schedulers. The dynamics of the grid environment
directly impacts on the performance of the grid scheduler. A robustness in grid
scheduling is a key issue in high-quality resource allocation in the case of frequent
changes in the system’s states.

The heuristic scheduling methods are usually classified into three main groups,
namely calculus-based (greedy algorithms and ad-Hoc methods), stochastic
(guided and non-guided methods) and enumerative methods (dynamic program-
ming and branch-and-bound algorithm). The most popular and efficient methods
in grid scheduling are ad-hoc, local search-based and population-based methods.
A simple taxonomy of the heuristic schedulers is presented in Fig. 6.

Each of this scheduler can be adapted to the data grid scheduling by adding
some extra tasks-data files matching procedures.

5 Scheduling Challenges

The data-aware scheduling in grid systems becomes even more challenging when
we consider the following key challenges:

– Scheduling Policy: According to the selection of data-hosts and mapping of
resources, the optimization criteria such makespan and flowtime may change
significantly.

– Storage Constraints: Only limited storage capacity is available at re-
sources. As the tasks get executed, the data produced should be either
deleted or moved. Storage aware resource scheduling problem is a major area
of research. Data providence should be associated with scheduling policy.

– Replication Policy: The availability of replicas of data and their locality
heavily depends on the replication policy. For expressing the system dynam-
ics a dynamic replication policy that can balance the replicas among data
hosts should be formulated.



Data Scheduling in Data Grids and Data Centers 115

Fig. 6. Heuristic resolution methods taxonomy

– Resource Provisioning: In real life approaches there is a need to establish
a Service-Level-Agreement (SLA) based advance reservation to circumvent
the sudden scarcity of resources, which can guarantee the resource access at
the scheduled time.

– User QoS. Users Quality of Service (QoS) criteria such as budget and
deadline constraints may also be taken into account.

– Security. All operations in a Data Grid should be mediated by a security
layer that handles authentication of entities and ensures conduct of only au-
thorized operations. Additionally the grid users can specify their own criteria
for secure task allocation at grid resources.

6 Conclusions and Future Work

In this paper we have presented a simple taxonomy of data-aware scheduling
based on a set of requirements such data transmission, decoupling of data from
processing, data replication and data access. By considering these requirements



116 J. Ko�lodziej and S.U. Khan

a family of data-aware scheduling problems can be defined, whose resolution
can be very useful to design efficient data-aware schedulers. We have focused
on the Data-aware Independent Batch Scheduling for which we have formalized
the transmission time, in a way that it can be easily integrated into classical
optimization objectives of grid scheduling. This is particularly useful as known
optimization formulation and resolution methods can be applied to the data-
aware scheduling with transmission times. We have also briefly discussed the
different resolution methods (including ad hoc and meta-heuristics methods) to
cope in practice with the complexities of the problem.

References

1. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.: Task execution time modeling
for heterogeneous computing systems. In: Proceedings of Heterogeneous Comput-
ing Workshop, pp. 185–199 (2000)

2. Buyya, R., Murshed, M., Abramson, D., Venugopal, S.: Scheduling parameter
sweep applications on global Grids: a deadline and budget constrained cost-time
optimization algorithm. Softw. Pract. Exper. 35(5), 491–512 (2005)

3. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS parameter
sweep template: user-level middleware for the grid. In: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing (CDROM) (Supercomputing 2000).
IEEE Computer Society, Washington, DC (2000)

4. Christofides, N.: Independent and Dominating Sets–The Set Covering Problem. In:
Graph Theory: An Algorithmic Approach, pp. 30–57 (1975) ISBN: 012 1743350 0

5. Foster, I., Karonis, N.: A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In: Proceedings of the IEEE/ACM SuperCom-
puting Conference 1998 (SC 1998), San Jose, CA, USA, IEEE CS Press, Los Alami-
tos (1998)

6. Hockauf, R., Karl, W., Leberecht, M., Oberhuber, M., Wagner, M.: Exploiting
Spatial and Temporal Locality of Accesses: A New Hardware-Based Monitoring
Approach for DSM Systems. In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998.
LNCS, vol. 1470, pp. 206–215. Springer, Heidelberg (1998)

7. Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: Data Center Energy-Efficient
Network-Aware Scheduling. In: ACM/IEEE International Conference on Green
Computing and Communications (GreenCom), Hangzhou, China, pp. 69–75 (De-
cember 2010)

8. Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.U.: GreenCloud: A Packet-level
Simulator of Energy-aware Cloud Computing Data Centers. In: Proc. of the 53rd
IEEE Global Communications Conference (Globecom), Miami, FL, USA (Decem-
ber 2010)

9. Khan, S.U., Ahmad, I.: A Pure Nash Equilibrium based Game Theoretical Method
for Data Replication across Multiple Servers. IEEE Transactions on Knowledge and
Data Engineering 21(4), 537–553 (2009)

10. Khan, S.U., Ardil, C.: A Weighted Sum Technique for the Joint Optimization of
Performance and Power Consumption in Data Centers. International Journal of
Electrical, Computer, and Systems Engineering 3(1), 35–40 (2009)



Data Scheduling in Data Grids and Data Centers 117

11. Khan, S.U.: A Multi-Objective Programming Approach for Resource Allocation in
Data Centers. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 152–158 (July
2009)

12. Khan, S.U.: On a Game Theoretical Methodology for Data Replication in Ad
Hoc Networks. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 232–238 (July
2009)

13. Khan, S.U.: A Frugal Auction Technique for Data Replication in Large Distributed
Computing Systems. In: International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 17–23
(July 2009)

14. Khan, S.U., Ardil, C.: A Fast Replica Placement Methodology for Large-scale Dis-
tributed Computing Systems. In: International Conference on Parallel and Dis-
tributed Computing Systems (ICPDCS), Oslo, Norway, pp. 121–127 (July 2009)

15. Khan, S.U., Ardil, C.: A Competitive Replica Placement Methodology for Ad Hoc
Networks. In: International Conference on Parallel and Distributed Computing
Systems (ICPDCS), Oslo, Norway, pp. 128–133 (July 2009)

16. Khan, S.U., Ardil, C.: On the Joint Optimization of Performance and Power Con-
sumption in Data Centers. In: International Conference on Distributed, High-
Performance and Grid Computing (DHPGC), Singapore, pp. 660–666 (August
2009)

17. Khan, S.U.: A Self-adaptive Weighted Sum Technique for the Joint Optimization
of Performance and Power Consumption in Data Centers. In: 22nd International
Conference on Parallel and Distributed Computing and Communication Systems
(PDCCS), Louisville, KY, USA, pp. 13–18 (September 2009)

18. Khan, S.U.: A Goal Programming Approach for the Joint Optimization of En-
ergy Consumption and Response Time in Computational Grids. In: Proc. of the
28th IEEE International Performance Computing and Communications Conference
(IPCCC), Phoenix, AZ, USA, pp. 410–417 (December 2009)

19. Khan, S.U., Ahmad, I.: Non-cooperative, Semi-cooperative, and Cooperative
Games-based Grid Resource Allocation. In: Proc. of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Rhodes Island, Greece
(April 2006)

20. Khan, S.U., Ahmad, I.: Comparison and Analysis of Ten Static Heuristics-based
Internet Data Replication Techniques. Journal of Parallel and Distributed Com-
puting 68(2), 113–136 (2008)

21. Khan, S.U., Ahmad, I.: Discriminatory Algorithmic Mechanism Design Based
WWW Content Replication. Informatica 31(1), 105–119 (2007)

22. Khan, S.U., Ahmad, I.: Game Theoretical Solutions for Data Replication in Dis-
tributed Computing Systems. In: Rajasekaran, S., Reif, J. (eds.) Handbook of
Parallel Computing: Models, Algorithms, and Applications, vol. ch. 45. Chapman
& Hall/CRC Press, Boca Raton (2007) ISBN: 1-584-88623-4

23. Khan, S.U., Ahmad, I.: A Semi-Distributed Axiomatic Game Theoretical Mecha-
nism for Replicating Data Objects in Large Distributed Computing Systems. In:
21st IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Long Beach, CA, USA (March 2007)

24. Khan, S.U., Ahmad, I.: Replicating Data Objects in Large-scale Distributed Com-
puting Systems using Extended Vickery Auction. International Journal of Compu-
tational Intelligence 3(1), 14–22 (2006)



118 J. Ko�lodziej and S.U. Khan

25. Khan, S.U., Ahmad, I.: Data Replication in Large Distributed Computing Systems
using Supergames. In: International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 38–44
(June 2006)

26. Khan, S.U., Ahmad, I.: A Pure Nash Equilibrium Guaranteeing Game Theoreti-
cal Replica Allocation Method for Reducing Web Access Time. In: 12th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), Minneapolis,
MN, USA, pp. 169–176 (July 2006)

27. Khan, S.U., Ahmad, I.: A Powerful Direct Mechanism for Optimal WWW Con-
tent Replication. In: 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Denver, CO, USA (April 2005)

28. Khan, S.U., Ahmad, I.: Replicating Data Objects in Large Distributed Database
Systems: An Axiomatic Game Theoretical Mechanism Design Approach. Dis-
tributed and Parallel Databases 28(2-3), 187–218 (2010)

29. Khan, S.U., Ahmad, I.: A Cooperative Game Theoretical Technique for Joint Op-
timization of Energy Consumption and Response Time in Computational Grids.
IEEE Transactions on Parallel and Distributed Systems 20(3), 346–360 (2009)

30. Khan, S.U., Maciejewski, A.A., Siegel, H.J., Ahmad, I.: A Game Theoretical Data
Replication Technique for Mobile Ad Hoc Networks. In: 22nd IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, USA (April
2008)

31. Ko�lodziej, J., Xhafa, F., Kolanko, �L.: Hierarchic Genetic Scheduler of Independent
Jobs in Computational Grid Environment. In: Otamendi, J., Bargie�la, A., Montes,
J.L., Doncel Pedrera, L.M. (eds.) Proc. of 23rd ECMS, Madrid, pp. 108–115. IEEE
Press, Dudweiler (2009)

32. Ko�lodziej, J., Xhafa, F.: A Game-Theoretic and Hybrid Genetic meta-heuristic
Model for Security-Assured Scheduling of Independent Jobs in Computational
Grids. In: Proc. of CISIS 2010, pp. 93–100. IEEE Press, USA (2010)

33. Ko�lodziej, J., Xhafa, F., Bogdański, M.: Secure and task abortion aware GA-based
hybrid metaheuristics for grid scheduling. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 526–535. Springer, Heidelberg
(2010)

34. Ko�lodziej, J., Xhafa, F.: Meeting Security and User Behaviour Requirements in
Grid Scheduling. Simulation Modelling Practice and Theory 19(1), 213–226 (2011),
doi:10.1016/j.simpat.2010.06.007

35. Ko�lodziej, J., Xhafa, F.: Integration of Task Abortion and Security Requirements
in GA-based Meta-Heuristics for Independent Batch Grid Scheduling. Computers
and Mathematics with Applications (2011), doi: 10.1016/j.camwa.2011.07.038

36. Ko�lodziej, J., Xhafa, F.: Enhancing the genetic-based scheduling in computational
grids by a structured hierarchical population. Future Generation Computer Sys-
tems 27, 1035–1046 (2011), doi:10.1016/j.future.2011.04.011

37. Ko�lodziej, J., Khan, S.U., Xhafa, F.: Genetic Algorithms for Energy-aware Schedul-
ing in Computational Grids. In: Proc. of the 6th IEEE International Conference on
P2P, Parallel, Grid, Cloud, and Internet Computing (3PGCIC), Barcelona, Spain
(October 2011)

38. Kosar, T., Balman, M.: A new paradigm: Data-aware scheduling in grid computing.
Future Gener. Comput. Syst. 25(4), 406–413 (2009)

39. Liu, H., Abraham, A., Xhafa, F.: Peer-to-Peer Neighbor Selection Using Single
and Multi-objective Population-Based Meta-heuristics. In: Xhafa, F., Abraham,
A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments.
SCI, vol. 146, pp. 323–340. Springer, Heidelberg (2008)



Data Scheduling in Data Grids and Data Centers 119

40. Liu, H., Orban, D.: GridBatch: Cloud Computing for Large-Scale Data-Intensive
Batch Applications. In: 8th IEEE International Symposium on Cluster Computing
and the Grid (CCGRID), pp. 295–305 (2008)

41. Pinel, F., Pecero, J.E., Bouvry, P., Khan, S.U.: A Two-Phase Heuristic for
the Scheduling of Independent Tasks on Computational Grids. In: Proc. of
ACM/IEEE/IFIP International Conference on High Performance Computing and
Simulation (HPCS), Istanbul, Turkey (July 2011)

42. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Dis-
tributed Data-Intensive Applications. In: Proceedings of the 11th IEEE Symposium
on High Performance Distributed Computing (HPDC), Edinburgh, Scotland. IEEE
CS Press, Los Alamitos (2002)

43. Shatdal, A., Kant, C., Naughton, J.F.: Cache conscious algorithms for relational
query processing. In: Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB 1994), Santiago, Chile, pp. 510–521. Morgan Kaufmann
Publishers, Inc., San Francisco (1994)

44. Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J.,
Zhang, L., Wang, L., Ghani, N., Ko�lodziej, J., Li, H., Zomaya, A.Y., Xu, C.-
Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J.P., Kliazovich, D., Bouvry, P.: An
Overview of Energy Efficiency Techniques in Cluster Computing Systems. Cluster
Computing (2011), doi:10.1007/s10586-011-0171-x

45. Venugopal, S., Buyya, R.: An SCP-based heuristic approach for scheduling dis-
tributed data-intensive applications on global grids. J. Parallel Distrib. Comput. 68,
471–487 (2008)

46. Venugopal, S., Buyya, R., Kotagiri, R.: A Taxonomy of Data Grids for Distributed
Data Sharing, Management and Processing (2009)

47. Wang, L., Khan, S.U.: Review of Performance Metrics for Green Data Centers:
A Taxonomy Study. Journal of Supercomputing, 1–18 (2011), doi:10.1007/s11227-
011-0704-3

48. Wasson, G., Humprey, M.: Policy and enforcement in virtual organizations. In: Pro-
ceedings of the 4th International Workshop on Grid Computing, Phoenix, Arizona,
IEEE CS Press, Los Alamitos (2003)

49. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid
scheduling problems. Future Generation Computer Systems 26, 608–621 (2010)

50. Xhafa, F., Carretero, J., Barolli, L., Durresi, A.: Immediate Mode Scheduling in
Grid Systems. International Journal of Web and Grid Services 3(2), 219–236 (2007)

51. Xhafa, F., Barolli, L., Durresi, A.: Batch Mode Schedulers for Grid Systems. In-
ternational Journal of Web and Grid Services 3(1), 19–37 (2007)

52. Zhang, J., Lee, B., Tang, X., Yeo, C.: Impact of Parallel Download on Job Schedul-
ing in Data Grid Environment. In: Proc. of the Seventh International Conference
on Grid and Cooperative Computing, pp. 102–109 (2008)

53. Zeadally, S., Khan, S.U., Chilamkurti, N.: Energy-Efficient Networking: Past,
Present, and Future. Journal of Supercomputing, 1–26 (2011), doi:10.1007/s11227-
011-0632-2


	Data Scheduling in Data Grids and Data Centers: A Short Taxonomy of Problems and Intelligent Resolution Techniques
	1 Introduction
	2 A Short Taxonomy of Data-Aware Scheduling Problems in Data Grids
	3 Data-Aware System Model for Independent Job Scheduling
	3.1 Task Workload and Computing Capacities
	3.2 Data-Aware Task Execution Time Model
	3.3 Scheduling Phases and Objectives
	3.4 Strategies for Enhancing Data-Aware Schedulers

	4 Resolution Methods
	4.1 Ad Hoc Methods
	4.2 Meta-heuristic Methods

	5 Scheduling Challenges
	6 Conclusions and Future Work
	References




