

S. Nurcan et al. (Eds.): BPMDS 2013 and EMMSAD 2013, LNBIP 147, pp. 32–47, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Context-Aware Agile Business Process Engine:
Foundations and Architecture

Irina Rychkova, Manuele Kirsch-Pinheiro, and Bénédicte Le Grand

Centre de Recherche en Informatique, Université Paris 1, Panthéon-Sorbonne
90, rue Tolbiac, 75013, Paris, France

{Irina.Rychkova,Manuele.Kirsch-Pinheiro,
Benedicte.Le-Grand}@univ-paris1.fr

Abstract. Future developments for enterprise process management must evolve
from the current systems based on rigid, workflow based processes into
context-aware, agile dynamic structures, which exploit local adaptability. In this
idea paper, we define two forms of process agility. To enable these forms of
agility, we present our vision of context-aware business process management
based on declarative modeling combined with innovative context management
and formal concept analysis. We finally describe the foundations and introduce
the architecture of a context-aware agile business process engine (CAPE).

Keywords: business process agility, context awareness, declarative process
modeling, formal concept analysis.

1 Introduction

Capacity to timely discover and to efficiently respond to rapid changes in the
environment is a major goal of an enterprise of the future. According to [23][4], a
firm’s ability to adapt to dynamic environments depends first on the agility of its
business processes. Therefore, design and development of new process management
systems enabling process adaptation at run time are essential.

Lamport defines a process as a sequence of events occurring in system [16], where
each event is triggered by an action. Accordingly, a business process can be seen as a
sequence of events triggered by activities of business process actors or contextual
events. The majority of existing methods for business process design follow
imperative principles, implying that the order of events is predefined. As a result, all
meaningful process events need to be determined and corresponding actions need to
be predefined at design time. At run time, processes follow the configured model with
limited possibilities to deviate from the predefined scenario.

Execution of a business process in a dynamic environment can be compared to
navigating a ship towards its destination bay in uncertain waters. Very rarely can a
ship follow blindly a predefined path: awareness about its current position and
situation as well as navigation skills and dynamic path finding are essential to reach
the destination. This idea paper reports on research, which is currently at its early
stage of development. In this work, we discuss foundations and propose architecture
for a system supporting dynamic and context-aware business process adaptability.

 Context-Aware Agile Business Process Engine: Foundations and Architecture 33

First, we shift the traditional imperative paradigm for process design and exploit
declarative principles: we represent a business process as finite state machine (FSM)
[22] with a state representing a process situation at a given time and state transitions
defining the possible process scenarios. The triggering events specify the underlying
process semantics, i.e. conditions for state transitions. The FSM formalism makes the
notion of process activity implicit while putting forward activity outcomes, which are
modeled as triggering events. Therefore, the declarative process model focuses on
“what” needs to be done in order to achieve the process goal and not on “how” it has
to be done. This allows us to handle process events whose order of occurrence is
undetermined and to define the corresponding handling scenarios at run time.

Navigation in a stormy ocean depends on a skillful skipper and his capacity to
select a right action to ensure that no incorrect scenario is executed. We design initial
navigation rules for process guidance based on Formal Concept Analysis and Galois
lattices [2][6]. We specify the resulting process as a set of activities that can be
dynamically assembled at run time into one of the (non-forbidden) process scenarios.
In general, such process specification can offer infinitely many alternative scenarios
and a possibility to deviate from one scenario to another during the execution. We
formalize these properties of a process as the 1st form of agility.

Navigation in a stormy ocean depends on the capacity of the skipper to select a
right action at the right moment, and with respect to the current situation: we define
the 2d form of process agility as the ability to monitor and manage the process
context and to dynamically select and/or alter the execution scenario accordingly. We
extend the declarative process specifications with dynamic context models and
mechanisms for dynamic context management [3][19][20].

We design navigation rules for processes guidance that handle both process events
(events resulting from execution of process activities) and context events in a unified
way. This is compatible with the FSM formalism: the nature of events triggering the
state transition has no importance. The navigation rules ensure that no incorrect
scenario will be executed with respect to a given context situation.

Novel combination of declarative modeling principles, context-awareness and
Formal Concept Analysis is the main research contribution of this work. The
architecture for a context-aware business process engine (CAPE) summarizes our
findings.

The remainder of this paper is organized as follows: in Section 2, we discuss the
state of the art related to business process design and associated agility problems; in
Section 3 we formalize two forms of business process adaptability. These theoretical
foundations are used in Section 4 to specify the architecture of our context-aware
agile business process engine (CAPE). We finally illustrate our findings on an
example and present the perspectives of this work.

2 Motivation and Related Work

Workflow-based approaches are highly efficient for process design and management
assuming that: (i) all the events triggered by process activities are well determined;
(ii) human involvement is limited to “accept”, reject” or “select from the list” types of
decisions; and (iii) the system within which a process is executed can be considered
as closed: no external event affecting the process execution can occur.

34 I. Rychkova, M. Kirsch-Pinheiro, and B. Le Grand

For a large category of processes, however, these assumptions do not hold: in
health care, the same therapy may have different effects on different patients; in
insurance, claim processing extensively involves human expertise and decision
making; in business, many processes have to cope with evolving economic conditions
and frequent changes of customer requirements. The limited capacity of imperative
methods to deal with changes has been recognized by both researchers and
practitioners [32]. Numerous approaches propose to improve the dynamic process
adaptability:

In [26][15][27] the concept of configurable process is presented and different
modeling formalisms to deal with process configurability are defined. Other works
aim at improving run time adaptability through modification of the predefined
workflow during execution [24]. At run time the process instances follow the
preconfigured model with a limited adaptability via predefined variants or deviation.

The Declare framework [21][31] is a constraint-based system that uses a
declarative language grounded in temporal logic. This framework supports process
flexibility both at design and run time. Compared to our approach, Declare is activity-
oriented; contextual information is not considered by this approach.

Solutions for processes characterized by “unpredictability” are reported in
numerous works [30][17][1][7]. In [30], the foundations and collection of experience
reports on Adaptive Case Management are presented. These works emphasize run
time adaptability. Markus et al. [17] propose a framework to support emergent
knowledge processes, implemented in the TOP Modeler tool. In [1] process instances
are represented as dynamically moving through state space. This approach relies on
automated control systems and implements declarative modeling principles. Burkhart
et al. [7] propose to explore the capabilities of recommender systems to provide the
user with intelligent process-oriented support at run time. While handling dynamic
activity selection and configuration of processes “on the fly”, the majority of
proposed solutions demonstrate only limited capacity to deal with process contextual
information in systemic and dynamic way.

Soffer and Yehezkel [29] introduce semantics for a declarative process model
based on Generic Process Model (GPM). GPM is state-oriented; it captures the
process context and reasons about process goals. Though based on different theories,
this approach is the most related to the one presented in this paper.

In [25][28], authors use context information for process definition. Roseman et al.
[25] consider that external context elements may influence business processes (e.g.
weather influences processes of a call center in an insurance company). They
incorporate such elements into business process modeling. Saidani et al. [28] also
consider context in business process definition, in particular, the roles played by
actors. In these works context information is specified only at design time. Mounira et
al. [18] propose a process mining architecture to identify context variables influencing
process activities. However, no specific model formalizing these variables is
proposed.

 Context-Aware Agile Business Process Engine: Foundations and Architecture 35

3 Foundations for CAPE

In this section we define two forms of process agility and present our vision of
context-aware business process management based on a fully declarative modeling
combined with innovative context management and formal concept analysis.

3.1 Process Agility at Work: Agile Patient Care

As we could see in “House” American TV series1, Patient diagnostics and treatment
processes in a medical ward only partially rely on imperative procedures. The main
challenge is to be aware of the patient situation and its evolution and to adjust the
treatment accordingly. Contextual parameters that might be relevant and should be
managed include (but are not limited to):

- Patient’s measurable body conditions (temperature, blood pressure, heart rate);
- Patient’s medical record;
- Patient’s life style;
- Information about recent workload, leisure activities, trips.

Some of these parameters are stable (e.g. predispositions, allergies, etc.), others can
evolve (e.g. new information about the patient’s medical history, recent activities),
and some others may change several times a day (e.g. body temperature). The
capability to immediately react by canceling/prescribing new tests or medications is
essential.

3.2 First Form of Process Agility

We define the first form of business process agility as a capacity to handle
unpredictable sequences of system events. This implies that the order of process
activity invocations is defined dynamically, at run time, and depends uniquely on the
current situation (process state) rather than on a predefined execution scenario(s).

3.2.1 Declarative Approach to Process Specification
To ensure the first form of agility, we shift the traditional imperative paradigm in
process specification and exploit declarative principles: we represent a business
process as a finite state machine (FSM) – a state-transition system - that allows us to
handle process events (and context events – see Section 3.3) with undetermined order
of occurrence and to define the corresponding scenarios at run time.

A FSM [22] specifies a machine that can be at one state at a time and can perform
a state transition as a result of a triggering condition (event or group of events). It is
defined by a (finite) set of states and a set of triggering conditions for each transition.

Mathematical model:

A FSM can be defined as a quintuple < Q, ∑, δ, q0, F > where:

1 http://en.wikipedia.org/wiki/House_TV_series

36 I. Rychkova, M. Kirs

Q = {S0, S1, …
∑ = {E1, E2, …
δ: Q x ∑ P
S0 ∈ Q is the
F ⊆ Q is the s

A business process can be m

- A FSM state s ∈ Q
described by the state
paid}, patient: {admitt

- FSM triggering event
execution (e.g. change
etc.). Note, that proce
events resulting from a

- FSM transitions δ repr
- FSM final states F r

discharged, etc.) and c

Representation of a busine
presents DecSerFlow langu
for DecSerFlow is based
execution is presented as a
specified as a set of formal
Our approach extends this
ground for process model, c

Example: Agile Patient Ca

To illustrate the FSM form
model a (simplified) patient

Fig. 1. A finite state machine (
the state transitions they trigge

sch-Pinheiro, and B. Le Grand

… Sn}- is a finite set of states;
… Em}- is a finite set of triggering events (input alphabe
(Q) is the state transition relation;
initial state;

set of final states.

modeled as a finite state machine where:

represents a state of the process at a given time. I
es of its parameters (e.g. order: {in preparation, deliver
ted, in diagnostics, under treatment, discharged}).
ts ∑ represent events that may occur during the proc
e of patient’s body temperature resulting from medicat
ess activities are implicit within FSM formalism: only
an activity execution are observable.
resent transitions between the process states.
represent the process outcomes (order delivered, pati
can be associated with the process goal.

ess process using states and transition is not new: [
uage for Declarative modeling of service. Formal seman
 on labeled transition systems. In [1][5], the proc
trajectory in the process state space. The process mode
rules describing the valid paths of the possible trajector

s paradigm and uses the FSM formalism as a comm
context model and formal concept model.

are (continued)

malism, we develop our example on agile patient care
t treatment process as a FSM illustrated in Fig. 1:

(FSM) representing a patient treatment process. The events E
er are shown as labels

et);

It is
red,

cess
tion
the

ient

[33]
ntics
cess
el is
ries.
mon

and

and

 Context-Aware Agile Business Process Engine: Foundations and Architecture 37

After a patient is admitted (S0) to a medical ward (the initial state), a physician
examines him in order to obtain information for diagnostics (S1) and further treatment
(S2). Diagnostics may involve one or multiple examinations and/or generic or specific
tests. The patient’s case is then assessed and a treatment is prescribed. During the
treatment, additional examinations can reveal new patient’s condition and require to
modify the assigned therapy and, even, to repeat diagnostics and assessment. Once the
therapy is terminated and the patient’s good condition is confirmed, the patient is
discharged (S3) from the ward. In this example, we identify four states: Q={S0, S1, S2,
S3} and six process activities that can be executed during the process and trigger state
transitions from S0:Admitted to S3:Discharged states (Table 1).

Table 1. Abstract activities and events defined for the Patient treatment process

Activity Avail. at: Process events (Activity outcomes):
A1 Physical

examination
S0, S1, S2

E1 Confirms the declared symptoms
E2 No problem found
E3 New symptoms emerged
E4 Supplementary medical tests are required

A2 Medical
laboratory
test

S1, S2 E5 Positive results (anomalies detected)
E6 Negative results (no anomalies detected)
E4 Supplementary medical tests are required

A3 Specific
medical
tests

S1, S2 E5 Positive results (anomaly detected)
E6 Negative results (no anomaly detected)
E4 Supplementary medical tests are required

A4 Case
Assessment

S1

E7 Diagnose confirmed, treatment assigned
E8 Diagnose not confirmed, patient discharged
E4 Supplementary medical tests are required

A5 Therapy S2 E9 Condition declined (e.g. symptoms increasing)
E10 Condition improved (e.g. symptoms

decreasing)
E11 Side effects emerged
E3 New symptoms emerged
E12 Stable situation
E13 End of therapy

A6 Recovery S2 E3 New symptoms emerged
E14 End of recovery therapy

Context events:
 E15 New medical / personal evidence received
 E3 New symptoms emerged
 E9 Condition declined, (e.g. symptoms

increasing)
 E10 Condition improved (e.g. symptoms

decreasing)

According to our formalism, an activity A is described with a pair <S, EA> where:

- S ⊆ Q is the set of states from which this activity can (but not necessarily will) be
invoked;

- E ⊆ ∑ is the set of events that can result from the activity execution and can
potentially trigger a state transition.

For each activity A, the state transitions that can be triggered upon its termination can
be calculated as: δA: S x E P(S).

38 I. Rychkova, M. Kirsch-Pinheiro, and B. Le Grand

For example, the activity A2 (Medical laboratory test) is specified as follows: S:
{S1, S2}; E:{E5, E6, E7}. Note that some events can result from a process activity
and can be context events (cf. Section 3.3) - independent from activities. (e.g. E10 –
condition improved).

3.2.2 Formal Concept Analysis and Galois Lattices
Within our model, the partial ordering of process activities is determined by the state
transition relation P(Q). This relation specifies the valid transitions with respect to the
process goal (its final state) and ensures that invalid state transitions (e.g. to discharge
a patient with critical temperature) will be avoided. This relation can be specified
with Formal Concept Analysis (FCA) [2] [6]. FCA is a mathematical theory relying
on the use of formal contexts2 and Galois lattices defined below. The use of Galois
lattices to describe a relation between two sets has led to various classification
methods [8] [35]. Since then, they have been used in numerous areas to extract hidden
knowledge from data. Let us first introduce FCA terminology [12].

Mathematical model:

Let K = (G, M, I) a formal context, where G is a set of objects, M is a set of attributes,
and the binary relation I ⊆ G x M specifies the attributes of the different objects.
Derivation operators noted (.)I are defined for A ⊆ G and B ⊆ M as follows:

AI = {m ∈ M│∀ g ∈ A : g I m} BI = {g ∈ G│∀ m ∈ B : g I m},

where AI is the set of attributes, which are common to all objects from A and BI is the
set of objects which share all attributes from B.

A formal concept of the formal context (G, M, I) is a pair (A, B), where A ⊆ G and
B ⊆ M, A = BI et B = AI. The set A is called the extent of concept (A, B) and B is its
intent. A concept (A, B) is a specialization of concept (C, D) if A ⊆ C, which is
equivalent to D ⊆ B. This is noted (A, B) ≤ (C, D). Reciprocally, the concept (C, D) is
a generalization of concept (A, B). The set of all concepts and their partial order
relation constitutes a lattice, called Galois lattice of the formal context K.

The major interest of a Galois lattice is the structure it provides through the
conceptual clustering of objects according to their common attributes. This allows the
identification of the most conceptually significant objects and attributes. Another
interest of Galois lattices is that association rules can be inferred automatically from
them. Several works have indeed applied FCA to the extraction of relevant
association rules [13] or to perform sequential pattern mining [11].

Within our approach, process states Q, triggering events ∑ and process activities
defined in Section 3.2 form a formal context and can be analyzed using Galois lattices.
Process states and activities can be clustered revealing their conceptual properties: For
example, we can determine activities that can be executed (or suggested for execution)
under given conditions and with an objective to trigger a desired state transition.

2 The term “formal context” is specific to Formal Concept Analysis and refers to a binary

relation. In the following, we will also refer to this as “formal context”, as opposed to
“context” which represents the environment.

 Context-Aware Agile

Fig. 2 represents Galois
The lattice in Fig 2a cluster
the common events shared
diagram represents a conce
respectively to the extent
labeled as {(A2, A3); (E4,
lead to events E4, E5 and
enabled for each state3.

We exploit Galois lattice
about activities to execute.
the lattice contains a set of
(grey labels). The links betw
that nodes inherit events f
from concepts below them
contains all activities (thr
associated with all activit
contains no activity and all

Let us consider the conc
only A4 in its extent (Fig.
E2, E3 or E4 as its outcom
concepts are generalized b
activities A1, A2, A3 and
lines, the concept {(A1, A2
by common states S1 and S

a) Activity – Even

3 We have separated events fro

clear, as states are precondit
activities. It should be noted
within a single formal contex

Business Process Engine: Foundations and Architecture

lattices built from the formal context defined in Table
rs activities into (possibly overlapping) groups according
by the activities within each group. Each node in the l

ept of the lattice; its label is a couple of sets correspond
and the intent of the concept. For example, the conc
E5, E6)] contains the activities A2 and A3 which may
E6. The lattice in Fig 2b represents the sets of activi

es as a recommender mechanism, which makes suggesti
This mechanism is explained in Section 4. Each concep
activities (white labels) described by the events they sh
ween concepts are generalization/specialization links. N
from concepts above them and that they inherit activi
m. The lattice has an upper bound (top concept), wh
rough inheritance) but no event (i.e. there is no ev
ties). The lower bound of the lattice (bottom conce
events.
ept containing only activity A1 and the concept contain
2a). We see from the intent that A1 may have events

me and A4 may lead to events E4, E7 or E8. These t
y the concept {(A1, A2, A3, A4), {E4}}, which conta
A4, all described by the common event E4. Along th

2, A3), {S1, S2}} in Fig.2b shows the activities descri
S2 – the states where these activities can be executed.

nt formal context b) Activity – State formal conte

Fig. 2. Galois lattices

om states by creating 2 distinct lattices to make our methodol
tions for activities whereas events are possible outcomes of th
d however that events and states may be associated to activi
xt and therefore a unique Galois lattice.

39

e 1.
g to
line

ding
cept
y all
ities

ions
pt of
hare
Note
ities
hich
vent
ept)

ning
E1,
two
ains
hose
ibed

ext

logy
hese
ities

40 I. Rychkova, M. Kirsch-Pinheiro, and B. Le Grand

3.3 Second Form of Process Agility

We define the second form of business process agility as a capacity to adjust the
process execution scenario according to the current contextual situation. Process
activities are assembled at run time, according to observed context4 and with an
objective to trigger a state transition required for achieving the process goal (defined
as one of the final states of a FSM).

Dey [9] defines a context as any information that can be used to characterize the
situation of an entity (a person, place or object) that is considered relevant to the
interaction between a user and an application. The notion of context adopted in the
literature is mostly user-centric and limited to physical aspects (e.g. location, user
preferences, or user device)[19]. Together with Dourish [10], we argue that the notion
of context is larger, and includes information related to organization and processes:
“context – the organizational and the cultural context, as much as the physical context
– plays a critical role in shaping action and also in providing people with the means to
interpret and understand action”. In our example, patient treatment process can be
influenced by the emergence of new symptoms or the arrival of new resources (e.g.
new medical people available, new personal evidence, etc.). The second form of
business process agility consists in taking into account such context information
during process execution.

The context parameters reflect our awareness about external and internal
information about the process; they can be observed and measured. Even though
context-awareness for business processes is addressed in the literature [25] [28] [18],
the lack of formalism for context representation and management persists: many of
the proposed context models are static (need to be defined at design), incomplete
(consider only limited context information) and are often specific to workflow-based
processes.

We argue that the number and kind of context parameters may vary from one
situation (or process state) to another making it impossible to exhaustively model all
required context information within a single (static) context model. The context
model, therefore, needs to be dynamically instantiated from an appropriate metamodel
according to specific (evolving) context dimensions.

3.3.1 Dynamic Context Modeling
The way context information can be exploited for business process flexibility depends
on what information is observed and how it is represented. According to Najar et al.
[19], the formalism chosen for representing context model determines the reasoning
methods that can be used to perform system adaptation to the observed context. A
context model (i) ensures the definition of independent adaptation processes and (ii)
isolates this process from context acquiring techniques. The same applies to context-
aware business process. We claim that the process context information should be
acquired, modeled and formally analyzed at run time in order to adapt business
process execution and to ensure business process flexibility.

4 The term of “context” represents the environment.

 Context-Aware Agile Business Process Engine: Foundations and Architecture 41

Several context models have been proposed in the literature [19] [3]. Based on
these, we define a common meta-model presented in Fig. 3. In this meta-model, we
consider context as a set of context elements that are observed for a given subject (e.g.
the patient, a device, a resource, etc.). Each subject can be associated with multiple
context elements (location, status, etc.); for each context element, we observe values
that can dynamically change. Subject and context elements can be semantically
described using ontologies. Ontologies are considered as interesting to represent
context elements [19]. They provide ways to semantically describe these elements and
their relationships, but also reasoning mechanisms, notably inference rules.

Fig. 3. Context meta-model considering context as a set of context elements

Mathematical model:

Based on context ontology, we represent events as logical constraints over context
concepts and observed values. We formalize the context of a subject s in a time t as
follows: Context(s,t) = { Element(s, ce) },
where Element(s,ce) represents the observed value of the context element ce for the
subject s.

Within our approach, process states Q defined using FSM formalism in Section 3.2
can be extended with the context information: Each state can be associated with a (set
of) subject and its contextual elements to observe. FSM triggering events ∑ represent
both (i) context events occurring during the process execution and/or (ii) events
resulting from executed process activities – process events. Note that process
activities are implicit within FSM formalism: only the events resulting from an
activity execution are observable. As a result, a FSM processes both contextual and
process events in a unified way. These events can be expressed using logical
conditions on observed values of contextual elements.

In our example, a subject s – patient – is observed in all the process states. The
contextual elements ce associated with a patient include his body temperature, blood
pressure, patient’s location, record etc. Patient’s condition can decline (patient’s
temperature may evolve from ‘36.5°C’ to ‘39.7°C’) or new evidence about the patient
can be received by e-mail. Triggering event E9 (condition declined – see Table 1) can
be expressed using the following condition: Element(#patient, #temperature) > 38.5.

42 I. Rychkova, M. Kirs

3.3.2 Context Model and
Fig. 1 shows both the proce
patient treatment process. C
triggers, similarly to activity
changed either as a result o
the new symptoms (E11), o
predispositions, past inciden

Galois lattices are parti
Galois lattices to analyze
nature (process events or co
coupled to context mode
personalized and dynamic w
lattice-based classification
interrelations between com
based on user interests and

4 Architecture for

The functionality of a proce
be described as follows: th
events (internal or external
the process objective is spe
assure an appropriate gu
recommends him the activ
leading towards the process

We define the followin
activity repository, context

Fig. 4. CAPE architecture: t
manager

sch-Pinheiro, and B. Le Grand

d Concept Analysis
ess and the context events that are taken into account by
Context events affect state transitions and play the role
y outcomes. For example, the patient treatment (S2) can

of physical examination outcomes (E1) or as a response
or because a new evidence about the patient (e.g. allerg
nts, etc.) (E15).
icularly adapted to our context-aware approach: we
FSM triggering events (see Section 3.2) regardless th
ontext events). Indeed, FCA has already been successfu

eling [34]. The authors have proposed a spontaneo
way of defining and joining user communities. They us

n and recommendation mechanism that analyzes
mmunities and users, and recommends new communit

preferences.

r CAPE

ess engine assuring the agility forms introduced above
his engine enables the activities for execution, captures
l) and generates state transitions (Fig. 4). Considering t
ecified by its final state (or states), the engine should a
uidance for the decision maker (a human agent):
vities that would maximize chances to trigger a transit
s goal.
ng primary elements for a context-aware process engi

monitor and navigation manager, as illustrated in Fig. 4

he context monitor, the activity repository and the naviga

the
e of
n be
e to

gies,

use
heir
ully
ous,
se a
the

ties,

can
the

that
also
: it
tion

ine:
4.

ation

 Context-Aware Agile Business Process Engine: Foundations and Architecture 43

4.1 Activity Repository

Activity repository represents a set of activities related to a business process. Each
activity is specified with states S from which it can (but not necessarily must) be
executed during the process, and with the set of events E representing its possible
outcomes as defined in Section 3.2.1. The pair <S,E> is an activity signature. These
signatures are further used by Navigation Manager. The activity repository represents
crew skills and technical capacity of a ship.

4.2 Context Monitor

Context monitor is in charge of observing, at run time, context elements and subjects
from the environment. Its role in CAPE architecture is similar to a watchman in a
ship: it observes navigation conditions and reports them to the navigation manager.

Context monitor is based on the context meta-model described earlier. Similar to
[20], it recognizes context elements through plugins (software components
dynamically connected to the architecture), which feed the architecture with dynamic
information about a given context element from a subject (e.g. a plugin reading
patient’s heart rate or medical resource’s location from his/its id card). Context
monitor can be dynamically extended, by adding new plugins, for observing new
context elements and subjects. Context values dynamically observed by context
plugins measure the process position in the process state space (for instance, a new
plugin for observing the availability of a new analysis equipment). This position is
further used by the navigation manager, which recognizes context events and
interprets them accordingly.

4.3 Navigation Manager

Navigation manager makes navigation decisions, like a skipper in a ship. It
determines one (or several) plausible activity to execute with respect to the process
goal and the contextual situation. Specifically, navigation manager takes into account
the current state of the process, the contextual parameters and the signatures of
activities defined in the activity repository. Based on the navigation rules, it
determines a set of activities enabled in a given situation and calculates those of them
that will have a highest probability to result in the desired outcome.

Navigation engine is the core element of CAPE architecture: it links together the
other elements. We illustrate the functioning of CAPE on our example:

Example: Agile Patient Care (continued)

Once a patient has been admitted (S0) and the result of his physical examination (A1)
has confirmed the declared symptoms (E1), he is in state S1. The targeted final state is
S3: discharge the patient. The goal of the navigator is to provide recommendations in
order to reach this state as quickly as possible, while respecting medical protocols and
taking into account the contextual situation. In the following, we describe the
sequence of operations performed by the navigator to meet this goal.

1. Selection of the next transition towards the targeted final state
Fig. 1 illustrates the various possible paths from one state to another. The underlying
graph is directed, nondeterministic, with possible cycles. From this graph the

44 I. Rychkova, M. Kirsch-Pinheiro, and B. Le Grand

navigator computes the most efficient path from S1 to S3, both in terms of length and
of events triggering probability. Let us suppose here that this ideal path consists in
using the direct link from S1 to S3. The next step, in our example, is to trigger the
transition from S1 to S3.

2. Identification of relevant activities
The navigator now has to identify the events, which may5 trigger a transition from S1
to S3. According to our FSM (Fig.1) and the state transition map, the triggering
conditions for a transition S1 - S3 are the following:

- Additional physical examinations and/or medical laboratory tests reveal no
anomaly or problem and the patient himself feels better - (E2 | E6)&E10, or

- Case assessment does not confirm the diagnosis (E8)

To identify the activities that can be of a maximum utility with respect to our
objective (transition S1-S3):

- Navigator identifies the activities in our repository that can ensure a desired
outcome (a combination of events described above) using the Galois lattice
illustrated in Fig. 2. For our example, the event E2 can result from the activity
A1; E6 from A2 or A3; E10 from A5 or spontaneously as an external event, as
the patient’s condition may improve independently from any activity from the
medical staff.

- Navigator selects those activities that are enabled at the state S1 (according to
their specification) using the Galois lattice illustrated in Fig. 2. For our example,
the activities A1, A2, A3, A4 are available in S1 (In Diagnostic) state, whereas
A5 is not.

Thus, the activities A1 – A4 are potential candidates for execution in the state S1.

3. Selection of recommended activities based on their utility
We calculate an utility of each scenario as its likelihood to trigger the transition S1-
S3. For our example, A5 is not available at S1 and therefore, E10 can be expected
only as a context event (i.e. we can observe this event when it happens but cannot
control it). The following viable scenarios can be evaluated:

a) A physician prescribes medical tests and/or makes additional physical
examinations according to the declared symptoms. The spontaneous improvement
of the patient is expected.

b) A physician assesses the case based on the patient’s history (and examinations
made upon patient’s admission to the ward).

A combination of these scenarios is also possible.
Depending on the probabilities of transition S1-S3 resulting from each of the
aforementioned scenarios and also, on the probability to obtain the event E2 as a
result of A1, E6 from A2 or from A3, and E8 from A4, the navigator may recommend
specific activities to the medical staff.

5 Our graph is nondeterministic: one event can trigger multiple state transitions (e.g. E11 – side

effects emerged – can be handled both in the therapy states or can trigger a transition to the
diagnostics state. This nondeterminism, in general case, can be resolved by refining the states
and transitions, and by specifying the new navigation rules. Alternatively, a probability p can
be associated with each of the possible transitions.

 Context-Aware Agile

5 Discussion and F

While providing a rich tool
analysis, traditional work
inflexible. Therefore, org
between the automated us
illustrates this dependency
highly structured to unstru
automated user support tha
dependency: the more flex
and conversely: the higher
process has to be.

According to Burkhart e
are confronted with an expa
expertise in dealing with th
dependency: the x-axis sho
of user expertise required f
flexible a process is, the hig

The two forms of agility
both for human expertise
rigidity (predefined structur
for process design and use o
process analysis and valida
they improve the level o
flexibility. Context aware
recommendations and iden
guidance to end users at run
process handling.

a) Process flexibility vs.
support

Fig. 5. Relations between pro
expertise. The solid line depic
architecture presented in this w

Business Process Engine: Foundations and Architecture

Future Work

lbox for process modeling, verification, and post-execut
kflow-based information systems are considered to
anizations nowadays are searching for a comprom
ser support and process flexibility at run time. Fig.

y: the x-axis shows a degree of process flexibility (fr
uctured, ad-hoc processes); the y-axis shows a level
at can be assured by the system. The solid line depicts
ible a process, the lower the user support provided for
the expected level of user support, the more structure

et al. [7], “With increasing runtime flexibility, employ
anding decision space and they are needed to possess m
he processes they are involved in.” Fig. 5b illustrates
ws a degree of process flexibility; the y-axis shows a le
for handling this process. The solid line depicts that m
gher expertise level of an employee should be.
y formulated in this paper aim at relaxing the requireme

for a given level of process flexibility and for proc
re) for a desired level of automation. Declarative appro
of formal methods enable a set of automated techniques

ation based on model checking and theorem proving. Th
f automated user support allowing maximum run ti
eness and formal concept analysis enable automa

ntification of alternatives. Their joint use provides flexi
n time and supports them with an expertise required for

Automated user b) Process flexibility vs. Level of employ
expertise required

ocess flexibility and automated support / required level of u
cts the current trends in BPM; the dashed line depicts how CA
work can possibly change these trends

45

tion
be

mise
 5a
rom
l of
the

r it;
ed a

yees
more

this
evel

more

ents
cess

oach
s for
hus,
ime
ated
ible
the

yee

user
APE

46 I. Rychkova, M. Kirsch-Pinheiro, and B. Le Grand

This idea paper reported on research, which is currently at its early stage of
development. According to the IS research framework [14], (i) we specified our
business problem as a lack of automated support for business process agility; (ii)
then we defined a relevant knowledge base for our research and outlined the
foundations for CAPE; (iii) we built our design artifacts: we introduced the two
forms of process agility – the constructs to be used for reasoning about business
processes; we also defined a model and a method for specification of agile business
processes based on FSM abstraction and formal concept analysis. We extended this
model with the dynamic context model. We combined these artifacts in and proposed
the architecture for context-aware agile business process engine (CAPE).

This work accomplishes the first part of the “build-evaluate” loop [14]. Evaluation
of our designed artifacts and their refinement will be addressed in future work. More
specifically, we envisage to demonstrate the utility of our proposed architecture, first,
by developing detailed scenarios, then, by simulating them, and, eventually, by
implementing CAPE architecture and studying its usability in real business
environment. Usability metrics for CAPE will be also discussed in future publications.

References

1. Andersson, T., Bider, I., Svensson, R.: Aligning people to business processes experience
report. Software Process: Improvement and Practice (2005)

2. Barbut, M., Monjardet, B.: Ordre et classification. Algebre et combinatoire, Tome 2,
Hachette (1970)

3. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,
Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive and Mobile
Computing 6(2), 161–180 (2010)

4. Bider, I., Johannesson, P., Perjons, E.: Do workflow-based systems satisfy the demands of
the agile enterprise of the future? In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops.
LNBIP, vol. 132, pp. 59–64. Springer, Heidelberg (2013)

5. Bider, I.: Towards a Non-workflow Theory of Business Processes. In: La Rosa, M., Soffer,
P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 1–2. Springer, Heidelberg (2013)

6. Birkhoff, G.: Lattice Theory, 1st edn. Amer. Math. Soc. Pub., Providence (1940)
7. Burkhart, T., Weis, B., Werth, D., Loos, P.: Towards Process-Oriented Recommender

Capabilities in Flexible Process Environments–State of the Art. In: 45th Hawaii Int. Conf.
on System Science, HICSS, pp. 4386–4395 (2012)

8. Carpineto, C., Romano, G.: Galois: An order-theoretic approach to conceptual clustering.
In: 10th Conf. on Machine Learning, pp. 33–40. Kaufmann (1993)

9. Dey, A.: Understanding and Using Context. Personal and Ubiquitous Computing 5, 4–7 (2001)
10. Dourish, P.: Seeking a foundation for context-aware computing. Human Computer

Interaction 16(2-4), 229–241 (2001)
11. Egho, E., Jay, N., Raissi, C., Napoli, A.: A FCA-based analysis of sequential care

trajectories. In: 8th Int. Conf. on Concept Lattices and their Applications (2011)
12. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer,

Berlin (1999)
13. Hamrouni, T., Ben Yahia, S., Nguifo, E.M.: GARM: Generalized Association Rule

Mining. In: CLA 2008, pp. 145–156 (2008)
14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Quarterly 28(1), 75–105 (2004)

 Context-Aware Agile Business Process Engine: Foundations and Architecture 47

15. La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J.: Configurable multi-
perspective business process models. J. Information Systems 36(2) (2011)

16. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

17. Markus, M.L., Majchrzak, A., Gasser, L.: A design theory for systems that support
emergent knowledge processes. Mis Quarterly 26, 179–212 (2002)

18. Mounira, Z., Mahmoud, B.: Context-aware process mining framework for Business
Process flexibility. In: iiWAS 2010, Paris (2010)

19. Najar, S., Saidani, O., Kirsch-Pinheiro, M., Souveyet, C., Nurcan, S.: Semantic
representation of context models: a framework for analyzing and understanding. In: 1st
Workshop on Context, Information and Ontologies (CIAO 2009), European Semantic Web
Conference (ESWC 2009), pp. 1–10 (2009)

20. Paspallis, N.: Middleware-based development of context-aware applications with reusable
components, PhD Thesis, University of Cyprus (2009)

21. Pesic, M., Schonenberg, H., van der Aalst, W.M.: DECLARE: Full support for loosely-
structured processes. In: 11th IEEE Int. Enterprise Distributed Object Computing
Conference, EDOC 2007, pp. 287–287 (2007)

22. Plotkin, G.D.: A structural approach to operational semantics (1981)
23. Raschke, R.L., David, J.S.: Business process agility (2005)
24. Reichert, M., Rinderle, S., Dadam, P.: ADEPT workflow management system: In: van der

Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp.
370–379. Springer, Heidelberg (2003)

25. Rosemann, M., Recker, J., Flender, C.: Contextualization of Business Processes. Int. J.
Business Process Integration and Management 1(1), 46–60 (2007)

26. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Language.
Information Systems (2007)

27. Rychkova, I., Nurcan, S.: Towards Adaptability and Control for Knowledge-Intensive
Business Processes: Declarative Configurable Process Specifications. In: 44th Hawaii Int.
Conf. on System Sciences, HICSS, pp. 1–10 (2011)

28. Saidani, O., Nurcan, S.: Towards Context Aware Business Process Modeling. In: 8th
Workshop on Business Process Modeling, Development, and Support (BPMDS 2007),
CAiSE 2007 (2007)

29. Soffer, P., Yehezkel, T.: A state-based context-aware declarative process model. In:
Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.)
BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 148–162. Springer, Heidelberg
(2011)

30. Swenson, K.D.: Mastering The Unpredictable: How Adaptive Case Management Will
Revolutionize The Way That Knowledge Workers Get Things Do, p. 354 (2010)

31. Van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing
between flexibility and support. Computer Science-Research and Development 23(2),
99–113 (2009)

32. Van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data & Knowledge Engineering (2005)

33. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

34. Vanrompay, Y., Ben Mustapha, N., Aufaure, M.A.: Ontology-based User Preferences and
Social Search for Spoken Dialogue Systems. In: 7th Int. WS. on Semantic and Social
Media Adaptation and Personalization, pp. 113–118 (2012)

35. Wille, R.: Line diagrams of hierarchical concept systems. Int. Classif. 11 (1984)

	Context-Aware Agile Business Process Engine: Foundations and Architecture
	1 Introduction
	2 Motivation and Related Work
	3 Foundations for CAPE
	3.1 Process Agility at Work: Agile Patient Care
	3.2 First Form of Process Agility
	3.3 Second Form of Process Agility

	4 Architecture for CAPE
	4.1 Activity Repository
	4.2 Context Monitor
	4.3 Navigation Manager

	5 Discussion and Future Work
	References

