
Corrective Evolution of Adaptable Process Models

Luciano Baresi1, Annapaola Marconi2, Marco Pistore2, and Adina Sirbu2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
baresi@elet.polimi.it

2 Fondazione Bruno Kessler (FBK), Trento, Italy
{marconi,pistore,sirbu}@fbk.eu

Abstract. The aim of corrective evolution is to update a process model by plug-
ging in successful process instance adaptations, while ensuring that the resulting
model satisfies the goal of the original model. Corrective evolution is necessary if
adapting at runtime is costly, or if adaptations fail and should be avoided. Consid-
ering that a trace is a recording of executed activities, we identify three possibili-
ties for correcting process models, depending on the traces on which the instance
adaptation should be plugged in. A correction is strict if the adaptation should be
plugged in on a precise trace, relaxed if on all traces, and relaxed with conditions
if on a subset of all traces. Automated techniques for corrective evolution are nec-
essary since changing models manually is difficult and there is a need to verify
that the evolved model satisfies the goal. We provide automated solutions for two
cases: when corrections are strict, and when they are either strict or relaxed. We
evaluate the tradeoffs between strict and relaxed corrections using a real log.

1 Introduction

Modeling business processes is a complex task which can be simplified by allowing pro-
cess instances to be structurally adapted at runtime, based on context (e.g., by adding or
deleting activities). The process model then no longer needs to include a handling pro-
cedure for every exception that can occur. Instead, it only needs to include the assump-
tions under which a successful execution is guaranteed. If a design-time assumption is
violated, an exception is triggered and the exception handling procedure matching the
context is selected or constructed at runtime (e.g., [2,9,4]). However, if runtime struc-
tural adaptation is allowed, the process model may later need to be updated based on
instance adaptations. For example, model updates are necessary if dealing with a fre-
quent exception at runtime is too costly, or if an adaptation fails and should be avoided.

Evolving the process model based on instance adaptations or process variants is not
new, and has already been addressed in, e.g., [7,10,12,19]. However, an issue insuffi-
ciently addressed in the previous work is how to evolve a process model and also ensure
that the evolved model continues to achieve the goal of the original model. We refer to
the problem of evolving a process model based on selected instance adaptations, such
that the evolved model satisfies the goal of the original model, as corrective evolution.

We illustrate the need for corrective evolution on a car logistics scenario, in which
cars arrive from manufacturers at a sea port and must be delivered to a retailer. The
car handling process includes storing the car, waiting for a delivery order, performing
treatments (e.g., painting), and delivering. The goal is to deliver the car to the retailer

S. Nurcan et al. (Eds.): BPMDS 2013 and EMMSAD 2013, LNBIP 147, pp. 214–229, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Corrective Evolution of Adaptable Process Models 215

in perfect condition. Cars may be damaged at any point. The repair can be performed
immediately or can be postponed, depending on context (e.g., availability of resources).
To consider at every step that the car can be damaged, and all the contexts in which
the damage can occur, would complicate the process model significantly. Instead, we
specify a constraint that the car should not be damaged. If this constraint is violated, the
process instance will be adapted based on context. By analyzing the logs, we determine
that if the car is damaged while being stored, and other cars are waiting to be repaired,
the repair should be postponed. If the car is damaged a second time in the storage area,
unless many cars are waiting, the repair should not be postponed anymore, such that
the car is delivered on time. We therefore need to evolve the process model, such that
the repair is postponed in the first situation, and performed immediately in the second.
Moreover, the evolved model must satisfy the goal to deliver the car in perfect condition.

When plugging an instance adaptation at a certain point in the process model, we
need to consider that there can be multiple paths to reach this point in the model. Each
path is uniquely identified by a trace, i.e., a recording of the executed activities. For each
adaptation there are three options, depending on which traces the adaptation should be
plugged in. To the best of our knowledge, this distinction is not present in the literature.

– The first option, which we call a strict correction, is to plug in the adaptation
only for the trace corresponding to the instance where the adaptation was used. The
advantage is that the resulting model will contain only known behavior.

– The second option, or relaxed correction, is to plug in the adaptation on all the
traces leading to the specified point. Although more behavior is introduced, the resulting
model should be smaller than the model obtained with strict corrections. The reason is
that applying strict corrections requires unfolding the model.

– Relaxed corrections are not always possible, since the resulting model must also
satisfy the goal. The third option, relaxed correction with conditions, is to plug in the
adaptation for a subset of the traces leading to the specified point.

In our scenario, we obtain different process models depending on the type of the two
corrections. If both corrections are strict, the second adaptation is applied only for the
trace when the car is damaged a second time, after having postponed the repair for the
first damage. If the second adaptation is plugged in as a relaxed correction, it will be
applied also for the traces where the car is damaged for the first time.

Automating corrective evolution is necessary since changing complex process mod-
els manually is difficult, and, unless all corrections are strict, there is a need to verify
that the evolved model satisfies the goal. We provide automated solutions for two cases:
when all corrections are strict, and when they are either strict or relaxed. These two
cases do not require searching for the traces where to plug in the adaptations. The first
case also does not require verification, since both process model and adaptations are
assumed to satisfy the goal, when adaptations are applied only on corresponding traces.

The contributions of this paper are:

– we extend the existing work on process evolution by considering the problem of
ensuring that the evolved model continues to achieve the goal of the original model.

– we identify three ways in which instance adaptations can be plugged into the model:
strict, relaxed, and relaxed with conditions, and motivate their usage.

– we provide automated solutions for two special cases of corrective evolution.

216 L. Baresi et al.

Fig. 1. Process-based application lifecycle

Section 2 presents concepts related to modeling, executing, and adapting a process-
based application. We introduce the corrective evolution problem in Section 3, and solve
the two cases in Section 4. We evaluate tradeoffs between strict and relaxed corrections
in Section 5. Related work is discussed in Section 6, and future work in Section 7.

2 Background

We model the business logic using process models and the domain knowledge using do-
main objects. We relate the process to the domain by defining goals and process anno-
tations based on domain objects. Fig. 1 shows the application lifecycle. In the execution
phase, process models and domain objects are instantiated, and process instances are
executed. Execution and adaptation events are recorded into logs, which are examined
during analysis. Adaptations which are successful according to performance indicators
may be selected to be included in the model, triggering evolution. During evolution,
new process models are created and ranked according to, e.g., size or complexity.

2.1 Application Representation

Domain Objects. A domain object is a state transition system representing a property of
an entity. States correspond to property values; value changes are transitions between
states triggered by events. Controllable events are triggered by executing a process,
while uncontrollable events can happen at any time and cannot be triggered directly.

Definition 1 (Domain Object). A domain object is a tuple
〈
L,L0, E , T 〉, where

– L is a finite set of states and L0 ⊆ L a set of initial states;
– E is a set of events partitioned into sets: controllable EC , and uncontrollable EU ;
– T ⊆ L× E × L is a transition relation based on events.

Let O be a set of domain objects. We denote with PS the set of propositions ss(o),
where o =

〈
L,L0, E , T 〉 ∈ O and s ∈ L, and with Bool(PS) the set of boolean

expressions over PS . Similarly, PE denotes the set of propositions ee(o), where e ∈ E .
The domain objects in our scenario are shown in Fig. 2.

Goals. Goals specify desirable states to be reached and then continuously maintained
during the execution of a process. We express goals in terms of domain objects.

Corrective Evolution of Adaptable Process Models 217

Fig. 2. Domain objects in the car logistics scenario

Definition 2 (Goal). Let O be a set of domain objects. A goal defined over O is a set of
goal statements, where each goal statement is defined with the generic template
ψ0 =⇒ (ψ1 � . . . � ψn), where ψi ≡ � | ss(o) | ψi ∨ ψi | ψi ∧ ψi and o ∈ O.

A goal statement specifies that whenever the state in the left side occurs, the process
should reach the state defined by the right side. If the left side is empty (�), the state in
the right side should be reached unconditionally. The states in the right side are ordered
using a preference operator (�). In our scenario, the goal is to have the car delivered to
the retailer in perfect condition: � =⇒ oks(h) ∧ retailers(l) (G1)

Process Models. A process model is a directed graph for which the nodes are either
activity nodes or control connectors, connected by control edges. Activity nodes are
labeled with activities. Activities are atomic and can correspond to more than one node,
i.e., duplicate nodes are allowed. We relate activities to the domain through precondi-
tions and effects. The preconditions are boolean formulas over domain object states,
while the effects correspond to controllable events. An activity can be executed only if
the precondition holds, and executing the activity triggers the events in the effects.

Definition 3 (Activity). An activity is a tuple 〈a, pre, eff 〉 defined over a set of domain
objects O: a is the name, pre ∈ Bool(PS) the precondition, and eff ⊆ PE the effects.

We model the control flow using edges and the control connectors And/XorSplit,
And/XorJoin. These constructs realize the patterns: sequence, parallel split, synchro-
nization, exclusive choice, simple merge, and arbitrary loop, which form the core of
any process modeling language. Our representation can therefore easily be mapped to,
e.g., BPMN, WS-BPEL, or modeling languages with formal semantics.
Control edges connecting XorSplit nodes with other nodes can be annotated with con-
ditions. A scope with constraint C is a sequence of activities with precondition C.

Definition 4 (Process Model). LetO be a set of domain objects and A a set of activities
defined over O. A process model M over O and A is a tuple 〈N,E, l, t, c〉 where:

– N is a finite set of nodes partitioned into sets: NA of activity nodes, and NC of
control connectors;

– E ⊆ N ×N is a set of directed edges;
– l : NA → A is a function mapping activity nodes to activities;
– t : N → {Start, End,Normal, XorSplit, XorJoin, AndSplit, AndJoin} is

a total function assigning a type to each node;

218 L. Baresi et al.

Fig. 3. Car process model

– c : E → Bool(PS) is a branch condition function such that for all e = (n1, n2) ∈
E, if c(e) is defined then t(n1) = XorSplit.

Fig. 3 shows the process model in our scenario. For example, the precondition of Re-
ceive delivery order is that a delivery order should not exist; the effects are that the
order is created and treatments are added to the schedule. ¬damageds(h) is constraint,
which means that each activity includes this formula in its precondition.

2.2 Execution

The trace of a process instance is the sequence of executed activities.

Definition 5 (Trace). Let M = 〈N,E, l, t, c〉 be a process model defined over O
and A. A trace π on M is a sequence of activities 〈a1, . . . , ak〉, k ∈ N, such that
∀i, 1 ≤ i ≤ k, ai ∈ A, and ∃ni ∈ N, l(ni) = ai, with t(n1) = Start. For i < k,
ni and ni+1 are such that either (ni, ni+1) ∈ E, or ∃n′

1, . . . , n
′
j ∈ NC , j ≥ 1, and

(ni, n
′
1), (n

′
1, n

′
2), . . . , (n

′
j , ni+1) ∈ E. Activities can occur multiple times due to loops

and duplicate nodes. A trace is complete if t(nk) = End, and partial otherwise.

A configuration is a global state of the domain objects at a certain point during the
execution of a process instance.

Definition 6 (Configuration). Let O be a set of domain objects. A configuration γ of O
is a total function which maps each domain object o ∈ O, o =

〈
L,L0, E , T 〉 to a state

in L. If γ maps every object o to an initial state in L0 then γ is an initial configuration.

Since every object state is described by a proposition in PS , a configuration γ cor-
responds to an interpretation Iγ of PS . Slightly abusing the notation, we say that γ
satisfies b ∈ Bool(PS) and write γ |= b, if Iγ |= b. γ′ is directly reachable from γ if for
every o ∈ O for which γ(o) �= γ′(o), there exists a sequence of transitions in o from
γ(o) to γ′(o) only on uncontrollable events. Activity 〈a, pre, eff 〉 is applicable in γ if
there exists γpre directly reachable from γ such that γpre |= pre . Then, γeff is reachable
by applying a in γ if a is applicable in γ and by applying eff to γpre we obtain γeff .

Definition 7 (Execution). Let M = 〈N,E, l, t, c〉 be a process model defined over O
and A. An execution of M is an alternating sequence of configurations and activities
represented as γ0

a1→ γ1 . . . γk−1
ak→ γk, where:

– a1, . . . , ak ∈ A, and 〈a1, . . . , ak〉 is a trace on M ,
– γ0, . . . , γk are configurations of O, with γ0 an initial configuration,
– ∀i, 1 < i ≤ k, if ni−1, ni ∈ N are the nodes corresponding to ai−1 and ai, and
ai = 〈namei, prei, eff i〉, then:

Corrective Evolution of Adaptable Process Models 219

Fig. 4. Adaptation operations: (1) Schedule repair, (2) Repair temporarily

• if (ni−1, ni) ∈ E, then γi is reachable from γi−1 by applying ai,
• otherwise, γi is reachable from γi−1 by applying a′i = 〈namei, prei ∧ ϕ, eff i〉,

where ϕ is the conjunction of conditions between ni−1 and ni.
An execution is complete if the trace 〈a1, . . . , ak〉 is complete, and partial otherwise.

We denote with Exec(M) the set of complete executions that can be produced by
model M . Exec(M) can be infinite if M contains loops. M satisfies a goal statement
ψ0 =⇒ (ψ1 � · · · � ψn) if every complete execution of M is such that if a configura-
tion satisfying ψ0 is reached during the execution, then the last configuration satisfies at
least one of ψ1, . . . , ψn. M satisfies a goal G if it satisfies all the statements in G. The
model in Fig. 3 satisfies goal G1. For every complete execution of M , every configura-
tion reached satisfies �, and the last configuration satisfies oks(h) ∧ retailers(l).

2.3 Adaptation

Process instances can be adapted structurally while they are running: activities can be
added, removed, re-executed. We start from the premise that adaptation is triggered by
a constraint violation. Based on this premise, plugging an adaptation into the process
model in the evolution phase results in an enhancement of the model, which allows
to insert several adaptations at the same time. A second premise is that adaptation is
performed to reach the goal. This ensures that there is at least one situation for which
the adaptation can be plugged in the model such that the resulting model satisfies the
goal. These two premises are more restrictive than that of existing process evolution
approaches (e.g.,[8,10,19]), where there are no domain-level restrictions on adaptations.

Given a process modelM , an adaptation is an operation adapt(Ma, from , to), where
Ma is a process model, and from, to are nodes inM . This operation allows to interrupt
an execution ofM after having completed from , executeMa, and then resume from to.
Adaptations are one-time changes, i.e., if from is reached again,Ma is not re-executed.
Without loss of generality, we consider that adaptations cannot contain nodes from the
main model and jumping in a parallel branch is not possible. An equivalent adaptation
satisfying these conditions can be constructed by duplicating nodes.

Definition 8 (Adaptation). Let M = 〈N,E, l, t, c〉 be a process model defined over O
and A. An adaptation of M is an operation Δ = adapt(Ma, from , to), such that:

220 L. Baresi et al.

Ma = 〈Na, Ea, la, ta, ca〉 is a process model defined overO and A, withN ∩Na = ∅,
from , to ∈ N , and to is not part of an AND-block.

An adaptation is applicable to a partial execution ω of M only if from is the last com-
pleted node inω, there is at least one execution ofMa starting from the last configuration
in ω, and any resulting complete execution satisfies the goal of model M .

We represent adaptation as a single operation rather than using change patterns [18],
to emphasize that it is a solution to an exception. If it were represented as multiple
change operations, the meaning of an adaptation as an indivisible solution would be lost.
Fig. 4 shows two adaptations of the modelM from Fig. 3. Schedule repair is applicable

toM on executionω1 = γ0
Show route to storage→ γ1. Repair temporarily is applicable to

M on ω2 = γ0
Show route to storage→ γ1

At storage→ γ2. Let ω3 = γ0
Show route to storage→

γ1
Assess damage→ γ2

At storage→ γ3 be an execution of M adapted by Schedule repair.
Repair temporarily is applicable toM also on ω3, which is the case when the constraint
is violated a second time.

3 Corrective Evolution

To integrate an adaptation in a process model, we need to specify the point in the model
and the condition under which it must be plugged in. We specify a plug-in point as a set
of traces. Given a process model M and an adaptation Δ = adapt(Ma, from , to),
the plug-in point must be such that each trace to this point ends with the activity
corresponding to from . Given a plug-in point, the restrictions for the condition are:

– at least one configuration reachable at the plug-in point satisfies the condition;
– the next activities in M are not applicable in any plug-in point configuration which

satisfies the condition;
– Δ is applicable to every plug-in point configuration which satisfies the condition.

Conditions which satisfy the first two restrictions are deviating conditions. A deviating
condition represents plug-in point configurations for which the model does not specify
how to proceed. A deviating condition which satisfies the third restriction is a plug-in
condition. The combination of adaptation, plug-in point, and condition is a correction.

Definition 9 (Correction). Let M be a process model defined over O and A. A
correction C is a tuple 〈ct, π, ϕ,Δ〉 such that:

– ct ∈ {strict , relaxed ,with-conditions} is the correction type;
– π is a partial trace on M ;
– ϕ is a boolean expression from Bool(PS);
– Δ = adapt(Ma, from, to) is an adaptation of M .

We say that C is applicable to M if:
– ϕ is a plug-in condition for applyingΔ to M on π,
– if ct �= strict , then ϕ is a deviating condition for M and node from .

The point whereΔ must be plugged in is determined by the type ct, the trace π, and the
node from . For all correction types,Δ should be plugged in after from , under condition
ϕ. If ct is strict, both ϕ and Δ should be applied only on π. If relaxed, they should be
applied on all traces leading to from . Finally, if relaxed with conditions, they should be
applied on at least one trace leading to from .

Corrective Evolution of Adaptable Process Models 221

Let C be a correction applicable to M . We denote with Exec(M,C) the set of com-
plete executions that can be produced by M corrected by C. Exec(M,C) adds new
complete executions toExec(M). A new executionω corresponds to a process instance
for which a configuration γ satisfying ϕ is reached at the plug-in point. ω continues with
an execution of Ma, and then resumes on M from node to. These new complete exe-
cutions do not replace any complete executions of M , and Exec(M) ⊆ Exec(M,C).
We are interested in retrieving the process model corresponding to Exec(M,C). It can
be the case that a model which also satisfies the goal of M does not exist. However, a
model M ′ such that Exec(M ′) = Exec(M,C) can always be constructed.

Given a process model satisfying a goal, the corrective evolution problem is to apply
a sequence of corrections to this model, such that the resulting model satisfies the goal.

Definition 10 (Problem). Let M0 be a process model and G a goal such that M0

satisfies G. Let C1, . . . , Cn be a sequence of corrections, such that ∀i, 1 ≤ i ≤ n:

– Ci = 〈cti, πi, ϕi, Δi〉, Δi = adapt(Ma
i , from i, toi), and toi is a node from M0;

– Ci is applicable to Mi−1, and Mi is such that Exec(Mi) = Exec(Mi−1, Ci).

The corrective evolution problem is to find a process model Mn which satisfies G.

Without generality loss, we assume that every adaptation returns the control to M0. If
Δ2 returns the control to Δ1, an equivalentΔ′

2 can be created by duplicating nodes.
We can now formalize the inputs to the corrective evolution problem in our scenario:

– process model M satisfying the goal G1 from Section 2.1;
– correctionC1 = 〈strict, π1, ϕ1, Δ1〉 where: π1 = 〈Show route to storage〉, ϕ1 =
damaged s(h)∧(40%s(q)∨. . .∨ full s(q)), Δ1 is the Schedule repair in Section 2.3;

– correctionC2 = 〈strict, π2, ϕ2, Δ2〉where:π2 = 〈Show route to storage,Assess
damage,At storage〉, ϕ2 = damaged s(h)∧(empty s(q)∨ . . .∨70%

s
(q)), andΔ2

is the Repair temporarily in Section 2.3.

The solutionMn is an enhancement of M0, i.e., every complete execution ofM0 is also
a complete execution ofMn. For everyCi, there are two possibilities. IfCi is applicable
to M0, then Mn can replay all the executions that would result by applying Ci to M0.
It can be the case that Ci is not applicable to M0, but it is applicable to M0 corrected
by Cj0 , . . . , Cjk , 1 ≤ j0 < . . . < jk < i. This is the case when the adaptation must
then be plugged in after other adaptations. Then, Mn can replay all the executions that
result by applying Ci to M0 corrected by Cj0 , . . . , Cjk .

By formulating the problem as the application of n corrections, rather then only one,
we are addressing a more general problem, in the sense that more solutions may be
found. One reason is that we verify goal satisfaction only after applying all corrections.
Moreover, by applying n corrections, the set of traces on which a relaxed correction
(with conditions) can be applied changes depending on the other corrections.

4 Solution

In this section, we solve the case when all corrections are strict (strict corrective evolu-
tion), and the case when they are either strict or relaxed (relaxed corrective evolution).

In the first case, a solution can be constructed naively, by unfolding the process model
up to the plug-in point, adding the adaptation, and duplicating the fragment starting

222 L. Baresi et al.

with to. Such a naive solution has many duplicated nodes. The challenge is to find
a solution with as few duplicated nodes as possible. For this purpose, we encode the
process model, domain objects, traces, conditions, and adaptations into state transition
systems (STSs). We compute the parallel product of these STSs and obtain an STS
which encodes all the executions of the corrected model. We use the correspondences
created when encoding the inputs to translate this STS to a new process model.

In the second case, it is necessary not only to compose the process model and adap-
tations, but also to verify that the composition satisfies the goal. For this purpose, we
devise a solution based on planning. We encode the inputs as STSs, encoding also the
goal. We use the parallel product as a planning domain and create a planning goal from
the process goal. We apply the approach in [1], and generate a controller for the domain
to satisfy the planning goal. If a controller exists, we translate it to a new process model.

Since both solutions involve encoding the inputs as STSs, we first introduce some
basic STS notions and the encoding of each input. We then present each solution.

An STS contains a set of states, some marked as initial and/or accepting. Each state is
labeled with a set of properties. The STS moves to new states as a result of performing
actions, which are either input (controllable) or output (not controllable).

Definition 11 (STS). Let P be a set of propositions and Bool(P) the set of boolean
expressions over P . A state transition system is a tuple

〈S,S0, I,O,R,SF,F〉
, where:

– S is the set of states and S0 ⊆ S the set of initial states,
– I and O are the input and respectively output actions,
– R ⊆ S ×Bool(P)× (I ∪ O)× S is the transition relation,
– SF ⊆ S is the set of accepting states,
– F : S → 2P is the labeling function.

We write s,F |= b to denote that boolean expression b is satisfied in state s given F .
Transitions are guarded: (s, b, a, s′) is possible in s only if s,F |= b.

The parallel product of two STSs states that the two STSs move concurrently on
common actions, and independently if there are no common actions.

4.1 Encoding into STSs

Encoding Process Models. For a process modelM we construct an STSΣM by apply-
ing the rules in Table 1. α denotes a generic element, s

α−→ s′ the recursive translation of
α. To differentiate input from output actions, names are prefixed with “?”, respectively
“!”. For the And-block, Table 1 shows the case with two activities; the STS for a generic
And-block allows every possible interleaving combination. Preconditions are copied as
guards. Due to the guards,ΣM does not move if run in isolation; the transitions become
enabled in the product of ΣM with the domain objects STSs. We label each state with
a new proposition (F(s) = {s(M)}), and mark initial and final states as accepting.
Encoding Adaptations. We define an STS ΣΔi for each adaptation Δi. We first trans-
late the modelMa

i . Each adaptation realizes a jump inM0, and, if applied onΔj , j < i,
also a reset jump inΔj . We encode these jumps using a new action ?resumei and label
the start of the jump with pointi, to mark the point where Δi must be applied. The
initial transitions in ΣΔi are guarded by ϕi ∧ pointi ∧ tracei, where tracei will mark
the end of πi. If an adaptation is started, an adaptation (not necessarily the same) has to
finish for the control to be given to the main process, and the control cannot be given to

Corrective Evolution of Adaptable Process Models 223

Table 1. Encoding process model elements as STSs

Process model element STS transitions

activity node n ∈ NA,
l(n) = 〈a, pre , eff 〉 (sb, pre, ?a, se)

sequence sb
α1−−→ s′, s′

α2−−→ se

XORSplit

(sb,�, ?xor, s0)
(s0, cond, !case1, s1), (s0,¬cond, !case2, s2)
s1

α1−−→ se, s2
α2−−→ s′e

XORJoin sb
α1−−→ se, s

′
b

α2−−→ se

AND-block

(sb,�, ?and, s0)
(s0,�, !order1, s1), (s0,�, !order2, s2)

s1
α1−−→ s′1, s

′
1

α2−−→ se
s2

α2−−→ s′2, s
′
2

α1−−→ se

a previous adaptation. We encode these properties using a semaphore.Σsem has a state
s0 corresponding to M0, and a state si for every Δi. If ΣΔi moves, Σsem moves from
any sj , j < i, to si. From si it moves to s0 on ?resumei. Each state in Σsem is labeled
with a flag; these flags guard the transitions in ΣM0 , ΣΔ1 , . . . , ΣΔn .
Encoding Traces. We construct an STS Σπi for each trace πi = 〈a1, . . . , ak〉. Σπi

moves from state sj−1 to sj on any action corresponding to aj , and from sj−1 to sout
on actions corresponding to any other activity.Σπi moves from sk to sout on any action
corresponding to an activity. We label sk with tracei to mark the end of πi.
Encoding Conditions. Conditions can appear in corrections or as edge annotations. Let
ϕ be a condition, and ϕ′ the formula after replacing negative literals. We create an STS
Σϕ only if ϕ′ contains a literal reachable through uncontrollable events. We add to Σϕ
two actions !triggerϕ and !no-triggerϕ. The transitions on these actions are guarded,
such that ϕ is triggered only before being evaluated. To simulate the uncontrollability
of the events, both cases (when ϕ holds, and when it does not hold) will be considered.
Encoding Domain Objects. For each object o =

〈
L,L0, E , T 〉, we define an STS

Σo with the same states and initial states, marking all states as accepting. We label
states with the corresponding propositions, i.e., F(s) = {ss(o)}. For every transition
(s, e, s′) ∈ T , we consider all the activities a for which ee(o) ∈ eff . Suppose a appears
in M , and ?a is an action corresponding to a which can be executed in ΣM from state
sj . We add to Σo a transition from s to s′ on ?a guarded by sj(M) and flags. For every
transition on an uncontrollable event (s, e, su) ∈ T, e ∈ EU , we consider the conditions
ϕ containing ss

u(o), and add a transition on from s to su on !triggerϕ.
Encoding the Goal. We create an STS Σg for each statement ψ0 ⇒ (ψ1 � · · · � ψk).
For every ψ we introduce an action !aψ, guarding transitions on !aψ with ψ. If !aψ0 is
triggered, Σg moves to a non-accepting state and waits for one of !aψ1 , . . . , !aψk

to be
triggered, in which case it moves to an accepting state. If !aψ0 is triggered again, Σg
moves to the non-accepting state. The preference order is encoded as a requirement ρ =
(s0, . . . , sk), s0 being the initial state, s1, . . . , sk the states reached with !aψ1 , . . . , !aψk

.

224 L. Baresi et al.

Fig. 5. Strict corrections: corrected process model

4.2 Strict Corrective Evolution

We encode the process model into an STSΣM0 , adaptations intoΣΔ1 , . . . , ΣΔn , Σsem,
partial traces into Σπ1 , . . . , Σπn , conditions into Σϕ1 , . . . , Σϕm , and domain objects
intoΣo1 , . . . , Σop , as described in Section 4.1. We then compute their parallel product:
Σ = ΣM0‖ΣΔ1‖ . . . ‖ΣΔn‖Σsem‖Σπ1‖ . . . ‖Σπn ‖Σϕ1‖ . . . ‖Σϕm ‖Σo1‖ . . . ‖Σop

We simplify Σ by removing the transitions which can never fire, i.e., (s, b, a, s′) for
which s,F �|= b. We can then remove the guards and the labeling function F . Σ is
nondeterministic, due to the fact that the domain objects STSs can have multiple initial
states and nondeterministic transitions. Moreover, if an object can be in more then one
state at a certain point in the process, and these states are treated in the same way,
Σ will contain many similar transitions. To transform Σ back to a process model, we
must first convert it to a deterministic STS. For this, as well as to remove the redundant
transitions, we minimize Σ. As criteria for STS equivalence we use complete trace
equivalence, one of the weakest notions of behavioral equivalence [5]. The resulting
minimal, deterministic STS Σstrict is transformed to a process model.

Theorem 1. Assume a corrective evolution problem defined by a process model M0,
a goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n, Ci =
〈cti, πi, ϕi, Δi〉 , cti = strict. Let Mstrict be the translation of Σstrict. Then Mstrict

is a solution for the problem defined by M0, G, and C1, . . . , Cn.

The solution for the corrective evolution problem in our scenario is shown in Fig. 5. The
corrected model has two new traces: one corresponding to the application of Schedule
repair, and one to the application of both Schedule repair and Repair temporarily.

If M0 and Ma
1 , . . . ,M

a
n do not contain parallelism, Mstrict is the minimal solution

to the problem, since the translation from the minimalΣstrict toMstrict is direct. How-
ever, if any of M0,M

a
1 , . . . ,M

a
n contain parallelism, this can be restored by applying

post-processing techniques to Mstrict.
With strict corrections, the original model is unfolded according to the partial traces.

If an adaptation includes a backward jump, the activities in between will be duplicated
in the new model. This redundancy can be removed by relaxing the corrections.

4.3 Relaxed Corrective Evolution

As in the previous case, we encode the inputs as STSs, this time encoding also the goal.
If a correctionCi is relaxed, the trace is ignored andΣπi contains one state labeled with
tracei. We compute the parallel product of all STSs and remove the transitions which
can never fire, followed by the guards and the labeling function. The resulting STSΣ is
our planning domain. We construct the planning goal ρ by combining the requirements

Corrective Evolution of Adaptable Process Models 225

Fig. 6. Relaxed corrections: corrected process model

generated in Section 4.1. On the planning domainΣ and goal ρ we apply the technique
in [1], which generates a controllerΣc such that the controlled system satisfies the goal,
i.e.,Σc � Σ |= ρ. IfΣc exists, it corresponds to a synthesis of the original model with
the adaptations, which achieves the process goal. We minimizeΣc and obtainΣrelaxed,
which we translate to a process model.

Theorem 2. Assume a corrective evolution problem defined by a process model M0,
a goal G, and a sequence of corrections C1, . . . , Cn, such that ∀i, 1 ≤ i ≤ n, Ci =
〈cti, πi, ϕi, Δi〉 , cti ∈ {strict, relaxed}. Let Mrelaxed be the translation of Σrelaxed.
Mrelaxed is a solution for the problem defined by M0, G, and C1, . . . , Cn.

Fig. 6 shows the model obtained in our scenario if both C1 and C2 are relaxed. Sched-
ule repair and Repair temporarily are applied when the car is damaged on the way to
storage, respectively at storage, independent of how many damages already occurred.

5 Evaluation

We implemented the two solutions from Section 4 into a prototype tool. For strict cor-
rective evolution, we used the NuSMV model checker (nusmv.fbk.eu). For relaxed cor-
rective evolution, we used WSYNTH, a tool from the ASTRO toolset (astroproject.org).

We evaluated our approach using the event log from the 2012 BPI Challenge. This
is a real-life log taken from a financial institute, containing 262.200 events in 13.087
traces. The traces correspond to a loan application process. As a first step, we obtained a
rough process model by filtering the log to include the most frequent traces and events,
and mining the filtered log. We designed our domain objects based on the log and de-
scriptions, and used these objects to define our goal and annotate the activities appearing
in the log. We computed the differences between the model and the traces in the log, and
used the most frequent differences to generate strict and relaxed corrections. We then
evaluated the tradeoffs between strict and relaxed corrections along three dimensions:

– fitness - how much of the behavior in the log is captured by the corrected models;
– precision - how much extra behavior is introduced in the corrected models;
– structure - how much the corrected models deviate structurally from the original.

To realize these comparisons, we used several metrics devised for evaluating process
mining results, which are implemented in the ProM framework (www.promtools.org).

To measure fitness, we used the f metric from [14], implemented in ProM as token-
based fitness. This is a fine-grained metric quantifying the extent to which the traces in
the log can be replayed on the process model. We were interested not only to compare
the two correction types, but also to evaluate the fitness of corrected models over time.

http://nusmv.fbk.eu
http://www.astroproject.org
http://www.win.tue.nl/bpi2012/doku.php?id=challenge
http://www.promtools.org

226 L. Baresi et al.

Strict corrections (1 month log) Relaxed corrections (1 month log) Strict corrections (complete log) Relaxed corrections (complete log)

2 4 6 8 10 12
0.6

0.7

0.8

Correction index

Fi
tn

es
s

0 2 4 6 8 10 12

0.7

0.8

0.9

Number of strict corrections

Fi
tn

es
s

Fig. 7. Fitness: corrections applied (1) individually; (2) incrementally

2 4 6 8 10 12

0.94

0.96

0.98

Correction index

B
eh

av
io

ra
lp

re
ci

si
on

Strict corrections Relaxed corrections

0 2 4 6 8 10 12

0.8

0.9

1

Number of strict corrections

B
eh

av
io

ra
lp

re
ci

si
on

Strict corrections Relaxed corrections

Fig. 8. Behavioral precision: corrections applied (1) individually; (2) incrementally

2 4 6 8 10 12
0.85

0.9

0.95

Correction index

S
tr

uc
tu

ra
lp

re
ci

si
on

Strict corrections Relaxed corrections

0 2 4 6 8 10 12

0.7

0.8

0.9

1

Number of strict corrections

S
tr

uc
tu

ra
lp

re
ci

si
on

Strict corrections Relaxed corrections

Fig. 9. Structural precision: corrections applied (1) individually; (2) incrementally

To simulate the passing of time, we used only a fragment of the entire log (roughly one
sixth, corresponding to the first month) to generate our corrections. We measured the
fitness of corrected models on the log fragment as well as on the entire log.

Fig. 7(1) shows the fitness of corrected models when corrections were applied in-
dividually, i.e., at each step we applied exactly one correction on the original model.
Fig. 7(2) shows the fitness when corrections were applied incrementally. At step 0, we
measured the fitness of the original model. Then, in the strict version, at step n we cor-
rected the original model with n strict corrections. In the relaxed version, at step n we
corrected the original model with m ≤ n relaxed corrections. The number of strict and
relaxed corrections is not necessarily equal, since several strict corrections may corre-
spond to the same relaxed correction. As can be seen in Fig. 7, the fitness increases

Corrective Evolution of Adaptable Process Models 227

when corrections are applied, for both correction types. However, the fitness is higher
for relaxed corrections, and remains higher also when tested against the entire log.

To measure changes in behavior, we used the behavioral precision BP metric [11].
BP quantifies how much extra behavior a process model allows with respect to a ref-
erence model and a log. BP is lower when the deviation in behavior is higher. As for
fitness, we measuredBP of corrected models when corrections are applied individually
and incrementally (Fig. 8). The log used was the one-month log fragment. As expected,
we observe that strict corrections introduce less behavior than relaxed corrections.

To measure the deviation in structure, we used the structural precision SP metric
[11], which assesses how many connections a process model has that are not in a ref-
erence model. Like BP , SP is lower when the deviation is higher. We measured SP of
corrected models when corrections are applied individually and incrementally (Fig. 9).
We observe that relaxed corrections lead to smaller structural changes. An interest-
ing case is that of corrections 8 and 12, which lead to the lowest values for the strict
corrections in Fig. 9(1). For these two strict corrections, the trace passes through an
And-block, and to apply the correction the model had to be unfolded up to the plug-in
point. No such unfolding was necessary for the corresponding relaxed corrections.

We conclude that for this scenario there is a tradeoff between strict and relaxed cor-
rections: relaxed corrections introduce more behavior, but lead to a higher fitness and
less structural changes than strict corrections. In general, we expect relaxed corrections
to introduce more behavior and less structural changes as soon as there is more than
one trace to the plug-in point. Regarding fitness, a relaxed correction should be more
effective if the adaptation is commonly applied at the given point, independent of trace.

6 Related Work

We focus on approaches which use the structural adaptations of process instances to
support process evolution. If execution and adaptation logs are available, they can be
analyzed to facilitate change reuse (e.g., [16,15]), support process diagnosis (e.g., [6]),
and evolve the process model (e.g., [3,19]). Our approach belongs to the last category.
In [16], process instances are grouped based on contextual properties, paths, and out-
comes, to provide recommendations for improving the process model. For declarative
processes, execution recommendations are generated in [15] based on past executions
and optimization goals. In [6], process mining techniques are applied to change logs to
provide an overview of when and why change was necessary. Also using process min-
ing, [3] repairs a process model with respect to a log, such that the repaired model can
replay the log and is similar to the original model. In [19], case-based reasoning is used
to log instance changes, and derive suggestions for process model changes.

Alternatively, the result of structural adaptation can be represented as variants of a
process model. Techniques for managing variants which use a single reference model to
represent a set of variants (e.g., [7,8,10,13]) can also be used for process evolution. In
[7] and [13], the reference model incorporates variation points, to distinguish the parts
common to all variants from the variant-specific parts. The technique in [8] is used for
resolving differences between variants. In [10], a heuristic search is employed to find a
process model such that the distance between the model and variants is minimal.

228 L. Baresi et al.

The approaches in [19] and [10] are closest to our work, since they generate new pro-
cess models based on an adaptation log, respectively process variants. Both approaches
derive model changes from frequent instance adaptations. The context of the adapta-
tions is considered in [19], but not in [10]. Further, the trace for which adaptations
should be applied is considered implicitly in [10], and not considered in [19]. How-
ever, an adaptation is tightly coupled to the context and trace for which it is used, and
may even be harmful if used for different contexts or traces. When evolving the model
based on adaptations, the contexts and traces must be considered as well. If traces are
ignored, we need to consider the overall goal of the process, to make sure that the adap-
tations introduced in the model are not harmful. The goal is not considered in [19], nor
in [10]. The relation between context, traces, and goals has been considered in [16].
However, in [16] the aim is to recommend improvements to the process model, rather
than to actually change it, and can be used as an analysis technique preceding corrective
evolution.

Although goal compliance is insufficiently investigated for process evolution, there
are many approaches which address the goal compliance of process models and their
runtime adaptation, e.g., [2,9,4]. Also related is the problem of service composition,
where a composite service is generated from service interfaces and goal specifications.
Among service composition approaches, ASTRO [1] is particularly relevant, since we
have used its powerful planning techniques to implement relaxed corrective evolution.

Finally, another relevant area is that of process model refactoring. Of the 11 tech-
niques in [17], our work can be used for implementing RF11, Pull Up Instance Change.

7 Conclusions and Future Work

We presented a new approach for evolving process models based on instance adapta-
tions. Our approach ensures that the evolved model achieves the goal of the original
model. We identified three different ways for plugging adaptations into the model, and
designed automated solutions for two special cases. Finally, we evaluated the tradeoffs
between strict and relaxed corrections on a scenario built on a real log. In the future,
we will design and evaluate solutions for the general case, when corrections can also be
relaxed with conditions. The traces on which such a correction should be applied must
be determined through search. The problem gets significantly more complex if more
than one such correction should be applied, due to the combinatorial explosion. To deal
with this complexity, we will devise heuristic techniques.

References

1. Bertoli, P., Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H., Wagner, M.: Control Flow
Requirements for Automated Service Composition. In: Proc. ICWS 2009, pp. 17–24 (2009)

2. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic adaptation of fragment-based
and context-aware business processes. In: Proc. ICWS 2012, pp. 33–41 (2012)

3. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg
(2012)

Corrective Evolution of Adaptable Process Models 229

4. Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception handling for repair in
service-based processes. IEEE Trans. Software Eng. 36(2), 198–215 (2010)

5. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract). In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer,
Heidelberg (1990)

6. Guenther, C.W., Rinderle-Ma, S., Reichert, M., van der Aalst, W.M., Recker, J.: Using pro-
cess mining to learn from process changes in evolutionary systems. Int’l J. of Business Pro-
cess Integration and Management 3(1), 61–78 (2007)

7. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the
provop approach. Journal of Software Maintenance 22(6-7), 519–546 (2010)

8. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model dif-
ferences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)

9. de Leoni, M., Mecella, M., De Giacomo, G.: Highly dynamic adaptation in process manage-
ment systems through execution monitoring. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 182–197. Springer, Heidelberg (2007)

10. Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining process vari-
ants using a heuristic approach. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 344–362. Springer, Heidelberg (2009)

11. de Medeiros, A.K.A., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying process equiv-
alence based on observed behavior. Data Knowl. Eng. 64(1), 55–74 (2008)

12. Ploesser, K., Peleg, M., Soffer, P., Rosemann, M., Recker, J.: Learning from context to im-
prove business processes. BPTRends 6(1), 1–7 (2009)

13. Reijers, H.A., Mans, R.S., van der Toorn, R.A.: Improved model management with aggre-
gated business process models. Data Knowl. Eng. 68(2), 221–243 (2009)

14. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008)

15. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting flexible
processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan,
M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)

16. Soffer, P., Ghattas, J., Peleg, M.: A goal-based approach for learning in business processes.
In: Intentional Perspectives on Information Systems Eng., pp. 239–256. Springer (2010)

17. Weber, B., Reichert, M.: Refactoring process models in large process repositories. In: Bel-
lahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 124–139. Springer,
Heidelberg (2008)

18. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features
- enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3),
438–466 (2008)

19. Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle support
in process-aware information systems. Int. J. Cooperative Inf. Syst. 18(1), 115–165 (2009)

	Corrective Evolution of Adaptable Process Models
	1 Introduction
	2 Background
	2.1 Application Representation
	2.2 Execution
	2.3 Adaptation

	3 Corrective Evolution
	4 Solution
	4.1 Encoding into STSs
	4.2 Strict Corrective Evolution
	4.3 Relaxed Corrective Evolution

	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

