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2 York University, Toronto

Abstract. The design time specification of dynamic processes can be
time-consuming and error-prone, due to the high number of tasks in-
volved and their context-dependent nature. Such processes frequently
suffer from potential interference among their constituents, since re-
sources are usually shared by the process participants and it is difficult to
foresee all the potential tasks interactions in advance. Concurrent tasks
may not be independent from each other (e.g., they could operate on
the same data at the same time), resulting in incorrect outcomes. To
address these issues, we propose an approach that exploits partial-order
planning algorithms for automatically synthesizing a library of process
template definitions for different contextual cases. The resulting tem-
plates guarantee sound concurrency in the execution of their activities
and are reusable in a variety of partially-known contextual environments.

1 Introduction

Current workflow technology is based on the idea that there always exists an
underlying fixed process that can be used to automate the work [1]. Once iden-
tified, a process is formalized into a process model which captures every possible
case (i.e., process instance) to be executed at run-time through a Process Man-
agement System (PMS). This approach works for processes where procedures
are well known, repeatable and can be planned in advance with some level of
detail. In recent years, the need to deal with dynamic processes and provide
support for flexible process management has emerged as a leading research topic
in the Business Process Management (BPM) domain [2]. In a dynamic process,
the sequence of tasks depends heavily on the specifics of the context (e.g., which
resources are available and what particular options exist at the time), and it is
often unpredictable how the process will unfold. The design-time specification
of all possible cases requires an extensive manual effort for the process designer,
who has to anticipate all potential alternatives into the process model, in an
attempt to deal with the context dependent nature of these processes (cf. Sec-
tion 2). Such processes do not have the same level of repeatability of classical
business processes, and the execution changes on a case-by-case basis, generating
instances that are different almost every time, depending on the context.

In this paper, we present an approach that allows us to automatically synthe-
size a library of process templates starting from a representation of the contextual
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domain in which the process is embedded in and from an extensive repertoire
of tasks defined for such a context. A template depicts the best-practice proce-
dure drawn up with whatever contextual information available at the time; it
describes a recommended control flow for the process that can be enacted in a
range of states satisfying the context conditions. In order to build process tem-
plates, we make use of partial-order planning algorithms (aka POP [3]), which
guarantee some interesting properties in the construction of the template:

– Sound concurrency. A template has the property of sound concurrency in
the execution of its concurrent activities, that are proven to be effectively
independent one from another (i.e., at runtime there is no risk of interference
between concurrent tasks, since they cannot affect the same data).

– Executability in partially known environments. Once synthesized, a template
can be executed in several starting states, since it (usually) requires a frag-
ment of the knowledge of the starting state to successfully achieve its objec-
tives. We identify the weakest preconditions of process templates, and all the
states satisfying such preconditions are good candidates for executing them.

We exploit the idea behind POP of representing flexible plans that enables defer-
ring decisions. Instead of committing prematurely to a complete, totally ordered
sequence of actions, plans are represented as a partially ordered set, and only
the required ordering decisions are recorded. A process template is generated on
the basis of such a set of activities, and we are able to identify what knowledge
about the starting state is required for successful template execution. Moreover,
we build step-by-step a library of process template specifications and support
efficient retrieval of appropriate templates in partially known environments.

2 A Running Example

Let us consider the emergency management scenario described in Fig. 1(a). It
concerns a train derailment and depicts a map of the area (as a 4x4 grid of
locations) where the disaster happened. We suppose that the train is composed
of a locomotive (located in loc33 ) and two coaches (located in loc32 and loc31
respectively). The goal of an incident response plan defined for such a context
is to evacuate people from the coach located in loc32, to extinguish a fire in
the coach in loc31 and finally to take pictures for evaluating possible damages
to the locomotive, located in loc33. Thus, a response team can be sent to the
derailment scene. The team is composed of four first responders (in the remain-
der, we refer to them as actors) and two robots, initially located in loc00. We
assume that actors are equipped with mobile devices (for picking up and exe-
cuting tasks) and provide specific capabilities. For example, actor act1 is able
to extinguish fires, while act2 and act3 can evacuate people from train coaches.
The two robots, instead, may take pictures and remove debris from specific lo-
cations. Each robot has a battery and each action consumes a given amount of
battery charge. When the battery of a robot is discharged, actor act4 can charge
it. Fig. 1(b) summarizes the above.
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Fig. 1. Area and context of the intervention

The definition of an incident response plan as a business process involves a
dynamically selected set of activities to be executed on the field by the first
responders. Since the process may be different every time it is defined because
it strictly depends on the actual contextual information (the positions of ac-
tors/robots, the battery level of robots, etc.), it is unrealistic to assume that
the process designer can pre-define all the possible process models for dealing
with this environment (apparently simple). Moreover, if contextual data describ-
ing the environment are known, the synthesis of a process dealing with such an
environment is not straightforward, as the correctness of the process model is
constrained by the values (or combination of values) of contextual data. A simple
approach to solving our problem is to build a process as a sequence of activities,
e.g., the sequence of actions shown in Fig. 2. However, this solution is highly
“inefficient”, as many actions are independent, and they could be executed con-
currently to reduce intervention time; e.g., a robot could take pictures in parallel
with the extinguishing of the fire in loc31. But, at the same time, a process de-
signer may find it difficult to organize activities for concurrent execution, since
each action, for its executability, depends on the values of contextual data (e.g., a
robot needs enough battery charge for moving into a location and taking pictures
or removing debris). Also dependencies between actions play a key role in the
definition of the process model (e.g., in order to evacuate people at loc32, a robot
must have removed the debris beforehand). Finally, a process designer tends to
represent more contextual information than that strictly needed for defining a
process. For example, the process in Fig. 2 does not involve actor act3, meaning
that any information concerning act3 (e.g., its capabilities, its location, etc.) is
not required for synthesizing and executing the process. To overcome the above
issues, we propose a solution that involves exploiting partial-order planning for
generating a library of process templates for different contextual cases. Our tem-
plates provide sound concurrency in the execution of their activities and are
executable in partially known environments.
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Fig. 2. A process dealing with the scenario of Fig. 1

3 Partial-Order Planning

Planning systems are problem-solving algorithms that operate on explicit repre-
sentations of states and actions. The standard representation language for classi-
cal planners is known as the Planning Domain Definition Language (PDDL [4]);
it allows us to formulate a problem PR through a set of possible actions, the
description of the initial state of the world initPR and of the desired goal condi-
tion goalPR. The set of all action definitions Ω is the domain PD of the planning
problem. Each action a ∈ Ω has a preconditions list (stating the atomic condi-
tions under which an action can be executed) and an effects list to be applied on
the state of the world, denoted respectively as Prea and Effa. A planner that
works on such inputs generates a sequence of actions (the plan) that corresponds
to a path from the initial state to a state meeting the goal condition.

In this paper, we focus on Partial-Order Planning (POP) [3], a specific kind
of plan-space search algorithm. A plan space is an implicit directed graph whose
nodes are partially specified plans and whose edges correspond to refinement op-
erations that further complete a partial plan, i.e., to achieve an open goal or to
remove possible inconsistencies. POP takes as input a PDDL planning problem
and searches the space of partial plans without committing to a totally ordered
sequence of actions. Basically, a partial plan is a tuple P = (A,O,CL), where
A ⊆ Ω is a set of (ground) actions, O is a set of ordering constraints over A,
and CL is a set of causal links over A. Ordering constraints O are of the form
a ≺ b, which is read as “a before b” and means that action a must be executed
sometime before action b, but not necessarily immediately before. Causal links

CL may be represented as c
p−→ d, which is read as “c achieves p for d” and means

that p is an effect of action c and a precondition for action d. A precondition
without a causal link requires further refinement to the plan to establish it, and
is considered to be an open condition in the partial plan. A classical POP algo-
rithm starts with a null partial plan P and keeps refining it until a solution plan
is found. The null partial plan contains two dummy actions a0 ≺ a∞ where the
preconditions of a∞ correspond to the top level goals goalPR of the problem, and
the effects of a0 correspond to the conditions in initPR. Intuitively, a refinement
operation avoids adding to the partial plan any constraints that are not strictly
needed for addressing the refinement objective. This is called the least commit-
ment principle [3], and its advantage is that decisions about action ordering are
postponed until a decision is forced; constraints are not added to a partial plan
unless strictly needed, thus guaranteing flexibility in the execution of the plan
and by allowing actions to run concurrently. A consistent plan is defined as a
plan with no cycles in the ordering constraints and no conflicts with the causal
links. A consistent plan with no open conditions is a solution [3].
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4 Process Templates

The synthesis of a dynamic process requires a tight integration of process ac-
tivities and contextual data in which the process is embedded in. The con-
text is represented in the form of a Domain Theory D, that captures a set
of tasks ti ∈ T (with i ∈ 1..n) and supporting information, such as the peo-
ple/agents that may be involved in performing the process (roles or partici-
pants), the data and so forth. Tasks are collected in a specific repository, and
each task can be considered as a single step that consumes input data and pro-
duces output data. Data are represented through some ground atomic terms
v1[y1], v2[y2], ..., vm[ym] ∈ V that range over a set of tuples (i.e., unordered sets
of zero or more attributes) y1, y2, . . . ym of data objects, defined over some data
types. In short, a data object depicts an entity of interest; for example, in our
scenario we need to define data objects for representing participants (e.g., data
type Participant = {act1, act2, act3, act4, rb1, rb2}), capabilities (e.g., data
type Capability = {extinguisher,movement, . . . hatchet}) and locations in the
area (e.g., data type Location = {loc00, loc10, . . . loc33}). Each tuple yj may
contain one or more data objects belonging to different data types. The do-
main dom(vj [yj ]) over which a term is interpreted can be of various types: (i)
Boolean: dom(vj [yj]) = {true, false}, (ii) Integer : dom(vj [yj ]) = Z, (iii) Func-
tional : the domain contains a fixed number of data objects of a designated type.
Terms can be used to express properties of domain objects (and relations over
objects). In our example, we may need boolean terms for expressing the pres-
ence of a fire in a location (e.g., fire free[loc : Location] = (bool : Boolean)),
integer terms for representing the battery charge level of each robot (e.g.,
battery level[prt : Participant] ∈ Z) or functional terms for recording the po-
sition of each actor in the area (e.g., at[prt : Participant] = (loc : Location)).
Moreover, since each task has to be assigned to a participant that provides
all of the skills required for executing that task, there is the need to con-
sider the participants “capabilities”. This can be done through a boolean term
provides[prt : Participant, cap : Capability] that is true if the capability cap is
provided by prt and false otherwise.

Each task is annotated with preconditions and effects. Preconditions can be
used to constrain the task assignment and must be satisfied before the task is
applied, while effects establish the outcome of a task after its execution. Note
that, as shown in Fig. 3(a), our approach treats each task as a “black box”
and no assumption is made about its internal behavior (we consider the task
execution as an instantaneous activity).

Definition 1. A task t[x] ∈ T consists of:

– a tuple of data objects x as input parameters;
– a set of preconditions Pret, represented as the conjunction of k atomic con-

ditions defined over some specific terms, Pret =
∧

l∈1..k pretl . Each pretl
can be represented as {vj[yj ] op expr}, where:
• vj [yj ] ∈ V is an atomic term, with yj ⊆ x, i.e., admissible data objects
for yj need to be defined as task input parameters;
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• An expr can be a boolean value (if vj is a boolean term); an input
parameter identified by a data object (if vj is a functional term); an
integer number or an expression involving integer numbers and/or terms,
combined with the arithmetic operators {+,-} (if vj is a integer term);

• op ∈ {<,>,==,≤,≥} is a relational operator.
– a set of deterministic effects Efft, represented as the conjunction of h atomic

conditions defined over some specific terms, Efft =
∧

l∈1..h efftl. Each efftl
(with l ∈ 1..h) can be represented as {vj [yj ] op expr}, where:
• vj [yj ] ∈ V and expr are defined as for preconditions.
• op ∈ {=,+=,-=} is used for assigning (=) to a term a value consistent
with the expr field or for incrementing (+ =) or decrementing (− =)
an integer term by that value.

For example, the task Go described in Fig. 1(c) involves two parameters from
and to of type Location and a parameter actor of type Participant. An instance
of Go can be executed only if actor is currently at the starting location from
and provides the required capabilities for executing the task. As a consequence
of task execution, the actor moves from the starting to the arrival location, and
this is reflected by assigning to the term at[actor] the value to in the effect.

Modeling a business process involves representing how a business pursues its
objectives/goals. The goal may vary depending on the specific Process Case
C to be handled. A case C reflects an instantiation of the domain theory D
with a starting condition initC and a goal condition goalC. Both conditions are
conjunctions of atomic terms. We do not assume complete information about
initC; this means we allow a process designer to instantiate only the atomic
terms necessary for representing what is known about the starting state, i.e.,
initC = {v1[y1] == val1 ∧ ... ∧ vj [yj ] == valj}, where valj (with j ∈ 1..m)
represents the j-th value assigned to the j-th atomic term. Fig. 1(b) shows a
portion of initC concerning the scenario depicted in Fig. 1(a). The goal is a
condition represented as a conjunction of some specific terms we want to make
true through the execution of the process. For example, in the scenario shown
in Section 2, the goal has to be represented as : goalC = {fire free[loc31] ==
true∧ evacuated[loc32] == true∧ photo taken[loc33] == true}. The syntax of
goal conditions is the same as for tasks preconditions.

A state is a complete assignment of values to atomic terms in V. Given a case
C, an intermediate state stateCi

is the result of i tasks performed so far, and
atomic terms in V may be thought of as “properties” of the world whose values
may vary across states.

Definition 2. A task t can be performed in a given stateCi
(and in this case we

say that t is executable in stateCi
) iff stateCi

	 Pret, i.e. stateCi
satisfies the

preconditions Pret for the task t.

Moreover, if executed, the effects Efft of t modify some atomic terms in V
and change stateCi

into a new state stateCi+1
= update(stateCi

, Efft). The
update function returns the new state obtained by applying effects Efft on
the current state stateCi . Starting from a domain theory D, a Process Template
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Fig. 3. Task anatomy (a), causality (b) and concurrency (c) in a process model

captures a partially ordered set of tasks, whose successful execution (i.e., without
exceptions) leads from initC to goalC. Formally, we define a template as a directed
graph consisting of tasks, gateways, events and transitions between them.

Definition 3. Given a domain theory D, a set of tasks T and a case C, a
Process Template PT is a tuple (N,L) where:

– N = T ∪ E ∪W is a finite set of nodes, such that :
• T is a set of tasks instances, i.e., occurrences of a specific task t ∈ T in
the range of the process template;

• E is a finite set of events, that consists of a single start event � and a
single end event �;

• W = WPS ∪WPJ is a finite set of parallel gateways, represented in the
control flow with the � shape with a “plus” marker inside.

– L = LT ∪LE ∪LWPS ∪LWPJ is a finite set of transitions connecting events,
task instances and gateways:
• LT : T → (T ∪WPS ∪WPJ ∪ �) • LE : � → (T ∪WPS ∪ �)
• LWPS : WPS → 2T • LWPJ : WPJ → (T ∪WPS ∪ �)

The constructs used for defining a template are essentially a subset of the BPMN
notation [5], a graphical language designed to specify a process in a standardized
way. Intuitively, an execution of the process starts at � and ends at�; a task is an
atomic activity executed by the process; parallel splits WPS open parallel parts
of the process, whereas parallel joins WPJ re-unite parallel branches. Transitions
are binary relations describing in which order the flow objects (tasks, events and
gateways) have to be performed, and determine the control flow of the template.
For example, in Fig. 3(b) we have a relation of causality between tasks ta and
tb, stating that ta must take place before tb happens as ta achieves some of tb’s
preconditions.

An important feature provided by a process template is concurrency, i.e.,
several tasks can occur concurrently. In Fig. 3(c) an example of concurrency
between t1 and t2 is shown. In order to represent two or more concurrent tasks
in a template, the process designer makes use of the parallel gateways, that in-
dicate points of the template in which tasks can be carried out concurrently. A
linearization of a process template is any linear ordering of the tasks that is con-
sistent with the ordering constraints of the template itself [6]; i.e., a linearization
of a partial order is a potential execution path of the template from the start
event � to the end event �. For example, the template in Fig. 3(c) has two
possible execution paths r1 = [�; ta; t1; t2; tb;�] and r2 = [�; ta; t2; t1; tb;�].

Definition 4. Given a process template PT and an initial state stateC0
	 initC,

a state stateCi is said to be reachable with respect to PT iff there exists an
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execution path r = [�; t1; t2; ...tk;�] of PT and a task ti (with i ∈ 1..k) such that
stateCi

= update(update(. . . update(stateC0
, Efft1) . . . , Effti−1), Effti).

Definition 5. A task t1 affects the execution of a task t2 (t1 � t2) iff there
exists a reachable state stateCi

of PT (for some initial state stateC0
) such that:

(i) stateCi
	 Pret2 (ii) update(stateCi

, Efft1) � Pret2

This means that Efft1 modify some terms in V that are required as preconditions
for making t2 executable in stateCi

.

Definition 6. Given a process template PT, a case C and an initial state
stateC0 	 initC, an execution path r = [�; t1; t2; ...tk;�] (where k = |T |) of
PT is said to be executable in C iff:
(i) stateC0

	 Pret1 (ii) for 1 ≤ i ≤ k−1, update(stateCi−1
, Effti) 	 Preti+1

(iii) update(stateCk−1
, Efftk) = stateCk

	 goalC

Definition 7. A process template PT is said to be executable in a case C iff
any execution path of PT is executable in C.

Definition 8. Given a process template PT, a task tx is said to be concurrent
with a task tz iff there exist two execution paths r1 and r2 of PT such that
r1 = [�; t1; t2; ...; tx; ...; tz; ...;�] and r2 = [�; t1; t2; ...; tz; ...; tx; ...;�].

Definition 9. Two concurrent tasks t1 and t2 are said to be independent (t1 ‖
t2) iff t1 � t2 and t2 � t1; that is, t1 does not affect t2 and vice versa.

5 On Synthesizing a Library of Process Templates

Our approach is focussed on the development and use of a library of process
templates. These are reusable processes that achieve specified goals of interest
in any starting state that satisfies the template’s required preconditions. Specif-
ically, we focus on the use of a POP-based tool that can synthesize complex
concurrent process models, while ensuring that concurrent tasks never interfere.
The process designer’s role is to specify the domain and context in which the
template may be executed. Our POP-based tool can then be used to synthesize
some candidate process models for the template. If the tool fails to generate a
process model or the generated processes are of insufficient quality (e.g., they
are too time consuming, unreliable, or lack concurrency), the designer can refine
the domain theory and case to obtain better solutions. Once a satisfactory
template has been obtained, it is added to the library. The POP-based tool
automatically identifies the required preconditions for the template to achieve
its goal, meaning the template can be reused whenever a case that matches the
template’s preconditions arises. The designer maintains the template library over
time, in order to have templates that handle effectively most the cases that arise.

The General Framework. Our approach to the definition of a process
template (cf. Fig. 4) requires a fundamental shift in how one thinks about
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Fig. 4. Overview of the general approach

modeling business processes. Instead of defining a process model “by hand”,
the process designer has to address her/his efforts to specifying the Domain
Theory D and the Case C to be handled. In particular, s/he has to “guess”
the starting condition initC, by instantiating only those atomic terms needed
for depicting the context s/he has in mind. This means that initC can be
partially specified, i.e, not all terms need to be instantiated with some value.
Example. Let us consider the scenario depicted in Section 2, represented
with a Domain Theory D1 and a goal condition goalC1

= {fire free[loc31]==
true ∧ evacuated[loc32]== true ∧ photo taken[loc33]== true}. Since the
process designer may be interested in an emergency process that involves the
fewest participants, s/he can start by modeling a starting condition initC1

with
information involving only actors act1 and act2 and the robot rb1, while terms
involving act3, act4 and rb2 are not explicitly instantiated in initC1

.
A specific module named PC2PR is in charge of converting the Domain Theory

D and the Case C just defined into the corresponding Planning Domain PD
and Planning Problem PR specified in PDDL version 2.11 (cf. [4]). Basically,
PC2PR implements a function fPC2PR : (D, initC, goalC) → (PD, initPR, goalPR).
Since the use of classical partial-order algorithms for synthesizing the template
requires the initial state of PR to be a complete state, we make the closed world
assumption [7] and assume that every atomic term vj [yj ] that is not explicitly
specified in initC is assumed to be false (if vj [yj] is a boolean term) or “not
assigned” (if vj [yj ] is a integer or a functional term) in initPR. At the heart
of our approach lies a library of process templates built for specific planning
domains and problems/cases. If library templates exist for the current values of
PD and PR, we can retrieve an appropriate template and allow to execute it
through an external PMS. However, if no template exists for the current values
of PD and PR, we can invoke an external POP planner on these same inputs. The
planner will try to synthesize a plan fulfilling the goal condition goalPR. If the

1 PDDL 2.1 enables the representation of realistic planning domains, which include
operators with universally quantified effects and numeric fluents. However, our for-
malism does not currently handle conditional effects nor negative preconditions.
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planner is unable to find a plan, this suggests there are some missing elements
in the definition of the Domain Theory D or in the Case C. Hence, to address
this particular case, one can try to refine the case C and add information so that
it becomes possible to generate a plan. There are many ways to strengthen a
problem description, such as adding to the starting condition initC some terms
initially ignored (e.g., to specify the position of every participant), or adding new
objects in D or new activities in T (e.g., if a task for extinguish fire is missing).
Our approach assumes that one specifies the context step-by-step, and requires
the process designer to contribute to the system. Example. If the planner is
invoked with initPR1

(devised by applying fPC2PR on the triple D1, initC1
, goalC1

),
it will not be able to find any plan for the specific problem. This is because rb1
does not have enough battery charge for moving, taking pictures and removing
debris. The designer can try to add new information to the problem description
by instantiating in initC1 all those atomic terms related to actor act4, the only
one able to charge robot batteries, and devises a new starting condition initC2

(and, consequently, a new initial planning state initPR2
). A planner invoked with

initPR2 is finally able to find a consistent plan P1 satisfying goalPR1 .
When the POP planner is able to find a partially ordered plan P consistent

with the actual contextual information, three further steps are required. First we
need to translate the plan into a template PT that preserves the ordering con-
straints imposed by the plan. A solution plan is a three-tuple P = (A,O,CL)
that specifies the causal relationships for the actions ai ∈ A, but without speci-
fying an exact order for executing them. Since the actions and the set of ordering
constraints must be represented explicitly as nodes and transitions in the tem-
plate, we developed a module POP2PT implementing a function fPOP2PT : P → PT
that takes as input P and converts it into a template PT. It works by first finding
the immediate predecessors/successors of actions in the plan using the ordering
constraints, and then constructing the desired plan template, inserting parallel
splits (resp. join) gateways when an action has more than one immediate suc-
cessor (resp. predecessor). Example. By applying fPOP2PT to P1, we devise the
template PT1 in Fig. 5(a). Dashed arrows are causal links that imply an ordering
constraint between pairs of tasks. For example, the ordering constraint between
Go[act1,loc00,loc31] and ExtinguishFire[act1,loc31] is derived from the fact that
Go has the effect at[act1]=loc31 that is needed by ExtinguishFire as precondition
(i.e., act1 has to be located in loc31 for extinguish the fire in that location).

Secondly, our approach infers the weakest preconditions wPT about the start-
ing state that are required for the template to achieve its goal. The module we
use for inferring wPT is called calcWP and works by analyzing the set of causal
links CL computed by the POP planner, to see which logical facts fk are in-
volved in causal links that originate from the dummy start action a0 and end in
some ak ∈ A. More formally:

∀(clk, fk, ak) s.t. clk = (a0
fk−→ ak) ∈ CL, then fk ∈ wPT. (1)

Observe that the effects of a0 ∈ A specify all atomic facts that are true in the
starting state initPR. The initial facts that are actually required for the plan to be
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executable and achieve its goal are those that are involved in a causal link with
another action in the plan, and we collect those in wPT as specified in Equation 1
(the plan cannot depend on any negative facts as they cannot appear in either
the goal or in action preconditions). Basically, wPT is the conjunction of those
facts strictly required for executing the plan P (and, consequently, the devised
template PT), and is used for devising a new problem PRwp = {wPT, goalPR}.
We can then drop the closed world assumption. For any initial state that satisfies
wPT, the obtained process template PT will be executable and achieve the goal
condition goalPR. Example. If we invoke calcWP on the causal links devised from
P1, we may infer wPT1

. Hence, for executing PT1 (cf. Fig. 5(a)) we need to know
the positions and capabilities of act1, act2, act4 and rb1; the other contextual
information is not strictly needed for a correct execution of the template.

Thirdly, after the process template PT has been synthesized starting from P,
it can be stored in our library together with information about the planning
domain PD and abstracted problem PRwp. Specifically, for every different plan-
ning domain PD devised through our approach, there is a pointer to a list of
different abstracted planning problems PRwp used for obtaining consistent plans
in previous executions of our tool, together with the devised process templates.
When a process designer defines a new domain theory Dnew and a case Cnew ,
the system checks if the corresponding planning domain PDnew and problem
PRnew (obtained by applying fPC2PR to Dnew and Cnew) are already present in
our library. If the library contains a planning domain PD and an abstracted
planning problem PRwp (together with the associated template PTlib) such that
PDnew = PD and goalPR = goalPRnew

and with initPRnew
	 wPT, then PTlib is

executable respect to PRnew (and therefore with respect to Cnew). This makes
our templates reusable in a variety of different situations, in which we don’t
have complete information about the starting state. At this point, the process
designer may decide to execute through an external PMS the template PTlib just
found, or to refine Dnew and Cnew if PTlib does not fit with the designer expec-
tations. Example. Let us suppose that the template shown in Fig. 5(a) does not
satisfy at all the process designer, since s/he could add one further robot rb2 to
the scenario in order to increase the degree of parallelism in the tasks execution.
It follows that a new starting condition initC3 including also contextual infor-
mation about rb2 can be defined. The associated initial planning state initPR3

,
together with the original goal condition goalPR1

and the planning domain PD1

are first used for verifying if a previously executed template is already stored in
the library. The library returns the template PT1 shown in Fig. 5(a), since its
weakest preconditions wPT1 are satisfied by initPR3 (i.e., initPR3 	 wPT1), and
goal condition and planning domain are the same as before. Even if the tem-
plate in Fig. 5(a) is executable with initPR3

, the designer may try to search for
another plan that (maybe) could exploit the presence of the new robot rb2. The
planner builds a new plan starting from initPR3

, and the associated template
PT2 is shown in Fig. 5(b). PT2 requires the presence of one more robot (i.e.,
robot rb2) and more contextual information for being executed (so its weakest
preconditions wPT2

are “richer” than wPT1
), but it provides an higher degree of
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Fig. 5. Templates dealing with the scenario in Fig. 1

concurrency in the execution of its tasks. This means that the process designer
can choose which template is the best for her/his purposes: one with less concur-
rency in the tasks enactment but with the fewest participants (cf., Fig. 5(a)), or
one with more concurrency but requiring more resources for being executed (cf.,
Fig. 5(b)).

Despite the fact that a template is executable “as is”, it can be seen as an
“intermediate version” of a completely defined process. In fact, the present POP-
based tool cannot be used to synthesize templates involving loops or branching
on conditions, and the designer may develop these manually by customizing the
template to the specifics of the situation.

Properties. A process template PT guarantees some interesting properties,
such as the executability of the template with respect to the information avail-
able in the starting state, and the property of sound concurrency, meaning that
concurrent activities of a template are proven to be independent from each other.

Theorem 1. Given a solution plan P, a process template PT synthesized for
P using our approach is executable for any process case C that satisfies the
weakest preconditions wpPT inferred from P.

The proof is straightforward. By definition, a sound planner generates a consis-
tent plan [3] that leads from an initial state to a goal. Since we represent the Do-
main Theory/Case as PDDL planning domain/problem, the planner synthesizes
a plan (i.e., a process template) that is executable with respect to Definition 7.

A second property we can prove is sound concurrency. Even if in a process
designed by following data and workflow patterns [8] the concurrent execution of
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two or more tasks should guarantee the consistency of data accessed by the con-
current tasks, in practice this is often not true. In fact, in complex environments
there isn’t a clear correlation between a change in the context and corresponding
process changes, making it difficult to design by hand a process where concurrent
tasks are also independent. On the contrary, all concurrent tasks of a template
built with our approach are proven to be independent one from another.

Theorem 2. Given a process template PT synthesized with our approach, all
concurrent tasks are independent.

Proof. By contradiction, let us suppose that a process template PT has two
concurrent tasks t1 and t2 such that t1 ∦ t2. Hence, t1 (or t2) has some effect
affecting the precondition of t2 (or of t1). This means that t1 � t2 or t2 � t1. Since
PT has been synthesized as result of a POP planner, this dependency between
t1 and t2 would be represented with a causal link t1

e−→ t2 (or t2
e−→ t1), where e

is an effect of task t1 and a precondition for task t2 (or vice-versa). This causal
link requires an ordering between t1 and t2, meaning they need to be executed
(and represented in the process template) in sequence. But this means that t1
and t2 are not concurrent tasks, by contradicting the original hypothesis. ��
Experiments. To show the feasibility of our approach, we ran some experiments
and measured the time required for synthesizing a partially ordered plan for
some variants of our running example described in Section 2. We ran our tests
using POPF2 [9] on an Intel U7300 1.30GHz, 4GB RAM machine. POPF2 is a
temporal planner that handles PDDL 2.1 [4] and preserves the benefits of partial-
order plan construction in terms of producing makespan-efficient, flexible plans.

The experimental setup was run on variants of our running example. We rep-
resented 7 planning actions in PD (corresponding to 7 different tasks stored in
the tasks repository T), annotated with 7 relational predicates and 6 numeric
fluents, in order to make the planner search space sufficiently challenging. Then,
we defined 18 different planning problems of varying complexity by manipu-
lating the number of facts in the goal. As well, we examined how irrelevant
domain knowledge affects the performance of the planner. Starting from a plan-
ning problem PR with an initial state initPR completely specified and with a
goal condition goalPR expressed as the conjunction of n facts, we manipulated
the specification of the initial state initPR to reduce the number of known facts.
In our experiments, the number of facts in goal condition ranges from 1 sin-
gle fact to a conjunction of 6 logical facts (that make the contextual problem
harder). As shown in Table 1, for a given goal condition composed of n facts, our
purpose was to measure the computation time needed for finding a sub-optimal
solution for problems specified with starting states with a decreasing amount of
knowledge. The column labeled as “Knowledge in initPR” makes explicit which
information is removed from the initial state of the planning problem. For exam-
ple, if we consider our running scenario from Section 2, whose goal condition is
composed of 3 facts and characterized by a complete specification of the starting
state, the time needed for finding a solution plan is of 0.13 seconds. After remov-
ing from the initial state all the information concerning the actor act3, the time
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Table 1. Time performances of POPF2

Facts in goalPR Knowledge in initPR Time for a sub-opt. sol.

1
complete state 0.17

No information about act1 0.15
No information about act1 and act3 0.12

2
complete state 0.12

No information about act3 0.10
No information about act3 and rb1 0.08

3
complete state 0.13

No information about act3 0.11
No information about act3 and rb2 0.09

4
complete state 0.21

No information about act3 0.20
No information about act3 and rb1 0.10

5
complete state 0.17

No information about act3 0.16
No information about act3 and rb1 0.10

6
complete state 1.56

No information about act3 1.19
No information about act3 and act1 1.13

required for computing the plan decreases to 0.11 seconds. In general, for a given
goal condition, removing “irrelevant information” from the initial state reduces
the search space and the computation required for synthesizing the plan. Note
that a sub-optimal solution includes more actions than those strictly required for
fulfilling the goal, and when the number of facts in a goal condition increases, the
quality of the solution may decrease. Based on our experiments, the approach
seems feasible for medium-sized dynamic processes as used in practice.

6 Related Work

Process modeling is the first and most important step in the BPM lifecycle [1],
which intends to provide a high-level specification of a business process that is in-
dependent from implementation and serves as a basis for process automation and
verification. The task of defining a model is often performed with the aid of tools
that provide a graphical representation, but without any automatic generation
of the process model. However, in recent years, numerous AI planning-based
approaches have been devised for the latter, and the closest to our approach
are [10,11,12]. [10] presents the basic idea behind the use of planning techniques
for generating a process schema, but no implementation seems to be provided,
and the direct use of the PDDL language for specifying the domain theory re-
quires a deep understanding of AI planning technology. In [11], the authors
exploit the IPSS planner for modeling processes in SHAMASH [13], a knowledge-
based system that uses a rule-based approach. To automate the process model
generation, they first translate the semantic representation of SHAMASH into
the IPSS language. Then, IPSS produces a parallel plan of activities that is fi-
nally translated back into SHAMASH and is presented graphically to the user.
However, the emphasis is on supporting processes for which one has complete
knowledge, while for dynamic processes some contextual information may not
be available at the time of process model synthesis. The work of [12] is based
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on learning activities as planning operators and feeding them to a planner that
generates the process model. An interesting result concerns the possibility of
producing process models even though the activities may not be accurately de-
scribed. In such cases, the authors use a best-effort planner that is always able
to create a plan, even though the plan may be incorrect. After a finite number
of refinements, the best candidate plan (i.e., the one with the lowest number of
unsatisfied preconditions) is translated into a process model. Unfortunately, the
best plan found is often far from the correct solution [12].

7 Conclusion

In this paper, we developed a technique based on POP algorithms and declarative
specifications of process tasks for synthesizing a library of process templates to be
enacted in partially specified contextual scenarios. We are currently working on
a complete implementation and thorough validation of the approach, including
the formalization of metrics for evaluating process templates’ quality. A future
direction for this work is to generate hierarchical process templates, with high-
level templates achieving more general goals that can invoke simpler templates to
achieve some of their subgoals.We also plan to address expressiveness limitations,
such as handling preferences and representing negative preconditions.
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