
Towards an Engineering-Based Research

Approach for Enterprise Architecture: Lessons
Learned from Normalized Systems Theory

Philip Huysmans and Jan Verelst

Normalized Systems Institute, University of Antwerp, Antwerp, Belgium
{philip.huysmans,jan.verelst}@ua.ac.be

Abstract. The emerging field of enterprise engineering provides a
promising outlook for positioning relevant research. Enterprise Archi-
tecture frameworks which are frequently used in practice, but are often
criticized from a research perspective, can be positioned in this field. The
challenge for the enterprise engineering field is to provide a framework to
improve such frameworks using a rigorous scientific approach. This paper
aims to contribute to addressing this challenge by proposing components
for a research framework which focuses on applying engineering insights
to enterprise architecture. It first explores how current enterprise archi-
tecture frameworks handle issues relevant for engineering (i.e., complex-
ity, change and integration). It then introduces additional components
which could contribute towards a more systematic approach. These com-
ponents are derived from the way the Normalized Systems Theory was
developed, and successfully introduced engineering standards into the
design software architecture.

Keywords: Enterprise Architecture, Enterprise Engineering, Normal-
ized Systems.

1 Introduction

Enterprise engineering is an emerging field which can benefit from many re-
search approaches. One approach is to consider frameworks, methods and anal-
ysis techniques in the context of traditional engineering sciences. While certain
issues faced in an organizational context will not be addressed by this approach,
it limits the scope of issues to a more systematic analysis. Examples of typical
issues which are addressed by engineering sciences are complexity, change and
integration. These issues are very relevant for enterprises as well.

Integration is an often-recurring theme in many organizational research do-
mains. It refers to the need of an organization to operate as a unified whole,
which can be guided in a strategic direction (cf. management research) or is rec-
ognized as a distinct brand by customers (cf. marketing research). Within the
information systems research domain, the integration issue becomes most appar-
ent in Business/IT alignment research [1]. Even without considering supporting
IT functions, organizations need to be able to integrate their product portfolio,

X. Franch and P. Soffer (Eds.): CAiSE 2013 Workshops, LNBIP 148, pp. 58–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Towards an Engineering-Based Research Approach 59

the production processes used to create these products, and the organizational
structures which execute these processes. These different components are gen-
erally considered to increase in complexity over time. First, more sophisticated
products are needed to avoid a competition based solely on price, while leads for
example to the servitization of products (i.e., bundling products and services)
[2]. Second, the demand for increased quality (e.g., TQM) and responsiveness
(e.g., JIT) requires more complex production processes. Third, globalization and
frequent mergers and acquisitions often result in more complex organizational
structures, or require a complex reorganization to obtain a simpler structure.
Fourth, IT systems has been described to become increasingly complex, as de-
scribed by Lehman’s laws [3]. Additionally, organizations need to be able to
respond quickly to changes in their environment in order to maintain a compet-
itive advantage [4,5]. Moreover, changes cannot be considered to be individual
or isolated. Rather, it is claimed that different changes need to be applied at
a steady pace in order to adequately react to contemporary markets [4,5]. This
means that it is difficult to describe a stable state of an enterprise to use as a
starting point for change, and that different change projects can interact with
each other.

Within the enterprise engineering field, enterprise architecture frameworks
can be considered to contain the most advanced knowledge to address these
issues. The ANSI/IEEE 1471-2000 standard defines architecture as “the funda-
mental organization of a system, embodied in its components, their relationships
to each other and the environment, and the principles governing its design and
evolution” [6]. This definition distinguishes between descriptive and prescriptive
perspectives on enterprise architectures. In a descriptive perspective, the rep-
resentation of the structure of elements and the relationship between them is
the main contribution of an architecture. This perspective is usually associated
with a blueprint of an organization as a system. In a prescriptive perspective,
the design of organizational artifacts is guided by specifying principles or regu-
lations which limit the design freedom for individual artifacts. By adhering to
these principles, a well integrated system will be designed. Various enterprise
architecture frameworks are explicitly descriptive (e.g., “enterprise architecture
is a set of descriptive representations of an enterprise” [7]) or prescriptive (e.g.,
“enterprise architecture is a coherent whole of principles, methods, and mod-
els that are used in the design and realization of an enterprise’s organizational
structure, business processes, information systems and infrastructure.” [8]).

Both types of enterprise architecture framework propose to deal with the
identified issues of complexity, change and integration in different ways. Cer-
tain authors claim that, because of the radical differences between two types of
approaches, they are complementary instead of comparable (e.g., [9]). In this
paper, we explore how current approaches deal with the issues of integration,
complexity and change, and provide an outlook on future research directions
to works towards a more deterministic approach. Notwithstanding their differ-
ences, similarities between enterprise architecture frameworks can be observed.
Therefore, we first explore some general characteristics of enterprise architecture



60 P. Huysmans and J. Verelst

frameworks in Section 2. Next, we describe more in-depth how the identified
issues are addressed in two mainstream enterprise architecture frameworks in
Section 3, in order to describe the current state of the field more in-depth. We
then discuss in Section 4 how current research initiatives attempt to advance the
enterprise engineering field by explicitly applying engineering concepts to soft-
ware, process and organizational domains. Following this discussion, we propose
research directions which are more closely related to a traditional engineering
approach to address current research gaps in Section 5.

2 How Complexity, Integration and Change Are Handled
in Enterprise Architectures

2.1 Reducing Complexity by Applying Abstraction

Enterprise Architectures comprise a large amount of concepts, entities and vari-
ables, which cannot be retained or managed at once. Frameworks aim to reduce
complexity by creating abstractions from real-world artifacts by creating models
[10]. According to Bernus et al. [8], complexity can be measured using a function
of the number of elements and relations in a system. Following this definition,
complexity can indeed be reduced by omitting classes of elements and relations.
As a result, smaller and simpler models can be created, which focus explicitly
on a certain aspect and neglect other aspects. Various abstraction mechanisms,
such as perspectives, viewpoints, areas of concern, dimensions, etc. are used to
limit the scope of a certain class of models or principles [11]. This approach can
aid understandability and enable easier communication between stakeholders in
the organization, which is indeed considered to be an important advantage of
descriptive enterprise architecture frameworks. However, the application or as-
piration of enterprise architecture frameworks is not limited to communication.
Enterprise architecture frameworks (especially prescriptive ones) are applied to
design organizations and supporting systems as well [8,12]. During design, cer-
tain aspects of a system cannot be abstracted without considering their impact.
Certain authors therefore argue that enterprise architecture design principles
should be augmented with standards and guidelines [13]. In this way, each ar-
chitectural layer can be designed by adhering to a specific set of guidelines.

2.2 Achieving Integration

Enterprise architecture frameworks originated based on the need for integration
between the strategic orientation of an organization and its concrete operation.
The identification of the need for such an integrated view can be traced back
to organizational theory [14]. It was observed that the formal structures, goal
orientations and time orientations between sales, research, and production di-
visions in large industrial organizations were very different from each other. A
higher degree of differentiation between divisions was found to be inversely re-
lated to the degree of integration of the organization. While the differentiation



Towards an Engineering-Based Research Approach 61

of the divisions was explained as a reaction to the variety of requirements from
their environment, the effective performance of the organization requires the in-
tegration of the outcomes of every division [14]. Various authors have identified
organization-wide communication and decision-making as crucial preconditions
for this integration [15,16]. Consequently, any organization-wide approach such
as the specification of a strategic plan or an architecture can be considered as a
contribution to integration and alignment [17].

However, when integration is considered to be more specific (as in: integration
between architectural layers), contributions are less frequent. Most frameworks
focus on the specification of the different layers which need to be defined, and
modeling of the separate layers. As discussed above, this is mainly aimed at the
reduction of complexity. Less focus is on the integration between layers. Most
publications on enterprise architecture research therefore report on contributions
which can be located on a single layer, while few authors address integrating
multiple layers [18]. The capability to deal with the relations between model
elements on various levels of the enterprise architecture is also referred to as
traceability. Wegmann considers this traceability to be essential for enterprise
architecture, as it makes the integration between different levels explicit. How-
ever, he acknowledges that, while enterprise architecture frameworks should be
created to enable this traceability, it is difficult to clearly establish and maintain
between the levels [19].

2.3 Dealing with Change

A specific distinction between the handling of change can be observed be-
tween descriptive and prescriptive enterprise architecture frameworks. Descrip-
tive frameworks consider an organization as a static system, at a given moment
in time. The models created for this static system are referred to as as-is mod-
els. When changes need to be introduced, a new version of the framework (i.e.,
a to-be version) is created, which specifies a future static state. Through gap
analysis, change projects can be defined which guide the organization from its
as-is to to-be state. However, a method to implement these changes is often out
of scope for these frameworks [7].

Prescriptive frameworks, on the other hand, claim to focus more explicitly on
providing guidance for change. According to the ANSI/IEEE STD 1470-2000
definition, principles should be defined to govern both the design and evolution
of enterprise architecture. Other authors consider the very nature of architec-
ture (and hence, principles) to be the limitation of design freedom [20]. However,
many of the frameworks suggest to create company-specific principles, without
providing a way to evaluate the applicability of such principles in other contexts.
This limits the generalizability of these principles, and obstructs their system-
atic application. Nevertheless, this is exactly what is expected from a mature
enterprise engineering field.



62 P. Huysmans and J. Verelst

3 Exploring Specific Enterprise Architecture Frameworks

In this section, we explore whether the Zachman and TOGAF enterprise ar-
chitecture frameworks provide systematic guidelines to deal with complexity,
integration and change.

3.1 Zachman

The Zachman framework [21,7] is an enterprise architecture framework which is
often referenced amongst practitioners and researchers. According to several au-
thors, the Zachman framework has the widest adoption in enterprise architecture
projects [22,23]. Moreover, it is often used as a basis for evaluating, establishing
and customizing other frameworks [23]. Some other frameworks literally position
themselves as extensions based on the Zachman framework (e.g., FEAF [24]).
Therefore, it is important to understand how the Zachman framework is origi-
nally developed. Otherwise, assumptions can be made based on which incorrect
solutions for the identified enterprise architecture issues can be suggested. The
Zachman framework deals with change and complexity as described in Section 2
for descriptive frameworks: it uses abstraction in different perspectives and di-
mensions to reduce complexity, and proposes to develop different versions of the
framework to deal with changes. In order to achieve integration between models
in different cells, different mechanisms are described: constraints, dependencies,
and model transformations.

Constraints: The models from each perspective (i.e., each row) have a different
set of constraints they need to adhere to [7]. For example, the models in the
scope row are subjected to usability constraints (e.g., utility of the artifact),
while models in the technology row are subjected to constraints from the state
of the art of the used implementation platform. These constraints are additive
across the different perspectives: constraints of a lower row also limit the models
from higher rows. For example, the technological constraints on the technology
models (e.g., only webservices are allowed) will also impact the system model,
which will need to structure the system using services. When a constraint in a
lower row is inconsistent with a model defined in a higher row, “the designers
who are responsible for the two rows must initiate a dialog to determine what
must be changed and to ensure that no gap in expectations exists between the
different perspectives” [7]. Consequently, it is argued that the issue of conflicting
constraints can be handled by communication.

Dependencies: It is acknowledged that the different cells describe abstraction
of the same underlying organization, and that dependencies between the cells
have an impact. At a minimum, the cells are considered to be related to every
other cell in the same row [7]. If a change in the structure of one cell affects
the structure of another cell, a dependency between these cells exists. More-
over, such dependencies can occur not only within a row, but also between rows.



Towards an Engineering-Based Research Approach 63

The framework however does not provide guidance to determining the possible
impacts between models from different cells. It is however acknowledged that the
challenge during designing a model “is to design each while understanding the
integrity of all others to avoid being surprised by undesirable side effects appear-
ing long after it is possible to contain them” [7, p.595], and that understanding
and storing the dependencies would “constitute a very powerful capability for
understanding the total impact of a change” [7, p.603].

Model Transformations: While the idea of building IT systems using the Zach-
man framework is mainly claimed by other authors, Sowa and Zachman already
mention the idea of model transformations [7]. For example, Pereira and Sousa
elaborate on the notion of model transformations by specifying which models
are used as input for certain cells [25].

While these mechanisms acknowledge the need for integration, they lack concrete
guidelines to achieve such integration. Rather, they either suggest ad-hoc solu-
tions (i.e., handling constraints through communication), admit that no solutions
exist (cf. dependencies), or provide no detailed discussion (cf. model transfor-
mation). Consequently, the Zachman framework can be considered as a purely
descriptive framework, which does not aim to provide prescriptive guidelines.

3.2 TOGAF

Contrary to the Zachman framework, TOGAF [12] explicitly proposes to define
principles to guide the development of different architectures. However, these
principles are considered to be organization-specific. The provided principles are
considered to be examples, which makes them less relevant to evaluate in a
broader context. TOGAF is based on four architecture domains: business archi-
tecture, applications architecture, data architecture and technical architecture.
Instead of focusing on the end products of the architecture, TOGAF focuses on
the process to develop the different architectures. In order to develop these archi-
tectures, TOGAF suggests an Architecture Development Method (ADM). The
ADM is usually considered to be the most important component in TOGAF.
Therefore, TOGAF is generally considered to be a process-oriented framework,
instead of a product-oriented framework such as Zachman.

TOGAF does specify the “architectural input” which are required for the
different phases in the ADM. However, given the absence of a clear approach for
integrating different architectures, no concrete way of working can be described.
For example, applications and data need to be mapped to physical technological
artifacts in phase D. A detailed step in the method description is then: “12.4.6:
Resolve Impacts Across the Architecture Landscape” [12]. However, no further
details are provided on how to resolve these impacts. Therefore, it is not clear
how, for example, conflicting principles need to be resolved or dealt with.

TOGAF explicitly aims to be a starting point for developing an enterprise
architecture, but needs to be extended with other methods. For example, it



64 P. Huysmans and J. Verelst

proposes to use Service Oriented Architecture-related methods to design the IT
architecture. Other researchers have reported on research efforts towards this
goal as well [26]. Nevertheless, TOGAF itself provides little guidance for the
actual design of enterprise architecture artifacts.

4 Suggestions for Prescriptive EA Components

A current lack in enterprise architecture frameworks is the availability of pre-
scriptive guidelines for designing organizational artifacts. Descriptive frameworks
do not focus on providing prescriptive guidelines, and prescriptive frameworks
either suggest organization-specific guidelines, or focus on defining a process to
design architectures, without elaborating on the actual designed artifacts. In or-
der to address this lack, we propose several components in this section which are
based on the research initiatives related to Normalized Systems [27,28,29]. The
theory on Normalized Systems implies a highly structured approach to software
architectures, based on fine-grained modular structures and the systematic reuse
of building blocks called elements. The resulting software architectures exhibit
behavior that we consider quite different from less structured approaches. More
specifically, the result can be considered more deterministic. Determinism is re-
lated to evolvability (i.e., impacts are easily identifiable as all applications share
the same fine-grained modular structure), reuse (i.e., all applications consist of
instantiations of the same elements), correctness (i.e., because all applications
are based on the same elements, every bug only needs to be corrected once), and
reliability and performance (i.e., the investment optimizing an element is eco-
nomically feasible due to the systematic reuse of the elements). Consider for ex-
ample how application development is made more deterministic: first, it requires
the elements to be built in a certain technology environment, which requires
highly advanced expertise in design of software architecture. Next, however, is a
phase that is of remarkably lower complexity or expertise levels: building appli-
cations. It suffices to identify the required instances of elements, and performing
the required manual coding. There is no architectural design phase in building
these applications, as the design is already incorporated in the elements. This
makes the development process quite similar for all applications, leading to in-
creasing reuse of knowledge about the elements, applications and development
process. In this way, Normalized Systems Theory has contributed to resolving
wicked issues in software engineering regarding complexity, change and integra-
tion. As such, it can be considered a useful candidate to explore for dealing with
these issues in the enterprise architecture field.

The components presented here had an essential role in developing the Nor-
malized Systems theory, but are not only applicable to software architecture.
They have emerged based on more generally applicable engineering knowledge
[27], not on specific software architecture knowledge. Moreover, they have al-
ready been applied to the fields of business process design [30] and enterprise
architecture [31]. Therefore, we suggest the use of these components as a basis
for a research framework for enterprise engineering.



Towards an Engineering-Based Research Approach 65

4.1 Modularity Guidelines

Even though originating from systems theory the modularity concept has caught
the attention of engineers, managers and researchers in a large variety of fields
[32]. Modularity is defined as a property of a complex system, whereby the
system is decomposed into several subsystems (i.e., modules). Obviously, each
of these modules ultimately must cooperate with other modules in order to
ensure the adequate functionality of the system as a whole. The interaction of a
module with its external environment should be exhaustively and unambiguously
documented in its interface. The interface describes the inputs required by the
module to perform its part of the functionality, and the output it will provide
to its external environment. As soon as such an interface is designed, one may
learn about the intermodular dependencies, i.e., what does a module require
from the other modules to perform its own functionality and what is the impact
of a change in the module design for other modules.

From a modularity perspective good modular design is characterized by: (a)
low intermodular coupling (i.e., few intermodular dependencies), and (b) high
intramodular cohesion (i.e., strongly related and dependent elements within a
module). From a practical point of view good modular design implies that: (a)
changes in the design of one module have no or only a limited impact on the
design of other modules, and (b) the function of one module can be studied in
more or less isolation from the rest of the system. Consequently, a well-designed
modular system enhances the comprehensibility and decreases the complexity of
the overall system.

Enterprise architectures can be considered to be modular structures [33,34,10].
On each architectural layer, artefacts are defined which provide functionality
required on higher layers, and use functionality from lower layers. Their pre-
scriptive design should then be guided by modularity principles. Modularity has
already been proposed by several authors to guide enterprise architectural design
[33,34]. Unfortunately, good modular design is far from trivial because many ar-
chitectural decisions have to be taken. Therefore, more in-depth guidelines are
needed which demonstrate how modularity guidelines should be applied in an
enterprise architecture context. Hence, a theory which prescribes principles to
guide the design of a good modular design is highly desirable. For instance, Nor-
malized Systems theory relies on modularity principles to define more specific
software-related principles for achieving an evolvable software structure.

4.2 Preventing Combinatorial Effects

When more insight is gained in the modular structure of enterprise architec-
ture, more specific concepts which build on modularity can be introduced. For
example, combinatorial effects have been identified as the main obstacle for
achieving evolvability in software architectures in Normalized Systems Theory.
A combinatorial effect occurs when the effort required to apply a certain change
increases with the size of the system. While combinatorial effects have initially
been identified at the software level, subsequent research has identified them at



66 P. Huysmans and J. Verelst

the business process level and enterprise architecture level as well [30,31]. At the
business process level, the modular structure has been described as consisting
of tasks and their compositions (i.e., process flows). Combinatorial effects have
been identified at the level of both the task and process flow levels, and a set of
guidelines has been formulated to prevent such combinatorial effects [30]. Conse-
quently, these guidelines can be evaluated and elaborated upon. The resulting set
of guidelines can be used to deterministically design business processes without
combinatorial effects in any context. Similar to Normalized Systems Theory on
the software level, the design can be called deterministic since it needs to adhere
to guidelines which have been shown to introduce combinatorial effects when vi-
olated, without any assumptions regarding the specific organizational context in
which they are applied. At the enterprise architecture level, modular structures
have been identified as well, and combinatorial effects have been described [31].
These combinatorial effects have been grouped in two categories. A first category
describes so-called horizontal combinatorial effects, which affect artifacts within
a single enterprise architecture layer. Combinatorial effects at the software level
or business process level are examples of such horizontal combinatorial effects.
A second category describes vertical combinatorial effects. Vertical combinato-
rial effects can be caused on any layer, but have an impact on other layers. For
example, design decisions at the application level have been observed to impact
the organizational level [31]. Such combinatorial effect show why the abstraction
in current prescriptive enterprise architectures frameworks may be insufficient.
As discussed above, prescriptive enterprise architecture frameworks apply ab-
straction by defining principles on different layers. This implies that issues on
each layer can be addressed by principles on that layer. This approach cannot
adequately deal with vertical combinatorial effects. As a result, complementary
efforts are required.

4.3 Functional—Constructive Gaps

General Systems Theory (GST) studies the general behavior and characteristics
of systems. The functional and constructional perspectives on a system are fun-
damentally different conceptualizations of a system [35]. The functional perspec-
tive is concerned with the external behavior of the system [36]. This perspective
is adequate for the purpose of using or controlling a system. Consequently, the
actual construction of the system is not relevant. Instead, the focus is on how this
system interacts with its environment. Therefore, knowledge of the required in-
put variables, transfer function and output variables are key components of this
perspective. The input and output variables represent which interactions occur
with the environment. The transfer function describes how the input variables
are transferred into output variables. This transfer function can be adjusted by
control variables, which can alter the behavior of the system. This perspective
uses so-called black box models to represent a system.

In contrast, the constructional perspective describes what a system really is
[37,38]. In this perspective, knowledge about the composition (i.e., which com-
ponents constitute the system) and structure (i.e., how these components are



Towards an Engineering-Based Research Approach 67

related) is important. Consequently, a fundamentally different kind of model
is needed to represent this perspective. This type of model is called a white
box model. Such models represent the construction and operation of a system.
Analogously to functional decomposition, constructional decomposition can be
applied to study the subsystems of a complex system.

Both perspectives need to be integrated: a functional requirement needs to be
brought about by a constructional design. However, this relation is not straight-
forward. Therefore, a so-called functional—constructive gap exists, which needs
to be bridged by a certain design. Prescribing such designs has proven to be
extremely difficult. Nevertheless, further insight in such approaches is valuable,
since an enterprise architecture could be considered as a series of functional—
constructive gaps. On each layer of an enterprise architecture, different models
are created in both a functional and constructive perspective. Insight in how
models from both perspectives can be related to each would provide a better
way to approach the integration issue in enterprise architectures. Normalized
Systems theory has previously been described as a transformation from elemen-
tary functional requirements to a constructive software design [28].

4.4 Developing Domain-Specific Patterns

Certain authors argue that a domain-specific approach is required for the spec-
ification of prescriptive guidelines, because substantial differences exist between
various domains. Such principles can be published in the form of patterns, which
describe generic solution for a class of domain problems. This can be considered
to be a middle ground between the stance that enterprise architecture principles
can only be organization-specific, as discussed above, and that generally applica-
ble principles exist, but have not yet been specified sufficiently. A domain-specific
approach is increasingly feasible because business processes are currently being
standardized in several sectors. Previously, organizations have developed their
own business processes for a very diverse range of domains, including human
resources, accounting, finance, order management, logistics and production. The
software supporting these business processes was therefore also relatively dif-
ferent between organizations. Many custom-built systems were produced, and
software packages needed extensive customizations to make them fit for the
organization’s processes. These idiosyncratic business processes made it expen-
sive to develop sufficiently generic and flexible building blocks at the level of
granularity of services because the cost could not be spread over multiple orga-
nizations and/or projects. It has been noted that “domain analysis is invariably
conducted within one organization so that transfer of components between do-
mains is difficult” [39]. However, recently a number of indications that organiza-
tions are starting to standardize their processes are occurring. Such indications
are, amongst others, (a) increased adoption of enterprise software packages such
as ERP systems; (b) initiatives to develop reference models of business pro-
cesses; and (c) standards for communicating business information (ontologies).
Domain-specific patterns could make a thorough, engineering-based evaluation



68 P. Huysmans and J. Verelst

feasible, since they are concrete enough to show design alternatives, and abstract
enough to be applied in different organizational contexts.

5 Towards an Enterprise Engineering Research
Framework

In this paper, we argued how typical engineering problems such as integration,
change and complexity are relevant to organizations as well. Within the field of
enterprise engineering, we explored how enterprise architecture frameworks sug-
gest to deal with these issues. We differentiated between descriptive and prescrip-
tive frameworks, and their different approaches to these issues. The current state
of the art suggests that many descriptive product-based frameworks are avail-
able, together with several prescriptive process-based frameworks. While these
frameworks can certainly aid the design of enterprise architectures in practice,
they are insufficient for the scientific development of the enterprise engineering
field. Instead, an increased focus on prescriptive, product-based components is
required.

In the previous section, we discussed several components which could be con-
stituents of a research framework for developing such prescriptive, product-based
guidelines. Such a framework would consider an enterprise architecture as a se-
ries of functional—constructive gaps, of which each gap needs to be addressed
adequately. In order to evaluate the transformation from a functional to a con-
structive perspective, a theory-based evaluation needs to be conducted. Com-
binatorial effects, which are based on stability and entropy, are proposed as a
candidate for such an evaluation criteria. On the software level, the elimination
of combinatorial effects has resulted in software architectures which are evolv-
able. It is important to note that the adequate identification of combinatorial
effects needs to be done on the lowest, most detailed level of software design.
Compare this to the tendency of enterprise architecture frameworks to promote
high-level overview models. Such models do not contain enough detail to judge
whether certain modularity principles are violated. This implies that such high-
level overviews may be highly useful in attempts to comprehend an enterprise,
but they are not sufficient in order to design an enterprise without combinatorial
effects. Nevertheless, many of these enterprise architecture frameworks do make
claims that they improve evolvability. This may still be true for example because
comprehension is improved, but not from the point of view of a deterministic
way to design architectures.

The identification of combinatorial effects requires an explicit statement of how
the modular structure of the level which is addressed. Describing the structure of
a certain domain requires a constructive perspective. Consequently, a bottom-up,
domain-specific approach for developing enterprise architecture patterns should
be aimed for. Through iterative refinement of such patterns, reusable building
blocks can be created. These reusable building blocks should address all relevant
concerns of their level. On the software level, Normalized Systems has shown that
this is a requirement for achieving anthropomorphism, as advocatedby theObject-
Oriented Paradigm. Anthropomorphism can only be achieved when a building



Towards an Engineering-Based Research Approach 69

block can be used in a functional, black-box way, without the need to deal with
concerns which are related to the construction of that building block.

This research approach suggests that no overarching enterprise architecture
principles should be defined up front, since the complexity which is in scope
is very large. Rather, a clear positioning of developed artifacts and the way in
which they are evaluated allows a consistent maturing of the field. More specifi-
cally, this allows for various research initiatives, both in the short and long term.
In the short term, such research goals could focus on a further specification of
the research framework. First, a more specific scoping of the domains which
can be designed and the issues which can be handled by design should be clari-
fied. This could be related to, for example, research related to the identification
of modular structures. While much research is already available on the modu-
lar structure of IT, products, business processes and organizational structures,
other, less obvious, examples of modular structures are emerging, such as in
the legal domain [40]. Methodologically, such research could benefit from an ex-
plorative case study approach. In order to observe relevant modular structures,
in-depth knowledge of the field is required, which assumes a qualitative research
approach. Such an approach allows the researcher to study a phenomenon which
is not clearly separated from its environment [41]. This is necessary to observe
modular dependencies which do not surface within the immediate environment of
the phenomenon. Second, a specification of the functional—constructive gaps in
an organizational context should be researched. This could related to, for exam-
ple, architectural layers in enterprise architecture frameworks. Methodologically,
a similar research approach as for the previous research goal could be used. How-
ever, researchers which actually implement enterprise architecture frameworks in
organizations could provide valuable insights for this research goals. Therefore,
an action research approach could be attempted as well. Third, a taxonomy of
combinatorial effects should be created, which allows classification of empirical
observations of such effects. Such a taxonomy could elaborate on the classifica-
tion of horizontal versus vertical combinatorial effects [31]. This research goal
could aggregate the research results of cases performed for the two previous
research goals. Fourth, a taxonomy for different types of solutions could be pro-
posed. On the software level, combinatorial effects are prevented by using pattern
expansion. However, other solution types can be better suited for organizational
designs, such as centralization or bus patterns. These solution types could build
on generally applicable engineering knowledge. When exemplary solutions are
observed in practice, these could be reported through explanatory case studies.
However, the development of new solutions could be presented as genuine design
science research.

On the long term, more mature research results can be aimed for. For specific
domains, reusable patterns should be researched, which have a well-defined set
of functionalities and handle a specific set of concerns. In this way, a more
deterministic approach of building enterprise architectures can be achieved. For
example, a pattern could be designed for an insurance or a production order.
These patterns should be designed to deal with changes from not only their



70 P. Huysmans and J. Verelst

functional domain (e.g., procurement), but from other domain as well (e.g.,
legal concerns). Given the current state of the field, a design science approach
with multiple iterations seems necessary. An important catalyst for this type of
research would be an outlet where concrete artifact designs can be discussed and
published.

6 Conclusions and Limitations

In this paper, we examined how enterprise architecture frameworks may improve
the emerging field of enterprise engineering. We therefore examined how such
frameworks deal with issues such as integration, change and complexity. We
then proposed several components to work towards a research framework for
performing enterprise engineering research, based on the approach which was
used to develop the Normalized Systems theory. This theory has shown that
prescriptive, product-based guidelines can be developed to approach software
development adhering to engineering standards. We believe that a similar goal
should be aimed for by the enterprise engineering community. Of course, not all
enterprise architecture issues can be addressed by this approach. For example,
social issues during enterprise architecture projects will not be resolved. The
scoping of the issues which are relevant for an engineering approach therefore
indicate the limitations of such an approach. While such issues are not denied,
the issues identified in this paper can be considered to be relevant and unresolved.
Focussing on such issues can therefore result in significant contributions for the
enterprise architecture field.

References

1. Henderson, J.C., Venkatraman, N.: Strategic alignment: leveraging information
technology for transforming organizations. IBM Syst. J. 32, 4–16 (1993)

2. Anderson, J.C., Narks, J.A.: Capturing the value of supplementary services. Har-
vard Business Review 73(1), 75–83 (1995)

3. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68, 1060–1076 (1980)

4. Eisenhardt, K.M., Martin, J.A.: Dynamic capabilities: What are they? Strategic
Management Journal 21(10/11), 1105–1121 (2000)

5. Teece, D.J., Pisano, G., Shuen, A.: Dynamic capabilities and strategic management.
Strategic Management Journal 18(7), 509–533 (1997)

6. Maier, M.W., Emery, D., Hilliard, R.: Ansi/ieee 1471 and systems engineering.
Systems Engineering 7(3), 257–270 (2004)

7. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for informa-
tion systems architecture. IBM Systems Journal 31(3), 590–616 (1992)

8. Bernus, P., Nemes, L., Smidth, G.: Handbook on Enterprise Architecture. In: In-
ternational Handbooks on Information Systems. Springer (2003)

9. Martin, R., Robertson, E.: A comparison of frameworks for enterprise architecture
modeling. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER
2003. LNCS, vol. 2813, pp. 562–564. Springer, Heidelberg (2003)



Towards an Engineering-Based Research Approach 71

10. Ross, J.W., Weill, P., Robertson, D.C.: Enterprise Architecture as Strategy – Cre-
ating a Foundation for Business Execution. Harvard Business School Press, Boston
(2006)

11. Zarvic, N., Wieringa, R.J.: An integrated enterprise architecture framework for
business-it alignment. In: Latour, T., Petit, M. (eds.) Proceedings of Workshops
and Doctoral Consortium of the 18th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE 2006), pp. 262–270. Namur University Press,
Luxembourg (2006)

12. The Open Group: The open group architecture framework (togaf) version 9 (2009),
http://www.opengroup.org/togaf/

13. Korhonen, J.J., Hiekkanen, K., Lähteenmäki, J.: Ea and it governance — a systemic
approach. In: Proceedings of the European Conference on Management, Leadership
and Governance (ECMLG) (2009)

14. Lawrence, P.R., Lorsch, J.W.: Differentiation and integration in complex organi-
zations. Administrative Science Quarterly 12(1), 1–47 (1967)

15. Hicks, H.G., Gullet, C.R.: Organizations: Theory and Behaviors. McGraw-Hill,
New York (1975)

16. Gortner, H., Mahler, J., Nicholson, J.: Organization Theory: A Public Perspective.
Dorsey Press (1987)

17. Gregor, S., Hart, D., Martin, N.: Enterprise architectures: enablers of business
strategy and is/it alignment in government. Information Technology & Peo-
ple 20(2), 96–120 (2007)

18. Schöenherr, M.: Towards a common terminology in the discipline of enterprise ar-
chitecture. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472,
pp. 400–413. Springer, Heidelberg (2009)

19. Wegmann, A.: The systemic enterprise architecture methodology (seam) - business
and it alignment for competitveness. In: International Conference on Enterprise
Information Systems 2003 (ICEIS 2003), pp. 483–490 (2003)

20. Op ’t Land, M., Proper, E., Waage, M., Cloo, J., Steghuis, C.: Enterprise Architec-
ture: Creating Value by Informed Governance, 1st edn. The Enterprise Engineering
Series. Springer (December 2008)

21. Zachman, J.A.: A framework for information systems architecture. IBM Systems
Journal 26(3), 276–292 (1987)

22. Schekkerman, J.: Trends in enterprise architecture: How are organizations progress-
ing? Technical report, Institute For Enterprise Architecture Developments (2005)

23. Fatolahi, A., Shams, F.: An investigation into applying uml to the zachman frame-
work. Information Systems Frontiers 8(2), 133–143 (2006)

24. Council, C.: A practical guide to federal enterprise architecture (2001)
25. Pereira, C.M., Sousa, P.: A method to define an enterprise architecture using the

zachman framework. In: SAC 2004: Proceedings of the 2004 ACM Symposium on
Applied Computing, pp. 1366–1371. ACM, New York (2004)

26. Buckl, S., Ernst, A.M., Matthes, F., Ramacher, R., Schweda, C.M.: Using enterprise
architecture management patterns to complement togaf. In: IEEE International
Enterprise Distributed Object Computing Conference, pp. 34–41. IEEE Computer
Society, Los Alamitos (2009)

27. Mannaert, H., Verelst, J.: Normalized Systems—Re-creating Information Technol-
ogy Based on Laws for Software Evolvability, Koppa, Kermt, Belgium (2009)

28. Mannaert, H., Verelst, J., Ven, K.: The transformation of requirements into soft-
ware primitives: Studying evolvability based on systems theoretic stability. Science
of Computer Programming 76(12), 1210–1222 (2011)

http://www.opengroup.org/togaf/


72 P. Huysmans and J. Verelst

29. Mannaert, H., Verelst, J., Ven, K.: Towards evolvable software architectures based
on systems theoretic stability. Software: Practice and Experience 42(1), 89–116
(2011)

30. Van Nuffel, D.: Towards Designing Modular and Evolvable Business Processes.
PhD thesis, University of Antwerp (2011)

31. Huysmans, P.: On the Feasibility of Normalized Enterprises: Applying Normalized
Systems Theory to the High-Level Design of Enterprises. PhD thesis, University
of Antwerp (2011)

32. Baldwin, C.Y., Clark, K.B.: Design Rules. The Power of Modularity, vol. 1. MIT
Press Books. The MIT Press (January 2000)

33. Richardson, G.L., Jackson, B.M., Dickson, G.W.: A principles-based enterprise
architecture: lessons from texaco and star enterprise. MIS Quarterly 14(4), 385–
403 (1990)

34. Lindstrom, A.: On the syntax and semantics of architectural principles. In: Pro-
ceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS 2006), vol. 8, p. 178b (2006)

35. Weinberg, G.M.: An Introduction to General Systems Thinking. Wiley-Interscience
(1975)

36. Bertalanffy, L.V.: General Systems Theory: Foundations, Development, Applica-
tions. George Braziller, New York (1968)

37. Bunge, M.: Treatise on Basic Philosophy. Ontology II: A World of Systems, vol. 4.
Reidel, Boston (1979)

38. Gero, J.S., Kannengiesser, U.: The situated function-behaviour-structure frame-
work. Design Studies 25(4), 373–391 (2004)

39. Sutcliffe, A.G., Maiden, N.A.M.: Domain modeling for reuse. In: Frakes, W.B. (ed.)
Third International Conference on Software Reuse, pp. 169–177. IEEE Computer
Society Press, Los Alamitos (1994)

40. Smith, H.E.: Modularity in contracts: Boilerplate and information flow. American
Law & Economics Association Annual Meetings Paper 46 (2006)

41. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Sage Publications,
Newbury Park (2003)


	Towards an Engineering-Based Research Approach for Enterprise Architecture: Lessons Learned from Normalized Systems Theory
	1 Introduction

	2 How Complexity, Integration and Change Are Handled 
in Enterprise Architectures
	2.1 Reducing Complexity by Applying Abstraction

	2.2 Achieving Integration

	2.3 Dealing with Change


	3 Exploring Specific Enterprise Architecture Frameworks

	3.1 Zachman

	3.2 TOGAF


	4 Suggestions for Prescriptive EA Components

	4.1 Modularity Guidelines

	4.2 Preventing Combinatorial Effects

	4.3 Functional—Constructive Gaps

	4.4 Developing Domain-Specific Patterns


	5 Towards an Enterprise Engineering Research 
Framework
	6 Conclusions and Limitations

	References




