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Abstract. The Semantic Web together with Web services technologies enable
new scenarios in which the machines use the Web to provide intelligent services
in an autonomus way. The orchestration of Semantic Web Services now can be
defined from an abstract perspective where their formal semantics can be ex-
ploited by software agents to replace human input. This paper tackles the more
difficult use case, automatic composition, providing a complete solution to create
and manage service processes in a semantically interoperable environment.
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1 Introduction

From the Web services perspective, an orchestration is a declarative specification that
describes a work-flow supporting the execution of a specific business process, opera-
tion, or service [12]. Currently, Web services technologies allow to describe orchestra-
tion, but only at design-time. Semantic Web Services (SWSs) provide an ontological
framework for describing services in a machine-readable format. In [10] a software
agent is proposed that applies logical reasoning on SWS descriptions in order to pro-
vide on-the-fly orchestration capabilities. With the adjective dynamic we denote the ca-
pability of an agent to design and manage in an automatic way an orchestration schema
using the semantic descriptions of available services. The notion of dynamic orchestra-
tion becomes useful in scenarios where there is the need of run-time designing process
integration using semantic descriptions of the involved entities. This work addresses
the most difficult part for the realization of this scenario, i.e., the automatic composi-
tion mechanism. In fact, as will explained in the following, orchestration is mainly a
representation problem that requires the semantic representation of constraints (precon-
ditions, effects, etc.), currently not properly supported by the Semantic Web standard
languages.

This paper is organized in four sections. Section 2 describes what orchestration
means from the Semantic Web perspective, the requirements to realize it and the sup-
port offered by the main SWS languages. Section 3 provides details about the language
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that better satisfies those requirements, to be used for the implementation of the com-
position use case. Section 4 describes the entire procedure to obtain a composed service
written in the chosen language, while Section 5 proposes a complete example of the
applied procedure. Finally, conclusions and future works complete the paper.

2 SWS Dynamic Orchestration

2.1 Orchestration and SWS Infrastructure

Orchestration for Web services must necessarily rely on XML-based descriptions. Their
merely syntactical nature [12] represents an unsurmountable obstacle towards the auto-
matic implementation of the operations that are necessary to accomplish dynamicity in
orchestration. Let us, indeed, consider the following scenario:

“Given a request (goal), an agent (dynamic orchestrator) discovers the possible
SWSs able to accomplish the goal. At the same time, it composes the discovered
services in order to have many possible ways to reach the goal. Having different al-
ternatives available, it selects the best one exploring functional and non-functional
properties of the different SWSs. The selection process can be used also during
composition (sub-goal matching). Finally, the same agent manages the correct in-
vocation of the selected services.”

In this paper, dynamic orchestration of SWSs is inteded as carrying out one or more of
the operations mentioned above. This is very different from the design of a work-flow
for the execution of simple Web services [12]. The first step to realize this scenario
is the automatization of the emphasized operations (discovery, composition, selection
and invocation). These operations, amongst others (namely, publishing, deployment and
ontology management) which are not directly involved in our scenario, were already
identified as use cases for the SWS infrastructures into the Usage Activities dimension
described in [3]. In the same work the architectural components (Architecture dimen-
sion) and semantic descriptions (Service Ontologies dimensions) needed to realize the

Fig. 1. Orchestration in the SWS Infrastructure
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Usage Activities have been identified and used to define SWS infrastructures as formed
by these three orthogonal dimensions. The Architecture includes a register, a reasoner,
a matchmaker, a composer, and an invoker. The Service Ontologies dimension specifies
the semantics of:

– Functional capabilities, such as inputs, output, and conditions (pre-conditions, ef-
fects, etc.);

– Non-Functional capabilities, such as category, cost and quality of service;
– Provider-related information, such as company name and address;
– Task or goal-related information and domain knowledge, defining, for instance, the

type of the inputs of the service.

The dynamic SWS orchestration, as defined above, needs to be matched with these
dimensions in order to identify its requirements. The results of this investigation are
summarized in Figure 1. In the architecture dimension, the reasoner is the most impor-
tant component to implement these use cases because it allows the semantic matchmak-
ing of the service properties enabling the automatic composition of the services, and
the automatic choice of the suitable parameters for the invocation of the services. The
service ontologies dimension is necessary because it allows to define the semantics of
functional and non-functional properties owned by atomic and composite services that
participate to the orchestration, as well as the semantics of their control constructs and
data-flow. Ideally, the semantic descriptions of inputs and outputs should exist indepen-
dently from the SWS specification. They should be chosen within existing ontologies
describing a particular domain of knowledge and, at most, they might be refined. Hence,
in order to define atomic SWSs just the semantic representation of conditions over in-
puts and outputs is needed, whereas to define composite SWSs the semantic representa-
tion of control constructs and data-flow is needed as well. Thus, Dynamic orchestration
becomes mainly a representation problem. The SWS frameworks proposed in the liter-
ature provide different support to dynamic orchestration. In the next section we analyze
the formal support offered by the two leading efforts for SWS representation (OWL-S
and WSMO)1.

2.2 WSMO and OWLS Formal Support

The Web Service Modeling Ontology (WSMO) provides a framework for semantic
descriptions of Web services. It consists of four core elements that, properly linked,
make up the semantic description of the service: Ontologies, Goals, Web Services,
and Mediators. The semantics of these entities can be specified using one of the formal
languages defined by the Web Service Modeling Language2 (WSML). WSML includes
several language variants, based on three different logical formalisms: Description Log-
ics [1] (WSML-DL), First-Order Logic [4] (WSML-Full) and Logic Programming [9]

1 Both OWL-S (http://www.w3.org/Submission/OWL-S) and WSMO
(http://www.w3.org/Submission/WSMO) are currently submissions in the Semantic
Web Services Standardization process.

2 Web Service Modeling Language (WSML), W3C Member Submission, 3 June 2005.
http://www.w3.org/Submission/WSML/

http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/WSMO
http://www.w3.org/Submission/WSML/
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Fig. 2. OWL+SWRL vs. WSML formal support

(WSML-Rule and WSML-Flight). Furthermore, it defines the WSML-Core variant
that can be identified as the intersection between a particular Description Logic (a sub-
set of SHIQ) and Horn Logic (without function symbols and equality) [6]. WSML-DL
is, in general, incompatible with both WSML-Flight and WSML-Rule. Therefore, com-
plete reasoning about service descriptions specified using WSML-DL, Rule and Flight
is unfeasible because WSML-Full, the common super-language, is undecidable.

The Web Ontology Language for Services (OWL-S) is an OWL3 ontology describing
three essential aspects of a service (i.e., its advertisement, process model, and protocol
details) using three different modules: Service Profile, Service Model, and Service
Grounding. OWL-S itself is an OWL ontology. OWL, having formal foundations in
Description Logics [1], provides three increasingly expressive sub-languages:

– OWL-Lite, that can be used to model classification hierarchies and simple con-
straints. OWL-Lite has the lowest computational complexity among OWL sub-
languages.

– OWL-DL, used when the maximum decidable expressivity is required. It corre-
sponds to SHOIN (D) DL [8].

– OWL-Full, although allowing for as much expressivity as RDF, is undecidable,
and therefore it could be hardly be used for reasoning.

However, since (as will be pointed out in the following) the decidable fragment of
SWRL [7] represents a reasonable advancement in reconciling Logic Programming
and Description Logics, OWL-S is in a better position than WSMO as it allows to
seamlessly integrate SWRL with OWL.

3 OWL-S is based on OWL 1.0 recently extended with the new recommendation OWL 2, as
reported in http://www.w3.org/TR/owl-overview/

http://www.w3.org/TR/owl-overview/
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2.3 OWL-S and WSMO in SWS Infrastructures

In this section we focus on the usage activities and service ontologies dimensions to
compare and contrast the two proposed main framework: WSMO and OWL-S4. Indeed,
the architecture dimension concerns the components needed to implement the use cases
that do not affect the purposes of this comparison.

With respect to the Usage activities dimension, both WSMO and OWL-S take into
account all the use cases that we have identified for dynamic orchestration. Their only
difference is that WSMO requires to model the service requester features. This implies
the need for tackling the interoperability problems between different WSMO elements
within the framework itself. In order to overcome this issue, different types of medi-
ators have been defined and considered in every usage activity, while OWL-S relies
on ontology matching methods developed within the Semantic Web. This is reflected
also in the Service ontologies dimension, where WSMO proposes a richer service de-
scription model than OWL-S. Consequently, some extra features related to Web service
execution (like goals, mediator and communication protocols) need to be represented
by WSMO model. The shortcoming of this approach is that any WSMO service usage
is limited to its declared goals at design time.

The formal semantics offered by WSMO and OWL-S is fundamental to achieve dy-
namic orchestration. Figure 2 compares the formalisms on which the two frameworks
are based. WSMO seems to be unrelated to the Semantic Web stack of languages and
formalisms, except for its basic level (URI and XML), that guarantees syntactic inter-
operability on the Web. It offers mappings with the RDF syntax and the SHIQ De-
scription Logic which, however, does not cover the whole OWL-DL. WSMO’s global
approach to service ontologies definition can be summarized as follows: it starts with
the definition of a FOL-like language able to represent all the possible aspects of a Web
service, then it defines several sub-languages restricting the original expressive power
to well-known fragments (DL or LP), and (partially) maps such fragments onto current
Semantic Web standard languages. Given the known incompatibility between DL and
LP [2], currently the only implemented reasoning available for WSMO, when dealing
with both rules and ontologies, is restricted to their common subfragment, i.e. DLP.
Hence, as regards the implementation goal, to the best of our knowledge WSMO’s
inference capabilities are significantly reduced with respect to a pure Semantic Web
based counterpart. OWL-S, instead, is based natively in OWL, whose natural extension
towards rules is SWRL. SWRL’s decidable fragment (DL-safe rules [11]) is the largest
possible union of primitives from both DL and LP formalisms rather than their inter-
section. Therefore, from the perspective of two out of three main dimensions of SWS
infrastructures, OWL-S turns out to be better equipped to encompass the requirements
of dynamic orchestration.

4 Semantic Annotations for WSDL and XML Schema (SAWDL) — W3C Recommendation,
http://www.w3.org/TR/sawsdl/ — has not been considered because it does not allows
the process model representation.

http://www.w3.org/TR/sawsdl/
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3 OWL-S Support for Orchestration Dimensions

3.1 OWL-S Framework Details

OWL-S provides a Semantic Web Services framework to formalize an abstract descrip-
tion of a service. Since it is an upper ontology described with OWL, every described
service maps onto an instance of this concept. The upper level Service class is associ-
ated with the following three other classes:

Service Profile. It specifies the functionality of a service. This concept is the top-level
starting point for the customizations of the OWL-S model that supports the retrieval
of suitable services based on their semantic description. It describes the service by
providing several types of information: Human-readable information, Functionali-
ties, Service parameters, Service categories.

Service Model. It exposes to clients how to use the service by detailing the semantic
content of requests, the conditions under which particular outcomes will occur, and,
where necessary, the step-by-step processes leading to those outcomes. It defines
the concept Process, that describes the composition of one or more services in
terms of their constituent processes. A Process can be Atomic (a description of
a non-decomposable service that expects one message and returns one message in
response), Composite (consisting of a set of processes within some control structure
that defines a workflow) or Simple (used as an element of abstraction, i.e., may be
used either to provide a view of a specialized way of using an atomic process, or a
simplified representation of a composite process for reasoning purposes).

Service Grounding. A grounding is a mapping from an abstract to a concrete speci-
fication of those service description elements that are required for interacting with
the service. In general, a grounding indicates a communication protocol, a message
format and other service-specific details.

Since this work aims at the automatic generation of services workflow and at its repre-
sentation as an OWL-S composite process, more details about OWL-S process model
are needed.

3.2 OWL-S Process Model

In this section we report the basic notions about the OWL-S process model with some
considerations on the guidelines that should be followed in order to have useful meta-
data for the Web services to be described. Each OWL-S process is based on an IOPR
(Inputs Outputs Preconditions Result) model. The Inputs represent the information re-
quired for executing the process. The Outputs represent the information the process
returns to the requester. Preconditions are conditions that are imposed over the Inputs
of the process and that must hold for the process to be successfully invoked. Since an
OWL-S process may have several results with corresponding outputs, the Result entity
of the IOPR model provides a means to specify this situation. Each result can be asso-
ciated to a result condition, called inCondition, that specifies when that particular result
can occur. Therefore, an inCondition binds inputs to the corresponding outputs. Such
conditions are assumed to be mutually exclusive, so that only one result can be obtained
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for each possible situation. When an inCondition is satisfied, there are properties asso-
ciated to this event that specify the corresponding output (withOutput property) and,
possibly, the Effects (hasEffect properties) produced by the execution of the process.
Effects are changes in the state of the world. The OWL-S conditions (Preconditions,
inConditions and Effects) can be represented as SWRL logic formulas. Formally, Input
and Output are subclasses of the more general class Parameter, declared in turn as a
subclass of Variable in the SWRL ontology. Every parameter has a type, specified us-
ing a URI. Such a type is needed to refer it to an entity within the domain knowledge
of the service. The type can be either a Class or a Datatype (i.e., a concrete domain
object such as a string, a number, a date and so on) in the domain knowledge. Never-
theless, we argue that providing descriptions of Web service parameters using concrete
datatypes adds very little semantics. For example, consider a service S whose input was
declared as Datatype within a knowledge domain, e.g., a string. This means that the ref-
erence knowledge model of this input parameter is a concrete XML Schema datatype
rather than an entity within a domain ontology. This mismatch becomes critical in auto-
matic composition of services. Indeed, suppose that, during a hypothetical composition
process, one needs to find another service whose output will be fed into S. Then, the
composer must necessarily consider those services that have as output a resource of the
same type as our input parameter, i.e. a string. Thus, any service that returns a string
as an output can be composed with S, which would result in meaningless composi-
tions of completely unrelated services due to the fact that the parameters have been
poorly described form a semantic viewpoint. In the rest of this paper we will consider
only those services having parameters declared as entities in a domain ontology (i.e.,
not as datatype). Furthermore, OWL-S Composite processes (decomposable into other
Atomic or Composite processes) can be specified by means of the following control
constructs offered by the language: Sequence, Split, Split-Join, Any-Order, Choice,
If-Then-Else, Iterate, Repeat-While and Repeat-Until, and AsProcess. One crucial
feature of a composite process is the specification of how its inputs are accepted by
particular sub-processes, and how its various outputs are produced by particular sub-
processes. Structures to specify the Data Flow and the Variable Bindings are needed.
When defining processes using OWL-S, there are many places where the input to one
process component is obtained as one of the outputs of a previous step, short-circuiting
the normal transmission of data from service to client and back. For every different
type of Data Flow a particular Variable Binding is given. Formally, two complemen-
tary conventions to specify Data Flow have been identified: consumer-pull (the source
of a datum is specified at the point where it is used) and producer-push (the source
of a datum is managed by a pseudo-step called Produce). Finally, we remark that a
composite process can be considered as an atomic one using the OWL-S Simple pro-
cess declaration. This allows to treat a Composite service as an Atomic one during the
application of a Composer tool.

4 Automatic Composition for OWL-S

In this section we explain how to obtain OWL-S composite services using Semantic
Web languages and tools. The proposed approach combines them with works presented
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in [14] and [13] endowing semantic interoperability. The procedure can be summarized
as follows: 1) a SWRL representation is extracted from the available set of OWL-S
atomic and simple services using a given encoding; 2) a SWRL composer generates a
plan of rules that encodes the services; 3) the SWRL plan is interpreted to produce the
OWL-S composite service.

4.1 Encoding OWL-S Atomic Processes with SWRL Rules

In this section we explain our approach for transforming process descriptions into sets
of SWRL rules. SWRL [7] extends the set of OWL axioms to include Horn-like rules
[9]. The proposed rules are in the form of an implication between an antecedent (body)
and consequent (head), both consisting of a conjunction of zero or more atoms. The
intended meaning can be read as: “whenever the conditions specified in the antecedent
hold, the conditions specified in the consequent must also hold”. For our purposes, it is
important to highlight two SWRL characteristics: every rule must fulfil a safety condi-
tion (only variables that occur in the antecedent of a rule may occur in its consequent)
and every rule with a conjunctive consequent can be transformed into multiple rules,
each having an atomic consequent [9]. Furthermore, we work exclusively with SWRL
DL-safe rules [11] fragment. Within OWL-S, conditions (logical formulas) can be de-
clared using languages whose standard encoding is in XML, such as SWRL. Body and
head are logical formulas, whereby OWL-S conditions can be identified with the body
or with the head of a SWRL rule. Such conditions are expressed over Input and Output.
Therefore, if the above requirement is met, conditions will be also expressed in terms of
a domain ontology and thus will have the correct level of abstraction. After these con-
siderations, we can describe the guidelines we follow for encoding an OWL-S process
into SWRL.

– For every result of the process there exists an inCondition that expresses the binding
between input variables and the particular result (output or effect) variables.

– Every inCondition related to a particular result will appear in the antecedent of each
resulting rule, whilst the Result will appear in the consequent. An inCondition is
valid if it contains all the variables appearing in the Result.

– If the Result contains an Effect made up of many atoms, the rule will be split into
as many rules as the atoms. Each resulting rule will have the same inCondition as
the antecedent and a single atom as the consequent.

– The Preconditions are conditions that must be true in order to execute the service.
Since these conditions involve only the process Inputs, they will appear in the an-
tecedent of each resulting rule together with inConditions. In this work we consider
all the Preconditions as being always true.

The first guideline is needed because there may be processes in which the binding is
implicit in their OWL-S descriptions. Let us consider, for example, an atomic pro-
cess having a single output. In this case there might be no inCondition binding in-
put and output variables since, being the output the only outcome, such a binding is
obvious. This would prevent our encoding with SWRL rules because the second guide-
line would not be applicable. However, we can add a new inCondition that makes ex-
plicit such implicit binding. For example, suppose we have a service that returns book
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information, whose process is declared having one input (?process:BookName), one
output (?process:BookInfo), and no condition. We should write the corresponding rule
as “kb:BookTitle(?process:BookName) → bibtex:Book(?process:BookInfo)”, but since
variable process:BookInfo does not appear in the antecedent of the rule, this is not a
valid SWRL rule. Since every service produces its output by manipulating the inputs,
we may suppose that a hasTransf predicate exists, always true, that binds every input
to the output. Adding this predicate to the rule antecedent we obtain the implicit inCon-
dition and hence a valid rule. The entities that make up the SWRL rule (OWL Classes,
properties and individuals) can be defined in different ontologies. For this reason we
apply the matching of ontologies referred by the rules in order to enable semantic inter-
operability during composition. In particular, only the OWL classes need to be aligned,
because properties in the rule are relations between considered classes and individuals
are instances of considered classes. The matching procedure, which can be made by ap-
plying one of several learning techniques in the literature [5], produces equivalence as-
sertions between classes. For example, consider the classes books:Book and univ:Book,
where books and univ are the namespaces of two different ontologies books.owl and
univ-bench.owl, respectively, describing the same domain. The result of the alignment
will be an OWL axiom asserting that books:Book and univ:Book are equivalent classes.
This axiom will be added to the knowledge base containing the SWRL rules.

4.2 The Composition Algorithm

Our SWRL composer prototype implements a backward search algorithm for the com-
position task and enhances the algorithm proposed in [14]. It works as follows: it takes
as input a knowledge base containing SWRL rules (with the descriptions of the equiv-
alent OWL classes) and a goal specified as a SWRL atom, and returns every possible
path built by combining the available SWRL rules in order to achieve such a goal. These
rules fulfil the SWRL safety condition. Specifically, the algorithm performs backward
chaining starting from the goal in the same way as Prolog-like reasoners work for query
answering. The difference is that this algorithm works on SWRL DL-safe rules instead
of Horn clauses. This means that, besides the rule base, it takes into account also the
Description Logic ontology the rules refer to. The SWRL rule path found, and conse-
quently the resulting OWL-S service composition, will be valid (in the sense that it will
produce results for the selected goal) only if the SWRL rules in the path are DL-safe. In
other words, DL-safety means that rules are true for individuals that are known, i.e. that
appear in the knowledge base5. The implemented prototype performs DL-safety check.
This guarantees that the application of rules is grounded in the ABox and, consequently,
that the services embodying those rules can be executed.

4.3 SWRL Plan Analysis

The set of paths obtained as a result of the composer can be considered as a SWRL rules
plan (referred to as plan in the following) representing all possible combinable OWL-S

5 It might not be the case in general, given the Open World Assumption holding in Description
Logics, see [11] and Chapter 2 in [1].
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Atomic processes that lead to the intended result (the goal). According to the OWL-S
specification for a composed process and its syntax, the composition of atomic services
obtained through the SWRL rule composer can be represented by means of an OWL-
S composite service. In this section we will analyze a possible encoding. An OWL-S
composed process can be considered as a tree whose nonterminal nodes are labeled
with control constructs, each of which has children that are specified through the OWL
property components. The leaves of the tree are invocations of the processes mentioned
as instances of the OWL class Perform, a class that refers to the process to be performed.
Bearing in mind the characteristics of the plan built by means of the method specified
in Section 4.1, we identify the OWL-S control constructs to be used to implement the
plan by applying the guidelines reported in Table 1. Currently, the OWL-S specification
does not completely specify Iteration and its dependent constructs (Repeat-While and
Repeat- Until), nor how the asProcess construct could be used. For this reason they are
not discussed in this paper, but they will be considered in future work.

4.4 Encoding the SWRL Plan with OWL-S Constructs

For our purposes, each rule is represented in the composer as an object called Rulebean,
that has various features and information that could be helpful to the composition, and
specifically:

– The atoms in the declared precondition of the rule;
– The URI of the atomic process the rule refers to;
– The number of atoms in which the grafted rules have correspondence;
– A list containing pointers to the other Rulebeans with which it is linked.

The information about the atoms of the preconditions allows to check the presence of IF
conditions that could lead to identify a situation that needs an If-Then-Else construct.
The URI of the atomic process referred by the rule is needed because the leaves of the
constructs tree must instantiate the processes to be performed. Finally, since each rule
can be linked to other rules, it is necessary to store both their quantity and a pointer to
the concatenated rules. In this way each Rulebean carries inside the entire underlying
structure. This structure is implemented as a tree of lists, where each list contains the
Rulebeans that are grafted on the same atom. Now let’s show in detail the steps needed
to encode a plan with the OWL-S control constructs. Referring to Figure 4, the proce-
dure involves the application of three subsequent steps depending on the number n of
grafted rules:

Fig. 3. The OWL-S control constructs in the plan
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Table 1. OWL-S Control Constructs identified in the plan

Sequence. Represents the situation in which the rules are geared to each other sequentially, i.e. the head of a rule corresponds
to an atom in the body of another one. Since this indicates a sequential execution, the Sequence construct will be used.
According to the specification, Sequence is a construct whose components are executed in a given order and the result of the
last element is used as the result of the whole sequence (Fig. 3 a)).
Split and Split-Join. Represents the situation where two or more rules with different head atoms are grafted directly into
two or more atoms in the body of a particular rule. In this circumstance there is a branch that is evaluated and encoded
with a Slit or Split-Join construct. According to the specifications, Split-Join is a construct whose components are executed
simultaneously, i.e. they run concurrently and with a certain level of synchronization (Split is the particular case where
synchronization is unnecessary). The condition for using this construct requires that its components can overlap in the
execution, i.e. they are all different (Fig. 3 b)).
Choice. Represents the situation where two or more rules, with the same head atoms, are grafted directly into one of the
atoms in the body of a particular rule. In this circumstance there is a branch that is evaluated and encoded with the Choice
construct. According to the specifications, Choice is a construct whose components are part of a set from which any element
can be called for execution. This construct is used because the results from the rules set can easily overlap, no matter which
component is going to be run because the results are always of the same type (Fig. 3 c)).
If-Then-Else. It could represent the situation where the body of a rule are the atoms identifying a precondition. In this case,
the service that identifies the rule to be properly executed needs that its precondition be true. In this circumstance, therefore,
the precondition was extracted and used as a condition in the If-Then-Else construct. According to the specifications, If-
Then-Else construct is divided into three parts: the ’then’ part, the ’else’ part and the ’condition’ part. The semantics behind
this construct is to be understood as: “if the ’condition’ is satisfied, then run the ’then’ part, otherwise run the ’else’ part.”
(Fig. 3 d)).
Any-Order. Represents a situation similar to the Split-Join, but this particular case covers those circumstances where control
constructs or processes are present multiple times in the structure of the plan, and it is important that their execution does
not overlap in order to prevent a process break. This type of situation can be resolved through the use of the Any-Order
construct because its components are all performed in a certain order but never concurrently (Fig. 3 e)).

1. Search all Rulebeans grafted with a number of rules equal to zero (n = 0) (Figure
4 a)).

a. Store therein an object that represents the “leaf”, i.e. an executable process.
2. Search all Rulebeans grafted with a number of rules equal to one (n = 1) (Figure 4

b).
a. Check the engaged list:

i. If there is only one Rulebean, the node will be of type “Sequence”;
ii. If there are multiple Rulebeans, the node will be of type “Choice”;

b. Store the object representing the created structure in the Rulebean.
3. Search all Rulebeans grafted with a number of rules greater than one (n ≥ 2)

(Figure 4 c).
a. For each grafted list follow the steps in 2.a;
b. Make the following checks on the structure:

i. If there are repeated Rulebeans add a node of type “Any-Order”;
ii. If there are no repeated Rulebeans add a node of type “Split-Join”;

c. Store the object representing the created structure in the Rulebean.

Since the If-Then-Else construct overlaps with the constructs assigned during this pro-
cedure, it is identified in another way. During the creation of a Rulebean, a check is
performed to verify if there are atoms in the body of the rule labeled as belonging to a
precondition. In such a case, the Rulebean will be identified as the ‘Then’ part of the
construct, and the atoms of the precondition will form the ’If’ condition. The ‘Else’
part will be identified as the complementary path, if any (for the “Sequence” construct
it does not exist, of course). Finally, the data flow is implemented in accordance with
the consumer-pull method, i.e. the binding of variables is held exactly at the point in
which it occurs.



Towards Dynamic Orchestration of Semantic Web Services 27

Table 2. OWL-S Atomic services test set

Ws NAME TEXTUAL DESCRIPTION INPUTS OUTPUTS
Service-10 This service returns the information of a book whose title best

matches the given string
books:Title books:Book

Service-12 A book search engine books:Title books:Book
Service-15 This service informs about a person who works as co-publisher of a

certain book
books:Book books:Person

Service-28 This service returns the author of the given novel books:Novel books:Person
Service-9 This service returns the price of a book; person is an optional input books:Person;

books:Book
concept:Price

Service-37 This service returns the name of books given the publication number univ:Publication univ:Book

5 Experimental Analysis

In this section we present an example that shows the applicability of our method. The
considered services were chosen from the OWLS-TC dataset 6.

5.1 SWRL Plan Generation

Let us consider the subset of atomic services in Table 2. To obtain SWRL rules that
satisfy the requirements described in Section 4.1, we have modified the atomic services
as follows:

– For every parameter having a datatype as type, we create a class in the domain
ontology having a datatype property with the corresponding datatype as range. The
considered dataset did not require the application of this step.

– For each service, we create two logical formulas. The former consists of unary
atoms having the parameterType URI as a predicate and the input as an argument,
for each input. The latter consists of a unary atom having the parameterType URI
as a predicate and the output as an argument. We set these two formulas as the
antecedent and the consequent of a new SWRL rule, respectively.

Fig. 4. The different types of grafted SWRL rules in the plan

6 OWL-S service retrieval test collection,
http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/


28 D. Redavid, S. Ferilli, and F. Esposito

Fig. 5. The SWRL plan obtained by applying the composer to the services of Table 2

– Since every service produces its output by manipulating the inputs, we can sup-
pose the existence of a hasTransf predicate, always true, that binds every input to
the output, which guarantees the SWRL safety condition. Then we add hasTransf
predicates to the antecedent of the rule built in the previous step. With this modifi-
cation the antecedent can be identified with a new inCondition.

The SWRL rule set obtained in this way is given as input to the composer described in
Section 4.2 and the resulting composition is shown in Figure 5.

5.2 OWL-S Composite Service Generation

After obtaining the composition plan, we apply the procedure described in Section 4.4.
As a result we obtain the OWL-S constructs tree of Figure 6. In practice, we start
searching Rulebeans grafted with a number of rules equal to zero, finding Service-10,
Service-12, Service-37 (books:Book and univ:Book are equivalent classes) and Service-
28. These will be tree leaves. We go on searching Rulebeans grafted with a number
of rules equal to one, finding Service-15. It has two rulebeans grafted on the same
Atom books:Book, thus we use a “Choice” construct. To link the obtained structure
with Service-15 (another tree leaf) we use the “Sequence” construct, naming this struc-
ture C1. We continue serching Rulebeans grafted with a number of rules greater than
one, finding Service-9. It has Service-10, Service-12 and Service-37 grafted on Atom
books:Book, and Service-28 (another tree leaf) and C1 grafted on Atom books:Person.
Both pairs are linked with a “Choice” construct, and we call them C2 and C3, respec-
tively. Since C2 and C3 contain repeated Rulebeans (the “Choice” over Service-10,
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Fig. 6. The tree construct of the obtained composition

Service-12 and Service-37), we model this situation with the “Any-Order” construct
rather than with the “Split-Join”. The depicted “If-Then-Else” construct is obtained
by applying the following consideration. Suppose that the precondition of Service-28
states that, in order to execute the service, the input must be necessarily a books:Novel
(an OWL subclass of books:Book). Then, we can use this assertion as the ‘If’ condition,
the execution of the service as the ‘Then’ part, and the non-execution of the service as
the ‘Else’ part.

6 Conclusions and Future Work

The SWS frameworks proposed in the literature provide different support to dynamic
orchestration. In the first part of this work we conducted a comparative study to elicit
differences and analogies among them, and remarked the capabilities necessary to en-
able dynamic orchestration: the needed requirements and the suitability of OWL-S and
WSMO to support such requirements. As shown in Section 2, the set of requirements is
implied by means of the use cases, namely automatic discovery, selection, composition
and invocation, required to make the SWS orchestration dynamic. The formal language
underlying the SWS frameworks is the key for an effective realization of these use cases.
For this reason, we described the formal support enabling reasoning on the semantic de-
scriptions of the services offered by WSMO and OWL-S (based on OWL+SWRL and
WSML, respectively). Then, we compared the formalisms underlying OWL+SWRL
and WSML from the point of view of the expressive power actually exploitable for rea-
soning on service descriptions. As a result of this comparison, OWL-S turns out to be
a more suitable candidate for dynamic orchestration. Automatic composition of SWSs
is a more complex process to achieve using only tools built on Description Logics [1].
In Section 3 we presented a complete composition method for OWL-S services using
Semantic Web languages and tools and working in semantically interoperable environ-
ments. The applied procedure can be summarized as follows: 1) The set of OWL-S
atomic and simple (i.e., composite) services are represented by means of SWRL rules;
2) The SWRL composer is applied on them obtaining a plan of SWRL rules; 3) the
SWRL plan is interpreted to produce the OWL-S composite service using OWL-S con-
trol constructs. The constructs identified in this way are used to build the OWL-S control
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construct tree that is directly serializable using the syntax of the language. As a future
work, it is important to find ways to manage the remaining constructs (Iteration) and
improve the composer in order to reuse internal parts of composite processes during
composition. Another aspect that deserves attention concerns a Semantic Web intrin-
sic issue, i.e. the absence of primitives for retracting knowledge due to the monotonic
nature of DL knowledge bases. Finally, the implementation of software agents able to
manage dynamic SWS orchestration by considering low-level details as, for instance,
Quality of Service, Service Level Agreement and the coordination for the concrete Web
services Invocation would allows a large-scale use. As in previous work, the emphasis
will be placed on the exclusive use of technologies developed for the Semantic Web.

Acknowledgments. Special thanks to Luigi Iannone, Terry R. Payne and Ignazio
Palmisano for working with us in the definition and refinement of the paper themes.
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