
 123

Transactions on
Computational
Collective Intelligence XLN

CS
 7

77
6

Ngoc Thanh Nguyen
Editor-in-Chief

Jo
ur

na
l S

ub
lin

e Joanna Kołodziej
Tadeusz Burczynski
Marenglen Biba
Guest Editors

Lecture Notes in Computer Science 7776
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ngoc-Thanh Nguyen Joanna Kołodziej
Tadeusz Burczyński Marenglen Biba (Eds.)

Transactions on
Computational
Collective Intelligence X

13

Editor-in-Chief

Ngoc-Thanh Nguyen
Wrocław University of Technology
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
E-mail: ngoc-thanh.nguyen@pwr.edu.pl

Guest Editors

Joanna Kołodziej
Cracow University of Technology
Institute of Computer Science
ul. Warszawska 24, 31-155 Cracow, Poland
E-mail: jokolodziej@pk.edu.pl

Tadeusz Burczyński
Cracow University of Technology
Institute of Computer Science
ul. Warszawska 24, 31-155 Cracow, Poland
E-mail: tburczynski@pk.edu.pl

Marenglen Biba
University of New York in Tirana
Rr. Komuna e Parisit, Tirana, Albania
E-mail: marenglenbiba@unyt.edu.al

ISSN 0302-9743 (LNCS) e-ISSN 1611-3349 (LNCS)
ISSN 2190-9288 (TCCI)
ISBN 978-3-642-38495-0 e-ISBN 978-3-642-38496-7
DOI 10.1007/978-3-642-38496-7

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938421

CR Subject Classification (1998): I.2.11, F.1.3, I.2.4, H.3.4, I.6.3-8, H.4.1-3, I.2.8

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Transactions on Computational Collective
Intelligence – Vol. X

Special Issue on

“Modelling and Simulation of Intelligent Large-Scale
Systems”

Preface

Modeling and simulation are widely considered as essential tools in many areas
of science and engineering for the prediction and analysis of complex systems and
natural phenomena. They often require a significant amount of computational
resources with large data sets typically scattered across different geographical
locations. Furthermore, the development of such complex modeling and simu-
lation environments usually requires collaborative efforts from researchers with
different domain knowledge and expertise, possibly at distinct locations. Intelli-
gent high-performance computing is arguably required to deal with the behavior
and complexity of such large-scale systems.

Intelligent computing is usually defined as advanced computing methods and
techniques based on classic computational intelligence, artificial intelligence, and
intelligent agents. On the other hand, large-scale distributed systems—such as
grids, peer-to-peer and ad-hoc networks, constellations, and clouds—enable the
aggregation and sharing of highly distributed resources from different organiza-
tions with distinct owners, administrators, and policies. With the advent of such
systems, where efficient inter-domain operation is one of the most important
features, it is arguably required to investigate novel methods and techniques to
enable secure access to data and resources, efficient scheduling, self-adaptation,
decentralization, and self-organization. The concept of intelligent large-scale sys-
tems brings together results from all the above areas, making a positive impact
on the development of new efficient models and systems simulators.

This special issue herewith presents 13 research papers with novel concepts
in the analysis, implementation, and evaluation of the next generation of intel-
ligent scalable techniques for data-intensive processing and global optimization
problems in large-scale distributed systems.

The first five papers discuss novel scalable agent-based models and techniques
for solving various data-intensive global optimization problems in large-scale
computational environments. The presented techniques and their implementa-
tions are based on formal mathematical and logical models with the new semantic
rules and modern synchronization modules of parallel computational processes.
Byrski et al. present a theoretical model of immunnological multi-agent system
(iMAS). This model is based on the general paradigms of homogeneous Markov
chain theory. The authors demonstrate a Markov-based interpretation of the
basic features of the IMAS system. An interesting practical approach of an in-
telligent system of software agents is presented by Redavid et al. in the second

VI Transactions on Computational Collective Intelligence

paper. The authors discuss the dynamic orchestration problem of Semantic Web
services (SWSs). In their model, the orchestration capabilities are provided on-
the-fly by the software agents that apply logical reasoning on SWSs descriptions.
The most important feature of this model is dynamic adaptation to environment
and system conditions (states). This problem has been explored by Pi ↪etak and
Kisiel-Doronicki, who present a MAS framework for composition and implemen-
tation of the distributed computational by designing a proper configuration of
the general MAS components. Agent-based models have become popular recently
as efficient support systems in collective intelligence (CI). Li and Perera present
a system with single chip hardware agents for emulation of collective intelligence
models and deployment in realistic collaborative settings. Another simulation
agent-based framework is presented by Ihrig. He developed a SimISpace2 sim-
ulation environment designed to emulate the strategic knowledge management
processes and knowledge-based agents’ interactions.

The second part of this special issues consists of eight papers on recent mod-
els and developments in various types of large-scale distributed systems. One
of the most important issues addressed by researchers in this domain is data
storage and processing. Ichikawa and Uehara have developed a cloud search en-
gine for various types of data stored online in infrastructure as a service (IaaS)
cloud layer. This engine works as a distributed system composed of many local
cooperated modules, which are responsible for reading the local documents in
a storage server and creating their indexes, that are further sent to the global
module. Ko�lodziej and Khan review in their paper the recent developments on
data storage and processing during grid scheduling. They defined a generic uni-
fied model for access to data grid nodes and databases that is necessary for
completing the scheduled tasks distributed in the grid environment. Another
scalable cloud approach for improving the massive data processing during the
execution of e-science application is presented by Terzo et al. The authors com-
bine in their model a physical grid architecture with a virtual cloud service layer
that guarantees flexibility and a progressive scalability of this hybrid system.

Rational utilization of the system nodes and conservation of the energy con-
sumed during the computation and communication are the crucial issues in
most high-performance distributed systems. Niewiadomska-Szynkiewicz defines
energy-aware inter-node communication protocols in wireless sensor networks
(WSNs). These protocols rely on hierarchical routing and periodic coordina-
tion technique in WSNs. The graphics processing unit (GPU) has the potential
to enable a new generation of applications for small computational clusters.
GPUs have demonstrated in many applications a cluster-level performance at
a fraction of the cost and energy consumption of traditional CPUs for certain
general-purpose applications. Garba et al. try to solve the multiple large Hermi-
tian eigenvector and eigenvalue systems on GPUs. The recent research results
and models in high-performed data mining are surveyed by Trandafili and Biba.

The last two papers address the decision-making problems in distributed envi-
ronments. Boryczka et al. developed a novel algorithm for generation multi-level
decision trees. This algorithm is based on the ant colony optimization model, in

Transactions on Computational Collective Intelligence VII

which a global ant population is divided into subpopulations. The calculation
is performed simultaneously for each such subpopulation. The exchange of in-
formation between ants is possible through direct and indirect communication
channels on the local and global (inter-subpopulation) levels. All ants cooperate
with each other, and the whole system has a heterarchical structure. While Bo-
ryczka’s methodology can be used as a prototype module of a realistic system,
Otamendi presents the real-life implementation of a decision support simulation
system in a car company, which is used in the process of redesigning of assembly
cells.

We believe that all of the papers presented in this special issue will serve as a
reference for students, researchers, and industry practitioners interested or cur-
rently working in the evolving and interdisciplinary area of scalable computing
and intelligent networking. We hope that the readers will find new inspiration
for their research.

We are grateful to all the contributors of this issue. We thank the authors
for their time and efforts in the presentation of their recent research results. We
would also like to express our sincere thanks to the reviewers, who have helped
us to ensure the quality of this publication. Our special thanks go to Ngoc Thanh
Nguyen (Editor-in-Chief) and the LNCS editorial staff of Springer with Alfred
Hofmann, for supporting the TCCI journal and this publication.

January 2013 Joanna Ko�lodziej
Marenglen Biba

Tadeusz Burczyński

Transactions on Computational Collective

Intelligence

This Springer journal focuses on research in computer-based methods of com-
putational collective intelligence (CCI) and their applications in a wide range of
fields such as the Semantic Web, social networks, and multi-agent systems. It
aims to provide a forum for the presentation of scientific research and techno-
logical achievements accomplished by the international community.

The topics addressed by this journal include all solutions to real-life problems
for which it is necessary to use CCI technologies to achieve effective results.
The emphasis of the papers published is on novel and original research and
technological advancements. Special features on specific topics are welcome.

Editor-in-Chief

Ngoc Thanh Nguyen Wroclaw University of Technology, Poland

Co-Editor-in-Chief:

Ryszard Kowalczyk Swinburne University of Technology, Australia

Editorial Board:

John Breslin National University of Ireland, Galway, Ireland
Shi-Kuo Chang University of Pittsburgh, USA
Longbing Cao University of Technology Sydney, Australia
Oscar Cordon European Centre for Soft Computing, Spain
Tzung-Pei Hong National University of Kaohsiung, Taiwan
Gordan Jezic University of Zagreb, Croatia
Piotr J ↪edrzejowicz Gdynia Maritime University, Poland
Kang-Huyn Jo University of Ulsan, Korea
Jozef Korbicz University of Zielona Gora, Poland
Hoai An Le Thi Metz University, France
Pierre Lévy University of Ottawa, Canada
Tokuro Matsuo Yamagata University, Japan
Kazumi Nakamatsu University of Hyogo, Japan
Toyoaki Nishida Kyoto University, Japan
Manuel Núñez Universidad Complutense de Madrid, Spain
Julian Padget University of Bath, UK
Witold Pedrycz University of Alberta, Canada
Debbie Richards Macquarie University, Australia

X Transactions on Computational Collective Intelligence

Roman S�lowiński Poznan University of Technology, Poland
Edward Szczerbicki University of Newcastle, Australia
Kristinn R. Thorisson Reykjavik University, Iceland
Gloria Phillips-Wren Loyola University Maryland, USA
S�lawomir Zadrożny Institute of Research Systems, PAS, Poland

Table of Contents

Markov Chain Based Analysis of Agent-Based Immunological System . . . 1
Aleksander Byrski, Robert Schaefer, and Maciej Smo�lka

Towards Dynamic Orchestration of Semantic Web Services 16
Domenico Redavid, Stefano Ferilli, and Floriana Esposito

Agent-Based Framework Facilitating Component-Based Implementation
of Distributed Computational Intelligence Systems 31

Kamil Pi ↪etak and Marek Kisiel-Dorohinicki

A Hardware Collective Intelligence Agent . 45
Kin Fun Li and Darshika G. Perera

SimISpace2 : A Simulation Platform for Exploring Strategic Knowledge
Management Processes . 60

Martin Ihrig

Cloud Search Engine for IaaS . 90
Yuuta Ichikawa and Minoru Uehara

Data Scheduling in Data Grids and Data Centers: A Short Taxonomy
of Problems and Intelligent Resolution Techniques . 103

Joanna Ko�lodziej and Samee Ullah Khan

Improving Scalability of an Hybrid Infrastructure for E-Science
Applications . 120

Olivier Terzo, Lorenzo Mossucca, Pietro Ruiu, Giuseppe Caragnano,
Klodiana Goga, Riccardo Notarpietro, and Manuela Cucca

Energy Aware Communication Protocols for Wireless Sensor
Networks . 135

Ewa Niewiadomska-Szynkiewicz

GPU Acceleration for Hermitian Eigensystems . 150
Michael T. Garba, Horacio González–Vélez, and Daniel L. Roach

Scalable and High Performing Learning and Mining in Large-Scale
Networked Environments: A State-of-the-art Survey 162

Evis Trandafili and Marenglen Biba

XII Table of Contents

Heterarchy in Constructing Decision Trees – Parallel ACDT 177
Urszula Boryczka, Jan Kozak, and Rafa�l Skinderowicz

Decision Support Simulation System Based on Synchronous
Manufacturing . 193

F. Javier Otamendi

Author Index . 207

Markov Chain Based Analysis

of Agent-Based Immunological System

Aleksander Byrski1, Robert Schaefer1, and Maciej Smo�lka2

1 Dept. of Computer Science, AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland

{olekb,schaefer}@agh.edu.pl
2 Institute of Computer Science, Jagiellonian University,

ul. �Lojasiewicza 6, 30-348 Kraków, Poland
smolka@ii.uj.edu.pl

Abstract. In the course of the paper we recall the Markov model for
immunological Evolutionary Multi-Agent System. The model allows to
study dynamic features of the computation and increases understanding
the considered classes of systems. The main contribution of the paper
is the draft of the proof of the ergodicity feature of the Markov chain
modelling iEMAS dynamics.

1 Introduction

Certain heuristic system may never become one ultimate answer to solving all
possible optimisation problem [22]. On the other hand, when building complex
hybrid algorithms, an important question should be posed, does this system is
able to work at all? This is important, because complex search methods may
affect the ability to find all possible answers to the given problem, therefore
formal proving of certain features of the computation becomes an important
argument in the discussion of applicability of certain search methods.

The formal model presented by Vose [20] proved in the most simple, yet effec-
tive way, asymptotic guarantee of success, i.e. “ability to find all local maximizers
(minimizers) with probability 1 after infinite number of epochs” [18,12,15] in the
analysis of the Simple Genetic Algorithm (SGA) behaviour, formally confirming
the possibility of using SGA for global optimisation. Formal models for genetic
algorithms were also proposed by other researchers, providing a deeper insight
into the long term, steady state behaviour of large population EAs [9,19,16]
or modelling specific features of EAs such as selection, genetic drift, niching
etc. [10,14,11]. Many other, more complex, biologically-inspired computational
techniques were proposed (e.g. memetic systems, immune-inspired systems),
however, the problem of construction of appropriate mathematical models and
approaches at proving asymptotic guarantee of success do not seem to be studied
extensively or even were not undertaken at all.

In the course of paper we recall the basic features of the stochastic Markov
models already introduced in the works of Byrski et al. (e.g. [5,17,6]). We de-
fine the space of states, synchronisation mechanism, and we draw the prob-
ability transition function. The main contribution of the paper is a draft of

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Byrski, R. Schaefer, and M. Smo�lka

the sequence of actions proving the ergodicity of Markov chain constructed for
iEMAS (immunological Evolutionary Multi Agent System introduced by Byrski
and Kisiel-Dorohinicki [2]) by transferring the system between two arbitrarily
chosen states. The formal proof for EMAS (predecessor of iEMAS, being a gen-
eral optimisation system leveraging paradigms of evolutionary computation and
agency, introduced by Cetnarowicz [7]) ergodicity has already been submitted
for publication, we will follow with full proof of ergodicity of iEMAS in the near
future.

2 Evolutionary and Immunological Agent-Based
Computation

EMAS and iEMAS are general-purpose optimisation systems leveraging
paradigms of evolutionary computation and agency, following work of Cetnarow-
icz [7]) that has already proven its efficiency for certain class of problems (see
e.g., [4,2,3]).

In the simplest possible model of an evolutionary multi-agent system there
is one type of agents and one resource defined. Genotypes of agents represent
feasible solutions to the problem.

(a) EMAS (b) iEMAS

Fig. 1. Evolutionary (EMAS) and immunological (iEMAS) multi-agent system

Energy is exchanged by agents in the process of evaluation. The agent in-
creases its energy when it finds out that one (e.g. randomly chosen) of its neigh-
bours, has lower fitness. In this case, the agent takes part of its neighbour’s
energy, otherwise, it passes part of its own energy to the evaluated neighbour.
The level of life energy triggers actions of death and reproduction (low energy
causes death while high energy makes reproduction possible). Attaining prede-
fined level of energy may lead an agent also to migrate from one evolutionary
island to another (see Fig. 1(a)).

Immune-inspired approaches were applied to many problems, such as clas-
sification or optimisation (e.g. [8]). The most often used algorithms of clonal

Markov Chain Based Analysis of Agent-Based Immunological System 3

and negative selection correspond to their origin and are used in a variety of
applications [21].

The main idea of applying immunological inspirations to speed up the pro-
cess of selection in EMAS is based on the assumption that ‘bad’ phenotypes
come from ‘bad’ genotypes. Thus, a new group of agents (acting as lympho-
cyte T-cells) may be introduced [3]. They are responsible for recognising and
removing agents with genotypes similar to the genotype pattern possessed by
these lymphocytes. Another approach may introduce specific penalty applied by
T-cells for recognised agents (certain amount of the agent’s energy is removed)
instead of removing them from the system. The general structure of iEMAS
(immunological EMAS) is presented in Fig. 1(b).

Of course there must exist some predefined affinity (lymphocyte-agent match-
ing) function, which may be based, e.g., on the percentage difference between
corresponding genes. Agents-lymphocytes are created in the system after the ac-
tion of death. The late agent genotype is transformed into lymphocyte patterns
by means of mutation operator, and the newly created lymphocyte (or group of
lymphocytes) is introduced into the system.

In both cases, new lymphocytes must undergo the process of negative selec-
tion. In a specific period of time, the affinity of immature lymphocytes’ patterns
to ‘good’ agents (possessing relatively high amount of energy) is tested. If it is
high (lymphocytes recognize ‘good’ agents as ‘non-self’) they are removed from
the system. If the affinity is low, it is assumed that they will be able to recognize
‘non-self’ individuals (‘bad’ agents) leaving agents with high energy intact. The
life span of lymphocytes is controlled by specific, renewable resource (strength),
used as a counter by the lymphocyte agent (see Fig. 1(b)).

3 Agent-Based Management and Synchronisation

We start considerations from evolutionary multi-agent systems solving global
optimisation problems (cf. [17]), which consist in finding all global minimizers of
a given nonnegative fitness function over a finite genetic universum U with car-
dinality r. EMAS agents belong to a predefined finite set Ag. Every active agent
is assigned to a location (evolutionary island) from the set Loc = {1, . . . , s}. The
locations are interconnected with channels along which agents can migrate. A
channel topology is given by a symmetric relation Top ⊂ Loc2.

Continuing considerations presented in e.g. [5,17] we focus on the Immuno-
logically based Evolutionary Multi-Agent System (iEMAS) that contains (besides
dynamic collection of agents that belong to the predefined finite set Ag identical
to the one of EMAS) a dynamic collection of lymphocytes that belong to the
finite set Tc. Lymphocytes are unambiguously indexed by the genotypes from
U , so that #Tc = #U = r.

The lymphocytes have a similar structure as the agents previously defined,
however, their actions differ (because their goals differ from the agents’ goals)
and their total energy does not have to be constant.

4 A. Byrski, R. Schaefer, and M. Smo�lka

iEMAS may be modeled as the following tuple:

< U, {Pi}i∈Loc, Loc, T op,Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω,Act,

{typeseli}i∈Loc, {tcseli}i∈Loc, T c, T cact > (1)

where:

– MA (master agent) is used to synchronize the work of the locations; it allows
to perform actions in particular locations. This agent is also used to introduce
necessary synchronisation into the system.

– locsel : X → M(Loc) is the function used by MA to determine which
location should be allowed to perform the next action,

– LAi (local agent) is assigned to each location; it is used to synchronize
the work of computational agents present in its location, LAi chooses the
computational agent and lets it evaluate a decision and perform the action,
at the same time asking MA whether this action may be performed.

– agseli : X → M(U × Pi) is a family of functions used by local agents to
select the agent that may perform the action, so every location i ∈ Loc has
its own function agseli.

– ω : X ×U → M(Act) is a function used by agents for selecting actions from
the set Act; both these symbols will be described later.

– Act is a predefined, finite set of actions.
– typeseli is a function used to select the type of agent in i-th location to

interact with the system in the current step,
– tcseli is used to choose a lymphocyte in i-th location to interact with the

system in the current step,
– ϕ is the decision function for lymphocytes,
– Tcact is a set of actions that may be performed by lymphocytes.

Hereafter M(Ω) shall stand for the space of probabilistic measures over Ω.
In order to design a Markov model of the system with relaxed synchronisa-

tion (i.e. such that agents present in different locations may act in parallel), a
timing mechanism must be introduced, i.e. all state changes must be assigned
to subsequent time moments t0, t1,

In Fig. 2 the scheme of the synchronisation mechanism built using agents,
LAi, i ∈ Loc and MA is presented.

The computational agent CA present in the location i in every observable
time moment chooses an action it wants to perform and asks its supervisor (local
agent LAi) for a permission to carry on. Then it suspends its work waiting for
the permission. When the permission is granted and the decision assigned to
the considered action is positive, the computational agent changes the state of
the location. Afterwards the agent suspends its work again in order to get a
permission to perform a subsequent action. The immunological agent TC works
in a similar way to CA, managing behaviour of a single lymphocyte.

The local agent LAi receives signals containing actions to be performed from
all its agents. Then chooses one computational agent which should try to perform
its action. This action is reported to the master agent MA and after receiving

Markov Chain Based Analysis of Agent-Based Immunological System 5

Fig. 2. Scheme of the synchronisation mechanism

permission, the computational agent can perform the action. All other agents
are stopped from performing their actions.

The master agent MA waits for all requests from location and then chooses
randomly one location. If this location asks for permission to perform global
action, then it is granted this permission and all other locations are rejected.
Otherwise all locations which asked for the permission to perform global action
are rejected and all those asking for permission to perform local action — are
granted.

4 System State

In this section we cite the description of EMAS state and extend it by adding a
matrix describing iEMAS state (following [17]).

4.1 EMAS State

Let us introduce the set of three-dimensional, incidence and energy matrices
x ∈ X with s layers (corresponding to all locations) x(i) = {x(i, gen, n), gen ∈
U, n ∈ Pi}, i ∈ Loc. The layer x(i) will contain energies of agents in i-th
location. In other words, if x(i, gen, k) > 0, it means that the k-th clone of the
agent containing the gene gen ∈ U is active, its energy equals x(i, gen, k) and it
is located in i-th location.

We introduce the following coherency conditions:

– (·, j, k)-th column contains at most one value greater than zero, which ex-
presses that the agent with k-th copy of j-th genotype may be present in
only one location at a time, whereas other agents containing copies of j-th
genotype may be present in other locations;

– incidence and energy matrices’ entries are non-negative x(i, j, k) ≥ 0, ∀ i =
1, . . . , s, j = 1, . . . , r, k = 1, . . . , p and

∑s
i=1

∑r
j=1

∑p
k=1 x(i, j, k) = 1,

which means that total energy contained in the whole system is constant,
equal to 1;

6 A. Byrski, R. Schaefer, and M. Smo�lka

– each layer x(i) contains at most qi values greater than zero, which denotes
the maximum capacity of the i-th location, moreover, the quantum of energy
Δe is lower or equal than total energy divided by the maximal number of
individuals that may be present in the system Δe ≤ 1∑

s
i=1 qi

which allows us

to achieve maximal population of agents in the system;
– reasonable values of p should be greater or equal to 1 and less or equal to∑s

i=1 qi; we assume that p =
∑s

i=1 qi which assures that each configuration
of agents in locations is available, respecting the constrained total number
of active agents

∑s
i=1 qi; increasing p over this value does not enhance the

descriptive power of the presented model;
– the maximal number of copies for each location #Pi should not be less than

qi, because we want to allow a system state in which a particular location
is filled with clones of one agent; obviously increasing #Pi over qi is only a
formal constraint relaxation, so finally we assume that #Pi = qi.

Gathering all these conditions, the set of three-dimensional incidence and energy
matrices may be described in the following way.

Λ =
{
ince ∈ {0, Δe, 2 ·Δe, 3 ·Δe, . . . ,m ·Δe}s·r·p, Δe ·m = 1,

s∑
i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1, ∀ i = 1, . . . , s :
r∑

j=1

p∑
k=1

[x(i, j, k) > 0] ≤ qi, (2)

∀ i = 1, . . . , s, j = 1, . . . , r, k /∈ Pi : x(i, j, k) = 0,

∀j = 1, . . . , r, k = 1, . . . , p :

s∑
i=1

[x(i, j, k) > 0] ≤ 1
}

where [·] denotes the value of the logical expression contained in the parentheses.

4.2 iEMAS State

In addition to the EMAS state describing the location and energy of agents
(see (4.1)), we need to consider a set of matrices containing similar information
for lymphocytes. Yet there is no need to assure the constant total energy for
lymphocytes. We describe this additional set of lymphocyte incidence and energy
matrices in the following way:

Γ =

{
tcince ∈ [0, Δe, . . . , n ·Δe]r·s : ∀ i = 1, . . . , s

r∑
j=1

[tcince(i, j) > 0] ≤ tcqj

and ∀ j = 1, . . . , r

s∑
i=1

[tcince(i, j) > 0] ≤ 1

}
(3)

where tcince(i, j) stands for energy of tcj being active in the location i. The
integers tcqj , j = 1, . . . , s stand for the maximum number of lymphocytes in
particular locations. It is most convenient to assume tcqj = qj , ∀j = 1, . . . , s.

The space of iEMAS states is defined as follows:

X = Λ× Γ (4)

Markov Chain Based Analysis of Agent-Based Immunological System 7

5 System Behaviour

Let us denote by Xgen the subset of states in which there are active agents with
genotype gen ∈ U or an active lymphocyte.

5.1 EMAS Behaviour

Each action α ∈ Act will be represented as the pair of function families
({δgenα }gen∈U , {ϑgen

α }gen∈U). The functions

δgenα : X → M({0, 1}) (5)

represent the decision to be taken: whether the action can be performed or not.
The action α is performed with the probability δgenα (x)(1) by the agent aggen,n
at the state x ∈ X and rejected with the probability δgenα (x)(0).

Next, the formula

ϑgen
α : X → M(X) (6)

defines the non-deterministic state transition functions, so that ϑgen
α is caused

by the execution of the action α by the agent aggen,n. Because the function is
invoked only if the agent in active, it is enough to define its restriction ϑgen

α |Xgen

and take an arbitrary value on X \Xgen.
If any action is rejected, the trivial state transition

ϑnull : X → M(X) (7)

such that for all x ∈ X

ϑnull(x)(x′) =

{
1 if x = x′

0 otherwise
(8)

is performed.
The probability transition function for the action α performed by the agent

containing the genotype gen

�genα : X → M(X) (9)

is given by the formula

�genα (x)(x′) = δgenα (x)(0) · ϑnull(x)(x′) (10)

+δgenα (x)(1) · ϑgen
α (x)(x′)

where x ∈ X denotes a current state and x′ ∈ X a consecutive state resulted
from the conditional execution of α.

8 A. Byrski, R. Schaefer, and M. Smo�lka

5.2 iEMAS Behaviour

We introduce the function typeseli choosing which type of agents will have the
possibility of performing the action:

typeseli : X → M({0, 1}) (11)

when 0 is chosen, one of the agents is activated, when 1 — the lymphocyte.
The function choosing which agent will be activated agseli is like in EMAS

but it now depends in some way on the extended state from X defined by (4).
Now we introduce a new function that will choose which lymphocyte will be
activated:

tcseli : X → M(Tc) (12)

The function ω choosing the action for the active agent remains intact, though
its domain changes (because of the new state definition, see (4)).

The function choosing the action for the active lymphocyte is the following:

ϕ : U ×X → M(Tcact) (13)

We will use the family of functions ηgenα : X → M(X) where gen ∈ U , α ∈ Tcact.
Each of them expresses the probability transition imposed by the lymphocyte
tcgen that performs the action α ∈ Tcact. They are given by the general formula:

ηgenα (x)(x′) = γα(gen, x)({0}) · ϑnull(x)(x′) + γα(gen, x)({1}) · κgen,n
α (x)(x′)

(14)

The agents’ and lymphocytes’ actions may be divided into two distinct types:
global — they change the state of the system in two or more locations, so only
one global action may be performed at a time, local — they change the state of
the system inside one location respecting only the state of local agents, only one
local action for one location may be performed at a time.

Therefore we divide the Act set in the following way: Act = Actgl ∪ Actloc
and accordingly, Tcact : Tcact = Tcactgl ∪ Tcactloc. Speaking informally, local
actions (elements of Actloc, T cactloc) change only the entries of the layer x(i)
of the incidence and energy matrices if the location i ∈ Loc contains the agent
performing a certain action. Moreover, these actions do not depend on other
layers of x. The action null is obviously “the most local one”, because it does
not change anything at all.

In the case of EMAS and iEMAS, actions such as evaluation or lymphocyte
pattern matching may be perceived as local, at the same time action of migration
is perceived as global. The above-stated conditions may be defined formally and
may be used to prove commutativity of iEMAS (cf. [5,17]), however here we skip
this proof because lack of space.

6 Parallel iEMAS Dynamics

At the observable moment at which EMAS takes the state x ∈ X all agents in
all locations notify their local agents their intent to perform an action, all local

Markov Chain Based Analysis of Agent-Based Immunological System 9

agents choose an agent with the distribution given by the agseli(x), i ∈ Loc
function and then notify the master agent of their intent to let perform an
action by one of their agents. The master agent chooses the location with the
probability distribution given by locsel(x).

We extend the model of EMAS dynamics in order to model the behaviour
of iEMAS. The probability that in the chosen location i ∈ Loc the agent or
lymphocyte wants to perform local action is as follows:

ξi(x) = typesel(x)({0})
∑

gen∈U

p∑
n=1

(agseli(x)({gen, n})

·ω(gen, x)(Actloc)) + typesel(x)({1}) (15)

The probability that the master agent will chose the location with the agent
intending to perform the local action is:

ζloc(x) =
∑
i∈Loc

locsel(x)({i})ξi(x) (16)

of course the probability of choosing the global action by the master agent is:

(1 − ζloc(x)) = ζgl(x) (17)

If the global action is chosen, the state transition is given by:

τgl(x)(x′) =
∑
i∈Loc

locsel(x)({i}) ·
⎛⎝ ∑

gen∈U

p∑
n=1

agsel(x)({gen, n})·
⎛⎝ ∑

α∈Actgl

ω(gen, x)({α}) · �gen,nα (x)(x′)

⎞⎠⎞⎠ (18)

Let us state the set of action sequences containing at least one local action:

Act+1loc =

{
(α1, . . . , αs) ∈ (Act ∪ Tcact)s;

s∑
i=1

[αi ∈ (Actloc ∪ Tcact)] > 0

}
(19)

The probability that in i-th location the agent aggeni,ni or the lymphocyte tcg̃eni

chooses the action αi is given by:

μαi,geni,ni,g̃eni
(x) = typesel(x)({0}) · agseli(x)({geni, ni})ω(geni, x)({αi})+

typesel(x)({1})tcseli(x)({g̃eni})ϕ(g̃eni, x)({αi}) (20)

Let us define a multi-index:

ind = (α1, . . . , αs; (gen1, n1), . . . , (gens, ns); (g̃en1), . . . , (g̃ens)
)

∈ IND = (Act ∪ Tcact)s × (U × {1, . . . , p})s × Us (21)

10 A. Byrski, R. Schaefer, and M. Smo�lka

the probability that in consecutive locations agents aggeni,ni or lymphocytes
tcg̃eni

will choose the actions αi is given by:

μind(x) =

s∏
i=1

μαi,geni,ni,g̃eni
(x). (22)

Transition function for parallel system is following:

τ loc(x)(x′) =
∑

(α1,...,αs)∈Act+1loc

∑
ind∈IND

μind(x)(πind
1 (x) ◦ , . . . , ◦ πind

s (x))(x′)

(23)

where πi is defined as:

πind
i (x) =

⎧⎨⎩
�geni,ni
αi

(x), αi ∈ Actloc
ηg̃eni
αi

(x), αi ∈ Tcact
ϑnull, αi ∈ Actgl

(24)

The value of (πind
1 (x) ◦ , . . . , ◦ πind

s (x))(x′) does not depend on the composition
order, because transition functions associated with local actions commutate pair-
wise (see 5.2) . Finally, we may derive the following observation.

Observation 1. The probability transition function for the parallel iEMASmodel
is given by the formula

τ(x)(x′) = ζgl(x)τgl(x)(x′) + ζloc(x)τ loc(x)(x′) (25)

and formulas (15) – (24).

Observation 2. The stochastic state transition of iEMAS given by formula (25)
satisfies the Markov condition.

Proof. All transition functions and probability distributions given by formulas
(15)–(24) depend only on the current state of the system, which motivates the
Markovian features of the transition function τ given by (25). The transition
functions do not depend on the number of step at which is applied what motivates
the stationarity of the chain.

7 iEMAS Ergodicity Proof Draft

In this section we present a draft of a proof of the ergodicity feature for the
Markov chain describing the behaviour of iEMAS.

Theorem 1. Assume that the following assumptions hold.

1. The migration energy threshold is lower than the total energy divided by the
number of locations emigr < 1

s . This assumption ensures that there will be at
least one location in the system in which an agent is capable of performing
migration (by gathering enough energy from its neighbors).

Markov Chain Based Analysis of Agent-Based Immunological System 11

2. The quantum of energy is lower than or equal to the total energy divided
by the maximum number of agents that may be present in the system Δe �

1∑s
i=1 qi

. This assumption allows to achieve a maximal population of agents

in the system.
3. Reproduction (cloning) energy is lower than two energy quanta erepr � 2Δe.
4. The amount of energy passed from parent to the child during cloning action

is equal to Δe (so n1 = 1).
5. The maximum number of agents on every location is greater than one, qi >

1, i = 1, . . . , s.
6. Locations are totally connected, i.e. Top = Loc2.
7. Each active agent can be selected by its local agent with strictly positive

probability.
8. The families of probability distributions being the parameters of EMAS have

uniform, strictly positive lower bounds.

Then the Markov chain modeling iEMAS (see equation (25)) is irreducible, i.e.
all its states communicate.

In order to prove the Theorem 1, it is enough to show that the passage from
xb to xe (two arbitrarily chosen states from X) may be performed in a finite
number of steps with probability strictly greater then zero.

Let us consider the following sequence of stages.

– Stage 0: In every location in parallel: If the location is full, an agent is cho-
sen, and it performs sequentially evaluation action with one of its neighbors
in order to remove it (to make possible incoming migration from any other
location, in case this location is full). After removing one of its neighbors
the agent tries to perform any global action, e.g., migration (and fails), until
the end of the stage. Otherwise, the trivial null state transition is performed.
Final state of the Stage 0 is denoted by x0e.

– Stage 1 a: One location is chosen, at which the sum of agents’ energy
exceeds the migration threshold in the state x0e (based on assumption 1 of
Theorem 1 there must be at least one). Then one agent from this location
aggen1,n1 (possibly possessing the largest energy in the state x0e) is chosen.
This agent performs a sequence of evaluation actions in order to gather all
energy from all its neighbors, finally removing them from the system (by
bringing their energy to zero).

– Stage 1 b: If there are any lymphocytes on the current location, they per-
form killing action, one by one, on the agent aggen1,n1 , failing to remove it
from the system, until all lymphocytes are removed. In the end, only one
agent is present in the location.

– Stage 1 c: Now this agent begins the first migration round in order to visit
all locations and to remove the agents (overtaking their energy by performing
multiple get actions) and remove all lymphocytes. This round is finished at
location i1. Now, agent aggen1,n1 possesses the total energy of the system
which equals 1. Final state of the Stage 1 is denoted by x1e. Note, that the
state matrix has only one positive entry x1e(i1, gen1, n1) = 1.

12 A. Byrski, R. Schaefer, and M. Smo�lka

– Stage 2 a: The agent performs cloning action producing one of the agents
(aggen2,n2) that will be present on the location i2, one of the locations in
the state xe containing total energy greater than the migration threshold.
Now it passes all of its energy to this newly produced agent, finally being
removed from the system. The purpose of the Stage 2 is to ensure that the
agent recreating the population at the last location i2 will be one of the
agents present on this location in the state xe. Otherwise if i2 is full in the
state xe, aggen1,n1 could not recreate this population. If aggen1,n1 is active
at the location i2 at the state xe (i.e. xe(i2, gen1, n1) > 0), the Stage 2 may
be omitted (in this case aggen1,n1 takes the role of aggen2,n2 in the following
stages).

– Stage 3: Next, the agent aggen2,n2 begins the second migration round (start-
ing migration from the location i1) visiting all locations. In every visited
location it performs cloning action producing one of the agents that will
be present on this location in the state xe. The cloned agent on each non-
empty location (denoted by aggenfirst

i ,nfirst
i

) will receive the total energy that

should be assigned to its location, by the sequence of evaluation actions. The
agent finishes the migration after recreating the population on the location
i2 (one of the islands containing a total energy in the state xe greater than
the migration threshold).

– Stage 4 a: In the system, the following sequence of actions assigned with
the consecutive locations labeled by i ∈ Loc, non empty in the state xe, is
performed: every agent aggenfirst

i ,nfirst
i

perform a cloning action to produce

an agent with the genotype of one of lymphocytes existing in the location
in the state xe. Now it performs a sequence of evaluation action to remove
the agent (and the appropriate lymphocyte is performed). The lymphocyte
performs a sequence of energy lowering actions to adjust its energy to the
level observed in the state xe. This is repeated until all the lymphocytes
present in xe are recreated.

– Stage 4 b: In the system, the following sequence of actions assigned with
the consecutive locations labeled by i ∈ Loc, non empty in the state xe,
is performed: every agent aggenfirst

i ,nfirst
i

performs a sequence of cloning

actions, recreating the population of agents on its location in the state xe.
– Stage 5: In every location in parallel: agent aggenfirst

i ,nfirst
i

performs a se-

quence of evaluation actions with its neighbors in order to pass to them a
sufficient amount of energy, required in the state xe.

In the extended version of this paper we will show that every of aforementioned
stages requires performing at most finite number of Markov chain steps by esti-
mating their upper bounds. Moreover, we will show, that every aforementioned
sequences have non-zero probabilities by estimating its lower bounds.

Theorem 1 leads us straightforwardly to the statement that every possible
state of iEMAS is reachable (with positive probability) after performing a finite
sequence of transitions independently on the initial population. We can refor-
mulate such a conclusion in the following corollary.

Markov Chain Based Analysis of Agent-Based Immunological System 13

Corollary 1. All states containing the extrema are reachable from an arbitrary
initial state. Thus iEMAS satisfies asymptotic guarantee of success in the sense
of [18,12,15].

The following theorem shows an additional feature of the considered Markov
chain.

Theorem 2. If the assumptions of Theorem 1 hold, then the Markov chain mod-
eling EMAS is aperiodic.

Proof. Let us consider a state of the chain such that every location contains
a single computational agent only. In this case let us assume that each agent
chooses evaluation as its next action. Because all agents have chosen local actions,
the master agent will allow them all to perform their actions, however the absence
of neighbors will force all the agents to perform the trivial (i.e. null) action. The
transition probability function is then the s-fold composition of ϑnull. Therefore
in this case the system will return to the same state in one step. The probability
of such transition is greater than zero. It means that the considered state is
aperiodic. Our chain is irreducible (see Theorem 1) and therefore it has only one
class of states, the whole state space, which obviously contains the considered
aperiodic state. On the other hand, from Theorem 2.2 of [13] we know that
aperiodicity is a state class property. In our case it means that all states of
EMAS are aperiodic, which concludes the proof.

The following corollary is a consequence of Theorems 1 and 2.

Corollary 2. The Markov chain modeling EMAS is ergodic.

Remark 1. It is worth noticing that the Markov chain (25) is ergodic in a strong
sense (not only irreducible, but also aperiodic). Such chains are quite often called
regular (see e.g. [13]).

Because the space of states X is finite we may introduce the probability transi-
tion matrix:

Q = {τ(x)(y)}, x, y ∈ X (26)

where τ is the iEMAS probability transition function — see Eq. (25). The
Markov chain describing the iEMAS dynamics is a sequence of random variables
(or, equivalently, probability distributions) {ξt} ⊂ M(X), t = 0, 1, . . . where ξ0
should be a given initial probability distribution. Of course we have that

ξt+1 = Q · ξt, t = 0, 1, . . . (27)

Remark 2. From Theorems 1 and 2 as well as the ergodic theorem [1] there exists

a strictly positive limit ξ̂ ∈ M(X) (i.e., ξ̂(x) > 0, ∀ x ∈ X) of the sequence
{ξt} as t → +∞. This equilibrium distribution does not depend on the initial
probability distribution ξ0.

14 A. Byrski, R. Schaefer, and M. Smo�lka

8 Conclusions

In the course of this contribution, a formal model for iEMAS has been recalled
and adjusted for a discrete system state space. The space of states and the
transition functions allowing to construct a uniform Markov chain model have
been proposed. This model based on stationary Markov chains allows a better
understanding of the behaviour of the proposed complex systems as well as their
constraints.

One of the main implications of the analysis conducted here is the formulation
and proof draft of Theorem 1 stating that the Markov chain based model of
EMAS is stationary and ergodic. This will lead to an important conclusion stated
in Corollary 1, namely that EMAS possesses the feature of asymptotic guarantee
of success.

Ergodicity of Markov chain modelling iEMAS proves that this hybridization
does not hamper the capabilities of solving optimization problem in general,
the experimental results prove, that for certain problems with complex fitness
function (e.g., evolution of neural network parameters) employing iEMAS is
especially advantegeous.

A full formal proof for EMAS ergodicity has already been formulated and
submitted for publication. In the near future we will follow with preparing a
similar proof of iEMAS ergodicity.

References

1. Billingsley, P.: Probability and Measure. Wiley-Interscience (1995)

2. Byrski, A., Kisiel-Dorohinicki, M.: Immunological selection mechanism in agent-
based evolutionary computation. In: Proc. of IIS: IIPWM 2005 Conference,
Gdansk, Poland. Advances in Soft Computing. Springer (2005)

3. Byrski, A., Kisiel-Dorohinicki, M.: Agent-based evolutionary and immunological
optimization. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2007, Part II. LNCS, vol. 4488, pp. 928–935. Springer, Heidelberg (2007)

4. Byrski, A., Kisiel-Dorohinicki, M., Nawarecki, E.: Agent-Based Evolution of Neu-
ral Network Architecture. In: Hamza, M. (ed.) Proc. of the IASTED Int. Symp.:
Applied Informatics, IASTED/ACTA Press (2002)

5. Byrski, A., Schaefer, R.: Stochastic model of evolutionary and immunological
multi-agent systems: Mutually exclusive actions. Fundamenta Informaticae 95(2-3),
263–285 (2009)

6. Byrski, A., Schaefer, R., Smo�lka, M.: Asymptotic features of parallel agent-based
immunological system. In: Burczyński, T., Ko�lodziej, J., Byrski, A., Carvalho, M.
(eds.) Proc. of 25th European Conference on Modelling and Simulation (2011)

7. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world (MAW) to the prediction system. In: Tokoro, M.
(ed.) Proc. of the 2nd Int. Conf. on Multi-Agent Systems (ICMAS 1996). AAAI
Press (1996)

8. Dasgupta, D., Nino, L.: Immunological Computation Theory and Applications.
Auerbach (2008)

Markov Chain Based Analysis of Agent-Based Immunological System 15

9. Davis, T.E., Principe, J.C.: A simulated annealing like convergence theory for
the simple genetic algorithm. In: Proc. of the Fourth International Conference on
Genetic Algorithms, San Diego, CA, pp. 174–181 (1991)

10. Goldberg, D., Segrest, P.: Finite Markov chain analysis of genetic algorithms. In:
Proceedings of the Second International Conference on Genetic Algorithms on
Genetic Algorithms and their Application, pp. 1–8. L. Erlbaum Associates Inc.,
Hillsdale (1987)

11. Horn, J.: Finite Markov Chain Analysis of Genetic Algorithms with Niching. In: Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, pp. 110–117.
Morgan Kaufmann (1993)

12. Horst, R., Pardalos, P.: Handbook of Global Optimization. Kluwer (1995)
13. Iosifescu, M.: Finite Markov Processes and Their Applications. John Wiley and

Sons (1980)
14. Mahfoud, S.: Finite Markov Chain Models of an Alternative Selection Strategy for

the Genetic Algorithm. Complex Systems 7, 155–170 (1991)
15. Rinnoy Kan, A., Timmer, G.: Stochastic global optimization methods. Mathemat-

ical Programming 39, 27–56 (1987)
16. Rudolph, G.: Massively parallel simulated annealing and its relation to evolutionary

algorithms. Evolutionary Computation 1, 361–383 (1994)
17. Schaefer, R., Byrski, A., Smo�lka, M.: Stochastic model of evolutionary and im-

munological multi-agent systems: Parallel execution of local actions. Fundamenta
Informaticae 95(2-3), 325–348 (2009)

18. Schaefer, R.: Foundations of global genetic optimization. Springer (2007)
19. Suzuki, J.: A Markov Chain Analysis on a Genetic Algorithm. In: Forrest, S. (ed.)

Proc. of the 5th ICGA, pp. 146–154. Morgan Kaufmann (1993)
20. Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press,

Cambridge (1998)
21. Wierzchoń, S.: Function optimization by the immune metaphor. Task

Quaterly 6(3), 1–16 (2002)
22. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation 1(1), 67–82 (1997)

Towards Dynamic Orchestration
of Semantic Web Services

Domenico Redavid1, Stefano Ferilli2, and Floriana Esposito2

1 Artificial Brain Srl - Bari, Italy
redavid@abrain.it

http://www.abrain.it
2 Dipartimento di Informatica, Università degli Studi di Bari, Italy

{ferilli,esposito}@di.uniba.it
http://www.di.uniba.it

Abstract. The Semantic Web together with Web services technologies enable
new scenarios in which the machines use the Web to provide intelligent services
in an autonomus way. The orchestration of Semantic Web Services now can be
defined from an abstract perspective where their formal semantics can be ex-
ploited by software agents to replace human input. This paper tackles the more
difficult use case, automatic composition, providing a complete solution to create
and manage service processes in a semantically interoperable environment.

Keywords: Semantic Web Services, Orchestration, Process generation.

1 Introduction

From the Web services perspective, an orchestration is a declarative specification that
describes a work-flow supporting the execution of a specific business process, opera-
tion, or service [12]. Currently, Web services technologies allow to describe orchestra-
tion, but only at design-time. Semantic Web Services (SWSs) provide an ontological
framework for describing services in a machine-readable format. In [10] a software
agent is proposed that applies logical reasoning on SWS descriptions in order to pro-
vide on-the-fly orchestration capabilities. With the adjective dynamic we denote the ca-
pability of an agent to design and manage in an automatic way an orchestration schema
using the semantic descriptions of available services. The notion of dynamic orchestra-
tion becomes useful in scenarios where there is the need of run-time designing process
integration using semantic descriptions of the involved entities. This work addresses
the most difficult part for the realization of this scenario, i.e., the automatic composi-
tion mechanism. In fact, as will explained in the following, orchestration is mainly a
representation problem that requires the semantic representation of constraints (precon-
ditions, effects, etc.), currently not properly supported by the Semantic Web standard
languages.

This paper is organized in four sections. Section 2 describes what orchestration
means from the Semantic Web perspective, the requirements to realize it and the sup-
port offered by the main SWS languages. Section 3 provides details about the language

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.abrain.it
http://www.di.uniba.it

Towards Dynamic Orchestration of Semantic Web Services 17

that better satisfies those requirements, to be used for the implementation of the com-
position use case. Section 4 describes the entire procedure to obtain a composed service
written in the chosen language, while Section 5 proposes a complete example of the
applied procedure. Finally, conclusions and future works complete the paper.

2 SWS Dynamic Orchestration

2.1 Orchestration and SWS Infrastructure

Orchestration for Web services must necessarily rely on XML-based descriptions. Their
merely syntactical nature [12] represents an unsurmountable obstacle towards the auto-
matic implementation of the operations that are necessary to accomplish dynamicity in
orchestration. Let us, indeed, consider the following scenario:

“Given a request (goal), an agent (dynamic orchestrator) discovers the possible
SWSs able to accomplish the goal. At the same time, it composes the discovered
services in order to have many possible ways to reach the goal. Having different al-
ternatives available, it selects the best one exploring functional and non-functional
properties of the different SWSs. The selection process can be used also during
composition (sub-goal matching). Finally, the same agent manages the correct in-
vocation of the selected services.”

In this paper, dynamic orchestration of SWSs is inteded as carrying out one or more of
the operations mentioned above. This is very different from the design of a work-flow
for the execution of simple Web services [12]. The first step to realize this scenario
is the automatization of the emphasized operations (discovery, composition, selection
and invocation). These operations, amongst others (namely, publishing, deployment and
ontology management) which are not directly involved in our scenario, were already
identified as use cases for the SWS infrastructures into the Usage Activities dimension
described in [3]. In the same work the architectural components (Architecture dimen-
sion) and semantic descriptions (Service Ontologies dimensions) needed to realize the

Fig. 1. Orchestration in the SWS Infrastructure

18 D. Redavid, S. Ferilli, and F. Esposito

Usage Activities have been identified and used to define SWS infrastructures as formed
by these three orthogonal dimensions. The Architecture includes a register, a reasoner,
a matchmaker, a composer, and an invoker. The Service Ontologies dimension specifies
the semantics of:

– Functional capabilities, such as inputs, output, and conditions (pre-conditions, ef-
fects, etc.);

– Non-Functional capabilities, such as category, cost and quality of service;
– Provider-related information, such as company name and address;
– Task or goal-related information and domain knowledge, defining, for instance, the

type of the inputs of the service.

The dynamic SWS orchestration, as defined above, needs to be matched with these
dimensions in order to identify its requirements. The results of this investigation are
summarized in Figure 1. In the architecture dimension, the reasoner is the most impor-
tant component to implement these use cases because it allows the semantic matchmak-
ing of the service properties enabling the automatic composition of the services, and
the automatic choice of the suitable parameters for the invocation of the services. The
service ontologies dimension is necessary because it allows to define the semantics of
functional and non-functional properties owned by atomic and composite services that
participate to the orchestration, as well as the semantics of their control constructs and
data-flow. Ideally, the semantic descriptions of inputs and outputs should exist indepen-
dently from the SWS specification. They should be chosen within existing ontologies
describing a particular domain of knowledge and, at most, they might be refined. Hence,
in order to define atomic SWSs just the semantic representation of conditions over in-
puts and outputs is needed, whereas to define composite SWSs the semantic representa-
tion of control constructs and data-flow is needed as well. Thus, Dynamic orchestration
becomes mainly a representation problem. The SWS frameworks proposed in the liter-
ature provide different support to dynamic orchestration. In the next section we analyze
the formal support offered by the two leading efforts for SWS representation (OWL-S
and WSMO)1.

2.2 WSMO and OWLS Formal Support

The Web Service Modeling Ontology (WSMO) provides a framework for semantic
descriptions of Web services. It consists of four core elements that, properly linked,
make up the semantic description of the service: Ontologies, Goals, Web Services,
and Mediators. The semantics of these entities can be specified using one of the formal
languages defined by the Web Service Modeling Language2 (WSML). WSML includes
several language variants, based on three different logical formalisms: Description Log-
ics [1] (WSML-DL), First-Order Logic [4] (WSML-Full) and Logic Programming [9]

1 Both OWL-S (http://www.w3.org/Submission/OWL-S) and WSMO
(http://www.w3.org/Submission/WSMO) are currently submissions in the Semantic
Web Services Standardization process.

2 Web Service Modeling Language (WSML), W3C Member Submission, 3 June 2005.
http://www.w3.org/Submission/WSML/

http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/WSMO
http://www.w3.org/Submission/WSML/

Towards Dynamic Orchestration of Semantic Web Services 19

Fig. 2. OWL+SWRL vs. WSML formal support

(WSML-Rule and WSML-Flight). Furthermore, it defines the WSML-Core variant
that can be identified as the intersection between a particular Description Logic (a sub-
set of SHIQ) and Horn Logic (without function symbols and equality) [6]. WSML-DL
is, in general, incompatible with both WSML-Flight and WSML-Rule. Therefore, com-
plete reasoning about service descriptions specified using WSML-DL, Rule and Flight
is unfeasible because WSML-Full, the common super-language, is undecidable.

The Web Ontology Language for Services (OWL-S) is an OWL3 ontology describing
three essential aspects of a service (i.e., its advertisement, process model, and protocol
details) using three different modules: Service Profile, Service Model, and Service
Grounding. OWL-S itself is an OWL ontology. OWL, having formal foundations in
Description Logics [1], provides three increasingly expressive sub-languages:

– OWL-Lite, that can be used to model classification hierarchies and simple con-
straints. OWL-Lite has the lowest computational complexity among OWL sub-
languages.

– OWL-DL, used when the maximum decidable expressivity is required. It corre-
sponds to SHOIN (D) DL [8].

– OWL-Full, although allowing for as much expressivity as RDF, is undecidable,
and therefore it could be hardly be used for reasoning.

However, since (as will be pointed out in the following) the decidable fragment of
SWRL [7] represents a reasonable advancement in reconciling Logic Programming
and Description Logics, OWL-S is in a better position than WSMO as it allows to
seamlessly integrate SWRL with OWL.

3 OWL-S is based on OWL 1.0 recently extended with the new recommendation OWL 2, as
reported in http://www.w3.org/TR/owl-overview/

http://www.w3.org/TR/owl-overview/

20 D. Redavid, S. Ferilli, and F. Esposito

2.3 OWL-S and WSMO in SWS Infrastructures

In this section we focus on the usage activities and service ontologies dimensions to
compare and contrast the two proposed main framework: WSMO and OWL-S4. Indeed,
the architecture dimension concerns the components needed to implement the use cases
that do not affect the purposes of this comparison.

With respect to the Usage activities dimension, both WSMO and OWL-S take into
account all the use cases that we have identified for dynamic orchestration. Their only
difference is that WSMO requires to model the service requester features. This implies
the need for tackling the interoperability problems between different WSMO elements
within the framework itself. In order to overcome this issue, different types of medi-
ators have been defined and considered in every usage activity, while OWL-S relies
on ontology matching methods developed within the Semantic Web. This is reflected
also in the Service ontologies dimension, where WSMO proposes a richer service de-
scription model than OWL-S. Consequently, some extra features related to Web service
execution (like goals, mediator and communication protocols) need to be represented
by WSMO model. The shortcoming of this approach is that any WSMO service usage
is limited to its declared goals at design time.

The formal semantics offered by WSMO and OWL-S is fundamental to achieve dy-
namic orchestration. Figure 2 compares the formalisms on which the two frameworks
are based. WSMO seems to be unrelated to the Semantic Web stack of languages and
formalisms, except for its basic level (URI and XML), that guarantees syntactic inter-
operability on the Web. It offers mappings with the RDF syntax and the SHIQ De-
scription Logic which, however, does not cover the whole OWL-DL. WSMO’s global
approach to service ontologies definition can be summarized as follows: it starts with
the definition of a FOL-like language able to represent all the possible aspects of a Web
service, then it defines several sub-languages restricting the original expressive power
to well-known fragments (DL or LP), and (partially) maps such fragments onto current
Semantic Web standard languages. Given the known incompatibility between DL and
LP [2], currently the only implemented reasoning available for WSMO, when dealing
with both rules and ontologies, is restricted to their common subfragment, i.e. DLP.
Hence, as regards the implementation goal, to the best of our knowledge WSMO’s
inference capabilities are significantly reduced with respect to a pure Semantic Web
based counterpart. OWL-S, instead, is based natively in OWL, whose natural extension
towards rules is SWRL. SWRL’s decidable fragment (DL-safe rules [11]) is the largest
possible union of primitives from both DL and LP formalisms rather than their inter-
section. Therefore, from the perspective of two out of three main dimensions of SWS
infrastructures, OWL-S turns out to be better equipped to encompass the requirements
of dynamic orchestration.

4 Semantic Annotations for WSDL and XML Schema (SAWDL) — W3C Recommendation,
http://www.w3.org/TR/sawsdl/ — has not been considered because it does not allows
the process model representation.

http://www.w3.org/TR/sawsdl/

Towards Dynamic Orchestration of Semantic Web Services 21

3 OWL-S Support for Orchestration Dimensions

3.1 OWL-S Framework Details

OWL-S provides a Semantic Web Services framework to formalize an abstract descrip-
tion of a service. Since it is an upper ontology described with OWL, every described
service maps onto an instance of this concept. The upper level Service class is associ-
ated with the following three other classes:

Service Profile. It specifies the functionality of a service. This concept is the top-level
starting point for the customizations of the OWL-S model that supports the retrieval
of suitable services based on their semantic description. It describes the service by
providing several types of information: Human-readable information, Functionali-
ties, Service parameters, Service categories.

Service Model. It exposes to clients how to use the service by detailing the semantic
content of requests, the conditions under which particular outcomes will occur, and,
where necessary, the step-by-step processes leading to those outcomes. It defines
the concept Process, that describes the composition of one or more services in
terms of their constituent processes. A Process can be Atomic (a description of
a non-decomposable service that expects one message and returns one message in
response), Composite (consisting of a set of processes within some control structure
that defines a workflow) or Simple (used as an element of abstraction, i.e., may be
used either to provide a view of a specialized way of using an atomic process, or a
simplified representation of a composite process for reasoning purposes).

Service Grounding. A grounding is a mapping from an abstract to a concrete speci-
fication of those service description elements that are required for interacting with
the service. In general, a grounding indicates a communication protocol, a message
format and other service-specific details.

Since this work aims at the automatic generation of services workflow and at its repre-
sentation as an OWL-S composite process, more details about OWL-S process model
are needed.

3.2 OWL-S Process Model

In this section we report the basic notions about the OWL-S process model with some
considerations on the guidelines that should be followed in order to have useful meta-
data for the Web services to be described. Each OWL-S process is based on an IOPR
(Inputs Outputs Preconditions Result) model. The Inputs represent the information re-
quired for executing the process. The Outputs represent the information the process
returns to the requester. Preconditions are conditions that are imposed over the Inputs
of the process and that must hold for the process to be successfully invoked. Since an
OWL-S process may have several results with corresponding outputs, the Result entity
of the IOPR model provides a means to specify this situation. Each result can be asso-
ciated to a result condition, called inCondition, that specifies when that particular result
can occur. Therefore, an inCondition binds inputs to the corresponding outputs. Such
conditions are assumed to be mutually exclusive, so that only one result can be obtained

22 D. Redavid, S. Ferilli, and F. Esposito

for each possible situation. When an inCondition is satisfied, there are properties asso-
ciated to this event that specify the corresponding output (withOutput property) and,
possibly, the Effects (hasEffect properties) produced by the execution of the process.
Effects are changes in the state of the world. The OWL-S conditions (Preconditions,
inConditions and Effects) can be represented as SWRL logic formulas. Formally, Input
and Output are subclasses of the more general class Parameter, declared in turn as a
subclass of Variable in the SWRL ontology. Every parameter has a type, specified us-
ing a URI. Such a type is needed to refer it to an entity within the domain knowledge
of the service. The type can be either a Class or a Datatype (i.e., a concrete domain
object such as a string, a number, a date and so on) in the domain knowledge. Never-
theless, we argue that providing descriptions of Web service parameters using concrete
datatypes adds very little semantics. For example, consider a service S whose input was
declared as Datatype within a knowledge domain, e.g., a string. This means that the ref-
erence knowledge model of this input parameter is a concrete XML Schema datatype
rather than an entity within a domain ontology. This mismatch becomes critical in auto-
matic composition of services. Indeed, suppose that, during a hypothetical composition
process, one needs to find another service whose output will be fed into S. Then, the
composer must necessarily consider those services that have as output a resource of the
same type as our input parameter, i.e. a string. Thus, any service that returns a string
as an output can be composed with S, which would result in meaningless composi-
tions of completely unrelated services due to the fact that the parameters have been
poorly described form a semantic viewpoint. In the rest of this paper we will consider
only those services having parameters declared as entities in a domain ontology (i.e.,
not as datatype). Furthermore, OWL-S Composite processes (decomposable into other
Atomic or Composite processes) can be specified by means of the following control
constructs offered by the language: Sequence, Split, Split-Join, Any-Order, Choice,
If-Then-Else, Iterate, Repeat-While and Repeat-Until, and AsProcess. One crucial
feature of a composite process is the specification of how its inputs are accepted by
particular sub-processes, and how its various outputs are produced by particular sub-
processes. Structures to specify the Data Flow and the Variable Bindings are needed.
When defining processes using OWL-S, there are many places where the input to one
process component is obtained as one of the outputs of a previous step, short-circuiting
the normal transmission of data from service to client and back. For every different
type of Data Flow a particular Variable Binding is given. Formally, two complemen-
tary conventions to specify Data Flow have been identified: consumer-pull (the source
of a datum is specified at the point where it is used) and producer-push (the source
of a datum is managed by a pseudo-step called Produce). Finally, we remark that a
composite process can be considered as an atomic one using the OWL-S Simple pro-
cess declaration. This allows to treat a Composite service as an Atomic one during the
application of a Composer tool.

4 Automatic Composition for OWL-S

In this section we explain how to obtain OWL-S composite services using Semantic
Web languages and tools. The proposed approach combines them with works presented

Towards Dynamic Orchestration of Semantic Web Services 23

in [14] and [13] endowing semantic interoperability. The procedure can be summarized
as follows: 1) a SWRL representation is extracted from the available set of OWL-S
atomic and simple services using a given encoding; 2) a SWRL composer generates a
plan of rules that encodes the services; 3) the SWRL plan is interpreted to produce the
OWL-S composite service.

4.1 Encoding OWL-S Atomic Processes with SWRL Rules

In this section we explain our approach for transforming process descriptions into sets
of SWRL rules. SWRL [7] extends the set of OWL axioms to include Horn-like rules
[9]. The proposed rules are in the form of an implication between an antecedent (body)
and consequent (head), both consisting of a conjunction of zero or more atoms. The
intended meaning can be read as: “whenever the conditions specified in the antecedent
hold, the conditions specified in the consequent must also hold”. For our purposes, it is
important to highlight two SWRL characteristics: every rule must fulfil a safety condi-
tion (only variables that occur in the antecedent of a rule may occur in its consequent)
and every rule with a conjunctive consequent can be transformed into multiple rules,
each having an atomic consequent [9]. Furthermore, we work exclusively with SWRL
DL-safe rules [11] fragment. Within OWL-S, conditions (logical formulas) can be de-
clared using languages whose standard encoding is in XML, such as SWRL. Body and
head are logical formulas, whereby OWL-S conditions can be identified with the body
or with the head of a SWRL rule. Such conditions are expressed over Input and Output.
Therefore, if the above requirement is met, conditions will be also expressed in terms of
a domain ontology and thus will have the correct level of abstraction. After these con-
siderations, we can describe the guidelines we follow for encoding an OWL-S process
into SWRL.

– For every result of the process there exists an inCondition that expresses the binding
between input variables and the particular result (output or effect) variables.

– Every inCondition related to a particular result will appear in the antecedent of each
resulting rule, whilst the Result will appear in the consequent. An inCondition is
valid if it contains all the variables appearing in the Result.

– If the Result contains an Effect made up of many atoms, the rule will be split into
as many rules as the atoms. Each resulting rule will have the same inCondition as
the antecedent and a single atom as the consequent.

– The Preconditions are conditions that must be true in order to execute the service.
Since these conditions involve only the process Inputs, they will appear in the an-
tecedent of each resulting rule together with inConditions. In this work we consider
all the Preconditions as being always true.

The first guideline is needed because there may be processes in which the binding is
implicit in their OWL-S descriptions. Let us consider, for example, an atomic pro-
cess having a single output. In this case there might be no inCondition binding in-
put and output variables since, being the output the only outcome, such a binding is
obvious. This would prevent our encoding with SWRL rules because the second guide-
line would not be applicable. However, we can add a new inCondition that makes ex-
plicit such implicit binding. For example, suppose we have a service that returns book

24 D. Redavid, S. Ferilli, and F. Esposito

information, whose process is declared having one input (?process:BookName), one
output (?process:BookInfo), and no condition. We should write the corresponding rule
as “kb:BookTitle(?process:BookName) → bibtex:Book(?process:BookInfo)”, but since
variable process:BookInfo does not appear in the antecedent of the rule, this is not a
valid SWRL rule. Since every service produces its output by manipulating the inputs,
we may suppose that a hasTransf predicate exists, always true, that binds every input
to the output. Adding this predicate to the rule antecedent we obtain the implicit inCon-
dition and hence a valid rule. The entities that make up the SWRL rule (OWL Classes,
properties and individuals) can be defined in different ontologies. For this reason we
apply the matching of ontologies referred by the rules in order to enable semantic inter-
operability during composition. In particular, only the OWL classes need to be aligned,
because properties in the rule are relations between considered classes and individuals
are instances of considered classes. The matching procedure, which can be made by ap-
plying one of several learning techniques in the literature [5], produces equivalence as-
sertions between classes. For example, consider the classes books:Book and univ:Book,
where books and univ are the namespaces of two different ontologies books.owl and
univ-bench.owl, respectively, describing the same domain. The result of the alignment
will be an OWL axiom asserting that books:Book and univ:Book are equivalent classes.
This axiom will be added to the knowledge base containing the SWRL rules.

4.2 The Composition Algorithm

Our SWRL composer prototype implements a backward search algorithm for the com-
position task and enhances the algorithm proposed in [14]. It works as follows: it takes
as input a knowledge base containing SWRL rules (with the descriptions of the equiv-
alent OWL classes) and a goal specified as a SWRL atom, and returns every possible
path built by combining the available SWRL rules in order to achieve such a goal. These
rules fulfil the SWRL safety condition. Specifically, the algorithm performs backward
chaining starting from the goal in the same way as Prolog-like reasoners work for query
answering. The difference is that this algorithm works on SWRL DL-safe rules instead
of Horn clauses. This means that, besides the rule base, it takes into account also the
Description Logic ontology the rules refer to. The SWRL rule path found, and conse-
quently the resulting OWL-S service composition, will be valid (in the sense that it will
produce results for the selected goal) only if the SWRL rules in the path are DL-safe. In
other words, DL-safety means that rules are true for individuals that are known, i.e. that
appear in the knowledge base5. The implemented prototype performs DL-safety check.
This guarantees that the application of rules is grounded in the ABox and, consequently,
that the services embodying those rules can be executed.

4.3 SWRL Plan Analysis

The set of paths obtained as a result of the composer can be considered as a SWRL rules
plan (referred to as plan in the following) representing all possible combinable OWL-S

5 It might not be the case in general, given the Open World Assumption holding in Description
Logics, see [11] and Chapter 2 in [1].

Towards Dynamic Orchestration of Semantic Web Services 25

Atomic processes that lead to the intended result (the goal). According to the OWL-S
specification for a composed process and its syntax, the composition of atomic services
obtained through the SWRL rule composer can be represented by means of an OWL-
S composite service. In this section we will analyze a possible encoding. An OWL-S
composed process can be considered as a tree whose nonterminal nodes are labeled
with control constructs, each of which has children that are specified through the OWL
property components. The leaves of the tree are invocations of the processes mentioned
as instances of the OWL class Perform, a class that refers to the process to be performed.
Bearing in mind the characteristics of the plan built by means of the method specified
in Section 4.1, we identify the OWL-S control constructs to be used to implement the
plan by applying the guidelines reported in Table 1. Currently, the OWL-S specification
does not completely specify Iteration and its dependent constructs (Repeat-While and
Repeat- Until), nor how the asProcess construct could be used. For this reason they are
not discussed in this paper, but they will be considered in future work.

4.4 Encoding the SWRL Plan with OWL-S Constructs

For our purposes, each rule is represented in the composer as an object called Rulebean,
that has various features and information that could be helpful to the composition, and
specifically:

– The atoms in the declared precondition of the rule;
– The URI of the atomic process the rule refers to;
– The number of atoms in which the grafted rules have correspondence;
– A list containing pointers to the other Rulebeans with which it is linked.

The information about the atoms of the preconditions allows to check the presence of IF
conditions that could lead to identify a situation that needs an If-Then-Else construct.
The URI of the atomic process referred by the rule is needed because the leaves of the
constructs tree must instantiate the processes to be performed. Finally, since each rule
can be linked to other rules, it is necessary to store both their quantity and a pointer to
the concatenated rules. In this way each Rulebean carries inside the entire underlying
structure. This structure is implemented as a tree of lists, where each list contains the
Rulebeans that are grafted on the same atom. Now let’s show in detail the steps needed
to encode a plan with the OWL-S control constructs. Referring to Figure 4, the proce-
dure involves the application of three subsequent steps depending on the number n of
grafted rules:

Fig. 3. The OWL-S control constructs in the plan

26 D. Redavid, S. Ferilli, and F. Esposito

Table 1. OWL-S Control Constructs identified in the plan

Sequence. Represents the situation in which the rules are geared to each other sequentially, i.e. the head of a rule corresponds
to an atom in the body of another one. Since this indicates a sequential execution, the Sequence construct will be used.
According to the specification, Sequence is a construct whose components are executed in a given order and the result of the
last element is used as the result of the whole sequence (Fig. 3 a)).
Split and Split-Join. Represents the situation where two or more rules with different head atoms are grafted directly into
two or more atoms in the body of a particular rule. In this circumstance there is a branch that is evaluated and encoded
with a Slit or Split-Join construct. According to the specifications, Split-Join is a construct whose components are executed
simultaneously, i.e. they run concurrently and with a certain level of synchronization (Split is the particular case where
synchronization is unnecessary). The condition for using this construct requires that its components can overlap in the
execution, i.e. they are all different (Fig. 3 b)).
Choice. Represents the situation where two or more rules, with the same head atoms, are grafted directly into one of the
atoms in the body of a particular rule. In this circumstance there is a branch that is evaluated and encoded with the Choice
construct. According to the specifications, Choice is a construct whose components are part of a set from which any element
can be called for execution. This construct is used because the results from the rules set can easily overlap, no matter which
component is going to be run because the results are always of the same type (Fig. 3 c)).
If-Then-Else. It could represent the situation where the body of a rule are the atoms identifying a precondition. In this case,
the service that identifies the rule to be properly executed needs that its precondition be true. In this circumstance, therefore,
the precondition was extracted and used as a condition in the If-Then-Else construct. According to the specifications, If-
Then-Else construct is divided into three parts: the ’then’ part, the ’else’ part and the ’condition’ part. The semantics behind
this construct is to be understood as: “if the ’condition’ is satisfied, then run the ’then’ part, otherwise run the ’else’ part.”
(Fig. 3 d)).
Any-Order. Represents a situation similar to the Split-Join, but this particular case covers those circumstances where control
constructs or processes are present multiple times in the structure of the plan, and it is important that their execution does
not overlap in order to prevent a process break. This type of situation can be resolved through the use of the Any-Order
construct because its components are all performed in a certain order but never concurrently (Fig. 3 e)).

1. Search all Rulebeans grafted with a number of rules equal to zero (n = 0) (Figure
4 a)).

a. Store therein an object that represents the “leaf”, i.e. an executable process.
2. Search all Rulebeans grafted with a number of rules equal to one (n = 1) (Figure 4

b).
a. Check the engaged list:

i. If there is only one Rulebean, the node will be of type “Sequence”;
ii. If there are multiple Rulebeans, the node will be of type “Choice”;

b. Store the object representing the created structure in the Rulebean.
3. Search all Rulebeans grafted with a number of rules greater than one (n ≥ 2)

(Figure 4 c).
a. For each grafted list follow the steps in 2.a;
b. Make the following checks on the structure:

i. If there are repeated Rulebeans add a node of type “Any-Order”;
ii. If there are no repeated Rulebeans add a node of type “Split-Join”;

c. Store the object representing the created structure in the Rulebean.

Since the If-Then-Else construct overlaps with the constructs assigned during this pro-
cedure, it is identified in another way. During the creation of a Rulebean, a check is
performed to verify if there are atoms in the body of the rule labeled as belonging to a
precondition. In such a case, the Rulebean will be identified as the ‘Then’ part of the
construct, and the atoms of the precondition will form the ’If’ condition. The ‘Else’
part will be identified as the complementary path, if any (for the “Sequence” construct
it does not exist, of course). Finally, the data flow is implemented in accordance with
the consumer-pull method, i.e. the binding of variables is held exactly at the point in
which it occurs.

Towards Dynamic Orchestration of Semantic Web Services 27

Table 2. OWL-S Atomic services test set

Ws NAME TEXTUAL DESCRIPTION INPUTS OUTPUTS
Service-10 This service returns the information of a book whose title best

matches the given string
books:Title books:Book

Service-12 A book search engine books:Title books:Book
Service-15 This service informs about a person who works as co-publisher of a

certain book
books:Book books:Person

Service-28 This service returns the author of the given novel books:Novel books:Person
Service-9 This service returns the price of a book; person is an optional input books:Person;

books:Book
concept:Price

Service-37 This service returns the name of books given the publication number univ:Publication univ:Book

5 Experimental Analysis

In this section we present an example that shows the applicability of our method. The
considered services were chosen from the OWLS-TC dataset 6.

5.1 SWRL Plan Generation

Let us consider the subset of atomic services in Table 2. To obtain SWRL rules that
satisfy the requirements described in Section 4.1, we have modified the atomic services
as follows:

– For every parameter having a datatype as type, we create a class in the domain
ontology having a datatype property with the corresponding datatype as range. The
considered dataset did not require the application of this step.

– For each service, we create two logical formulas. The former consists of unary
atoms having the parameterType URI as a predicate and the input as an argument,
for each input. The latter consists of a unary atom having the parameterType URI
as a predicate and the output as an argument. We set these two formulas as the
antecedent and the consequent of a new SWRL rule, respectively.

Fig. 4. The different types of grafted SWRL rules in the plan

6 OWL-S service retrieval test collection,
http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

28 D. Redavid, S. Ferilli, and F. Esposito

Fig. 5. The SWRL plan obtained by applying the composer to the services of Table 2

– Since every service produces its output by manipulating the inputs, we can sup-
pose the existence of a hasTransf predicate, always true, that binds every input to
the output, which guarantees the SWRL safety condition. Then we add hasTransf
predicates to the antecedent of the rule built in the previous step. With this modifi-
cation the antecedent can be identified with a new inCondition.

The SWRL rule set obtained in this way is given as input to the composer described in
Section 4.2 and the resulting composition is shown in Figure 5.

5.2 OWL-S Composite Service Generation

After obtaining the composition plan, we apply the procedure described in Section 4.4.
As a result we obtain the OWL-S constructs tree of Figure 6. In practice, we start
searching Rulebeans grafted with a number of rules equal to zero, finding Service-10,
Service-12, Service-37 (books:Book and univ:Book are equivalent classes) and Service-
28. These will be tree leaves. We go on searching Rulebeans grafted with a number
of rules equal to one, finding Service-15. It has two rulebeans grafted on the same
Atom books:Book, thus we use a “Choice” construct. To link the obtained structure
with Service-15 (another tree leaf) we use the “Sequence” construct, naming this struc-
ture C1. We continue serching Rulebeans grafted with a number of rules greater than
one, finding Service-9. It has Service-10, Service-12 and Service-37 grafted on Atom
books:Book, and Service-28 (another tree leaf) and C1 grafted on Atom books:Person.
Both pairs are linked with a “Choice” construct, and we call them C2 and C3, respec-
tively. Since C2 and C3 contain repeated Rulebeans (the “Choice” over Service-10,

Towards Dynamic Orchestration of Semantic Web Services 29

Fig. 6. The tree construct of the obtained composition

Service-12 and Service-37), we model this situation with the “Any-Order” construct
rather than with the “Split-Join”. The depicted “If-Then-Else” construct is obtained
by applying the following consideration. Suppose that the precondition of Service-28
states that, in order to execute the service, the input must be necessarily a books:Novel
(an OWL subclass of books:Book). Then, we can use this assertion as the ‘If’ condition,
the execution of the service as the ‘Then’ part, and the non-execution of the service as
the ‘Else’ part.

6 Conclusions and Future Work

The SWS frameworks proposed in the literature provide different support to dynamic
orchestration. In the first part of this work we conducted a comparative study to elicit
differences and analogies among them, and remarked the capabilities necessary to en-
able dynamic orchestration: the needed requirements and the suitability of OWL-S and
WSMO to support such requirements. As shown in Section 2, the set of requirements is
implied by means of the use cases, namely automatic discovery, selection, composition
and invocation, required to make the SWS orchestration dynamic. The formal language
underlying the SWS frameworks is the key for an effective realization of these use cases.
For this reason, we described the formal support enabling reasoning on the semantic de-
scriptions of the services offered by WSMO and OWL-S (based on OWL+SWRL and
WSML, respectively). Then, we compared the formalisms underlying OWL+SWRL
and WSML from the point of view of the expressive power actually exploitable for rea-
soning on service descriptions. As a result of this comparison, OWL-S turns out to be
a more suitable candidate for dynamic orchestration. Automatic composition of SWSs
is a more complex process to achieve using only tools built on Description Logics [1].
In Section 3 we presented a complete composition method for OWL-S services using
Semantic Web languages and tools and working in semantically interoperable environ-
ments. The applied procedure can be summarized as follows: 1) The set of OWL-S
atomic and simple (i.e., composite) services are represented by means of SWRL rules;
2) The SWRL composer is applied on them obtaining a plan of SWRL rules; 3) the
SWRL plan is interpreted to produce the OWL-S composite service using OWL-S con-
trol constructs. The constructs identified in this way are used to build the OWL-S control

30 D. Redavid, S. Ferilli, and F. Esposito

construct tree that is directly serializable using the syntax of the language. As a future
work, it is important to find ways to manage the remaining constructs (Iteration) and
improve the composer in order to reuse internal parts of composite processes during
composition. Another aspect that deserves attention concerns a Semantic Web intrin-
sic issue, i.e. the absence of primitives for retracting knowledge due to the monotonic
nature of DL knowledge bases. Finally, the implementation of software agents able to
manage dynamic SWS orchestration by considering low-level details as, for instance,
Quality of Service, Service Level Agreement and the coordination for the concrete Web
services Invocation would allows a large-scale use. As in previous work, the emphasis
will be placed on the exclusive use of technologies developed for the Semantic Web.

Acknowledgments. Special thanks to Luigi Iannone, Terry R. Payne and Ignazio
Palmisano for working with us in the definition and refinement of the paper themes.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook. Cambridge University Press (2003)

2. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artifi-
cial Intelligence 82(1-2), 353–367 (1996)

3. Cabral, L., Domingue, J., Motta, E., Payne, T.R., Hakimpour, F.: Approaches to Semantic
Web Services: an Overview and Comparisons. In: Bussler, C., Davies, J., Fensel, D., Studer,
R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 225–239. Springer, Heidelberg (2004)

4. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York (1972)
5. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
6. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic

programs with description logic. In: Proceedings of the 12th International Conference on
World Wide Web, pp. 48–57. ACM Press, New York (2003)

7. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL rules: A proposal and
prototype implementation. J. of Web Semantics 3(1), 23–40 (2005)

8. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the
making of a Web Ontology Language. J. Web Sem. 1(1), 7–26 (2003)

9. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)
10. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Sys-

tems 16(2), 46–53 (2001)
11. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with rules. Journal of Web

Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)
12. Peltz, C.: Web Services Orchestration and Choreography. Computer 36(10), 46–52 (2003)
13. Redavid, D., Ferilli, S., Esposito, F.: SWRL Rules Plan Encoding with OWL-S Composite

Services. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011.
LNCS, vol. 6804, pp. 476–482. Springer, Heidelberg (2011)

14. Redavid, D., Iannone, L., Payne, T.R., Semeraro, G.: OWL-S Atomic Services Composition
with SWRL Rules. In: An, A., Matwin, S., Raś, Z.W., Śl ¸ezak, D. (eds.) ISMIS 2008. LNCS
(LNAI), vol. 4994, pp. 605–611. Springer, Heidelberg (2008)

Agent-Based Framework Facilitating
Component-Based Implementation of Distributed

Computational Intelligence Systems

Kamil Piętak and Marek Kisiel-Dorohinicki

AGH University of Science and Technology, Kraków, Poland
{kpietak,doroh}@agh.edu.pl

Abstract. The paper presents a framework particularly suitable for the
design of a certain class of distributed computational intelligence systems
based on the agent paradigm. A starting point constitutes a formalism
utilizing the notions of algorithms and dependencies, which allows for the
formulation of the system functional integrity conditions. Next, techno-
logical assumptions of AgE framework are presented and a direct map-
ping between the formalism and the implementation structure of the
framework is discussed. The approach assumes that component tech-
niques facilitate the realization of the particular system in such a way
that algorithm dependencies are represented as contracts. These allow
to support the verification of the system’s functional integrity. Selected
technical aspects of the framework design illustrate the considerations of
the paper.

1 Introduction

Agent technology aims to provide concepts and tools for the development of com-
plex, decentralized systems [14]. Of course a multi-agent system may be imple-
mented without any structures or services specific to agents. This often happens
for simulation systems, where the introduction of agents facilitates modeling of
complex phenomena – natural, social, etc. In such cases agents constitute build-
ing blocks of the model, which may or may not be implemented with the use
of agent technology. But since the key concept in multi-agent systems consti-
tute intelligent interactions, agents must be able to cooperate with one another,
which requires adequate infrastructure addressing interoperability issues [2].

The paper focuses on a specific class of multi-agent systems, which use com-
putational intelligence paradigms – particularly hybrid techniques based on the
concept of decentralized evolutionary computation [9]. These systems consist of
a large number of agents performing similar tasks, but working with different
structures and mechanisms. Thus from the software engineering perspective it
may be said that the system is decomposed into particular agents, but a single
agent implementation is too complex to serve as an assembly unit. In fact agents
may be further decomposed into functional parts (components), which are re-
placeable, as long as they are compatible to one another, even when used by
different agents (this ensures agents interoperability at implementation level).

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 31–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 K. Piętak and M. Kisiel-Dorohinicki

As it was discussed in [2], both agents and components can be considered in
software development as assembly units, which implement in various ways the
concept of responsibility delegation. However, agent-based technology focuses
more on executing complex tasks in a community to achieve defined goals and,
on the other side, component-based technology is rather aimed at reusability and
integrity aspects of software development [10]. Indeed, it seems that component-
oriented approach can be also successfully exploited in agent-based systems for
assembling parts of agents implementation and checking the integrity of the
system.

To facilitate the design of the systems under consideration a dedicated formal-
ism was proposed in [4], and further developed in [11], demonstrating how the
system functional integrity conditions may be supported by component technol-
ogy. The approach is based on the notion of algorithms used by agents for per-
forming actions, and dependency relation imposing the existence of algorithms
required by actions, as well as other algorithms. Agents and algorithms are im-
plemented and provided to AgE framework as components, which supports the
assembly of particular systems at run time based on the provided configuration.
The goal of this paper is to show how the relations between agents and algo-
rithms are implemented as component contracts handled by the configuration
engine of AgE framework, which is also responsible for the verification of the
system functional integrity.

The paper begins with the review of a formalism, which allows for the formu-
lation of functional integrity conditions of the system. The design issues of AgE
framework, as well as the mapping between the formalism and the implemen-
tation structure are described in the next sections. Finally, the assumptions of
AgE framework component model are introduced, followed by the presentation
of selected realization issues using component techniques.

2 The Model of a Computing MAS

The model proposed in [4] defines an agent as a tuple:

AG � ag = 〈id, tp, dat1, . . . , datn〉 (1)

where id ∈ ID is a unique identifier of an agent1, tp ∈ TP denotes the type
of an agent (depending on its type, an agent is equipped with specific data
and may perform specific actions), and dati ∈ DATi, i = 1, . . . , n represents
problem-dependent data (knowledge) gathered by an agent.

According to [4] a multi-agent system includes agents, actions to be executed
by the agents, and the environment represented by some common data, which
may acquired by the agents. This definition must be extended here with a set
available algorithms:

AS � as = 〈Ag,Act, Alg, qr1, . . . , qrm〉 (2)
1 For each element of the model its domain, which is a finite set of possible values, is

denoted by the same symbolic name in upper case, e.g. ID is the set of all possible
agent identifiers.

Agent-Based Framework Facilitating Component-Based Implementation 33

where Ag ⊂ AG is the set of agents of as, Act ⊂ ACT describes actions that may
be performed by the agents of as, Alg ⊂ ALG is the set of algorithms available
in as, and qri ∈ QRi, i = 1, . . . ,m denote queries providing data (knowledge)
available for all agents in as.

In the space of types, a subsumption relation “�” ⊂ TP × TP is defined,
introducing a partial order in TP. In terms of this relation, A � B : A,B ∈ TP
means that A is a subtype of B.

Agents may perform actions in order to change the state of the system. An
action is defined as the following tuple (Hoare’s triple equivalent [13]):

ACT � act = 〈tp, pre, post〉 (3)

where tp ∈ TP denotes the type of agents allowed to execute the action (only
agents of the type tp and descendant types – according to the “�” relation –
may perform the action); pre ∈ X is the state of the system which allows for
performing action act; post ∈ X × X is the relation between the state of the
system before and after performing action act.

Actions may depend on algorithms, i.e. in order to perform an action, one or
more algorithms may be needed. This dependency is described by the following
relation:

“�” ⊂ ACT ×ALG (4)

For algorithms there is also a subsumption relation “�” defined, which states
whether one algorithm is a specialization of another:

“�” ⊂ ALG×ALG (5)

Relation “�” introduces a partial order in ALG (it is reflexive, transitive and
antisymmetric), i.e. if A1 � A then A1 can be used in place of A when needed.

When an action is about to be performed, a subset of algorithms is selected
from Alg according to the � relation and any further restrictions described
below. These algorithms are said to be “available” in the environment for the
execution of a particular action. For example, if action act depends on algorithm
A, and in a particular system ∃! subA ∈ Alg : subA � A, then when the action
is executed, it uses algorithm subA.

Further dependencies between algorithms used in the system may be described
using the following relation:

“�” ⊂ ALG×ALG (6)

If algorithm A depends on algorithm B (A � B) it means that B or its subtype
is needed for A to function properly, and must be available in the system. Rela-
tion “�” allows for defining families of algorithms that are designed to be used
together (i.e. if one of them is selected by the environment for the execution of a
particular action, then other algorithms from the same family are also selected).

The proposed formalism allows to formulate the conditions of functional in-
tegrity of the whole system [11]. The notion of functional integrity may be un-
derstood as the ability to fulfill functional requirements in a complex system.

34 K. Piętak and M. Kisiel-Dorohinicki

According to assumptions of the discussed model the system is functionally in-
tegral when the following coherency conditions are true for all agent subsystems
AS � as = 〈Ag,Act, Alg, qr1, . . . , qrm〉:

∀ act ∈ Act [(∃ alg ∈ ALG : act � alg) ⇒ (∃ algc ∈ Alg : algc � alg)] (7)
∀ alg1 ∈ Alg [(∃ alg2 ∈ ALG : alg1 � alg2) ⇒ (∃ algg ∈ Alg : algg � alg2)] (8)

i.e. for each action that may be performed in the agent system (act ∈ Act), if this
action depends on algorithm alg, then an algorithm algc subsuming alg must
be available in the system (i.e. must be present in the Alg set of the system).
As was mentioned before, the subsumption relation “�” is a partial order, and
therefore algc can equal alg because alg � alg. Similarly, for each algorithm
alg1 that is available in the AS, if alg1 depends on alg2, then an algorithm
subsuming alg2 (in particular, alg2 itself) must be also available in the agent
system (∃ algg ∈ Alg).

The case of modeling an evolutionary multi-agent system [8] concerning its
functional integrity conditions is discussed as an illustration in [11].

3 AgE Computing Framework

The model presented is the base for the design of the core of the computing
framework AgE2, which is developed as an open-source project at the Intelli-
gent Information Systems Group of AGH-UST. The framework is designed to
support the construction of a wide range of computational systems build accord-
ing to agent paradigm, with special attention paid to collective computational
systems [4]. The goal of the project is to provide a platform allowing for flex-
ible (re)configuration of different system variants to meet the requirements of
particular problems and solving techniques.

The framework assumes that a particular system is constructed by providing
its configuration (e.g. in XML format or generated by some designer tool—see fig-
ure 1). The configuration specifies the system structure and required parameters.
After start-up, the configuration is distributed amongst available nodes, where
the required components are instantiated and initialized. If needed, additional
services such as name, monitoring, communication and topology services are also
run on selected nodes to manage and monitor the computation. A computation
is logically decomposed into agents which are responsible for performing parts
of or the whole algorithm. Agents co-operate in the local environment provided
by so-called workplaces, which are distributed amongst many nodes (figure 2)
according to the algorithm decomposition.

Each agent has an unique address which identifies it across the whole system.
The address is registered in a name service which tracks information about cur-
rent agent locations. With the use of the environment, agents can communicate
with their neighbor agents via messages or queries or request them to perform
specific actions.
2 http://age.iisg.agh.edu.pl/

http://age.iisg.agh.edu.pl/

Agent-Based Framework Facilitating Component-Based Implementation 35

User Computation
configuration

Computation
result

System based on jAgE platform

Node 3

Computing agents

Node 1

Computing agents

Node 2

Computing agents

Fig. 1. AgE functional schema

The platform introduces two types of agents: thread-based and simple. The
former are realized as separate threads so that the parallel processing is managed
by Java Virtual Machine (similarly to eg. Jade platform3). Such agents can
communicate and interact with neighbors via asynchronous messages.

However, a large number of such agents would significantly decrease the per-
formance and efficiency of a computation because of frequent context switching,
therefore the notion of simple agent was introduced. The concept of simple agent
is realized as event-driven simulation, which allows pseudo-parallel execution of
agents’ tasks. Two phases are distinguished:

– Execution of tasks related to computation semantics in the step() method.
While doing so, they can register in the workplace various events, which may
indicate actions to be performed or messages to be sent.

– Processing of events registered in an event queue performed by the work-
place.

The described idea of agents processing ensures that during the execution of
computational tasks of agents co-existing in the same workplace, the environ-
ment remains unmodified, thus the tasks may be carried out in any order. From
these agents perspective, they are processed in parallel. All changes to the agent
structure are made by workplaces during processing of the events indicating ac-
tions such as addition of new agent, migration of an agent, killing an already
existing agent, etc. Their results are observable for agents while performing the
next step.

Each agent exists in an environment, defined by the workplace, which pro-
vides a context of agent’s processing. This means that the environment is re-
sponsible for communication between agents and for responding to queries from
3 http://jade.tilab.com/

http://jade.tilab.com/

36 K. Piętak and M. Kisiel-Dorohinicki

Workplace

Node

Agent Agent Agent

Workplace

Node

Agent Agent Agent

Workplace

Node

Agent Agent Agent

Fig. 2. Workplaces and agents

agents. What is more, according to the presented concept, the environment deter-
mines the types of actions which are available for simple agents. It also provides
concrete implementations of these actions and thereby supplies and influences
agents’ execution. The actions can be executed via workplaces methods or exter-
nal strategies specified in the input configuration. Actions realize the principle
of goal-level communication [2], because agents only let the environment know
what they expect to be done but they do not know how it is done. The decision
of how to execute the action is made by the workplace which resolves proper
action implementation according to service locator design pattern [1].

4 AgE Agents Implementation Structure

Following the assumptions of the model, AgE agents are not atomic assembly
units, but they are further decomposed into functional units (algorithms and
actions) according to strategy design pattern [5]. Strategies represent specific
operators, which may be exchanged without intruding agents’ core implemen-
tation. Their instances may be shared between agents as they provide various
services to agents or other strategies.

Both strategies and agents can have named properties, which represent their
features. These can be referenced during run-time by their names in order to
access, modify or even monitor their values. Properties may be accessed via
methods or fields. In the former case the accessor method has to be annotated
with the use of @PropertyGetter tag and, if the property may be modified,

Agent-Based Framework Facilitating Component-Based Implementation 37

the mutator method has to be annotated with corresponding @PropertySetter
tag. In case of field-based properties, only the field has to be annotated with
@PropertyField tag—this type of properties is always modifiable. For each class
a list of its annotated properties may be retrieved and each named property of
its instance may be accessed in a uniform way. The properties may be of simple
as well as reference types. The mechanism of properties was described in more
detail in [4].

Agents and strategies should be loosely coupled. First of all it means that
their dependencies should be realized through well-defined interfaces and not by
concrete implementations. This not only hides implementation details but also
allows for changing dependencies without recompilation of involved classes. This
is essential in terms of flexible component assembly described in the next sec-
tions. Moreover, agents and strategies can have simple parameters, which may
be used to tune the algorithms for specific problems. Both dependencies and pa-
rameter values may be set by the framework based on the supplied configuration
with the use of properties.

Actions are implemented and executed as methods of external strategies classes
or the workplace class, which represents the agent’s environment. During the
execution of these methods other strategies can be used to perform different
activities within the action. Therefore, the dependency (described by the rela-
tion “�”) between actions and algorithms is represented in AgE as a reference
property to the required algorithm, preceded by @Inject annotation.

Dependency between algorithms introduced in the model maps to dependency
between strategies. In different cases this relation can be represented in two ways
in AgE. Let us consider dependent algorithms A and B (A � B) represented
in AgE by Java classes A and B. In the first case strategy A directly uses strat-
egy B and the dependency relation is realized in the same way that dependency
between actions and algorithms, i.e. by using a reference property marked with
@Inject annotation. In the next case, strategy A does not directly use B, but B
is required for proper processing of A. For example, a binary mutation strategy
needs a binary initialization strategy which generates the proper type of solu-
tions, although the initialization is not directly used by mutation. To define this
kind of dependency, class A must be preceded by annotation @Require(B.class).
An example code of a strategy with dependencies is shown below:

@Require(C.class)
public class A {

@Inject
private B b;

}

Strategy A directly uses strategy B and requires strategy C for proper process-
ing. Therefore it defines two dependencies, the first by an annotated reference
property (for strategy B) and the second by adding @Require annotation to class
definition (for strategy C).

38 K. Piętak and M. Kisiel-Dorohinicki

5 Component Techniques for AgE Framework

AgE was designed with the emphasis on achieving the main advantages of
component-oriented techniques, i.e. independent development, reusability and
elementary contracts [13]. Its realization is vastly supported by dependency in-
jection pattern [12], an implementation of the inversion of control paradigm pop-
ularized by Martin Fowler4, and by utilizing the freely available PicoContainer
framework5.

The main composable part managed by the framework is a component rep-
resented by a single class with additional information about its capabilities and
requirements. A system or a part of it is assembled using IoC container6 based
on the run-time configuration, which describes inter alia bindings between com-
ponents. In run-time environment components are instantiated as objects and
in this shape they realize their responsibilities.

Component Descriptor

A component is described by a component descriptor, which contains the com-
ponent identifier (i.e. a component class name) and details about the provided
interfaces, dependencies and properties. It is read from the declarative descrip-
tion and allows for further component processing in the run-time environment.
Specifying the descriptor as an abstract notion, the component model is not
bound to a specific implementation of the component description. One can spec-
ify component using Java annotations (for example annotations proposed in
JSR-330 [7]), applying conventions (such as Java Beans [6]) or even by providing
external file in a textual format such as XML.

Provided interfaces are defined as interfaces realized by a component class.
It is assumed that each interface defines a set of public, well-documented meth-
ods, which constitute the functionality offered by the component. Component
dependencies are expressed as a set of named dependencies to required inter-
faces. In the run-time environment a dependency is realized as a reference to
the component instance which provides a required interface. Also, one-to-many
dependencies are supported—they are implemented as a reference to a collection
of dependant instances. Declared dependencies are injected while creating a new
component instance by an IoC container.

The last part of the component description is a declaration of component
properties. The properties give an opportunity to provide context information to
the component instance. They are realized as object attributes of simple types
such as int, double, or String. The list of the available property types is not fixed
and can be extended by providing a simple type interpreter to the framework.

4 http://martinfowler.com/articles/injection.html
5 http://www.picocontainer.org
6 Inversion-of-Control container that realizes dependency injection pattern.

http://martinfowler.com/articles/injection.html
http://www.picocontainer.org

Agent-Based Framework Facilitating Component-Based Implementation 39

Runtime Configuration

A run-time configuration is represented as a set of component definitions. Each
definition can be perceived as a recipe for a component instantiation. The con-
figuration contains definitions of components used in a particular system and
specifies bindings between components. To gain more control over the process
of the system composition, the context introduces a new name space for com-
ponents, based on textual identifiers (called component names). This gives a
possibility to define many different configurations for one component, simply
by specifying component definitions with different names, but attached to one
component class.

The bindings defined in the component definition tell that a given dependency
declaration is bound to a concrete component, which offers the required interface.
The bindings may be specified explicitly and implicitly. In the first option, a
component dependency is assigned to a concrete component name, defined within
the same context. On the other side, implicit bindings are not expressed in the
configuration. While instantiating component the framework tries to resolve the
dependency by searching a component instance, which offers an interface defined
in the dependency declaration.

Finally the component definition may also specify initial values for component
properties.

The configuration can be created based on external sources such as XML files,
container API, or dedicated domain specific languages.

Verification Mechanism

The configuration expressed as a set of component definitions gives the container
a full knowledge of all components that can be instantiated. This knowledge can
be further used to perform a priori verification before any object is produced be
the container. Otherwise, a system may run normally until the moment of using
an incorrectly configured component. Such late error detection may have serious
consequences for the system.

Concerning component dependencies, there are different types of problems
that should be detected:

– lack of component dependency occurs when the component dependency is
required but it is not available for the container,

– inconsistent type of component dependency occurs when the required depen-
dency type is different in component descriptor and in the binding; this may
occur when the container configuration is provided in external files where it
is impossible to check this in compile-time,

– cyclic dependency occurs when a component is dependent on another com-
ponent, which is dependent on the first one and both of them cannot be
created without each other.

All these cases can be checked by the analysis of component definitions and
relevant component descriptors in the context of the current environment (i.e.

40 K. Piętak and M. Kisiel-Dorohinicki

IoC container). For example, the verification mechanism may check if a binding
defined in a component definition, points to a component with type compliant
with the type defined in the component descriptor.

The verification mechanism ensures the functional integrity of the system
as defined by (7) and (8)—all bindings are processed in order to check if all
required components are available in the class-path, no conflicts occur between
components, and all requirements are fulfilled.

6 Selected Realization Aspects of Component
Dependencies and Their Verification

As it was mentioned before, the proposed solution is based on PicoContainer
framework as it may be easily customized and extended. It provides an im-
plementation of IoC container (DefaultPicoContainer), which is a registry of
components and is responsible for providing component instances. The internal
structure of PicoContainer is modular and assumes that a request for retrieving
a component instance is delegated to the appropriate ComponentAdapter object,
which is associated with each single type of component.

Since AgE operates on two types of logical units: stateful (agents) and stateless
(algorithms), both may be provided to the framework as components. Adapters
can be decorated in order to add new features, such as instance caching, which
is required for providing shared instances of stateless components. By imple-
menting a custom ComponentAdapter one can modify and adjust the process
of building component instances. This allows AgE components to define named
properties (as described in the previous section), which serve as dependencies
specification.

Initialization of the Component Framework

The process of initialization of the component framework is divided into three
main phases.

1. An input configuration is read from XML file with well-defined structure7

and further transformed into the object model of runtime configuration com-
prised of ComponentDefinition instances. Each definition describes a con-
figuration of a single component and contains data such as component name,
type (which is the name of a class) and scope, which is to determine if a new
component is to be created for each request (prototype scope) or only once
during the first request (singleton scope). The definition also specifies con-
structor arguments, as well as property initializers, responsible for providing
information on how to set reference or simple values for particular compo-
nent properties. Moreover, the definition object contains createInstance
method, which is used to instantiate a described component with initialized
dependencies (this process is described in more detail in the next subsection).

7 http://agh.iisg.agh.edu.pl/age-2.3.xsd

http://agh.iisg.agh.edu.pl/age-2.3.xsd

Agent-Based Framework Facilitating Component-Based Implementation 41

+getComponent(String) : Object
+getComponent(Class) : Object
+addAdapter(CoreComponentAdapter) : void

PicoContainer

+getInstance(String) : Object
+getInstance(Class) : Object
+getComponentInstance() : Object

CoreComponentAdapter

+createInstance() : Object

ComponentDefinition

+getValue() : Object

PropertyInitializer

+getValue(IComponentInstanceProvider) : Object

<<Interface>>
IValueProvider

0..*
0..*

as constructor arguments <<use>>

IComponentInstanceProvider

Fig. 3. Dependency Injection in AgE framework

2. An instance of IoC container is created and initialized with component defi-
nitions. For each definition a dedicated adapter (CoreComponentAdapter) is
created and registered in a container as shown in figure 3. Also, the adapter
implements IComponentInstanceProvider interface, which defines methods
for explicit retrieving instances of components by name or type.

3. The validation of the given configuration is performed. It allows for detecting
errors such as unresolved dependencies, non-existent components or incorrect
property definitions before any component instance is created. The mecha-
nism extends PicoContainer concept of validation based on visitor design
pattern [5]. As shown in figure 4 the proposed solution provides Verifier
class that extends VerifingVisitor defined by PicoContainer framework.
An instance of Verifier traverses every component definition registered in
the IoC Container via CoreComponentAdapter. While visiting the definition,
it verifies the dependencies according to the ComponentDescriptor instance
relevant to the component class. Any errors are collected and returned after
finishing the process.

Creating Component Instances

When the container receives a request for a component instance, it locates the
appropriate component adapter (using given name or type) and delegates this
request to the adapter. The adapter calls the associated component definition’s
createInstance method, which is responsible for creating a component in-
stance. The method creates a new object using the proper constructor (based on

42 K. Piętak and M. Kisiel-Dorohinicki

+accept(VerifingVisitor)

PicoContainer

+traverse(Object)
+visit(PicoContainer)

VerifingVisitor

Verifier

ComponentDefinition ComponentDescriptor

<<use>><<use>>

<<use>>

<<use>>

Fig. 4. Verification mechanism utilizing visitor design pattern

the specified arguments) and than iterates through all properties and initializes
them according to the definition. During the initialization of both, constructor
arguments and properties, an IComponentInstanceProvider instance is used to
fetch references to dependent components instances. The provider, which is in
fact the component adapter itself, retrieves component instances from the IoC
container, and the process starts again. In the case of simple types, a value is kept
directly in a value provider object and is returned on a request. The whole pro-
cess is repeated until all dependencies are resolved and then the fully-initialized
component instance is returned to the client.

A component class which implements IComponentProviderAware interface is
provided with IComponentInstanceProvider that created it. This gives such a
component the ability to retrieve other component instances at run-time via the
same provider according to service locator design pattern [1].

7 Practical Evaluation

The framework proved to be a convenient and flexible tool supporting the as-
sembly of a wide range of simulation and computing systems. As an example,
two different evolutionary optimization approaches may be considered: classi-
cal distributed genetic algorithms and evolutionary multi-agent systems [8]. The
idea of EMAS was proposed as a particular technique of decentralized evolu-
tionary computation. The system consists of individual agents, which possess
solutions of the given optimization problem. They also possess a non-renewable
resource called life energy, which is the base of a distributed selection process.
The application of both classical GA and EMAS to solving concrete optimiza-
tion problems requires among other things the choice of solution representation
and adequate variation operators. Obviously these components may be easily

Agent-Based Framework Facilitating Component-Based Implementation 43

exchanged for different application areas, only if they are represented by com-
mon interfaces [4]. At the same time both classes of systems may be built from
the same problem-oriented components, which may be used by different agents
implementations (populations in classical GA or individuals in EMAS).

Yet the approach seems to be especially suitable for far more complex systems.
This is especially important since today many results in the field of computa-
tional intelligence are based on combining different ideas and methods, which
by the effect of synergy exhibit some kind of intelligent behaviour. Such ap-
proach represents an agent-based system for evolutionary optimization of the
architecture of a predicting neural network with an immune-inspired selection
mechanism, which was also successfully realised with the use of AgE [3].

8 Conclusions

AgE framework discussed in the paper was designed to support the assembly
of agent-based systems from components representing not only agents but also
their functional parts (so-called algorithms) according to the provided configura-
tion. The framework provides validation mechanism with respect to the proposed
functional integrity conditions, which impose the existence of algorithms required
by agents and other algorithms. This is especially important in distributed envi-
ronments, since in such cases the validation is performed independently on each
node based on local resources.

It was shown how component-oriented techniques may be exploited to realize
the process of automatic assembly of different agents structures with dependent
strategies. The configuration together with appropriately annotated agents and
strategies classes allow for creation of fully-initialized components. Moreover,
late binding by a container allows for run-time injection, which facilitates third-
party development of the components. The annotations describing component
dependencies, together with public methods of the class treated as component’s
operations, may be perceived as a requirement closely related to component con-
tracts as proposed by Szyperski [13]. The decision, which component should be
provided to the other one, is made during instantiating particular components
based on the run-time configuration. The functional integrity of the system is en-
sured by verifying the configuration and components descriptors—dependencies
are processed in order to check if all required components are available in the
classpath, no conflicts occur between components, and all requirements are ful-
filled. Verification is also performed during each request for instantiating a com-
ponent, which ensures that no inconsistent unit will be created.

Particular systems are built by providing appropriate configurations that in-
struct the framework how to assembly a complete solution from available compo-
nents, as it was illustrated for the considered evolutionary optimization systems.
In this case, independent parts of the system (such as solution representation,
operators, selection mechanism, etc.) can be easily modified by updating existing
configurations. This can be very helpful for example during process of adjust-
ing algorithms configurations for new problems. The component-based approach

44 K. Piętak and M. Kisiel-Dorohinicki

gives also an opportunity to create new systems without awareness of implemen-
tation details—one needs only to know available interfaces provided by available
components and understand dependencies between them.

The main thread of further research in the considered area concerns the sup-
port for components migration, which might be used to dynamically configure
the distributed nodes’ run-time environments, as well as an extension to agent
migration and inter-agent communication infrastructure.

Acknowledgments. The work presented in this paper was partially supported
by the Polish Ministry of Science and Higher Education grant No. N516 500039.

References

1. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall (2003)

2. Bergenti, F., Gleizes, M., Zambonelli, F.: Methodologies and Software Engineering
for Agent Systems. Kluwer Academic Publisher (2004)

3. Byrski, A., Kisiel-Dorohinicki, M.: Immune-based optimization of predicting neural
networks. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.)
ICCS 2005, Part III. LNCS, vol. 3516, pp. 703–710. Springer, Heidelberg (2005)

4. Byrski, A., Kisiel-Dorohinicki, M.: Agent-based model and computing environment
facilitating the development of distributed computational intelligence systems. In:
Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 865–874. Springer, Heidelberg
(2009)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

6. Java Specification Request 220: Enterprise JavaBeans 3.0 (2006),
http://jcp.org/en/jsr/detail?id=220

7. Java Specification Request 330: Dependency Injection for Java (2009),
http://jcp.org/en/jsr/detail?id=330

8. Kisiel-Dorohinicki, M.: Agent-based models and platforms for parallel evolutionary
algorithms. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.)
ICCS 2004, Part III. LNCS, vol. 3038, pp. 646–653. Springer, Heidelberg (2004)

9. Kisiel-Dorohinicki, M., Dobrowolski, G., Nawarecki, E.: Agent populations as com-
putational intelligence. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and
Soft Computing, Physica-Verlag (2003)

10. Krutisch, R., Meier, P., Wirsing, M.: The agentComponent approach, combining
agents, and components. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.)
MATES 2003. LNCS (LNAI), vol. 2831, pp. 1–12. Springer, Heidelberg (2003)

11. Piętak, K., Woś, A., Byrski, A., Kisiel-Dorohinicki, M.: Functional integrity of
multi-agent computational system supported by component-based implementation.
In: Mařík, V., Strasser, T., Zoitl, A. (eds.) HoloMAS 2009. LNCS (LNAI), vol. 5696,
pp. 82–91. Springer, Heidelberg (2009)

12. Prasanna, D.R.: Dependency Injection, Design patterns using Spring and Guice.
Manning Publications Co. (2009)

13. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

14. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2009)

http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=330

A Hardware Collective Intelligence Agent

Kin Fun Li and Darshika G. Perera

University of Victoria, Victoria BC V8W 3P6, Canada
{kinli,darshika}@uvic.ca,

http://www.ece.uvic.ca/~kinli

Abstract. In recent years, several powerful computing models including
grid, cloud, and Internet have emerged. These state-of-the-art paradigms
offer numerous benefits to large-scale and compute-intensive applications
such as data analysis and decision modelling in enterprise systems. Many
of these applications make use of the collective intelligence technique due
to the necessity in a widely dispersed environment, or the desirability to
harness the processing power and aggregated knowledge in a distributed
system. Most current implementations of the intelligent agent model are
software based. This work proposes the use of hardware collective intelli-
gence agent in lieu of the software version, in order to achieve flexibility,
versatility, and scalability. Housing on a single chip, the hardware agent is
useful in the emulation of collective intelligence models, and deployment
in realistic collaborative settings. The rationales of using hardware agent,
its advantages, and performance are presented, discussed, and analysed.

Keywords: collective intelligence agent, hardware computation models,
emulation, FPGAs, reconfigurable computing.

1 Background and Introduction

Collective Intelligence (CI) is a common theme in many prominent research
areas such as social network, artificial intelligence, and Web mining. Multiple
intelligent agents interact with each other contributing to a common goal. These
autonomous agents, often referred to as situation agents or adaptive agents, have
the capability to learn from each other as well as by themselves. The CI paradigm
enables decision-making collectively using global knowledge rather than based
on local information. Flexibility, extensibility, and scalability of each agent are
the major factors leading to successful implementation of a CI system. A prime
example of success is Wikipedia for its great achievement in building knowledge
collectively.

Pentland carried out an extensive empirical study in [15] and concluded that
“human intelligence is substantially, and perhaps even largely a collective, net-
work phenomenon.” According to Gregg [7], “a collective intelligence application
is one that harnesses the knowledge and work of its users to provide the data
for the application and to improve its usefulness.” CI can be found in numerous
application domains including recommender systems [20], Web business intelli-
gence [9], business processes and models [3], and collaborative learning [11].

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 45–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ece.uvic.ca/~kinli

46 K.F. Li and D.G. Perera

An emergency response system designed by Vivacqua and Borges [23] focuses
on harnessing CI from ‘crowdsourcing’ (i.e., outsourcing to a crowd instead of do-
ing it in-house by a few individuals). Rasmussen et al. proposed Internet based CI
methods to support future energy system decision making by large stakeholder
groups in [19]. They emphasized the need for CI to accommodate large-scale
systems. This is a necessary requirement for any CI system to function as it of-
ten utilizes large-scale state-of-art computing platforms including Internet, grid,
and cloud.

1.1 CI Agent Modelling, Development and Implementation

Agent-based models and simulation techniques are suitable vehicles to study
social systems and CI, as advocated by Singh and Gupta in [21]. Vergados et
al. presented a framework for engineering CI systems to be used by Web com-
munities in [22]; however, they relied on a simulation model to evaluate their
proposal, citing the impractical nature of post-deployment evaluation.

Almost all of the CI simulation studies and applications are implemented
in software, for various collaborative network and agent-based distributed en-
vironments. An exception is the on-chip multiprocessor design based on swarm
intelligence proposed by Narasimhan et al. in [13]. This shared-memory, tightly-
coupled multiprocessor has its processing elements organized in a 2D array. This
design was evaluated in a simulator with signal processing applications.

1.2 Motivation of a Hardware Approach

A couple of conclusions can be drawn from this brief survey and discussion,
that are important for the advancement of CI technologies. The first is speed
performance, for which one can utilize the readily available parallel processing
techniques such as cluster and grid. Efficient hardware in any form, therefore,
plays a key role in this essential requirement. The second is the proper and
accurate simulation of a proposed model before actual deployment. However,
recent trend has shifted to large-scale emulation using thousand-plus machines
to deal with the complexity of real-world system behaviours, that simulation may
fail due to the many assumptions made [14]. This need of at-scale emulation is
exemplified by the promotion of the US Defense Advanced Research Program
Agency‘s National Cyber Range Project [5].

In this work, we propose leveraging hardware prowess to improve speed per-
formance and emulating the actual system at scale to reveal the finer details in
order to enhance modelling and development. Using Field Programmable Gate
Array (FPGA), various hardware algorithms and functional modules were de-
signed and implemented on a single chip. This chip can be configured as a pro-
cessing element in a tightly-coupled multiprocessor or as an independent node
in a distributed system. In either scenario, this single chip can be used for em-
ulation and actual computation. With no processor executing codes, drawbacks
of inefficient coding and ineffective compiler are avoided.

A Hardware CI Agent 47

Section 2 describes the CI hardware agent approach and the experimental
platforms. Prototypes of computation modules at various levels of abstraction
are presented in Section 3 with analysis. A multiplexer approach to reconfigure
hardware on FPGAs is presented and discussed in Section 4. To take advantages
of the state-of-the-art reconfigurable FPGAs, the first two stages of the Principal
Component Analysis were implemented in both static and dynamic reconfigura-
tion, as presented in the same section. Conclusions drawn from our design and
experience are discussed and future works are proposed in Section 5.

2 Hardware CI Agent

Ideally, the hardware CI agent should be housed on a single chip. There are many
reasons why this is preferrable and beneficial. First, a single chip can easily fit
into an embedded device such as a mobile phone which in many applications act
as an independent CI agent. Multiple chipset simply is not an option in many
handheld devices due to their small footprint. Second, a single-chip agent can
be configured as a co-processor or hardware accelerator for existing computing
systems in a distributed, collaborative environment. Third, a single chip can
easily be integrated as a node into a tightly-coupled multiprocessor system which
can be used either as an emulator or a functional computation engine.

To implement a CI agent in single-chip hardware, there are several options
including microcontrollers, Application Specific Integrated Circuits (ASICs), and
FPGAs. A microcontroller is a self-contained system typically consisting of a
processor, memory, and input-output channels. However, the microcontroller
needs to be programmed and each instruction is processed in a regular instruction
cycle, rendering it to be a software-driven device. ASIC, as its name implies, is
customised for specific applications. Once designed and fabricated, it cannot be
reprogrammed. Due to its non-recurring but high design and development cost,
and coupled with its inflexibility in reuse, an ASIC is not a suitable platform for
a CI agent.

An FPGA is ideal for prototyping and deploying an application. For typical
CI application environments, it is expected that the production volume is low,
which gives FPGA an edge over the other hardware alternatives. Moreover, the
reconfigurability of FPGA during application execution is a big advantage in
operating of a CI agent flexibly. Therefore, FPGA is chosen as our prototyping
and development platform in the implementation of a hardware CI agent.

2.1 Hierarchical Design

In order to lay the ground work enabling further experiments for complex and
high-level concept design, a hierarchical approach is used. Higher level functions
utilise lower level operators in a hierarchy as shown in Figure 1. This is akin
to a complex design at the system level (which is our eventual goal) using a
platform-based design approach incorporating lower level components that can
be abstracted and reused [4]. Similarly, the practice of information hiding and

48 K.F. Li and D.G. Perera

reuse is adhered in software implementations. This parallel between software
and hardware implementations of the same operators allows us to make sound
performance comparison, and to build a library of components in both hardware
and software for further experimentation and implementation.

Fig. 1. A Hierarchical Platform-Based Design Approach

2.2 Experimental Platform

All hardware and software experiments were performed on the AMRIX AP-
1000 development platform [2], which supports the Xilinx Virtex-II Pro FPGA
[27] running at 80 MHz. It has a large FPGA gate capacity and two embedded
PowerPC 405 for development purpose. Hardware modules designed in VHDL,
incorporating the IEEE Standard Logic Library 1164 [8], were executed on the
FPGA to verify their correctness and performance. The Xilinx Integrated Soft-
ware Environment (ISE) 7.1i [24] was used for hardware development. Modelsim
SE and Xilinx Chipscope Pro 7.1i were used to verify the results and function-
ality of the designs as well as to measure the hardware execution time.

Software modules were written in C and were profiled on a 32-bit RISC Mi-
croBlaze soft core executed on the same FPGA, to ensure fair performance com-
parisons. The Xilinx Embedded Development Kit (EDK) 7.1i [26] was used to
profile software modules and their behaviour, for the purpose of verification.

For all the work presented, no hardware optimization was attempted, and
software modules on the MicroBlaze soft core were compiled with no optimi-
sation and with level II optimisation. Level II was selected over other levels
because it is the standard optimisation level used for program deployment and
it activates nearly all optimisations that do not involve a speed-space tradeoff

A Hardware CI Agent 49

[26]. Therefore, the executable would not increase in size in a way that would
impact performance because of the limited real estate on chip. Apart from the
MicroBlaze soft processor, additional experiments were performed for the soft-
ware versions using a baseline UltraSparc IIe processor, in order to check the
validity of the designs as well as to compare performance among different plat-
forms. CPU execution times were measured using the clock function in C.

3 Illustrative Designs at Various Levels of Abstraction

One important aspect of a CI agent is its capability to function, either as an
emulation or a computation engine, at different levels of complexity. If one can
examine and profile in details the operations at lower levels, then the hard-
ware agent can be used effectively as a collaborative node in a CI emulation
environment. On the other hand, the power of computing at higher conceptual
level makes the hardware CI agent an ideal standalone module or an efficient
processing element of a processor array in a practical setting.

3.1 Low Level Hardware Operators

As shown in Figure 1, operations such as add, multiple, and divide, are con-
sidered to be at the lowest level of the platform-based design hierarchy. These
fundamental operators are used by higher level computation modules including
multiple-and-accumulate (MAC) and similarity measures. The adder, multiplier
and divider were designed and implemented on the FPGA. Their execution times
are compared to that of the MicroBlaze software as shown in Table 1.

Table 1. Fundamental Operators Performance

Operator Hardware (ns) Software (ns) Speedup

Adder 12.5 225.0 18

Multiplier 12.5 250.0 20

Divider 12.5 587.5 47

The most important aspect in the design and implementation of low level
hardware modules is the ability to profile and monitor their detailed signal prop-
agation and timing in the nanosecond range. This is essential for the investigation
of large-scale CI system modelling by emulation.

Multiply-and-Accumulate MAC. The MAC hardware operator was de-
signed as a sequence of multiplier, adder, and an accumulator register that pro-
vides a feedback loop to the adder. The multiplier and adder presented earlier
were reused. Figure 2 shows the hardware design of MAC which takes advantage
of a pipelined configuration with feedback to enhance performance. After the

50 K.F. Li and D.G. Perera

Fig. 2. Multiple-and-Accumulate in a Pipelined Configuration

initial setup time of 2 clock cycles, consecutive results are produced in every
clock cycle.

In one experiment, the dot product of two vectors of length 8 was exam-
ined. The software version of multiply-and-accumulate used a typical For Loop
implementation. The execution time in hardware was 112.5 ns while the equiv-
alent software took 10418 ns, giving an effective speedup of 92.6. With vector
lengths in the thousands for large-scale data analysis, the speed performance of
the hardware is insurmountable. This is an important illustration of how some
commonly used software constructs can be implemented in hardware more effi-
ciently. In this case, a For Loop can be replaced by a pipeline in hardware thus
enhancing performance.

3.2 Functional Modules: Similarity Measures

Similarity function is an often used distance measure to compare the similarity
among a set of feature vectors. The hardware implementation of a similarity
measure illustrates, first, the flexibility of platform-based design; second, the
versatility of FPGAs; and finally, a functional module that can be used in vari-
ous applications which has its counterpart in many software libraries including
MATLAB’s statistics toolbox [12]. The hardware design of the Extended Jaccard
Measure is illustrated in Figure 3. This hardware design takes advantage of this
function’s inherent parallelism:

ExtendedJaccard(p, q) =

∑n
i=1 piqi∑n

i=1 p
2
i +

∑n
i=1 q

2
i +

∑n
i=1 piqi

(1)

The three dot products have no dependency among them and therefore can
be processed in parallel, a feat that a uniprocessor system cannot imitate. The
remaining stages of add, subtract, and divide are structured as a pipeline. Thus,
parallelism is another dimension of performance improvement using hardware,
in addition to pipelining. Furthermore, the platform-based design methodology
facilitates these designs with reuse as illustrated in Figure 1.

In total, three similarity measures were designed and implemented on FPGA:
Cosine Similarity, Asymmetric Measure, and Extended Jaccard. Experiences

A Hardware CI Agent 51

Fig. 3. Extended Jaccard in a Parallel and Pipelined Hardware Configuration

Table 2. Functional Modules Performance

Function Hardware (ns) Software (ns) Speedup

Cosine Similarity 925 33819 35.6

Extended Jaccard 925 33769 36.5

Asymmetric Measure 925 18344 19.8

gained and lessons learned in designing parallel and pipelined hardware are
invaluable. Similar to the study of the MAC operator, these three hardware
functional modules computed the similarity between two vectors of eight ele-
ments. Table 2 compares the hardware and equivalent software performance of
the three measures. Due to the synchronous design of the pipelined and parallel
modules, all three similarity measure modules take the same time to process.

3.3 Complex Data Structure and Parallelism

Similarity matrix is a commonly used data structure representing the similarity
among a set of n vectors. For instance, in the clustering process of n documents,
an n X n symmetric matrix with unit diagonal is constructed, with each element
of the matrix showing the proximity or similarity of the corresponding row and
column documents. A tightly-coupled processor array organized in an SIMD
(Single Instruction Multiple Data) [6] fashion is ideal for such data parallelism.
As shown in Figure 4, p independent processing elements (PEs) compute the
similarity measure between two vectors, as dictated by the control unit. Since the
similarity matrix is symmetric with unit diagonal, only the elements of the upper
triangle need to be computed. An efficient computation assignment algorithm
for the PEs can be found in [17].

In this set of experiments, processor arrays for all three similarity measures
were designed and implemented. The number of PEs was varied to illustrate

52 K.F. Li and D.G. Perera

Fig. 4. Processor Array Architecture

Fig. 5. Processor Array Performance

the flexibility and reconfigurability of the FPGA hardware and the computation
assignment algorithm. The number of vectors, with eight elements each, ranged
from 2 to 8192. The Cosine Similarity computation times of varying number of
PEs and vectors are plotted logarithmically in Figure 5.

A Hardware CI Agent 53

The linearity of the computation times shows that the processor array is
highly scalable in processing large volume of data. Similar results were obtained
with the Asymmetric Measure and Extended Jaccard in a processor array con-
figuration. Even though the incremental gain is monotonically decreasing as the
number of PEs increases as shown in Figure 5, the effective speedup is still highly
desirable. The results are indeed encouraging as the versatility, scalability, and
flexibility of the FPGA-based CI agent can be utilized in various settings. How-
ever, the number of PEs or circuitry that can be implemented on a single chip
is still limited. FPGA-based reconfigurable computing that alleviates this space
limitation problem is discussed next.

4 Reconfigurable CI Agent on FPGAs

Due to the small footprint in many collaboration-enabled mobile devices, it is
desirable to implement the hardware CI agent on a single chip. In order to
efficiently and effectively utilise the limited space on chip, two design approaches
were investigated. The first is to use multiplexer to select the appropriate data
path in a design that encapsulates multiple functional modules with extensive
reuse of hardware circuitry. The second is to take the state-of-the-art approach
of reconfiguring the FPGA chip dynamically.

4.1 Multiplexer-Based Reconfiguration

Extending the designs from Section 3, a single PE consisting of all the modules
required to process the three similarity measures has been designed and im-
plemented. Extensive reuse of common modules among the similarity measures
enables a PE to be functioned as one of the similarity measures at any given
time by selecting and enabling the appropriate submodules with multiplexers as
shown in Figure 6.

Space overhead, in this case occupied slices or logic blocks on the FPGA
chip, is an important factor to determine the feasibility and effectiveness of the
multiplexer-based approach. Figure 7 shows the cost of space for each similarity
measure alone, and the combined version of all three. The space saving using
the multiplexer-based reconfiguration approach is 63%.

For further investigation, a processing array of eight PEs has been designed
and implemented. The PEs can be selected and configured to perform different
similarity measures simultaneously. A typical scenario in computing the simi-
larity among a set of objects is to determine what operation to perform next,
based on the distribution of the computed similarity. This multiplexer-based
processing array architecture gives the ability to process the data using different
similarity measures simultaneously. If the data are distinguishable, then one may
proceed to the clustering stage. Otherwise, it is desirable to repeat the similar-
ity computation using different algorithms other than the ones just used. This
can be accomplished by using dynamically reconfigurable hardware introduced
in the next section, and is one of the greatest assets of a CI agent in many
decision-making situations in collective intelligence processing.

54 K.F. Li and D.G. Perera

Fig. 6. Multiplexer-based PE for Similarity Measures

Fig. 7. Space Comparison for Similarity Measure Configurations

4.2 Dynamic Reconfiguration

In previous sections, fundamental operators, functional modules, and processor
arrays are shown to be feasible and efficient in FPGA-based hardware

A Hardware CI Agent 55

implementation. For more complex and high-level concept operations, it might
not be possible to fit the corresponding computation circuitry onto a single chip.
In addition to multicore architecture, which is essentially a software approach,
one can utilise reconfigurable FPGA hardware.

Data analysis is essential in many application domains as it can sieve through
large volumes of data to discover useful patterns and valuable knowledge. Many
of the data analysis algorithms require complex computations thus processing
speed is a primary concern. For instance, Principal Component Analysis (PCA)
[15], used extensively in preliminary data analysis and dimensionality reduction,
consists of several stages of computation. PCA is used as a case study to illustrate
how FPGA-based reconfigurable hardware can be used in complex and compute
intensive data analysis applications found in the realm of collective intelligence.

4.3 Design Approach and Development Platform

Both software and static/dynamic reconfigurable hardware (denoted as SRH and
DRH) used the same hierarchical platform-based design approach introduced in
Section 2.1. All software and hardware designs were experimented on the Xilinx
ML605 FPGA development board [25], which provides dynamic reconfiguration.

There are two ways to reconfigure Xilinx Virtex-6 FPGAs: multiboot and
partial reconfiguration. Multiboot is typically carried out by an on-chip con-
troller, using reconfiguration files called bitstreams, stored in an external mem-
ory. Without the need to have an external controller to manage reconfiguration,
self reconfiguration is possible by implementing the on-chip controller as a state
machine for quick decision making. However, the entire chip must be reconfig-
ured and loading bitstreams from a memory device external to the chip incurs
high overhead.

Partial reconfiguration allows the reconfiguration of part of the chip while the
other parts are still operational. This has the advantage of hiding the reconfig-
uration latency while computation is still in progress. Partial bitstreams can be
stored either on chip or in external memory. Similar to multiboot, the on-chip
controller can act independently and make quick decisions.

Both multiboot and partial reconfiguration are ideal for implementing self-
learning and adaptive agent. In the following experiments, partial reconfiguration
was used due to its property of being able to compute and reconfigure at the
same time. This enhances speed performance and facilitates decision making.

4.4 Principal Component Analysis Case Study

The various stages of PCA have been designed, implemented and studied sep-
arately. To illustrate how dynamic reconfiguration works and benefits complex
procedures, only the first two stages of PCA, Mean and Covariance Matrix com-
putations, were used for simplicity. The original equations to generate the Mean
and the Covariance Matrix are [10]:

Xj =

∑n
i=1 Xji

n
(2)

56 K.F. Li and D.G. Perera

CM(Xj , Xj+1) =

∑n
i=1(Xji −Xj)(X(j+1)i −Xj+1)

n− 1
(3)

These equations are modified in order to streamline the hardware implementa-
tion:

Xj =

n∑
i=1

Xji (4)

CM(Xj , Xj+1) =

∑n
i=1(Xji −Xj)(X(j+1)i −Xj+1

n(n− 1)
(5)

These slight modifications allow the delay of the Mean’s division to be computed
at the output stage of the Covariance Matrix, thus enabling the use of integer
operations for both modules. Again, this illustrates the flexibility of implement-
ing algorithms in hardware. The hardware module for the Mean computation
utilises a 2-stage adder and accumulator configuration with a feedback loop is
shown in Figure 8, which also forms part of the Covariance Matrix hardware as
shown in Figure 9.

Fig. 8. Mean Computation Using Feedback Loop

The static reconfigurable hardware module (SRH) consists of both the Mean
and the Covariance Matrix on the same chip. The dynamic reconfigurable ver-
sion (DRH) has the Mean module downloaded to the FPGA first, and after its
computation is completed, the Covariance Matrix module is then downloaded
and computed.

Space Analysis. In the static configuration, the number of on-chip slices for the
Mean and the Covariance Matrix modules are 2579 and 3434 respectively, giving
a total of 6031. For the dynamic reconfiguration, the Covariance Matrix module
occupies more space than the Mean module, hence the maximum number of slices
required on chip as per the Covariance Matrix module is 4279. This constitutes
a space saving of 30%. The space overhead required in dynamic reconfiguration
is about 538 slices, less than 10% of the static reconfiguration case.

A Hardware CI Agent 57

Fig. 9. Covariance Matrix Computation in a 6-Stage Pipeline

Fig. 10. Mean Computation with Varying Data Size in Dynamic Reconfiguration Case

Time Analysis. To further understand the execution time for both static and
dynamic reconfigurations, experiments were carried out using a benchmark data
set. The Optical Recognition of Handwritten Digits Data Set [1] used, has 3823
64-element vectors, giving a data size of 244672. Both reconfiguration hardware
modules, SRH and DRH, were designed with variable inputs including the num-
ber of vectors, the number of elements per vector, and hence the data size.

Figure 10 shows the execution time in clock cycles with varying data size for
the Mean computation in the dynamic reconfiguration case. The linear behaviour
is the same for the Covariance Matrix computation in dynamic reconfiguration,

58 K.F. Li and D.G. Perera

and both the Mean and Covariance Matrix in static reconfiguration. This fur-
ther affirms the linearity of the hardware computation, hence, the scalability
of the hardware algorithms. The dynamic reconfiguration time from Mean to
Covariance Matrix took 515 ms, which is insignificant with increasing data size.

The speed performance of static and dynamic configurations with varying data
size is comparable and similar. The reconfiguration overhead for the dynamic
case is insignificant except when the data size is small. This confirms that time
penalty is insignificant in dynamic reconfiguration. More results and analysis of
this case study can be found in [18].

5 Conclusion and Future Work

A hardware collective intelligence agent is presented with various design and im-
plementation methodologies on FPGA. Indeed, all hardware designs are superior
than their software counterparts in speed performance. The dynamic reconfig-
urability is of particular interest as it can accommodate complex computations
without sacrificing speed performance. In addition, the single-chip philosophy
works well with a distributed, collaborative environment, either as a stand-alone
CI engine, or an intelligent node in a sensor network, or part of a multiproces-
sor. Moreover, the flexibility, versatility, and scalability offered by the FPGA
hardware enable large-scale emulation to study CI models as well as actual
deployment. Handheld embedded devices having small footprint and requiring
processing power can also take advantage of a small piece of FPGA chip, for
real-time applications such as fingerprint and iris identification. Depending on
its capacity, an FPGA chip in early 2010s typically costs from US$100 upwards
to $3000, making it a reasonably cost-effective device. Currently, other high-
level computation modules including clustering and classification algorithms are
being investigated for implementation on dynamic reconfigurable FPGAs.

References

1. Alpaydin, E., Kaynak, C.: Optical Recognition of Handwritten Digits Data Set.
UCI Machine Learning Repository, University of California, School of Information
and Computer Science (1998)

2. Amirix, Inc., http://www.amirix.com/products
3. Baumoel, U., Georgi, S., Ickler, H., Jung, R.: Design of new business models for

service integrators by creating information-drien value webs based on customers
collective intelligence. In: International Conference on System Sciences, pp. 1–10
(2009)

4. Densmore, D., Passerone, R.: A Platform-Based Taxonomy for ESL Design. IEEE
Design and Test of Computers 23(5), 359–374 (2006)

5. Defense Advanced Research Projects Agency (DARPA): Broad agency announce-
ment: national cyber range (2008), https://www.fbo.gov/index?s=opportunity
&mode=form&tab=core&id=16ce874dacb9910e7327e7545a054df8

6. Flynn, M.: Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers C-21, 948 (1966)

http://www.amirix.com/products
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=16ce874dacb9910e7327e7545a054df8
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=16ce874dacb9910e7327e7545a054df8

A Hardware CI Agent 59

7. Gregg, D.: Designing for collective intelligence. Communications of the ACM 53(4),
134–138 (2010)

8. IEEE Standard Multivalue Logic System for VHDL Model Interoperability 1164-
1993, ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2823

9. Iguider, Y., Morita, H.: A collective intelligence based business-matching and rec-
ommending system for next generation e-marketplaces. In: IEEE Symposium on
Computers and Informatics, pp. 489–494 (2011)

10. Jackson, J.: A User’s Guide to Principal Components. Wiley Interscience (2003)
11. Lee, D., Kim, J., Lee, H.: Collective intelligence based collaborative learning plat-

form. In: International Conference on Information and Communication Technology
Convergence, pp. 553–554 (2010)

12. MathWorks: MATLAB Statistics Toolbox 7.4 (2011)
13. Narasimhan, S., Paul, S., Bhunia, S.: Collective computing based on swarm intel-

ligence. In: ACM/IEEE Design Automation Conference, pp. 349–350 (2008)
14. Neville, S., Li, K.: The rational for developing larger-scale 1000+ machine

emulation-based research test beds. In: International Conference on Advanced In-
formation Networking and Applications, pp. 1092–1099 (2009)

15. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine 2(6), 559–572 (1901)

16. Pentland, A.: Collective intelligence. IEEE Computational Intelligence, 9–12 (2006)
17. Perera, D., Li, K.: Parallel Computation of Similarity Measures Using an FPGA-

Based Processor Array. In: IEEE International Conference on Advanced Informa-
tion Networking and Applications, pp. 955–962 (2008)

18. Perera, D., Li, K.: FPGA-based reconfigurable hardware for compute intensive data
mining applications. In: International Conference on P2P, Parallel, Grid, Cloud,
and Internet Computing, pp. 100–108 (2011)

19. Rasmussen, S., et al.: Collective intelligence for decision support in very large stake-
holder networks: the future US energy system. In: IEEE Symposium on Artificial
Life, pp. 468–474 (2007)

20. Rojas, M., Mesa, J.: Collective knowledge of the Web: source of information of
process of business intelligence. Colombian Computing Congress, 1–6 (2011)

21. Singh, V., Gupta, A.: Agent based models of social systems and collective intel-
ligence. International Conference on Intelligent Agent and Multi-Agent Systems,
50–56 (2009)

22. Vergados, D., Lykourentzou, I., Kapetanios, E.: A resource allocation framework
for collective intelligence system engineering. In: International Conference on Man-
agement of Emergent Digital EcoSystems, pp. 182–188 (2010)

23. Vivacqua, A., Borges, M.: Collective intelligence for the design of emergency re-
sponse. In: International Conference on Computer Supported Cooperative Work
in Design, pp. 623–628 (2010)

24. Xilinx, Inc., ISE Design Suite (2010), www.xilinx.com/support/
documentation/dt ise.htm

25. Xilinx, Inc., ML605 Hardware User Guide (2011),
www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

26. Xilinx, Inc., Platform Studio User Guide: Embedded Development Kit EDK 7.1i
(2005), www.xilinx.com/tools/platform.htm

27. Xilinx, Inc., Virtex-II Pro FPGA User Guide (2007),
www.xilinx.com/support/documentation/user_guides/ug012.pdf

28. Xilinx, Inc., Virtex-6 FPGA Configuration User Guide (2010),
www.xilinx.com/support/documentation/user_guides/ug360.pdf

ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=2823
www.xilinx.com/support/documentation/dt_ise.htm
www.xilinx.com/support/documentation/dt_ise.htm
www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
www.xilinx.com/tools/platform.htm
www.xilinx.com/support/documentation/user_guides/ug012.pdf
www.xilinx.com/support/documentation/user_guides/ug360.pdf

SimISpace2 : A Simulation Platform

for Exploring Strategic Knowledge Management
Processes

Martin Ihrig

The Wharton School, University of Pennsylvania, Philadelphia, PA 19146, USA
ihrig@wharton.upenn.edu

Abstract. SimISpace2 is an agent-based simulation environment de-
signed to simulate strategic knowledge management processes, in partic-
ular knowledge flows and knowledge-based agent interactions. It serves
as a general knowledge management engine that, through a user-friendly
graphical interface, can be adapted to a wide range of knowledge-related
applications. Its purpose is to improve our understanding of how knowl-
edge is generated, diffused, internalized and managed by individuals and
organizations, under both collaborative and competitive learning condi-
tions.

Keywords: agent-based simulation, strategic knowledge management,
I-Space, knowledge development and diffusion.

1 Introduction

SimISpace2 is an agent-based graphical simulation environment designed to sim-
ulate strategic knowledge management processes, in particular knowledge flows
and knowledge-based agent interactions. Its conceptual foundation is provided
by Boisot’s [1,2] work on the I-Space. The predecessor version of SimISpace2
[3] had been used to study intellectual property rights policies [4], to explore
the spatial dimension of knowledge flows [5], and to configure simulations that
model the knowledge-transfer dilemma facing the counter-terrorism community
[6]. The simulation environment presented in this paper, SimISpace2, is a total
redevelopment (both conceptual and technical) which has been built from scratch
using the programming language C� [7]. It is noticeably different from existing
approaches for modeling the physical world, since it makes it possible to “model
the multiple knowledge-specific activities required of the knowledge lifecycle”
[5,6]. Users can study the effects of individual strategic knowledge management
actions and explore knowledge processes at the macro level. SimISpace2 is one of
the very few simulation environments that enables researchers to model distinct
knowledge assets and to analyze micro and macro effects of knowledge-based
strategies of interacting agents. It thereby presents itself as a unique tool for
conducting innovative social science and management research on the dynamic

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 60–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SimISpace2 61

evolution of knowledge. It can also be used in the context of intelligent large-
scale systems and to study complex adaptive systems of knowledge and social
networks.

The structure of this paper is as follows. First, we outline what the user can ex-
pect from the simulation and explain the underlying concepts of the SimISpace2
environment, including how the properties of the basic entities - agents and knowl-
edge assets - are determined. Second, we describe in detail how knowledge assets
are represented in the simulation model and what properties they can have, as well
as discussing the importance of knowledge networks, the difference between owning
and possessing knowledge, and the value of knowledge. Third, we depict the differ-
ent properties agents can have and give a detailed description of the various actions
agents can perform. Fourth, we conduct a couple of simple simulation experiments
to ensure the software fully implements and represents I-Space theory.

2 Fundamentals

2.1 A Brief Description of the Innovative Simulation Environment

SimISpace2 is an agent-based simulation environment [8] that is being developed
to implement the main features of the I-Space [1,2] as a conceptual framework.
The Information Space, or I-Space, is a conceptual framework that has been
used to study knowledge flows in diverse populations of agents - individuals,
groups, firms, industries, alliances, governments, and nations. Building on this,
SimISpace2 is designed to serve as a general knowledge management engine that,
through a user-friendly graphical interface, can be adapted to a wide range of
knowledge-related applications. Its purpose is to improve our understanding of
how knowledge is generated, diffused, internalized and managed by individuals
and organizations, under both collaborative and competitive learning conditions.

We start by creating domain-specific knowledge networks that agents are re-
quired to discover and exploit by investing either in individual learning processes
- codification, abstraction, etc. - or in interactions with other agents. The two
together make up a social learning process. SimISpace2 allows a user to spec-
ify different knowledge groups, agent groups, discovery conditions, knowledge
spillover conditions, cost conditions and reward conditions.

Knowledge assets are fundamentally different from physical assets. SimISpace2
has been created to account for this. The I-Space relates the degree of structure of
knowledge (i.e. its level of codification and abstraction) to its value and diffusibil-
ity as that knowledge develops. This complex relationship has been incorporated
in the architecture of the simulation environment. In addition, the simulation has
two features that capture two other critical properties of knowledge assets, which
distinguish them from physical assets. First, knowledge items are stored separately
from agents who own them. Unlike physical assets, knowledge assets can be owned
by more than one agent. For example, an agent can license or trade its knowledge,
but still retains knowledge of that item. Second, as agents develop their specific
items of knowledge, they retain all the prior knowledge associated with the newly

62 M. Ihrig

developed knowledge. Thereby, the agent can at any time draw on all the past forms
of the knowledge item to exploit it.

Complex scenarios can be modeled with SimISpace2 by assigning distributions
for each of the initial properties of agent and knowledge groups. More than 170
direct parameters, both general and action-specific, can be set for each of the
agent and knowledge groups created. During the simulation runs, agents compete
and cooperate in performing three different kinds of actions:

– Managing knowledge (e.g. discovering, codifying & abstracting, protecting,
exploiting, disposing, etc.)

– Exchanging knowledge (e.g. trading, licensing)
– Networking and being in motion (e.g. meeting, relocating, relaxing, exiting

& entering).

The above actions and interactions form the basis for the emergent properties
of agents (e.g. stock of knowledge, financial and experience funds, location, etc.)
and of knowledge assets (e.g. diffusion, location, structure, obsolescence, etc.).
SimISpace2 has the following innovative features that make it different from
other simulation programs:

a) It models information flows by implementing a theoretical framework that
is novel, powerful, and growing in use.

b) It is the only agent-based simulation of knowledge flows that is based on
a comprehensive theory of agent-based knowledge evolution (the I-Space
theory).

c) It can track and analyze multiple collectivities’ social learning processes,
their discovery strategies, and the agent interaction strategies.

d) By analyzing the complex networks of agent interactions, it can track the
emergence of institutional structures and gain an understanding of the re-
ciprocal influence of process and structure in the knowledge domain.

2.2 The Big Picture

There are many conditions, properties, and tools integrated into the SimISpace2
simulation environment. However, before examining each of the individual fea-
tures, it is necessary to realize the fundamentals that underlie the simulation’s
intricate composition. In its current version, the basic purpose of SimISpace2 is
to explore how user-defined agents evolve as measured by knowledge discovery
and growth of financial funds.

There are basically three sources in the simulation that an agent draws on to
obtain or develop new knowledge. The first source is a global pool of knowledge
that an agent accesses and extracts pieces of knowledge from. The second source
of knowledge is from the knowledge portfolio that an agent already possesses,
which can be internally developed into new knowledge through structuring and
learning processes. Finally, an agent can obtain knowledge from other agents
through certain actions such as scanning or trading. How different agents utilize

SimISpace2 63

these three sources ultimately depends on the complex attributes that the user
assigns to each agent.

Knowledge discovery affects the other principal indicator of an agent’s devel-
opment, its financial funds. Agents capitalize on knowledge discovery, and they
influence their financial funds by executing several actions such as trading, li-
censing, and exploiting. For example, when an agent sells or licenses knowledge
to another agent, its financial funds increase. Similarly, an agent’s financial funds
enlarge when it exploits its knowledge. As will be shown, there are other costs
and factors that affect an agent’s financial funds, but these actions are among
the main determinants. Financial funds are important to understanding an out-
come of a simulation model, as they measure the growth of agents and thereby
present opportunity for analysis.

As this simulation environment’s extensive components are individually ex-
plained, it is important to consider them in the larger framework. They should
be appreciated in the context of how they collectively contribute to the evolu-
tion of knowledge discovery and financial funds. This paper seeks to answer the
following questions:

1. What can the user expect from the simulation?
2. What are the properties of the simulation that the researcher can use to

build an application-specific model?
3. What happens during the simulation runs?
4. How do we know the simulation works?

Each of these questions is addressed in different sections of the paper (Fig. 1).
Due to the complexity of the software program and the different processes it
models, it is very difficult to describe all the features in a purely linear fashion.
Therefore, we suggest you read through this paper fairly quickly to get the
main gist and then reread for the details and connections. Since this is a semi-
technical description, it is hard to convey all the complex relationships at once.
Nevertheless, they are all listed and described, so that researchers can get a full
understanding of the mechanisms.

2.3 Getting Started: Specifying Different Knowledge and Agent
Groups

Two major forms of entities can be modeled with SimISpace2 : agents and knowl-
edge items/assets. When setting up the simulation, the user defines agent groups
and knowledge groups with distinct properties. Individually definable distribu-
tions can be assigned to each property of each group. When the simulation runs,
the individual group members (agents and knowledge items) are assigned char-
acteristics in accordance with the distribution specified for the corresponding
property for the group of which they are a member. For a particular agent group
for example, the property that determines the starting level of the financial funds
of agents can be set to have a uniform distribution with lower bound 100 and
upper bound 150. Individual agents in that group will then have their initial
financial funds set to between those limits when they are created.

64 M. Ihrig

��
��
��

�	
�
�

�

��
�

��
��
��
��
��
��
��

��
�

��
��
��
��
���

�
�

��
�

��
��
��
��
��
��
��

��
��

��
��

��
�

�
��
��

�
�

��
�	
�
�

��
��
��
��

��
��
�
�
�

�

�
��
��

�
�

���
��
��

��
��

��
��
�

��
�	
�
�

��
��

��
�

��
��
��
��
 �
�!

��
�
�

�

��
�

��
��
��
��
���

�
�
��
!�

��

�
�

"�
��
�

	
�

#
��
��
��
	�
�	
�

"

$$�

�
�
��
��
��
��
��

�
��
��
��

��
��

	

#
��
��
��
	�
�	
��
%�
��

&�
��
�'
��
��

 �
��

��

�
��
(�
��
�

��
�(
��
�

(�
�

$
	
��

�
��
��
	�
��

��
�

��
��
��
	�

�
��
��
	�
��

��
�

��
��
��

��
 �

��

	
�"
��

�

�

��
�

��
��
��
��
��
��
��
 �
�!

��
�
�

�

"�
��
�

	

)�
	�
�
�

��
*

)�
	�
�
�

��
+

(�
�

$
	
��

�
�

��
��
��
	�

�
�

��
��
	�
��

�
��
,$
$�
��
���

��
��
��

�
��
��
��

��
��

��
��

��
!�

��

�
�

"�
��
�

	
�

)�
	�
�
�

��
*

)�
	�
�
�

��
+

,-
!�
�
�

�	
��
��
��

�
�

��
�	

�
���
��

��

��
��

	

%�
��
	�
��
�"

��
��
	�

 �
��

��

�
��
��
	�
�
�

 �
��

��

�
��
,-
!�
��

��
��

 �

	
��
.
��
�
!

�
�
�

�	
�
/

��
�%
��
�

 �
�!

��
�
�
��
0�
��
	�
��
��
��

�#
	�
��

1�
��
	�
��

'

�
�

�

�	
�
�

��
 �
�!

��
�
�

��
�$�

���
�	
2�
�	
�
�

��
3

 �
�!

��
�
�
�

,$
$�
	�

/
��
��
�

,$
$
	

�
�	
�

��
�	
�
�

��
��
��
��

��
��
�

�
��

�

��
��

�
�

%�
��
	�
��

,-

�

,�
��
�

%�
��
-

�	
��

"

�	
�/
��

)�
��
�

,-
!�
�

�

"

�!
��
�

(�
�

$�

��
��
��

��
��
��
	�

��
!�
	�

 �
��
��

(�
!�
�
�

2�
.
��
�

0�
��
��
��
��
�4�
&�

��
,-
	�
��

/
��
)

	�
��
�

5
��

6,
-	
��
�
/

��
)

	�
��
�

�(
��
!�

'�
�
�
��

�
�

 �
�/

�
�

�2
�

�
�
��
��

�
�

	�
!�
��
��

�2
�
��
�
	

��
��
��
�$

�6�
!�
	�

02
��
��

��
�2
��

�
�

�2
��
3

��
.
��
��
��
��
	�
��
��
�

7�
��

��
��
��
�

$$�

��
��

$�
��
��
�

��
�

��
��
��
��
�2
��
�
�
�

�
��
��
�

$$�

��
��

��

�
��
�2
���
��

	�
.
��
��
��
��
	�
��
��
�

7�
��

��
��
��

��
�
��
�2
�

�
��
�

8
2�
��2

�!
!�
��
��
��

�
��

�2
��
�
�

��
��

�
��
��
��
9

���
��

/�
�	
��

�,
-!
��
��
�
�

��
�$
��2

��
�

�
��
��

�
�

�
��

��
��
��
��
��
��
���
�	
�
�

��
��
��
��

��
��
��
���
��
	�

�
��
��
�

���
��'

��

�
��

�
�

��
�	
�
�

��
:�

��
�

�
��
��

�
��
 �
�!

��
�
�

�

 �
��
��
�)
��
��
2

 �
��
��
��
��
��
��
2

(�
!�
�
�

2�
�)
��
��
2

(�
!�
�
�

2�
��
��
��
��
2

,-
	�
��

/
��
)

	�
��
��
)�
��
�2

5
��

6,
-	
��
�
/

��
)

	�
��
��
)�
��
�2

0�
��
��
%�

/�
��

��
.
��
�
!

�
�
�

,-
	�
��

/
��
)

	�
��
��
.
��
�
!

�
�
�

5
��

6,
-	
��
�
/

��
�)

	
��
��
�.

��
�
!

�
�
�

,-
!�
�

��%

�/
��
��
�.

��
�
!

�
�
�

�

�

��
�
�
��
��
�	
�
�

�
(�

!�
�
�

2�
�(
��

$

	�
�
�

��
02
��
�2
��
�

(�
!�
�
�

2�
��
��
��
�	
�
�

��
02

��
�2
��
�

 �
��
��
�(
��

$

	�
�
�

��
02
��
�2
��
�

 �
��
��
��
��
��
�	
�
�

��
02
��
�2
��
�

 �
��

	
�"
��

�

��
��

��
�"

$$
��

�
��

02
��
�2
��
�

�	
��
��
��
�
��
��
��
��

�

��
��
��
�	
�
�

�
��

��
��
�
�
��

�
���

��
��
��

�
��
��
��

�	
�
�

��
 �
�!

��
�
�

�3
&�
��
��

�
��
	

��
�(
��
�

&�
��
�,
-!
��

�
�	
��
;�

�
��
��
��)
��
�

%�
<�

��
��
,-
!�
�
�

�	
��
02
��
�2
��
�

8
2�
���

��
��2

��
!�
�!

��
�
�

��
�$
��2

��
�
�

��
��

�
��
�2
��
��2

��
��
��
��
	2
��
�	�

��
��
��

��
��
�

��
��
��
�!
!�

	
��

�
�6
�!
�	

$

	�
�
��

��
9

1�
�
��
��
�
��
7�
��

��2
��

�
�
��
��

�
��
�
��
7�
9

8
2�
��	
��
��2

��
��
��
��
-!
�	
��

$�
��

��2
��
�
�

��
��

�
�9

Fig. 1. Structure of paper

SimISpace2 65

Agents and knowledge items cannot join or leave groups. They start off being
a member of a group from the beginning of the simulation and remain a member
until the end of the simulation. Even if they die, they remain associated with their
group. The static nature of group membership has been implemented to facilitate
easier analysis. If groups had dynamic membership, a consistent analysis of the
properties of their members would be harder since the actual members would
change from period to period. To prevent overlapping distributions, a participant
- an agent or a knowledge item - is only ever a member of a single group. Each
group has its own distributions for each property; and if an agent (or knowledge
item) were a member of more than one group, then conflicts would arise as to
which distribution to base their property values from.

As a result, group size is static, there are no new entrants. The number of
members is entirely determined by the start number specified for the group by
the user. During the start-of-simulation processing (bootstrapping), the simu-
lation iterates through all the agents and knowledge items and uses random-
number generation to assign each agent’s and knowledge item’s characteristics
according to the distribution specified for each property. That way, the agent and
knowledge groups contain agents and knowledge items with approximately the
distribution specified for each property. For example, each agent will start with a
given level of financial funds, according to the distribution specified for its agent
group; and each knowledge item will have a particular base value, according to
the distribution specified for its knowledge group.

2.4 Distributions

Following are the names and parameters for each type of distribution available.
The distributions are a subset of the distributions provided by Crystal Ball (see
Hillier, Hillier and Hillier [9] for further information on Crystal Ball’s distribu-
tions). The researcher can chose from five different distribution types to set the
properties for agent groups, knowledge groups and simulation-wide settings.

Uniform distribution. Values are evenly distributed between lower and upper
limit, which the user can specify. For example, when users want to set the prop-
erty determining the ’geographic’ starting location of agents in an agent group,
they can assign a uniform distribution. This would mean that the agents of this
agent group are equally spread out between the minimum and the maximum
value.

Normal distribution. The normal distribution has a symmetric bell curve and
the user can specify the mean and the standard deviation. For example, when
researchers want to set the property determining the starting level of financial
funds of agents in an agent group, they could assign a normal distribution,
reflecting some agents start off with a financial endowment that is average, some
with one that is above average, and some with one that is below average.

Triangle distribution. A triangular distribution can be used to approximate
an asymmetric bell curve, and it is specified by its minimum, maximum and
mean values. The user sets the lower limit, the mode and the upper limit.

66 M. Ihrig

Exponential distribution. For the exponential distribution, the user can specify
lambda. Here, all participants in the participant-group, be it agent or knowledge,
get a value for a particular property assigned that is drawn from an exponential
probability distribution.

Constant distribution. The constant distribution uses the mean variable to de-
termine a point distribution rather than a function. It means all participants in
the participant-group have the same value for that property. This could techni-
cally be modeled using a uniform distributions (with lower limit and upper limit
equal to each other), but that would require setting multiple parameters, so we
provide the constant distribution for convenience. It makes it easier for example
to set up multi-simulations as the user can vary a single parameter in the multi-
simulation rather than having to vary multiple parameters in a synchronized
fashion.

2.5 Simulation User Processes

Simulation user processes are processes performed by the human user of the
SimISpace2 environment in order to configure simulations. Different windows/
interfaces let the user specify the settings (Fig. 2). There are three main steps:
create basic entities for a new simulation, manage parameter settings, and run
the simulation.

Fig. 2. Screenshot of the SimISpace2 software main interface

The following tasks have to be completed to set-up and run a simulation:
Create participant group. The first step is to create agent groups and knowl-

edge groups. The user specifies the name of the group as well as the starting num-
ber of members in each group. Participant groups are created independently of

SimISpace2 67

simulations as they can be used for (assigned to) multiple simulations. The spe-
cific properties of the group created by the user are set in a separate step/window
(see below).

Create distribution. The user creates distributions by selecting the type of the
distribution and specifying the distribution’s parameter values. As described
above, the parameterized distributions are used to establish the participants’
properties.

Create simulation. The user has to configure the basic parameters and prop-
erties of the simulation. This involves:

– specifying the participating agent and knowledge groups,
– setting the industry revenue multipliers,
– determining the prior stock of knowledge for agents (knowledge items that

agents possess from period 1 on),
– establishing links between knowledge items (intra- and inter-knowledge-group

links),
– specifying prior acquaintances, i.e. a network of agents that know each other

(that have already met),
– creating DTI knowledge items (see below for description of DTI knowledge).

See further down for a detailed description of the different properties.

Assign distribution. Assigning distributions to group properties is implemented
as drag-and-drop. The process allows users to link group properties for agent and
knowledge groups they have created to distribution instances they have defined
when they added distributions. Several general simulation properties that apply
to all participant groups are also determined by distributions.

Manage entities. The user can always revisit the settings and edit the pa-
rameter values of all participant groups, distributions and simulations that were
created.

Run simulation. The user can view the list of simulations in the database and
choose one to run. The user has to specify how many times the simulation is
supposed to run (1 to N times) and determine how many periods there are per
run (1 to K periods).

3 Knowledge Assets

3.1 Terminology

Knowledge in the simulation environment is defined as a ‘global proposition’. The
basic entities are knowledge items. Based on the knowledge group they belong
to, those knowledge items have certain characteristics. All knowledge items to-
gether make up the knowledge ocean - a global pool of knowledge. Agents access
the knowledge ocean, pick up knowledge items, and deposit them in knowledge
stores. A knowledge store is an agent’s personal storage place for a knowledge
item. Each knowledge store is local to an agent, i.e. possessed by a single agent.
Knowledge stores as containers hold knowledge items as their contents. This

68 M. Ihrig

happens after agents obtain a knowledge item. Examples of a knowledge store
include books, files, tools, diskettes, and sections of an agent’s brain. There is
only one knowledge item per knowledge store, i.e. each knowledge item that an
agent possesses has its own knowledge store. If an agent gets a new knowledge
item (whether directly from the knowledge ocean or from other agents’ knowl-
edge stores), a new knowledge store for that item is generated to hold it. The
following graph illustrates the distinctions we make (Fig. 3).

Fig. 3. From knowledge ocean to knowledge asset

3.2 Knowledge Item vs. Knowledge Store

The concept of a knowledge item has been separated from the concept of a
knowledge store so that knowledge can be traced and tracked as it evolves. If
knowledge items are taken from the same common pool and stored in different
agents’ knowledge stores, then it is possible to see when two (or more) agents
have the same knowledge item. This is very useful for seeing how knowledge
diffuses. Contrast this to the case where agents are allowed to arbitrarily create
their own knowledge. This would make it very difficult to determine the prove-
nance of knowledge, as it would be very hard to determine when two pieces of
knowledge held by different agents are in fact the same knowledge.

The importance of the separation between a global pool of knowledge and
local knowledge stores can also be illustrated by looking at abstraction and cod-
ification (which applies only to knowledge stores and not to knowledge items).
Knowledge stores are held by an agent and held at a particular level of codifi-
cation and abstraction. This means that if the agent codifies its knowledge and
makes it more abstract, the properties of the knowledge item are not changed but
the corresponding knowledge store gets a higher degree of codification and ab-
straction. So the knowledge item is held at a certain level of abstraction and codi-
fication in that knowledge store. Knowledge stores are about the form, knowledge
items about the content of knowledge.

SimISpace2 69

When it comes to codification and abstraction, the simulation uses a so-called
string-of-pearls mechanism. Each time an agent codifies or abstracts knowledge
(the knowledge store that holds a knowledge item), a new, i.e. an additional,
knowledge store is created with the new level of codification or abstraction. The
same applies to the opposite actions to codification and abstraction: absorp-
tion and impacting. The knowledge item in those knowledge stores is always
the same, only the level of codification and abstraction of the knowledge stores
changes as does its ‘structuring effort’. Structuring effort is the absolute distance
that a knowledge store and its predecessors have moved through the I-Space in
the codification and abstraction dimensions. It is a means of implementing ver-
sion of knowledge stores. The string-of-pearls mechanism is one of the ways the
cumulative nature of knowledge is modeled.

3.3 Knowledge Properties

Each knowledge item belongs to a particular knowledge group. As already men-
tioned, at the outset, the properties of those knowledge groups can be set by
assigning distributions. The individual knowledge item’s characteristics depend
on the distributions set on the group level. There are static and dynamic proper-
ties. With static properties, the characteristics are assigned to knowledge items at
the beginning of the simulation and do not change. With dynamic properties, we
look at the characteristics of an individual knowledge item that evolve through-
out the simulation. The characteristics can be tracked during the simulation by
following the values of each property for a particular individual knowledge item
at specific points in time. Dynamic properties have a starting level - determined
by the distribution set on the group level - but are recalculated after each pe-
riod based on occurrences in that period. Characteristics of knowledge stores
are influenced by the characteristics of the knowledge items they hold and the
actions agents who possess them perform. The following subsections describe the
properties of knowledge items and knowledge stores.

Properties of Knowledge Items

Obsolescence. The obsolescence property for each knowledge item is recalcu-
lated at the end of each period (dynamic property). Obsolescence at the end of
the period is the obsolescence at the start of the period plus the obsolescence
rate (On = On−1 + or). Obsolescence varies from zero to one, where one means
the knowledge is worthless (i.e. completely obsolete).

Obsolescence rate. The obsolescence rate property for each knowledge item
specifies at what rate (units per period, rather than percent per period) that
knowledge item becomes obsolete.

Base value. It is the basic value of a knowledge item, which may be different
from the price that agents set for that knowledge item when they trade it (see
further down for more information on the value of knowledge).

Per period carrying cost. It is the cost of knowing or holding a particular
knowledge item, per period. Knowledge with a higher level of codification and
abstraction has a lower carrying cost. By assigning a negative value (negative

70 M. Ihrig

cost = gain), agents can be rewarded to develop knowledge, i.e. obtain more
knowledge stores. Knowledge with a higher level of codification and abstraction
has a higher carrying gain.

Abstraction increment and codification increment. It is the increment by which
abstraction and codification can increase. Note that a knowledge item itself
does not have a level of abstraction or codification - only a knowledge store
has a level of abstraction and codification. However, knowledge items have an
abstraction increment and a codification increment, which help determine how
fast the knowledge stores containing them can be abstracted and codified.

Start in public domain. The user can specify whether the knowledge items of
a knowledge group are common knowledge or not. If they start in the public
domain, agents will not be able to patent or copyright (own) them.

Diffusion. Diffusion is calculated as the percentage of agents who possess a par-
ticular piece of knowledge. When calculating the number of agents, those agents
who are cropped (i.e. those who died after exhausting their resources) or exited
(and not re-entered) are not counted. The diffusion property for each knowledge
item is calculated dynamically at the end of each period. As it is an emergent prop-
erty of the simulation, it cannot be set in advance. (N.B.: Diffusion is also not con-
sidered an action of any participant.) Consequently, diffusion rate is not allowed to
be stored or set, as rate of diffusion is also an emergent property of the system.

Diffusion of knowledge among agents has two components. First, it is a con-
sequence of voluntary exchange through agent interactions such as trading or
licensing. Second, it results from spillovers through scanning from other agents.
Those spillovers reflect the degrees of codification and abstraction of knowledge
stores (and, by implication, of knowledge items in the stores), because more
abstract and codified knowledge is easier to scan. Since scanning is more likely
to happen on more codified and abstract knowledge, diffusion will be faster for
more codified and abstract knowledge. Thus, patented and copyrighted know-
ledge, which has had to cross a certain codification and abstraction threshold,
is usually also easy to scan (but it is harder to exploit - see further down for
details). Diffusion also happens when agents obtain knowledge directly from the
knowledge ocean. Here, the links between knowledge items come into play: as
will be described below, agents are more likely to scan linked items.

Properties of Knowledge Stores

Location. Knowledge stores have a specific two-dimensional location (X/Y)
in the SimWorld, the 100 by 100 grid knowledge and agents occupy. Thus, both
X and Y can have values of between 0 and 100.

Codification and abstraction. Codification and abstraction are properties of
knowledge stores, and not properties of knowledge items. The level of codifica-
tion and of abstraction ranges between zero and one. Knowledge items are held
by multiple agents, and one agent’s investment in codification or abstraction
does not influence the codification and abstraction level of the same knowledge
item held by another agent. Therefore, knowledge items do not have a level of
codification and abstraction, only knowledge stores do. Thus, abstraction and

SimISpace2 71

codification are local (i.e. particular to a given knowledge store, which resides
in some location), as opposed to global. However, the user can set a ‘starting
degree’ of codification and abstraction for each knowledge group. Once a par-
ticular knowledge item is scanned by an agent from the knowledge ocean, this
property determines the level of codification and abstraction of the knowledge
store that holds the newly obtained item. Therefore, there are knowledge groups
with knowledge items that will start more codified and abstract and knowledge
groups with knowledge items that will start less codified and abstract.

Structuring effort. Structuring effort is a dynamic property. It is the absolute
distance that a knowledge store and its predecessors have moved through the I-
Space in the codification and abstraction dimensions. It is an emergent outcome
of the simulation, and no starting level can be assigned.

3.4 Knowledge Networks

Linked Knowledge

When configuring the simulation, the user can specify links between individual
knowledge items in the knowledge ocean (also across knowledge groups). This
results in knowledge networks. Agents cannot link knowledge themselves during
the simulation runs, since knowledge links are defined as being natural, and
discovered, rather than man-made. Links are set by the user a priori and created
during the start-of-simulation processing. This allows the user to specify exactly
the density of knowledge links.

Linked knowledge is important when it comes to obtaining knowledge from
the knowledge ocean (cp. scanning action). The links affect the probability of
scanning knowledge from the knowledge ocean in the following way: the proba-
bility of scanning a given knowledge item in the ocean is directly proportional
to the number of knowledge items in an agent’s possession with links to that
given item. Furthermore, the codification and abstraction of the linked knowl-
edge stores the agent possesses is directly proportional to the probability of
scanning the given knowledge item in the ocean. As a result, knowledge items
in the ocean that have links to items in highly codified and abstract knowledge
stores are more likely to be scanned than unlinked knowledge items or items
with low-codification and low-abstraction links.

From an agent’s perspective, the more codified and abstract a knowledge item
gets, the higher the probability that the agent who possesses that knowledge
item (who holds it in his knowledge stores) obtains the knowledge items that are
linked to that particular knowledge item. Ontological connections are created
by the user at the beginning of the simulation. The agent tries to discover the
connections (linked knowledge items) epistemologically by investing in increased
codification and abstraction.

Discovered Through Investment (DTI) Knowledge

DTI knowledge is a special kind of knowledge, which is discovered through in-
vesting in related (child) knowledge. DTI knowledge items cannot be discovered

72 M. Ihrig

through scanning the knowledge ocean. The user chooses a set of knowledge
items to be children of a DTI knowledge item (DTI network; separate from linked
knowledge). The only way for an agent to discover DTI items is to successfully
scan the children and then to codify and abstract (or absorb and impact) them
above (or below) a certain user-set value. Once the specified codification and ab-
straction levels are reached, the agent automatically obtains the DTI knowledge
item. Investing in the child items, i.e. scanning, codifying and abstracting them,
is the primary means of getting DTI knowledge. Once an agent has discovered
a DTI item, it is treated like a regular knowledge item, i.e. other agents are
then able to scan it from the agent that possesses it. By specifying the value
characteristics of the DTI knowledge item, the user can indirectly determine the
value of the respective DTI network.

3.5 Owning vs. Possessing Knowledge

An agent can own or possess knowledge. Agents possess the knowledge if they pos-
sess a knowledge store that contains the knowledge item. This happens after they
have scanned a knowledge item or acquired it through licensing (see further down
for details on individual action types). It can also be the result of an original en-
dowment of knowledge the user specifies when determining the simulation settings.
Possession ends when the agent finishes possessing the knowledge store that con-
tains the knowledge item. This happens after the agent disposes of all knowledge
stores containing the knowledge item, or when the agent dies (i.e. is cropped).

An agent may possess a piece of knowledge, but not own it. Ownership indi-
cates when an agent has legal rights to benefit from a knowledge item. Ownership
happens through patenting or copyrighting (of a knowledge item). For knowledge
to be patentable or copyrightable, at least one knowledge store containing the
knowledge item must be above a certain user-set codification and abstraction
level. This means that knowledge can only be owned once a knowledge store
has reached a certain level of codification and abstraction; however, all knowl-
edge can be possessed. An agent cannot patent or copyright a knowledge item
that is in the public domain. Knowledge is in the public domain if a) a cer-
tain user-specified, minimum number of agents possess it, b) it had previously
been patented or copyrighted but the patent or copyright expired, or c) the user
declared it to be in the public domain from the start on. Being in the public
domain is a final state for knowledge items (with regards to a), this means a
knowledge item will permanently be in the public domain, i.e. the knowledge
item is no longer available for copyright or patent protection even if some agents
dispose of it later). All of the agent’s knowledge stores that hold a patented or
copyrighted knowledge item are considered to be owned by that agent.

Ownership also happens when the knowledge is bought in a trade. This means,
trading brings about transfer of ownership: ownership for one agent (the seller)
ends and ownership for another agent (the buyer) begins. Ownership ends when
the agent dies (i.e. is cropped) or when the agent disposes of all knowledge stores
containing the knowledge item. It also ends when knowledge is sold in a trade

SimISpace2 73

or when the duration of the patent or copyright ends. Note that in these cases,
though the agent loses ownership, it still possesses the knowledge.

Not all knowledge is owned, e.g. with tacit knowledge, we are more concerned
with possessing than with owning. An agent possessing knowledge will be able to
exploit it and learn from it whether or not that agent owns it (see further down
for details). However, strengthening an ownership claim on particular knowledge,
i.e. patenting or copyrighting, decreases the ability of others who only possess
the knowledge to exploit it.

3.6 The Value of Knowledge

What is knowledge worth? Agents can capitalize on their knowledge by exploit-
ing, trading or (exclusively and non-exclusively) licensing it. The base value
of a knowledge item will then be transformed into a trade amount or license
amount or exploit amount. This is done according to the level of abstraction
and codification of the knowledge store, which holds the knowledge item, and
according to the diffusion of the knowledge item. The user can define an indus-
try specific table of revenue multipliers based on abstraction and codification
levels. When determining amounts, the abstraction and codification level of the
knowledge store is read, and then the corresponding abstraction-codification-
multiplier from the industry-specific revenue-multiplier-table is looked up. In
the I-Space, the value of knowledge is a function of both utility (how codified
and abstract) and scarcity (how far diffused). Usually, the higher the codifica-
tion and abstraction level, the higher the revenue multiplier, i.e. more codified
and abstract knowledge is worth more. More codified and abstract knowledge,
however, is also more likely to be diffused. This erodes the value of knowledge.
In addition to the structure (codification and abstraction) and the diffusion of
knowledge, the calculations include obsolescence. Obsolescence also has a neg-
ative effect on value: completely obsolete knowledge is worthless. Whereas the
revenue multipliers depend on the characteristics of the knowledge store (level
of codification and abstraction), obsolescence solely depends on the properties
of the knowledge item.

Note the distinction between capital value and rental value of knowledge.
When knowledge is traded, it is traded for its capital value, and this is a once off
transfer of funds. In contrast, when knowledge is licensed, the revenue/cost of
the license is a recurring revenue/cost, charged by the licensor, to the licensee,
at the end of every period, for the duration of the license.

The trade amount is calculated as follows:

Trade amount
= (base value) × (simulation-wide trade revenue multiplier)
× (price multiplier attribute for the seller agent)
×(relevant abstraction-codification-multiplier for knowledge store)
× (1 - obsolescence for knowledge item) / (diffusion for knowledge item)

(1)

74 M. Ihrig

The simulation-wide trade revenue multiplier allows the user set the multiple
to increase (or decrease) the base value in order to arrive at the amount for
which knowledge should be traded. The price multiplier is used to account for
the fact that certain agents routinely price knowledge higher than others do.
The formula for calculating the trade amount is the basis for calculating both,
the exclusive and non-exclusive license amount. The exclusive license amount
is the trade amount divided by the license length. The non-exclusive license
amount is the trade amount divided by the license length and divided by the
number of agents that the knowledge could potentially be licensed to, i.e. the
number of agents alive. Both license amounts also feature a revenue multiplier
each to allow the researcher to incorporate context specific settings.

The exclusive license amount is calculated as follows:

Exclusive license amount
= (base value) × (simulation-wide trade revenue multiplier)
× (price multiplier) × (simulation-wide exclusive license revenue multiplier)
×(relevant abstraction-codification-multiplier for knowledge store)
×(1 - obsolescence for knowledge item) /
[(diffusion for knowledge item) × (license length)]

(2)
The non-exclusive license amount is calculated in the following way:

Non-exclusive license amount
= (base value) × (simulation-wide trade revenue multiplier)
×(price multiplier)×(simulation-wide non-exclusive license revenue multiplier)
× (relevant abstraction-codification-multiplier for knowledge store)
×(1 - obsolescence for knowledge item) /
[(diffusion for knowledge item) × (number of agents alive) × (license length)]

(3)
Finally, the exploit amount is expressed as follows:

Exploit amount
= (base value) × (simulation-wide exploit revenue multiplier)
×(relevant abstraction-codification-multiplier for knowledge store)
×(1 - obsolescence for knowledge item) / (diffusion for knowledge item)

(4)

4 Agents

The SimWorld is populated by virtual agents. Depending on the agent group,
those agents have certain characteristics and perform numerous actions.

4.1 Agent Properties

Each agent belongs to a particular agent group. As already mentioned, the prop-
erties of those agent groups can be set by assigning distributions. The value of a
particular property for a specific individual agent at the start of the simulation

SimISpace2 75

depends on the distributions set on the group level. Certain property values of
agents will change over time as the simulation proceeds (dynamic properties).
There are various properties that agents can have. They can be either general
properties or action specific properties as described in the next subsections.

Note that there is no single property to allow the user to specify the density
of agent knowledge. Consider that it would have been possible to have an ’agent
knowledge density’ property with a scale of 0 to 1, where 0 indicates that all
agents know no knowledge, 1 that all agents know all knowledge, and values
in between that some agents know some knowledge. This property would then
have been specified for every agent group and knowledge group. Instead, the user
can directly endow agent groups with a prior stock of knowledge, i.e. they can
specify which particular knowledge items agents possess from period one on. In
addition to that, agent-knowledge-densities come out as emergent properties of a
simulation. There are various action-types that allow agents to acquire knowledge
(e.g. scan, trade, license, etc.) and each agent has some propensity to indulge
in that action-type. Agent-knowledge-density, then, is really synonymous with
diffusion.

General Properties for Agents

Location. Agents have a specific two-dimensional location (X/Y) in the Sim-
World. Both X and Y can have values of between 0 and 100. For simplicity, it
is assumed that more than one agent and knowledge store can occupy the same
coordinate in space. This rule pertains to actions such as agent relocating. If an
agent re-enters the SimWorld, having exited earlier, its coordinate is randomly
assigned.

Financial funds. An important dynamic property of agents are their financial
funds. The financial funds of each agent are recomputed at the end of each
period. The ’per period carrying cost’ for all knowledge items held by the agent
during a period is subtracted from the agent’s financial funds. The exact amount
subtracted depends on the abstraction and codification of that knowledge. As
seen before, knowledge with a higher level of codification and abstraction has a
lower carrying cost (higher carrying gain).

Note that financial funds are also updated during each action: costs of action
are subtracted, and the revenues from the action are added and payments re-
sulting from the action are subtracted. The licensing costs and revenues (license
amount for each knowledge item) are also subtracted from (licensee) or added
to (licensor) an agent’s financial funds at the end of each period for the length
of the license. Remember that license amounts are per period, whereas trade
amounts are once off. At the end of each period, the agent’s income per period
(i.e. income from external sources, not relating to specific transactions) is added
to its financial funds, and the agent’s expenditure per period (i.e. expenses from
external sources, not relating to specific transactions) is subtracted from its fi-
nancial funds. Agents currently cannot go into credit, i.e. agents cannot have
negative financial funds. Agents are cropped (die) if they run out of funds.

76 M. Ihrig

Experience funds. The experience funds are not changed as part of a transac-
tion (like financial funds for example after a trade), but whenever an action is
undertaken. After every action, the base experience gained is added to the expe-
rience funds of an agent. Agent experience has the following effect: an agent can
only perform an action when the user-set experience threshold for that action
has been passed, i.e. the agent must have accumulated enough general experi-
ence to undertake an action. Experience funds are not updated at the end of
each period; they are only changed during/after each successful action.

Income per period. It is the base income per period from external sources,
not relating to specific transactions, i.e. it does not include money made from
trading, licensing, and other transactions. Thereby, income per period is merely
a fixed, recurring income.

Expenditure per period. Agents can have base expenses per period. Those do
not relate to specific transactions, i.e. they do not include costs of taking actions,
or costs relating to trading, licensing, and other transactions. Thus, expenditure
per period is merely a fixed, recurring cost.

Relocate distance. The relocate distance determines how far an agent moves
when it performs the relocate action.

Vision. Vision determines how far the agent can see spatially. An agent’s
vision is a certain radius from its current location within which it can scan and
call for meetings (see further down for detailed description of those actions).
Thereby, it establishes the size of the market within which the agent operates.
Some will be village markets and some will be global markets.

Price multiplier. Some agents habitually sell at a higher price than other
agents do. Hoarders have a high price multiplier - greater than one - whereas
Sharers have a low price multiplier - less than one. The price multiplier charac-
teristic is normally assigned a value between 0.5 and 1.5.

Activity rate. Activity rate is the number of actions that an agent takes per
period. By setting the activity rate, users can create groups that work frantically
(many actions per period) and groups that are laid back (with few actions per
period). To create agents that work-hard-and-play-hard, one can set the activity
rate high, but set the propensity for the relax action high as well, meaning
that the agent will relax often. Whereas vision affects the range of an agent’s
interaction, one could say activity rate affects the rate of interaction.

H-Factor. Users can modify the behavior of agents in their choice of meeting
partners. It creates the possibility of specifying whether agents are interested in
meeting other agents similar or dissimilar to them, in terms of their knowledge
portfolio. The H -Factor determines the level of homophily, i.e. the preference
for meeting agents conditioned on the similarity of knowledge portfolios. It can
take values between minus one and one, and it is used to influence the kinds of

SimISpace2 77

agents that an agent will seek when it is initiating a meeting request1. The sign
of the H -Factor determines whether an agent is homophilic or heterophilic and
the magnitude of the H -Factor determines how exclusive or discriminating an
agent is when it comes to meeting others. An agent with an H -Factor of zero is
neutral and will accept to meet all visible agents with equal probability.

Propensity to scan from ocean. When an agent decides to scan, it scans either
from the knowledge ocean or from the knowledge stores and agents surrounding
him. The propensity to scan from ocean specifies the probability of scanning
from the knowledge ocean. It should be between zero and one.

Action Specific Properties for Agents - Agent Group Level

Propensity. Propensity refers to the likelihood of performing a particular ac-
tion. Propensity is specified for each action-type. Every time an agent wants to
perform an action, it must decide what particular action to take. The agent will
attempt to embark on a given action-type with the probability drawn from the
distribution associated with the propensity property for that action type for the
respective agent group. That is, propensity is the probability of the agent at-
tempting a particular action, each time the agent takes an action. Again, agents
may take zero or more actions per period, but this depends on the settings
for the activity rate. The propensities across all action-types for a given agent
should sum to one2. If the sum comes out to more than one or less than one,

1 To understand this better, consider the following example. An agent has an H -Level
of 0.6. A positive H -Level indicates that the agent is homophilic, and therefore prefers
to meet agents with similar knowledge portfolios. Furthermore, a value of 0.6 indicates
that this agent will only consider meeting agents that are at least 60% similar. When
the agent is about to initiate a meeting request, it will first examine all the agents in its
visible range and assess a degree of similarity of knowledge portfolio to each. Let us say
he comes across the following agents: Agent 12 - Similarity 45%; Agent 13 - Similarity
65%; Agent 14 - Similarity 85%; Agent 15 - Similarity 50%. In this case, he will imme-
diately reject agents 12 and 15 since they are not similar enough. Now Agents 13 and 14
will be considered acceptable, and will have an equal probability of being met, which
will be determined by a random draw. Let us say he chose agent 13. Now the meeting is
proposed, and Agent 13 goes through a similar procedure to ensure the initiating agent
is similar (or dissimilar) enough to meet based on agent 13’s H -Level. Just as a positive
H -Level defines a minimum level of similarity that must be met before an agent can be
considered for meeting, a negative H -Level specifies the maximum level of similarity
between two agents that can exist if they are to meet. In this case, the agent would be
considered heterophilic. So for example, an H -Level of - 0.75 says that this agent will
only meet other agents who are at least 75% dissimilar to it (or at most 25% similar) in
terms of their knowledge portfolio.

2 For example, assume three actions: Buy (propensity to buy = 0.6), Sell (propensity
to sell = 0.2), and Codify (propensity to codify = 0.5). The total is 1.3, which has
to be adjusted. All propensities for this agent need to be divided by 1.3, so that the
propensities sum to 1. This is the reason for why, when it comes to creating distri-
butions, each propensity attribute should have a constant distribution and the sum
of the constant distribution values for all the propensity properties for a particular
agent group should sum to one.

78 M. Ihrig

then the program will scale the propensities to one. Another way of looking at
the propensity setting is that for all the different actions an agent is allowed to
perform during a simulation, the propensities determine the proportions each
action-type will be carried out. Propensities do not determine whether an agent
will execute an action successfully or not. This is influenced by the next property,
effectiveness.

Effectiveness. Effectiveness is used to determine the likelihood of succeeding in
a particular action-type (value between 0 and 1, 1 being most effective). Whether
an action succeeds depends on the effectiveness of all agents participating in the
action. The average of the effectiveness of all agents participating in the event
gives the probability of the action succeeding, given the action is undertaken.
It is assumed that the environment does not introduce any additional random
variation.

Efficiency. Efficiency is an agent-group specific weighting factor used to adjust
the cost of performing a particular type of action. In other words, it is a cost
modifier for an action. The more efficient (value between 0 and 1, 1 being most
efficient), the lower the costs that are incurred when conducting an action.

Action Specific Properties for Agents - Simulation Level
Whereas the aforementioned agent properties are set on the agent group level,

there are also properties that the user specifies on the simulation level. Conse-
quently, they are the same for all agents regardless of what agent group they
belong to.

Patent/Copyright length and strength. The user can set the number of periods
a patent lasts and specify the strength of it. The same applies for copyright.
The strength of a patent or copyright has an influence on whether agents who
possess but not own a particular knowledge item can exploit it. The value for
strength should be between zero and one. It influences an agent’s effectiveness
of exploiting knowledge that has been patented or copyrighted. Agents that do
not have the patent or copyright for a particular knowledge item or have not
licensed it should be less likely to succeed in exploiting the knowledge.

Exclusive/Non-Exclusive license length. Exclusive and non-exclusive licenses
both have a particular user-set length, measured in number of periods.

Similarity function. The similarity function determines the method for calcu-
lating the similarity between two agents in terms of their knowledge portfolios.
The simulation allows the notion of similarity to be specified in two unique
ways: exclusive (0) and inclusive (1). Under the Exclusive method, similarity
is only considered to be the total of those knowledge items that both the
agents possess divided by the sum of the unique items that they possess con-
sidered together3. Under the Inclusive method, similarity not only includes the

3 So if Agent 1 has knowledge items 2, 4, 5 and 6, while Agent 2 has knowledge items
1,2 and 3, the similarity in this case is calculated as the total of the items they both
possess (only item 2), i.e. 1, divided by the total number of unique items possessed by
them together (items 1,2,3,4,5 and 6), i.e. 6. Hence, the similarity is 1/6 or 16.66%.

SimISpace2 79

knowledge items they both possess, but also the knowledge items they both do
not possess4.

Copyright/Patent codification and abstraction threshold. An agent can only
patent knowledge that it holds in a knowledge store above a certain user-set
codification and abstraction threshold. This also applies to copyrights.

Public domain absolute diffusion threshold. Once a certain number of agents
possess a knowledge item (knowledge is diffused to a set of agents), it is consid-
ered to be in the public domain and cannot be copyrighted or patented anymore.

Scan from surroundings function. This simulation level property, which will
take values of either 1 or 2, helps determine the particular set of knowledge stores
an agent scans from within its vision. The two possible methods of selecting a
store to scan are described below (see scanning action).

Trade, exploit, exclusive license, non-exclusive license revenue multipliers.
These four parameters let the user specify at which multiple of the base value
the agents try to capitalize on their knowledge through the trading, exploiting,
and (exclusive and non-exclusive) licensing actions.

Base financial cost. It is the base cost of participating in a particular action.
Every action has a financial cost, which must be paid for by the agent when
embarking on that action. The agent must pay this cost, from its financial funds,
immaterial of whether the action succeeds or not. Financial funds are updated
during each action, i.e. costs of action are subtracted. If agents have insufficient
funds to undertake an action, then the action cannot be successfully taken, and
their financial funds are not depleted. The final cost particular to an agent when
undertaking an action equals the base financial cost for that action multiplied
by one minus the agent specific efficiency for that action.

Base experience gained or lost. It is the amount of experience gained, or
lost, by participating in an action-type. Each action undertaken by the agent
normally increases the agent’s base experience by a certain amount. There is
only one experience fund per agent, no accumulated experience per action-type.

Experience threshold required. It is the minimum amount of experience re-
quired to undertake a specific action.

4.2 Actions

The agents in the simulation are able to perform various actions and thereby to
adopt different role types. All actions - aside from entering - require the agent to
be inside the SimWorld. Actions are assumed to have zero duration, start and
end in the same period and are purposefully taken by agents. This stands in
contrast to states that have some duration and that are inferred by the system

4 In this case, carrying forward the previous example, if there was a total of 10 knowl-
edge items in the simulation, then the similarity between agent 1 and 2 would be
the (a+b)/c where a is the number of items they both have, b is the number of
items they both don’t have and c is the total number of items in the simulation.
This works out to be, a = 1 (they both have item 2), b = 4 (they both do not have
items 7 through 10) and c = 10. Therefore the similarity is (1+4)/10 = 50%.

80 M. Ihrig

based on the actions taken in the previous periods. For example, the system
will infer that the agent starts owning a knowledge item if the agent bought
the knowledge item during the period, similarly the system will infer that the
previous owner finishes owning the knowledge upon selling (‘owning’ is a state).

An agent will be permitted to undertake an action, if and only if, the environ-
ment and the agent state permit the action. Most importantly, an agent can only
perform an action, if it has sufficient financial funds and experience. An agent
will not be able to undertake an action if it cannot pay the cost of that action.
Entry into the SimWorld is only possible if the agent is outside the SimWorld
and alive. In addition, agents can only license or trade a piece of knowledge if
they own the knowledge item.

The state of the world as well as that of the agent (and the knowledge) changes
after an action is successfully undertaken. What follows next is a description of
each action-type. When deciding what to do in a period, agents pick from this
list of actions.

Scanning (storing). An agent can scan knowledge. Scanning means picking
up a random knowledge item, whether from the knowledge ocean or from other
agents’ knowledge stores. The probability of scanning from the knowledge ocean
is specified by the agent-group-level property ‘Propensity To Scan From Ocean’.
An agent can scan any knowledge item in the knowledge ocean, but can only
scan knowledge items in knowledge stores within its vision. An agent can scan
knowledge possessed or owned (patented or copyrighted) by other agents within
its vision. Agents only try to pick up knowledge items that they do not al-
ready possess at that level of abstraction and codification. If a knowledge item
is successfully scanned, it starts off in a new knowledge store possessed (but
not owned) by the agent. Depending on the origin of the knowledge item, the
new knowledge store picks up the level of codification and abstraction from the
knowledge group the knowledge item belongs to (knowledge item from knowl-
edge ocean) or from the knowledge store it found the item in (knowledge item
from other agent). If the agent fails to find a store he does not already know (has
a store with the same codification level and abstraction level) then the action
will fail and the agent will lose his turn.

Remember the special role of networks. The more an agent codifies and ab-
stracts the knowledge stores of a particular knowledge item, which is linked in
the knowledge ocean, the more likely it is that the agent will obtain, through
scanning in the ocean, those linked knowledge items. Also remember that once
an agent has scanned all the child items of a DTI knowledge item and has codi-
fied and abstracted them up to a certain level, then the agent automatically gets
the DTI knowledge item associated with that DTI network. The action that
is triggered if all the conditions for obtaining a particular DTI are met (set of
knowledge items, codification and abstraction threshold) is called discover.

If the agent ends up scanning from the surrounding knowledge stores, there
are two possible methods for selecting the store to be scanned. The method is
specified by the simulation level property ‘Scan From Surroundings Function’.

SimISpace2 81

i. All Stores and Agents (1): All knowledge stores in the agent’s vision and all
knowledge stores possessed by agents in this agent’s vision are considered
(but only the knowledge stores that the agent does not already possess).
The ease with which knowledge is scanned is a function of the degree of
codification and abstraction of the knowledge involved. Knowledge items
in knowledge stores with higher codification and abstraction have a higher
propensity of being scanned, so the program weights the probability of being
scanned by the codification and abstraction level of the knowledge chosen.

ii. Agents Only (2): The agent only considers the knowledge stores of visible
agents that he would want to meet (according to its H -Factor). He pools
together all the knowledge stores of the agents in his vision who would meet
his H -Factor requirement (only the knowledge stores that the agent does not
already possess); from this pool, he then selects a knowledge store. The prob-
ability of scanning a knowledge store is again the codification and abstraction
of this knowledge store divided by the total codification and abstraction of
the knowledge stores in the pool. If no suitable stores are found, then the
agent will fail in his attempt to scan.

Codifying. An agent can codify knowledge. Codification only occurs on knowledge
stores (form), not on knowledge items (content). The agent must possess the
knowledge store to carry out codification. Each codification action creates a new
string-of-pearl store with an increased level of codification. Codification of the
new knowledge store increases by the codification increment specified for the
knowledge item in the store. The level of codification cannot exceed one.

Abstracting. An agent can abstract knowledge. Again, abstraction only oc-
curs on knowledge stores, not on knowledge items. The agent must possess the
knowledge store to carry out abstraction. Each abstracting action creates a new
string-of-pearl store with an increased level of abstraction. Abstraction of the
new knowledge store increases by the abstraction increment specified for the
knowledge item in the store. The level of abstraction cannot exceed one.

Absorbing and impacting. We speak of absorption if an agent’s knowledge gets
more uncodified, and of impacting if an agent’s knowledge gets more concrete.
They can be considered as negative codifying and abstracting actions. However,
the user can set separate characteristics for each of them.

Patenting. An agent can patent knowledge for a certain duration and with a
specific strength. An agent can only patent a knowledge item it possesses, and
only if it holds the knowledge item in a knowledge store that has an abstraction
and a codification level above a user-set level. That is, an agent can usually only
invest in patenting after it has invested in codifying and abstracting. Each patent
has a particular strength and duration. The user can assign a distribution for
both characteristics (general setting for all knowledge). Once an agent patents
an item, it owns that item. Consequently, all of the agent’s knowledge stores that
hold the newly patented knowledge item are then eligible for the actions that
require ownership (trading, licensing, etc.). An agent may not patent a knowledge
item that is already possessed by a user-defined number of other agents (diffusion
threshold). This is because knowledge that is in the public domain cannot be

82 M. Ihrig

patented or copyrighted. ‘In the public domain’ is defined as follows. First, ’in
the public domain’ means that other agents also possess the knowledge item in
question. Knowledge that is widely diffused cannot be patented or copyrighted,
and it is up to the user to specify what widely diffused means by setting an
appropriate level of absolute diffusion. Once a patent or copyright is requested
for a knowledge item that has surpassed the diffusion threshold, that knowledge
item will permanently be in the public domain, i.e. the knowledge item is no
longer available for copyright or patent protection. The threshold is specified
as the minimum number of agents that must hold the knowledge item in order
for it to be considered public domain. Second, all knowledge items with expired
copyrights or patents automatically become public domain. Third, the user can
opt to put all knowledge items of a group into the public domain. This means,
from period one on, these knowledge items will be in the public domain and
cannot be patented or copyrighted during the simulation.

Copyrighting. An agent can copyright knowledge for a certain duration and
with a specific strength. An agent can only copyright a knowledge item it pos-
sesses, and only if it holds the knowledge item in a knowledge store above a
certain level of codification and abstraction. Each copyright has a particular
strength and duration. The user can assign a distribution for both character-
istics (general setting for all knowledge). Once an agent copyrights an item, it
owns that item. Consequently, all of the agent’s knowledge stores that hold the
newly copyrighted knowledge item are then eligible for the actions that require
ownership (trading, licensing, etc.). An agent may not copyright a knowledge
item that is in the public domain (see patenting). Patents or copyrights are not
diffusion blocking. They just restrain other agents from doing certain things with
their knowledge items, e.g. selling, licensing, successfully exploiting.

Learning. An agent can learn, i.e. register, existing knowledge. Learning en-
ables agents to exploit the knowledge items they learned of. This means that
before knowledge items can be exploited, learning has to take place. Agents
can only learn from a knowledge store they possess. The more string-of-pearl
knowledge stores an agent possesses for a particular knowledge item, the more
probable it is that this knowledge item will be learned first. An agent’s chance
of successfully learning is higher for more codified knowledge.

Exploiting. An agent can exploit knowledge to gain value. Exploitation means
capitalizing on internalized knowledge. This means that an agent must register
the knowledge prior to exploiting it, i.e. perform the learning action on the
knowledge item. The financial funds of the exploiter agent are increased by the
value of the exploiting. Exploiting increases the financial funds of the agent by
the intrinsic base value of the knowledge item multiplied by the exploit revenue
multiplier. The level of codification and abstraction, the degree of diffusion, and
obsolescence are also taken into account as described earlier. An agent can try
to exploit a piece of knowledge that it possesses, even if it does not own it. The
higher the strength of the patents and copyrights held on the knowledge by other
agents, the lower the probability of successfully exploiting, if the agent does not
have a license for that knowledge. If the agent holds the patent or copyright or

SimISpace2 83

has a license for the knowledge, then their chance of successfully exploiting the
knowledge is high (patent strength considered to be zero for those agents).

Meeting. An agent can meet with another agent. Only agents who have initi-
ated the meeting (initiator) and those who have responded positively (responder)
are allowed to attend. An agent can only initiate a meeting with agents within
its vision. Meeting is a prerequisite for a trade or a license. Based on the H -
Factor setting, agents chose meeting partners at random or just select meeting
partners that are similar or dissimilar to them. In the simulation setup, the user
can specify a network of agents that have already met (prior acquaintances).
Once two agents have met, they will not try to initiate another meeting with
each other for the rest of the simulation run.

Buying knowledge and selling knowledge (trading). An agent can buy (sell)
knowledge from (to) another agent for a certain price (sale amount). In contrast
to scanning, buying only targets knowledge that is owned by other agents. Meet-
ing is a prerequisite for trading, and mutual consensus is necessary. Agents can
only sell knowledge stores that they own, i.e. knowledge stores with a knowledge
item that is copyrighted or patented. This also implies that if one wants to trade
knowledge, it must be up to a certain level of codification and abstraction (de-
pending on the patent and copyright threshold). The buyer acquires ownership
and the seller loses ownership. This means that the patent or copyright for the
underlying knowledge item is terminated for the seller, and the rest of the patent
or copyright (remaining time) is transferred to the buyer. Note that the seller
still possesses the knowledge and is still in a position to learn and to exploit
it. Only knowledge that the acquiring agent has not previously owned will be
traded. A knowledge store is only transferred to the buying agent if its level of
codification and abstraction is different to the level of other knowledge stores
in its possession that hold the same item. However, the patent or copyright for
the underlying knowledge item is always transferred. The trading price is deter-
mined using the formula for trade amount described earlier. The financial funds
of the seller agent are increased by the sale value for the trade, and the financial
funds of the buyer agent are decreased by the sale value for the trade.

Exclusive licensing and non-exclusive licensing. An agent can license knowl-
edge to other agents for a certain per period license amount/fee. Meeting is a
prerequisite for licensing, and mutual consensus is necessary. Agents can only
be a licensor for knowledge that they own. The licensor grants a license to a
particular knowledge item to a licensee. In the case of exclusive licensing, only
one (exclusive) license can be given. In contrast, the non-exclusive licensor gives
the license to a knowledge item to various licensees for joint possession. That is,
multiple non-exclusive licenses may be given.

The licensee does not acquire ownership of the knowledge. The license is trans-
ferred as well as a random knowledge store holding the knowledge item (but only
if the licensee does not already possess the store with that level of codification
and abstraction). Though they own the knowledge, exclusive licensors will have
difficulties exploiting the knowledge - only the licensees are entitled to exploit the
knowledge. When it comes to exploiting, exclusive licensors are treated like all

84 M. Ihrig

the other agents that do not have a license: the patent or copyright strength will
determine the success of their exploit action; the special type of license where
exclusive licensors can continue to exploit their knowledge is omitted from the
simulation. However, the non-exclusive licensor is treated like if he has a non-
exclusive license, i.e. patent strength will be zero for him as well.

At the end of each period, and for the duration of the license, the financial
funds of the licensor agent are increased by the license amount. Similarly, for the
duration of the license, and at the end of each period, the financial funds of the
licensee agent are decreased by the license amount. The price of the exclusive
and of the non-exclusive license, i.e. the license amounts, are each determined
using the formula for license amount shown earlier.

Disposing. Agents can dispose their knowledge stores - one store with under-
lying item per dispose action. Single knowledge items cannot be disposed since
these are eternal propositions.

Relocating. An agent can relocate a certain distance. Relocating implies mov-
ing closer to/further from other agents or knowledge stores. The distance an
agent moves per relocation depends on the distance setting for the relocate
action (agent group property); the direction each time the agent relocates is
random. Relocation is important in the context of scanning and for calling a
meeting as it affects what one sees and whom one sees. As agents can only scan
and call for meetings within the radius of their vision, they are only able to pick
up knowledge or meet people in a different area by moving/relocating. When
agents relocate, they leave their knowledge stores behind, but can still use them
(N.B.: A new knowledge store is always given the same location as the agent.).

Exiting. An agent can exit the SimWorld. It can do so in any particular period
with its current rent earnings. An example of exiting is retiring to the Bahamas
to live a life of luxury. Once the agent has exited, the only action possible for
the agent is entering.

Entering. An agent can enter the SimWorld. Obviously, the agent must be
outside the simulation world to undertake this action. Being in SimWorld is a
particular state an agent has or has not. It indicates when an agent is alive and
is a citizen of the SimWorld (i.e. has not retired).

Relaxing. An agent can relax for a specific duration. Relaxing means that the
agent will undertake no actions. The duration specifies the number of periods
the agent is relaxing for (e.g., if the agent is relaxing with duration 2.4, then
the agent is doing nothing for two periods of the simulation). Actions are not
queued while agents are relaxing - they simply do not try to undertake any
actions whatsoever. Agents will only start trying to undertake actions after their
relaxation duration is over. Relaxing is currently the only action-type that has a
duration. The simulation determines the duration randomly by assigning a value
between 1 and 10.

The death of an agent - cropping. Agents die if there are insufficient resources
to sustain them. The agent’s financial funds must be zero or negative for the crop
action type to occur. Cropping happens each period after the updating of financial
funds, which happens during end-of-period processing. Once the agent is cropped,

SimISpace2 85

no action is possible for the agent, since the agent is dead. After cropping, states
like ’owning’ and ‘is in SimWorld ’ are updated, because a dead agent can no longer
own anything or be in the SimWorld. All agents with financial funds of zero must
be cropped. This goes almost without saying since an agent without financial funds
cannot afford to perform any action, as they cannot afford the costs of performing
any action. However, the simulation still needs to crop/kill them, so the user can
see which agents died and in what period. It is assumed that dead agents cannot
have an estate, and that they merely forfeit ownership when they die, rather than
have ownership vest in the estate of the deceased agent. Being dead or alive is a
particular state an agent has.

5 Validation

Can SimISpace2 capture the basic tenets that I-Space theory puts forward?
The I-Space [1,2] is a conceptual framework that relates the degree of struc-
ture of knowledge (i.e. its level of codification and abstraction) to its value and
diffusibility as that knowledge develops. To check whether the rules and archi-
tecture of the SimISpace2 environment fully implement this relationship, we can
design and run a couple of test cases, the results of which will have to match the
expected I-Space behavior the theory predicts.

5.1 More Structured Knowledge Diffuses Faster

Tacit knowledge (low codification and abstraction) flows very slowly between
agents and often only in face-to-face situations. Codified and abstract knowledge,
by contrast, can diffuse rapidly throughout a population, whether such diffusion
is desired or not [1,2]. To test for this, we create three knowledge groups of equal
size, one with a low level of codification (‘KG1’ – 0.1), one with a medium level
of codification (‘KG2’ – 0.5), and one with a high level of codification (‘KG3’ –
0.9). What we expect to see is that the agents that scan knowledge from other
agents pick up the more codified groups faster than the less codified groups.
This is confirmed in the simulation results displayed in Fig. 4. ‘KG3’, the most
codified group, is scanned fastest, followed by ‘KG2’. The least codified group,
‘KG1’, is picked up last and thereby lags behind5.

5.2 Extracting Value from Knowledge

The development of knowledge from tacit to codified and abstract can add value
to knowledge to the extent that it does not diffuse to other agents, and to the
extent that it succeeds in shedding noisy data without simultaneously shed-
ding usable information. Thus, extracting value from knowledge is difficult. The

5 To make the test cases as uncomplicated as possible, we only vary the level of
codification. However, comparable results (not reported in this paper) were obtained
when experimenting with different levels of abstraction.

86 M. Ihrig

Entrepreneurial
Knowledge

0.5

Local
Knowledge

0.9

New Venture Idea
Knowledge

0.1

0

20

40

60

80

100

120

0 50 100 150 200 250

O
cc

ur
re

nc
e

Co
un

t

Period

Occurrence Count - Scanner
AVERAGE of sim runs

SUM of agent population

KG3
0.9

KG1
0.1

KG2
0.5

Fig. 4. More structured knowledge diffuses faster

structuring of knowledge increases its utility while - on account of its increased
diffusibility - simultaneously compromises its scarcity [1,2].

More Diffused Knowledge Is Less Valuable

The more diffused knowledge is the less valuable it should be to agents that
possess it. To test for this, we create three agent groups of equal size and two
knowledge groups of equal size. The two knowledge groups have exactly the same
properties; one is exclusively assigned to the agent group we call ‘AG1’, and one
is assigned to the other two agent groups, ‘AG2’ and ‘AG3’. AG1 and AG2 both
exploit their knowledge and do this with exactly the same frequency. The only
difference is that the knowledge AG2 is exploiting is more diffused (the ‘AG3’
group also possesses this knowledge) than the knowledge AG1 exploits. The
expected outcome is that AG1 earns more than AG2, because the knowledge it
is capitalizing on is scarcer. This is exactly what our simulation results in Fig. 5
show. The accumulated financial funds in period 100 of AG1 are around 49,000,
whereas the financial funds of AG2 are only around 25,000.

More Structured Knowledge Is More Valuable

More structured knowledge diffuses more rapidly and the more diffused it gets the
less value can be extracted from it. However, holding everything else constant, more
structured knowledge should also be more valuable than unstructured knowledge
as its utility is higher. To test for this, we take the previous scenario, leave all the
settings the same, but change the codification level of the two knowledge groups.
Whereas in the previous scenario the knowledge had a static codification level of
0.3, we now set the codification level to 1. In this new test case, AG1 and AG2

SimISpace2 87

Innovator

Copier

Bozos
0

10,000

20,000

30,000

40,000

50,000

60,000

0 20 40 60 80 100 120

Fi
na

nc
ia

l F
un

ds

Period

Property Value - Financial Funds
AVERAGE of sim runs
SUM of agent group

AG1

AG2

AG3

60,000

Fig. 5. More diffused knowledge is less valuable

Innovator

Copier

Bozos0

20,000

40,000

60,000

80,000

100,000

120,000

0 20 40 60 80 100 120

Fi
na

nc
ia

l F
un

ds

Period

Property Value - Financial Funds
AVERAGE of sim runs
SUM of agent group

AG1

AG2

AG3

120,000

Fig. 6. More structured knowledge is more valuable

88 M. Ihrig

should earn more, because the utility of the knowledge they are capitalizing on
increased. This is what our simulation results in Fig. 6 show. Exploiting the
more codified knowledge, the financial funds of AG1 now reach 98,0000 and the
financial funds of AG2 50,000.

5.3 Validation Results

The three simple test cases described above confirm that the basic theoretical
relationships of the I-Space are properly implemented in the SimISpace2 envi-
ronment. The special interactions between the structure, the diffusion, and the
value of knowledge are taken into account to enable the researcher to adequately
model knowledge assets and explore agents’ strategies in a knowledge economy.
Any simulation model that will be implemented with SimISpace2 will have the
dynamics of a knowledge economy built in, and agent behavior can be ana-
lyzed accordingly. These dynamic effects are particularly interesting to study
when working with large and complex simulations, composed of many agents
and knowledge assets, as done with recent applications of SimISpace2 [10,11].

6 Conclusion

Having described the special features of this unique agent-based graphical sim-
ulation environment in detail, the informed reader can see that SimISpace2 is
a powerful tool with which to simulate strategic knowledge management pro-
cesses. The user can model and analyze very complex scenarios to study agents’
actions and interactions, together with knowledge assets and their life cycles.
There are numerous practical, real-world issues that can be simulated using
SimISpace2. Examples of practical applications would be intellectual property
rights policies, cognitive arms races (e.g. two pharmaceutical firms racing to
discover a new molecule), countries competing to attract intellectual capital,
mergers and acquisitions, intra-firm technology transfer strategies, and science,
technology and innovation policies. In recent work, the tool has been used to
build an application-specific model for the field of entrepreneurship. It mod-
els entrepreneurial knowledge appropriation and development and enables re-
searchers to simulate different opportunity recognition strategies and to analyze
their micro and macro effects [10,11]. Projects are under way to apply SimISpace2
in other areas of management research, in particular studying open innovation
strategies and absorptive capacity processes.

Acknowledgements. This research project was supported by the Snider En-
trepreneurial Research Center at the Wharton School of the University of Penn-
sylvania and by I-Space Institute, LLC. The author would like to thank Ian
MacMillan and Max Boisot for their help in developing the conceptual under-
pinnings and Ryan Namdar and Danish Munir for their excellent programming
work on SimISpace2. An earlier version of this paper was presented at the Eu-
ropean Conference on Modelling and Simulation (ECMS 2007, Prague, Czech
Republic).

SimISpace2 89

References

1. Boisot, M.H.: Knowledge assets - securing competitive advantage in the information
economy. Oxford University Press, New York (1998)

2. Boisot, M.H.: Information space: a framework for learning in organizations, insti-
tutions and culture. Routledge, London (1995)

3. Boisot, M., Canals, A., MacMillan, I.C.: Neoclassical versus Schumpeterian ap-
proaches to learning: a knowledge-based simulation approach. In: Müller, J.-P.,
Seidel, M.-M. (eds.) Proc. of the 4th Workshop on Agent-Based Simulation (Soci-
ety for Modeling and Simulation International). SCS-European Publishing House,
Erlangen (Germany)– Montpellier, France (2003)

4. Boisot, M., MacMillan, I.C., Han, K.S.: Property rights and information flows: a
simulation approach. Journal of Evolutionary Economics 17(1), 63–93 (2007)

5. Canals, A., Boisot, M., MacMillan, I.: The spatial dimension of knowledge flows:
a simulation approach. Cambridge Journal of Regions, Economy and Society 1(2),
175–204 (2008)

6. MacMillan, I.C., Boisot, M., Abrahams, A.S., Bharathy, G.: Simulating the knowl-
edge transfer dilemma: lessons for security and counter-terrorism. In: Proc. of the
2005 Summer Computer Simulation Conference (SCSC 2005), Philadelphia, PA
(2005)

7. Ihrig, M., Abrahams, A.S.: Breaking new ground in simulating knowledge manage-
ment processes: SimISpace2. In: Zelinka, I., Oplatková, Z., Orsoni, A. (eds.) Proc. of
the 21st European Conference on Modelling and Simulation (ECMS 2007), Prague
(2007)

8. Gilbert, N.: Agent-based models. Sage Publications, London (2008)
9. Hillier, F.S., Hillier, M.S., Hillier, M.: Introduction to management science, 2nd

edn. McGraw-Hill/Irwin, New York (2002)
10. Ihrig, M., MacMillan, I., Zu Knyphausen-Aufseß, D., Boisot, M.: Knowledge-based

opportunity recognition strategies: a simulation approach. In: Proc. of the Strategic
Management Conference, Rome, Italy (2010)

11. Ihrig, M.: Simulating entrepreneurial strategies in a global knowledge economy. In:
Proc. of the 25th European Conference on Modelling and Simulation, ECMS 2011
(2011)

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 90–102, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cloud Search Engine for IaaS

Yuuta Ichikawa1 and Minoru Uehara2

1 CyberAgent, Inc., Japan
ti070043@gmail.com

2 Toyo University, Japan
uehara@toyo.jp

Abstract. Cloud based online storage enables the storage of massive data. In
these systems, a full text search engine is very important for finding documents.
In this paper, we propose a distributed search engine suitable for searching a
cloud. In our previous work, we developed a distributed search engine, the
cooperative search engine (CSE). We now extend the CSE to search clouds. In
a cloud, elasticity and reliability are important. We realize these by employing
consistent hashing for distributed index files in the cloud. In this paper, we
describe the improved CSE architecture and its implementation for a cloud
search.

Keywords: Cloud, Cooperative Search Engine(CSE), Infrastructure as a
Service(IaaS).

1 Introduction

Recently, cloud computing has become very popular. A cloud is a computing service
that utilizes computing resources on demand in an elastic fashion. Well known clouds
are Amazon Web Services (AWS) as an IaaS (Infrastructure as a Service), Google
App Engine (GAE) as a PaaS (Platform as a Service), salesforce.com as a SaaS
(Software as a Service), and so on. The features of these clouds have been well
defined by the National Institute of Standards and Technology (NIST)[1]. In
particular, elasticity is an important concept in a cloud. In an elastic cloud, the number
of nodes changes dynamically on demand. As such, the system administrator can
reduce the total cost of ownership of the system by minimizing the number of
required nodes.

One of the applications of a cloud is online storage. Several cloud based online
storage services, such as DropBox, SugarSync and ZumoDrive, have already been
developed. A feature of these online storage systems is that they can store and manage
massive amounts of data. In such systems, a full text search is required to manage
documents efficiently.

We aim to develop a full text search engine for an IaaS based cloud. In this paper,
we propose a distributed search engine for the purpose of searching for documents
stored in an IaaS based cloud. In this system, documents are stored in a storage server
in the cloud. A distributed search engine is organized as many small search engines

 Cloud Search Engine for IaaS 91

that work as an integrated large search engine through cooperation. The overall search
process allows each small search engine to read the local documents in a storage
server and create an index thereof.

In our previous work, we developed a distributed search engine called the CSE
(Cooperative Search Engine). In this paper, we propose a new architecture based on
the CSE for an IaaS cloud. The proposed search engine is suitable for elastic scale-
out, i.e., dynamic changes in the system configuration. Thus, it allows scalability in
performance and reliability against node failure.

This paper is organized as follows. In Section 2, we introduce several related
works, particularly the CSE, which forms the basis of this research. In Section 3, we
propose a new architecture suitable for a cloud and describe its design and
implementation. In Section 4, we evaluate the characteristics of the proposed system.
Finally, we give our concluding remarks.

2 Related Works

2.1 Cooperative Search Engine

First, we explain the basic idea of the CSE. To minimize the update interval, every
web site basically creates indices via a local indexer. However, these sites are not yet
cooperative. Each site sends the information about what (i.e., which words) it knows
to the manager. This information is called Forward Knowledge (FK), and is meta
knowledge indicating what each site knows. FK is the same as FI in Whois++[2].
When searching, the manager informs the client which sites have documents that
include words in the query, and then the client sends the query to all these sites. In
this way, since the CSE needs two-pass communication for searching, the retrieval
time of the CSE is longer than that of a centralized search engine.

The CSE includes the following components (see Figure 1).

• Location Server (LS): This manages FK exclusively. Using FK, the LS performs
Query based Site Selection which is described later. The LS also has a Site
selection Cache (SC), which caches results of the site selection.

• Cache Server (CS): This caches FK and retrieval results. The LS can be thought
of as a top-level CS. It realizes the “Next 10” searches by caching retrieval results.
Furthermore, it realizes a parallel search by calling the LMSE described below in
parallel.

• Local Meta Search Engine (LMSE): This receives a query from a user, sends it
to the CS (User I/F in Figure 1), and performs the local search process by calling
the LSE described below (Engine I/F in Figure 1). It works as a meta search engine
that abstracts the differences between the LSEs.

• Local Search Engine (LSE): This gathers documents locally (Gatherer in Figure
1), makes a local index (Indexer in Figure 1), and retrieves documents using the
index (Engine in Figure 1). In the CSE, Namazu [3] can be used as an LSE.
Furthermore we are developing an original indexer designed to realize high-level
search functions such as a parallel search and phrase search.

92 Y. Ichikawa and M. Uehara

Namazu[3] is widely used as a search service on various Japanese sites. It is
developed in C and Perl. Recently, Java based search engines such as Apache
Solr[12] become popular.

Fig. 1. The overview of Cooperative Search Engine

Next, we explain how the update process is done. In the CSE, Update I/F of the
LSE carries out the update process periodically. The algorithm for the update process
in the CSE is as follows.

1. The Gatherer in the LSE gathers all the documents (Web pages) in the target Web
sites using direct access (i.e., via NFS) if available, or archived access (i.e., via
CGI) if it is available and direct access is not, or HTTP access otherwise. Here, we
explain archived access in detail. In archived access, a special CGI that provides
mobile agent place functions is used. A mobile agent is sent to that place. The
agent archives local files, compresses them, and sends them back to the gatherer.

2. The Indexer in the LSE creates an index for the gathered documents by parallel
processing based on the Boss-Worker model.

3. Update phase 1: Each LMSEi is updated as follows.
a. The Engine I/F of LMSEi obtains from the corresponding LSE the

total number Ni of all the documents, the set Ki of all the words
appearing in the documents, and the number nk,i of all the
documents that include word k, and sends these to the CS together
with its own URL.

 Cloud Search Engine for IaaS 93

b. The CS sends all the content received from each LMSEi to the
upper-level CS. Transmission of content terminates when it reaches
the top-level CS (that is, the LS).

c. The LS calculates the value of idf(k) = log(Ni /nk,i) from Nk,i and
Ni for each word k.

4. Update phase 2: Each LMSEi is updated as follows.
a. LMSEi receives the set of Boolean queries Q which has been

searched and the set of idf values from the LS.
b. The Engine I/F of the LMSEi obtains from the corresponding LSE

the highest score maxd∈D Si(d,q) for each q∈{Q,Ki}, where Si(d,k) is
the score of document d containing k, and D is the set of all the
documents at the site, and sends all of these to the CS together with
its own URL.

c. The CS sends the content received from each LMSEi to the upper-
level CS. Transmission of content terminates when it reaches the
top-level CS (that is, the LS).

Note that the data transferred between each module are mainly used in the distributed
calculation to obtain the score based on the tf*idf method. We call this method the
distributed tf*idf method. The score based on the distributed tf*idf method is
calculated during the search process. Thus, we provide further details about the score
when we explain the search process in the CSE.

To achieve good performance in the update process, we sacrifice performance in
the search process in the CSE, which is carried out as follows.

1. When LMSE0 receives a query from a user, it sends the query to the CS.
2. The CS obtains from the LS all the LMSEs expected to have documents satisfying

the query.
3. The CS sends the query to each of the LMSEs obtained.
4. Each LMSE searches for documents satisfying the query using the LSE, and

returns the results to the CS.
5. The CS combines all the results received from LMSEs, and returns these to

LMSE0.
6. LMSE0 displays the search results to the user.

Next, we describe the design of the scalable architecture for the distributed search
engine, CSE.

During searching in the CSE, a problem arises in that communication delays occur.
This problem is solved by the following techniques.

• Look Ahead Cache in “Next 10” Search [4]: To shorten the delay in the search
process, the CS prepares the next result for the “Next 10” search. That is, the
search result is divided into page units, and each page unit is cached in advance by
a background process without increasing the response time.

• Score based Site Selection (SbSS) [5]: In a “Next 10” search, the score of the next
ranked document in each site is gathered in advance, and requests to sites with
low-ranked documents are suppressed. As a result of this suppression, network

94 Y. Ichikawa and M. Uehara

traffic does not increase unnecessarily. For example, there are more than 100,000
domain sites in Japan. However, by using this technique, about ten sites are
sufficient to satisfy requests from each continuous search.

• Global Shared Cache (GSC) [6]: An LMSE sends a query to the nearest CS.
Several CSs may send the same requests to the LMSEs. Therefore, to share cached
retrieval results globally among CSs, we proposed a GSC. In this method, the LS
remembers the authority CSa of each query and informs the CSa of the CSs instead
of the LMSEs. The CS caches the cached contents of CSa.

• Persistent Cache (PC) [7]: There must be at least one CS in the CSE to improve the
response time of retrieval. However, the cache soon becomes invalid because the
update interval is very short in the CSE. The valuable first page is also lost.
Therefore, we need a persistent cache that holds valid cache data before and after
updating. In this method, there are two update phases. In the first update phase,
each LMSE sends the number of documents that include each word to the LS,
which detects the idf of each word. In the second update phase, a preliminary
search is performed using the new idfs to update the caches.

• Query based Site Selection (QbSS) [8]: The CSE supports a Boolean search based
on Boolean formula. In the Boolean search, the operations “and”, “or”, and “and-
not” are available. Let SA and SB be the set of target sites for search queries A and
B, respectively. Then, the set of target sites for queries “A and B”, “A or B”, and “A
and-not B” are SA ∩ SB, SA ∪ SB, and SA, respectively. Using this selection of target
sites, the number of messages in the search process is saved.

These techniques are used as follows:
if the previous page of “Next 10” search has already been searched

LAC
else if query does not contain “and” or “and-not”

SbSS
else if it has been searched since index was updated

GSC
else if it has been searched once

PC
else // query is new

QbSS
fi

2.2 Cloud Computing

Generally, cloud systems employ scale-out technology. In scale-out, many reasonable
servers are used instead of the expensive high performance servers used in scale-up.
Furthermore, in a cloud, virtualization is usually used. Virtualization techniques allow
more than one virtual machine to be allocated to a physical machine. As a result, the
utilization of machine resources is very high, thus reducing the cost.

According to NIST 1, cloud systems are classified according to the following
types: SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS

 Cloud Search Engine for IaaS 95

(Infrastructure as a Service). In this paper, we focus on IaaS clouds such as AWS
(Amazon Web Service). Recently, many cloud service providers have been
established. They often provide IaaS because this is suited to the efficient
management of data centers. Almost all cloud service providers own data centers as
their core business and they can reduce the administration cost using cloud
technology.

AWS is the most famous and popular IaaS. IaaS aims to provide a virtually
organized computing environment. In IaaS, a user can use the required resources
quickly on demand. This reflects the elasticity. For instance, the elastic IaaS part of
the AWS is called EC2 (Elastic Compute Cloud). The Amazon EC2 provides
functions for creating an instance of a virtual machine, and for starting/stopping it.
When a virtual machine terminates, data stored in the machine is also deleted. In this
sense, the HDD of a virtual machine is similar to RAM in a physical machine. Using
Amazon EC2, a user can obtain as many servers as he likes. This feature is most
suited to small and medium sized businesses. In AWS, if you need persistent data,
you have to use another service such as S3 (Simple Storage Service) or EBS (Elastic
Block Store). A user stores persistent data, which could be important, in such storage.
Such storage is the target of our cloud search engine. In this paper, we propose a
cloud search engine suitable for searching documents in EBS, which is used by being
mounted in an instance. Therefore, from the viewpoint of a cloud search engine, it is
viewed as a conventional file system.

In such a cloud, a user often increases the number of servers if the system
performance/capacity is not adequate. At that time, resource allocation issues in the
cloud need to be dealt with. One of the solutions is consistent hashing, which is a
popular technique in overlay networks such as P2P (Peer to Peer). A typical
consistent hashing is DHT (Distributed Hash Table), which is used in Chord. In
Chord, peers are networked as a ring. For example, the order of peers in the network
can be decided by their ID. In consistent hashing, the hash value of the contents is
used as the ID. Each peer has a shortcut table in log order. In this way, in Chord, a
message can be transferred within O(log n).

3 Cloud Search Engine

Here we propose a cloud search engine based on the CSE that can search documents
in an IaaS cloud. The CSE is suited to an IaaS cloud such as Amazon EC2, especially
where documents are accessed as conventional files. However, there are several issues
if normal CSE is applied to such a cloud.

One of the issues is reliability, especially fault tolerance. In the LSE, which is a
component of the CSE, there is no redundancy. For example, index data are not
removed even if the server stops, because it is stored in a physical server. However, in
an IaaS cloud, when an instance, which is a virtual machine, terminates, the index
data are removed. Therefore, redundancy such as replication is required to realize a
cloud search engine for an IaaS cloud.

Another issue is the scale-out technique. How to scale out is very important for an
IaaS cloud. In conventional CSE, there is only one LS. Therefore, it is hard to scale

96 Y. Ichikawa and M. Uehara

out because of this bottleneck. In a previous work 10, we proposed a redundant
architecture with multiple LSs for the CSE to solve this issue. In this paper, we
propose another solution based on NoSQL technology, which is popular in clouds. A
conventional SQL based DBMS is a bottleneck in a cloud. Thus, to remove this
bottleneck, cloud based systems employ a memory based KVS (Key Value Store),
which is simpler than a SQL based DBMS. Such a system is called NoSQL. We
employ Apache Cassandra 12 as the NoSQL. Furthermore, in this paper, we propose
redundant configurations for the LSEs based on consistent hashing. This
configuration enables the communication traffic to be reduced by reallocating data
when a new node joins.

Fig. 2. The overview of Cloud Search Engine

A system overview of the proposed cloud search engine is illustrated in Figure 2.
The following 5 components are shown in this figure.

• Local Search Engine (LSE): The LSE is a local search engine that searches local
documents at each site. In our cloud search engine, more than one LSE organizes a
group that shares documents. In a group, the index is replicated to each LSE. In
this way, fault tolerance is realized in the LSE.

• Global Search Engine (GSE): The GSE accepts a user query and delegates it to
the LSEs that are selected by the LS. Then, it shows the results in rank order after
the ranking is modified to a global order. Many GSEs are allowed in a system,
which ensures that the GSE loads are balanced.

• Account Server (AS): The AS manages account information, which is used for
access control of documents. Generally, in a cloud, applications have multi-
tenancy. This often means that documents owned by more than one organization

 Cloud Search Engine for IaaS 97

are mixed in storage. These documents are indexed by the same LSE. Therefore,
access control is essential in a cloud search.

• Location Server (LS): When a user searches documents with the given keywords,
the LS selects a set of LSEs with the keywords. Therefore, the LS is also called a
meta search server. In addition, the LS stores meta knowledge, what each LSE
knows, which is actually the keywords list stored in each LSE’s index. In a cloud
search engine, multiple LSs are included to increase reliability.

• Storage Server (SS): SS is a server that stores the searched documents. Generally,
in an IaaS cloud, when an instance terminates, all of its data are removed even if
the data are stored on a virtual HDD. Therefore, persistent data should be stored in
reliable storage. The SS realizes storage like the EBS. In this implementation,
nodes share documents with the SS by NFS.

Here, we describe an implementation of our proposed cloud search engine. First, we
focus on creating indexes. In our cloud search engine, each LSE creates an index of
local documents. We employ Apache Solr 11 for the LSEs. Apache Solr is a popular
search engine that has many functions, such as facet search, highlighting hit
keywords, and replication. In addition, we can develop additional functions freely in
Solr because it is OSS.

The original CSE focused on fresh information retrieval. Therefore, the new cloud
search engine also focuses on this. To realize fresh information retrieval, we have
developed LSEDaemon, which observes specified directories. LSEDaemon runs with
the LSE. When a file is updated, LSEDaemon notifies the LSE, which then updates
the index. If the file is newly created, LSEDaemon decides which LSE owns it based
on the document ID. However, this may cause the load to become unbalanced.
Therefore, we introduce about 100 virtual nodes corresponding to physical nodes.
Furthermore, LSEDaemon creates an XML configuration file that specifies the
replication method, observes whether a node is dead or alive, and sends a summary of
the index to the LS if the index is updated.

The LS is the most important component because it manages meta information
used for site selection. It is referenced by all the GSEs and as such is the single point
of failure and the bottleneck for performance. Thus, it is recommended that more than
one LS is used. We implement the LS using Apache Cassandra, which can realize a
reliable and high performance KVS(Key-Value Store).

Here, we describe the behavior for updating documents. The process given below
is started by each LSE independently.

1. LSEDaemon observes a specified directory. When a file in the directory is
modified, LSEDaemon computes the consistent hashing value from the document
ID, assigns the document to an LSE, and creates the index.

2. After the index is updated, LSEDaemon sends a summary of the index to the LS,
including the total number of documents in the LSE, the total list of keywords, and
the number of documents that contain a keyword.

Next, we explain the behavior for searching.

98 Y. Ichikawa and M. Uehara

1. A user requests a query from the GSE. The query includes the account information
of the user. The GSE delegates the AS to authenticate the user and also manages
the session, which is used for the “next 10” search.

2. The GSE asks the LS which LSEs know the keywords. The LS responds with the
addresses of the selected LSEs.

3. The GSE sends the user’s query to the LSEs selected by the LS.
4. Each LSE answers the query.
5. The GSE collects the search results and sorts them by rank order.
6. The GSE shows the relative top 10 items as an HTML document. The remaining

search results are cached in the GSE for the “next 10” search.

One of the issues in a distributed search engine is consistent ranking. Generally, the
ranking in a global search is different from the ranking in a local search. For example,
in the tf*idf ranking method that is used in Apache Solr, the ranking of a document is
decided by both tf and idf. Here, tf is the term frequency, and idf is the inverse
document factor. Although tf is computed locally, idf should be computed globally.
Therefore, we have to modify the ranking of results searched by Solr.

In Solr, the ranking is decided by the score of each document with respect to a
query. The score S is given by the following equations.

 S q, d crd q, d · nrm q ∑ tf t · idf t · bst t · nrm t, d (1) nrm q (2) ssw q bst q · ∑ idf t · bst t (3) idf t 1 log DF (4)

Here w, t are terms, q is a query, d is a document, maxDocs is the maximum number
of documents, and docFreq is the document frequency. In the CSE, the idf value is
globally correct because the LS knows both maxDocs and docFreq. GSE resort search
results which are collected from a set of LSEs in global order. Furthermore, idf is used
to define the equation (3). In the above equations, idf is used with several boost
values. These boost values can be specified by the application program.

Next, we discuss the fault tolerance of our system.
An LS is realized using Apache Cassandra. Meta data of an LS are automatically

replicated to many other LSs. Therefore, meta data can be read from a set of LSs even
if some of the LSs terminate.

An LSE is realized using Apache Solr. The LSE managing an index is decided by
the document IDs in the index. Each LSE has a forwarding link to replicated data.
Therefore, if an LSE terminates, a client can get the next LSE by following the
forwarding link of the data.

The GSE is originally developed. However, the GSE is based on a zero share
architecture, except for caching. A user freely selects any GSE. Therefore, if at least
one GSE is running, the user’s request can be accepted by a GSE.

 Cloud Search Engine for IaaS 99

4 Evaluations

In this paper, we evaluate our implementation of a cloud search engine on a PC. All
components of the cloud search engine, the AS, LS, GSE, and LSEs (0-2) are
deployed on this PC. However, the LSEs run in virtual machines as node0 and node1,
on VMware Fusion. This configuration is shown in Table 1. Furthermore, we use the
literature of Aozora Bunko 13 as the searched documents. The total number of
documents is 1212, divided into 3 folders. Each folder has 404 documents. These
folders are mounted in the LSEs using a shared folder of VMware Fusion. This
configuration is shown in Table 2.

Table 1. Specification of the testbed

Specification type Physical Machine (PM) Virtual Machine (VM)
CPU Intel Core 2 Duo 2 GHz 1 core
Memory 4GB 768MB
OS Mac OS X Ubuntu Server 9.04

Table 2. Number of documents stored in each node

LSE Node0 Node1 (replica)
0 400 411
1 401 400
2 411 401

First, we evaluate index creation by prototyping. In this evaluation, we deploy 3

sets of documents to 3 LSEs (see Table 2). In Table 2, node0 is the master of
replication, while node1 is the slave of replication. The order of consistent hashing is
as follows: LSE0, LSE1, and LSE2. This means that LSE1 and LSE2 are slaves of
LSE0 and LSE1, respectively. Therefore, if any LSE fails, its replica can respond to
its requests.

We also evaluated the search results of the cloud search engine. Figure 3 shows the
results when a user searches using keywords such as “ ”(bloodstained
notes) the book title written by Mitsuzo Sasaki, and “ ”(Ryunosuke
Akutagawa) who is the author of Rashomon. Here, we employ Japanese keywords to
test the Japanese full text search. In Figure 3, the number of LSEs that replied to the
query “bloodstained notes” and “Ryunosuke Akutagawa” was 1 and 3, respectively.
In particular, in the case of “Akutagawa Ryunosuke”, the load in the cloud search
engine can be balanced by using more than one LSE.

100 Y. Ichikawa and M.

Fig. 4. S

Here, we evaluate the sea
LSE0 stops. In this case, the
forwarding link of 192.168.2

Table 3. Numbe

LSE
0
1

Table 4. Numb

LSE
0
1
2

Next, we describe the e

evaluation is different fro
evaluation, after the system
added to the system. As a r
others and the index and for

Uehara

Fig. 3. Search Results

Search Results in the event that LSE0 stops

arch results in the event that any LSE terminates. In Figur
e cloud search engine replies to 192.168.220.139 (LSE1)
220.137 (LSE0).

er of documents before the configuration is changed

Node0 Node1 (replica)
445 3
363 4

ber of documents after the configuration is changed

Node0 Node1 (replica)
580 1
494 5
138 4

evaluation results when an LSE joins dynamically. T
om the previous one for the following reason. In
m has initially been created with LSE0 and LSE1, LSE2
result, the documents stored in LSE2 are distributed to
rwarding link for replication are updated.

re 4,
 the

63
445

38
580
494

This
this
2 is
the

 Cloud Search Engine for IaaS 101

Table 3 shows the number of documents initially assigned to LSE0 and LSE1. At
this time, LSE0 and LSE1 are paired with each other. Next, LSE2 is added. Table 4
shows the number of documents assigned to LSE0, LSE1, and LSE2 after the
documents have been re-allocated. At this time, the configuration of the replication is
the same as in Table 2. From these results, we conclude that the index and the
forwarding links for replication are correctly updated after the LSE is added. This
means that it is possible to scale out this cloud search engine. However, the number of
documents in each LSE is not balanced. This remains one of our future works.

5 Conclusions

In this paper, we presented a cloud search engine for an IaaS cloud, which is
constructed by integrating multiple local search engines. To increase reliability, we
employ Apache Solr, which supports replication, in the form of LSEs. Using Apache
Solr for an LSE, the index is redundant. Therefore, if an LSE terminates, documents
can still be searched successfully. Furthermore, the performance can be scaled out.

However, we have not yet developed the re-allocation of index data when an LSE
is added. Therefore, the index data become unbalanced. This is a future work. In
addition, this time, we evaluated the prototype system in a local environment.
Therefore, the number of LSs, implemented with Apache Cassandra, was only one.
We aim to evaluate another prototype extended with more than one LS.

References

1. NIST: Cloud Computing, http://csrc.nist.gov/groups/SNS/
cloud-computing/documents/forumworkshop-may2010/
nist_cloud_computing_forum-leaf.pdf

2. Weider, C., Fullton, J., Spero, S.: Architecture of the Whois++ Index Service, RFC1913
3. The Namazu Project, Namazu, http://www.namazu.org/
4. Sato, N., Yamamoto, T., Nishida, Y., Uehara, M., Mori, H.: Look Ahead Cache for Next

10 in Cooperative Search Engine. In: Proc. of DPSWS 2000, vol. 2000(15), pp. 205–210
(December 2000) (in Japanese)

5. Sato, N., Uehara, M., Sakai, Y., Mori, H.: Score Based Site Selection in Cooperative
Search Engine. In: Proc. of DICOMO 2001, vol. 2001(7), pp. 465–470 (June 2001) (in
Japanese)

6. Sato, N., Uehara, M., Sakai, Y., Mori, H.: Global Shared Cache in Cooperative Search
Engine. In: Proc. of DPSWS 2001, vol. 2001(13), pp. 219–224 (October 2001) (in
Japanese)

7. Sato, N., Uehara, M., Sakai, Y., Mori, H.: Persistent Cache in Cooperative Search Engine.
In: Proc. of The 4th International Workshop on Multimedia Network Systems and
Applications (MNSA 2002), in Conjunction with The 22nd International Conference on
Distributed Computing Systems (ICDCS 22), pp. 182–187 (2002)

8. Sakai, Y., Sato, N., Uehara, M., Mori, H.: The Optimal Monotonization for Search Queries
in Cooperative Search Engine. In: Proc. of DICOMO 2001. IPSJ Symposium Series,
vol. 2001(7), pp. 453–458 (June 2001) (in Japanese)

102 Y. Ichikawa and M. Uehara

9. Sato, N., Udagawa, M., Uehara, M., Sakai, Y., Mori, H.: Query based Site Selection for
Distributed Search Engines. In: Proc. of The 6th International Workshop on Multimedia
Network Systems and Applications (MNSA 2003), in Conjunction with the 23th
International Conference on Distributed Computing Systems (ICDCS 2003), pp. 556–561
(2003)

10. Sato, N., Udagawa, M., Uehara, M., Sakai, Y., Mori, H.: Redundancy of Meta Search
Servers in a Distributed Search Engine. In: Proceedings of 17th International Conference
on Advanced Information Networking and Applications (AINA 2003), pp. 400–407 (2003)

11. Apache Solr, http://lucene.apache.org/solr/
12. Apache Cassandra, http://cassandra.apache.org/
13. Aozora Bunko, http://www.aozora.gr.jp/

Data Scheduling in Data Grids and Data

Centers: A Short Taxonomy of Problems
and Intelligent Resolution Techniques

Joanna Ko�lodziej1 and Samee Ullah Khan2

1 Institute of Computer Science
Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

jkolodziej@uck.pk.edu.pl
2 NDSU-CIIT Green Computing and Communications Laboratory,

North Dakota State University,
ND 58108, USA

samee.khan@ndsu.edu

Abstract. Data-aware scheduling in today’s large-scale heterogeneous
environments has become a major research issue. Data Grids (DGs) and
Data Centers arise quite naturally to support needs of scientific commu-
nities to share, access, process, and manage large data collections geo-
graphically distributed. Data scheduling, although similar in nature with
grid scheduling, is given rise to the definition of a new family of optimiza-
tion problems. New requirements such as data transmission, decoupling
of data from processing, data replication, data access and security are
to be added to the scheduling problem are the basis for the definition of
a whole taxonomy of data scheduling problems. In this paper we briefly
survey the state-of-the-art in the domain. We exemplify the model and
methodology for the case of data-aware independent job scheduling in
computational grid and present several heuristic resolution methods for
the problem.

Keywords: Data Grid, Scheduling, Data Center, Expected Time to
Transmit, Data replication.

1 Introduction

Traditional scheduling problems are mainly concerned with high performance pa-
rameters related to task processing (CPU related parameters) such as makespan,
flowtime, resource usage, etc. These parameters usually do no take into account
requirements on data needed for task completion such as data transmission time,
data access rights, data availability (replication) and security issues. In most of
the research on grid and cloud computing data transmission time is assured to
be fast/very fast, data access rights are granted, due to the single domain of
LANs and clusters, so there is no need for special data access management. Sim-
ilarly, security issues are easily handled within the same administrative domain.
Obviously, the situation is very different in current large scale setting, where

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 103–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 J. Ko�lodziej and S.U. Khan

data sources needed for task completion could be located at different sites under
different administrative domains.

Although data-aware scheduling has been considered in a significant volume
of the research works, e.g. in parameter sweep applications [2,3], the scheduling
problems in Computational Grids (CGs) and in Data Grids (DGs) is dealing with
in a separated way. Much of the current efforts are focused on scheduling work-
loads in a data center or schedule movement of data and data placement [38] for
efficient resource/storage utilization or energy-effective scheduling in large-scale
data centers [37], [8], [29], [18], [44]. A recent example is that of GridBatch [40]
for large scale data-intensive problems on cloud infrastructures.

Due to advent of DGs and fast development of Cloud Computing, data-aware
scheduling has recently attracted considerable attention of researcher from dis-
tributed computing and optimization communities. In fact, DGs can be seen as
precursors of Data Centers in Cloud Computing platforms, which serve as ba-
sis for collaboration at a large scale. In such computational infrastructures, the
large amount of data to be efficiently processed is a real challenge. One of the
key issues contributing to the efficiency of massive processing is the scheduling
with data transmission requirements.

In this work, we consider the data-aware scheduling aiming to problem for-
mulations that take into account new requirements such as data transmission,
decoupling of data from processing [32], [47], [53],, data replication [7], [10], data
access and security, [33], [16], [17]. The aim is to integrate these new require-
ments into a multi-objective optimization model in a similar way that it has been
addressed for a classical grid scheduling. The grid schedulers must thus take into
account the features of both CG and of DG to achieve desired performance of
grid-enabled applications [34], [35]. We exemplify the approach for the case of
data-aware independent batch task scheduling problem.

The remainder of this paper is structured as follows. We present in Section 2
a high level taxonomy for data scheduling in Data Grids. The data-aware system
model for independent batch scheduling is given in Section 3. Selected heuristic-
based resolution methods for solving data-aware independent batch scheduling
are presented briefly in Section 4. We discuss the most important challenges in
data-aware scheduling in Section 5 and conclude this paper in Section 6.

2 A Short Taxonomy of Data-Aware Scheduling
Problems in Data Grids

Data Grids (GGs) are defined as computational infrastructures that provide
high performance massive aggregated computing resources and distributed data
storage capabilities. DGs support data intensive applications. Among several
types of Data Grids elements four components seem to be fundamental, namely
Grid Organization module, Data Replication mechanism, Data Transfer policy
and infrastructure and Scheduling module (see also [46]) as shown in Fig. 1.

The complex hierarchy of the DG can be then organized as a collection of
four sub-hierarchies, each of them dedicated to one of the DG’s elements. Such

Data Scheduling in Data Grids and Data Centers 105

Data Grid Elements

Scheduling

Data
Transport

Data
Replication

Organization

Fig. 1. Data Grid elements (based on the full taxonomy presented in [46])

complex DG characteristics are presented in [46]. In fact, each of the areas of
data transport, replica management and resource management pose challenging
research issues and can be analyzed as independent research areas. However,
in the recent studies on grid systems there is a need to analyze the specific
requirements of DG’s users and environments, which in fact tends to a direct
or indirect aggregation of the particular grid elements and methodologies into
wider classes. In this paper we focus on the Scheduling sub-hierarchy.

The requirements for large data files and the presence of multiple replicas of
these data files located at geographically-distributed data hosts makes schedul-
ing of data-intensive tasks different from that of simply computational tasks.
Schedulers have to take into account the network bandwidth availability and
the latency of data transfer between a computational node to which a task is
going to be submitted, and the storage resource(s) from which the data required
is to be retrieved [19], [11]. Therefore, the scheduler needs to be aware of any
replicas “close” to the computation node and if the replication is coupled to the
scheduling, then create a new copy of the data.

A basic taxonomy for scheduling of data-intensive applications is shown in Fig. 2.
There are five main categories in the taxonomy, which can be characterized

in the following paragraphs.

Application Model. Scheduling strategies in DGs can be classified by the ap-
plication models, which are mainly determined by the manner in which the grid
task is composed or distributed for scheduling. The grid tasks may be categorized
into the following classes:

– Process-oriented applications– in this applications the data is manipulated
at the process level (Message Passing Interface (MPI) programs [5]).

– Independent tasks – can have different objectives or may be defined as a
meta-task or a bag-of-tasks. They are scheduled individually and it is ensured
that each of them get the required share of resources for their completion [41].

106 J. Ko�lodziej and S.U. Khan

Scheduling Taxonomy

Utility
Function

Application
Model

Data
Replication

Scope

Locality

Fig. 2. Data Grid scheduling taxonomy

– A workflow ([45]) is a sequence of tasks in which each task is dependent on
the results of its predecessor(-s) tasks. The outputs of the preceding tasks
may be large data files themselves.

Scope. Scope relates to the modification of application of the scheduling strat-
egy within the DG. If the scope is individual, then the scheduling strategy is
concerned only with meeting the objectives from a user’s perspective. In a multi-
user environment, each scheduler would have its own independent view of the
resources that it wants to utilize. A scheduler can be for example aware of fluc-
tuations in resource availability, special security requirements and other policies
set at the Virtual Organization level and enforced at the resource level ([48]).

Data Replication. This category relates to whether task scheduling is cou-
pled to data replication or not. A comparison analysis of decoupled vs. coupled
strategies performed in [42] has shown that decoupled strategies promise in-
creased performance and reduce the complexity of designing algorithms for DG
environments. Additionally, one can consider replicating full data sets or chunks
of data sets. Related to data replication, there are usually a set of multiple user
QoS. For instance, access time to data, data availability, etc. can be seen as QoS
requirements. Certainly, such requirements should be taken into account by the
grid scheduler [28], [9], [12], [13].

Utility Function. The utility function can vary depending on the require-
ments of the users and architecture of the distributed system that the algorithm
is targeted to. Traditionally, scheduling algorithms have aimed at reducing in
average the total time required for computing all the tasks in a given batch or
set. Load balancing algorithms try to distribute load among the machines so
that maximum work can be obtained out of the systems. Scheduling algorithms
with economic objectives try to maximize the users’ economic utility usually

Data Scheduling in Data Grids and Data Centers 107

expressed as some profit function that takes into account economic costs of exe-
cuting the jobs on the DG. Recently, one of the key objective in green grid, cloud
and high performance computing centers is to optimize the energy utilization by
the system.

Locality. Exploiting the locality of data has been a common technique for
scheduling and load-balancing in parallel programs [6] and in query processing
in databases [43]. Similarly, data grid scheduling algorithms can be categorized as
whether they exploit the spatial or temporal locality of the data requests. Spatial
locality is locating a task in such a way that all the data required for the task
is available on data hosts that are located “close” to the node of computation.
Temporal locality exploits the fact that if data required for a task is close to a
compute node, subsequent tasks which require the same data are scheduled to
the same node to benefit from the data proximity.

3 Data-Aware System Model for Independent Job
Scheduling

Let us consider now the problem of batch scheduling of independent data-
intensive applications onto computational grid’s resources. The applications can
be considered as meta-tasks, which require multiple data sets from different het-
erogeneous data hosts. These data sets may be replicated at various locations
and can be transferred to the computational grid through the networks of various
capabilities. A possible variant of this scenario is presented in Fig. 3.

Formally, the main components of the data-aware grid system can be charac-
terized as follows:

– a meta-task Nbatch = {t1, . . . , tn} defined as a batch of independent tasks,
each of which can be executed just at one or more grid resources (n - is a
total number of tasks in the batch);

– a set of computing grid nodes Mbatch = {m1, . . . ,mk}, (k - is a total number
of machines available in the system for a given batch;

– a set of data-files Fbatch = {f1, . . . , fr} needed for the batch execution;
– a set of data-hosts DH = {dh1, . . . , dhs} dedicated for the data storage

purposes, having the necessary data services capabilities.

3.1 Task Workload and Computing Capacities

The computational load of the batch can be defined as a tasks workload vector
WLbatch = [wl1, . . . , wln], where wlj denotes an estimation of the computational
load of a task tj (in Millions of Instructions –MI). Each task tj requires a set
of files Fj = {f(1,j), . . . , f(r,j)} (Fj ⊆ Fbatch) that are distributed on a subset
DHj of DH . Specifically, for each file f(p,j) ∈ Fj (p ∈ {1, . . . , r}), DHj is the
set of data hosts, on which f(p,j) is replicated, and from which it is available.
We assume that each data host can serve multiple data files at a time and data

108 J. Ko�lodziej and S.U. Khan

...

...
...

...

...
...

Resources Tasks Files Data Hosts

1t

jt

nt

im

1m

km
rf

sd

3d

2d

1d
1f

2f

3f

submit

requires

stored on

Fig. 3. Data-aware meta-task grid scheduling problem

replication is a priori defined as a separate replication process that may take
into consideration various factors such as locality of access, load on the data-host
and available storage space.

The computational power in the grid system can be characterized by its pro-
cessing speed expressed by a clock frequency or by its computing capacity spec-
ified in MIPS (Million Instructions Per Second). The computing capacity of the
resources available for processing a given batch is defined by a computing capacity
vector CCbatch = [cc1, . . . , ccm], in which cci denotes the computing capacity of
machine i. The estimation of the prior load of each machine from Mbatch can be
represented by a ready times vector ready times(batch) = [ready1, . . . , readym].

3.2 Data-Aware Task Execution Time Model

The data-aware task execution time model presented here follows an Expected
Time to Compute (ETC) matrix model [1], in which an ETC matrix is defined,
ETC = [ETC[j][i]]n×m where ETC[j][i] is an expected (estimated) time needed
for the computing the task tj on machine mi. The workload and computing
capacity parameters for tasks and machines are generated by using the Gamma
probability distribution for the expression of tasks and machines heterogeneities
in the grid system. The elements of the ETC matrix can be computed as the
ratio of the coordinates of WL and CC vectors, i.e.:

ETC[j][i] =
wlj
cci

. (1)

Data Scheduling in Data Grids and Data Centers 109

The expected execution time of the task tj in Eq. (1) depends on the processing
speed of the machine mi. However, for the successful task execution we need
to include in the model the time needed for data transfer. For each data file
f(p,j) ∈ Fj (p ∈ {1, . . . , r}), the time required to transfer f(p,j) from the data
host dh(p,j) ∈ Dj to i, denoted TT , is defined by the following formulae:

TT [i][j][f(p,j)] = response time(dh(p,j)) +
Size

[
f(p,j)

]
B(dh(p,j), i)

(2)

where response time(dh(p,j)) is the difference between the time when the request
was made to dh(p,j) and the time when the first byte of the data file f(p,j)
is received at machine mi. This is an increasing function of the load on the
data host. We denote by B(dh(p,j), i) in Eq. (2) the bandwidth of the logical
link between dh(p,j) and mi

1 The estimated completion time for the task tj
on machine mi, completion[j][i], is the wall-clock time taken for the task from
its submission till completion and is a function of computing and transmission
times specified in Eq. (1) and (2). The impact of the data transfer time on the
task completion time depends on the mode, in which the data files are processed
by the task. The are two main such scenarios presented briefly in Fig. 4 (see
also [45]).

...

Time Time

a) b)

ETC[j][i]

(1,j)fT

T
(k,j)f

T
(2,j)f

(3,j)fT

(1,j)fT

T
(2,j)f

ETC[j][i]

T
(k,j)f

...
... ...

Fig. 4. Two variants of estimation of completion time of task tj on machine mi with
the assumption of k data files needed for the task execution

In Fig. 4, for convenience, we denote the times for transferring the files
f(1,j), f(2,j), . . . , f(k,j) by Tf(1,j) , Tf(2,j) , . . . , Tf(k,j)

, respectively. In the first sce-
nario presented in Fig. 4(a) the data files needed for the task execution are
transferred in parallel before the task execution. The number of simultaneous

1 The physical network between the data hosts and resources consists of several en-
tities such as routers, switches, links and hubs. However, the model presented here
abstracts the physical network to consider just a logical network topology where each
machine is connected to every data host by a distinct network link. Thus the band-
width of the logical link between data host and machine is the bottleneck bandwidth
of the actual physical network between them.

110 J. Ko�lodziej and S.U. Khan

data transfers determines the bandwidth available for each transfer. Thus, the
time of completion of the task tj on machine mi can be calculated by using the
following formulae:

completion[j][i] = max
f(p,j)∈Fj

TT [i][j][f(p,j)] + ETC[j][i]. (3)

On the other hand, Fig. 4(b) represents the idea of the second scenario, in which
some of the data files are transferred completely prior to the task execution and
the rest are accessed as streams during the execution. In this case, the transfer
times of the streamed data files are masked by the computation time of the task,
and, in the result, increase this computation time. The completion time of the
task tj on machine mi can be calculated in the following way:

completion[j][i] = maxf(p,j)∈F̂j
TT [i][j][f(p,j)]+

+
∑

f(l,j)∈[Fj\F̂j] TT [i][j][f(l,j)]ETC[j][i].
(4)

where F̂j denotes a set of data files which are transferred prior the task execution.
We consider the data hosts as the data storage centers separated from the

computing resources in order to make the system adaptable to various scheduling
scenarios. Of course, in particular cases we can assume that each computing
resource has its own data storage module [14], [20]. In such a case the internal
data transfer times should be rather low and can be omitted in the analysis.
However, for a fair estimation of the data transfers from the other computing
sources there is a need in fact to decouple the data storage module from the
computing module in the resource architecture [15], [22], [24]. The scalability and
effectiveness of the whole system depends strongly on the replication mechanism
and the resource data storage and computation capacities, [30], [23], [25], [21],
which in some cases can be the main barrier in the schedulers’ performance
improvement [26], [27].

3.3 Scheduling Phases and Objectives

Scheduling phases in the data-ware scheduling are similar to Grid scheduling
without data sets, but now it is assumed that Grid information services in-
clude also services for replicas such as replica management, discovery besides file
transfer capabilities. These phases can be resumed as follows:

1. Get the information on available resources ;
2. Get the information on pending tasks ;
3. Get the information on data hosts where data files for tasks completion are

required;
4. Prepare a batch of tasks and compute a schedule for that batch on available

machines and data hosts;
5. Allocate tasks;
6. Monitor (failed tasks are re-scheduled).

Data Scheduling in Data Grids and Data Centers 111

INTERNET

GRID INFORMATION
SERVICE

GRID
SCHEDULER

TASK LAUNCHING
AND MONITORING

Grid
Appl.

Failed Tasks
(Rescheduling)

Data
Servers

Machines

Tasks
Batch Scheduling

of the
Tasks' Batch

Data Servers
Pool

Fig. 5. Phases of the data-aware batch scheduler

These steps can be graphically represented as in Fig. 5.
The main objectives in data-aware scheduling are similar to the objectives

formulated for grid scheduling without data files and include minimization of
completion time, makespan, flowtime, etc.:

– Minimizing completion time of the task batch:∑
tj∈Nbatch;mi∈Mbatch

completion[tj][mi]

where completion[tj][mi] is defined as in Eq. 4).
– Minimizing makespan:

min
Sched

max
mi∈Mbatch

completion[mi]

where completion[mi] is computed as the sum of completion times of tasks
assigned to machine mi.

Additionally, there are objectives related to the data-aware nature of the schedul-
ing, such as access cost, response time, optimized QoS, etc. For example access
cost an be computed as a weighted sum of reading cost and writing cost. Mini-
mizing access cost affects directly the task turnaround time.

112 J. Ko�lodziej and S.U. Khan

3.4 Strategies for Enhancing Data-Aware Schedulers

Several techniques can be used to reduce the transmission and access time in
data-aware scheduling. As mentioned earlier, replication is a primary technique
in this regard, which increases data availability, and therefore, increases sched-
uler’s reliability. Another useful technique is that of parallel downloading of
replicated data. Due to the dynamics of Grid systems, instead of replicating full
data files, chunks of data files are replicated, which can further downloaded in
parallel from different data hosts (see e.g. [52]).

In a similar vein, techniques used in P2P networks for downloading files can
be used within the data-aware scheduling framework. The idea is that we could
defined a virtual overlay on top of the Grid system by defining neighboring rela-
tions among computing sites and data hosts if computing sites contain replicas
of data fragments for execution of a task assigned to the computing site. Then,
we can formulate an optimization problem consisting in finding a subset of peer
neighbors of the computing site from where to download/receive the data frag-
ments [39]. The problem can be formally defined as follows.

Definition 1 (Neighbor-selection problem). A neighbor-selection problem
in P2P networks problem can be defined as

∏
= (N,C,M,F, s), in which N is

the number of peers, C is the entire collection of content fragments, M is the
maximum number of the available online peers, F is a single objective to optimize
the number of swap fragments, or multi-objective to optimize the number of swap
fragments, and to minimize the downloading cost; s denotes the environment
constraints. The key components are operations, machines and data-hosts.

The near-optimal resolution of this problem [39] can be used at the scheduling
phase of selecting data hosts from where to get the data need for completion of
the tasks in the batch.

4 Resolution Methods

4.1 Ad Hoc Methods

Ad hoc heuristics are simple procedures that need not to find even near-optimal
solutions but are very fast and easy to implement. We briefly mention here some
ad hoc heuristics for data-aware scheduling. An exhaustive list presented for
Grid scheduling without data requirements can be found in [50] and [51].

MinMin Heuristic. In [45] the authors propose an extension of MinMin and Suf-
ferage heuristics. In this extension they take into account the distributed data
requirements of the target application model. The basic idea of the modified
MinMin heuristic is to match in the beginning the meta-task to a resource set
that guarantees the minimal completion time for some task in a batch. This is
produced through special matching heuristics. They define Set Covering Problem
(SCP) Tree Search (see also [4]), Greedy Selection, Compute-First or Exhaus-
tive Search heuristics, which allow to select an appropriate combination of data

Data Scheduling in Data Grids and Data Centers 113

hosts and a compute resource that the total completion time for a given com-
ponent of meta-task is minimized2. Then, the task with the optimal (minimal)
completion time in the present allocation is assigned to the compute resource.
This task is then removed from the batch structure. As task assignment changes
the availability of the compute resource with respect to the number of available
slots/processors, the resource information is updated and the process is repeated
until all the components of the meta-task have been allocated to some resource
set. When a task is scheduled for execution on a compute resource, all required
data files which are not available local to the resource, are transferred to the
resource prior to execution. These data files become replicas that can be used
by following meta-task components.

Sufferage Heuristic. The motivation behind the modified Sufferage heuristic is to
allocate a resource set to a meta-task that would be disadvantaged the most (or
”suffer” the most) if that resource set were not allocated to it. This is determined
through a sufferage value computed as the difference between the second best
and the best value of the completion time for the meta-task components. For each
task, the resource that offers the least value of the completion time is determined
through the same mechanisms as that in MinMin. Then another resource with
the second minimal completion time is selected to establish the ’sufferage’ value
for a given task. The selection of the compute resource determines both the
task execution time and the data transfer times. After determining the sufferage
value for each task, the task with the largest sufferage value is then selected and
assigned to its chosen resource. The rest of the heuristic including dispatching
and updating of compute resource and data host information proceeds in the
same manner as MinMin.

Other interesting ad hoc methods are Shortest Turnaround Time (STT), Least
Relative Load (LRL) and Data Present (DP) (see e.g. [52]).

4.2 Meta-heuristic Methods

Dealing with the many constraints and optimization criteria in a dynamic en-
vironment scheduling of data-intensive applications in Computational Grid re-
mains very complex and computationally hard problem [31], [36]. The signifi-
cance of meta-heuristic approaches for designing efficient grid schedulers can be
explained as follows (see also [49]:

Meta-heuristics Are Well Understood. Meta-heuristics have been studied
for a large number of optimization problems, from theoretical, practical and
experimental perspectives.

Computing Near-Optimal Solutions. In the dynamic grid environment, it
is usually impossible to generate the optimal schedules. This is so due to the
fact that grid schedulers run as long as the grid system exists and thus the

2 Referred to as the Minimum Resource Set (MRS) problem.

114 J. Ko�lodziej and S.U. Khan

performance is measured not only for particular applications but also in the long
run. Therefore, in such situation meta-heuristics are among best candidates to
cope with grid scheduling.

Dealing with Multi-objective Nature. Meta-heuristics have proven to effi-
ciently solve the complex multi-objective optimization problems.

Well Designed for Periodic and Batch Scheduling. In the case of periodic
scheduling the resource provisioning can be done with no strong time restrictions.
This means that we can run meta-heuristic-based schedulers for longer execution
times and significantly increase the quality of generated schedules. In batch
scheduling, we could run the meta-heuristic-based scheduler for the time interval
comprised within two successive batches activations.

Hybridization with other Approaches. Meta-heuristics can be easily hy-
bridized with other approaches, which is useful to make grid schedulers better
adapted to various grid scenarios, grid types, specific types of applications, etc.

Designing Robust Grid Schedulers. The dynamics of the grid environment
directly impacts on the performance of the grid scheduler. A robustness in grid
scheduling is a key issue in high-quality resource allocation in the case of frequent
changes in the system’s states.

The heuristic scheduling methods are usually classified into three main groups,
namely calculus-based (greedy algorithms and ad-Hoc methods), stochastic
(guided and non-guided methods) and enumerative methods (dynamic program-
ming and branch-and-bound algorithm). The most popular and efficient methods
in grid scheduling are ad-hoc, local search-based and population-based methods.
A simple taxonomy of the heuristic schedulers is presented in Fig. 6.

Each of this scheduler can be adapted to the data grid scheduling by adding
some extra tasks-data files matching procedures.

5 Scheduling Challenges

The data-aware scheduling in grid systems becomes even more challenging when
we consider the following key challenges:

– Scheduling Policy: According to the selection of data-hosts and mapping of
resources, the optimization criteria such makespan and flowtime may change
significantly.

– Storage Constraints: Only limited storage capacity is available at re-
sources. As the tasks get executed, the data produced should be either
deleted or moved. Storage aware resource scheduling problem is a major area
of research. Data providence should be associated with scheduling policy.

– Replication Policy: The availability of replicas of data and their locality
heavily depends on the replication policy. For expressing the system dynam-
ics a dynamic replication policy that can balance the replicas among data
hosts should be formulated.

Data Scheduling in Data Grids and Data Centers 115

Fig. 6. Heuristic resolution methods taxonomy

– Resource Provisioning: In real life approaches there is a need to establish
a Service-Level-Agreement (SLA) based advance reservation to circumvent
the sudden scarcity of resources, which can guarantee the resource access at
the scheduled time.

– User QoS. Users Quality of Service (QoS) criteria such as budget and
deadline constraints may also be taken into account.

– Security. All operations in a Data Grid should be mediated by a security
layer that handles authentication of entities and ensures conduct of only au-
thorized operations. Additionally the grid users can specify their own criteria
for secure task allocation at grid resources.

6 Conclusions and Future Work

In this paper we have presented a simple taxonomy of data-aware scheduling
based on a set of requirements such data transmission, decoupling of data from
processing, data replication and data access. By considering these requirements

116 J. Ko�lodziej and S.U. Khan

a family of data-aware scheduling problems can be defined, whose resolution
can be very useful to design efficient data-aware schedulers. We have focused
on the Data-aware Independent Batch Scheduling for which we have formalized
the transmission time, in a way that it can be easily integrated into classical
optimization objectives of grid scheduling. This is particularly useful as known
optimization formulation and resolution methods can be applied to the data-
aware scheduling with transmission times. We have also briefly discussed the
different resolution methods (including ad hoc and meta-heuristics methods) to
cope in practice with the complexities of the problem.

References

1. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.: Task execution time modeling
for heterogeneous computing systems. In: Proceedings of Heterogeneous Comput-
ing Workshop, pp. 185–199 (2000)

2. Buyya, R., Murshed, M., Abramson, D., Venugopal, S.: Scheduling parameter
sweep applications on global Grids: a deadline and budget constrained cost-time
optimization algorithm. Softw. Pract. Exper. 35(5), 491–512 (2005)

3. Casanova, H., Obertelli, G., Berman, F., Wolski, R.: The AppLeS parameter
sweep template: user-level middleware for the grid. In: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing (CDROM) (Supercomputing 2000).
IEEE Computer Society, Washington, DC (2000)

4. Christofides, N.: Independent and Dominating Sets–The Set Covering Problem. In:
Graph Theory: An Algorithmic Approach, pp. 30–57 (1975) ISBN: 012 1743350 0

5. Foster, I., Karonis, N.: A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In: Proceedings of the IEEE/ACM SuperCom-
puting Conference 1998 (SC 1998), San Jose, CA, USA, IEEE CS Press, Los Alami-
tos (1998)

6. Hockauf, R., Karl, W., Leberecht, M., Oberhuber, M., Wagner, M.: Exploiting
Spatial and Temporal Locality of Accesses: A New Hardware-Based Monitoring
Approach for DSM Systems. In: Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998.
LNCS, vol. 1470, pp. 206–215. Springer, Heidelberg (1998)

7. Kliazovich, D., Bouvry, P., Khan, S.U.: DENS: Data Center Energy-Efficient
Network-Aware Scheduling. In: ACM/IEEE International Conference on Green
Computing and Communications (GreenCom), Hangzhou, China, pp. 69–75 (De-
cember 2010)

8. Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.U.: GreenCloud: A Packet-level
Simulator of Energy-aware Cloud Computing Data Centers. In: Proc. of the 53rd
IEEE Global Communications Conference (Globecom), Miami, FL, USA (Decem-
ber 2010)

9. Khan, S.U., Ahmad, I.: A Pure Nash Equilibrium based Game Theoretical Method
for Data Replication across Multiple Servers. IEEE Transactions on Knowledge and
Data Engineering 21(4), 537–553 (2009)

10. Khan, S.U., Ardil, C.: A Weighted Sum Technique for the Joint Optimization of
Performance and Power Consumption in Data Centers. International Journal of
Electrical, Computer, and Systems Engineering 3(1), 35–40 (2009)

Data Scheduling in Data Grids and Data Centers 117

11. Khan, S.U.: A Multi-Objective Programming Approach for Resource Allocation in
Data Centers. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 152–158 (July
2009)

12. Khan, S.U.: On a Game Theoretical Methodology for Data Replication in Ad
Hoc Networks. In: International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 232–238 (July
2009)

13. Khan, S.U.: A Frugal Auction Technique for Data Replication in Large Distributed
Computing Systems. In: International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 17–23
(July 2009)

14. Khan, S.U., Ardil, C.: A Fast Replica Placement Methodology for Large-scale Dis-
tributed Computing Systems. In: International Conference on Parallel and Dis-
tributed Computing Systems (ICPDCS), Oslo, Norway, pp. 121–127 (July 2009)

15. Khan, S.U., Ardil, C.: A Competitive Replica Placement Methodology for Ad Hoc
Networks. In: International Conference on Parallel and Distributed Computing
Systems (ICPDCS), Oslo, Norway, pp. 128–133 (July 2009)

16. Khan, S.U., Ardil, C.: On the Joint Optimization of Performance and Power Con-
sumption in Data Centers. In: International Conference on Distributed, High-
Performance and Grid Computing (DHPGC), Singapore, pp. 660–666 (August
2009)

17. Khan, S.U.: A Self-adaptive Weighted Sum Technique for the Joint Optimization
of Performance and Power Consumption in Data Centers. In: 22nd International
Conference on Parallel and Distributed Computing and Communication Systems
(PDCCS), Louisville, KY, USA, pp. 13–18 (September 2009)

18. Khan, S.U.: A Goal Programming Approach for the Joint Optimization of En-
ergy Consumption and Response Time in Computational Grids. In: Proc. of the
28th IEEE International Performance Computing and Communications Conference
(IPCCC), Phoenix, AZ, USA, pp. 410–417 (December 2009)

19. Khan, S.U., Ahmad, I.: Non-cooperative, Semi-cooperative, and Cooperative
Games-based Grid Resource Allocation. In: Proc. of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Rhodes Island, Greece
(April 2006)

20. Khan, S.U., Ahmad, I.: Comparison and Analysis of Ten Static Heuristics-based
Internet Data Replication Techniques. Journal of Parallel and Distributed Com-
puting 68(2), 113–136 (2008)

21. Khan, S.U., Ahmad, I.: Discriminatory Algorithmic Mechanism Design Based
WWW Content Replication. Informatica 31(1), 105–119 (2007)

22. Khan, S.U., Ahmad, I.: Game Theoretical Solutions for Data Replication in Dis-
tributed Computing Systems. In: Rajasekaran, S., Reif, J. (eds.) Handbook of
Parallel Computing: Models, Algorithms, and Applications, vol. ch. 45. Chapman
& Hall/CRC Press, Boca Raton (2007) ISBN: 1-584-88623-4

23. Khan, S.U., Ahmad, I.: A Semi-Distributed Axiomatic Game Theoretical Mecha-
nism for Replicating Data Objects in Large Distributed Computing Systems. In:
21st IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Long Beach, CA, USA (March 2007)

24. Khan, S.U., Ahmad, I.: Replicating Data Objects in Large-scale Distributed Com-
puting Systems using Extended Vickery Auction. International Journal of Compu-
tational Intelligence 3(1), 14–22 (2006)

118 J. Ko�lodziej and S.U. Khan

25. Khan, S.U., Ahmad, I.: Data Replication in Large Distributed Computing Systems
using Supergames. In: International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA), Las Vegas, NV, USA, pp. 38–44
(June 2006)

26. Khan, S.U., Ahmad, I.: A Pure Nash Equilibrium Guaranteeing Game Theoreti-
cal Replica Allocation Method for Reducing Web Access Time. In: 12th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), Minneapolis,
MN, USA, pp. 169–176 (July 2006)

27. Khan, S.U., Ahmad, I.: A Powerful Direct Mechanism for Optimal WWW Con-
tent Replication. In: 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Denver, CO, USA (April 2005)

28. Khan, S.U., Ahmad, I.: Replicating Data Objects in Large Distributed Database
Systems: An Axiomatic Game Theoretical Mechanism Design Approach. Dis-
tributed and Parallel Databases 28(2-3), 187–218 (2010)

29. Khan, S.U., Ahmad, I.: A Cooperative Game Theoretical Technique for Joint Op-
timization of Energy Consumption and Response Time in Computational Grids.
IEEE Transactions on Parallel and Distributed Systems 20(3), 346–360 (2009)

30. Khan, S.U., Maciejewski, A.A., Siegel, H.J., Ahmad, I.: A Game Theoretical Data
Replication Technique for Mobile Ad Hoc Networks. In: 22nd IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, USA (April
2008)

31. Ko�lodziej, J., Xhafa, F., Kolanko, �L.: Hierarchic Genetic Scheduler of Independent
Jobs in Computational Grid Environment. In: Otamendi, J., Bargie�la, A., Montes,
J.L., Doncel Pedrera, L.M. (eds.) Proc. of 23rd ECMS, Madrid, pp. 108–115. IEEE
Press, Dudweiler (2009)

32. Ko�lodziej, J., Xhafa, F.: A Game-Theoretic and Hybrid Genetic meta-heuristic
Model for Security-Assured Scheduling of Independent Jobs in Computational
Grids. In: Proc. of CISIS 2010, pp. 93–100. IEEE Press, USA (2010)

33. Ko�lodziej, J., Xhafa, F., Bogdański, M.: Secure and task abortion aware GA-based
hybrid metaheuristics for grid scheduling. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 526–535. Springer, Heidelberg
(2010)

34. Ko�lodziej, J., Xhafa, F.: Meeting Security and User Behaviour Requirements in
Grid Scheduling. Simulation Modelling Practice and Theory 19(1), 213–226 (2011),
doi:10.1016/j.simpat.2010.06.007

35. Ko�lodziej, J., Xhafa, F.: Integration of Task Abortion and Security Requirements
in GA-based Meta-Heuristics for Independent Batch Grid Scheduling. Computers
and Mathematics with Applications (2011), doi: 10.1016/j.camwa.2011.07.038

36. Ko�lodziej, J., Xhafa, F.: Enhancing the genetic-based scheduling in computational
grids by a structured hierarchical population. Future Generation Computer Sys-
tems 27, 1035–1046 (2011), doi:10.1016/j.future.2011.04.011

37. Ko�lodziej, J., Khan, S.U., Xhafa, F.: Genetic Algorithms for Energy-aware Schedul-
ing in Computational Grids. In: Proc. of the 6th IEEE International Conference on
P2P, Parallel, Grid, Cloud, and Internet Computing (3PGCIC), Barcelona, Spain
(October 2011)

38. Kosar, T., Balman, M.: A new paradigm: Data-aware scheduling in grid computing.
Future Gener. Comput. Syst. 25(4), 406–413 (2009)

39. Liu, H., Abraham, A., Xhafa, F.: Peer-to-Peer Neighbor Selection Using Single
and Multi-objective Population-Based Meta-heuristics. In: Xhafa, F., Abraham,
A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments.
SCI, vol. 146, pp. 323–340. Springer, Heidelberg (2008)

Data Scheduling in Data Grids and Data Centers 119

40. Liu, H., Orban, D.: GridBatch: Cloud Computing for Large-Scale Data-Intensive
Batch Applications. In: 8th IEEE International Symposium on Cluster Computing
and the Grid (CCGRID), pp. 295–305 (2008)

41. Pinel, F., Pecero, J.E., Bouvry, P., Khan, S.U.: A Two-Phase Heuristic for
the Scheduling of Independent Tasks on Computational Grids. In: Proc. of
ACM/IEEE/IFIP International Conference on High Performance Computing and
Simulation (HPCS), Istanbul, Turkey (July 2011)

42. Ranganathan, K., Foster, I.: Decoupling Computation and Data Scheduling in Dis-
tributed Data-Intensive Applications. In: Proceedings of the 11th IEEE Symposium
on High Performance Distributed Computing (HPDC), Edinburgh, Scotland. IEEE
CS Press, Los Alamitos (2002)

43. Shatdal, A., Kant, C., Naughton, J.F.: Cache conscious algorithms for relational
query processing. In: Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB 1994), Santiago, Chile, pp. 510–521. Morgan Kaufmann
Publishers, Inc., San Francisco (1994)

44. Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N., Madani, S.A., Li, J.,
Zhang, L., Wang, L., Ghani, N., Ko�lodziej, J., Li, H., Zomaya, A.Y., Xu, C.-
Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J.P., Kliazovich, D., Bouvry, P.: An
Overview of Energy Efficiency Techniques in Cluster Computing Systems. Cluster
Computing (2011), doi:10.1007/s10586-011-0171-x

45. Venugopal, S., Buyya, R.: An SCP-based heuristic approach for scheduling dis-
tributed data-intensive applications on global grids. J. Parallel Distrib. Comput. 68,
471–487 (2008)

46. Venugopal, S., Buyya, R., Kotagiri, R.: A Taxonomy of Data Grids for Distributed
Data Sharing, Management and Processing (2009)

47. Wang, L., Khan, S.U.: Review of Performance Metrics for Green Data Centers:
A Taxonomy Study. Journal of Supercomputing, 1–18 (2011), doi:10.1007/s11227-
011-0704-3

48. Wasson, G., Humprey, M.: Policy and enforcement in virtual organizations. In: Pro-
ceedings of the 4th International Workshop on Grid Computing, Phoenix, Arizona,
IEEE CS Press, Los Alamitos (2003)

49. Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid
scheduling problems. Future Generation Computer Systems 26, 608–621 (2010)

50. Xhafa, F., Carretero, J., Barolli, L., Durresi, A.: Immediate Mode Scheduling in
Grid Systems. International Journal of Web and Grid Services 3(2), 219–236 (2007)

51. Xhafa, F., Barolli, L., Durresi, A.: Batch Mode Schedulers for Grid Systems. In-
ternational Journal of Web and Grid Services 3(1), 19–37 (2007)

52. Zhang, J., Lee, B., Tang, X., Yeo, C.: Impact of Parallel Download on Job Schedul-
ing in Data Grid Environment. In: Proc. of the Seventh International Conference
on Grid and Cooperative Computing, pp. 102–109 (2008)

53. Zeadally, S., Khan, S.U., Chilamkurti, N.: Energy-Efficient Networking: Past,
Present, and Future. Journal of Supercomputing, 1–26 (2011), doi:10.1007/s11227-
011-0632-2

Improving Scalability of an Hybrid

Infrastructure for E-Science Applications

Olivier Terzo, Lorenzo Mossucca, Pietro Ruiu, Giuseppe Caragnano,
Klodiana Goga, Riccardo Notarpietro, and Manuela Cucca

Infrastructure and Systems for Advanced Computing (IS4AC),
Istituto Superiore Mario Boella, Via Pier Carlo Boggio 61, 10138 Torino, Italy

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
{terzo,mossucca,ruiu,caragnano,goga}@ismb.it

{riccardo.notarpietro,manuela.cucca}@polito.it
http://www.ismb.it

Abstract. The Italian GPS receiver for Radio Occultation has been
launched from the Satish Dhawan Space Center (Sriharikota, India) on
board of the Indian Remote Sensing OCEANSAT-2 satellite. The Italian
Space Agency has established a set of Italian universities and research
centers to develop an innovative solution in order to quickly elaborate
RO data and extract atmospherical profiles. The algorithms adopted can
be used to characterize the temperature, pressure and humidity. In con-
sideration of large amount of data to process, an hybrid infrastructure
has been created using both the existing grid environment (fully physi-
cal) and the virtual environment composed of virtual machines from local
cloud infrastructure and Amazon EC2. This enhancement of the project
stems from the need of computational power in case of an unexpected
burst of calculation that the physical infrastructure would not be able
to respond on its own. The virtual environment implemented guaran-
tees flexibility and a progressive scalability and other benefits derived by
virtualization and cloud computing.

Keywords: radio occultation, grid computing, hybrid architecture, vir-
tualization, scheduling.

1 Introduction

The Italian Space Agency (ASI) [1] developed a new GPS receiver devoted to
Radio Occultation (RO). The space-based GPS limb sounding, conventionally
known as GPS Radio Occultation, is a remote sensing technique for the profiling
of atmospheric parameters (first of all refractivity, but also pressure, tempera-
ture, humidity and electron density, see [14,11]). It is based on the inversion of
GPS signals collected by an ad hoc receiver placed on-board a Low Earth Orbit
(LEO) platform, when the transmitter rises or sets beyond the Earths limb. The
relative movement of both satellites allows a quasi vertical atmospheric scan of
the signal trajectory and the profiles extracted are characterized by high verti-
cal resolution and high accuracy. The RO technique is applied for meteorological

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 120–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ismb.it

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 121

purposes (data collected by one LEO receiver placed at 700 km altitude produce
300-400 profiles per day, worldwide distributed) since such observations can eas-
ily be assimilated into Numerical Weather Prediction models. Anyway, it is also
very useful for climatological purposes, for gravity wave observations and for
Space Weather applications. This will cause the phase of the signal to be de-
layed. Moreover, the bent Geometric Optics trajectories followed by the signal
during an entire occultation event will span the entire atmosphere in the vertical
direction. As a consequence, through the inversion of the phase delay measure-
ments, the refractivity related to each trajectory perigee can be evaluated, and
a vertical profile can be identified. From refractivity, and adopting variational
techniques, temperature and water vapour profiles can also be inferred. Given
the characteristics of global coverage, good accuracy and high vertical resolu-
tion, products derived using such a technique are operationally used in input
to weather forecasting model tools, and could also be harnessed in monitoring
climate changes. The Italian Space Agency funded a pool of Italian Universities
and Research Centers for the implementation of the overall RO processing chain,
which is called ROSA-ROSSA (ROSA-Research and Operational Satellite and
Software Activities). The ROSA-ROSSA is integrated in the operational ROSA
Ground Segment it is operating in Italy (at the ASI Space Geodesy Center, near
Matera) and in India (at the Indian National Remote Sensing Agency [9], near
Hyderabad) starting from the 2009 autumn season. The Italian GPS receiver
for Radio Occultation (ROSA) files in the forthcoming OCEANSAT-2 Indian
mission. In this framework, Italian Space Agency has funded the development
of the operational RO Ground Segment, which include the ROSA-ROSSA soft-
ware (ROSA-Research, Operational Satellite and Software Activities). Partners
of this project are several Italian universities research groups, research centres
and an industry, which are responsible for the development and the integration
of the various software modules defining the ROSA-ROSSA software: Politec-
nico of Turin, CISAS (University of Padua), University ”La Sapienza” of Rome,
University of Camerino, International Center of Theoretical Physics (ICTP) of
Trieste, Istituto dei Sistemi Complessi (ISC) of Florence, Innova (Consorzio per
l’Informatica e la Telematica) of Matera. The ROSA Ground Segment will be
implemented in two different ways. It is implemented in a distributed architec-
ture, through a hybrid infrastructure called the Hybrid Processing Management
(HPM).

The paper is structured as follows: Section 2 explains the related work and
shows the architecture. Section 3 describes the project background: scientific
context, virtualization and cloud environment. Section 4 presents hybrid archi-
tecture. Section 5 depicts some performance tests and the last section draws the
conclusion and future work.

2 Related Work

The existent system is managed by an integrated software, called Grid Processing
Management (GPM), devoted to handle and process data of the OCEANSAT-2

122 O. Terzo et al.

Fig. 1. Radio Occultation Data Flow

on board sensor. This architecture consists of the following components: worker
nodes, repository, relational database, scheduler, agents and applications. The
observed data, once acquired by the receiving ground station, are processed to
produce refractivity, temperature and humidity profiles. The Radio Occulta-
tion events data processing consist of seven main steps, named Data Generators
(DGs). All DGs are executed in series, these are SWOrD, DG BEND, DG BDIF,
DG BISI, DG NREF, DG ATMO and DG BMDL (see Figure 1). The input and
output files cover a 24 hours time interval. The outputs are daily data composed
of about 256 occultation events to be processed in sequential way. For further de-
tails see [16]. In this context, where one needs to elaborate an enormous amount
of data, using a grid architecture, there is already a great saving of time. But
in some cases the system fills up, when all worker nodes are elaborating data,
increasing execution time. A solution to solve this problem can be to use a
dynamically scalable system using virtual machines. The architecture proposed
also consists of a virtualized environment, which add to the grid virtual nodes on
demand, in order to increase the computational power and to solve temporary
peak processing. Also it allows to create multiple virtual nodes on the same ma-
chine optimizing physical resource, reducing energy consumption and decreasing
maintenance costs. Virtualized systems also help to improve infrastructure man-
agement, allowing the use of virtual node template to create virtual nodes in a
short time, speeding up the integration of new nodes on the grid and, therefore,
improving the reactivity and the scalability of the infrastructure.

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 123

3 Project Background

3.1 Scientific Context for Radio Occultation

The ROSA-ROSSA software implements state of the art RO algorithms which are
subdivided into seven different software modules, called Data Generators(DG),
these are executed in a sequential mode. Starting from ROSA engineered data (or
raw data observed by other RO payloads made available to the scientific commu-
nity) coming from the ROSA on-board OCEANSAT-2 platform observations, from
the ground GPS network (i.e. International GNSS Service network) and from other
support data, the ROSA-ROSSA is able to produce data at higher levels, using a
data processing chain defined by the following DGs:

SWOrD is a software module that fully supports the orbit determination, orbit
prediction, and which implements data generation activities connected with
the ROSA sensor on-board OCEANSAT-2. Input data for SWOrD are ROSA
GPS navigation and Radio Occultation observations, ground GPS network
data and other support data. It generates the following output data:

– Estimated rapid orbits and predicted orbits for the GPS constellation in
Conventional Terrestrial Reference frame;

– Estimated rapid orbits and predicted orbits for the OCEANSAT-2 plat-
form in Conventional Terrestrial and Celestial Reference frame;

– 50 Hz closed-loop and 100 Hz Open-Loop excess phases and signal am-
plitudes data for each single occultation event;

– Tables showing estimated and predicted (up to 6 hours in advance) oc-
cultation.

DG BMDL predicts a bending angle and impact parameter profile usable as
input in the ROSA on-board software Excess Doppler prediction module
for open-loop tracking. For each ”predicted” occultation event, latitude and
longitude of the geometrical tangent points (the nearest point of each tra-
jectory to the Earth’s surface, evaluated through predicted orbits) is used
to compute bending angle and impact parameter profile from interpolated
numerical weather prediction models (bending angle and impact parameter
are geometrical parameter univocally identifying each trajectory followed by
the RO signal). Inputs for DG BMDL are predicted GPS and LEO orbits, re-
spectively, and Predicted Occultation Tables, together with ECMWF world
forecasts for the synoptic times valid for the future observed occultation
event.

DG BEND provides raw bending angle and impact parameter profiles α(a)
computed on GPS occulted signals on both GPS frequencies L1 and L2, by
using a Wave Optics approach below a certain altitude. Above that altitude
threshold, standard Geometrical Optics algorithms are applied. Inputs for
DG BEND are data (L1 and L2 Excess Phases and related orbit data) and
data (L1 and L2 signal amplitudes).

DG BDIF provides (for each event) a bending angle and impact parameter
profile, on which the ionospheric effects have been compensated for. This DG

124 O. Terzo et al.

processes both L1 and L2 bending angle and impact parameters profiles given
as input, in order to minimize the first order ionospheric dispersive effects.
Outputs for DG BDIF are bending angle and impact parameter iono-free
profiles.

DG BISI provides profiles of bending angle versus impact parameter optimized
in the stratosphere above 40 km. In the ROSA-ROSSA, data coming from a
Numerical Weather Prediction Model are used in place of climatological data
for implementing the statistical optimization procedure necessary to reduce
the high noise level left to the signal after ionospheric first order compen-
sation applied by the previous DG BDIF. DG BISI processes bending angle
and impact parameter profiles obtained from DG BDIF Data.

DG NREF provides (for each event) the refractivity profile and dry air tem-
perature and pressure profiles. This DG is able to process iono-free and
properly initialized bending angle and impact parameter profiles in order to
compute the corresponding dry air ”quasi” vertical atmospheric profiles.

DG ATMO allows to evaluate the temperature and the water vapour profiles
using forecasts or analysis obtained by numerical weather prediction. This
DG receives on input from DG NREF data files and produces on output
data files, which contain the total temperature and total pressure profiles in
terms of wet and dry components.

3.2 Virtualization Overview

Virtualization is a technology that allows running several concurrent operating
system instances inside a single physical machine, reducing the hardware costs
and improving the overall productivity by letting many more users work on it
simultaneously. The hypervisor, the fundamental component of a virtualized sys-
tem, provides infrastructure support exploiting lower-level hardware resources in
order to create multiple independent Virtual Machines (VM), isolated from each
other. This virtualized layer, called also Virtual Machine Monitor (VMM), sits
on top of the hardware and below the operating system. The hypervisor can
control (create, shutdown, suspend, etc.) each VM that is running on top of the
host machine. Multiple instances of different operating systems may share the
virtualized hardware resources. The hypervisor is so named because it is concep-
tually one level higher than a supervisory program. A supervisory program or
supervisor - also called kernel - is usually part of an operating system, that con-
trols the execution of other routines and regulates work scheduling, input/output
operations, error actions, and similar functions and regulates the flow of work in
a data processing system.

There are two main virtualization approaches: Full Virtualization and Para
Virtualization [19]. Full Virtualization provides emulation of the entire under-
lying hardware (CPU, memory, storage, etc.) to the VMs in order to start and
run the operating system. These guests have no knowledge about the host OS
since they are not aware that the hardware they see is not real but emulated.
This approach, however, is burdened with a heavy overhead that affects the

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 125

Fig. 2. Virtualization approach: Full Virtualization and Para Virtualization

system performances. The main advantage of this paradigm concerns the abil-
ity to run virtual machines with unmodified operating systems since the emu-
lated hardware is completely transparent. A way to improve performances is the
hardware-assisted virtualization (HVM) that enables efficient Full Virtualization
using hardware capabilities (such as the Intel VT-x and AMD-V architectures)
that provide direct platform-level architectural support for OS virtualization.
For some hypervisors (like Xen and KVM) it is possible to recompile Para Vir-
tualized drivers inside the guest machine running in HVM environment and
load those drivers into the running kernel to achieve Para Virtualized I/O per-
formance within an HVM guest. Para Virtualization approach uses a hypervisor
for shared access to the underlying hardware but integrates virtualization aware
code into the OS itself. In a context of Para Virtualization the guest operating
system must be aware of being run in a virtual environment. So the original op-
erating system, in particular its kernel, is modified to run in a Para Virtualized
environment. The drawbacks of Full Virtualization are avoided by presenting a
virtual machine abstraction that is similar but not identical to the underlying
hardware. The main advantage is the execution speed, always faster than HVM
and Full Virtualization approach.

Virtualization Benefits. As mentioned before virtualization allows to gain
significant benefits from an economic and a resources’ optimization point of
view [21]. Besides these, other noteworthy benefits are:

– security, stability and isolation: it is possible to run services in a virtual
environment totally independent from each other;

– environmental impact reduction: optimization of resources implies reduction
of power consumption and cooling;

– administration and management simplification: due to the common virtual-
ization layer and the adoption of snapshots (installation and configuration);

– disaster recovery: VM can be started up in few minutes and can be cloned
and distributed in different locations;

– high reliability and load balancing improvement: thanks to snapshots and
live migration features.

126 O. Terzo et al.

3.3 Cloud Environment

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction [17].
The cloud is made up of four deployment models:

Private Cloud: The cloud infrastructure is operated exclusively for an organi-
zation. It can be a proprietary network or datacenter that uses cloud com-
puting technologies such as virtualization. The private cloud can be managed
by the organization or a third party and may exist on premise or off premise.

Public Cloud: The cloud infrastructure is made available in a pay-as-you-go
manner to the general public or a large industry group and is owned by
an organization selling cloud services (e.g., Amazon Web Services, Google
AppEngine and Microsoft Azure).

Community Cloud: The cloud infrastructure is shared by several organiza-
tions and supports a specific community that has shared concerns (e.g., mis-
sion, security requirements, policy, and compliance considerations). It may
be managed by the organizations or a third party and may exist on premise
or off premise.

Hybrid Cloud: The cloud infrastructure is a composition of two or more cloud
models (private, community, or public) that remain unique entities but are
bound together by standardized or proprietary technology that enables data
and application portability (e.g., cloud bursting for load balancing between
clouds).

Amazon Elastic Compute Cloud (EC2) is part of Amazon’s cloud comput-
ing platform, Amazon Web Services (AWS). Amazon EC2 offers a web service
through which users can boot an Amazon Machine Image (AMI) to create a
virtual machine called ”instance” and allows users to rent virtual machines. An
AMI can be created from scratch by the user or can be used the pre-configured
AMIs on Amazon AWS which can be modified and customized to suit the user’s
needs. An user can create, launch, and terminate instances as needed, paying by
the hour for active instances, hence the term ”elastic”. Amazon EC2 is based on
the XEN virtualization technology and sizes instances based on EC2 Compute
Unit (ECU)1 [18]. An EC2 instance may be launched with a choice of two types
of storage for its root device. The first option, originally the only choice, is a
local ”instance-store” disk as a root device. The second option is to use an Elas-
tic Block Storage (EBS) volume as a root device. By using Amazon EBS, data
on the root device will persist independently from the lifetime of the instance.
This enables users to stop and restart the instance at a subsequent time. Alter-
natively, the local instance store only persists during the life of the instance [18].
Elastic IP addresses are static IP (IPv4) addresses designed for dynamic cloud

1 EC2 Compute Unit (ECU) - One EC2 Compute Unit (ECU) provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 127

computing. An Elastic IP address belongs to the account and not to a virtual
machine instance. For the purposes of this project a Hybrid Architecture has
been created which consists of a number of virtualized nodes (Private Cloud)
and a number of Amazon EC2 node ”instance” (Public Cloud), integrated in
the exiting grid composed of physical nodes. In case of an unexpected computa-
tional power peak that the physical infrastructure and the virtualized nodes on
the private cloud can’t effort the global scheduler uses the AWS API to launch
an EC2 instance based on an AMI containing all the necessary software (e.g.,
Globus Toolkit). For the project we have used an EBS Standard Large Instance
(7.5 GB memory 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute
Units each), 850 GB instance storage, 64-bit platform).

4 Hybrid Architecture

The Hybrid Architecture (in Figure 3) consists of a number of virtualized nodes
integrated into a grid composed of physical nodes. With physical node, we mean
a machine that runs an operating system that has the exclusive use of the un-
derlying hardware. The virtualized node is instead an instance of a virtual ma-
chine that can share resources with other nodes, managed by the hypervisor (see
Figure 2). The project stems from need of computational power in case of an
unexpected burst of calculation that the physical infrastructure would not be
able to respond on its own. In these cases, where the physical grid has satu-
rated its resources, the system asks to the hypervisor for new virtualized nodes
which are allocated according to rules set in the scheduler that will be discussed
later. This architecture allows to profit from the grid and from the virtualiza-
tion (flexibility, scalability, cost reduction, etc.). The use of virtual nodes in
addition to the physical nodes in the grid has considerable advantages. Virtual
machines can be stopped and quickly reboot every time you need, without loss
of information or problems to the chain flow of execution. Tests were performed
on virtual machine to estimate startup time and the result is about 9500 ms.
In addition to the reduction of startup time, the use of VM in the grid brings
other benefits including load balancing and high availability. The load balancing
allows migration of virtual machine from a physical box to another, in order
to balance system performances; an high available system ensures migration of
virtual machine when maintenance shall be paid on the server, avoiding possible
(and usually lengthly) discontinuity in service provisioning. Startup time is the
difference in milliseconds from the time when hypervisor receives a request to
start the VM to the time when the VM is accessible on the network, and ready
for a job execution.

4.1 Xen Overview

The Xen hypervisor is a layer of software that replaces the operating system
running directly on the hardware of the computer. Xen [20] is an open-source
VMM based on a Para Virtualization technique, released under GPL license for

128 O. Terzo et al.

Fig. 3. Hybrid Architecture

x86- compatible machines, originally developed at the University of Cambridge.
In this project it was decided to use Xen as virtualization platform because it is
an open source product and is one of the few hypervisor that supports also Para
Virtualization approach. As explained before the Para Virtualization technique
uses a modified guest kernel that minimize virtualization overheads achieving
higher performance than Full Virtualization approaches. The hypervisor, called
domain0, is in charge of managing other guest VMs, called domainU: it is the
direct interface between virtual machines and the hardware, and receives all
requests for CPU, I/O and disk usage. Due to the separation between the OS
and hardware, the hypervisor can run multiple independent operating systems
safely and concurrently. The xm comands are the main interface for managing
the guest domain. Thanks to them, it is possible to create, pause, and shutdown
the VMs, but also enable or pin VCPUs and attach and detach virtual block
devices. The commands are listened by a daemon called xend.

4.2 Resource Manager

Resource Manager (RM) is a component that optimizes computing resources
needed to execute the job in the grid. It is a module that, once started, will
automatically analyze the grid periodically; in this case each 5000 ms. It is
designed and implemented in order to decide when allocate or deallocate new
virtual machines as grid nodes. As mentioned above, in case of saturation of
physical resources, the system is able to automatically startup virtual machines:

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 129

it can support the grid taking in charge the execution of jobs. This condition
occurs when all active nodes of the grid are engaged in developing a process at
least. This is not enough, in fact, saturation is reached when the sum of the pro-
cesses on a machine (physical nodes of the grid) must be computationally heavy,
and must occupy a lot of RAM. In other words, the Resource Manager defines a
”resource profile” at regular time intervals getting information about CPU and
RAM utilization of each virtual machine. The Resource Manager works on the
system that hosts virtual machines and in our experiments it was not placed
on the master node of the grid, but on a dedicated hardware box. It starts or
stops (creates or destroys) a virtual machine using Xen API to communicate
with the hypervisor. The calls are made through the XML-RPC protocol widely
supported by the Xen project and also used by third-party tools such as libvirt.
The RM allows to monitor and collect data which will be used for calculating
system parameters and for the generation of log files. The logic model deter-
mines the allocation of the VMs, it is based on the observation of the status of
the grid: specifically processes execution and machines availability. These infor-
mation are retrieved by querying the database hosted on the master node of the
grid. Periodically the nodes belonging to the grid, send information about its
own status to the database located on the master node. These data are informa-
tion about the state and the workload of the system (RAM allocated, average
CPU usage). In particular, combining these information it is possible to obtain
two fundamental elements: the status of the virtual machine and the parameter
CUI (Computing Usage Index). The possible status of the virtual machine are
two: the first is the status of Available, when a virtual machine is connected to
the grid and has resources available to be able to perform the job (this means
that the value of the CPU is between 0% and 5% use). The second status is
Running, when a virtual machine has a queue of files to process c, where c > 0,
and system resources are committed to process a job (the CPU is greater than
5% and above 70% for a long period of time). These data are used to calculate
the CUI parameter that is an indication level about use of grid resources. It
represents the ratio between the number of running nodes and the number of
available nodes (Eq. 1).

CUI =

∑N
i=1 RunningNodes∑N
i=1 AvailableNodes

(1)

CUI is compared with bound values called start threshold and stop threshold.
The first value, start threshold, indicates the saturation of the grid. If the CUI
is greater than this value it is necessary to instantiate a new virtualized node.
Resource manager starts a VM and sends to the master node information about
availability of new node just started. As soon as the master node, where resides
the job scheduler, detects the new virtualized node it can begin to assign the
job. The stop threshold is the value that shows grid resources are underused
and is therefore time to switch off the VM. Resource manager, once this limit is
exceeded, tell to master node that the virtualized node is no longer available to
receive job. Then it will proceed to shutdown the machine, after verifying that

130 O. Terzo et al.

there are no file transfers in progress, there is not a queue of files to be processed,
the processing job is actually completed.

4.3 Scheduling Model

The chain process is composed of 6 jobs developed by complex algorithms that
involve a set of languages as Fortran, MatLab, C++, Mathematica, Java and
Perl. After some tests with several schedulers like PBS and Condor, it was de-
cided to develop in this infrastructure an ad-hoc job management scheduler:
scheduling solutions tested didn’t consider the system complexity due to several
programming languages involved in the DGs, furthermore we focused on system
scalability for hybrid infrastructure. A way to provide flexibility and scalability
to the system is the implementation of a multi agents solution. The scheduler
never gets information requiring the status to each nodes in fact on each node
are installed two types of agents: Job and System agent. The first one is used to
monitor the behavior of CPU, RAM and swap on nodes during the DG execu-
tion, and when DG is finished, it handles sending these information to master
node. The second one, the System agent, is used to monitor the availability of
each service on the node and periodically sends to the master node its status:
if all services are available the node is ready to receive a job. The advantage is
that the scheduler retrieves a pre list of available node (and ready for execution)
only with a simple query to the database. The scheduling process is split in the
following phases (see Figure 4):

Fig. 4. Scheduling Approach

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 131

– resources discovery is directly related to the information sent by the agents
in order to return a pre list of available nodes;

– in case of saturation of the physical grid, when no physical nodes are free
for execution, the scheduler asks for new nodes to the virtualized infrastruc-
ture. A specific local resource scheduler daemon was developed for checking
periodically request of new virtualized nodes;

– when there are not available nodes on the traditional grid computing envi-
ronment and on virtualized infrastructure, the Resource Manager provides
to add new virtual nodes from Amazon EC2.

This scheduling approach guarantees an automatic upscaling of the computa-
tional capacities. On the same way, an automatic downscaling mechanism was
implemented: on virtualized infrastructure when a virtual grid node completed
assigned jobs, the Resource Manager provides to shutdown the virtual nodes.
On the same way in Amazon EC2, the Resource Manager provides to shutdown
the instances.

5 Performance Test

During the test phase, we evaluated the elaboration time of each Data Genera-
tors executed on two types of nodes: physical and virtualized node. The server
used is equipped with a dual-core Intel Xeon (4 CPU), 8 GB of RAM and 130
GB of storage. The operating system is Ubuntu server. The guest machines re-
side entirely on this server and therefore they share the resources (RAM, CPU,
disk): each machine has 2 GB of RAM and 2 dedicated CPUs. Virtualized nodes
are configured exactly like a physical node of the grid. It has been installed the
softwares used for the chain processing and some system tools for the local job
scheduling and monitoring of the resources. It was decided to use Para Virtual-
ized systems since it was shown that (in terms of network and I/O), they have
better performances than the Fully Virtualized one [10].

Fig. 5. Execution time

132 O. Terzo et al.

In Figure 5 a comparison of elaboration time is depicted. In Eq. 2 α is the
weighted average elaboration time for each node belonging to the grid.

αi =
t̄i∑N
j=1 t̄j

(2)

For each Data Generator, W represents a ratio between the virtual machine
processing time and physical machine processing time (Eq. 3).

Wi = αi

t virti

t phyi
(3)

The execution time of algorithms DG BDIF, DG BISI, DG NREF executed on
the virtualized machine are almost comparable to the execution time on the
physical machine. However, if the algorithm is executed on the virtualized ma-
chine DG ATMO has a slight delay, estimated in 5%, compared with physical
machines. The most important result is noticeable by observing DG BEND: the
execution time of this algorithm on the virtual machine is more quickly of about
23.5% than its execution on the physical machine (see Figure 6).

Fig. 6. Weighted average performance

Figure 7 depicts an estimation of the whole processing time calculated incre-
menting nodes number belonging to grid. When only one node is available, the
total execution time for daily files is 1752 minutes (about 29 hours). Increasing
the number of grid nodes the execution time decreases: note that just with two
nodes the execution time is halved (912 minutes about 15 hour), but starting
from 5 nodes the inclination of the curve is reduced and hence the gain time
is lower. Although we have to consider that the grid introduces a time loss due
to the file transfer time, needed to distribute the inputs to the worker nodes.
Furthermore the virtualized environment brings a waste of time imputable to
startup time of virtual node: as we saw above about 9500 ms for each VM.

Improving Scalability of an Hybrid Infrastructure for E-Science Applications 133

Fig. 7. Execution time in Hybrid Environment

6 Conclusion and Future Work

The ROSA-ROSSA software implements Radio Occultation technique, which
runs for the first time on an hybrid infrastructure. This paper wants to be an
improvement of a projects based on grid computing to solve temporary peak pro-
cessing due saturation system. In frameworks such as Radio Occultation, where
the amount of data to be processed is significant, the use of a hybrid architecture
as the grid can be the best choice. We have focused on the implementation of a
intelligent scheduler that can manage also the virtualized side of the infrastruc-
ture in order to assign jobs to nodes in an automatic way without any human
interaction. When the algorithms are executed on virtual machines there is not
a decline in system performance, but conversely, in the case of the algorithm
DG BEND, VMs have better performance than physical ones. Observing test
results emerge that in a future scenario the Scheduler could assign the execution
of DG BEND algorithm only to virtual machines. By adopting this mechanism
would be possible to reduce the execution times of the entire processing chain.
Also, as future work we plan to extend the proposed architecture to computer
clusters available across the European Grid Infrastructure (EGI).

Acknowledgment. The authors are grateful to the Italian Space Agency for
supporting this project within the contract I/006/07/0 and to all ROSA-ROSSA
partners for their contributions.

References

1. Italian Space Agency(ASI) (2011), http://www.asi.it/
2. Berman, F., Fox, G., Hey, A.: Grid computing making the global infrastructure a

reality, pp. 117–170. Wiley, Chichester (2003)
3. Buyya, R., Abramson, D., Giddy, J.: NIMROD/G: An architeture of a resource

management and scheduling system in a global computational grid. In: High Per-
formance Computing Asia 2000, Beijing, China, pp. 283–289 (2000)

http://www.asi.it/

134 O. Terzo et al.

4. Dimitriadou, S., Karatza, H.: Job scheduling in a distributed system using back-
filling with inaccurate runtime computation. In: International Conference on Com-
plex, Intelligent and Software Intensive System, Washington DC, USA, pp. 329–336
(2010)

5. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture, pp. 38–63. Morgan Kaufmann, San Francisco (2003)

6. The Globus Alliance (2011), http://www.globus.org/
7. The Globus Consortium (2011), http://www.globusconsortium.org/
8. Gradwell, P.: Grid scheduling with agents. In: Proceedings of the Second Interna-

tional Joint Conference on Autonomous Agents & Multi-Agent Systems (AAMAS
2003), Melbourne, Australia, pp. 229–245 (2003)

9. Indian Space Research Organization (ISRO) (2011), http://www.isro.org/
10. Kurowski, K., Nabrzyski, J.A., Oleksiak, A., Weglarz, J.: Scheduling jobs on

the grid multicriteria approach. Computational Methods in Science and Technol-
ogy 12(2), 123–138 (2006)

11. Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R.: Observing
Earth’s atmosphere with radio occultation measurements using the Global Posi-
tioning System. Journal of Geophysical Research 102(D19), 23.429–23.465 (1997)

12. Leonid, O., Rupak, B., Hongzhang, S., Warren, S.: Job scheduling in a het-
erogeneous grid environment. Lawrence Berkeley National Laboratory (2004),
http://www.escholarship.org/uc/item/6659c4xj

13. Luntama, J.P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S.,
von Engeln, A., O’Clerigh, E., Marquardt, C.: Prospects of the EPS GRAS mission
for operational atmospheric applications. Bulletin of the American Meteorological
Society 89(12), 1863 (2008)

14. Melbourne, W.G., Davis, E.S., Duncan, C.B., Hajj, G.A., Hardy, K.R., Kursinski,
E.R., Meehan, T.K., Young, L.E., Yunck, T.P.: The application of spaceborne
GPS to atmospheric limb sounding and global change monitoring, pp. 18–94. JPL
Publication (1994)

15. Wickert, J., Schmidt, T., Beyerle, G., Knig, R., Reigber, C., Jakowski, N.: The
radio occultation experiment aboard CHAMP: Operational data analysis and val-
idation of vertical atmospheric profiles. Journal of the Meteorological Society of
Japan 82(1B), 381–395 (2004)

16. Mossucca, L., Terzo, O., Molinaro, M., Perona, G., Cucca, M., Notarpietro, R.:
Preliminary results for atmospheric remote sensing data processing through Grid
Computing. In: The 2010 International Conference on High Performance Comput-
ing and Simulation (2010)

17. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (Draft),
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

18. Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/
19. Bagliocco, S., Feruglio, D., Ramunno, G.: La virtualizzazione e i suoi aspetti di

sicurezza. Assosecurity, 18–20 (2010)
20. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I., Warfield, A.: Xen and the Art of Virtualization. University of Cambridge
Computer Laboratory (2003)

21. The Future Of Cloud Computing, Expert Group Report, European Commmission,
Information Society and Media, pp. 14–15 (2010)

http://www.globus.org/
http://www.globusconsortium.org/
http://www.isro.org/
http://www.escholarship.org/uc/item/6659c4xj
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://aws.amazon.com/ec2/

Energy Aware Communication Protocols

for Wireless Sensor Networks

Ewa Niewiadomska-Szynkiewicz1,2

1 Institute of Control and Computation Engineering,
Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
2 Research and Academic Computer Network (NASK),

Wawozowa 18, 02-796 Warsaw, Poland
ens@ia.pw.edu.pl, ewan@nask.pl

Abstract. The ad hoc networking is an ultimate technology in wireless
communication that allows wireless devices located within their trans-
mission range to communicate directly to each other without the need
for established fixed network infrastructure. It is a new area of research
that has become extremely popular over the last decade and is rapidly
increasing its advance into different areas of technology. In this paper1

properties, limitations and basic issues related to development of wireless
sensor network applications are investigated. The focus is on reliable and
energy aware inter-node communication strategies. The approaches to
power control and activity control of nodes are briefly summarized. The
results of the performance evaluation of energy aware protocols through
simulation are presented and discussed. The protocol that relies on hi-
erarchical routing and uses a periodic coordination for energy efficient
WSN is described and investigated.

Keywords: Ad hoc network, wireless sensor network, energy aware
communication, energy balancing, topology control.

1 Introduction to Ad Hoc Network

An ad hoc network is a wireless decentralized structure network comprised of
nodes, which autonomously set up a network. No external network infrastructure
is necessary to transmit data – there is no central administration. Freely located
network nodes participate in transmission (connected devices can act as end
terminal or else an intermediate transmission point – the router). The network
nodes can travel in space as time passes, while direct communication between
each pair of nodes is usually not possible. Generally, an ad hoc network can
consist of different types of devices.

Ad hoc networks can be classified by their application. Two common types of
ad hoc network are: Wireless Sensor Network (WSN) and Mobile Ad hoc Net-
work (MANET). WSN is a distributed system composed of small-size, embedded

1 This work was partially supported by National Science Centre grant NN514 672940.

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 135–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

136 E. Niewiadomska-Szynkiewicz

devices grouped into network nodes deployed densely over a significant area. In
most cases WSNs are stationary or quasi-stationary, while node mobility can
be ignored. MANET comprises self-configuring mobile wireless communication
devices which combine the roles of terminals and routers. Each device can run
applications and participate in transferring data to recipients within its range.
Network nodes can move in space. The lack of fixed network infrastructure com-
ponents both in WSN and MANET allows creating unique topologies and enables
the dynamic adjustment of individual nodes to the current network structure in
order to execute assigned tasks. However, for the protocols to operate in this
mode in practice, several basic issues must be solved. The most important ones
are:

– Limited resources. Nodes comprised by the network are often small battery-fed
devices, which means their power source is limited. The network’s throughput
is also limited.

– Poor quality of connection. The quality of wireless transmission depends on
numerous external factors, like weather conditions or landform features. Part
of those factors change with time.

– Unstructured and time-varying network topology. Each network node can
at any time, for whatever reason, leave the network. Similarly, the node can
rejoin the network at any time during its operation.

– Problems with ensuring secure network operation. The spontaneous nature
of ad hoc network makes it vulnerable to any external threats and attacks.
Using a computer with a wireless network adapter, any outsider can gain ac-
cess to an unprotected network. Maintaining an appropriate level of security
requires solving many issues that are not present in traditional computer
networks.

The other constraints are limited computation power and memory of a single
node, limitations in sensor accuracy, operation in hostile environments. There-
fore, design and development of ad hoc networks is a non-trivial task. The main
directions of current research in ad hoc networking include increasing the poten-
tial of hardware components in terms of smaller size of devices and their cost,
accurate location systems for calculating positions of devices [2,4,25,26], energy-
aware communication [2,3,23,29], dedicated operating systems and simulation
software [19,21,31], efficient protocols and algorithms [17,18,27,29,33].

The main contribution of this paper is to point out the problems concerned
with energy-aware communication in WSN, a topic that has been a subject of
intensive research in recent years. In section 2, we provide the introduction to
WSN applications, i.e., clustering WSNs, communication standards and topol-
ogy control. Next, we briefly summarize various approaches to energy aware
communication, i.e., technologies and protocols. In section 3 we describe and
evaluate protocols based on power control and activity control techniques, and
discuss the proposed modification to improve the performance of the well known
routing technique.

Energy Aware Communication Protocols for WSN 137

2 Wireless Sensor Networks

In literature one can find an extensive survey and classification of the state of
the art in WSN hardware and software. Depending on the application, WSN
must support quality of service aspects such as real time constraints, maximal
lifetime, dependable communication, robustness, tamper resistance, eavesdrop-
ping resistance, etc. All listed requirements impact on the key dimensions of
the design: optimal sensor deployment, accurate localization of sensors, reliable
and energy aware data transmission. In the case of networks comprising several
hundreds or thousands of nodes, it is necessary to choose an architecture and
technology, which will enable relatively cheap production of individual devices.
For this reason, the capacities of sensors are seriously limited. Hence, small size
batteries are the most frequent power source. Individual WSN network nodes
can collect data recorded by sensors but usually do not have enough power to
process it. Moreover, analysis require collection of information from many points.
Therefore, efficient and energy aware inter-node communication is necessary in
order to transfer data to the base station.

2.1 Clustering WSNs

Grouping the nodes into disjoint and mostly non-overlapping clusters is an effec-
tive approach to manage large scale WSN. It supports network scalability and
improves stability and efficiency of performance. Many clustering schemes are
provided. They can be classified with respect to various criteria, e.g., network
architecture, network operation or objective of the node grouping process and
cluster head selection. They can be compared based on various metrics such
as cluster stability and scalability, cluster overlapping, load balancing, location
awareness, support for node mobility. A taxonomy, general classification and a
survey of clustering schemes is provided in [1]. Generally, a cluster formation in
WSN is based on the following characteristics: every node has to be connected to
some clusters, nodes in a cluster must be able to communicate with others, often
maximum diameter of all clusters in the network is the same. Most algorithms
form clusters in distributed way through local broadcasts with a maximum one
or several (not many) hops. The cluster size is adapted to network capability
and objectives. The cluster head is usually pre-assigned or picked randomly from
the deployed set of nodes. Clustering algorithms are used in order to facilitate
meeting application requirements. The popular objectives for WSN clustering
are: load balancing, fault tolerance, distributed localization systems, increased
connectivity and maximal lifetime of the network. Hence, many energy aware
routing protocols assume grouping sensor nodes into clusters.

2.2 Communication Methods

Small communication range and poor quality of connection in WSNs result
in communication limitations. Each node communicates only with the nodes

138 E. Niewiadomska-Szynkiewicz

present in its closest vicinity (the neighbors). For this reason, the natural com-
munication method in wireless sensor networks is the multi-hop routing. When
using the multi-hop routing, it is assumed that the receiving node is not located
within the transmitter’s range. Contrary to single-hop networks, the transmit-
ter must transmit data to the receiver by means of intermediate nodes. This is
a certain limitation that hinders the implementation of routing algorithms but
enables the construction of network of greater capacity. A Multi-hop network en-
ables simultaneous transmission via many independent routes. The independence
of routes reduces the interference between individual nodes, which additionally
enhances the wireless transmission speed in comparison to single-hop networks,
where devices share common space.

Communication protocols used in modern wireless networks like IEEE 802.11,
IEEE 802.15.1 (Bluetooth) or IEEE 802.15.4 (ZigBee) enable the ad hoc mode
operation. Medium Access Control (MAC) protocols guarantee efficient access
to the communication media while carefully managing the energy allotted to
the node. This goal is typically achieved by switching the radio to a low-power
mode based on the current transmission schedule. The comprehensive summary
of MAC protocols for WSNs is presented in [3,17,30]. The results of simulations
that show their capabilities and efficiency in terms of the energy consumption
are described in [30].

2.3 Topology Control

The locations of nodes that are available for communication define a WSN topol-
ogy. In general, the objective of topology control techniques is to generate net-
work topologies with desired properties (e.g. connectivity, coverage, lifetime,
etc.) while reducing node energy consumption and/or increasing WSN capacity
[2,24,29]. It should be pointed out that the term topology control has been used
with different scope by different authors. For Anastasi et al. [3] the basic idea
behind topology control is to exploit the network redundancy, i.e., topology con-
trol techniques calculate the optimal set of nodes that guarantee the network
connectivity. For Santi [29] topology control relies on power control. He presents
an overview of techniques, in which nodes setting their transmit power level
make local decisions regarding their transmission range. Some authors include
in topology control clustering techniques. According to Akyildiz and Vuran [2],
in WSNs a topology refers to locations, power and activity states of nodes. They
list four main approaches for topology control: deployment – determining the
positions of nodes in a network in an efficient way, clustering – grouping sensor
nodes into clusters to improve energy efficiency, activity control – activation and
deactivation of nodes, power control – setting the transmit power of a transceiver
to maintain a transmission range. In general, topology control is a crucial part
of energy aware communication protocols applied to WSNs.

Energy Aware Communication Protocols for WSN 139

3 Energy-Aware Communication Protocols

To maximize a lifetime of WSN, all aspects such as: architecture, circuits, pro-
tocols and algorithms must be made energy efficient. In this paper we focus on
energy conservation schemes and energy aware communication protocols. They
differ in energy efficiency objectives, e.g.: minimizing an energy consumption in
forwarding an individual packet, minimizing the total energy consumption in
the whole network and balancing power consumption in a network. All these
protocols implement various schemes and optimization techniques, they utilize
clustering solutions, topology control and different routing schemes. Different
authors propose different classifications and taxonomies of energy conservation
schemes [2,3,17,29]. Several protocols that utilize clustering schemes, power and
activity control of network nodes are described in the following subsections.

3.1 Power Control Protocols

The common approach to energy efficient communication is to control a trans-
mit power of each node to maintain the communication range of a node. By
controlling the transmit power we can influence a network lifetime, connectivity,
interference and latency. The power required for two network nodes xi and xj

to exchange a message is proportional to d2ij , where dij denotes the distance be-
tween them. Lets assume that instead of performing direct transmission, a relay
node xr is used. In such case two transmissions need to be performed: from a
source node xi to a relay node xr (distance dir) and from the node xr to the
destination node xj (distance drj). Let us consider a triangle xixrxj , also let α
be an angle at vertex xr. By elementary geometry we have:

d2ij = dir
2 + drj

2 − 2dirdrj cosα (1)

When cosα ≤ 0, total amount of energy spent to transmit a data package is
smaller when a relay node is used. Hence, short transmissions in the network are
desired. They will involve smaller power consumption and have smaller impact
on other, simultaneously effected, transmissions, thus increasing the network
throughput. Power control techniques [2,29] assume that the nodes have impact
on the power used to transmit a message. The basic task consists in attributing
the level of power used to send messages to every node in order to minimize
the amount of power received from the power source, while at the same time
maintaining the coherence of the network. Power control protocols (PC) are
responsible for providing the routing protocols with the list of nodes’ neighbors,
and making decisions about the ranges of transmission power utilized in each
transmission. Therefore, the power control layer is placed partially in the network
layer and the data link layer in the OSI model.

PC protocols may utilize various information about a network and nodes –
their neighbors and resources. We can distinguish various types of such proto-
cols. They can be classified into several groups, the most popular are listed in
Table 1. Location-based protocols build a topology based on information about

140 E. Niewiadomska-Szynkiewicz

Table 1. Power control protocols

Location-based Direction-based Neighbor-based

R&M [28] CBTC [34] KNEIGH [7], XTC [35]
LMST [22] DistRNG [8] LMA [20], LMN [20]

the geographical location of all nodes, which is assumed to be available to each
node in a network. Direction-based protocols utilize less accurate data – they
relay on the ability of all nodes to estimate the relative direction of their neigh-
bors. Neighbor-based techniques determine all neighbors within the maximum
transmitting range and build an order on this set of neighbors. Hence, they rely
on the ability of all nodes to determine and identify their neighbors. It is obvi-
ous that all PC protocols form various communication topologies. To examine
this we implemented and tested two location-based protocols, i.e., LMST (Lo-
cal Minimum Spanning Tree) developed by Li, Wang and Song, introduced in
[22], and R&M described by Rodoplu and Meng in [28]. LMST and R&M pro-
tocols implement different algorithms, and are dedicated to different application
scenarios. LMST is composed of three phases: information exchange, topology
creation and transmission. Each node sends a broadcast message, at maximum
transmit power, containing its ID and location information to its one hop neigh-
bor. These messages are periodically broadcasted during protocol execution. As
a result, each node determines a set of its neighbors, and can calculate their
locations. The nodes use neighborhood information to generate their local Mini-
mum Spanning Trees (MSTs). Finally, each node determines the transmit power
to its neighbors in its MST. R&M builds a topology that is optimized for the
all-to-one communication pattern. It calculates the most energy efficient path
from any nodes to the master one in two phases. In the first phase each node
in the network computes the set of its neighbors and enclosure2. In the second
phase the minimum-energy reverse spanning tree rooted at the master node is
calculated.

Figure 1 shows the suggested paths for data transmitting calculated by LMST
and R&M. They can be compared with the topology generated without utiliz-
ing any power control algorithm (Fig. 2). We can observe that the LMST and
R&M protocols select the paths minimizing the energy consumption from all
possible paths (w.r.t. radio range connections) presented in Fig. 2. The topol-
ogy formed by LMST provides alternative paths, see Fig 1. We performed a
variety of simulation experiments to cover a wide range of network system con-
figurations including: size of the network, nodes deployment and density. The
key metric for evaluating LMST and R&M was the energy consumption used
for data transmission. All experiments were conducted using the ns-2 simulator
(www.is.edu/nsnam/ns/). The selected results of simulations for WSN formed
by 300 nodes (simulating the MICAz mote manufactured by Crossbow) with

2 The region beyond which it is not energy efficient for the node to search for one-hop
neighbors.

Energy Aware Communication Protocols for WSN 141

Fig. 1. Topology calculated using LMST and R&M protocols

Fig. 2. Topology calculated without PC protocols

randomly generated positions in a square regions 400 × 400 to 3000 × 3000 are
presented in Fig. 3. The initial energy resource of each node was equal to 21 kJ.
The goal of each node was to send a single message that had to be delivered to
the base station.

Figure 3 shows the average energy used by one node in WSN for data trans-
mission in case of topologies built by R&M, and two variants of LMST: LMST0
(topology can contain unidirectional links), LMST1 (topology contains only bidi-
rectional links). As a final observation we can say that R&M and LMST protocols
can be successfully used to calculate optimal topology in many WSN applica-
tion scenarios. Although both methods have to spend some energy to build the

142 E. Niewiadomska-Szynkiewicz

Fig. 3. Average energy consumption by one node for single transmission to the base
station; different TC methods and network size

topology, which is concerned with exchanging of global information, which in-
duces message overhead, they generate energy efficient topologies. The energy
consumption for data transmission in case of a small size network (less than 120
nodes) is similar, while using topologies formed by R&M and LMST. In case
of large size networks the R&M protocol seems to be much more efficient. In
summary, both techniques generate different topologies and have some advan-
tages and drawbacks. The R&M protocol can be successfully used in WSNs in
which deployed sensors send messages to the master node (base station). The
protocol relies on an explicit radio signal propagation model that is its poten-
tial disadvantage – the computed topology might be different from the optimal
one if the actual channel conditions are different from those assumed by the
channel model. LMST produces topologies with a smaller average node degree
and average transmission radius with respect to those generated by R&M. The
drawback of this protocol is that it can be used for networks, in which all nodes
have the same maximum transmit power. In general, data transmission while
applying the LMST protocol is more energy intensive, but formed topology is
more robust and preserves connectivity in the worst case. Moreover, it can be
computed in a fully distributed fashion.

3.2 Activity Control Protocols

Radio receiver in WSN network node can operate in one of four modes, which
differ in the consumption of power necessary for proper operation: transmit – sig-
nal is transmitted to other nodes, receive – message from other node is received,
idle – receiver inactive, turned on and ready to change to data transmission or
receiving (low power consumption), sleep – radio receiver off. In literature and
manuals one can find nominal power consumption and transmission range for
available wireless cards. For example for popular MICAz transceiver the power

Energy Aware Communication Protocols for WSN 143

consumption for various modes is as follows: transmit - 17.4 mA, receive - 19.6
mA, idle - 20 μA, sleep - 1 μA (http://www.hoskin.qc.ca/).

In order to extend the working time of an individual device (network node), it
is frequent practice that some elements of this device are deactivated, including
the radio receiver. They remain inactive for most time and are activated only to
transmit or receive messages from other nodes. Hence, implementing the right
policy for transition to various states is critical for effective idle power man-
agement. In general, formulating an optimum shutdown policy is a nontrivial
problem.

The activity control (also known as power saving) protocols for WSNs employ
dynamic management of radio device of all network nodes – in calculated inter-
vals they put the radio receiver into the sleep mode. The objective is to limit the
energy consumption while simultaneously minimizing the negative impact on the
network throughput and on the efficiency of data transmission routing. These
protocols should be capable of buffering traffic destined to the sleeping nodes
and forwarding data in partial network defined by the covering set. The covering
set membership needs to be rotated between all nodes in order to maximize the
lifetime of the network. Various types of protocols and their implementations
are used depending on the application scenarios, and are described in literature.

Connectivity-Based Protocols. Span [12] is a common distributed, connectivity-
based protocol were nodes are partitioned into two groups: coordinators that
stay awake continuously and forward messages, and sleeping nodes. The sleeping
nodes periodically check their mode if needed to wake up and become a coor-
dinator. The coordinators are adaptively selected from all nodes in a network
using the eligibility rule that guarantees the sufficient number of coordinators in
the area. In general, a node with a higher residual energy should be more likely
to become a coordinator, coordinators should be elected in such a way to mini-
mize their number. Span depends on the routing protocol. The routing protocol
provides neighbors and connectivity data that are used to select coordinators.

Location-Based Protocols. The Geographic Adaptive Fidelity (GAF) protocol
described in [36] assumes covering the network deployment area with virtual grid.
The location information is employed to form clusters. GAF assumes that nodes
in the particular grid cell are equivalent with respect to forwarding messages,
so, any node within a cluster is able to relay a message to any node in any
neighboring cluster. Hence, we can size the grid cell based on the nominal radio
range r. This size is equal to r/

√
5. The concept of GAF is to maintain only one

node with its radio transceiver turn on per grid cell. The function of an active
state is rotated between all nodes in each cell. Whenever a node turns on its
radio transceiver, it broadcasts a message containing its identifier and a value
of its ranking function. The ranking function is assigned to each node. Its value
depends on the energy left in of a given node. If a node receives a message from
another node from the same cell with the higher value of the ranking function,
it is allowed to turn its radio transceiver off.

144 E. Niewiadomska-Szynkiewicz

In the Geographic Random Forwarding (GeRaF) protocol [10] nodes are pe-
riodically waked up to an active state, starting with a listening time. Hence,
all nodes can forward messages if needed. The protocol operates in two phases:
receiver-initiated forwarding phase and transmission phase. Whenever a node ob-
tains a message to send it switches to the active state and broadcasts the packet
containing its own location and the location of the receiver of the message. Each
active node has a priority, which depends on the closeness to the destination
(nodes located close to the destination have higher priority). A distributed ran-
domization is used to reduce the situation, in which too many neighbors of all
nodes simultaneously switch to a sleeping mode. Moreover, the part of the cov-
erage area between the sender and the destination is divided into number of
regions with associated priorities that depend on the closeness to the destina-
tion, too. Finally, the regions and nodes with the higher priorities are chosen to
forward the message.

Clustering-Based Protocols. Many energy aware routing protocols rely on di-
viding a network into clusters with local cluster heads responsible for data ag-
gregating and transmitting to the base station [1,5,11,14,15,32]. One of a com-
mon clustering-based approach is a Low-Energy Adaptive Clustering Hierarchy
(LEACH) [16] – a self-organizing, adaptive protocol. It utilizes randomized ro-
tation of cluster heads to evenly distribute energy load among all nodes in a
network. Moreover, it performs local compression of data in each cluster to re-
duce global communication. In each cluster nodes elect themselves to be cluster
head at a given time with a certain probability. LEACH is composed of four
phases: cluster heads election, clusters formation, a TDMA (Time Division Mul-
tiple Access) schedule for all nodes in a cluster creation, data aggregation and
transmission. The cluster heads are selected based on the amount of energy left
in given nodes. The TDMA schedule allows the radio components of all non-
cluster heads to be turned off at all times except during their transmit time.
The main drawback of LEACH is that the random rotation of the cluster heads
does not ensure their even distribution in a deployment area – hence multiple
cluster heads can be concentrated in a small region. The modified version of
cluster head selection algorithm used in LEACH is proposed in [32]. In this ap-
proach the probability of a given node to become a cluster head is based on
its remaining energy level. The hybrid Energy-Efficient Distributed Clustering
(HEED) protocol [37] considers explicitly energy resources while selecting clus-
ter heads, too. The probability that the i-th node will be selected to become a
cluster head is equal Pi = NchEi/E

max
i , where Nch denotes assumed percentage

of cluster heads among all nodes, Ei current energy in the node i, Emax
i its

maximum energy. L. Buttyan and P. Schaffer propose in [9] the Position-based
Aggregator Node Election (PANEL) that brings one more step toward energy
efficient clustering protocols. It assumes that the sensing field is divided into
geographical clusters, and each node in a cluster is aware of the cluster location.
The protocol was evaluated through extensive simulations. The authors claim
that PANEL is more energy efficient and creates more cohesive clusters than
HEED.

Energy Aware Communication Protocols for WSN 145

Hybrid Routing Algorithm with Special Parameters in Wireless Sensor Net-
work (PRWSN) [13] is another clustering-based protocol. The created cluster
formation has to satisfy special conditions with regard of the neighborhood prin-
ciple and local information of each node and its neighbors. The cluster head is
selected based on the scale of average local energy and the density of nodes
surrounding a given node.

Hierarchical Protocols. It is common to apply the hierarchy to routing protocols.
A hierarchical version of LEACH is the Energy Efficient Hierarchical Clustering
(EEHC) described in [6]. In this approach data transmission to the destination
is performed using multi-hop routing through multi-level hierarchy of clusters.
We have developed a hierarchical version of GAF – a CGPS protocol that is
described in the following section.

3.3 CGPS – Hierarchical Power Save Protocol

The CGPS (Coordinated Geographical Power Save) protocol relies on the GAF
(Geographic Adaptive Fidelity) protocol [36] and a hierarchical routing. Simi-
larly to GAF we assume covering the network deployment area with a virtual
grid with the size of each cell equal to r/

√
5, where r denotes the radio range.

The scheme of radio device management is taken from the GAF protocol, too.
The novel idea is to decrease the energy usage not only deactivating the selected
nodes but moreover putting selected grid cells to sleep and waking them up only
when necessary. Hence, we introduce the coordination to power management in
WSN, and distinguish two levels of activity control:

grid level - provides an algorithm of power management in each single grid cell
(activation and deactivation of nodes in a given cell),

coordinator level - provides an algorithm of power management in the whole
network (activation and deactivation of grid cells in WSN).

We propose to utilize the base station as a network coordinator. We assume
that not every grid cell needs to maintain an active node. The main task of the
coordinator is to select the cells in the grid that can be deactivated and estimate
the optimal time period of their shutdown. Next, the coordinator calculates the
possible paths for data transmission from all sensors to the base station taking
into account only active grid cells according to the following algorithm.

The Routing Algorithm: The coordinator views the network grids as a graph.
Each grid cell corresponds to a vertex in the graph and the connections to
neighboring grid cells correspond to its edges. The nodes periodically send con-
trol messages to the coordinator. These messages contain the information about
current state of their batteries. The coordinator assigns weights to the edges
in the graph taking into account the current energy resources of all nodes. Let
us assume that grids i and j are neighbors, let pow(i) be the amount of en-
ergy left in the grid i. The weight assigned to the edge between grids i and j

146 E. Niewiadomska-Szynkiewicz

is min(pow(i), pow(j)). Next, the minimum spanning tree on the graph with
the coordinator as a root of the tree is calculated. The leaves of the tree are
network grids that do not need to maintain an active node. The structure of a
spanning tree was chosen in order to preserve the original network connectivity.
The coordinator broadcasts the message that contains the current (computed)
network topology (topology map) and the sequence number of the latest trans-
mitted topology map, whenever newly calculated map differs from the previous
one. In order to minimize the size of broadcasted messages transmitted by grid
cells, the topology map is saved as a bitmap – one grid square is described by
one bit, and dedicated broadcast algorithm was employed.

The grid level is responsible for implementing the policy for sleep-state tran-
sition of nodes in a single cell. The state transition algorithm provided in GAF
is employed.

CGPS was evaluated via simulation using ns-2 software platform. It was com-
pared with the plain GAF protocol and a network with no power save capabilities
at all. The traffic scheme utilized during the experiments assumed random se-
lecting of nodes sending messages to the base station at random time stamps.
Figures 4 and 5 show the average amount of energy available per network node
during the course of simulation in two experiments: networks with 60 (Fig. 4)
and 90 nodes (Fig. 5) distributed uniformly over 800m×800m region, each node
with initial energy resource 21 kJ. The simulations show that CGPS outperforms
the GAF protocol in case of networks with small density of nodes. The amount
of energy saved is greater than in the GAF protocol due to larger number of
nodes with nonactive radio. When the density of network nodes increases, the
amount of energy saved by CGPS falls to the level obtained for GAF (see Fig.
5). It is obvious that CGPS introduces a slight overhead caused by the necessity
of transmitting messages containing current statuses of nodes to the coordinator
and broadcasting decisions of the coordinator to all nodes in the network.

Fig. 4. Average energy consumption for transmission; network size – 60 nodes

Energy Aware Communication Protocols for WSN 147

Fig. 5. Average energy consumption for transmission; network size – 90 nodes

4 Summary and Conclusions

Many challenges arise from wireless ad hoc networking and its application. We
focused on one of them that is especially important in ubiquitous sensing and
actuation – energy efficient communication. In our paper a brief review of some
representative energy aware communication techniques was provided. We de-
scribed and compared through simulation the selected energy aware protocols
rely on power control and activity control. Finally, we presented and evaluated a
new clustering based approach that utilizes the periodical coordination to reduce
the overall energy usage by the network.

As a final observation we can say that the requirement of cooperation be-
tween power saving techniques and routing protocols is particularly useful in
WSNs where nodes forward packets for each other. In practice, however it is not
straightforward. Therefore, strategies for energy aware and reliable communi-
cation in WSN are discussed in the extensive literature and has became a hot
debate nowadays. It is worth to note that power control and activity control are
two different methods for energy efficient communication. The combination of
them has not been yet well studied. The integration of these both techniques
can be an interesting research topic.

Acknowledgments. The author would like to thank Izabela Windyga and
Piotr Kwasniewski for assistance in preparing computational results.

References

1. Abbasi, A., Younis, M.: A survey on clustering algorithms for wireless sensor net-
works. Computer Communications Archive 30(14-15), 2826–2841 (2007)

2. Akyildiz, I., Vuran, M.: Wireless Sensor Networks. John Wiley & Sons, Ltd., West
Sussex (2010)

148 E. Niewiadomska-Szynkiewicz

3. Anastasi, G., Conti, M., Francesco, M.D., Passarella, A.: Energy conservation in
wireless sensor networks: A survay. Ad Hoc Networks 7, 537–568 (2009)

4. Anderson, B., Mao, G., Fida, B.: Wireless sensor network localization techniques.
Computer Networks 51(10), 2529–2553 (2007)

5. Asiam, N., Philips, W., Robertson, W., Sivakumar, S.: A multi-criterion optimiza-
tion technique for energy efficient cluster formation in wireless sensor networks.
Information Fusion 12(3), 202–212 (2011)

6. Bandyopadhyay, S., Coyle, E.: Minimizing communication costs in hierarchically-
clustered networks of wireless sensors. Computer Networks 44(1), 1–16 (2004)

7. Blough, D.M., Leoncini, M., Resta, G., Santi, P.: The k-neighbors approach to
interference bounded and symmetric topology control in ad hoc networks. IEEE
Trans. on Mobile Computing 5, 1267–1282 (2006)

8. Borbash, S.A., Jennings, E.H.: Distributed topology control algorithm for multihop
wireless networks. In: Proc. World Congress on Computational Intelligence (WCCI
2002), pp. 355–360 (2002)

9. Buttyan, L., Schaffer, P.: Position-based aggregator node election in wireless sensor
networks. International Journal of Distributed Sensor Networks 2010, 1–15 (2010)

10. Casari, P., Marcucci, A., Nati, M., Petrioli, C., Zorzi, M.: A detailed simulation
study of geographic random forwarding. In: Proc. of Military Communications
Conference, MILCOM, vol. 1, pp. 59–68 (2005)

11. Chamam, A., Pierre, S.: A distributed energy-efficient clustering protocol for wire-
less sensor networks. Computers & Electrical Engineering 36(2), 303–312 (2010)

12. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. ACM
Wireless Networks 8(5), 481–494 (2002)

13. Ghorbannia Delavar, A., Artin, J., Tajari, M.M.: PRWSN: A hybrid routing algo-
rithm with special parameters in wireless sensor network. In: Özcan, A., Zizka, J.,
Nagamalai, D. (eds.) WiMo 2011 and CoNeCo 2011. CCIS, vol. 162, pp. 145–158.
Springer, Heidelberg (2011)

14. Dhivya, M., Sundarambal, M.: Cuckoo search for data gathering in wireless sensor
networks. International Journal of Mobile Communications 9(6), 642–656 (2011)

15. Ding, P., Holliday, J., Celik, A.: Distributed energy-efficient hierarchical cluster-
ing for wireless sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G.,
Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 322–339. Springer, Heidelberg
(2005)

16. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communica-
tion protocol for wireless sensor networks. In: Proc. of the 33rd Hawaii International
Conference on System Sciences, pp. 1–10 (2000)

17. Ilyas, M., Mahgoub, I.: Handbook of Sensor Networks: Compact Wireless and
Wired Sensing Systems. CRC Press LLC, USA (2005)

18. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks.
John Wiley & Sons, Ltd., West Sussex (2005)

19. Kasch, W., Ward, J., Andrusenko, J.: Wireless network modeling and simulation
tools for designers and developers. IEEE Communications Magazine 12, 120–127
(2008)

20. Kubisch, M., Karl, H., Wolisz, A., Zhong, L.C., Rabaey, J.M.: Algorithms for trans-
mission power control in wireless sensor networks. In: IEEE WCNC (2003)

21. Levis, P.: TinyOS programming, USA (2006)
22. Li, N., Hou, J., Sha, L.: Design and analysis of an mst-based topology control

algorithm. In: Proceedings of IEEE Infocom 2003, pp. 1702–1712. IEEE Computer
Society, San Francisco (2003)

Energy Aware Communication Protocols for WSN 149

23. Liu, X., Shao, F., Xin, P.: Energy balance optimization for prolonging the lifetime
of wireless sensor network. In: Proc. of International Conference on Multimedia
Technology (ICMT), Ningbo, pp. 1–4 (2010)

24. Liu, Y., Zhang, Q., Ni, L.: Opportunity-based topology control in wireless sensor
networks. IEEE Transactions on Parallel and Distributed Systems 21(3), 405–416
(2010)

25. Marks, M.: A survey of multi-objective deployment in wireless sensor networks.
Journal of Telecommunications and Information Technology 3, 36–41 (2010)

26. Niewiadomska-Szynkiewicz, E., Marks, M.: Optimization schemes for wireless sen-
sor network localization. Journal of Applied Mathematics and Computer Sci-
ence 19(2), 291–302 (2009)

27. Rappapport, T.: Wireless Communications: Principles and Practic. Communica-
tions Engineering and Emerging Technologies Seriess. Prentice Hall, USA (2002)

28. Rodoplu, V., Meng, T.: Minimum energy mobile wireless networks. IEEE Journal
Selected Areas on Mobile Computingg 17(8), 1333–1344 (1999)

29. Santi, P.: Topology Control in Wireless Ad Hoc and Sensor Networks. John Wiley
& Sons, Ltd., West Sussex (2006)

30. Shukur, M., Chyan, L., Yap, V.: Wireless sensor networks: delay guarantee and
energy efficient mac protocols. World Academy of Science, Engineering and Tech-
nology 50, 1061–1065 (2009)

31. Sikora, A., Niewiadomska-Szynkiewicz, E.: A parallel and distributed simulation
of ad hoc networks. Journal of Telecommunications and Information Technology 3,
76–84 (2009)

32. Thein, M., Thein, T.: An energy efficient cluster-head selection for wireless sensor
networks. In: Proc. of International Conference on Intelligent Systems, Modelling
and Simulation, Liverpool, UK, pp. 287–291 (2010)

33. Verdone, R., Dardari, D., Mazzini, G., Conti, A.: Wireless Sensor Networks and
Actuator Networks. Technologies, Analysis and Design. Elsevier, USA (2008)

34. Wattenhofer, R., Li, L., Bahl, P., Wang, Y.: Distributed topology control for power
efficient operation in multihop wireless ad hoc networks. In: Proc. of IEEE Infocom
2001, pp. 1388–1397 (2001)

35. Wattenhofer, R., Zollinger, A.: Xtc: A practical topology control algorithm for ad-
hoc networks. In: Proc. of the 4th Inter. Workshop on Algorithms for Wireless,
Mobile, Ad Hoc and Sensor Networks, WMAN (2003)

36. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for ad
hoc routing. In: Proceedings of the 7th Annual International Conference on Mobile
Computing and Networking (MobiCom 2001), pp. 70–84. ACM, New York (2001)

37. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: A hybrid,
energy-efficient approach. In: Proc. of the IEEE INFOCOM, vol. 1, pp. 629–640
(2004)

GPU Acceleration for Hermitian Eigensystems

Michael T. Garba1, Horacio González–Vélez2, and Daniel L. Roach3

1 IDEAS Research Institute, Robert Gordon University, Aberdeen AB25 1HG, UK
m.t.garba@rgu.ed.ac.uk

2 Cloud Competency Centre, National College of Ireland, Dublin 1, Ireland
horacio@ncirl.ie

3 Physics and Materials Research Centre, University of Salford, Salford M5 4WT, UK
d.roach@salford.ac.uk

Abstract. As a recurrent problem in numerical analysis and computa-
tional science, eigenvector and eigenvalue determination usually employs
high-performance linear algebra libraries. This paper explores the im-
plementation of high-performance routines for the solution of multiple
large Hermitian eigenvector and eigenvalue systems on a Graphics Pro-
cessing Unit (GPU). We report a performance increase of up to two
orders of magnitude over the original Eispack routines with a NVIDIA
Tesla C2050 GPU, providing an effective order of magnitude increase
in unit cell size or simulated resolution for Inelastic Neutron Scattering
(INS) modelling from atomistic simulations.

Keywords: GPU, Eigensystems, CUDA, Parallel Computing, Compu-
tational Linear Algebra.

1 Introduction

Eigenvector and eigenvalue determination are frequently encountered problems
in numerical analysis and computational science for which a number of broadly
applied libraries currently exist. However, as increasingly elaborate models be-
come of practical value to scientific and engineering applications, the demands of
solving these systems typically require high performance computing with clusters
or supercomputers.

As an emerging architecture for high-performance parallel computing, the
Graphics Processing Unit (GPU) has the potential to enable a new generation of
applications for desktop machines and small clusters. Originally intended for in-
tensive real-time 3D graphics and gaming, GPUs have demonstrated cluster-level
performance at a fraction of the cost and energy consumption of traditional CPUs
for certain general purpose applications. GPU advances are expected to sustain
the trend of Moore’s law that conventional CPUs are straining to maintain.

However, the shift towards GPU computing is a drastic architectural change
that has left a void in the space of application software and support libraries that
are able to leverage the full capabilities of the platform. While the solution to
computational modelling problems–which were impractical on the desktop and
uneconomical on the supercomputer–may very well become the dominant GPU

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 150–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

GPU Acceleration for Hermitian Eigensystems 151

applications of the future, effective GPU programming remains an open problem
in computational science.

With NVIDIA’s CUDA, AMD’s Firestream, Microsoft’s DirectCompute and
the vendor-neutral OpenCL platform, significant resources are being directed
towards developing a supporting ecosystem for GPU computing in the form of
libraries, specifications, and tools that are at various levels of maturity.

Driven by our own immediate need for high performance solvers for modelling
Inelastic Neutron Scattering (INS) data for comparison and fitting with experi-
mentally obtained data sets from central facilities such as ISIS, ILL and SNS in
Europe and the rest of the world, this paper describes our application of GPUs
to the solution of Hermitian eigensystems, based on the Eispack library and
using NVIDIA’s CUDA platform. Our work may arguably shed some light on
a computational problem of even wider significance and applicability than this
intended modelling application.

2 Background

Eispack, and its successor Lapack, provide extensive dense linear algebra rou-
tines applied in mathematical and scientific computing. Originally developed in
the US in the seventies [16], the accuracy and numerical stability of Eispack has
been established through diverse application over the past 30+ years, leading to
a number of developments in the field [3].

We have developed an initial high performance parallel version of Scatter [15],
a software component that introduces coherent and incoherent polycrystalline INS
(poly-CINS) calculation capabilities for lattice models into the highly popular
Molecular/Lattice Dynamics package, GULP, also known as the General Utility
Lattice Program [6]. This application has demonstrated linear scaling up to 1024
nodes on the Huygens prototype supercomputer in the SARA facilities in the
Netherlands [8]. The core functionality of the application is centred aroundphonon
mode calculations carried out with the support of Eispack. However, not every
Scatter deployment may have access to major supercomputing installations and
it is clear that more affordable computational power is required on the lower end
of the computing scale [1].

Conversely, GPU modules are becoming a frequent presence in high perfor-
mance computing platforms and the application of Scatter to progressively
more complex models on larger installations will require effective usage of these
resources. As a result, an efficient GPU implementation of the most computa-
tionally intensive parts of the Scatter routine will alleviate this imperative
demand. Of particular interest are solvers for the class of Hermitian eigensys-
tems that occur in INS modelling, arising from the determination of vibratory
phonon modes and their associated scattering contributions [14].

For numerically intensive tasks, GPUs have substantial computing poten-
tial [17]. However, complex control flow with conditional branching and thread
divergence incur a noticeable performance penalty [13]. To achieve reasonable
performance benefits, it is necessary to augment traditional development tech-
niques with low-level knowledge of the underlying GPU architecture [10].

152 M.T. Garba, H. González–Vélez, and D.L. Roach

2.1 CUDA Platform

The Compute Unified Device Architecture (CUDA) is NVIDIA’s platform for
GPU computing, providing compilation tools, libraries, a runtime system and
hardware specifications. CUDA allows the execution of kernels, written in CUDA
C, on the GPU device. A kernel executes as a configurable grid of independent
thread blocks that may contain up to 1024 threads in second generation CUDA
devices.

A Single Instruction Multiple Thread (SIMT) abstraction, where threads
within a block execute identical instructions and may operate on different mem-
ory locations, allows fine-grained data parallelism within thread blocks and task
parallelism at kernel level where multiple blocks may execute independently [12].
Thread blocks are divided into warps of 32 threads in 2nd generation CUDA de-
vices. For a given block, only one of these warps is scheduled to execute on the
actual hardware at any given instant.

GPU memory is hierarchically organised and independent from host mem-
ory. Global Memory, high-latency and high-bandwidth DRAM, is the primary
memory available on the device and is accessible by all executing kernels as well
as for host to GPU data transfer. Limited high-speed Shared Memory, essen-
tially a user-managed cache, exists locally on each streaming multiprocessor to
allow the explicit avoidance of expensive off-chip global memory accesses. Also
present are register, texture and constant memories with various performance
characteristics.

The GPU architecture and best practices for achieving good performance are
extensively documented in the CUDA platform and memory transfer contention
and bandwidth represent the predominant bottlenecks to GPU performance. A
critical performance consideration is that high-cost global memory operations
can be performed simultaneously or coalesced for a thread warp if certain ac-
cess constraints are satisfied. In practice, significant efforts are usually dedicated
to optimising memory access patterns of this kind by what is frequently a hit-
or-miss approach involving conflicting trade-offs to maximise the compute to
global memory access (CGMA) ratio [10]. Different authors have suggested var-
ious approaches to optimising memory usage for scientific applications in GPU
architectures, such as the use of cache analysis techniques to improve tiling al-
gorithms [9], the deployment of low-level compiler annotations within CUDA
source files to steer traversal of the memory hierarchy [19], and the automatic
translation of OpenMP structures into CUDA primitives [11].

However, such techniques are both application and architecture dependent, and
may rely on manual intervention for code analysis, annotation, or tool coupling.
Ideally, seamless integration of the application and the architecture without the
need for additional code or human intervention is highly desirable. Extensive efforts
are now geared towards the use of platform-agnostic GPU frameworks which can
deal with standard unified language deployments such as CUDA and OpenCL [4].

GPU Acceleration for Hermitian Eigensystems 153

2.2 Contribution

Despite a number of emerging GPU numerical libraries, no non-proprietary li-
brary for eigensystem analysis is available to completely meet the application re-
quirements. Therefore, a basic port of the required functional subset of Eispack
to the GPU has been undertaken. Admittedly, the more modern Lapack–which
has largely superseded Eispack–may have formed a functionally superior basis.
However, the inherent architectural complexity and reliance on an efficient Blas
implementation implies a long-term effort that the immediacy of our require-
ments does not allow. The Magma library is such an effort that is in the early
stages of providing hybrid multicore-CPU/GPU implementations of Lapack
routines [18].

The challenges of achieving efficient performance on a GPU architecture may
justify the extended effort of custom algorithms developed specifically for the
strengths of the platform [20]. However, we maintain the original algorithms of
the legacy Eispack implementation for several reasons:

1. This work is motivated by a very practical application for which the Eispack
eigensolver has proven adequate.

2. As Eispack has been in production use for nearly 40 years, the numerical
characteristics and accuracy have been established by exhaustive application
and testing.

3. The problem of creating a data-parallel GPU version is conceptually similar
to that of creating a vector-processor version of the Eispack routines. A
vector implementation was created for the IBM 3090-VF [2].

4. While alternative algorithms used in Lapack possess superior cache usage
characteristics and performance in modern processor architectures, they pro-
vide this at the expense of software complexity and reliance on an efficient
Blas implementation.

The Eispack implementation provides the ch driver for double-precision Hermi-
tian matrices and its three subroutine dependencies shown in Table 1. It extends
our initial work [7] by introducing a coordinated approach to the development
of GPU-based eigensystem solvers.

3 Hermitian Eigensystems

For a general square matrix A, a non-zero vector v is an eigenvector if and only
if there exists a corresponding non-zero scalar λ, or eigenvalue, which satisfies
equation (1). For a Hermitian matrix A, a complex matrix which is equal to its
conjugate transpose (A = A†), it can be demonstrated that all eigenvalues λi

are real.

Av = λv (1)

In equation (2), T is an invertible matrix, the matrices A and B are said to be
similar and share several important properties that include identical eigenvalues
λi and closely related eigenvectors (equation (3)).

154 M.T. Garba, H. González–Vélez, and D.L. Roach

T−1AT = B (2)

EA = TEB (3)

Similarity transformations of the form of equation (2) are the basis of several
matrix algorithms. It is frequently possible to perform a reduction to a similar
matrix that allows the use of more efficient or direct algorithms. The Schur
decomposition of A is such a representation of the matrix as the result of a
similarity transformation (equation (4)) on a strictly upper-triangular matrix S
with a unitary matrix Q.

A = QSQ−1 (4)

A transformation such as equation (4) preserves symmetry when Q is unitary
i.e. QQ† = Q†Q = I. Thus, if A is Hermitian and S is strictly upper triangular
then S must be a diagonal matrix. Since AQ = QS, the columns of Q must be
eigenvectors of A and the diagonal entries of S are the corresponding eigenvalues.
Therefore, the Hermitian eigensystem problem is equivalent to determining the
Schur decomposition of the Hermitian matrix A.

To compute the Schur decomposition, the matrix is typically reduced to a sim-
ilar Hessenberg matrix via a potentially infinite sequence of symmetry-preserving
similarity transformations. Since an upper Hessenberg matrix has all entries be-
low the first subdiagonal set to zero (equation (5)), another property which
follows from symmetry is that the Hessenberg form of a Hermitian matrix is
tridiagonal. In practice, a finite number of these elementary Householder or
Givens reflections will cause off-diagonal elements to effectively reach zero as
they are reduced to less than machine roundoff error.⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 ... a1(n−1) a1n
a21 a22 a23 ... a2(n−1) a2n
0 a32 a33 ... a3(n−1) a3n
...

...
...

. . .
...

...
0 0 0 ... a(n−1)(n−1) a(n−1)n

0 0 0 ... an(n−1) ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

The eigenvalues and eigenvectors of the tridiagonalised matrix are evaluated
via the QR algorithm. While the eigenvalues are identical, the actual eigenvec-
tors EA of the original matrix are retrieved by back-transforming the computed
eigenvectors.

4 GPU Kernel Implementation and Optimisation

The original Eispack library was developed as a Fortran port of a set of Algol
routines developed for numerical computation in the Handbook for Automatic
Computation [21]. Our intention was to gain parallel performance on the GPU

GPU Acceleration for Hermitian Eigensystems 155

architecture while preserving the original high-quality algorithmic implemen-
tation of Eispack. These Fortran routines require source-level translation into
equivalent C sources for compatibility with the C/C++-based CUDA SDK and
compilation tools.

The f2c tool [5] allows direct compilation of standard Fortran77 code into
functionally equivalent C code with transparent handling of notable language
differences such as the row-major vs. column-major array representation formats.

Table 1. Relevant Hermitian Eigensystem routines in Eispack used by the ch driver

Routine Description
htridi Reduction of complex Hermitian matrix to real

symmetric tridiagonal matrix via unitary similarity
transformations.

tql2 Eigenvalues and eigenvectors of symmetric
tridiagonal matrix by QL method.

htribk Eigenvectors of complex Hermitian matrix by
back-transformation of corresponding real
symmetric tridiagonal matrix.

Under the ch driver for double precision Hermitian matrices, Eispack relies
on the three subroutines outlined in Table 1. These subroutines have served as
the basis of three functionally equivalent GPU kernels.

The implementation is executed in a series of steps, illustrated in Figure 1,
with testing and verification of sequential equivalence. For each routine, an initial
proto-kernel is implemented without any CUDA parallel constructs to test code
execution on the GPU for data transfer, kernel launch and data retrieval using
a single thread. This proto-kernel is highly inefficient as it uses very little of the
computational capabilities of the device.

With the execution model and platform verified, synchronisation constructs
are necessary for global memory operations to avoid race conditions before
the actual fine-grained work distribution can be introduced. Performance gains
emerge as data-parallel operations are distributed between cooperating threads.
These loops are identified from source-level line-profiling on the original CPU
version of Eispack, the rationale being that CPU performance is strongly indica-
tive of potential performance bottlenecks in the GPU kernels. This is a necessary
workaround as CUDA profiling tools provide relatively basic functionality.

Multiple independent blocks provide coarse-grained block-level parallelism,
allowing the GPU to solve several independent eigensystems simultaneously in
a single kernel invocation. While, the CUDA platform provides the __sync-
threads() primitive for thread synchronisation within a block, global kernel syn-
chronisation across different thread blocks is unsupported.

In this implementation, a number of thread blocks independently handle the
solution of multiple eigensystems in parallel. With a thread block or cooperative
thread array (CTA) mapped to an input problem set, parallelism is possible at

156 M.T. Garba, H. González–Vélez, and D.L. Roach

Fig. 1. Development process with implementation steps from CPU to GPU before
optimisation and performance tuning

both independent block and cooperative thread levels. Tiling allows the actual
dimensions of the thread block to be completely independent of the dimensions
of the matrix problem.

4.1 Optimisation

Arguably, optimisation is currently the most challenging aspect of GPU pro-
gramming and, as memory transfer constitutes the predominant limit to achiev-
able performance, the objective is usually to maximise the Compute to Global
Memory Access (CGMA) ratio. On account of the novelty and complexity of the
platform, the compilation tools do not provide the same level of optimised code
generation that traditional CPUs have available. As a result, this responsibility
rests with the programmer and a mental model of the hardware architecture of
the GPU platform is necessary.

The CUDA platform provides extensive documentation of performance best
practices [13]. However, trade-offs remain necessary between possible efficiency
measures. Some performance optimisations applied include:

1. Asynchronous transfers between Host and GPU memory over multiple
streams allow concurrent kernel execution and overlapped I/O.

2. Coalesced memory access by algorithm reorganisation. Transposed matrix
layout in some subtasks is necessary to achieve higher memory transfer band-
width.

GPU Acceleration for Hermitian Eigensystems 157

3. Improved register memory usage by the elimination (or reuse when appro-
priate) of extraneous register variables to improve GPU occupancy and fa-
cilitate latency hiding on the streaming multiprocessors.

4. Use of explicit caching in shared memory to limit costly global memory
accesses.

5. Empirical determination of launch configuration by trial and error. While,
the guidelines recommend that thread blocks sizes should be multiples of
a warp to allow latency hiding for multiple warps, it is necessary to deter-
mine actual optimal block sizes by testing. The different kernels performed
optimally at distinct block dimensions.

5 Performance Evaluation

Performance evaluations are carried out on a 64-bit Dell Precision T7500 Server
with 4 Intel Xeon 2GHz CPU cores, 4GB RAM and a NVIDIA Tesla C2050
GPU with a PCI express interface running Version 3.2 of the CUDA SDK on
64-bit Ubuntu 10.04 Linux.

The second generation NVIDIA Tesla C2050 GPU is designed specifically for
scientific and numerical computing applications. 14 streaming multiprocessors
(SM), each providing 32 streaming processors (SP), offer 448 parallel cores in

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 128 256 512 1024 2048 4096

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Matrix Order N

CPU EISPACK
CPU LAPACK

Tesla C2050 - EISPACK

32

314

5154

71504

651953

5824843

30

228

1712

13750

107150

829380

4

20

124

781

7998

612060

Fig. 2. Execution time for 1000 double precision Hermitian matrices of order N with
(i) the current Eispack CPU implementation, (ii) Lapack on CPU and (iii) the test
Eispack implementation on a NVIDIA Tesla C2050 GPU.

158 M.T. Garba, H. González–Vélez, and D.L. Roach

Table 2. NVIDIA Tesla C2050 GPU Specifications

Parameter Value
Number of CUDA Cores 448
Frequency of CUDA Cores 1.15GHz
Double Precision floating point
performance (peak)

515 Gflops

Single Precision floating point
performance (peak)

1.03 Tflops

Total Dedicated Memory 3GB
GDDR5

total. While many earlier GPUs completely lacked double precision support, the
Tesla GPU provides improved double-precision floating point performance.

The execution times for 1000 N -order input matrices with Eispack and
Lapack on a single CPU core and on the GPU are shown in Figure 2. GPU
times are collected via the platform timers and are inclusive of memory transfer
overhead.

Within a critical window (N = 512 − 2048), the current GPU routine yields
performance increases of between 50 to a 100 times over the previous Eispack
implementation, a result of performance gains at both thread and block levels.
As the matrix order increases, the GPU memory is able to accommodate fewer
matrices to provide any block-level performance advantage and execution re-
sources begin to idle. Therefore, the scalability of the approach is restricted for
higher values of N by the hard limit that memory places on GPU occupancy
despite the still-observable benefits of thread-level parallelism.

The superior Lapack cache behaviour delivers consistently higher perfor-
mance over Eispack for larger values of N. While equivalent routines in both
Lapack and Eispack are of storage order O(n2), Lapack reuses the same input
matrix memory for output and is therefore more memory efficient.

6 Conclusions

The particular applicability of INS to the study of nano-materials has led to
increasing popularity for structural determination in the materials science com-
munity. Libraries of mathematical routines remain the foundation of these appli-
cations and it is important to establish and maintain efficient implementations.

The intention of this work has been to create an efficient GPU port that
meets the need created by Scatter and that is based on the established numer-
ical Eispack code. We have demonstrated the substantial performance potential
of the GPU in INS modelling and similar applications that rely on significant
numerical computation and anticipate the emergence of standard numerical li-
braries for the GPU that are based on tuned algorithms oriented towards the

GPU Acceleration for Hermitian Eigensystems 159

particular strengths of the platform. A very recent release of the Magma li-
brary introduces a Hermitian eigensolver for hybrid multicore-CPU-GPU con-
figurations that is based on an alternative divide-and-conquer algorithm. The
suitability of this Lapack-based version is being evaluated. However, our ini-
tial observations indicate that Magma performance is optimised for very large
values of N , outside the critical window identified previously.

While the nature of GPU computing implies that tuning and testing are usu-
ally on-going concerns, the current implementation has demonstrated a perfor-
mance increase of two orders of magnitude with several INS models in Gulp,
the Scatter host application [6], delivering consistent output. For the intended
neutron scattering application, good performance within the critical window has
been sufficient to allow an order of magnitude advance in the size, complexity or
grid refinement of the INS models. Further work will investigate deployment in
a multi-GPU cluster and other computationally intensive aspects of INS mod-
elling that may benefit from GPU acceleration. This includes derivation of the
dynamical matrix and nearest-neighbour search. In the long-term, it is expected
that subsequent GPU models will offer improved memory characteristics, deliver
higher performance and provide superior optimising compilers. Furthermore, the
need for migration to Lapack as larger systems are modeled is evident.

The challenge of determining optimal parameters for launch configuration and
performance tuning presents an opportunity to apply heuristic techniques. Ul-
timately, we seek to investigate deployment of the neutron scattering program
for complex models in large dynamic GPU-accelerated heterogeneous environ-
ments and techniques for improving co-operative CPU-GPU throughput. This
will combine CPU, GPU-Eispack and, prospectively, MAGMA in an adaptive
framework that optimises for performance by balancing between alternative ex-
ecution paths. Multiple implementations of GPU kernels, optimised for various
problem scales, become a means of achieving this performance balance.

Acknowledgements. The authors would like to thank the Partnership for Ad-
vanced Computing in Europe (PRACE) for their support and grant of comput-
ing time in the SARA supercomputing facilities. The PRACE project receives
funding from the EU’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. RI-211528. The Authors would also like to acknowledge
the support of a collaboration travel grant awarded by the STFC Collaborative
Computational Project 5 (CCP5). One of the authors (Roach) would like to
acknowledge the support of EPSRC (EP/G049130) in the development of the
Scatter code.

The authors would like to express their gratitude to the NVIDIA Corporation
for the donation through the Professor Partnership programme of the GPU Tesla
equipment employed in this work. Our appreciation to Julian Gale of Curtin
University (Australia) for making the Gulp source code available.

160 M.T. Garba, H. González–Vélez, and D.L. Roach

References

1. Bethel, E., van Rosendale, J., Southard, D., Gaither, K., Childs, H., Brugger, E.,
Ahern, S.: Visualization at Supercomputing Centers: The Tale of Little Big Iron
and the Three Skinny Guys. IEEE Computer Graphics and Applications 31(1),
90–95 (2011)

2. Cline, A.K., Meyering, J.: Converting eispack to run efficiently on a vector proces-
sor. Tech. rep., Pleasant Valley Software, Austin, Texas (1991)

3. Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical linear
algebra for high-performance computers, 2nd edn. SIAM (1998)

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Computing 38(8), 391–407 (2012)

5. Feldman, S.: A Fortran to C converter. ACM SIGPLAN Fortran Forum 9(2), 21–22
(1990)

6. Gale, J.D., Rohl, A.L.: The general utility lattice program (GULP). Molecular
Simulation 29(5), 291–341 (2003)

7. Garba, M., González-Vélez, H.: Towards ad-hoc GPU acceleration of parallel eigen-
system computations. In: ECMS 2011: 25th European Conference on Modelling and
Simulation. ECMS, Krakow (June 2011)

8. Garba, M., González-Vélez, H., Roach, D.: Parallel computational modelling of
inelastic neutron scattering in multi-node and multi-core architectures. In: 11th
IEEE Int. Conf. on High Performance Computing and Communications, pp. 509–
514. IEEE, Melbourne (2010)

9. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory model for scien-
tific algorithms on graphics processors. In: SC 2006: ACM/IEEE Conf. on Super-
computing, p. 6. IEEE, Tampa (2006)

10. Kirk, D., Wen-mei, W.: Programming massively parallel processors: A Hands-on
approach. Morgan Kaufmann Publishers Inc., San Francisco (2010)

11. Lee, S., Min, S.J., Eigenmann, R.: Openmp to gpgpu: a compiler framework for
automatic translation and optimization. SIGPLAN Not. 44, 101–110 (2009)

12. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. Queue 6(2), 40–53 (2008)

13. Nvidia Corporation: NVIDIA CUDA C Programming Best Practices Guide. Man-
ual Version 2.3, NVIDIA (2009), http://developer.nvidia.com/ (last accessed:
February 1, 2011)

14. Roach, D., Ross, K., Gale, J.D.: The application of coherent inelastic neutron
scattering to the study of polycrystalline materials (2012) (in Preparation)

15. Roach, D.L., Gale, J., Ross, D.: Scatter: A New Inelastic Neutron Scattering Sim-
ulation Subroutine for GULP. Neutron News 18(3), 21–23 (2007)

16. Smith, B.T., Boyle, J.M., Dongarra, J., Garbow, B.S., Ikebe, Y., Klema, V.C.,
Moler, C.B.: Matrix Eigensystem Routines - EISPACK Guide, 2nd edn. LNCS,
vol. 6. Springer, Heidelberg (1976)

17. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing 36(5-6), 232–240 (2010)

http://developer.nvidia.com/

GPU Acceleration for Hermitian Eigensystems 161

18. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for
multicore with GPU accelerators. In: IPDPS 2010 Workshops, pp. 1–8. IEEE,
Atlanta (2010)

19. Ueng, S.-Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.-m.W.: CUDA-lite: Reduc-
ing GPU programming complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 1–15. Springer, Heidelberg (2008)

20. Vázquez, F., Fernández, J.J., Garzón, E.M.: A new approach for sparse matrix
vector product on NVIDIA GPUs. Concurrency and Computation: Practice and
Experience 23(8), 815–826 (2011)

21. Wilkinson, J., Reinsch, C.: Linear Algebra. Handbook for Automatic Computation,
vol. 2. Springer (1971)

Scalable and High Performing Learning

and Mining in Large-Scale Networked
Environments: A State-of-the-art Survey

Evis Trandafili1 and Marenglen Biba2

1 Department of Computer Science,
Polytechnic University of Tirana, Albania

etrandafili@fti.edu.al
2 Department of Computer Science,

University of New York in Tirana, Albania
marenglenbiba@unyt.edu.al

Abstract. Scalability is a major issue in the application of machine
learning and data mining to large-scale networked environments. While
there has been important progress in the learnability of models for
medium-sized datasets, there is still much challenge in facing large-scale
systems. In particular, with the evolution of distributed and networked
environments, the complexity of the learning and mining process has
now grown due to the possibility to integrating more data in the learn-
ing process. This paper provides a survey on the state-of-the-art on the
methods and algorithms to enhance scalability of machine learning and
data mining for large-scale networked systems.

1 Introduction

Machine Learning and Data Mining have long dealt with the problem of inferring
models for classification in many application domains. With the fast growing
amount of available data, however, the capability of traditional approaches to
learn useful models has reached the limit. Large networked environments are
continuously posing new challenges to learning algorithms which have now to
take into consideration the presence of many entities distributed in networked
systems. The possibility to involve in the learning process huge collections of
documents and large databases, has led to new opportunities for discovering
important relationships among apparently distant entities, but at the same time,
has raised performance issues that the currect machine learning methods have
to deal with.

In this paper we present a state-of-the-art survey of the most important works
regarding scalability and performance of machine learning and data mining ap-
proaches for large-scale networked data. The paper is organized as follows: in
Section 2 we present research regarding mining of large social networks and how
data mining approaches have tackled the problem of scalability in these networks.
Section 3 presents research in sensor networks outlining the major contributions

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 162–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Scalable and High Performing Learning and Mining 163

in scaling machine learning in this kind of environments. In Section 4 we present
research on high performing algorithms in P2P systems. Section 5 presents re-
search activity and results for distributed control systems and stream mining
and Section 6 focuses on learning and mining in large scale multimedia retrieval
systems. Finally, we conclude in Section 7.

2 Scalability and Learning in Large-Scale Social Networks

With the wide use of the Internet, now complex interactions easily take place
among different entities, leading to huge information networks. When these enti-
ties consist of people that interact in large online social websites, the amount of
daily interactions grows rapidly leading to large-scale social networks that need
to be analyzed. Social networks are increasingly inspiring research in machine
learning and data mining. This is due to the growing amount of available data
that have to be analyzed. Moreover, most social networks have an outstanding
marketing value and developing methods for viral marketing is a hot topic in
the research community [14].

However, most social networks remain impossible to be fully analyzed and
understood due to prohibiting sizes and the incapability of traditional machine
learning and data mining approaches to deal with this new dimension in the
learning process which is the large-scale enviroment where the data are produced.

Mobile devices and wireless technologies have led to mobile social network
systems which are becoming increasingly popular. In this kind of social network,
the information and influence are spread in the form of word-of-mouth. For this
reason it is essential to search for a subset of influential individuals in a mobile
social network such that targeting them initially (e.g. for marketing campaigns)
will maximize the spread of the influence. However, unfortunately, it has been
shown that the problem of finding the most influential nodes is NP-hard. It has
also been shown that a Greedy algorithm with provable approximation guaran-
tees can provide good performance, but it is computationally expensive, if not
prohibitive, to run the greedy algorithm on a large mobile network. Therefore
the scalability problem is present and needs to be handled appropriately.

In [64] the authors propose a new algorithm called Community-based Greedy
algorithm for mining top-K influential nodes. The proposed algorithm encom-
passes two components: 1) an algorithm for detecting communities in a social
network; and 2) a dynamic programming algorithm for selecting communities to
find influential nodes. Empirical experiments on a large real-world mobile social
network show that their algorithm is more than an order of magnitudes faster
than the state-of-the-art Greedy algorithm for finding top-K influential nodes
and the error of their approximate algorithm is small.

Social interactions that occur regularly, will typically correspond to signifi-
cant yet often infrequent and hard to detect interaction patterns. To identify
such regular behavior, the authors in [27] propose a new mining problem of
finding periodic or near periodic subgraphs in dynamic social networks where
scalability is also a major issue. They propose a practical, efficient and scalable

164 E. Trandafili and M. Biba

algorithm to find such subgraphs that takes imperfect periodicity into account
and demonstrate the applicability of their approach on several real-world net-
works and extract meaningful and interesting periodic interaction patterns.

Social networks often involve multiple relations simultaneously. People usually
construct an explicit social network by adding each other as friends, but they
can also build implicit social networks through daily actions like commenting
on posts, or tagging photos. The authors in [16] address this problem: given
a real social networking system which changes over time, do daily interactions
follow any pattern? They model the formation and co-evolution of multi-modal
networks proposing an approach that discovers temporal patterns in peoples
social interactions. They show the effectiveness of the approach on two real
datasets (Nokia FriendView and Flickr) with 100,000 and 50,000,000 records
respectively, each of which corresponds to a different social service, and spans
up to two years of activity.

One solution to dealing with continuously growing social networks is com-
pressing them so that we can substantially facilitate mining and the advanced
analysis of large social networks. The optimal solution would be to compress
social networks in a way that they still can be queried efficiently without de-
compression. For example, we should still be able to perform neighbor queries
efficiently (which search for all neighbors of a query vertex), as these are the
most essential operations on social networks. The problem has been addressed
in [40] where the authors propose a social network compression approach based
on a novel Eulerian data structure using multi-position linearizations of directed
graphs. Their approach seems to be the first that can answer both out-neighbor
and in-neighbor queries in sublinear time and they verfiy their design with an
extensive empirical study on more than a dozen benchmark real data sets.

An important task often essential in some social networks is the discovery of
communities. Usually, the given scenario is the one where communities need to be
discovered with only reference to the input graph. However, for many interesting
applications one is interested in finding the community formed by a given set of
nodes. In [50] the authors study a query-dependent variant of the community-
detection problem, which they call the community-search problem: given a graph
G, and a set of query nodes in the graph, the goal is to find a subgraph of G
that contains the query nodes and is densely connected. A measure of density is
proposed based on minimum degree and distance constraints, and an optimum
greedy algorithm is developed for this measure. The authors characterize a class
of monotone constraints and they generalize the algorithm to compute optimum
solutions satisfying any set of monotone constraints. Finally they modify the
greedy algorithm and present two heuristic algorithms that find communities
of size no greater than a specified upper bound. The experimental evaluation
on real datasets demonstrates the efficiency of the proposed algorithms and the
quality of the solutions they obtain.

In [6], the authors propose a scalable framework for modeling competitive dif-
fusion in social networks. In social networks, multiple phenomena often diffuse
in competition with one another. Applications of this kind include, for instance,

Scalable and High Performing Learning and Mining 165

eventual results from multiple competing diffusion models (e.g. what is the likely
number of sales of a given product). The authors in [6] define the most proba-
ble interpretation (MPI) problem which technically formalizes this need. They
develop algorithms to efficiently solve MPI and show experimentally that their
algorithms work on graphs with millions of vertices.

An interesting work is presented in [28] where the authors instead of defining
a procedure to extract sets of nodes from a graph and then attempt to interpret
these sets as real communities, employ approximation algorithms for the graph
partitioning problem to characterize as a function of size the statistical and
structural properties of partitions of graphs that could plausibly be interpreted
as communities. In addition, they define the network community profile plot,
which characterizes the best possible community – according to the conductance
measure – over a wide range of size scales. The authors perform a study over 100
large real–world networks, ranging from traditional and on–line social networks,
to technological and information networks and web graphs, and ranging in size
from thousands up to tens of millions of nodes.

On large-scale networks, there is a need to perform aggregation operations.
Unfortunately the existing implementation of aggregation operations on rela-
tional databases does not guarantee superior performance in network space, es-
pecially when it involves edge traversals and joins of gigantic tables. In [57],
the authors investigate the neighborhood aggregation queries: Find nodes that
have top-k highest aggregate values over their h-hop neighbors. While these ba-
sic queries are common in a wide range of search and recommendation tasks,
surprisingly they have not been dedicated much attention. The work in [57] pro-
poses a Local Neighborhood Aggregation framework, to answer these queries
efficiently. The approach exploits two properties unique in network space: First,
the aggregate value for the neighboring nodes should be similar in most cases;
Second, given the distribution of attribute values, it is possible to estimate the
upper-bound value of aggregates. These two properties inspire the development
of novel pruning techniques, forward pruning using differential index and back-
ward pruning using partial distribution. Empirical results show that the proposed
approach could outperform the baseline algorithm up to 10 times in real-life large
networks.

3 Scaling Machine Learning in Sensor Networks

Sensor networks often present large amounts of data spread over many physi-
cally distributed nodes. Machine learning and data mining techniques have the
potential to deal with these kind of data. Due to the complexity of heterogeneous
networked data, important challenges have arisen such as the need for run-time
data aggregation, parallel computing, and distributed hypothesis formation [8].

One of the existing approaches in sensor networks is presented in [61] where
the authors present an algorithm for finding distributed icebergs-elements that
may have low frequency at individual nodes but high aggregate frequency (this
is a problem that arises commonly in practice). The work in [7] addresses a ma-
jor challenge in data mining applications where the full information about the

166 E. Trandafili and M. Biba

underlying processes, such as sensor networks or large online databases, cannot
be practically obtained due to physical limitations such as low bandwidth or
memory, storage, or computing power. They propose a framework for detecting
anomalies from these large-scale data mining applications where the full infor-
mation cannot be practically obtained.

In [49] it is presented another approach for network management in large-
scale randomly-deployed sensor networks, called Energy Map, which explores
the inherent relationships between the energy consumption and the sensor oper-
ation. Through nonlinear manifold learning algorithms the approach visualizes
the residual energy level of each sensor in a large scale network, infers the sensor
locations and the current network topology through mining the collected residual
energy data in a randomly-deployed sensor network, and explores the inherent
relation between sensor operation and energy consumption to find the dynamic
patterns from large volumes of sensor network data for network design.

In [44] and [45] the author proposes a declarative query language and data
mining techniques to discover frequent event patterns and their spatial and tem-
poral properties. In these works, raw streams of sensor readings are collected
for later offline processing and analysis and in-network data mining techniques
are explored to discover frequent event patterns and their spatial and temporal
properties.

The authors of [35] propose and evaluate distributed algorithms for data clus-
tering in self-organizing ad-hoc sensor networks with computational, connectiv-
ity, and power constraints. One of the benefits of in-network data clustering
algorithms is the capability of the network to transmit only relevant, high level
information, namely models, instead of large amounts of raw data, also reducing
drastically energy consumption. Finally, the work in [43] presents an exploration
of different characteristics of sensor networks which define new requirements for
knowledge discovery, with the common goal of extracting some kind of compre-
hension about sensor data and sensor networks, focusing on clustering techniques
which provide useful information about sensor networks as it represents the in-
teractions between sensors.

In [32], the authors propose a distributed traffic stream mining system. The
central server performs various data mining tasks only in the training and updat-
ing stage and sends the interesting patterns to the sensors. The sensors monitor
and predict the coming traffic or raise alarms independently by comparing the
data with the patterns observed in the historical streams. The sensors provide
real-time response with less wireless communication and small resource require-
ment, and the computation burden on the central server is reduced. The authors
evaluate the system on the real highway traffic streams in the GCM Transporta-
tion Corridor in Chicagoland.

4 Scalability in Peer-to-Peer Networks

The research in machine learning and data mining on analyzing data in Peer-
to-Peer (P2P) networks is attracting a lot of attention of researchers. We will
briefly describe here some recent developments in this exciting area.

Scalable and High Performing Learning and Mining 167

An important work is presented in [4] where it is proposed a local distributed
algorithm for expectation maximization in large peer-to-peer environments. The
proposed algorithm can be used for a variety of well-known data mining tasks
in a distributed environment such as clustering, anomaly detection, or target
tracking. This technology is crucial for many emerging P2P applications for
bioinformatics, astronomy, social networking, sensor networks and web mining.
The distributed algorithm was shown provably-correct i.e. it converges to the
same result compared to a similar centralized algorithm and can automatically
adapt to changes to the data and the network. The authors showed also that
the communication overhead of the algorithm is very low due to its local nature.
This monitoring algorithm is then used as a feedback loop to sample data from
the network and rebuild the model when it is outdated. Thorough experimental
results were presented by the authors to verify the theoretical claims.

Tagging information is often an important feature to exploit in analyzing text
documents. In many application areas involving classification of text documents,
web users participate in the tagging process and the collaborative tagging results
in the formation of large scale P2P systems which can function, scale and self-
organize in the presence of highly transient population of nodes and do not need
a central server for co-ordination. In [17] it is presented a P2P classifier learning
system for extracting patterns from text data where the end users can partici-
pate both in the task of labeling the data and building a distributed classifier
on it. The approach is based on a novel distributed linear programming based
classification algorithm which is asynchronous in nature. The authors provide
extensive empirical results on text data obtained from the online repository of
NSF Abstracts Data.

An important challenge in data mining over P2P networks is the right data
representation. In [67] the authors describe an approach to collaborative feature
extraction, selection and aggregation in distributed, loosely coupled domains.
The authors focus on scenarios in which a large number of loosely coupled nodes
apply data mining to different, usually very small and overlapping, subsets of
the entire data space. The goal is to learn a set of local concepts and not to
find a global concept. The paper proposes two models for collaborative feature
extraction, selection and aggregation for supervised data mining. One is based
on a centralized P2P architecture, and the other on a fully distributed P2P
architecture. The comparison of both models is performed on a real word data
set.

In [24] the authors propose a local distributed algorithm for multivariate re-
gression in large P2P environments. The algorithm was designed for distributed
inferencing, data compression, data modeling and classification tasks in emerg-
ing P2P applications for bioinformatics, astronomy, social networking, sensor
networks and web mining. The proposed approach proceeds in two steps. First,
it offers an efficient local distributed algorithm that monitors the quality of the
current regression model. If the model is outdated, it uses this algorithm as a
feedback mechanism for rebuilding the model. Experimental results support the
theoretical claims.

168 E. Trandafili and M. Biba

In [25], the authors propose a scalable, local privacy-preserving algorithm for
distributed peer-to-peer data aggregation useful for many advanced data mining/
analysis tasks such as average/sum computation, decision tree induction, feature
selection, and more. The proposed approach works in an asynchronous manner
through local interactions and it was shown to be highly scalable. It particularly
deals with the distributed computation of the sum of a set of numbers stored at
different peers in a P2P network in the context of a P2P web mining application.

One particular type of systems are those based on the publish/subscribe model
that have been adopted by many services to deliver data between distributed
users based on application-specific semantics. In such systems, the semantic ex-
pressiveness of content matching and the scalability of the matching mechanism,
are often found to be in conflict due to the complexity associated with content
matching. In [59], the authors present a novel content-based publish/subscribe
architecture based on P2P matching trees. The system achieves scalability by
partitioning the responsibility of event matching to self-organized peers while
allowing customizable matching functionalities. Experimental results using a va-
riety of real world datasets demonstrate the scalability and flexibility of the
system.

5 Scaling in Distributed Control Systems and Stream
Mining

Machine learning and data mining provide excellent methods and techniques
for dealing with automation and control in a distributed setting. Here we ex-
plore some approaches that have proven successful in important areas such as
transportation, fleets and automation control.

In [23] it is presented a distributed vehicle performance data mining system
designed for commercial fleets. The MineFleet system analyzes high throughput
data streams onboard the vehicle, generates the analytics, sends them to the
remote server over the wide-area wireless networks and offers them to the fleet
managers using stand-alone and web-based user-interface. MineFleet is probably
one of the first commercially successful distributed data stream mining systems.
Another approach was proposed in [33] called mobility-based clustering that
deals with practical research on hot spots in smart city taking into consider-
ation unique features, such as highly mobile environments, supremely limited
size of sample objects, and the non-uniform, biased samples. The authors report
performance of mobility-based clustering based on real traffic situations.

The authors in [62] deal with the critical problem in a crisis situation of
how to efficiently discover, collect, organize, search and disseminate real-time
disaster information. The proposed system exploits the latest advances in data
mining technologies to analyze the integrated input data from different sources.
Another interesting approach is that in [18] where a massive quantity of com-
plex, dynamic, and distributed location traces is handled and mined to provide
effective mobile sequential recommendation.

In another recent work, a novel approach was presented based on the theory
of multiple kernel learning to detect potential safety anomalies in very large data

Scalable and High Performing Learning and Mining 169

bases of discrete and continuous data from world-wide operations of commercial
fleets [12]. Their results show that the proposed algorithm uncovers operationally
significant events in high dimensional data streams in the aviation industry which
are not detectable using state of the art methods. Another interesting approach
is that of [26] where it is presented a system based on Ubiquitous Data Mining
(UDM) concepts. It merges and analyses different types of information from
crash data and physiological sensors to diagnose driving risks in real time.

An important feature of networked data is their uncertainty since sensors
are typically expected to have considerable noise in their readings because of
inaccuracies in data retrieval, transmission, and power failures. In [2] the authors
propose a method for clustering uncertain data streams.

In [5] the authors propose a distributed algorithm for monitoring the principal
components (PCs) for next generation of astronomy petascale data pipelines such
as the Large Synoptic Survey Telescopes. This telescope takes repeat images of
the night sky every 20 seconds, thereby generating 30 terabytes of calibrated im-
agery every night that will need to be co-analyzed with other astronomical data
stored at different locations around the world. Event detection, classification and
isolation in such data sets may provide useful insights to unique astronomical
phenomenon. Performing data mining for such high-throughput distributed data
streams is a challenging problem. In [5] it is proposed a highly scalable and dis-
tributed asynchronous algorithm for monitoring the principal components (PC)
of such dynamic data streams. The authors discuss a prototype webbased sys-
tem PADMINI (Peer to Peer Astronomy Data Mining) which implements this
algorithm for use by the astronomers. The paper demonstrates the algorithm on
a large set of distributed astronomical data to accomplish well-known astronomy
tasks such as measuring variations in the fundamental plane of galaxy param-
eters. The proposed algorithm is provably correct (i.e. converges to the correct
PCs without centralizing any data) and can seamlessly handle changes to the
data or the network. Real experiments performed on Sloan Digital Sky Survey
catalogue data show the effectiveness of the algorithm.

6 Scaling in Multimedia Retrieval Systems

Video and image retrieval has become an important research trend in the ma-
chine learning and data mining community. Although significant achievements
have been made in this area, there are still important open challenges.

An important recent work is that in [10] where the authors propose a ran-
domized data mining method that finds clusters of spatially overlapping images.
The essential part of the proposed method relies on the min-Hash algorithm for
fast detection of pairs of images with spatial overlap, the so-called cluster seeds.
The seeds are then used as visual queries to obtain clusters which are formed as
transitive closures of sets of partially overlapping images that include the seed.
The authors show that the probability of finding a seed for an image cluster
rapidly increases with the size of the cluster. The properties and performance of
the algorithm are demonstrated on datasets with 104, 105, and 5 ∗ 106 images.

170 E. Trandafili and M. Biba

The speed of the method depends on the size of the database and on the number
of clusters. The first stage of seed generation is close to linear for databases sizes
up to approximately 234 or around 1010 images. On a single 2.4GHz PC, the
clustering process took only 24 minutes for a standard database of more than
hundred thousand images, i.e. only 0.014 seconds per image.

An important problem in multimedia content analysis and retrieval is multi-
concept learning. It connects two key components in the multimedia semantic
ecosystem: multimedia lexicon and semantic concept detection. In [52], the au-
thors attempt to answer two questions related to multi-concept learning: does
a large-scale lexicon help concept detection? How many concepts are enough?
They perform a study on a large scale lexicon that shows that more concepts
indeed help improve detection performance. The experiments show that the gain
is statistically significant with more than 40 concepts and saturates at over 200.
The authors also compare a few different modeling choices for multi-concept de-
tection: generative models such as Naive Bayes perform robustly across lexicon
choices and sizes, discriminative models such as logistic regression and SVM per-
form comparably on specially selected concept sets, yet tend to overfit on large
lexicons.

Supervised ranking methods have been successfully applied in various infor-
mation retrieval tasks. Among the existing methodologies, the Ranking Support
Vector Machines (Rank SVMs) are well investigated. However, one major fact
limiting their applications is that Ranking SVMs need optimize a margin-based
objective function over all possible document pairs within all queries on the train-
ing set. In consequence, Ranking SVMs need select a large number of support
vectors among a huge number of support vector candidates. In [36], the authors
introduce a new model of Ranking SVMs and develop an efficient approximation
algorithm, which decreases the training time and generates much fewer support
vectors. Empirical studies on synthetic data and content-based image/video re-
trieval data show that the proposed method is comparable to Ranking SVMs
in accuracy, but uses much fewer ranking support vectors and significantly less
training time.

With the exponential growth of the Web, an important aspect has become
near-duplicate video retrieval. Though various approaches have been proposed
to address the problem, they mainly focus on the retrieval accuracy and remain
infeasible to query on Web scale video database in real time. The work in [48]
proposes a novel method to address the efficiency and scalability issues for near-
duplicate Web video retrieval. The authors introduce a compact spatiotemporal
feature to represent videos and construct an efficient data structure to index the
feature to achieve real-time retrieving performance. This novel feature leverages
relative gray-level intensity distribution within a frame and temporal structure
of videos along frame sequence. To demonstrate the effectiveness and efficiency
of the proposed method, the authors evaluate its performance on an open Web
video data set containing about 10K videos and compare it with four existing
methods in terms of precision and time complexity. They also test the method on

Scalable and High Performing Learning and Mining 171

a data set containing about 50K videos and 11M key-frames. It takes on average
17ms to execute a query against the whole 50K Web video data set.

A related approach is proposed in [30] where the authors propose a fast video
copy– location method that can find the location of a given query in a large video
repository in real time, regardless of the query length. The method proposed by
the authors consists of two major contributions. First, it includes a probabilistic
model for video copy location to formulate the task as a likelihood maximization
problem. Second, it includes a simplified approach to reduce the maximization
problem into a set of 0-1 value problems based on the indexing structure.

Another important issue of large-scale multimedia retrieval is how to develop
an effective framework for ranking the search results. This problem is very chal-
lenging for content-based video retrieval due to some issues such as short text
queries, insufficient sample learning, fusion of multimodal contents, and large-
scale learning with huge media data. An interesting approach for this problem is
proposed in [22], where the authors propose a novel multimodal and multilevel
ranking framework to attack the challenging ranking problem of content-based
video retrieval. The authors represent the video retrieval task by graphs and sug-
gest a graph based semi-supervised ranking scheme, which can learn with small
samples effectively and integrate multimodal resources for ranking smoothly.
To make the semi-supervised ranking solution practical for large-scale retrieval
tasks, they propose a multilevel ranking framework that unifies several different
ranking approaches in a cascade fashion. The experiments have been performed
for automatic search tasks on the benchmark testbed of TRECVID2005. The
promising empirical results show that the ranking solutions are effective and
very competitive with the state-of-the-art solutions in the TRECVID evalua-
tions.

In [37] the authors propose an efficient method for face retrieval in large video
datasets. In order to make the face retrieval robust, the faces of the same per-
son appearing in individual shots are grouped into a single face track by using
a reliable tracking method. The retrieval is done by computing the similarity
between face tracks in the databases and the input face track. For each face
track, the authors select one representative face and the similarity between two
face tracks is the similarity between their two representative faces. The repre-
sentative face is the mean face of a subset selected from the original face track.
In this way, the authors can achieve high accuracy in retrieval while maintaining
low computational cost. The experiments have been performed by extracting
approximately 20 million faces from 370 hours of TRECVID video, a scale never
addressed by previous attempts. The results evaluated on a subset consisting of
457,320 manually annotated faces show that the proposed method is effective
and scalable.

An interesting related work is presented in [65], where the authors explore
computer vision applications of the MapReduce framework that are relevant to
the data mining community. The paper provides an overview of MapReduce
and common design patterns are provided for those with limited MapReduce
background. In addition to discussing both the high level theory and the low

172 E. Trandafili and M. Biba

level implementation for several computer vision algorithms such as classifier
training, sliding windows, clustering, bag-of-features, background subtraction,
and image registration, the paper provides interesting experimental results for
the k-means clustering and single Gaussian background subtraction algorithms
are performed on a 410 node Hadoop cluster.

7 Conclusion

This paper presents a state-of-the-art in machine learning and data mining for
large-scale networked environments. Recent work in large-scale mining in social
networks, sensor networks, P2P systems, distributed control systems, stream
databases and multimedia retrieval systems has been reviewed outlining the
challenges for research in these areas. While the current state-of-the-art survey
shows that relevant research has been done in dealing with scalability, there is
still much room for further research in order to deal with real-world large-scale
networked environments.

References

1. Agarwal, N., Liu, H., Subramanya, S., Salerno, J.J., Yu, P.S.: Connecting Sparsely
Distributed Similar Bloggers. In: Proc. of Ninth IEEE International Conference on
Data Mining, pp. 11–20 (2009)

2. Aggarwal, C., Yu, P.: A framework for clustering uncertain data streams. In: Proc.
of 24th International Conference on Data Engineering, Cancún, México (2008)

3. Ang, H.H., Gopalkrishnan, V., Ng, W.K., Hoi, S.: On classifying drifting concepts
in P2P networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010, Part I. LNCS, vol. 6321, pp. 24–39. Springer, Heidelberg (2010)

4. Bhaduri, K., Srivastava, A.N.: A Local Scalable Distributed Expectation Max-
imization Algorithm for Large Peer-to-Peer Networks. In: Proc. of Ninth IEEE
International Conference on Data Mining, pp. 31–40 (2009)

5. Bhaduri, K., Das, K., Giannella, C., Mahule, T., Kargupta, H.: Scalable, asyn-
chronous, distributed eigen monitoring of astronomy data streams. Statistical Anal-
ysis and Data Mining 4(3), 336–352 (2011)

6. Broecheler, M., Shakarian, P., Subrahmanian, V.S.: A Scalable Framework for
Modeling Competitive Diffusion in Social Networks. In: Proceedings of the 2010
IEEE Second International Conference on Social Computing, SocialCom / IEEE
International Conference on Privacy, Security, Risk and Trust, PASSAT 2010,
pp. 295–302 (2010)

7. Budhaditya, S., Pham, D., Lazarescu, M., Venkatesh, S.: Effective Anomaly De-
tection in Sensor Networks Data Streams. In: Proc. of Ninth IEEE International
Conference on Data Mining, pp. 722–727 (2009)

8. Cantoni, V., Lombardi, L., Lombardi, P.: Challenges for Data Mining in Distributed
Sensor Networks. In: Proc. of 18th International Conference on Pattern Recognition
(ICPR 2006), vol. 1, pp. 1000–1007 (2006)

9. Chen, T., Zhong, S.: Privacy-preserving backpropagation neural network learning.
IEEE Transactions on Neural Networks 20(10), 1554–1564 (2009)

Scalable and High Performing Learning and Mining 173

10. Chum, O., Matas, J.: Large-Scale Discovery of Spatially Related Images. IEEE
Trans. Pattern Anal. Mach. Intell. 32(2), 371–377 (2010)

11. Das, S., Egecioglu, O., Abbadi, A.E.: Anonymizing weighted social network graphs.
In: Proc. of IEEE 26th International Conference on Data Engineering (ICDE),
pp. 904–907 (2010)

12. Das, S., Matthews, B.L., Srivastava, A.N., Oza, N.C.: Multiple kernel learning
for heterogeneous anomaly detection: algorithm and aviation safety case study. In:
Proc. of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28. ACM (2010)

13. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Distributed privacy
preserving k-means clustering with additive secret sharing. In: Proc. of the 2008
International Workshop on Privacy and Anonymity in Information Society, Nantes,
France, March 29-29 (2008)

14. Domingos, P.: Mining Social Networks for Viral Marketing. IEEE Intelligent Sys-
tems 20(1), 80–82 (2005)

15. Domingos, P.: Structured Machine Learning: Ten Problems for the Next Ten Years.
Machine Learning 73, 3–23 (2008)

16. Du, N., Wang, H., Faloutsos, C.: Analysis of large multi-modal social networks:
Patterns and a generator. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.)
ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 393–408. Springer, Heidelberg
(2010)

17. Dutta, H., Zhu, X., Mahule, T., Kargupta, H., Borne, K., Lauth, C., Holz, F.,
Heyer, G.: TagLearner: A P2P Classifier Learning System from Collaboratively
Tagged Text Documents. In: Proc. of Ninth IEEE International Conference on
Data Mining Workshops, pp. 495–500 (2009)

18. Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser, M., Pazzani, M.: An energy-
efficient mobile recommender system. In: Proc. of the 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA (2010)

19. Getoor, L., Taskar, B.: Introduction to statistical relational learning. MIT Press
(2007)

20. He, J., Dai, X., Zhao, P.X.: Mixture Model Adaptive Neural Network for Mining
Gene Functional Patterns From Heterogenous Knowledge Domains. International
Journal of Information Technology and Intelligent Computing (2007)

21. He, D., Parker, D.S.: Topic dynamics: an alternative model of bursts in streams of
topics. In: Proc. of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, July 25-28. ACM (2010)

22. Hoi, S., Lyu, M.: A Multimodal and Multilevel Ranking Scheme for Large-Scale
Video Retrieval. IEEE Transactions on Multimedia 10(4), 607–619 (2008)

23. Kargupta, H., Sarkar, K., Gilligan, M.: MineFleet�: an overview of a widely
adopted distributed vehicle performance data mining system. In: Proc. of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Washington, DC, USA (2010)

24. Bhaduri, K., Kargupta, H.: An efficient local Algorithm for Distributed Multivari-
ate Regression in Peer-to-Peer Networks. In: Peer-to-Peer Computing, pp. 212–221
(2009)

25. Das, K., Bhaduri, K., Kargupta, H.: Multi-objective Optimization Based Privacy
Preserving Distributed Data Mining in Peer-to-peer Networks. Peer-to-Peer Net-
working and Applications 4(2), 192–209 (2011)

174 E. Trandafili and M. Biba

26. Krishnaswamy, S., Loke, S.W., Rakotonirainy, A., Horovitz, O., Gaber, M.M.: To-
wards Situation-awareness and Ubiquitous Data Mining for Road Safety: Rationale
and Architecture for a Compelling Application. In: Proc. of Conference on Intel-
ligent Vehicles and Road Infrastructure (IVRI 2005), University of Melbourne,
February 16-17 (2005)

27. Lahiri, M., Berger-Wolf, T.Y.: Mining Periodic Behavior in Dynamic Social Net-
works. In: Proc. of the 8th IEEE International Conference on Data Mining
(ICDM 2008), Pisa, Italy, December 15-19. IEEE Computer Society (2008)

28. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined
Clusters. Internet Mathematics 6(1), 29–123 (2009)

29. Lin, C.X., Zhao, B., Mei, Q., Han, J.: PET: a statistical model for popular events
tracking in social communities. In: Proc. of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,
July 25-28. ACM (2010)

30. Liu, B., Li, Z., Yang, L., Wang, M., Tian, X.: Real-Time Video Copy-Location
Detection in Large-Scale Repositories. IEEE MultiMedia 18(3), 22–31 (2011)

31. Liu, K., Kargupta, H., Ryan, J.: Random Projection-Based Multiplicative Data
Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions
on Knowledge and Data Engineering 18(1), 92–106 (2006)

32. Liu, Y., Choudhary, A.K., Zhou, J., Khokhar, A.: A Scalable Distributed
Stream Mining System for Highway Traffic Data. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 309–321.
Springer, Heidelberg (2006)

33. Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA (2010)

34. Liu, K., Terzi, E.: A Framework for Computing the Privacy Scores of Users in
Online Social Networks, pp.288-297. In: Proc. of the Ninth IEEE International
Conference on Data Mining, pp. 932–937 (2009)

35. Lodi, S., Monti, G., Moro, G., Sartori, C.: Peer-to-Peer Data Clustering in Self-
Organizing Sensor Networks. In: Intelligent Techniques for Warehousing and Min-
ing Sensor Network Data, pp. 179–212. IGI Global (2010)

36. Luo, D., Huang, H.: Ball Ranking Machines for Content-Based Multimedia Re-
trieval. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
pp. 1390–1395. IJCAI/AAAI (2011)

37. Nguyen, T.N., Ngo, T.D., Le Sh, D.: Satoh, B. H. Le, D. A. Duong. An efficient
method for face retrieval from large video datasets. In: Li, S., Gao, X., Sebe, N.
(eds.) Proceedings of the 9th ACM International Conference on Image and Video
Retrieval, CIVR 2010, pp. 382–389. ACM (2010)

38. Magkos, E., Maragoudakis, M., Chrissikopoulos, V., Gritzalis, S.: Accurate and
large-scale privacy-preserving data mining using the election paradigm. Data and
Knowledge Engineering 68(11), 1224–1236 (2009)

39. Marinai, S., Fujisawa, H. (eds.): Machine Learning in Document Analysis and
Recognition. SCI, vol. 90. Springer, Heidelberg (2008)

40. Maserrat, H., Pei, J.: Neighbor query friendly compression of social networks. In:
Proc. of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28. ACM (2010)

Scalable and High Performing Learning and Mining 175

41. Morchen, F., Dejori, M., Fradkin, D., Etienne, J., Wachmann, B., Bundschus, M.:
Anticipating annotations and emerging trends in biomedical literature. In: Proc.
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Las Vegas, Nevada, USA, August 24-27. ACM (2008)

42. Qiu, J., Lin, Z., Tang, C., Qiao, S.: Discovering Organizational Structure in Dy-
namic Social Network. In: Proc. of the Ninth IEEE International Conference on
Data Mining, pp. 932–937 (2009)

43. Rodrigues, P.P., Gama, J., Lopes, L.: Knowledge Discovery for Sensor Network
Comprehension. In: Intelligent Techniques for Warehousing and Mining Sensor
Network Data, pp. 179–212. IGI Global (2010)

44. Römer, K.: Discovery of frequent distributed event patterns in sensor networks. In:
Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 106–124. Springer, Heidelberg
(2008)

45. Romer, K.: Distributed Mining of Spatio-Temporal Event Patterns in Sensor Net-
works. In: EAWMS / DCOSS 2006, pp. 103–116, San Francisco, USA (June 2006)

46. Roth, M., Ben-David, A., Deutscher, D., Flysher, G., Horn, I., Leichtberg, A.,
Leiser, N., Matias, Y., Merom, R.: Suggesting friends using the implicit social
graph. In: Proc. of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, July 25-28. ACM (2010)

47. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Selecting Information Diffusion
Models over Social Networks for Behavioral Analysis. In: Balcázar, J.L., Bonchi,
F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323,
pp. 180–195. Springer, Heidelberg (2010)

48. Shang, L., Yang, L., Wang, F., Chan, K., Hua, X.: Real-time large scale near-
duplicate web video retrieval. In: ACM Multimedia 2010, pp. 531–540 (2010)

49. Song, C.: Mining and visualising wireless sensor network data Source. International
Journal of Sensor Networks archive 2(5/6), 350–357 (2007)

50. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: Proc. of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28. ACM
(2010)

51. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically par-
titioned data. In: Proc. of 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (2002)

52. Xie, L., Yan, R., Yang, J.: Multi-concept learning with large-scale multimedia
lexicons. In: Proceedings of the International Conference on Image Processing,
ICIP 2008, October 12-15, pp. 2148–2151. IEEE, San Diego (2008)

53. Yan, Y., Fung, G., Dy, J.G., Rosales, R.: Medical coding classification by leveraging
inter-code relationships. In: Proc. of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Washington, DC, USA, July
25-28. ACM (2010)

54. Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-
trusted mixer. Data and Knowledge Engineering 63(2), 550–567 (2007)

55. Ying, Y., Campbell, C., Damoulas, T., Girolami, M.: Class Prediction from Dis-
parate Biological Data Sources Using an Iterative Multi-kernel Algorithm. In: 4th
IAPR International Conference on Pattern Recognition in Bioinformatics, Sheffield
(2009)

56. Yu, H., Jianga, X., Vaidya, J.: Privacy-preserving SVM using nonlinear kernels on
horizontally partitioned data. In: Proc. of the 2006 ACM Symposium on Applied
Computing, Dijon, France, April 23-27 (2006)

176 E. Trandafili and M. Biba

57. Yan, X., He, B., Zhu, F., Han, J.: Top-K Aggregation Queries Over Large Networks.
In: IEEE 26th International Conference on Data Engineering (ICDE), pp. 377–380
(2010)

58. Zhan, J., Matwin, S., Chang, L.: Privacy-preserving collaborative association rule
mining. Journal of Network and Computer Applications 30(3), 1216–1227 (2007)

59. Zhang, C., Krishnamurthy, A., Wang, R.Y., Singh, J.P.: Combining Flexibility
and Scalability in a Peer-to-Peer Publish/Subscribe System. In: Alonso, G. (ed.)
Middleware 2005. LNCS, vol. 3790, pp. 102–123. Springer, Heidelberg (2005)

60. Zh. Zhao, J., Wang, H., Liu, J.: Ye, Yung Chang. Identifying biologically relevant
genes via multiple heterogeneous data sources. In: Proc. of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Las Vegas,
Nevada, USA, August 24-27. ACM (2008)

61. Zhao, H., Lall, A., Ogihara, M., Jun, X.: Global iceberg detection over distributed
data streams. In: Proc. of IEEE 26th International Conference on Data Engineer-
ing, ICDE (2010)

62. Zheng, L., Shen, C., Tang, L., Li, T., Luis, S., Chen, S., Hristidis, V.: Using data
mining techniques to address critical information exchange needs in disaster af-
fected public-private networks. In: Proc. of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA
(2010)

63. Zhu, Y., Fu, Y., Fu, H.: On privacy in time series data mining. In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 479–493. Springer, Heidelberg (2008)

64. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for
mining top-K influential nodes in mobile social networks. In: Proc. of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Washington, DC, USA (2010)

65. White, B., Yeh, T., Lin, J., Davis, L.: Web-scale computer vision using MapReduce
for multimedia data mining. In: Proceedings of the Tenth International Workshop
on Multimedia Data Mining, MDMKDD 2010, ACM, New York (2010)

66. Wright, R., Yang, Z.: Privacy-preserving Bayesian network structure computation
on distributed heterogeneous data. In: Proc. of the 10th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2004)

67. Wurst, M., Morik, K.: Distributed feature extraction in a p2p setting: a case study.
Future Generation Computer Systems 23(1), 69–75 (2007)

Heterarchy in Constructing Decision

Trees – Parallel ACDT

Urszula Boryczka, Jan Kozak, and Rafa�l Skinderowicz

Institute of Computer Science, University of Silesia, Bȩdzińska 39,
41–200 Sosnowiec, Poland

{urszula.boryczka,jan.kozak,rafal.skinderowicz}@us.edu.pl

Abstract. In this paper, a novel decision tree construction algorithm
that utilizes the Ant Colony Optimization (ACO) is presented. The ACO
is a population based metaheuristic inspired by the foraging behavior of
real ants. It consists in searching for optimal solutions by considering
both local heuristic and accumulated (in the form of pheromone trails)
knowledge.

In this paper we study a parallel version of the Ant Colony Decision
Trees (ACDT) algorithm developed for constructing decision trees. De-
cision tree induction is a widely used technique to generate classifiers
from training data through a process of recursively splitting the data
attribute space. The main idea of this paper is to speed up the tree
construction process by dividing the population of ants into subpopu-
lations for which calculations are carried out in parallel. The exchange
of information between ants is possible through direct and indirect com-
munication channels on the local and global (inter-subpopulation) levels.
Ants cooperating in this way form a structure called heterarchy.

A detailed study of the proposed algorithm, focusing both on the
computation time and the quality of results, is carried out using data
sets from the UCI Machine Learning repository. Proposed scheme of
parallelization of the ACDT demonstrates the possibility to improve not
only the computation time, but also the quality of results.

Keywords: Ant Colony Optimization, Ant Colony Decision Trees,
heterarchy, parallel ACDT, decision tree.

1 Introduction

Ant Colony Optimization (ACO) is a metaheuristic approach to solve many
different optimization problems by using principles of communicative behavior
observed in real ant colonies. Ants can communicate with each other about
paths they traversed by reinforcement mechanisms of pheromone trails laid on
the appropriate edges. The pheromone trails can lead other ants to food sources.
ACO was introduced in [16]. It is a population-based approach, where several
generations of virtual ants search for good solutions. The following ants of the
next generation are attracted by the pheromone changes so that they can search
in the solution space near attractive solutions, concerning specific sub-spaces.

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 177–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

178 U. Boryczka, J. Kozak, and R. Skinderowicz

Ant-based approaches are good candidates for parallelization but not suffi-
cient research has been done in the parallel version of ACO in the field of data
mining so far. It seems quite easy how to parallelize them. Every processor can
hold an ant or a colony of ants and after every generation/iteration number,
the ants/colonies exchange information about their solutions. Most parallel ant
colony algorithms follow this scheme and differ only in granularity and whether
the computations for the updating pheromone information are done locally or
globally by a master processor which distributes the new value of pheromone
trails to the processors.

Recently some possible parallelization strategies for ACO have been pro-
posed and classified into fine-grained and coarse-grained strategies [1]. In fine-
grained parallelization strategies usually several artificial ants (or a simple ant)
of a colony are assigned to each processor, therefore frequent information ex-
change between the small sub-colonies of ants (or between processors) takes
place. Coarse-grained parallelization schemes run several colonies in parallel.
This strategy is also referred to as a multi colony approach. The information
exchange among colonies is done at certain intervals (number of iterations is
established). Many parallel ACO applications to the combinatorial optimization
problems have been analyzed [1, 9, 24–26, 32, 35, 36]. In [35], parallel MMAS
with k independent runs was studied. The experiment performed using TSP in-
stances showed superiority of parallel independent runs both in solution quality
and computation time.

This article is organized as follows. Section 1 comprises an introduction to
the subject of this article. In section 2, Ant Colony Optimization in Data Min-
ing is presented. Section 3 describes decision trees and decision forests. Section
4 describes Ant Colony Decision Tree approach, especially the splitting rules.
Section 5 focuses on the presented, new version of the parallel implementation
of the ACDT approach. Section 6 presents the experimental study that has been
conducted to evaluate the performance of the parallel ACDT, taking into con-
sideration five data sets. Finally, we conclude with general remarks on this work
and a few directions for future research are pointed out.

2 Ant Colony Optimization in Data Mining

Ant Colony Decision Trees (ACDT) algorithm [2, 4] employs ant colony opti-
mization techniques [11, 17] for constructing decision trees and decision forests.
Ant Colony Optimization is a branch of a newly developed form of artificial
intelligence called swarm intelligence. Swarm intelligence is a form of emergent
collective intelligence of groups of simple individuals: ants, termites or bees in
which a form of indirect communication via pheromone was observed. Pheromone
values encourage the ants following the path to build good solutions of the an-
alyzed problem and the learning process occurring in this situation is called
positive feedback or auto-catalysis.

In this paper we defined an ant algorithm to be a multi–agent system inspired
by the observation of real ant colony behavior exploiting the stigmergic commu-
nication paradigm. The optimization algorithm in this paper was inspired by the

Heterarchy in Constructing Decision Trees – Parallel ACDT 179

previous works on Ant Systems (AS) and, in general, by the term — stigmergy.
This phenomenon was first introduced by P. P. Grasse [22].

An essential step in this direction was the development of Ant System by
Dorigo et al. [17], a new type of heuristic inspired by analogies to the foraging
behavior of real ant colonies, which has proven to work successfully in a series
of experimental studies. Diverse modifications of AS have been applied to many
different types of discrete optimization problems and have produced very sat-
isfactory results [14]. Recently, the approach has been extended by Dorigo et
al. [12, 13, 18, 19] to a full discrete optimization metaheuristic, called the Ant
Colony Optimization (ACO) metaheuristic.

The Ant Colony System (ACS) algorithm has been introduced by Dorigo
and Gambardella to improve the performance of the Ant System [15, 17], which
allowed to find good solutions within a reasonable time for small size problems
only. The ACS is based on 3 modifications of the Ant System: a different node
transition rule; a different pheromone trail updating rule; the use of local and
global pheromone updating rules (to favor exploration).

An adaptation of Ant Colony Optimization to classification is a research area
still not well explored and examined. The appeal of this approach similarly
to the evolutionary techniques is that they provide an effective mechanism of
conducting a more global search. These approaches are based on a collection of
attribute–value terms, then it can be expected that these approaches will also
cope better with attribute interaction than greedy induction algorithms [21].

The prototype of our approach Ant–Miner is an ant–based system [3, 30] and
it is more flexible and robust than traditional approaches [31, 10]. The ACDT
algorithm is a different approach than Ant–Miner. In the Ant–Miner algorithm
the goal was to produce an ordered list of decision rules. The ACDT constructs
decision trees.

3 Decision Trees and Decision Forests

A decision tree is used in determining the optimum course of action, in situations
having several possible alternatives with uncertain outcomes. The resulting di-
agram displays the structure of a particular decision, and the interrelationships
and interplay between different alternatives, decisions, and possible outcomes.
Decision trees are commonly used in operational research, specifically in decision
analysis, for identifying an optimal strategy for reaching a goal. The evaluation
function for decision trees will be calculated according to the following formula:

Q(T) = φ · w(T) + ψ · a(T, P) (1)

where:
w(T) – the size (numer of nodes) of the decision tree T ,
a(T, P) – the accuracy of the classification object from a test set P by the
tree T ,
φ and ψ – constants determining the relative importance of w(T) and a(T, P).

180 U. Boryczka, J. Kozak, and R. Skinderowicz

Constructing optimal binary decision trees is a NP–complete problem, where
an optimal tree is one which minimizes the expected number of tests required
for identification of the unknown objects (as shown by Hyafil and Rivest in
1976 [23]). The problem of designing storage efficient decision trees from decision
tables was examined by Murphy and McCraw [27] in 1991. They showed that
in most cases, the construction of the storage optimal decision tree is a NP-
complete problem, and therefore a heuristic approach to the problem is necessary.
Constructing an optimal decision tree may be defined as an optimization problem
in which at each stage of creating decisions we select the optimal splitting of the
data [33].

Classification And Regression Tree (CART) approach was developed by Brei-
man et al. in 1984 [7] and is characterized by the fact that it constructs binary
trees. The splits are selected using the Twoing and Gini criteria. CART looks
for splits that minimize the prediction squared error. A decision tree is built in
accordance with a splitting rule that performs multiple splitting of a learning
sample into smaller parts.

Twoing criterion will search for two classes that will make up together more
then 50% of the data. Twoing splitting rule maximizes the following change-of-
impurity measure which implies the following maximization problem for nodes
ml, mr:

arg max
aj≤aR

j ,j=1,...,M

⎛⎝PlPr

4

[
K∑

k=1

|p(k|ml) − p(k|mr)|
]2

⎞⎠ , (2)

where:
p(k|ml) – the conditional probability of the class k provided in node ml,
Pl – the probability of transition objects into the left node ml,
Pr – the probability of transition objects into the right node mr,
K – number of decision classes,
aj – j–th variable,
aRj – the best splitting value of variable aj .

A decision forest is a collection of decision trees. We defined the decision forest
by following formula:

DF = {dj : X → {1, 2, ..., g}}j=1,2,...,J, (3)

where J , is a number of decision trees j (J � 2).
In decision forests, predictions of decision trees are combined to make the

overall prediction for the forest. Classification is done by a simple voting. Each
decision tree votes on the decision for the object and the decision with the highest
number of votes is chosen. The classifier created by a decision forest DF, called
the classifier dDF : X → 1, 2, ..., g, uses the following voting rule:

dDF(x) := arg max
k

Nk(x), (4)

Heterarchy in Constructing Decision Trees – Parallel ACDT 181

where:
k – decision class, such that k ∈ {1, 2, . . . , g},
Nk(x) – number of votes for the object x ∈ X classification in to class k, such

that Nk(x) := #{j : dj(x) = k}.

In order to build a decision forest one needs a good method of constructing
decision trees. Some approaches are described in [6, 8, 33].

4 Ant Colony Decision Trees Algorithm

Ant Colony Optimization (ACO) approach has been successfully applied to many
difficult combinatorial problems. Ant Colony Decision Trees (ACDT) algorithm
is the first ACO adaptation to the task of constructing decision trees. In order to
improve the processing time of the Ant-Miner algorithm the parallel Ant-Miner
algorithm was proposed and analyzed [5]. The classical algorithm proposed by
Parpinelli et al. was not adapted to the continuous attributes, but some modi-
fications or extensions to the Ant–Miner algorithm were proposed, for example
the cAnt-Miner algorithm copes with continuous attributes during the rule con-
struction process [28, 29, 34].

1 initialization pheromone trail(pheromone);
2 for j = 1 to number of iterations do
3 best tree := null;
4 for a = 1 to ants per colony do
5 new tree := build tree(pheromone);
6 pruning(new tree);
7 assessment of the quality tree(new tree);
8 if new tree is of higher quality than best tree then
9 best tree := new tree;

10 endif

11 endfor
12 update pheromone trail(best tree, pheromone);

13 endfor
14 result := best constructed tree;

Fig. 1. Pseudo-code of the ACDT algorithm

In each ACDT step an ant chooses an attribute and its value for splitting the
objects in the current node of the constructed decision tree. The choice is made
according to a heuristic function and pheromone values. The heuristic function
is based on the Twoing criterion, which helps ants select an attribute-value pair
which well divides the objects into two disjoint sets, i.e. with the intention that
objects belonging to the same decision class should be put in the same subset.
The best splitting is observed when similar number of objects is put into the

182 U. Boryczka, J. Kozak, and R. Skinderowicz

left and right subtrees and objects belonging to the same decision class are in
the same subtree. Pheromone values indicate the best way (connection) from
the superior to the subordinate nodes – all possible combinations are taken into
account.

The pseudo-code of the proposed algorithm is presented in Fig. 1. Lines 2–13
describe one iteration of this algorithm. Firstly, each ant builds a single decision
tree (lines 4–11). Next, the best quality decision tree is selected and then the
pheromone trail is updated on the edges used in the splits made during the
construction of the tree. This process is repeated until the preset number of
iterations is made.

As mentioned before, the value of the heuristic function is determined ac-
cording to the splitting rule employed in CART approach (see formula (2)). The
probability of choosing the appropriate split in the node is calculated according
to a classical probability used in ACO:

pi,j =
τm,mL(i,j)

(t)α · ηβi,j∑a
i

∑bi
j τm,mL(i,j)

(t)α · ηβi,j
(5)

where:
ηi,j – a heuristic value for the split using the attribute i and value j,
τm,mL(i,j)

– an amount of pheromone currently available at time t on the con-
nection between nodes m and mL, (it concerns the attribute i and value j),
α, β – the relative importance with experimentally determined values 1 and 3.
The initial value of the pheromone trail is determined similarly to the Ant–

Miner approach and depends on the number of attribute values. The pheromone
trail is updated (6) by increasing pheromone levels on the edges connecting each
tree node with its parent node:

τm,mL(t + 1) = (1 − γ) · τm,mL(t) + Q(T) (6)

where Q(T) is a quality of the decision tree (see formula (1)), and γ is a parameter
representing the evaporation rate, equal to 0.1.

5 Parallel Implementation of ACDT Approach

The parallelization of the ant colony algorithms is difficult because of the neces-
sity to maintain and frequently update a pheromone matrix. Especially, the local
pheromone update rule requires a slight decrease of the pheromone level every
time an ant selects an edge, which causes a strong functional dependency be-
tween successive iterations of the algorithm. Fortunately, in the ACDT algorithm
the local pheromone update rule is not present and only the global pheromone
update rule is used, which consists in depositing a pheromone trail on the edges
belonging to the best solution (tree) found by ants. It opens a natural way to
parallelize the ACDT algorithm by simply dividing the ants between multiple

Heterarchy in Constructing Decision Trees – Parallel ACDT 183

processors1. This strategy proved to be efficient in the case of the Ant–Miner
algorithm for the induction of classification rules [5].

In the proposed Parallel-ACDT algorithm ants are evenly divided into subpop-
ulations (colonies) and computations for the colonies are performed in parallel
by all the available processors, thus the number of colonies is equal to the num-
ber of processors. Because the total number of ants in colonies is equal to the
number of ants in the sequential ACDT algorithm, the total computational cost
of the algorithm does not change2.

1 ants per colony := number of ants/processors;
2 parfor Pi, i = 0, 1, . . . , processors − 1 do
3 initialize pheromone trail(pheromonei);
4 best treei := null;
5 for j = 1 to number of iterations do
6 for a = 1 to ants per colony do
7 new treea := build tree(pheromonei);
8 pruning(new treea);
9 assessment of the quality tree(new treea);

10 if new treea is of higher quality than best treei then
11 best treei := new treea;
12 endif

13 endfor
14 { Exchange best treei with other colonies (processors)
15 according to an adopted cooperation strategy (cs) }
16 received treei := exchange treescs(best treei);
17 if received treei is of higher quality than best treei then
18 best treei := received treei;
19 endif
20 update pheromone trail(best treei, pheromonei);

21 endfor
22 Send best treei to processor P0; { P0 is the master processor }
23 end
24 { Produce best tree0 as the result }

Fig. 2. Pseudo-code of the Parallel-ACDT algorithm (cs – chosen cooperation strategy
– all to all or heterarchic)

As stated in [20] an heterarchical algorithm consists of agents which are not
ranked, i.e. there is no hierarchy of importance between them and if they belong
to different groups, there is no hierarchy of importance between the groups, too.

1 We use the term processor referring to a single processing unit or core. Modern
processors can contain multiple processing cores.

2 Of course, the computational cost of the parallel algorithm is slightly larger because
of the additional operations associated with the organization of parallel computations
and the exchange of data between processors.

184 U. Boryczka, J. Kozak, and R. Skinderowicz

An important role in the heterarchical algorithms play communication channels
between the agents or subsets of agents. In the Parallel-ACDT algorithm there
are two communication channels present – indirect between the agents through
pheromone trail and direct between the colonies through explicit solutions ex-
change. The latter is performed according to a preset cooperation strategy. There
were two strategies investigated in the current work: an all to all strategy and
a heterarchic strategy. Both will be described in details later in this section.

Pseudo-code for the parallel version of the ACDT algorithm is shown in Fig. 2.
The main part of the algorithm is performed in parallel (lines 2–23). Each colony
initializes and maintains its own pheromone matrix (line 3), which is updated
once per iteration (line 20) after each ant in the colony finished building a de-
cision tree. An essential part of the algorithm is the exchange of the iteration
best tree (line 16) between the colonies, which is performed synchronously by
the exchange trees procedure. The exchange trees procedure depends on the co-
operation strategy used.

Procedure exchange treesall to all(local best tree)

Input: local best tree – a tree to exchange with other colonies (processors)
Result: The global best tree

1 rank := get processor rank();
2 Broadcast the quality of local best tree to other processors;
3 best rank := Rank of the processor (colony) with the best quality tree;
4 if rank = best rank then
5 Broadcast local best tree to other processors;
6 result := local best tree;

7 else
8 result := Receive a tree from the processor Pbest rank ;
9 end

Fig. 3. Pseudo-code of the exchange trees procedure with the all to all cooperation
strategy

The pseudo-code for the exchange trees procedure with all to all strategy is
shown in Fig. 3. The goal of the procedure is to select the global best solution
(tree) from all the local best solutions found by the ants in all colonies. In order
to reduce the amount of data send between processors only the quality of the
local best tree is broadcasted (line 2) to other processors and afterwards only the
processor with the highest quality tree sends it to the rest (line 5). Because all
the processors have access to the global best tree, the execution of the Parallel-
ACDT algorithm with the all to all strategy is equivalent to the execution of
the sequential ACDT algorithm and the only result of performing computations
in parallel can be a significant reduction of the algorithm’s execution time. Al-
though there is no hierarchy of importance between the agents of colonies in
the Parallel-ACDT algorithm with all to all strategy, we may not refer to it
as truly heterarchic, because all colonies are forced to have exactly the same

Heterarchy in Constructing Decision Trees – Parallel ACDT 185

Procedure exchange treesheterarchic(local best tree)

Input: local best tree – a tree to exchange with other colonys (processors)
Result: A tree with higher quality selected between local best tree and a

received one.
1 rank := get processor rank();
2 next := (rank + 1) mod processors;
3 prev := max(rank− 1, 0);
4 Send local best tree to the processor Pnext ;
5 received tree := receive a tree from the processor Pprev ;
6 if received tree is of higher quality than local best tree then
7 result := received tree;
8 else
9 result := local best tree;

10 end

Fig. 4. Pseudo-code of the exchange trees procedure with the heterarchic cooperation
strategy

pheromone trail values. As a result there is no notion of locality characteristic
for the heterarchical algorithms [20].

The pseudo-code for the second exchange strategy, namely heterarchic strat-
egy, is shown in Fig. 4. In this strategy all colonies are logically organized in
a ring topology, i.e. a colony i, i = 0, 1, . . . p − 1 (where p is the number of
processors), sends its best tree to the colony j, j = ((i + 1) mod p), and re-
ceives a tree from the colony k, k = max(0, i−1), lines 4 and 5 respectively. It is
worth mentioning, that a tree is send to the ”next” colony before receiving a tree
from the ”previous” colony, therefore the global best tree is not available to all
processors like in the all to all strategy. The consequence is that the execution
of the Parallel-ACDT with the all to all cooperation strategy is not equivalent
to the sequential execution of the ACDT algorithm. Because the global update
of a pheromone trail is made using a colony’s best tree or a best tree received
from the previous colony, each colony may have a unique pheromone trail levels,
i.e. pheromone matrix. In this way, the algorithm is similar to the multi colony
ACS with two communication channels on the local and global levels. The first
level involves indirect intra-colony information exchange (stigmergy) based on
pheromone deposition. The second involves direct inter-colony information ex-
change in the form of the best solutions found.

6 Results of Experiments

The main objective of the experiments was to compare Parallel-ACDT algorithm
with two cooperation strategies proposed, focusing both on the computation
time and the quality of the results. For this purpose we selected 5 different tests
from the UCI repository, namely: connect-4, krkopt, letter-recognition, pendigits
and poker-hand. The following ACDT parameters were fixed: q0 = 0.0, α =

186 U. Boryczka, J. Kozak, and R. Skinderowicz

3.0, β = 1.0, number of ants = 32, number of iterations = 10. For each data
set the Parallel-ACDT algorithm was run using a number of processors p ∈
{1, 2, 4, 8, 16, 32} and the computations were repeated 30 times for each set of
parameter values. Naturally, when p = 1 the execution of the Parallel-ACDT is
equal to the execution of the sequential ACDT in which case there is only one
non-cooperating ant colony.

The proposed parallel algorithms were implemented in the C++ program-
ming language with Intel MPI Library v. 3.1. All computations were performed
on a cluster of 336 nodes which consisted of 2 Intel Xeon Quad Core 2.33 GHz
processors, each with 12MB level 3 cache. Nodes were connected with the In-
finiband DDR fat-tree full-cbb network (throughput 20 Gbps, delay 5 μs). The
computer was executing a Debian GNU/Linux operating system.

6.1 Classification Accuracy

In order to evaluate the quality of classifiers produced by the proposed algo-
rithms each data set was divided into three disjoint samples: learning sample,
test sample and validation sample. The first one was used to guide ants during
the process of building a decision tree, the second one was used in order to prune
the produced tree. The validation sample was not exposed to the algorithm dur-
ing the learning process, it was used afterwards to evaluate the quality of the
final classifiers obtained. Classification accuracy was measured as a ratio of the
properly classified objects to the number of all objects. The ACDT algorithm
produced both single tree and decision tree forest classifiers for each of the an-
alyzed data sets. The former is just the best decision tree found and the latter
consists of the iteration best trees found.

In Tab. 1 detailed classification accuracy rates are shown for the Parallel-
ACDT algorithm with the two cooperation strategies proposed. As it can be seen,
the quality of a single decision tree classifiers for the heterarchic cooperation
strategy slightly decreases with the increasing number of colonies for all data
sets, except poker-hand.

This effect can be explained if one considers how the Parallel-ACDT algorithm
differs from the sequential ACDT algorithm. During a single iteration of the
sequential ACDT algorithm a number of different trees is build by the ants,
which are guided both by the heuristic knowledge and the pheromone trails
deposited. Afterwards only the ant which built the best quality tree deposits
pheromone trail. The more trees are built during an iteration of the algorithm,
the higher quality of the best tree can be expected and, as a result, the search
process becomes more focused on the high quality regions of the problem solution
space. In the Parallel-ACDT algorithm the number of trees built by a single ant
colony during a single iteration decreases when the number of colonies increases.
It is not a problem in case of the all to all strategy, because the total number of
trees built remains the same as in the sequential ACDT and the global best tree
is sent to all colonies. On the other hand, it is a problem when the heterarchic
strategy is used, because each colony has access to only its own best tree and the
one received from other colony. As a result colonies have different pheromone

Heterarchy in Constructing Decision Trees – Parallel ACDT 187

Table 1. Comparison of the classification accuracy for the decision trees and decision
tree forests produced by the proposed Parallel-ACDT algorithms with two cooperation
strategies (CRtree – avg. classification rate for a single tree classifier, CRforest – avg.
classification rate for a forest classifier, δforest – std. deviation of CRforest)

Dataset p
All to all strategy Heterarchic strategy

CRtree CRforest δforest CRtree CRforest δforest

connect-4

1 0.750 0.746 0.005 0.750 0.746 0.005
2 0.752 0.747 0.004 0.751 0.780 0.005
4 0.753 0.747 0.005 0.752 0.784 0.002
8 0.751 0.746 0.006 0.751 0.786 0.001

16 0.751 0.745 0.005 0.749 0.786 0.002
32 0.752 0.748 0.005 0.747 0.787 0.002

krkopt

1 0.604 0.586 0.014 0.604 0.586 0.014
2 0.605 0.591 0.012 0.605 0.690 0.006
4 0.601 0.586 0.013 0.602 0.696 0.005
8 0.604 0.588 0.011 0.596 0.697 0.006

16 0.604 0.586 0.014 0.596 0.697 0.004
32 0.602 0.587 0.014 0.586 0.697 0.006

letter-recognition

1 0.527 0.506 0.007 0.527 0.506 0.007
2 0.523 0.506 0.009 0.524 0.565 0.006
4 0.522 0.504 0.008 0.521 0.571 0.004
8 0.522 0.506 0.007 0.517 0.574 0.005

16 0.525 0.504 0.008 0.514 0.573 0.004
32 0.521 0.508 0.010 0.512 0.575 0.005

pendigits

1 0.735 0.731 0.015 0.735 0.731 0.015
2 0.738 0.731 0.014 0.736 0.795 0.009
4 0.735 0.733 0.010 0.740 0.805 0.008
8 0.732 0.732 0.014 0.738 0.808 0.006

16 0.735 0.731 0.012 0.732 0.810 0.005
32 0.740 0.734 0.018 0.721 0.816 0.004

poker-hand

1 0.516 0.519 0.015 0.516 0.519 0.015
2 0.516 0.520 0.014 0.514 0.529 0.030
4 0.519 0.518 0.014 0.518 0.568 0.014
8 0.524 0.523 0.012 0.526 0.573 0.007

16 0.518 0.521 0.014 0.528 0.572 0.007
32 0.521 0.518 0.013 0.530 0.574 0.007

trails and the search process becomes more diverse. A positive effect of the search
diversity in the heterarchic strategy can be seen if one compares the classification
accuracy of the decision forest classifiers obtained for both cooperation strategies.
For the heterarchic strategy, the classification accuracy was improved by more
than 10% for the krkopt data set and 32 colonies (Tab. 1). Figure 5 shows that
the classification accuracy of the decision forest classifiers raises greatly for 2 and
further for 4 colonies (processors) and afterwards it stays on the similar level.

188 U. Boryczka, J. Kozak, and R. Skinderowicz

1 2 4 8 16 32
p

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

CR letter-rec.letter-rec
connect-4
krkopt
letter-rec.
pendigits
poker-hand

Fig. 5. Classification rate (CR) vs the number of colonies (p) for the Parallel-ACDT
algorithm with the heterarchic cooperation strategy for the examined data sets

It appears that it could be possible to improve the quality of results obtained
for the all to all strategy if not only the best quality tree, but several from the top
of the ranking were sent to all processors. In this way the search process could be
focused on a few (instead of a single) promising areas of problem solution space,
but exchanging more trees will increase the communication overhead, which in
turn may lower the speedup.

6.2 Performance Comparison

In Tab. 2 runtimes and speedups for the Parallel-ACDT algorithm with all to all
and heterarchic cooperation strategies are presented for the following number of
processors p (p ∈ {1, 2, 4, 8, 16, 32}). As it can be seen, both versions achieved
similar runtimes and speedups in almost all cases. As it can be seen in Fig. 6
the algorithm with heterarchic cooperation strategy has a slight advantage over
the algorithm with all to all strategy. For both strategies the speedups obtained
were very good, almost linear, and in a few cases even superlinear, what is an

1 2 4 8 16 32
p

100

101

102

S

connect-4
krkopt
pendigits
poker-hand

1 2 4 8 16 32
p

100

101

102

S

connect-4
krkopt
pendigits
poker-hand

Fig. 6. Average speedups (S) vs the number of processors (p) for the all to all (on the
left) and the heterarchic (on the right) strategies. Speedups are shown in logarithmic
scale. Solid line shows a linear speedup.

Heterarchy in Constructing Decision Trees – Parallel ACDT 189

Table 2. Comparison of the parallel performance of the proposed Parallel-ACDT al-
gorithm with two cooperation strategies (p – number of processors used, t – average
runtime in seconds, δ – std. deviation of t, S – average speedup)

Dataset p
All to all strategy Heterarchic strategy

t δ S t δ S

connect-4

1 197.85 8.65 1.00 197.85 8.65 1.00
2 119.63 1.60 1.65 89.70 14.43 2.21
4 43.24 0.76 4.58 41.99 0.73 4.71
8 22.95 0.24 8.62 21.87 0.18 9.05

16 11.96 0.18 16.54 10.94 0.11 18.09
32 6.49 0.17 30.49 5.59 0.05 35.39

krkopt

1 36.01 1.70 1.00 36.01 1.70 1.00
2 20.55 4.32 1.75 24.14 9.82 1.49
4 12.68 4.94 2.84 8.81 0.05 4.09
8 4.73 0.28 7.61 4.59 0.03 7.85

16 2.46 0.04 14.64 2.33 0.01 15.45
32 1.94 0.58 18.56 1.19 0.04 30.26

letter-recognition

1 148.49 5.95 1.00 148.49 5.95 1.00
2 69.48 0.40 2.14 95.00 31.93 1.56
4 36.23 0.19 4.10 45.66 16.43 3.25
8 17.26 0.10 8.60 17.02 0.11 8.72

16 8.80 0.24 16.87 8.34 0.06 17.80
32 5.31 0.25 27.96 4.17 0.10 35.61

pendigits

1 222.49 6.41 1.00 222.49 6.41 1.00
2 105.31 3.25 2.11 129.58 42.08 1.72
4 51.32 2.62 4.34 62.22 17.88 3.58
8 28.39 1.10 7.84 28.24 0.41 7.88

16 14.50 0.30 15.34 14.32 0.17 15.54
32 7.83 0.26 28.42 7.42 0.12 29.99

poker-hand

1 194.69 14.10 1.00 194.69 14.10 1.00
2 103.00 6.60 1.89 91.66 6.35 2.12
4 60.81 5.74 3.20 49.29 0.88 3.95
8 31.06 1.67 6.27 27.93 0.25 6.97

16 17.41 0.68 11.18 13.78 0.08 14.13
32 10.95 0.48 17.78 6.85 0.07 28.42

effect of the increased size of the accumulated (processors) cache memory. For
two data sets, namely krkopt and poker-hand the speedups obtained for the
Parallel-ACDT with the all to all strategy were significantly worse than for the
heterarchic strategy, especially for the 32 processors. It is a result of the increased
inter-processor communication overhead required by the first strategy in which
all colonies exchange informations about the best trees found so far. Indeed,
in order to find the global best tree in the all to all strategy, there are 2p log p

190 U. Boryczka, J. Kozak, and R. Skinderowicz

inter-processor send-receive operations needed compared to p for the heterarchic
strategy, where p is the number of processors (colonies) used. Moreover, the
exchange of information for the first strategy requires also a synchronization of
all processors, whereas for the latter strategy such synchronization is required
only for the pair of processors exchanging solutions between themselves (Fig. 4).
The slopes of the speedup plots (Fig. 6), which are close to the slope of the
linear speedup (solid line), suggest that both algorithms should scale well for
the numbers of processors far beyond 32.

7 Conclusions

A parallel version of the ACDT algorithm for constructing decision trees and de-
cision forests was presented in which several ant colonies cooperate periodically.
Ants in the colonies cooperate on the two levels: intra-colony using a pheromone
trail and inter-colony using explicit information exchange in the form of the
best quality solutions found. Two inter-colony cooperation strategies were pro-
posed and tested for classification accuracy and computation performance on
the selected data sets from well-known UCI repository. For both strategies the
computation times and speedups obtained were very good up to 32 processors,
with slight advantage of the heterarchic strategy. This strategy also proved to
be the best in terms of classification accuracy of the decision forest classifiers,
which suggests that the diversity of the decision trees is very important, even if
individual trees are not of the best quality. Of course, one may tray to use more
elastic cooperation strategies, than those proposed in this work. It may result
in further improvement in the quality of the individual decision trees and the
decision forest classifiers produced.

Acknowledgements. We thank the Academic Computer Centre in Gdansk
TASK where the computations of our project were carried out.

References

1. Benkner, S., Doerner, K., Hartl, R., Kiechle, G., Lucka, M.: Communication strate-
gies for parallel cooperative ant colony optimization on clusters and grids. In:
Complimentary Proc. of PARA 2004 Workshop on State-of-the-art in Scientific
Computing, pp. 3–12 (2005)

2. Boryczka, U., Kozak, J.: Ant colony decision trees – A new method for construct-
ing decision trees based on ant colony optimization. In: Pan, J.-S., Chen, S.-M.,
Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 373–382. Springer,
Heidelberg (2010)

3. Boryczka, U., Kozak, J.: New Algorithms for Generation Decision Trees – Ant–
Miner and Its Modifications. In: Abraham, A., Hassanien, A.-E., de Leon F. de
Carvalho, A.P., Snášel, V. (eds.) Foundations of Computational Intelligence 6.
SCI, vol. 206, pp. 229–264. Springer, Heidelberg (2009)

4. Boryczka, U., Kozak, J.: An adaptive discretization in the ACDT algorithm for
continuous attributes. In: J ¸edrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI
2011, Part II. LNCS, vol. 6923, pp. 475–484. Springer, Heidelberg (2011)

Heterarchy in Constructing Decision Trees – Parallel ACDT 191

5. Boryczka, U., Kozak, J., Skinderowicz, R.: Parellel Ant–Miner. Parellel implemen-
tation of an ACO techniques to discover classification rules with OpenMP. In:
15th International Conference on Soft Computing, MENDEL 2009, pp. 197–205.
University of Technology, Brno (2009)

6. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Chapman & Hall, New York (1984)
8. Bühlmann, P., Hothorn, T.: Boosting algorithms: Regularization, prediction and

model fitting. Statistical Science 22(4), 477–505 (2007)
9. Bullnheimer, B., Kotsis, G., Strauss, C.: Parallelization strategies for the ant sys-

tem. In: High Performance Algorithms and Software in Nonlinear Optimization,
pp. 87–100 (1998)

10. Clark, P., Niblett, T.: The CN2 rule induction algorithm. Machine Learning 3(4),
261–283 (1989)

11. Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. Mc Graw–Hill,
Cambridge (1999)

12. Doerner, K.F., Merkle, D., Stützle, T.: Special issue on ant colony optimization.
Swarm Intelligence 3(1), 1–2 (2009)

13. Dorigo, M., Caro, G.D.: New Ideas in Optimization. McGraw-Hill, London (1999)
14. Dorigo, M., Caro, G.D., Gambardella, L.: Ant algorithms for distributed discrete

optimization. Artif. Life 5(2), 137–172 (1999)
15. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning ap-

proach to the Traveling Salesman Problem. IEEE Trans. Evol. Comp. 1, 53–66
(1997)

16. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: an autocatalytic optimiza-
tion process. Tech. Rep. 91-016, Department of Electronics, Politecnico di Milano,
Italy (1996)

17. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
18. Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.):

ANTS 2008. LNCS, vol. 5217. Springer, Heidelberg (2008)
19. Dorigo, M., Birattari, M., Stützle, T., Libre, U., Bruxelles, D., Roosevelt, A.F.D.:

Ant colony optimization – artificial ants as a computational intelligence technique.
IEEE Comput. Intell. Mag. 1, 28–39 (2006)

20. Dréo, J., Siarry, P.: Continuous interacting ant colony algorithm based on dense
heterarchy. Future Generation Computer Systems, pp. 841–856 (2004)

21. Galea, M.: Applying swarm intelligence to rule induction. Master’s thesis, Univer-
sity of Edingbourgh (2002)

22. Grasse, P.P.: Termitologia, Paris, Masson, vol. II (1984)
23. Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is NP–complete.

Inf. Process. Lett. 5(1), 15–17 (1976)
24. Lv, Q., Xia, X., Qian, P.: A parallel ACO approach based on one pheromone

matrix. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R.,
Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 332–339. Springer, Heidelberg
(2006)

25. Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization
for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
224–234. Springer, Heidelberg (2006)

26. Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. J. Heuris-
tics 8(3), 305–320 (2002)

192 U. Boryczka, J. Kozak, and R. Skinderowicz

27. Murphy, O., McCraw, R.: Designing Storage Efficient Decision Trees. IEEE Trans-
actions on Computers 40, 315–320 (1991)

28. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-miner: An ant colony classi-
fication algorithm to cope with continuous attributes. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 48–59. Springer, Heidelberg (2008)

29. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: Handling continuous attributes in ant
colony classification algorithms. In: CIDM, pp. 225–231 (2009)

30. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony op-
timization algorithm. IEEE Transactions on Evolutionary Computation, Special
issue on Ant Colony Algorithms, 321–332 (2004)

31. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

32. Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. J.
Parallel Distrib. Comput. 62(9), 1421–1432 (2002)

33. Rokach, L., Maimon, O.: Data Mining With Decision Trees: Theory And Applica-
tions. World Scientific Publishing (2008)

34. Schaefer, G.: Ant colony optimisation classification for gene expression data analy-
sis. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Śl ¸ezak, D., Zhu, W. (eds.)
RSFDGrC 2009. LNCS, vol. 5908, pp. 463–469. Springer, Heidelberg (2009)

35. Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E.,
Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498,
pp. 722–731. Springer, Heidelberg (1998)

36. Talbi, E.G., Roux, O.H., Fonlupt, C., Robillard, D.: Parallel ant colonies for the
quadratic assignment problem. Future Generation Comp. Syst. 17(4), 441–449
(2001)

N.T. Nguyen (Ed.): Transactions on CCI X, LNCS 7776, pp. 193–206, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Decision Support Simulation System
Based on Synchronous Manufacturing

F. Javier Otamendi

Universidad Rey Juan Carlos, Campus Vicálvaro
Facultad de Ciencias Jurídicas y Sociales

Departamento Economía Aplicada I
Paseo Artilleros s/n

28032 Madrid, Spain
franciscojavier.otamendi@urjc.es

Abstract. The focus of the article was the redesign of an assembly cell in a car
manufacturing company. The new design had to include the operations related
to the assembly of new roofs without disrupting the throughput rate. The
theory-of-constrains framework has been used to propose designs as well as to
define the evaluation criteria. The complexity of the system has been studied
using a discrete-event simulation model. The traditional scholar steps have been
followed to develop a robust decision support simulation system (DSSS).

Keywords: Decision support systems, simulation, automotive systems.

1 Introduction

The decision problems faced in industry, commerce, public administration, and the
society in general keep growing in size and complexity. For the study of these
decision problems, it is necessary to develop efficient methodologies and tools, so it is
possible to try and evaluate many different alternatives and to take the correct
complex decision in a reasonable amount of time.

This is the case of a company that assembles vehicles, which is faced with the
decision making problem of redesigning one of the main lines within the plant, more
specifically, the cell that is located before the pre-glazing station. Due to a change in
the design of the body of the vehicle and the possibility of including different types of
roofs, the layout of the cell needs to be changed. Some bodies will now incorporate a
new part, that needs to be either manually or automatically assembled depending on
the vehicle model. The objective of the redesign is that the cycle time at the entry of
the pre-glazing station must be maintained for the throughput rate to be same.

However, this new assembly mix puts too much stress in the assembly cell
reaching the point where the throughput rate could be reduced considerably. Different
layouts should be generated and evaluated, and the best one selected in terms of many
criteria, like throughput and work-in-progress.

194 F.J. Otamendi

The complexity of the study comes due to the following reasons:

• The complexity of the system: the logic that governs the relationship between the
stations and the demand mix is complex.

• The stochastic nature of any real system: the criteria or objective functions are not
deterministic since the input data is random.

• The multicriteria nature of the problem: the objective function must be an
aggregation of several individual functions.

• The large number of alternative layouts that might be defined.

Fortunately, some of the complexity of these studies has been diminished by the
improvement not only of the solution techniques but also of the information
technology. These improvements call these days for the experimentation with models
instead of with the real system. Among these models, simulation has grown as one of
the most reliable abstraction tools due to its very good compromise between the level
of detail in the representation of the complex real system and the execution time of
the model, which calls for an appropriate experimentation and decision making. The
outcome therefore needs to be a special class of decision support system (DSS), called
decision support simulation system (DSSS) [12].

To perform a sound simulation modeling study based on a DSS, the phases that are
included in Figure 1 [6] must be followed. The first step is to define the problem and
state the objectives. Once the situation is completely understood both by the
management of the premises and the simulation expert, a simulation model might be
developed. Some runs must then be tried to verify the correct execution of the model.
The validity of the model must also be assessed in terms both of quantification of
objectives and execution time. Then, an easy-to-use interface might be developed to
facilitate the experimentation phase by easily keying data in and reading the results
out. The combination of model and interface is a powerful DSSS. Then, different
alternatives might be tried by changing input values and the best alternative selected.

Fig. 1. Phases of a Simulation Study

Perform trial runs

Define the model and collect data

Build and verify the model

Design the experiment

Run reps

Analyze the results

Document, present and implement the results

No

Yes

Valid?

Formulate the problem and plan the study

No

Yes

Valid?

 Decision Support Simulation System Based on Synchronous Manufacturing 195

What should become clear from this short description is that this modeling
approach to decision making has one big part of science, with sound programming,
logic and mathematical background, but it also has another part of art, with lots of
imagination and intuition.

What follows is the summary of the simulation study that was performed in the
automotive assembly plant. The presentation follows the phases just presented, with
emphasis on the always important artistic side of the study. Section 2 includes a
description of system, which includes the definition of the decision criteria and
presentation of the available data. Section 3 is then used to describe the model
development phase and Section 4 the results after simulating the three alternative
designs that are going to be screened. Section 5 is then used to perform the
comparison both quantitatively and qualitatively. Section 6 concludes.

1.1 Description of the System

The first step of a simulation study is the specification of the system in terms of the
layout of the facilities, the flows of the units, and the available data, with the
necessary declaration and quantification of the objectives that must be achieved.

1.1.1 Current Layout
The layout of the current assembly process is depicted in Figure 2. After the bodies
have gone through a series of operations, the rolling conveyor system moves the bod-
ies to the buffer of the assembly cell. The input buffer is composed of a line buffer
that may hold up to five units before it feeds three parallel lines of conveyors, in
which several check operations are performed.

Fig. 2. Current layout

There exists then a transfer system that moves the bodies into the assembly cell.
The selection of the next body is controlled by a powerful information system which
is in charge of maintaining and defining the proper sequence into the assembly cell.

A
S

S
E

M
B

L
Y

C

E
L

L

Pre Assembly???

PREVIOUS OPERATIONS

Input Buffer

196 F.J. Otamendi

1.1.2 Available Data

Demand Mix
The first and most important piece of information is that of the demand. The reason
for the study is the new product mix that has resulted from the possibility of including
an additional part in the vehicle. This extra part might considerably vary the demand
mix and therefore the capacity potential of the assembly and the pre-assembly cell.
The demand in this case is not known but forecasted, and in fact, the reason for the
study is to assess the demand (capacity) that each design might hold. On this
screening phase, the total demand is maintained as its current level of 1 every 60
seconds (input and output cycle time) but with the mix included in Table 1 according
to the new parts and resources that are needed to perform the pre-assembly.

Table 1. Demand Mix

TYPE PERCENTAGE
MANUAL 9.0%
AUTOMATIC 29.5%
BOTH 3.8%
NONE 57.7%

The second set of data is that of the sequence. Due to technology restriction, only

one manual operation might be performed every three bodies. Also, and due to set-ups
only two robot operations could be performed on a row. Combining all the
restrictions, a repeated sequence of 30 bodies has been used as a base sequence to
perform the comparisons.

Times and Distances
The layout of the plant is provided so the distances are easily measured, including
those of the conveyors, the transfers and the buffers. The speeds of the conveyor
under normal operations are also specified. Set-up and assembly times are available in
the process specifications.

Breakdowns, Maintenance and Repair Times
Breakdowns and maintenance data is also available as might be critical [7]. The
possibility of disturbances is incorporated using the factory historic data. The mean-
times-before-failure (MTBF) as well as the mean-times-to-repair (MTTR) are
statistically provided in the form of random variables.

1.2 Planning the Study

The new product design has forced a redesign of the process, and that includes the
necessity to perform pre-assembly operations in the buffer area, either manually,
automatically or both. In fact, the aim of this study is to expand and redefine the

 Decision Support Simulation System Based on Synchronous Manufacturing 197

waiting area. The reengineering task is the main topic covered in this article and
includes the definition of different alternative layouts, their comparison using
simulation and the selection in terms of the synchronization of cycle times as well as
the minimization of the investment costs.

Synchronous manufacturing (also known as Optimized Process Technology –
OPT, Theory of Constraints – TOC or Drum-Buffer-Rope) is a manufacturing
philosophy that aims at balancing the flows of each of the stages of the process and
not their capacity (Goldratt 2004). Using simulation to understand synchronous
systems is a current line of research [2, 8, 10].

1.3 Objectives

Setting the objectives is too crucial to take it lightly. The objectives not only give a
numerical quantity to test and compare the different alternatives, but also may have an
influence in the modeling. The level of detail in the model should be enough to be
able to calculate an accurate value for different objectives, but not too deep to slow
the execution time of the simulation runs. The proper compromise must be achieved
to successfully perform the study.

Setting the aspiration levels and the satisficing thresholds properly will determine
the degree of fulfillment of the requirements as well as the best of the available
alternatives. In this case, the requirements are set following the synchronous
manufacturing philosophy [1]:

• “The process must keep the cycle time“ or “the throughput rate must be maintained
or improved”

• “The work-in-progress should be minimized”

Summarizing, the main objective is to guarantee the current cycle time both at the
entrance and the exit of the pre-assembly cell, which should coincide with the cycle
time of the assembly cell [4].

2 Model Development: Decision Support Simulation System

Once the system is completely defined and the objectives understood and
quantitatively specified, the important time to develop the model and the interface that
combine into a DSSS arrives. This step has usually more of an art than a science. The
developer has first to be expert enough to use a software package that fulfills the
modeling needs as well as one that is familiar enough to reduce the developing time.
And secondly, the level of detail of the model must be set in order to correctly
estimate the value for the objectives within a reasonable development and execution
time. The first idea usually is to go to full detail [3] but it is very important to just
concentrate on the estimation of the criteria.

198 F.J. Otamendi

2.1 Selection of the Modeling Tool

Any complex manufacturing problem (and by extension any supply chain) might be
simulated by using one of four different approaches: spreadsheet simulation, system
dynamics, discrete-event dynamics systems and business games [5]. To develop the
decision support system, the call was to develop the simulation model using discrete-
event methods and tools, and using spreadsheets for easy input and output of data.

A complete survey of simulation software is performed biannually by Swain and
published by OR/MS Today [9]. Forty-eight products are listed in the operations
research and management science field. Each software tool is described in terms of
typical application and market orientation, system requirements, model building,
animation, support/training, pricing and vendor information, and new major features.
In this case, the model was performed in Witness as it was the preferred one by the
company. Besides, it is the tool that the research team is most familiar with.

2.2 The Model Logic

Modelling in Witness is performed in three steps. First, the objects are drawn out of a
standard library. Then, each object is particularized, including name, graphical
appearance and personal characteristics (capacity, process times, and others). Finally,
the logic of movement is included. Although easy to develop and maintain, the
interface in 2D is usually not appealing. The software has however the possibility to
207 develop a 3D interface, but this development is usually too costly and time
consuming. The MsExcel interface allows to interchange input or output data easily
and to launch the simulation while running the software on the background.

The model is built with the traditional combination of parts (bodies), buffers for the
parts to wait and machines to perform the operations. The modelling philosophy is
based on a PULL strategy following synchronous manufacturing principles. The
machine representing the pre-glazing station pulls from the buffer that is at its
entrance. This buffer is fed by a machine that represents the transfer from the lines.
This transfer is a key element, since it selects from the different lines the next finished
body that goes into the pre-glazing station according to the sequence number. This
number has been implemented with an attribute so as to accompany the part
throughout the execution of the model. Each body gets its sequence number at the
entry buffer to the whole cell.

This entry buffer is critical since it assigns all the information about the sequence
and the characteristics of body type and roof to the part. Machine times will be
assigned accordingly. This buffer is emptied with a machine that directs the parts
according to their attribute to the proper line. Then, a series of machines represent the
conveyors, moving the bodies in between machines. The travel times at these
machines correspond to the movement time of the machine, except for the machines
that represent the manual or the robot operation, which will then last as needed.

The simulation is therefore straight forward except for the entry and the exit, as
well as the parameterisation of the elements in terms of the input data and the
specifications of the results, all of which are either read from or output to the MsExcel
interface.

 Decision Support Simulation System Based on Synchronous Manufacturing 199

2.3 Interface

Visualization and experimentation are the forte of simulation tools, although the
commercial tools available are not usually very user friendly. In fact, most of the
available commercial packages have incorporated and rely heavily on their MsExcel
connectivity to input data and to show results. The current trend in the market is to
develop the interface in spreadsheets or databases, which shows a button to execute
the simulation and presents the main results in an environment that is familiar to the
user. The simulation is performed in the background without any interaction or
visualization.

2.3.1 Input Data
The required data is included in a worksheet of an MsExcel file. Figure 3 includes the
layout data as well as the movement times at each machine. Several other input sheets
are available in the interface for demand data but not included here as they are
susceptible pieces of information like the demand and the sequence mix.

Fig. 3. Screenshot of the input page

2.3.2 Output Criteria
Similarly, the interface will include the values of the output variables. The alternative
designs are going to be evaluated in detailed according to the following criteria:

SPEEDS (metres/min)

15 25 15 15 15 15 25 15

15 25 15 15 15 15 25 15

15 25 15 15 15 25 25 15

15 25 25 25 25 15

25 25 25 25 25 25 15

LENGTHS (metres)

4.56 5.00 4.72 4.72 4.72 4.72 4.72 6.00

4.56 5.00 4.72 4.72 4.72 4.72 4.72 2.05

6.00 5.00 4.72 4.72 4.72 4.72 4.72 2.05

4.72 5.00 5.00 5.00 5.00 2.05

4.56 6.18 6.17 5.85 5.85 7.58 4.66

TIMES EACH (min)
1 2 3 4 5 6 7 8

1 0.3042 0.2000 0.3147 0.3147 0.3147 0.3147 0.1888 0.4000
2
3 0.3040 0.2000 0.3147 0.3147 0.3147 0.3147 0.1888 0.1367
4
5 0.4000 0.2000 0.3147 0.3147 0.3147 0.1888 0.1888 0.1367
6
7 0.3147 0.2000 0.2000 0.2000 0.2000 0.1367
8
9 0.1824 0.2473 0.2467 0.4678 0.4678 0.3031 0.3107

MANUAL ROBOT

200 F.J. Otamendi

• Percent Blockage at entrance
• Occupation of “Entry Transfer”
• Occupation of “Automatic” operation
• Occupation of “Manual” operation
• Occupation of “Output Transfer”
• Average and Maximum Number at Input Buffer before Entry Transfer
• Average and Maximum Number of Bodies in New Area
• Average Cycle Time
• Possible Flow Improvement = Idle Percentage (Starving) for Entry to Assembly

This thorough list of output variables relates to the evaluation criteria of synchronous
manufacturing (TOC). Under this philosophy, the cycle time has to correspond with
the demand and it should provoke a tense, lean flow at each and every stage of the
process. Then, the occupation of the all the processes should be balanced at about
90% of utilization, including set-ups and downtimes [11].

Figure 4 depicts the screen that has been developed to show a possible design cell
with the old and new transfer lines, including the direction of flow, as well as the
main results: average bodies or work-in-progress (WIP), capacity or maximum
instantaneous WIP and the occupation ratio. Figure 5 then shows the output table as
well as the pie chart corresponding to the occupation of any of the stations. Figure 6
finally shows the part of the output interface with the most important criteria: the
cycle time.

Fig. 4. Screenshot of the results in MsExcel (i)

OLD 0.79 0.47 NEW
1.27 4

6.89
OLD

Avg. Bodies 6.89 0.92 0.51 3.61
Capacity 7 6 6 6

Occupation 98.4% 15.3% 8.5% 60.1%

OLD 0.92 0.69 NEW
1.61 2

5.03

Avg. Bodies in Transfer

31.7%

NEW

 Decision Support Simulation System Based on Synchronous Manufacturing 201

Fig. 5. Screenshot of the results in MsExcel (ii)

Fig. 6. Screenshot of the results in MsExcel (iii)

2.4 Verification and Validation

Several trial runs were iteratively performed to fulfill the requisites of both the
simulation experts and the management of the premises. The models behaved as
intended so the models was readily verified. Then, the results with the current layout
were presented to the management so they were confident that the model was running
correctly and that the DSSS was ready to start with the evaluation, comparison and
selection of the alternative designs.

3 Simulation Experiments

The decision support simulation system (DSSS) has been developed to evaluate the
different layout designs and to select one for implementation. Many alternative
designs were proposed but a first screen based on physical limitations as well as
required investments brought the number down to just three options. What follows is
the definition and evaluation of the three options, namely, A, B and C.

3.1 Layout Options

3.1.1 Option A (3+1)
The first possibility is to provide room for an additional line in parallel to the current
three (Figure 7). The new part will be assembled in the new line, so the bodies that
need to incorporate the part will take this pre-assembly line composed of two stations:
one manual and the other automatic. The rest of the bodies will use the original lines.
In the new line some bodies will suffer a delay due to the lack of capacity.

MANUAL 100.00
IDLE 44.23
BUSY 29.45

BLOCKED 23.36
BROKEN DOWN 2.95 OCCUPATION MANUAL

BUSY
29%

BROKEN
DOWN

3%

IDLE
45%

BLOCKED
23%

0.02 hours
74.95 seconds

CYCLE TIME

202 F.J. Otamendi

Fig. 7. Layout for Option A

Of course, this layout releases stress out of the old lines, that have now less bodies
to move. The quantitative study has to assess if the new line is able to cope with the
demand for the new bodies. A capacity problem might appear also at the transfer line
that is now four lines wide with the corresponding increase in movement and
therefore in transfer times. The input throughput rate to the buffer system might also
be in jeopardy if the new line is not able to cope with the new tasks, blocking the
entrance and not allowing for the required cycle time at the assembly cell.

3.1.2 Option B
To provide flexibility and minimize the blocking probability at the entrance, the
second option looks at the possibility of using the third old line also as an input buffer
to the new line. This layout (Figure 8) implies that the third line moves the bodies in
the opposite direction to the flow. If the new line is full, the bodies that require pre-
assembly will take the second line and then the third before they reach the new buffer
line.

Fig. 8. Layout for Option B

The stress is now put on the bodies that will not go through the new operation. The
feasibility of this design clearly depends on the production mix, as always, but even
more so in this case.

ROBOT MANUAL

ROBOT MANUAL

 Decision Support Simulation System Based on Synchronous Manufacturing 203

3.1.3 Option C
The last option is to differentiate between the two types of bodies by including an
additional line in which the manual assembly of parts could be performed, leaving the
automatic pre-assembly for the last line (Figure 9).

Fig. 9. Layout for Option C

This extra investment with a higher cost will a priori allow for a higher throughput
with more flexibility and less blockage at the entrance.

4 Results of the Simulation Runs

The results for each of the simulated options are shown in graphical form in Figure 10,
Figure 11 and Figure 12, for Options A, B, and C respectively. The graphs correspond to
the MsExcel interface that was built to easily transfer data to and from the simulator.

Option A shows, as foreseen a very high occupation rate in the new line (97.9%),
which provokes a high blockage percentage at the entrance (42.76%) as well as in the
manual (62.49%) and the robot operations (77.57%). The output rate (cycle time) however
is enough to keep the pace of the assembly cell (66.50 seconds), which is the one that
cannot cope with more work (0.21% idle time) due to its high downtime (9.57%).

Fig. 10. Results for Option A

ROBOT
MANUAL

BLOCKAGE BUFFER AVG 2.64
9.70 BUFFER MAX 5.00

IDLE 4.61
BUSY 52.63 OLD 0.60 3.00 NEW

BLOCKED 42.76 3.61 4 ROBOT 100.00
BROKEN DOWN 0.00 IDLE 0.92

ENTRY 100.00 BUSY 17.74
5.85 BLOCKED 77.57
NEW BROKEN DOWN 3.78

Avg. Bodies 6.17 3.92 0.84 5.85
Capacity 7 6 6 6 MANUAL 100.00

Occupation 88.1% 65.3% 13.9% 97.5% IDLE 1.39
BUSY 33.19

BLOCKED 62.49
BROKEN DOWN 2.92

OLD 0.99 0.43 NEW
1.42 2 Max. Bodies

IDLE 0.21 21.80 26.00
BUSY 90.22 31

BLOCKED 0.00 70.3% 83.9%
BROKEN DOWN 9.57

EXIT 100.00 TIME FOR 745 bodies per sequence
13.76 hours
1.91 shifts of 7.2 hours

95.57% of 2 shifts

0.02 hours
66.50 seconds

CYCLE TIME

10.92

70.9%

OPTION A: ORIGINAL - 3+1 NEW

WHOLE

Avg. Bodies in Transfer

90.2%

OLD

OCCUPATION ENTRY

BLOCKE
D

43%
BUSY
52%

IDLE
5%BROKEN

DOWN
0%

OCCUPATION EXIT

IDLE
0%

BUSY
90%

BLOCKE
D

0%

BROKEN
DOWN

10%

OCCUPATION ROBOT

BLOCKED
77%

IDLE
1%

BROKEN
DOWN

4%
BUSY
18%

OCCUPATION MANUAL

BUSY
33%

BROKEN
DOWN

3%

IDLE
1%

BLOCKED
63%

204 F.J. Otamendi

Option B puts too much stress on the old system (above 98% occupation), blocking
the entrance 53.72% of the time. The input cycle time dictates then the output cycle
time (74.95 seconds), which is too high allowing for idle time in the assembly cell
(11.05%), the manual operation (44.23%) and the robot (66.88%).

Fig. 11. Results for Option B

Option C is more balanced with cycle times similar to those of the assembly cell
(67.09 seconds). There are no idle times in any station, although the occupation rates
of the old lines are too high (98%).

Fig. 12. Results for Option C

BLOCKAGE BUFFER AVG 4.44
19.88 BUFFER MAX 5.00

IDLE 0.08
BUSY 46.69 OLD 0.79 0.47 NEW

BLOCKED 53.22 1.27 4 ROBOT 100.00
BROKEN DOWN 0.00 IDLE 66.88

ENTRY 100.00 BUSY 15.74
6.89 BLOCKED 13.99
OLD BROKEN DOWN 3.39

Avg. Bodies 6.89 0.92 0.51 3.61
Capacity 7 6 6 6 MANUAL 100.00

Occupation 98.4% 15.3% 8.5% 60.1% IDLE 44.23
BUSY 29.45

BLOCKED 23.36
BROKEN DOWN 2.95

OLD 0.92 0.69 NEW
1.61 2 Max. Bodies

IDLE 11.05 14.80 17.00
BUSY 80.05 31

BLOCKED 0.00 47.7% 54.8%
BROKEN DOWN 8.91

EXIT 100.00 TIME FOR 745 bodies per sequence
15.51 hours
2.15 shifts of 7.2 hours

107.72% of 2 shifts

0.02 hours
74.95 seconds

CYCLE TIME

5.03

80.3%

OPTION B: SNAKE - 1+3 NEW

WHOLE

Avg. Bodies in Transfer

31.7%

NEW

OCCUPATION ENTRY

BLOCKE
D

53%

BUSY
47%

IDLE
0%BROKEN

DOWN
0%

OCCUPATION EXIT

IDLE
11%

BUSY
80%BLOCKE

D
0%

BROKEN
DOWN

9%

OCCUPATION ROBOT

BLOCKED
14%

IDLE
67%

BROKEN
DOWN

3%

BUSY
16%

OCCUPATION MANUAL

BUSY
29%

BROKEN
DOWN

3%

IDLE
45%

BLOCKED
23%

BLOCKAGE BUFFER AVG 2.98
10.46 BUFFER MAX 5.00

IDLE 0.95
BUSY 52.16 OLD 0.79 2.17 NEW

BLOCKED 46.89 2.96 5 ROBOT 100.00
BROKEN DOWN 0.00 IDLE 0.53

ENTRY 100.00 BUSY 17.58
BLOCKED 78.01

BROKEN DOWN 3.88
Avg. Bodies 6.91 5.90 2.12 5.89

Capacity 7 6 10 6 MANUAL 100.00
Occupation 98.8% 98.3% 21.2% 98.2% IDLE 0.98

BUSY 32.90
BLOCKED 63.43

BROKEN DOWN 2.69
OLD 1.18 0.36 NEW

1.54 2 Max. Bodies
IDLE 0.20 25.32 29.00
BUSY 89.43 36

BLOCKED 0.00 70.3% 80.6%
BROKEN DOWN 10.37

EXIT 100.00 TIME FOR 745 bodies per sequence
13.88 hours
1.93 shifts of 7.2 hours

96.42% of 2 shifts

0.02 hours
67.09 seconds

CYCLE TIME

77.0%

OPTION C: EXTRA LINE - 2+3 NEW

WHOLE

OLD NEW
12.81 8.01

Avg. Bodies in Transfer

59.1%

OCCUPATION ENTRY

BLOCKE
D

47%

BUSY
52%

IDLE
1%BROKEN

DOWN
0%

OCCUPATION EXIT

IDLE
0%

BUSY
90%

BLOCKE
D

0%

BROKEN
DOWN

10%

OCCUPATION ROBOT

BLOCKED
77%

IDLE
1%

BROKEN
DOWN

4%
BUSY
18%

OCCUPATION MANUAL

BUSY
33%

BROKEN
DOWN

3%

IDLE
1%

BLOCKED
63%

 Decision Support Simulation System Based on Synchronous Manufacturing 205

5 Comparison and Selection

Table 2 summarizes the behaviour of the three designs in quantitative terms, choosing
the main criteria. Buffer space refers to the maximum designed capacity whereas
average and maximum bodies correspond to the dynamic behaviour. The cycle time
corresponds to the throughput potential and the improvement to the blockage ratio,
which could be eliminated through investments or further process improvement.

Table 2. Comparison of alternatives

OPTION

A B C
Buffer Space (Units) 31.0 31.0 36.0

Average Bodies (Units) 21.8 14.8 25.3
Maximum Bodies (Units) 26.0 17.0 29.0

Cycle Time (seconds) 66.5 75.0 67.1
Feasible Improvement (%) 0.2 11.0 0.2

The main conclusions are the following

• Option A and Option C show similar cycle times (between 66.5 and 67.1 seconds).
The call is to disregard Option B due to subpar cycle time.

• The cycle time is higher than the required threshold of 60 seconds, both consistent
with the assembly cell time, in both Option A and Option C due to:
─ Breakdowns of the assembly process
─ Breakdowns of the manual and the robot operations

• The key controlling factor is therefore the cycle time of the following assembly
system. The bottleneck is at the end of the cell, which is again consistent with the
theory of constraints [1].

• Option A shows a lower average number of bodies when comparing to Option C
(spaces 31 vs 36; average approximately 21 vs 25), so the solution is cheaper in
terms of work-in-process.

• Option A gives a feasible and viable solution with a lowest conveyor investment
cost.

• Option A might be upgraded to option C if required in the future for capacity
increase or additional works.

Option A is therefore selected for implementation, after the detailed and scholar
simulation study that has been carried out.

206 F.J. Otamendi

6 Conclusions

The simulation study shows the weak points of the assembly process, pinpointing the
necessity to address a quality assurance, balancing and improvement process. The
applicability of theory-of-constraints concepts in which there has to be a
synchronization between input and output flows is also highlighted. Both Options A
and C also follow TOC principles by making the bottleneck be the last stage, that of
the final assembly process. Work-in-process is optimum also as a by-product.

References

1. Goldratt, E.M.: The Goal. North River Press (2004)
2. Gonzalez-R, P.L., Framinan, J.M., Ruiz-Usano, R.: A Multi-Objective Comparison of

Dispatching Rules In A Drum-Buffer-Rope Production Control System. International
Journal of Computer Integrated Manufacturing 23(2), 155–167 (2010)

3. Johnson, N.R., Feinberg, W.E.: The Impact of Exit Instructions and Number of Exits in
Fire Emergencies: A Computer Simulation Investigation. Journal of Environmental
Psychology 17(2), 123–133 (1997)

4. Kim, S., Cox, J.F., Mabin, V.J.: An Exploratory Study Of Protective Inventory In A
Re-Entrant Line With Protective Capacity. International Journal of Production Research
48(14), 4153–4178 (2010)

5. Kleijnen, J.P.C., Smits, M.T.: Performance metrics in supply chain management. J. Opl.
Res. Soc. 54, 507–514 (2003)

6. Law, A., Kelton, W.D.: Simulation Model and Analysis. McGraw-Hill, New York (1991)
7. Patti, A.L., Watson, K.: Downtime variability: the impact of duration-frequency on the

performance of serial production systems. International Journal of Production
Research 48(19), 5831–5841 (2010)

8. Rhee, S.H., Cho, N.W., Bae, H.: Increasing The Efficiency Of Business Processes Using A
Theory of Constraints. Information Systems Frontiers 12(4), 443–455 (2010)

9. Swain, J.: Simulation software survey (2011), http://www.lionhrtpub.com/
orms/surveys/Simulation/Simulation.html

10. Wang, Y.H., Cao, J., Kong, L.: Hybrid Kanban/Conwip Control System Simulation and
Optimization Based on Theory of Constraints. In: Proceedings of the 2009 IEEE
International Conference on Intelligent Computing And Intelligent Systems, vol. 2, pp.
666–670 (2009)

11. Wu, H.H., Chen, C.P., Tsai, C.H., Yang, C.J.: Simulation and Scheduling Implementation
Study of TFT-LCD Cell Plants Using Drum-Buffer-Rope System. Expert Systems With
Applications 37(12), 8127–8133 (2010)

12. Yilmaz, L., Oren, T.: Agent-directed simulation and systems engineering, pp. 404–405
(2009)

Author Index

Biba, Marenglen 162
Boryczka, Urszula 177
Byrski, Aleksander 1

Caragnano, Giuseppe 120
Cucca, Manuela 120

Esposito, Floriana 16

Ferilli, Stefano 16

Garba, Michael T. 150
Goga, Klodiana 120
González–Vélez, Horacio 150

Ichikawa, Yuuta 90
Ihrig, Martin 60

Khan, Samee Ullah 103
Kisiel-Dorohinicki, Marek 31
Ko�lodziej, Joanna 103
Kozak, Jan 177

Li, Kin Fun 45

Mossucca, Lorenzo 120

Niewiadomska-Szynkiewicz, Ewa 135
Notarpietro, Riccardo 120

Otamendi, F. Javier 193

Perera, Darshika G. 45
Pi ↪etak, Kamil 31

Redavid, Domenico 16
Roach, Daniel L. 150
Ruiu, Pietro 120

Schaefer, Robert 1
Skinderowicz, Rafa�l 177
Smo�lka, Maciej 1

Terzo, Olivier 120
Trandafili, Evis 162

Uehara, Minoru 90

	Transactions on Computational Collective Intelligence – Vol. X
	Transactions on Computational Collective Intelligence
	Table of Contents
	Markov Chain Based Analysis of Agent-Based Immunological System
	1 Introduction
	2 Evolutionary and Immunological Agent-BasedComputation
	3 Agent-Based Management and Synchronisation
	4 System State
	4.1 EMAS State
	4.2 iEMAS State

	5 System Behaviour
	5.1 EMAS Behaviour
	5.2 iEMAS Behaviour

	6 Parallel iEMAS Dynamics
	7 iEMAS Ergodicity Proof Draft
	8 Conclusions
	References

	Towards Dynamic Orchestration of Semantic Web Services
	1 Introduction
	2 SWS Dynamic Orchestration
	2.1 Orchestration and SWS Infrastructure
	2.2 WSMO and OWLS Formal Support
	2.3 OWL-S and WSMO in SWS Infrastructures

	3 OWL-S Support for Orchestration Dimensions
	3.1 OWL-S Framework Details
	3.2 OWL-S Process Model

	4 Automatic Composition for OWL-S
	4.1 Encoding OWL-S Atomic Processes with SWRL Rules
	4.2 The Composition Algorithm
	4.3 SWRL Plan Analysis
	4.4 Encoding the SWRL Plan with OWL-S Constructs

	5 Experimental Analysis
	5.1 SWRL Plan Generation
	5.2 OWL-S Composite Service Generation

	6 Conclusions and Future Work
	References

	Agent-Based Framework Facilitating Component-Based Implementation of Distributed Computational Intelligence Systems
	1 Introduction
	2 The Model of a Computing MAS
	3 AgE Computing Framework
	4 AgE Agents Implementation Structure
	5 Component Techniques for AgE Framework
	6 Selected Realization Aspects of Component Dependencies and Their Verification
	7 Practical Evaluation
	8 Conclusions
	References

	A Hardware Collective Intelligence Agent
	1 Background and Introduction
	1.1 CI Agent Modelling, Development and Implementation
	1.2 Motivation of a Hardware Approach

	2 Hardware CI Agent
	2.1 Hierarchical Design
	2.2 Experimental Platform

	3 Illustrative Designs at Various Levels of Abstraction
	3.1 Low Level Hardware Operators
	3.2 Functional Modules: Similarity Measures
	3.3 Complex Data Structure and Parallelism

	4 Reconfigurable CI Agent on FPGAs
	4.1 Multiplexer-Based Reconfiguration
	4.2 Dynamic Reconfiguration
	4.3 Design Approach and Development Platform
	4.4 Principal Component Analysis Case Study

	5 Conclusion and Future Work
	References

	SimISpace2: A Simulation Platform for Exploring Strategic Knowledge Management Processes
	1 Introduction
	2 Fundamentals
	2.1 A Brief Description of the Innovative Simulation Environment
	2.2 The Big Picture
	2.3 Getting Started: Specifying Different Knowledge and Agent Groups
	2.4 Distributions
	2.5 Simulation User Processes

	3 Knowledge Assets
	3.1 Terminology
	3.2 Knowledge Item vs. Knowledge Store
	3.3 Knowledge Properties
	3.4 Knowledge Networks
	3.5 Owning vs. Possessing Knowledge
	3.6 The Value of Knowledge

	4 Agents
	4.1 Agent Properties
	4.2 Actions

	5 Validation
	5.1 More Structured Knowledge Diffuses Faster
	5.2 Extracting Value from Knowledge
	5.3 Validation Results

	6 Conclusion
	References

	Cloud Search Engine for IaaS
	1 Introduction
	2 Related Works
	2.1 Cooperative Search Engine
	2.2 Cloud Computing

	3 Cloud Search Engine
	4 Evaluations
	5 Conclusions
	References

	Data Scheduling in Data Grids and Data Centers: A Short Taxonomy of Problems and Intelligent Resolution Techniques
	1 Introduction
	2 A Short Taxonomy of Data-Aware Scheduling Problems in Data Grids
	3 Data-Aware System Model for Independent Job Scheduling
	3.1 Task Workload and Computing Capacities
	3.2 Data-Aware Task Execution Time Model
	3.3 Scheduling Phases and Objectives
	3.4 Strategies for Enhancing Data-Aware Schedulers

	4 Resolution Methods
	4.1 Ad Hoc Methods
	4.2 Meta-heuristic Methods

	5 Scheduling Challenges
	6 Conclusions and Future Work
	References

	Improving Scalability of an Hybrid Infrastructure for E-Science Applications
	1 Introduction
	2 Related Work
	3 Project Background
	3.1 Scientific Context for Radio Occultation
	3.2 Virtualization Overview
	3.3 Cloud Environment

	4 Hybrid Architecture
	4.1 Xen Overview
	4.2 Resource Manager
	4.3 Scheduling Model

	5 PerformanceTest
	6 Conclusion and Future Work
	References

	Energy Aware Communication Protocols for Wireless Sensor Networks
	1 Introduction to Ad Hoc Network
	2 Wireless Sensor Networks
	2.1 Clustering WSNs
	2.2 Communication Methods
	2.3 Topology Control

	3 Energy-Aware Communication Protocols
	3.1 Power Control Protocols
	3.2 Activity Control Protocols
	3.3 CGPS – Hierarchical Power Save Protocol

	4 Summary and Conclusions
	References

	GPU Acceleration for Hermitian Eigensystems
	1 Introduction
	2 Background
	2.1 CUDA Platform
	2.2 Contribution

	3 Hermitian Eigensystems
	4 GPU Kernel Implementation and Optimisation
	4.1 Optimisation

	5 Performance Evaluation
	6 Conclusions
	References

	Scalable and High Performing Learning and Mining in Large-Scale Networked Environments: A State-of-the-art Survey
	1 Introduction
	2 Scalability and Learning in Large-Scale Social Networks
	3 Scaling Machine Learning in Sensor Networks
	4 Scalability in Peer-to-Peer Networks
	5 Scaling in Distributed Control Systems and Stream Mining
	6 Scaling in Multimedia Retrieval Systems
	7 Conclusion
	References

	Heterarchy in Constructing Decision Trees – Parallel ACDT
	1 Introduction
	2 Ant Colony Optimization in Data Mining
	3 Decision Trees and Decision Forests
	4 Ant Colony Decision Trees Algorithm
	5 Parallel Implementation of ACDT Approach
	6 ResultsofExperiments
	6.1 Classification Accuracy
	6.2 Performance Comparison

	7 Conclusions
	References

	Decision Support Simulation System Based on Synchronous Manufacturing
	1 Introduction
	1.1 Description of the System
	1.2 Planning the Study
	1.3 Objectives

	2 Model Development: Decision Support Simulation System
	2.1 Selection of the Modeling Tool
	2.2 The Model Logic
	2.3 Interface
	2.4 Verification and Validation

	3 Simulation Experiments
	3.1 Layout Options

	4 Results of the Simulation Runs
	5 Comparison and Selection
	6 Conclusions
	References

	Author Index

