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Abstract. Service robots act in open-ended and natural environments.
Therefore, due to the huge number of potential situations and contingen-
cies, it is necessary to provide a mechanism to express dynamic variability
at design-time that can be efficiently resolved on the robot at run-time
based on the then available information. In this paper, we present a mod-
eling process to separately specify at design-time two different kinds of
dynamic variability: (i) variability related to the robot operation, and
(ii) variability associated with QoS. The former provides robustness to
contingencies, maintaining a high success rate in robot task fulfillment.
The latter focuses on the quality of the robot execution (defined in terms
of non-functional properties like safety or task efficiency) under changing
situations and limited resources. We also discuss different alternatives for
the run-time integration of the two variability management mechanisms,
and show real-world robotic examples to illustrate them.

Keywords: Variability Management, Modeling Run-Time Variability,
Service Robotics, SmartTCL, VML.

1 Introduction

Service robots (e.g. companion, elder care, home health care, or co-worker robots)
are expected to robustly and efficiently fulfill different tasks in complex environ-
ments (such as domestic, outdoor or crowded public spaces). Real-world envi-
ronments are inherently open-ended and show a huge number of variants and
contingencies. Thus, service robots need to know how to flexibly plan their se-
quence of actions in order to fulfill their tasks, taking into account changes in
the environment, noisy perception and execution failures. For instance, a robot
navigating in a building needs to reactively avoid dynamic obstacles in its lo-
cal surrounding. Besides, it might need to reconsider its plan of how to get to
its destination, e.g., in case the planned route is blocked. The management of
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this variability in operation provides the robot with a high degree of robust-
ness and allows it maintaining a high success rate in task fulfillment. On the
other hand, there is typically a wide range of possibilities to succeed in the same
task. Among these possibilities, some might be better than others according to
quality criteria defined by the designer (e.g., in terms of resource consumption,
safety, performance, etc.). For example, since robots are equipped with limited
resources, they need to know how to spend them in the most appropriate way.
Thus, if a robot is running out of battery, it might be a good idea to prioritize
power consumption over task efficiency. The management of this variability in
quality improves the overall robot execution performance.

Addressing variability in robotic software is nothing new. However, it has been
traditionally managed in an ad-hoc way, i.e., developers try to predict future ex-
ecution conditions and implement specific mechanisms to deal with each partic-
ular situation, spreading the variability management rationale thoughout their
application code. Among other issues, this usually leads to increased complexity,
poor reuse, and it hinders the extensibility and maintenance of the applications.
This motivates a different approach [1]: (i) we need to make it as simple as pos-
sible for the designer to express variability at design-time, and (ii) we need the
robot to be able to bind variability at run-time, based on the then available in-
formation. At design-time, we propose to use two different Domain Specific Lan-
guages (DSLs), each one for modeling one of the previously described varibility
kinds: SmartTCL [2] for variability in operation, and VML [1] for variability
in quality. This way we encourage the separation of the two concerns: one for
modeling how to coordinate the actions (e.g., a flexible plan considering contin-
gencies), and another one for modeling what is a good way of achieving a task
(e.g., in terms of non-functional properties like safety or power consumption).
At run-time, we separate the variability management in two orthogonal mecha-
nisms: (i) sequencing the robot’s actions to handle variability in operation, and
(ii) optimizing the non-functional properties for variability in quality. These two
mechanisms enable the robot to decide on proper behavior variations by ap-
plying the design-time model information and taking the current situation into
account. This approach improves the robustness and the task execution qual-
ity, optimizes robot performance and cleverly arranges complexity and efforts
between design-time and run-time.

In this paper, we present a modeling process to separately specify variability
in operation using SmartTCL and variability in quality using VML. Besides,
as one of the core contributions of this paper compared to our previous work on
this topic [1], we analyze three different alternatives for a run-time integration of
the two proposed variability management mechanisms in a safe and consistent
way. We will describe the lessons learned and discuss the benefits and draw-
backs of each alternative. In order to underpin the feasibility and the benefits of
the proposal we provide a real-world case study in a robotics scenario. Despite
the fact that our proposal is inspired by the robotic domain, we believe that
the basic ideas we present in this paper are interesting and general enough to be
considered in other domains.
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2 Real-World Robotics Scenario

In order to demonstrate the variability modeling capabilities of the two indi-
vidual languages, SmartTCL and VML, we use the Butler1 scenario. In this
scenario we have a robot serving people. It carries out typical butler activities
like taking orders, fetching beverages, cleaning up after customers left the place,
etc. Although we have repetitive tasks in the scenario, the overall sequence of
actions is never the same. Instead, the service robot must adjust its behavior
according to changes in the environment, human orders, etc.

To achieve this flexibility in the robot operation, SmartTCL allows designers
to model possible contingencies of the scenario. For instance, in the clean up the
table activity, the robot has to take objects like glasses and cups to the kitchen,
and place others, like tetra packs or empty cans, in a trash bin. Then, what
happens if the robot finds unexpected objects on the table? Although the robot
can presume which objects are left on a table from the previous orders, the real
situation might be quite different, as customers might have left their glasses on
different tables or forgotten personal objects such as a mobile phone. Besides,
typically, the sequence of appropriate actions for the clean up task strongly
depends on each particular situation, and needs to take into account both robot
limitations and constraints (e.g., its physical capacity to carry only a limited
weight or the maximum number of cups it can stack into each other to safely
carry them to the kitchen), and application-specific information (e.g., which
objects must be thrown away and which ones must be cleaned and reused).
Thus, the most robust way for a service robot to operate is to react on each
situation with as little assumptions as possible. This motivates an approach
where the behavior of the robot must be as flexible as possible, just defining
the strategies for how to react on situations by finding appropriate sequences of
actions to achieve, e.g., the clean up task.

Now, imagine that we want to optimize the coffee delivery2 service. The robot
has to trade-off various aspects to come up with an improved quality of service.
Thus, it needs to be able to select an appropriate velocity to properly fulfill its
task according to further issues like safety or energy consumption: (i) customers
are satisfied only if the coffee has at least a certain temperature, but prefer it as
hot as possible; thus, serving fast is relevant, (ii) however, the maximum allowed
velocity is bound due to safety issues (hot coffee) and also by battery level,
(iii) since coffee cools down depending on the time travelled, a minimum required
average velocity (depending on distance to customer) is needed, although driving
slowly makes sense in order to save energy, (iv) nevertheless, fast delivery can
increase the volume of sales. Although the main functionality of the robot is to
deliver coffee, regardless of how well it is performed, VML can help designers to
model, on top of this functionality, QoS policies based on (often conflicting) non-
functional properties. As a result, the variability (e.g., robot maximum allowed

1 Butler scenario video: http://www.youtube.com/user/RoboticsAtHsUlm
2 Coffee scenario video: http://www.youtube.com/watch?v=-nmliXl9kik
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velocity) is bound at run-time to optimize these policies according to the current
application context (e.g., the battery level or how crowded the coffee shop is).

Inspired on the above example, we consider that the Butler scenario takes
place in a room with two coffee machines located in different positions. When
someone asks the robot for a cup of coffee it must decide: (i) which coffee machine
to use, and (ii) its maximum allowed velocity. This decision is made at run-time
in order to improve the quality of the service taking into account power consump-
tion (e.g., when the battery is low the system must optimize power consumption
using the nearest coffee machine) and performance (e.g., trying to get the highest
value for maximum allowed velocity in order to reach the goal faster). Obviously,
maximizing performance while simultaneously minimizing power consumption
imposes conflicting requirements. To deal with this, VML allows expressing, at
design-time, the existing dependencies among conflicting requirements such that,
at run-time, the robot can find the right balance among them.

3 Modeling Variability with SmartTCL

We use the Task Coordination Language (SmartTCL [2]) to model vari-
ability in operation. The main purpose of SmartTCL is to define rules and
strategies that specify how the system behaves when accomplishing different
tasks. SmartTCL allows to react to changes in the environment and to adjust
task execution according to the current situation.

3.1 SmartTCL Syntax

The SmartTCL EBNF grammar is defined in Listing 1.1. The main element
of SmartTCL is the Task Coordination Block (TCB). A TCB represents an ab-
stract task (e.g., moving to a generic location), and its function is to orchestrate
(configure and activate) the system components to execute the proper primitive
actions needed to achieve this task. A TCB is defined by its signature, consist-
ing of the name and the in/out parameters and, optionally, a precondition clause
and a priority that, when available, help selecting the most appropriate TCB at
run-time. The body of a TCB contains, at least, an action block, a plan or both.
An action block is used to define primitive behaviors encoded in Lisp. A plan is
used to establish a parent/child relationship between TCBs and, thus, to create
complex behaviors. This enables SmartTCL to define recursion (with the ter-
mination clause encoded as the precondition) and to create task-trees consisting
of TCBs as nodes. The plan is not static, but can be dynamically adjusted at
run-time, e.g., by asking a symbolic planner (which allows to generate action
plans at run-time) for a sequence of TCBs. The default execution semantics for
the TCBs in a plan is to execute them one after the other in sequence. Alterna-
tively, it is possible to execute all the TCBs in a plan in parallel (waiting until
they have all finished), or use the one-of semantics (again in parallel but, this
time, exiting as soon as one of the TCBs finishes). In addition, the body of a
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SmartTCL ::= ( TCB | [EventHandler] | [RuleDef] )+
(* TCB definition *)
TCB ::= ’(’ Signature Body ’)’
TCB_NAME ::= ID
LISP_CODE ::= STRING
(* TCB-Signature definition *)
Signature ::= ’define-tcb’ ’(’ TCB_NAME InParams ’=>’ OutParams ’)’

[Precondition] [Priority]
InParams ::= (’?’ ID)*
OutParams ::= (’?’ ID)*
Precondition ::= ’(’ ’precondition’ ’(’ LISP_CODE ’)’ ’)’
Priority ::= ’(’ ’priority’ INT ’)’
(* TCB-Body definition *)
Body ::= [Rules] (ActionBlock [Plan] | [ActionBlock] Plan) [AbbortActions]
Rules ::= ’(’ ’rules’ ’(’ (ID)+ ’)’ ’)’
ActionBlock ::= ’(’ ’action’ ’(’ LISP_CODE ’)’ ’)’
AbortActions ::= ’(’ ’abort-action’ ’(’ LISP_CODE ’)’ ’)’
Plan ::= ’(’ ’plan’ ’(’ [’parallel’|’one-of’] (TCB_NAME)+ ’)’ ’)’
(* EventHandler definition *)
EventHandler ::= ’(’ ’define-event-handler’ ’(’ ID ’)’ ActionBlock ’)’
(* Rule block definition *)
RuleDef ::= ’(’ ’define-rule’ ’(’ TcbBinding TcbEvent ActionBlock ’)’ ’)’
TcbBinding ::= ’(’ ’tcb’ ’(’ TCB_NAME InParams ’=>’ OutParams ’)’ ’)’
TcbEvent ::= ’(’ ’tcb-return-value’ ’(’TcbEventCode’(’TcbEventDescription’)’’)’’)’
TcbEventCode ::= (’SUCCESS’ | ’ERROR’)
TcbEventDescription ::= (STRING)*

Listing 1.1. EBNF grammar for SmartTCL

TCB can optionally contain a sequence of rules (see below) or a block of abort-
actions. The latter implement cleanup procedures in case the TCB is aborted
before completion.

In addition to TCBs, SmartTCL defines EventHandlers and Rules. Event-
Handlers are used to receive feedback from the components in the system. This
feedback can signal, e.g., successful completion or a failure in the execution of a
previously triggered action. In any case, the EventHandler executes a block of
actions to appropriately react on that event. A rule is a very handy mechanism
to react on contingencies during the execution of the TCBs in a plan. This
mechanism is comparable with C++ Exceptions. If one of the child TCBs has
a problem during its execution that cannot be solved locally, it can propagate
an error message up the hierarchy, which is then caught by the first fitting rule.
For each TCB, various rules can be defined (indicated by the binding part of the
rule and associated to a certain event) to provide different strategies to react on
contingencies. A parent TCB activates a set of rules for its child TCBs in order
to create appropriate recovery strategies. This considerably improves the reuse
and flexibility of the TCBs in different scenarios.

3.2 SmartTCL Execution Semantics

At run-time, on the robot, SmartTCL plays the coordinator role by orchestrat-
ing software components. Thereby, each TCB represents a certain, consistent
system state with all the configuration parameters for individual components.

The main functionality of SmartTCL is illustrated by the clean-up table
scenario introduced in Sec. 2. The whole scenario is modelled on the robot using
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SmartTCL. There, a user operating with the robot can command it to clean up
the dinner table, which activates the TCB labelled in Listing 1.2 and in Fig. 1 as
1©). This TCB has an input parameter named ?location. From the parent
TCB this parameter is set to dinner-table, which is a placeholder that can
be resolved in the knowledge base (like in 3©). It is worth noting that, in our
case, a knowledge base is simply a databse (a memory) to store key/value pairs
(for e.g. the robot model, the TCBs, environment model, etc.).

(define-tcb (cleanup-table ?location)
(rules (rule-action-cleanup-table-failed rule-action-cleanup-table-empty
rule-action-cleanup-say-success ))

(plan (
(tcb-approach-location ?location)
(tcb-say "I have reached the table, and will look for objects to clean up.")
(tcb-cleanup-table))))

Listing 1.2. Cleanup table TCB definition
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Fig. 1. Snapshot of a task-tree at run-time from the clean-up scenario example

As shown in Listing 1.2, the cleanup-table TCB has no action block, but it
defines a plan comprising other TCBs to approach a location 2© (in this case
the dinner-table), to announce via speech that the robot is now going to look
for objects to clean up 5©, and then to execute the TCB cleanup-table 6©,
which is different from its parent because of its different signature. In addition,
a list of rules is activated which, in this case, altogether belongs to the child
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TCB cleanup-table. These rules define the behavior of this TCB according
to certain results in the execution. For instance, if something goes wrong while
cleaning up the table, the first rule can trigger a re-planning or can delete the
current plan and report the failure to the operator. In case the cleaning up suc-
ceeds, the robot can update its internal environment representation and report
the success to the operator (see also n© in Fig. 1).

It is important to notice that task-trees are created and evolve (according to
changes in the environment, execution failures, etc.) only at run-time. It is also
noticeable that, in contrast to regular finite state machines, we do not model the
transitions between the TCBs. Instead we define rules and strategies that specify
how a TCB can be expanded and refined at run-time taking the then available
information into account. This leads to a much more flexible and robust system
behavior. It is even possible and a regular case to generate complete (sub)trees
by asking a symbolic planner (see 9© and 11©). In this example, the planner
returns a sequence like: stack cup A into cup C and then cup C into cup B,
etc. This is a powerful mechanism we call expert usage that will be handy for
interacting with VML (see Sec. 5). In summary, we use experts, rules and event
handlers to design variability in operation.

4 Modeling Variability with VML

In this section we introduce the Variability Modeling Language (VML) that
provides a mechanism to express variability in quality, that is, how a system
should adapt at run-time to maintain or improve the system execution quality
under changing conditions. The current version of VML has been developed
using a Model-Driven Engineering (MDE) approach. We have created a textual
editor for VML using the Xtext framework3, including some advanced features
such as syntax checking, coloring and a completion assistant.

In a VML model, we first need to define the variation points. Aligned with
Dynamic Software Product Lines (DSPL) [3], VML variation points represent
points in the software where different variants might be chosen to derive the
system configuration at run-time. Therefore, variation points determine the de-
cision space of VML, i.e., the answer to what can change. As shown in Listing 1.3,
variation points (varpoint), as all the other VML variables, belong to a certain
data type. VML includes three basic data types: enumerators, ranges of numbers
and booleans. For instance, maximumVelocity is a variation point to limit the
maximum velocity of the robot, which takes values from 100 to 600 with preci-
sion 10 mm/s. Similarly, the coffeeMachine variation point is an enumerator
that gathers the two available coffee machines that can be used by the robot:
COFFEE_MACHINE_A and COFFEE_MACHINE_B. Once we have identified the
variation points, context variables (context) are used to express situations
in which variation points need to be adapted. Listing 1.3 shows five context
variables: (i) the battery level (integer value in the range 5-100), (ii) distance to

3 Xtext: www.eclipse.org/Xtext

www.eclipse.org/Xtext
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each coffee machine (real number in the range 0-20 with precision 0.1), and
(iii) waiting time at each coffee machine (integer in the range 10-300), taking
into account the operation time of the machine (constant time) and the time the
robot has to wait because there are other users (robots or people) waiting for it
(variable time).

/* Contexts variables */
context ctx_battery : number [0:1:100];
context ctx_distanceMachine_A : number [0:0.1:20];
context ctx_distanceMachine_B : number [0:0.1:20];
context ctx_waitingTimeMachine_A : number [10:1:300];
context ctx_waitingTimeMachine_B : number [10:1:300];

/* Auxiliary variables */
var timeMachine_A := ctx_waitingTimeMachine_A + ctx_distanceMachine_A/600;
var timeMachine_B := ctx_waitingTimeMachine_B + ctx_distanceMachine_B/600;

/* ECA rules */
rule lowBattery_NearMachineA :

ctx_battery < 15 and ctx_distanceMachine_A < ctx_distanceMachine_B
=> coffeeMachine = @coffeeMachine.COFFEE_MACHINE_A;

rule lowBattery_NearMachineB :
ctx_battery < 15 and ctx_distanceMachine_A >= ctx_distanceMachine_B
=> coffeeMachine = @coffeeMachine.COFFEE_MACHINE_B;

rule high_EFF_coffeeMachA :
ctx_battery >= 15 and timeMachine_A > timeMachine_B
=> coffeeMachine = @coffeeMachine.COFFEE_MACHINE_A;

rule high_EFF_coffeeMachB :
ctx_battery >= 15 and timeMachine_A <= timeMachine_B
=> coffeeMachine = @coffeeMachine.COFFEE_MACHINE_B;

/* Properties to optimize */
property performance : number[0:1:100] maximized {

priorities:
f(ctx_battery) = max(exp(-1*ctx_battery/15), 10 sec) - exp(-1*ctx_battery/15);

definitions:
f(maximumVelocity) = maximumVelocity;

}
property powerConsumption : number[0:1:100] minimized {

priorities:
f(ctx_battery) = exp(-1 * ctx_battery/15);

definitions:
f(maximumVelocity) = exp(maximumVelocity/150);

}

/* Variation points */
varpoint maximumVelocity : number [100:10:600];
varpoint coffeeMachine : enum { COFFEE_MACHINE_A, COFFEE_MACHINE_B };

Listing 1.3. VML Model for choosing Coffee Machine

At this point, we need to define how variation points are set according to the
context. This is achieved through properties (property) and Event-Condition-
Action (ECA) rules (rule). Properties specify the features of the system that
need to be optimized, i.e., minimized or maximized. Properties are defined us-
ing two functions: priorities and definitions. Definitions characterize the prop-
erty in terms of variation points (i.e., definitions are the objective functions to
be optimized). For instance, in Listing 1.3, we define the performance property
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as a linear function of the maximum velocity variation point (the faster the
robot accomplishes its task, the better its performance). Similarly, the power
consumption property also depends (in this case, exponentially) on the maxi-
mum velocity (the faster the robot moves, the higher its power consumption). It
is worth noting that property definitions are characterized using the technical
specifications of the hardware (e.g., to know how much power each component
consumes), simulation or empirical data from experiments. On the other hand,
priorities describe the importance of each property in terms of one or more con-
text variables (i.e., priorities weight the objective functions). For instance, power
consumption becomes more and more relevant as the robot battery decreases.
In fact, when the battery is full, power consumption is not considered an issue
and, as a consequence, the priority of this property in that context is very small.
Opposite to definitions, priorities are characterized in a more subjective way,
depending on the designer experience.

Regarding the ECA rules, they define direct relationships between context
variables and variation points. As shown in Listing 1.3, the left-hand side of a
rule expresses a trigger condition (depending on one or more context variables)
and its right-hand side sets the variation point. For example, the decision of
which coffee machine to select in each situation is modeled using rules. Basically,
the first two rules are applied when the battery is low (less than 15%) to select
the nearest coffee machine (reducing travel distance lowers power consumption
when the battery is critical). Conversely, if the battery is high enough, the last
two rules select the machine with lower waiting time (reducing the coffee delivery
time improves performance when the battery is not an issue).

Regarding execution semantics, VML models specify a constrained optimiza-
tion problem, that is, it describes the global weight function that optimizes the
variation points to improve the overall system quality. This global function is ob-
tained by aggegating the property definitions (terms to be optimized), weighted
by their corresponding priorities. Besides, the ECA rules state constraints that
need to be satisfied. Therefore, in order to execute a VML model, we transform
it into MiniZinc [4] (a constraint programming language), so that the gener-
ated code is used as an input by the G12 Constraint Programming Platform4

to solve the constraint problem. At this point, it is worth noting that VML
variation points and contexts are high-level variables that somehow abstract ar-
chitectural elements (e.g., components or component parameters). For instance,
the maximum velocity is linked to a parameter of the motor component, and
the battery level is obtained from a sensor component. This abstraction allows
VML to be independent of the underlying architecture, what, among other ben-
efits, enables the reuse of the specification. However, when it comes the time
to map the abstract VML elements to the actual system architecture, we must
carefully take into account how this might interact with the decisions made by
SmartTCL. Next section explains how both variability management mecha-
nisms have been finally integrated in a safe and consistent way, after assessing
different approaches.

4 G12: www.g12.csse.unimelb.edu.au

www.g12.csse.unimelb.edu.au
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5 Run-Time Integration of SmartTCL and VML

To this point, we have explained how to use SmartTCL and VML to separately
specify the variability in operation and the variability in quality, respectively.
This section addresses one of the key issues when using both variability manage-
ment mechanisms together, i.e., how to integrate them in a safe and consitent
way. Next, we describe chronologically the integration approaches we followed
to deal with this issue.

As detailed in Sec. 3, the role of SmartTCL is to orchestrate the changes
in the software architecture, i.e., to configure, activate and deactive the compo-
nents, according to an action plan, to enable the robot to fulfill its tasks. On the
other hand, the VML engine sets a number of variation points (with impact in
the architecture components or in some of their parameters), so that the overall
QoS delivered by the robot is optimized. Our first integration approach was to
enable both mechanisms to have impact on the software architecture. However,
although we can advise the designer to create SmartTCL and VML models hav-
ing orthogonal decision spaces, formally checking this orthogonality at design-
time is a hard problem. We evaluated the possibility of implementing a tool that
could help the designer in the creation of mutually consistent SmartTCL and
VML models (i.e., guaranteeing that both models would not produce conflicting
decisions at runtime). However, as the number of potential situations the system
could have to face is unbounded and first known at run-time, the potential de-
cisions of both mechanisms in response to those situations are also unbounded.
Thus, we discarded this initial approach as it was not feasible in practice.

�������	

���

����

�����

���	
���	
����

�	����	��	
���
��

�����	�	
���
��

����
���
��

���


��
������������������

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��� ���

��
����
�����

���

��������
�����

�����	�
�

��������
�����

�����	�
�

���

���

��	�
���	

������
 !�"#

$����
�����
�����	�

�����

��	�
��
��
�
�

��%
������
&

Fig. 2. On the left: discrete TCBs to handle variants during optimization. On the right:
expert usage and continuous updates

In the robotics domain, one general approach to face decision conflicts is to
define a single master in the system, which is responsible for making the final
decisions at run-time. In our case, there is a natural hierarchy already available.
Thereby, SmartTCL models all functional aspects related to the variability in
operation. In designing such models, typically one finds several solutions with



Variability Management in Robotics Software 451

similar success expectations regarding the goals of the tasks. From now on, we
will call these different solutions for the same task variants. These variants can
be used as an input for the VML engine which, at run-time, will select one out of
them (the best possible one) by optimizing the non-functional properties defined
in the VML model. This way, the VML engine will advise SmartTCL on its
decisions but will not interfer with the overall system functionality. As shown in
Fig. 2 (on the left) we have implemented such variants as extra TCBs, which
have an additional boolean flag indicating whether the TCB is activated (green
boxes) or not (red boxes). At run-time, the VML engine (executed by the Adap-
tivity component): (i) monitors (M) the system to determine the current situa-
tion, (ii) then reasons (R) about the appropriate adjustments, and (iii) activates
(A) one out of the alternative TCBs. SmartTCL makes the final decision using
only the TCBs that are active in that moment. This already allows to handle
problems similar to the coffee delivery example, where one TCB would be for
approaching coffee machine A and another TCB for coffee machine B. Although
this approach works fine for simple scenarios, where discrete decisions must be
taken, it is highly inefficient for continuous variation points. For example, the
decision on the maximum allowed velocity would require: (i) deciding about the
most appropriate discretization for the continuous variable, and (ii) creating a
TCB for each discrete value. One could define a few discrete values like SLOW,
MEDIUM and FAST, but the problem would remain unsolved when trying to
assign concrete values to these labels in all potential situations. Another limi-
tation of this approach is that all the variability must be statically defined at
design-time (as concrete TCBs) and cannot be adjusted anymore at run-time
according to different situations.

The limitations of the previous method motivated the need for a different
approach that could directly deal with numeric and even floating point values.
This approach follows the subsidiarity principle. Similar to a company where
budgets are assigned down the hierarchy, and the lower departments manage
their limited budgets without conflicting with the overall company decisions, a
similar approach is applied in our software architecture. Therefore, we define
contexts and variation points as the two interfaces between SmartTCL and
VML. A context represents the current situation and the robot state. Contexts
can be determined either directly from the knowledge base or deduced from an
additional (monitoring) component, which infers certain information out of the
raw data available in the system. A variation point is then a system variable
(allowing either discrete or continuous values), whose boundaries are not static,
but can be adjusted at run-time from SmartTCL according to the current
functional needs. The remaining variability is then used by VML to decide on
concrete values (subsidiarity principle). At run-time there are two mechanisms
that implement this behavior. As mentioned in Sec. 3, SmartTCL allows to
use different experts during execution (see Fig. 2 on the right). In our case, one
of these experts is going to be the VML engine (constraint solver). For exam-
ple, before expanding a TCB for fetching a coffee, SmartTCL sends a query
to the VML engine expert asking for advise on which is the best coffee machine



452 A. Lotz et al.

to go. SmartTCL will attach the pertinent context information in the query
so that the VML engine can make an informed decision. For the continuous
variation points a different mechanism is used. For example, for the selection
of the maximum allowed velocity, an additional variable in the knowledge base
is used (the robot model in Fig. 2 on the right). Thereby, SmartTCL adjusts
this variable according to its functional needs, and VML is only allowed to set
this variable within the remaining decision space. The VML engine is triggered
whenever the monitor detects a situation that requires to adjust the maximum
allowed velocity (e.g., when the environment is crowded). When this happens,
the constraint solver of the VML engine calculares the optimum value for the
variation point, and informs SmartTCL which, in turn, updates the knowledge
base. In summary, this approach enables SmartTCL to be aware of VML mod-
els, and to ensure consistency (i) either by asking for advice about the possible
alternatives, not conflicting with the overall task, or (ii) by propagating an al-
ready constrained variable to VML so that it can further constrain it without
conflicting with the operational part.

6 Related Work

Service robotics is a challenging domain that exhibits a clear need for modeling
and managing variability: robots should be able to change their behavior in
response to changes in their operation or their environment. One step to solve
this problem is to introduce mechanisms to model robot tasks independently
of the components. In this sense, some work [5, 6] aims to rapidly compose
complex robot behaviors based on state machines. These approaches support
static composition of behaviors with little capabilities for situation dependent
task adjustments. Therefore, designers need to include in the description of the
functionality, which contingencies may occur for each situation, with almost no
reuse. Conversely, SmartTCL allows to easily model dynamic task trees, which
are rearranged at run-time according to the current situation.

Some other works have been applied to robotics, although they are not focused
on this domain. Among them, DiaSpec [7] is a DSL to specify Sense/ Compute/
Control (SCC) applications, where the interaction with the physical environ-
ment is essential. DiaSpec allows designing applications independently of the
underlying architecture, describing entities (e.g., components) and controllers,
which execute actions on entities when a context situation is reached. The Di-
aSpec compiler generates Java code that needs to be completed with the applica-
tion logic. Like SmartTCL and VML, DiaSpec platform-independence enables
specification reuse. However, DiaSpec adaptation mechanisms completly rely on
ECA-based rules and do not support any kind of optimization. Other works, like
[8] and [9], have introduced the term architecture-based adaptation, applied to
component-based robotic systems. In these works, components are replaced or
migrated at run-time (e.g., due to a failure or resource insufficiency) by similar
components with differently implemented services. The authors in [8] propose
to model the variability through adaptation policies, included in the architec-
ture definition. The basic building blocks of adaptation policies are observations
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and responses. Observations establish information about a system and responses
determine modifications in the architecture (additions and removals of architec-
tural elements). The run-time management of policies is addressed by adopting
an expert system approach. PLASMA [9] uses an Architecture Definition Lan-
guage (ADL) and a planning-as-model-checking technology to enable dynamic
re-planning in the architectural domain. That is, PLASMA uses ADL models
and system goals as inputs for generating new plans in response to changes in
the system requirements and goals, and in the case of unforeseeable component
failures. In contrast to our approach, where we separately model and manage
variability related to the robot operation and to the QoS, there is no such sep-
aration in any of the previous approaches. Similarly to SmartTCL, PLASMA
has the capability of dynamic re-planning. However, the approach presented in
[8], as DiaSpec, only uses ECA-based rules.

Although the literature about dynamic variability is quite extensive, we would
like to highlight some general-purpose frameworks, like Rainbow5 and MUSIC6,
that enable self-adaptive system development. As the previous approaches, these
frameworks are focused on component-based architectures. Rainbow proposes
Stitch [10], a language for expressing adaptation strategies which, among other
capabilities, allows representing QoS objectives. Quite similarly to Rainbow,
MUSIC manages architecture reconfigurations via goal policies, expressed as
utility functions. Each component implementation is associated with some pre-
dictors, which precisely specify the impact of a particular implementation on
QoS properties. A global utility function computes the overall utility of the ap-
plication to evaluate different configurations and choose the best one. The idea
behind Rainbow and MUSIC is similar to VML but, as [8] and [9], they are too
coupled to the underlying architecture. Moreover, they do not enable multiple
levels for modeling and managing variability.

In the field of Dynamic Software Product Line (DSPL) [3], MOSKitt4SPL7

enables designers to model dynamic variability by means of (i) feature mod-
els, describing the possible configurations in which the system can evolve, and
(ii) resolution models, defining the reconfigurations in terms of feature activa-
tion/deactivation associated with a context condition. This specification is au-
tomatically transformed into a state machine. Like VML and SmartTCL, this
approach enables specification reuse at design-time. However, it does not support
expressing optimization of QoS. Also in this line, the DiVA8 Project provides
a tool-supported methodology with an integrated framework for managing dy-
namic variability. It is worth noting that VML has been inspired by the DiVA
DSL [11], which allows managing variability using both ECA rules and opti-
mization of QoS properties. However, DiVA relies on fuzzy logic to capture and
describe how systems should adapt. Conversely, VML offers a more precise and
less limited way to describe variability, e.g., using mathematical expressions and

5 Rainbow: www.cs.cmu.edu/˜able/research/rainbow
6 MUSIC: http://ist-music.berlios.de/site/index.html
7 MOSKitt4SPL: http://www.pros.upv.es/m4spl/features.html
8 DiVA: http://www.ict-diva.eu/

www.cs.cmu.edu/~able/research/rainbow
http://ist-music.berlios.de/site/index.html
http://www.pros.upv.es/m4spl/features.html
http://www.ict-diva.eu/
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real variables. This provides designers with a more natural way for describing
the variability of their systems, in particular, in some application domains like
in robotics. Finally, it is worth noting that both MOSKitt4SPL and DiVA only
support variability in quality, but not variability in operation.

7 Conclusions and Future Work

In this paper we have presented two different DSLs, SmartTCL and VML,
which enable robotics software designers to separately specify variability in oper-
ation and variability in quality. Managing the former with SmartTCL provides
robustness to contingencies, maintaining a high success rate in task fulfillment.
On the other hand, managing variability in quality with VML focuses on im-
proving the overall execution performance of the robot under changing situations
and limited resources. We have also discussed different possibilities for integrat-
ing both variability management mechanisms at run-time in a consistent way,
i.e., avoiding conflicting reconfiguration decisions.

Regarding the run-time integration of SmartTCL and VML, we highlight
three main contributions: (i) we propose modeling variability at two different
levels so that each one has its own (orthogonal) decision space, minimizing the
potential conflicts between them (e.g., SmartTCL configures components and
VML relies on SmartTCL), (ii) the VML engine, aimed to improve the overall
system performance, is not essential and can be eventually stopped, i.e., the
system must be fully operative without it, although performing suboptimally,
and (iii) SmartTCL and VML enable model reuse, i.e., the same specifications
can be used for different platforms or applications (e.g., a TCB to move to a
generic location or a VML definition of how to optimize the power consumption
can applied in many scenarios).

For the future, we plan to use Model Driven Engineering to develop design-
time tools for SmartTCL. This would allow creating advanced editors to sup-
port developers in their software design and, in particular, to connect both
SmartTCL and VML on the meta-model level. This would further reduce the
modeling efforts and would better support separate developer roles. We also
plan to extend VML with some additional syntax constructs and to improve the
supporting tools to provide designers with some advanced model validation and
simulation facilities.
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