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Abstract. Future developments for enterprise process management must evolve 
from the current systems based on rigid, workflow based processes into 
context-aware, agile dynamic structures, which exploit local adaptability. In this 
idea paper, we define two forms of process agility. To enable these forms of 
agility, we present our vision of context-aware business process management 
based on declarative modeling combined with innovative context management 
and formal concept analysis. We finally describe the foundations and introduce 
the architecture of a context-aware agile business process engine (CAPE).  
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1 Introduction 

Capacity to timely discover and to efficiently respond to rapid changes in the 
environment is a major goal of an enterprise of the future. According to [23][4], a 
firm’s ability to adapt to dynamic environments depends first on the agility of its 
business processes. Therefore, design and development of new process management 
systems enabling process adaptation at run time are essential.  

Lamport defines a process as a sequence of events occurring in system [16], where 
each event is triggered by an action. Accordingly, a business process can be seen as a 
sequence of events triggered by activities of business process actors or contextual 
events. The majority of existing methods for business process design follow 
imperative principles, implying that the order of events is predefined. As a result, all 
meaningful process events need to be determined and corresponding actions need to 
be predefined at design time. At run time, processes follow the configured model with 
limited possibilities to deviate from the predefined scenario. 

Execution of a business process in a dynamic environment can be compared to 
navigating a ship towards its destination bay in uncertain waters. Very rarely can a 
ship follow blindly a predefined path: awareness about its current position and 
situation as well as navigation skills and dynamic path finding are essential to reach 
the destination. This idea paper reports on research, which is currently at its early 
stage of development. In this work, we discuss foundations and propose architecture 
for a system supporting dynamic and context-aware business process adaptability.  
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First, we shift the traditional imperative paradigm for process design and exploit 
declarative principles: we represent a business process as finite state machine (FSM) 
[22] with a state representing a process situation at a given time and state transitions 
defining the possible process scenarios. The triggering events specify the underlying 
process semantics, i.e. conditions for state transitions. The FSM formalism makes the 
notion of process activity implicit while putting forward activity outcomes, which are 
modeled as triggering events. Therefore, the declarative process model focuses on 
“what” needs to be done in order to achieve the process goal and not on “how” it has 
to be done. This allows us to handle process events whose order of occurrence is 
undetermined and to define the corresponding handling scenarios at run time.  

Navigation in a stormy ocean depends on a skillful skipper and his capacity to 
select a right action to ensure that no incorrect scenario is executed. We design initial 
navigation rules for process guidance based on Formal Concept Analysis and Galois 
lattices [2][6]. We specify the resulting process as a set of activities that can be 
dynamically assembled at run time into one of the (non-forbidden) process scenarios. 
In general, such process specification can offer infinitely many alternative scenarios 
and a possibility to deviate from one scenario to another during the execution. We 
formalize these properties of a process as the 1st form of agility. 

Navigation in a stormy ocean depends on the capacity of the skipper to select a 
right action at the right moment, and with respect to the current situation: we define 
the 2d form of process agility as the ability to monitor and manage the process 
context and to dynamically select and/or alter the execution scenario accordingly. We 
extend the declarative process specifications with dynamic context models and 
mechanisms for dynamic context management [3][19][20]. 

We design navigation rules for processes guidance that handle both process events 
(events resulting from execution of process activities) and context events in a unified 
way. This is compatible with the FSM formalism: the nature of events triggering the 
state transition has no importance. The navigation rules ensure that no incorrect 
scenario will be executed with respect to a given context situation. 

Novel combination of declarative modeling principles, context-awareness and 
Formal Concept Analysis is the main research contribution of this work. The 
architecture for a context-aware business process engine (CAPE) summarizes our 
findings.  

The remainder of this paper is organized as follows: in Section 2, we discuss the 
state of the art related to business process design and associated agility problems; in 
Section 3 we formalize two forms of business process adaptability. These theoretical 
foundations are used in Section 4 to specify the architecture of our context-aware 
agile business process engine (CAPE). We finally illustrate our findings on an 
example and present the perspectives of this work. 

2 Motivation and Related Work 

Workflow-based approaches are highly efficient for process design and management 
assuming that: (i) all the events triggered by process activities are well determined; 
(ii) human involvement is limited to “accept”, reject” or “select from the list” types of 
decisions; and (iii) the system within which a process is executed can be considered 
as closed: no external event affecting the process execution can occur. 
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For a large category of processes, however, these assumptions do not hold: in 
health care, the same therapy may have different effects on different patients; in 
insurance, claim processing extensively involves human expertise and decision 
making; in business, many processes have to cope with evolving economic conditions 
and frequent changes of customer requirements. The limited capacity of imperative 
methods to deal with changes has been recognized by both researchers and 
practitioners [32]. Numerous approaches propose to improve the dynamic process 
adaptability: 

In [26][15][27] the concept of configurable process is presented and different 
modeling formalisms to deal with process configurability are defined. Other works 
aim at improving run time adaptability through modification of the predefined 
workflow during execution [24]. At run time the process instances follow the 
preconfigured model with a limited adaptability via predefined variants or deviation. 

The Declare framework [21][31] is a constraint-based system that uses a 
declarative language grounded in temporal logic. This framework supports process 
flexibility both at design and run time. Compared to our approach, Declare is activity-
oriented; contextual information is not considered by this approach. 

Solutions for processes characterized by “unpredictability” are reported in 
numerous works [30][17][1][7]. In [30], the foundations and collection of experience 
reports on Adaptive Case Management are presented. These works emphasize run 
time adaptability. Markus et al. [17] propose a framework to support emergent 
knowledge processes, implemented in the TOP Modeler tool. In [1] process instances 
are represented as dynamically moving through state space. This approach relies on 
automated control systems and implements declarative modeling principles. Burkhart 
et al. [7] propose to explore the capabilities of recommender systems to provide the 
user with intelligent process-oriented support at run time. While handling dynamic 
activity selection and configuration of processes “on the fly”, the majority of 
proposed solutions demonstrate only limited capacity to deal with process contextual 
information in systemic and dynamic way. 

Soffer and Yehezkel [29] introduce semantics for a declarative process model 
based on Generic Process Model (GPM). GPM is state-oriented; it captures the 
process context and reasons about process goals. Though based on different theories, 
this approach is the most related to the one presented in this paper. 

In [25][28], authors use context information for process definition. Roseman et al. 
[25] consider that external context elements may influence business processes (e.g. 
weather influences processes of a call center in an insurance company). They 
incorporate such elements into business process modeling. Saidani et al. [28] also 
consider context in business process definition, in particular, the roles played by 
actors. In these works context information is specified only at design time. Mounira et 
al. [18] propose a process mining architecture to identify context variables influencing 
process activities. However, no specific model formalizing these variables is 
proposed.  
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3 Foundations for CAPE 

In this section we define two forms of process agility and present our vision of 
context-aware business process management based on a fully declarative modeling 
combined with innovative context management and formal concept analysis.  

3.1 Process Agility at Work: Agile Patient Care 

As we could see in “House” American TV series1, Patient diagnostics and treatment 
processes in a medical ward only partially rely on imperative procedures. The main 
challenge is to be aware of the patient situation and its evolution and to adjust the 
treatment accordingly. Contextual parameters that might be relevant and should be 
managed include (but are not limited to): 

- Patient’s measurable body conditions (temperature, blood pressure, heart rate); 
- Patient’s medical record; 
- Patient’s life style; 
- Information about recent workload, leisure activities, trips. 

Some of these parameters are stable (e.g. predispositions, allergies, etc.), others can 
evolve (e.g. new information about the patient’s medical history, recent activities), 
and some others may change several times a day (e.g. body temperature). The 
capability to immediately react by canceling/prescribing new tests or medications is 
essential. 

3.2 First Form of Process Agility 

We define the first form of business process agility as a capacity to handle 
unpredictable sequences of system events. This implies that the order of process 
activity invocations is defined dynamically, at run time, and depends uniquely on the 
current situation (process state) rather than on a predefined execution scenario(s). 

3.2.1 Declarative Approach to Process Specification 
To ensure the first form of agility, we shift the traditional imperative paradigm in 
process specification and exploit declarative principles: we represent a business 
process as a finite state machine (FSM) – a state-transition system - that allows us to 
handle process events (and context events – see Section 3.3) with undetermined order 
of occurrence and to define the corresponding scenarios at run time.  

A FSM [22] specifies a machine that can be at one state at a time and can perform 
a state transition as a result of a triggering condition (event or group of events). It is 
defined by a (finite) set of states and a set of triggering conditions for each transition.  

Mathematical model: 

A FSM can be defined as a quintuple < Q, ∑, δ, q0, F > where:  

                                                           
1 http://en.wikipedia.org/wiki/House_TV_series 
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After a patient is admitted (S0) to a medical ward (the initial state), a physician 
examines him in order to obtain information for diagnostics (S1) and further treatment 
(S2). Diagnostics may involve one or multiple examinations and/or generic or specific 
tests. The patient’s case is then assessed and a treatment is prescribed. During the 
treatment, additional examinations can reveal new patient’s condition and require to 
modify the assigned therapy and, even, to repeat diagnostics and assessment. Once the 
therapy is terminated and the patient’s good condition is confirmed, the patient is 
discharged (S3) from the ward. In this example, we identify four states: Q={S0, S1, S2, 
S3} and six process activities that can be executed during the process and trigger state 
transitions from S0:Admitted to S3:Discharged states (Table 1).  

Table 1. Abstract activities and events defined for the Patient treatment process 

Activity Avail. at: Process events (Activity outcomes):
A1 Physical 

examination 
S0, S1, S2 
 

E1 Confirms the declared symptoms
E2 No problem found
E3 New symptoms emerged
E4 Supplementary medical tests are required 

A2 Medical 
laboratory 
test 

S1, S2 E5 Positive results (anomalies detected) 
E6 Negative results (no anomalies detected) 
E4 Supplementary medical tests are required  

A3 Specific 
medical 
tests 

S1, S2 E5 Positive results (anomaly detected) 
E6 Negative results (no anomaly detected) 
E4 Supplementary medical tests are required  

A4 Case 
Assessment 

S1 
 

E7 Diagnose confirmed, treatment assigned 
E8 Diagnose not confirmed, patient discharged 
E4 Supplementary medical tests are required 

A5 Therapy S2 E9 Condition declined (e.g. symptoms increasing) 
E10 Condition improved (e.g. symptoms 

decreasing)
E11 Side effects emerged
E3 New symptoms emerged
E12 Stable situation
E13 End of therapy

A6 Recovery S2 E3 New symptoms emerged
E14 End of recovery therapy

Context events:
  E15 New medical / personal evidence received 
  E3 New symptoms emerged
  E9 Condition declined, (e.g. symptoms 

increasing)
  E10 Condition improved (e.g. symptoms 

decreasing)

According to our formalism, an activity A is described with a pair <S, EA> where: 

- S ⊆ Q is the set of states from which this activity can (but not necessarily will) be 
invoked; 

- E ⊆ ∑ is the set of events that can result from the activity execution and can 
potentially trigger a state transition.  

For each activity A, the state transitions that can be triggered upon its termination can 
be calculated as:   δA: S x E P(S).  
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For example, the activity A2 (Medical laboratory test) is specified as follows: S: 
{S1, S2}; E:{E5, E6, E7}. Note that some events can result from a process activity 
and can be context events (cf. Section 3.3) - independent from activities. (e.g. E10 – 
condition improved).  

3.2.2 Formal Concept Analysis and Galois Lattices  
Within our model, the partial ordering of process activities is determined by the state 
transition relation P(Q). This relation specifies the valid transitions with respect to the 
process goal (its final state) and ensures that invalid state transitions (e.g. to discharge 
a patient with critical temperature) will be avoided. This relation can be specified 
with Formal Concept Analysis (FCA) [2] [6]. FCA is a mathematical theory relying 
on the use of formal contexts2 and Galois lattices defined below. The use of Galois 
lattices to describe a relation between two sets has led to various classification 
methods [8] [35]. Since then, they have been used in numerous areas to extract hidden 
knowledge from data. Let us first introduce FCA terminology [12].  

Mathematical model: 

Let K = (G, M, I) a formal context, where G is a set of objects, M is a set of attributes, 
and the binary relation I ⊆  G x M specifies the attributes of the different objects. 
Derivation operators noted (.)I are defined for A ⊆   G and B ⊆   M as follows: 

AI = {m ∈  M│∀  g ∈   A : g I m} BI = {g ∈  G│∀  m ∈  B : g I m}, 

where AI is the set of attributes, which are common to all objects from A and BI is the 
set of objects which share all attributes from B.  

A formal concept of the formal context (G, M, I) is a pair (A, B), where A ⊆  G and 
B ⊆  M, A = BI  et B = AI. The set A is called the extent of concept (A, B) and B is its 
intent. A concept (A, B) is a specialization of concept (C, D) if A ⊆  C, which is 
equivalent to D ⊆  B. This is noted (A, B) ≤ (C, D). Reciprocally, the concept (C, D) is 
a generalization of concept (A, B). The set of all concepts and their partial order 
relation constitutes a lattice, called Galois lattice of the formal context K. 

The major interest of a Galois lattice is the structure it provides through the 
conceptual clustering of objects according to their common attributes. This allows the 
identification of the most conceptually significant objects and attributes. Another 
interest of Galois lattices is that association rules can be inferred automatically from 
them. Several works have indeed applied FCA to the extraction of relevant 
association rules [13] or to perform sequential pattern mining [11]. 

Within our approach, process states Q, triggering events ∑ and process activities 
defined in Section 3.2 form a formal context and can be analyzed using Galois lattices. 
Process states and activities can be clustered revealing their conceptual properties: For 
example, we can determine activities that can be executed (or suggested for execution) 
under given conditions and with an objective to trigger a desired state transition.  
 
                                                           
2 The term “formal context” is specific to Formal Concept Analysis and refers to a binary 

relation. In the following, we will also refer to this as “formal context”, as opposed to 
“context” which represents the environment. 
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3.3 Second Form of Process Agility 

We define the second form of business process agility as a capacity to adjust the 
process execution scenario according to the current contextual situation. Process 
activities are assembled at run time, according to observed context4 and with an 
objective to trigger a state transition required for achieving the process goal (defined 
as one of the final states of a FSM).   

Dey [9] defines a context as any information that can be used to characterize the 
situation of an entity (a person, place or object) that is considered relevant to the 
interaction between a user and an application. The notion of context adopted in the 
literature is mostly user-centric and limited to physical aspects (e.g. location, user 
preferences, or user device)[19]. Together with Dourish [10], we argue that the notion 
of context is larger, and includes information related to organization and processes: 
“context – the organizational and the cultural context, as much as the physical context 
– plays a critical role in shaping action and also in providing people with the means to 
interpret and understand action”. In our example, patient treatment process can be 
influenced by the emergence of new symptoms or the arrival of new resources (e.g. 
new medical people available, new personal evidence, etc.). The second form of 
business process agility consists in taking into account such context information 
during process execution.   

The context parameters reflect our awareness about external and internal 
information about the process; they can be observed and measured. Even though 
context-awareness for business processes is addressed in the literature [25] [28] [18], 
the lack of formalism for context representation and management persists: many of 
the proposed context models are static (need to be defined at design), incomplete 
(consider only limited context information) and are often specific to workflow-based 
processes.  

We argue that the number and kind of context parameters may vary from one 
situation (or process state) to another making it impossible to exhaustively model all 
required context information within a single (static) context model. The context 
model, therefore, needs to be dynamically instantiated from an appropriate metamodel 
according to specific (evolving) context dimensions.  

3.3.1 Dynamic Context Modeling 
The way context information can be exploited for business process flexibility depends 
on what information is observed and how it is represented. According to Najar et al. 
[19], the formalism chosen for representing context model determines the reasoning 
methods that can be used to perform system adaptation to the observed context. A 
context model (i) ensures the definition of independent adaptation processes and (ii) 
isolates this process from context acquiring techniques. The same applies to context-
aware business process. We claim that the process context information should be 
acquired, modeled and formally analyzed at run time in order to adapt business 
process execution and to ensure business process flexibility.  

                                                           
4 The term of “context” represents the environment. 
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Several context models have been proposed in the literature [19] [3]. Based on 
these, we define a common meta-model presented in Fig. 3. In this meta-model, we 
consider context as a set of context elements that are observed for a given subject (e.g. 
the patient, a device, a resource, etc.). Each subject can be associated with multiple 
context elements (location, status, etc.); for each context element, we observe values 
that can dynamically change. Subject and context elements can be semantically 
described using ontologies. Ontologies are considered as interesting to represent 
context elements [19]. They provide ways to semantically describe these elements and 
their relationships, but also reasoning mechanisms, notably inference rules.  

 

Fig. 3. Context meta-model considering context as a set of context elements 

Mathematical model: 

Based on context ontology, we represent events as logical constraints over context 
concepts and observed values. We formalize the context of a subject s in a time t as 
follows:   Context(s,t) = { Element(s, ce) },  
where Element(s,ce) represents the observed value of the context element ce for the 
subject s.  

Within our approach, process states Q defined using FSM formalism in Section 3.2 
can be extended with the context information: Each state can be associated with a (set 
of) subject and its contextual elements to observe. FSM triggering events ∑ represent 
both (i) context events occurring during the process execution and/or (ii) events 
resulting from executed process activities – process events. Note that process 
activities are implicit within FSM formalism: only the events resulting from an 
activity execution are observable. As a result, a FSM processes both contextual and 
process events in a unified way. These events can be expressed using logical 
conditions on observed values of contextual elements. 

In our example, a subject s – patient – is observed in all the process states. The 
contextual elements ce associated with a patient include his body temperature, blood 
pressure, patient’s location, record etc. Patient’s condition can decline (patient’s 
temperature may evolve from ‘36.5°C’ to ‘39.7°C’) or new evidence about the patient 
can be received by e-mail. Triggering event E9 (condition declined – see Table 1) can 
be expressed using the following condition: Element(#patient, #temperature) > 38.5.  
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4.1 Activity Repository 

Activity repository represents a set of activities related to a business process. Each 
activity is specified with states S from which it can (but not necessarily must) be 
executed during the process, and with the set of events E representing its possible 
outcomes as defined in Section 3.2.1. The pair <S,E> is an activity signature. These 
signatures are further used by Navigation Manager. The activity repository represents 
crew skills and technical capacity of a ship. 

4.2 Context Monitor 

Context monitor is in charge of observing, at run time, context elements and subjects 
from the environment. Its role in CAPE architecture is similar to a watchman in a 
ship: it observes navigation conditions and reports them to the navigation manager.  

Context monitor is based on the context meta-model described earlier. Similar to 
[20], it recognizes context elements through plugins (software components 
dynamically connected to the architecture), which feed the architecture with dynamic 
information about a given context element from a subject (e.g. a plugin reading 
patient’s heart rate or medical resource’s location from his/its id card). Context 
monitor can be dynamically extended, by adding new plugins, for observing new 
context elements and subjects. Context values dynamically observed by context 
plugins measure the process position in the process state space (for instance, a new 
plugin for observing the availability of a new analysis equipment). This position is 
further used by the navigation manager, which recognizes context events and 
interprets them accordingly. 

4.3 Navigation Manager 

Navigation manager makes navigation decisions, like a skipper in a ship. It 
determines one (or several) plausible activity to execute with respect to the process 
goal and the contextual situation. Specifically, navigation manager takes into account 
the current state of the process, the contextual parameters and the signatures of 
activities defined in the activity repository. Based on the navigation rules, it 
determines a set of activities enabled in a given situation and calculates those of them 
that will have a highest probability to result in the desired outcome. 

Navigation engine is the core element of CAPE architecture: it links together the 
other elements. We illustrate the functioning of CAPE on our example: 

Example: Agile Patient Care (continued) 

Once a patient has been admitted (S0) and the result of his physical examination (A1) 
has confirmed the declared symptoms (E1), he is in state S1. The targeted final state is 
S3: discharge the patient. The goal of the navigator is to provide recommendations in 
order to reach this state as quickly as possible, while respecting medical protocols and 
taking into account the contextual situation. In the following, we describe the 
sequence of operations performed by the navigator to meet this goal. 

1. Selection of the next transition towards the targeted final state 
Fig. 1 illustrates the various possible paths from one state to another. The underlying 
graph is directed, nondeterministic, with possible cycles. From this graph the 
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navigator computes the most efficient path from S1 to S3, both in terms of length and 
of events triggering probability. Let us suppose here that this ideal path consists in 
using the direct link from S1 to S3. The next step, in our example, is to trigger the 
transition from S1 to S3. 

2. Identification of relevant activities 
The navigator now has to identify the events, which may5 trigger a transition from S1 
to S3. According to our FSM (Fig.1) and the state transition map, the triggering 
conditions for a transition S1 - S3 are the following: 

- Additional physical examinations and/or medical laboratory tests reveal no 
anomaly or problem and the patient himself feels better  - (E2 | E6)&E10, or  

- Case assessment does not confirm the diagnosis (E8) 

To identify the activities that can be of a maximum utility with respect to our 
objective (transition S1-S3): 

- Navigator identifies the activities in our repository that can ensure a desired 
outcome (a combination of events described above) using the Galois lattice 
illustrated in Fig. 2. For our example, the event E2 can result from the activity 
A1; E6 from A2 or A3; E10 from A5 or spontaneously as an external event, as 
the patient’s condition may improve independently from any activity from the 
medical staff.  

- Navigator selects those activities that are enabled at the state S1 (according to 
their specification) using the Galois lattice illustrated in Fig. 2. For our example, 
the activities A1, A2, A3, A4 are available in S1 (In Diagnostic) state, whereas 
A5 is not. 

Thus, the activities A1 – A4 are potential candidates for execution in the state S1. 

3. Selection of recommended activities based on their utility 
We calculate an utility of each scenario as its likelihood to trigger the transition S1-
S3. For our example, A5 is not available at S1 and therefore, E10 can be expected 
only as a context event (i.e. we can observe this event when it happens but cannot 
control it).  The following viable scenarios can be evaluated: 

a) A physician prescribes medical tests and/or makes additional physical 
examinations according to the declared symptoms. The spontaneous improvement 
of the patient is expected. 

b) A physician assesses the case based on the patient’s history (and examinations 
made upon patient’s admission to the ward). 

A combination of these scenarios is also possible. 
Depending on the probabilities of transition S1-S3 resulting from each of the 
aforementioned scenarios and also, on the probability to obtain the event E2 as a 
result of A1, E6 from A2 or from A3, and E8 from A4, the navigator may recommend 
specific activities to the medical staff. 
                                                           
5 Our graph is nondeterministic: one event can trigger multiple state transitions (e.g. E11 – side 

effects emerged – can be handled both in the therapy states or can trigger a transition to the 
diagnostics state. This nondeterminism, in general case, can be resolved by refining the states 
and transitions, and by specifying the new navigation rules. Alternatively, a probability p can 
be associated with each of the possible transitions. 
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This idea paper reported on research, which is currently at its early stage of 
development. According to the IS research framework [14], (i) we specified our 
business problem as a lack of automated support for business process agility; (ii) 
then we defined a relevant knowledge base for our research and outlined the 
foundations for CAPE; (iii) we built our design artifacts: we introduced the two 
forms of process agility – the constructs to be used for reasoning about business 
processes; we also defined a model and a method for specification of agile business 
processes based on FSM abstraction and formal concept analysis. We extended this 
model with the dynamic context model. We combined these artifacts in and proposed 
the architecture for context-aware agile business process engine (CAPE). 

This work accomplishes the first part of the “build-evaluate” loop [14]. Evaluation 
of our designed artifacts and their refinement will be addressed in future work. More 
specifically, we envisage to demonstrate the utility of our proposed architecture, first, 
by developing detailed scenarios, then, by simulating them, and, eventually, by 
implementing CAPE architecture and studying its usability in real business 
environment. Usability metrics for CAPE will be also discussed in future publications. 
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