
Rocco De Nicola
Christine Julien (Eds.)

 123

LN
CS

 7
89

0

15th International Conference, COORDINATION 2013
Held as Part of the 8th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2013
Florence, Italy, June 2013, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 7890
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rocco De Nicola Christine Julien (Eds.)

Coordination Models
and Languages
15th International Conference, COORDINATION 2013
Held as Part of the 8th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2013
Florence, Italy, June 3-5, 2013
Proceedings

13

Volume Editors

Rocco De Nicola
IMT - Institute for Advanced Studies Lucca
Piazza San Ponziano 6, 55100 Lucca, Italy
E-mail: rocco.denicola@imtlucca.it

Christine Julien
The University of Texas at Austin
One University Station, C5000, Austin, TX 78712, USA
E-mail: c.julien@mail.utexas.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38492-9 e-ISBN 978-3-642-38493-6
DOI 10.1007/978-3-642-38493-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938179

CR Subject Classification (1998): D.2, D.4, F.1, F.3, C.2, C.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In 2013 the 8th International Federated Conference on Distributed Computing
Techniques (DisCoTec) took place in Florence, Italy, during June 3–6. It was
hosted and organised by Università di Firenze. The DisCoTec series of federated
conferences, one of the major events sponsored by the International Federation
for Information processing (IFIP), included three conferences:

– The 15th International Conference on Coordination Models and Languages
(Coordination)

– The 13th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS)

– The 2013 IFIP Joint International Conference on Formal Techniques for
Distributed Systems (33rd FORTE / 15th FMOODS)

Together, these conferences cover the complete spectrum of distributed comput-
ing subjects ranging from theoretical foundations to formal specification tech-
niques to systems research issues.

Each of the first three days of the federated event began with a plenary
speaker nominated by one of the conferences. The three invited speakers were:
Tevfik Bultan, Department of Computer Science at the University of California,
Santa Barbara, UCSB; Gian Pietro Picco, Department of Information Engineer-
ing and Computer Science at the University of Trento, Italy; and Roberto Bal-
doni, Department of Computer, Control and Management Engineering “Antonio
Ruberti”, Università degli Studi di Roma “La Sapienza”, Italy. In addition, on
the second day, there was a joint technical session consisting of one paper from
each of the conferences. There were also three satellite events:

1. The 4th International Workshop on Interactions between Computer Science
and Biology (CS2BIO) with keynote talks by Giuseppe Longo (ENS Paris,
France) and Mario Rasetti (ISI Foundation, Italy)

2. The 6th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Davide Sangiorgi (Università di Bologna, Italy) and
Damien Pous (ENS Lyon, France)

3. The 9th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with keynote talks by Gerhard Friedrich (Uni-
versität Klagenfurt, Austria) and François Täıani (Université de Rennes 1,
France)

I believe that this program offered each participant an interesting and stim-
ulating event. I would like to thank the Program Committee Chairs of each
conference and workshop for their effort. Moreover, organizing DisCoTec 2013
was only possible thanks to the dedicated work of the Publicity Chair Francesco
Tiezzi (IMT Lucca, Italy), the Workshop Chair Rosario Pugliese (Università

VI Foreword

di Firenze, Italy), and members of the Organizing Committee from Università
di Firenze: Luca Cesari, Andrea Margheri, Massimiliano Masi, Simona Rinaldi,
and Betti Venneri. To conclude I want to thank the International Federation for
Information Processing (IFIP) and Università di Firenze for their sponsorship.

June 2013 Michele Loreti

Preface

This volume contains the papers presented at Coordination 2013: the 15th
International Conference on Coordination Models and Languages held in Flo-
rence during June 3–5. The conference focused on the design and implementation
of models and technologies for collaboration and coordination in concurrent, dis-
tributed, and socio-technical systems, including both practical and foundational
models, runtime systems, and related verification and analysis techniques.

The Program Committee (PC) of Coordination 2012 consisted of 25 top re-
searchers from 13 different countries. We received more than 50 abstracts that
materialized in a total of 42 submissions out of which the PC selected 17 papers
for inclusion in the program. Each submission was reviewed by at least three
independent referees; papers were selected based on their quality, originality,
contribution, clarity of presentation, and relevance to the conference topics. The
review process included an in-depth discussion phase, during which the mer-
its of all papers were discussed by the committee. The process culminated in
a shepherding phase whereby some of the authors received active guidance by
one member of the PC in order to produce a high-quality final version. The
selected papers constituted a program covering a varied range of topics includ-
ing coordination of social collaboration processes, coordination of mobile sys-
tems in peer-to-peer and ad-hoc networks, programming and reasoning about
distributed and concurrent software, types, contracts, synchronization, coordi-
nation patterns, and families of distributed systems. The program was further
enhanced by an invited talk by Gian Pietro Picco from the University of Trento
entitled “Of Tuples, Towers, Tunnels, and Wireless Sensor Networks.”

The success of Coordination 2013 was due to the dedication of many peo-
ple. We thank the authors for submitting high-quality papers and the Program
Committee (and their sub-reviewers) for their careful reviews and lengthy dis-
cussions during the final selection process. We thank Francesco Tiezzi from IMT
Lucca, who acted as the Publicity Chair of Coordination 2013. We thank the
providers of the EasyChair conference management system, which was used to
run the review process and to facilitate the preparation of the proceedings. Fi-
nally, we thank the Distributed Computing Techniques Organizing Committee
(led by Michele Loreti) for their contribution in making the logistic aspects of
Coordination 2012 a success.

June 2013 Rocco De Nicola
Christine Julien

Organization

Steering Committee

Farhad Arbab CWI and Leiden University, The Netherlands
(Chair)

Gul Agha University of Illinois at Urbana-Champaign, USA
Dave Clarke KU Leuven, Belgium
Jean-Marie Jacquet University of Namur, Belgium
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT - Institute for Advanced Studies Lucca, Italy
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI, USA
Vasco T. Vasconcelos University of Lisbon, Portugal
Gianluigi Zavattaro Università di Bologna, Italy

Program Committee

Gul Agha University of Illinois at Urbana-Champaign, USA
Saddek Bensalem VERIMAG Laboratory, France
Borzoo Bonakdarpour The University of Waterloo, Canada
Giacomo Cabri Università di Modena e Reggio Emilia, Italy
Paolo Ciancarini Università di Bologna, Italy
Dave Clarke KU Leuven, Belgium
Frank De Boer CWI, The Netherlands
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT - Institute for Advanced Studies Lucca, Italy
José Luiz Fiadeiro Royal Holloway, University of London, UK
Chien-Liang Fok The University of Texas at Austin, USA
Chris Hankin Imperial College London, UK
Raymond Hu Imperial College London, UK
Christine Julien The University of Texas at Austin, USA
K.R. Jayaram HP Labs, USA
Eva Kühn Vienna University of Technology, Austria
Mieke Massink ISTI-CNR, Pisa, Italy
Jamie Payton The University of North Carolina at Charlotte,

USA
Rosario Pugliese Università di Firenze, Italy
Nikola Serbedzija Fraunhofer FOKUS, Germany
Marjan Sirjani Reykjavik University, Iceland

X Organization

Robert Tolksdorf Freie Universität Berlin, Germany
Emilio Tuosto University of Leicester, UK
Vasco T. Vasconcelos University of Lisbon, Portugal
Mirko Viroli Università di Bologna, Italy

Additional Reviewers

Bocchi, Laura Marek, Alexander
Bourgos, Paraskevas Marques, Eduardo R.B.
Bruni, Roberto Marr, Stefan
Capodieci, Nicola Martins, Francisco
Charalambides, Minas Melgratti, Hernan
Ciancia, Vincenzo Mezzina, Claudio Antares
Craß, Stefan Mostrous, Dimitris
Creissac Campos, José Nobakht, Behrooz
De Wael, Mattias Poplavko, Peter
Dinges, Peter Proenca, Jose
Fabiunke, Marko Puviani, Mariachiara
Harnie, Dries Quilbeuf, Jean
Jafari, Ali Ridge, Tom
Jaghoori, Mohammad Mahdi Sabouri, Hamideh
Jongmans, Sung-Shik T.Q. Scholliers, Christophe
Khamespanah, Ehsan Senni, Valerio
Kock, Gerd Sesum-Cavic, Vesna
Lanese, Ivan Tiezzi, Francesco
Latella, Diego Vandriessche, Yves

Of Tuples, Towers, Tunnels,

and Wireless Sensor Networks

Gian Pietro Picco

Department of Information Engineering and Computer Science (DISI),
University of Trento, Italy

gianpietro.picco@unitn.it

Wireless sensor networks (WSNs) have been around for more than a decade.
They are distributed systems made of tiny, resource-scarce, often battery-powered
devices that cooperate toward distributed monitoring and control. Their small
size, autonomy, and flexibility has placed them at the forefront of pervasive
computing scenarios. Yet, their programming is still largely carried out by using
directly the low-level primitives provided by the operating system. This approach
steers the programmer away from the application, hampers reusability and de-
coupling, and ultimately makes development unnecessarily complex.

In this talk, we report our research efforts in simplifying WSN programming
through the notion of tuple space, embodied in a middleware called TeenyLime [1].
As the name implies, TeenyLime borrows the transiently shared tuple space
model introduced by the Lime middleware for mobile ad hoc networks, but also
deeply revisits it to match the peculiar characteristics of WSNs, e.g., to deal with
the limited resources of WSN nodes and to provide additional visibility and con-
trol on the lower levels of the stack. TeenyLime was indeed designed as a thin
veneer atop the basic OS communication facilities, to support the development
of both the application logic and system tasks such as routing.

TeenyLime and its particular incarnation of the tuple space concept proved
successful in developing several real-world applications where the WSN was de-
ployed for a long time, in an operational setting, and most importantly to ful-
fill the needs of real users. This talk reports on two of these experiences: the
structural health monitoring of a medieval tower [2], and the closed-loop con-
trol of adaptive lighting of a road tunnel [3]. Facing real-world challenges forced
a redesign of the TeenyLime implementation, but left its original abstractions
essentially unaltered. As expected, the higher level of abstraction provided by
TeenyLime w.r.t. using directly the OS primitives resulted in a significant reduc-
tion of the source code size, hinting at a lower burden on the programmer. Less
expected, it also resulted in a smaller binary size, therefore enabling one to pack
more functionality on the resource-scarce WSN nodes. Ultimately, these expe-
riences clearly showed that it is possible to simplify the chore of programming
WSN applications without sacrificing their performance and efficiency.

TeenyLime is available as open source at teenylime.sourceforge.net.

XII Of Tuples, Towers, Tunnels, and Wireless Sensor Networks

References

1. Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: Programming Wireless Sensor
Networks with the TeenyLime Middleware. In: Cerqueira, R., Campbell, R.H. (eds.)
Middleware 2007. LNCS, vol. 4834, pp. 429–449. Springer, Heidelberg (2007)

2. Ceriotti, M., Mottola, L., Picco, G.P., Murphy, A.L., Guna, S., Corrà, M., Pozzi,
M., Zonta, D., Zanon, P.: Monitoring Heritage Buildings with Wireless Sensor Net-
works: The Torre Aquila Deployment. In: Proc. of the 8th ACM/IEEE Int. Conf.
on Information Processing in Sensor Networks (IPSN) (2009)

3. Ceriotti, M., Corrà, M., D’Orazio, L., Doriguzzi, R., Facchin, D., Guna, S., Jesi,
G.P., Cigno, R.L., Mottola, L., Murphy, A.L., Pescalli, M., Picco, G.P., Pregnolato,
D., Torghele, C.: Is There Light at the Ends of the Tunnel? Wireless Sensor Networks
for Adaptive Lighting in Road Tunnels. In: Proc. of the 10th ACM/IEEE Int. Conf.
on Information Processing in Sensor Networks (IPSN) (2011)

Table of Contents

Stochastic Process Algebra and Stability Analysis of Collective
Systems . 1

Luca Bortolussi, Diego Latella, and Mieke Massink

Modelling MAC-Layer Communications in Wireless Systems
(Extended Abstract) . 16

Andrea Cerone, Matthew Hennessy, and Massimo Merro

Coordinating Phased Activities while Maintaining Progress 31
Tiago Cogumbreiro, Francisco Martins, and
Vasco Thudichum Vasconcelos

Inference of Global Progress Properties for Dynamically Interleaved
Multiparty Sessions . 45

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida

Pattern Matching and Bisimulation . 60
Thomas Given-Wilson and Daniele Gorla

Component-Based Autonomic Managers for Coordination Control 75
Soguy Mak Karé Gueye, Noël de Palma, and Eric Rutten

Multi-threaded Active Objects . 90
Ludovic Henrio, Fabrice Huet, and Zsolt István

Scheduling Open-Nested Transactions in Distributed Transactional
Memory . 105

Junwhan Kim, Roberto Palmieri, and Binoy Ravindran

Peer-Based Programming Model for Coordination Patterns 121
Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and
Thomas Scheller

Decidability Results for Dynamic Installation of Compensation
Handlers . 136

Ivan Lanese and Gianluigi Zavattaro

Probabilistic Modular Embedding for Stochastic Coordinated
Systems . 151

Stefano Mariani and Andrea Omicini

XIV Table of Contents

ByteSTM: Virtual Machine-Level Java Software Transactional
Memory . 166

Mohamed Mohamedin, Binoy Ravindran, and Roberto Palmieri

The Future of a Missed Deadline . 181
Behrooz Nobakht, Frank S. de Boer, and Mohammad Mahdi Jaghoori

Event Loop Coordination Using Meta-programming 196
Laure Philips, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter

Interactive Interaction Constraints . 211
José Proença and Dave Clarke

Towards Distributed Reactive Programming . 226
Guido Salvaneschi, Joscha Drechsler, and Mira Mezini

Typing Progress in Communication-Centred Systems 236
Hugo Torres Vieira and Vasco Thudichum Vasconcelos

Author Index . 251

Stochastic Process Algebra

and Stability Analysis of Collective Systems

Luca Bortolussi1,2,�, Diego Latella2, and Mieke Massink2

1 Dipartimento di Matematica e Geoscienze, University of Trieste, Italy
2 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy

Abstract. Collective systems consist of large numbers of agents that
coordinate through local behaviour, adapt to their environment and pos-
sibly give rise to emergent phenomena. Their formal analysis requires ad-
vanced scalable mathematical approximation techniques. We show how
Stochastic Process Algebra (SPA) can be combined with numeric anal-
ysis tools for the analysis of emergent behavioural aspects of such sys-
tems. The approach is based on an automatic transformation of SPA
models into ordinary differential equations in a format in which numeric
and symbolic computing environments can be used to perform stability
analysis of the system. The potential of the approach is illustrated by
a crowd dynamics scenario in which various forms of behavioural and
topological asymmetry are introduced. These are cases in which ana-
lytical approaches to stability analysis are in general not feasible. The
analysis also shows some surprising aspects of the crowd model itself.

Keywords: Fluid flow, process algebra, crowddynamics, self-organisation.

1 Introduction

A key factor to allow modern cities to reach or maintain a good and sustainable
quality of life for their increasingly numerous inhabitants is the development of
systems that are relying on a much more decentralised and distributed design
that is adapting itself to dynamically changing circumstances [19]. Examples of
such future systems are electricity grids that can cope with many local electricity
producers and consumers, and a decentralised organisation of transportation and
information. Such large scale collective adaptive systems rely on the continuous
feedback between vast numbers of participants of different kinds, and, as is well-
known, can be expected to show complex dynamic and emergent behaviour or
perhaps even exploit such behaviour [8]. Also the formal analysis of such systems
poses many new research challenges.

Process algebras have been specifically designed for the compositional and
high-level modelling and analysis of distributed concurrent systems. Recently
some of them, in particular PEPA [10] and Bio-PEPA [7], have been provided
with a fluid semantics based on ordinary differential equations (ODE) [11] pro-
viding a scalable approach to the analysis of agent coordination in large collective

� Work partially supported by the project “FRA-UniTS”.

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 1–15, 2013.
c© IFIP International Federation for Information Processing 2013

2 L. Bortolussi, D. Latella, and M. Massink

systems. In this paper we further exploit this development to study stability as-
pects of collective adaptive dynamic systems in a symbolic and numeric way.
Stability analysis provides important information about the predictability of
dynamic systems and their sensitivity to parameter values. Numeric stability
analysis is of particular interest for the analysis of distributed adaptive strate-
gies that are applied in asymmetric situations. Such situations occur naturally
in many real-world, natural or designed, systems. An analytical approach to
stability analysis in the presence of asymmetry is infeasible in most cases. To
the best of our knowledge this is the first time that a method is proposed for
stability analysis that starts from a stochastic process algebra specification of
agent coordination in a collective dynamic system. The use of a process algebra
greatly facilitates the modelling of variants of a system at a high level. Designers
can then focus on the coordination strategies instead of having to manipulate
the underlying, possibly large set of non-compositional, ODEs in ad-hoc ways.

We illustrate the approach and related tool chain by analysing a new variant
of a collective model of spontaneous self-organisation of drinking parties in the
squares of cities in Spain, also known as “El Botellón” [21]. In this variant the
parameter of the system is the level of socialisation, i.e. the average number
of friends people have, instead of the the probability to find a partner to chat
with1. The model shows a number of surprising behavioural aspects. However,
the main contribution of the paper is to illustrate and explore what stochastic
process algebra can offer to provide high-level models of coordination in large
scale collective systems, in combination with well-established numeric and sym-
bolic analysis techniques for a systematic stability analysis of such systems. In
particular in case of models showing various forms of asymmetry.

Related work can be found in several directions. In [15] the original model
of Rowe and Gomez was analysed with Bio-PEPA. Both empirical and ana-
lytical justification was provided for the good correspondence found between
stochastic simulation results and the Bio-PEPA based fluid flow approximation.
Moreover, a comparison of analytical results with those obtained numerically
via Bio-PEPA was provided. For this reason the focus was on symmetric models
that can be handled analytically. It does not include a systematic study of the
stability aspects of the model. In [5] a variant based on the socialisation level
has been analysed in an analytical and numerical way. The study addresses a
stability analysis of a symmetric model limited to three squares, but it contains
no stability analysis of asymmetric models. Recently, the use of Bio-PEPA has
also been explored in the field of swarm robotics, where it was used to model a
swarm decision making strategy [16,17]. This collective decision-making strategy
has been used as a benchmark for the application of stochastic process algebra,
and in particular Bio-PEPA with locations, in this new field of application. It
was shown that important aspects of swarm robotics can be addressed such as
cooperation and space-time characteristics, but also emergent behaviour.

In the following we first introduce the crowd model and Bio-PEPA followed
by a description of the tool pipeline and its application.

1 Studied in the original work by Row and Gomez [21] and in [15].

SPA and Stability Analysis of Collective Systems 3

2 A Socialisation Level Based Crowd Dynamics Model

Rowe and Gomez [21] analyse the movement of crowds between four city squares,
connected in a ring by streets, using an agent based approach. The movement
of individual people is simulated by agents following a simple set of rules. At
every step each agent tries to find a partner to chat with. If this succeeds it stays
where it is; else, it moves randomly to an adjacent square. It is assumed that the
probability of the latter is (1− c)pi−1 when this agent is at square i, and pi > 0
is the number of agents currently at square i. The parameter c (representing the
chat probability, 0 ≤ c ≤ 1) is the probability that an agent finds a partner to talk
to and thus remains in the square. Rowe and Gomez showed that the emergence
of crowds in their model is directly linked to a critical threshold value of the chat
probability. If the value is below the threshold, the population remains evenly
distributed over the squares, while walking around. If the value is above the
threshold, the population tends to gather into one or a few squares. However,
the probability to meet a friend in a crowded city is in general not the same
as the probability to find a friend when it is less crowded. People tend to have
a fixed number of friends given a city population, and the larger the number
of people walking around, the more of them will turn out not to be one of
your friends. This consideration leads to an alternative crowd model, introduced
in [5], in which the chat probability is defined as c = s/N , where N is the size
of the population and s is the level of socialisation of the population, i.e. the
average number of friends that people have. Using this alternative definition of
c and an n × n routing matrix Q for n squares, i.e. Qi,j is the probability that
a person moves to square j, given that she decided to leave square i, the ODE
for population level N of this model is:

dxi

dt
= −xi(1− s/N)Nxi−1 +

∑
j

xj(1− s/N)Nxj−1Qj,i (1)

where xi denotes the fraction of the population that is in location i. Here we
assume that Q is symmetric, i.e. Qi,j = Qj,i, so Q is a stochastic and symmetric
matrix. It is further assumed that Q is irreducible (this is not a limitation since
otherwise the city can be split into its connected components.) The above ODE
is also the fluid flow interpretation of a Bio-PEPA model of this scenario that
will be presented in Section 4 with the only difference that the latter is defined
directly on the population sizes itself and not on their fractions. The basic sym-
metric model has also an interesting fluid limit, i.e. an ODE model resulting
from letting N → ∞. For N going to ∞ one obtains (see [5] for an analytical
derivation):

dxi

dt
= −xie

−sxi +
∑
j

xje
−sxjQj,i (2)

This is a non linear ODE, that has all its solutions in the unit simplex Δn =
{x ∈ R

n : xi ≥ 0 and
∑

i xi = 1} if the initial condition is in Δn.

4 L. Bortolussi, D. Latella, and M. Massink

3 Bio-PEPA and Fluid Flow Analysis

Before presenting a process algebra model of the crowd scenario we briefly recall
Bio-PEPA [7], a language that has originally been developed for the modelling
and analysis of biochemical systems. The main components of a Bio-PEPA sys-
tem are the “species” components, describing the behaviour of individual entities
of a species, and the model component, describing the interactions between the
various species. The initial amounts of each type of entity or species are given in
the model component. The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ |
 | � and P ::= P ��
L P | S(x)

where S is a species component and P is a model component. In the prefix term
(α, κ) op S, κ specifies the multiples of an entity of species S involved in an
occurring action α2. The prefix combinator “op” represents the role of S in the
action, or conversely the impact that the action has on the species. Specifically,
↓ indicates a reduction of the population involved in the action, ↑ indicates an
increase as a result of the action. The operators ⊕,
 and � play a role in an
action without leading to increments or decrements in the involved populations
and have a defined meaning in the biochemical context. Except from �, that will
play a role in the shorthand notation introduced below, we will not need these
operators in this paper. The operator “+” expresses the choice between possible
actions, and the constant C is defined by an equation C=S. The process P ��

L Q
denotes synchronisation between components P and Q, the set L determines
those actions on which the components P and Q are forced to synchronise, with
��∗ denoting a synchronisation on all common actions. In S(x), the parameter
x ∈ IR represents the initial amount of the species. The frequency with which
an action occurs is defined by its (functional) rate. This rate is the parameter
of a negative exponential distribution. Its value may be a function of the size of
the populations involved in the interaction.

Bio-PEPA comes with a notion of discrete locations that may contain species.
A Bio-PEPA system with locations consists of a set of species components, also
called sequential processes, a model component, and a context (locations, func-
tional rates, parameters, etc.). The prefix term (α, κ) op S@l is used to specify
that the action is performed by S in location l. The notation α[I → J] � S is
a shorthand for the pair of interactions (α, 1)↓S@I and (α, 1)↑S@J that syn-
chronise on action α. This shorthand is very convenient when modelling agents
migrating from one location to another as we will see in the next section. Bio-
PEPA is given an operational semantics, based on Continuous Time Markov
Chains (CTMCs), and a fluid semantics, based on ordinary differential equa-
tions (ODE) [7]. The Bio-PEPA language is supported by a suite of software
tools which automatically process Bio-PEPA models and generate internal rep-
resentations suitable for different types of analysis [7,6]. These tools include
mappings from Bio-PEPA to differential equations (supporting a fluid flow ap-
proximation), stochastic simulation models [9], and PRISM models [14].

2 The default value of κ is 1 in which case we simply write α instead of (α, κ).

SPA and Stability Analysis of Collective Systems 5

4 Bio-PEPA Crowd Model

In this section we define a Bio-PEPA specification of the crowds scenario pre-
sented in Section 2. Let us consider a small ring topology with 4 city squares in a
2×2 grid, denoting them by 00, 01, 10 and 11, allowing bi-directional movement
between squares. In Bio-PEPA the city squares are modelled as locations called
sq00, sq01, sq10 and sq11. Parameter c defines the chat-probability and param-
eter d the degree or number of streets connected to a square. In the symmetric
topology d = 2 for each square. The chat-probability is defined as the fraction of
the socialisation factor s w.r.t. the total population N , i.e. c = s/N . The actions
modelling agents moving from square X to square Y are denoted by fXtY . The
associated functional rate for f00t01 with P@sq00 denoting the population in
sq00 at time t is defined as:

f00t01 = (P@sq00 ∗ (1− c)(P@sq00−1))/d;

the other rates are defined similarly. The behaviour of a typical agent moving
between squares is modelled by sequential component P . For example,
f00t01 [sq00 → sq01] � P models that an agent present in sq00 moves to sq01
according to the functional rate defined for the action f00t01 .

P = f00t01 [sq00 → sq01]� P + f01t00 [sq01 → sq00]� P+
f00t10 [sq00 → sq10]� P + f10t00 [sq10 → sq00]� P+
f01t11 [sq01 → sq11]� P + f11t01 [sq11 → sq01]� P+
f01t11 [sq10 → sq11]� P + f11t10 [sq11 → sq10]� P ;

Finally, the model component defines the initial conditions of the system, i.e.
in which squares the agents are located initially, and the relative synchroni-
sation pattern. If, initially, there are 1000 agents in sq00 this is expressed by
P@sq00[1000]. The fact that moving agents need to synchronise follows from
the definition of the shorthand operator →.

((P@sq00[1000] ��∗ P@sq01[0]) ��∗ (P@sq10[0])) ��∗ (P@sq11[0])

The total number of agents P@sq00+P@sq10+P@sq01+P@sq11 is invariant and
amounts to 1000 in this specific case. The occupancy measure, i.e. the fraction
of the population in sq00 can be defined as Psq00 = P@sq00/N and similarly
for the other squares. The fluid semantics of Bio-PEPA leads to an ODE that
is very similar to Eq. (1) except that it is defined on the actual population sizes
rather than their fractions:

dP@sqi
dt

= −P@sqi(1− s/N)P@sqi−1 +
∑
j

P@sqj(1− s/N)P@sqj−1Qj,i (3)

Using the Bio-PEPA plugin tool suite a first insight in the behaviour of the above
model for different values of the socialisation factor s can be obtained using
e.g. stochastic simulation [9] or one of the built-in ODE solvers. For example,

6 L. Bortolussi, D. Latella, and M. Massink

for s = 5 an interesting so called ‘metastable’ behaviour can be observed in
ODE trajectories such as the one shown in Fig. 2(a), where the fractions of
the population present in squares sq00 through sq11, are denoted by xi, for
i ∈ {1, .., 4}. Until time 150 just over 40% of the population is in each of the non-
adjacent squares x1 and x3, and slightly less than 10% in each of the remaining
squares. Then suddenly this situation changes and square x1 gets almost all of
the population. This is just one example of the typical kind of behaviours that
may occur in non-linear systems such as these.

To get a more complete overview of potential emergent behaviour of a collec-
tive dynamic system it may be useful to construct a bifurcation diagram of the
system. This is a diagram that shows for each value of a selected parameter of
the model its stationary points for that value. For each stationary point it also
shows whether it is stable or unstable, i.e. whether a system would remain in
a state forever once it is reached, or whether it could still move on from there
reaching other states. The selected parameter of interest in our case is the so-
cialisation value s. Fig. 1 shows the bifurcation diagram for square x1 of the
crowds model with four squares and for s ranging from 2.75 to 6. For example,
for s = 3 we see that the model has one stable stationary point with value 0.25.
This means that for s = 3 the system ends up in a stable state in which 25% of
the population is expected to be in square x1.

In fact, the model has a stationary point at 0.25 for all values of s considered,
i.e. the vector of four squares xsym =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
is always a stationary point,

but it is not stable for all values of s; its stability changes at s = 4. The stability
of this equilibrium has been analysed in an analytical way in [5] for a model
with an arbitrary number n of squares, but with symmetric routing matrix Q.
There it was proven that the stability status of this stationary point changes
from stable into unstable when s becomes equal to n. It is stable for models in
which s < n and unstable for those in which s > n. However, in [5] no analytic
results have been given for the other stationary points, due to the difficulty
in identifying them in general. Stability of all fixed points has been discussed
in [5] only for a symmetric, fully connected, model with three squares. Such
difficulties are also common for models that show irregular structure or other
forms of asymmetry. When investigating the behaviour of the model in more
detail using stochastic simulation (not shown) it turns out that in the model
with 4 squares and s < 3.25 the population is migrating between squares in
such a way that it is evenly distributed over the squares. This means that at
any point in time one would see approximately 25% of the population in each of
the squares. However, this situation changes for s > 3.25. Stochastic simulation
shows that in that case most of the population eventually gathers at random in
one of the squares.

In the following we propose an analysis pipeline, starting from a Bio-PEPA
specification, that can be used to compute the stationary points numerically
instead of analytically for various values of s, such that a bifurcation diagram of
the kind shown in Fig. 1 can be generated. As we can see in the figure, the change

SPA and Stability Analysis of Collective Systems 7

of stability of xsym is correctly identified by the numerical method, which also
predicts other stationary points, corresponding to three different configurations:

1. Most agents in a single square. This is the top branch in the diagram. These
are stable stationary points, but emerge for s greater than 3.5, approximately.
For instance, for s = 5, in this case 98% of agents are in a single square.

2. Agents evenly split between two opposite squares. This is an unstable sta-
tionary point, emerging for s > 4, which is in fact a saddle node 3. For s = 5,
this configuration corresponds to 43% of agents in two opposite squares (for
instance, sq00 and sq11), and 7% in the remaining ones. Notice that this
information can be deduced by observing the numeric values of fixed points.

3. Agents evenly split between three adjacent squares. This is again an unstable
equilibrium of the system. For s = 5, we have 29% of agents in each of the
three adjacent squares and 0.13% in the remaining one.

Fig. 1. Bifurcation diagram for the symmetric 4 square model

Interestingly, configuration (2) above, despite being a saddle node, hence un-
stable, has a quite strong stable manifold. The effect is that solutions starting
nearby the stable manifold (e.g. close to the plane x1 = x3) remain for some time
close to it, before escaping to one of the stable fixed points. This gives rise to the
typical metastable behaviour that is shown in the ODE trajectory in Fig. 2(a).
As could be expected, the higher the socialisation coefficient s, the more intense
is the attractive behaviour of the stable manifold, hence the longer solutions of
the ODE of the model, that start from initial values in the neighbourhood of
such a point, remain attracted to it. This can be seen in Figure 2(b), where the
time spent nearby the stable manifold is shown as a function of s. In Section 6 we
will apply the analysis pipeline proposed in the next section to several variants

3 Unstable stationary points come in different kinds. One of these kinds is called a
‘saddle node’, informally it is attracting from two opposite sides and repellent from
the two other sides of the point.

8 L. Bortolussi, D. Latella, and M. Massink

(a) Metastable trajectory (b) Metastable equilibrium visiting time

Fig. 2. (2(a)) A trajectory for s = 5 showing metastable behaviour. The initial con-
ditions are x1 = 0.4 + δ, x2 = 0.1, x3 = 0.4 − δ, x4 = 0.1, with δ small. (2(b)) Time
spent close to the metastable equilibrium, as a function of s. Initial conditions are as
above, with δ = 10−7.

of the crowd model. Each of these variants is characterised by a different form of
asymmetry e.g. caused by squares with different attractivity, or by asymmetry
in topology.

5 Numeric/Symbolic Stability Analysis

Before discussing the tool pipeline, we briefly sketch the methods we are using
in Octave/Matlab to investigate the stability behaviour of fixed points and to
generate bifurcation diagrams for different asymmetric variants of the crowd
model that will be presented in next section. The idea, as discussed previously,
is to combine the features of stochastic process algebras as modelling languages,
Bio-PEPA specifically, with the numerical algorithms and analysis routines of a
platform like Matlab [18] or Octave [1].

Assume that we have obtained an ODE function in the input format of Matlab
or Octave, i.e. an m-file. Such an ODE function models the changes in the
behaviour of the system over time. The idea is then to use numerical routines
to look for the set of zeros of this function, i.e. points for which the system
is stationary, for a fixed set of parameters (e.g. in our case for the socialisation
coefficient s). More precisely, we can use the Octave/Matlab method fsolve which
looks for zeros of non-linear equations and which incorporates different solvers (in
our case we used the Levenberg-Marquardt algorithm [20]). As fsolve finds one
zero, depending on the initial values, we run the algorithmmany times to look for
more zeros, starting from random initial coordinates (and from some predefined
fixed points, like the unit vectors). In order to avoid considering all possible
symmetric solutions of the problem, we post-process the set of zeros found in
this way, to keep only one zero among those equivalent under symmetry. For
instance, in a fully symmetric model with ring topology as the one in Section 4,
there is a zero which puts almost all the population in one square, for each square.
The post-processing then removes all but one of those zeros. Finally, for each

SPA and Stability Analysis of Collective Systems 9

such stationary point, we investigate its stability by computing numerically the
Jacobian matrix and its eigenvalues, according to standard methods in dynamic
systems theory [22,13]. After discarding one zero eigenvalue (which is always
present due to the conservation of the total number of agents), we check whether
the real part of the remaining ones is positive or negative. If all eigenvalues
have a negative real part (and are sufficiently far away from zero to account for
numerical errors), we declare the point stable, otherwise we mark it unstable. If
there is an eigenvalue too close to zero, we mark its status as unknown. In order
to generate bifurcation diagrams, we perform this operation for a range of values
of the parameter of interest, e.g. in this case the socialisation coefficient s.

Tool Pipeline. In order to link the above described procedure to Bio-PEPA, we
export the model in the SBML format [4]. Such an export is already available
via the Bio-PEPA plugin tool suite [6]. Both Matlab and Octave have a toolbox
importing from SBML files [12], generating an m-file computing the vector field
(ODE) corresponding to the fluid semantics of Bio-PEPA [7]. Once an m-file has
been obtained, it can be used within the routines explained above by creating
a function handle. However, following the above procedure, we have not yet
obtained the limit model discussed in Section 2, as from Bio-PEPA we export
the N -dependent model (see Sect. 4). Even if the two sets of ODE will produce
very similar solutions when N is large enough, working with the limit model
would be preferable, as this seems to reduce the numerical errors caused by
the exponentiation. A limit model can be obtained by exploiting a computer
algebra system such as the symbolic toolbox in Matlab [2] or the open source
software Maxima [3]. This requires that the Bio-PEPA specification is exported
to an m-file containing a symbolic definition of the ODE equations in Matlab or
an equivalent format suitable for use with Maxima. This is not very difficult to
automatise. Once this operation is performed, the symbolic calculus routines can
be exploited to compute the limit of the vector field and to compute the Jacobian
matrix symbolically, increasing the precision of the method and speeding up the
numerical analysis phase. The resulting functions can be either exported from
Maxima to Matlab/Octave by a suitable script that generates an appropriate
m-file, or by converting a symbolic function into a numerical one in Matlab.

6 Results

In this section we present some results for variants of the basic crowd model
enriching it either by adding new behaviours or by breaking the symmetry be-
tween squares. Due to space limitations, we will mainly report on results for a
model with four squares connected in a ring topology. However, we have also
obtained interesting results for a larger a model with 9 squares disposed in a 3
× 3 grid-like topology. The modifications in the basic model are essentially of
four types:

10 L. Bortolussi, D. Latella, and M. Massink

– Breaking the symmetry between squares (in a symmetric topology like the
ring one) by assigning to each square an uneven attractiveness coefficient.
Each agent then chooses the next square to go according to their relative
attractiveness.

– Breaking the symmetry in the routing, by assuming that certain connections
between squares can be crossed only in a given direction, i.e. by introduc-
ing one way pedestrian streets (which can be enforced for instance by the
presence of police).

– Breaking the symmetry in the topology, by having different degrees of con-
nection between different squares, e.g. the 9 squares model (not shown).

– Breaking the symmetry in the behaviour of agents, assuming that an agent
first decides if she wants either to leave the square or look for somebody to
chat to. In this second case, we assume that she leaves the square with the
same probability as in the standard model.

In particular, in each of these cases, we will discuss the stability of stationary
points as a function of the socialisation parameter s, or of other parameters, like
attractiveness or the probability to leave.

As discussed in Section 5, the results always consider the limit fluid model (see
Eq.(2)), for a population going to infinity. Due to convergence of vector fields,
the results for the limit model can be expected to be the same as those of the
ODE with explicit dependence on N , if N is reasonably large. In particular, we
have seen basically no differences between results for the limit model and those
for a model with a total population of N = 1000.

4 Square Model with Attractive Squares. The first kind of asymmetric
model we consider is one in which an attractiveness coefficient is assigned to
each square. Higher attractiveness is modelled by a higher value of the coefficient.
When agents decide to leave a square, their decision to which of the adjacent
squares to go is now proportional to the relative attractiveness of the adjacent
squares. In particular, we consider a situation in which only one square (by
convention, square sq00), has a higher attractiveness than the others. Hence, the
attractiveness coefficient of square sq00 is equal to a ≥ 1, while that of the other
squares is set to 1. In Bio-PEPA this is modeled by replacing the transition rates
in the symmetric model of Sect. 4 by the following ones, assuming attractiveness
coefficients a00 for square sq00, a01 for square sq01 and so on, e.g.:

f00t01 = (P@sq00 ∗ (1− c)(P@sq00−1)) ∗ (a01/(a01 + a10));

In Fig. 3 we show a bifurcation diagram as a function of the socialisation factor
s, for the fraction of people in the first square, x1, for a model with a = 3. As we
can see, the solution in which the more attractive sq00 gets the larger amount of
people is always stable. However, for s around 3.5, a new set of stationary points
appears, with a stable and an unstable branch. The stable branch corresponds
to situations in which most of the people stay in one of the two squares adjacent
to the attractive one. This stable equilibrium is quite surprising, as one would

SPA and Stability Analysis of Collective Systems 11

expect that people always move towards the attractive square. Note that this
happens for s < 4, i.e. the predicted threshold for s in the symmetric model.

The other stable equilibrium that emerges around s = 4.5 corresponds to the
situation in which all agents are in the square opposite to the attractive one.
Hence, even in the presence of asymmetric attractiveness, we may still obtain
a pattern of emergent behaviour in which all people are gathered at a random
single square. So, contrary to intuition, for sufficiently large values of s, people
may concentrate also in non-attractive squares. Furthermore, as expected, we
loose the symmetric equilibrium in which agents are uniformly distributed over
the squares and find no replacement for it.

4 SquareModelwithOne-Way Streets. In this model we assume that streets
between squares are unidirectional rather than bi-directional. In particular, we
assume that the ring can be traversed only clockwise, with no square having a
higher attractiveness than others. This model is still ergodic, and moreover the
four squares still behave symmetrically. However, the routing matrix is no longer
symmetric. In the Bio-PEPA model this can be easily obtained by removing the
related directions of movement and their corresponding rate definitions.

The pattern of the bifurcation diagram we obtain is very similar to the one
for the symmetric model in Fig. 1. Indeed, the only difference is that now some
eigenvalues of the Jacobian in steady states have imaginary values, suggesting
that we may in fact have stable and unstable foci rather than single nodes [22],
i.e. convergence to the fixed point happens by damped oscillations. In any case,
this effect is very weak, and cannot be observed at the resolution scale at which
we plot trajectories.

4 Square Model with Independent Leaving Probability. In this model we
change the behaviour of single agents. In particular, we assume that each agent
first chooses if it wants to leave the square (with a “boredom” probability p) or

Fig. 3. Bifurcation diagram for the 4 square model with asymmetric attractiveness, as
a function of s, holding a fixed to 3

12 L. Bortolussi, D. Latella, and M. Massink

look for another one to chat with. In the latter case, it behaves like in the original
model. In Bio-PEPA this is modeled by replacing the transition rates in the model
with attractiveness by:

f00t01 = (1− p) ∗ (P@sq00 ∗ (1− c)(P@sq00−1)) ∗ (a01/(a01 + a10)) + p ∗ (P@sq00);

Note that in case all squares have an attractiveness coefficient equal to 1 we
can study the effect of the boredom probability separately from the effect of
attractiveness of squares. This is what is assumed in the following.

The model with independent leaving probability has a second parameter in
addition to s, namely the boredom probability p. Intuitively, this probability
should influence the overall behaviour of the model quite radically. If it is large
enough (maybe in case of a meeting of eremites), then we do not expect people
to gather in a single square, but rather to see them uniformly distributed over
the four squares while moving between them. This indeed happens for p = 0.15
and for any value of s considered. On the other hand, for small values of p, the
behaviour manifested by the system becomes much more complicated, as shown
in Fig. 4. In this case, for p = 0.05, we can observe a frequent change in the sta-
bility status of fixed points, due to bifurcation events in which stationary points
split, change stability status, and move towards other fixed points, generating a
cascade of bifurcations.

The most interesting feature is the stability of the symmetric equilibrium. Ini-
tially it is stable, but then, as s increases, it undergoes a bifurcation event and
becomes unstable (for s around 5 here), as in the original model. At the same
time, a new stable branch emerges, corresponding to the emergent behaviour in
which most people are concentrated in a single square. However, for s around 12,
this stable behaviour undergoes a new bifurcation event and becomes unstable.
Furthermore, as s increases further, this unstable equilibrium approaches the sym-
metric one and hits it around s = 16.When this happens, the unstable symmetric
equilibrium becomes stable again, and as s increases even further, it becomes the
only (stable) fixed point. This is a counter-intuitive behaviour of the model: as the
socialisation factor increases, instead of obtaining a higher probability of people
concentrating in a single square, exactly the opposite effect emerges.

The assumption that agents can leave a square with a small fixed probability,
no matter whether friends are present or not, is quite reasonable. For example one
may receive a text message from a friend in another square or have other things
to do. The behaviour of this model shows that, when the socialisation coefficient
is large enough (in reality, for a population of a few thousand people, we can
expect a value of s well above 30), the chat probability mechanism is not able to
fully explain the emergent behaviour of ‘El Botellon’. Other mechanisms have
to be taken into account and also their potential interference. Among these are
most likely some asymmetry breaking phenomena such as the different degrees
of attractiveness of the squares.

To obtain deeper insight in why we observe the effect shown in Fig. 4, we
can compare the total exit rate of an agent from a square for the symmetric
model and the model with boredom probabilities. In particular, we compare
these rates as a function of s, for a fixed fraction α of the total population

SPA and Stability Analysis of Collective Systems 13

Fig. 4. Bifurcation diagram for the 4 square model with boredom probability p = 0.05

in the square. In the symmetric case, we obtain e−αs (see Eq.(2)), which is a
decreasing function of s, exponentially approaching zero for large values of s.
Hence, for a sufficiently large value of s, the rate of leaving a square becomes
very small: if there are many agents in the square (α close to 1), then we can
expect nobody will move, as the exit rate from the crowded square will be much
smaller than the exit rate of the other squares. On the other hand, for the model
with boredom probability, the probability at which a single agent leaves a square
is p + (1 − p)e−αs, which for large s converges to p. This means that for large
s, the effect of the chat probability to remain in a square is negligible compared
to the effect of the boredom probability with which agents leave a square. This,
in turn, implies that the ODE we obtain for large s is essentially a set of linear
ODE with a small non-linear perturbation term, hence they converge to the
unique equilibrium of the linear system, which is the symmetric one in which
the population is uniformly distributed over the squares.

In order to break this effect, we may want to find out whether the introduction
of asymmetric attractiveness can counterbalance the disruptive effect of boredom
probability on the emergent behaviour of the model. Fig. 6 (left) shows the
bifurcation diagram for the model which sq00 is three times as attractive as
the other squares, a = 3, and boredom probability with p = 0.05. We observe
the same pattern as in the symmetric model: for large enough values of s, the
system converges to the perturbed symmetric equilibrium (due to asymmetric
attractiveness). An additional variation can be to consider a boredom probability
which is inversely proportional to the attractiveness of squares, for instance equal
to p/a2, in order to take into account the effect that it is more unlikely that
people just leave a square where interesting events are going on. In this case, in
the presence of the compensating effect of boredom probability for large s, we
can enlarge the range of s for which we observe an emergent party (see Fig. 6
(right)). So, a combination of effects of the attractiveness on the choice of the
next square and on the boredom probability can still be used to explain the
emergent behaviour of ‘El Botellon’.

14 L. Bortolussi, D. Latella, and M. Massink

Fig. 5. Bifurcation diagram for the attractive square in 4 square model with bore-
dom probability. for p = 0.05 and attractiveness equal to 3 (left), and attractiveness
dependent p (right).

7 Discussion and Further Work

The engineering of large scale collective dynamic systems is a relatively new
domain of software engineering and requires effective and scalable formal analy-
sis methods. We illustrated how the exploitation of the combination of process
algebras, designed specifically for concurrent systems, and techniques typical
of dynamic systems analysis, such as stability analysis, could provide valuable
tools for such engineering approaches. In this paper we proposed a tool pipeline
that, starting from a Bio-PEPA specification of non-linear asymmetric collective
coordination, can produce bifurcation diagrams. These can be used to analyse
the effect of potentially interfering coordination mechanisms on the stability
properties of a system. We have illustrated the combined numeric and symbolic
approach on a number of variants of a model of crowd dynamics that represents
various kinds of asymmetry. The automatisation of the approach is feasible and
part of future work. An issue that needs further investigation is the scalability of
the method. Fluid ODEs are independent on the population size, but not on the
number of states of the agents. Finding numerically all the zeros of a vector field
can be challenging in large dimensions. One approach would be to parallelise
the code and use more efficient zero finding numerical routines. An alternative
and more promising direction is to exploit the formal nature of process algebras
to reduce the agent’s state space by using behavioural equivalences or abstract
interpretation. Furthermore we plan to integrate the approach with the other
already available analysis tools for Bio-PEPA, such as fluid flow analysis and
stochastic simulation, via the Bio-PEPA tool suite.

Acknowledgments. This research has been partially funded by the EU-IP
project ASCENS (nr. 257414), the EU-FET project QUANTICOL (nr. 600708)
and the Italian MIUR-PRIN project CINA.

SPA and Stability Analysis of Collective Systems 15

References

1. GNU Octave, http://www.gnu.org/software/octave/
2. Matlab symbolic toolbox, http://www.mathworks.it/products/symbolic/
3. Maxima, a computer algebra system, http://maxima.sourceforge.net/
4. SBML: Systems Biology Markup Language, http://sbml.org
5. Bortolussi, L., Le Boudec, J.Y., Latella, D., Massink, M.: Revisiting the limit

behaviour of El Botellon. Tech. Rep. EPFL-REPORT-179935, École Polytechnique
Fédérale de Lausanne - INFOSCIENCE (July 2012)

6. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-
PEPA Tool Suite. In: Proc. of the 6th Int. Conf. on Quantitative Evaluation of
SysTems (QEST 2009), pp. 309–310 (2009)

7. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. TCS 410(33-34), 3065–3084 (2009)

8. Frei, R., Di Marzo Serugendo, G.: Advances in complexity engineering. Interna-
tional Journal of Bio-Inspired Computation 3, 199–212 (2011)

9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

10. Hillston, J.: A compositional approach to performance modelling, distinguished
Dissertation in Computer Science. Cambridge University Press (1996)

11. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST
2005, pp. 33–43. IEEE Computer Society (2005)

12. Keating, S.M., Bornstein, B.J., Finney, A., Hucka, M.: SBMLToolbox: an
SBML toolbox for MATLAB users. Bioinformatics 22(10), 1275–1277 (2006),
http://sbml.org/Software/SBMLToolbox

13. Khalil, H.K.: Nonlinear systems. MacMillan Pub. Co. (1992)
14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic model checking

for performance and reliability analysis. ACM SIGMETRICS Performance Evalu-
ation Review (2009)

15. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling non-linear crowd
dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011.
LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)

16. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: Analysing robot
swarm decision-making with Bio-PEPA. In: Dorigo, M., Birattari, M., Blum, C.,
Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012.
LNCS, vol. 7461, pp. 25–36. Springer, Heidelberg (2012)

17. Massink, M., Latella, D.: Fluid analysis of foraging ants. In: Sirjani, M. (ed.)
COORDINATION 2012. LNCS, vol. 7274, pp. 152–165. Springer, Heidelberg
(2012)

18. MATLAB: v. 7.10.0 (R2010a). The MathWorks Inc., Natick(2010)
19. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter cities

and their innovation challenges. Computer 44(6), 32–39 (2011)
20. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer (2006)
21. Rowe, J.E., Gomez, R.: El Botellón: Modeling the movement of crowds in a city.

Complex Systems 14, 363–370 (2003)
22. Strogatz, S.H.: Non-linear dynamics and chaos: with applications to physics, biol-

ogy, chemistry, and engineering. Perseus Books Publishing (1994)

http://www.gnu.org/software/octave/
http://www.mathworks.it/products/symbolic/
http://maxima.sourceforge.net/
http://sbml.org
http://sbml.org/Software/SBMLToolbox

Modelling MAC-Layer Communications
in Wireless Systems

(Extended Abstract)

Andrea Cerone1, Matthew Hennessy1,�, and Massimo Merro2,��

1 Department of Computer Science and Statistics, Trinity College Dublin, Ireland
{acerone,Matthew.Hennessy}@scss.tcd.ie

2 Dipartimento di Informatica,
Università degli Studi di Verona, Italy
massimo.merro@univr.it

Abstract. We present a timed broadcast process calculus for wireless networks at
the MAC-sublayer where time-dependent communications are exposed to
collisions. We define a reduction semantics for our calculus which leads to a con-
textual equivalence for comparing the external behaviour of wireless networks.
Further, we construct an extensional LTS (labelled transition system) which mod-
els the activities of stations that can be directly observed by the external envir-
onment. Standard bisimulations in this novel LTS provide a sound proof method
for proving that two systems are contextually equivalent. In addition, the main
contribution of the paper is that our proof technique is also complete for a large
class of systems.

1 Introduction

Wireless networks are becoming increasingly pervasive with applications across many
domains, [19,1]. They are also becoming increasingly complex, with their behaviour
depending on ever more sophisticated protocols. There are different levels of abstraction
at which these can be defined and implemented, from the very basic level in which the
communication primitives consist of sending and receiving electromagnetic signals, to
the higher level where the basic primitives allow the set up of connections and exchange
of data between two nodes in a wireless system [23].

Assuring the correctness of the behaviour of a wireless network has always been
difficult. Several approaches have been proposed to address this issue for networks de-
scribed at a high level [16,13,6,5,22,11,2,3]; these typically allow the formal description
of protocols at the network layer of the TCP/IP reference model [23]. However there
are few frameworks in the literature which consider networks described at the MAC-
Sublayer of the TCP/IP reference model [12,14]. This is the topic of the current paper.
We propose a process calculus for describing and verifying wireless networks at the
MAC-Sublayer of the TCP/IP reference model.

� Supported by SFI project SFI 06 IN.1 1898.
�� Author partially supported by the PRIN 2010-2011 national project “Security Horizons”.

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 16–30, 2013.
c© IFIP International Federation for Information Processing 2013

Modelling MAC-Layer Communications in Wireless Systems 17

This calculus, called the Calculus of Collision-prone Communicating Processes
(CCCP), has been largely inspired by TCWS [14]; in particular CCCP inherits its com-
munication features but simplifies considerably the syntax, the reduction semantics, the
notion of observation, and as we will see the behavioural theory. In CCCP a wireless
system is considered to be a collection of wireless stations which transmit and receive
messages. The transmission of messages is broadcast, and it is time-consuming; the
transmission of a message v can require several time slots (or instants). In addition,
wireless stations in our calculus are sensitive to collisions; if two different stations are
transmitting a value over a channel c at the same time slot a collision occurs, and the
content of the messages originally being transmitted is lost.

More specifically, in CCCP a state of a wireless network (or simply network, or
system) will be described by a configuration of the form Γ �W where W describes the
code running at individual wireless stations and Γ represents the communication state
of channels. At any given point of time there will be exposed communication channels,
that is channels containing messages (or values) in transmission; this information will
be recorded in Γ.

Such systems evolve by the broadcast of messages between stations, the passage
of time, or some other internal activity, such as the occurrence of collisions and their
consequences. One of the topics of the paper is to capture formally these complex
evolutions, by defining a reduction semantics, whose judgments take the form Γ1 �
W1 � Γ2 �W2. The reduction semantics satisfies some desirable properties such as time
determinism, patience and maximal progress [17,9,25].

However the main aim of the paper is to develop a behavioural theory of wireless
networks. To this end we need a formal notion of when two such systems are indis-
tinguishable from the point of view of users. Having a reduction semantics it is now
straightforward to adapt a standard notion of contextual equivalence: Γ1 �W1 � Γ2 �W2.
Intuitively this means that either system, Γ1 � W1 or Γ2 � W2, can be replaced by the
other in a larger system without changing the observable behaviour of the overall sys-
tem. Formally we use the approach of [10], often called reduction barbed congruence;
the only parameter in the definition is the choice of primitive observation or barb. Our
choice is natural for wireless systems: the ability to transmit on an idle channel, that is
a channel with no active transmissions.

As explained in papers such as [20,7], contextual equivalences are determined by
so-called extensional actions, that is the set of minimal observable interactions which a
system can have with its external environment. For CCCP determining these actions is
non-trivial. Although values can be transmitted and received on channels, the presence
of collisions means that these are not necessarily observable. In fact the important point
is not the transmission of a value, but its successful delivery. Also, although the basic
notion of observation on systems does not involve the recording of the passage of time,
this has to be taken into account extensionally in order to gain a proper extensional
account of systems.

The extensional semantics determines an LTS (labelled transition system) over con-
figurations, which in turn gives rise to the standard notion of (weak) bisimulation equi-
valence between configurations. This gives a powerful co-inductive proof technique: to
show that two systems are behaviourally equivalent it is sufficient to exhibit a witness
bisimulation which contains them.

18 A. Cerone, M. Hennessy, and M. Merro

One result of this paper is that weak bisimulation in the extensional LTS is sound
with respect to the touchstone contextual equivalence: if two systems are related by
some bisimulation in the extensional LTS then they are contextually equivalent. How-
ever, the main contribution is that completeness holds for a large class of networks,
called well-formed. If two such networks are contextually equivalent then there is some
bisimulation, based on our novel extensional actions, which contains them. In [14], a
sound but not complete bisimulation based proof method is developed for (a different
form of) reduction barbed congruence. Here, by simplifying the calculus and isolating
novel extensional actions we obtain both soundness and completeness.

The rest of the paper is organised as follows: in Section 2 we define the syntax which
we will use for modelling wireless networks. The reduction semantics is given in Section
3 from which we develop in the same section our notion of reduction barbed congruence.
In Section 4 we define the extensional semantics of networks, and the (weak) bisimulation
equivalence it induces. In Section 5 we state the main results of the paper, namely that
bisimulation is sound with respect to barbed congruence and, for a large class of systems,
it is also complete. Detailed proofs of the results can be found in the associated technical
report [4]. The latter also contains an initial case study showing the usefulness of our proof
technique. Two particular instances of networks are compared; the first forwards two
messages to the external environment using a TDMA modulation technique, the second
performs the same task by routing the messages along different stations.

2 The Calculus

Formally we assume a set of channels Ch, ranged over by c, d, · · · , and a set of values
Val, which contains a set of data-variables, ranged over by x, y, · · · and a special value
err; this value will be used to denote faulty transmissions. The set of closed values, that
is those not containing occurrences of variables, are ranged over by v,w, · · · . We also
assume that every closed value v ∈ Val has an associated strictly positive integer δv,
which denotes the number of time slots needed by a wireless station to transmit v.

A channel environment is a mapping Γ : Ch → N × Val. In a configuration Γ � W
where Γ(c) = (n, v) for some channel c, a wireless station is currently transmitting the
value v for the next n time slots. We will use some suggestive notation for channel
environments: Γ �t c : n in place of Γ(c) = (n,w) for some w, Γ �v c : w in place of
Γ(c) = (n,w) for some n. If Γ �t c : 0 we say that channel c is idle in Γ, and we denote it
with Γ � c : idle. Otherwise we say that c is exposed in Γ, denoted by Γ � c : exp. The
channel environment Γ such that Γ � c : idle for every channel c is said to be stable.

The syntax for system terms W is given in Table 1, where P ranges over code for
programming individual stations, which is also explained in Table 1. A system term W
is a collection of individual threads running in parallel, with possibly some channels
restricted. Each thread may be either an inactive piece of code P or an active code of
the form c[x].P. This latter term represents a wireless station which is receiving a value
from the channel c; when the value is eventually received the variable x will be replaced
with the received value in the code P. The restriction operator νc : (n, v).W is non-
standard, for a restricted channel has a positive integer and a closed value associated
with it; roughly speaking, the term νc : (n, v).W corresponds to the term W where

Modelling MAC-Layer Communications in Wireless Systems 19

Table 1. CCCP: Syntax

W ::= P station code∣∣∣ c[x].P active receiver∣∣∣ W1 | W2 parallel composition∣∣∣ νc:(n, v).W channel restriction

P,Q ::= c !〈u〉.P broadcast∣∣∣ 	c?(x).P
Q receiver with timeout∣∣∣ σ.P delay∣∣∣ τ.P internal activity∣∣∣ P + Q choice∣∣∣ [b]P,Q matching∣∣∣ X process variable∣∣∣ nil termination∣∣∣ fix X.P recursion

Channel Environment: Γ : Ch → N × Val

channel c is local to W, and the transmission of value v over channel c will take place
for the next n slots of time.

The syntax for station code is based on standard process calculus constructs. The
main constructs are time-dependent reception from a channel 	c?(x).P
Q, explicit time
delay σ.P, and broadcast along a channel c !〈u〉.P. Here u denotes either a data-variable
or closed value v ∈ Val. Of the remaining standard constructs the most notable is
matching, [b]P,Q which branches to P or Q, depending on the value of the Boolean
expression b. We leave the language of Boolean expressions unspecified, other than
saying that it should contain equality tests for values, u1 = u2. More importantly, it

Table 2. Intensional semantics: transmission

(Snd)
Γ � c !〈v〉.P c!v−−−−→ σδv .P (Rcv)

Γ � c : idle

Γ � 	c?(x).P
Q c?v−−−−→ c[x].P

(RcvIgn)
¬rcv(W, c)

Γ �W
c?v−−−−→ W

(Sync)
Γ �W1

c!v−−−−→ W′
1 Γ �W2

c?v−−−−→ W′
2

Γ �W1 | W2
c!v−−−−→ W′

1 | W′
2

(RcvPar)
Γ �W1

c?v−−−−→ W′
1 Γ �W2

c?v−−−−→ W′
2

Γ �W1 | W2
c?v−−−−→ W′

1 | W′
2

20 A. Cerone, M. Hennessy, and M. Merro

should also contain the expression exp(c) for checking if in the current configuration
the channel c is exposed, that is it is being used for transmission.

In the construct fix X.P occurrences of the recursion variable X in P are bound; simil-
arly in the terms 	c?(x).P
Q and c[x].P the data-variable x is bound in P. This gives rise
to the standard notions of free and bound variables, α-conversion and capture-avoiding
substitution; we assume that all occurrences of variables in system terms are bound and
we identify systems up to α-conversion. Moreover we assume that all occurrences of
recursion variables are guarded; they must occur within either a broadcast, input or time
delay prefix, or within an execution branch of a matching construct. We will also omit
trailing occurrences of nil, and write 	c?(x).P
 in place of 	c?(x).P
nil.

Our notion of wireless networks is captured by pairs of the form Γ �W, which rep-
resent the system term W running in the channel environment Γ. Such pairs are called
configurations, and are ranged over by the metavariable C.

3 Reduction Semantics and Contextual Equivalence

The reduction semantics is defined incrementally. We first define the evolution of sys-
tem terms with respect to a channel environment Γ via a set of SOS rules whose judg-

ments take the form Γ �W1
λ−−−→ W2. Here λ can take the form c!v denoting a broadcast

of value v along channel c, c?v denoting an input of value v being broadcast along chan-
nel c, τ denoting an internal activity, or σ, denoting the passage of time. However these
actions will also have an effect on the channel environment, which we first describe,
using a functional updλ(·) : Env → Env, where Env is the set of channel environments.

The channel environment updλ(Γ) describes the update of the channel environment
Γ when the action λ is performed, is defined as follows: for λ = σ we let

updσ(Γ) �t c : (n − 1) whenever Γ �t c : n, updσ(Γ) �v c : w whenever Γ �v c : w.

For λ = c!v we let updc!v(Γ) be the channel environment such that

updc!v(Γ) �t c :

⎧⎪⎪⎨⎪⎪⎩δv if Γ � c : idle

max(δv, k) if Γ � c : exp
updc!v(Γ) �v c :

⎧⎪⎪⎨⎪⎪⎩v if Γ � c : idle

err if Γ � c : exp

where Γ �t c : k. Finally, we let updc?v(Γ) = updc!v(Γ) and updτ(Γ) = Γ.
Let us describe the intuitive meaning of this definition. When time passes, the time

of exposure of each channel decreases by one time unit1. The predicates updc!v(Γ) and
updc?v(Γ) model how collisions are handled in our calculus. When a station begins
broadcasting a value v over a channel c this channel becomes exposed for the amount
of time required to transmit v, that is δv. If the channel is not free a collision happens. As
a consequence, the value that will be received by a receiving station, when all transmis-
sions over channel c terminate, is the error value err, and the exposure time is adjusted
accordingly.

For the sake of clarity, the inference rules for the evolution of system terms, Γ �

W1
λ−−−→ W2, are split in four tables, each one focusing on a particular form of activity.

1 For convenience we assume 0 − 1 to be 0.

Modelling MAC-Layer Communications in Wireless Systems 21

Table 2 contains the rules governing transmission. Rule (Snd) models a non-blocking
broadcast of message v along channel c. A transmission can fire at any time, independ-
ently on the state of the network; the notation σδv represents the time delay operator σ
iterated δv times. So when the process c !〈v〉.P broadcasts it has to wait δv time units
before the residual P can continue. On the other hand, reception of a message by a
time-guarded listener 	c?(x).P
Q depends on the state of the channel environment. If
the channel c is free then rule (Rcv) indicates that reception can start and the listener
evolves into the active receiver c[x].P.

The rule (RcvIgn) says that if a system can not receive on the channel c then any
transmission along it is ignored. Intuitively, the predicate rcv(W, c) means that W con-
tains among its parallel components at least one non-guarded receiver of the form
	c?(x).P
Q which is actively awaiting a message. Formally, the predicate rcv(W, c) is
the least predicate such that rcv(c?(x).P
Q, c) = true and which satisfies the equa-
tions rcv(P + Q, c) = rcv(P, c) ∨ rcv(Q, c), rcv(W1 | W2, c) = rcv(W1, c) ∨ rcv(W2, c)
and rcv(νd.W, c) = rcv(W, c) if d � c. The remaining two rules in Table 2 (Sync) and
(RcvPar) serve to synchronise parallel stations on the same transmission [8,17,18].

Example 1 (Transmission). Let C0 = Γ0�W0, where Γ0 � c, d : idle and W0 = c!〈v0〉 |
	d?(x).nil
(c?(x).Q
) | 	c?(x).P
 where δv0 = 2.

Using rule (Snd) we can infer Γ0 � c!〈v0〉 c!v0−−−−−→ σ2; this station starts transmitting
the value v0 along channel c. Rule (RcvIgn) can be used to derive the transition Γ0 �

	d?(x).nil
(c?(x).Q
) c?v0−−−−−→ 	d?(x).nil
(c?(x).Q
), in which the broadcast of value v0

along channel c is ignored. On the other hand, Rule (RcvIgn) cannot be applied to the
configuration Γ0 � 	c?(x).P
, since this station is waiting to receive a value on channel

c; however we can derive the transition Γ0 � 	c?(x).P
 c?v0−−−−−→ c[x].P using Rule (Rcv).
We can put the three transitions derived above together using rule (Sync), leading to

the transition C0
c!v−−−−→ W1, where W1 = σ

2 | 	d?(x).nil
(c?(x).Q
) | c[x].P.
�
The transitions for modelling the passage of time, Γ �W

σ−−−→ W′, are given in Table 3.
In the rules (ActRcv) and (EndRcv) we see that the active receiver c[x].P continues to
wait for the transmitted value to make its way through the network; when the allocated
transmission time elapses the value is then delivered and the receiver evolves to {w/x}P.
The rule (SumTime) is necessary to ensure that the passage of time does not resolve
non-deterministic choices. Finally (Timeout) implements the idea that 	c?(x).P
Q is
a time-guarded receptor; when time passes it evolves into the alternative Q. However
this only happens if the channel c is not exposed. What happens if it is exposed is
explained later in Table 4. Finally, Rule (TimePar) models how σ-actions are derived
for collections of threads.

Example 2 (Passage of Time). Let C1 = Γ1 � W1, where Γ1(c) = (2, v0), Γ1 � d : idle
and W1 is the system term derived in Example 1.

We show how a σ-action can be derived for this configuration. First note that Γ1 �

σ2 σ−−−→ σ; this transition can be derived using Rule (Sleep). Since d is idle in Γ1, we can
apply Rule (TimeOut) to infer the transition Γ1 � 	d?(x).nil
(c?(x).Q
) σ−−−→ 	c?(x).Q
;
time passed before a value could be broadcast along channel d, causing a timeout in the

22 A. Cerone, M. Hennessy, and M. Merro

Table 3. Intensional semantics: timed transitions

(TimeNil)
Γ � nil

σ−−−→ nil
(Sleep)

Γ � σ.P
σ−−−→ P

(ActRcv)
Γ �t c : n, n > 1

Γ � c[x].P
σ−−−→ c[x].P

(EndRcv)
Γ �t c : 1, Γ �v c : w

Γ � c[x].P
σ−−−→ {w/x}P

(SumTime)
Γ � P

σ−−−→ P′ Γ � Q
σ−−−→ Q′

Γ � P + Q
σ−−−→ Γ′ � P′ + Q′ (Timeout)

Γ � c : idle

Γ � 	c?(x).P
Q σ−−−→ Q

(TimePar)
Γ �W1

σ−−−→ W′
1 Γ �W2

σ−−−→ W′
2

Γ �W1 | W2
σ−−−→ W′

1 | W′
2

Table 4. Intensional semantics: internal activity

(RcvLate)
Γ � c : exp

Γ � 	c?(x).P
Q τ−−→ c[x].{err/x}P (Tau)
Γ � τ.P

τ−−→ P

(Then)
�b�Γ = true

Γ � [b]P,Q
τ−−→ σ.P (Else)

�b�Γ = false

Γ � [b]P,Q
τ−−→ σ.Q

station waiting to receive a value along d. Finally, since Γ1 �n c : 2, we can use Rule
(ActRcv) to derive Γ1 � c[x].P

σ−−−→ c[x].P.
At this point we can use Rule (TimePar) twice to infer a σ-action performed by C1.

This leads to the transition C1
σ−−−→ W2, where W2 = σ | 	c?(x).Q
 | c[x].P.
�

Table 4 is devoted to internal transitionsΓ�W
τ−−−→ W′. Let us first explain rule (RcvLate).

Intuitively the process 	c?(x).P
Q is ready to start receiving a value on an exposed chan-
nel c. This means that a transmission is already taking place. Since the process has
therefore missed the start of the transmission it will receive an error value. Thus Rule
(RcvLate) reflects the fact that in wireless systems a broadcast value cannot be correctly
received by a station in the case of a misalignment between the sender and the receiver.

The remaining rules are straightforward except that we use a channel environment
dependent evaluation function for Boolean expressions �b�Γ, because of the presence of
the exposure predicate exp(c) in the Boolean language. However in wireless systems it
is not possible to both listen and transmit within the same time unit, as communication
is half-duplex, [19]. So in our intensional semantics, in the rules (Then) and (Else), the
execution of both branches is delayed of one time unit; this is a slight simplification,
as evaluation is delayed even if the Boolean expression does not contain an exposure
predicate.

Modelling MAC-Layer Communications in Wireless Systems 23

Table 5. Intensional semantics: - structural rules

(TauPar)
Γ �W1

τ−−−→ W′
1

Γ �W1 | W2
τ−−−→ W′

1 | W2

(Rec)
{fix X.P/X}P λ−−−→ W

Γ � fix X.P
λ−−−→ W

(Sum)
Γ � P

λ−−−→ W λ ∈ {τ, c!v}
Γ � P + Q

λ−−−→ W
(SumRcv)

Γ � P
c?v−−−−→ W rcv(P, c) Γ � c : idle

Γ � P + Q
c?v−−−−→ W

(ResI) Γ[c �→ (n, v)] �W
c!v−−−−→ W′

Γ � νc:(n, v).W
τ−−−→ νc:updc!v(Γ)(c).W′ (ResV)

Γ[c �→ (n, v)] �W
λ−−−→ W′, c � λ

Γ � νc:(n, v).W
λ−−−→ νc:(n, v).W′

Example 3. Let Γ2 be a channel environment such that Γ2(c) = (1, v), and consider the
configuration C2 = Γ2 �W2, where W2 has been defined in Example 2.

Note that this configuration contains an active receiver along the exposed channel c.
We can think of such a receiver as a process which missed the synchronisation with a
broadcast which has been previously performed along channel c; as a consequence this
process is doomed to receive an error value.

This situation is modelled by Rule (RcvLate), which allows us to infer the transition
Γ2 � 	c?(x).Q
 τ−−−→ c[x].{err/x}Q. As we will see, Rule (TauPar), introduced in Table 5,
ensures that τ-actions are propagated to the external environment. This means that the
transition derived above allows us to infer the transition C2

τ−−−→ W3, where W3 = σ |
c[x].{err/x}Q | c[x].P.
�
The final set of rules, in Table 5, are structural. Here we assume that Rules (Sum), (Sum-
Rcv) and (SumTime) have a symmetric counterpart. Rules (ResI) and (ResV) show how
restricted channels are handled. Intuitively moves from the configurationΓ�νc:(n, v).W
are inherited from the configuration Γ[c �→ (n, v)] � W; here the channel environment
Γ[c �→ (n, v)] is the same as Γ except that c has associated with it (temporarily) the
information (n, v). However if this move mentions the restricted channel c then the in-
herited move is rendered as an internal action τ, (ResI). Moreover the information asso-
ciated with the restricted channel in the residual is updated, using the function updc!v(·)
previously defined.

We are now ready to define the reduction semantics; formally, we let Γ1 � W1 �

Γ2 �W2 whenever Γ1 �W1
λ−−−→ W2 and Γ2 = updλ(Γ1) for some λ = τ, σ, c!v.

Note that input actions cannot be used to infer reductions for computations; follow-
ing the approach of [15,21] reductions are defined to model only the internal of a sys-
tem. In order to distinguish between timed and untimed reductions in Γ1 �W1 � Γ2 �W2

we use Γ1 �W1 �σ Γ2 �W2 if Γ2 = updσ(W1) and Γ1 �W1 �i Γ2 �W2 if Γ2 = updλ(Γ1)
for some λ = τ, c!v.

Proposition 1 (Maximal Progress and Time Determinism). SupposeC �σ C1; then
C �σ C2 implies C1 = C2, and C ��i C3 for any C3.

24 A. Cerone, M. Hennessy, and M. Merro

Example 4. We now show how the transitions we have inferred in the Examples 1-3
can be combined to derive a computation fragment for the configuration C0 considered
in Example 1.

Let Ci = Γi � Wi, i = 0, · · · , 2 be as defined in these examples. Note that Γ1 =

updc!v0
(Γ0) and Γ2 = updσ(Γ1). We have already shown that C0

c!v0−−−−−→ W1; this trans-
ition, together with the equality Γ1 = updc!v0

(Γ0), can be used to infer the reduction
C0 �i C1. A similar argument shows that C1 �σ C2. Also if we let C3 denote Γ2 �W3

we also have C2 �i C3 since Γ2 = updτ(Γ2).
�
Example 5 (Collisions). Consider the configuration C = Γ � W, where Γ � c : idle
and W = c!〈w0〉 | c!〈w1〉 | 	c?(x).P
; here we assume δw0 = δw1 = 1. Using rules

(Snd), (RcvIgn), (Rcv) and (Sync) we can infer the transition Γ � W
c!w0−−−−−→ W1, where

W1 = σ | c!〈w1〉 | c[x].P. Let Γ1 := updc!w0
(Γ), that is Γ1(c) = (1,w0). This equality

and the transition above lead to the instantaneous reduction C �i C1 = Γ1 �W1.

ForC1 we can use the rules (RcvIgn), (Snd) and (Sync) to derive the transitionC1
c!w1−−−−−→

W2, where W2 = σ | σ | c[x].P. This transition gives rise to the reduction C1 �i

C2 = Γ2 � W2, where Γ2 = updc!w1
(Γ1). Note that, since Γ1 � c : exp we obtain that

Γ2(c) = (1, err). The broadcast along a busy channel caused a collision to occur.
Finally, rules (Sleep), (EndRcv) and (TimePar) can be used to infer the transitionC2

σ−−−→
W3 = nil | nil | {err/x}P. Let Γ3 := updσ(Γ′′); then the transition above induces the
timed reduction C2 �σ C3 = Γ3 �W3, in which an error is received instead of either of
the transmitted values w0,w1.
�
We now define a contextual equivalence between configurations, following the ap-
proach of [10]. This relies on two crucial concepts: a notion of reduction, already been
defined, and a notion of minimal observable activity, called a barb.

While in other process algebras the basic observable activity is chosen to be an output
on a given channel [21,7], for our calculus it is more appropriate to rely on the expos-
ure state of a channel: because of possible collisions transmitted values may never be
received. Formally, we say that a configuration Γ �W has a barb on channel c, written
Γ �W ↓c, whenever Γ � c : exp. A configuration Γ �W has a weak barb on c, denoted
by Γ �W ⇓c, if Γ �W �∗ Γ′ �W′ for some Γ′ �W′ such that Γ′ �W′ ↓c. As we will see,
it turns out that using this notion of barb we can observe the content of a message being
broadcast only at the end of its transmission. This is in line with the standard theory of
wireless networks, in which it is stated that collisions can be observed only at reception
time [23,19].

Definition 1. Let R be a relation over configurations.

(1) R is said to be barb preserving if Γ1�W1 ⇓c implies Γ2�W2 ⇓c, whenever (Γ1�W1) R
(Γ2 �W2).

(2) It is reduction-closed if (Γ1 �W1) R (Γ2 �W2) and Γ1 �W1 � Γ′1 �W′
1 imply there

is some Γ′2 �W′
2 such that Γ2 �W2 �∗ Γ′2 �W′

2 and (Γ′1 �W′
1) R (Γ′2 �W′

2).
(3) It is contextual if Γ1 �W1 R Γ2 �W2, implies Γ1 � (W1 | W) R Γ2 � (W2 | W) for

all processes W.
�
Reduction barbed congruence, written �, is the largest symmetric relation over config-
urations which is barb preserving, reduction-closed and contextual.

Modelling MAC-Layer Communications in Wireless Systems 25

Table 6. Extensional actions

(Input)
Γ �W

c?v−−−−→ W′

Γ �W
c?v�−→ updc?v(Γ) �W′ (Time)

Γ �W
σ−−−→ W′

Γ �W
σ�−→ updσ(Γ) �W′

(Shh)
Γ �W

c!v−−−−→ W′

Γ �W
τ�−→ updc!v(Γ) �W′ (TauExt)

Γ �W
τ−−→ W′

Γ �W
τ�−→ Γ �W′

(Deliver)
Γ(c) = (1, v) Γ �W

σ−−−→ W′

Γ �W
γ(c,v)�−→ updσ(Γ) �W′ (Idle)

Γ � c : idle

Γ �W
ι(c)�−→ Γ �W

Example 6. We first give some examples of configurations which are not barbed
congruent; here we assume that Γ is the stable environment.

– Γ � c!〈v0〉 � Γ � c!〈v1〉; let T = 	c?(x).[x = v0]d!〈ok〉nil,
, where d � c and ok is an
arbitrary value. It is easy to see that Γ � c!〈v0〉 | T ⇓d, whereas Γ � c!〈v1〉 | T �⇓d.

– Γ�c!〈v〉 � Γ�σ.c!〈v〉; let T = [exp(c)]d!〈ok〉, nil. In this case we have that Γ�c!〈v〉 |
T ⇓d, while Γ � σ.c!〈v〉 | T �⇓d.

On the other hand, consider the configurations Γ � c!〈v0〉 | c!〈v1〉 and Γ � c!〈err〉, where
δv0 = δv1 and for the sake of convenience we assume that δerr = δv0 . In both cases a com-
munication along channel c starts, and in both cases the value that will be eventually
delivered to some receiving station is err, independently of the behaviour of the ex-
ternal environment. This gives us the intuition that these two configurations are barbed
congruent. Later in the paper we will develop the tools that will allow us to prove this
statement formally.
�

4 Extensional Semantics

In this section we give a co-inductive characterisation of the contextual equivalence �
between configurations, using a standard bisimulation equivalence over an extensional
LTS, with configurations as nodes, but with a special collection of extensional actions;
these are defined in Table 6.

Rule (Input) simply states that input actions are observable, as is the passage of time,
by Rule (Time). Rule (TauExt) propagates τ-intensional actions to the extensional se-
mantics. Rule (Shh) states that broadcasts are always treated as internal activities in the
extensional semantics. This choice reflects the intuition that the content of a message
being broadcast cannot be detected immediately; in fact, it cannot be detected until the
end of the transmission.

Rule (Idle) introduces a new label ι(c), parameterized in the channel c, which is not
inherited from the intensional semantics. Intuitively this rules states that it is possible to
observe whether a channel is exposed. Finally, Rule (Deliver) states that the delivery of
a value v along channel c is observable, and it corresponds to a new action whose label
is γ(c, v). In the following we range over extensional actions by α.

26 A. Cerone, M. Hennessy, and M. Merro

Example 7. Consider the configuration Γ � c!〈v〉, where Γ is the stable channel environ-

ment. By an application of Rule (Shh) we have the transition Γ � c!〈v〉 τ�−→ Γ′ �σδv , with

Γ′ � c : exp. Furthermore, Γ � c!〈v〉 ι(c)�−→ since channel c is idle in Γ. Notice that Γ′ �σδv
cannot perform a ι(c) action, and that the extensional semantics gives no information
about the value v which has been broadcast.

The extensional semantics endows configurations with the structure of an LTS. Weak
extensional actions in this LTS are defined as usual, and the formulation of bisimula-

tions is facilitated by the notation C α̂
�=⇒ C′, which is again standard: for α = τ this

denotes C �−→∗ C′ while for α � τ it is C τ�−→∗ α�−→ τ�−→∗ C′.
Definition 2 (Bisimulations). Let R be a symmetric binary relation over configura-
tions. We say thatR is a (weak) bisimulation if for every extensional action α, whenever

C1 R C2, then C1
α
�=⇒ C′1 implies C2

α̂
�=⇒ C′2 for some C′2 satisfying C′1 R C′2 We let ≈ be

the the largest bisimulation.
�
Example 8. Let us consider again the configurations Γ �W0 = c!〈v0〉 | c!〈v1〉, Γ �W1 =

c!〈err〉 of Example 6. Recall that in this example we assumed that Γ is the stable channel
environment; further, δv0 = δv1 = δerr = k for some k > 0.

We show that Γ � W0 ≈ Γ � W1 by exhibiting a witness bisimulation S such that
Γ �W0 S Γ �W1. To this end, let us consider the relation

S = { (Δ �W0, Δ �W1) , (Δ′ � σk | c!〈v1〉, Δ′′ � σk) , (Δ′ � c!〈v0〉, Δ′′ � σk)
, (Δ � σ j | σ j, Δ � σ j) | Δ′ �t c : n, Δ′′(c) = (n, err) for some n > 0, j ≤ k}

Note that this relation contains an infinite number of pairs of configurations, which dif-
fer by the state of channel environments.This is because input actions can affect the
channel environment of configurations. It is easy to show that the relation S is a bisim-
ulation which contains the pair (Γ0 �W0, Γ1 �W1), therefore Γ �W0 ≈ Γ �W1.
�
One essential property of weak bisimulation is that it does not relate configurations
which differ by the exposure state of some channel:

Proposition 2. Suppose Γ1 � W1 ≈ Γ2 � W2. Then for any channel c, Γ1 � c : idle iff
Γ2 � c : idle.
�

5 Full Abstraction

The aim of this section is to prove that weak bisimilarity in the extensional semantics is
a proof technique which is both sound and complete for reduction barbed congruence.

Theorem 1 (Soundness). C1 ≈ C2 implies C1 � C2.

Proof. It suffices to prove that bisimilarity is reduction-closed, barb preserving and con-
textual. Reduction closure follows from the definition of bisimulation equivalence. The
preservation of barbs follows directly from Proposition 2. The proof of contextuality on
the other hand is quite technical, and is addressed in detail in the associated technical

Modelling MAC-Layer Communications in Wireless Systems 27

report [4]. One subtlety lies in the definition of τ-extensional actions, which include
broadcasts. While broadcasts along exposed do not affect the external environment, and
hence cannot affect the external environment, this is not true for broadcasts performed
along idle channels. However, we can take advantage of Proposition 2 to show that these
extensional τ-actions preserve the contextuality of bisimilar configurations.
�
To prove completeness, the converse of Theorem 1, we restrict our attention to the
subclass of well-formed configurations. Informally Γ �W is well-formed if the system
term W does not contain active receivers along idle channels; a wireless station cannot
be receiving a value along a channel if there is no value being transmitted along it.

Definition 3 (Well-formedness). The set of well-formed configurations WNets is the
least set such that for all processes P (i) Γ�P ∈ Wnets, (ii) if Γ � c : exp then Γ�c[x].P ∈
WNets, (iii) is closed under parallel composition and (iv) if Γ[c �→ (n, v)] �W ∈ WNets
then Γ � νc : (n, v).W ∈ WNets.
�
By focusing on well-formed configurations we can prove a counterpart of Proposition
2 for our contextual equivalence:

Proposition 3. Let Γ1 �W1, Γ2 �W2 be two well formed configurations such that Γ1 �
W1 � Γ2 �W2. Then for any channel c, Γ1 � c : idle implies Γ2 � c : idle.
�
Proposition 3 does not hold for ill-formed configurations. For example, let Γ1 � c : exp,
Γ1 � d : idle and Γ2 � c, d : idle and consider the two configurations C1 = Γ1 � nil |
d[x].P and C2 = Γ2 � c!〈v〉 | d[x].P, neither of which are well-formed; nor do they let
time pass, Ci ��σ. As a consequence C1 � C2. However Proposition 2 implies that they
are not bisimilar, since they differ on the exposure state of c.

Another essential property of well-formed systems is patience: time can always pass
in networks with no instantaneous activities.

Proposition 4 (Patience). If C is well-formed and C ��i, then C �σ C′ for some C′.
�
This means that, if we restrict our attention to well-formed configurations, we can never
reach a configuration which is deadlocked; at the very least time can always proceed.

Theorem 2 (Completeness). On well-formed configurations, reduction barbed
congruence implies bisimilarity.

The proof relies on showing that for each extensional action α it is possible to exhibit a
test Tα which determines whether or not a configuration Γ �W can perform the action
α. The main idea is to equip the test with some fresh channels; the test Tα is designed
so that a configuration Γ �W | Tα can reach another one C′ = Γ′ �W′ | T ′, where T ′ is
determined uniquely by the barbs of the introduced fresh channel; these are enabled in
Γ′ � T ′, if and only if C can weakly perform the action α.

The tests Tα are defined by performing a case analysis on the extensional action α:

Tτ = eureka!〈ok〉
Tσ = σ.(τ.eureka!〈ok〉 + fail!〈no〉)
Tγ(c,v) = νd:(0, ·).((c[x].([x=v]d!〈ok〉, nil) + fail!〈no〉) |

| σ2.[exp(d)]eureka!〈ok〉, nil | σ.halt!〈ok〉)
Tc?v = (c !〈v〉.eureka!〈ok〉 + fail!〈no〉) | halt!〈ok〉
Tι(c) = ([exp(c)]nil, eureka!〈ok〉) + fail!〈no〉 | halt!〈ok〉

28 A. Cerone, M. Hennessy, and M. Merro

where eureka, fail, halt are arbitrary distinct channels and ok, no are two values such
that δok = δno = 1.

For the sake of simplicity, for any action α we define also the tests T ′
α as follows:

T ′
τ = T ′

σ = eureka!〈ok〉
T ′
γ(c,v) = νd:(0, ·).(σ.d!〈ok〉nil | σ.[exp(d)]eureka!〈ok〉, nil | halt!〈ok〉)

T ′
c?v = σδv .eureka!〈ok〉 | halt!〈ok〉

T ′
ι(c) = σ.eureka!〈ok〉 | halt!〈ok〉

Proposition 5 (Distinguishing Contexts). Let Γ �W be a well-formed configuration,
and suppose that the channels eureka, halt, fail do not appear free in W, nor they are

exposed in Γ. Then for any extensional action α, Γ �W
α
�=⇒ Γ′ �W′ iff Γ �W | Tα �∗

Γ′ �W′ | T ′
α.
�

A pleasing property of the tests T ′
α is that they can be identified by the (both strong and

weak) barbs that they enable in a computation rooted in the configuration Γ �W | Tα.

Proposition 6 (Uniqueness of successful testing components). Let Γ � W be a con-
figuration such that eureka, halt, fail do not appear free in W, nor they are exposed in
Γ. Suppose that Γ �W | Tα �∗ C′ for some configuration C′ such that

– if α = τ, σ, then C′ �↓eureka, C′ ⇓eureka, C′ �⇓fail,
– otherwise, C′ �↓eureka,C′ �↓halt, C′ ⇓eureka,C′ ⇓halt, C′ �⇓fail.

Then C′ = Γ′ �W′ | T ′
α for some configuration Γ′ �W′.
�

Note the use of the fresh channel halt when testing some of these actions. This is be-
cause of a time mismatch between a process performing the action, and the test used

to detect it. For example the weak action
ι(c)
�=⇒ does not involve the passage of time but

the corresponding test uses a branching construct which needs at least one time step to
execute. Requiring a weak barb on halt in effect prevents the passage of time.

Outline proof of Theorem 2: It is sufficient to show that reduction barbed congruence,

�, is a bisimulation. As an example suppose Γ1 �W1 � Γ2 �W2 and Γ1 �W1
γ(c,v)�−→ Γ′1 �W′

1.
We show how to find a matching move from Γ2 �W2.

Suppose that Γ1�W1
γ(c,v)�−→ Γ′1�W′

1, we need to show that Γ2�W2
γ(c,v)
�=⇒ Γ′2�W′

2 for some
Γ′2 �W′

2 such that Γ′1 �W′
1 � Γ′2 �W′

2. By Proposition 5 we know that Γ1 �W1 | Tγ(c,v) �∗
Γ′1 � W′

1 | T ′
α.By the hypothesis it follows that Γ1 � W1 | Tγ(c,v) � Γ2 � W2 | Tγ(c,v),

therefore Γ2 �W2 | Tγ(c,v) �∗ C2 for some C2 � Γ′1 �W′
1 | T ′

γ(c,v).
Let C1 = Γ

′
1 � W′

1 | T ′
γ(c,v). It is easy to check that C1 �↓eureka,C1 �↓halt,C1 �⇓fail and

C1 ⇓eureka,C1 ⇓halt. By definition of reduction barbed congruence and Proposition 3 we
obtain that C2 �↓eureka,C2 �↓halt, C2 ⇓eureka,C2 ⇓halt and C2 �⇓fail. Proposition 6 ensures
then that C2 = Γ

′
2 �W

′
2 | T ′

γ(c,v) for some Γ′2,W
′
2. An application of Proposition 5 leads to

Γ2 �W2
γ(c,v)
�=⇒ Γ′2 �W′

2. Now standard process calculi techniques enable us to infer from
this that Γ′1 �W′

1 � Γ′2 �W′
2. �

Modelling MAC-Layer Communications in Wireless Systems 29

6 Conclusions and Related Work

In this paper we have given a behavioural theory of wireless systems at the MAC
level. We believe that our reduction semantics, given in Section 2, captures much of
the subtlety of intensional MAC-level behaviour of wireless systems. We also believe
that our behavioural theory is the only one for wireless networks at the MAC-Layer
which is both sound and complete. The only other calculus which considers such net-
works is TCWS from [14] which contains a sound theory; as we have already stated we
view CCCP as a simplification of this TCWS, and by using a more refined notion of
extensional action we also obtain completeness.

We are aware of only two other papers modelling networks at the MAC-Sublayer
level of abstraction, these are [12,24]. They present a calculus CWS which views a net-
work as a collection of nodes distributed over a metric space. [12] contains a reduction
and an intensional semantics and the main result is their consistency. In [24], time and
node mobility is added.

On the other hand there are numerous papers which consider the problem of model-
ling networks at a higher level. Here we briefly consider a selection; for a more thorough
review see [4].

Nanz and Hankin [16] have introduced an untimed calculus for Mobile Wireless Net-
works (CBS�), relying on a graph representation of node localities. The main goal of
that paper is to present a framework for specification and security analysis of commu-
nication protocols for mobile wireless networks. Merro [13] has proposed an untimed
process calculus for mobile ad-hoc networks with a labelled characterisation of reduc-
tion barbed congruence, while [6] contains a calculus called CMAN, also with mobile
ad-hoc networks in mind. Singh, Ramakrishnan and Smolka [22] have proposed the
ω-calculus, a conservative extension of the π-calculus. A key feature of the ω-calculus
is the separation of a node’s communication and computational behaviour from the de-
scription of its physical transmission range. Another extension of the π-calculus, which
has been used for modelling the LUNAR ad-hoc routing protocol, may be found in [2].

In [3] a calculus is proposed for describing the probabilistic behaviour of wireless
networks. There is an explicit representation of the underlying network, in terms of a
connectivity graph. However this connectivity graph is static. In contrast Ghassemi et
al. [5] have proposed a process algebra called RBPT where topological changes to the
connectivity graph are implicitly modelled in the operational semantics rather than in
the syntax. Kouzapas and Philippou [11] have developed a theory of confluence for a
calculus of dynamic networks and they use their machinery to verify a leader-election
algorithm for mobile ad hoc networks.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a
survey. Computer Networks 38(4), 393–422 (2002)

2. Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Pohjola, J.Å., Parrow, J.:
Broadcast psi-calculi with an application to wireless protocols. In: Barthe, G., Pardo, A.,
Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 74–89. Springer, Heidelberg (2011)

30 A. Cerone, M. Hennessy, and M. Merro

3. Cerone, A., Hennessy, M.: Modelling probabilistic wireless networks (extended abstract).
In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp.
135–151. Springer, Heidelberg (2012), http://www.scss.tcd.ie/˜ceronea/works/
ProbabilisticWirelessNetworks.pdf

4. Cerone, A., Hennessy, M., Merro, M.: Modelling mac-layer communications in wireless
systems. Technical Report, Trinity College Dublin (2012),
https://www.scss.tcd.ie/˜acerone/works/CCCP.pdf .

5. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational reasoning on mobile ad hoc networks.
Fundamenta Informaticae 105(4), 375–415 (2010)

6. Godskesen, J.C.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Vitek, J. (eds.)
COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)

7. Hennessy, M.: A distributed Pi-calculus. Cambridge University Press (2007)
8. Hennessy, M., Rathke, J.: Bisimulations for a calculus of broadcasting systems. TCS 200

(1-2), 225–260 (1998)
9. Hennessy, M., Regan, T.: A process algebra for timed systems. IaC 117(2), 221–239 (1995)

10. Honda, K., Yoshida, N.: On reduction-based process semantics. TCS 152(2), 437–486 (1995)
11. Kouzapas, D., Philippou, A.: A process calculus for dynamic networks. In: Bruni, R.,

Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722, pp. 213–227. Springer,
Heidelberg (2011)

12. Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless systems.
TCS 411(19), 1928–1948 (2010)

13. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks (full paper). IaC 207(2),
194–208 (2009)

14. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. TCS 412(47),
6585–6611 (2011)

15. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge University
Press (1999)

16. Nanz, S., Hankin, C.: Static analysis of routing protocols for ad-hoc networks. In: ACM
SIGPLAN and IFIP WG, vol. 1, pp. 141–152. Citeseer (2004)

17. Nicollin, X., Sifakis, J.: The algebra of timed processes, atp: Theory and application.
IaC 114(1), 131–178 (1994)

18. Prasad, K.V.S.: A calculus of broadcasting systems. In: Sannella, D. (ed.) ESOP 1994. LNCS,
vol. 788, pp. 285–327. Springer, Heidelberg (1994)

19. Rappaport, T.S.: Wireless communications - principles and practice. Prentice-Hall (1996)
20. Rathke, J., Sobocinski, P.: Deconstructing behavioural theories of mobility. In: Ausiello,

G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Fifth IFIP ICTCScience. IFIP, vol. 273,
pp. 507–520. Springer, Boston (2008)

21. Sangiorgi, D., Walker, D.: The Pi-Calculus — A Theory of Mobile Processes. Cambridge
University Press (2001)

22. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc net-
works. SCP 75(6), 440–469 (2010)

23. Tanenbaum, A.S.: Computer Networks, 4th edn. Prentice-Hall International, Inc. (2003)
24. Wang, M., Lu, Y.: A timed calculus for mobile ad hoc networks. arXiv preprint

arXiv:1301.0045 (2013)
25. Yi, W.: A Calculus of Real Time Systems. Ph.D Thesis, Chalmers University (1991)

http://www.scss.tcd.ie/~ceronea/works/ProbabilisticWirelessNetworks.pdf
http://www.scss.tcd.ie/~ceronea/works/ProbabilisticWirelessNetworks.pdf
https://www.scss.tcd.ie/~acerone/works/CCCP.pdf

Coordinating Phased Activities

while Maintaining Progress

Tiago Cogumbreiro, Francisco Martins, and Vasco Thudichum Vasconcelos

LaSIGE, Faculty of Sciences, University of Lisbon

Abstract. In order to develop reliable applications for parallel ma-
chines, programming languages and systems need to provide for flexi-
ble parallel programming coordination techniques. Barriers, clocks and
phasers constitute promising synchronisation mechanisms, but they ex-
hibit intricate semantics and allow writing programs that can easily
deadlock. We present an operational semantics and a type system for a
fork/join programming model equipped with a flexible variant of phasers.
Our proposal allows for a precise control over the maximum number of
synchronisation steps each task can be ahead of others. A type system
ensures that programs do not deadlock, even when they use multiple
phasers.

1 Introduction

The key to develop scalable parallel applications lies in using coordination mech-
anisms at the “right” level of abstraction [8]. Rather than re-inventing the wheel
with ad hoc solutions [20], programmers should resort to off-the-shelf coordina-
tion mechanisms present in programming languages and systems. Barriers, in
their multiple forms [1,5,6,7,9,11,14] constitute one such coordination mecha-
nism. A barrier allows multiple tasks to synchronise at a single point, in such a
way that: a) before synchronisation no task has crossed the barrier, and b) after
synchronisation all tasks have crossed the barrier.

Programs that use a single barrier to coordinate all their tasks do not dead-
lock. If using a single barrier may reveal itself quite limited in practice, groups
of tasks that use multiple barriers may easily deadlock. To address this issue,
the X10 programming language [7] proposes clocks, a deadlock-free coordination
mechanism. Clocks later inspired primitives in other languages, such as Java [13]
(as of version 7), Habanero Java [17] (HJ), and an extension to OpenMP [18].

For some applications, the semantics of traditional barriers is overly inflexible.
With this mind, Shirako et al. introduced phasers [17], a primitive that allows
some tasks to cross the barrier before synchronisation, thus relaxing condition a)
above. Phasers allow for asymmetric parallel programs, including multiple pro-
ducer/single consumer applications where, at each iteration, the consumer waits
for the producers to cooperate in assembling an item. In a different direction,
Albrecht et al. proposed a partial barrier construct [3] that only requires some
tasks to arrive at the barrier, thus relaxing condition b). This form of barriers

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 31–44, 2013.
c© IFIP International Federation for Information Processing 2013

32 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

can be used in applications that synchronise on a subset of all tasks, allowing,
e.g., computation to progress quickly even when in presence of slow tasks.

Reasoning about such enriched constructs is usually far from trivial: the
semantics is intricate and most languages lack a precise specification (includ-
ing Java barriers and HJ phasers). In this work we propose a calculus for a
fork/join programming model that unifies the various forms of barriers, includ-
ing X10 clocks [7], HJ phasers (both bounded [16] and unbounded [17]), and Java
barriers [13].

Our proposal not only subsumes those of X10, HJ and Java, but further
increases the flexibility of the coordination mechanism. We allow tasks to be
ahead of others up to a bounded number of synchronisation phases, and yet
guarantee that well-typed programs are deadlock free. In contrast, HJ allows
tasks to be ahead of others by an arbitrary number of phases, which is of limited
interest, since fast tasks may eventually exhaust computational resources, such
as buffer space.

To summarise, our contributions are:

– a flexible barrier construct that allows for a precise control over the maximum
number of phases each task can be ahead of others;

– an operational semantics for a fork/join programming model that captures
barrier-like coordination patterns found in X10, HJ, and Java;

– a type system that ensures progress, hence the absence of deadlocks, in
addition to the usual type preservation.

The paper is organised as follows. The next section addresses related work.
Section 3 presents the syntax and the operational semantics of our language.
Thereafter, we introduce the type system and the main results of our work.
Section 5 concludes the paper while putting forward lines of future research.

2 Related Work via an Example

Figure 1a sketches a parallel breadth-first search algorithm to find an exit in a
labyrinth. The algorithm uses two groups of tasks: one traverses the labyrinth
(modelled by a graph) and another inspects the visited nodes for an exit. The
sketch was originally implemented in OpenMP by Süß and Leopold [19]. The
algorithm proceeds iteratively, handling at each step (or phase) all nodes at
the same depth. If a node is an exit, the algorithm terminates; otherwise it
computes the node’s neighbours and places them in a buffer to be processed in
a later phase. The tasks synchronise at the end of each phase.

Figure 1b depicts two execution states for phases i and i + 1. At phase i,
tasks t1, . . . , tN read nodes from buf 1 (that stores the nodes of depth level i),
compute their descendants, and then in buf 2 (via function traverseNodes()).
Tasks c1, . . . , cM read nodes from buf 1 and look for an exit node (function
checkNodesForAnExit()). Both groups of tasks synchronise (at phaser c) and ad-
vance to phase i + 1. Notice that at phase i + 1 the tasks c1, . . . , cM continue
to process buf 1, while the traversal group t1, · · · , tN is handling nodes at depth

Coordinating Phased Activities while Maintaining Progress 33

1 finish (
2 let t = newPhaser 0 in
3 let c = newPhaser 0 in (
4 for (int j=0; j<N; j++)
5 async {c:K, t:0} (
6 while(!exitFound) (
7 traverseNodes();
8 arrive c; arrive t; awaitAll);
9 drop c; drop t);

10 drop t;
11 for (int j=0; j<M; j++)
12 async {c:0} (
13 while(!exitFound) (
14 arrive c; awaitAll;
15 checkNodesForAnExit());
16 drop c)
17 drop c)
18) // join task created in lines 5,12

(a) Algorithm

barrier
phase i+1

task t1 task tN...

phase i

buf 1 buf 2 buf 3

task c1 task cM...

task t1 task tN...

buf 1 buf 2 buf 3

task c1 task cM...

(b) Execution diagram (K=2)

Fig. 1. A parallel breadth-first search algorithm

level i + 1 (buf 2). This situation is possible due to the bound K assigned to
phaser c upon launching the traversal tasks (line 5). Bound K denotes the num-
ber of phases the traversal tasks may be ahead of the checker tasks. The number
of buffers is equal to K + 1.

The synchronisation of tasks is challenging and involves phasers c and t.
Phaser c is used to synchronise traversal tasks with checker tasks, while the
traversal tasks further synchronise among themselves at phaser t. The bound c:K
in line 5 reads as “phaser b has bound K in the spawned task.” On the other
hand, bound t:0 (also in line 5) means that the traversal activities must all be
in the same phase. This synchronisation scheme ensures that the traversal tasks
must process all nodes at the same depth and only after that advance to the
next level. The traversal tasks set the pace for the checker tasks with phaser c.
In their turn, the checker tasks (lines 12–16) use bound c:0, thus enforcing that
they simultaneously process the same depth level and do not overtake the tasks
in the traversal group.

Barriers, clocks, and phasers are insufficient for this sort of coordination.
Barriers and clocks are too inflexible, since no task can cross the barrier before
the others arrive. HJ phasers are too loose, since when not used as barriers,
tasks run unconstrained and may overflow buffers. Phasers beams [16] are a step
towards this sort of control, but its semantics is only informally described and
they do not guarantee deadlock-freedom. Our proposal permits different tasks
to specify the maximum number of phases they can be ahead of the slowest.

34 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

In contrast, phaser beams define such a number on a per-phaser basis. To unify
regular phasers and phaser beams, we also supply an operation that skips waiting
on a phase.

Saraswat and Jagadeesan presented a calculus for the X10 language that
includes barriers, fork/join, conditional atomic blocks, and hierarchical shared
memory [15]. The authors define a small-step operational semantics and claim
that X10 programs without conditional atomic blocks do not deadlock, yet no
deadlock-freedom theorem is formally proved. Lee and Palsberg present a calcu-
lus, called FX10, with two constructs from X10: fork/join and atomic blocks [10].
FX10 is suited for inter-procedural analysis through type inference and includes
a formal proof of a fragment of the deadlock theorem stated by Saraswat and
Jagadeesan. The type system used to identify may-happen-parallelism is further
explored in [2]. Other formal studies on fork/join semantics include [1,4]. Our
previous work defines an operational semantics and a type system for a calculus
with a fork/join programming model and clocks [12], but does not include a
deadlock-freedom theorem.

X10 clocks and HJ phasers are language-based approaches, whereas the Java
barrier (also called phaser) is a library-based approach. Features that appear si-
multaneous in our calculus, in X10, and in HJ are: controlled barrier registration
to avoid non-determinism, advancement on multiple barriers, and enforced bar-
rier deregistration before activity termination to avoid barrier-related deadlocks.
Features that appear in our calculus and in HJ alone include phaser visibility
restricted to finish scopes to avoid deadlocks between phaser and finish; enforced
deregistration before terminating a finish to avoid deadlocks between barriers.
HJ and X10 automatically deregister from barriers when activities terminate.
Instead we require explicit operations on phasers, in order to obtain a clearer
operational semantics. Our type system provides enough information to guide
a compiler into automatically inserting such operations, if desired. Finally, the
ability to specify the maximum number of phases a task may be ahead of the
slowest is unique to our language.

3 Syntax and Operational Semantics

Our language, inspired by X10 and HJ, uses activities to organise independent
computations and features two coordination mechanisms to control concurrency:
phaser and finish. For the sake of simplicity, the language focuses on task coor-
dination, providing very little in the way of describing complex computations.

The syntax of the language is defined in Figure 2. It relies on a base set of
variables, ranged over by x, and a set of natural numbers, ranged over by m
and n. Bounds B map phaser names to the phaser bounds. We use the stan-
dard abbreviation t; e to denote the expression let x = t in e when variable x
does not occur in expression e. A term t is transformed into an expression via
let x = t in x. We describe the language constructs along with the presentation
of the operational semantics.

Figure 3 introduces the syntax of a machine state. The run-time system relies
on two additional disjoint sets, H and L. Set H contains phaser names, ranged

Coordinating Phased Activities while Maintaining Progress 35

e ::= Expressions

v value

| let x = t in e local declaration

v ::= Values

x variable

| n natural number

| () unit

B ::= Bounds

∅ empty

| B � {v : v} bound

t ::= Terms

e expression

| newPhaser v new phaser, bounded by v

| drop v deregister from phaser v

| arrive v arrive at phaser v

| awaitAll await on registered phasers

| skipAll skip phase on all phasers

| async B e fork an activity

| finish e wait for termination

Fig. 2. The syntax of expressions

S ::= 〈〈〈〈〈Q;A〉〉〉〉〉 States

Q ::= ∅ | Q � {h : P} Phaser maps

P ::= ∅ | P � {l : r} Phasers

r ::= 〈n; s〉 Local views

A ::= ∅ | A � {l : a} Activity maps

a ::= 〈B; e〉 | 〈S;B; e〉 Activities

v ::= . . . | h Values

s ::= un | ar Arrival status

Fig. 3. The syntax states

over by h. Activity names, l, are taken from set L. A state S of a computation
comprises a shared phaser map Q and an activity map A. Each phaser map Q
stores the available phasers, mapping phaser names to phasers. A phaser maps
activity names to local views. A local view consists of the phase n the activity
is in and an arrival status s set to ar when the activity arrives at the phaser.
An activity map A maps activity names l to activities a. There are two kinds of
activities: regular activities 〈B; e〉 consist of the bound for each phaser the activ-
ity is registered with, and an expression e; finish activities 〈S;B; e〉 additionally
include a state S comprising the activities spawned within a finish instruction.
Given any map, say X , we write domX for the domain of X and rangeX
for the co-domain of X . In a map X � {x : u} we assume x does not occur in
domX .

Figure 4 introduces a small step reduction relation on states, S1 → S2, cap-
turing the non-deterministic choice of which activity to evaluate next. Auxil-
iary functions and predicates are in Figure 5. The phaser creation instruction,
newPhaser n, evaluates to a fresh phaser name h; it also registers under h the
current activity l with a local view composed of bound n and phase 0. All other
phaser-related operations evaluate to (). Activities deregister from a phaser h
via an expression drop h, thus removing the local view from the phaser. Instruc-
tion arrive h marks the local view of activity l as arrived, ar. An activity can
only arrive once per phase.

36 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

h 	∈ domQ

〈〈〈〈〈Q ;A � {l : 〈B; let x = newPhaser n in e〉}〉〉〉〉〉
→ 〈〈〈〈〈Q � {h : {l : 〈0; un〉}} ;A � {l : 〈B � {h : n}; let x = h in e〉}〉〉〉〉〉

(R-phaser)

〈〈〈〈〈Q � {h : (P � {l : })} ;A � {l : 〈B � {h : }; let x = drop h in e〉}〉〉〉〉〉
→ 〈〈〈〈〈Q � {h : P} ;A � {l : 〈B; let x = () in e〉}〉〉〉〉〉 (R-drop)

〈〈〈〈〈Q � {h : (P � {l : 〈n; un〉)}} ;A � {l : 〈B; let x = arrive h in e〉}〉〉〉〉〉
→ 〈〈〈〈〈Q � {h : (P � {l : 〈n; ar〉)}} ;A � {l : 〈B; let x = () in e〉}〉〉〉〉〉 (R-arrive)

unblocked(Q, l, B)

〈〈〈〈〈Q ;A � {l : 〈B; let x = awaitAll in e〉}〉〉〉〉〉
→ 〈〈〈〈〈commit(l, Q) ;A � {l : 〈B; let x = () in e〉}〉〉〉〉〉

(R-await)

〈〈〈〈〈Q ;A � {l : 〈B; let x = skipAll in e〉}〉〉〉〉〉
→ 〈〈〈〈〈commit(l, Q) ;A � {l : 〈B; let x = () in e〉}〉〉〉〉〉 (R-skip)

l2 	∈ domA ∪ domB1 ∪ domB2

〈〈〈〈〈Q ;A � {l1 : 〈B1; let x = async B2 e2 in e1〉}〉〉〉〉〉
→ 〈〈〈〈〈copy(l1, l2,domB2, Q) ;A � {l1 : 〈B1; let x = () in e1〉}�{l2 : 〈B2; e2〉}〉〉〉〉〉

(R-async)

l2 	∈ domA ∪ domB

〈〈〈〈〈Q;A � {l1 : 〈B; let x = finish e1 in e2〉}〉〉〉〉〉
→ 〈〈〈〈〈Q;A � {l1 : 〈〈〈〈〈〈∅;{l2 : 〈∅; e1〉}〉〉〉〉〉;B; let x = () in e2〉}〉〉〉〉〉

(R-finish)

S1 → S2

〈〈〈〈〈Q;A � {l : 〈S1;B; e〉}〉〉〉〉〉 → 〈〈〈〈〈Q;A � {l : 〈S2;B; e〉}〉〉〉〉〉 (R-activity)

halted(S)

〈〈〈〈〈Q;A � {l : 〈S;B; e〉}〉〉〉〉〉 → 〈〈〈〈〈Q;A � {l : 〈B; e〉}〉〉〉〉〉 (R-join)

〈〈〈〈〈Q;A � {l : 〈B; let x = v in e〉}〉〉〉〉〉 → 〈〈〈〈〈Q;A � {l : 〈B; e[v/x]〉}〉〉〉〉〉 (R-let)

〈〈〈〈〈Q;A � {l : 〈B; let x = (let y = e1 in t) in e2〉}〉〉〉〉〉
→ 〈〈〈〈〈Q;A � {l : 〈B; let y = e1 in (let x = t in e2)〉}〉〉〉〉〉 (R-unfold)

Fig. 4. Small step semantics for states, S → S

Instruction awaitAll waits until activity l becomes unblocked. The current
phase of a phaser is the natural number corresponding to the smallest local view
among all activities registered in the phaser (Figure 5). An activity l is unblocked
when it has arrived at all phasers and each bound allows progress (i.e., the bound
is larger than the difference between the current phase and the phaser’s phase).
For each phaser activity l is registered with, rule R-await advances the phase
and sets the arrival status back to un, via function commit(l, Q). HJ and X10
implicitly arrive at all non-arrived barriers before advancing.

Expression skipAll simply advances the phase and does not wait for other
activities. This operation can be used to let an activity use a phaser repeat-
edly without waiting for others. Spawning a new activity with rule R-async
evaluates expression e concurrently, by augmenting the activity map with a
new activity 〈B2; e〉. For each phase in bounds B2, we copy the local views

Coordinating Phased Activities while Maintaining Progress 37

Phase function for local views, phase(r) = n:

phase(〈n; un〉) = n phase(〈n; ar〉) = n+ 1

Phase partial function for phasers, phase(P) = n:

phase(P) = min{phase(r) | r ∈ rangeP}
Unblocked predicate, unblocked(Q, l, B): unblocked(Q, l, ∅)

unblocked(Q, l, B) Q(h) = P P (l) = 〈n; ar〉 m > n− phase(P)

unblocked(Q, l, B � {h : m})
Phase commit partial function, commit(l, Q) = Q:

commit(l, Q � {h : P � {l : 〈n; ar〉}}) = commit(l, Q) � {h : P � {l : 〈n+ 1; un〉}}
l /∈ domP

commit(l, Q � {h : P}) = commit(l, Q) � {h : P} commit(l, ∅) = ∅

Local view copy partial function, copy(l1, l2,H,Q) = Q:

h ∈ H P (l1) = r

copy(l1, l2,H,Q � {h : P}) = copy(l1, l2,H,Q) � {h : P � {l2 : r}}
h /∈ H

copy(l1, l2,H,Q � {h : P}) = copy(l1, l2, H,Q) � {h : P} copy(l1, l2,H, ∅) = ∅

Halted state predicate, halted(S): halted(〈〈〈〈〈Q;{l1 : 〈∅; v1〉, . . . , ln : 〈∅; vn〉}〉〉〉〉〉)

Fig. 5. Phaser-related functions and predicates

from the spawning activity l1 to the spawned activity l2, as captured by func-
tion copy(l1, l2, H,Q), where H is a set of phaser names, defined in Figure 5.
Spawned activities inherit the arrival statuses, for otherwise, depending on the
order of reduction of the spawning and spawned activities, the spawned activity
may or may not participate in the synchronisation of the current phase, inducing
an undesirable non-determinism in the phaser semantics [12].

Rule R-finish evaluates expressions of the form let x = finish e1 in e2 by
suspending expression let x = () in e2 and by evaluating e1 in a newly created
state. The finish activity (a triple as in Figure 3) holds a state (comprising an
empty phaser map and an activity 〈∅; e1〉 that is not registered on any phaser),
the current bounds B, and the suspended expression let x = () in e2. Such
an activity will then reduce, via rule R-activity, until halted (a predicate
introduced in Figure 5). Then, the suspended activity resumes execution by
means of rule R-join.

The evaluation of let-expressions is standard. Rule R-let replaces variable x
by value v in continuation e. Nested let bindings are unfold with rule R-unfold.

We complete this section with a pair of examples leading to deadlocks, thus
motivating the need for the type system in the next section. An activity that,
before terminating, does not deregister from every phaser it is registered with will

38 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

cause every activity that synchronises with that phaser to deadlock. Consider a
program composed of two activities. Activity l1 creates a phaser x (line 2) and in
the subsequent line spawns an activity l2 also registered with x; the latter activity
does nothing (not even deregisters from phaser x). Activity l1 synchronises and
deadlocks at line 5, forever waiting for activity l2 to arrive.

1 // activity l1
2 let x = newPhaser 0 in
3 async {x:0} (); // forgets drop x
4 arrive x;
5 awaitAll // l1 deadlocks here

Listing 1.1. An activity that for-
gets to deregister from a phaser.

The deadlocked state:

〈〈〈〈〈{h : {l1 : 〈0; ar〉, l2 : 〈0; un〉}};
{l1 : 〈{h : 0}; let w = awaitAll in w〉,
l2 : 〈{h : 0}; ()〉}, }〉〉〉〉〉

An activity that forgets to arrive before awaiting other activities deadlocks
itself and the remaining participants in the synchronisation. In the next program,
activity l1 creates a phaser x and spawns activity l2 that simply arrives at x
(line 4) and awaits for l1 (line 5). Activity l1 forgets to arrive at x but still
awaits (line 6) and therefore deadlocks along with activity l2 (in line 5).

1 // activity l1
2 let x = newPhaser 0 in
3 async {x:0} (// activity l2
4 arrive x;
5 awaitAll); // l2 deadlocks here
6 awaitAll // l1 deadlocks here

Listing 1.2. An activity that for-
gets to arrive at a phaser.

The deadlocked state:

〈〈〈〈〈{h : {l1 : 〈0; un〉, l2 : 〈0; ar〉}};
{l1 : 〈{h : 0}; let w = awaitAll in w〉,
l2 : 〈{h : 0}; let z = awaitAll in z〉}〉〉〉〉〉

4 Type System and Results

This section introduces our type system and its main results, namely type
preservation and progress for typable states.

We rely on a set of type variables, ranged over by α. The syntax of types
is defined by the grammar in Figure 6, and include those for the unit constant,
unit, for the natural numbers, nat, and for phasers, α. We assign a different (sin-
gleton) type α to each phaser, in order to track how phasers are used throughout
the program. The type system for our programming language is also defined in
Figure 6. Typings Γ are maps from variables and phaser names to types. Arrival
maps Φ map type variables (singleton phaser types) into arrival status. The re-
lation for well-formed types Φ � τ ensures that activities only make use of the
phasers they are registered with.

The typing rules for bounds Γ ;Φ1 � B : Φ2 assign an arrival map Φ2 to
bounds B, under a context consisting of a typing Γ and an arrival map Φ1.

Coordinating Phased Activities while Maintaining Progress 39

The syntax of types:
τ ::= unit | nat | α

Well-formed types, Φ � τ :

Φ � unit Φ � nat Φ,α : s � α (T-wf-u, T-wf-n, T-wf-p)

Typing rules for bounds, Γ ;Φ � B : Φ:

Γ ;Φ1 � B : Φ2 Γ ;Φ1 � v1 : α Γ ;Φ1 � v2 : nat

Γ ;Φ1 � (B � {v1 : v2}) : (Φ2 � {α : Φ1(α)}) Γ ;Φ � ∅ : ∅
(T-bound-cons,T-bound-nil)

Typing rules for values, Γ ;Φ � v : τ :

Γ ;Φ � () : unit Γ ;Φ � n : nat
Γ (v) = τ Φ � τ

Γ ;Φ � v : τ
(T-unit, T-nat, T-val)

Typing rules for terms and for expressions, Γ ;Φ � t : (τ, Φ) and Γ ;Φ � e : (τ, Φ):

Γ ;Φ � v : nat α 	∈ domΦ

Γ ;Φ � (newPhaser v) : (α,Φ � {α : un}) (T-phaser)

Γ ;Φ � {α : s} � v : α

Γ ;Φ � {α : s} � (drop v) : (unit, Φ)

Γ ;Φ � {α : un} � v : α

Γ ;Φ � {α : un} � (arrive v) : (unit, Φ � {α : ar})
(T-drop,T-arrive)

Γ ; {α1 : ar, . . . , αn : ar} � awaitAll : (unit, {α1 : un, . . . , αn : un}) (T-await)

Γ ; {α1 : ar, . . . , αn : ar} � skipAll : (unit, {α1 : un, . . . , αn : un}) (T-skip)

Γ ;Φ1 � B : Φ2 Γ ;Φ2 � e : (, ∅)
Γ ;Φ1 � (async B e) : (unit, Φ1)

Γ ; ∅ � e : (τ, ∅)
Γ ;Φ � (finish e) : (unit, Φ)

(T-async,T-finish)

Γ ;Φ � v : τ

Γ ;Φ � v : (τ, Φ)

Γ ;Φ1 � e1 : (τ1, Φ2) Γ � {x : τ1};Φ2 � e2 : (τ2, Φ3)

Γ ;Φ1 � (let x = e1 in e2) : (τ2, Φ3)
(T-value,T-let)

Fig. 6. The syntax of types and the typing rules

Rule T-bound-cons ensures that B maps phasers into natural numbers, and
also that it holds distinct phasers. The fact that phasers are associated to sin-
gleton types enables us to track aliasing in bounds.

The typing rules for values Γ ;Φ � v : τ are straightforward. Rule T-val asserts
that the value, either a variable or a phaser name, must be in typing Γ and that
its type well formed.

For expressions we define a type and effect system Γ ;Φ1 � e : (τ, Φ2) stating
that expression e is of type τ and effect Φ2. The effects are important to track
the changes in the arrival map, forced by the evaluation of an expression. The
type of a newPhaser term is a new singleton type α that is also introduced in
the effect. All remaining terms are of type unit. The effect a drop v term is
the incoming arrival map from which α was removed, so that value v cannot be

40 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

further used (cf. rule T-val). Rule T-arrive ensures that activities can arrive
at phaser α only once, by requiring that the phaser’s arrival status is un and by
changing it into ar.

Terms awaitAll and skipAll mark the end of a phase: the rules check that all
phasers have arrived and then reset the phasers to un. For example, in line 6 of
Listing 1.2, activity l1 does not arrive at x, so we must type the term awaitAll
under a typing {x : α} and an arrival map {α : un} which does not succeed
according to rule T-await.

In rule T-async, the spawned activity e is checked against an arrival map Φ2

for the phasers in B. Furthermore, e must deregister from all its phasers before
terminating (hence the empty effect for e). The effect of the finish itself is the
incoming phaser map, so that the spawning activity inherits the arrival status of
the phasers. For example, we reject the program in Listing 1.1, since the spawned
activity does not drop all its phasers before terminating. In fact, the empty task
in line 3 must be typed under context {x : α} and phaser map {α : un}, but the
arrival map is not empty for the unit term ().

Rule T-finish also forces e to deregister from all the phasers it has created,
and therefore finish e has no effect on the arrival map Φ. In order to avoid
deadlocks, we prevent e from accessing any existing phaser, thus eliminating
(nested) dependencies between phasers and finish. The typing rule for let is
standard.

The typing rules for states are introduced in Figure 7. We rely on a set of
activity names Λ, a phase difference map Δ mapping pairs of activity names
to integer values (not necessarily natural numbers), and a phase difference tree
map Σ mapping activity names to pairs composed of a phase difference map (for
the root activity) and a phase difference tree map (for the children activities,
if any). A state 〈〈〈〈〈Q;A〉〉〉〉〉 can be seen as a set of activity trees, the trees in A.
Regular activities 〈B; e〉 are leaf nodes, whereas finish activities 〈S;B; e〉 are
internal nodes whose children are the activities in S. When type checking a
state, the topology of the phase difference tree Σ matches that of the activity
tree.

We useΔ � P to check that the difference of phases between activities li and lj
are recorded in Δ(li, lj), for any pair li, lj registered with P . Judgement Γ �l

Q : Φ collects the arrival statuses of every phaser activity l is registered with.
Judgement Δ;Λ � Q : Γ checks the phase difference and the registered activity
names for each phaser in Q, while building a context Γ for Q.

We have two rules for activities. For regular activities, rule T-act ensures
that the bounds B and the arrival map Φ mentions the same phasers, while
ensuring that expression e deregisters from all phasers when before terminating
(the effect of typing the expression is the empty arrival map). For finish activities,
rule T-f-act ensures that both the state S and the finish continuation 〈B; e〉 are
well typed. To type check a state Δ;Σ � 〈〈〈〈〈Q;A〉〉〉〉〉, rule T-state uses the activity
names in A and the phase difference Δ to type check the phaser map Q; it also
checks that the activity map A is well typed according to the phase difference
tree Σ.

Coordinating Phased Activities while Maintaining Progress 41

Phase difference for phasers, Δ � P :

Δ(li, lj) = ni − nj ∀1 ≤ i, j ≤ k

Δ � {l1 : 〈n1; 〉, . . . lk : 〈nk; 〉} (T-dif)

Arrival map of a phaser map, Γ �l Q : Φ:

Γ �l Q : Φ Γ (h) = α P (l) = 〈 ; s〉
Γ �l (Q � {h : P}) : (Φ � {α : s})

Γ �l Q : Φ l /∈ domP

Γ �l (Q � { : P}) : Φ Γ �l ∅ : ∅
(T-ar-cons,T-ar-skip,T-ar-nil)

Typing context of a phaser map, Δ;Λ � Q : Γ :

α 	∈ rangeΓ domP ⊆ Λ Δ � P Δ;Λ � Q : Γ

Δ;Λ � (Q � {h : P}) : (Γ � {h : α}) Δ;Λ � ∅ : ∅
(T-pm-cons,T-pm-nil)

Typing rules for activities, Δ;Σ;Γ ;Φ � a:

Γ ;Φ � B : Φ Γ ;Φ � e : (, ∅)
∅; ∅;Γ ;Φ � 〈B; e〉

Δ;Σ � S ∅; ∅;Γ ;Φ � 〈B; e〉
Δ;Σ;Γ ;Φ � 〈S;B; e〉

(T-act,T-f-act)

Typing rules for activity maps, Σ;Γ �Q A:

Γ �l Q : Φ Δ1;Σ1;Γ ;Φ � a Σ;Γ �Q A

Σ � {l : 〈Δ1;Σ1〉};Γ �Q A � {l : a} ∅;Γ �Q ∅
(T-am-cons,T-am-nil)

Typing rule for states, Δ;Σ � S:
Δ; domA � Q : Γ Σ;Γ �Q A

Δ;Σ � 〈〈〈〈〈Q;A〉〉〉〉〉 (T-state)

Fig. 7. Typing rules for states

We complete this section by presenting the main results of the paper.

Lemma 1. If Σ � {l : 〈Δ1;Σ1〉};Γ �Q A � {l : a}, then there exists Φ such that
Γ �l Q : Φ, Δ1;Σ1;Γ ;Φ � a, and Σ;Γ �Q A.

Theorem 1 (Subject reduction). If Δ1;Σ1 � S1 and S1 → S2, then there
exists Δ2 and Σ2 such that Δ2;Σ2 � S2.

Proof (Sketch). The proof follows by induction on the derivation of the reduction
step. In each case we have to exhibit Δ2 and Σ2. For R-phaser we make use of a
weakening lemma. Cases R-drop, R-arrive, R-await, R-skip, and R-async
are similar. We prove that changes made in the phaser map after reduction have
no effect on any activity besides the one under reduction. When the derivation
of the reduction step ends with rule R-activity, we know that Σ1 = Σ �
{l : 〈Δ′

1;Σ
′
1〉}; by induction it follows that Δ′

2;Σ
′
2 � S2. We take Δ2 = Δ1 and

Σ2 = Σ � {l : 〈Δ′
2;Σ

′
2〉}. We apply Lemma 1 to the hypothesis to, and the

induction hypothesis to complete the proof. Case R-join, and R-unfold are
similar to R-activity. For R-finish, we know that Σ1 = Σ � {l1 : 〈∅; ∅〉}; we

42 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

take Δ2 = Δ1 and Σ2 = Σ � {l1 : 〈∅; {l2 : 〈∅; ∅〉}〉}. We use a strengthening
lemma: Γ ; ∅ � e : (τ, ∅) and Γ only contains phaser names in its domain implies
∅; ∅ � e : (τ, ∅). Strengthening is applied to the newly created state. For R-let
we need a substitution lemma, strengthening and weakening.

For progress, we start by extracting a total order for the activities in a typable
state.

Lemma 2. If Δ;Σ � 〈〈〈〈〈Q; 〉〉〉〉〉 then the relation {(l1, l2) | P ∈ rangeQ,P (l1) =
〈n1; 〉, P (l2) = 〈n2; 〉, n1 ≤ n2} is a total order.

Theorem 2 (Progress). If Δ;Σ � S1 then S1 is either halted(S1) or there is
a state S2 such that S1 → S2.

Proof (Sketch). Activities can block for a number of reasons, easily deduced from
the reduction rules in Figure 4. The cases for drop, arrive, skipAll, async and
let are easily dismissed by a simple analysis of the typing derivation rules. For
example, when the reduction step ends with rule R-async, we must show that
Δ;Σ � 〈〈〈〈〈Q;A � {l1 : 〈B1; let x = async B2 e2 in e1〉}〉〉〉〉〉 and l2 �∈ dom(A,B1, B2)
implies that copy(l1, l2, domB2, Q) is defined. We proceed by induction on the
structure of Q. The interesting case is when Q is Q′ � {h : P}, where we must
show that l1 ∈ domP . From Δ;Σ � S we know that Γ �l1 Q : Φ. By showing
that Γ �l Q : Φ implies domQ = domΓ , we obtain h ∈ domΓ . Then we show
that h ∈ domΓ and Γ �l Q : Φ implies l ∈ domQ(h).

Otherwise suppose that all activities in S1 are blocked at awaitAll. Lemma 2
ensures that there is a total order on activity names. Since the order is total,
there is one activity name that is smaller than all others; let it be l. From
Δ;Σ � 〈〈〈〈〈Q;A � {l : 〈B; let x = awaitAll in e1〉}〉〉〉〉〉, we know that P (l) = 〈m; ar〉,
for some m. We also know that phase(P) = min{n + 1 | 〈n; ar〉 ∈ rangeP} =
1 + min{n | 〈n; ar〉 ∈ rangeP} = 1 + m. Hence l is unblocked and we have
attained a contradiction.

In absence of infinite computations, it follows from the above theorem that all
typable states eventually reach a halted state.

5 Conclusion and Further Work

We presented a calculus and a type system for a fork/join programming model
with a flexible phaser mechanism. We favour explicit operations, yielding phaser
operators which are simpler than those of Habanero Java [17]. Our proposal
unifies the semantics of clocks [7], regular phasers [17], and phaser beams [16],
but goes further by allowing tasks to be ahead of others by a bounded number
of phases.

HJ permits writing applications where the same task is registered with a
phaser as a regular barrier and with another phaser that disregards all forms
of synchronisation. For such cases, our skipAll operation is not enough. We can
however introduce unbounded local views for tasks registered at phasers with an

Coordinating Phased Activities while Maintaining Progress 43

infinite bound (tasks that do not want to synchronise, only to influence others).
An expression advance v, available only for activities registered with an infinite
bound, would advance a single phaser. We believe that such an extension can be
easily accommodated in our system.

To focus on the intricacies of synchronisation, we kept our language very
simple. Extensions required for real world programming include provision for
unbounded computations (in the form of recursion or loops) and for a mutable
store (in the form of imperative variables). Loops can be introduced in our
calculus while causing little interference with the model and results, as long as
they preserve an invariant on the registered phasers at every iteration. In order
to build circular buffers of phasers, HJ applications may create phasers within
a loop. A possible workaround to accommodate such a feature in our language
is to introduce a primitive that allocates an array of phasers.

Acknowledgements. This work was partially supported by project PTDC/
EIA-CCO/122547/2010. The first author would like to thank Vivek Sarkar for
welcoming him at the Habanero group at Rice University, during the year of
2012. We are grateful to Jun Shirako and anonymous referees for their feedback
on this paper and to Vivek Sarkar for discussions related to phasers.

References

1. Aditya, S., Stoy, J.E., Arvind: Semantics of barriers in a non-strict, implicitly-
parallel language. In: Proceedings of FPCA 1995, pp. 204–215. ACM (1995)

2. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: Proceedings of PPoPP 2010, pp. 183–193. ACM
(2007)

3. Albrecht, J., Tuttle, C., Snoeren, A.C., Vahdat, A.: Loose synchronization for
large-scale networked systems. In: Proceedings of ATEC 2006, p. 28. USENIX
Association (2006)

4. Arvind, Maessen, J.-W., Nikhil, R.S., Stoy, J.E.: λs: an implicitly parallel λ-
calculus with letrec, synchronization and side-effects. Electronic Notes Theoretical
Computer Science 16(3), 265–290 (1998)

5. Barnes, F.R., Welch, P.H., Sampson, A.T.: Barrier Synchronisation for occam-pi.
In: Proceedings of PDPTA 2005, pp. 173–179. CSREA Press (2005)

6. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures of
old X10. In: Proceedings of PPPJ 2011, pp. 51–61. ACM (2011)

7. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of OOPSLA 2005, pp. 519–538. ACM (2005)

8. Cole, C., Williams, R.: Photoshop scalability: Keeping it simple. Queue 8, 20–28
(2010)

9. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. Computing in Science and Engineering 5(1), 46–55 (1998)

10. Lee, J.K., Palsberg, J.: Featherweight X10: a core calculus for async-finish paral-
lelism. In: Proceedings of PPoPP 2010, pp. 25–36. ACM (2010)

44 T. Cogumbreiro, F. Martins, and V.T. Vasconcelos

11. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:
Proceeding of OOPSLA 2009, pp. 227–242. ACM (2009)

12. Martins, F., Vasconcelos, V.T., Cogumbreiro, T.: Types for X10 Clocks. In:
Proceedings of PLACES 2010. EPTCS, vol. 69, pp. 111–129 (2011)

13. Oracle. Java Specification Request JSR-166 (2002)
14. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism. O’Reilly Media (2007)
15. Saraswat, V., Jagadeesan, R.: Concurrent clustered programming. In: Abadi, M.,

de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 353–367. Springer,
Heidelberg (2005)

16. Shirako, J., Peixotto, D., Sbirlea, D., Sarkar, V.: Phaser beams: Integrating stream
parallelism with task parallelism. In: X10 Workshop (2011)

17. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In: Proceedings of
ICS 2008, pp. 277–288. ACM (2008)

18. Shirako, J., Sharma, K., Sarkar, V.: Unifying barrier and point-to-point synchro-
nization in OpenMP with phasers. In: Chapman, B.M., Gropp, W.D., Kumaran,
K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665, pp. 122–137. Springer,
Heidelberg (2011)

19. Süß, M., Leopold, C.: Implementing irregular parallel algorithms with OpenMP.
In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128,
pp. 635–644. Springer, Heidelberg (2006)

20. Xiong, W., Park, S., Zhang, J., Zhou, Y., Ma, Z.: Ad hoc synchronization consid-
ered harmful. In: Proceedings of OSDI 2010, pp. 1–8. USENIX Association (2010)

Inference of Global Progress Properties
for Dynamically Interleaved Multiparty Sessions

Mario Coppo1, Mariangiola Dezani-Ciancaglini1,
Luca Padovani1, and Nobuko Yoshida2

1 Università di Torino, Dipartimento di Informatica
2 Imperial College London, Department of Computing

Abstract. Conventional session type systems guarantee progress within single
sessions, but do not usually take into account the dependencies arising from the
interleaving of simultaneously active sessions and from session delegations. As a
consequence, a well-typed system may fail to have progress, even assuming that
helper processes can join the system after its execution has started. In this paper
we develop a static analysis technique, specified as a set of syntax-directed infer-
ence rules, that is capable of verifying whether a system of processes engaged in
simultaneously active multiparty sessions has the progress property.

1 Introduction

A system of multiparty sessions has the global progress property if all processes in the
system that are involved in ongoing sessions do not get stuck waiting for a message that
is never sent and if every message sent is eventually consumed. On the one hand, this
notion of progress is stronger than requiring that a non-terminated system can always
reduce. For example, a system containing two processes engaged in an “infinite chatter”
(like two non terminating threads which communicate with each other) does not have
the progress property if some other process involved in an open session is stuck and un-
able to complete its own task. On the other hand, this notion of progress is weaker than
requiring that all processes in the system must be able to reduce. For example, a system
with an incomplete session, i.e. a session that has not been initiated and for which some
participants are missing, does have the progress property if it can be completed with the
missing participants to a system that has the progress property.

Communication type systems such as those introduced in [12,6] can check that pro-
cesses behave correctly with respect to the protocols associated with the single sessions.
The same type systems can also assure a local progress property within the single ses-
sions, but they fall short in assuring the global progress property when several multi-
party sessions are interleaved with each other or the communication topology of the
system changes as a consequence of delegations across these sessions.

In previous work [6] we have defined an interaction type system that, when used in
conjunction with the communication type system, can assure the global progress prop-
erty for processes in a calculus of asynchronous multiparty sessions. The interaction
type system pivots around three different typing rules for service initiations. To build
the type deduction for a process, provided that one exists, it is crucial, for each service

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 45–59, 2013.
c© IFIP International Federation for Information Processing 2013

46 M. Coppo et al.

occurring in the process, to choose the right typing rule. In practice, this means that
the interaction type system can be efficiently used only for verifying whether a given
process has a given type. A naive type inference algorithm based directly on the rules
of the type system would require backtracking, resulting in an exponential explosion
of the search space. The contribution of the present paper is the definition of a deter-
ministic, compositional inference algorithm which is proved to be sound and complete
with respect to the interaction type system of [6]. The algorithm is presented in a “nat-
ural deduction” style, as a set of inference rules that can be evaluated in a single-pass
analysis according to the structure of processes. The complexity is quadratic in the size
of processes, since the application of the rules requires evaluations of linear functions.
The basic idea is to devise a suitable data structure that stores the information about
all the possible ways a service initiation can be typed in the interaction type system,
postponing the commitment to a specific typing rule as long as possible. The inference
algorithm refines the information in this data structure discarding the typing rules of
service initiations that are found to be incompatible with the structure of the processes
being analyzed.

In §2 we define syntax and reduction semantics of the calculus of multiparty ses-
sions. In §3 we illustrate, through a number of smaller examples, various behavioral
patterns that we want to consider and how and when these may cause deadlocks. This
tutorial informally hints at the information available to the inference algorithm that
helps preventing deadlocks and how such information can be inferred from the struc-
ture of processes. The inference algorithm and the data structures it uses are described
in §4, which ends by showing the algorithm at work on a few examples. Related work
is discussed in §5, while §6 concludes with a summary of the results and an account of
ongoing and future work.

2 The Calculus of Multiparty Sessions

Syntax. We begin by fixing some notation for the following sets: service names are
ranged over by a, b, . . . ; value variables are ranged over by x, x′, . . . ; identifiers, i.e.,
service names and variables, are ranged over by u, w, . . . ; channel variables are ranged
over by y, z, t, . . . ; labels, functioning like method selectors, are ranged over by l, l′, . . . ;
we write S for the set of all service names and V for the set of all channel variables.
Processes, ranged over by P, Q, . . . , and expressions, ranged over by e, e′, . . . , are
given by the grammar in Table 1, where the syntax occurring only at runtime appears
shaded.

The process u [p](y).P initiates a new session through an identifier u with the other
participants, each of the form u[q](y).Qq where 1 ≤ q ≤ p− 1. The (bound) variable
y is the channel used for the private communications inside the session. We call p, q,
. . . (ranging over natural numbers) the participants of the session and we use Π, Π′ to
denote finite, non-empty sets of participants.

Communications that take place inside an established session are represented using
the next three pairs of primitives: the sending and receiving of a value; the sending and
receiving of a session channel (where the sender delegates the receiver to participate
in a session by passing a channel associated with the session); selection and branching

Inference of Global Progress Properties 47

Table 1. Calculus of multiparty sessions (syntax)

P ::= 0 Inaction
| u [p](y).P Service request
| u[p](y).P Service accept
| c!〈Π,e〉.P Send value
| c?(p,x).P Receive value
| c!〈〈p,c′〉〉.P Send channel
| c?((q,y)).P Receive channel
| c⊕〈Π, l〉.P Select
| c&(p,{li : Pi}i∈I) Branch
| if e then P else Q Conditional
| P | Q Parallel
| (νa : G)P Restricted service
| (νs)P Restricted session
| s : h Named queue

v ::= a | true | false Value

e ::= x | v | · · · Expression

c ::= y | s[p] Channel

m ::= (q,Π,v) Value in transit
| (q,p,s[p′]) Session in transit
| (q,Π, l) Label in transit

h ::= � | h ·m Queue

(where the former chooses one of the branches offered by the latter). All these oper-
ations specify the channel and the index of the sender or the receiver. Thus, c!〈Π,e〉
sends a value on channel c to all the participants in Π, while c?(p,x) denotes the inten-
tion of receiving a value on channel c from the participant p. The same holds for del-
egation/reception (but the receiver is only one) and for selection/branching. We write
c!〈p,e〉.P and c⊕〈p, l〉.P in place of c!〈{p},e〉.P and c⊕〈{p}, l〉.P. An output action is
a value sending, session sending or label selection. An input action is a value reception,
session reception or label branching; an input process is a process prefixed by an in-
put action. The service restrictions are decorated with the global types of the services.
Global types describe the communication protocol followed by the session participants;
we omit their syntax and refer the interested reader to [6] for the details. Conditional
processes and parallel composition are standard.

Queues and channels with role are generated by the operational semantics (see
Table 2). A channel with role is a pair s[p] representing the runtime endpoint of ses-
sion s used by participant p. As in [12], we model TCP-like asynchronous communi-
cations (where the message order is preserved and send actions are non-blocking) with
unbounded queues of messages in a session, denoted by h. A message in a queue can
be a value message (q,Π,v), indicating that the value v was sent by participant q to the
recipients in Π; a channel message (delegation) (q,p,s[p′]), indicating that q delegates
to p the role of p′ on the session s (represented by the channel with role s[p′]); and a
label message (q,Π, l) (similar to a value message). By � and h ·m we respectively de-
note the empty queue and the queue obtained by concatenating m to the queue h. With
some abuse of notation we will also write m ·h to denote the queue with head element
m. By s : h we denote the queue h of the session s. In (νs)P all occurrences of s[p] and
the queue name s are bound.

We write fs(P), fc(P) respectively for the sets of service names and channel names
occurring free in P. We define fn(P) = fs(P)∪ fc(P). A user process is a process which
does not contain runtime syntax.

48 M. Coppo et al.

Table 2. Reduction (selected rules)

∏n
i=1 a[i](y).Pi | a [n+1](y).Pn+1 → (νs)(∏n

i=1 Pi{s[i]/y} | Pn+1{s[n+1]/y} | s : �) [INIT]

s[p]!〈Π,e〉.P | s : h → P | s : h · (p,Π,v) (e ↓ v) [SEND]

s[p]!〈〈q,s′[p′]〉〉.P | s : h → P | s : h · (p,q,s′[p′]) [DELEG]

s[p]⊕〈Π, l〉.P | s : h → P | s : h · (p,Π, l) [SEL]

s[p]?(q,x).P | s : (q,p,v) ·h → P{v/x} | s : h [RCV]

s[p]?((q,y)).P | s : (q,p,s′[p′]) ·h → P{s′[p′]/y} | s : h [SRCV]

s[p]&(q,{li : Pi}i∈I) | s : (q,p, lk) ·h → Pk | s : h (k ∈ I) [BRANCH]

Operational Semantics. The operational semantics is defined as the combination of
reduction rules expressing actual computation steps and structural equivalence rules
that rearrange terms so as to enable reductions. Structural equivalence is almost standard
(and therefore omitted). The only peculiar rules allow rearranging the order of messages
in a queue when the senders or the receivers are not the same and for splitting a message
targeted to multiple recipients. Table 2 shows a selection of the relevant rules for the
process reduction relation P → P′. We briefly comment the rules in what follows.

Rule [INIT] describes the initiation of a new session involving n+1 participants that
synchronize over the service name a. Here we use ∏n

i=1 Pi to denote P1 | · · · | Pn. The
last participant a [n+ 1](y).Pn+1, distinguished by the overbar on the service name, de-
termines the number n+ 1 of participants. After the initiation, the participants share a
private session name s and the queue associated with s, which is initially empty. The
variable y in each participant p is replaced by the corresponding channel with role s[p].
The output rules [SEND], [DELEG], and [SEL] respectively push values, channels and
labels into the queue of the session s (in rule [SEND], the side condition e ↓ v denotes
the evaluation of the expression e to the value v). The input rules [RCV], [SRCV] and
[BRANCH] perform the corresponding complementary operations. Note that these opera-
tions check that the sender of the message matches the expected one so that the message
is actually meant for the receiver. Reduction is closed under evaluation contexts, which
are special terms with holes [] generated by the grammar below:

E ::= [] | P | (νa : G)E | (νs)E | (E | E)

We write E [P1, . . . ,Pn] for E where the i-th (left-to-right) hole has been filled with Pi.

The Communication Type System. The communication type system checks that pro-
cesses use service names and channels according to the global types associated with
them. It ensures that messages are exchanged in the right order and have the right types
within sessions. The communication type system also guarantees progress within a sin-
gle session, if this session is not interleaved with other sessions, but it cannot guar-
antee progress when multiple sessions are interleaved. We omit the specification of
the communication type system because it is well understood (see [12,6] for details).
In fact all processes in this paper are (assumed to be) well typed with respect to the
communication type system.

Inference of Global Progress Properties 49

Progress. Informally, we intend that a process has the progress property if each session,
once started, is guaranteed to satisfy all the requested interactions. A formal definition
of the progress property is not straightforward and the definition in [1] is unsatisfactory
in presence of infinite computations. We explain the key ideas and problems separately.

A natural requirement for progress in the case of communication protocols is that
an input process can always read a message in the expected queue and vice versa a
message in a queue is always read by an input process. Hence, we must assure that any
request of interaction on a session channel will always be satisfied. For instance, take
the processes:

P1 = a[1](y).b[1](z).y?(2,x).z!〈2,x〉 Q1 = a [2](y).b [2](z).z?(1,x′).y!〈1,x′〉
The problem of P1 | Q1 is that it reduces to a process in which the output actions of both
sessions are prefixed by input actions of the other session. Indeed, P1 | Q1 reduces to

(νs)(νs′)(s[1]?(2,x).s′[1]!〈2,x〉 | s′[2]?(1,x′).s[2]!〈1,x′〉)
where the private sessions s and s′ respectively established for the a and b services have
replaced the channel variables y and z in P1 and Q1. This configuration is stuck because
the two processes are blocked mutually waiting for a message from restricted channels.
Instead, the process P1 | Q′

1 where:

Q′
1 = a [2](y).b [2](z).y!〈1, true〉.z?(1,x).0

has progress and reduces to 0.
Building on Kobayashi’s definition of lock-freedom [13] and on the definition of

communication safety of [8] we require that each input process will always be able to
receive an appropriate message along some computation and that each message in a
queue will always be received by an appropriate input process along some computa-
tion. However, we must also consider that an incomplete session (i.e., without all the
required participants) on service a occurring in a process P can always be allowed to
start by composing P with a process containing the missing participants for a. For this
reason, we use catalyser processes to provide the missing participants to sessions and
to make sure that rule [INIT] can always be applied, so that session accept and session
request prefixes are never blocking. We omit here the precise definition of catalysers
which requires a number of auxiliary definitions (see [6] for the details). Intuitively, a
catalyser is a parallel composition of processes where each process implements the be-
havior of a single participant. In particular, in a catalyser it is never the case that actions
pertaining to different sessions are interleaved with each other in the same sequential
thread. Therefore, catalysers cannot generate deadlocks.

The last notion we need before defining progress is a natural duality between input
processes and message queues, which only takes into account top inputs in processes
and leftmost messages in queues.

Definition 2.1 (Duality). The duality between input processes and message queues is
the least symmetric relation defined by:

s[p]?(q,x).P
� s : (q,p,v) ·h
s[p]?((q,y)).P
� s : (q,p,s′[p′]) ·h

s[p]&(q,{li : Pi}i∈I)
� s : (q,p, lk) ·h (k ∈ I)

50 M. Coppo et al.

We are now able to define progress as follows:

Definition 2.2 (Progress). A process P has the progress property if for all catalysers Q
such that P | Q is well typed in the communication system, if P | Q →∗ E [R], where R
is an input process or a non-empty message queue, then there are a catalyser Q′, and
E ′,R′ such that E [R] | Q′ →∗ E ′[R,R′] and R � R′.

3 A Tutorial to Progress Inference

Service dependencies. The basic idea for preventing deadlocks is to forbid mutual de-
pendencies between services. A dependency between two services originates when an
input action pertaining to one of the services guards (hence potentially blocks) any ac-
tion of the other service. A paradigmatic example of process without progress is P1 | Q1

that we have already examined in §2. Observe that in process P1 we have an input ac-
tion on service a that guards an output action on service b. This dependency can be
recorded as the relation a ≺ b associated with process P1. In process Q1 the situation is
reversed, determining b ≺ a. If we take P1 and Q1 in isolation, then no circular depen-
dency is detected. However, when considering P1 | Q1, the relations associated with this
composition result into the circular dependency a ≺ b ≺ a.

The idea of avoiding circular dependencies between services breaks apart as soon
as service names are first-class entities that can be sent as messages. When this hap-
pens, the actual dependencies between services may dynamically change as the system
evolves and it might happen that a system without circular dependencies turns into one
with circular dependencies. To illustrate the issue, consider the processes

P2 = c[1](t).t?(2,x).x[1](y).b[1](z).y?(2,x′).z!〈2,x′〉 Q2 = c [2](z).z!〈1,a〉

and observe that Q2 sends to P2 the name of service a. The analysis of process P2 may
determine the relation x ≺ b, because there is an action pertaining to service x that
blocks another action pertaining to service b. However, since x is a bound variable in
P2, there is no obvious way to associate this dependency with P2. On the other hand, the
analysis of process Q2 yields no apparent dependencies for a. Overall, no dependency
is inferred for P2 | Q2, even though at runtime the system will reduce to a configuration
that yields the relation a≺ b. Then, if P2 | Q2 is composed with a process that yields the
inverse dependency b ≺ a, a deadlock can occur. Indeed P2 | Q2 | Q1 reduces to P1 | Q1

which leads to a deadlock, as we have seen in §2.
The idea then is to identify a class of services which do not cause deadlocks even

when they are involved into circular dependencies, and to allow a service name to be
sent as a message only if it refers to a service in this class. A practically relevant class
of services with this property is that of nested ones, which are characterized by the fact
that they can only be blocked by actions pertaining to nested invocations of services
that are themselves nested. As an example, consider the processes

P3 = a [2](y).y?(1,x).a [2](z).z?(1,x′).z!〈1, true〉.y!〈1, false〉
Q3 = a[1](y).y!〈2, false〉.a[1](z).z!〈2, true〉.z?(2,x′).y?(2,x)
R3 = a[1](y).y!〈2, false〉.a[1](z).y?(2,x).z!〈2, true〉.z?(2,x′)

Inference of Global Progress Properties 51

and observe that P3 represents the request of two nested invocations of service a. Ob-
serve also that in P3 there is an input action on channel z that guards an output action
on channel y and that both actions pertain to the service a. As a consequence, these
dependencies result in the relation a ≺ a that denotes a circular dependency. However,
P3 has a peculiar structure in that all the actions related to the innermost invocation
of a are completely nested within the ones related to the outermost invocation of a.
More generally, there is no blocking action of the outermost invocation of a that is
interleaved with actions of the innermost invocation of a. In fact, this interaction struc-
ture closely resembles an ordinary function call of a sequential programming language,
where a caller function is suspended until the callee has terminated. The point is that if
all request and accept operations concerning service a follow this pattern (i.e., they are
not interleaved with blocking actions from other sessions), then the process P3 cannot
deadlock even if its structural analysis establishes the circular dependency a ≺ a. For
example, also Q3 gives rise to the same circular dependency, but it follows the same
structure as P3 and the composition P3 | Q3 is deadlock free. By contrast, in R3 we no-
tice that, after the innermost invocation of a has been accepted, there is an input action
on y, which pertains to the outermost invocation, blocking the actions pertaining to the
innermost one. Indeed, the composition P3 | R3 yields a deadlock.

Relative and Nested services. To promote P3 (and Q3) among the safe processes, we
associate services with different features and we impose different constraints on the
structure of services depending on the features they have. We say that a service that is
never involved in circular dependencies with other services has the R (for Relative) fea-
ture. A service a where no action from other sessions can block the sessions initiated on
a has the N (for Nested) feature. This is precisely the case of the innermost invocation of
a in P3 and Q3. But there is more: if the innermost session cannot deadlock, it becomes
“unobservable” as far as the dependency analysis is concerned so we can say that also
the outermost invocation of a in P3 and Q3 is not blocked by actions of other sessions.
As a consequence, the outermost service a has the N feature as well.

The N feature may also be used for dealing with circular dependencies between dif-
ferent services. As an example, consider the processes

P4 = a [2](y).b [2](z).z?(1,x).y?(1,x′) Q4 = b [2](z).a [2](y).y?(1,x).z?(1,x′)

representing two clients which, for unspecified reasons, request the two services a and
b in different orders. If P4 and Q4 run within the same system, then they immediately
yield the circular dependencies a ≺ b ≺ a. Still, if the processes implementing a and b
(not shown here) are independent, in the sense that they do not rely on each other, then
there is no danger of deadlock. The fundamental observation here is that neither service
seems to have the N feature if considered in isolation: each service request is blocked
by an action from the other service. However, if b is assumed to have the N feature,
then a has the N feature also, and vice versa. In other words, the circular dependency
a ≺ b ≺ a identifies a clique of services that is safe (i.e., deadlock-free) if every service
in the clique has the N feature under the hypothesis that all the others do as well.

In general, the same service may have both the R and the N features at the same
time. This is the case of a and b in P4 and Q4 above when each process is considered

52 M. Coppo et al.

in isolation. However, note that the b service in P1 has the R feature but not the N one,
while neither a nor b has the R feature in P4 | Q4. This observation is crucial for the
inference algorithm because the fact that a service a does not have a particular feature
may affect other services related to a by the dependency relation. In particular, if a ≺ b
and b does not have the R feature (hence it has the N one), then a cannot have the R

feature (and it must have the N one). Dually, if a does not have the N feature, then b
cannot have the N feature.

Bounded services. The next usage pattern that we wish to consider concerns private
services. Take for example the process

b[1](y).(νa : 1 → 2 :〈bool〉)(a [2](z).z?(1,x).y!〈2, false〉)
where the a service has been restricted and is therefore inaccessible from the outside.
Even if the a service has both the R and N features, the fact that it is restricted makes
it observably equivalent to the idle process. This has severe consequences on the outer
service b, because the output action on channel y cannot be executed. In essence, we
devise a third feature B (for Bounded) associated with services that can be restricted and
that prevents them to be followed by any communication action on free channels.

Wrap up. To summarize, when we analyze a system of interleaved multiparty sessions
we associate services in the system with (a combination of) three features R, N, and B:

– A service has the R feature if it never generates circular dependencies with other
services it is interleaved with.

– A service has the N feature if it is never interleaved with blocking actions from
other services not having the N feature.

– Finally, a service has the B feature if it has the N feature and it is never followed by
any action on free communication channels.

Overall there are eight feature combinations. One of these corresponds to the fact that a
service has none of the features outlined above. In this case, the service will be rejected
by our system as being ill typed. Furthermore, having the B feature implies having the
N feature. Therefore, each well-typed service may be classified into one of five feature
combinations. Note that, in the informal definitions above, “never” means both “for
no occurrence of the service in the system” and “at any time during the evolution of
the system”. The inference algorithm has to find a trade off between flexibility (the
number of systems for which progress can be guaranteed) and feasibility (the analysis is
solely based on the initial state of the system). In fact, when discussing first-class service
names we have already seen a case in which the algorithm is forced to act conservatively
due to the lack of precise information about the runtime evolution of a system.

The inference of the progress property performs an analysis on the structure of pro-
cesses, keeping track of the dependencies between services and incrementally refining
the features associated with services, making sure that each service has at least one of
the features described above. Initially, each service has every feature. As the analysis
proceeds bottom up on the structure of processes, features are removed from services
that are found to be incompatible with them. In a nutshell, the most relevant refinement
steps taken by the algorithm occur at the following events:

Inference of Global Progress Properties 53

– As soon as a circular dependency is detected, all processes involved in the circular-
ity (and those preceding them in the dependency relation) lose the R feature.

– When a process of shape ã[p](y).P is encountered, where ã is either an accept action
a or a request action a , a loses the N feature if it is not minimal in the dependency
relation (meaning that it may be blocked by another session of a service not having
the N feature). Also, a loses the B feature if P has free channels other than y.

– When a process of shape y?(p,x).P is encountered, the dependencies are enriched
with relations y ≺ z for every channel z that occurs free in P. The same happens for
session receives and branching processes, since these are all blocking actions.

– When a process of shape P | Q is encountered, the dependencies computed for P
and those computed for Q are merged together, while the features for every service
in the overall process are those in common between P and Q. Similar operations
are performed when analyzing branching and conditional processes, where multiple
processes come together.

– When a process of shape y!〈p,a〉.P is encountered, the service a loses the R feature.
– Special measures must be taken when channels are communicated. These will be

detailed shortly.

The next section is devoted to formalizing all the concepts and procedures outlined in
this tutorial.

4 Progress Inference

In this section we introduce a deterministic, compositional type inference algorithm,
defined via a set natural semantics rules, assuring that a given user process has the
progress property. As we have anticipated in §3, the basic idea of the inference algo-
rithm is to keep track of dependencies between services.

A service qualifier is either a service name a or a channel variable y; we write Λ=
S ∪V for the set of all service qualifiers; we let λ range over elements of Λ and L
over subsets of Λ.

A dependency relation is a transitive relation D ⊆ Λ×Λ. We denote with λ ≺ λ ′
the elements of Λ×Λ. The meaning of λ ≺ λ ′ is, roughly, that an input action on the
channel (or on the channel bound by service) λ can block a communication action on
the channel (or on the channel bound by service) λ ′.

The inference algorithm makes use of some auxiliary operators for D that are intro-
duced below:

– D ↓ λ def
= {λ}∪ {λ ′ | λ ′ ≺ λ ∈ D} is the set of elements that are smaller than or

equal to λ in D, namely the set of service qualifiers having an input action that can
block a communication action on λ , plus λ itself.

– D ↑ λ def
= {λ}∪{λ ′ | λ ≺ λ ′ ∈ D} is the symmetric operation that determines the

set of service qualifiers that may be blocked by an input action on λ , plus λ itself.
– D \L

def
= {λ ≺ λ ′ ∈ D | λ �∈ L ∧λ ′ �∈ L } is the subset of D pertaining to all the

service qualifiers not occurring in L .
– D∞ def

= {λ | λ ≺ λ ∈ D} is the set of service qualifiers involved in circular depen-
dencies in D.

54 M. Coppo et al.

Table 3. Inference algorithm for the interaction type system

{INACT-I}
0 �⇒ /0;S ;S ;S

{INIT*-I}
P �⇒D;R;N;B

ã[p](y).P �⇒ F(D{a/y}+,R,N,B\{a | fc(P) �⊆ {y}})

{INITV-I}
P �⇒ D;R;N;B fc(P)⊆ {y}

x̃[p](y).P �⇒ F(D\{y},R\ (D ↓ y),N,B)

{NRES-I}
P �⇒D;R;N;B a ∈ B

(νa : G)P �⇒ D\{a};R\{a};N\{a};B\{a}

{SEND-I}
P �⇒D;R;N;B

y!〈Π,e〉.P �⇒ F(D,R\{e},N,B)

{RCV-I}
P �⇒D;R;N;B

y?(q,x).P �⇒ (pre(y, fc(P))∪D)+;R;N;B

{DELEG-I}
P �⇒D;R;N;B

y!〈〈p,z〉〉.P �⇒ ({y ≺ z}∪D)+;R;N;B

{SRCV-I}
P �⇒D;R;N;B D\S ⊆ {y ≺ z}

y?((q,z)).P �⇒D\{z};R;N;B

{SEL-I}
P �⇒D;R;N;B

y⊕〈Π, l〉.P �⇒D;R;N;B

{BRANCH-I}
Pi �⇒ Di;Ri;Ni;Bi

(i∈I) D = (pre(y,
⋃
i∈I

fc(Pi))∪
⋃
i∈I

Di)
+

y&(p,{li : Pi}i∈I) �⇒ F(D,
⋂
i∈I

Ri,
⋂
i∈I

Ni,
⋂
i∈I

Bi)

{PAR-I}
Pi �⇒Di;Ri;Ni;Bi

(i=1,2) D= (D1∪D2)
+

P1 | P2 �⇒ F(D,R1∩R2,N1 ∩N2,B1 ∩B2)

{IF-I}
Pi �⇒Di;Ri;Ni;Bi

(i=1,2) D= (D1∪D2)
+

if e then P1 else P2 �⇒ F(D,R1∩R2,N1 ∩N2,B1 ∩B2)

We extend ↓ and ↑ to sets L of service qualifiers in the natural way. We also write
D{a/y} for the relation obtained from D where every occurrence of y has been replaced
by a and R+ for the transitive closure of a generic relation R.

The inference rules prove judgments of the form P �⇒ D;R;N;B, where D is a de-
pendency relation and R, N, and B are sets of service names. As a first approximation,
we can think of the services in these sets as those that respectively have the R, N, and
B feature. However, for services that are communicated in messages it is not easy to
statically guarantee that they will not be involved in a circular dependency at runtime.
Therefore, we conservatively remove communicated services from the R set even if they
are not explicitly involved in circular dependencies.

A judgment P �⇒ D;R;N;B is well formed if:

1. If a service a has the R feature, then all the services following a in D have R feature.
Also, no service involved in a circular dependency can have the R feature. This is
formally expressed as D ↑ R⊆ R\D∞∪V .

Inference of Global Progress Properties 55

2. If a service a has the N feature, then all service qualifiers preceding a in D must be
services with the N feature. That is, D ↓ N⊆ N.

3. The set of services having the B feature is included in those having the N feature.
That is, B⊆ N.

4. All services occurring free in P have at least the R or the N feature. If some service
in P has neither the R nor the N feature, then our inference algorithm does not
guarantee the progress property for P. That is, fs(P)⊆ R∪N.

In general, the inference rules add dependencies to the D relation and remove service
names from the R, N, B sets when these services lose features. To be sure that the
quadruple resulting from the application of an inference rule still satisfies the conditions
(1–3) above, we define a function F that, given a quadruple D, R, N, B, computes a new
one where services are removed from the sets R, N, B whenever they are found to be
incompatible with the corresponding feature:

F(D,R,N,B)
def
= D;R′;N′;B∩N′

where R′ = {a ∈ R | D ↑ a ⊆ R\D∞∪V } and N′ = {a ∈ N | D ↓ a ⊆ N}.
Table 3 defines the inference for the interaction type system. We implicitly assume

that an inference rule can be applied only if the judgment in the conclusion is well
formed. In the next paragraphs we describe each inference rule in detail.

{INACT-I} is by far the simplest inference rule, which yields no dependencies and
poses no constraints on the features of services. In particular, D is /0 and the R, N, and
B components are the full set S of service names.

{INIT*-I} is used for typing accept and request operations on a known service name a
(recall that we use ã for either a or a). The rule computes a new quadruple F(D{a/y}+,
R,N,B\{a | fc(P)\{y} �= /0}) from the one obtained by typing the continuation process
P, where D{a/y}+ replaces the channel variable y with a in D so that all the dependen-
cies already established for a are enriched with those computed for y. Also, a loses the
B feature if P contains free channels other than y.

{INITV-I} is analogous to {INIT*-I}, but considers the case in which the session is
initiated on an unknown service x. Because nothing is known on the service a that will
replace x at runtime, the rule acts conservatively assuming that a has both the N and the
B features. In particular, the continuation process P is required to have no free channel
other than y (this is necessary if a has the B feature) and all services preceding y in
D lose the R feature (this is necessary if a has the N feature but not the R one). Note
that it is not possible to keep track, in D, of all the dependencies related to y as we did
in {INIT*-I}. In fact, any dependency related to y in D is removed. This may prevent
the inference algorithm from statically detecting circular dependencies for services that
are communicated in messages. For this reason, we will require that all service names
communicated by rule {SEND-I} must have the N feature (Example 4.2 shows that this
is necessary for communicated services to prevent deadlocks).

When a service name a is restricted in a process P, rule {NRES-I} checks that a has
the B feature. Then, all dependencies related to a and a itself are removed from all the
components of the quadruple in the conclusion of the rule.

Rules {SEND-I} and {SEL-I} do not change the dependency relation because send
operations are non-blocking. In the case of {SEND-I}, however, we must check that if

56 M. Coppo et al.

the message sent e is a service name, then it cannot have the R feature. The application
of the F function makes sure that all the components of the quadruple remain consistent
after this removal.

Rule {RCV-I} is used for typing value receptions. In this case, only the dependency
relation is changed to record the fact that the input action on channel y may block subse-
quent actions on the free channels occurring in P. The function pre(y, fc(P)) creates the
dependency relation that contains the pairs y ≺ z for all z ∈ fc(P). Note that no depen-
dency is recorded between y and the free service names possibly occurring in P. This is
because these services can always be unblocked by adding suitable catalysers (see Def-
inition 2.2) provided that the communication occurring on y does not reach a deadlock.

Rule {BRANCH-I} is a natural generalization of rule {RCV-I} to a process with mul-
tiple branches. In this case, the dependencies inferred for each branch are merged
together and services lose those features that are not present in every branch.

Rule {DELEG-I} is similar to {SEND-I} and {SEL-I} in that it deals with a non-
blocking send operation. However, in this case the process is sending a channel variable
z over channel y, meaning that an action blocking a communication on y may also block
a communication on z, because z cannot be used by the receiver process until delegation
happens. Consequently, the dependency relation is enriched with the y ≺ z dependency.

Rule {SRCV-I} is similar to {RCV-I}, except that it is used for typing the reception of
a session channel. The rule is particularly restrictive because it is meant to prevent a dan-
gerous phenomenon called self-delegation, which happens when one process ends up
owning two (or more) endpoints of the same session. An example of this phenomenon
is shown in the processes

P5 = b[1](z).a[1](y).y!〈〈2,z〉〉 Q5 = b [2](z).a [2](y).y?((1,x)).x?(2,w).z!〈1, false〉
which, when executed in parallel, open two sessions on services a and b. Then, P5

sends the channel z related to the session on b over the channel y, which is related to
the session on a. At this point, Q5 owns both endpoints of the session on b and tries to
use them in an order that causes a deadlock. Indeed, P5 | Q5 reduces to

(νs)(s[1]?(2,w).s[2]!〈1, false〉)
which is stuck. Remarkably, the process P5 | Q5 is typable in the communication type
system hence it is the interaction type system that must detect the problem in this case.
The premise D\S ⊆ {y ≺ z} requires that the continuation process P5 cannot perform
any potentially blocking action on any channel other than y, and that if a potentially
blocking action is performed on y then it must necessarily block a communication ac-
tion on z. This restriction prevents self-delegation and, in general, suffices to guarantee
progress. Note that P5 is still allowed to open new sessions on other services.

{PAR-I} and {IF-I} conclude the inference system by suitably combining dependen-
cies and features, similarly to what we have already seen for the {BRANCH-I} rule.

The algorithm is quadratic in the size of processes, being defined on their structure, if
we use appropriate data structures to represent the dependency relation and the service
sets, getting linear complexity for the evaluation of the required functions.

The algorithm is sound, namely:

Theorem 4.1. If P �⇒D;R;N;B, then P has the progress property.

Inference of Global Progress Properties 57

This theorem can be proved by showing that the inference algorithm is sound and com-
plete with respect to the interaction type system defined in [6].

We end with the application of the inference algorithm on two examples used earlier.

Example 4.1. Below are two executions of the inference algorithm on P1 and Q1 of §2.
For the sake of readability, we develop the inference bottom up assuming S = {a,b}.

P1 D R N B

z!〈2,x〉 /0 {a,b} {a,b} {a,b} {SEND-I}
y?(2,x) {y ≺ z} {a,b} {a,b} {a,b} {RCV-I}
b[1](z) {y ≺ b} {a,b} {a} {a} {INIT*-I}
a[1](y) {a ≺ b} {a,b} {a} {a} {INIT*-I}

Q1 D R N B

y!〈1,x′〉 /0 {a,b} {a,b} {a,b} {SEND-I}
z?(1,x′) {z ≺ y} {a,b} {a,b} {a,b} {RCV-I}
b [2](z) {b ≺ y} {a,b} {a,b} {a} {INIT*-I}
a [2](y) {b ≺ a} {a,b} {a,b} {a} {INIT*-I}

From the above table it turns out that both P1 and Q1 are well typed in isolation, in par-
ticular we have P1 �⇒ {a ≺ b};{a,b};{a};{a} and Q1 �⇒ {b ≺ a};{a,b};{a,b};{a}
but the application of rule {PAR-I} fails since F(D,{a,b},{a},{a})= (D, /0, /0, /0) where
D = {a ≺ b,b ≺ a}+, and the resulting judgment would not satisfy condition 4 of the
definition of well formedness. In particular the circular dependency removes the R fea-
ture from both a and b and the N feature is removed from b in P1 and then also from a
in the composition P1 | Q1 because of b ≺ a (see the definition of F). �

Example 4.2. The inference algorithm is not always able to statically determine a vi-
olation of the R feature, therefore it is unsafe to leave service names that are sent as
messages in the R set. Below is the result of the inference algorithm on the processes
P2 and Q2 of §3 assuming S = {a,b,c}:

P2 D R N B

z!〈2,x′〉 /0 {a,b,c} {a,b,c} {a,b,c} {SEND-I}
y?(2,x′) {y ≺ z} {a,b,c} {a,b,c} {a,b,c} {RCV-I}

b[1](z) {y ≺ b} {a,b,c} {a,c} {a,c} {INIT*-I}
x[1](y) /0 {a,b,c} {a,c} {a,c} {INITV-I}
t?(2,x) /0 {a,b,c} {a,c} {a,c} {RCV-I}
c[1](t) /0 {a,b,c} {a,c} {a,c} {INIT*-I}

Q2 D R N B

t!〈1,a〉 /0 {b,c} {a,b,c} {a,b,c} {SEND-I}
c [2](t) /0 {b,c} {a,b,c} {a,b,c} {INIT*-I}

Note that the dependency y ≺ b in P2 is erased because it concerns an unknown ser-
vice x that is bound in P2. This means that b is actually involved in dependencies
a ≺ b for every service a that is sent to P2, which is precisely what Q2 does. Indeed
we have P2 | Q2 �⇒ /0;{b,c};{a,c};{a,c} but P2 | Q2 | Q1, where Q1 is defined in
Example 4.1, cannot be typed. In fact, adding c to the set of services we get immedi-
ately Q1 �⇒ {b ≺ a};{a,b,c};{a,b,c};{a,c} but rule {PAR-I} cannot be applied since
F({b ≺ a},{b,c},{a,c},{a,c}) = ({b ≺ a},{b,c},{c},{c}) does not satisfy the con-
dition 4 of the definition of well-formedness for service a. Indeed we have the reduction
P2 | Q2 | Q1 →∗ P1 | Q1 which leads to a deadlock, as we have seen in §3. �

5 Related Work

Our notion of progress is strongly related to, and partly inspired from, the notion of
lock-freedom in [13], where Kobayashi develops a type system to enforce it. Intuitively,

58 M. Coppo et al.

a process is lock-free if, no matter how it reduces, every top-level prefix can be eventu-
ally consumed. In our case this roughly corresponds to the property that no process gets
stuck on an input action and that every message in a queue can be received. Kobayashi’s
type system seems capable of a much more fine-grained analysis than our type system.
However, despite the similarities between progress and lock-freedom, the two type sys-
tems are difficult to compare, because of several major differences in both processes
and types. In addition to the fact that we consider progress modulo the availability of
catalysers, our type system is given for an asynchronous language with a native notion
of (multiparty) session, while Kobayashi’s type system is defined for a basic variant
of the synchronous, pure π-calculus. A natural way for comparing these analysis tech-
niques would require compiling a session-based process into the pure π-calculus [7],
and then using Kobayashi’s type system for reasoning on progress of the original pro-
cess in terms of lock-freedom of the one resulting from the compilation.

A strategy that is alternative to compiling/encoding session-based processes is to lift
the technique underlying Kobayashi’s type system to a session type system for reason-
ing directly on the progress properties of processes. Some preliminary experiments in
this sense are reported in [14].

Most papers on service-oriented calculi only assure that clients are never stuck inside
a single session [12,9,8]. The first papers considering progress for interleaved sessions
required the nesting of sessions in Java [11,5].

The papers more related to the present one are [10] and [3]. In both these papers
there are constructions of processes providing missing participants, which are simpler
than our catalysers since sessions are dyadic.

[2] proposes a sophisticated proof system which builds a well-founded ordering on
events to enforce progress for processes of the Conversation Calculus [15], also in pres-
ence of dynamic join and leave of participants. Their progress is guaranteed under the
assumption that all communications are matched with sufficient joiners.

Formal theories of contracts using multiparty interaction structures are studied in
[4]. Contracts record the overall behaviour of a process, and typable processes them-
selves may not always satisfy properties such as progress: it is proved later by checking
whether a whole contract satisfies a certain form. Proving properties with contracts re-
quires an exploration of all possible interleaved or non-deterministic paths of a protocol.

6 Conclusions and Future Work

We have presented a sound and complete inference algorithm for the interaction type
system defined in [6] restricted to finite processes. This system guarantees progress of
interleaved multiparty sessions with session delegation and service communication.

There is a number of extensions stemming from this work, we focus on two of them.
First of all, it appears that the algorithm can be easily adapted to deal with recursive
processes, although soundness and completeness of such extension remain to be formally
established. Second, we plan to investigate how the approach can be applied to concrete
programming languages. The point is that the inference algorithm (and the interaction
type system as well) makes the fundamental assumption that a process can be examined
in terms of the complete sequence of input/output operations it performs. In practice,

Inference of Global Progress Properties 59

programs are made of opaque structures (higher-order functions, methods, modules, etc.)
and it is currently unclear whether such structures can be faithfully encoded as processes
in our calculus, or if instead it is necessary to devise richer type constructs to describe
them and to reason on global progress of systems in a modular way.

Acknowledgments. The authors are grateful to the reviewers for their useful comments and
to Naoki Kobayashi for discussions on the notion of lock-freedom. This work was partially sup-
ported by EPSRC EP/G015635/1 and EP/K011715/1, NSF Ocean Observatories Initiative, MIUR
Project CINA and Ateneo/CSP Project SALT.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida, N.:
Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

2. Caires, L., Vieira, H.T.: Conversation types. Theoretical Computer Science 411(51-52),
4399–4440 (2010)

3. Carbone, M., Debois, S.: A graphical approach to progress for structured communication in
web services. In: Bliudze, S., Bruni, R., Grohmann, D., Silva, A. (eds.) ICE 2010. EPTCS,
vol. 38, pp. 13–27 (2010)

4. Castagna, G., Padovani, L.: Contracts for Mobile Processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009. LNCS, vol. 5710, pp. 211–228. Springer, Heidelberg (2009)

5. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous Session Types and Progress
for Object Oriented Languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

6. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global Progress for
Dynamically Interleaved Multiparty Sessions. Mathematical Structures in Computer Science
(to appear)

7. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: De Schreye, D., Janssens,
G., King, A. (eds.) PPDP 2012, pp. 139–150. ACM Press (2012)

8. Deniélou, P.-M., Yoshida, N.: Dynamic Multirole Session Types. In: Ball, T., Sagiv, M. (eds.)
POPL 2011, pp. 435–446. ACM Press (2011)

9. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: an Overview. In:
Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer, Heidelberg
(2010)

10. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On Progress for Structured Commu-
nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008)

11. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session Types
for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: Necula,
G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM Press (2008)

13. Kobayashi, N.: A Type System for Lock-Free Processes. Information and Computation 177,
122–159 (2002)

14. Padovani, L.: From Lock Freedom to Progress Using Session Types. In: Yoshida, N.,
Vanderbauwhede, W. (eds.) PLACES (to appear, 2013)

15. Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Service-Oriented
Computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283.
Springer, Heidelberg (2008)

Pattern Matching and Bisimulation

Thomas Given-Wilson1 and Daniele Gorla2

1 NICTA, Sydney, Australia�
2 Dip. di Informatica, “Sapienza” Università di Roma

Abstract. Concurrent Pattern Calculus (CPC) is a minimal calculus whose
communication mechanism is based on a powerful form of symmetric pattern
unification. However, the richness of patterns and their unification entails some
flexibility in the challenge-reply game that underpins bisimulation. This leads
to an ordering upon patterns that is used to define the valid replies to a given
challenge. Such a theory can be smoothly adapted to accomplish other, less sym-
metric, forms of pattern matching (e.g. those of Linda, polyadic π-calculus, and
π-calculus with polyadic synchronization) without compromising the coincidence
of the two equivalences.

1 Introduction

Concurrent Pattern Calculus [20] is a minimal process calculus that uses symmetric
pattern unification as the basis of communication. CPC’s expressive power is obtained
by extending the messages sent during interaction from traditional names to a class of
patterns that are unified in an intensional manner (i.e., inspecting their internal struc-
ture). This unification supports equality testing and bi-directional communication in an
atomic step.

The exploration of intensionality in the concurrent setting is inspired by the increased
expressive power that the intensional S F-calculus has over λ-calculus [23]. Since in-
tensionality, as captured by pattern matching, is more expressive in sequential compu-
tation, it is natural to explore the expressiveness of intensionality, as captured by pattern
unification, in concurrent computation. Indeed, CPC formally generalises both the se-
quential intensional computation of S F-calculus and the traditional (non-intensional)
concurrent computation of π-calculus [18]. The expressive power of CPC is also tes-
tified to by the possibility of encoding some well-known process languages [20,18]:
π-calculus [26], Linda [16] and Spi-calculus [2]. CPC’s symmetric form of communi-
cation has similarities to Fusion [28]; however, the two calculi are unrelated (neither
one can be encoded in the other) [20,18]. Finally, CPC has been implemented in [17].

The main features of CPC are illustrated in the following sample trade interaction:

(ν sharesID)�ABCShares� • sharesID • λx → 〈charge x for sale〉
| (ν bankAcc)�ABCShares� • λy • bankAcc → 〈save y as proof 〉

�−→ (ν sharesID)(ν bankAcc)(〈charge bankAcc for sale〉 | 〈save sharesID as proof 〉)
� NICTA is funded by the Australian Government as represented by the Department of Broad-

band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 60–74, 2013.
c© IFIP International Federation for Information Processing 2013

Pattern Matching and Bisimulation 61

The first line models a seller that will synchronise with a buyer, using the protected
information ABCShares, and exchange its shares (sharesID) for bank account informa-
tion to charge (bound to x). The second line models a buyer. Notice that the information
exchange is bidirectional and simultaneous: sharesID replaces y in the (continuation of
the) buyer and bankAcc replaces x in the (continuation of the) seller. Moreover, the two
patterns �ABCShares� • sharesID • λx and �ABCShares� • λy • bankAcc also specify
the details of the shares being traded, that must be matched for equality in the pattern
matching as indicated by the syntax �·�.

Pattern unification in CPC is even richer than indicated in this example, as unification
may bind a compound pattern to a single name; that is, patterns do not need to be fully
decomposed in unification. For example, the bank account information could be speci-
fied, and matched upon, in much more detail. The buyer could provide the account name
and number such as in the following pattern: (ν accName)(ν accNum)�ABCShares� •
λy • (name• accName • number • accNum). This more detailed buyer would still match
against the seller, now yielding 〈charge name • accName • number • accNum for sale〉.
Indeed, the seller could also specify a desire to only accept bank account information
that includes a name and number with the following pattern: �ABCShares� • sharesID •
(�name� • λa • �number� • λb) and continuation 〈charge a b for sale〉. This would also
match with the detailed buyer information by unifying name with �name�, number with
�number�, and binding accName and accNum to a and b respectively. The second seller
exploits the intensionality of CPC to only interact with a buyer whose pattern is of
the right structure (four sub-patterns) and contains the right information (the protected
names name and number, and shared information in the other two positions). CPC is
built up around this rich form of pattern unification by using three standard operators
taken from the π-calculus: name restriction, parallel composition and replication (not
used in this simple example).

The focus of this paper is the investigation of the behavioural theory for CPC. As
usual in concurrency theory, this is done by first defining a notion of barbed congruence
and then capturing this via a labelled bisimulation-based equivalence. The main diffi-
culty relies in the richness of the pattern unification mechanism adopted, that entails
some flexibility in the challenge-reply game underlying the definition of the bisimula-
tion. For example, the challenge λx•λy can be replied to by λz, because of the non-fully
decomposing form of pattern matching. (Such as the seller who accepts anything as
bank account information.) Indeed, every pattern matching the challenge has the form
p•q, where p and q are communicable (i.e., they do not contain protected names �n� nor
binding names λw), yielding the substitution {p/x, q/y}. The same pattern also matches

λz, now yielding the substitution {p • q/z}. Of course, for P
λx•λy−−−−→ P′ to be simulated

by Q
λz−→ Q′, it must be that {p/x, q/y}P′ is bisimilar to {p • q/z}Q′. Another subtlety

is in the unification of shared information n with protected information �n�. Since the
latter is a request for the communicating party to also know this information, the two
patterns unify. (Such as the more careful seller checking that the buyer provides name
and number for a bank account.) These ideas are formalised via an ordering on patterns
that characterises the valid replies to a given challenge: every pattern ‘greater than’ the
challenge is a valid reply, provided that, by applying the resulting substitutions to the
respective continuations, bisimilar processes are obtained.

62 T. Given-Wilson and D. Gorla

The form of pattern unification adopted in CPC generalises other forms of pattern
matching already presented in the literature. It is then desirable that CPC’s theory and
results can be adapted to such simpler forms. Section 4 shows that this job is rather
straightforward for the form of pattern matching underlying Linda, for two simple ex-
tensions of Linda, for the polyadic π-calculus, and for the π-calculus with polyadic
synchronization. This provides a complete behavioural theory for the languages adopt-
ing such forms of pattern matching. Moreover, for the π-calculus, the result coincides
with the usual notions of barbed congruence and early bisimulation congruence; this
can be seen as a confirmation of the validity of the theory presented here.

2 Concurrent Pattern Calculus

Suppose a countable set of names N (meta-variables n,m, x, y, z, . . . – even if
in the examples symbolic names will be used). The patterns (meta-variables
p, p′, p1, q, q′, q1, . . .) are built using names and have the following forms:

p ::= λx | x | �x� | p • p

Binding names λx denote information sought by a trader; variable names x represent
such information. Protected names �x� represent recognised information that cannot be
traded. A compound p • q combines the two patterns p and q; compounds are left
associative.

Given a pattern p the sets of: variables names, denoted vn(p); protected names,
denoted pn(p); and binding names, denoted bn(p), are as expected with the union being
taken for compounds. The free names of a pattern p, written fn(p), is the union of the
variable names and protected names of p. A pattern is well formed if its binding names
are pairwise distinct and different from the free ones. All patterns appearing in the rest
of this paper are assumed to be well formed.

As protected names are limited to recognition and binding names are being sought,
neither should be communicable to another process. Thus, a pattern is communi-
cable, able to be traded to another process, if it contains no protected or bind-
ing names. Protection of a name can be extended to a communicable pattern p by
defining �p • q� = �p� • �q�.

A substitution σ is defined as a partial function from names to communicable pat-
terns. The domain of σ is denoted dom(σ); the free names of σ, written fn(σ), is given
by the union of the sets fn(σx) where x ∈ dom(σ). The names of σ, written names(σ),
are dom(σ) ∪ fn(σ). Notationally, given two substitutions σ and θ, denote with θ[σ]
the composition of σ and θ, with domain limited to the domain of σ, i.e. the substitu-
tion mapping every x ∈ dom(σ) to θ(σ(x)). For later convenience, define the identity
substitution on a set of names X, written idX: it maps every name in X to itself.

Substitutions are applied to patterns as follows:

σx =

{
σ(x) if x ∈ dom(σ)
x otherwise

σ�x� =
{
�σ(x)� if x ∈ dom(σ)
�x� otherwise

σ(λx) = λx σ(p • q) = (σp) • (σq)

Pattern Matching and Bisimulation 63

The symmetric matching (or unification) of two patterns p and q, written {p ‖ q}, at-
tempts to unify p and q by generating substitutions for their binding names. When
defined, the result is a pair of substitutions whose domains are the binding names of p
and of q, respectively. The rules to generate the substitutions are:

{x ‖ x} = {x ‖ �x�} = {�x� ‖ x} = {�x� ‖ �x�} def
= ({}, {})

{λx ‖ q} def
= ({q/x}, {}) if q is communicable

{p ‖ λx} def
= ({}, {p/x}) if p is communicable

{p1 • p2 ‖ q1 • q2} def
= (σ1 ∪ σ2 , ρ1 ∪ ρ2) if {pi ‖ qi} = (σi, ρi) for i ∈ {1, 2}

Variable and protected names unify if they are the same name. A binding name unifies
with any communicable pattern to produce a binding for its bound name. Two com-
pounds unify if their corresponding components do; the resulting substitutions are given
by taking the union of those produced by unifying the components (necessarily disjoint,
as patterns are well-formed). Otherwise the patterns cannot be unified and the matching
is undefined. Notice that pattern matching is deterministic because of left-associativity
of compounds.

The processes of CPC are given by:

P ::= 0 | P | P | !P | (νx)P | p → P

The null process 0 is the inactive process; P | Q is the parallel composition of processes
P and Q, allowing the two processes to evolve independently or by interacting; the
replication !P provides as many parallel copies of P as desired; (νx)P declares a new
name x, visible only within P and distinct from any other name. The traditional input
and output primitives of process calculi are replaced by the case, viz. p → P, that has
a pattern p and a body P. A case with the null process as the body may also be written
by only specifying the pattern. For later convenience, ñ denotes a collection of names
n1, . . . , ni; for example, (νn1)(. . . ((νni)P)) will be written (ν̃n)P.

The free names of processes, denoted fn(P), are defined as usual for all the traditional
primitives and fn(p → P) = fn(p)∪(fn(P)\bn(p)) for the case, where the binding names
of the pattern bind their free occurrences in the body.

The structural equivalence relation ≡ is defined just as in π-calculus [25]: it includes
α-conversion and its defining axioms are:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P
(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P P | (νn)Q ≡ (νn)(P | Q) if n � fn(P)

The operational semantics of CPC is formulated via a reduction relation between pairs
of processes. Its defining rules are:

(p → P) | (q → Q) �−→ (σP) | (ρQ) if {p ‖ q} = (σ, ρ)

P �−→ P′

P | Q �−→ P′ | Q

P �−→ P′

(νn)P �−→ (νn)P′
P ≡ Q Q �−→ Q′ Q′ ≡ P′

P �−→ P′

64 T. Given-Wilson and D. Gorla

CPC has one interaction axiom, stating that, if the unification of two patterns p and q
is defined and generates (σ, ρ), the substitutions σ and ρ are applied to the bodies P
and Q, respectively. If the matching of p and q is undefined then no interaction occurs.
The interaction rule is then closed under parallel composition, restriction and structural
equivalence in the usual manner.

3 Behavioural Theory

This section follows a standard approach in concurrency to defining behavioural equiv-
alences, beginning with a barbed congruence and following with a labelled transition
system (LTS) and a definition of bisimulation for CPC. Some properties of patterns will
be explored as a basis for showing coincidence of the semantics.

3.1 Barbed Congruence

The first crucial step is to characterise the interactions a process can participate in via
barbs. Since a barb is an opportunity for interaction, a simplistic definition could be the
following:

P ↓ iff P ≡ p → P′ | P′′, for some p, P′ and P′′ (1)

However, this definition is too strong: for example, (νn)(n → P) does not exhibit a barb
according to (1), but it can interact with an external process, e.g. λx → 0. Thus, an
improvement to (1) is as follows:

P ↓ iff P ≡ (ν̃n)(p → P′ | P′′), for some ñ, p, P′ and P′′ (2)

Now, this definition is too weak. Consider (νn)(�n�→ P): it exhibits a barb according to
(2), but cannot interact with any external process. A further refinement on (2) could be:

P ↓ iff P ≡ (ν̃n)(p → P′ | P′′), for some ñ, p, P′, P′′ s.t. pn(p) ∩ ñ = ∅ (3)

This definition is not yet the final one, as it is not sufficiently discriminating to have
only a single kind of barb (the contexts in Definition 9 use two kinds of barbs, to define
success and failure). Thus, like in CCS and π-calculus [27], barbs must be indexed, e.g.
on some names that give an abstract account of the matching capabilities of the process.
Because of the rich form of interactions, CPC barbs also include the set of names that
may be tested for equality in an interaction, not just those that must be equal.

Definition 1 (Barb). Let P ↓m̃ mean that P ≡ (ν̃n)(p → P′ | P′′) for some ñ, p, P′ and
P′′ such that pn(p) ∩ ñ = ∅ and m̃ = fn(p)\̃n.

Using this definition, a barbed congruence can be defined in the standard way [21], by
requiring three properties. Let� denote a binary relation on processes and let a context
C(·) be a process with the hole ‘ · ’ replacing one instance of the null process.

Definition 2 (Barb preservation). � is barb preserving iff, for every (P,Q) ∈ �, it
holds that P ↓m̃ implies Q ↓m̃.

Pattern Matching and Bisimulation 65

case : (p → P)
p−→ P resnon :

P
μ−→ P′

(νn)P
μ−→ (νn)P′

n � names(μ)

resin :
P

(ν̃n)p−−−→ P′

(νm)P
(ν̃n,m)p−−−−−→ P′

m ∈ vn(p) \ (̃n ∪ pn(p) ∪ bn(p)) rep :
!P | P

μ−→ P′

!P
μ−→ P′

match :
P

(νm̃)p−−−−→ P′ Q
(ν̃n)q−−−→ Q′

P | Q τ−→ (νm̃, ñ)(σP′ | ρQ′)

{p ‖ q} = (σ, ρ)
m̃ ∩ fn(Q) = ñ ∩ fn(P) = ∅
m̃ ∩ ñ = ∅

parext :
P

(ν̃n)p−−−→ P′

P | Q
(ν̃n)p−−−→ P′ | Q

(̃n ∪ bn(p)) ∩ fn(Q) = ∅ parint :
P
τ−→ P′

P | Q
τ−→ P′ | Q

Fig. 1. LTS (the symmetric version of parint and parext have been omitted)

Definition 3 (Reduction closure). � is reduction closed iff, for every (P,Q) ∈ �, it
holds that P �−→ P′ implies Q �−→ Q′, for some Q′ such that (P′,Q′) ∈ �.

Definition 4 (Context closure). � is context closed iff, for every (P,Q) ∈ � and for
every context C(·), it holds that (C(P),C(Q)) ∈ �.

Definition 5 (Barbed congruence). Barbed congruence, �, is the largest symmetric,
barb preserving, reduction and context closed binary relation on processes.

Barbed congruence equates processes with the same behaviour, as captured by barbs:
two equivalent processes must exhibit the same behaviours, and this property should
hold along every sequence of reductions and in every execution context. This defines the
strong version of barbed congruence; its weak counterpart can be obtained in the usual
manner [26,27], with more complex contexts for proving the completeness theorem.

The problem in proving (strong/weak) barbed congruence is its closure under any
context. As is typical we solve this by giving an easier to reason about coinductive
(bisimulation-based) characterization using an alternate operation semantics; an LTS.

3.2 Labelled Transition System

The following is an adaption of the standard late LTS for the π-calculus [26]. Labels are
defined as follows:

μ ::= τ | (ν̃n)p

Labels are used in transitions P
μ−→ P′ between processes, whose defining rules are given

in Figure 1. Rule case states that a case’s pattern can be used to interact with external
processes. Rule resnon is used when a restricted name does not appear in the names of
the label: it simply maintains the restriction on the process after the transition. By con-
trast, rule resin is used when a restricted name occurs in the label: as the restricted name
is going to be shared with other processes, the restriction is moved from the process to

66 T. Given-Wilson and D. Gorla

the label (this is called extrusion, by using a π-calculus terminology). Of course an ex-
truded name cannot already be restricted, cannot be protected (as this would prevent
interaction), and cannot be a binding name. Rule match defines when two processes
can interact to perform an internal action: this can occur whenever the processes ex-
hibit labels with unifiable patterns and with no possibility of clash or capture due to
restricted names. Rule rep unfolds the replicated process to infer the action. Rule parint
states that, if either process in a parallel composition can transition by an internal ac-
tion, then the whole process can transition by an internal action. Rule parext is similar,
but is used when the label is visible: when one of the processes in parallel exhibits an
external action, then the whole composition exhibits the same external action, as long as
the restricted or binding names of the label do not appear free in the parallel component
that does not generate the label.

Note that α-conversion is always assumed to satisfy the side conditions whenever
needed and the symmetric rules have been omitted for brevity.

The presentation of the LTS is concluded with the following two results. First, the
LTS is structurally image finite, i.e. for every P and μ, there are finitely many ≡-
equivalence classes of μ-reducts of P (Proposition 1). Second, the τ’s in the LTS induce
the same operational semantics as the reductions (Proposition 2).

Proposition 1. The LTS defined in Figure 1 is structurally image finite.

Proposition 2. If P
τ−→ P′ then P �−→ P′. Conversely, if P �−→ P′ then there exists P′′

such that P
τ−→ P′′ ≡ P′.

3.3 Bisimulation

The next step is to develop a bisimulation relation that equates processes with the same
interactional behaviour as captured by the labels of the LTS. The complexity is that the
labels for external actions contain patterns, and some patterns are ‘more general’ than
others, in terms of their matching capabilities. Two examples can clarify the point.

Example 1. Consider the processes P = λx•λy → x•y and Q = λz → z. Every process
that can interact with P (by exhibiting a pattern matching against λx • λy) can interact
with Q, but not vice versa: e.g., n → 0 can interact with Q but not with P. In this sense,
the pattern λz is considered ‘more general’ than λx • λy.

Example 2. Consider the processes P = �n� → 0 and Q = n → 0. Every process that
can interact with P can interact with Q, but not vice versa: consider, e.g., λx → 0. Thus,
the pattern n is considered ‘more general’ than �n�.

Now define an order relation on patterns that can be used to develop the bisimulation.
In most process calculi, a challenge is replied to with an identical action [26]. However,
there are situations in which an exact reply would make the bisimulation equivalence
too fine for characterising barbed congruence [3,12]. This is due to the impossibility for
the language contexts to force barbed congruent processes to execute the same action;
in such calculi more liberal replies must be allowed, as here for CPC. To this aim, define

Pattern Matching and Bisimulation 67

σ̂ as a normal substitution, except that it operates on binding names rather than on free
ones. Formally:

σ̂x = x σ̂�x� = �x� σ̂(λx) =

{
σ(x) if x ∈ dom(σ)
λx otherwise

σ̂(p • q) = (σ̂p) • (σ̂q)

Definition 6. Let p, q, σ and ρ be such that bn(p) = dom(σ) and bn(q) = dom(ρ). De-
fine inductively that p is compatible with q by σ and ρ, denoted p, σ� q, ρ, whenever:

p, σ� λy, {σ̂p/y} if fn(p) = ∅ n, {} � n, {}
�n�, {} � �n�, {} �n�, {} � n, {}
p1 • p2, σ1 ∪ σ2 � q1 • q2, ρ1 ∪ ρ2 if pi, σi � qi, ρi, for i ∈ {1, 2} .

The next result captures the idea behind the definition of compatibility: the patterns
matched by p are a subset of the patterns matched by q.

Lemma 1. p, σ� q, ρ and {p ‖ r} = (σ, θ) implies {q ‖ r} = (ρ, θ).

Moreover, compatibility preserves information used for barbs, is stable under substitu-
tion composition, is reflexive and transitive.

Proposition 3. If p, σ � q, ρ then fn(p) = fn(q) and fn(σ) = fn(ρ). Moreover, vn(p) ⊆
vn(q) and pn(q) ⊆ pn(p).

Lemma 2. If p, σ� q, ρ then p, θ[σ] � q, θ[ρ], for every θ.

Proposition 4. Given p and σ such that dom(σ) = bn(p), then p, σ� p, σ.

Proposition 5. p, σ� q, ρ and q, ρ� r, θ imply p, σ� r, θ.

Definition 7 (Bisimulation). A symmetric binary relation on processes � is a bisimu-

lation if, for every (P,Q) ∈ � and P
μ−→ P′, it holds that:

– if μ = τ, then Q
τ−→ Q′, for some Q′ such that (P′,Q′) ∈ �;

– if μ = (ν̃n)p, for (bn(p) ∪ ñ) ∩ fn(Q) = ∅, then for all σ with dom(σ) = bn(p) and

fn(σ) ∩ ñ = ∅ there exist q, Q′ and ρ such that Q
(ν̃n)q−−−→ Q′ and p, σ � q, ρ and

(σP′, ρQ′) ∈ �.

Denote with ∼ the largest bisimulation closed under any substitution.

The definition is inspired by the early bisimulation congruence for the π-calculus [26]:
first of all, to be a congruence, we need to consider its closure under all possible sub-
stitutions (otherwise, it would not be closed under prefixes). Then, for every possible
instantiation σ of the binding names, there exists a proper reply from Q. Of course,
σ cannot be chosen arbitrarily: it cannot use in its range names that were restricted in
P. Also the action μ cannot be arbitrary, as in the π-calculus: its restricted and binding
names cannot occur free in Q.

68 T. Given-Wilson and D. Gorla

Differently from the π-calculus, however, the reply from Q can be different from the
challenge from P: this is due to the fact that CPC contexts are not powerful enough to
enforce an identical reply (as highligthed in Examples 1 and 2). Indeed, this notion of
bisimulation allows a challenge p to be replied to by any compatible q, provided that σ
is properly adapted (yielding ρ, as described by the compatibility relation) before being
applied to Q′. This feature somehow resembles the symbolic characterization of open
bisimilarity given in [29,6]. There, labels are pairs made up of an action and a set of
equality constraints. A challenge can be replied to by a smaller (i.e. less constraining)
set. However, the action in the reply must be the same (in [29]) or becomes the same
once we apply the name identifications induced by the equality constraints (in [6]).

3.4 Soundness and Completeness of Bisimulation

Soundness is proved by showing that the bisimilarity relation is included in barbed
congruence; this is done by showing that ∼ is an equivalence, it is barb preserving,
reduction closed and context closed. All the details can be found in [19].

Theorem 1 (Soundness of bisimilarity). ∼ ⊆ �.

Completeness is proved by showing that barbed congruence is a bisimulation. First, is
to show that barbed congruence is closed under substitutions.

Lemma 3. If P � Q then σP � σQ, for every σ.

Second, is to show that, for any challenge, a proper reply can be yielded via closure
under an appropriate context. When the challenge is an internal action, the reply is also
an internal action; thus, the empty context suffices, as barbed congruence is reduction
closed. The complex scenario is when the challenge is a pattern together with a set of
restricted names, i.e., a label of the form (ν̃n)p. Observe that in the bisimulation such
challenges also fix a substitution σ whose domain is the binding names of p.

First of all, define a notion of success and failure that can be reported. A fresh name
w is used for reporting success, with a barb ↓w indicating success, and ⇓w indicating a
reduction sequence that eventually reports success. Failure is handled similarly using
the fresh name f . A process P succeeds if P ⇓w and P �⇓ f ; P is successful if P ≡
(ν̃n)(�w� • p | P′), for some ñ, p and P′ such that w � ñ and P′ �⇓ f . P becomes successful
if it can reduce to a successful process.

Now develop a reply for a challenge of the form ((ν̃n)p, idbn(p)); the general setting
(with an arbitrary σ) will be recovered by relying on Lemma 2. The context for forcing
a proper reply is developed in three steps. The first step presents the specification of a
pattern and a set of names N (to be thought of as the free names of the processes being
compared for bisimilarity); this is the information required to build a reply context.
The second step develops auxiliary processes to test specific components of a pattern,
based on information from the specification. The third step combines these into a reply
context that becomes successful if and only if it interacts with a process that exhibits
a proper reply to the challenge. In what follows, we use the first projection fst(−) and
second projection snd(−) of a set of pairs.

Pattern Matching and Bisimulation 69

Definition 8. The specification specN(p) of a pattern p with respect to a finite set of
names N is defined as follows:

specN(λx) = x, {}, {} specN(�n�) = �n�, {}, {}

specN(n) =

⎧⎪⎪⎨⎪⎪⎩λx, {(x, n)}, {} if n ∈ N and x � N ∪ {n}
λx, {}, {(x, n)} if n � N and x � N ∪ {n}

specN(p • q) = p′ • q′, Fp Fq,Rp Rq if

{
specN(p) = p′, Fp,Rp

specN(q) = q′, Fq,Rq

where Fp Fq denotes Fp ∪ Fq, provided that fst(Fp)∩ fst(Fq) = ∅ (a similar meaning
holds for Rp Rq).

Given a pattern p, the specification specN(p) = p′, F,R of p with respect to a set of
names N has three components: (1) p′, called the complementary pattern, is a pattern
used to ensure that the context interacts with a process that exhibits a pattern compatible
with p; (2) F is a collection of pairs (x, n) made up by a binding name in p′ and the
expected (free) name it will be bound to; finally, (3) R is a collection of pairs (x, n)
made up by a binding name in p′ and the expected (restricted) name it will be bound
to. Observe that can be assumed p′ well formed as all binding names can be taken as
(pairwise) different.

From now on, adopt the following notation: if ñ = n1, . . . , ni, then �w� • ñ denotes
�w� • n1 • . . . • ni. Moreover, θ(̃n) denotes θ(n1), . . . , θ(ni); hence, �w� • θ(̃n) denotes
�w� • θ(n1) • . . . • θ(ni).

Definition 9. The characteristic process charN(p) of a pattern p with respect to a finite
set of names N is charN(p) = p′ → testsN

F,R where specN(p) = p′, F,R and

testsN
F,R

def
= (νw̃x)(νw̃y)(

�wx1�→ . . .→ �wxi�→ �wy1�→ . . .→ �wyj�→ �w� • x̃
| ∏(x,n)∈R equalityR(x, n,wx)
| ∏(y,n)∈F free(y, n,wy)
| ∏(y,n)∈R restN(y,wy))

where x̃ = {x1, . . . , xi} = fst(R) and ỹ = {y1, . . . , y j} = fst(F) ∪ fst(R).

Although the details of the tests are omitted here (see [19] for details), their behaviour
is described by the following Lemmas.

Lemma 4. Let θ be such that {n,w}∩dom(θ) = ∅; then, θ(free(x, n,w)) succeeds if and
only if θ(x) = n.

Lemma 5. Let θ be such that (N ∪ {w, f }) ∩ dom(θ) = ∅; then, θ(restN(x,w)) succeeds
if and only if θ(x) ∈ N \ N.

Lemma 6. Let θ be such that (snd(R) ∪ {w, f ,m}) ∩ dom(θ) = ∅; then,
θ(equalityR(x,m,w)) succeeds if and only if, for every (y, n) ∈ R, m = n if and only
if θ(x) = θ(y).

70 T. Given-Wilson and D. Gorla

Definition 10. A reply context CN
p (·) for the challenge ((ν̃n)p, idbn(p)) with a finite set of

names N such that ñ is disjoint from N is defined as follows:

CN
p (·) def
= charN(p) | ·

It can be proved (see [19]) that the minimum number of reductions required for CN
p (Q)

to become successful (for any Q) is the number of reduction steps for θ(testsN
F,R) to

become successful plus 1; this number only depends on N and p, i.e. not on θ. Denote
this number as Lb(N, p). The main feature of CN

p (·) is described by the following key
Lemma.

Lemma 7. Suppose given a challenge ((ν̃n)p, idbn(p)), a finite set of names N, a process
Q and fresh names w and f such that (̃n ∪ {w, f }) ∩ N = ∅ and (fn((ν̃n)p) ∪ fn(Q)) ⊆
N. If Q

(ν̃n)q−−−→ Q′ and there exists ρ such that p, idbn(p) � q, ρ, then CN
p (Q) �−→k

(ν̃n)(ρQ′ | �w� • ñ | Z), where k = Lb(N, p) and Z � 0. Conversely, if CN
p (Q) becomes

successful in Lb(N, p) reduction steps, then there exist q, Q′ and ρ such that Q
(ν̃n)q−−−→ Q′

and p, idbn(p) � q, ρ.

The last result needed for proving Theorem 2 is an auxiliary Lemma that allows us to
remove success and dead processes from both sides of a barbed congruence, while also
opening the scope of the names exported by the success barb.

Lemma 8. Let (νm̃)(P | �w� • m̃ | Z) � (νm̃)(Q | �w� • m̃ | Z), for w � fn(P,Q, m̃) and
Z � 0; then P � Q.

Theorem 2 (Completeness of the bisimulation). � ⊆ ∼.

4 On Variations of Pattern Matching

The form of pattern unification used so far in CPC is very rich. More limited forms
of pattern matching have been used in the literature; as shown below, they can all be
adopted in our language without compromising the coincidence of barbed congruence
and bisimilarity.

The first variant is the form of pattern matching used in Linda [16]. Differently from
CPC, Linda distinguishes between input and output patterns (the latter are usually called
tuples in a tuplespace):

p ::= π |� π ::= λx | �x� | π • π � ::= x |� •�

Thus, communication is asymmetric; consequently, the pattern matching function is
defined only between an input and an output pattern and yields a single substitution. It
is defined as:

{�x� ‖ x} def
= {} {λx ‖ n} def

= {n/x} {π • π′ ‖ � •�′} def
= {π ‖ �} ∪ {π′ ‖ �′} (4)

Pattern Matching and Bisimulation 71

From the second rule, it is apparent that communicable patterns in Linda are single
variable names. The operational rules for matching in the reductions and in the LTS are
the following:

(π→ P) | (�→ Q) �−→ σP |Q if {π ‖ �} = σ P
π−→ P′ Q

(ν̃n)�−−−−→ Q′

P | Q
τ−→ (ν̃n)(σP′ | Q′)

{π ‖ �} = σ
ñ ∩ fn(P) = ∅

The theory of bisimulation is simplified in this setting, as � is the identity. Barbed
congruence can be defined as in Section 3.1 and the two equivalences do coincide.

Two interesting extensions of Linda’s pattern matching (intermediate between
Linda’s and CPC’s ones) are:

1. Accept a “non-fully decomposing” form of pattern matching; e.g., λx can match
n • m. In this case, it suffices to modify the definition of pattern matching by
generalizing the second axiom in (4) to

{λx ‖ n1 • . . . • nk} def
= {n1 • . . . • nk/x}

(i.e., by rolling back to the original definition of communicable patterns as se-
quences of variable names) and by defining � as in Definition 6, except for the
fourth axiom (that must be ignored).

2. Allow the output process to specify which names can be passed and which ones
can only be used for testing equality; e.g., n • �m� can be matched by λx • �m�, but
not by λx • λy. In this case, output patterns are defined as

� ::= x | �x� | � •�

This is resolved by adding to (4) the axiom {�x� ‖ �x�} def
= {} and by defining� as in

Definition 6, except for the first axiom (that must be ignored).

In both cases, reductions and LTS are like Linda’s ones; barbed congruence and
bisimulation are defined as in Section 3 and, again, they do coincide.

Another well-known form of pattern matching is the one underlying the polyadic
π-calculus [25]. In this case, (input and output) patterns have the form

π ::= �a� • λx1 • . . . • λxk � ::= �a� • n1 • . . . • nk

for any k > 0 (these are usually written as a(x1, . . . , xk) and ā(n1, . . . , nk)). Now pat-

tern matching is defined as in (4), but with {�x� ‖ �x�} def
= {} in place of the first axiom.

Reductions, LTS and compatibility are like in Linda. Notice that the first two relations
are the usual ones for the polyadic π-calculus; similarly, the bisimulation arising in this
framework is the same as the standard early bisimulation congruence defined for the
calculus. It is worth noticing that the barbs we exploit are different from the traditional
ones for the π-calculus [27], where only the channel and the kind of action (either input
or output) are observed. In our formulation of the polyadic π-calculus, input and output
barbs can be usually distinguished: �a�•λx generates ↓{a} whereas �a�•n generates ↓{a,n}
(the two are indistinguishable only if n = a). In general, our barbs are more informative

72 T. Given-Wilson and D. Gorla

than π-calculus’ ones, since they also observe the argument of the output. However,
since this barbed congruence coincides with the early bisimulation (that, in turn, co-
incides with the barbed congruence relying on the “standard” π-calculus’ barbs), by
transitivity we obtain that the two kinds of barbs yield the same congruence.

Similarly, also the form of pattern matching underlying the π-calculus with polyadic
synchronization [8] can be easily rendered. It suffices to take

π ::= �a1� • . . . • �ak� • λx � ::= �a1� • . . . • �ak� • n

(usually written a1 · . . . ·ak(x) and a1 · . . . · ak(n)). Pattern matching, reductions, LTS and
compatibility are then the same as in polyadic π-calculus.

5 Conclusions and Future Work

CPC demonstrates the expressive power possible with a minimal process calculus
whose interaction is defined by symmetric pattern unification. The behavioural theory
required to capture CPC turns out to have some interesting properties based on patterns
and pattern matching. Perhaps, the most curious one is that a symmetric relation
(viz., bisimilarity) is defined by an (asymmetric) ordering upon patterns. Indeed, the
resulting bisimulation can be smoothly and modularly adapted to cope with other forms
of pattern matching and other process calculi.

Related Work. To the best of our knowledge, there are very few notions of behavioural
equivalences for process calculi that rely on pattern matching. We start with a few cal-
culi based on a Linda-like pattern matching. A first example is [13], where the authors
develop a testing framework; however, no coinductive and label-based equivalence is
provided. Another paper where a Linda-like pattern matching is explored for bisimula-
tion is [12]; however, there the focus is on the distribution and connectivity of processes
and, consequently, the pattern matching is simplified by relying on patterns of length 1.
A similar choice is taken in other works, e.g. [7,10,11]. Of course, this choice radically
simplifies the theory.

Recently, Psi [4] has emerged as a rich framework that can encode different process
calculi, including calculi with sophisticated forms of pattern matching. However, CPC
and Psi are uncomparable: CPC cannot encode formulae (e.g. the indirect computation
of channel equality), while Psi cannot encode self-matching processes (same as π, see
[20]). The same holds for the applied π-calculus [1], because of the presence of active
substitutions.

A more complex notion of bisimulation is the one for the Join calculus [14] given in
[15]. The difficult part lays in the definition of the LTS, since some names can be marked
as visible from outside their definition and, consequently, interact with the execution
context. The definition of bisimilarity is then standard and, hence, the interplay with
pattern matching is totally hidden within the LTS. We prefer to make it explicit in the
bisimulation, both to keep the LTS as standard as possible and for showing the exact
impact that pattern matching has on the semantics of processes. By the way, the form
of pattern matching used in Join cannot be rendered in CPC. Indeed, in a process like
def a(x) | b(y) � P in R, process R can independently produce the outputs on a and b

Pattern Matching and Bisimulation 73

needed to activate P. This would correspond to some form of “unordered and multiparty
pattern matching” that is far from the design choices of CPC.

Other complex notions of bisimulation equivalences for process calculi are [5,30].
However, these exploit environmental knowledge, whereas in our work we do not have
such knowledge and need only satisfy compatibility.

Future Work. One interesting path of further development is to introduce types into
CPC and extend the pattern unification mechanism by taking types into account, as
done e.g. in [9]. The study of typed equivalences would then be the most natural path to
follow, by combing the theory in this paper with the assumed types. Another intriguing
direction is the introduction of richer forms of pattern matching, based, e.g., on regular
expressions [22]; in this case, it would be very challenging to devise the ordering on
patterns that defines the ‘right’ bisimulation. A natural way to follow is Kozen’s axiom-
atization for inclusion of regular language [24]. Indeed, in this proof system, a regular
expression e1 is smaller than e2 if and only if every string belonging to the language
generated by e1 also belongs to the language generated by e2. This corresponds to the
same intuition as our ordering on patterns (Lemma 1), once we consider the language
generated by a pattern as the set of patterns that it matches, together with the associated
substitutions.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: Proc. of
POPL, pp. 104–115. ACM (2001)

2. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus. Information
and Computation 148(1), 1–70 (1999)

3. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous π-
calculus. Theoretical Computer Science 195(2), 291–324 (1998)

4. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile pro-
cesses with nominal data and logic. Logical Methods in Computer Science 7(1) (2011)

5. Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic processes.
SIAM J. Comput. 31(3), 947–986 (2001)

6. Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-calculus.
In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268. Springer, Heidelberg
(2008)

7. Busi, N., Gorrieri, R., Zavattaro, G.: A process algebraic view of linda coordination primi-
tives. Theoretical Computer Science 192(2), 167–199 (1998)

8. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in pi-calculus.
Nordic Journal on Computing 10(2), 70–98 (2003)

9. Castagna, G.: Patterns and types for querying xml documents. In: Bierman, G., Koch, C.
(eds.) DBPL 2005. LNCS, vol. 3774, pp. 1–26. Springer, Heidelberg (2005)

10. Ciancarini, P., Gorrieri, R., Zavattaro, G.: Towards a calculus for generative communication.
In: Proc. of FMOODS, pp. 283–297. Chapman & Hall (1996)

11. de Boer, F.S., Klop, J.W., Palamidessi, C.: Asynchronous communication in process algebra.
In: Proc. of LICS, pp. 137–147. IEEE (1992)

12. De Nicola, R., Gorla, D., Pugliese, R.: Basic observables for a calculus for global computing.
Information and Computation 205(10), 1491–1525 (2007)

74 T. Given-Wilson and D. Gorla

13. De Nicola, R., Pugliese, R.: A process algebra based on linda. In: Hankin, C., Ciancarini, P.
(eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 160–178. Springer, Heidelberg (1996)

14. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: Proc. of POPL, pp.
372–385. ACM Press (1996)

15. Fournet, C., Laneve, C.: Bisimulations in the join-calculus. Theoretical Computer
Science 266(1-2), 569–603 (2001)

16. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Languages and Systems 7(1), 80–112 (1985)

17. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude, C.S., Sassone,
V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer, Heidelberg (2010)

18. Given-Wilson, T.: Concurrent pattern unification (2012),
http://www.progsoc.org/˜sanguinev/files/GivenWilson-PhD-simple.pdf

19. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus (extended version),
http://wwwusers.di.uniroma1.it/˜gorla/papers/cpc-full.pdf

20. Given-Wilson, T., Gorla, D., Jay, B.: Concurrent pattern calculus. In: Calude, C.S., Sassone,
V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 244–258. Springer, Heidelberg (2010)

21. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Computer
Science 151(2), 437–486 (1995)

22. Hosoya, H., Pierce, B.: Regular expression pattern matching for XML. Journal of Functional
Programming 13(6), 961–1004 (2003)

23. Jay, B., Given-Wilson, T.: A combinatory account of internal structure. Journal of Symbolic
Logic 76(3), 807–826 (2011)

24. Kozen, D.: A completeness theorem for kleene algebras and the algebra of regular events.
Information and Computation 110(2), 366–390 (1994)

25. Milner, R.: The polyadic π-calculus: A tutorial. In: Logic and Algebra of Specification. Series
F, NATO ASI, vol. 94. Springer (1993)

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Information and
Computation 100, 1–77 (1992)

27. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 685–695. Springer, Heidelberg (1992)

28. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mobile pro-
cesses. In: Proc. of LICS, pp. 176–185. IEEE Computer Society (1998)

29. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica 33(1), 69–97
(1996)

30. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order
languages. ACM Trans. Program. Lang. Syst. 33(1), 5 (2011)

http://www.progsoc.org/~sanguinev/files/GivenWilson-PhD-simple.pdf
http://wwwusers.di.uniroma1.it/~gorla/papers/cpc-full.pdf

Component-Based Autonomic Managers
for Coordination Control�

Soguy Mak Karé Gueye1, Noël de Palma1, and Eric Rutten2

1 LIG / UJF, Grenoble, France
{soguy-makkare.gueye,noel.depalma}@imag.fr

2 LIG / INRIA, Grenoble, France
eric.rutten@inria.fr

Abstract. The increasing complexity of computing systems has moti-
vated the automation of their administration functions in the form of au-
tonomic managers. The state of the art is that many autonomic managers
have been designed to address specific concerns, but the problem remains
of coordinating them for a proper and effective global administration. In
this paper, we define controllable autonomic managers encapsulated into
components, and we approach coordination as their synchronization and
logical control. We show that the component-based approach supports
building such systems with introspection, adaptivity and reconfiguration.
We investigate the use of reactive models and discrete control techniques,
and build a hierarchical controller, enforcing coherency properties on the
autonomic managers at runtime. One specificity and novelty of our ap-
proach is that discrete controller synthesis performs the automatic gen-
eration of the control logic, from the specification of an objective, and
automata-based descriptions of possible behaviors. Experimental valida-
tion is given by a case-study where we coordinate two self-optimization
autonomic managers and self-repair in a replicated web-server system.

Keywords: Adaptive and autonomic systems, Coordination models and
paradigms, Software management and engineering, Discrete control.

1 Coordinating Autonomic Loops

1.1 The Need for Coordination Control

The administration of distributed systems is automated in order to avoid
human manual management because of cost, duration and slowliness, and error-
proneness. Autonomic administration loops provide for management of dynam-
ically reconfigurable and adaptive systems. The architecture of an autonomic
system is a loop defining basic notions of Managed Element (ME) and Auto-
nomic Manager (AM). The ME, system or resource is monitored through sensors.
An analysis of this information is used, in combination with knowledge about
the system, to plan and decide upon actions. These reconfiguration operations
� This work is supported by the ANR INFRA project Ctrl-Green.

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 75–89, 2013.
c© IFIP International Federation for Information Processing 2013

76 S.M.K. Gueye, N. de Palma, and E. Rutten

are executed, using as actuators the administration functions offered by the sys-
tem API. Self-management issues include self-configuration, self-optimization,
self-healing (fault tolerance and repair), and self-protection. In this work we
consider AMs for self-optimization and self-repair.

Complex and complete autonomic systems feature numerous different loops
for different purposes, managing different dimensions. This is causing a problem
of co-existence, because it is hard to avoid inconsistencies and possible inter-
ferences. Therefore, coordination is recognized as an important challenge, not
completely solved by present research, and requiring special attention [11]. Co-
ordinating AMs can be seen as the problem of synchronization and logical control
of administration operations that can be applied by AMs on the MEs in response
to observed events. Such an additional layer, above the individual administration
loops, constitutes a coordination controller. AMs are considered as being MEs
themselves, with an upper-level AM for their coordination. The state of the art
in designing these hierarchical coordination controllers is to develop them, e.g.,
using metrics dedicated to the aspect around which coordination is defined, like
energy and performance [6]. As a hand-made methodology, this remains complex
and error-prone, and hard to re-use.

1.2 Coordination as Discrete Control of Components

Our contribution is an automated methodology for the coordination control of
autonomic managers. A novelty is that it provides for concrete design assis-
tance, in the form of the automatic generation, from a Domain-Specific Lan-
guage (DSL), of the control logic, for a class of coordination problems expressed
as invariance properties on the states of the AMs. The benefit is manifold: the
designer’s work is eased by the automatic generation, the latter is done based
on formal techniques insuring correctness of the result, and the re-use of designs
is facilitated by the automated generation of the control logic.

We identify the needs for the coordination of AMs, which have to be instru-
mented in order to be observable (e.g., current state or execution mode) and
controllable (e.g., suspend activity), so that they can be coordinated. For this,
component-based approaches provide us with a well-structured framework. Each
component is defined separately, independently of the way it can be used in as-
semblies. They also have to be equipped with a model of their behavior, for
which we use Finite state Machines (FSM), also called automata.

We specify the coordination policy as a property between the states of the
AMs, like for example mutual exclusion, which must be kept invariant by control.
Given this control objective, and the behavioral model FSMs, we use techniques
stemming from Control Theory to obtain the controller. Such techniques have
recently been applied to computing systems, especially using classical continu-
ous control models, typically for quantitative aspects [10]. The advantage is that
they ensure important properties on the resulting behavior of the controlled sys-
tem e.g., stability, convergence, reachability or avoidance of some evolutions. We
use discrete control techniques, especially Discrete Controller Synthesis (DCS)
[5], well adapted for logical or synchronization purposes. In this work, we focus

Component-Based Autonomic Managers for Coordination Control 77

on software engineering and methodology; formal aspects available elsewhere [8]
are not in the scope of this paper. Our work in this paper builds upon previous
preliminary results [9] where we had considered a specific experiment in coordi-
nating two administration loops (self-sizing and DVFS), implemented and tested
as a simple prototype. Here, our new contributions are:

1. a generalized method, leveraged to the level of a component-based approach,
to design controllable AMs, with a DSL for describing administration behav-
ior as automata, with controllable points at the interfaces;

2. a method for the specification and generation of coordination controllers
enforcing invariance properties, based on the formal DCS technique;

3. a fully implemented experimental validation of a case-study coordinating
self-optimization autonomic managers (self-sizing and DVFS), completed
with a new one for self-repair; we thus demonstrate reusability by combining
the same sizing loop in a new context, with a new coordination policy.

In the remainder of the paper we will make recalls in Section 2 on component-
based approaches, and the reactive language BZR. The kernel of our contribution
is first in Section 3 where we describe the method for instrumenting a basic AM
component in order to become an ME itself; and then in Section 4 where we
propose construction methods on these bases for composite components, where
coordination of the AMs is managed. An additional contribution is the exper-
imental validation by the case study in Section 5, with self-optimization and
self-repair autonomic managers in a replicated web-server system.

2 Background: Components and Reactive Control

2.1 Component Model

In classical component models, a component is a run-time entity that is encapsu-
lated, and that has a distinct identity. A component has one or more interfaces.
An interface is an access point to a component, that supports a finite set of
service. Interfaces can be of two kinds: (i) server interfaces, which correspond to
access points accepting incoming service calls, and (ii) client interfaces, which
correspond to access points supporting outgoing service calls. Communication
between components is only possible if their interfaces are connected through an
explicit binding. A component can be composite, i.e. defined as an assembly of
several subcomponents, or primitive, i.e. encapsulating an executable program.
The above features (hierarchical components, bindings between components,
strict separation between component interfaces and component implementation)
are representative of a classical component model.

Reflexive component models extend these features to allow well scoped intro-
spection and dynamic reconfiguration capabilities over component’s structure.
They perfectly match our needs since they are endowed with controllers, which
provide access to component internals, allowing for component introspection
and control of their behavior. These general reflexive component-based concepts

78 S.M.K. Gueye, N. de Palma, and E. Rutten

content

serverserver clientclient

introspection introspection

introspection reconfigure controller
composite

reconfigure

content

binding

reconfigure
C1 C2content

Fig. 1. A composite component

(a)

delayable(r,c,e) = a,s

Idle Wait

e r and c/s

Active
c/s

r and not c

a = true

a = falsea = false

(b)

twotasks(r1, e1, r2, e2)
= a1, s1, a2, s2

enforce not (a1 and a2)

with c1, c2

(a1, s1) = delayable(r1, c1, e1) ;

(a2, s2) = delayable(r2, c2, e2)

Fig. 2. Delayable task: (a) graphical syntax ; (b) exclusion contract

have a number of particular instances, amongst which Fractal [4]. This reflexive
component model comes with several useful forms of controllers, which can be
combined and extended to yield components with different control interfaces.
This includes controllers for: (i) attributes, which are configurable through get-
ter and setter methods, (ii) bindings, to (dis)connect client interfaces to server
interfaces, (iii) contents, to list, add and remove subcomponents and (iv) life-
cycle, to give an external control over component execution, including starting
and stopping execution.

Figure 1 shows an example of a composite component with: functional and
control interfaces, a content built from two subcomponents (C1 and C2) that
implement the functional interfaces and, a controller that implements the control
interfaces. The controller in the composite can react e.g., to a reconfiguration
access by removing subcomponent C2: i.e., stopping it, unbinding it from C1 and
from the composite’s client interface, re-binding C1’s client to the composite,
and uninstalling C2’s code. The experimental validation in Section 5 relies on
the Java-based reference implementation of Fractal (Julia): in this framework, a
component is represented by a set of Java objects.

2.2 Reactive Languages and BZR

Automata and Data-Flow Nodes. We briefly introduce, with examples, the
basics of the Heptagon language; due to space limitations, formal definitions
are not recalled [8]. It supports programming of nodes, with mixed synchronous
data-flow equations and automata, with parallel and hierarchical composition.

Component-Based Autonomic Managers for Coordination Control 79

The basic behavior is that at each reaction step, values in the input flows are
used, as well as local and memory values, in order to compute the values in
the output flows for that step. Inside the nodes, this is expressed as a set of
equations defining, for each output and local, the value of the flow, in terms of
an expression on other flows, possibly using local flows and state values from
past steps. Figure 2(a) shows a small program in this language. It programs the
control of a delayable task, which can either be idle, waiting or active. When it
is in the initial Idle state, the occurrence of the true value on input r requests
the starting of the task. Another input c can either allow the activation, or
temporarily block the request and make the automaton go to a waiting state.
Input e notifies termination. The outputs represent, resp., a: activity of the task,
and s: triggering starting operation in the system’s API.

Such automata and data-flow reactive nodes can be reused by instantiation,
and composed in parallel (noted ";") and in a hierarchical way, as illustrated
in the body of the node in Figure 2(b), with two instances of the delayable
node. They run in parallel: one global step corresponds to one local step for
every node, with possible communication through share flows. The compilation
produces executable code in target languages such as C or Java, in the form of
an initialisation function reset, and a step function implementing the transition
function of the resulting automaton, which takes incoming values of input flows
gathered in the environment, computes the next state on internal variables, and
returns values for the output flows. This function is called at relevant instants
from the infrastructure where the controller is used.

Contracts and Control. BZR (http://bzr.inria.fr) extends Heptagon with
a new behavioral contract [8]. Its compilation involves discrete controller syn-
thesis (DCS), a formal operation [5] on a FSM representing possible behaviors
of a system, its variables partitioned into controllable ones and uncontrollable
ones. For a given control objective (e.g., staying invariantly inside a subset of
states, considered "good"), the DCS algorithm automatically computes, by ex-
ploration of the state graph, the constraint on controllable variables, depending
on current state, for any value of the uncontrollables, so that remaining behav-
iors satisfy the objective. This constraint is inhibiting the minimum possible
behaviors, therefore it is called maximally permissive. Algorithms are related to
model checking techniques for state space exploration; they are exponential in
the states, but can manage our models built at coarse grain abstraction level.

Concretely, the BZR language allows for the declaration, using the with state-
ment, of controllable variables, the value of which are not defined by the pro-
grammer. These free variables can be used in the program to describe choices
between several transitions. They are then defined, in the final executable pro-
gram, by the controller computed by DCS during compilation, according to the
expression given in the enforce statement. BZR compilation invokes a DCS tool,
and inserts the synthesized controller in the generated executable code, which
has the same structure as above: reset and step functions.

Figure 2(b) shows an example of contract coordinating two instances of the
delayable node of Figure 2. The twotasks node has a with part declaring

http://bzr.inria.fr

80 S.M.K. Gueye, N. de Palma, and E. Rutten

controllable variables c1 and c2, and the enforce part asserts the property to be
enforced by DCS. Here, we want to ensure that the two tasks running in parallel
will not be both active at the same time: not (A1 and A2). Thus, c1 and c2 will
be used by the computed controller to block some requests, leading automata
of tasks to the waiting state whenever the other task is active. The constraint
produced by DCS can have several solutions: the BZR compiler generates deter-
ministic executable code by favoring, for each controllable variable, value true
over false, in the order of declaration in the with statement.

3 Designing Controllable AMs

3.1 Design of an AM

Controllable AM components have to share features of an AM, as well as of an
ME, as we recall here. Basic features required for a system to be an ME managed
in an autonomic fashion have been identified in previous work e.g., in the context
of component-based autonomic management [13]. It must be observable and con-
trollable, and we need to know its possible behaviors, for which we use automata
models. Observability goes through a capacity of introspection, exhibiting inter-
nals to the outside world, particularly to an AM in charge of management, in
a context with other MEs. In the autonomic framework, it corresponds to the
sensors. In components as in Figure 1, it is in introspection interfaces that can
be called from outside. At implementation level, it can be for example get func-
tions accessing internal variables. Controllability is defined by the capacity to
change features inside the ME from the outside. In the autonomic framework, it
corresponds to the actuators. In components, it corresponds to reconfiguration
actions e.g., mode switching, or attribute updating, as mentioned in Section 2.1.
At implementation level, it can be done in different ways, from interceptors on
the interfaces in Java, to actions modifying the structure as with Fscript [7]. In
short, the system is equipped with a library of sensors/monitors and actions,
with an API given by the system, and programmed by the designer.

The AM is a reactive node, transforming flows of sensor observations into flows
of reconfiguration actions. Internally, it features decision-making mechanisms,
which can range from simple threshold triggers to elaborate MAPE-K. They can
involve quantitative measures and continuous control, or logical aspects modeled
as FSMs. Therefore a reactive language such as BZR can be used as a DSL for
the decision part on the AMs: it offers high-level programming, as well as formal
tools to bring safe design and guaranteed behaviors. In components, the AM is
the controller in Figure 1, or it can be an additional component in the assembly
of MEs, bound with the appropriate control interface of other subcomponents.
At implementation level, it reacts to notifications by treating them, depending
on applications, in FIFO order or considering most recent values. It calls the
action functions of the controlled MEs as above, or modifies the composite by
ME additions or removals.

We aim at combining the two, to have AMs which can be manipulated as MEs,
which involves the same features: making AMs observable and controllable.

Component-Based Autonomic Managers for Coordination Control 81

3.2 Controllable AMs

To make an AM observable, relevant states of the component are exhibited to
the outside. They convey information necessary for coordination decisions. Au-
tomata represent states of components, w.r.t their activity and/or ability to be
coordinated, but independently of the coordination policy. The most basic case,
for an AM as for any ME, is to distinguish only idle state (where the AM is
not performed) and activity (with actual effect on the ME). Beyond this, one
can have a more refined, grey box model, distinguishing states corresponding to
phases in a sequence, where the AM can be stopped or suspended without loss
of consistency. States support monitoring e.g., to explicitly represent that some
bound is reached, such as minimum number of a resource, or maximum capacity.

To make an AM controllable, we use the transitions between states, which
are guarded by conditions, and can fire reconfiguration actions. They represent
possible choices offered by the AM between different reactions, in order for an
external coordinator to choose between them. They offer control points to be
used according to a given policy. Hence they give the controllability of the AM.

Figure 3(a) shows how an FSM can be an instantiation of the general au-
tonomic loop, with knowledge on possible behaviors represented as states, and
analysis and planning as the automaton transition function. In the autonomic
framework observability comes through additional outputs, as shown by dashed
arrows in Figure 3(a) for an FSM AM, exhibiting (some) of the knowledge and
sensor information. Controllability corresponds to having the AM accept addi-
tional input for control. Its values can be used in the guards to guide choices
between different transitions. Such automata are specified in BZR, benefiting
from its modular structures and compiler. In BZR, a transition with a condition
e and c, where e is a Boolean expression, will be taken only if c is true: it can
inhibit or enable the transition.

In components, automata are associated with the component controller in the
membrane as in Figure 3(b), and are updated at runtime to reflect the current
state of component. Automata outputs trigger actions in reconfiguration control
interfaces, such as "stop AM", or convey information to upper layers.

At implementation level, the modular compilation of BZR generates for each
node two methods (in C or Java): reset and step. reset initializes internal vari-
ables and is called only once. step makes the internal variable reflect continuously

(a)

sensor

state
inputs

actuator

managed element

outputs

transition
function

control

(b)

control

AM

step

Fig. 3. Controllable AM: (a) case of a FSM manager; (b) wrapped component

82 S.M.K. Gueye, N. de Palma, and E. Rutten

the state of the component. Each call to step takes as inputs relevant information
from inside, through the bindings to sub-components, or from outside, through
control interfaces of the composite, and control interfaces feature functions ac-
cessing returned values. Returned values trigger reconfiguration actions.

4 Coordinated Assembly of Controllable AMs

4.1 Coordination Behaviors, Objective, and Controller

We now present how such controllable AMs can be assembled in composites,
where the coordination is performed in a hierarchical framework. The AMs and
other components involved in the coordination (which can be composites them-
selves, recursively) are grouped into a composite. It orchestrates their execution,
using the possibilities offered by each of them, through control interfaces, in or-
der to enforce a coordination policy or strategy. We base our approach on the
hierarchical structure in Figure 4: the top-level AM coordinates lower-level ones.
We describe the problem with one level of hierarchy, but it can be recursive.

The first thing is to construct a model of the global behavior of the assembly of
components. This is done using the local automata from each of the concerned
subcomponents: they are composed in parallel in a new BZR node: we then
have a model of all the possible behaviors in the absence of control. Controllable
variables must be identified and designated i.e., the possible choice points, which
will be the actuators offered to the discrete controller to enforce the coordination.

Specification of the coordination policy is done by associating a BZR contract
to this global behavior. It can make reference to the information explicitly exhib-
ited by subcomponents, and to inputs of the coordinator. The control objective
is to restrict possible behaviors to states where a Boolean expression will remain
invariantly true, whatever the sequences of uncontrollables.

Once we have a global automaton model of the behavior, a list of control-
lables, and a control objective, we manually encode the control problem into the
BZR language as a contract. The BZR language compiler, and its associated

control

state
inputs outputs

transition
function

sensor

state
inputs

actuator

outputs

transition
function

sensor

state
inputs

actuator

outputs

transition
function

controlcontrol

managed element

Fig. 4. Autonomic coordination for multiple administration loops

Component-Based Autonomic Managers for Coordination Control 83

DCS tool, solves the control problem by automatically computing the controller
ensuring, by automated formal computation, a correct behavior respecting the
contract. It must be noted that as in any control or constraint problem, it may
happen that the system does not offer enough controllability for a solution to
exist. Either it lacks actuators, or sensors, or explicit states to base its decisions
on. In these cases, the DCS fails, which constitutes a diagnostic of non-existence
of a solution for the current coordination problem. Then the system has to be
redesigned, either by relaxing the contract, or by augmenting controllability. An-
other meaningful point is that the BZR language features hierarchical contracts
[8], where the synthesis of a controller can use knowledge of contracts enforced
by sub-nodes, without needing to go into the details of these nodes. This favors
scalability by decomposing the synthesis computation. It also corresponds very
closely to the hierarchical structure proposed here, and can be exploited fully.

4.2 Hierarchical Architecture

In the autonomic framework our approach defines a hierarchical structure as
shown in Figure 4. Given that AMs have additional outputs exhibiting their
internals, and additional inputs representing their controllability, an upper-level
AM can perform their coordination using their additional control input to enforce
a policy. Considering the case of FSM managers makes it possible to encode
the coordination problem as a DCS problem. The transition function of this
upper-level AM is the controller synthesized by DCS.

In components, this translates to a hierarchical structure where a composite
features a controller, bound with the outside and with subcomponents, through
control interfaces. This way it can use knowledge on life-cycles of subcomponents
in order to decide on reconfiguration actions to execute for their coordination.

At implementation level, there is an off-line phase, where the BZR compilation
is used. It involves extracting the relevant automata from AMs descriptions : to
each of them is associated a BZR node. These nodes are used to compose a new
BZR program, with a contract, declaring controllable variables in the with state-
ment. The policy has to be specified in the enforce statement. The complete
BZR program is compiled, and code is generated as previously described. The
resulting step function is integrated at the coordinator component level, calling
steps from sub-components. At run-time, in our implementation, the controller
in the composite component is responsible of executing the step method call: it
gathers the necessary information from the sub-components, then executes the
step, which interacts with the local step functions in subcomponents. It then
triggers and propagates reconfiguration commands to sub-components based on
the returned result, as discussed before.

4.3 Change Coordination Policy

This separation of concerns, between description of possible behaviors, and co-
ordination policy, favors the possibility to change policy without changing the
individual components. For example, if we wanted to change priorities between

84 S.M.K. Gueye, N. de Palma, and E. Rutten

AMs, this would impact the contract but not the individual components. On the
other hand, if for the same overall policy we wanted to use other components
with a different implementation of the same management, we can switch an AM
by another one and recompute the coordination controller. The fact that our
approach is modular, and that it uses automated DCS techniques, facilitates
reuse of components, and also the modification of systems, by re-compilation.

5 Case Study: Coordinating Administration Loops

5.1 Description of the Case Study

We consider the coordination of two administration loops for resource opti-
mization (self-sizing) and server recovery (self-repair) for the management of a
replicated servers system based on the load balancing scheme.

Self-sizing. It addresses the resource optimization of a replication-based sys-
tem. It dynamically adapts the degree of replication depending on the CPU load
of the machines hosting the active servers. Its management decisions rely on
thresholds, Minimum and Maximum, delimiting the optimal CPU load range. It
computes a moving average of the collected CPU load (Avg_CPU) and performs
operations if the average load is out of the optimal range: Adding operations
(Avg_CPU >= Maximum), removal operations (Avg_CPU <= Minimum).

Self-repair. It addresses fail-stop failure of a machine hosting a single or repli-
cated server. Its management decisions rely on Heartbeat. When the machine
hosting the server becomes non-responsive, it redeploys the server towards an-
other machine selected from an unused machine pool. Then it updates the new
server configuration from the configuration of the failed server and starts it.

Co-existence and Coordination Problem. Failures can trigger incoherent
management decisions by self-sizing. The failure of the load balancer can cause
an underload of the replicated servers since the latter do not receive requests
until the load balancer is repaired. The failure of a replicated server can cause
an overload of the remaining servers because they receive more requests due to
the load balancing. A strategy to achieve an efficient resource optimization could
be to (1)avoid removing a replicated server when the load balancer fails, and (2)
avoid adding a replicated server when one fails.

5.2 Modelling and Control for Coordinating the AMs

We pose the coordination problem as a discrete control problem, first modeling
the behaviors of AMs with automata, then defining controllables and a control
objective, in order to finally apply DCS.

Modelling AMs. Figure 5 shows the automata modelling both the behaviors
and the control of the self-sizing manager. The two external ones model the
control of the adding (resp. removal) operations. This is done with the local
flows disU (resp. disD), which, when true, prevent transitions where output add

Component-Based Autonomic Managers for Coordination Control 85

disU = true

UpDown

Adding

UpDown

not max
added and

added
and max

adding = true
min_node = false
max_node = false

adding = false
min_node = false
max_node = false

adding
 = false

 = true

 = false

 min

over and

 / add

over and

 / add

/ rem

 = true
max_node
 = false

min_node
 = false

adding
min_node

max_node
cUcD

DisD DisU

ActUActD

disD = false

didD = true

under and
not disD

 / rem

under and not min
and not disD

not disU

not disU

 = add,rem,adding,min_node,max_node

cU
notnot

cD

Sizing(over,under,min,max,added,cU,cD)

disU = false

Repair(failLB,LBr,failS,Sr)

repS = true

RepS

Sr

RepLB

LBr

repLB = true

OkS

repS = false

OkLB

repLB = false

failLB
/ rLB

failS
/ rS

 = repLB,repS,rLB,rS

Fig. 5. Managers models : self-sizing (left) and self-repair (right)

(resp. rem) triggers operations. The center one models the behaviors. Initially in
the UpDown state, when an Overload occurs and adding operations are allowed,
the manager requests a new server, and goes to the Adding state and can no
longer perform operations. It awaits until the server becomes active (node_added
is true), and returns back to the UpDown state or goes to the Down state if
the degree of replication is maximal. The Down state is left once one server is
removed upon an Underload event. The Up state is the state in which the degree
of replication is minimal. The manager cannot remove server but can add server
upon Overload event if allowed.

Figure 5 shows the automata modelling the behaviors of the self-repair man-
agers for the load balancer (LB) and the replicated servers (S). The right au-
tomaton concerns servers, and is initially in OkS. When failS is true, it emits
repair order rS and goes to the RepS state, where repS is true. It returns back
to OkS after repair termination (Sr is true). Repair of the LB is similar.

Coordination Controllers. The automata are composed in order to have the
global behavior model, and a contract specifies the coordination policy. Au-
tomata in Figure 5 are composed. The policies (1) and (2) in Section 5.1 give a
contract as follows:
enforce ((repLB implies disD) and (repS implies disU)) with Cu,Cd

With implications, DCS keeps solutions where disU, disD are always true,
correct but not progressing; but BZR favors true over false (Section 2.2) for
cU, cD, hence enabling Sizing when possible.

Compilation. The BZR compiler generates the corresponding Java code of the
BZR program. Two main methods allow to interact with the program: reset for
initializing it and step. The latter takes as parameters all the automata inputs
and returns all the automata outputs.

5.3 Experiments

We apply our approach for coordinating one instance of self-sizing and two in-
stances of self-repair managers for the management of a replicated-based system.

86 S.M.K. Gueye, N. de Palma, and E. Rutten

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40
 0

 1

 2

 3

 4

 5

A
ve

ra
ge

 T
om

ca
t m

ac
hi

ne
s

C
PU

 lo
ad

 (
%

)

N
um

be
r

of
 a

ct
iv

e
T

om
ca

t

time (minute)

Workload

Avg Tomcat CPU %
Nbr Tomcat

Apache failure

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40
 0

 1

 2

 3

 4

 5

A
ve

ra
ge

 T
om

ca
t m

ac
hi

ne
s

C
PU

 lo
ad

 (
%

)

N
um

be
r

of
 a

ct
iv

e
T

om
ca

t

time (minute)

Workload

Avg Tomcat CPU %
Nbr Tomcats

Apache failure

(c)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45
 0

 1

 2

 3

 4

 5

A
ve

ra
ge

 T
om

ca
t m

ac
hi

ne
s

C
PU

 lo
ad

 (
%

)

N
um

be
r

of
 a

ct
iv

e
T

om
ca

t

time (minute)

Workload

Avg Tomcat CPU %
Nbr Tomcats

Tomcat failure

(d)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40
 0

 1

 2

 3

 4

 5

A
ve

ra
ge

 T
om

ca
t m

ac
hi

ne
s

C
PU

 lo
ad

 (
%

)

N
um

be
r

of
 a

ct
iv

e
T

om
ca

t

time (minute)

Workload

Avg Tomcat CPU %
Nbr Tomcats

Tomcat failure

Fig. 6. Apache (a,b) and Tomcat (c,d) server failure ; uncoordinated and coordinated

The system is composed of one Apache server (self-repair) and replicated Tom-
cat servers (self-sizing and self-repair). Homogeneous machines are used to host
the Tomcat servers. Initially during each execution, the system is started with
one Apache server and one Tomcat server. We inject a workload in two phases,
a ramp-up workload followed by a constant workload. We wait until there are
two active Tomcat servers before injecting a failure.

Figure 6(a,b) shows executions in which the Apache server fails, which causes
a decrease of the CPU utilization of the machines hosting the Tomcat servers. In
the uncoordinated execution (Figure 6(a)), this leads to the removal of a Tomcat
but once the Apache is repaired another Tomcat is added. In the coordinated
execution (Figure 6(b)) the decrease does not lead to the removal of a Tomcat
since the coordination controller inhibits removal operations because of the fail-
ure. Figure 6(c,d) shows executions in which a Tomcat server fails, which causes
an increase of the CPU utilization of the remaining Tomcat servers. While in
the uncoordinated execution (Figure 6(c)) this increase leads to adding a new
tomcat (which is removed after the repair), in the coordinated execution (Figure
6(d)) no adding operation is performed. The adding operations are inhibitted by
the coordination controller which is aware of the Tomcat failure.

5.4 Reusability of Models: Integrating the Dvfs Manager

We consider the management of the CPU frequency for more resource optimiza-
tion. Each machine hosting a replicated server is equipped with a Dvfs manager.

Component-Based Autonomic Managers for Coordination Control 87

(a)

Dvfs(min_freq,max_freq)

NormalMin

 min = true
 max = false

 min = false
 max = false

Max
 max_freq

 not max_freq

 not min_freq

 min_freq

 min = false
 max = true

 = min,max

(b)

main(over, ...) = add, ...
enforce (Obj1 and Obj2 and Obj3)

with cU, cD
(add, ...) = Sizing(over, ..., cU, cD) ;

(min, max) = Dvfs(min_freq, max_freq) ;

(repLB, ...) = Repair(failLB, ...)

Fig. 7. DVFS model, and its Coordination with sizing and repair

This latter dynamically increases or decreases the CPU-frequency of the machine
depending on the CPU load. Its management decisions, like self-sizing, rely on
thresholds, Minimum and Maximum, delimiting the optimal CPU load range. In a
context where Dvfs are activated, a strategy to improve resource optimization
could be to delay as long as possible adding a new server when the machines
hosting active servers are not in their maximum CPU frequency: (3)avoid adding
unless all machines are at maximum speed.

We model the global states of the set of Dvfs in Figure 7(a). Initially in the
Normal state, when the input min_freq (resp. max_freq) is true, it goes to the
Min (resp. Max) state when the CPU frequency of all machines hosting replicated
servers is minimal (resp. maximal) and the output min (resp. max) is true. It
returns back the Normal state if the CPU frequency of at least, one of the
machines is neither maximal nor minimal. Coordinating the three AMs consists
in adding the automaton for the Dvfs in the composition with the following
contract to be enforced: (not max implies disU) representing the policy (3), as
shown in Figure 7(b), with Obji representing policy (i) (i = 1, 2, 3).

6 Related Work and Discussion

The general question of coordinating autonomic managers remains an impor-
tant challenge in Autonomic Computing [11] although it is made necessary in
complete systems with multiple loops, combining dimensions and criteria. Some
works propose extensions of the MAPE-K framework in order to allow for syn-
chronization [15], which can be e.g., through the access to a common knowledge
[2]. A distinctive aspect of our approach is to rely on FSM-based behavioral
models, amenable to formal techniques like verification or DCS. Coordination
of multiple energy management loops is done in various ways, e.g., by defining
power vs. performance tradeoffs based on a multi-criteria utility function in a
non-virtualized environment [6]. These approaches seem to require modifying
AMs for their interaction, and to define the resulting behavior by quantitative
integration of the measure and utilities, which relies on intuitive tuning values,
not handling logical synchronization aspects. We coordinate AMs by controling
their logical state, rather than modifying them.

Component-based frameworks are classically associated with implementations
offering APIs for sensing and actuating. For example FScript [7] is a middleware

88 S.M.K. Gueye, N. de Palma, and E. Rutten

layer offering relatively high level support for programming complex reconfigu-
ration actions. However, there is no support in expressing explicitly and directly
the set of configurations or modes, and the switches between them: they have
to be managed by tedious manual programming with side effects. Our work
proposes higher level programming of control aspects, with first-class language
constructs explicitly representing control states and events. The formally based
semantics of our language support enables concrete use of verification and syn-
thesis techniques. Relating component-based frameworks and formal models is
widely done, e.g. relying on process calculi for abstract reasoning on composition
constructs. Closer to the concrete modeling of behavioral aspects, some model-
ing approaches offer access to verification as model checking [3]. We specifically
concentrate on reconfiguration control, not on the general component approach,
and it relates this aspect of Fractal with the synchronous approach to reactive
systems, and its support for correct program design, particularly DCS. [1] pro-
poses a framework allowing multiple autonomic managers for the management
of a Behavioral Skeleton. The coordination of the managers is ensured through
consensus which seems to be manually implemented, which can become complex.
[12] proposes a component-based programming framework to build an autonomic
application as the composition of autonomic components, with agents based on
rules with priority level for conflicting decisions resolution.

Concerning decision and control, some approaches rely upon Artificial Intel-
ligence and planning [14] which has the advantage of managing situation where
configurations are not all known in advance, but the corresponding drawback of
costly run-time exploration of possible behaviors, and lack of insured safety of
resulting behaviors. Our work adheres to the methodology of control theory, and
in particular DES, applied to computing systems [10]. Compared to traditional
error-prone programming followed by verification and debugging, such methods
bring correctness by design of the control. Particularly, DCS offers automated
generation of the coordination controller, facilitating design effort compared to
hand-writing, and modification and re-use (see Section 4.3). Also, maximal per-
missivity of synthesized controllers is an advantage compared to over-constrained
manual control, impairing performance even if correct. Applications of DCS to
computing systems have been rare until now e.g. to address deadlock avoidance
[16]. Compared to this, we consider more user-defined objectives.

7 Conclusion

We address the problem of coordinating multiple AMs using a component-
based approach. We define a method for the componentization of AMs as MEs,
equipped with automata-based behavioral models. The control of coordinated
AMs is based on a formal control technique : DCS, which performs automatic
generation. It support addition of new AMs, without re-designing the whole
system, and is encapsulated in a design process for non-expert users. A fully im-
plemented case-study, for sizing and repair AMs, gives experimental validation.

In perspective, we are busy evaluating our approach for coordination of a
variety of autonomic administration loops in the context of an industrial

Component-Based Autonomic Managers for Coordination Control 89

data-center. We have ongoing work on managing coordination in a multi-tier
system, involving intra-tier and inter-tier coordination, hierarchically. We con-
sider using more elaborate control techniques, with DCS for optimal control, or
the distribution of the controllers. Finally, we have ongoing work on program-
ming language support for our methodology, integrating the whole approach in
the compilation process of a component-based language.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Xhagjika, V.: LIBERO: A framework
for autonomic management of multiple non-functional concerns. In: Guarracino,
M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla,
F., Knüpfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 237–245. Springer, Heidelberg (2011)

2. Alvares de Oliveira Jr., F., Sharrock, R., Ledoux, T.: Synchronization of multiple
autonomic control loops: Application to cloud computing. In: Sirjani, M. (ed.)
COORDINATION 2012. LNCS, vol. 7274, pp. 29–43. Springer, Heidelberg (2012)

3. Barros, T., Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural Models
for Distributed Fractal Components. Res. Report RR-6491, INRIA (2008)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The fractal
component model and its support in java. Software – Practice and Experience
(SP&E) 36(11-12) (September 2006)

5. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems.
Springer-Verlag New York, Inc., Secaucus (2006)

6. Das, R., Kephart, J.O., Lefurgy, C., Tesauro, G., Levine, D.W., Chan, H.:
Autonomic multi-agent management of power and performance in data centers.
In: Proc. Conf. AAMAS (2008)

7. David, P.-C., Ledoux, T., Léger, M., Coupaye, T.: FPath and FScript: Language
support for navigation and reliable reconfiguration of fractal architectures. Annals
of Telecommunications 64(1), 45–63 (2009)

8. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller
synthesis. In: Proc. Conf. LCTES (2010)

9. Gueye, S.M.K., de Palma, N., Rutten, E.: Coordinating energy-aware administra-
tion loops using discrete control. In: Proc. Conf. ICAS (2012)

10. Hellerstein, J., Diao, Y., Parekh, S., Tilbury, D.: Feedback Control of Computing
Systems. Wiley-IEEE (2004)

11. Kephart, J.: Autonomic computing: The first decade. In: Proc. Conf. ICAC (2011)
12. Liu, H., Parashar, M., Hariri, S.: A component based programming framework for

autonomic applications. In: Proc. ICAC (2004)
13. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based

management: the self-repair case. In: Proc. Conf. ICSE (2008)
14. Sykes, D., Heaven, W., Magee, J., Kramer, J.: Plan-directed architectural change

for autonomous systems. In: Proc. WS SAVCBS (2007)
15. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in

self-adaptive systems. In: Proc. Conf. SEAMS (2011)
16. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The theory of deadlock

avoidance via discrete control. In: Proc. ACM POPL (2009)

Multi-threaded Active Objects

Ludovic Henrio1, Fabrice Huet1, and Zsolt István2

1 INRIA-I3S-CNRS, University of Nice Sophia Antipolis, France
2 Department of Computer Science, ETH Zurich, Switzerland

ludovic.henrio@cnrs.fr, fabrice.huet@inria.fr,
zsolt.istvan@inf.ethz.ch

Abstract. Active objects offer a paradigm which simplifies writing distributed
applications. Since each active object has a single thread of control, data races are
prevented. However, this programming model has its limitations: it is deadlock-
prone, and it is not efficient on multicore machines. To overcome these limi-
tations, we present an extension of the active object model, called multi-active
objects, that allows each activity to be multi-threaded. The new model is imple-
mented as a Java library; it relies on method annotations to decide which requests
can be run in parallel. It provides implicit parallelism, sparing the programmer
from low-level concurrency mechanisms. We define the operational semantics of
the multi-active objects and study the basic properties of this model. Finally, we
show with two applications that our approach is easy to program and efficient.

Keywords: Concurrency and distribution, active-objects, multicore architectures.

1 Introduction

Writing distributed applications is a difficult task because the programmer has to face
both concurrency and location-related issues. The active object [1–3] paradigm provides
a solution by abstracting away the notions of concurrency and of object location. An
object is said to be active if it has its own thread of control. As a consequence, every
call to such an object will be some form of remote method invocation – a request – that
is handled by the object’s thread of control. Active objects are partly inspired by Actors
[4, 5]: they share the same asynchronous treatment of messages, and ensure the absence
of data race-conditions. They do differ however in how the internal state of the object is
represented. Active objects are mono-threaded, which prevents data races without the
use of synchronized blocks. Distributed computations rely on the absence of sharing
between processes, allowing them to be placed on different machines.

In classical remote method invocation, the invoker is blocked waiting for the result
of the remote call. Active objects, on the other hand, return futures [6] as placeholders
for the result, allowing the invoker to continue its execution. Futures can be created
and accessed either explicitly, like in Creol [7] and JCoBox [8], or implicitly as in
ASP [3] (Asynchronous Sequential Processes) and AmbientTalk [9]. A key benefit of
the implicit creation is that no distinction is made between synchronous (i.e., local)
and asynchronous (i.e., remote) operations in the program. Hence, when the accessed
object is remote, a future is immediately obtained. Similarly to their creation, the access

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 90–104, 2013.
c© IFIP International Federation for Information Processing 2013

Multi-threaded Active Objects 91

to futures can happen either explicitly using operations like claim and get, or implicitly,
in which case operations that need the real value of an object (blocking operations)
automatically trigger synchronisation with the future update operation. In most active
object languages, future references can be transmitted between remote entities without
requiring the future to be resolved.

There are different models related to active objects. The ASP calculus [3] is a dis-
tributed active object calculus with futures; the ProActive library is its reference imple-
mentation. ASP has strong properties and is easy to program, but the strict sequential
service of requests creates deadlocks. A different approach is provided by active objects
languages with cooperative multithreading (Creol [7, 10], Jcobox [8]). In this model a
thread serving a request can stop in order to let the service of another request progress.
While no data race condition is possible, interleaving of the different request services
triggered by the different release points makes the behaviour more difficult to predict;
in particular Creol does not feature the determinism properties of ASP. Explicit future
access, explicit release points, and explicit asynchronous calls make JCobox and Creol
richer, but also more difficult to program.

This paper provides a new extension of the active object model with a different
trade-off between expressiveness and ease of programming compared to the existing
approaches. Our approach replaces the strict mono-threading that avoids data-races in
active-objects, by an expressive and simple mechanism of request annotation that con-
trols parallelism. Our approach also achieves better performance than classical active-
objects on multi-core machines. Our contribution can be summarised as follows:

– A new programming model called multi-active objects is proposed (Section 2). It
extends active objects with local multi-threading; this both enhances efficiency on
multicore machines, and prevents most of the deadlocks of active objects.

– We rely on declarative annotations for expressing potential concurrency between
requests, allowing easy and high-level expression of concurrency. However, the
expert programmer can still use lower level concurrency constructs, like locks.

– We define the operational semantics of multi-active objects in Section 3. This se-
mantics allows us to prove properties of the programming model.

– We experimentally show that multi-active objects make writing of parallel and
distributed applications easier, but also that the execution of programs based on
multi-active objects is efficient (Section 4). The programming model has been im-
plemented as an extensions to a Java middleware1.

Additionally, Section 5 compares our contribution with the closest languages, and fi-
nally Section 6 concludes the paper. Details on the semantics, the implementation, and
the experiments are available in a research report [11].

2 Multi-active Object Programming Model

Illustrating example We will illustrate our proposal with an example inspired by a
simple peer-to-peer network based on the CAN [12] routing protocol. In a CAN, data
are stored in peers as key-value pairs inside a local datastore. Keys are mapped through
a bijective function to the coordinates of a N-dimensional space, called the key-space.

1 Available at: www-sop.inria.fr/oasis/Ludovic.Henrio/java/PA_ma.zip

www-sop.inria.fr/oasis/Ludovic.Henrio/java/PA_ma.zip

92 L. Henrio, F. Huet, and Z. István

The key-space is partitioned so that each key is owned by a single peer. A peer knows
its immediate neighbours, and when an action concerns a key that does not belong to
this particular peer, it routes the request towards the responsible peer according to the
coordinates of the key. Our CAN example provides three operations: join, add, and
lookup. When a new peer joins the network, it always joins an existing peer. This joined
peer splits its partition of the key-space in two; it keeps one half and gives the other to
the new peer. The add operation stores a key-value pair, and lookup retrieves it.

Active objects are a natural choice to implement this application by representing
each peer with an active object. Locally, requests will be served one-by-one. This limits
the performance of the application, and also possibly leads to deadlocks if re-entrant
requests are issued. With multi-active objects, a peer will be able to handle several
operations in parallel. We will illustrate multi-active objects by showing how to simply
program a safe parallelisation of the CAN peers.

2.1 Assumptions and Design Choices

To allow active objects to serve several requests in parallel, we introduce multi-active
objects that enable local parallelism inside active objects in a safe manner. For this, the
programmer can annotate the code with information about concurrency by defining a
compatibility relationship between concerns. This notion of annotation for concurrency
share some common ideas with JAC[13]. For instance, in our CAN example we distin-
guish two non-overlapping concerns: one is network management (join) and another is
routing (add, lookup). For two concerns that deal with completely disjoint resources it
is possible to execute them in parallel, but for others that could conflict on resources
(e.g. joining nodes and routing at the same time in the same peer) this must not happen.
Some of the concerns enable parallel execution of their operations (looking up values
in parallel in the system will not lead to conflicts), and others do not (a peer can split its
zone only with one other peer at a time).

In the RMI style of programming, every remote invocation to an object will be run
in parallel, as a result, data-races can happen on concurrently accessed data. A classic
approach to solve this problem in Java is to protect concurrent executions by making
all methods synchronized. This coarse-grain approach is inefficient when some of the
methods could be run in parallel. Alternatively, the programmer can protect the data
accesses by using low-level locking mechanisms, but this approach is too fine-grained
and possibly error-prone.

By nature, active objects materialise a much safer model where no inner concurrency
is possible. In this work, we look for a concurrency model that is more flexible than the
single threaded active-objects, but more constrained and less error-prone than Java con-
currency. We extend active-objects by assigning methods to groups (concerns). Then,
methods belonging to compatible groups can be executed in parallel, and methods be-
longing to conflicting groups will be guaranteed not to be run concurrently. This way the
application logic does not need to be mixed with low-level synchronisations. The idea
is that two groups should be made compatible if their methods do not access the same
data, or if concurrent accesses are protected by the programmer, and the two methods
can be executed in any order. The programmer should declare as compatible both the
non-conflicting groups, and the groups where the conflicting code has been protected by

Multi-threaded Active Objects 93

means of locks or synchronised blocks. We chose annotations to express compatibility
rules because we think that this notion is strongly dependent on the application logic,
and should be attached to the source code.

We start from active objects à la ASP, featuring transparent creation, synchronisa-
tion, and transmission of futures. We think that the transparency featured by ASP and
ProActive helps writing simple programs, and is not an issue when writing complex
distributed applications. We also think that the non-uniform active objects of ASP, and
JCoBox, reflect better the way efficient distributed applications are designed: some ob-
jects are co-allocated and only some of them are remotely accessible. In our model,
only one object is active in a given activity but this work can easily be extended to mul-
tiple active-object per activity (i.e. cobox). An active object can be transformed into a
multi-active object by applying the following design methodology:

– Without annotations, a multi-active object behaves identically to an active object,
no race condition is possible, but no local parallelism is possible either.

– If some parallelism is desired, e.g. for efficiency reasons or because dead-locks
appeared, each remotely invocable method can be assigned to a group. Then com-
patibility between the groups can be defined based on, for example, the variables
accessed by each method. Methods belonging to compatible groups can be executed
in parallel and out of the original order. This implies that two groups should only
be declared compatible if the order of execution of methods of one group relatively
to the other is not significant.

– If even more parallelism is required, the programmer has two non-exclusive op-
tions: either he protects the access to some of the variables by a locking mechanism
which will allow him to declare more groups as compatible, or he realises that, de-
pending on runtime conditions, such as invocation parameters or the object’s state,
some groups might become compatible and he defines a compatibility function al-
lowing him to decide at runtime which request executions are compatible.

We assume that the programmer defines groups and their compatibility relations inside
a class correctly. Dynamic checks or static analysis should be added to ensure, for ex-
ample, that no race condition appear at runtime. Verifying that annotations written by
the programmer are correct or even inferring them, e.g. [14], is out of scope here.

2.2 Defining Groups

The programmer can use an annotation, Group, to define a group and can specify whether
the group is selfCompatible, i.e., two requests on methods of the group can run in paral-
lel. The syntax for defining groups in the class header is shown on lines 1–5 of Figure 1.

Compatibilities between groups can be expressed as Compatible annotations. Each
such annotation receives a set of groups that are pairwise compatible, as illustrated on
lines 6–9 of Figure 1. A method’s membership to a group is expressed by annotating the
method’s declaration with MemberOf. Each method belongs to only one group. In case no
membership annotation is specified, the method belongs to an anonymous group that is
neither compatible with other groups, nor self-compatible. This way, if no method of
a class is annotated, the multi-active object behaves like an ordinary active object. The
MemberOf annotation is shown on lines 11, 13, 15, and 17 of Figure 1.

94 L. Henrio, F. Huet, and Z. István

1 @DefineGroups({
2 @Group(name="join", selfCompatible=false)
3 @Group(name="routing", selfCompatible=true)
4 @Group(name="monitoring", selfCompatible=true)
5 })
6 @DefineRules({
7 @Compatible({"join", "monitoring"})
8 @Compatible({"routing", "monitoring"})
9 })

10 public class Peer {
11 @MemberOf("join")
12 public JoinResponse join(Peer other) { ... }
13 @MemberOf("routing")
14 public void add(Key k, Serializable value) { ... }
15 @MemberOf("routing")
16 public Serializable lookup(Key k) { ... }
17 @MemberOf("monitoring")
18 public void monitor() { ... }
19 }

Fig. 1. The CAN Peer annotated for parallelism

Figure 1 illustrates the annotations in the context of a CAN peer active object in
which adds and lookups can be performed in parallel – they belong to the same self-
compatible group routing. Since there is no compatibility rule defined between them,
methods of join and routing will not be served in parallel. To fully illustrate our anno-
tations, we added monitoring as a third concern independent from the others.

2.3 Dynamic Compatibility

Sometimes the compatibility of requests can be more precisely decided at run-time. For
example, two methods writing in the same array can be compatible if they don’t access
the same cells. For this reason, we first introduce an optional group-parameter which
indicates the type of a a parameter which will be used to decide compatibility. This
parameter must appear in all methods of the group and in case a method has several
parameters of this type, the leftmost one is chosen. In Figure 2, we add parameter="

can.Key" to the routing group to indicate that the parameter of type Key will be used.
Overall, at runtime, compatibility between two requests can be decided as a function
depending on three parameters: the group-parameter of the two requests, and the status
of the active-object. We describe below how we integrated this idea into our framework
and allowed the programmer to define compatibility functions inside his/her objects.

To actually decide the compatibility, we add a condition in the form of a compatibility
function which takes as input the common parameters of the two compared groups and
returns true if the methods are compatible. The general syntax for this rule is:

@compatible{value={"group1","group1"}, condition="SomeCondition"}

The compatibility function can be defined as follows:

– when SomeCondition is in the form someFunc, the compatibility will be decided by
executing param1.someFunc(param2) where param1 is the parameter of one request
and param2 is the parameter of the other.

Multi-threaded Active Objects 95

@DefineGroups({
@Group(name="routing",selfCompatible=true,parameter="can.Key",condition="!equals")

@Group(name="join", selfCompatible=false) })
@DefineRules({@Compatible(value={"routing", "join"},condition="!this.isLocal") })
public class Peer {

private boolean isLocal(Key k){
synchronized (lock) { return myZone.containsKey(k); } }

}

Fig. 2. The CAN Peer annotated for parallelism with dynamic compatibility

– when SomeCondition is in the form [REF].someFunc, the compatibility will depend
on the results of someFunc(param1, param2) with the group parameters as arguments.
[REF] can be either this if the method belongs to the multi-active object itself, or a
class name if it is a static method.

Additionally the result of the comparator function can be negated using “!”, e.g.
condition="!this.isLocal". Since the compatibility method can run concurrently with
executing threads, the programmer should ensure mutual exclusion, if necessary. One
can define dynamic compatibility even when only one of the two groups has a param-
eter, in that case the compatibility function should accept one less input parameter. It
is even possible to dynamically decide compatibility when none of the two groups has
a parameter (e.g. based on the state of the active object); in that case the compatibility
function should be a static method or a method of the active object, with no parameter.

As an example, we show how to better parallelise the execution of joins and routing
operations in our CAN. During a join operation, the peer which is already in the net-
work splits its key-space and transfers some of the key-value pairs to the peer which is
joining the network. During this operation, ownership is hard to define. Thus a lookup
(or add) of a key belonging to one of the two peers cannot be answered during the tran-
sition period. Operations that target “external” keys, on the other hand, could be safely
executed in parallel with a join. Figure 2 shows a modified version of the Peer class
which supports dynamic compatibility checks. For the sake of clarity, we omit unmod-
ified code. The modifications are as follows. 1) a group parameter, can.Key has been
added to the routing group; 2) a compatibility rule has been defined for groups routing

and join with condition "!this.isLocal"; 3) a method boolean isLocal(Key k) has been
created, which checks whether a key falls in the zone of a peer At runtime, the method
isLocal(Key k) will be executed when checking the compatibility of groups routing and
join. This method is selected because it is the only one matching the name of the con-
dition and the group parameter type. We also defined a condition for self-compatibility
in the routing group: to guarantee that there is no overtaking between requests on the
same key, we configure the group to be selfCompatible only when the key parameter of
the two invocations is not equal, see Figure 2, line 2.

3 A Calculus of Multi-active Objects

This section describes MultiASP, the multi-active object calculus. We present its small
step operational semantics and its properties. In MultiASP, there is no explicit notion of
place of execution, but the calculus is particularly adapted to distribution because, first,

96 L. Henrio, F. Huet, and Z. István

inter-activity communication behaves like remote method invocation, and second, each
object belongs to a single activity. Overall, each active object can be considered as a
unit of distribution. The operational semantics is parametrised by a function deciding
whether a request should be served concurrently on a new thread or sequentially by the
thread that triggered the service.

3.1 Syntax and Runtime Structures

While x, y range over variable names, we let li range over field names, and mi over
method names (m0 is a reserved method name; it is called upon the activation of an
object and encodes the service policy). :: denotes the concatenation of lists; we also
use it to append an element to a list. � denotes an empty list or an empty set. The
syntax of MultiASP is identical to ASP [3] (except for the clone operator that is of no
interest here). Active objects and futures can be created at runtime. New objects can be
allocated in a local store (there is one local store for each active object). Thus, we let ιi
range over references to the local store (ι0 is a reserved location for the active object),
α, β, γ range over active object identifiers, and fi range over future identifiers. Among
the terms above, static terms are the ones that contain no references to futures, active
objects, or store location. Note that every term is an object and �� is an empty object:

a ::� x variable (y also ranges over variables),
� �li � ai;mj � ς�xj , yj�a

�
j�

i�1..n
j�1..m object definition (xj binds self; yj is the parameter),

�a.li field access,
�a.li :� a� field update,
�a.mj�a

�� method call,
�Active�a� creates an active object from a,
�Serve�M� serves a request among M , a set of method labels.M � �mi�

i�1..p

� ι location (only at runtime)
� f future reference (only at runtime)
�α active object reference (only at runtime)

A reduced object is either a future, an activity reference, or an object with all fields
reduced to a location. A store maps locations to reduced objects; it stores the local state
of the active object:

o ::� �li � ιi;mj � ς�xj , yj�aj�
i�1..n
j�1..m � f �α σ ::� �ιi 	
 oi�

i�1..k

To ensure absence of sharing, the operation Copy&Merge�σ, ι ; σ�, ι�� performs a deep
copy of the object at location ι in σ into the location ι� of σ�, and ensures that communi-
cated values are “self-contained”. This is achieved by copying the entry for ι at location
ι� of σ� (if this location already contains an object it will be erased). All locations ι�

referenced (recursively) by the object σ�ι� are also copied in σ� at fresh locations (See
[3, 11] for the formal definition).

F ranges over future value association lists; such a list stores computed results where
ιi is the location of the value associated with the future fi: F ::� �fi 	
 ιi�

i�1..k.
The list of pending requests is denoted by R ::� �mi; ιi; fi�

i�1..N , where each request
consists of: the name of the target method mi, the location of the argument passed to the
request ιi, the future identifier which will be associated to the result fi. �f 	
 ι� � F

Multi-threaded Active Objects 97

means �f 	
 ι� is one of the entries of the list F and similarly �m; ι; f � � R means
�m; ι; f � is one of the requests of the queue R.

There are two parallel composition operators:
 expresses local parallelism, it sep-
arates threads residing in the same activity, and � expresses distributed parallelism,
it separates different activities. A request being evaluated is a term together with the
future to which it corresponds (ai 	
 fi). An activity has several parallel threads each
consisting of a list of requests being treated: the leftmost request of each thread is in fact
currently being treated, the others are in a waiting state. C is a current request structure:
it is a parallel composition of threads where each thread is a list of requests. By nature,

 is symmetric, and current requests are identified modulo reordering of threads:

C ::� �� �ai 	
 fi�
i�1..n
C

Finally, an activity is composed of a name α, a store σ, a list of pending requests R,
a set of computed futures F , and a current request structure C. A configuration Q is
made of activities. Configurations are identified modulo the reordering of activities.

Q ::� � � α�F ;C;R;σ��Q

An initial configuration consists of a single activity treating a request that evaluates a
static term a0: b0 � α0��; a0 	
 f�;�;��.

Contexts. Reduction contexts are terms with a hole indicating where the reduction
should happen. For each context R, the operation (R�c�) replaces the hole by a given
term c. Contrarily to substitution, filling a hole is not capture avoiding: the term filling
the hole is substituted as it is.

Sequential reduction contexts indicate where reduction occurs in a current request:
R ::� 	 �R.li �R.mj�b� � ι.mj�R� �R.li :� b � ι.li :� R
� �li� ιi, lk� R, lk� �bk� ;mj� ς�xj,yj�aj�

i�1..k�1,k��k�1..n
j�1..m �Active�R�

A parallel reduction context extracts one thread of the current request structure (re-
member that current requests are identified modulo thread reordering):

Rc ::� �R 	
f1�::�aj 	
fj�
j�2..n
C

3.2 Operational Semantics

Our semantics is built in two layers, a local reduction
loc defined in [3] and in [11]
that corresponds to a classical object calculus, and a parallel semantics that encodes dis-
tribution and communications. Activities communicate by remote method invocations
and handle several local threads; each thread can evolve and modify the local store
according to the local reduction rules. Thanks to the parallel reduction contexts Rc,
multiple threads are handled almost transparently in the semantics. The main novelty in
MultiASP is the request service that can either serve the new request in the current thread
or in a concurrent one; for this we rely on two functions: SeqSchedule and ParSchedule.
Given a set of method names to be served (the parameter of the Serve primitive), the
set of futures calculated by the current thread, and the set of futures calculated by the
other threads of the activity, these functions decide whether it is possible to serve a
request sequentially or in parallel. The last parameter is the request queue that will be

98 L. Henrio, F. Huet, and Z. István

Table 1. Parallel reduction (used or modified values are non-gray)

LOCAL
�a, σ�
loc �a

�, σ��

α
�
F ;Rc�a�;R,σ

�
�Q �
 α

�
F ;Rc�a

��;R;σ�
�
�Q

ACTIVE
γ fresh activity name f� fresh future σγ � Copy&Merge�σ, ι ;
, ι0�

α
�
F ;Rc�Active�ι��;R;σ

�
�Q �

α
�
F ;Rc�γ�;R;σ

�
�γ

�

; �ι0.m0���� �
 f��;
;σγ

�
�Q

REQUEST

σα�ι� � β ι� � dom�σβ� f fresh future σ�β � Copy&Merge�σα, ι
� ; σβ, ι

��

α
�
F ;Rc�ι.mj�ι

���;R;σα

�
�β

�
F �;C �;R�;σβ

�
�Q �

α
�
F ;Rc�f�;R;σα

�
�β

�
F �;C �;R�::�mj ; ι

�; f�; σ�β
�
�Q

ENDSERVICE
ι� � dom�σ� σ� � Copy&Merge�σ, ι ; σ, ι��

α
�
F ; ι �
f ::�ai �
fi�

i�1..n�C;R;σ
�
�Q �
 α

�
F ::f �
 ι�; �ai �
fi�

i�1..n�C;R; σ�
�
�Q

REPLY
σα�ι� � f σ�α � Copy&Merge�σβ , ιf ; σα, ι� �f �
 ιf � � F �

α
�
F ;C;R;σα

�
�β

�
F �;C �;R�;σβ

�
�Q �
 α

�
F ;C;R;σ�α

�
�β

�
F �;C �;R�;σβ

�
�Q

SERVE

C � �R�Serve�M�� �
f0�::�ai �
fi�
i�1..n�C �

SeqSchedule�M, �fi�
i�0..n,Futures�C ��, R� � ��m, f, ι�, R��

α
�
F ;C;R;σ

�
�Q �
 α

�
F ; �ι0.m�ι� �
f�::�R���� �
f0�::�ai �
fi�

i�1..n�C �;R�;σ
�
�Q

PARSERVE

C � �R�Serve�M�� �
f0�::�ai �
fi�
i�1..n�C �

ParSchedule�M, �fi�
i�0..n,Futures�C ��, R� � ��m, f, ι�, R��

α
�
F ;C;R;σ

�
�Q �
 α

�
F ; �ι0.m�ι� �
f��R���� �
f0�::�ai �
fi�

i�1..n�C �;R�; σ
�
�Q

split into a request to be served and the remaining of the request queue. If no request
can be served neither sequentially nor in parallel, both functions are undefined. We de-
fine Futures�C� as the set of futures being computed by the current requests C. Then,
parallel reduction �
 is described in Table 1. We will denote by �
� the reflexive
transitive closure of �
. Table 1 consists of seven rules:

LOCAL triggers a local reduction
loc described in [3] and in [11]. ACTIVE creates a
new activity: from an object and all its dependencies, this rule creates a new activity at
a fresh location γ. The method m0 is called at creation, the initial request is associated
with f�, a future that is never referenced and never used. REQUEST invokes a request
on a remote active object: when an activity α performs an invocation on another activity
β this creates a fresh future f , and enqueues a new request in β. The parameter is deep
copied to the destination’s store. ENDSERVICE finishes the service of a request: it adds

Multi-threaded Active Objects 99

an entry corresponding to the newly calculated result in the future value association list.
The result object is copied to prevent further mutations. REPLY sends a future value: if
an activity α has a reference to a future f , and another activity β has a value associated
to this future, the reference is replaced by the calculated value1. SERVE serves a new
request sequentially: it relies on a call to SeqSchedule that returns a request �m, f, ι�
and the remaining of the request queue R�. The request �m, f, ι� is served by the current
thread. The Serve instruction is replaced by an empty object that will be stored, so that
execution of the request can continue with the next instruction. SeqSchedule receives,
the set of method names M , the set of futures of the current thread, the set of futures of
the other threads, and the request queue. PARSERVE serves a new request in parallel: it is
similar to the preceding rule except that it relies on a call to ParSchedule, and that a new
thread is created that will handle the new request to be served �m, f, ι�. The particular
case where the source and destination are the same require an adaptation of the rules
REQUEST and REPLY [11].

We can show that �
 does not create references to futures or activities that do not
exist, and thus the parallel reduction is well-formed. Quite often an active-object will
serve all the requests in a FIFO order: m0 consists of a loop: while �true� Serve�MA�
where MA is the set of all method names2 and the other methods never perform a Serve.
m0 is compatible with all the other methods and thus all services can be done in parallel,
but the service of a request might have to wait until another request finishes. We call
this particular case FIFO request service.

3.3 Scheduling Requests

Several strategies could be designed for scheduling parallel or sequential services. Fu-
ture identifiers can be used to identify requests uniquely; also it is easy to associate
some meta-information with them (e.g. the name or the parameters of the invoked
method). Consequently, we rely on a compatibility relation between future identifiers:
compatible�f, f �� is true if requests corresponding to f and f � are compatible. We sup-
pose this relation is symmetric.

Table 2 shows a suggested definition of functions SeqSchedule and ParSchedule
which maximises parallelism while ensuring that no two incompatible methods can
be run in parallel. The following of this section explains in what sense this definition
is correct and optimal. The principle of the compatibility relation is that two requests
served by two different threads should be compatible:

Property 1 (Compatibility). If two requests are served by two different threads then
they are compatible: suppose Q0 �

� α
�
F ;C;R;σ

�
�Q then:

C��ai 	
 fi�
i�1..n
�a�j 	
 f �j�

j�1..m
C � � �i � 1..n.�j � 1..m. compatible�fi, f
�
j�

We consider that parallelism is “maximised” if a new request is served whenever possi-
ble, and those services are performed by as many threads as possible. Thus, to maximise
parallelism, a request should be served by the thread that performs the Serve operation
only if there is an incompatible request served in that thread. The “maximal parallelism”
property can then be formalised as an invariant:

2 while and true can be defined in pure ASP [3].

100 L. Henrio, F. Huet, and Z. István

Table 2. A possible definition of SeqSchedule and ParSchedule

�f �F �. compatible�fj , f� �f �F.�compatible�fj , f�
mj � M �k�j.mk �M �

�
compatible�fj , fk� � �f � F �.�compatible�fk, f�

�

SeqSchedule�M,F, F �, �mi,fi,ιi�
i�1..N� � ��mj ,fj ,ιj�, �mi,fi,ιi�

i�1..j�1::�mi,fi,ιi�
i�j�1..N�

�f �F �. compatible�fj , f� �f �F. compatible�fj , f�
mj � M �k�j.mk �M �

�
compatible�fj , fk� � �f � F �.�compatible�fk, f�

�

ParSchedule�M,F, F �, �mi,fi,ιi�
i�1..N� � ��mj ,fj ,ιj�, �mi,fi,ιi�

i�1..j�1::�mi,fi,ιi�
i�j�1..N�

Property 2 (Maximum parallelism). Except the leftmost request of a thread, each re-
quest is incompatible with one of the other requests served by the same thread (and that
precede it). More formally, if Q0 �

� α
�
F ;C;R;σ

�
�Q then:

�
C � �ai 	
 fi�

i�1..n
C � � k � 1
�
� �i��k.�compatible�fk, fi��

The properties above justify the two first premises of the rules in Table 2. The last
premise decides which request to serve. For this, we filter the request queue by the set
M of method labels. Then we serve the first request that is compatible with all requests
served by the other threads. These definitions ensure that any two requests served in-
side two different threads are always compatible, and also that requests are served in the
order of the request queue filtered by the set of methods M , except that a request can
always overtake requests with which it is compatible. We say that parallelism is max-
imised because we eagerly serve new requests on as many parallel threads as possible.

We conclude this section by explaining why it is reasonable to let a request over-
take compatible ones. Indeed, whenever two compatible requests are served in parallel
compatibility implies that the operations of these requests can be freely interleaved.
Overtaking is just a special case of interleaving, namely when all operations of one
request are executed before the operations of the other request. Thus, even if requests
were served in the exact incoming order, a request may actually overtake a compatible
one. More generally, if all requests are necessarily served at some point, then allowing
a request to be overtaken by compatible ones is a safe decision.

4 Evaluation

In this section we show that our proposal provides an effective compromise between
programming simplicity and execution efficiency of parallel and distributed applica-
tions: multi-active objects achieve the same performance as classical concurrent ap-
proaches while simplifying the programming of distributed applications. A detailed
analysis of the results and the description of the multi-active API is provided in [11]

Our proposal is implemented on top of ProActive, the reference implementation of
ASP. No preprocessing or modified Java compiler are required, all decisions are made at
runtime by reifying constructors and method invocation. The flexibility and portability
we obtain using these techniques induce a slight overhead, but experience shows it

Multi-threaded Active Objects 101

has no significant impact at the application level. The implementation of multi-active
objects comes with an API for customising the request service policy, the possibility to
limit the number of threads inside a multi-active object, and an inheritance mechanism
for compatibility annotations [11].

NAS Parallel Benchmarks. We first compare multi-active objects with Java threads
based on a well-known parallel benchmark suite: the NAS Parallel Benchmarks. To
achieve a multi-active implementation, we modify the Java-based version of the bench-
mark [15] and create a multi-active object version from each kernel. A single multi-
active object replaces all worker threads, and futures and wait-by-necessity replace
wait() and notify(). This makes the code easier to understand and to maintain. Code
related to parallelism in the multi-active version is much shorter than the original (be-
tween 35% and 70%), depending on the benchmark. Also, our annotations make syn-
chronisation much more natural, and on a higher level of abstraction than the original
program. The performance of the modified application is very close to the original.

CAN Experimental Results. We implemented the CAN illustrating example to show
the efficiency brought by multi-active objects compared to active-objects in a distributed
multicore environment. The purpose of these experiments is to evaluate the benefits
of multi-active objects, not the performance of our CAN implementation. Therefore,
our experiments were designed to provide an interesting workload for the active ob-
jects themselves, not necessarily for the CAN network. We created and populated a
CAN using join and add operations, then we measured the benefits of lookup request
parallelisation in the following situations:

– All from two: In this scenario, two corners send lookup requests to all other nodes,
and then wait until all the results are returned. This experiment gives an insight
about the overall throughput of the overlay.

– Centre from all: In this test case, all the peers lookup concurrently a key located in
a peer at the centre of the CAN. This experiment highlights the scalability of a peer
under heavy load.

We repeated each scenario 50 times and measured the overall execution time (the differ-
ence between successive runs was found to be negligible). The creation and population
of the network was not measured as part of the execution time. We used up to 128
machines located at the Sophia-Antipolis site of the Grid50003 platform. All hosts are
interconnected through Gigabit Ethernet, and are equipped with quad-core CPUs (In-
tel Xeon E5520, AMD Opteron 275 and AMD Opteron 2218), running Java 7 Hotspot
64-Bit Server VMs. Each requested value was 24KB in size.

Figure 3 shows the execution times and speedup (when turning active objects into
multi-active ones) for several sizes for the two scenarios. Both scenarios achieve signif-
icant speedup thanks to the communication and request handling performed in parallel,
however, the gain in the first scenario is smaller because the lookups are issued from the
two corners in sequence; the sequential sending of the initial lookups limits the number
of lookups present at the same time in the network. In the second case, the active object
version has a bottleneck because the centre peer can only reply to one request at a time
whereas those requests can be highly parallelised with our model. As shown before,

3 http://www.grid5000.fr/

http://www.grid5000.fr/

102 L. Henrio, F. Huet, and Z. István

 0

 100

 200

 300

 400

 500

 4 32 64 128 256

 1

 2

 3
R

un
tim

e
(s

)

of peers

All from two (single-active)
All from two (multi-active)
Speedup

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 32 64 128 256

 2

 4

 6

 8

 10

 12

 14

 16

S
pe

ed
up

of peers

Centre from all (single-active)
Centre from all (multi-active)
Speedup

Fig. 3. CAN experimental results

these speedups are simply achieved by adding a few annotations to the class declaration
without changing the rest of the code.

5 Comparison with Related Work

Parallel actor monitors [16] (PAM) provide multi-threading capacities to actors based
on explicit scheduling functions. However, we believe that the compatibility annotations
of multi-active objects provide a higher level of abstraction than PAM, and that this
high-level of abstraction is what makes active-objects and actors easy to program.

The main difference between our approach and active-objects with cooperative
multi-threading like JCoBox [8] and Creol [7] is twofold. On one hand, Creol-like lan-
guages are not really multi-threaded (only one thread is active at a time [7]), thus they do
not necessarily address the issue of efficiency on multicore architectures; JCoBox pro-
poses a shared immutable state that can be used efficiently on multicore architectures
but as the distributed implementation is still a prototype, it is difficult to study how
an application mixing local concurrency and distribution like our CAN example would
behave. On the other hand, concerning synchronisation, in cooperative multi-threaded
solutions between explicit release points (awaits) the programs are executed sequen-
tially. Adequately placing those release points is the main challenge in programming
in Creol or JCoBox: too many release points leads to a complex interleaving between
sequential code portions, whereas not enough of them will probably lead to a deadlock.

Multi-active objects provide an alternative approach by allowing local concurrency
in active objects: with annotations, the programmer can reason on high-level compat-
ibility rules, and parallelism can be expressed in a simple manner. Compatible meth-
ods are run concurrently, with potential race-conditions but also local multi-threading.
Overall, in ASP and MultiASP distribution and concurrency are much more transpar-
ent than in JCoBox and Creol; this difference in point of view explains most of the
differences between the two models: transparent vs. explicit futures and compatibility
annotations vs. explicit thread release. However, the principles of multi-active objects
could be applied to an active object language with explicit futures and explicit release
points, but in this case thread activation (after an await statement) must take into account
compatibility information.

Multi-threaded Active Objects 103

Cunha and Sobral [17] use Java annotations to parallelise sequential objects in an
OpenMP fashion. A method can be called asynchronously if it is flagged with the Future

annotation, but the programmer must follow the flow of futures carefully and declare
which methods can access them. There is also an ActiveObject annotation that creates a
proxy and a scheduler, but its exact semantics is not well-defined in [17]. In our opinion,
JAC’s and our compatibility rules offer a greater control and a higher abstraction level
than OpenMP style fork-join blocks, they are also better adapted to active-objects.

Our annotation system looks like JAC’s proposal, and this paper could also be seen
as an adaptation of a concurrency model à la JAC to the active object model. The in-
heritance model of JAC annotations is well designed [13] and resembles the way our
annotations are inherited from class to class. However, multi-active objects offer a sim-
pler annotation system and a higher synchronisation logic encapsulation. Moreover, the
dynamic compatibility rules of multi-active objects are not directly translatable into JAC
annotations: JAC provides a precondition mechanism that can be used to express dy-
namic compatibility but it does not guarantee safe access to shared variables. Compared
to JAC, we think multi-active objects are simpler to program, have stronger properties,
and are better suited to distribution. In particular, the transparent inclusion of annota-
tions leads in our opinion to a powerful and interesting programming model.

Now that our active objects are equipped with multiple threads, strategies for opti-
mizing the number and utilization of threads will have to be considered (e.g. [11, 18]).

6 Conclusion

In active object languages, programming efficiently on multicore architectures is not
possible. Indeed, to have multiple threads on the same machine, all the other languages
require to create multiple active objects (or coboxes). Then, the communication be-
tween those objects is either costly (it relies on a request invocation and heavy parame-
ter passing), or restricted (JCoBoxes can share a state but it must be immutable). In our
case, several threads inside an active objects can co-exist and we provide an annotation
system to control their concurrent execution. The annotations can be written from a
high-level point of view by declaring compatibility relations between the different con-
cerns an active object manages. The operational semantics defined in Section 3 allowed
us to prove that request services can be scheduled such that parallelism is somehow
maximised while preventing two incompatible requests from being served in parallel.

The originality of our contribution lies in the interplay between the formal and pre-
cise study of the MultiASP language, and a middleware implementation efficient enough
to compete with classical multi-threading benchmarks. The use of dynamic constraints
for compatibility allows a fine-grain control over local concurrency and improves ex-
pressiveness. We implemented the proposed model in Java and ran experiments to en-
sure that our approach is efficient. The experiments showed that the performance of
multi-active objects is similar to the manually multi-threaded version while code ded-
icated to parallelism is much simpler when using multi-active objects. We also illus-
trated the performance gain brought by multi-active objects compared to a classical
active object version. Overall, multi-active objects outperform simple active objects,
and are easier to program than classical multi-threading. Interleaved execution and

104 L. Henrio, F. Huet, and Z. István

race-conditions can of course appear due to multithreading, but, on one side, annota-
tions provide a good way to control this non-determinism, and on the other side, we
defined an operational semantics that will allow us to study the possible executions of
a multi-active objects and extend properties that the authors proved in the past for ASP.

References

1. Lavender, R.G., Schmidt, D.C.: Active object: an object behavioral pattern for concurrent
programming. In: Pattern Languages of Program Design 2, pp. 483–499. Addison-Wesley
Longman Publishing Co., Inc., Boston (1996)

2. Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent programming ABCL/1.
In: Conference Proceedings of OOPLSA 1986. ACM, NY (1986)

3. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous sequential processes. Information and
Computation 207(4), 459–495 (2009)

4. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge (1986)

5. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation.
Journal of Functional Programming 7(1), 1–72 (1997)

6. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems (TOPLAS) 7(4), 501–538 (1985)

7. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science 365(1-2), 23–66 (2006)

8. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer,
Heidelberg (2010)

9. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.: Ambient-
oriented programming in ambientTalk. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 230–254. Springer, Heidelberg (2006)

10. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De Nicola, R.
(ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)

11. Henrio, L., Huet, F., István, Z.: A language for multi-threaded active objects. Research
Report RR-8021, INRIA (July 2012)

12. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pp. 161–172. ACM (2001)

13. Haustein, M., Lohr, K.: Jac: declarative Java concurrency. Concurrency and Computation:
Practice and Experience 18(5), 519–546 (2006)

14. Shanneb, A., Potter, J., Noble, J.: Exclusion requirements and potential concurrency for com-
posite objects. Science of Computer Programming 58(3), 344–365 (2005)

15. Frumkin, M., Schultz, M., Jin, H., Yan, J.: Implementation of NAS parallel benchmarks in
Java. In: A Poster Session at ACM 2000 Java Grande Conference (2000)

16. Scholliers, C., Tanter, É., De Meuter, W.: Parallel actor monitors. In: 14th Brazilian
Symposium on Programming Languages (2010)

17. Cunha, C., Sobral, J.: An annotation-based framework for parallel computing. In:
Proceedings of the 15th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, pp. 113–120. IEEE Computer Society (2007)

18. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming.
Theoretical Computer Science 410(2-3), 202–220 (2009)

Scheduling Open-Nested Transactions

in Distributed Transactional Memory

Junwhan Kim, Roberto Palmieri, and Binoy Ravindran

ECE Department, Virginia Tech, Blacksburg, VA, 24061
{junwhan,robertop,binoy}@vt.edu

Abstract. Distributed transactional memory (DTM) is a powerful con-
currency control model for distributed systems sparing the programmer
from the complexity of manual implementation of lock-based distributed
synchronization. We consider Herlihy and Sun’s dataflow DTM model,
where objects are migrated to invoking transactions, and the open nest-
ing model of managing inner (distributed) transactions. In this paper
we present DATS, a dependency-aware transactional scheduler, that is
able to boost the throughput of open-nested transactions reducing the
overhead of running expensive compensating actions and abstract locks
in the case of outer transaction aborts. The contribution of the paper
is twofold: (A) DATS allows the commutable outer transactions to be
validated concurrently and (B) allows the non-commutable outer trans-
actions, depending on their inner transactions, to commit be committed
before others without dependencies.

1 Introduction

Transactional Memory (TM) is an emerging innovative programming paradigm
for transactional systems. The main benefit of TM is synchronization trans-
parency in concurrent applications. In fact, leveraging the proven concept of
atomic and isolated transactions, TM spares programmers from the pitfalls of
conventional manual lock-based synchronization, significantly simplifying the
development of parallel and concurrent applications. Moreover lock-based con-
currency control suffers from programmability, scalability, and composability
challenges [13] and TM promises to alleviate these difficulties. In TM, the devel-
oper simply organizes read and write operations on shared objects as transactions
and leaves the responsibility of executing those transactions to the TM, ensuring
atomicity, consistency and isolation. Two transactions conflict if they access to
the same object and at least one access is a write. The contention manager, the
component in TM responsible for resolving conflicts among concurrent transac-
tions, typically aborts one and allows the other to commit, yielding (the illusion
of) atomicity. Aborted transactions are typically re-started after rollingback the
changes in memory.

The Transaction Scheduler (TS) is the component that supports the con-
tention manager in making a decision on how to resolve conflicts (which trans-
action to abort). The goal of the TS is to order concurrent transactions as to
avoid or minimize conflicts (and thereby aborts).

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 105–120, 2013.
c© IFIP International Federation for Information Processing 2013

106 J. Kim, R. Palmieri, and B. Ravindran

The hazards of manual implementation of lock-based concurrency control in-
creases in distributed settings due to an additional synchronization level among
nodes in the system. Distributed STM (DTM) has been motivated as an al-
ternative to distributed lock-based concurrency control. DTM can be classified
based on the system architecture: cache-coherent DTM (cc DTM) [14,23], in
which a set of nodes communicate by message-passing links over a communi-
cation network, and a cluster model (cluster DTM) [6,21], in which a group of
linked computers work closely together to form a single computer. cc DTM uses
a cache-coherence protocol [8,14] to locate and move objects in the network.

Support for nesting (distributed) transactions is essential for DTM, for the
same reasons that they are so for multiprocessor TM – i.e., code composability,
performance, and fault-management [20,24,25]. Three types of nesting have been
studied for multiprocessor TM: flat, closed, and open. If an inner transaction I
is flat-nested inside its outer transaction A, A executes as if the code for I is
inlined inside A. Thus, if I aborts, it causes A to abort. If I is closed-nested
inside A [19], the operations of I only become part of A when I commits. Thus,
an abort of I does not abort A, but I aborts when A aborts. Finally, if I is
open-nested inside A, then the operations of I are not considered as part of A.
Thus, an abort of I does not abort A, and vice versa.

The differences between the nesting models are shown in Figure 1, in which
there are two transactions containing a nested-transaction. With flat nesting,
transaction T2 cannot execute until transaction T1 commits. T2 incurs full aborts,
and thus has to restart from the beginning. Under closed nesting, only T2’s
inner-transaction needs to abort and be restarted while T1 is still executing. The
portion of work T2 executes before the data-structure access does not need to be
retried, and T2 can thus finish earlier. Under open nesting, T1’s inner-transaction
commits independently of its outer, releasing memory isolation over the shared
data-structure. T2’s inner-transaction can therefore proceed immediately, thus
enabling T2 to commit earlier than in both closed and flat nesting.

The flat and closed nested models have a clear negative impact on large mono-
lithic transactions in terms of concurrency. In fact, when a large transaction is
aborted all its flat/closed-nested transactions are also aborted and rolled-back,
even if they do not conflict with any other transaction. Closed nesting potentially
offers better performance than flat nesting because the aborts of closed-nested
inner transactions do not affect their outer transactions. However the open-
nesting approach outperforms both in terms of concurrency allowed. When an
open-nested transaction commits, its modifications on objects become imme-
diately visible to other transactions, allowing those transactions to start using
those objects without a conflict, increasing concurrency [20]. In contrast, if the
inner transactions are closed- or flat-nested, then those object changes are not
made visible until the outer transaction commits, potentially causing conflicts
with other transactions that may want to use those objects.

To achieve high concurrency in open nesting, inner transactions have to imple-
ment abstract serializability [27]. If concurrent executions of transactions result
in the consistency of shared objects at an “abstract level”, then the executions
are said to be abstractly serializable. If an inner transaction I commits, I’s

Scheduling Open-Nested Transactions in Distributed Transactional Memory 107

modifications are immediately committed in memory and I’s read and write sets
are discarded. At this time, I’s outer transaction A does not have any conflict
with I due to memory accessed by I. Thus, programmers consider the internal
memory operations of I to be at a “lower level” than A. A does not consider
the memory accessed by I when it checks for conflicts, but I must acquire an
abstract lock and propagates this lock for A. When two operations try to acquire
the same abstract lock, the open nesting concurrency control is responsible for
managing this conflict (so this is defined “abstract level”).

(a) Flat nesting

(b) Closed nesting

(c) Open nesting

Fig. 1. Two transactions under flat, closed
and open nesting (From [24])

If an outer transaction (with open-
nested inner transactions) aborts, all
of its (now committed) open-nested
inner transactions must rollback and
their actions must be undone to en-
sure transaction serializability. Thus,
with the open nesting model, progr-
ammers must provide a compensating
action for each open-nested transac-
tion [2]. In scenarios in which outer
transactions increasingly encounter
conflicts after that a large number
of their open-nested transactions have
committed (e.g., long running trans-
actions), the overall performance
could collapse and all the benefits of
the open-nesting approach vanish due
to the processing of compensating ac-
tions to undo the modifications pro-
vided by the committed open-nested
transactions. In closed nesting, since
closed-nested transactions are not committed in memory until the outer trans-
action commits (nested transactions’ changes are visible only to the outer), no
undo (e.g., compensation) is required. Moreover, in scenarios in which the load of
the system is high, the probability of having concurrent conflicting transactions
grows and with it the probability to abort outer transactions with a number
of open-nested transactions (already committed in memory). Aborting outer
transactions with dependencies, instead of alleviating the load of the system,
will increase it due to the execution of compensating actions, possibly bringing
the system toward dangerous states.

We focus on these problems: the overhead of compensating actions and ab-
stract locks in the open-nested model. Our goal is to boost performance of nested
transactions in DTM by increasing concurrency and reducing the aforementioned
overhead through transactional scheduling. For these reasons, we designed a
scheduler, called the Dependency-Aware Transactional Scheduler (or DATS).
DATS is responsible for helping the concurrency control minimizing the number
of outer-transactions aborted. In order to do that, DATS relies on the notions
of commutable transactions and transaction dependencies.

108 J. Kim, R. Palmieri, and B. Ravindran

Commutable Transactions. Two transactions are defined as commutable if
they conflict and they leave the state of the shared data-set consistent even if
validated and committed concurrently. A very intuitive example of commutativ-
ity is when two operations, call1(X) and call2(X), both access the same object
X but different fields of X (See Section 3.2 for discussion about commutativity).

Transaction Dependencies. An outer transaction materializes dependencies
with its inner transactions if (i) the inner transactions accesses the outer write-
set for performing local computation or (ii) the results of outer processing are
used to decide whether or not to invoke an inner transaction.

DATS is able to detect commutable transactions and validate/commit them,
avoiding useless aborts. In the case of non-commutable transactions, DATS iden-
tifies how much each outer transaction depends on its inner transactions and
schedules the outer transaction with the highest dependency to commit before
other outer transactions with lower or no dependencies. Committing this outer
transaction prevents its dependent inner transactions from aborting and reduces
the number of compensating actions. Moreover, even though the other outer
transactions abort, their independent inner transactions will be preserved, re-
sulting in a reduced number of compensating actions and abstract locks without
violating the correctness of the object.

We implemented DATS in a Java DTM framework, called HyFlow [22], and
conducted an extensive experimental study involving both micro-benchmarks
(e.g., Hash Table, Skip-, Linked-List) and a real application benchmark (TPC-
C). Our study reveals that throughput is improved by up to 1.7× in micro-
benchmarks and up to 2.2× in TPC-C over open-nested DTM without DATS.
To the best of our knowledge, DATS is the first ever scheduler that boosts
throughput with open-nested transactions in DTM.

The rest of the paper is organized as follows. We present preliminaries of
the DTM model and state our assumptions in Section 2. We describe DATS and
analyze its properties in Section 3. Section 4 reports our evaluation. We overview
past and related efforts in Section 5, and Section 6 concludes the paper.

2 Preliminaries and System Model

We consider a distributed systemwhich consists of a set of nodesN = {n1, n2, · · · }
that communicate with each other by message-passing links over a network.
Similar to [14], we assume that the nodes are scattered in a metric space.

Transaction Model. A set of shared objects O = {o1, o2, . . .} are distributed
in the network among nodes. A transaction is defined as a sequence of requests,
each of which is a read or write operation request to an a single object in O.
An execution of a transaction is a sequence of timed operations that ends by
either a commit (success) or an abort (failure). A transaction is in three possible
states: live, aborted, or committed. Each transaction has a unique identifier and
is invoked by a node in the system. We consider the data flow DTM model [14].
In this model, transactions are immobile and objects move from node to node
to invoking transactions. Each node has a TM proxy that provides interfaces

Scheduling Open-Nested Transactions in Distributed Transactional Memory 109

allowing the local application to interact with the other proxies located on other
nodes. When a transaction Ti at node ni requests object oj , the TM proxy of ni

first checks whether oj is in its local cache. If the object is not present, the proxy
invokes a distributed cache-coherence protocol (CC) to fetch oj in the network.

Atomicity, Consistency, and Isolation. We use the Transactional Forward-
ing Algorithm with Open Nesting (TFA-ON) [24], which extends the TFA algo-
rithm [22] (which originally does not provide any transaction nesting support), to
manage flat, closed and open-nested transactions. TFA provides early validation
of remote objects, guarantees a consistent view of shared objects between dis-
tributed transactions, and ensures atomicity for object operations in presence of
asynchronous clocks. The early validation of remote objects means that a trans-
action validated first commits its objects successfully. Validation in distributed
systems includes global registration of object ownership. TFA is responsible for
caching local copies of remote objects and changing the ownership.

TFA-ON changes the scope of object validations. The behavior of open-nested
transactions under TFA-ON is similar to the behavior of regular transactions
under TFA. In addition, TFA-ON manages the abstract locks and the execution
of commit and compensating actions [24]. To provide conflict detection at the
abstract level, an abstract locking mechanism has been integrated into TFA-ON.
Abstract locks are acquired only at commit time, once the inner transaction
is verified to be conflict free at the low level. The commit protocol requests
the abstract lock of an object from the object owner and the lock is released
when its outer transaction commits. To abort an outer transaction properly,
a programmer provides an abstract compensating action for each of its inner
transaction to revert the data-structure to its original semantic state.

TFA-ON is the first ever implementation of a DTM system with support for
open-nested transactions [24]. DATS has been integrated in TFA-ON.

3 The DATS Scheduler

3.1 Motivations

Figure 2 shows an example of open-nested transactions with compensating ac-
tions and abstract locks. Listings 1.1 and 1.2 in Figure 2 illustrate two outer
transactions, T1 and T2, and an inner transaction in Listing 1.3. The inner trans-
action INSERT includes an insert operation in a Linked List. T1 has a delete
operation with a value. If the operation of T1 executes successfully, its inner
transaction INSERT executes. Conversely, regardless of the success of T2’s delete
operation, its inner transaction INSERT will execute. OnCommit and OnAbort,
which include a compensating action, are registered when the inner transaction
commits. If the outer transaction (i.e., T1 or T2) commits, OnCommit exe-
cutes. When the inner transaction commits, its modification becomes immedi-
ately visible for other transactions. Thus, if the inner transaction commits, and
its outer transaction T1 or T2 aborts, a delete operation as a compensating action
(described in OnAbort) executes. Let us assume that T2 aborts, and OnAbort
executes. Even though T2’s inner transaction (INSERT) does not depend on its

110 J. Kim, R. Palmieri, and B. Ravindran

Listing 1.1. Transaction T1

new Atomic<Boolean >(){
@Override boolean atomi ca l l y (Txn t){

L i s t l l = (L i s t) t . open (tree −2);

d e l e t ed = l l . d e l e t e (7 , t) ;

i f (de l e t ed) INSERT(t , 1 0) ; // inner t x

return de l e t ed ;

}
}

Listing 1.2. Transaction T2

new Atomic<Boolean >(){
@Override boolean atomi ca l l y (Txn t){

L i s t l l = (L i s t) t . open (tree −2);

d e l e t ed = l l . d e l e t e (9 , t) ;

INSERT(t , 1 0) ; // inner t x

return de l e t ed ;

}
}

Listing 1.3. Inner Transaction INSERT

public boolean INSERT(Txn t , int value){
private boolean i n s e r t e d = fa l se ;

@Override boolean atomi ca l l y (t){
L i s t l l = (L i s t) t . open (tree −1);

i n s e r t e d = l l . i n s e r t (value , t) ;

t . acqu i reAbstractLock (l l , va lue) ;

return i n s e r t e d ;

}
@Override onAbort (t){

L i s t l l = (L i s t) t . open (tree −1);

// compensat ion

i f (i n s e r t ed) l l . d e l e t e (value , t) ;

t . r e l ea seAbst rac tLock (l l , 7) ;

}
@Override onCommit (t){

L i s t l l = (L i s t) t . open (tree −1);

t . r e l ea seAbsrac tLock (l l , value) ;

}
}

Fig. 2. Two open-nested transactions with abstract locks and compensating actions

delete operation, unlike T1, OnAbort will execute. Thus, the conflict of object
“tree-2” in T2 causes the execution of compensating action on object “tree-1”
in INSERT. The INSERT operation acquires the abstract lock again when it
restarts. Finally, whenever an outer transaction aborts, its inner transaction
must execute a compensating action, regardless of the operation’s dependencies.

This drawback is particularly evident in distributed settings. In fact, dis-
tributed transactions typically have an execution time several orders of magni-
tude bigger than in a centralized STM, due to communication delays that are
incurred in requesting and acquiring objects [16]. If an outer transaction aborts,
clearly the impact of the time needed for running compensating actions and
for acquiring abstract locks for distributed open-nested transactions is exacer-
bated due to the communication overhead. Moreover it increases the likelihood
of conflicts, drastically reducing concurrency and degrading performance.

Motivated by these observations, we propose the DATS scheduler for open-
nested DTM. DATS, for each outer transaction Ta, identifies the number of inner
transactions depending from Ta and schedules the outer transactions with the
greatest number of dependencies to validate first and (hopefully) commit. This
behavior permits the transactions with high compensation overhead to com-
mit; the remaining few outer transactions that are invalidated will be restarted
excluding their independent inner transactions to avoid useless compensating
actions and acquisition of abstract locks. In the next subsection the meaning of
dependent transactions for DATS will be described.

3.2 Abstract and Object Level Dependencies

We consider two types of dependencies among transactions.

Abstract LevelDependency.The first is called abstract level dependency (ALD)
and it indicates the dependency between an outer transaction and its inner

Scheduling Open-Nested Transactions in Distributed Transactional Memory 111

Algorithm 1. Algorithms for checking AOL and OLD

1 Procedure Commit
Input: txid, objects
Output: commit, abort

2 foreach objects do
3 if txid is open nesting then
4 � Extract <operations,values,DL>
5 Send

<operations,values,DL,object.id>
6 o object.owner
7 Wait until receive status from

object.owner
8 if status=noncommute then
9 noncommutativity.put(object);

10 if noncommutativity=∅ then
11 � All objects commute or no conflicts

detected
12 Retrieve the dependency queue from

object.owner ;
13 Validate objects; � Change the object

ownership
14 find highest DL from

dependency.get(object.id);
15 Send object to the node with the highest

DL;
16 return commit;

17 foreach object ∈ noncommutativity do
18 � Checking abstract level dependency

(ADL)
19 nestedTxId = CheckALD(object);
20 � Enqueue dependent nested transactions
21 NestedTxs.put(object.id,nestedTxId);

22 Abort(txid, DependentObjects);
23 return abort;
24

25

26 Procedure Retrieve Object
Input: operation, value, DL, oid

27 object = findObject(oid);
28 if object=null then
29 � Object just validated, checking object

level dependency (OLD)
30 if CheckOLD(operation, value) then
31 commutativity.put(object.id, new

request(operation, values));
32 return commute;

33 � Dependency queue to track updates.
34 dependency.put(oid, DL);
35 return non − commiute;

36 return no − conflict;
37

38 Procedure Abort
Input: txid, objects

39 if txid is outer-transaction then
40 foreach objects do
41 nestedIds = NestedTxs.get(object.id);

42 if nestedIds �= null then
43 foreach nestedIds do
44 � Execute onAbort() for

nestedId
45 AbortNestedTx(nestedId);

46 AbortOuterTx(txid);

transactions at an abstract level. We define the dependency level (DL) as the
number of inner transactions that will execute OnAbort when the outer trans-
actions abort. For example, T1 illustrated in Figure 2 depends on its INSERT due
to the deleted variable. Thus, DATS detects a dependency between T1 and its
INSERT (its inner transaction) because the delete operations in T1 shares the vari-
able deletedwith the conditional if statement declared for executing INSERT. In
this case, theDL=1 for T1. Conversely, T2 executes INSERTwithout checking any
pre-condition so its DL=0 because T2 does not have dependencies with its inner
transactions. The purpose of the abstract level dependency is to avoid unneces-
sary compensating actions and abstract locks. Even though T2 aborts, OnAbort
in INSERT will not be executed because its DL=0, and the compensating action
will not be processed. Meanwhile, executing OnAbort implies running INSERT
and acquiring the abstract lock again when T2 restarts.

Summarizing, aborting outer transactions with smallerDLs leads to a reduced
number of compensating actions and abstract lock acquisitions. Such identifica-
tion can be done automatically at run-time by DATS using byte-code analysis or
relying on explicit indication by the programmer. The first scenario is completely
transparent from the application point of view but in some cases could add ad-
ditional overhead. The second approach, although it requires the collaboration

112 J. Kim, R. Palmieri, and B. Ravindran

of the developer, is more flexible because it allows the programmer to bias the
behavior of the scheduler. In fact, even though the logic of an outer transaction
reveals a certain number of dependencies, the programmer may want to force
running compensations in case of an abort. This can be done by simply changing
the value of DL associated to the outer transaction.

Object Level Dependency. The second is called object level dependency
(OLD) and it indicates the dependency among two or more concurrent trans-
actions accessing the same shared object. For example, in Figure 2, T1 depends
on T2 because they share the same object “tree-2”. If T1 and T2 work concur-
rently, a conflict between them occurs. However, delete(7) of T1 and delete(9)
of T2 commute because they are two operations executing on the same object
(“tree-2”) but accessing different items (or fields when applicable) of the object
(item “7” and item “9”). We recall that, two operations commute if applying
them in either order they leave the object in the same state and return the same
responses [12]. DATS detects object level dependency at transaction commit
phase, splitting the validation phase into two. Say Ta is the transaction that is
validating. In the first phase, Ta checks the consistency of the objects requested
during the execution. If a concurrent transaction Tb has requested and already
committed a new version of some object requested by Ta, then Ta aborts in order
to avoid isolation corruption. After the successful completion of the first phase
of Ta’s validation, DATS detects the object level dependencies among concur-
rent transactions that are validating with Ta in the second phase. To do that,
DATS relies on the notion of commutativity already introduced at the end of
Section 1. Suppose Ta and Tb are conflicting transactions but simultaneously
validating. If all of Ta’s operations commute with all of Tb’s operations, they
can proceed to commit together avoiding a useless abort. Otherwise one of Ta

or Tb must be aborted. This scheduler is in charge of the decision (see next
sub-section).

In order to compute commutativity, DATS joins two supports. In the first,
the programmer annotates each transaction class with the fields accessed. The
second is a field-based timestamping mechanism, used for checking the field-
level invalidation. The goal is to reduce the granularity of the timestamp from
object to field. With a single object timestamp, it is impossible to detect com-
mutativity because of fields modifications. In fact, writes to different fields of
the same object are all reflected with the increment of the same object times-
tamp. In order to do that efficiently, DATS exploits the annotations provided by
the developer on the fields accessed by the transaction to directly point only to
the interested fields (instead of iterating on all the object fields, looking for the
ones modified). On such fields, it uses field-based timestamping to detect object
invalidation.

The purpose of the object level dependency is to enhance concurrency of outer
transactions. Even though inner transactions terminate successfully, aborting
their outer transactions affects these inner transactions (due to compensation).
Thus, DATS checks for the commutativity of conflicting transactions and permits
them to be validated, reducing the aborts.

Scheduling Open-Nested Transactions in Distributed Transactional Memory 113

3.3 Scheduler Design

We designed DATS using abstract level dependencies and object level depen-
dencies. In Figure 1 is presented the pseudo-code with the procedures used by
DATS for detecting ALD and OLD at validation/commit time. When outer
transactions are invoked, the DL with their inner transactions is checked. When
the outer transactions request an object from its owner, the requests with their
DLs will be sent to the owner and moved into its scheduling queue. The object
owner maintains the scheduling queue holding all the ongoing transactions that
have requested the object with their DLs. When T1 (one of the outer transac-
tions) validates an object, we consider two possible scenarios. First, if another
transaction T2 tries to validate the same object, a conflict between T1 and T2 is
detected on the object. Thus, DATS checks for the object level dependency. If T1

and T2 are independent (according to the object level dependency rules), DATS
allows T1 and T2 to proceed with the validation. Otherwise, the transaction with
lower DL will be aborted. In this way, dependent transactions with the minimal
cost of abort and compensating actions are aborted and restarted, permitting
transactions with a costly abort operation to commit.

Fig. 3. Four Different Cases for Two Transactions T1 and T2 in DATS

Figure 3 illustrates an example of DATS with two transactions T1 and T2

invoked on nodes n1 and n2, respectively. The transaction T1 has a single inner-
transaction and T2 has two nested transactions. Let us assume that T1’s DL=1
and T2’s DL=2. The circles indicate written objects. The horizontal line corre-
sponds to the status of each transaction described in the time domain. Figure 3
shows four different cases when T1 and T2 terminate. When T1 and T2 are in-
voked, DATS analyzes their DLs, operations, and values. When T1 requests o1
from n0, the meta-data for DLs, operations and values of o1 will be sent to n0.
These are moved to the scheduling queue of n0. We consider four different cases
regarding the termination of T1 and T2.

Case 1. T1 and T2 validate concurrently o1. DATS checks for the object level
dependency. If T1 and T2 are not dependent at the object level (i.e., the opera-
tions of T1 and T2 over o1 commute), T1 and T2 commit concurrently.
Case 2. T1 starts to validate and detects it is dependent with T2 (that is still
executing) at the object level on the object o1. In this case T2 will abort due to
early validation. When T1 commits, the updated o1 is sent to n2.

114 J. Kim, R. Palmieri, and B. Ravindran

Case 3. Another transaction committed o1 before T1 and T2 validate. If T1 and
T2 are not dependent at the object level, o1 is sent to n1 and n2 simultaneously
as soon as the transaction commits.
Case 4. Another transaction committed o1 before T1 and T2 validate. If T1 and
T2 are dependent at the object level, DATS checks for the abstract level depen-
dency, and o1 is sent to n2 because T2’s DL is larger than that of T1. Aborting
T1, the scheduler is forced to run a single compensation (for T1−1) instead of two
compensations (T2−1 and T2−2) in case of T2’s abort. Further, considering the
case in which the DL of T1 is 0, the abort of T1 does not affect T1−1. In fact, its
execution will be preserved and only the operations of T1 will be re-executed.

4 Implementation and Experimental Evaluation

Experimental Setup. We implemented DATS in the HyFlow DTM frame-
work [22,25]. We cannot compare our results with any competitor, as none of
the DTMs that we are aware of support open nesting and scheduling. Thus,
we compared DATS under TFA-ON (DATS) with only TFA-ON (OPEN) [24],
closed nested transaction (CLOSED) [25], and flat nested transaction (FLAT).
We contrast with CLOSED and FLAT to show that OPEN does not always
perform better than them, while DATS consistently outperforms OPEN.

We assess the performance of DATS using Hash Table, Skip List and Linked
List as micro-benchmarks, TPC-C [7] as a real-application benchmark. Our test-
bed is comprised of 10 nodes, each one is an Intel Xeon 1.9GHz processor with 8
CPU cores. We varied the number of application threads performing operations
for each node from 1 to 8, considering a spectrum between 2 and 80 concur-
rent threads in the system. We measured the throughput (number of committed
transactions per second). All data-points reported are the result of multiple exe-
cutions, so plots present for each data-point the mean value and the error-bar. In
order to assess the goodness of DATS we also present the percentage of aborted
transactions and the scheduler overhead.

Benchmarks. The Skip List and Linked List benchmarks are data structures
maintaining sorted and unsorted, lists of items, respectively, whereas Hash Table
is an associative array mapping keys to values. We configured the benchmarks
with the small number of objects and a large number of inner transactions – eight
inner transactions per transaction and ten objects, incurring high contention.

Regarding TPC-C, the write transactions consist of update, insert, and/or
delete operations accessing a database of nine tables maintained in memory,
where each row has a unique key. Multiple operations commute if they access a
row (or object) with the same key and modify different columns. We configured
the benchmark with a limited number of warehouses (#3) in order to generate
high conflicts. We recall that, in the data flow model, objects are not bound on
fixed nodes but move, increasing likelihood of conflicts.

Evaluation. Figures 4, 5 and 6(a-f) show the throughput of micro-benchmarks
under 10% and 90% of read transactions. The purpose of DATS is to reduce the

Scheduling Open-Nested Transactions in Distributed Transactional Memory 115

2 3 4 5 6 7 8 9 10
Number of Nodes

0

50

100

150

200

250

300

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Hashtable(1 thread), 10% Read

OPEN-DATS

OPEN

CLOSED

FLAT

(a) HT (1 thread), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

0

200

400

600

800

1000

1200

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Hashtable(4 threads), 10% Read

(b) HT (4 threads), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

200

400

600

800

1000

1200

1400

1600

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Hashtable(8 threads), 10% Read

(c) HT (8 threads), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

50

100

150

200

250

300

350

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Hashtable(1 threads), 90% Read

(d) HT (1 thread), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

200

400

600

800

1000

1200

1400

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Hashtable(4 threads), 90% Read

(e) HT (4 threads), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

0

500

1000

1500

2000

2500

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Hashtable(8 threads), 90% Read

(f) HT (8 threads), 90% Read

Fig. 4. Performance of DATS Using Hash Table (HT)

2 3 4 5 6 7 8 9 10
Number of Nodes

40

60

80

100

120

140

160

180

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Skiplist(1 thread), 10% Read

OPEN-DATS

OPEN

CLOSED

FLAT

(a) SL (1 thread), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

50

100

150

200

250

300

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Skiplist(4 threads), 10% Read

(b) SL (4 threads), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

50

100

150

200

250

300

350

400

450

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Skiplist(8 threads), 10% Read

(c) SL (8 threads), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

0

50

100

150

200

250

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Skiplist(1 thread), 90% Read

(d) SL (1 thread), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

50

100

150

200

250

300

350

400

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Skiplist(4 threads), 90% Read

(e) SL (4 threads), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

100

200

300

400

500

600

700

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Skiplist(8 threads), 90% Read

(f) SL (8 threads), 90% Read

Fig. 5. Performance of DATS Using Skip List (SL)

116 J. Kim, R. Palmieri, and B. Ravindran

2 3 4 5 6 7 8 9 10
Number of Nodes

40

50

60

70

80

90

100

110

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Linkedlist(1 thread), 10% Read

OPEN-DATS

OPEN

CLOSED

FLAT

(a) LL (1 thread), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

60

80

100

120

140

160

180

200

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Linkedlist(4 threads), 10% Read

(b) LL (4 threads), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

60

80

100

120

140

160

180

200

220

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Linkedlist(8 threads), 10% Read

(c) LL (8 threads), 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

30

40

50

60

70

80

90

100

110

120

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Linkedlist(1 threads), 90% Read

(d) LL (1 thread), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

60

80

100

120

140

160

180

200

220

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Linkedlist(4 threads), 90% Read

(e) LL (4 threads), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

80

100

120

140

160

180

200

220

240

260

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

Linkedlist(8 threads), 90% Read

(f) LL (8 threads), 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

10

20

30

40

50

60

70

80

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

TPC-C(1 thread)

OPEN-DATS

OPEN

CLOSED

FLAT

(g) TPC-C(1 thread)

2 3 4 5 6 7 8 9 10
Number of Nodes

20

30

40

50

60

70

80

90

100

110

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

TPC-C(4 threads)

(h) TPC-C(4 threads)

2 3 4 5 6 7 8 9 10
Number of Nodes

20

40

60

80

100

120

140

T
ra
n
sa
ct
io
n
al

T
h
ro
u
gh
p
u
t

TPC-C(8 threads)

(i) TPC-C(8 threads)

Fig. 6. Performance of DATS Using Linked List (LL) and TPC-C

SkipList HashTable LinkedList TPC-C
Benchmarks

0

10

20

30

40

50

60

A
b
or
t
R
ed
u
ct
io
n
(%

)

Abort Reduction

thread 1

thread 4

thread 8

(a) % Aborted transactions

2 4 6 8 10
Number of Nodes

0

5

10

15

20

25

30

m
se
c

Execution vs. Validation Times

Execution Time (DATS)

Validation Time (DATS)

Execution Time (OPEN)

Validation Time (OPEN)

(b) Execution vs. Validation Times

Fig. 7. Analysis of Scheduling Overhead and Abort Reduction

Scheduling Open-Nested Transactions in Distributed Transactional Memory 117

overheads of compensating actions and abstract locks. In 10% read transactions,
the number of aborts increases due to high contention. Outer transactions fre-
quently abort, and corresponding compensating actions are executed; so DATS
outperforms OPEN in throughput because it mitigates the abort of outer trans-
actions and the corresponding compensating actions.

For the experiments with TPC-C in Figure 6(g),6(h),6(i), we used the amount
of read and write transactions that its specification recommends. TPC-C bench-
mark accesses large tables to read and write values. Due to the non-negligible
transaction execution time, the number of compensating actions and abstract
locks in TPC-C significantly degrades the overall performance. Thus, DATS
increases the performance in high contention (a large number of threads and
nodes). By these results, it is evident how much unnecessary aborts of inner
transactions affects performance and howmuch performance is improved through
minimizing aborts. Even if DATS reduces the number of compensating actions
and acquisition of abstract locks, the performance of OPEN is degraded because
of the commit overheads of inner transactions [24]; so the throughput of DATS
is slightly better than CLOSED and FLAT, but significantly better than OPEN.

Figure 8 shows throughput speed-up relative to OPEN using Hash Table, Skip
List, Linked List and TPC-C. Our results show that DATS performs up to 1.7×
and 2.2× better than OPEN in micro-benchmarks and TPC-C, respectively.

2 3 4 5 6 7 8 9 10
Number of Nodes

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p
ee
d
u
p

Speedup(Hashtable)

1 thread, 90

1 thread,10

4 threads, 90

4 threads, 10

8 threads, 90

8 threads, 10

(a) Hash Table

2 3 4 5 6 7 8 9 10
Number of Nodes

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
p
ee
d
u
p

Speedup(Skiplist)

1 thread, 90

1 thread,10

4 threads, 90

4 threads, 10

8 threads, 90

8 threads, 10

(b) Skip List

2 3 4 5 6 7 8 9 10
Number of Nodes

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p
ee
d
u
p

Speedup(Linkedlist)

1 thread 90

1 thread, 10

4 threads, 90

4 threads, 10

8 threads, 90

8 threads, 10

(c) Linked List

2 3 4 5 6 7 8 9 10
Number of Nodes

1.0

1.2

1.4

1.6

1.8

2.0

2.2

S
p
ee
d
u
p

Speedup(TPC-C)

1 thread

4 thread

8 threads

(d) TPC-C

Fig. 8. Speed-up (Throughput Relative to OPEN) in Hash Table, Skip List, Linked
List, TPC-C

118 J. Kim, R. Palmieri, and B. Ravindran

Figure 7 shows the analysis of scheduling overhead and abort reduction. Check-
ing dependencies occurs when a transaction validates, so we measure the average
execution time and the average validation time of committed transactions as il-
lustrated in Figure 7(b). The gap between the two validation times of DATS and
OPEN proves the scheduling overhead. Even though the validation time of DATS
is up to two times more than OPEN’s, a large number of transactions validated si-
multaneously according to the increment of nodes, results in a shorten transaction
response time, reducing the average validation time and aborts. Figure 7(a) the
comparison between the percentage of aborted transactions of OPEN and DATS.
As long as the number of threads increases, the number of aborts in DATS and
OPEN increases too. However, the increasing abort ratio in DATS is less than in
OPEN, proving how much DATS reduces the abort rate.

5 Related Work

Nested transactions (using closed nesting) originated in the database community
and were thoroughly described in [18]. This work focused on the popular two-
phase locking protocol and extended it to support nesting.

Open nesting also originates in the database community [11], and was exten-
sively analyzed in the context of undo-log transactions [26]. In these works, open
nesting is used to decompose transactions into multiple levels of abstraction, and
maintain serializability on a level-by-level basis.

One of the early works introducing nesting to Transactional Memory has been
presented in [20]. They describe the semantics of transactional operations in terms
of system states, which are tuples that group together a transaction ID, a mem-
ory location, a read/write flag, and the value read or written. They also provide
sketches for several possible HTM implementations, which work by extending ex-
isting cache coherence protocols. They further focus on open nested transactions
in [19], explaining how using multiple levels of abstractions can help in differenti-
ating between fundamental and false conflicts and therefore improve concurrency.
The authors of [17] implemented closed and open nesting in LogTM HTM. They
implement nesting models by maintaining a stack of log frames, similar to the
run-time activation stack, with one frame for each nesting level. In [1] the authors
combined closed and open nesting by introducing the concept of transaction own-
ership. They propose the separation of TM systems into transactional modules
(or Xmodules), which own data. Thus, a sub-transaction commits data owned by
its own Xmodule directly to memory using an open-nested model. However, for
data owned by foreign Xmodules, it employs the closed nesting model and does
not directly write to the memory. The past closed nesting models [20,17,1] have
been studied for multiprocessor STM. N-TFA [25] and TFA-ON [24] are the first
ever DTM implementation with support for closed and open-nesting, respectively,
but do not consider transactional scheduling.

Transactional scheduling has been explored in a number of multiprocessor
STM efforts [10,3,28,9,4]. In [10], the authors describe an approach that schedules
transactions based on their predicted read/write access sets. In [3], they discuss
the Steal-On-Abort transaction scheduler, which queues an aborted transaction

Scheduling Open-Nested Transactions in Distributed Transactional Memory 119

behind the non-aborted transaction, and thereby prevents the two transactions
from conflicting again. The Adaptive Transaction Scheduler (ATS) is present
in [28], that adaptively controls the number of concurrent transactions based on
the contention intensity: when the intensity is below a threshold, the transaction
begins normally; otherwise, the transaction stalls and does not begin until dis-
patched by the scheduler. The CAR-STM scheduling approach is presented in [9],
which uses per-core transaction queues and serializes conflicting transactions by
aborting one and en-queuing it on another queue, preventing future conflicts.
CAR-STM pre-assigns transactions with high collision probability (application-
described) to the same core, thereby minimizing conflicts. In [5] they propose
the Proactive Transactional Scheduler (PTS). Their scheme detects “hot spots”
of contention that can degrade performance, and proactively schedules affected
transactions around the hot spots. Attiya and Milani present the BIMODAL
scheduler [4], which targets read-dominated and bimodal (i.e., those with only
early-write and read-only) workloads. Kim and Ravindran extend the BIMODAL
scheduler for DTM in [15]. Their scheduler, called Bi-interval, groups concurrent
requests into read and write intervals, and exploits the tradeoff between object
moving times (incurred in dataflow DTM) and concurrency of reading transac-
tions, yielding high throughput. None of the past transactional schedulers for
STM and DTM consider open-nested transactions.

6 Conclusions

When transactions with committed open-nested transactions conflict later and
are re-issued, compensating actions for the open-nested transactions can reduce
throughput. DATS avoids this by reducing unnecessary compensating actions,
and minimizing inner transactions’ remote abstract lock acquisitions through ob-
ject dependency analysis. DATS shows the important of scheduling open-nested
transactions in order to reduce the number of compensating actions and ab-
stract locks in case of abort. Our implementation and experimental evaluation
shows that DATS enhances transactional throughput for open-nested transac-
tions over no DATS by as much as 1.7× and 2.2× with micro-benchmarks and
real-application benchmark, respectively.

Acknowledgments. This work is supported in part by US National Science
Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS
1217385.

References

1. Agrawal, K., Lee, I.-T.A., Sukha, J.: Safe open-nested transactions through
ownership. In: SPAA (2008)

2. Agrawal, K., Leiserson, C.E., Sukha, J.: Memory models for open-nested transac-
tions. In: MSPC (2006)

3. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-
abort: Improving transactional memory performance through dynamic transaction
reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.)
HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

120 J. Kim, R. Palmieri, and B. Ravindran

4. Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads. In:
Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923,
pp. 3–17. Springer, Heidelberg (2009)

5. Blake, G., Dreslinski, R.G., Mudge, T.: Proactive transaction scheduling for con-
tention management. In: Microarchitecture, pp. 156–167 (December 2009)

6. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable dis-
tributed software transactional memory. In: PRDC (November 2009)

7. TPC Council. Tpc-c benchmark, revision 5.11 (February 2010)
8. Demmer, M.J., Herlihy, M.P.: The arrow distributed directory protocol. In: Kutten,

S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)
9. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling-based collision avoidance

and resolution for software transactional memory. In: PODC (2008)
10. Dragojević, A., Guerraoui, R., et al.: Preventing versus curing: avoiding conflicts

in transactional memories. In: PODC 2009, pp. 7–16 (2009)
11. Garcia-Molina, H.: Using semantic knowledge for transaction processing in a dis-

tributed database. ACM Trans. Database Syst. 8(2), 186–213 (1983)
12. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-

concurrent transactional objects. In: PPoPP 2008, pp. 207–216. ACM (2008)
13. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-

ware transactional memory. In: OOPSLA, pp. 253–262 (2006)
14. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.

Distributed Computing 20(3), 195–208 (2007)
15. Kim, J., Ravindran, B.: On transactional scheduling in distributed transactional

memory systems. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 347–361. Springer, Heidelberg (2010)

16. Kim, J., Ravindran, B.: Scheduling closed-nested transactions in distributed
transactional memory. IPDPS, 1–10 (2012)

17. Moravan, Bobba, Moore, Yen, Hill, Liblit, Swift, Wood: Supporting nested
transactional memory in logTM. SIGPLAN Not. 41(11) (2006)

18. Moss, E.B.: Nested transactions: An approach to reliable distributed computing.
Technical report, Cambridge, MA, USA (1981)

19. Moss, J.E.B.: Open-nested transactions: Semantics and support. In: Workshop of
Memory Performance Issues (2006)

20. Moss, J.E.B., Hosking, A.L.: Nested transactional memory: model and architecture
sketches. Sci. Comput. Program. 63, 186–201 (2006)

21. Palmieri, R., Quaglia, F., Romano, P.: Osare: Opportunistic speculation in actively
replicated transactional systems. In: SRDS (2011)

22. Saad,M., Binoy, R.: Supporting STM in distributed systems:Mechanisms and a Java
framework. In: ACMSIGPLANWorkshop on Transactional Computing 2011 (2011)

23. Saad, M.M., Ravindran, B.: HyFlow: a high performance distributed software
transactional memory framework. In: HPDC 2011 (2011)

24. Turcu, R.: On open nesting in distributed transactional memory. In: SYSTOR
(2012)

25. Turcu, A., Ravindran, B.: On closed nesting in distributed transactional memory.
In: Seventh ACM SIGPLAN workshop on Transactional Computing (2012)

26. Weikum, G.: Principles and realization strategies of multilevel transaction
management. ACM Trans. Database Syst. 16(1), 132–180 (1991)

27. Yang, Menon, Ali-Reza, Antony, Hudson, Moss, Saha, Shpeisman: Open nesting
in software transactional memory. In: PPoPP. ACM, New York (2007)

28. Yoo, R.M., Lee, H.-H.S.: Adaptive transaction scheduling for transactional memory
systems. In: SPAA, pp. 169–178 (2008)

Peer-Based Programming Model

for Coordination Patterns

Eva Kühn, Stefan Craß, Gerson Joskowicz,
Alexander Marek, and Thomas Scheller

Vienna University of Technology, Institute of Computer Languages
Argentinierstr. 8, 1040 Vienna, Austria

{eva,sc,josko,amarek,ts}@complang.tuwien.ac.at

Abstract. Modern distributed software systems must integrate in near-
time parallel processes and heterogeneous information sources provided
by active, autonomous software systems. Such lively information sources
are e.g. sensory data, weather data, traffic data, or booking data, oper-
ated by independent distributed sites. The complex integration requires
the coordination of these data flows to guarantee consistent global seman-
tics. Design, implementation, analysis and control of distributed concur-
rent systems are notoriously complex tasks. Petri Nets are widely used
to model concurrent activities. However, a higher-level programming ab-
straction is needed. We propose a new programming model for modeling
concurrent coordination patterns, which is based on the idea of “peer
workers” that represent re-usable coordination and application compo-
nents. These components encapsulate behavior, structure distributed
data and control flow, and allow integration of pre-existing service func-
tions. A domain-specific language is presented. The usability of the peer-
based programming model is evaluated with the Split/Join pattern.

1 Introduction

A common problem in software projects is the tightrope walk between design
and implementation. While the designer’s focus is to keep the system clean and
verifiable under all possible operating conditions, the developer’s main intent
is getting things done while dealing with exceptional conditions in later refine-
ments. The Peer Model that we introduce in this paper tries to bridge this gap,
at least within a specified problem domain, by providing a domain-specific mod-
eling language to design, analyze, and implement system integration patterns in
distributed environments using predefined and application-specific components.

The need for methodologies that connect verifiable designs and implementa-
tions occurs especially in systems where a multitude of autonomous systems are
cooperating to fulfill a specific task. One example that illustrates these problems
is in the realm of distributed firewall configuration: firewalls belong to different
organizations and the rollout of a new configuration must guarantee that no
inconsistencies take place. Errors occur during the rollout process when sites are
down, the network is unavailable, local configuration constraints are violated,

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 121–135, 2013.
c© IFIP International Federation for Information Processing 2013

122 E. Kühn et al.

access rights are not granted etc. A modeling tool is required to specify the con-
figuration process. It must allow modeling when a valid state is reached, and at
which time and under which conditions new configurations may become active
in the entire network or in parts of it. This will be the case if e.g., a certain
number or a majority of firewall sites reported back that they have implemented
the updates. Network configuration is a dynamic and quite complex task with
many different error situations. Failure impact analysis shall be possible for all
different configuration possibilities. It is therefore desirable that this process can
be modeled, verified, and executed. A service-oriented security concept for the
coordination of such firewalls has been proposed in [6], whereas in this paper,
we investigate a new model for specification and implementation of complex
coordination and integration patterns.

A further example that motivated the design of the Peer Model is from the rail
traffic management domain. Here, measurement systems – like wheel sensors or
RFID sensors – along the tracks generate information about approaching trains.
This data is transported over mesh networks. A use case is for example a traffic
control center that queries distributed sensors, collects answers, and aggregates
them to a gain a sufficiently consistent view about the technical status of a train.
As sensors are low cost components, wireless communication is error prone, and
field conditions are harsh, many failure situations must be coped with.

Both examples have a basic pattern in common that consists of the following
steps: 1) splitting of a task into individual subtasks to be executed by different
nodes (firewalls resp. sensors), and 2) joining of received answers according to
complex rules and under the assumption of failures, in order to derive a global
decision. We term this recurring situation the Split/Join pattern and will use it
as an example throughout this paper.

Many modeling methodologies for the purpose of designing concurrent soft-
ware systems have been proposed, such as Petri Nets [1], Reo [3] and UML
MARTE [2]. These methodologies are general and not domain-specific, as they
are used to solve almost any software problem. On the one hand, that is what
makes them powerful as the designer can model everything, but on the other
hand, the designer also does have to model everything and cannot assume any
functionality to be present.

As the Peer Model is targeted at modeling coordination patterns in distributed
environments, it can make several assumptions on the target system. For exam-
ple, it assumes a tuple space-based communication middleware to be present
and can therefore resort to transactional transmissions of data between commu-
nicating components and to coordination mechanisms for accessing distributed
data structures. Additionally, it follows a component-based approach and as-
sumes several predefined, reusable components to be present. Designers can also
structure their scenario-specific coordination logic into new reusable components,
rearranging the resulting models more clearly and providing better scalability
when additional logic is added. New components can also be created by combin-
ing existing components and using them as sub-components, thus leading to a
nested component structure. It is important to note that only coordination logic

Peer-Based Programming Model for Coordination Patterns 123

is modeled, not business logic. One weakness in Petri Net models of concurrent
systems is that the resulting models mix business logic and coordination logic,
thus reducing their readability and maintainability. For that reason our model
strictly forbids defining arbitrary business logic within the model. Rather, it in-
tegrates and connects external services, thereby separating clearly concurrency,
parallelism and distribution mechanisms of the collaborating components from
the business logic.

The contribution of this paper is a higher-level programming and design model
termed “Peer Model”, or “PM” for short, aiming to ease the design and im-
plementation of complex integration patterns in distributed environments. We
introduce its Domain Specific Language (DSL), meta-model and graphical no-
tation, but not its implementation itself and prove our claims by using its DSL
to model a well-known pattern and comparing the resulting model to equivalent
ones using Reo [3] and Colored Petri Net [10] notation.

In Section 2 we introduce the Peer Model along with its graphical notation,
Section 3 introduces the pattern used for evaluation purposes, Section 4 gives
an overview of the Peer Model’s meta-model and DSL. In Section 5 we compare
our resulting model of the pattern with those of other modeling languages and
Section 6 finally points out our conclusion and future work.

2 Peer Model

The Peer Model is a novel programming model targeted at developers of highly
concurrent applications. Its design is inspired by asynchronous message queue
or tuple space communication, staged event-driven architecture, and data-driven
workflow. In the Peer Model, space containers realize stages; a construct termed
peer is introduced that represents a structured, re-usable, addressable compo-
nent. It is modeled by means of two stages for input and output. Between them
the internal logic of the peer takes place. Inter-peer collaboration occurs between
output stage and a foreign peer’s input stage. Stages thus mark end-points of
distribution. Wirings model the flow between stages within and between peers.
Data belonging to the same flow is marked with a unique flow identifier.

The conception of the Peer Model assumes a tuple-space [8] to bootstrap the
model. Space-based middleware lets autonomous components coordinate them-
selves in a highly decoupled way. We use a space as described in [7], which
provides shared containers that support configurable coordination mechanisms
[11], and a flexible and extensible API for accessing them, although other spaces
with similar functionality may also be used to bootstrap the Peer Model.

Data and requests are modeled as entries maintained in containers. An entry
has an application- and a coordination-specific data part, termed app-data resp.
co-data. The latter holds meta-information for system-internal mechanisms like
entry selection and transactions, and is identified by labeled properties. The
entry type is explicitly modeled by a type property, which is also queryable co-
data. Note that the entry type differs from the type of the app-data transported
by this entry. The entry type serves for coordinating the flow in the system.

124 E. Kühn et al.

(a) (b)

Fig. 1. (a) Peer. (b) Space Peer.

A container is referenced by a URI in the network. It provides (1) put opera-
tions that write new entries into a container, and (2) get operations that read or
take entries. The coordination principle (e.g. first-in-first-out order, key, template
matching, SQL-like query etc.) by which entries are administrated and queried
in the container is controlled by the entries’ meta information. Read and take
operations select entries according to the chosen coordination principle. They
wait within the given timeout for the query to complete. In addition, take also
removes the entries from the container. Put and get operations are carried out
in transactions; both support bulk data processing. The write operation puts
entries into a container in a single step. Read and take retrieve a certain amount
of entries which is controlled by a counter specification as explained below.

The container is a basic building block for the specification of the Peer Model.
Special capabilities of the container implementation like persistency and autho-
rization [5,6] influence the quality of the Peer Model with respect to reliability,
consistency and security. However, these issues are out of the scope of this paper.
For the following, we only assume two very basic coordination laws: (i) selection
of entries by means of their type property, and (ii) specification of the amount of
entries required to fulfill a query, otherwise the operation will block. The amount
of required entries is expressed as a relation that represents the exact number
(“=”), a minimum (“>”, “>=”) or a maximum (“<”, “<=”) of required entries.
The semantics is to always take as much entries as possible.

2.1 Peer

A peer P is the main resource of the Peer Model. The graphical notation for the
basic form of a peer is shown in Figure 1.a. It controls the execution of services.
A peer possesses a name (URI), an input space termed peer-in-container (PIC),
and an output space termed peer-out-container (POC). Via the PIC it receives
request entries, takes them out of the PIC, processes them, and finally puts
replies into the POC. The PIC restricts the entries it accepts to pre-defined
types. The behavior of a peer is modeled by means of nested sub-peers, wirings
and services (see Section 2.2). A sub-peer is a peer that is created in the scope
of a peer. A wiring allows incorporating zero or more services into a peer. It
waits until a defined selection of entries is available, invokes services, and moves
or copies entries between the peer’s PIC, its POC, and/or PICs and POCs of
direct sub-peers. Therefore, wirings are the only active part of the system.

Major peer derivatives are: A space peer (SPA) as shown in Figure 1.b is a
specialized peer that models the functionality of a space container. Its PIC and
POC are melted into one place where all incoming entries are stored using the

Peer-Based Programming Model for Coordination Patterns 125

(a) (b) (c)

Fig. 2. Wirings

write operation, and from which they can be read or taken. A SPA is used to store
data that are shared between concurrent threads and/or processes, i.e. it serves
as medium for communication and synchronization. In the Split/Join pattern
example (see Section 3, Figure 5.b) it will be used to collect the workers’ answers
to be merged by a join peer. A coordination peer (COP) is a predefined system
peer encapsulating re-usable coordination logic; examples are lookup, routing
and filtering peers. An application peer (APP) includes application-specific logic
provided by developers in form of service methods. Together, all peers of a site
form a “Peer Space”, whose runtime environment is bootstrapped via a runtime
peer (RTP), the name of which refers to the URI of the local site. It enables the
dynamic creation and deletion of peers and their composition through wirings
and services at the local site.

2.2 Wiring

Wirings are the active part of the system: They are the transport system within
the Peer Model, controlling the movement of entries between PIC and POC
containers of peers with the help of get and put space operations. A wiring has a
name and consists of three sections: a guard, which defines the conditions under
which the wiring activates, optionally followed by service calls, and an action
that defines how to dispose the resulting entries. A guard resp. action section
consists of 0, 1, or more link operations. As an extra condition, a guard must
contain at least one consuming get operation (i.e. take).

The graphical notation of the control part of a wiring named “W” is repre-
sented in Figure 2.a, which illustrates a wiring with one input and one output
link that are represented by dotted arrows. Figure 2.b shows a wiring with mul-
tiple input and output links that also calls a service. The notation for entries
consists of a type query in the upper part and a counter query in the lower part
of the circle. Filled circles on an input link denote the take operation, whereas
unfilled ones – like the entry with query “type = T 2 | count >= 0” on the
second input link in Figure 2.c – model the read operation. This query selects
all available entries of type T 2. Details on the query mechanism are explained
in [7]. The operator “|” behaves like the pipe operator in the UNIX shell in that
it streams the results of the query at its left side to the query at its right side.
Entry specifications on output links involve the write operation, i.e. these entries
are written to the specified destination container (neither source nor destination

126 E. Kühn et al.

containers are shown in Figure 2). Therefore, in Figure 2.a, exactly one entry
of type T1 is removed from some container and written into another one. This
simple “move” behavior is the default behavior of a wiring and Figure 2.c depicts
the graphical short cut for it, which omits the wiring control symbol and uses a
filled line. By using bulk operations on containers, get and put operations can
transport more than one entry across one link in a single step.

For simplicity we assume that all sections of W are committed in one atomic
step at the end of the wiring, but may optionally already commit after the guard
or the service phase. Early commits are beneficial for unblocking other wirings
that wait for the same resource. Considering a long running service, the wiring
could remove read locks on get links before the service completes, so that other
wirings requiring the same entry are not blocked for the complete execution
time of the service. A wiring implicitly is associated with a transaction, dubbed
wiring transaction. Each wiring transaction possesses a configured timeout, after
which the transaction automatically aborts. In addition, the RTP configuration
specifies how often and in which interval a failed wiring transaction retries to
process entries of the same flow.

The functioning of a wiring is: 1) Fulfill all input links sequentially in the
specified order, leading to an entry collection (EC) which can be understood
as an internal space container only visible to this wiring1. All input links must
succeed. If one cannot be fulfilled, the entire guard blocks. 2) Call all services
in the given order and pass them the current entry collection from which the
services may read and take entries and into which they may write other entries
which represent the results of the service. These operations resemble the get and
put operations of a space with the difference that blocking mode is forbidden on
EC. After service execution has completed, EC has been filled with all results
of the services. 3) Finally execute the output links. The task of the output links
is to distribute the entries of EC to PIC and/or POC containers of the own
peer or to PIC containers of sub-peers. In contrast to the input links, not all
output links must succeed. The semantics is to execute one after the other in
the given order: if it is satisfiable then perform it, otherwise skip it and proceed
with the next one. E.g. in Figure 2.b the wiring collects one entry of type T1
and all available entries of type T2, which it passes to the service that in turn
may change the wiring’s internal EC. Let us assume that the service consumes
all entries of type T2, and adds two of type T3. So at this point in time, EC is a
multi-set EC = {ET1, ET3, ET3} of three entries Etype (note that the app-data
of the two entries ET3 might differ). Output link 1 gets the entry of type T1
from EC and writes it to some container (not shown in the picture). Output link
2 delivers both entries of type T3. Output link 3 is tried, but its query cannot
be fulfilled and thus it is skipped. This link only works if an entry of type T4
is emitted by the service. After the action section, the effects of the wiring are
automatically committed, and remaining entries are removed from EC.

1 EC access need not be modeled explicitly by Peer Model users, which provides an
abstraction of this mechanism. However, it is modeled explicitly in the formal model.

Peer-Based Programming Model for Coordination Patterns 127

Fig. 3. Example: Wiring modeling with UML-like sequence diagram

The functionality of wirings is modeled via UML-like sequence diagrams. The
objects between which messages are exchanged are: PICs and POCs of peers,
the wiring box itself, and service methods. These objects are quoted by means
of their respective graphical notation plus a life line. Messages between objects
represent link operations. Figure 3 shows a sequence diagram for the example
wiring in Figure 2.b. It assumes a sub-peer P2, and lets W get entries ET1 and
ET2 from its own peer’s PIC, i.e. from P1/PIC, call the service, put ET1 to
P2/PIC, and finally all entries ET3 and ET4 to P1/POC.

Wirings are the necessary mechanism to integrate pre-existing service func-
tionality. The entry collection models a flexible interface for the invocation of
arbitrary services. By using the features of the underlying space-based middle-
ware, wirings dynamically connect peers and services in a data-driven way that
provides high decoupling. Conceptually, all wirings whose guards are fulfilled run
concurrently. The model allows for an arbitrary number of instances of the same
wiring in parallel. This means that within a peer, the same service could run
many times in concurrent threads. The coordination law of the containers can
also be used to determine the concurrency. By default, arbitrarily many instances
of W may be active at the same time, but it could also be beneficial to enforce a
strict sequential execution. However, this requires slightly more complex coordi-
nation mechanisms than simple type queries. To control the concurrency level,
our Java implementation of the Peer Model – termed “Peer Space” – provides
system configurations for maximum thread pool sizes.

2.3 Flow Identifier

The entirety of all wirings that constitute an integration pattern is called a flow.
In terms of enterprise systems it refers to a workflow. A flow involves a number
of wiring executions that together solve a global task. A flow is identified by
a unique flow identifier (FID) that is generated at its creation time by the
Peer Space. A flow is started by emitting a first entry into the Peer Space. The
initial status of a flow is “active”. A flow can end under different circumstances:

128 E. Kühn et al.

(a) (b)

Fig. 4. (a) Send Proxy Peer. (b) Receive Proxy Peer.

(a) (b)

Fig. 5. (a) Split Peer. (b) Join Peer.

through an explicit success or failure result, or after the flow has reached a
maximum time-to-live (TTL). Eventually all entries belonging to this flow will
be recognized by wirings and automatically removed. If the developer creates an
entry, s/he indicates to which flow this entry belongs. The entry automatically
carries the TTL with it. A wiring will not treat an entry when its TTL has
expired, but will wrap it into an error entry and put this entry into its own
POC. For error entries, automatic wirings exist that let the error “roll back” up
in the system until it ends at the client who originated the flow. Each wiring
must only fetch entries in its guard that belong to the same flow.

3 Split/Join Integration Pattern

As an example use case, the Split/Join integration pattern [15] is chosen. The
pattern’s objective is to split a task of type X into several sub-tasks, distribute
the execution of the sub-tasks to an arbitrary number of workers, wait for all
executions, and aggregate and return the results. Developers must provide the
logic how to split the original task, which worker to assign and how to join the
results. All other parts are pure coordination logic. The challenge is to clearly
separate application from coordination logic.

The Split/Join problem is decomposed into several patterns: Two of them
are predefined by the system, termed send and receive proxy patterns. They
are pure coordination patterns and modeled as two coordination peers (COPs)
termed SendPXY (see Figure 4.a) and ReceivePXY (see Figure 4.b). SendPXY
assumes a built-in service called send() that takes as input the ID of a peer, and
an entry ET of a configured type T. Let P be a local or remote peer to which
the ID resolves. SendPXY writes ET into P/PIC. ReceivePXY is the analogous

Peer-Based Programming Model for Coordination Patterns 129

Fig. 6. Split/Join Peer

counterpart: It uses the built-in system service receive() to take one entry from
a remote peer’s P/POC, where P’s ID is the input entry of the pattern.

Two further patterns are Split and Join in Figure 5, both modeled as appli-
cation peers (APPs) that require application specific logic. The Split peer has a
wiringW1 with a guard that expects one task entry of type X as input, and passes
it to the splitAndAssignTasks() method which is a user-programmed service that
produces an arbitrary amount of sub-tasks and adds them to the internal entry
collection of this wiring instance together with a multi-set of peer worker IDs
that shall execute sub-tasks. If the same ID is generated twice the same worker
must process two sub-tasks; however, which ones is irrelevant. Sub-task entries
are also added to the entry collection. Finally, in the action section, the wiring
puts a control entry, all IDs, and all sub-tasks into Split/POC. The control entry
holds in its application data part specific control information needed for the join,
e.g. how many results are needed, which quality is required etc. The Join peer’s
first wiring is a default wiring that moves one control entry of type Ctrl into a
local space peer termed SPA, which serves as local memory for the joinResults()
service. Its wiring W1 waits until at least one intermediary result of a worker
peer has arrived. It then takes all already available result entries of type Res
from worker peers as input, takes the control entry from SPA and also an en-
try of type Sum (if here) and passes all these entries to the joinResults() service
method provided by the developer. The method checks control and result entries,
and merges them into the sum entry (or generates one after the first invocation
of W1 for this flow). If the service decides that enough results are here, it writes
Sum to Join/POC. Otherwise, it writes Sum and Ctrl back into its local SPA,
commits and continues its next iteration.

In addition, the user must provide the implementation of worker peers which
are not detailed in the example. A worker peer takes one task of type X as input,
then performs its specific application logic, and finally generates one output of
type Res that it puts into its POC.

All these peer components are composed towards the Split/Join pattern de-
picted in Figure 6. It starts with applying the Split pattern on input entry X,
which outputs many peer IDs, one control entry and many sub-tasks of type X.
Wiring W1 is an inter-peer wiring and is executed for pairs of ID and X entries.
Its guard requires one ID and one X entry and uses the ID entry to initialize

130 E. Kühn et al.

the SendPXY peer as well as the ReceivePXY peer. In addition, the sub-task
entry is written into SendPXY/PIC. SendPXY writes the entry of type X to
the corresponding worker peer. In parallel, ReceivePXY waits for the result of
this worker peer, takes the results from the worker peer’s POC and returns it in
ReceivePXY/POC. From there a default move wiring transports it to the Join
peer, which also gets the control entry from Split/POC into its Join/PIC as in-
put. The Join peer now waits until enough results are received, merges them and
returns the final output which is the aggregated sum of all obtained results. This
sum entry is transported to the SplitJoin/POC and from there it is delivered to
the originator of the flow. Many flows may run concurrently. Their entries are
automatically correlated by the unique identifier (FID) of the flow.

The design of the pattern is resistant against adding more or different, local
or remote worker peers. The pattern flexibly supports new requirements and
challenges like changed logic for how to join the results: e.g., use only the best
results, or stop after a certain amount of results, or stop if a certain condition
is met. Only the corresponding joinResults() service must be rewritten. If the
FID is invalidated, all still running processes of the flow will eventually stop.
All other parts and components of the Split/Join pattern remain unaffected.

4 Meta Model and Domain Specific Language

The intention of the Peer Model is to provide a sound mechanism for model-
ing integration patterns. We have implemented the system with Promela [9] to
achieve a runnable specification and lay the basis for future work on verifying
certain properties by means of the SPIN model checker. In addition, a Java
version has been implemented to get first experiences with an object-oriented
Peer Model API. A presentation of this API is beyond the scope of this paper.
We will instead outline the Domain Specific Language for the Peer Model (PM-
DSL) that was implemented with Promela. First a meta-meta-model is built,
consisting of data structures that model peer types. Then the meta-model that
describes the functionality of all peers in a specific Peer Space is derived from the
meta-meta-model. The space container operations are implemented by means of
(blocking) channel operations. The PM-DSL provides the following operations:

defPeerType(PeerTypeName, PeerTypeID);

addSubPeer(PeerTypeID, PeerTypeName, PeerName);
addWiring(PeerTypeID, WiringName, WiringID);

addGuardLink(WiringID, FromPeerName, FromContainerName,
ReadOrTake, TypeQuery, Count, CountDetails);

addService(WiringID, ServiceName, NArgs, Arg1, Arg2, ...);

addActionLink(WiringID, ToPeerName, ToContainerName,
TypeQuery, Count, CountDetails);

createPeer(PeerTypeName, PeerName, PeerID);

startPeer(PeerID);

containerWrite(PeerID, ContainerName, EntryType, AppData,
CoData);

Peer-Based Programming Model for Coordination Patterns 131

First the meta-meta-model must by initialized. For this, PM-DSL provides
the following operations: defPeerType() specifies a new peer type of given type
name and in the second argument returns the id by which this type is referenced
in the following; addSubPeer() adds a peer given by a peer type to another peer
type (given by id) and names it; addWiring() adds a named wiring to a peer
type and returns its id; addGuardLink() adds an input link to a wiring by saying
from which peer’s PIC or POC with which query entries shall be read or taken;
addService() adds a service to a wiring – there exist some built-in services with
defined names resp. the developer may program own services and refer to them
by their name – and here one can configure static arguments (e.g. the number
of sub-tasks to be produced by the Split peer) of the service; addActionLink()
adds one output link to a wiring and says to which peer’s PIC or POC which
entries shall be put. “THIS PEER” refers to the own peer.

As an example, the SplitJoin peer pattern of Figure 6 is modeled with the
PM-DSL. We show only parts of the specification of the meta-model for the
SplitJoin peer; and we assume that the other peer types already exist.

/* SplitJoin peer type: */

defPeerType(SPLIT JOIN PEER TYPE, ptID);

/* Split sub peer: */

addSubPeer(ptID, SPLIT PEER TYPE, SPLIT PEER);

/* SendPXY sub peer: */

addSubPeer(ptID, SENDPXY PEER TYPE, SENDPXY PEER);

/* ReceivePXY sub peer: */

addSubPeer(ptID, RECEIVEPXY PEER TYPE, RECEIVEPXY PEER);

/* Join sub peer: */

addSubPeer(ptID, JOIN PEER TYPE, JOIN PEER);

/* Wiring W1: */

addWiring(ptID, W1, wID1);

addGuardLink(wID1, SPLIT PEER, POC, TAKE, X TYPE, 1, EQUAL);

addGuardLink(wID1, SPLIT PEER, POC, TAKE, ID TYPE, 1, EQUAL);

addActionLink(wID1, SENDPXY PEER, PIC, ID TYPE, 1, EQUAL);

addActionLink(wID1, SENDPXY PEER, PIC, X TYPE, 1, EQUAL);

addActionLink(wID1, RECEIVEPXY PEER, PIC, ID TYPE, 1, EQUAL);

/* Wiring W2 (default wiring): */

addWiring(ptID, W2, wID2);

addGuardLink(wID2, THIS PEER, PIC, X TYPE, 1, EQUAL);

addActionLink(wID2, SPLIT PEER, PIC, X TYPE, 1, EQUAL);

For creation of the meta-model the PM-DSL offers the operation createPeer()
which creates a new peer with given name and initializes its meta-model from
the specified peer type, including all resolved wirings. It recursively also creates
all sub-peers. Their names must be resolved in the right scope, i.e. the name of
a sub-peer is only visible to its super and sibling peers. Only through lookup
mechanisms these names become visible to other peers. Description of lookup
peers is straight forward, as existing peer-to-peer algorithms can be applied. The
Peer Model can now be started with Promela’s run operation calling startPeer()

132 E. Kühn et al.

Fig. 7. Reo with 2 services: Synchronous Merge Connector, Fig. 1 from [4]

which starts the wirings of all peers as concurrently running processes. For each
wiring multiple instances are assumed to exist concurrently (cf. “bang” operator
in [12]). Creation of flows takes place through injection of entries into the system
with containerWrite() whereby the FID is contained in the co-data part of the
entry. Coming back to our use case, the final steps to start the pattern are:

createPeer(SPLIT JOIN PEER TYPE, SPLIT JOIN PEER, peerID);

run startPeer(peerID);

containerWrite(peerID, PIC, X TYPE, /* task */, /* FID etc. */);

5 Related Work

An approach related to Split/Join has been undertaken with Reo [4] termed
Synchronous Merge Connector (see Figure 7). Flows are modeled by means of
different connector types. The example starts with an exclusive router that non-
deterministically selects one output which can be either service A or service B.
From there three walkthroughs become possible: service A, service B, or both.
The exclusive router is also used to control the joining of the execution. Reo
supports composition of software components using a channel-based coordina-
tion model. In contrast to the Peer Model, Reo is oblivious to any coordination
and concurrency inside the component instances; also the used communication
mechanisms are of no interest [3], whereas the Peer Model builds upon tuple
space-based middleware and allows for nesting of components.

Colored Petri Nets (CPN) [10,1] are a graphical language for modeling concur-
rent and often also distributed systems. However, they can be applied in almost
any thinkable domain2. Typically it is used for testing and performance analy-
sis [10]. As the modeling is quite low-level and does not make any assumptions
on the domain, it is very powerful; but on the other hand it does not provide
any higher-level abstractions. We used CPN-Tools [14] to model the Split/Join
use case of Section 3 in two variants: Figure 8.a without requiring the underlying
Petri Net to allow for complex inscriptions on input and output arcs, and Fig-
ure 8.b making use of advanced features of the ML language used by CPN. For
Figure 8.a the pattern was modeled with two services A and B, and every way
through the network is controlled by an explicit transition. The other variant
uses ML lambda expression to specify more complex arc conditions (Figure 8.b).

2 Examples of Industrial Use of CP-nets: http://cs.au.dk/cpnets/industrial-use/

http://cs.au.dk/cpnets/industrial-use/

Peer-Based Programming Model for Coordination Patterns 133

(a)

(b)

Fig. 8. CPN for 2 services with (a) weak, and (b) complex arc logic assumptions

Next, we increased the design up to 4 services. Figure 9.a shows the basic
variant, and Figure 9.b the one employing ML’s expressiveness. Both figures
demonstrate how complex these designs become. The latter needs less places,
but the condition on the output link of the Merge transition becomes more
complicated if more services are assumed. Moreover, the control logic is spread
among the network. If services are added, the type definitions for the control
token must be adapted, as well as for the Start and CTRL place. For each
service two places and one transition, plus four arcs must be added explicitly,
because the network is static. Two of these arcs must have a special condition.
In summary, the comparison shows that Petri Nets do not scale because they
are static. Every new component must be modeled explicitly.

(a) (b)

Fig. 9. CPN for 4 services with (a) weak, and (b) complex arc logic assumptions

134 E. Kühn et al.

The main advantages of the Peer Model approach in contrast to more general
and static tools like CPNs and REO are:

Design Scalability. The Peer Model allows modeling of large patterns and
scales naturally to any number of services, without exponential complexity. In
the example this is accomplished by a send and a receive proxy peer, which
(de-)multiplex sub-tasks to/from arbitrary worker peers addressed via their IDs.
Dynamic addition of workers and increasing the number of sub-tasks is possible.

Dynamics. During runtime, new peers can be added on-the-fly. Also, peers can
be changed in that, e.g., wirings are added dynamically.

Composability. The Peer Model design allows to break down a problem into
smaller, re-usable patterns that can be composed to larger ones. CPNs also sup-
port hierarchically nested modules, but the composition requires global names
for the “fusion” places.

Transparent Remoting. The physical distribution of processes to other sites
does not cause a difference in design compared to local processes.

Architecture Agility. The model is robust against changes due to new re-
quirements. We have termed this “architecture agility” in [13] and shown that
the space-based architectural style helps to avoid costly architecture limiters or
even breakers. The Peer Model extends this idea by not only considering passive
data, but also modeling the active part, i.e. processes that access the data.

6 Conclusion

The Peer Model is a design tool for the specific domain of programming parallel
and distributed applications. In contrast to other widespread modeling tools
like Colored Petri Nets it is less general as it takes specific assumptions on its
domain. More precisely, it requires a coordination middleware whose features
have an impact on the quality of the Peer Model. At least, access to shared
data by means of blocking operations, local transactions, and type-based queries
with cardinality specification are required. The process space is structured into
so-called peers which are framework components. They separate coordination
from application logic to achieve software architecture agility. Application logic
is integrated in form of service methods. Peers are reusable components that
implement coordination patterns. Wirings control the entry flow between and
within peers. Flow-identifiers automatically correlate entries of the same flow,
thus allowing many instances of different flows to be processed concurrently.

We have presented the basic concepts of the Peer Model, its graphical no-
tation, and domain specific language which is based on a formal model. Its
conception is intended as foundation for real implementations. The usability of
the Peer Model was evaluated with respect to design scalability, composability,
remoting, architecture agility, and support of dynamics. Our future work will
concern implementation of a designer tool, mappings to the Colored Petri Net
formalism, and extending the mechanisms of how to model concurrency.

Peer-Based Programming Model for Coordination Patterns 135

Acknowledgements. The work is partially funded by the Austrian Federal
Ministry for Transport, Innovation and Technology, FFG-BRIDGE project no.
834162 “LOPONODE” (Coordination Middleware for Wireless Networks of Low
Power Nodes).

References

1. Final Draft International Standard ISO/IEC 15909. High-level petri nets - con-
cepts, definitions and graphical notation. Technical report, V. 4.7.1 (October 2000)

2. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007)

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

4. Clarke, D., Proença, J.: Partial connector colouring. In: Sirjani, M. (ed.)
COORDINATION 2012. LNCS, vol. 7274, pp. 59–73. Springer, Heidelberg (2012)

5. Craß, S., Dönz, T., Joskowicz, G., Kühn, E.: A coordination-driven authorization
framework for space containers. In: 7th Int’l Conf. on Availability, Reliability and
Security (ARES), pp. 133–142. IEEE (2012)

6. Craß, S., Dönz, T., Joskowicz, G., Kühn, E., Marek, A.: Securing a space-
based service architecture with coordination-driven access control. Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
(JoWUA) 4(1), 76–97 (2013)

7. Craß, S., Kühn, E., Salzer, G.: Algebraic foundation of a data model for an exten-
sible space-based collaboration protocol. In: Int. Database Engineering and Appli-
cations Symposium (IDEAS), pp. 301–306. ACM (2009)

8. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

9. Holzmann, G., Najm, E., Serhrouchni, A.: Spin model checking: an introduction.
International Journal on Software Tools for Technology Transfer (STTT) 2(4),
321–327 (2000)

10. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. Journal on Software Tools for
Technology Transfer (STTT) 9, 213–254 (2007)

11. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the concept of
customizable structured spaces for agent coordination in the production automa-
tion domain. In: 8th Int’l Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 625–632. IFAAMAS (2009)

12. Milner, R.: The polyadic pi-calculus: a tutorial. Technical report, Logic and Algebra
of Specification (1991)

13. Mordinyi, R., Kühn, E., Schatten, A.: Towards an architectural framework for agile
software development. In: 17th IEEE Int. Conf. and Workshops on the Engineering
of Computer-Based Systems (ECBS), pp. 276–280. IEEE (2010)

14. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN tools for editing, simulating,
and analysing coloured petri nets. In: van der Aalst, W.M.P., Best, E. (eds.)
ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)

15. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and parallel databases 14(1), 5–51 (2003)

Decidability Results for Dynamic Installation

of Compensation Handlers

Ivan Lanese and Gianluigi Zavattaro

Focus Team, University of Bologna & INRIA, Italy

Abstract. Dynamic compensation installation allows for easier specifi-
cation of fault handling in complex interactive systems since it enables to
update the compensation policies according to run-time information. In
this paper we show that in a simple π-like calculus with static compen-
sations the termination of a process is decidable, but it is undecidable in
one with dynamic compensations. We then consider three commonly used
patterns for dynamic compensations, showing that process termination
is decidable for parallel and replacing compensations while it remains
undecidable for nested compensations.

1 Introduction

Nowadays, applications are composed of different interacting entities, living in
environments such as the Internet or the cloud. Programming applications in this
setting is challenging, due to their own complexity, and on the unpredictability of
the environment. For instance, a communication partner may disappear during
an interaction, or a message may be lost due to an unreliable network. Never-
theless, the users expect their applications to always provide reliable services.
To build reliable services in an unreliable environment coping with unexpected
events is certainly one of the main challenges.

In the setting of service-oriented computing, long running transactions have
been put forward to solve this problem. A long running transaction is a com-
putation that either succeeds, or it aborts. In the second case, a compensation
is executed to undo unwanted side effects of the aborted computation. Many
languages provide nowadays support for long running transactions [25, 26], and
different proposals exist in the literature [2, 3, 8–12, 16, 22]. Originally, the
compensation of a long running transaction was statically fixed [26]. Recent pro-
posals show however that being able to dynamically update the compensation
as far as the computation progresses allows the programmer to write more easily
the compensation code for complex interactions [16].

From a language design point of view, the question of whether dynamic com-
pensations are just syntactic sugar, and thus need not be implemented in the
core language, or not, is relevant. Strangely, while many papers in the literature
put forward proposals of transaction constructs, very little has been done on
comparing them. A main work in this direction is [20]. In [20] it is shown that
the ability to add new compensation items to be executed in parallel with the

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 136–150, 2013.
c© IFIP International Federation for Information Processing 2013

Decidability Results for Dynamic Installation of Compensation Handlers 137

static compensation does not increase the expressive power, while more general
patterns do. The study is carried out relying on proofs of encodability and/or
non-encodability between the different formalisms. However, there is no clear
agreement in the community on which conditions such encodings should satisfy,
and the results in [20] strongly depend both on the chosen conditions and on the
availability of suitable mechanisms in the compared languages.

We want here to tackle the same problem, but with a completely different ap-
proach. In fact, we compare π-like core calculi featuring the basic mechanisms for
static and dynamic compensations according to the (un)decidability of process
termination, that is of the absence of an infinite computation starting from a
given process. Clearly, calculi where such a property is undecidable cannot be en-
coded in calculi where the same property is decidable, and this non-encodability
result is valid for all the encodings preserving the property.

We show that process termination is decidable in a π-calculus with static
compensations, while it is not in one with dynamic compensations. To better
understand where this difference stems from, we limit the expressive power of
the dynamic compensation mechanism in different directions. We show that if
compensations can only be replaced, then decidability is recovered. If instead
compensations can be nested using linear patterns, we are still in an undecidable
setting. To further constrain linear patterns aiming at decidability we force the
patterns to only add new compensation items in parallel, obtaining again a
decidability result.

2 Primitives for Compensations

2.1 Syntax

We base our studies on a π-calculus extended with transactions and primitives
for compensation installation. We then consider different fragments, correspond-
ing to various compensation installation patterns. Our calculus is similar to the
calculus in [20]. A main difference is that we do not consider restriction. This is
forced since, if we add restriction, then process termination (and similar prop-
erties) become undecidable even in CCS (without transactions).

The syntax of our calculus relies on a countable set of names N , ranged over
by lower case letters. We use x to denote a tuple x1, · · · , xn of names, and
{x} denotes the set of elements in the tuple. We use {v/x} for denoting the
substitution of names in v for names in x, and we use a similar notation for
substitutions of processes for process variables (introduced later).

We start by presenting the syntax of the π-calculus, reported in Fig. 1. Prefixes
can be either outputs a〈v〉 of a tuple of names v on channel a, or corresponding
inputs a(x), receiving a tuple of names v on channel a and applying substitution
{v/x} to the continuation. The π-calculus syntax includes the inactive process
0, guarded choice

∑
i∈I πi.Pi, guarded replication !π.P and parallel composition

P | Q. We write a for a〈v〉 when v is empty, and a for a(x) when x is empty.
When I is a singleton,

∑
i∈I πi.Pi is shortened into πi.Pi. We may also drop

trailing 0s.

138 I. Lanese and G. Zavattaro

π ::= π-calculus prefixes
a〈v〉 (Output prefix) | a(x) (Input prefix)

P,Q ::= π-calculus processes
0 (Inaction) | ∑

i∈I πi.Pi (Guarded choice)
| !π.P (Guarded replication) | P |Q (Parallel composition)

Fig. 1. π-calculus processes

P,Q ::= Static compensation processes
. . . (π-calculus processes)

| t[P,Q] (Transaction scope)
| 〈P 〉 (Protected block)

Fig. 2. Static compensation processes

P,Q ::= Dynamic compensation processes
. . . (Static compensation processes)

| X (Process variable)
| inst�λX.Q�.P (Compensation update)

Fig. 3. Dynamic compensation processes

We now extend the π-calculus with transactions and static compensations.
The syntax of the extended calculus is in Fig. 2. Static compensations can be
programmed by adding just two constructs to π-calculus: transaction scope and
protected block. A transaction scope t[P,Q] behaves as process P until an error
is notified to it by an output t on the name t of the transaction scope. When
such a notification is received the transaction atomically aborts : the body P of
the transaction scope is killed and compensation Q is executed. Q is executed
inside a protected block. In this way it will not be influenced by successive
external errors. Error notifications may be generated both from the body P of
the transaction scope and from external processes. Error notifications are simply
output messages (without parameters). Protected block 〈P 〉 behaves as process
P , but it is not killed in case of failure of a transaction scope enclosing it.

The calculus with dynamic compensations extends the one with static com-
pensations. The main difference is that with dynamic compensations the body
P of transaction scope t[P,Q] can update the compensation Q. Compensation
update is performed by an additional operator inst�λX.Q′�.P ′, where function
λX.Q′ is the compensation update (X can occur insideQ′). Applying such a com-
pensation update to compensation Q produces a new compensation Q′{Q/X}.
Note that Q may not occur at all in the resulting compensation, and it may also
occur more than once. For instance, λX.0 deletes the current compensation. The
syntax of processes with dynamic compensations extends the one of processes

Decidability Results for Dynamic Installation of Compensation Handlers 139

with static compensations with the compensation update operator and process
variables (see Fig. 3). We use X to range over process variables.

We define for processes with dynamic compensations the usual notions of free
and bound names. Names in x are bound in a(x).P . Other names are free. Also,
variable X is bound in λX.Q. Bound names and variables inside processes can
be α-converted as usual. We consider only processes with no free variables.

Processes with static compensations are processes with dynamic compensa-
tions where the compensation update operator is never used. We will show that
dynamic compensations are very expressive, making relevant properties undecid-
able. Thus we consider different subcalculi, constraining the allowed patterns for
compensation installation. As a first observation, note that in a compensation
update of the form λX.Q there are no constraints on how many times X may
occur in Q. Having more than one occurrence of X , allowing to replicate the pre-
vious compensation, is rarely used in practice. Thus a meaningful restriction is
considering just linear compensations, where X occurs exactly once in Q. We call
them nested compensations, since the old compensation becomes nested inside
the new one, which acts as a context. Another relevant case is when X does not
occur at all in Q. We call compensations of this form replacing compensations,
since the new compensation completely replaces the old one, which is discarded.
Finally, a relevant subcase of nested compensations are parallel compensations,
where Q has the form Q′ |X and X does not occur in Q′. In this case new and
old compensation items are in parallel in the final term.

2.2 Operational Semantics

In this section we define the operational semantics of processes with dynamic
compensations. We need however an auxiliary definition. When a transaction
scope t[P,Q] is killed, part of its body P may be preserved, in particular the
protected blocks inside it.

The definition of function extr(P) computing the part of process P to be pre-
served depends on the meaning of nesting of transaction scopes. In the literature,
three main approaches are considered. When the enclosing transaction scope is
killed, its subtransactions may be aborted, preserved or discarded. The aborting
semantics is used by SAGAs calculi [9], WS-BPEL [26], and others. The preserv-
ing semantics is, for instance, the approach of Webπ [22]. Finally, the discarding
semantics has been proposed by ATc [3] and TransCCS [12]. We consider all the
three possibilities, since they just differ in the definition of function extr(•).

Definition 1 (Extraction function). We denote the functions corresponding
to aborting, preserving, and discarding semantics for transaction nesting respec-
tively as extra(•), extrp(•) and extrd(•). The function extra(•) is defined in Fig. 4.
The definition of function extrp(•) is the same but for the clause for transaction
scope, which is replaced by the clause extrp(t [P,Q]) = t [P,Q]. The definition of
function extrd(•) instead is obtained by replacing the clause for transaction scope
by the clause extrd(t [P,Q]) = 0.

140 I. Lanese and G. Zavattaro

extra(0) = 0
extra(

∑
i∈I πi.Pi) = 0

extra(!π.P) = 0
extra(inst�λX.Q�.P) = 0

extra(〈P 〉) = 〈P 〉
extra(t [P,Q]) = extra(P) | 〈Q〉
extra(P |Q) = extra(P) | extra(Q)

Fig. 4. Extraction function for aborting semantics

(P-Out)

a〈v〉.P a〈v〉−−−→ P

(P-In)

a(x).P
a(v)−−−→ P{v/x}

(L-Choice)

πj .Pj
α−→ P ′

j j ∈ I∑
i∈I

πi.Pi
α−→ P ′

j

(L-Rep)

π.P
α−→ P ′

!π.P
α−→ P ′|!π.P

(L-Par)

P
α−→ P ′

P |Q α−→ P ′ |Q

(L-Synch)

P
x(v)−−−→ P ′ Q

x〈v〉−−−→ Q′

P |Q τ−→ P ′ |Q′

(L-Scope-out)

P
α−→ P ′ α 	= λX.Q

t[P,Q]
α−→ t[P ′, Q]

(L-Recover-out)

t[P,Q]
t−→ extra(P) | 〈Q〉

(L-Recover-in)

P
t−→ P ′

t[P,Q]
τ−→ extra(P

′) | 〈Q〉

(L-Inst)

inst�λX.Q�.P λX.Q−−−→ P

(L-Scope-inst)

P
λX.R−−−→ P ′

t[P,Q]
τ−→ t[P ′, R{Q/X}]

(L-Block)

P
α−→ P ′

〈P 〉 α−→ 〈P ′〉

Fig. 5. LTS for dynamic compensation processes

The operational semantics of dynamic compensations and, implicitly, of static,
replacing, parallel and nested compensation processes, is defined below.

We use a(v), a〈v〉, τ and λX.Q as labels, and we use α to range over labels.
The first three forms of labels are as in π-calculus: a(v) is the input of a tuple
of values v on channel a, a〈v〉 is the corresponding output, and τ is an internal
action. However, an output label without parameters can also be used for error
notification, and an input without parameters for receiving the notification. The
last label, λX.Q, is specific of dynamic compensation processes and corresponds
to compensation update. We write a for a(v) and a for a〈v〉 if v is empty. We
may use t instead of a to emphasize that the name is used for error notification.

Definition 2 (Operational semantics). The operational semantics of dy-
namic compensation processes with aborting semantics for transaction nesting
is the minimum LTS closed under the rules in Fig. 5 (symmetric rules are con-
sidered for (L-Par) and (L-Synch)). The preserving semantics (resp. discard-
ing semantics) is obtained by replacing function extra(•) with extrp(•) (resp.
extrd(•)).
The first six rules are standard π-calculus rules [23], the others define the
behavior of transactions, compensations and protected blocks.

Decidability Results for Dynamic Installation of Compensation Handlers 141

Auxiliary rules (P-Out) and (P-In) execute output and input prefixes, re-
spectively. The input rule guesses the received values v in the early style. Rules
(L-Choice) and (L-Rep) deal with guarded choice and replication, respectively.
Rule (L-Par) allows one of the components of parallel composition to progress
while the other one stays idle. Rule (L-Synch) performs communication, syn-
chronizing an input x(v) and a corresponding output x〈v〉.

Rule (L-Scope-out) allows the body P of a transaction scope to progress,
provided that the performed action is not a compensation update. Rule
(L-Recover-out) allows external processes to abort a transaction scope via
an output t. The resulting process is composed of two parts: the first one ex-
tracted from the body P of the transaction scope, and the second one correspond-
ing to compensation Q, which will be executed inside a protected block. Rule
(L-Recover-in) is similar to (L-Recover-out), but now the error notification
comes from the body P of the transaction scope. Rule (L-Inst) requires to per-
form a compensation update. Rule (L-Scope-inst) updates the compensation
of a transaction scope. Finally, rule (L-Block) defines the behavior of protected
blocks. The property of protected blocks of being unaffected by external aborts
is enforced by the definition of function extr(•).

In the following we consider a structural congruence ≡ to rearrange the order
of parallel processes and to garbage collect process 0. Formally, ≡ is the least
congruence such that P |Q ≡ Q | P , P | (Q |R) ≡ (P |Q) | R and P | 0 ≡ P .

As discussed in the Introduction, we will consider the (un)decidability of pro-
cess termination: a process P terminates if there exists no infinite sequence of
processes P1, P2, . . . , Pi, . . . such that P

τ−→ P1
τ−→ P2

τ−→ . . .
τ−→ Pi

τ−→

Example 1. We give here a few examples of transitions.

– Transaction scopes can compute:
a〈b〉 | t[a(x).x.0, Q]

τ−→ t[b.0, Q]
– Transaction scopes can be killed:

t | t[a.0, Q]
τ−→ 〈Q〉

– Transaction scopes can commit suicide:
t[t.0 | a.0, Q]

τ−→ 〈Q〉
– Protected blocks survive after kill:

t[t.0 | 〈a.0〉, Q]
τ−→ 〈a.0〉 | 〈Q〉

– New compensation items can be added in parallel:
t[inst�λX.P |X�.a.0, Q]

τ−→ t[a.0, P |Q]
– New compensation items can be added at the beginning:

t[inst�λX.b.X�.a.0, Q]
τ−→ t[a.0, b.Q]

– Compensations can be deleted:
t[inst�λX.0�.a.0, Q]

τ−→ t[a.0, 0]

3 Termination Undecidability for Nested Compensations

We now move to the proof of undecidability of termination in the calculus with
nested compensations. This contrasts with the decidability of termination for
static compensations (the proof of this result is deferred to Corollary 2).

142 I. Lanese and G. Zavattaro

The undecidability proof is by reduction from the termination problem in
Random Access Machines (RAMs) [24], a well-known Turing powerful formalism
based on registers containing non-negative natural numbers. The registers are
used by a program, that is a set of indexed instructions Ii of two possible kinds:

– i : Inc(rj) that increments the register rj and then moves to the execution
of the instruction with index i+ 1 and

– i : DecJump(rj, s) that attempts to decrement the register rj ; if the register
does not hold 0 then the register is actually decremented and the next in-
struction is the one with index i+ 1, otherwise registers are unchanged and
the next instruction is the one with index s.

We assume that given a program I1, · · · , In, it starts by executing I1. It termi-
nates when an undefined program instruction is reached. Since the computational
model is Turing complete, the termination of a RAM program is undecidable.

We encode RAMs as follows. Each register rj containing the value n is encoded
as a transaction rj [Rj , Qj] where Qj is a process u.u. · · · .u.z with exactly n
prefixes u. The process Rj is responsible for updating its compensation Qj by
performing inst�λX.u.X� every time the register must be incremented. Each
instruction Ii will be encoded as a process !pi.Pi: the instruction will be activated
by pi and then Pi will be performed. If i : Inc(rj) is an increment instruction on
rj , Pi will interact with Rj in order to activate the update of its compensation
Qj. If i : DecJump(rj, s) is a decrement/jump instruction, on the other hand, Pi

will terminate the transaction rj so that the compensation Qj becomes active. If
Qj is z then the value of the register is 0. In this case a new instance of the register
rj [Rj , z] is spawn and the jump is executed. If Qj is u. · · · .z then the register is
not 0. In this case, a new instance of the register rj [Rj , z] is spawn and a protocol
is started to initialize correctly this new register. The protocol is between the
process Rj and the compensation u. · · · .z left by the previous instance of the
register. The process Rj consumes the remaining prefixes u, and for each of
them performs an inst�λX.u.X� action in order to update its compensation
accordingly. In this way, at the end of the protocol, the new register instance will
have a compensation u. · · · .z with one prefix u less w.r.t. the previous register
instance.

Formally, the translation of register j storing value n is as follows:

�rj = n� � rj [!incj. inst�λX.u.X�.ack | !recj .
(
u. inst�λX.u.X�.recj+z.ack

)
, un.z]

where un is a sequence of n prefixes u. The encoding of instructions is as follows:

�i : Inc(rj)� � !pi.incj .ack.pi+1

�i : DecJump(rj, s)� � !pi.rj .
(
z.(�rj = 0�|ps) + u.(recj |�rj = 0�|ack.pi+1)

)
Hence, given a RAM program I1, · · · , In with registers r1, . . . , rm with initial
values n1, . . . , nm the corresponding encoding is:

p1|�I1�| . . . |�In�|�r1 = n1�| . . . |�rm = nm�

In the proof of correctness of the encoding we use P →k
≡ Q to denote the

existence of Q1, · · · , Qk such that P
τ−→ Q1

τ−→ . . .
τ−→ Qk and Qk ≡ Q.

Decidability Results for Dynamic Installation of Compensation Handlers 143

Theorem 1.
Given P ≡ pl|�I1�| . . . |�In�|�r1 = n1�| . . . |�rj = nj�| . . . |�rm = nm� we have:

1. Il : Inc(rj) iff
P →4≡ pl+1|�I1�| . . . |�In�|�r1 = n1�| . . . |�rj = nj + 1�| . . . |�rm = nm�;

2. Il : DecJump(rj , s) and nj = 0 iff
P →3≡ ps|�I1�| . . . |�In�|�r1 = n1�| . . . |�rj = 0�| . . . |�rm = nm�;

3. Il : DecJump(rj , s) and nj �= 0 iff
P →k≡ pl+1|�I1�| . . . |�In�|�r1 = n1�| . . . |�rj = nj − 1�| . . . |�rm = nm� with
k = 3(nj − 1) + 5;

4. Il is undefined iff there exists no P ′ s.t. P τ−→ P ′.

Proof. In each case there is just one possible computation, that we describe
by listing the channels on which synchronizations happen or the installation of
compensation performed:

1. pl, incj, inst�λX.u.X�, ack: 4 transitions;
2. pl, rj , z: 3 transitions;
3. pl, rj , u, recj , then the sequence u, inst�λX.u.X�, recj repeated nj−1 times,

and finally z, ack: 3(nj − 1) + 5 transitions;
4. no synchronization is possible. ��
We finally conclude with the proof of the undecidability result.

Corollary 1. Termination is undecidable in π-calculus with nested
compensations.

Proof. By Theorem 1 each step of a RAM precisely corresponds to a finite num-
ber of steps of its encoding, thus a RAM terminates iff its encoding terminates.
Thus, termination of RAMs reduces to termination in π-calculus with nested
compensations. Since termination in RAMs is undecidable then also termina-
tion in π-calculus with nested compensations is undecidable. ��

4 Decidability for Parallel and Replacing Compensations

We now consider the cases in which all dynamic compensation installations fol-
low the replace or the parallel patterns. In the first case, only finitely many dif-
ferent compensation processes can be considered. In the second case, infinitely
many compensations can be reached, but all of them are parallel compositions
of finitely many distinct processes (the processes Q occurring in the updates
λX.Q |X , and static compensations R in t[P,R]). This property of the calculus
allows us to apply the theory of Well-Structured Transition Systems (WSTSs)
to prove that termination is decidable.

We start by recalling some basic notions about WSTSs [1, 15]. A reflexive
and transitive relation is called quasi-ordering. A well-quasi-ordering (wqo) is a
quasi-ordering (X,≤) such that, for every infinite sequence x1, x2, x3, · · · , there
exist i < j with xi ≤ xj . From this, it follows that there exists also an in-
finite increasing subsequence xk1 , xk2 , xk3 , · · · such that xkl

≤ xkm for every

144 I. Lanese and G. Zavattaro

l < m. Given a wqo (X,≤), we denote its extension to k-tuples as (Xk,≤k):
〈x1, · · · , xk〉 ≤k 〈y1, · · · , yk〉 iff xi ≤ yi for 1 ≤ i ≤ k. Dickson’s lemma [14] states
that if (X,≤) is a wqo, then also (Xk,≤k) is a wqo. Given a wqo (X,≤), we de-
note its extension to finite sequences as (X∗,≤∗): 〈x1, · · · , xn〉 ≤∗ 〈y1, · · · , ym〉
iff there exists a subsequence 〈yl1 , · · · , yln〉 of the latter s.t. xi ≤ yli for 1 ≤ i ≤ n.
Higman’s lemma [17] states that if (X,≤) is a wqo, then also (X∗,≤∗) is a wqo.
We now report a definition of WSTS appropriate for our purposes.

Definition 3. A WSTS is a transition system (S,→,�) where � is a wqo on
S which is compatible with →, i.e., for every s1 � s′1 such that s1 → s2, there
exists s′1 → s′2 such that s2 � s′2. Moreover, the function Succ(s), returning the
set {s′ ∈ S | s → s′} of immediate successors of s, is computable.

A state s in a WSTS terminates if there exists no infinite computation s → s1 →
s2 → The proposition below is a special case of Theorem 4.6 in [15].

Proposition 1. Termination is decidable for WSTSs.

Given a process P with replacing or parallel compensations, we prove that a
transition system that includes all the derivatives of P is a WSTS. By deriva-
tives, denoted with der(P), we mean the processes that can be reached from P
via transitions labeled with τ , denoted simply with → in the following. We first
observe that given a process Q, the set of its immediate successors according
to → is finite (and computable). This follows from the limitation to τ -labeled
transitions: the labeled transition system in Fig. 5 is not finitely branching be-
cause the rule (P-In) has an instantiation for each of the infinitely many possible
vectors of values v, but if we restrict to τ transitions, only finitely many names
can be actually received because in our calculus no new names can be dynami-
cally generated. Concerning names, we also make the nonrestrictive assumption
that in process P the free names used in output actions are all distinct from
the bound names used in input actions. In this way, it is not necessary to apply
α-conversions to avoid name captures during substitutions. This guarantees that
only the names initially present in P will occur in its derivatives.

We now move to the definition of our wqo. Intuitively, a process P is smaller
than a process Q if Q can be obtained from P by adding some processes in
parallel while preserving the same structure of transaction scopes and protected
blocks.

Definition 4. Let P,Q be two processes. We write P � Q iff there exist P ′, S,
n,m, t1, . . . , tn, P1, . . . , Pn, P

′
1, . . . , P

′
n, Q1, . . . , Qn, Q

′
1, . . . , Q

′
n, R1, . . . , Rm and

R′
1, . . . , R

′
m such that

P ≡ P ′ |∏n
i=1 ti[Pi, Qi] |

∏m
j=1〈Rj〉

Q ≡ P ′ | S |∏n
i=1 ti[P

′
i , Q

′
i] |

∏m
j=1〈R′

j〉
with Pi � P ′

i and Qi � Q′
i, for 1 ≤ i ≤ n, and Rj � R′

j, for 1 ≤ j ≤ m.

In order to prove that � is indeed a wqo over the derivatives of P we need some
more notation and preliminary results. First we define the maximum nesting
level depth(P) of nested transactions and protected blocks in a process P .

Decidability Results for Dynamic Installation of Compensation Handlers 145

Definition 5. Let P be a process. We define depth(P) inductively as follows:

depth(0) = depth(X) = 0
depth(

∑
i∈I πi.Pi) = maxi∈I depth(Pi)

depth(!π.P) = depth(P)
depth(inst�λX.Q�.P) = max(depth(P), depth(Q))
depth(P |Q) = max(depth(P), depth(Q))
depth(t[P,Q]) = 1 +max(depth(P), depth(Q))
depth(〈P 〉) = 1 + depth(P)

It is trivial to see that the extraction functions do not increase the maximum
nesting levels in all the three considered cases. Formally, depth(extra(P)) ≤
depth(P), depth(extrp(P)) ≤ depth(P) and depth(extrd(P)) ≤ depth(P). We now
prove that also the labeled transitions do not increase the nesting levels.

Proposition 2. Let P be a process with replacing or parallel compensations. If
P

α−→ Q then depth(Q) ≤ depth(P).

Proof. We first observe that for every transition T
λX.S−−−→ T ′ we have that

depth(S) ≤ depth(T). In the light of this preliminary result the thesis can be

easily proved by induction on the depth of the proof of P
α−→ Q. The unique in-

teresting case is when the rule (L-Scope-inst) is used. Consider the transition

t[P,Q]
λX.R−−−→ t[P ′, R{Q/X}] inferred by P

λX.R−−−→ P ′. We have that t[P ′, R{Q/X}]
does not have a greater maximum nesting level because depth(R) ≤ depth(P),
for the above observation, and depth(R{Q/X}) ≤ max(depth(Q), depth(R)) due
to the specificity of the replace and parallel update patterns. ��
As a trivial corollary we have that the maximum nesting level of the derivatives
of P (i.e. processes in der(P)) is smaller or equal to depth(P). This result will
be used to define a superset of der(P) for which we will prove that � is indeed
a wqo. In the definition of this superset we also need the notion of a sequential
subprocess of P , that is a subterm of P in which the top operator is not a parallel
composition, a transaction or a protection block.

Definition 6. Let P be a process. The set seq(P) containing all the sequential
subprocesses of P is defined inductively as follows:

seq(0) = {0}
seq(

∑
i∈I πi.Pi) = {∑i∈I πi.Pi} ∪

⋃
i∈I seq(Pi)

seq(!π.P) = {!π.P} ∪ seq(P)
seq(inst�λX.Q�.P) = inst�λX.Q�.P ∪ seq(P) ∪ seq(Q)
seq(X) = ∅
seq(P |Q) = seq(t[P,Q]) = seq(P) ∪ seq(Q)
seq(〈P 〉) = seq(P)

The intuition is that no new sequential subprocesses can be generated by deriva-
tives. To be more precise, after the execution of an input action, new subprocesses
can be reached due to name substitution. But, as observed above, the names in

146 I. Lanese and G. Zavattaro

a derivative in der(P) already occur in P , thus they are finite. This allows us to
characterize a superset of der(P) as follows.

Definition 7. Given a process Q, we use names(Q) to denote the set of names
occurring in Q. Let P be a process and n be a natural number; we denote with

combP (n) = {Q | names(Q) ⊆ names(P), depth(Q) ≤ n,
∀Q′ ∈ seq(Q).∃P ′ ∈ seq(P).Q′ = P{v/x} for some v and x}

the set of processes with names that already occur in P , with maximum nesting
level smaller than n, and containing sequential subprocesses that already occur
in P (up-to renaming).

We now prove that combP (depth(P)) is actually a superset of der(P).

Proposition 3. Let P be a process with replacing or parallel compensations.
Then der(P) ⊆ combP (depth(P)).

Proof. We first observe that P ∈ combP (depth(P)). Then we consider a pro-
cess Q ∈ combP (depth(P)) such that Q → Q′, and we show that also Q′ ∈
combP (depth(P)). By Proposition 2 we have that depth(Q′) ≤ depth(Q) hence
also depth(Q′) ≤ depth(P). Moreover, it is easy to see that Q′ does not intro-
duce new sequential subprocesses (it can at most apply a name substitution to
sequential subprocesses of Q). Notice that in case the transition is a compensa-
tion update, no new sequential subprocesses can be obtained because either the
replace or the parallel pattern is used. ��
We are finally ready to prove that (combP (depth(P)),�) is indeed a wqo, by
proving a slightly more general result.

Theorem 2. Let P be a process and let n be a natural number. The relation �
is a wqo over combP (n).

Proof. Take an infinite sequence P1, P2, . . . , Pi, . . ., with Pi ∈ combP (n) for every
i > 0. We prove, by induction on n, that there exist k and l such that Pk � Pl.

Let n = 0. All the processes Pi do not contain neither transactions nor pro-
tected blocks because depth(Pi) ≤ 0. For this reason, we have that Pi =

∏ni

j=1 Pi,j

with Pi,j equal to some sequential subprocess of P (up-to renaming by using
names already in P). This set is finite, then process equality = is a wqo over
this set. By Higman’s lemma we have that also =∗ is a wqo over finite sequences
of such processes. Hence there exists k and l such that Pk,1 . . . Pk,nk

is a subse-
quence of Pl,1 . . . Pl,nl

, hence we have Pk � Pl.
For the inductive step, let n > 0 and assume that the thesis holds for

combP (n− 1). We have that the following holds for every Pi:

Pi ≡
ni∏
j=1

Pi,j |
mi∏
j=1

ti,j [Qi,j , Ri,j] |
oi∏
j=1

〈Si,j〉

with Pi,j equal to some sequential subprocess of P (up-to renaming by using
names already in P), ti,j ∈ names(P) and Qi,j , Ri,j , Si,j have a maximum

Decidability Results for Dynamic Installation of Compensation Handlers 147

nesting level strictly smaller than n, hence Qi,j , Ri,j , Si,j ∈ combP (n− 1). We
now consider every process Pi as composed of 3 finite sequences: Pi,1 · · ·Pi,ni ,
〈ti,1, Qi,1, Ri,1〉 · · · 〈ti,mi , Qi,mi , Ri,mi〉, and Si,1 · · ·Si,oi . As observed above, =∗

is a wqo over the sequences Pi,1 · · ·Pi,ni . For this reason we can extract an infi-
nite subsequence of P1, P2, . . . making the finite sequences Pi,1 · · ·Pi,ni increas-
ing w.r.t. =∗. We now consider the triples 〈ti,j , Qi,j , Ri,j〉. Consider the ordering
(combP (n− 1) ∪ names(P),") such that x " y iff x = y, if x, y ∈ names(P),
or x � y, if x, y ∈ combP (n− 1). As names(P) is finite and due to the in-
ductive hypothesis according to which (combP (n− 1),�) is a wqo, we have
that also (combP (n− 1) ∪ names(P),") is a wqo. By Dickson’s lemma we have
that "3 is a wqo over the considered triples 〈ti,j , Qi,j , Ri,j〉. We can apply
the Higman’s lemma as above to prove that it is possible to extract, from
the above infinite subsequence, an infinite subsequence making the finite se-
quences 〈ti,1, Qi,1, Ri,1〉 · · · 〈ti,mi , Qi,mi , Ri,mi〉 increasing w.r.t. ("k)∗. Finally,
as Si,j ∈ combP (n− 1) and by inductive hypothesis, we can finally apply again
Higman’s lemma to extract, from the last infinite sequence, an infinite subse-
quence making the finite sequences Si,1 · · ·Si,oi increasing w.r.t. �∗. It is now
sufficient to take from this last subsequence two processes Pk and Pl, with k < l,
and observe that Pk � Pl. ��
We now move to the proof of compatibility between the ordering � and the
transition system →.

Lemma 1. If P � P ′ and P
α−→ Q then there exists Q′ such that Q � Q′ and

P ′ α−→ Q′.

Proof. By induction on the depth of the proof of P
α−→ Q. ��

As the transitions → correspond to transitions labeled with τ , as a trivial corol-
lary we have the compatibility of � with →. Hence, we can conclude that
given a process P with replacing or parallel (as well as static) compensations,
(combP (depth(P)),→,�) is a WSTS. As a consequence, we obtain our decid-
ability result.

Corollary 2. Let P be a process with replacing, parallel or static compensations.
The termination of P is decidable.

Proof. By definition, P terminates iff there exists no infinite computation P
τ−→

P1
τ−→ For replacing and parallel compensations, by Proposition 3, this holds

iff P terminates in the transition system (combP (depth(P)),→). But this last
problem is decidable, by Proposition 1, because (combP (depth(P)),→,�) is a
WSTS. The result for static compensations follows since they form a subcalculus
of replacing/parallel compensations. ��

5 Related Work and Conclusion

In this paper we studied decidability properties of π-calculus extended with primi-
tives for specifying transactions and compensations. Fig. 6 shows all the considered

148 I. Lanese and G. Zavattaro

parallel

replacing

static

nested

[ESOP 2010]

[This paper]

dynamic

Fig. 6. Separation results for compensation mechanisms

calculi. Arrows denote the subcalculus relation. As already said, [20] is the closest
paper to ours. There, relying on syntactic conditions restricting the allowed class
of encodings and requiring some strong semantic properties to be preserved, the
authors proved the separation result represented by the dotted line. The results in
this paper instead, requiring only termination preservation, prove the separation
result represented by the dashed line. Besides separation, [20] also showed an en-
coding proving the equivalence of static and parallel compensations. This result,
compatible with our separation result, cannot be straightforwardly applied in our
setting since it relies on the restriction operator. However, if one disallows transac-
tions under a replication prefix, our decidability results still hold and the encoding
in [20] can be applied. It would be interesting to look for termination-preserving
encodings of dynamic into nested compensations and replacing into static com-
pensations (such an encoding should violate some of the conditions in [20]).

The only other results comparing the expressive power of primitives for trans-
actions and compensations are in the field of SAGAs [9]/cCSP [10], but their
setting allows only for isolated activities, since it does not consider communica-
tion. There are two kinds of results: a few papers compare different variants of
SAGAs [6, 7, 18], while others use SAGAs-like calculi as specifications for π-style
processes [11, 21]. Both kinds of results cannot be easily compared with ours.

Interestingly, our results have been studied in the framework of π-calculus
since it is the base of most proposals in the literature, but can similarly be
stated in CCS. Sticking to π-calculus, adding priority of compensation installa-
tion to the calculus, as done by [16, 20, 27], does not alter the undecidability
of termination for nested and dynamic compensations. For the decidability in
parallel and replacing compensations instead, the proof cannot be applied. Note
however that priority of compensation installation reduces the set of allowed
traces, thus termination without priority ensures termination with priority (but
the opposite is not true).

Decidability and undecidability results are a well-established tool to separate
the expressive power of process calculi. We restrict our discussion to few recent
papers. In [5] two operators for modeling the interruption of processes are con-
sidered: P�Q that behaves like P until Q starts and tryP catchQ that behaves
like P until a throw action is executed by P to activate Q. Termination is proved

Decidability Results for Dynamic Installation of Compensation Handlers 149

to be undecidable for tryP catchQ while it is decidable for P�Q. The undecid-
ability proof is different from the one in this paper since it exploits unbounded
nesting of try-catch constructs. The decidability proof requires to use a weaker
ordering (tree embedding) in order to deal with unbounded nesting of interrupt
operators. Such ordering is not appropriate for the calculus in the present paper
because compatibility is broken by the prefix inst�λX.Q� that synchronizes with
the nearest enclosing transaction and not with any of the outer transactions.
In [13] higher-order π-calculus without restriction is considered. Despite higher-
order communication is rather different w.r.t. dynamic compensations, a similar
decidability result is proved: if the received processes cannot be modified when
they are forwarded, termination becomes decidable, while this is not the case
if they can [19]. The decidability proof is simpler w.r.t. the one in this paper
because there is no operator, like t[P,Q], that requires the exploitation of Dick-
son’s lemma. Finally, we mention [4] where a calculus for adaptable processes is
presented: running processes can be dynamically modified by executing update
patterns similar to those used in this paper. A safety property is proved to be
decidable if the update pattern does not add prefixes in front of the adapted
process, while it becomes undecidable if a more permissive pattern is admitted.
The undecidability proof in the present paper is more complex because update
patterns can be executed only on inactive processes (the compensations). The
decidability proof in [4] is similar to the one in [5]: the same comments above
holds also in this case.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proc. of LICS 1996, pp. 313–321. IEEE (1996)

2. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In:
Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp.
124–138. Springer, Heidelberg (2003)

3. Bocchi, L., Tuosto, E.: A java inspired semantics for transactions in SOC. In:
Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084,
pp. 120–134. Springer, Heidelberg (2010)

4. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable processes.
Logical Methods in Computer Science 8(4) (2012)

5. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and
compensation. Math. Struct. Comp. Sci. 19(3), 565–599 (2009)

6. Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H., Montanari, U.:
Comparing two approaches to compensable flow composition. In: Abadi, M.,
de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer,
Heidelberg (2005)

7. Bruni, R., Kersten, A., Lanese, I., Spagnolo, G.: A new strategy for distributed
compensations with interruption in long-running transactions. In: Mossakowski,
T., Kreowski, H.-J. (eds.) WADT 2010. LNCS, vol. 7137, pp. 42–60. Springer,
Heidelberg (2012)

8. Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile calculi:
Extending join. In: Proc. of IFIP TCS 2004, pp. 563–576. Kluwer (2004)

150 I. Lanese and G. Zavattaro

9. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM
Press (2005)

10. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

11. Caires, L., Ferreira, C., Vieira, H.: A process calculus analysis of compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009)

12. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer,
Heidelberg (2010)

13. Di Giusto, C., Pérez, J.A., Zavattaro, G.: On the expressiveness of forwarding
in higher-order communication. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009.
LNCS, vol. 5684, pp. 155–169. Springer, Heidelberg (2009)

14. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math. 35(4), 413–422 (1913)

15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!
Theoretical Computer Science 256, 63–92 (2001)

16. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundamenta Informaticae 95(1), 73–102 (2009)

17. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc., 3rd Series 2, 326–336 (1952)

18. Lanese, I.: Static vs dynamic sagas. In: Proc. of ICE 2010. EPTCS, vol. 38, pp.
51–65 (2010)

19. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decid-
ability of higher-order process calculi. In: Proc. of LICS 2008, pp. 145–155. IEEE
Computer Society (2008)

20. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-
sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.
Springer, Heidelberg (2010)

21. Lanese, I., Zavattaro, G.: Programming Sagas in SOCK. In: Proc. of SEFM 2009,
pp. 189–198. IEEE Computer Society Press (2009)

22. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

23. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inf.
Comput. 100(1), 1–40,41–77 (1992)

24. Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood
Cliffs (1967)

25. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc.
of ECOWS 2007, pp. 13–22. IEEE Computer Society (2007)

26. Oasis. Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

27. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.
Springer, Heidelberg (2009)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Probabilistic Modular Embedding

for Stochastic Coordinated Systems

Stefano Mariani and Andrea Omicini

DISI, Alma Mater Studiorum–Università di Bologna
{s.mariani,andrea.omicini}@unibo.it

Abstract. Embedding and modular embedding are two well-known tech-
niques for measuring and comparing the expressiveness of languages—
sequential and concurrent programming languages, respectively. The
emergence of new classes of computational systems featuring stochas-
tic behaviours – such as pervasive, adaptive, self-organising systems –
requires new tools for probabilistic languages. In this paper, we recall
and refine the notion of probabilistic modular embedding (PME) as an
extension to modular embedding meant to capture the expressiveness
of stochastic systems, and show its application to different coordination
languages providing probabilistic mechanisms for stochastic systems.

Keywords: embedding, modular embedding, coordination languages,
probabilistic languages, π-calculus.

1 Introduction

A core issue for computer science since the early days, expressiveness of compu-
tational languages is essential nowadays, when the focus is shifting from sequen-
tial to concurrent languages. This holds in particular for coordination languages,
which, by focussing on interaction, deal with the most relevant source of complex-
ity in computational systems [1]. Unsurprisingly, the area of coordination models
and languages has produced a long stream of ideas and results on the subject,
both adopting/adapting “traditional” approaches – such as Turing equivalence
for coordination languages [2,3] – and inventing its own original techniques [4].

Comparing languages based on either their structural properties or the ob-
servable behaviour of the systems built upon them is seemingly a good way to
classify their expressiveness. Among the many available approaches, the notion of
modular embedding [5], refinement of Shapiro’s embedding [6], is particularly ef-
fective in capturing the expressiveness of concurrent and coordination languages.
However, the emergence of classes of systems featuring new sorts of behaviours
– pervasive, adaptive, self-organising systems [7,8] – is pushing computational
languages beyond their previous limits, and asks for new models and techniques
to observe, model and, measure their expressiveness. In particular, modular em-
bedding fails in telling probabilistic languages apart from non-probabilistic ones.

Accordingly, in this paper we recall, refine, and extend applicability of the
notion of probabilistic modular embedding (PME) sketched in [9] as a formal

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 151–165, 2013.
c© IFIP International Federation for Information Processing 2013

152 S. Mariani and A. Omicini

framework to capture the expressiveness of probabilistic languages and stochastic
systems. After recalling the basis of embedding and modular embedding (ME),
along with some formal tools for dealing with probability (Section 2), in Section 3
we devise out the requirements for a probabilistic framework, and formalise them
so as to define the full notion of PME. In order to demonstrate its ability to
measure language expressiveness, in Section 4 we test PME against ME using
a number of different case studies – probabilistic coordination languages and
calculi –, and show how PME succeeds where ME simply fails. After discussing
related works, such as bisimulation and probabilistic bisimulation (Section 5),
we provide some final remarks and hints at possible future works (Section 6).

2 Background

2.1 Sequential and Modular Embedding

The informal definition of embedding assumes that a language could be easily
and equivalently translated in another one. “Easily” is usually interpreted as
“without the need for a global reorganisation of the program”, whatever this
means; whereas “equivalently” typically means “without affecting the program’s
observable behaviour”, according to some well-defined observation criteria, usu-
ally to be specified for the application at hand.

Such an intuitive definition was formalised by Shapiro [6] for sequential lan-
guages as follows. Given two languages L,L′, their program sets ProgL, P rogL′ ,
and the powersets of their observable behaviours Obs ,Obs ′, we assume that two
observation criteria Ψ, Ψ ′ hold:

Ψ : ProgL → Obs Ψ ′ : ProgL′ → Obs ′

Then, L embeds L′ (written L # L′) iff there exist a compiler C : ProgL′ →
ProgL and a decoder D : Obs → Obs ′ such that for every program W ∈ L′

D(Ψ [C(W)]) = Ψ ′[W]

Subsequently, De Boer and Palamidessi [5] argued such definition to be too weak
to be applied proficiently, because any pair of Turing-complete languages would
embed each other. Moreover, concurrent languages need at least (i) a novel
notion of termination w.r.t. sequential ones, so as to handle deadlock and com-
putation failure, and (ii) a different definition for the compiler, so as to consider
also a priori unknown run-time interactions between concurrent processes.

Following their intuitions, De Boer and Palamidessi proposed a novel defini-
tion of embedding for which C and D should satisfy three properties:

Independent Observation. Elements O ∈ Obs are sets representing all the
possible outcomes of all the possible computations of a given system, hence
they will be typically observed independently one from the other—since they
are different systems. Thus, D can be defined to be elementwise, that is:

∀O ∈ Obs : D(O) = {d(o) | o ∈ O} (for some d)

PME for Stochastic Coordinated Systems 153

Compositionality of C. In a concurrent setting, it is difficult to predict the
behaviour of all the processes in the environment, due to run-time non-
deterministic interactions. Therefore, it is reasonable to require composi-
tionality of the compiler C both w.r.t. the parallel composition operator (||)
and to the exclusive choice (+). Formally:

C(A ||′ B) = C(A) || C(B) and C(A +′ B) = C(A) + C(B)

for every pair of programs A,B ∈ L′, where ′ denotes symbols of L′.
Deadlock Invariance. Unlike sequential languages, where only successful com-

putations do matter – basically because unsuccessful ones could be supposed
to backtrack –, in a concurrent setting we need to consider at least dead-
locks, interpreting failure as a special case of deadlock, which should then
be preserved by the decoder D:

∀O ∈ Obs , ∀o ∈ O : tm ′(Dd(o)) = tm(o)

where tm and tm ′ refer to termination modes of L and L′ respectively.

If an embedding satisfies all the three properties above, then it is called modular.
In the following, we stick with symbol # since we assume the corresponding
notion as our “default” reference embedding.

2.2 Expressiveness of Modular Embedding

A Case Study: ProbLinCa In [10], the authors define the ProbLinCa calcu-
lus, a probabilistic extension of the LinCa calculus therein defined, too. Whereas
the latter is basically a process-algebraic formalisation of standard Linda –
accounting for out, rd, in primitives –, the former equips each tuple with a
weight, resembling selection probability: the higher the weight of a tuple, the
higher its probability to be selected for matching. Basically, when a tuple tem-
plate is used in a Linda primitive, the weights of the (possibly many, and dif-
ferent in kind) matching tuples are summed up, then each (j) is assigned a
probability value p ∈ [0, 1] obtained as follows: pj =

wj∑
n
i=1 wi

.

Suppose the following ProbLinCa process P and LinCa process Q are acting
on tuple space S:

P = inp(T).∅+ inp(T).rdp(T
′).∅ Q = in(T).∅+ in(T).rd(T ′).∅

S = 〈tl[20], tr[10]〉
where T is a Linda template matching both tuples tl and tr, whereas T

′ matches
tr solely. Subscript p distinguishes a ProbLinCa primitive from a LinCa one;
square brackets store the weight of each tuple. Let us suppose also that both
processes have the following non-deterministic branching policy: branch left if
consumption primitive (inp and in) returns tl, branch right if consumption
primitive returns tr—as subscript suggests.

From the modular observable behaviour viewpoint exploited in modular em-
bedding (ME), P and Q are not distinguishable. In fact, according to any ob-
servation function Ψ defined based on [5], Ψ [P] = Ψ [Q], that is, P and Q can
reach the same final states:

154 S. Mariani and A. Omicini

Ψ [P] = (success, 〈tr[10]〉) or (deadlock, 〈tl[20]〉)
Ψ [Q] = (success, 〈tr[10]〉) or (deadlock, 〈tl[20]〉)

The main point here is that while P and Q are qualitatively equivalent, they
are not quantitatively equivalent. Notwithstanding, by no means ME can dis-
tinguish between their behaviours: since ME cannot tell apart the probabilistic
information conveyed by, e.g., a ProbLinCa primitive w.r.t. a LinCa one. For the
don’t know non-deterministic process Q, no probability value is available that
could measure the chance to reach one state over the other, hence ME does not
capture this property—quite obviously, since it was not meant to.

In fact, a “two-way” modular encoding can be trivially established between
the two languages used above – say, ProbLinCa (out, rdp, inp) vs. LinCa (out,
rd, in) – by defining compilers C as

CLinCa =

⎧⎪⎨
⎪⎩
out $−→ out

rd $−→ rdp

in $−→ inp

CProbLinCa =

⎧⎪⎨
⎪⎩
out $−→ out

rdp $−→ rd

inp $−→ in

and letting decoder D be compliant to the concurrent notion of observables
given in [5]. Given such C and D, we can state that ProbLinCa (“modularly”)
embeds LinCa and also that LinCa (modularly) embeds ProbLinCa, hence they
are (observational) equivalent (≡Ψ). Formally:

ProbLinCa # LinCa ∧ LinCa # ProbLinCa =⇒ ProbLinCa ≡Ψ LinCa

However, process P becomes a probabilistic process due to the weighted-
probability feature of rdp, hence a probabilistic measure for P behaviour would
be potentially available: however, it is not captured by ME. In the above exam-
ple, for instance, such an additional bit of information would make it possible
to assess that one state is “twice as probable as” the other. This is exactly the
purpose of the probabilistic modular embedding (PME) we refine and extend in
the remainder of this paper.

2.3 Formal Tools for Probability: The “Closure” Operator

In order to better ground the notion of PME as an extension of ME, and also to
show its application to probabilistic coordination languages such as the afore-
mentioned ProbLinCa, a proper formal framework is required.

In [11] a novel formalism is proposed that aims at dealing with the issue of
open transition systems specification, requiring quantitative information to be
attached to synchronisation actions at run-time—that is, based on the environ-
ment state during the computation. The idea is that of partially closing labelled
transition systems via a process-algebraic closure operator (↑), which associates
quantitative values – e.g., probabilities – to admissible transition actions based
upon a set of handles defined in an application-specific manner, dictating which
quantity should be attached to which action. More precisely:

PME for Stochastic Coordinated Systems 155

(i) actions labelling open transitions are equipped with handles;
(ii) the operator ↑ is exploited to compose a system to a specification G, asso-

ciating at run-time each handle to a given value—e.g., a value ∈ N;
(iii) quantitative informations with which to equip actions – e.g., probabilities

∈ [0, 1] summing up to 1 – are computed from handle values for each enabled
action, possibly based on the action context (environment);

(iv) quantitatively-labelled actions turn an open transition into a reduction,
which then executes according to the quantitative information.

For instance, such operators are used as restriction operators in the case of
ProbLinCa (Subsection 3.2) – in the same way as [12] for PCCS (Probabilis-
tic Calculus of Communicating Systems) – to formally define the probabilistic
interpretation of observable actions, informally given in Subsection 3.1, in the
context of a tuple-based probabilistic language. In particular:

(i) handles coupled to actions (open transition labels) represent tuple tem-
plates associated to corresponding primitives;

(ii) handles listed in restriction term G represent tuples offered (as synchroni-
sation items) by the tuple space;

(iii) restriction term G associates handles (tuples) to their weight in the tuple
space;

(iv) restriction operator ↑ matches admissible synchronisations between pro-
cesses and the tuple space, cutting out unavailable actions, and computes
their associated probability distribution based upon handle-associated
values.

3 Probabilistic Modular Embedding

3.1 Probabilistic Setting Requirements

In order to define the notion of probabilistic modular embedding (PME), we
elaborate on the notion sketched in [9], starting from the informal definition
of “embedding”, then giving a precise characterisation to both words “easily”
and “equivalently”. Although the definition of “easily” given in Subsection 2.1
could be rather satisfactory in general, we prefer here to strengthen its mean-
ing by narrowing its scope to asynchronous coordination languages and calculi:
without limiting the generality of the approach, this allows us to make precise
assumptions on the structure of programs.

A process can be said to be easily mappable into another if it requires:

(i) no extra-computations to mimic complex coordination operators;
(ii) no extra-coordinators (neither coordinated processes nor coordination

medium) to handle suspensive semantics;
(iii) no unbounded extra-interactions to perform additional coordination.

Requirement (i) ensures absence of internal protocols in-between process-medium
interactions, to emulate complex interaction primitives or behaviours—e.g., inp

156 S. Mariani and A. Omicini

probabilistic selection simulated by processes drawing random numbers. Require-
ment (ii) avoids proliferation of processes and media while translating a program
into another, constraining such mappings to have the same number of processes
and media. The last requirement complements the first in ensuring absence of
complex interaction patterns to mimic complex coordination operators, such as
the in all global primitive as a composition of multiple inp (in predicative
version)—which could be obtained by forbidding unbounded replication and re-
cursion algebraic operators in compiler C. Altogether, the three requirements
above represent a necessary constraint since our goal here is to focus on “pure
coordination” expressiveness—that is, we intentionally focus on the sole expres-
siveness of coordination primitives, while abstracting away from the algorithmic
expressiveness of processes and media.

The refined notion of “equivalently” is a bit more involved due to the very
nature of a probabilistic process, that is, its intrinsic randomness. The notions
of observable behaviour and termination are affected by such randomness, thus
they could need to be re-casted in the probabilistic setting. Probabilistic
processes, in fact, have their actions conditioned by probabilities, hence their
observable transitions between reachable states are probabilistic, too—so, their
execution is possible but never guaranteed. Therefore, also final states are
reached by chance only, following a certain probability path, hence termination,
too, should be equipped with its own associated probability—also in case of
deadlock.

In order to address the above issues, PME improves ME by making the fol-
lowing properties about observable behaviour and termination available:

Probabilistic Observation. Observable actions performed by processes – e.g.,
ProbLinCa coordination primitives – should be associated with their execu-
tion probability. Such probability should depend on their run-time context,
that is, synchronisation opportunities offered by the coordination medium.
Then, compiler C should preserve transition probabilities and properly
“aggregate” them along any probabilistic trace—that is, a sequence of
probabilistic actions.

Probabilistic Termination. Final states of processes and media should be
first defined as those states for which all outgoing transitions have probability
0. Furthermore, they should be refined with a probabilistic reachability value,
that is, the probability of reaching that state from a given initial one. Then,
decoder D should preserve such probabilities and determine how to compute
them.

3.2 Formal Semantics

In the following, we provide a precise semantic characterisation for the PME
requirements pointed out in Subsection 3.1 – that is, probabilistic observation and
probabilistic termination – using ProbLinCa primitives as our running example,
which may also be regarded as a generalisation of uniform primitives used in [9].

PME for Stochastic Coordinated Systems 157

Probabilistic Observation. A single probabilistic observable transition step,
deriving from the synchronisation between a ProbLinCa process and a ProbLinCa
space – e.g. by using a inp –, can be formally defined as follows:

inp(T).P | 〈t1[w1], .., tn[wn]〉 μ(T,tj)−→ pj P [tj/T] | 〈t1[w1], .., tn[wn]〉\tj
where operator μ(T, t) denotes Linda matching function, symbol [·/·] stands for
template substitution in process continuation, and operator \ represents multiset
difference, there expressing removal of tuple tj from the tuple space.

By expanding such observable transition in its embedded reduction steps –
that is, non-observable, silent transitions – we can precisely characterise the
probabilistic semantics thanks to the ↑ operator:

inp(T).P | 〈t1[w1], .., tn[wn]〉
T−→

inp(T).P | 〈t1[w1], .., tn[wn]〉 ↑ {(t1, w1), .., (tn, wn)}
↪→

inp(T).P | 〈t1[w1], .., tn[wn]〉 ↑ {(t1, p1), .., (tj , pj), .., (tn, pn)}
tj−→pj

P [tj/T] | 〈t1[w1], .., tn[wn]〉\tj
where pj =

wj∑
n
i=1 wi

is the absolute probability of retrieving tuple tj (with j =

1..n) assuming for the sake of simplicity that all tuples match template T .
The ↑ operator implicitly enforces a re-normalisation of probabilities based on

available synchronisations offered by the tuple space – that is, which tuples in
the space match the given template –, in the spirit of PCCS restriction operator
used in [12] for the generative model of probabilistic processes. For instance,
given the following probabilistic process P acting on ProbLinCa space S

P = 1
6inp(T).P + 1

2inp(T).P + 1
3rdp(T).P

S = 〈tl[w], tr[w]〉
where template T matches with both tuples tl, tr, we observe that an “experi-
ment” inp could succeed with probability 2

3 = 1
6 + 1

2 , and that rdp could do so
with probability 1

3 . Furthermore, if we suppose the branching choice after exper-
iment inp to depend upon the consumed tuple, we could see the aforementioned
re-normalisation by computing the probability to branch left (tl is returned),
which is 0.25, and that of branching right (tr is returned), which is instead 0.75.

This addresses the first issue of probabilistic observation: we define observable
actions as all those actions requiring synchronisation with the medium, then
equip them with a probability of execution driven by available run-time syn-
chronisation opportunities, and normalised according to the generative model
interpretation enforced by ↑. Formally, we define the probabilistic observation
function (Θ), mapping a process (W) into observables, as follows:

Θ[W] =
{
(ρ,W [μ̄]) | (W, 〈σ〉) −→∗ (ρ,W [μ̄])

}

158 S. Mariani and A. Omicini

where ρ is a probability value ∈ [0, 1], μ̄ is a sequence of actual synchronisations –
e.g. μ̄ = μ(T1, t1), . . . , μ(Tn, tn) – and σ is the space state—e.g. σ = t1, . . . , tn.

Such definition is partial in the sense that we only know how to compute
ρ for single-step transitions – that is, according to the ↑-dependent generative
semantics –, in fact, it tells us nothing about how to compute ρ also for observable
traces—that is, for sequences of observable actions. Nothing more than standard
probability theory is needed here, stating that [13]:

(i) the cumulative probability of a sequence – that is, a “dot”-separated list –
of probabilistic actions is the product of the probabilities of such actions;

(ii) the cumulative probability of a choice – that is, a “+”-separated list – of
probabilistic actions is the sum of the probabilities of such actions.

Formally, we define the sequence probability aggregation function (ν̄) and the
choice probability aggregation function (ν+), mapping multiple probability values
to a single one, as follows:

ν̄ : W × 〈σ〉 $→ ρ where ρ =
∏n

j=0{pj | (pj , μ�̄) ∈ Θ[W = �̄.W ′])}
ν+ : W × 〈σ〉 $→ ρ where ρ =

∑n
j=0{pj | (pj , μ�+) ∈ Θ[W = �+.W ′])}

where �̄ is a sequence of synchronisation actions – e.g., �̄ = inp(T1).rdp(T2). . . . –
and �+ is a choice between synchronisation actions—e.g., �̄+ = inp(T1) +
rdp(T2) + By properly composing such aggregation functions, it is possi-
ble to compute Θ[W] for any process W and for any transition sequence −→∗.

An example may help clarifying the above definitions. Let us consider the
following process P and space S (sequence operator has priority w.r.t. choice):

P = inp(T).
(
rdp(T

′).P ′ + rdp(T
′).P ′′)+ inp(T).P

′

S = 〈tl1[40], tl2[30], tr1[20], tr2[10]〉
where template T may match either tl1 or tr1 whereas T ′ may match either
tl2 or tr2—and branching structure is based on returned tuple as usual, that is,
tl1,tl2 for left, tr1,tr2 for right. Applying function Θ to process P could lead to
the following observable states :

Θ[P] = (0.5, P ′[μ(T, tl1), μ(T ′, tl2)])
Θ[P] = (0.16̄, P ′′[μ(T, tl1), μ(T ′, tr2)])

Θ[P] = (0.3̄, P ′[μ(T, tr1)])

According to Θ, and using both aggregation functions ν̄ and ν+, we can state that
process P will eventually behave like P ′ – although with different substitutions
– with a probability of % 0.83, and like P ′′ with a probability of % 0.17.

As a last note, one may consider that sequence probability aggregation func-
tion ν̄ will asymptotically tend to 0 as the length of the sequence l̄ tends to
infinity. This is unavoidable according to the basic probability theory framework
adopted throughout this paper. One way to fix this aspect could be that of con-
sidering only the prefix sequence executed in loop by a process, then to associate
that process not with the probability of n iterations of such loop, but with the
probability of the looping prefix sequence solely—that is, with only 1 iteration
of the loop. However, this concern is left for future investigation.

PME for Stochastic Coordinated Systems 159

Probabilistic Termination. In order to define probabilistic termination, we
should first adapt the classical notion of termination to the probabilistic setting.
For this purpose, we define ending states as all those states for which either no
more transitions are possible or all outgoing transitions have probability 0 to
occur. Other than that, termination states can be enumerated as usual [5] to
be τ = success, failure, deadlock, plus the undefined state, which could be
useful to distinguish absorbing states – that is, those states for which the prob-
ability of performing a self-loop transition is 1 – from deadlocks. Furthermore,
such termination states have to be equipped with a probabilistic reachability
value, according to Subsection 3.1.

Formally, we define reachability value ρ⊥ and the probabilistic termination
state function Φ as follows:

Φ[W] =
{
(ρ⊥, τ) | (W, 〈σ〉) −→∗

⊥ (ρ⊥, τ)
}

where subscript ⊥ means a sequence of finite transitions leading to termination
τ . By comparing this function with the observation function Θ, it can be no-
ticed that Φ abstracts away from computation traces – that is, it does not keep
track of synchronisations, hence substitutions, in term W [μ̄] – focussing solely
on termination states τ . However, when computing the value of ρ⊥, the same
aggregation functions ν̄ and ν+ have to be used.

For instance, recalling process P used to test observation function Θ, changing
space S configuration as follows:

P = inp(T).
(
rdp(T

′).P ′ + rdp(T
′).P ′′)+ inp(T).P

′

S = 〈tl1[40], tr1[20]〉
where P ′ ≡ P ′′ = ∅ so to reach termination, the application of the probabilistic
termination state function just defined would lead to the following observable
termination states:

Φ[P] = (0.6̄, deadlock) ∨ Φ[P] = (0.3̄, success)

In particular, P deadlocks with probability 2
3 if tuple tl1 is consumed, whereas

succeeds with probability 1
3 if tuple tr1 is consumed in its stead.

Please notice that, unlike the case of endless sequences l̄ highlighted at the end
of Subsection 3.2, absorbing states cause no harm for our sequence probability
aggregation function ν̄, since the probability value aggregated until reaching the
absorbing state will be from now on always multiplied by 1—in the very end,
making each iteration of the self-loop indistinguishable from the others.

4 PME vs. ME: Testing Expressiveness on Case Studies

ProbLinCa vs. LinCa We now recall the two processes P and Q acting on
space S introduced in the example of Subsection 2.2:

P = inp(T).∅+ inp(T).rdp(T
′).∅ Q = in(T).∅+ in(T).rd(T ′).∅

S = 〈tl[20], tr[10]〉

160 S. Mariani and A. Omicini

to repeat the embedding observation, this time under the assumptions of PME.
As expected, we can now distinguish the behaviour of process P from that of
process Q. In fact, by applying function Φ to both P and Q we get:

Φ[P] = (0.6̄, success) or (0.3̄, deadlock)

Φ[Q] = (•, success) or (•, deadlock)
where symbol • denotes “absence of information”.

Therefore, only a “one-way” encoding can be now established between the
two languages used above – again, ProbLinCa (out, rdp, inp) vs. LinCa (out,
rd, in) – by defining compiler CLinCa as

CLinCa =

⎧⎪⎨
⎪⎩
out $−→ out

rd $−→ rdp

in $−→ inp

and making decoder D rely on observation function Θ and termination function
Φ. Then we can state that ProbLinCa probabilistically embeds (#p) LinCa—but
not the other way around. Formally, according to PME:

ProbLinCa #p LinCa ∧ LinCa �#p ProbLinCa =⇒ ProbLinCa �≡p LinCa

In the end, PME succeeds in telling ProbLinCa apart from LinCa (classifying
ProbLinCa as more expressive than LinCa), whereas ME fails.

pKlaim vs. Klaim pKlaim was introduced in [14] as a probabilistic ex-
tension to Klaim [15], a kernel programming language for mobile computing.
In Klaim, processes as well as data can be moved across the network among
computing environments: in fact, it features (i) a core Linda with multiple tuple
spaces, and (ii) localities as first-class abstractions to explicitly manage mobil-
ity and distribution-related aspects. pKlaim extends such model by introducing
probabilities in a number of different ways and according to the two levels of
Klaim formal semantics: local and network semantics. We here consider local se-
mantics solely, because the network one can quickly become cumbersome, due to
multiple probability normalisation steps [15], and is unnecessary for the purpose
of showing the power of the PME approach.

The local semantics defines how a number of co-located processes interact
with a tuple space, either local or remote. Here, probabilities are given by:

– a probabilistic choice operator +n
i=1pi : Pi;

– a probabilistic parallel operator |ni=1 pi : Pi;
– probabilistic allocation environments, formally defined as a partial map σ :

Loc $→ Dist(S) associating probability distributions on physical sites (S) to
logical localities (Loc).

For the sake of clarity (and brevity), we consider the three probabilistic exten-
sions introduced by pKlaim separately—their combination is a trivial extension
once that normalisation procedures [15] are accounted for.

PME for Stochastic Coordinated Systems 161

First of all, we focus on the probabilistic choice operator. Let us suppose
pKlaim process P and Klaim process Q are interacting with space s—refer to
[14] for process syntax:

P = 2
3in(T)@s.∅+ 1

3in(T)@s.rd(T)@s.∅
Q = in(T)@s.∅+ in(T)@s.rd(T)@s.∅
s = out(t)@self.∅ ≡ s = 〈t〉

where T matches the single tuple t and Klaim notation for tuple space s is
equivalent to our usual notation.

Both processes have a non-deterministic branching structure which cannot be
distinguished by ME. In fact, according to any observation function Ψ defined
based on [5], Ψ [P] = Ψ [Q], that is, P and Q can reach the same final states:

Ψ [P] = (success, 〈 〉) or (deadlock, 〈 〉)
Ψ [Q] = (success, 〈 〉) or (deadlock, 〈 〉)

PME is instead sensitive to the probabilistic information available for pKlaim
process P , hence by applying the Φ function we get:

Φ[P] = (0.6̄, success) or (0.3̄, deadlock)

Φ[Q] = (•, success) or (•, deadlock)
Since the probabilistic parallel operator can be handled (almost) identically, we
step onwards to the probabilistic allocation operator. Suppose, then, to be in
the following network configuration:

P = in(T)@l.∅ Q = in(T)@l.∅
s1 = 〈t〉 s2 = 〈 〉 σ : l $→

{
2
3s1
1
3s2

where function σ is defined only for the pKlaim process P—whereas for Klaim
process Q the allocation function is unknown (e.g., implementation-dependent).
Thus, the processes have is branching structure and are actually identical. How-
ever, the coexistence of two admissible allocation environments (s1 and s2) may
impact the termination states of P and Q. In fact, by applying any observation
function suitable to ME criteria [5], we get the following final states:

Ψ [P] = (success, s1 = 〈 〉 ∧ s2 = 〈 〉) or (deadlock, s1 = 〈t〉 ∧ s2 = 〈 〉)
Ψ [Q] = (success, s1 = 〈 〉 ∧ s2 = 〈 〉) or (deadlock, s1 = 〈t〉 ∧ s2 = 〈 〉)

Nevertheless, final states are the same for both P and Q, which cannot be distin-
guished. This happens because ME is insensitive to the probabilistic allocation
function σ, having no ways to account for it.

PME provides instead “probability-sensitive” observation/termination func-
tions, whose application produces the following final states:

Φ[P] = (0.6̄, success) or (0.3̄, deadlock)

Φ[Q] = (•, success) or (•, deadlock)

162 S. Mariani and A. Omicini

Unlike ME, PME tells pKlaim process P apart fromKlaim processQ. Since the
difference between P and Q is quantitative, not qualitative, only a quantitative
embedding such as PME can successfully distinguish between the two.

πpa-calculus vs. πa-calculus. The πpa-calculus was introduced in [16]
as a probabilistic extension to the πa-calculus (asynchronous π-calculus)
defined in [17]. In order to increase the expressive power of πa-calculus, the
authors propose a novel calculus, featuring a probabilistic guarded choice
operator (

∑
i piαi.Pi), able to distinguish between probabilistic and purely non-

deterministic behaviours. Whereas the former is due to a random choice per-
formed by the process itself, the latter is associated to the arbitrary decisions
made by an external process (scheduler).

Let us consider the following processes P and Q willing to synchronise with
process S (playing the role of the tuple space)—refer to [16] for the syntax used:

P =
(
2
3x(y) +

1
3z(y)

)
.∅ Q =

(
x(y) + z(y)

)
.∅

S = x̄y ≡ S = {Sx = 〈y〉 ⋃
Sz = 〈 〉}

where the last equivalence just aims at providing a uniform notation compared to
the other case studies proposed—in particular, π-calculus channels can resemble
Klaim allocation environments.

For both P and Q, two are the admissible termination states, listed below as
a result of the application of ME:

Ψ [P] = (success, 〈 〉) or (deadlock, 〈y〉)
Ψ [Q] = (success, 〈 〉) or (deadlock, 〈y〉)

As expected, they are indistinguishable despite the probabilistic information
available for P , lost by the ME observation function.

As in previous cases, PME fills the gap:

Φ[P] = (0.6̄, success) or (0.3̄, deadlock)

Φ[Q] = (•, success) or (•, deadlock)

5 Related Works

One of the starting points of our work is the observation that modular embed-
ding (ME) as defined in [5] does not suit probabilistic scenarios, since it does not
consider probabilistic transitions—therefore probabilistic termination. In other
words, when applied to a probabilistic process, ME can just point out its reach-
able termination states and the admissible transitions, and cannot say anything
about their quantitative aspects—that is, probability of execution (transitions)
and reachability (end states). Thus, in this paper we discussed how probabilis-
tic modular embedding (PME) extends ME towards probabilistic models and
languages, such as those defined in [12].

PME for Stochastic Coordinated Systems 163

To the best of our knowledge, no other researches push the work by De Boer
and Palamidessi [5] towards a probabilistic setting with a focus on coordination
languages, in the same way as no other works try to connect the concept of
“language embedding” with any of the probability models defined in [12].

In [18], the authors try to answer questions such as how to formalise proba-
bilistic transition system, and how to extend non-probabilistic process algebras
operators to the probabilistic setting. In particular, they focus on reactive mod-
els of probability – hence, models where pure non-determinism and probabil-
ity coexist – and provide the notions of probabilistic bisimulation, probabilistic
simulation (the asymmetric version of bisimulation), and probabilistic testing
preorders (testing-based observation of equivalence), again applied to PCCS.
Although targeted to the PCCS reactive model, their work is related to ours in
the attempt to find a way to compare the relative expressiveness of different prob-
abilistic languages. On the other hand, our approach is quite different because
we adopted a language embedding perspective rather than a process bisimula-
tion viewpoint. Whereas probabilistic bisimulation can prove the observational
equivalence of different probabilistic models, it cannot detect which is the most
expressive among them. However, we cannot exclude that a “two-way” proba-
bilistic embedding relationship may correspond to a probabilistic bisimulation
according to [18] definition of bisimulation—at least for reactive models.

In [19] the notion of linear embedding is introduced. Starting from the defini-
tion of ME in [5], the authors aim at quantifying “how much a language embeds
another one”, that is, “how much a given language is more expressive than an-
other”. To do so, they (i) take linear vector spaces as a semantic domain for
a subset of Linda-like languages – that is, considering tell, get, ask, nask

primitives –; (ii) define an observation criteria associating to each program a
linear algebra operator acting on such vector spaces; then (iii) quantify the dif-
ference in expressive power by computing the dimension of the linear algebras
associated to each language. Although the possibility to quantify the relative
expressive power of a set of languages is appealing, the work in [19] do consider
neither probabilistic languages nor probabilistic processes, hence cannot be di-
rectly compared to ours. However, it still remains an interesting path to follow
for further developments of the probabilistic embedding here proposed.

Last but not least, in [20] the authors apply the Probabilistic Abstract Inter-
pretation (PAI) theory and its techniques to probabilistic transition systems, in
order to formally define the notion of approximate process equivalence—that is,
two probabilistic processes are equivalent “up to an error ε”. As in [19], Di Pierro,
Hankin, and Wiklicky adopt linear algebras to represent some semantical do-
main, but they consider probabilistic transition systems instead of deterministic
ones. Therefore, they allow matrices representing algebraic operators to specify
probability values v ∈ [0, 1] instead of binary values b = 0 | 1. Then, by using the
PAI framework and drawing inspiration from statistical testing approaches, they
define the notion of ε-bisimilarity, which allows the minimum number of tests
needed to accept the bisimilarity relation between two processes to be quantified
with a given confidence. By examining such a number, a quantitative idea of the

164 S. Mariani and A. Omicini

statistical distance between two given sets of (processes) admissible behaviours
can be inferred. Although quite different from ours, this work can be consid-
ered nevertheless as another opportunity for further improvement of PME: for
instance, an enhanced version of PME may be able to detect some notion of
approximate process equivalence.

6 Conclusion and Future Works

Starting from the notions of embedding and modular embedding, in this paper
we refine and extend the definition of probabilistic modular embedding (PME)
first sketched in [9], as a tool for modelling the expressiveness of concurrent
languages and systems, in particular those featuring probabilistic mechanisms
and exhibiting stochastic behaviours. We discuss its novelty with respect to the
existing approaches in the literature, then show how PME succeeds in telling
apart probabilistic languages from non-probabilistic ones, whereas standard ME
fails. While apparently trivial, such a distinction was not possible with any other
formal framework in the literature so far, to the best of our knowledge.

Furthermore, PME has seemingly the potential to compare the expressiveness
of two probabilistic languages: for instance, the ability of PME of telling apart
the different probabilistic processes models proposed in [12] is currently under
investigation.

Acknowledgments. This work has been partially supported by the EU-FP7-
FET Proactive project SAPERE – Self-aware Pervasive Service Ecosystems,
under contract no. 256874.

References

1. Wegner, P.: Why interaction is more powerful than algorithms. Communications
of the ACM 40(5), 80–91 (1997)

2. Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for pro-
gramming coordination media. In: 1998 ACM Symposium on Applied Computing
(SAC 1998), February 27-March 1, pp. 169–177. ACM, Atlanta (1998); Special
Track on Coordination Models, Languages and Applications

3. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination
primitives. Information and Computation 156(1-2), 90–121 (2000)

4. Wegner, P., Goldin, D.: Computation beyond Turing machines. Communications
of the ACM 46(4), 100–102 (2003)

5. de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison.
Information and Computation 108(1), 128–157 (1994)

6. Shapiro, E.: Separating concurrent languages with categories of language embed-
dings. In: 23rd Annual ACM Symposium on Theory of Computing (1991)

7. Omicini, A., Viroli, M.: Coordination models and languages: From parallel comput-
ing to self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011);
Special Issue 01 (25th Anniversary Issue)

PME for Stochastic Coordinated Systems 165

8. Omicini, A.: Nature-inspired coordination models: Current status, future trends.
ISRN Software Engineering 2013, Article ID 384903, Review Article (2013)

9. Mariani, S., Omicini, A.: Probabilistic embedding: Experiments with tuple-based
probabilistic languages. In: 28th ACM Symposium on Applied Computing (SAC
2013), Coimbra, Portugal, March 18-22, pp. 1380–1382 (2013) (Poster Paper)

10. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in
the tuple space coordination model. Theoretical Computer Science 346(1), 28–57
(2005)

11. Bravetti, M.: Expressing priorities and external probabilities in process algebra
via mixed open/closed systems. Electronic Notes in Theoretical Computer Science
194(2), 31–57 (2008)

12. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and strati-
fied models of probabilistic processes. Information and Computation 121(1), 59–80
(1995)

13. Drake, A.W.: Fundamentals of Applied Probability Theory. McGraw-Hill College
(1967)

14. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic KLAIM. In: De Nicola, R.,
Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp.
119–134. Springer, Heidelberg (2004)

15. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A kernel language for agent in-
teraction and mobility. IEEE Transaction on Software Engineering 24(5), 315–330
(1998)

16. Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous pi-calculus. CoRR
cs.PL/0109002 (2001)

17. Boudol, G.: Asynchrony and the Pi-calculus. Rapport de recherche RR-1702,
INRIA (1992)

18. Bengt, J., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras.
In Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra.
Elsevier Science B.V., pp. 685–710 (2001)

19. Brogi, A., Di Pierro, A., Wiklicky, H.: Linear embedding for a quantitative com-
parison of language expressiveness. Electronic Notes in Theoretical Computer
Science 59(3), 207–237 (2002); Quantitative Aspects of Programming Languages
(QAPL 2001 @ PLI 2001)

20. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate
process equivalences. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 508–522. Springer, Heidelberg (2003)

ByteSTM: Virtual Machine-Level

Java Software Transactional Memory

Mohamed Mohamedin, Binoy Ravindran, and Roberto Palmieri

ECE Dept., Virginia Tech, Blacksburg, VA, USA
{mohamedin,binoy,robertop}@vt.edu

Abstract. We present ByteSTM, a virtual machine-level Java STM im-
plementation that is built by extending the Jikes RVM. We modify Jikes
RVM’s optimizing compiler to transparently support implicit transac-
tions. Being implemented at the VM-level, it accesses memory directly,
avoids Java garbage collection overhead by manually managing memory
for transactional metadata, and provides pluggable support for imple-
menting different STM algorithms to the VM. Our experimental studies
reveal throughput improvement over other non-VM STMs by 6–70% on
micro-benchmarks and by 7–60% on macro-benchmarks.

1 Introduction

Transactional Memory (TM) [13] is an attractive programming model for mul-
ticore architectures promising to help the programmer in the implementation
of parallel and concurrent applications. The developer can focus the effort on
the implementation of the application’s business logic, giving the responsibil-
ity to managing concurrency to the TM framework. It ensures, in a completely
transparent manner, properties difficult to implement manually like atomicity,
consistency, deadlock-freedom and livelock-freedom. The programmer simply or-
ganizes the code identifying blocks to be executed as transactions (so called
atomic blocks). TM overtakes the classical coarse grain lock-based implemen-
tation of concurrency, executing transactions optimistically and logging into a
private part of the memory the results of read and write operations performed
during the execution (respectively on the read- and write-set). Further TM is
composable.

TM has been proposed in hardware (HTM; e.g., [8]), in software (STM;
e.g., [17]), and in combination (HybridTM; e.g., [18]). HTM has the lowest over-
head, but transactions are limited in space and time. STM does not have such
limitations, but has higher overhead. HybridTM avoids these limitations.

Given STM’s hardware-independence, which is a compelling advantage, we
focus on STM. STM implementations can be classified into three categories:
library-based, compiler-based, and virtual machine-based. Library-based STMs
add transactional support without changing the underlying language, and can
be classified into those that use explicit transactions [14,21,26] and those that use
implicit transactions [5, 17, 23]. Explicit transactions are difficult to use. They

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 166–180, 2013.
c© IFIP International Federation for Information Processing 2013

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 167

support only transactional objects (i.e., objects that are known to the STM
library by implementing a specific interface, being annotated, etc) and hence
cannot work with external libraries. Implicit transactions, on the other hand,
use modern language features (e.g., Java annotations) to mark code sections as
atomic. Instrumentation is used to transparently add transactional code to the
atomic sections (e.g., begin, transactional reads/writes, commit). Some implicit
transactions work only with transactional objects [5, 23], while others work on
any object and support external libraries [17].

Compiler-based STMs (e.g., [15, 16]) support implicit transactions transpar-
ently by adding new language constructs (e.g., atomic). The compiler then gen-
erates transactional code that calls the underlying STM library. Compiler-based
STMs can optimize the generated code and do overall program optimization.
On the other hand, compilers need external libraries’ source code to instrument
it and add transactional support. Usually, external libraries source code is not
available. With managed run-time languages, compilers alone do not have full
control over the VM. Thus, the generated code will not be optimized and may
contradict with some of the VM features like the garbage collector (GC).

VM-based STMs, which have been less studied, include [1,7,12,27]. [12] is im-
plemented in C inside the JVM to get benefits of the VM-managed environment,
and uses an algorithm that does not ensure the opacity correctness property [11].
This means that inconsistent reads may occur before a transaction is aborted,
causing unrecoverable errors in an unmanaged environment. Thus, the VM-level
implementation choice is to prevent such unrecoverable errors, which are not
allowed in a managed environment. [7] presented a new Java-based program-
ming language called Atomos, and a concomitant VM where standard Java syn-
chronization (i.e., synchronized, wait/notify) is replaced with transactions.
However, in this work, transactional support relies on HTM.

Library-based STMs are largely based on the premise that it is better not
to modify the VM or the compiler, to promote flexibility, backward compatibil-
ity with legacy code, and easiness to deploy and use. However, this premise is
increasingly violated as many require some VM support or are being directly
integrated into the language and thus the VM. Most STM libraries are based on
annotations and instrumentation, which are new features in the Java language.
For example, the Deuce STM library [17] uses a non-standard proprietary API
(i.e., sun.misc.Unsafe) for performance gains, which is incompatible with other
JVMs. Moreover, programming languages routinely add new features in their
evolution for a whole host of reasons. Thus, as STM gains traction, it is natural
that it will be integrated into the language and the VM.

Implementing STM at the VM-level allows many opportunities for optimiza-
tion and adding new features. For example, the VM has direct access to memory,
which allows faster write-backs to memory. The VM also has full control of the
GC, which allows minimizing the GC’s degrading effect on STM performance
(see Subsection 2.5). Moreover, if TM is supported using hardware (as in [7]),
then VM is the only appropriate level of abstraction to exploit that support for
obtaining higher performance. (Otherwise, if TM is supported at a higher level,
the GC will abort transactions when it interrupts them.) Also, VM memory

168 M. Mohamedin, B. Ravindran, and R. Palmieri

Table 1. Comparison of Java STM implementations

F
ea
tu
re

D
eu

ce
[1
7
]

J
V
S
T
M

[5
]

O
b
je
ct
F
a
b
ri
c
[2
1
]

A
to
m
J
av
a
[1
5
]

D
S
T
M
2
[1
4
]

M
u
lt
iv
er
se

[2
6
]

L
S
A
-S
T
M

[2
3
]

H
a
rr
is

&
F
ra
se
r
[1
2
]

A
to
m
o
s1

[7
]

T
ra
n
s.

m
o
n
it
o
rs

[2
7
]

B
y
te
S
T
M

Implicit transactions
√ √

X
√

X X
√ √ √ √ √

All data types
√

X X
√

X X X
√ √ √ √

External libraries
√

X X
√ 2 X X X

√
X 3 √ √

Unrestricted atomic blocks X X
√ √ √ √

X
√ √ √ √

Direct memory access
√4 X X X X X X

√ √
X

√
Field-based granularity

√
X X X X X X X X X

√
No GC overhead

√ 5 X X X X X X
√ √

X
√

Compiler support X X X
√

X X X
√ √ √ √

& X 6

Strong atomicity X X
√ √

X X X X
√

X X

Closed/Open nesting X
√ √

X X X X X
√

X X

Conditional variables X X X X X X X X
√

X X
1 Is a HybridTM, but software part is implemented inside a VM.
2 Only if source code is available.
3 It is a new language, thus no Java code is supported.
4 Uses non-standard library.
5 Uses object pooling, which partially solves the problem.
6 ByteSTM can work with or without compiler support.

systems typically use a centralized data structure, which increases conflicts, de-
grading performance [4].

Motivated by these observations, we design and implement a VM-level STM:
ByteSTM. In ByteSTM, a transaction can surround any block of code, and it is
not restricted to methods. Memory bytecode instructions reachable from a trans-
action are translated so that the resulting native code executes transactionally.
ByteSTM uniformly handles all data types (not just transactional objects), us-
ing the memory address and number of bytes as an abstraction, and thereby
supports external libraries. It uses field-based granularity, which scales better
than object-based or word-based granularity, and eliminates the GC overhead,
by manually managing (e.g., allocation, deallocation) memory for transactional
metadata. It can work without compiler support, which is only required if the
new language construct atomic is used. ByteSTM has a modular architecture,
which allows different STM algorithms to be easily plugged in (we have im-
plemented three algorithms: TL2 [10], RingSTM [25], and NOrec [9]). Table 1
distinguishes ByteSTM from other STM implementations. The current release of
ByteSTM does not support closed/open nesting, strong atomicity, or conditional
variables. However, features like these are in the implementation roadmap.

ByteSTM is open-sourced and is freely available at hydravm.org/bytestm.

hydravm.org/bytestm

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 169

2 Design and Implementation

ByteSTM is built by modifying Jikes RVM [2] using the optimizing compiler.
Jikes RVM is a Java research virtual machine and it is implemented in Java.
Jikes RVM has two types of compilers: the Optimizing compiler and the Base-
line compiler. The Baseline compiler simulates the Java stack machine and has no
optimization. The Optimizing compiler does several optimizations (e.g., register
allocation, inlining, code reordering). Jikes RVM has no interpreter, and byte-
code must be compiled to native code before execution. Building the Jikes RVM
with production configuration gives performance comparable to the HotSpot
server JIT compiler [22].

In ByteSTM, bytecode instructions run in two modes: transactional and non-
transactional. The visible modifications to VM users are very limited: two new
instructions (xBegin and xCommit) are added to the VM bytecode instructions.
These two instructions will need compiler modifications to generate the correct
bytecode when atomic blocks are translated. Also, the compiler should handle
the new keyword atomic correctly. To eliminate the need for a modified compiler,
a simpler workaround is used: the method stm.STM.xBegin() is used to begin
a transaction and stm.STM.xCommit() is used to commit the transaction. The
two methods are defined empty and static in class STM in stm package.

ByteSTM is implicitly transactional: the program only specifies the start and
end of a transaction and all memory operations (loads and stores) inside these
boundaries are implicitly transactional. This simplifies the code inside the atomic
block and also eliminates the need for making a transactional version for each
memory load/store instruction, thereby keeping the number of added instruc-
tions minimal. When xBegin is executed, the thread enters the transactional
mode. In this mode, all writes are isolated and the execution of the instructions
proceeds optimistically until xCommit is executed. At that point, the transaction
is compared against other concurrent transactions for a conflict. If there is no
conflict, the transaction is allowed to commit and, only at this point, all transac-
tion modifications become externally visible to other transactions. If the commit
fails, all the modifications are discarded and the transaction restarts from the
beginning.

We modified the Jikes optimizing compiler. Each memory load/store instruc-
tion (getfield, putfield, getstatic, putstatic, and all array access instruc-
tions) is replaced with a call to a corresponding method that adds the
transactional behavior to it. The compiler inlines these methods to eliminate
the overhead of calling a method with each memory load/store. The result-
ing behavior is that each instruction checks whether the thread is running in
transactional or non-transactional mode. Thus, instruction execution continues
transactionally or non-transactionally. The technique is used to translate the
new instructions xBegin and xCommit (or replacing calls to stm.STM.xBegin()

and stm.STM.xCommit() with the correct method calls).
Modern STMs [5,17,23] use automatic instrumentation. Java annotations are

used to mark methods as atomic. The instrumentation engine then handles all
code inside atomic methods and modifies them to run as transactions. This

170 M. Mohamedin, B. Ravindran, and R. Palmieri

conversion does not need the source code and can be done offline or online.
Instrumentation allows using external libraries – i.e., code inside a transaction
can call methods from an external library, which may modify program data [17].

In ByteSTM, code that is reachable from within a transaction is compiled to
native code with transactional support. Classes/packages that will be accessed
transactionally are input to the VM by specifying them on the command line.
Then, each memory operation in these classes is translated by first checking the
thread’s mode. If the mode is transactional, the thread runs transactionally;
otherwise, it runs regularly. Although doing such a check with every memory
load/store operation increases overhead, our results show significant throughput
improvement over competitor STMs (see Section 3).

Atomic blocks can be used anywhere (excluding blocks containing irrevocable
operations such as I/O). It is not necessary to make a whole method atomic; any
block can be atomic. External libraries can be used inside transactions without
any change.

Memory access is monitored at the field level, and not at the object level.
Field-based granularity scales well and eliminates false conflicts resulting from
two transactions changing different fields of the same object [17].

2.1 Metadata

Working at the VM level allows changing the thread header without modifying
program code. For each thread that executes transactions, the metadata added
includes the read-set, the write-set, and other STM algorithm-specific metadata.
Metadata is added to the thread header and is used by all transactions executed
in the thread. Since each thread executes one transaction at a time, there is no
need to create new data for each transaction, allowing reuse of the metadata.
Also, accessing a thread’s header is faster than Java’s ThreadLocal abstraction.

2.2 Memory Model

At the VM-level, the physical memory address of each object’s field can be easily
obtained. Since ByteSTM is field-based, the address of each field is used to track
memory reads and writes. A conflict occurs only if two transactions modified
the same field of an object. Since arrays are objects in Java, memory accesses to
arrays are tracked at the element level, which eliminates unnecessary aborts.

An object instance’s field’s absolute address equals the object’s base address
plus the field’s offset. A static object’s field’s absolute address equals the global
static memory space’s address plus the field’s offset. Finally, an array’s element’s
absolute address equals the array’s address plus the element’s index in the array
(multiplied by the element’s size). Thus, our memory model is simplified as: base
object plus an offset for all cases.

Using absolute addresses is limited to non-moving GC only (i.e., a GC which
releases unreachable objects without moving reachable objects, like the mark-
and-sweep GC). In order to support moving GC, a field is represented by its base
object and the field’s offset within that object. When the GC moves an object,

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 171

only the base object’s address is changed. All offsets remain the same. ByteSTM’s
write-set is part of the GC root-set. Thus, the GC automatically changes the
saved base objects’ addresses as part of its reference updating phase.

To simplify how the read-set and the write-set are handled, we use a unified
memory access scheme. At a memory load, the information needed to track the
read includes the base object and the offset within that object of the read field. At
a memory store, the base object, the field’s offset, the new value, and the size of
the value are the information used to track the write. When data is written back
to memory, the write-set information (base object, offset, value, and length of the
location) is used to store the committed values correctly. This abstraction also
simplifies the code, as there is now no need to differentiate between different data
types, as they are all handled as a sequence of bytes in the memory. The result is
simplified code that handles all the data types the same, yielding faster execution.

2.3 Write-Set Representation

We found that using a complex data structure to represent read-sets and write-
sets affects performance. Given the simplified raw memory abstraction used in
ByteSTM, we decided to use simple arrays of primitive data types. This decision
is based on two reasons. First, array access is very fast and has access locality,
resulting in better cache usage. Second, with primitive data types, there is no
need to allocate a new object for each element in the read/write set. (Recall that
an array of objects is allocated as an array of references in Java, and each object
needs to be allocated separately. Hence, there is a large overhead for allocating
memory for each array element.) Even if object pooling is used, the memory will
not be contiguous since each object is allocated independently in the heap.

Using arrays to represent the write-set means that the cost of searching an
n-element write-set is O(n). To obtain the benefits of arrays and hashing’s speed,
open-addressing hashing with linear probing is used. We used an array of size
2n, which simplifies the modulus calculation.

We used Java’s System.identityHashCode standard method and configured
Jikes to use the memory address to compute an object’s hash code. This method
also handles object moving. We then add the field’s offset to the returned
hash code, and finally remove the upper bits from the result using bitwise and
operation (which is equivalent to calculating the modulus): address AND mask =
address MOD arraySize, wheremask = arraySize - 1. For example, if arraySize =
256, then hash(address) = address AND 0xFF. This hashing function is efficient
with addresses, as the collision ratio is small. Moreover, as program variables
are aligned in memory, when a collision happens, there is always an empty cell
after the required index because of the memory alignment gap (so linear probing
will give good results). This way, we have a fast and efficient hashing function
that adds little overhead to each array access, enabling O(1)-time searching and
adding operations on large write-sets.

Iterating over the write-set elements by cycling through the sparse array ele-
ments is not efficient. We solve this by keeping a contiguous log of all the used
indices, and then iterating on the small contiguous log entries.

172 M. Mohamedin, B. Ravindran, and R. Palmieri

Fig. 1. ByteSTM’s write-set using open address hashing

Open addressing has two drawbacks: memory overhead and rehashing. These
can be mitigated by choosing the array size such that the number of rehashing
is reduced, while minimizing memory usage. Figure 1 shows how ByteSTM’s
write-set is represented using open-addressing. In this figure, the field’s memory
address is hashed to determine the associated index in the array. Four entries are
occupied in the shown array (identified by gray color) and they are scattered by
the hashing function into different locations in the array. The index table contains
all used indices in the main array contiguously for faster sequential access to
the write-set entries. Reference fields (object entries) are handled differently as
described in Subsection 2.5.

2.4 Atomic Blocks

ByteSTM supports atomic blocks anywhere in the code, excluding I/O opera-
tions and JNI native calls. When xBegin is executed, local variables are backed
up. If a transaction is aborted, the variables are restored and the transaction
can restart as if nothing has changed in the variables. This technique simplifies
the handling of local variables since there is no need to monitor them.

ByteSTM has been designed to natively support opacity [11]. In fact, when
an inconsistent read is detected in a transaction, the transaction is immediately
aborted. Local variables are then restored, and the transaction is restarted by
throwing an exception. The exception is caught just before the end of the trans-
action loop so that the loop continues again. Note that throwing an exception is
not expensive if the exception object is preallocated. Preallocating the exception
object eliminates the overhead of creating the stack trace every time the exception
is thrown. Stack trace is not required for this exception object since it is used only
for doing a long jump. The result is similar to setjmp/longjmp in C.

2.5 Garbage Collector

One major drawback of building an STM for Java (or any managed language) is
the GC [19]. STM uses metadata to keep track of transactional reads and writes.

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 173

This requires allocating memory for the metadata and then releasing it when
not needed. Frequent memory allocation (and implicit deallocation) forces the
GC to run more frequently to release unused memory, increasing STM overhead.

Some STMs solve this problem by reducing memory allocation and recycling
allocated memory. For example, [17] uses object pooling, wherein objects are
allocated from, and recycled back to a pool of objects (with the heap used when
the pool is exhausted). However, allocation is still done through the Java memory
system and the GC checks if the pooled objects are still referenced.

Since ByteSTM is integrated into the VM, its memory allocation and recy-
cling is done outside the control of the Java memory system: memory is directly
allocated and recycled. STM’s memory requirement, in general, has a specific
lifetime. When a transaction starts, it requires a specific amount of metadata,
which remain active for the transaction’s duration. When the transaction com-
mits, the metadata is recycled. Thus, manual memory management does not
increase the complexity or overhead of the implementation.

The GC causes another problem for ByteSTM, however. ByteSTM stores
intermediate changes in a write buffer. Thus, the program’s newly allocated
objects will not be referenced by the program’s variables. The GC scans only
the program’s stack to find objects that are no longer referenced. Hence, it
will not find any reference to the newly allocated objects and will recycle their
memory. When ByteSTM commits a transaction, it will therefore be writing a
dangling pointer. We solve this problem by modifying the behavior of adding
an object to the write-set. Instead of storing the object address in the write-
set entry value, the object is added to another array (i.e., an “objects array”).
The object’s index in the objects array is stored in the write-set entry value
(Figure 1). Specifically, if an object contains another object (e.g., a field that
is a reference), we cannot save the field value as a primitive type (e.g., the
absolute address) since the address can be changed by the GC. The field value
is therefore saved as an object in the objects array which is available to the set
of roots that the GC scans. The write-set array is another source of roots. So,
the write-set contains the base objects and the objects array contains the object
fields within the base objects. This prevents the GC from reclaiming the objects.
Our approach is compatible with all GC available in Jikes RVM and we believe
that this approach is better than modifying a specific GC.

2.6 STM Algorithms

ByteSTM’s modular architecture allows STM algorithms to be easily “plugged
in.” We implemented three algorithms: TL2 [10], RingSTM [25], and NOrec [9].
Our rationale for selecting these three is that, they are the best performing
algorithms reported in the literature. Additionally, they cover different points in
the performance/workload tradeoff space: TL2 is effective for long transactions,
moderate number of reads, and scales well with large number of writes. RingSTM
is effective for transactions with high number of reads and small number of
writes. NOrec has a better performance with small number of cores and has no
false conflicts since it validates by value.

174 M. Mohamedin, B. Ravindran, and R. Palmieri

Plugging a new algorithm in ByteSTM is straight forward. One needs to
implement read barriers, write barriers, transaction start, transaction end, and
any other algorithm specific helping methods. All these methods are in one class
“STM.java”. No prior knowledge of Jikes RVM is required and porting a new
algorithm to ByteSTM requires only understanding ByteSTM framework.

3 Experimental Evaluation

To understand how ByteSTM, a VM-level STM, stacks up against non VM-level
STMs, we conducted an extensive experimental study. Though a VM-level imple-
mentation may help improve STM performance, the underlying STM algorithm
used also plays an important role, especially, when that algorithm’s performance
is known to be workload-dependent (see Subsection 2.6). Thus, the performance
study wants also to investigate whether any performance gain from a VM-level
implementation is algorithm-independent. It would also be interesting to under-
stand whether some algorithms gained more than others, and if so, why. Thus,
we compare ByteSTM against non-VM STMs, with the same algorithm inside
the VM versus “outside” it.

Our competitor non-VM STMs include Deuce, ObjectFabric, Multiverse, and
JVSTM. Since some of these STMs use different algorithms (e.g., Multiverse uses
TL2’s modified version; JVSTM uses a multi-version algorithm) or different im-
plementations, a direct comparison between them and ByteSTM has some degree
of unfairness. This is because, such a comparison will include many combined
factors–e.g., ByteSTM’s TL2 implementation is similar to Deuce’s TL2 imple-
mentation, but the write-set and memory management are different. Therefore,
it will be difficult to conclude that ByteSTM’s (potential) gain is directly due
to VM-level STM implementation. Therefore, we implemented a non-VM ver-
sion using TL2, RingSTM and NOrec algorithms as Deuce plug-ins. Comparing
ByteSTM with such a non-VM implementation reduces the factors in the com-
parison.

The non-VM implementations were made as close as possible to the VM ones.
Offline instrumentation was used to eliminate online instrumentation overhead.
The same open-address hashing write set was used. A large read-set and write-set
were used so that they were sufficient for the experiments without requiring extra
space. The sets were recycled for the next transactions, thereby needing only a
single memory allocation and thus minimizing the GC overhead. We used Deuce
for the non-VM implementation, since it has many of ByteSTM’s features – e.g.,
it directly accesses memory and uses field granularity. Moreover, it achieved the
best performance among all competitors (see results later in this section).

3.1 Test Environment

We used a 48-core machine, which has four AMD OpteronTMProcessors, each
with 12 cores running at 1700 MHz, and 16 GB RAM. The machine runs Ubuntu
Linux 10.04 LTS 64-bit. We used Jikes’s production configuration (version 3.1.2),

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 175

which includes the Jikes optimizing compiler and the GenImmix GC [3] (i.e., a
two-generation copying GC) and matches ByteSTM configurations. Since Deuce
uses a non-standard proprietary API, sun.misc.Unsafe, which is not fully sup-
ported by Jikes, to run Deuce atop Jikes RVM, we added the necessary methods
to Jikes RVM’s sun.misc.Unsafe implementation (e.g., getInt, putInt, etc).

Our test applications include both micro-benchmarks (i.e., data structures)
and macro-benchmarks. The micro-benchmarks include Linked-List, Skip-List,
Red-Black Tree, and Hash Set. The macro-benchmarks include five applications
from the STAMP suite [6]: Vacation, KMeans, Genome, Labyrinth, and Intruder.
We used Arie Zilberstein’s Java implementation of STAMP [28].

For the micro-benchmarks, we measured the transactional throughput (i.e.,
transactions committed per second). Thus, higher is better. For the macro-
benchmarks, we measured the core program execution time, which includes
transactional execution time. Thus, smaller is better. Each experiment was re-
peated 10 times, and each time, the VM was “warmed up” (i.e., we let the VM
run for some time without logging the results) before taking the measurements.
We show the average for each data point. Due to space constraints, we only
show results for Linked-List, Red-Black Tree, Vacation, Intruder, and Labyrinth
(see [20] for complete results).

3.2 Micro-Benchmarks

We converted the data structures from coarse-grain locks to transactions. The
transactions contain all the critical section code in the coarse-grain lock version.

Each data structure is used to implement a sorted integer set interface, with
set size 256 and set elements in the range 0 to 65536. Writes represent add and
remove operations, and they keep the set size approximately constant during the
experiments. Different ratios of writes and reads were used to measure perfor-
mance under different levels of contention: 20% and 80% writes. We also varied
the number of threads in exponential steps (i.e., 1, 2, 4, 8, ...), up to 48.

Linked List. Linked-list operations are characterized by high number of reads
(the range is from 70 at low contention to 270 at high contention), due to travers-
ing the list from the head to the required node, and a few writes (about 2 only).
This results in long transactions. Moreover, we observed that transactions suffer
from high number of aborts (abort ratio is from 45% to 420%), since each trans-
action keeps all visited nodes in its read-set, and any modification to these nodes
by another transaction’s add or remove operation will abort the transaction.

Figure 2 shows the results. ByteSTM has three curves: RingSTM, TL2, and
NOrec. In all cases, ByteSTM/NOrec achieves the best performance since it uses
an efficient read-set data structure based on open addressing hashing. ByteST-
M/RingSTM comes next since it has no read-set and it uses a bloom filter as
a read signature, but the performance is affected by bloom filter’s false pos-
itives. This is followed by ByteSTM/TL2 which is affected by its sequential
read-set. Deuce’s performance is the best between other STM libraries. Other
STMs perform similarly, and all of them have very low throughput. Non-VM

176 M. Mohamedin, B. Ravindran, and R. Palmieri

Fig. 2. Throughput for Linked-List

implementation of each algorithm performs in a similar manner but with lower
throughput. ByteSTM outperforms non-VM implementations by 15–70%.

Since Deuce/TL2 achieved the best performance among all other STMs, for
all further experiments, we use Deuce as a fair competitor against ByteSTM to
avoid clutter, along with the non-VM implementations of TL2, RingSTM and
NOrec. Accordingly, in the rest of the plots the curves of JVSTM, Multiverse
and Object Fabric will be dropped (simplifying also the legibility).

Red-black Tree. Here, operations are characterized by small number of reads
(15 to 30), and small number of writes (2 to 9), which result in short transactions.

Figure 3 shows the results. In all cases, ByteSTM/TL2 achieves the best
performance and scalability due to the small number of reads. ByteSTM/NOrec
does not scale well since it is based on one single global lock. Moreover, the
small size of the tree creates a high contention between the threads. RingSTM’s
performance is similar to NOrec as it is based on a global data structure and
has the added overhead of bloom’s filter false positives.

Fig. 3. Throughput of Red-Black Tree

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 177

In this benchmark, there is no big gap between ByteSTM and non-VM imple-
mentation due to the nature of the benchmark, namely very short transactions
over a small data structure by large number of threads. ByteSTM outperforms
non-VM implementation by 6–17%.

3.3 Macro Benchmark

Vacation. Vacation has medium-length transactions, medium read-sets, medium
write-sets, and long transaction times (compared with other STAMP bench-
marks). We conducted two experiments: low contention and high contention.

Figure 4 shows the results. Note that, here, the y-axis represents the time
taken to complete the experiment, and the x-axis represents the number of
threads. ByteSTM/NOrec has the best performance under both low and high
contention conditions. The efficient read-set implementation contributed to its
performance. But, it does not scale well. ByteSTM/RingSTM suffers from high
number of aborts due to false positives and long transactions so it started with
a good performance then degrades quickly. ByteSTM outperforms non-VM im-
plementations by an average of 15.7% in low contention and 18.3% in high con-
tention.

Intruder. The Intruder benchmark [6] is characterized by short transaction
lengths, medium read-sets, medium write-sets, medium transaction times, and
high contention.

Figure 5(a) shows the results. We observe that ByteSTM/NOrec achieves
the best performance but does not scale. ByteSTM/RingSTM suffers from in-
creased aborts due to false positives. ByteSTM/TL2 has a moderate perfor-
mance. ByteSTM outperforms non-VM implementations by an average of 11%.

Labyrinth. The Labyrinth benchmark [6] is characterized by long transaction
lengths, large read-sets, large write-sets, long transaction times, and very high
contention.

Figure 5(b) shows the results. ByteSTM/NOrec achieves the best perfor-
mance. ByteSTM/RingSTM suffers from extremely high number of aborts due

Fig. 4. Execution time under Vacation

178 M. Mohamedin, B. Ravindran, and R. Palmieri

Fig. 5. Execution time under (a) Intruder, and (b) Labyrinth

to false positives and long transactions, and shows no scalability. All algorithms
suffered from the high contention and has very low scalability. ByteSTM out-
performs non-VM implementation by an average of 18.5%.

3.4 Summary

ByteSTM improves over non-VM implementations by an overall average of 30%:
on micro-benchmarks, it improves by 6 to 70%; on macro-benchmarks, it im-
proves by 7 to 60%. Moreover, scalability is better. ByteSTM, in general, is
better when the abort ratio and contention are high.

RingSTM performs well, irrespective of reads. However, its performance is
highly sensitive to false positives when writes increases. TL2 performs well when
reads are not large due to its sequential read-set implementation. It also performs
and scales well when writes increases. NOrec performs the best with behavior
similar to RingSTM as it does not suffer from false positives, but it does not
scale.

Algorithms that uses a global data structure and small number of CAS
operations (like NOrec and RingSTM) have a bigger gain when implemented
at VM-level. TL2 that uses a large number of locks (e.g., Lock table) and
hence large number of CAS operations did not gain a lot from VM-level
implementation.

4 Conclusions

Our work shows that implementing an STM at the VM-level can yield significant
performance benefits. This is because at the VM-level: i) memory operations are
faster; ii) the GC overhead is eliminated; iii) STM operations are embedded in
the generated native code; iv) metadata is attached to the thread header.

For all these reasons the overhead of STM is minimized. Since the VM has full
control over all transactional and non-transactional memory operations, features

ByteSTM: Virtual Machine-Level Java Software Transactional Memory 179

such as strong atomicity and irrevocable operations (not currently supported)
can be efficiently supported.

These optimizations are not possible at a library-level. A compiler-level STM
for managed languages also cannot support these optimizations. Implementing
an STM for a managed language at the VM-level is likely the most performant.

Next steps for ByteSTM are exploring compile time optimization specific for
STM (i.e., STM optimization pass). And, modify the thread scheduler so that
it will be STM aware and reduces the conflicts rate.

ByteSTM is open-sourced and is freely available at hydravm.org/bytestm.
A modified version of ByteSTM is currently used in the HydraVM project [24],
which is exploring automated concurrency refactoring in legacy code using TM.

Acknowledgments. This work is supported in part by US National Science
Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS
1217385. A short version of this paper appeared as Brief Announcement at 2013
TRANSACT workshop. TRANSACT does not have archival proceedings and
explicitly encourages resubmissions to formal venues.

References

1. Adl-Tabatabai, A.: The StarJIT compiler: A dynamic compiler for managed run-
time environments. Intel Technology Journal (2003)

2. Alpern, B., Augart, S.: The Jikes research virtual machine project: building an
open-source research community. IBM Syst. J. 44, 399–417 (2005)

3. Blackburn, S.M., McKinley, K.S.: Immix: a mark-region garbage collector with
space efficiency, fast collection, and mutator performance. In: PLDI (2008)

4. Bradel, B.J., Abdelrahman, T.S.: The use of hardware transactional memory for
the trace-based parallelization of recursive Java programs. In: PPPJ (2009)

5. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Science of Computer Programming 63(2), 172–185 (2006)

6. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IISWC (September 2008)

7. Carlstrom, B., McDonald, A., et al.: The Atomos transactional programming lan-
guage. ACM SIGPLAN Notices 41(6), 1–13 (2006)

8. Christie, D., Chung, J., et al.: Evaluation of AMD’s advanced synchronization
facility within a complete transactional memory stack. In: EuroSys, pp. 27–40
(2010)

9. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by Abolishing
Ownership Records. In: PPoPP, pp. 67–78. ACM (2010)

10. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

11. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP, pp. 175–184 (2008)

12. Harris, T., Fraser, K.: Language support for lightweight transactions. ACM
SIGPLAN Notices 38(11), 388–402 (2003)

13. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan and
Claypool Publishers (2010)

hydravm.org/bytestm

180 M. Mohamedin, B. Ravindran, and R. Palmieri

14. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. ACM SIGPLAN Notices 41(10), 253–262 (2006)

15. Hindman, B., Grossman, D.: Atomicity via source-to-source translation. In:
Workshop on Memory System Performance and Correctness, pp. 82–91 (2006)

16. Intel Corporation. Intel C++ STM Compiler (2009), http://software.intel.

com/en-us/articles/intel-c-stm-compiler-prototype-edition/

17. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with Java STM. In:
MULTIPROG (2010)

18. Lie, S.: Hardware support for unbounded transactional memory. Master’s thesis.
MIT (2004)

19. Meawad, F.: Collecting transactional garbage. In: TRANSACT (2011)
20. Mohamedin, M., Ravindran, B.: ByteSTM: Virtual Machine-level Java Software

Transactional Memory. Technical report, Virginia Tech. (2012),
http://www.hydravm.org/hydra/chrome/site/pub/ByteSTM_tech.pdf

21. ObjectFabric Inc. ObjectFabric (2011), http://objectfabric.com
22. Paleczny, M., Vick, C., Click, C.: The Java HotspotTMServer Compiler. In:

JavaTMVirtual Machine Research and Technology Symposium. USENIX (2001)
23. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional

memory. TRANSACT (2006)
24. Saad, M.M., Mohamedin, M., Ravindran, B.: HydraVM: extracting parallelism

from legacy sequential code using STM. In: HotPar. USENIX (2012), hydravm.org
25. Spear, M.F., et al.: RingSTM: scalable transactions with a single atomic

instruction. In: SPAA, pp. 275–284 (2008)
26. Veentjer, P.: Multiverse (2011), http://multiverse.codehaus.org
27. Welc, A., Jia, L., Hosking, A.L.: Transactional monitors for concurrent objects.

In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 518–541. Springer,
Heidelberg (2004)

28. Zilberstein, A.: Java implementation of STAMP (2010),
https://github.com/DeuceSTM/DeuceSTM/tree/master/src/test/jstamp

http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://www.hydravm.org/hydra/chrome/site/pub/ByteSTM_tech.pdf
http://objectfabric.com
hydravm.org
http://multiverse.codehaus.org
https://github.com/DeuceSTM/DeuceSTM/tree/master/src/test/jstamp

The Future of a Missed Deadline

Behrooz Nobakht1,3, Frank S. de Boer2, and Mohammad Mahdi Jaghoori1

1 Leiden University
bnobakht@liacs.nl, m.jaghouri@lacdr.leidenuniv.nl

2 Centrum Wiskunde en Informatica
frb@cwi.nl

3 SDL Fredhopper
bnobakht@sdl.com

Abstract. In this paper, we introduce a real-time actor-based program-
ming language and provide a formal but intuitive operational semantics
for it. The language supports a general mechanism for handling excep-
tions raised by missed deadlines and the specification of application-level
scheduling policies. We discuss the implementation of the language and
illustrate the use of its constructs with an industrial case study from
distributed e-commerce and marketing domain.

Keywords: actors, application-level scheduling, real-time, deadlines,
futures, Java.

1 Introduction

In real-time applications, rigid deadlines necessitate stringent scheduling strate-
gies. Therefore, the developer must ideally be able to program the scheduling of
different tasks inside the application. Real-Time Specification for Java (RTSJ)
[11,12] is a major extension of Java, as a mainstream programming language,
aiming at enabling real-time application development. Although RTSJ exten-
sively enriches Java with a framework for the specification of real-time applica-
tions, it yet remains at the level of conventional multithreading. The drawback
of multithreading is that it involves the programmer with OS-related concepts
like threads, whereas a real-time Java developer should only be concerned about
high-level entities, i.e., objects and method invocations, also with respect to
real-time requirements.

The actor model [9] and actor-based programming languages, which have re-
emerged in the past few years [24,3,10,14,26], provide a different and promising
paradigm for concurrency and distributed computing, in which threads are trans-
parently encapsulated inside actors. As we will argue in this paper, this paradigm
is much more suitable for real-time programming because it enables the program-
mer to obtain the appropriate high-level view which allows the management of
complex real-time requirements.

In this paper, we introduce an actor-based programming language Crisp
for real-time applications. Basic real-time requirements include deadlines and

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 181–195, 2013.
c© IFIP International Federation for Information Processing 2013

182 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

timeouts. In Crisp, deadlines are associated with asynchronous messages and
timeouts with futures [6]. Crisp further supports a general actor-based mecha-
nism for handling exceptions raised by missed deadlines. By the integration of
these basic real-time control mechanisms with the application-level policies sup-
ported by Crisp for scheduling of the messages inside an actor, more complex
real-time requirements of the application can be met with more flexibility and
finer granularity.

We formalize the design of Crisp by means of structural operational seman-
tics [22] and describe its implementation as a full-fledged programming language.
This implementation uses both the Java and Scala language with extensions of
Akka library. We illustrate the use of the programming language with an indus-
trial case study from SDL Fredhopper that provides enterprise-scale distributed
e-commerce solutions on the cloud.

The paper continues as follows: Section 2 introduces the language constructs
and provides informal semantics of the language with a case study in Section
2.1. Section 3 presents the operational semantics of Crisp. Section 4 follows to
provide a detailed discussion on the implementation. The case study continues in
this section with further details and code examples. Section 5 discusses related
work of research and finally Section 6 concludes the paper and proposes future
line of research.

2 Programming with Deadlines

In this section, we introduce the basic concepts underlying the notion of “dead-
lines” for asynchronous messages between actors. The main new constructs spec-
ify how a message can be sent with a deadline, how the message response can be
processed, and what happens when a deadline is missed. We discuss the informal
semantics of these concepts and illustrate them using a case study in Section 2.1.

Listing 1 introduces a minimal version of the real-time actor-based language
Crisp. Below we discuss the two main new language constructs presented at lines
(7) and (8).

How to send a message with a deadline? The construct

f = e0 ! m(e) deadline(e1)

describes an asynchronous message with a deadline specified by e1 (of type
Ttime). Deadlines can be specified using a notion of time unit such as millisecond,
second, minute or other units of time. The caller expects the callee (denoted by
e0) to process the message within the units of time specified by e1. Here pro-
cessing a message means starting the execution of the process generated by the
message. A deadline is missed if and only if the callee does not start processing
the message within the specified units of time.

What happens when a deadline is missed? Messages received by an actor
generate processes. Each actor contains one active process and all its other pro-
cesses are queued. Newly generated processes are inserted in the queue according

The Future of a Missed Deadline 183

C ::= class N begin V ? {M}∗ end (1)

Msig ::= N(T x) (2)

M ::= {Msig == {V ; }?S} (3)

V ::= var {{x},+ : T {= e}?},+ (4)

S ::= x := e | (5)

::= x := new T(e?) | (6)

:= f = e ! m(e) deadline(e) | (7)

::= x := f.get(e?) | (8)

::= return e | (9)

::= S ; S | (10)

::= if (b) then S else S end | (11)

::= while (b) { S } | (12)

::= try {S} catch(TException x) { S } (13)

Fig. 1. A kernel version of the real-time programming language. The bold scripted
keywords denote the reserved words in the language. The over-lined v denotes a se-
quence of syntactic entities v. Both local and instance variables are denoted by x. We
assume distinguished local variables this, myfuture, and deadline which denote the ac-
tor itself, the unique future corresponding to the process, and its deadline, respectively.
A distinguished instance variable time denotes the current time. Any subscripted type
Tspecialized denotes a specialized type of general type T; e.g. TException denotes all “ex-
ception” types. A variable f is in Tfuture. N is a name (identifier) used for classes and
method names. C denotes a class definition which consists of a definition of its instance
variables and its methods; Msig is a method signature; M is a method definition; S
denotes a statement. We abstract from the syntax the side-effect free expressions e and
boolean expressions b.

to an application-specific policy. When a queued process misses its deadline it is
removed from the queue and a corresponding exception is recorded by its future
(as described below). When the currently active process is terminated the pro-
cess at the head of the queue is activated (and as such dequeued). The active
process cannot be preempted and is forced to run to completion. In Section 4 we
discuss the implementation details of this design choice.

How to process the response of a message with a deadline? In the
above example of an asynchronous message, the future result of processing the
message is denoted by the variable f which has the type of Future. Given a
future variable f , the programmer can query the availability of the result by the
construct

v = f.get(e)

The execution of the get operation terminates successfully when the future vari-
able f contains the result value. In case the future variable f records an ex-
ception, e.g. in case the corresponding process has missed its deadline, the get

184 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

operation is aborted and the exception is propagated. Exceptions can be caught
by try-catch blocks.

Listing 1. Using try-catch for processing future values

1 try {
2 x = f.get(e)
3 S_1
4 } catch(Exception x) {
5 S_2
6 }

For example, in Listing 1, if the get operation raises an exception control, is
transferred to line (5); otherwise, the execution continues in line (3). In the catch

block, the programmer has also access to the occurred exception that can be any
kind of exception including an exception that is caused by a missed deadline. In
general, any uncaught exception gives rise to abortion of the active process and is
recorded by its future. Exceptions in our actor-based model thus are propagated
by futures.

The additional parameter e of the get operation is of type Ttime and specifies
a timeout ; i.e., the get operation will timeout after the specified units of time.

2.1 Case Study: Fredhopper Distributed Data Processing

Fig. 2. Fredhopper’s Controller life
cycle for remote data processing

Fredhopper is an SDL company since
2008 and a leading search, merchandis-
ing and personalization solution provider,
whose products are uniquely tailored to
the needs of online business. Fredhop-
per operates behind the scenes of more
than 100 of the largest online sellers. The
Fredhopper Access Server (FAS) provides
access to high quality product catalogs.
Typically deployments have about 10 ex-
plicit attribute values associated with a
product over thousands of attribute di-
mensions. This challenging task involves
working on difficult issues, such as the
performance of information retrieval algo-
rithms, the scalability of dealing with huge amounts of data and in satisfying
large amounts of user requests per unit of time, the fault tolerance of complex dis-
tributed systems, and the executive monitoring and management of large-scale
information retrieval operations. Fredhopper offers its services and facilities to
e-Commerce companies (customers) as services (SaaS) over the cloud comput-
ing infrastructure (IaaS); which gives rise to different challenges in regards with
resources management techniques and the customer cost model and service level
agreements (SLA).

The Future of a Missed Deadline 185

To orchestrate different services such as FAS or data processing, Fredhopper
takes advantage of a service controller (a.k.a. Controller). Controller is respon-
sible to passively manage different service installations for each customer. For
instance, in one scenario, a customer submits their data along with a processing
request to their data hub server. Controller, then picks up the data and initi-
ates a data processing job (usually an ETL job) in a data processing service.
When the data processing is complete, the result is again published to customer
environment and additionally becomes available through FAS services. Figure 2
illustrates an example scenario that is described above.

In the current implementation of Controller, at Step 4, a data job instance is
submitted to a remote data processing service. Afterwards, the future response
of the data job is determined by a periodic remote check on the data service
(Step 4). When the job is finished, Controller continues to retrieve the data job
results (Step 5) and eventually publishes it to customer environment (Step 6).

In terms of system responsiveness, Step 4 may never complete. Step 4 failure
can have different causes. For instance, at any moment of time, there are differ-
ent customers’ data jobs running on one data service node; i.e. there is a chance
that a data service becomes overloaded with data jobs preventing the periodic
data job check to return. If Step 4 fails, it leads the customer into an unbounded
waiting situation. According to SLA agreements, this is not acceptable. It is
strongly required that for any data job, the customer should be notified of the
result: either a completed job with success/failed status, a job that is not com-
pleted, or a job with an unknown state. In other words, Controller should be
able to guarantee that any data job request terminates.

To illustrate the contribution of this paper, we extract a closed-world simpli-
fied version of the scenario in Figure 2 from Controller. In Section 4, we provide
an implementation-level usage of our work applied to this case study.

3 Operational Semantics

We describe the semantics of the language by means of a two-tiered labeled
transition system: a local transition system describes the behavior of a single
actor and a global transition system describes the overall behavior of a system
of interacting actors. We define an actor state as a pair 〈p, q〉, where
– p denotes the current active process of the actor, and
– q denotes a queue of pending processes.

Each pending process is a pair (S, τ) consisting of the current executing state-
ment S and the assignment τ of values to the local variables (e.g., formal pa-
rameters). The active process consists of a pair (S, σ), where σ assigns values
to the local variables and additionally assigns values to the instance variables of
the actor.

3.1 Local Transition System

The local transition system defines transitions among actor configurations of
the form 〈p, q, φ〉, where (p, q) is an actor state and for any object o identifying

186 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

a created future, φ denotes the shared heap of the created future objects, i.e.,
φ(o), for any future object o existing in φ, denotes a record with a field val which
represents the return value and a boolean field aborted which indicates abortion
of the process identified by o.

In the local transition system we make use of the following axiomatization
of the occurrence of exceptions. Here (S, σ, φ) ↑ v indicates that S raises an
exception v:

– (x = f.get(), σ, φ) ↑ σ(f) where φ(σ(f)).aborted = true,

–
(S, σ, φ) ↑ v

try{S}catch(T u){S′}↑v where v is not of type T, and,

–
(S, σ, φ) ↑ v

(S;S, σ, φ)′ ↑ v
.

We present here the following transitions describing internal computation steps
(we denote by val(e)(σ) the value of the expression e in σ and by f [u $→ v] the
result of assigning the value v to u in the function f).

Assignment statement is used to assign a value to a variable:

〈(x = e;S, σ), q, φ〉 → 〈(S, σ[x $→ val(e)(σ)]), q, φ〉

Returning a result consists of setting the field val of the future of the process:

〈(return e;S, σ), q, φ〉 → 〈(S, σ), q, φ[σ(myfuture).val $→ val(e)(σ)]〉

Initialization of timeout in get operation assigns to a distinguished (local)
variable timeout its initial absolute value:

〈(x = f.get(e);S, σ), q, φ〉 →
〈(x = f.get(e);S, σ[timeout $→ val(e+ time)(σ), q, φ〉

The get operation is used to assign the value of a future to a variable:

〈(x = f.get();S, σ), q, φ〉 → 〈(S, σ[x $→ φ(σ(f)).val]), q, φ〉

where φ(σ(f)).val �= ⊥ .

Timeout is operationally presented by the following transition:

〈(x = f.get();S, σ), q, φ〉 → 〈(S, σ), q, φ〉

where σ(time) < σ(timeout).

The Future of a Missed Deadline 187

The try-catch block semantics is presented by:

〈(S, σ), q, φ〉 → 〈(S′, σ′), q′, φ′〉
〈(try{S}catch(T x){S′′};S′′′, σ), q, φ〉 → 〈(try{S′}catch(T x){S′′};S′′′, σ), q′, φ′〉

Exception Handling. We provide the operational semantics of exception han-
dling in a general way in the following:

(S, σ, φ) ↑ v

〈(try{S}catch(T x){S′′};S′′′, σ), q, φ〉 → 〈(S′′;S′′′, σ[x $→ v]), q, φ〉
where the exception v is of type T.

Abnormal termination of the active process is generated by an uncaught
exception:

(S, σ, φ) ↑ v

〈(S;S′, σ), q, φ〉 → 〈(S′′, σ′), q′, φ′〉
where q = (S′′, τ) · q′ and σ′ is obtained from restoring the values of the local
variables as specified by τ (formally, σ′(x) = σ(x), for every instance variable x,
and σ′(x) = τ(x), for every local variable x), and φ′(σ(myfuture)).aborted = true

(φ′(o) = φ(o), for every o �= σ(myfuture)).

Normal termination is presented by:

〈(E, σ), q, φ〉 → 〈(S, σ′), q′, φ〉
where q = (S, τ) · q′ and σ′ is obtained from restoring the values of the local
variables as specified by τ (see above). We denote by E termination (identifying
S;E with S).

Deadline Missed. Let (S′, τ) be some pending process in q such that
τ(deadline) < σ(time). Then

〈(S, σ), q, φ〉 → 〈p, q′, φ′〉
where q′ results from q by removing (S′, τ) and φ′(τ(myfuture)).aborted = true

(φ′(o) = φ(o), for every o �= τ(myfuture)).

A message m(τ) specifies for the method m the initial assignment τ of its lo-
cal variables (i.e., the formal parameters and the variables this, myfuture, and
deadline). To model locally incoming and outgoing messages we introduce the
following labeled transitions.

Incoming Message. Let the active process p belong to the actor τ(this) (i.e.,
σ(this) = τ(this) for the assignment σ in p):

〈p, q, φ〉 m(τ)−−−→ 〈p, insert(q,m(v, d)), φ〉

188 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

where insert(q,m(τ)) defines the result of inserting the process (S, τ), where S
denotes the body of methodm, in q, according to some application-specific policy
(described below in Section 4).

Outgoing Message. We model an outgoing message by:

〈(f = e0 ! m(ē) deadline(e1);S, σ), q, φ〉 m(τ)−−−→ 〈(S, σ[f $→ o]), q, φ′〉
where

– φ′ results from φ by extending its domain with a new future object o such
that φ′(o).val =⊥1 and φ′(o).aborted = false,

– τ(this) = val(e0)(σ),

– τ(x) = val(e)(σ), for every formal parameter x and corresponding actual
parameter e,

– τ(deadline) = σ(time) + val(e1)(σ),

– τ(myfuture) = o.

3.2 Global Transition System

A (global) system configuration S is a pair (Σ, φ) consisting of a set Σ of actor
states and a global heap φ which stores the created future objects. We denote
actor states by s, s′, s′′, etc.

Local Computation Step. The interleaving of local computation steps of the
individual actors is modeled by the rule:

(s, φ) → (s′, φ′)
({s} ∪Σ, φ) → ({s′} ∪Σ, φ′)

Communication. Matching a message sent by one actor with its reception by
the specified callee is described by the rule:

(s1, φ)
m(τ)−−−→ (s′1, φ′) (s2, φ)

m(τ)−−−→ (s′2, φ)
({s1, s2} ∪Σ, φ) → ({s′1, s′2} ∪Σ, φ′)

Note that only an outgoing message affects the shared heap φ of futures.

Progress of Time. The following transition uniformly updates the local clocks
(represented by the instance variable time) of the actors.

(Σ, φ) → (Σ′, φ)

where

Σ′ = {〈(S, σ′), q, φ〉 | 〈(S, σ), q, φ〉 ∈ Σ, σ′ = σ[time $→ σ(time) + δ]}
for some positive δ.

1 ⊥ stands for “uninitialized”.

The Future of a Missed Deadline 189

4 Implementation

We base our implementation on Java’s concurrent package: java.util.concurrent.
The implementation consists of the following major components:

1. An extensible language API that owns the core abstractions, architecture,
and implementation. For instance, the programmer may extend the concept
of a scheduler to take full control of how, i.e., in what order, the processes
of the individual actors are queued (and as such scheduled for execution).
We illustrate the scheduler extensibility with an example in the case study
below.

2. Language Compiler that translates the modeling-level programs into Java
source.We use ANTLR [21] parser generator framework to compile modeling-
level programs to actual implementation-level source code of Java.

3. The language is seamlessly integrated with Java. At the time of program-
ming, language abstractions such as data types and third-party libraries from
either Crisp or Java are equally usable by the programmer.

We next discuss the underlying deployment of actors and the implementation of
real-time processes with deadlines.

Deploying Actors onto JVM Threads. In the implementation, each actor
owns a main thread of execution, that is, the implementation does not allocate
one thread per process because threads are costly resources and allocating to
each process one thread in general leads to a poor performance: there can be an
arbitrary number of actors in the application and each may receive numerous
messages which thus give rise to a number of threads that goes beyond the limits
of memory and resources. Additionally, when processes go into pending mode,
their correspondent thread may be reused for other processes. Thus, for better
performance and optimization of resource utilization, the implementation assigns
a single thread for all processes inside each actor.

Consequently, at any moment in time, there is only one process that is exe-
cuted inside each actor. On the other hand, the actors share a thread which is
used for the execution of a watchdog for the deadlines of the queued processes
(described below) because allocation of such a thread to each actor in general
slows down the performance. Further this sharing allows the implementation to
decide, based on the underlying resources and hardware, to optimize the alloca-
tion of the watchdog thread to actors. For instance, as long as the resources on
the underlying hardware are abundant, the implementation decides to share as
less as possible the watchdog thread. This gives each actor a better opportunity
with higher precision to detect missed deadlines.

Implementation of Processes with Deadlines. A process itself is repre-
sented in the implementation by a data structure which encapsulates the values
of its local variables and the method to be executed. Given a relative deadline

190 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

d as specified by a call we compute at run-time its absolute deadline (i.e. the
expected starting time of the process) by

TimeUnit.toMillis(d) + System.currentTimeMillis()

which is a soft real-time requirement. As in the operational semantics, in the
real-time implementation always the head of the process queue is scheduled for
execution. This allows the implementation of a default earliest deadline first
(EDF) scheduling policy by maintaining a queue ordered by the above absolute
time values for the deadlines.

The important consequence of our non-preemptive mode of execution for the
implementation is the resulting simplicity of thread management because pre-
emption requires additional thread interrupts that facilitates the abortion of a
process in the middle of execution. As stated above, a single thread in the imple-
mentation detects if a process has missed its deadline. This task runs periodically
and to the end of all actors’ life span. To check for a missed deadline it suffices
to simply check for a process that the above absolute time value of its deadline is
smaller than System.currentTimeMillis(). When a process misses its deadline, the
actions as specified by the corresponding transition of the operational seman-
tics are subsequently performed. The language API provides extension points
which allow for each actor the definition of a customized watchdog process and
scheduling policy (i.e., policy for enqueuing processes). The customized watch-
dog processes are still executed by a single thread.

Fredhopper Case Study. As introduced in Section 2.1, we extract a closed-
world simplified version from Fredhopper Controller. We apply the approach
discussed in this paper to use deadlines for asynchronous messages.

Listing 2 and 3 present the difference in the previous Controller and the ap-
proach in Crisp. The left code snippet shows the Controller that uses polling to
retrieve data processing results. The right code snippet shows the one that uses
messages with deadlines.

Listing 2. With polling

1 class DataProcessor begin
2 op process(d: Data) ==
3 var p := allocDataProcessor(d)
4 p ! process (d)
5 do {
6 s := p ! getStatus (d)
7 if (s <> nil)
8 var r := p ! getResults(d)
9 publishResult(r)

10 wait(TimeUnit.toSecond(1))
11 } while (true)
12 end

Listing 3. With deadlines

1 class DataProcessor begin
2 op process(d: Data) ==
3 var p := allocDataProcessor(d)
4 var D := estimateDeadline(d)
5 var f :=
6 p ! process (d) deadline (D)
7 try {
8 publishResult(f.get())
9 } catch (Exception x) {

10 if (f.isAborted)
11 notifyFailure(d)
12 }
13 end

The Future of a Missed Deadline 191

When the approach in Crisp in the right snippet is applied to Controller, it
is guaranteed that all data job requests are terminated in a finite amount of
time. Therefore, there cannot be complains about never receiving a response for
a specific data job request. Many of Fredhopper’s customers rely on data jobs to
eventually deliver an e-commerce service to their end users. Thus, to provide a
guarantee to them that their job result is always published to their environment
is critical to them. As shown in the code snippet, if the data job request is failed
or aborted based on a deadline miss, the customer is still eventually informed
about the situation and may further decide about it. However, in the previous
version, the customer may never be able to react to a data job request because
its results are never published.

In comparison to the Controller using polling, there is a way to express time-
outs for future values. However, it does not provide language constructs to specify
a deadline for a message that is sent to data processing service. A deadline may
be simulated using a combination of timeout and periodic polling approaches
(Listing 2). Though, this approach cannot guarantee eventual termination in all
cases; as discussed before that Step 4 in Figure 2 may never complete. Controller
is required to meet certain customer expectations based on an SLA. Thus, Con-
troller needs to take advantage of a language/library solution that can provide a
higher level of abstraction for real-time scheduling of concurrent messages. When
messages in Crisp carry a deadline specification, Controller is able to guarantee
that it can provide a response to the customer. This termination guarantee is
crucial to the business of the customer.

Additionally, on the data processing service node, the new implementation
takes advantage of the extensibility of schedulers in Crisp. As discussed above,
the default scheduling policy used for each actor is EDF based on the deadlines
carried by incoming messages to the actor. However, this behavior may be ex-
tended and replaced by a custom implementation from the programmer. In this
case study, the priority of processes may differ if they the job request comes from
specific customer; i.e. apart from deadlines, some customers have priority over
others because they require a more real-time action on their job requests while
others run a more relaxed business model. To model and implement this custom
behavior, a custom scheduler is developed for the data processing node.

Listing 4. Data Processor class

1 class DataProcessor begin
2 var scheduler := new

DataScheduler()
3 op process(d: Data) ==
4 // do process
5 end

Listing 5. Custom scheduler

1 class DataScheduler extends
DefaultSchedulingManager {

2 boolean isPrior(Process p1,
Process p2) {

3 if (p1.getCustomer().equals("A
")) {

4 return true;
5 }
6 return super.isPrior(p1, p2);
7 }
8 }

192 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

In the above listings, Listing 5 defines a custom scheduler that determines
the priority of two processes with custom logic for specific customer. To use the
custom scheduler, the only requirement is that the class DataProcessor defines a
specific class variable called scheduler in Listing 4. The custom scheduler is picked
up by Crisp core architecture and is used to schedule the queued processes. Thus,
all processes from customer A have priority over processes from other customers
no matter what their deadlines are.

We use Controller’s logs for the period of February and March 2013 to examine
the evaluation of Crisp approach. We define customer satisfaction as a property
that represents the effectiveness of futures with deadline.

s1 s2
88.71% 94.57%

Table 1. Evaluation
Results

For a customer c, the satisfaction can be denoted by

s =
rFc
rc
; in which rFc is the number of finished data pro-

cessing jobs and rc is the total number of requested data
processing jobs from customer c. We extracted statistics
for completed and never-ended data processing jobs from
Controller logs (s1). We replayed the logs with Crisp ap-
proach and measured the same property (s2). We mea-

sured the same property for 180 customers that Fredhopper manages on the
cloud. In this evaluation, a total number of about 25000 data processing requests
were included. The results show 6% improvement in Table 1 (that amounts to
around 1600 better data processing requests). Because of data issues or wrong
parameters in the data processing requests, there are requests that still fail or
never end and should be handled by a human resource.

You may find more information including documentation and source code of
Crisp at http://nobeh.github.com/crisp.

5 Related Work

The programming language presented in this paper is a real-time extension of
the language introduced in [20]. This new extension features

– integration of asynchronous messages with deadlines and futures with
timeouts;

– a general mechanism for handling exceptions raised by missed deadlines;

– high-level specification of application-level scheduling policies; and
– a formal operational semantics.

To the best of our knowledge the resulting language is the first implemented
real-time actor-based programming language which formally integrates the above
features.

In several works, e.g, [2] and [19], asynchronous messages in actor-based lan-
guages are extended with deadlines. However these languages do not feature
futures with timeouts, a general mechanism for handling exceptions raised by
missed deadlines or support the specification of application-level scheduling poli-
cies. Futures and fault handling are considered in the ABS language [13]. This

http://nobeh.github.com/crisp

The Future of a Missed Deadline 193

work describes recovery mechanisms for failed get operations on a future. How-
ever, the language does not support the specification of real-time requirements,
i.e., no deadlines for asynchronous messages are considered and no timeouts on
futures. Further, when a get operation on a future fails, [13] does not provide
any context or information about the exception or the cause for the failure. Al-
ternatively, [13] describes a way to “compensate” for a failed get operation on
future. In [4], a real-time extension of ABS with scheduling policies to model
distributed systems is introduced. In contrast to Crisp, Real-Time ABS is an
executable modeling language which supports the explicit specification of the
progress of time by means of duration statements for the analysis of real-time
requirements. The language does not support however asynchronous messages
with deadlines and futures with timeouts.

Two successful examples of actor-based programming languages are Scala and
Erlang. Scala [10,1] is a hybrid object-oriented and functional programming lan-
guage inspired by Java. Through the event-based model, Scala also provides
the notion of continuations. Scala further provides mechanisms for scheduling
of tasks similar to those provided by concurrent Java: it does not provide a di-
rect and customizable platform to manage and schedule messages received by
an individual actor. Additionally, Akka [25] extends Scala’s actor programming
model and as such provides a direct integration with both Java and Scala. Erlang
[3] is a dynamically typed functional language that was developed at Ericsson
Computer Science Laboratory with telecommunication purposes [5]. Recent de-
velopments in the deployment of Erlang support the assignment of a scheduler
to each processor [17] (instead of one global scheduler for the entire applica-
tion) but it does not, for example, support application-level scheduling policies.
In general, none these languages provide a formally defined real-time extension
which integrates the above features.

There are well-known efforts in Java to bring in the functionality of asyn-
chronous message passing onto multicore including Killim [24], Jetlang [23], Ac-
torFoundry [15], and SALSA [26]. In [15], the authors present a comparative
analysis of actor-based frameworks for JVM platform. Most of these frameworks
support futures with timeouts but do not provide asynchronous messages with
deadlines, or a general mechanism for handling exceptions raised by missed
deadlines. Further, pertaining to the domain of priority scheduling of asyn-
chronous messages, these efforts in general provide a predetermined approach
or a limited control over message priority scheduling. As another example, in
[18] the use of Java Fork/Join is described to optimize mulicore applications.
This work is also based on a fixed priority model. Additionally, from embedded
hardware-software research domain, Ptolemy [7,16] is an actor-oriented open ar-
chitecture and platform that is used to design, model and simulate embedded
software. Their approach is hardware software co-design. It provides a platform
framework along with a set of tools.

In general, existing high-level programming languages provide the program-
mer with little real-time control over scheduling. The state of the art allows spec-
ifying priorities for threads or processes that are used by the operating system,

194 B. Nobakht, F.S. de Boer, and M.M. Jaghoori

e.g., Real-Time Specification for Java (RTSJ [11,12]) and Erlang. Specifically
in RTSJ, [27] extensively introduces and discusses a framework for application-
level scheduling in RTSJ. It presents a flexible framework to allow scheduling
policies to be used in RTSJ. However, [27] addresses the problem mainly in the
context of the standard multithreading approach to concurrency which in gen-
eral does not provide the most suitable approach to distributed applications. In
contrast, in this paper we have shown that an actor-based programming lan-
guage provides a suitable formal basis for a fully integrated real-time control in
distributed applications.

6 Conclusion and Future Work

In this paper, we presented both a formal semantics and an implementation of a
real-time actor-based programming language. We presented how asynchronous
messages with deadline can be used to control application-level scheduling with
higher abstractions. We illustrated the language usage with a real-world case
study from SDL Fredhopper along the discussion for the implementation. Cur-
rently we are investigating further optimization of the implementation of Crisp
and the formal verification of real-time properties of Crisp applications using
schedulability analysis [8].

References

1. Haller, P., Odersky, M.: Actors That Unify Threads and Events. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 171–190. Springer,
Heidelberg (2007)

2. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H., Sirjani,
M.: Modelling and Simulation of Asynchronous Real-Time Systems using Timed
Rebeca. In: FOCLASA, pp. 1–19 (2011)

3. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (2007)

4. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Lizeth Tapia Tarifa, S.:
User-defined schedulers for real-time concurrent objects. Innovations in Systems
and Software Engineering (2012)

5. Corrêa, F.: Actors in a new “highly parallel” world. In: Proc. Warm Up Workshop
for ACM/IEEE ICSE 2010, WUP 2009, pp. 21–24. ACM (2009)

6. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proceedings
of the IEEE 91(1), 127–144

8. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis us-
ing two clocks. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 224–239. Springer, Heidelberg (2003)

9. Smith, S.F., Agha, G.A., Mason, I.A., Talcott, C.L.: A foundation for actor com-
putation. Journal of Functional Programming 7, 1–72 (1997)

The Future of a Missed Deadline 195

10. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

11. JCP. RTSJ v1 JSR 1 (1998), http://jcp.org/en/jsr/detail?id=1
12. JCP. RTSJ v1.1 JSR 282 (2005), http://jcp.org/en/jsr/detail?id=282
13. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core

language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

14. Johnsen, E.B., Owe, O.: An Asynchronous Communication Model for Distributed
Concurrent Objects. Software and Systems Modeling 6(1), 39–58 (2007)

15. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform: a
comparative analysis. In: Proc. 7th International Conference on Principles and
Practice of Programming in Java, PPPJ 2009, pp. 11–20. ACM (2009)

16. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems and Computers
12(03), 231–260 (2003)

17. Lundin, K.: Inside the Erlang VM, focusing on SMP. Presented at Erlang User Con-
ference (November 13, 2008), http://www.erlang.se/euc/08/euc_smp.pdf

18. Maia, C., Nogueira, L., Pinho, L.M.: Combining rtsj with fork/join: a priority-based
model. In: Proceedings of the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES 2011, pp. 82–86. ACM, New York
(2011)

19. Nielsen, B., Agha, G.: Semantics for an Actor-Based Real-Time Language. In:
Fourth International Workshop on Parallel and Distributed Real-Time Systems
(1996)

20. Nobakht, B., de Boer, F.S., Jaghoori, M.M., Schlatte, R.: Programming and de-
ployment of active objects with application-level scheduling. In: ACM SAC (2012)

21. Terence Parr. Antlr, http://antlr.org/
22. Plotkin, G.D.: The origins of structural operational semantics. The Journal of Logic

and Algebraic Programming 60-61(0), 3–15 (2004)
23. Rettig, M.: Jetlang Library (2008), http://code.google.com/p/jetlang/
24. Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for java. In: Vitek, J.

(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)
25. TypeSafe. Akka (2010), http://akka.io/
26. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with

SALSA. SIGPLAN Not. 36, 20–34 (2001)
27. Zerzelidis, A., Wellings, A.: A framework for flexible scheduling in the RTSJ. ACM

Trans. Embed. Comput. Syst. 10(1), 1–3 (2010)

http://jcp.org/en/jsr/detail?id=1
http://jcp.org/en/jsr/detail?id=282
http://www.erlang.se/euc/08/euc_smp.pdf
http://antlr.org/
http://code.google.com/p/jetlang/
http://akka.io/

Event Loop Coordination

Using Meta-programming

Laure Philips�, Dries Harnie��, Kevin Pinte, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{lphilips,dharnie,kpinte,wdmeuter}@vub.ac.be

Abstract. Event-based programming is used in different domains,
ranging from user interface development to various distributed systems.
Combining different event-based subsystems into one system forces the
developer to manually coordinate the different event loops of these sub-
systems. This leads to a lot of excessive code and, in addition, some
event loops are prey to lifecycle state changes. On mobile applications,
for example, event loops can be shut down when memory runs low on
the device. Current approaches take care of the communication prob-
lems between the different types of event loops, but become complex
when trying to deal with lifecycle state changes. We propose a new co-
ordination model, Elector, that allows two event loops to run separately,
and introduce a novel kind of reference, called undead references. These
references do not only allow communication between the event loops,
but also handle lifecycle state changes in such a way that they do not
influence other event loops.

Keywords: Event loops, Coordination model, Mobile platforms,
Ambient-oriented programming.

1 Introduction

In traditional programming the control flow of a program is determined by its
structure. To allow the program to react upon input in the of form events,
the event-based programming paradigm can be used. The programmer registers
observers or event handlers for different types of events and the event loop is
responsible for detecting events and dispatching it to the observers. This pro-
gramming paradigm is popular for developing user interfaces, where the program
reacts upon input from the user. Event-based programming proves to be use-
ful in distributed programming, where the source of an event and the matching
event handler can live on different devices.

When developing a larger software system, composed out of different event-
based subsystems, the programmerneeds tomanually coordinate these event loops.

� Funded by a doctoral scholarship of the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).

�� Prospective research for Brussels, Innoviris.

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 196–210, 2013.
c© IFIP International Federation for Information Processing 2013

Event Loop Coordination Using Meta-programming 197

Because the event loops have different characteristics, take for example the start-
up time, it is up to the programmer to take care of the mismatch between the event
loops. Current systems only address this issue partially; they do not take into ac-
count the lifecycle of event loops. Some event loops are prey to lifecycle state
changes, meaning that an event loop can be shut down at any moment in time
and maybe restarted afterwards. For example, mobile applications, which often
use event loops, can be shut down when running in the background. Typically,
the programmer can react upon lifecycle state changes, e.g. pause a playing video
when the application is no longer visible to the user. These changes have conse-
quences: a destroyed event loop is no longer accessible and other event loops in
the system thus must be aware of the lifecycle state of that event loop.

In this paper, we introduce a coordination model called “Elector”, which
allows different types of event loops to be coordinated. The model enables pro-
grammers to concentrate on the logic of the program, instead of writing glue code
for the event loops. The main concept behind Elector are its undead references,
which transparently handle these lifecycle problems. We contribute the design
and implementation of Elector, as a framework for the AmbientTalk language.
We also provide a validation of our approach by comparing the code complexity
of different versions of a representative application. Finally, we present a valida-
tion of Elector’s performance measurements.

This paper is organised as follows: we first discuss related work in section 2
after which we introduce a motivating example (section 3). Afterwards we dis-
cuss the problems that arise when implementing this case study in section 4.
In section 5 we present “Elector”, together with a concrete implementation for
Android and AmbientTalk. Section 6 evaluates the Elector model by comparing
the different implementations of our motivating example. Finally we conclude
this paper and present future work.

2 Related Work

In this section we discuss related work: other models that encapsulate one of
the event loops and component-based software architectures, which are tailored
towards systems with different sub-components.

2.1 Event Loop Encapsulation

Often when integrating different subsystems into a new and larger system, one
ends up with excessive code size. This is because the subsystems make certain
assumptions about the system in which they are used [6]. For example, when
combining different event-based systems that are not compatible with each other,
the programmer must adapt one or more event loops.

The models we discuss allow the coordination of event loops, by encapsulating
their own native event loop inside an external one and allowing the native event
loop to handle its events at a regular basis. As a consequence, when an event
handler does not end immediately or not at all, the entire application is blocked

198 L. Philips et al.

and not only one of the subparts. These models solve the communication issues
related to combining event loops, but do not take into account the possible
lifecycle state changes of these event loops.

POE (Perl Object Environment) [1] is an event-based Perl framework for reac-
tive systems, cooperative multitasking and network applications. POE provides
bridges for other event loops that normally need complete control, for example
GTK. Such a bridge between an external event loop and the POE event loop
runs the external event loop and uses timer functions to allow the POE event
loop to handle its events periodically.

Tcl (Tool Command Language) [11] is a cross platform programming language
that can be used in different domains: web applications, desktop applications,
etc. The Tcl event loops provides mechanisms that allow the programmer to
have a more fine-grained control over the event mechanism. This way, one can
embed a Tcl event loop inside applications that have their own event loop.

2.2 Component-Based Software Architectures

ROS (Robot Operating System) [8] uses topics to exchange messages between
nodes in a publish/subscribe manner. More concretely, nodes subscribe to a cer-
tain topic, while other nodes publish data on this relevant topic. ROS allows newly
connected nodes to subscribe dynamically. While this decouples the subscribers
and publishers, the nodes need to be running at the same time to send data to each
other. This means that ROS supports decoupling in space , because it decouples
the publishers and subscribers, but not decoupling in time, because the nodes need
to be active at the same time in order to communicate [10]. This is necessary when
taking into account that components in a system can have a different lifetime. In
the case of event loops, Elector does not require one event loop to wait for the
other event loop to be (re)started. Elector allows event loops to send messages to
an event loop that is not available upon the time of sending, but guarantees that
the message will be delivered when that event loop becomes available.

Java Beans [5] are reusable components that can be composed using a visual
composition tool. It is made for reusability by supporting persistence, introspec-
tion, customisation through property editors, etc. Beans communicate through
events, where a bean can be the source or the target of the event. Beans register
their interest as a listener at another bean. This also reduces the inter-component
coupling, but they are not decoupled in time, so beans need to be running at
the same time to communicate.

3 Motivating Example

In this section we introduce an example scenario, which is used to abstract the
problems that arise when combining event loops. Our case study is a clicker

Event Loop Coordination Using Meta-programming 199

application, a so-called personal response system that is used as a communica-
tion system during lectures. Every student receives a remote control, also called
zapper or clicker, that allows them to select an answer when the teacher asks a
question. The software on the teacher’s computer collects the answers and the
results are shown to the class by representing them in a graph. Such a clicker
application increases the interactivity and feedback during lectures [4], involving
all students and ensuring anonymity.

Nowadays, all students are equipped with smart phones, tablets, . . . Therefore
we use these mobile devices as a clicker device and use a mobile network to com-
municate between the students and the teacher. Our clicker application can be
started for a teacher or for students, so first of all the user has to choose one
of these roles. The teacher can send questions to the students, together with
possible answers (shown in figures 1(a) and 1(b)). The student receives these
questions and can send a selected answer to the teacher (shown in figure 1(c)).

(a) Teacher: question (b) Teacher: answers (c) Student

Fig. 1. Android views of the clicker application

We will implement this application on the Android mobile platform using the
AmbientTalk programming language [10]. In the following sections we introduce
AmbientTalk and Android and how they use event loops.

3.1 AmbientTalk

AmbientTalk [3,10] is a distributed programming language that is designed to
solve the typical problems in mobile ad-hoc networks. A mobile ad-hoc network
has no central infrastructure and the mobile devices that communicate with each
other can move out of range. Moreover, the communicating parties can reconnect
after a disconnection. AmbientTalk is based on the actor model [2], where every
actor is represented by an event loop that communicates with the other event
loops. AmbientTalk’s communicating event loop model is tailored towards mobile
ad-hoc networks: every event loop is independent, maintains its own state and
communicates with other event loops by sending messages, thus events, to it.
Moreover, network events like the discovery of actors are also handled by the
event loop.

200 L. Philips et al.

3.2 Android

An Android application is typically composed of different activities, where each
activity represents the screen the user sees. An activity is the most important com-
ponent of an Android application. Because the user can only see one screen at the
time, only one activity can be active or in the foreground. Figure 1 shows the dif-
ferent screens the application consists of, each thus implemented by an activity.

The application components that run in the background can be either still
running, but not visible, or can be destroyed. The programmer thus needs to take
into account that an application running in the background can be destroyed,
meaning all its state is lost. This is not only so for the Android platform, it is
a characteristic shared by other mobile platforms like Apple iOS, BlackBerry
OS, Windows Phone, etc. These mobile platforms define at least three lifecycle
states for applications: active or running in the foreground, suspended or run-
ning the background and not running or destroyed. Thus, mobile applications
are subject to lifecycle state changes, which are caused by the system or by the
user navigating between applications.

When the lifecycle changes, the programmer can react by using callback meth-
ods. When for example an application that plays videos is suspended, the “pause”
callback method can pause the video. When this application is destroyed, the
programmer can store which video the user was watching.

If we take for example the student activity of the clicker application, we need
to take into account that the reference to the corresponding AmbientTalk ac-
tor can be lost when the activity is restarted. Both event loops establish these
references by implementing a registering method. In case the user is a student,
the student activity starts the student actor at the beginning of the applica-
tion. The actor retrieves a reference to the activity by calling its registerAT
method and passing a reference to the student actor (shown in listing 1.2). Inside
this registering method, the activity saves this reference to the actor and returns
a reference to itself, as can be seen on line 1 of listing 1.1. On line 5 we see a
simplified example of an event listener that gets called when the “send” button
gets clicked. As can be seen on line 7, we need to check if the reference to the
student actor is still valid. When the activity is restarted, we cannot restart the
student actor, because the previous started one is still running.

1 StudentActivity registerAT(Student s) {
2 StudentActivity.student = s;
3 return this;
4 }
5 class Listener {
6 void onClick(View v) {
7 if (student != null) {
8 // send answer to teacher
9 }}}

Listing 1.1. Registering an actor (Java)

1 def gui := Android.registerAT(self)

Listing 1.2. Registering an activity
(AmbientTalk)

Event Loop Coordination Using Meta-programming 201

Each application has a main thread, also called the UI thread, which cannot
be blocked because it is responsible for processing lifecycle and user interaction
events. Only the UI thread can alter view components, hence its name. When
an event handler has a long running task to perform, it is up to the programmer
to perform this task on a background or worker thread. As mentioned, these
worker threads cannot update the user interface of the activity. To solve this,
background threads have to use the runOnUIThread method for this purpose.

4 Problems

Using the building components of the AmbientTalk language and the Android
platform we implemented a first version of the clicker application. The language
integration is solved because AmbientTalk is implemented in Java (Android ap-
plications are implemented in Java) and the languages live in symbiosis with each
other [9]. Therefore our solution does not take language integration into account,
but focuses on the event loops. Several state-of-the art mechanisms exist to let
code written in different languages interoperate, for example Mono, a framework
for building cross-platform applications, integrates Java with languages of the
.NET framework.

We give an overview of the problems that are encountered when combining
different types of event loops. We can categorise these problems into lifecycle and
communication problems. Lifecycle problems are caused by the different lifecycle
of the event loops, while communication problems arise when the event loops
send messages to one another.

Lifecycle Problems
Different Startup Time. When using two different event loops, chances
are small that they have the same startup time. Because of this, one of
the event loops needs to wait before communication between the two event
loops can start. Therefore, it is up to the event loop that started later to ini-
tialise the communication, or to let the other event loop know it has started.
When programming an application on Android using AmbientTalk, it is the
task of the programmer to manually start up AmbientTalk and evaluate
AmbientTalk actors. The mutual discovery is hard-coded by implementing
registering methods in every event loop to establish references, as showed
earlier in section 3.2.
Lifecycle State Changes. Event loops that suffer from lifecycle state
changes can be destroyed, which means that events or messages sent to
them are not processed. For instance, Android activities can be killed when
the user navigates to another activity or when memory is low. But in our
clicker application we need to take into account that actors and activities
refer to each other. When an activity is killed, all state is lost, including the
reference to the actor and maybe the AmbientTalk interpreter. When the
activity is restarted, the programmer needs to check if AmbientTalk is still
running, if the actors are still alive, etc. If so, the programmer must establish

202 L. Philips et al.

a way to reconnect the new instance of the activity and the actor. If not, the
actor needs to be restarted. There is currently no trivial way to handle this
problem and the programmer must implement ad-hoc solutions for handling
these lifecycle state changes.
References can Become Invalid. Because of the lifecycle state changes,
the references to an event loop can become invalid when it is destroyed. The
other event loop does not know the reference has become invalid. In the case
of AmbientTalk and Android event loops, we have seen that the references
between them cannot be restored, when the activity is recreated. A restarted
activity is actually a new instance of that activity, so upon creation of an
activity, we need a way to make actors point to the newly started activity.
Communication sent to a destroyed activity is lost, which brings us to the
communication problems.

Communication Problems
Communication can be Lost. This problem can arise in two different
situations; when both event loops are not started yet, or when a reference
to an event loop has become invalid. When a reference to an event loop is
invalid, all messages sent to it are lost. When one of the event loops has
not been started yet, the already started event loop has to wait before it
can start to communicate with the other event loop. This is a consequence
of the first problem. In case of Android and AmbientTalk event loops this
means that Android’s activities must wait when all the actors are started
before they can send messages to it. Actors on their turn must be careful
when sending messages to an activity, because it can be destroyed.

It is up to the programmer to establish a way for these event loops to com-
municate and handle each others lifecycle state changes. This leads to a lot of
boilerplate code, which can be avoided as we discuss in the next section.

5 Elector

In this section we introduce the Elector (an acronym of Event Loop Coordina-
tion) model together with its implementation for the Android and AmbientTalk
event loops. In Elector, references between different event loops are managed
by undead references, which revive when a new event loop of the same type
is started, hence their naming. On top of that, Elector wraps one of the event
loops inside an event loop of the other type. The wrapped and wrapping event
loop share the same lifecycle: when the wrapped one is killed, the wrapping
is killed too. When the wrapped event loop becomes available again, so is its
wrapper. Moreover, the wrapping event loop is the only one that has access to
the wrapped event loop. The wrapping event loop thus routes incoming events
directly to the wrapped event loop. Concretely, the wrapped and wrapping event
loop refer directly to each other. Because they share the same lifecycle, this does
not introduce the problems discussed before.

Event Loop Coordination Using Meta-programming 203

5.1 Model

Figure 2 shows how two different event loops are coordinated in Elector. We
used AmbientTalk and Android event loops, but the model can be used for
other types of event loops as well. Elector wraps the Android event loop inside
an AmbientTalk event loop, which we call from now on the wrapped and wrapping
event loops respectively. As we can see, the wrapping event loop refers to the

Coordinator

Event Loop 1:
AmbientTalk

actor
Event Loop 2:

Android
activity

Event Loop 3:
AmbientTalk actor

Undead Reference

manage UR

Fig. 2. Elector: the basic idea

other event loop of the same type by means of these undead references. The
coordinator is responsible for managing the undead references and immediately
returns a reference when asked for, even if the other event loops has not started
yet. Undead references are the main concept of the model and they have the
following characteristics:

Return immediately. When the coordinator is asked for an undead reference
to a certain event loop, it returns one immediately, even when the referred
event loop has not started yet. This way, event loops don’t have to wait for
the initialisation of the other event loop. In our example, the student actor
retrieves an undead reference to the wrapping actor of the student activity,
even when that activity is not started yet.

Remain accessible. Elector hides the state changes of an event loop behind
undead references. Event loops that have an undead reference to an event
loop that is hampered by lifecycle state changes, are not informed of this
change and can keep communicating with the event loop as if it is still avail-
able. The student actor for example can continue using the undead reference
it retrieved to the student activity, even when the activity is destroyed.

Rebind automatically. When an event loop is killed and subsequently restarted
by the system, it is actually a new instance of that event loop. Undead ref-
erences will rebind automatically to the new event loop. For example, after
restarting the student activity all undead references to it transparently re-
bind with the new instance.

Buffer communication. Undead references route the communication to the
actual event loop. When that event loop is inaccessible, the communication
to it is buffered. When the event loop returns to a state that it can process
messages, all the buffered ones are sent to it in the same order they were

204 L. Philips et al.

received. In case of the clicker example, all messages sent to a wrapping actor
for updating the user interface (e.g. displaying a question from the teacher)
are sent when the wrapping actor and its wrapped activity are restarted.

By wrapping an event loop inside an event loop of another type, we can make
use of the communication abstractions of that type of event loops. This results
in an asynchronous way of communication between the event loops, which allows
both of them to keep processing events, which is not the case of the models we
discussed in section 2.

The coordinator creates the undead references, keeps track of them and also
discovers all the event loops in the system. When an event loop is killed, the
coordinator is informed and all undead references to that event loop start to
buffer communication until a replacement event loop of the same type becomes
available again. As we will see in the instantiation of Elector for Android and
AmbientTalk, the coordinator should provide some guarantees that it is less
likely to be killed. In our implementation, the coordinator is only killed when
the whole application is destroyed, and thus all its subcomponents too.

5.2 Instantiation for Android and AmbientTalk

We implemented Elector for the Android and AmbientTalk event loops, where
we choose to wrap the Android event loop inside an AmbientTalk event loop,
being an AmbientTalk actor. There are several reasons for this choice: first of all,
we can use the AmbientTalk discovery mechanism, which we discuss further on.
Secondly, AmbientTalk allows event loops to communicate in an asynchronous
and non-blocking way. Finally, AmbientTalk event loops don’t suffer lifecycle
state changes as much as Android event loops.

Coordinator. The coordinator is in this case an AmbientTalk actor that discov-
ers all wrapping actors, together with an Android service that orchestrates all the
activities of the application. In our case, the activities of the application connect
with the service. When the state of an activity changes, it must inform the service
of this state change. Other than keeping track of the lifecycle of the activities, we
use this service to automatically start an AmbientTalk interpreter in the back-
ground and to load code in this interpreter. Each Android activity thus has an
associated AmbientTalk actor, and the programmer has to follow a naming con-
vention in order for the evaluation of the actors to be done transparently.

When an Android application uses an Android service, it retrieves a higher pri-
ority and it is less likely that the application is destroyed. Should it happen that
the service is killed under extreme memory pressure, the AmbientTalk interpreter
is destroyed too, together with the coordinator actor and all other running actors.
When the service is restarted, the AmbientTalk interpreter is restarted too and the
required actors will be re-evaluated.

For the discovery we use AmbientTalk’s discovery mechanism, as illustrated in
the following code snippets.

Event Loop Coordination Using Meta-programming 205

1 def CoordinatorActor := actor: {
2 whenever: Activity discovered: { |e|
3 // retrieve tag, manage references
4 };
5 Android.coordinator = self }

Listing 1.3. Discovery of an actor

1 deftype StudentGUI <: Activity;
2 def remoteInterface := object: {
3 // behaviour
4 };
5 export: remoteInterface as: StudentGUI

Listing 1.4. Publishing an actor

On line 2 of listing 1.3 we see how the coordinator actor discovers all actors that
are categorised in the network as (subtypes of) the Activity tag. The construct
whenever:discovered: is used for this purpose. When an actor with that tag
is discovered, the coordinator actor receives a far reference to the discovered actor.
The other code snippet (1.4) shows the other side: inside a wrapping actor, we can
export its behaviour in the network using export:as:. Tags are made with the
deftype keyword. On line 1 we create a tag StudentGUI, that is a subtype of the
Activity tag. The StudentGUI tag is defined by the wrapping actor of the activity
StudentActivity. We now discuss how these wrapping actors behave.

Wrapping Actors. Wrapping actors share the same lifecycle as their wrapped ac-
tivity. More concretely, the wrapping actor is taken offline when the corresponding
activity is destroyed, and taken back online when the activity restarts. The coor-
dinator can react upon these network events and inform all undead references to
that particular wrapping actor.

Next to sharing the same lifecycle with its Android activity, the wrapping ac-
tor communicates with that activity and also allows us to write most of the user
interface code inside these wrapping actors instead of the activities. The commu-
nication between a wrapping actor and its wrapped activity can easily be achieved
because of the symbiosis [9] between the AmbientTalk and Java language. When
executing a method call inside an AmbientTalk actor, this method gets executed
on the thread of that actor. Recall from section 3.2 that only theUI threadmay up-
date Android views and as a consequence we cannot directly update the view from
AmbientTalk. Therefore, we introduce a new kind of actor: the UI Thread actor.
This actor is responsible for the communication between actors and its activities,
by allowing actors to post Runnables on the Android event loop. The wrapping
actors can ship off their messages to this actor, which guarantees that they are ex-
ecuted on the right thread. The following code shows how the student’s wrapping
actor defines a method that shows whether the student is currently connected to
the teacher.

1 def teacherStatus(status) {
2 UIThreadActor←runOnUIThread(getTypeTag(), "connection_state", runnable: {
3 def run(v) { // method to be executed on UI Thread
4 v.setText(status); // set the text
5 v.setVisibility(v.VISIBLE); // show the text view
6 }})}

206 L. Philips et al.

This code sends an asynchronous message to the UIThreadActor, denoted by the
left arrow. The first argument of runOnUIThread (line 2) message selects the
correct Android activity. As a second argument, we pass the name of the view we
want to alter and lastly, we pass the AmbientTalk equivalent of a Java Runnable,
denoted by the runnable keyword. It defines a method run on line 3, that takes
the Android view as an argument. This way of changing Android views is only the
first step: we discuss an improvement in the next section.

Undead References. The final component of Elector are the undead references
between an actor and a wrapping actor. AmbientTalk actors ask the coordinator
for an undead reference to a wrapping actor using a tag, e.g. StudentGUI. The first
time, the coordinator object makes a new one. When another actor already asked
for an undead reference to that wrapping actor, the coordinator does not need
to make a new reference, but reuses it. Figure 3 shows how an undead reference
switches between two states: “forwarding” indicates the corresponding wrapping
actor is available and in the “buffering” state the undead reference starts buffering
all messages sent to it. Since the coordinator is informed of the availability of the
wrapping actor, it is the task of the coordinator to switch the undead references
between these states.

Forwarding Buffering

Wrapping actor unavailable /
Start buffering messages

Wrapping actor available /
Flush buffered messages

Fig. 3. State diagram for an undead reference

An undead reference is entirely programmed using AmbientTalk’s reflective
layer [7]. This layer allows us to catch asynchronous method calls on this reference
and decide whether they need to be buffered (in case the corresponding wrapping
actor is not available) or can be sent to the wrapping actor.

For example, the student actor can alter the text of the status view of the previ-
ous code snippet to “Not connected to teacher” when the student actor is started
in the following way:

1 import /.at.android.undead_references;
2 deftype StudentGUI; // tag we want to retrieve
3 def guiRef := undeadRef(StudentGUI); // ask undead reference from coordinator
4 guiRef←teacherStatus("Not connected to teacher"); // send asynchronous message

On line 4 we send an asynchronous message to the undead reference we retrieved
on line 3. When the wrapping actor is already started, the message is immediately

Event Loop Coordination Using Meta-programming 207

forwarded to the wrapping actor. If not, the message is buffered and guaranteed
to be delivered when the wrapping actor becomes available (again).

6 Preliminary Results

In this section we show the merits of the Elector model by comparing the ad-
hoc implementation of the clicker application and the versions using the Elector
model. But first of all, we validate the implementation of the Elector model by
showing how it offers a base for a more polished version, adding more constructs
that make it easier for the programmer.

6.1 Specific Improvements to Elector for Android and AmbientTalk

The implementation of the Elector model as presented in the previous section is a
direct translation of the general model. This implementation solves all the prob-
lems that arise when combining two different event loops. Because the user inter-
face code has shifted to the wrapping actors, the Android part of the application
contains less code. Therefore, we introduce new constructs that ease the writing
of the wrapping actors.

First of all, we introduce a run: construct that takes a block of code as an ar-
gument. Behind the scenes, this code is sent to the Android UI thread, hiding the
UI Thread actor from the programmer. Similarly, the listener: construct can
be used to create an event handler for Android views.

Most of the UI code for an Android application are operations like setText, set-
Color, setVisibility,... on an Android view. These methods alter the user interface,
thus they must be executed on the UI thread of the application. We introduce the
getViewmethod that returns a reference to an Android View object. All setters
on this reference are automatically forwarded to the UI Thread actor. The follow-
ing code snippet shows how getView can be used by the student wrapping actor
to display a question and possible answers from the teacher.

1 import jlobby.android.view:
2 def askQuestion(question, answers) {
3 def question_v := getView("question");
4 def previous := question_v.getText(); // retrieve current text of view
5 question_v.setText(question); // alter text
6 question_v.setVisibility(View.VISIBLE); // show the text
7 }

This way, the programmer can get attributes of the view and alter them inside
AmbientTalk, without worrying about thread-safety.

The final extension is the support for futures [3]. AmbientTalk’s event loops
communicate in a non-blocking, asynchronousway,meaning that an asynchronous
message send between event loops immediately returns. AmbientTalk’s futures
are placeholders for the actual result of a message execution. When the actual
result is computed, the future is resolved and other actors can receive this result
by installing an event handler on that future.

208 L. Philips et al.

A common task in applications is to ask the user for some kind of input, and
this is where futures are helpful. We extended Elector in such a way that futures
can be resolved inside the code of a run: or listener: construct. This way, an
AmbientTalk future can be resolved when e.g. a button is clicked. Vice versa, a
text view can be linked to a future, filling in the view when the future becomes
resolved.

6.2 Comparison of the Clicker Applications

We ended up with three versions of the clicker application: one without Elector,
one that uses Elector and a final one that uses the extensions from previous sec-
tion. The final version of the application spends less code on the mismatching con-
cerns and contains less code overall. The first clicker version contains 512 lines of
code, the second one 430 lines and the final version 367 lines of code, which is a
decrease of 28% between the first and final one.

Fig. 4. Graph comparison for the first and final version of clicker

As we can see from the graphs in figure 4, Elector frees the programmer from
dealing with the lifecycle of the event loops (lifecycle state changes and different
start-up time). These issues are completely handled by Elector in the last two ver-
sions. Managing references and threads are reduced from 8,5% for the first version
to 2,6% for the final one.

We also conducted memory and latency benchmarks. First, we measured the
memory usage of the application at three different points: the choice between two
roles, starting of the teacher, and starting of the student version. Starting the ap-
plication uses 3.767 Mb for the first clicker and 3.671 Mb for the final one. For the
teacher role we measured 5.112 Mb versus 9.293 Mb for the first and third ver-
sion of Clicker respectively. For the student role these measurements are 4.82 Mb
versus 7.384 Mb.

Secondly, we performed benchmarks to measure the latency of GUI updates
in the final version of clicker (the second and third version are almost identical).

Event Loop Coordination Using Meta-programming 209

Therefore, we measured the latency between registering an event (clicking on a
button) and the actual update of the GUI (in the Android UI code) (Scenario 1).
We also measured the latency between registering the event and executing the
listener: construct and from this point to the updating of the Android View
(Scenario 2). From these experiments we obtained the following results (average
and standard deviation of 200 experiments) in milliseconds:

Scenario 1 Scenario 2

click → listener listener → update

AVG +− STDEV 285.8 +− 39.73 4.55 +− 2.28 278.29 +− 47.57

Elector is a proof-of-concept implementation as a framework for AmbientTalk
which we use to illustrate that our model eases the coordination of different event
loops. When absolute performance is a necessity, Elector could be implemented
in the AmbientTalk interpreter itself.

We can conclude that Elector had an impact on the clicker application: the pro-
grammer is freed frommanually coordinating the event loops. As a side-effect, this
has an impact on the code size and complexity, but moreover, more of the code
now focuses on the logic of the program. This initial result is promising, but more
studies are needed to further gauge the impact of Elector.

7 Conclusion and FutureWork

We introduced a coordinationmodel called Elector, that tackles the problems that
arise when coordinating different event loops. Elector is targeted towards event
loops that suffer from lifecycle changes (e.g. the event loops can be killed and
restarted) but the model is suited for all sorts of event loops. In contrast to ex-
isting libraries, Elector allows the event loops to run separately, instead of letting
one event loop take control over the other. Elector also does not change the source
code of the event loops, but provides a bridge between them.

The main component of the Elector model are its undead references, the other
components of the model manage these references. The undead references solve
all the problems encountered when combining different event loops, namely the
lifecycle and communication problems.

Using the implementation of theElectormodel for theAndroid andAmbientTalk
event loops, we evaluated the model by implementing a concrete case study: a
clicker application. We compared the different versions of that application and
concluded that Elector relieves the programmer from manually coordinating the
event loops.

The Elector implementation is targeted towards event loops on one device, but
we could extend Elector with distributed undead references. This way, a teacher
could for example first demonstrate how the clicker applicationworks by retrieving
an undead reference to the user interfaces of the students. The other way around is

210 L. Philips et al.

also possible: several people can retrieve an undead reference to one and the same
user interface, e.g. for a brainstorming session.

An important task of the undead references of Elector is to buffer communi-
cation between event loops when one of them is not available (yet). The current
implementation of Elector does not take duplication of messages into account, but
we could easily support smart buffering. In order to achieve this, an annotation
could be used, that allows the programmer to define the behaviour of messages
in the buffer. So not only does Elector solve the problems that arise when com-
bining different types of event loops, its undead references can be applied in other
domains as well.

References

1. The POE Cookbook (January 2013), http://poe.perl.org/?POE_Cookbook
2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT

Press, Cambridge (1986)
3. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:

Ambient-Oriented Programming in AmbientTalk. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 230–254. Springer, Heidelberg (2006)

4. D’Inverno, R., Davis, H., White, S.: Using a Personal Response System for Promot-
ing Student Interaction. Teaching Mathematics and its Applications 22(4), 163–169
(2003)

5. Englander, R.: Developing Java beans. O’Reilly & Associates, Inc, Sebastopol
(1997)

6. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch, or, Why its hard
to build systems out of existing parts. In: Proceedings of the 17th International
Conference on Software Engineering, Seattle, Washington, pp. 179–185 (1995)

7. Mostinckx, S., Van Cutsem, T., Timbermont, S., Tanter, E.: Mirages: behavioral
intercession in a mirror-based architecture. In: Proceedings of the 2007 Symposium
on Dynamic Languages, DLS 2007, pp. 89–100. ACM, New York (2007)

8. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

9. Van Cutsem, T., Mostinckx, S., DeMeuter, W.: Linguistic Symbiosis between Event
Loop Actors and Threads. Computer Languages, Systems & Structures 35(1), 80–98
(2009)

10. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad hoc Net-
works. In: Proceedings of the XXVI International Conference of the Chilean Society
of Computer Science, SCCC 2007, pp. 3–12. IEEE Computer Society, Washington,
DC (2007)

11. Welch, B.B.: Practical programming in Tcl and TK, 2nd edn. Prentice Hall (1997)

http://poe.perl.org/?POE_Cookbook

Interactive Interaction Constraints�

José Proença and Dave Clarke

iMinds-DistriNet, Department of Computer Science,
KU Leuven, Belgium

{jose.proenca,dave.clarke}@cs.kuleuven.be

Abstract. Interaction constraints are an expressive formalism for de-
scribing coordination patterns, such as those underlying the coordina-
tion language Reo, that can be efficiently implemented using constraint
satisfaction technologies such as SAT and SMT solvers. Existing imple-
mentations of interaction constraints interact with external components
only in a very simple way: interaction occurs only between rounds of
constraint satisfaction. What is missing is any means for the constraint
solver to interact with the external world during constraint satisfaction.

This paper introduces interactive interaction constraints which enable
interaction during constraint satisfaction, and in turn increase the expres-
siveness of coordination languages based on interaction constraints by al-
lowing a larger class of operations to be considered to occur atomically.
We describe how interactive interaction constraints are implemented and
detail a number of strategies for guiding constraint solvers. The benefit
of interactive interaction constraints is illustrated using two examples,
a hotel booking system and a system of transactions with compensa-
tions. From a general perspective, our work describes how to open up
and exploit constraint solvers as the basis of a coordination engine.

Keywords: interaction constraints, constraint satisfaction, coordination,
Reo.

1 Introduction

Coordination languages facilitate the exchange of data between components (or
services) externally to the operation of those components. One way of describing
coordination patterns is by using interaction constraints [11], which originated
as an approach to implementing Reo connectors [3]. In this approach, off-the-
shelf constraint solvers such as Choco [18] and SAT and SMT solvers such as
SAT4J [6] and Z3 [16] are used as the basis of the underlying coordination
engine. The coordination engine operates in rounds, each of which proceeds by
collecting constraints from components and the connector that coordinates them,
and then solving the constraints. Components perform blocking reads and writes
on ports, which are converted into constraints stating that they want to output
� This research is supported by the KU Leuven BOF-START project STRT1/09/031

DesignerTypeLab, Belgium, and by the FCT grant SFRH/BPD/91908/2012.

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 211–225, 2013.
c© IFIP International Federation for Information Processing 2013

212 J. Proença and D. Clarke

or input data. A solution to the constraints describes how data flows between
the components, after which some reads and writes may succeed. Each round is
considered to be an atomic (or synchronous) step. Between rounds the states of
the components and connectors may change.

One problem with the current state-of-the-art is that interaction occurs only
between constraint solving rounds, not during rounds. It is impossible in Reo, for
instance, to send data to a component and receive a result from it within the
round, as no interaction with external components occurs during a round. This
means that all data involved in the constraint is known at the start of a round,
and consequently that the kinds of interaction that can be expressed using in-
teraction constraints are limited. The challenge of introducing interaction with
external components during a coordination round is that such interaction can
produce externally observable behaviour. However, after solving the coordina-
tion constraints, these external observations may not correspond to what the
coordination pattern aims to achieve. This implies that such actions will need
to be undone after a round using rollbacks or compensations.

This paper reports on our work on interactive interaction constraints, which
enhance a coordination engine to enable interaction during rounds. The under-
lying constraint solver can invoke external components several times during a
round while searching for a valid solution to the coordination constraints. This
can be seen as a form of negotiation. This kind of interaction can be incorporated
into the visual notation of Reo using special filter and transformer channels. Fil-
ters have a predicate that is used to determine whether data flows through the
channel and transformers modify the data passing through the channel by invok-
ing a unary function. In our approach these could involve external interaction.
For instance the predicate could consult an external database or by engaging
in interaction with a user. Because the actual data that flows through a con-
nector involves the solution of a potentially complex set of constraints, it is
never clear when invoking a filter or a transformer whether the connector will
commit to the chosen data. Thus, these channels must be implemented using
a try-and-compensate mechanism, and hence the whole constraint satisfaction
process becomes transactional.

Although originally stemming from research on Reo—indeed, the same visual
notation can be used to describe connectors—our approach is much more gen-
eral, as a greater range of coordination patterns can be implemented. Interactive
interaction constraints are based on information unknown at compile time, the
expressing a wider variety of coordination patterns than constraints over a fixed
set of data types and operators. More generally, our approach falls within the im-
plicit programming paradigm [17], wherein constraints specify the computation
and SAT and SMT solvers perform the computation. The contribution of our
work to this field is the use of constraint satisfaction to implement coordination
patterns. More specifically, this paper deals with the problem of increasing the
kinds of external interaction possible during constraint satisfaction.

Organisation of the Paper. The next section motivates the need for richer
interaction model and identifies the main challenges. Section 3 describes the

Interactive Interaction Constraints 213

language used to specify constraints, and Section 4 explains how they are solved.
Details of the constraint-solving engine are described in Section 5. Section 6
presents how transactions are achieved with interactive interaction constraints,
Section 7 presents related work, and Section 8 concludes.

2 The Need for Interaction

Interaction constraints were introduced as a bridge to providing an efficient
and flexible implementation of the Reo coordination language [11]. Previous im-
plementations based on compilation to constraint automata suffered from the
problem that the entire behaviour of the connector needed to be known in ad-
vance [5]. Implementations based on connector colouring got around this prob-
lem, but these were initially not very efficient and were ultimately not very
flexible as they were insensitive to data values [9]. Changizi et. al [7] extended
the automata-based compilation approach with filters and transformers. These
are handled by a SAT/SMT solver, though the choice of filters and transformers
is limited to those expressible in the language of the solver. When building an
automaton, all solutions for all states need to be found, and thus more work
than necessary needs to be done and the approach is inflexible. Jongmans et
al. [14] integrated external functionality by generating Java code correspond-
ing to the automata-with-data-constraints model of Reo. The resulting code
has an exponential number of formulas, without data transformations, that are
checked sequentially. Interaction constraints improved on these implementations
by exploiting the flexibility of constraints—again, limited only by the underly-
ing solver—, and by permitting constraints to change dynamically and to be
evaluated concurrently and partially, thereby increasing scalability as well [10].

One remaining problem is that the kind of external interaction available in
the current interaction constraints-base engine is limited to blocking reads and
writes. That is, considering Fig. 1, component Request interacts with the con-
nector by performing a blocking write of some value. At some future time, this
value may be accepted by the system and the write will proceed (or it may time-
out). Dually, component Confirmed interacts by preforming a blocking read. At
some future time, a value will become available and the read proceeds.

From Reo’s perspective synchronicity corresponds to atomicity. Thus in Fig. 1
there are three possible ways data can flow (synchronously) through the connec-
tor: a request flows from Request via exactly one of SrchHoteli, which return a
possible hotel room booking. Then it flows through filter Approve, which seeks
approval from the user, transformer Book, which performs the booking, trans-
former Invoice, which handles the payment, filter Paid, which occurs when the
payment succeeds, and finally to component Confirmed. Due to semantics of the
synchronous drain (sd), dataflow through the connector is permitted only if Paid
allows the data to pass. Now it is clear that such an atomic step corresponds to
all steps of the hotel booking process succeeding. If any step fails, such as when
the user does not approve the selection or if the payment is not made, then no
flow occurs in the connector at all. To actually implement this requires a lot

214 J. Proença and D. Clarke

SrchHotel1

SrchHotel2

SrchHotel3

Approve

sd

Book

[CancelB]

Invoice Paid
Request Confirmed

Fig. 1. Example of a Hotel Reservation workflow. Nodes () receive data from exactly
one of their inputs, and replicate it to all of their outputs. The exclusive router () is
a special node that forwards data to exactly one of its outputs. Transformer channels
are represented using a triangle and filter channels using a zig-zag line.

more than interaction via blocking reads and writes, such as calling and getting
results multiple times from the hotels, interacting with the user checking the
payment, and retrying with different possible values from the hotels. These in-
teractions can be realised using special functions and predicates that, whenever
queried by the constraint solver, trigger calls to external components. Solving an
interactive constraint might require such functions to be executed with different
parameters until a valid solution is found. Whenever constraints imposed by in-
dividual elements of the connector are not satisfied, some externally observable
actions, such as interaction with the user and calls to the booking site, might
need to be undone, by performing a rollback or running compensation code.

Exploiting a constraint solver to implement a scenario such as the one above
requires that a number of issues are properly handled:

– Constraints corresponding to the channels need to be evaluated in the right
order, such as calling Approve before Book, to avoid situations where the
solver guesses a value and wastefully calls some external function. External
functions should only be given input that derives from concrete initial values.

– The constraint solver may (potentially, wastefully) invoke all of SrchHotel1,
SrchHotel2, and SrchHotel3, although only one of them will be accepted. A
better strategy is often to try one at a time.

– If an external function that produces an externally observable side-effect is
called, such as Book, but subsequently the booking needs to be cancelled,
then some compensation/rollback functionality (CancelB) needs to be per-
formed to undo the side-effect.

– Functions that do not transform their data but do produce side-effects can
be postponed until after a solution to the constraints has been found, as from
the perspective of the constraint solver they are equivalent to a synchronous
channel (what happens on both ends is the same).

– External functions and predicates need to be total to avoid blocking the
constraint solver. Non-complying functions could easily be wrapped, such as
by implementing a time-out and returning a ‘no-result’ value.

– Within a given round, external functions and predicates need to be deter-
ministic to preserve the consistency of the constraint solving process. Non-
complying functions can be memoized to behave as deterministic functions.

Interactive Interaction Constraints 215

3 Coordination via Interaction Constraints

Our previous work on interaction constraints formed the basis of an efficient im-
plementation of the Reo coordination language [11]. In this model, coordination
patterns are described using logical formulas defined over two kinds of variables:
synchronisation variables, which capture whether or not there is dataflow on a
given port, and data variables, which describe the value that flows, when there
is dataflow. Coordination takes place in rounds, and between rounds the con-
straints can change. From a high level perspective, each round corresponds to
an atomic operation, and each solution to the interaction constraints gives the
ports that synchronise and the data that flows between them.

Given a collection of ports X , synchronisation variables x ∈ X range over
booleans, and data variables x̂ ∈ X̂ range over a global data set D. Formulas are
defined as Dijkstra’s guarded commands [12], given by the following grammar:

ψ ::= φ → s | ψ1 ψ2 | ((formulas)
φ ::= x | P (x̂) | φ1 ∧ φ2 | ¬φ (guards)
s ::= φ | x̂ := d | x̂1 := x̂2 | x̂1 := f(x̂2) | s1 ; s2 (statements)

(is true, P is a unary predicate over data variables, and f is a unary total
function. Constraint ψ ψ is interpreted as ψ∧ψ, s; s as s∧s, and x := y as x = y.
Other logical connectives can be encoded as usual. The grammar for guarded
commands enforces data assignments to always be in positive positions, and
ensures that the assignment operator := is asymmetric to capture the direction
of dataflow. These features are not exploited in this paper, but required by the
predicate abstraction technique described in Section 4.1.

The novel addition of this paper is that functions and predicates need not be
built-in functions of the logic and can be implemented externally. Thus, eval-
uating a function or predicate requires a call outside of the constraint solver.
Furthermore, such functions and predicates may be side-effecting, and these side-
effects may need to be undone. How this interactive and transactional evaluation
of functions and predicates is handled is explained in detail in Section 4.

A Constraint-Based Encoding of Reo Channels. As an example of how
interaction constraints are used, Table 1 recalls the encoding of the semantics
of the most common Reo primitives [11]. For example, the LossySync can have
dataflow on b only if data flows on a (b → a), and, whenever both ports have
dataflow, the data flowing on a is copied to b (b → b̂ := â). Included in the
table are writers and readers: these capture the essential interaction behaviour of
components that perform blocking reads and writes. The semantics of connector
composition is given by conjunctively joining the constraints of its constituents.

4 Solving Interactive Constraints

As functions and predicates are defined externally, the constraint solving pro-
cess requires external interaction to provide an interpretation for them as logical

216 J. Proença and D. Clarke

Table 1. Constraint-based encoding of Reo Channel

Channel Representation Constraints Channel Representation Constraints

Sync a b
a ↔ b

b → b̂ := â
LossySync a b

b → a

b → b̂ := â

SyncDrain a b a ↔ b FIFO-E a b ¬b

SyncSpout a b a ↔ b FIFO-F(d) a bd
¬a

b → b̂ := d

Merger ca
b

c ↔ (a ∨ b)
¬(a ∧ b)

a → ĉ := â

b → ĉ := b̂

Replicator a b
c

a ↔ b
a ↔ c

a → b̂ := â;
ĉ := â

Filter(P) a b
P b → b̂ := â

(a ∧ P (â)) ↔ b
Transf(f) a b

f a ↔ b

b → b̂ := f(â)

Writer(d) W(d) a a → â := d Reader R a �

formulas. This section provides a model of how this can be done. Firstly, before
constraint solving, constraints are reduced to a boolean formula using a notion
of predicate abstraction based on the data dependencies of each predicate. This
avoids prematurely computing such predicates and functions. Then, during con-
straint solving the solver will evaluate predicates and functions on a per-need
basis. In addition, compensations need to be performed, but as these are inde-
pendent of constraint solving, their discussion is postponed until Section 5.

4.1 Pre-processing

Formulas over boolean and data variables are encoded into formulas only over
boolean variables using a notion of predicate abstraction in two steps (full details
are available in a separate report [21]):

1. starting from predicates, calculate all data variables that may contribute to
its value by tracing back to sources of data; and

2. replace data variables by new boolean variables, one for each predicate that
is reachable, based on the sets calculated on the previous step.

These steps are illustrated using the examples in Fig. 2. In the first step, every
path backwards from a predicate to a data source is determined based on the
data assignments in formulas, yielding paths numbered from 1 to 5. Each of
these paths is denoted by a new boolean variable. In the second step, data
variables are replaced by boolean variables. Each new variable captures whether
the associated predicate holds when applied to the given data. For instance,
path 2 is represented by variable x̂R.f , which denotes whether R(f(x̂)) holds.
In the underlying constraints, x̂ is replaced by 4 new boolean variables x̂P , x̂Q,

Interactive Interaction Constraints 217

2

3

4

1

5

x y

P

Q

f

g

R S
h

k

Fig. 2. Simple examples to illustrate predicate abstraction

x̂R.f and x̂R.g. Similarly ŷ is replaced by ŷS , and so forth. Data assignments
are modified to work on these new variables. For example, given variables x̂P.f

and ŷP.f , the encoding of ŷ := x̂ includes ŷP.f := x̂P.f . Given variables x̂P.f

and ẑP , the encoding of ẑ := f(x̂) includes ẑP := x̂P.f . Predicates in formulas
are replaced by the corresponding variable: for instance, P (x̂) is replaced by
x̂P . Finally, data assignments x̂ := d are encoded as a conjunction of special
constraints, called external predicates :∧

p reaches x

XPred(p, x, d) (usage of external predicates)

The reachability mentioned in the formula above is the same as in Fig. 2, and, in
this case, p ranges over R.f , R.g, P and Q. Each XPred(p, x, d) in this formula is a
wrapper guarding the evaluation of p(d). This constraint is equivalent to the one
below, but it is evaluated during constraint solving using dedicated functions.

¬x ∧ ¬y ∧ x̂p = eval(p(d)) (interpretation of an external predicate)

where y is the port to which the predicate p is applied, after dropping all the
associated functions, and eval performs the computations needed to evaluate
a predicate and its associated functions. For instance, the external predicate
XPred(R.f, x, d) is interpreted as ¬x ∧ ¬r ∧ x̂R.f = eval(R(f(d)), where r is
the port between the transformer f and the filter R. This means that the value
of x̂R.f only reflects the result of R(f(d)) when both x and r have dataflow.

For example, the original and abstracted constraints
of the connector on the right are, respectively:

a b cf P
W (d)

a → â := d b → b̂ := f(â)

a ↔ b c → ĉ := b̂ (b ∧ P (̂b)) ↔ c

a → XPred(P, b, d) b → b̂P := âP.f

a ↔ b (b ∧ b̂P) ↔ c

Since no predicate reaches c, no variables are created for c and ĉ := b̂ is dropped.
An alternative to using predicate abstraction is to use an encoding into con-

straints over a fixed domain that are used as hashes for the actual values or
functions that need to be computed. Following this line of thought, we are cur-
rently investigating the advantages of encoding into integer constraints, making
a tradeoff between the number of variables used at the cost of a more expensive
underlying constraint solver. These ideas are left as future work.

218 J. Proença and D. Clarke

4.2 Evaluation Model

Fig. 3 presents a model of constraint solving over booleans, following the style of
Apt [2], adapted to our setting. These rules rely on two core functions: propagate
and satisfy (|=), which will be defined later for external predicates to control
when functions and predicates are evaluated.

(branch)

〈c1, . . . , cn ; V1, x �→ {�,⊥}〉
〈cx1 , . . . , cxn ; V x

n+1〉 〈c−x
1 , . . . , c−x

n ; V −x
n+1〉

where, for 1 ≤ i ≤ n :
(cxi , V x

i+1) = propagate(ci, V
x
i) ;

(c−x
i , V −x

i+1) = propagate(ci, V
−x
i)

(propagate)

〈c, C ; V 〉
〈c′, C ; V ′〉

(satisfy)

〈c, C ; V 〉
〈C ; V 〉

(prune)

〈c, C ; V 〉 〈C′ ; V ′〉
〈C′ ; V ′〉

where (c′, V ′) = propagate(c, V) if V � c if V � c

Fig. 3. Semantics of the constraint solver. V x = V [x �→ �] and V −x = V [x �→ ⊥],
where V [x �→ b] denotes the update of V by mapping x to {b}, for b ∈ {⊥,�}.

Formally, a CSP over booleans is a pair 〈C;V 〉 of constraints and variable
domains. The constraints are initially the conjunctive set of guarded commands
of a connector. The variable domains initially map each variable to {(,⊥}.
Constraint satisfaction proceeds by branching over variables and by simplifying
constraints based on the current domains of variables. Branching over a variable
x means creating two new CSPs, one assuming x is true and one that x is false.
Simplification of constraints is performed by a propagate function, which takes
a constraint c and a variable domain V and builds, when possible, a simpler
constraint c′ and a smaller domain variable V ′ where some variables become
instantiated with {(} or {⊥}. Satisfaction of a constraint c is determined using
the operator |=, based on the instantiated variables of domain V .

The implementation of propagate and satisfaction for external predicates
XPred(P, x, d) are as follows:

propagate(XPred(P, x, d), V)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

((, V) if V (x) = ⊥ or V (y) = ⊥
(⊥, V) if V (x) = V (y) = (and eval(P (d)) /∈ V (x̂P)
((, V [x̂P $→ (]) if V (x) = V (y) = (and (∈ V (x̂P) and eval(P (d))
((, V [x̂P $→ ⊥]) if V (x) = V (y) = (and ⊥ ∈ V (x̂P) and ¬eval(P (d))
(XPred(P, x, d), V) otherwise

V � XPred(P, x, d)

=

⎧⎨
⎩
(if V (x) = ⊥ or V (y) = ⊥
ŷP = eval(P (d)) if V (x) = V (y) = (
unknown otherwise

Interactive Interaction Constraints 219

Observe that if V � c returns unknown, then neither V � c nor V � c hold.
The solver will still control when to instantiate any of the variables used by

XPred, which are guided using a search strategy (see the next section).

5 Implementation

We have implemented a prototype coordination engine that handles external
predicates based on the Choco constraint solver.1 It focuses on the boolean
satisfaction problem of the formulas obtained via predicate abstraction. Con-
trary to most other SAT and SMT solvers,2 Choco allows user-defined function
and predicates, and the customisation of strategies. These capabilities are ex-
ploited to control the evaluation of external predicates. As a running example we
use a simple implementation of the Hotel Reservation system (Fig. 1). External
predicates are implemented to read from and write to the command line.

5.1 Caching and Compensating

To avoid redoing complex calculations or performing the same query twice, when-
ever a function or predicate is evaluated its result is cached. This ensures that
all functions are deterministic in any given round. Similarly, functions and pred-
icates that require human interaction are executed at most once per argument,
per round.

After each round of constraint solving the cache is cleared. During this pro-
cess the engine checks which values contributed to the solution. Every cached
value that did not contribute is reverted using its associated compensation, if
it exists.

5.2 Strategies

By default Choco uses a branching strategy that selects the next variable to
be analysed based on its current domain size, the number of uninstantiated
constraints involving the variable, and the sum of some counters associated with
these constraints [18]. For each selected variable, Choco starts by assigning the
smallest value (false in the case of booleans), increasing it whenever necessary.

We propose the use of an alternative strategy, built using Choco strategy
constructors,3 that selects variables using a fixed order and assigns false values
before assigning true. This order of variables is produced based on the possible
paths of dataflow, which have been partially calculated during the pre-processing
of the constraints (Section 4.1). The intuition is that if a path with dataflow that
satisfies the constraints is found, the external predicates on the remaining paths
do not need to be evaluated. More concretely, we use the following guidelines:

1 http://www.emn.fr/z-info/choco-solver/
2 We also experimented with SAT4J and Z3 solvers, among others.
3 These constructors are called AssignVar, StaticVarOrder, and IncreasingDomain.

http://www.emn.fr/z-info/choco-solver/

220 J. Proença and D. Clarke

– Approximate the data dependency graph and linearise the resulting ordering.
– Branch first over synchronisation variables and only later over the rest.

In the Hotel Reservation system, this strategy can avoid the booking, invoicing,
and payment of hotels that are not approved. The choice of which function
and predicate is evaluated first is non-deterministic: it depends on the order
of concatenation of traversals during the linearisation process. In this case, a
possible linearisation is: req ← h1 ← h1out ← hs ← ap ← bk ← inv ← paid ←
h3 ← h3out ← h2 ← h2out . Thus the constraint solver will first select and
branch the variable h2out, then the variable h2, and so on. The data variables
are selected only after the synchronous variables. The ports hi and hiout are
the two ports of the filter SrchHoteli, and the ports ap, bk , inv , paid succeed the
channels Approve, Book, Invoice, and Paid, respectively.

5.3 Scala Implementation

We have developed a set of libraries for the Scala language4 to easily specify
interactive constraints.Scala is fully interoperable with Java, hence our libraries
can also be used to define and run connectors using Java.

object HotelReservation extends App {

case class Req(val content:String)

def srchHotel(i:Int) =
Function("SearchHotel-"+i){

case r:Req ⇒ i match {
case 1 ⇒ List("F1","Ibis","Mercury")
case 2 ⇒ List("B&B","YHostel")
case _ ⇒ List("HotelA","HotelB")

}
}
val approve = Predicate("approve"){
case l:List[String] ⇒

println ("approve: "+l.mkString(",
")+". [y,n]")

readChar() == ’y’
}
val book = Function("book"){
case l : List[String] ⇒

println ("Options: "+l.mkString(", ")+
". Which one? (1.."+l.length+")")

val res = readInt()
l(res-1)

}
val cancelB = Function("cancelB"){
case x ⇒ println ("canceling "+x+".")

}
val invoice = Function("invoice"){
case x ⇒ println ("invoice for "+x+".")

}

val pay = Predicate("paid"){
case x ⇒ if (x == "Ibis") {

println ("paid for Ibis")
true

}
else {

println ("not paid for "+x)
false

}
}

// Connector definition
val connector =
writer("req",List(Req("req1"),

Req("req2"))) ++
nexrouter("req",List("h1","h2","h3")) ++
transf("h1","h1o",srchHotel(1)) ++
transf("h2","h2o",srchHotel(2)) ++
transf("h3","h3o",srchHotel(3)) ++
nmerger(List("h1o","h2o","h3o"),"hs") ++
filter("hs","ap",approve) ++
sdrain("hs","ap") ++
transf("ap","bk",book,cancelB) ++
monitor("bk","inv",invoice) ++
filter("inv","paid",paid) ++
reader("paid",5)

connector.run()
}

Listing 1: Scala code for the Hotel Reservation system

4 http://www.scala-lang.org

http://www.scala-lang.org

Interactive Interaction Constraints 221

The code for the Hotel Reservation system is presented in Listing 1. The code
consists of a single object HotelReservation, which defines a Request inner class,
a method or constant value that returns an instance of a Predicate or Function
for each predicate and function, and a connector defined as the composition
of 14 sub-connectors. The sub-connector monitor is a channel with a function
that has side-effects but does not transform data. Instances of the Predicate
and Function classes can be equally created using class inheritance, defining the
methods check and calculate, respectively. The last line of the listing starts the
connector running. This triggers the consecutive execution of rounds until a state
with no solutions is reached. The code that interacts with the user via command
line is highlighted. The documentation of the API can be found online.5

6 Example: Transactional Connectors

This section presents three example connectors that coordinate transactions with
compensations. The examples are based on a chain of pairs (Fi, F

−1
i), where Fi

is some operation and F−1
i is a compensation that undoes the effect of Fi. A

successful transaction will pass data through each Fi in succession. If any in-
termediate step fails, then all compensations up to that point need to be run,
in reverse order. Thus, if F1 and F2 succeed, but F3 fails, then F−1

3 , F−1
2 , and

F−1
1 need to be run. The first example is based on traditional Reo connectors

and external components. Traditionally in Reo, external components operate
asynchronously and no external interaction occurs during the constraint solving
process. The second example is an adaptation of the first where the asynchronous
external components are replaced with synchronous transformer channels that
encapsulate the external interaction. The third example internalises the com-
pensation behaviour so that it is only accessible to the engine.

Ai

in

stopped

out

stop

Fi

F−1
i

oki

¬oki
A1 A2 An

in
stopped

out
stop

· · ·

Fig. 4. Asynchronous transactions in Reo

Fig. 4 presents a traditional Reo connector for coordinating the transaction
and its compensation. The left-hand side shows how to coordinate a pair of
components (Fi, F

−1
i), and the right-hand side shows how these can be composed

sequentially to form a larger transaction. Each connector Ai passes data input on
port in to Fi. In a subsequent step, Fi returns a result. If this satisfies the filter
oki, the value is passed to out, otherwise it is passed to F−1

i . In addition, a value

5 http://people.cs.kuleuven.be/~jose.proenca/reopp/doc

http://people.cs.kuleuven.be/~jose.proenca/reopp/doc

222 J. Proença and D. Clarke

can come from port stop and be passed to F−1
i to indicate that the transaction

failed upstream. They key point is that all Fi and F−1
i are asynchronous as far

as the Reo connector is concerned. Consequently, each part of the chain runs
in a separate round, and nothing guarantees that all parts will run. Thus the
connector does not really enforce that the transaction is atomic.

Si

in

stopped

out

stop

Fi oki

¬okiF−1
i

S1 S2 Sn
in

stopped
out
stop

· · ·

Fig. 5. Synchronous transactions via transformers

Fig. 5 presents a revised version of the connector that uses synchronous trans-
former channels Fi and F−1

i instead of components, as in the previous example.
These transformers perform the same external operations as their counterparts
above, but now they can be handled by the constraint engine. A consequence of
the fact that they are synchronous is that the entire connector Si is synchronous.
Indeed, the entire chain in the right-hand side of the figure is synchronous, thus
atomicity is regained.

Bi

in out
Fi[F−1

i] oki
B1 B2 Bnin out· · ·

Fig. 6. Synchronous transactions with built-in compensations

But we can do better. Fig. 6 shows an improved version. In this version,
each transformer is modified so that the compensation action F−1 is built into
the transformer and is run by the engine whenever the transaction fails. The
semantics of the connector is that it permits flow on all ports and only on all
ports. So the only possible flows permitted are the ones where each transaction
succeeds. In cases where this is not possible, such as when some oki is false,
the engine rollbacks all transformers through which data has passed by running
their compensations.

The main differences between the three approaches are summarised as fol-
lows: the first approach takes a multiple number of rounds to complete the
transaction, while the second and third approaches take only one round; and
the running of the compensation is handled by the connector in the first and
second approaches, but by the engine in the third approach. Two consequences
of having multiple rounds are that the intermediate steps are observable to the
external world and the transaction may get stuck in the middle. By compress-
ing everything into a single round, these problems are avoided, and the only
observables are completed transactions (modulo the fact that some actions are

Interactive Interaction Constraints 223

undone using compensations). Having the connector handle the running of the
compensations is potentially error-prone, even though it introduces a degree of
flexibility. Handling compensations within the engine simplifies the connector
and shifts responsibility for correctness to the engine.

An alternative approach to using Reo to coordinate (long-running) transac-
tions was presented by Kokash et al. [15]. This resembles the first approach above,
though the connector was more complicated as it also permitted the transaction
to be cancelled externally.

7 Related Work

Traditional approaches to implementing Reo [5,7,14] are based on pre-computing
an automaton describing all future behaviour of the Reo connector. This typi-
cally performs more work than is necessary and is rather inflexibility, specifically
because it eliminates all intensional information about the connector. Our ap-
proach is based on dynamically generating and solving logical constraints [11,8].
This permits more control over intensional aspects during runtime, which allows
more refined interaction with external components than was previously possible.

Montanari and Rossi express coordination as a constraint satisfaction prob-
lem, in a similar and general way [20]. They view networks as graphs, and use the
tile model to distinguish between synchronisation and sequential composition of
the coordination pieces. In our approach, we explore a more concrete coordina-
tion model, which not only captures the semantics of Reo, but also extends it
with external interaction, not found in Montanari and Rossi’s work.

Minsky and Ungureanu introduced the Law-Governed Interaction (LGI) mech-
anism [19], implemented in the Moses toolkit. The mechanism targets distributed
coordination of heterogeneous actors, enforcing laws that are defined using con-
straints in a Prolog-like language. The main innovation is the enforcement of
laws by certified controllers that are not centralised. Their laws, as opposed
to our approach, are not global, allowing them to achieve good performance,
while compromising the scope of the constraints. Communication between ac-
tors governed by laws and actors outside LGI is possible, but not the execution
of side-effecting code while checking constraints.

Abreu and Fiadeiro explore the coordination of interactions in service-ori-
ented systems using SRML, a Service Modelling Language [1]. Services are linked
with each other by connecting ports and referring to the protocol used to con-
nect them. SRML operate at the abstraction level of business modelling, using
asynchronous message passing and explicitly supporting service discovery. Our
approach differs from theirs as in our work orchestration is guided by a con-
straint solving process, interaction with services is transactional, and our global
constraints express more coordination patterns.

Our work falls within the implicit programming paradigm. Köksal et al. pro-
posed similarly to integrate the power of declarative SAT/SMT solvers non-
intrusively into sequential, imperative programs [17]. In contrast to this work,
our approach targets coordination languages, and depends upon a constraint
solver enhanced with interaction as a side-effect.

224 J. Proença and D. Clarke

Faltings et al. [13] explore interactive constraint satisfaction, which is a frame-
work for open constraint satisfaction in a distributed environment that enables
constraints to be added on-the-fly. There are a number of key differences be-
tween our work and theirs. The first is that our work focuses on the coordination
of components, separating the computation and coordination aspects, whereas
they aim purely at constraint satisfaction. Secondly, our work allow functions
and predicates to be defined externally to the constraint solver, whereas their
approach allows instead on-the-fly constraint generation. The former requires the
management of compensations for any external interaction that is not committed
to, where as the latter does not.

8 Conclusion and Future Work

This paper expanded upon the use of constraint solving as the basis of an en-
gine for coordinating components by introducing support for external interaction
during the constraint solving process. For this to make sense in terms of exter-
nally observable behaviour, certain calls to functions and predicates required
rollback or compensation to undo their effect. This means that the rounds of
constraint solving become transactional. In contrast to previous implementation
approaches for Reo connectors, our approach increases the degree of external in-
teraction possible in a connector, and transactional behaviour can be expressed
much more concisely as a consequence. In effect, we have lifted Reo’s notion of
synchrony as atomicity to synchrony as transactional atomicity. This means that
Reo’s synchronous connector semantics can be used to (visually) express trans-
actional behaviour, and interactive interaction constraints supply the bridge to
the underlying implementation.

As future work we first plan to experiment with heuristics to better guide the
constraint solver. One approach is to avoid the pre-processing phase by reducing
the original constraints over arbitrary data values to an SMT problem of a
simple theory. This approach will allow some external functions and predicates
to be internalised within the engine, thereby avoiding the need for rollback/
compensation. Secondly, we will combine the techniques described in this paper
with our earlier work on partial connector colouring [10], which optimises the
constraint satisfaction process by admitting partial solutions to the constraints.
This optimisation was experimentally demonstrated to increase scalability of the
engine. Finally, we plan to integrate our implementation into the existing open
source ECT tools for Reo [4], thereby making it available to developers.

References

1. Abreu, J., Fiadeiro, J.L.: A coordination model for service-oriented interactions.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052,
pp. 1–16. Springer, Heidelberg (2008)

2. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2003)
3. Arbab, F.: Reo: a channel-based coordination model for component composition.

Mathematical Structures in Computer Science 14(3), 329–366 (2004)

Interactive Interaction Constraints 225

4. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.-J., Proença, J.: Modeling, testing
and executing Reo connectors with the Eclipse Coordination Tools. In: Proceedings
of FACS (2008)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors
in Reo by constraint automata. Science of Computer Programming 61(2), 75–113
(2006)

6. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 59–64 (2010)
7. Changizi, B., Kokash, N., Arbab: A constraint-based method to compute semantics

of channel-based coordination models. In: ICSEA: Proceedings of the International
Conference on Software Engineering Advances (2012)

8. Clarke, D.: Coordination: Reo, nets, and logic. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 226–256.
Springer, Heidelberg (2008)

9. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and
context dependency. Science of Computer Programming 66(3), 205–225 (2007)

10. Clarke, D., Proença, J.: Partial connector colouring. In: Sirjani, M. (ed.)
COORDINATION 2012. LNCS, vol. 7274, pp. 59–73. Springer, Heidelberg (2012)

11. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Science of Computer Programming 76 (2011)

12. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

13. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artificial
Intelligence 161(1-2), 181–208 (2005)

14. Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.:
Automatic code generation for the orchestration of web services with reo. In:
De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592,
pp. 1–16. Springer, Heidelberg (2012)

15. Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running
business transactions. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1381–1382. ACM
(2009)

16. Köksal, A.S., Kuncak, V., Suter, P.: Scala to the power of Z3: Integrating smt
and programming. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 400–406. Springer, Heidelberg (2011)

17. Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. SIGPLAN Not. 47(1),
151–164 (2012)

18. Laburthe, F., Jussien, N.: CHOCO solver documentation (August 2012),
http://sourceforge.net/projects/choco/files/choco/2.1.5/choco-2.1.5/

choco-doc-2.1.5.pdf

19. Minsky, N.H., Ungureanu, V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering and Methodology 9(3), 273–305 (2000)

20. Montanari, U., Rossi, F.: Modeling process coordination via tiles, graphs, and
constraints. 3rd Biennial World Conference on Integrated Design and Process
Technology 4, 1–8 (1998)

21. Proença, J., Clarke, D.: Solving data-sensitive coordination constraints. CW
Reports CW637, Department of Computer Science, KU Leuven (February 2013)

http://sourceforge.net/projects/choco/files/choco/2.1.5/choco-2.1.5/choco-doc-2.1.5.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.5/choco-2.1.5/choco-doc-2.1.5.pdf

Towards Distributed Reactive Programming

Guido Salvaneschi, Joscha Drechsler, and Mira Mezini

Technische Universität Darmstadt
lastname@informatik.tu-darmstadt.de

Abstract. Reactive applications is a wide class of software that responds to user
input, network messages, and other events. Recent research on reactive languages
successfully addresses the drawbacks of the Observer pattern – the traditional
way reactive applications are implemented in the object-oriented setting – by
introducing time-changing values and other ad-hoc programming abstractions.

However, those approaches are limited to local settings, but most applications
are distributed. We highlight the research challenges of distributed reactive pro-
gramming and present a research roadmap. We argue that distributed reactive
programming not only moves reactive languages to the distributed setting, but is
a promising concept for middleware and distributed systems design.

Keywords: Functional-reactive Programming, Scala, Event-driven Programming.

1 Introduction

Reactive applications respond to user input, packets from the network, new values form
sensors and other external or internal events. Traditionally, reactive applications are
implemented by using the Observer design pattern. The disadvantages of this style,
however, have been studied for a long time now [7,15,13]. The major points of criti-
cism include verbosity, lack of static reasoning, and inversion of the logic flow of the
application.

A first solution proposed by researchers is to provide language-level support for the
Observer pattern. For example, in C# classes can expose events to clients beside fields
and methods. Other languages that provide advanced event systems include
Ptolemy [16] – which supports event quantification – and EScala [9] – which supports
event combination and implicit events.

A different approach is adopted by reactive languages that directly represent time-
changing values and remove inversion of control. Among the others, we mention Fr-
Time [7] (Scheme), FlapJax [15] (Javascript), AmbientTalk/R [12] (Smalltalk) and
Scala.React [13] (Scala). This idea originates from functional reactive programming,
which explored the semantics of time-changing values in the setting of (strict) func-
tional languages. Another source of inspiration for reactive languages can be found in
illustrious ancestors like the Esterel [4] and Signal [10] dataflow languages that focus
on realtime constraints. Reactive languages are a promising solution and active research
is ongoing in this field.

Reactive languages require careful design to avoid inconsistencies – referred to as
glitches [15] – that can arise in the update process of time-changing values. All reactive

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 226–235, 2013.
c© IFIP International Federation for Information Processing 2013

Towards Distributed Reactive Programming 227

languages proposed so far do not provide these guarantees in the distributed setting.
However, applications rarely span over a single host. Rather, most applications are dis-
tributed – the client-server architecture being the simplest case.

In summary, distributed reactive programming is an open challenge. Existing reactive
languages take into account distribution in the sense that they are capable of transmitting
events or propagating function calls among remote hosts that independently run a reac-
tive system. In this way, however, consistency properties, locally enforced by a reactive
programming system, are not guaranteed over reactive data flows that cross hosts [2].
We show that this limitation can lead to serious errors in the behavior of applications.
Despite reactive programming having huge potential as a means to coordinate complex
computing systems in a simple way, it struggles to succeed in this context. We argue
that the aforementioned limitation is one reason for this.

The contributions of this paper are the following:

– We analyze the drawbacks of the existing approaches and motivate the need for
reactive languages that uphold their guarantees in distributed applications.

– We propose a research roadmap for distributed reactive programming, including
a first solution that demonstrates the feasibility of this goal and can be used for
further design refinement and optimization.

Our vision is that distributed reactive programming can be a new way of structuring
distributed systems. It centers around the concept of Remote Reactives, remote entities
characterized by time-changing values, which clients can compose to model reactive
computations and effects that span across multiple hosts.

2 Motivation

In this section, we introduce the basic concepts of reactive programming, show its ad-
vantages over traditional techniques, and describe the challenges of achieving the same
result in a distributed setting.

Reactive Programming in a Nutshell. Reactive languages provide dedicated abstrac-
tions to model time-changing values. Time-changing values are usually referred to as
behaviors [7] or signals [13]. For example, in Figure 1 we show a code snippet in
Scala.React [13] that highlights the mouse cursor when it hits the borders of a win-
dow. In Scala.React, signals are time-changing values that are updated automatically;
vars are time-changing values that are directly modified. In the example, the position

signal models the time-changing value of the mouse position (Line 1). In Line 2, the
showCursorChoice var is declared, which is changed by the user settings (not shown) to
enable or disable the highlighting feature. In the rest of the paper, we generically refer
to vars and signals as reactives. Developers can build expressions upon reactives. In
Line 3 we create the isMouseOnBorders signal. It depends on the position signal and
evaluates to true if the current position overlaps the window border. The key point is that
reactive values that depend on other reactive values are automatically updated when any
of their dependencies change. For example, when the position of the mouse changes,

228 G. Salvaneschi, J. Drechsler, and M. Mezini

1 val position: Signal[(Int,Int)] = GUI.getMouse().position
2 val showCursorChoice: Var[Boolean] = Var(false)
3 val isMouseOnBorders = Signal{ overlap(position(), GUI.getWindowBorders) }
4 val shouldHighlight = Signal{ isMouseOnBorders() && showCursorChoice() }
5 observe(shouldHighlight) { value : Boolean => setHighlightVisible(value) }

Fig. 1. An example of reactive programming

any expression associated with the position signal is reevaluated. In our example, the
value of isMouseOnBorders is recalculated. This in turn causes the expression defined at
Line 4, which combines both the isMouseOnBorders signal and the showCursorChoice

var, to be reevaluated. Finally, every time this value changes, it is used to update the
highlighting state through the observe statement in Line 5.

A detailed comparison of reactive programming with the Observer pattern is out of
the scope of this paper. The advantages of this style over the Observer pattern have
been extensively discussed in literature. The interested readers can refer for example
to [7,15,13]. The main points are summarized hereafter. Callbacks typically have no
return type and change the state of the application via side effects. Instead, reactives en-
force a more functional style and return a value. As a result, types can guide developers
and prevent errors. More importantly, differently from callbacks, reactives are compos-
able, enhancing maintainability and software reuse. Finally, callbacks invert the logic
of the application. Instead, reactives express dependencies in a direct way, improving
readability and reducing the boilerplate code for callback registration.

Challenges of the Distributed Setting. As we have shown, reactive programming is
an appealing solution to implement reactive applications. As such, it is desirable to
move the advantages of reactive programming to a distributed setting, in the same way
as, historically, functions were generalized to remote procedure calls and local events
inspired publish-subscribe distributed middleware.

To discuss the challenges of this scenario, we present SimpleEmail, a minimal email
application. In SimpleEmail, the server keeps the list of the emails received for an ac-
count. The client can request the emails that were received within the last n days and
contain a given word and display them on the screen. The client highlights the desired
word in the text of each email. Since an email text can span over multiple screen pages,
it can be the case that there is no highlighted word on the current page, even if the
server returned that email. To make this case less confusing for the user, the client dis-
plays a warning message. A proof-of-concept implementation is presented in Figure 2.
We assume that reactive values can be shared with other hosts by publishing them on a
registry, similarly to Java RMI remote objects. These objects are referred to as Remote
Reactives (RRs). Clients can obtain a reference to RRs from the registry. For simplicity,
we do not distinguish between remote vars and remote signals and we assume that a RR
can be changed only by the client that publishes it.

The client (Figure 2a) publishes a RR that holds the word to look for (Line 2a) and
another one with the number of days n (Line 4a). These reactives are automatically
updated when the user inserts a new word or a new number in the GUI. The server
(Figure 2b) retrieves the word and the days (Lines 5b and 7b) and uses these values to

Towards Distributed Reactive Programming 229

filter the stored emails (Lines 9b-14b). It publishes the RR that holds the result
(Line 16b), which is in turn looked up by the client (Line 7a) and displayed in the GUI
(Line 9a). The client additionally combines the filtered list of emails with the searched
word to determine whether the word is visible on the first page (signal hInFirstPage,
Line 12a). This value is then used to decide, whether or not to display the alert (Line 16a)
informing the user that the search term is only visible on a different page.

Figure 3 models the dependencies among the reactive values in the SimpleEmail ap-
plication (the c – respectively s – subscript refers to the client – respectively server –
copy of a RR). Suppose, the user now inputs a different word. In the program, this
would update the daysc reactive. This change would be propagated to the server’s in-
stance dayss of the reactive, where it causes the reevaluation of the filteredEmailss

reactive. The new list of emails is then filtered with the current words search term and
the result is propagated back to the client to updates the display. Now suppose that,
instead of daysc, wordc is updated. This change is likely to propagate to hInFirstPagec

first, because the propagation of the value to words requires network communication.
As a result, hInFirstPagec is evaluated with the new word, but the old list of emails.
This can result in the word not being found on the current page and, in consequence,
the warning message being displayed. Only later, when the change propagated through
words, filteredEmailss and back to filteredEmailsc , hInFirstPagec reevaluates to
false and the warning is switched back off.

In summary, spurious executions can be generated, depending on the evaluation order
of the values in the graph. In our example, this issue only led to the erroneous display
of a warning message. However, it is easy to see that in a real system that involves
physical actuators, temporary spurious values can have more serious consequences. For
example, in a train control system, a rail crossing could be temporarily opened, letting
cars cross the railway while a train is approaching.

Temporary inconsistencies due to the propagation order are a known problem in
reactive languages, commonly referred to as glitches [7]. Current reactive languages
achieve glitch freedom by keeping the dependency graph of the reactive values topo-
logically sorted; reevaluations are triggered in the correct order, avoiding spurious val-
ues. More details on this technique can be found in [15,13]. Current reactive languages,
however, enforce glitch freedom only locally, but give no guarantees when the commu-
nication spans over several hosts as in the presented example. The fundamental point
is, that true distributed reactive programming cannot be achieved by naively connecting
the dots among single (individually glitch-free) reactive applications. On the contrary,
dedicated logic must ensure glitch freedom as a global property of the entire system.
Re-using topological sorting in the distributed setting would however force a single-
threaded, centralized execution of updates across the entire application – an approach
that we consider unacceptable. Next to finding and implementing a suitable remoting
mechanism for reactives, developing an acceptable solution for ensuring glitch free-
dom in a distributed reactive application is the main challenge in supporting distributed
reactive programming.

230 G. Salvaneschi, J. Drechsler, and M. Mezini

1 val word: Signal[String] = GUI.wordInput
2 publishRR{"word", word}
3 val days: Signal[Int] = GUI.daysInput
4 publishRR{"days", days}
5

6 val filteredEmails: Signal[List[Email]]] =
7 lookupRR("filteredEmails")
8

9 observe(filteredEmails) { showEmails(); }
10 observe(word) { setHighlightedWord(); }
11

12 val hInFirstPage : Signal[Boolean] = Signal{
13 isInFirstPage(word(), filteredEmails())
14 }
15

16 observe(hInFirstPage) {
17 setShowHighlightOnNextPageWarning()
18 }

(a)

1 val allEmails : Signal[List[Email] =
2 Database.emails
3

4 val word: Signal[String] =
5 lookupRR{"word"}
6 val days: Signal[Int] =
7 lookupRR{"days"}
8

9 val filteredEmails: Signal[List[Email]] =
10 Signal{ allEmails().filter(email =>
11 email.date < (Date.today() − days())
12 &&
13 email.text.contains(word())
14) }
15

16 publishRR{"filteredEmails", filteredEmails}
17

18

(b)

Fig. 2. The SimpleEmail application. Client-side (a) and server-side (b).

daysc dayss
words

filteredEmailss
filteredEmailschInFirstPagec

showWarning(..)

wordc

CLIENT SERVER

showEmails(..)

setHighlight(..) allEmailss

Fig. 3. Dependency graph among reactive values in the SimpleEmail application. Dashed arrows
indicate over-network dependencies, square nodes indicate observers with side effects.

3 A Research Roadmap

In this section, we design an initial solution for distributed reactive programming, de-
scribe our plans to improve upon it, and present possible application domains.

Distributed Reactive Programming. We formulate our solution as a distributed trans-
action [18], for which well-known algorithms are available (e.g. distributed 2PL). Since
persistency is not necessarily required, an implementation can leverage distributed soft-
ware transactional memories [17], which have been proved to efficiently scale up to
large-scale clusters [5]. A promising alternative for the implementation of our system is
the automatic code generation from a specification. The advantage of such an approach
is that an efficient and correct-by-construction distributed implementation is automati-
cally derived from a formal model [11,6]. A more detailed comparison with automatic
generation of distributed applications can be found in Section 4.

Towards Distributed Reactive Programming 231

The following operations are a sufficient, minimal set of primitive operations to drive
a distributed reactive system and must be executed transactionally. Without loss of gen-
erality, we only consider the case in which all the nodes in the distributed graph are
remote. Possible optimizations can take advantage of the fact that local reactives are
not visible by other participants.

A Participant Updates a RR Value. The participant starts a distributed transaction. The
change is propagated across the distributed graph, each participant updating the RRs
inside the same transaction. In case of a conflict between two transactions executing at
the same time, one transaction rolls back, restoring the previous values of all affected
reactives, and retries its execution. For this reason, the system requires separation of
purely functional update propagation among reactives and side effects in the same style
as Scala.React. The execution of the code preforming side-effects is deferred to after the
transaction has successfully committed, thereby ensuring glitch freedom even in case
a transaction has to be rolled back. Topological sorting of the dependency graph could
still be used inside the update transaction to prevent multiple recalculations of the same
functional parts. Doing so would, however, imply forcing all hosts’ local update threads
that are involved in the transaction to emulate a single-threaded execution. Ignoring the
topological order would exploit parallel processing capabilities of multiple hosts and
could even be used locally on multicore systems, but at the cost of multiple reevalua-
tions. An ideal solution would be designing a new algorithm, which incorporates both
concurrent updates of independent reactives (those that are incomparable in the topo-
logical order) and prevention of multiple recalculations of affected reactives. It is our
goal to provide this hybrid solution.

The case of a participant establishing a new dependency, either independently or as
the result of a reevaluation, can be considered a subcase of updating a reactive. Instead
of updating the reactive’s value, the participant updates the set of dependencies of the
reactive. It is even possible, to update both at once. This must be done transactionally
as well, to avoid interference with other changes. In addition, all graph modifications
must be checked to prevent the introduction of dependency cycles.

A Participant Reads a RR Value. Reading must also be transactional, to avoid incon-
sistent state between subsequent reads of different reactive values – some of which
could have been updated by a change propagation in the meantime. This can easily be
achieved by executing all the reads inside a transaction.

The solution sketched above allows a certain degree of parallelism between transac-
tions that do not interfere. In this sense, it is already an improvement over transferring
the algorithms available in literature to a distributed setting by adopting a naive, cen-
tralized execution, regardless of how much independencies in the topological ordering
are exploited. Our research plan is to use this solution as the first step to improve upon.
For example, as sketched above, it requires finding a performant way to check the de-
pendency graph for cycles. Based on the assumption that dependency changes are less
frequent than value updates, using a centralized master that keeps a representation of
the entire dependency graph would be a simple way to enable performant execution of
this validation while still providing an improvement over executing all updates from
a centralized coordinator. Still, this would imply a single point of failure and prevent
concurrent changes to the dependency graph. Our plan includes exploring better design

232 G. Salvaneschi, J. Drechsler, and M. Mezini

options that allow more decentralized approaches. Also, we expect to identify various
trade-offs between provided guarantees and processing speed, some of which are de-
scribed in the following paragraphs.

As long term goals, we envisage three application scenarios: Web applications, en-
terprise systems, and computing systems in an open environment. The remainder of this
section elaborates our visions for each of these.

Web Applications. The solution presented so far provides a general model that is valid
on distributed systems with an arbitrary number of hosts. This model directly applies
when several browsers share resources among each other through a server1. However,
we expect that in typical web applications only a client and a server share the RRs.
While the aforementioned model proves the feasibility of our research vision, we expect
that in a client-server model it can be significantly simplified, reducing the number
of messages sent over network and gaining in performance. For example, Javascript
applications enforce a single thread model, which solves the problem of synchronizing
between concurrent changes for free.

Enterprise Distributed Systems. We envisage a scenario in which distributed reactive
programming can be used to implement large-scale enterprise systems. In those en-
vironments, the consistency constraints required by distributed reactive programming
should be provided by a dedicated middleware in the same way e.g. the JMS middle-
ware provides guaranteed delivery and once-and-only-once semantics.

This research direction must take into account that enterprise software often does
not run in isolation, but operates inside containers, like Tomcat or JBoss. For example,
containers can provide persistence for Enterprise Java Beans (EJB). In a similar way,
RRs can be modeled by EJBs, whose consistency is supported by the container

Highly Dynamic and Unreliable Environments. Distributed systems pose a number
of challenges that include slowdown of network communication, node failures, commu-
nication errors and network partitioning. Those issues have been studied for a long time
by the distributed systems community. An open challenge is to define proper behavior
of a reactive system in such conditions. Proper language abstractions should support
dealing with those cases with clear semantics. For example, in case of network par-
titioning, the system should be able to restructure the distributed graph with only the
available hosts, but this clearly has an impact on the semantics of the application.

Another aspect we plan to explore is to relax the constraints as a possible reaction to
network performance degradation. Reactive programming has been successfully used in
the field of ambient-oriented programming [12], where systems are dynamic and unre-
liable and links can become slow. We envisage a scenario in which glitch-freedom guar-
antees can occasionally be switched off, in case maintaining them becomes too onerous.
Similarly to before, proper abstractions should be introduced to deal with this case.

Evaluation A primary contribution of our research is to provide a new conceptual tool
to support the design and the implementation of distributed software. The achievement

1 For example, the AtomizeJS distributed software transactional memory supports this
functionality, http://atomizejs.github.com/

Towards Distributed Reactive Programming 233

of such a goal is hard to measure numerically, so we mostly expect feedback from the
scientific community. More concretely, we plan to empirically evaluate our findings
along two dimensions: On the one hand, we want to evaluate the impact of our solu-
tion on the design of a distributed system. Since these phenomena have already been
observed in the local setting, we expect that static metrics can significantly improve, in-
cluding reduced lines of code, reduction of the number of callbacks, and increased code
reuse. On the other hand, we plan to evaluate the performances of our solution. Our
goal here is not to make it competitive with models that require less stringent consis-
tency guarantees, like publish-subscribe systems or complex event processing engines,
but to provide a solution with significant design advantages at a minimum performance
penalty.

4 Related Work

Due to space limitations, related work cannot be discussed extensively. Several lan-
guages implement concepts from reactive programming in various flavors. The inter-
ested reader can refer to [2] for an overview. None of them provides glitch-freedom in
the distributed setting. Among the existing reactive languages, AmbientTalk/R [12] is
the closest to our approach, and, to the best of our knowledge, it is the only one that has
been specifically designed to support distribution in a form similar to remote reactives.
In the remainder of this section, we point to the main research areas related to reactive
programming and summarize their relation with the subjects discussed in this paper.

Dataflow languages, like Esterel [4] and Signal [10] focus on provable time and
memory bounds. Differently form reactive languages and functional reactive program-
ming, reactive abstractions are typically second-order, to support compilation to effi-
cient finite state machines.

Self-adjusting computation [1] automatically derives an incremental version of an
algorithm. It mostly focuses on efficiency and algorithmic complexity of the incremen-
tal solution, while reactive programming focuses on language abstractions for time-
changing values.

The Implementation of distributed algorithms has been explored in form of code
generation from formal specifications of I/O automatons [11]. A similar approach [6]
generates the distributed programs from a description based on BIP (Behavior, Interac-
tion and Priority) models [3]. We believe that the core of a middleware for distributed
reactive programming can be conveniently specified in such a model and automatically
generated. Consistency properties like glitch freedom would be provided through the
synchronized state transitions offered by petri nets. However, we expect that the appli-
cation code that builds on top of such a middleware (i.e. on remote reactives) is still
written in a “traditional” language. As such, we believe it to be beneficial to allow pro-
grammers the implementation of all parts of their application seamlessly in their regular
language in the style of reactive programming.

Publish-subscribe systems [8] leverage inversion of control to loosely couple inter-
acting systems. Differently from publish-subscribe systems, we want to enforce a more
tight coupling in the change propagation, to transfer the advantages of the local reactive
semantics into the distributed setting.

234 G. Salvaneschi, J. Drechsler, and M. Mezini

Complex event processing (CEP) [14] is about performing queries over streams of
data. Similarly to reactive languages, changes in the data result in an update to de-
pendent values – in CEP, query results. Differently from reactive programming, CEP
expresses dependencies via SQL-like queries that are usually expressed as strings and
not integrated into the language.

Acknowledgments. This work has been supported by the German Federal Ministry
of Education and Research (Bundesministerium für Bildung und Forschung, BMBF)
under grant No. 16BY1206E and by the European Research Council, grant No. 321217.

References

1. Acar, U.A., Ahmed, A., Blume, M.: Imperative self-adjusting computation. In: POPL 2008,
pp. 309–322. ACM (2008)

2. Bainomugisha, E., Lombide Carreton, A., Van Cutsem, T., Mostinckx, S., De Meuter, W.:
A survey on reactive programming. In: ACM Comput. Surv. (2013) (To appear)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in bip. In:
Fourth IEEE International Conference on Software Engineering and Formal Methods, SEFM
2006, pp. 3–12. IEEE (2006)

4. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design, semantics,
implementation. Science of Computer Programming 19(2), 87–152 (1992)

5. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large
scale clusters. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2008, pp. 247–258. ACM, New York (2008)

6. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for auto-
mated distributed implementation of component-based models. In: Distributed Computing,
pp. 1–27 (2012)

7. Cooper, G.H., Krishnamurthi, S.: Embedding dynamic dataflow in a call-by-value language.
In: ESOP, pp. 294–308 (2006)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/
subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

9. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: EScala: modular event-driven
object interactions in Scala. In: AOSD 2011, pp. 227–240. ACM (2011)

10. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: A declarative language for synchronous
programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, Springer,
Heidelberg (1987)

11. Georgiou, C., Lynch, N., Mavrommatis, P., Tauber, J.A.: Automated implementation of
complex distributed algorithms specified in the ioa language. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 11(2), 153–171 (2009)

12. Lombide Carreton, A., Mostinckx, S., Van Cutsem, T., De Meuter, W.: Loosely-coupled
distributed reactive programming in mobile ad hoc networks. In: Vitek, J. (ed.) TOOLS 2010.
LNCS, vol. 6141, pp. 41–60. Springer, Heidelberg (2010)

13. Maier, I., Odersky, M.: Deprecating the Observer Pattern with Scala.react. Technical report
(2012)

14. Margara, A., Cugola, G.: Processing flows of information: from data stream to complex
event processing. In: Proceedings of the 5th ACM International Conference on Distributed
Event-Based System, DEBS 2011, pp. 359–360. ACM, New York (2011)

Towards Distributed Reactive Programming 235

15. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield, A.,
Krishnamurthi, S.: Flapjax: a programming language for ajax applications. In: OOPSLA
2009, pp. 1–20. ACM (2009)

16. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified, typed events. In: Vitek, J.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 155–179. Springer, Heidelberg (2008)

17. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10(2),
99–116 (1997)

18. Weikum, G., Vossen, G.: Transactional information systems: theory, algorithms, and the prac-
tice of concurrency control and recovery. Morgan Kaufmann Publishers Inc., San Francisco
(2001)

Typing Progress

in Communication-Centred Systems

Hugo Torres Vieira and Vasco Thudichum Vasconcelos

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. We present a type system for the analysis of progress in
session-based communication centred systems. Our development is car-
ried out in a minimal setting considering classic (binary) sessions, but
building on and generalising previous work on progress analysis in the
context of conversation types. Our contributions aim at underpinning
forthcoming works on progress for session-typed systems, so as to support
richer verification procedures based on a more foundational approach. Al-
though this work does not target expressiveness, our approach already
addresses challenging scenarios which are unaccounted for elsewhere in
the literature, in particular systems that interleave communications on
received session channels.

1 Introduction

In today’s ever-growing cloud infrastructure of computation, communication is
more and more of crucial importance. Communication is still of crucial impor-
tance even when considering multi-core machines, where processes may interact
via shared memory, since such machines will inevitably have to communicate
among them. It is then of vital importance to introduce mechanisms that sup-
port the development of correct communicating programs, given their wide dis-
semination, ranging from critical services, such as medical or financial, to those
helping people connect with family and friends. Focusing on communication,
there are at least two fundamental correctness properties one may be interested
in: that interacting parties follow a given communication protocol (fidelity) and
that the interaction does not reach a deadlock (progress).

Verification procedures, such as type systems, that statically ensure commu-
nicating programs enjoy the properties above can prove to be cost-effective, as
they save on software maintenance by preventing bugs from the start, and can
help to expedite the software development process. Several type systems have
been proposed that single out programs with correct communication behaviour,
out of which we distinguish session types, introduced by Honda et al. [8, 9]. Ses-
sion types focus on ensuring fidelity in systems where (single-threaded) protocols
are carried out between two parties, such as, e.g., a client and a server. Session
types are by now widely adopted as the basis of pragmatic typing disciplines,
targeting operating system design [5], middleware communication protocols [16]
and distributed object-oriented programming [7], just to mention a few. Session
types have also been generalised so as to consider multiparty interactions [3, 10].

R. De Nicola and C. Julien (Eds.): COORDINATION 2013, LNCS 7890, pp. 236–250, 2013.
c© IFIP International Federation for Information Processing 2013

Typing Progress in Communication-Centred Systems 237

Building on session types, a number of works were proposed that ensure
progress (e.g., [2–4]). This has proven to be a challenging task, in particular
regarding the expressiveness of the approaches, even when considering sophis-
ticated typing mechanisms. In this paper we present a typing discipline that
distils the basic ingredients necessary to prove progress, building on (classic)
session types. This work is not to be viewed as an exercise on expressiveness,
capturing every conceivable communication pattern: it fails to do so, even if we
are able to address challenging system configurations. Instead, our (far more
ambitious) goal is to introduce a foundational approach that will hopefully un-
derpin the development of forthcoming works on progress for communication
centred-programming based on session types.

At the basis of our development is the idea that a communication-centred
program that enjoys progress is embodied with a natural ordering of communi-
cations (or events). Building on this idea, and trying to use as few ingredients
as possible, we unify the notions of event and session type so as to characterise
the sessions and the ordering of events in a combined and novel way. To achieve
this we add to each communication in a session type an annotation that allows
to identify the (abstract) communication event that is associated to the (con-
crete) communication action described by the session type. Then, together with
a separate notion of overall ordering of events we are able to distinguish systems
that enjoy fidelity and progress.

Remarkably we are able to address challenging configurations (unaccounted
for elsewhere in the literature) where processes interleave communications in
received session channels, for instance to communicate on other sessions or to
initiate new ones. As an example, think of a (service) broker that must inter-
leave communications with a client and a server (not to mention other local or
remote resources), using (two binary) session channels that where shared (com-
municated) among the three parties. Our approach generalises previous work on
progress in the context of conversation types [3], a session-based type system that
addresses multiparty interaction. Also, differently from other session-types based
approaches, our type system works directly on the (standard) π-calculus [13],
exploiting notions from [3] and from a previous work on session types [17].

Motivating Examples. We illustrate our development by visiting a couple of
simple examples. Consider the system shown in Fig. 1 that specifies a basic
interaction. The Client process creates a new name chat and sends it on chan-
nel service which is read by Server. The synchronisation on service allows the
client and the server to share a private channel (chat) where the session will
take place. After synchronizing on service , the client proceeds by receiving from
channel chat a text message, after which, it sends another text message again on
channel chat . The Server process is (continuously �) waiting to receive in service
a channel, which instantiates message parameter y. Upon reception, it will then
send a text message on that channel, after which, to avoid waiting for the reply, it
delegates the rest of the session interaction on y by sending y on channel handle .
The Slave process is defined so as to (also continuously) receive a channel name

238 H.T. Vieira and V.T. Vasconcelos

Client � (νchat)service!chat .chat?s.chat !“bye”

Server � �service?y.y!“hello”.handle!y

Slave � �handle?z.z?s

System � Client | Server | Slave

Fig. 1. Greeting service code

from handle , and then receiving a text message in that channel. The System is
defined as the parallel composition of the three processes.

Notice we described the system using type information (e.g., “text message”),
taking fidelity for granted. Also, in the examples we use basic types (such as
string) although our technical development focuses exclusively on channel types.

It is straightforward to see that the system enjoys progress, as the interaction
supported by chat does not deadlock. However, we may already use this simple
example to convey some intuition on our typing approach. Consider for instance
process Slave that receives a channel name from handle and then communicates
in the received channel. We may characterise this usage of channel handle with
type ? (? String), where ? specifies reception, which may be read as “receives
a channel used to receive a string”, just like in a regular session type.

We distinguish (session) interactions carried out exactly once (linear, no races)
and service definitions that support several interactions (shared or unrestricted)
by annotating the type of handle accordingly, i.e., un ? (lin ? String), which
adds to the description that handle can be used zero or more times while the
received channel must be used exactly once (linearly).

Up to now we are using standard session type notions to characterise the
usage of a channel (see [17]). Building on the standards, we add information
that allows to characterise (in an abstract way) the moment in time when the
communication is to take place: the event. We say that the communication in
handle corresponds to some event in time e1, while the reception of the string
corresponds to event e2, and obtain the type e1 un ? (e2 lin ? String). Notice
that e2 necessarily takes place after e1 (hence, e1 and e2 are different events),
to represent which we use e1 ≺ e2 (read “e1 happens before e2”).

We are then able to characterise processes with both information on the chan-
nel usage and on the expected overall ordering of events, in particular Slave is
charaterized by the typing assumption handle : e1 un ? (e2 lin ? String) and or-
dering of events e1 ≺ e2. Notice that we do not refer to z in the type since
z is a name bound to the reception (handle?z). However, and crucially to our
approach, we do mention the event where z is involved (e2), and register it both
in the message type e2 lin ? String and in the event ordering e1 ≺ e2. This
will allow to crosscheck whether the name sent in handle has a corresponding
type so as to keep a sound (overall) ordering. Following the same lines we may
characterise process Server by the following typing assumptions.

handle : e1 un ! (e2 lin ? String)
service : e3 un ? (e4 lin ! String .e2 lin ? String)

Notice that Server’s usage of channel handle is dual to that of Slave (Server
outputs ! and Slave receives ?). Notice also that Server and Slave agree that

Typing Progress in Communication-Centred Systems 239

Client � (νchat)service!chat .chat?s.chat !“bye”

Proxy � �service?y.(νs)masterservice !s.s!y

Master � �masterservice?z.z?y.y!“hello”.handle!y

Slave � �handle?z.z?s

System � Client | Proxy | Master | Slave

Fig. 2. Greeting via proxy service code

handle is to be used unrestrictedly (un). Furthermore, both processes agree on
the moment in time when the communication in handle will take place (e1).
Lastly, both processes also agree on the message type e2 lin ? String , hence
Server also knows that the channel sent in handle is involved in e2.

We also have that service is used as an unrestricted input, associated to event
e3, with message type e4 lin ! String .e2 lin ? String . The message type captures
that the name received from service will be used to output a string (event e4)
and after (denoted as . like in session types) used to receive a string (event e2).
The last part is realized via the delegation of the session channel in handle ,
where the delegated usage is given by the message type associated to handle .

The ordering of events that Server expects is e3 ≺ e4 ≺ e1 ≺ e2, since the
process first receives from service (e3), then in the session channel (e4) and then
outputs in handle (e1), delegating the reception usage of the session channel
(e2) which necessarily takes places after the channel is sent (hence e1 ≺ e2).
Notice that Server interleaves communications in the received channel y and in
handle , addressed by our characterisation based on the fact that the ordering
of events (intertwined with channel types) mentions the events associated to
communicated names.

As for the characterisation of Client we have that it uses service with the
dual usage with respect to Server (Server inputs ? while Client outputs !)
and expects ordering e3 ≺ e4 ≺ e2 since it first outputs in service (e3), then
sequentially inputs (e4) and outputs (e2) in the session channel. Notice that al-
though the session channel (chat) is private to the Client, the expected ordering
mentions events where the private name is involved.

Using the usage and ordering information that characterise Server and Slave

we may characterise the system Server | Slave. Channel usage is sound since the
two usages of shared name handle are dual as mentioned before. The ordering of
events is sound since gathering e1 ≺ e2 and e3 ≺ e4 ≺ e1 ≺ e2 does not introduce
cycles in the overall order. Likewise for System since adding the characterisation
of the Client we have consistent usages (dual in service) and a sound total
ordering (obtained by gathering e3 ≺ e4 ≺ e1 ≺ e2 and e3 ≺ e4 ≺ e2). We are
then able to show that System enjoys (not only fidelity but also) progress.

We now consider a slight variation of the previous scenario, illustrated in
Fig. 2. The Client and Slave processes are exactly the same with respect to
Fig. 1. Between them we find a Proxy and a Master, where the Proxy is used
as an intermediary between Client and Master. The Proxy process starts a
session with the client (via service) and then starts another session with Master

(via masterservice), where the latter is used just to delegate the session channel

240 H.T. Vieira and V.T. Vasconcelos

P,Q ::= 0 (Inaction) | x!y.P (Output)
| P |Q (Parallel) | x?y.P (Input)
| (νx)P (Restriction) | �x?y.P (Replicated Input)

Fig. 3. Syntax of processes

associated to the interaction with the client (notice that the client and the proxy
only interact in the service synchronisation). The Master starts a session (via
masterservice) and receives in it the session channel used to interact with the
client. After that the Master process starts interacting with the Client via the
received channel (from then on just like the Server in the previous example).

We may also single out the System shown in Fig. 2 using our type system to
show it enjoys progress. Notice the Master process interleaves communications
in two received names, one in a session “initiation” and the other in a inner
session delegation, which presents no further challenge to our type system since
both cases are handled uniformly. Such configuration is unaccounted for in the
reference works on progress for sessions [2, 4].

In the rest of the paper we present our technical development, starting by the
definition of the process model, followed by the presentation of the type system
and associated results. To finish we discuss related and future work.

2 Process Model

In this section we present the syntax and semantics of the language of processes,
a fragment of the π-calculus [13, 15]. The syntax of processes is given in Fig. 3,
considering an infinite set of names Λ (x, y, . . . ∈ Λ). The (so-called) static
fragment of the process model is given by the inaction 0 that represents a process
with no behaviour, the parallel composition of processes P |Q that represents a
process where P and Q are simultaneously (concurrently) active, or the name
restriction (νx)P that represents a process that has a “private” name x (x is
bound in (νx)P). The dynamic (active) fragment of the language is given by
the communication prefixes: x!y.P represents a process that outputs name y in
channel x and then continues as specified by P ; x?y.P represents a process that
receives a name from channel x and then proceeds as P (y is bound in x?y.P);
�x?y.P represents a replicated input, i.e., a process able to continuously receive
a name from channel x and proceed as P .

In order to keep the setting as simple as possible, we decided not to allow
specifying alternative behaviour via summation, +. We believe however that our
development can be extended to consider summation along non-surprising lines.

The semantics of the language is defined via structural congruence and reduc-
tion relations, to define which we introduce some (standard) notions. We denote
by fn(P) the set of free names that occur in P . Also, we denote by P ≡α Q that
P and Q are equal up to a renaming of bound names. By P{x← y} we present
the process obtained by replacing all free occurrences of x in P by y.

Typing Progress in Communication-Centred Systems 241

P |0 ≡ P P1 |P2 ≡ P2 |P1 (P1 |P2) |P3 ≡ P1 | (P2 |P3) P ≡α Q =⇒ P ≡ Q

(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P P1 | (νx)P2 ≡ (νx)(P1 |P2) (x 	∈ fn(P))

Fig. 4. Structural congruence

x?y.P |x!z.Q → P{y ← z} |Q (R-Com)
P → Q

(νx)P → (νx)Q
(R-New)

�x?y.P |x!z.Q → �x?y.P |P{y ← z} |Q (R-Rep)
P → P ′

P |Q → P ′ |Q (R-Par)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
(R-Cong)

Fig. 5. Reduction relation

Structural congruence is defined as the least congruence over processes that
satisfies the rules in Fig. 4. Structural congruence allows to specify equivalent
classes of processes and supports the definition of the reduction relation focusing
on the interactions of the (basic) representatives of the equivalent classes.

The reduction relation over processes is given by the rules in Fig. 5, capturing
how processes “evolve” via communication. Rule (R-Com) captures the interac-
tion between an output and an input, where the output emits a name that is
received in the input (notice the communicated name z replaces the bound in-
put parameter in the continuation P). Rule (R-Rep) follows the same lines with
respect to the communication behaviour, the difference is that in the resulting
state the input is again ready to further synchronise. Aiming at a simple subject
congruence result, we do not consider the (original to the pi calculus) structural
congruence rule that introduces parallel copies of the replicated process, defining
instead unbounded behaviour via rule (R-Rep). The remaining rules close the
relation under language contexts — (R-New) for name restriction and (R-Par)
for parallel composition — and under structural equivalence classes.

3 Type System

In this section we present our type system, starting by introducing strict partial
orders, a crucial notion that allows us to single out well-formed communication
dependency structures of processes. We then present our type language which
unifies the notions of events and of session types descriptions, and our type
system where processes are characterised via their usage of channels (as usual)
and of their ordering of events. Finally, we present our results, namely typing
preservation under reduction (Theorem 1) and progress (Theorem 2).

The idea of ordering events to guarantee progress is not new (cf., [2, 4, 11, 12])
and seems in fact an excellent mechanism to single out sound communication

242 H.T. Vieira and V.T. Vasconcelos

p, p1, p2, . . . ::= ! (Output)
| ? (Input)
| τ (Synchronisation)

L, L1, L2, . . . ::= end (No interaction)
| e lin p T.L (Session)

T, T1, T2, . . . ::= L (Linear)
| e un p T (Shared)

Γ, Γ1, Γ2, . . . ::= · (Empty)
| Γ, x : T (Assumption)

Fig. 6. Syntax of types and typing contexts

dependency structures. In our approach, we introduce event orderings and ses-
sion types in a combined and uniform way, aiming at minimising the number of
ingredients required to prove progress of communicating processes. We thus find
the strict partial orders defined next at the root of our development.

Strict Partial Orders. A strict (or irreflexive) partial order ≺ over a set E is a bi-
nary relation that is asymmetric (hence irreflexive) and transitive. We call E the
set of events, and we let e, e1, e2, . . . range over E . Furthermore we distinguish
two events, and call them end and (, that form the “leaves” of the communica-
tion dependency tree (since strict partial orders do not admit reflexive pairs, we
require two elements to form the “leaf” pair of the relation).

We make use of the following notions on partial orders. The support of a
partial order ≺ is the set of elements of E that occur in ≺, defined as follows.

supp(≺) � {e | ∃e1.(e1, e) ∈≺ ∨ (e, e1) ∈≺}
The support is used in our typing rules so as to allow us to pick “fresh” events,
i.e., events that are not referred to by the relation. The relation obtained by
adding the least event e to ≺ is denoted by e+≺. Notice that if e is not in the
support of ≺ and ≺ is a strict partial order, then so is e +≺.

e +≺ � ≺ ∪{(e, e1) | e1 ∈ supp(≺)}
The relation obtained by removing an element e from ≺ is denoted by ≺\ e.
Notice that if ≺ is a strict partial order, then so is ≺\ e.

≺\ e � {(e1, e2) | (e1, e2) ∈≺ ∧ e �= e1 ∧ e2 �= e}
The strict partial order ≺ relation obtained by the union of two strict partial
orders ≺1 and ≺2 is denoted by ≺1 ·∪ ≺2. Notice that ·∪ is a partial operation
(undefined when the plain union of the relations introduces cycles). We use ·∪ to
gather the communication dependency structures of, e.g., two parallel processes.

Types. Having defined the notion of strict partial orders of events we proceed
to the presentation of the type language whose syntax is given in Fig. 6. Our
types extend session types [8, 9] with event annotations, and also exploit notions
introduced in previous work on session types [17] and conversation types [3].

We use polarities, p, to capture communication capabilities: ! captures the
output capability, ? captures the input capability and τ captures a synchronisa-
tion pair (cf., [3]). Types are divided in two main classes, shared and linear. The

Typing Progress in Communication-Centred Systems 243

former captures the exponential usage of channels, i.e., channels where (commu-
nication) races are admissible (intuitively, think of services that may be simul-
taneously provided and requested by several sites). The latter captures linear
usage of channels, where no races are allowed (in the service analogy, the single-
threaded protocol between server and client in a service instance). A shared
type e un p T specifies a polarity p that captures a communication capability, an
event e so as to create the association between the communication action and
the abstract notion of event, and an argument type T that prescribes the dele-
gated behaviour of the communicated channel. The description of a linear type
e lin p T.L follows the same lines, except for the continuation L which specifies
the behaviour that takes place after the action captured by e lin p T . Linear types
are terminated in end, meaning no further interaction is allowed on the channel.

Notice that our types build on the notion of abstract events, differently from
other related approaches (cf., [2–4]) that resort to channel names (and communi-
cation labels) to order communication actions. Notice also our types structurally
resemble “classic” session types, differing in the introduction of the event iden-
tifier, crucial to our approach, the polarity annotation that allows us to avoid
polarised channels, and the linear/unrestricted annotation that allows us to avoid
separate typing contexts for shared and linear channels and separate typing rules
for linear/unrestricted argument type of communications.

We next define some auxiliary notions over types used in our typing rules.
The set of elements of E that occur in a type T is denoted by events(T).
Notice that events in messages (argument types) are not included.

events(T) �

⎧⎨
⎩

e ∪ events(L) if T = e lin p T1.L
{end} if T = end
{e} if T = e un p T1

The binary relation over E present in a type T is denoted by T ↓. If each linear
prefix in T has a distinct event e then it is immediate that T ↓ is a strict partial
order. We use T ↓ to single out the order of events prescribed by a type, which
essentially is a (single) chain of events in the case that T is a linear type.

T ↓ �

⎧⎨
⎩

e+ (L↓) if T = e lin p T1.L
{(end,()} if T = end
{(e,()} if T = e un p T1

We introduce a predicate that is true for types that do not specify pending
communication actions.

matched(T) �

⎧⎨
⎩

matched(L) if T = e lin τ T1.L
true if T = end or T = e un ?T1

false otherwise

Matched linear communication actions are captured by τ annotated types. As for
shared communication actions, we focus only on unmatched output actions and
thus only shared inputs are matched. We will clarify this notion in the definition
of splitting (Fig. 8) and in the characterisation of active processes in the context
of our main result (Theorem 2), for now it suffices to say that matched shared
communications are ?-annotated.

244 H.T. Vieira and V.T. Vasconcelos

Typing contexts. The syntax of typing contexts is given in Fig. 6. We assume by
convention that, in a typing context Γ, x : T , name x does not occur in Γ . Also, we
use Γend to abbreviate a typing context ·, x1 : end, . . . , xk : end for some k ≥ 0 and
x1, . . . , xk. We introduce some auxiliary predicates over typing contexts to single
out typing contexts that refer only to unrestricted and matched communications.

We denote by Γun contexts that include only shared communications, defined
as Γun ::= · | Γ ′

un , x : end | Γ ′
un , x : e un !T . Such contexts are used to qualify

the exponential resources that a replicated input may use. Since more than one
copy of the continuation of a replicated input may be simultaneously active,
there must be no linear behaviour present (to avoid communication races). We
also exclude shared inputs in Γun so as to avoid nested replicated inputs. In-
tuitively, if we admit nested service definitions then, to guarantee progress, we
would also require that every service is called at least once (in such way ac-
tivating all nested service definitions) or characterise progress of open systems
by inserting them in the “right” context (cf., [4]). We focus on closed systems
where all communications are matched, i.e., typed in matched contexts. We lift
the matched predicate over types to typing contexts in the expected way: we
write matched(·, x1 : T1, . . . , xk : Tk) if matched(Ti) for all i such that 1 ≤ i ≤ k.

Splitting and Conformance. We now introduce two notions crucial to our de-
velopment, namely splitting (inspired by [1]) that explains how behaviour can
be decomposed and safely distributed to distinct parts of a process (e.g., to the
branches of a parallel composition), and conformance that captures the desired
relation between typing contexts and strict partial orders.

We say a typing context Γ conforms to a strict partial order ≺, denoted by
conforms(Γ,≺), if all event orderings prescribed by the types in Γ are contained
in ≺, thus ensuring that the events associated with the communication actions
described by the types are part of the overall ordering.

conforms(Γ,≺) �

⎧⎨
⎩

true if Γ = ·
conforms(Γ1,≺) if Γ = Γ1, x : T and T ↓⊆≺
false otherwise

Splitting is defined for both types and typing contexts, defined via three opera-
tions over linear types, shared types and typing contexts. We write T = T1 ◦T2 to
mean that type T is split in types T1 and T2, and likewise for Γ = Γ1 ◦Γ2. Linear
type splitting, shared type splitting and context splitting are given by the rules
in Figs. 7–9. Linear type splitting supports the decomposition of a synchronised,
τ , session type (including continuation) in the respective dual capabilities !, ?,
via rule (L-Dual-1) and its symmetric (L-Dual-2). Notice L = L1 ◦L2 is defined
only when matched(L). Essentially, linear type splitting allows to decompose a
matched session type in its two dual counterparts (see, e.g., [6]).

Shared type splitting decomposes shared communication capabilities in two
distinct ways, depending on whether the polarity of the type to be split is ? or
!. A shared input is split in a shared input and either in an output or another
input, via rules (S-In-1) and its symmetric (S-In-2). Intuitively, an input that
is decomposed in two inputs allows to type processes that separately offer the

Typing Progress in Communication-Centred Systems 245

end = end ◦ end (L-End)

L = L1 ◦L2

e lin τ T.L = e lin !T.L1 ◦ e lin ?T.L2
(L-Dual-1)

L = L1 ◦L2

e lin τ T.L = e lin ?T.L1 ◦ e lin !T.L2
(L-Dual-2)

Fig. 7. Linear type splitting

p ∈ {?, !}
e un ?T = e un ?T ◦ e un p T (S-In-1)

p ∈ {?, !}
e un ?T = e un p T ◦ e un ?T (S-In-2)

e un !T = e un !T ◦ e un !T (S-Out)

Fig. 8. Shared type splitting

· = · ◦ · (C-Empty)

Γ = Γ1 ◦Γ2

Γ, x : T = Γ1, x : T ◦Γ2
(C-Left)

Γ = Γ1 ◦Γ2

Γ, x : T = Γ1 ◦Γ2, x : T
(C-Right)

Γ = Γ1 ◦Γ2 T = T1 ◦T2

Γ, x : T = Γ1, x : T1 ◦Γ2, x : T2
(C-Split)

Fig. 9. Context splitting

input capability (e.g., a service that is provided by two distinct sites), and an
input that is decomposed in an output and an input allows to type processes
that offer the dual communication capabilities (e.g., a service provider and a
service client). A shared output is split in two shared outputs — rule (S-Out)
— which, intuitively, allows to type processes that offer the output capability
separately (e.g., like two service clients). Input capabilities may be further split
so as to “absorb” several output capabilities and be distributed in several input
capabilities, and output capabilities may also be further split to be distributed
in several output capabilities. Notice type splitting (both linear and shared)
preserves the argument types so as to guarantee the dual communication actions
agree on the type of the communication.

Context splitting allows to split a context in two distinct ways: context entries
either go into the left or the right outgoing contexts — rules (C-Left) and its
symmetric (C-Right) — or they go in both contexts — rule (C-Split). The latter
form lifts the (type) behaviour distribution to the context level, while the former
allows to delegate the entire behaviour to a part of the process, leaving no
behaviour to the other part. To lighten notation we use Γ1 ◦Γ2 to represent Γ
such that Γ = Γ1 ◦Γ2 (if such Γ exists). Notice that, given Γ1 and Γ2, there is
at most one Γ such that Γ = Γ1 ◦Γ2.

Typing System. We may now present our type system which characterises pro-
cesses in terms of their usage of channels and of their overall ordering of events,
as captured by judgement Γ ;≺ � P where Γ describes channel usage and ≺
gives the ordering of events. We say process P is well-typed if Γ ;≺ � P is the
conclusion of a derivation using the rules in Fig. 10.

246 H.T. Vieira and V.T. Vasconcelos

Γend; {(end,�)} � 0
(T-Inact)

Γ1;≺1 � P Γ2;≺2 � Q

Γ1 ◦Γ2,≺1 ·∪ ≺2 � P |Q (T-Par)

Γ, x : T ;≺ � P matched(T)

Γ ;≺ � (νx)P
(T-New)

Γ, x : L, y : T ;≺ � P e /∈ supp(≺)

Γ, x : e lin ?T.L; e+≺ � x?y.P
(T-LIn)

Γ, x : L;≺ � P e /∈ (supp(≺) ∪ events(T))

(Γ, x : e lin !T.L) ◦ y : T ; e+ (≺ ·∪ T ↓) � x!y.P
(T-LOut)

Γun , y : T ;≺ � P e /∈ supp(≺)

Γun , x : e un ?T ; e+≺ � �x?y.P
(T-UIn)

Γ ;≺ � P e /∈ (supp(≺) ∪ events(T))

(Γ, x : e un !T) ◦ y : T ; e+ (≺ ·∪ T ↓) � x!y.P
(T-UOut)

Fig. 10. Typing rules

We comment on the rules in Fig. 10. Rule (T-Inact) types the inactive process
with a context that associates end to (any set) of channel names and with the
“leaf” ordering (the relation with just one pair (end,()). Rule (T-Par) types
parallel composition by typing each branch with a slice of the context, obtained
via splitting, and with a sub-ordering (such that the union of the sub-orderings
is a strict partial order). So, the two branches of the parallel composition may
freely refer different channels but they must agree in a sound overall order-
ing. Rule (T-New) types name restriction by typing the restricted name with a
matched type (no unmatched communications). Notice the ordering expected for
the interactions in the restricted name is kept in the conclusion, so as to charac-
terise the abstract communication dependencies of the process, which includes
(an abstraction of) the communication dependencies of bound names.

Communication prefixes are typed in separate rules depending on the type
of the subject of the communication — notice however that mixing linear and
shared types in the same typing context avoids introducing rules that depend on
the type of the object of the communication. Rule (T-LIn) types the input on a
channel x with linear usage by typing the continuation process considering the
continuation session type L for x, the argument type T for the input variable y
and ordering ≺. We single out a fresh event e with respect to the continuation
(e �∈ supp(≺)) that is used to specify the type of the input, together with the
respective ? polarity, argument type T and continuation L. We build a new order
from≺ by setting e as the least element (given by e+≺) since any communication
in the continuation depends on the input (hence is greater than e). Notice that
the communications in the continuation include the ones that involve the received
name, characterised by T and ordered by ≺. Notice also that ≺ is recorded in
the conclusion, so as to (also) capture the communication dependencies involving

Typing Progress in Communication-Centred Systems 247

the received name. This is crucial to our approach so as to address processes that
interleave communications in received names.

Rule (T-LOut) types the output in a channel x with linear usage by typing
the continuation process with the continuation session type L and ordering ≺.
The conclusion records the type of the output using a fresh event e with respect
to the continuation (ordered by ≺) and also with respect to the type delegated
in the communication T (e �∈ supp(≺) ∪ events(T)). The (linear) session type
in the conclusion is thus specified using e, the argument type T , the respective
! polarity and continuation L. Event e is also recorded in the ordering of the
output as the minimum event e + (≺ ·∪ T ↓), since any communication in the
continuation, along with any delegated communication capabilities, depends on
the output (hence, are greater than e). We use T ↓ to extract the (chain of)
events prescribed by T . The conclusion records the delegated type T via splitting
(Γ, x : e lin !T.L) ◦ (y : T) as y may be used (dually to T) in Γ .

The description of rule (T-UOut) follows the same lines, the only differences
is that a shared type captures the output and there is no continuation usage for
channel x. We rule out uses of x in the continuation to exclude processes that
offer the input in the continuation of an output (at the cost of excluding processes
that perform more than one shared output over the same channel in sequence).
Our rationale for shared communications is that at least one (replicated) shared
input matches all corresponding outputs, so the input cannot be activated after
the output (to avoid cluttering the rules this led us to also exclude two outputs
in sequence, a configuration which is not problematic per se). Rule (T-UIn) types
shared inputs that are necessarily replicated, so as to support the rationale that
a shared input is able to match all respective inputs. Since more than one copy
of the continuation of the input may be simultaneously active we require the
resources shared by all copies to be shared outputs (Γun).

The reason why we exclude (nested) shared inputs, as explained earlier, is
to avoid the situation where a shared output is blocked due to a shared input
(of lesser order) that is blocking the matching shared input (of greater order)
which is not matched. To avoid forcing that all shared inputs are matched we
exclude nested shared inputs in general. Notice however that the argument type
T may be linear or shared, in which case T may actually specify a shared input
(a nested input that is activated via interaction). Since the behaviour of the
name received in the input is only “published” via a corresponding output, this
particular case of nested shared inputs is naturally supported.

The main restriction of the presented work is the absence of a general form of
recursion, which, conceivably, involves considering the repetition of the overall
ordering throughout the unfolding, handled e.g., via a dedicated typing context
that we believe can be engineered in conformance to our approach.

Results. We may now present our results, namely that typing is preserved under
reduction (Theorem 1) and that a specific class of well-typed processes (those
where all communications are matched) enjoy progress (Theorem 2). We start by
mentioning some auxiliary results, namely that we may show that conformance is
ensured between the typing context and the strict partial order in all derivations,

248 H.T. Vieira and V.T. Vasconcelos

a sanity check that ensures the conditions imposed by our rules (e.g., picking
freshness of events) are enough to keep conformance invariant in a derivation. We
may also show two standard results used in the proof of Theorem 1, namely that
typing is preserved under structural equivalence and under name substitution.

Before presenting our first main result (Theorem 1) we introduce two auxiliary
notions that characterise reduction of contexts and of strict partial orders. As
expected from a behavioural type system, as processes evolve so must the types
that characterise the processes. Reduction for contexts is defined as follows.

· → · Γ, x : e lin p T.L→ Γ, x : L Γ1 → Γ2 =⇒ Γ1, x : T → Γ2, x : T

A context reduces if it holds an assumption on a linear type prefix, which reduces
to the continuation so as to mimic the analogous behaviour in processes. Also, the
empty context reduces (to the empty context) so as to capture synchronisations
in processes on restricted channels and on channels with shared usage, thus
introducing reflexivity in context reduction since no change is required to capture
such synchronisations. Reduction for partial orders is defined as follows.

≺ → ≺ e ∈ supp(≺) =⇒ ≺→ ≺\ e
Strict partial order reduction is also reflexive. This allows to capture synchroni-
sations that depend on shared inputs. Notice that the ordering for shared inputs
is kept invariant via reduction (since the replicated process is kept throughout re-
duction), thus capturing synchronisations that depend on shared inputs (as they
will take place repeatedly for each activation of the continuation of the shared
input). Reduction is also defined by removing an event of the ordering, so as to
capture one shot synchronisations. Since such synchronisations may depend on
shared outputs, they are not necessarily associated with the minimum event in
the ordering. We may now present our first main result, where Γ1;≺1→ Γ2;≺2

denotes Γ1 → Γ2 and ≺1→≺2.

Theorem 1 (Preservation). If Γ1;≺1 � P1 and P1 → P2 then Γ1;≺1→ Γ2;≺2

and Γ2;≺2 � P2.

The proof follows by induction on the length of the derivation of P1 → P2 in
expected lines. The theorem says that typing is preserved under process reduc-
tion, up to a reduction in the context and ordering. Fidelity is an immediate
consequence of Theorem 1, as usual. We now turn our attention to the result
on progress. In order to define “live” processes (processes that should reduce)
we introduce the (standard) notion of active contexts, noted C[·], defined as
C[·] ::= · | (P | C[·]) | (νx)C[·]. A context C[·] is a process with a hole · under a
number of parallel compositions and restrictions. We say a process P is active
if it has a (non-replicated) communication prefix in an active context, defined
as follows active(P) � ∃C[·], x, y,Q. P ≡ C[x!y.Q] ∨ P ≡ C[x?y.Q]. Notice
the definition of active process rules out replicated inputs. So, we consider stable
processes (processes that do not reduce but are not errors) to be processes where
a number of (replicated) shared inputs are active. We now state our second main
result that says an active and well-typed (matched) process reduces.

Theorem 2 (Progress). If active(P), Γ ;≺ � P and matched(Γ) then P → P ′.

Typing Progress in Communication-Centred Systems 249

The proof follows by induction on the size of ≺. The proof invariant is that for
every event either there is a synchronisation pair of lesser order or every active
prefix of lesser order is a replicated (shared) input. Theorem 2 attests our typing
discipline ensures progress of active processes, including processes that interleave
communications on received channels.

4 Concluding Remarks

We have presented a typing discipline for the analysis of progress in session-
based communication-centred systems. Our work exploits notions introduced
in [3] (e.g., the τ polarity) and in [1] (e.g., the splitting relation), allowing to
type systems specified in standard π-calculus. This is in contrast with related
approaches, where session channels are equipped with polarities (see, e.g., [6])
or where channels have two endpoints (see, e.g., [17]), or or where sessions are
established via specialised initiation primitives (see, e.g., [9]). Also, we uniformly
handle communication of linear and shared channels (when they are the object
of the communication) via lin and un annotations introduced in [17]. However,
this is not the case for communications on linear and shared channels (when
they are the subject of the communication).

A cornerstone of our development is the progress analysis technique intro-
duced in [3], where message types already specify the orderings expected for the
communicated names, thus providing the basic support for the interleaving of
communications on received names. We depart from [3] by unifying the channel
usage and event ordering in a single type analysis. Moreover, our orderings build
on abstract events and do not refer channel identities (nor labels) differently
from [2–4], which allows us to relate events in received names (via an abstract
event) with others. This is crucial to address the interleaving of received names
in a more general way, allowing us to address scenarios out of reach of the above
mentioned works [2–4]. By combining session types and events in the same type
language, inspired by [14], we are able to rely on usual session-based reasoning.
Our approach differs from the preliminary ideas presented in [14] that combines
session types with a typing discipline that relies on type simulation [11], in that
our verification system is completely syntax driven and does not rely on extra-
imposed conditions (neither on type simulation nor on model-checking).

In our approach, the sound communication dependency structure is captured
in a minimal way, via a (strict) partial order of events, which combined with the
event-equipped session types, allow us to single out systems that enjoy progress.
We acknowledge that our development does not address full-fledged recursion.
However, the principles we use can conceivably be lifted to consider recursion,
considering the repetition of the event ordering (handled by a dedicated typing
context, as usual) or (well-founded) infinite orderings, an engineering exercise
we leave to future work. We also plan to use the ideas presented in this paper
to type progress in multiparty conversations.

On a pragmatic (vital) level, we may show that the type checking procedure
is decidable (considering bound names are type annotated) and we are confident

250 H.T. Vieira and V.T. Vasconcelos

that a type inference procedure can be extracted from our type system. While
decidability attests the type system is worth mentioning, type inference makes it
more interesting. It supports the verification of systems without burdening the
development process, thus contributing to a cost-effective increase of reliability.

Acknowledgments. We acknowledge support of the project PTDC/EIA-CCO/
117513/2010 and thank Pedro Baltazar and Lúıs Caires for fruitful discussions.

References

1. Baltazar, P., Caires, L., Vasconcelos, V.T., Vieira, H.T.: A type system for flexible
role assignment in multiparty communicating systems. In: Proceedings of the TGC
2012. LNCS. Springer (to appear, 2013)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 418–433. Springer, Heidelberg (2008)

3. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411(51-52),
4399–4440 (2010)

4. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On Progress for Structured
Communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912,
pp. 257–275. Springer, Heidelberg (2008)

5. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication in
singularity OS. In: Proceedings of the EuroSys 2006, pp. 177–190. ACM (2006)

6. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3),
191–225 (2005)

7. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular
session types for distributed object-oriented programming. In: Proceedings of the
POPL 2010, pp. 299–312. ACM (2010)

8. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the POPL 2008, pp. 273–284. ACM (2008)

11. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

12. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In:
Proceedings of the STOC 1980, pp. 70–81. ACM (1980)

13. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I and II.
Inf. Comput. 100(1), 1–77 (1992)

14. Padovani, L.: From lock freedom to progress using session types. In: Proceedings
of the PLACES (to appear, 2013)

15. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes.
Cambridge University Press (2001)

16. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of software
components using session types. Fundam. Inform. 73(4), 583–598 (2006)

17. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)

Author Index

Bortolussi, Luca 1

Cerone, Andrea 16
Clarke, Dave 211
Cogumbreiro, Tiago 31
Coppo, Mario 45
Craß, Stefan 121

de Boer, Frank S. 181
De Meuter, Wolfgang 196
de Palma, Noël 75
Dezani-Ciancaglini, Mariangiola 45
Drechsler, Joscha 226

Given-Wilson, Thomas 60
Gorla, Daniele 60
Gueye, Soguy Mak Karé 75

Harnie, Dries 196
Hennessy, Matthew 16
Henrio, Ludovic 90
Huet, Fabrice 90

István, Zsolt 90

Jaghoori, Mohammad Mahdi 181
Joskowicz, Gerson 121

Kim, Junwhan 105
Kühn, Eva 121

Lanese, Ivan 136
Latella, Diego 1

Marek, Alexander 121
Mariani, Stefano 151
Martins, Francisco 31
Massink, Mieke 1
Merro, Massimo 16
Mezini, Mira 226
Mohamedin, Mohamed 166

Nobakht, Behrooz 181

Omicini, Andrea 151

Padovani, Luca 45
Palmieri, Roberto 105, 166
Philips, Laure 196
Pinte, Kevin 196
Proença, José 211

Ravindran, Binoy 105, 166
Rutten, Eric 75

Salvaneschi, Guido 226
Scheller, Thomas 121

Vasconcelos, Vasco Thudichum 31, 236
Vieira, Hugo Torres 236

Yoshida, Nobuko 45

Zavattaro, Gianluigi 136

	Preface

	Organization

	Of Tuples, Towers, Tunnels,
and Wireless Sensor Networks

	References

	Table of Contents

	Stochastic Process Algebra
and Stability Analysis of Collective Systems

	1 Introduction
	2 A Socialisation Level Based Crowd Dynamics Model
	3 Bio-PEPA and Fluid Flow Analysis
	4 Bio-PEPACrowdModel
	5 Numeric/Symbolic Stability Analysis
	6 Results
	7 Discussion and Further Work
	References

	Modelling MAC-Layer Communications
in Wireless Systems

	1 Introduction
	2 The Calculus
	3 Reduction Semantics and Contextual Equivalence
	4 Extensional Semantics
	5 Full Abstraction
	6 Conclusions and RelatedWork
	References

	Coordinating Phased Activities
while Maintaining Progress

	1 Introduction
	2 Related Work via an Example
	3 Syntax and Operational Semantics
	4 Type System and Results
	5 Conclusion and Further Work
	References

	Inference of Global Progress Properties
for Dynamically Interleaved Multiparty Sessions

	1 Introduction
	2 The Calculus of Multiparty Sessions
	3 A Tutorial to Progress Inference
	4 Progress Inference
	5 Related Work
	6 Conclusions and Future Work
	References

	Pattern Matching and Bisimulation

	1 Introduction
	2 Concurrent Pattern Calculus
	3 Behavioural Theory
	3.1 Barbed Congruence
	3.2 Labelled Transition System
	3.3 Bisimulation
	3.4 Soundness and Completeness of Bisimulation

	4 On Variations of Pattern Matching
	5 Conclusions and Future Work
	References

	Component-Based Autonomic Managers
for Coordination Control

	1 Coordinating Autonomic Loops
	1.1 The Need for Coordination Control
	1.2 Coordination as Discrete Control of Components

	2 Background: Components and Reactive Control
	2.1 Component Model
	2.2 Reactive Languages and BZR

	3 Designing Controllable AMs
	3.1 Design of an AM
	3.2 Controllable AMs

	4 Coordinated Assembly of Controllable AMs
	4.1 Coordination Behaviors, Objective, and Controller
	4.2 Hierarchical Architecture
	4.3 Change Coordination Policy

	5 Case Study: Coordinating Administration Loops
	5.1 Description of the Case Study
	5.2 Modelling and Control for Coordinating the AMs
	5.3 Experiments
	5.4 Reusability of Models: Integrating the Dvfs Manager

	6 Related Work and Discussion
	7 Conclusion
	References

	Multi-threaded Active Objects

	1 Introduction
	2 Multi-active Object Programming Model
	2.1 Assumptions and Design Choices
	2.2 Defining Groups
	2.3 Dynamic Compatibility

	3 A Calculus of Multi-active Objects
	3.1 Syntax and Runtime Structures
	3.2 Operational Semantics
	3.3 Scheduling Requests

	4 Evaluation
	5 Comparison with Related Work
	6 Conclusion
	References

	Scheduling Open-Nested Transactions
in Distributed Transactional Memory

	1 Introduction
	2 Preliminaries and System Model
	3 The DATS Scheduler
	3.1 Motivations
	3.2 Abstract and Object Level Dependencies
	3.3 Scheduler Design

	4 Implementation and Experimental Evaluation
	5 Related Work
	6 Conclusions
	References

	Peer-Based Programming Model
for Coordination Patterns

	1 Introduction
	2 Peer Model
	2.1 Peer
	2.2 Wiring
	2.3 Flow Identifier

	3 Split/Join Integration Pattern
	4 Meta Model and Domain Specific Language
	5 Related Work
	6 Conclusion
	References

	Decidability Results for Dynamic Installation
of Compensation Handlers

	1 Introduction
	2 Primitives for Compensations
	2.1 Syntax
	2.2 Operational Semantics

	3 Termination Undecidability for Nested Compensations
	4 Decidability for Parallel and Replacing Compensations
	5 Related Work and Conclusion
	References

	Probabilistic Modular Embedding
for Stochastic Coordinated Systems

	1 Introduction
	2 Background
	2.1 Sequential and Modular Embedding
	2.2 Expressiveness of Modular Embedding
	2.3 Formal Tools for Probability: The “Closure” Operator

	3 Probabilistic Modular Embedding
	3.1 Probabilistic Setting Requirements
	3.2 Formal Semantics

	4 PME vs. ME: Testing Expressiveness on Case Studies
	5 Related Works
	6 Conclusion and Future Works
	References

	ByteSTM: Virtual Machine-Level
Java Software Transactional Memory

	1 Introduction
	2 Design and Implementation
	2.1 Metadata
	2.2 Memory Model
	2.3 Write-Set Representation
	2.4 Atomic Blocks
	2.5 Garbage Collector
	2.6 STM Algorithms

	3 Experimental Evaluation
	3.1 Test Environment
	3.2 Micro-Benchmarks
	3.3 Macro Benchmark
	3.4 Summary

	4 Conclusions
	References

	The Future of a Missed Deadline

	1 Introduction
	2 Programming with Deadlines
	2.1 Case Study: Fredhopper Distributed Data Processing

	3 OperationalSemantics
	3.1 Local Transition System
	3.2 Global Transition System

	4 Implementation
	5 Related Work
	6 Conclusion and Future Work
	References

	Event Loop Coordination
Using Meta-programming

	1 Introduction
	2 Related Work
	2.1 Event Loop Encapsulation
	2.2 Component-Based Software Architectures

	3 Motivating Example
	3.1 AmbientTalk
	3.2 Android

	4 Problems
	5 Elector
	5.1 Model
	5.2 Instantiation for Android and AmbientTalk

	6 Preliminary Results
	6.1 Specific Improvements to Elector for Android and AmbientTalk
	6.2 Comparison of the Clicker Applications

	7 Conclusion and FutureWork
	References

	Interactive Interaction Constraints

	1 Introduction
	2 The Need for Interaction
	3 Coordination via Interaction Constraints
	4 Solving Interactive Constraints
	4.1 Pre-processing
	4.2 Evaluation Model

	5 Implementation
	5.1 Caching and Compensating
	5.2 Strategies
	5.3 Scala Implementation

	6 Example: Transactional Connectors
	7 Related Work
	8 Conclusion and Future Work
	References

	Towards Distributed Reactive Programming

	1 Introduction
	2 Motivation
	3 A Research Roadmap
	4 Related Work
	References

	Typing Progress
in Communication-Centred Systems

	1 Introduction
	2 ProcessModel
	3 Type System
	4 Concluding Remarks
	References

	Author Index

