

S. Nurcan et al. (Eds.): BPMDS 2013 and EMMSAD 2013, LNBIP 147, pp. 246–260, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Enhancing Modeling and Change Support for Process
Families through Change Patterns∗

Clara Ayora1, Victoria Torres1, Barbara Weber2, Manfred Reichert3,
and Vicente Pelechano1

1 Universitat Politècnica de València
{cayora,vtorres,pele}@pros.upv.es

2 University of Innsbruck, Austria
barbara.weber@uibk.ac.at

3 University of Ulm, Germany
manfred.reichert@uni-ulm.de

Abstract. The increasing adoption of process-aware information systems
(PAISs), together with the variability of business processes (BPs), has resulted
in large collections of related process model variants (i.e., process families). To
effectively deal with process families, several proposals (e.g., C-EPC, Provop)
exist that extend BP modeling languages with variability-specific constructs.
While fostering reuse and reducing modeling efforts, respective constructs imp-
ly additional complexity and demand proper support for process designers when
creating and modifying process families. Recently, generic and language-
independent adaptation patterns were successfully introduced for creating and
evolving single BP models. However, they are not sufficient to cope with the
specific needs for modeling and evolving process families. This paper suggests
a complementary set of generic and language-independent change patterns spe-
cifically tailored to the needs of process families. When used in combination
with existing adaptation patterns, change patterns for process families will ena-
ble the modeling and evolution of process families at a high-level of abstrac-
tion. Further, they will serve as reference for implementing tools or comparing
proposals managing process families.

Keywords: Process Variability, Process Families, Patterns, Process Change.

1 Introduction

The increasing adoption of process-aware information systems (PAISs) has resulted
in large process model repositories [25,6]. Since business process (BP) models usual-
ly may vary, existing repositories often comprise large collections of related process
model variants (process variants for short) [24]. Usually, such process variants have
common parts and pursue same or similar business objective, but at the same time

∗ This work has been developed with the support of MICINN under the Project

EVERYWARE TIN2010-18011.

 Enhancing Modeling and Change Support for Process Families 247

differ regarding the application context in which they are used [12,25], e.g., countries’
regulations, services delivered, or customer categories [23,6,24]. We denote such
collections of related process variants as process families. In large companies, a
process family might comprise dozens or hundreds of process variants [23]. For
example, a process family for vehicle maintenance may comprise more than 900 va-
riants with country-, garage-, and vehicle-specific differences [13]. In turn, [21] re-
ports on a process family comprising more than 90 variants for planning and handling
medical examinations. Designing and implementing each process variant model from
scratch and maintaining it separately would be too inefficient and costly. Thus, there
is a great interest in capturing common process knowledge only once and re-using it
in terms of configurable process models representing the complete process family.

Motivated by the shortcomings of traditional BP modeling approaches [13], pro-
posals exist for dealing with process families, e.g., [26,13]. Common to them is the
extension of BP modeling languages with variability-specific constructs that enable
the creation of configurable process models. By treating variability as first class
citizen, these extensions help avoiding redundancies, fostering reusability, and reduc-
ing modeling efforts. However, introducing variability-specific constructs implies
additional complexity concerning the modeling language. To make these proposals
amenable for industrial strength use, the quality of created models becomes crucial
needing proper support for process designers when dealing with process families.

In [32], a language-independent and empirically grounded set of adaptation pat-
terns is proposed allowing for the creation and modification of single BP models [31].
Adaptation patterns not only allow creating and modifying BP models at a high level
of abstraction, fostering model quality by ensuring correctness-by-construction, but
also provide systematic means for realizing change operations optimized for a specific
modeling language as well as comparing existing approaches in respect to BP flexibil-
ity [7]. Further, adaptation patterns have served as basis for implementing changes in
different stages of the process lifecycle; e.g., model creation [30,10], process configu-
ration [13], process instance change [5,9,22], model evolution [5,17], model
refactoring [33], change reuse [2], model comparison [16], and change analysis [11].

While adaptation patterns are well suited for creating and modifying single BP
models, they are not sufficient to cope with the specific needs for dealing with process
families [3]. In the vein of adaptation patterns, this paper suggests a complementary
set of generic, language-independent change patterns specifically tailored for process
families. Used in combination with the existing adaptation patterns, change patterns
for process families will enable the modeling and evolution of process families at a
high level of abstraction. In particular, they will serve as reference for specific lan-
guage-dependent implementations, build the foundation for realizing changes along
the BP lifecycle, and foster the comparison of existing proposals for BP variability.

Change patterns have been obtained after performing a systematic literature review
looking specifically at variability-specific constructs used by existing proposals for
BP variability. Since the proposed patterns are meant to be generic and language-
independent, we abstract from approach-specific particularities. However, to ensure
that the proposed patterns—despite their generic nature—are specific enough to cover

248 C. Ayora et al.

existing proposals, we apply them to two well-known proposals dealing with process
families, i.e., C-EPC and Provop.

The remainder of the paper is structured as follows. Sect. 2 discusses related work
and Sect. 3 presents the performed systematic literature review. In Sect. 4, we present
the variability-specific language constructs obtained from the latter. Sect. 5 presents
nine change patterns for process families. Sect. 6 provides a discussion and Sect. 7
concludes the paper.

2 Related Work

Closely related to our work is research on adaptation patterns, workflow patterns, and
process variability.

Adaptation patterns (AP) [31] allow structurally changing process models using
high-level change operations instead of low level change primitives (e.g., add or de-
lete node). They can be applied along to the entire process lifecycle and do not have
to be pre-planned, i.e., the region to which adaptation patterns may be applied can be
chosen dynamically. Hence, adaptation patterns are well suited for realizing process
changes at both build- and run-time. AP1 and AP2 allow inserting and deleting
process fragments. Moving and replacing fragments is supported by AP3 (MOVE
Process Fragment), AP4 (REPLACE Process Fragment), AP5 (SWAP Process Frag-
ment), and AP14 (COPY Process Fragment). AP6 and AP7 allow adding or removing
levels of hierarchy, AP8-AP12 support adaptations of control dependencies: embed-
ding process fragments in loops (AP8), parallelizing (AP9) or embedding them in a
conditional branch (AP10), and adding/removing control dependencies (AP11,
AP12). Finally, AP13 allows changing transition conditions. This paper complements
adaptation patterns, which cover the basic use cases for creating and modifying
process models, with a set of patterns covering variability needs in process families.

Workflow patterns were introduced for analyzing the expressiveness of process
modeling languages. Patterns cover different perspectives like control flow [1], data
[27], resources [28], time [18], and exceptions [29,20]. Further, [10] describes a set of
pattern compounds, similar to adaptation patterns, allowing for the context-sensitive
selection and pattern composition during process modeling. However, these patterns
are not sufficient for effectively modeling and modifying process families. They do
not consider variability-specific constructs introduced by process families and hence
are complementary to our change patterns.

Proposals dealing with BP variability exist for modeling, configuring [26, 13],
and maintaining process families; e.g., [15] provides a set of language-specific opera-
tors to adapt process variants at runtime based on software product line concepts. In
[7], a combination of workflow-, rule-, and event-modeling is presented to customize
process variants for a given execution context. Unlike these proposals, change pat-
terns provide language-independent means to model and evolve process families at a
high level of abstraction. Finally, there are refactoring techniques [33] to remove
redundancies among process variants in large process model repositories.

 Enhancing Modeling and Change Support for Process Families 249

3 Research Methodology

The goal of this paper is to provide a set of generic and language-independent
patterns for modeling and evolving process families. We first present the research
methodology we employed for identifying these patterns. To ensure that the latter are
expressive enough to deal with the specific needs of process families, as basis, we
identified the set of variability-specific language constructs frequently used by exist-
ing proposals to capture the variability within a process family. More precisely, we
conducted a systematic literature review (SLR) [14] using the following procedure:
(1) formulation of the research question, (2) description of a search strategy for find-
ing relevant papers, (3) identification of inclusion and exclusion criteria, and (4) anal-
ysis of the data obtained. The main research question to be answered by the SLR is
“What variability-specific language constructs are provided by existing proposals for
modeling BP variability and process families respectively?”. For this, we selected the
following search string (considering different synonyms):

(’process family’ OR ’configurable process model’ OR ’process model collection’

OR ’reference process model’ OR ’configurable workflow’) OR ’process variant’ OR
’business process variability’ OR (’process configuration’ OR ’process model

configuration’)

This search string was applied to relevant data sources: ACM Digital Library, IEEE
Xplore Digital Library, Science Direct - Elsevier, SpringerLink, Wiley Inter Science,
World Scientific, and Google Scholar. Overall, these libraries include the proceedings
of the most relevant conferences and journals in the area of BP management; e.g.,
Data & Knowledge Engineering Journal, Information Systems Journal, Confe-
rence on Business Process Management (BPM), Conference on Advanced Informa-
tion Systems Engineering (CAiSE), and Working Conference of Business Process
Modeling, Development, and Support (BPMDS). As an additional data source, we
considered the references of the identified papers.

A paper was included in the SLR (i.e., inclusion criterion) if and only if its title,
abstract, and content is related to process families, either from a theoretical or practic-
al perspective. On the contrary, papers were excluded (i.e., exclusion criterion) if their
focus was not related to process families (e.g., software product lines). Papers de-
scribing the same proposal were removed and only the most complete version was
included. We did not use any restriction concerning the publication date and only
papers written in English were included. Finally, we only included proposals for
which an implementation or evaluation exists.

Our SLR resulted in a total of 4948 papers, which were manually reviewed. In to-
tal, 25 papers passed this filtering and were further analyzed. To identify the language
constructs commonly used in BP proposals (and serving as basis for our change pat-
terns), we first create a list of candidate constructs relying on our experience with
process families [4,31,33]. Then, we analyzed the 25 identified papers to find empiri-
cal evidence for our candidate variability-specific language constructs and iteratively

250 C. Ayora et al.

refined the initial list. Finally, only those constructs for which enough empirical
evidence exists were included in the final list of variability-specific constructs.

Although proposals use different terminology and realize constructs in different
ways, the SLR revealed that they essentially support the same language constructs for
dealing with BP variability. We identified four variability-specific language con-
structs commonly shared by the 25 proposals: configurable region, configuration
alternative, context condition, and configuration constraint (see Sect. 4.1 for de-
tails). Configurable regions are supported by 20 of the 25 proposals and configuration
alternatives by 22 proposals. Context conditions are covered by 16 proposals while 15
proposals support the definition of configuration constraints. Additional language
constructs we identified (e.g., configurable region resolution time) are only
considered by few proposals (<3) and are therefore not included in our final list of
variability-specific language constructs (for further details on the SLR see1).

The final list of four variability-specific language constructs was then used as a ba-
sis for the change patterns, which constitute hence a solution for changing process
families developed with existing proposals. Since the proposed patterns are meant to
be generic and language-independent, we abstracted from approach-specific particu-
larities (cf. Sect. 4). Thereby, we focused on the control flow perspective since the
SLR showed that this is the perspective mostly addressed by existing proposals. To
ensure that the proposed patterns—despite their generic nature—are specific enough
to cover existing proposals, we applied the respective patterns to two well-known
proposal dealing with process families (cf. Sect. 5).

4 Coping with Variability in Business Process Families

This section describes the variability-specific language constructs obtained from the
SLR and introduces two representative proposals to show how the change patterns
can be realized. For illustration purpose, we make use of the process carried out when
checking-in at an airport. We chose this process since it shows a high degree of varia-
bility; e.g., variability occurs due to the type of check-in (e.g., online, or at a counter),
which also determines the type of boarding card (e.g., electronic vs. paper-based).
Other sources of variability include the type of passenger (e.g., unaccompanied mi-
nors requiring extra assistance) and the type of luggage (e.g., overweight luggage).

4.1 Coping with Variability in Business Process Families

The SLR described in Sect. 3 has revealed that the following language constructs are
commonly used by existing proposals to capture variability (although their concrete
realization might differ) in addition to standard process modeling constructs (e.g.,
activities and gateways). These language constructs form the basis of the change
patterns for process families (see Sect. 5).

1 https://pros.webs.upv.es/bpvar/SLR/BPVariability.rar

 Enhancing Modeling and Change Support for Process Families 251

Language Construct LC1 (Configurable Region). A configurable region is a region
in a configurable process model for which different configuration choices may exist
depending on the application context, e.g., the airline offers different ways of obtain-
ing the boarding cards depending on the check-in type: printing a boarding card at the
airline desk, download an electronic boarding card, or obtaining it via mobile phone.

Language Construct LC2 (Configuration Alternatives). A configuration alterna-
tive is defined as a particular configuration choice that may be selected for a specific
configurable region, e.g., there exist different types of boarding card: paper-based,
electronic, or in the mobile phone.

Language Construct LC3 (Context Condition). A context condition defines the
environmental conditions under which a particular configuration alternative of a con-
figurable region shall be selected, e.g., passengers with overweight luggage pay a fee.

Language Construct LC4 (Configuration Constraint). A configuration con-
straint is defined as a (structural) restriction of the selection of configuration alterna-
tives of the same or different configurable regions. Respective constraints are based
on semantic restrictions to ensure the proper use of configuration alternatives, e.g.,
staff members need to be localized when unaccompanied minors are travelling.

4.2 Proposals Dealing with Process Families

The SLR described in Sect. 3 identified 25 proposals for dealing with process fami-
lies. In the following, we describe two of them in more detail and explain how the
obtained variability-specific language constructs have been realized by these propos-
als. Sect. 5 will then apply the identified change patterns to these two proposals to
demonstrate that the proposed patterns are indeed generic. As representatives, we
select two proposals that are (1) well established and highly cited, and (2) take fun-
damentally different approaches to realize the variability-specific language constructs.
This way we want to ensure that the proposed patterns are general enough to cover
very distinct proposals, but still specific enough to cover their essence.

C-EPC. A possible way of specifying a configurable process model is by means of
configurable nodes. Modeling languages supporting this approach include, for exam-
ple, C-EPC and C-YAWL [8]. Basically, these proposals extend an existing BP mod-
eling language by adding configurable elements for explicitly representing variability
in process families. In the following, we take C-EPC [26] as representative of this
approach since it constitutes a well-known proposal. Fig. 1 illustrates the configurable
process model as C-EPC for the check-in process. Configurable nodes are depicted
with a thicker line. A configurable region (LC1) in C-EPC is specified by a process
fragment of the configurable process model with exactly one entry and one exit (i.e.,
SESE fragment), and may take two different forms. First, the SESE fragment
may consist of a splitting configurable connector, immediately followed by a set
 of branches representing configuration alternatives, and a joining configurable
connector; i.e., the configurable connectors delimit the configurable region (e.g.,

252 C. Ayora et al.

Configurable region 2 in Fig. 1). Alternatively, the SESE fragment may consist of a
configurable function (e.g., Configurable region 1 and 3 in Fig. 1), which may be
configured as ON (i.e., the function is kept in the model), OFF (i.e., the function is
removed from the model), or OPT (i.e., a conditional branching is included in the
model deferring the decision to run-time). In turn, a configuration alternative (LC2) is
specified by a SESE fragment which may be included as a branch between two confi-
gurable connectors (e.g., Print electronic boarding card in Configurable region 2 in
Fig. 1). Context conditions (LC3) are represented in C-EPC separately in a question-
naire model [19], which is not considered in this paper. Finally, a configuration con-
straint (LC4) is specified by a configuration requirement linked to the configurable
nodes that delimit the configurable region to which the respective configuration alter-
natives belong (e.g., Configuration requirement 1 in Fig. 1 states that the inclusion of
the function Fill in UM form implies the inclusion of the function Localize staff).

Fig. 1. C-EPC configurable process model for the check-in process

Provop. Another way of handling process families is based on the observation that
process variants are often derived by adapting a pre-specified base process model
(base process, for short) to the given context through a sequence of structural adapta-
tions. The Provop proposal follows this approach [13]. We choose it since it provides
advanced tool support for adapting a base process and for ensuring syntactical and
semantical correctness of process variants derived. Fig. 2 illustrates how the process
family dealing with the check-in process can be represented using Provop. The top of
Fig. 2 shows the base process model from which the process variants may be derived.
In Provop, a configurable region (LC1) is specified by a SESE fragment of the base
process, delimited by two adjustment points; i.e., black diamonds (e.g., Configurable
region 1 comprises the process fragment delimited by adjustment points A and B in
Fig. 2). In turn, a configuration alternative (LC2) is specified by a change option that
includes (1) the list of change operations modifying the base process at a specific
configurable region and (2) a context rule that defines the context conditions under
which the change operations shall be applied (e.g., Opt. 1 in Fig. 2). Context condi-
tions (LC3) are specified by context rules which include a set of context variables

Identify
passenger

Assign
seat

Fill in UM
form

Localize
staff

Configurable function Configurable XOR connectorX Configuration requirement

Configurable region 1 Configurable region 2 Configurable region 3

SE
Q
2b

SE
Q
2a

X X

Print electronic
boarding card

Print boarding
card

Conf. alternative 2a

Conf. alternative 2b
Drop off regular

luggage

Configuration requirement 1:
Fill in UM form = ‘ON’ Localize staff = ‘ON’

 Enhancing Modeling and Change Support for Process Families 253

Fig. 2. Provop model for the check-in process

and their values specifying the conditions under which a configuration alternative
(i.e., a change option) shall be applied (e.g., Opt. 2 is applied if the check-in type is
online). All context variables and their allowed values are gathered all together in the
context model (cf. Fig. 2C). Finally, configuration constraints (LC4) are specified as
constraints (e.g., mutual exclusion) between two change options in the option con-
straint model; e.g., if Opt. 2 is applied then Opt. 3 has to be applied as well
(cf. Fig. 2C).

5 Coping with Variability in Business Process Families

This section presents nine change patterns we consider as relevant for dealing with
changes in process families. These patterns refer to the four variability-specific
language constructs we obtained from our systematic literature review in existing
proposals dealing with BP variability. Thus, proposed patterns support changes in
process families developed with these proposals. Our change patterns are generic in
the sense that they abstract from proposal-specific details. Moreover, they intend to be
complete regarding the control flow perspective and cover all changes related to
commonly used variability-specific language constructs. Further, we suppose that the
change patterns will be combined with adaptation patterns to allow for the modeling
and evolution of process families at a high level of abstraction. As illustrated in Table
1, we divide the change patterns into three categories: insertion, deletion, and
modification of variability-specific parts of a configurable process model.

All change patterns, except CP7, allow adding (removing) variability-specific lan-
guage constructs to (from) a configurable process model, representing the process
family. In turn, pattern CP7 allows changing the conditions under which a configura-
tion alternative is selected. To keep the pattern set minimal, we do not consider

Assign seat Print boarding
card

A) Base model

B) Change options

CTXT RULE (static):
IF check-in_type = ONLINE

O
pt
.2

A

CTXT RULE (static):
IF passenger_type = UM

O
pt
.1 Fill in

UM form

A B

B

INSERT

DELETE Print boarding
card

B C

Print electronic
boarding card

B C

INSERT

Context Variable Range of Values
check-in_type
passenger_type

ONLINE, COUNTER
ADULT, UM, SPECIAL_NEEDS

C) Context model
D) Option constraint model
Opt. 2 Opt. 3includes

CTXT RULE (static):
IF passenger_type = UM or
passenger_type = SPECIAL_NEEDS

O
pt
.3 Localize

staff

D EINSERT

Conf. alternative 2b C
Drop off regular

luggage

D E

Configurable region 1

Configurable region 2

Configurable region 3

Identify
passenger

Conf. alternative 2aConf. alternative 1 Conf. alternative 3

254 C. Ayora et al.

patterns for modifying configurable regions, configuration alternatives, and configura-
tion constraints. These modifications can be realized based on the combined use of
change patterns and adaptation patterns. For example, modifying a configuration al-
ternative may be implemented applying patterns CP3 and CP4, which, in turn, make
use of respective adaptation patterns. Further, adding or removing process fragments
which are shared by all process variants (i.e., commonalities), may be realized using
adaptation patterns AP1 and AP2 (INSERT/DELETE Process Fragment).

Table 1. Change patterns for process families

CP1: INSERT Configurable Region
CP2: DELETE Configurable Region
CP3: INSERT Configuration Alternative IN a Configurable Region
CP4: DELETE Configuration Alternative IN a Configurable Region
CP5: INSERT Context Condition OF a Configuration Alternative
CP6: DELETE Context Condition OF a Configuration Alternative
CP7: MODIFY Context Condition OF a Configuration Alternative
CP8: INSERT Configuration Constraint BETWEEN Configuration Alternatives
CP9: DELETE Configuration Constraint BETWEEN Configuration Alternatives

Due to lack of space, we only present three change patterns related to the insertion

of variability-specific constructs in more detail, i.e., CP1, CP3, and CP8 (cf. Figs. 3-
6). The other change patterns are made available in a technical report [4]. For each of
the change patterns, we provide a name, a brief description, an illustrative example, a
description of the problem addressed, and corresponding design choices (indicating
pattern variants). For example, CP1presents three design choices (cf. Figs. 3-4): insert
a configurable region as a new process region with a set of new configuration alterna-
tives, inserting it by transforming a commonality into a configuration alternative (i.e.,
a common process fragment now is only applied in a specific application context), or
by transforming a set of commonalities into a set of configuration alternatives. To
demonstrate that the patterns—despite their generic nature—still cover the essence of
different proposals for BP variability, we apply them to C-EPC and Provop, and show
how they can be realized in their context. For example, regarding CP1, for each de-
sign choice, we indicate for both C-EPC and Provop how CP1 can be implemented
using adaptation patterns. Further, note that for C-EPC we provide implementation
details distinguishing between (i) configurable functions and (ii) configurable connec-
tors since both allow representing configurable regions. In addition, we provide in-
formation about the parameters needed for each pattern. For example, realizing CP1
requires (1) the precise position in the configurable process model where the confi-
gurable region shall be inserted and (2) the configuration alternatives to be inserted in
the configurable region (if needed). This information is highlighted in gray in the
figures indicating how change patterns may be realized.

 Enhancing Modeling and Change Support for Process Families 255

Pattern CP1: INSERT Configurable Region
Description: In a configurable process model, a configurable region shall be added.
Example: The way how boarding cards are handled depends on the type of check-in (e.g., paper-
based vs. electronic cards). Assume that the configurable process model has not considered these
alternatives yet. Hence, a new configurable region needs to be added.
Problem: At a certain position in the configurable process model, different configuration alternati-
ves exist not reflected in the configurable process model so far. Hence, a configurable region
covering these configuration alternatives shall be added.
Design choices: Three different design choices (DCs) exist:
DC1) Insertion as a new configurable region with up to n conf. alternatives (n ≥ 0)
DC2) Insertion as a new configurable region by transforming a common process fragment into a
configuration alternative
DC3) Insertion as a new configurable region by transforming existing process fragments into a
set of configuration alternatives
Implementation in C-EPC:
- For DC1, CP1 is realized by
1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the configurable
region using either (i) a configurable function or (ii) two configurable connectors (i.e., split and
join) at the precise position where the configurable region should be located (i.e., after activity B),
2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) to
insert a process fragment representing the configuration alternative (only relevant for configurable
connectors), i.e., the configuration alternative is added as a branch between the two configurable
connectors delimiting the conf. region (i.e., activity X).

- For DC2, CP1 is realized by
1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the configurable
region using either (i) a configurable function or (ii) two configurable connectors (i.e., split and
join) at the precise position where the configurable region should be located (i.e., after activity B),
2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete the common process
fragment from its current position (i.e., activity B), and
3. applying CP3 (INSERT Configuration Alternative IN a Configurable Region) to re-insert the
common process fragment as a configuration alternative of the configurable region (only relevant
for configurable connectors), i.e., the configuration alternative is added as a branch between the two
configurable connectors delimiting the configurable region (i.e., activity B).

- For DC3, CP1 is realized by
1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the configurable
region (only relevant for configurable connectors) at the precise position where the configurable
region should be located (i.e., after the join XOR gateway),
2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete the existing process
fragment from its current position, and

Fig. 3. CP1 (INSERT Configurable Region)

256 C. Ayora et al.

3. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) once per
configuration alternative to re-insert the existing process fragments as configuration alternatives of
the configurable region, i.e., each branch of the process fragment is added as a branch between the
two configurable connectors delimiting the configurable region (i.e., activity B is inserted as one
alternative and activity C as another one).

Implementation in Provop:

- For DC1, CP1 is realized by
1. inserting two adjustment points (i.e., Y and Z) in the base process and
2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) once
for each new configuration alternative to define respective change options (i.e., Opt. 1).

- For DC2, CP1 is realized by
1. inserting two adjustment points (i.e., Y and Z) embedding an existing process fragment of the
base process (i.e., activity B) and
2. applying CP3 (INSERT Configuration Alternative IN a Configurable Region) to define a conf.
alternative in terms of a change option inserting the existing process fragment into/removing the
existing process fragment under certain conditions from the base process (i.e., Opt. 1).

- For DC3, CP1 is realized by
1. inserting two adjustment points (i.e., Y and Z) embedding an existing process fragment of the
base process (i.e., the process fragment becomes optional) and
2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable Region) to
define the set of configuration alternatives in terms of change options inserting/removing existing
process fragments under certain conditions from the base process (i.e., one option for activity B
and another one for activity C).

If adjustment points already exist at the entry or exit of the new configurable region (e.g., as part

of another configurable region) these may be reused instead.

Parameters:
- the position in the configurable process model where the configurable region shall be inserted
- the configuration alternative(s) to be added to the configurable region

Fig. 3. (continued)

 Enhancing Modeling and Change Support for Process Families 257

Pattern CP3: INSERT Configuration Alternative IN a Configurable Region

Description: In a configurable process model, a configuration alternative shall be added to a

specific configurable region.

Example: Assume that the airline now wants to offer the possibility of obtaining the boarding

card for smart phones as well. Thus, an alternative shall be added to this configurable region that

captures how boarding cards are obtained.

Problem: For a specific configurable region of the configurable process model, existing conf.

alternatives do not cover all possible choices and hence an additional one shall be inserted.

Implementation in C-EPC: CP3 is realized by applying adaptation pattern AP1 (i.e., INSERT

Process Fragment) to insert the process fragment representing the configuration alternative, i.e., the

configuration alternative is added as a branch between the two configurable connectors delim

iting the configurable region (i.e., activity X).

Implementation in Provop: CP3 is realized by defining a change option consisting of a sequence
of change operations and a context rule.

Parameters:
- the configurable region to which the configuration alternative belongs

- the configuration alternative to be inserted

Fig. 4. CP3 (INSERT Configuration Alternative IN a Configurable Region)

Pattern CP8: INSERT Configuration Constraint BETWEEN Configuration Alternatives

Description: In a configurable process model, a constraint regarding the use of configuration

alternatives from one or more configurable regions shall be added.

Example: When unaccompanied minors are travelling, extra staff is required to accompany them

to the boarding gate, i.e., an inclusion constraint exists.

Problem: The use of alternatives needs to be constrained in a configurable process model.

Implementation in C-EPC: CP8 is realized by inserting a configuration requirement, which is

then linked to the configurable nodes that delimit the configurable region to which the respective

configuration alternatives to be related belong.

Implementation in Provop: CP8 is realized by adding a constraint regarding the use of change
options in the option constraint model.

Parameters:
- the configuration region to which the alternatives whose use shall be constrained belong

- the configuration constraint to be inserted

Fig. 5.CP8 (INSERT Configuration Constraint BETWEEN Configuration Alternatives)

258 C. Ayora et al.

6 Discussion

Even though—as shown by the systematic literature review—existing proposals use
different terminology and realize the constructs in different ways, they essentially
support the same variability-specific language constructs. Similar to adaptation pat-
terns [31], change patterns may have the potential to speed up the creation as well as
modification of configurable process models. In addition, like adaptation patterns, the
change patterns for process families may therefore serve as benchmark for evaluating
change support in existing languages and tools dealing with process families as well
as for facilitating their systematic comparison by providing a frame of reference. To
substantiate these claims, we plan to conduct empirical studies testing the impact of
the proposed patterns on both the creation and evolution of configurable process
models. Moreover, in a similar vein than adaptation patterns, the proposed change
patterns may serve as a reference for realizing changes in different stages of the
process family life cycle, e.g., modeling, maintenance, and evolution.

As with every research, our work is subject to limitations. A first one concerns the
completeness of the proposed patterns. We tried to accommodate this by grounding
patterns on a SLR covering 25 different proposals for process families and by using
variability-specific language requirements commonly occurring as basis for our pat-
terns. As a consequence, the proposed pattern set intends to be complete in the sense
that it allows modeling and modifying process families according to existing propos-
als dealing with BP variability, covering all possible changes related to commonly
used variability-specific language constructs. However, we cannot state with certainty
that the identified patterns set is sufficiently large to address all potential use cases
regarding the modeling and change of process families in the most efficient way. For
this, further empirical studies on the practical use of the patterns are needed. Closely
related to this are considerations regarding the language-independent nature of the
proposed patterns. Using commonly occurring variability-specific constructs as a
basis, we can ensure that the proposed patterns are expressive enough to model and
modify process families. To ensure that the patterns are also specific enough to cover
the particularities of the different proposals, we applied them to two commonly used
and entirely different proposals for process families. To strengthen the validation of
the patterns, they will be applied to other proposals in future work. Moreover, the
focus of the proposed patterns is currently on variability-specific constructs regarding
the control flow perspective. Variability regarding additional perspectives like data or
resources has not been considered so far.

The proposed patterns have been described in an informal way. To obtain unambi-
guous pattern descriptions and ground pattern implementation as well as pattern-
based analysis on a sound basis, a formal semantics is needed. This formalization
should be independent from any process meta model and thus allow implementing the
patterns in a variety of process support tools.

 Enhancing Modeling and Change Support for Process Families 259

7 Conclusions and Outlook

We proposed nine patterns for dealing with changes in process families. We
complement existing work on patterns for creating and modifying BP models by in-
troducing a set of generic and language-independent patterns that cover the specific
needs of process families. The patterns are based on variability-specific language
constructs obtained from a systematic literature review. To demonstrate that they still
cover the essence of existing proposals managing BP variability, we applied them to
two representative proposals. Used in combination with adaptation patterns, change
patterns for process families allow modeling and evolving process families at an ab-
stract level. In future work, we will develop a prototype based on which we will con-
duct experiments to measure the efforts of handling variability in process families.
We will study the impact of patterns on modeling process families as well as on
changing either at design or run-time.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Barros, B.: Workflow Patterns. Distributed
and Parallel Databases 14(1), 5–51 (2003)

2. Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for
extension and reuse. In: Proc. SERA 2009, pp. 265–275 (2009)

3. Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time flexibili-
ty for process families: Open issues and research challenges. In: La Rosa, M., Soffer, P.
(eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 477–488. Springer, Heidelberg (2013)

4. Ayora, C., Torres, V., Weber, B., Reichert, M., Pelechano, V.: Change patterns for process
families. Technical Report, PROS-TR-2012-06,
http://www.pros.upv.es/technicalreports/PROS-TR-2012-06.pdf

5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Com. Sci. - R&D 23, 81–97 (2009)

6. Dijkman, R., La Rosa, M., Reijers, H.A.: Managing large collections of business process
models - Current techniques and challenges. Comp. in Ind. 63(2), 91–97 (2012)

7. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using
BPMN2 adaptation patterns. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 25–
36. Springer, Heidelberg (2011)

8. Gottschalk, F.: Configurable process models. Ph.D. thesis, Eindhoven University of Tech-
nology, The Netherlands (2009)

9. Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into
software engineering processes. Intl. J. Adv. in Software 4, 76–99 (2011)

10. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19.
Springer, Heidelberg (2008)

11. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adap-
tive process management systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 309–326. Springer, Heidelberg (2006)

12. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process variants.
In: Proc. TCoB 2008, pp. 31–40 (2008)

13. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models:
the Provop approach. J. of Software Maintenance 22(6-7), 519–546 (2010)

260 C. Ayora et al.

14. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in
Software Engineering, Technical Report EBSE/EPIC–2007–01 (2007)

15. Kulkarni, V., Barat, S., Roychoudhury, S.: Towards business application product lines. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 285–301. Springer, Heidelberg (2012)

16. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model dif-
ferences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)

17. Küster, J.M., Gerth, C., Engels, G.: Dynamic computation of change operations in version
management of business process models. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier,
F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 201–216. Springer, Heidelberg (2010)

18. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems.
Requirements Engineering, 1–29 (2012)

19. La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-
based variability modeling for system configuration. Software and System Modeling 8(2),
251–274 (2009)

20. Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.: Ex-
ception Handling Patterns for Process Modeling. IEEE Transactions on Software Engi-
neering 36(2), 162–183 (2010)

21. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scena-
rios, algorithms. Data Knowledge & Engineering 70(5), 409–434 (2011)

22. Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow
enactment and planning. In: Proc. CollaborateCom 2011, pp. 372–381 (2011)

23. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release management
processes in the automotive industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)

24. Reichert, M., Weber, B.: Enabling flexibility in process-aware information systems: chal-
lenges, methods, technologies. Springer (2012)

25. Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organizational reference models: supporting an
adequate design of local business processes. IBPIM 4(2), 134–149 (2009)

26. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling language. In-
formation Systems 32(1), 1–23 (2007)

27. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data
patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Technology (2004)

28. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow resource
patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

29. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception Patterns.
In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer,
Heidelberg (2006)

30. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in
process model repositories. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops.
LNBIP, vol. 66, pp. 251–263. Springer, Heidelberg (2011)

31. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features -
Enhancing flexibility in process-aware information systems. Data Knowledge & Engineer-
ing 66, 438–466 (2008)

32. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity - dynamic process lifecycle support.
Computer Science 23, 47–65 (2009)

33. Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process model re-
positories. Computers in Industry 62(5), 467–486 (2011)

	Enhancing Modeling and Change Support for Process Families through Change Patterns
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Coping with Variability in Business Process Families
	4.1 Coping with Variability in Business Process Families
	4.2 Proposals Dealing with Process Families

	5 Coping with Variability in Business Process Families
	6 Discussion
	7 Conclusions and Outlook
	References

