Multi-perspective Business Process Monitoring

Amin Jalali and Paul Johannesson

Department of Computer and Systems Sciences, Stockholm University, Sweden
{aj,pajo}@dsv.su.se

Abstract. Monitoring business processes is an important area in Busi-
ness Process Management. This area not only supports monitoring but
also enables flexibility. Thus, it has been investigated in many other areas
like Business Activity Monitoring, Exception Handling, Aspect Oriented
Business Process Management, etc. These areas require to define how a
process instance should be monitored from different perspectives. How-
ever, current definitions are coupled to control-flow perspective, which
applies some limitations. For example, we cannot define a rule to capture
situations in which an account balance is read - regardless of its process.
To capture such situations, we propose an approach to define moni-
toring rules. This approach enables composition of rules in a way to be
decoupled from a specific perspective. To validate the result, we imple-
mented a rule editor and a monitoring service, called Observer Service.
These artefacts are used to support the definition of monitoring rules
and track process instances, correspondingly. Finally, we investigated the
validity and relevancy of the artefacts through a banking case study.

Keywords: Business Process Management Systems, Process Monitor-
ing, Service Oriented Architecture, flexibility.

1 Introduction

Business Process Management(BPM) is an important area that supports automa-
tion of business processes. This automation is achieved through BPM life cycle in-
cluding process design, configuration, enactment and diagnosis phases [28]. This
life cycle resulted in rigid business processes that are not flexible. Therefore, an-
other phase is added, called adjustment. In this phase, the enacted process can
be adjusted and executed, without repeating the whole life cycle [3/16]. Both ad-
justment and diagnosis phases depend on monitoring process instances, that is
achieved by tracking events. Each event is a possible monitoring point in BPM [23].

Two kinds of adjustment can be performed at runtime, i.e. allowing the pro-
cess instance to be deviated from process specification, or changing the process
specification and migrating the process instance(s) according to new specifica-
tion. These adjustments are categorized under process flexibility as ’flexibility
by deviation’ and ’flexibility by change’ [21]. These types depend on recognition
of needed points (events) in process instances, which are fulfilled through pro-
cess monitoring. Therefore, more capability in capturing events results in more
ability in providing process adjustment and flexibility in action.

S. Nurcan et al. (Eds.): BPMDS 2013 and EMMSAD 2013, LNBIP 147, pp. 199-213, 2013.
(© Springer-Verlag Berlin Heidelberg 2013

200 A. Jalali and P. Johannesson

The adjustment and flexibility should be performed for some monitoring
points in a process instance. These points should be defined using some rules,
called monitoring rules, that specify what information is a matter of interest for
monitoring. Each event carries information related to different perspectives like
control-flow (or process), task (or functional), operation (or application), data,
resource (or organizational), time, etc [1J20].

There is an implicit order between perspectives when defining a process model.
J. Becker et al, mention that “[t|he data flow is restricted by the control flow as
the data flow cannot precede the control flow” [I0]. These restrictions are valid
in process definition. However, they limit process monitoring if we want to define
the monitoring rules with the same approach.

For example, a bank manager might be interested to monitor high value fi-
nancial transactions. These transactions can be occurred by different processes
and activities. If we want to define monitoring rules using the control-flow and
task perspectives, we should define a lot of monitoring rules to capture each task
to investigate if the value of the transaction is more than the limit.

In this paper, we solve this problem by proposing an approach to define mon-
itoring rules independent of any specific process perspective. To do that, we
introduce possible monitoring points in a process instance. Then, we investigate
what sort of information can be found for each point and the relation between
them. As a result, we define an algorithm to evaluate monitoring rules from
different perspectives. To validate our result, we developed two applications,
i.e. the monitoring rule editor and the Observer Service. The editor supports
the definition of monitoring rules based on investigated relation. The service
monitors process instances to check if rules are satisfied or not. Moreover, we
investigated the relevancy of the problem using a banking case study. The actual
implementation of the study using our artifices is in progress.

Therefore, the remainder of the paper is organized as follows. In Section 2] we
give a description of how the rules are defined in different BPM areas. Then, we
present the relation between process perspectives and different states of mon-
itoring life cycles in Section Bl Section Ml demonstrates the rule editor and the
architecture of the implemented service. Section [investigates the validity and
relevancy of the artefacts using a banking case study. Section [@] discusses the
limitations of the work. Finally, Section [0 presents directions for future works
and concludes the paper.

2 Background

A lot of areas in BPM paradigm try to define how monitoring points should be
specified such as Business Actiwvity Monitoring(BAM), Exception Handling, As-
pect Oriented Business Process Management(AOBPM), etc. Therefore, different
attempts have been performed to monitor these points. In this section, we look
at some of these attempts in general.

Business Activity Monitoring(BAM) is defined by Gartner as a concept which
enables tracking business operations and making issues visible quickly, based on

Multi-perspective Business Process Monitoring 201

COBRA

Business Activity Monitoring Event
occursAt[1]: Timelnstant
receivedAt[1]: Timelnstant
causedBy|0.."]: MonitoringEvent
generatedByAgent[1]: Agent
(1]
1]:

anOccurl [1.."]: Busi vi
leadsToState[1]: BusinessActivityState

Activity Monitoring Event
concernsActivitylnstance[1]: ActivityInstance
y)|

Process Monitoring Event

Process Started
canOccurlnState = Ready

Process Instantiated
canOccurlnState = InitialState

Activity Assigned

Actvity Aborted
canOccurlnState = Scheduled

canOccurinState = Running,

leadsToState = Running leadsToState = Read} leadsToState = Assigned Suspended
o leadsToState = Aborted
Process Suspended Process Completed Activity Started _
leadsToState = Suspended leadstoState = Completed leadsToState = Running canOccurinState = Running
— leadsToState = Completed
Process Resumed Process Aborted Activity Reassigned

TE—
Activity Resumed
canOccurinState = Suspended

leadsToState = Running

canOccurlnState = Assigned
leadsToState = Assigned
Activity Relieved

canOccurinState = Assigned
leadsToState = Scheduled

canOccurinState = Suspended leadsToState = Aborted
leadsToState = Running
Process Terminated

leadsToState = Terminated

canOccurlnState = Scheduled,
Assigned
leadsToState = Aborted

L\

Activity Suspended
canOccurinState = Running
leadsToState = Suspended
Activity Automatically Skipped

canOccurlnState = InitialState
leadsToState = Completed

—

canOccurlnState = Scheduled,
Assigned

leadsToState = Completed

Activity Scheduled
canOccurlnState = InitialState
leadsToState = Scheduled

Fig. 1. Events Ontology [22]

real-time datal. BAM could be implemented through different approaches such
as process mining [27] and real-time monitoring [I9]. Process mining enables
tracking of business operations using event logs [7]; while, real-time monitor-
ing detects different monitoring points in process instances and keeps track of
them in action. The process mining is out of our attention, because we focus on
how to define rules to capture various monitoring points in this paper. Defini-
tion of rules in BAM has been investigated in different research, e.g. [I3/I526].
For example, Pedrinaci et. al. define an event ontology for BAM in [22] (see
Figure [T)). The events are categorized into two groups for monitoring, i.e. pro-
cess and activity. The process monitoring event consists of started, suspended,
resumed, terminated, aborted, completed and instantiated events. The activity
monitoring event includes assigned, started, reassigned, relieved, skipped, sched-
uled, aborted, completed, resumed, withdrawn, suspended and skipped. These
events are points that a process instance can be monitored. However, it does not
mean that we have to restrict the definition of rules to them. Such restriction
can end up us with current limitations in defining monitoring rules, which are
coupled to control-flow and task perspectives.

Ezxception Handling is an important area of BPM, which tries to support flex-
ibility by deviation [2]. Deviations are recognized by tracking some monitoring
points and evaluating some exception rules. Monitoring points are categorized
into five groups, i.e. Work Item Failure, Deadline Expiry, Resource Unavailability,

!http://www.gartner.com/it-glossary/bam-business-activity-monitoring

http://www.gartner.com/it-glossary/bam-business-activity-monitoring

202 A. Jalali and P. Johannesson

External Trigger and Constraint Violation [824]. Each points can be looked from
different perspectives. For example, the task that the work item is going to per-
form represents the functional perspective. The resource to whom the work item is
allocated represents the resource perspective. Exception rules specify when an ex-
ception should be captured. Again, definition of exception rules are coupled with
control-flow perspective. For example, these rules are defined using an exception
event attached to an activity’s boundary in Business Process Model and Notation
(BPMN) [14].

Moreover, the same approach can be tracked for handling exceptions in other
works like worklet [9], where the exception types could be recognized in a process
instance using a set of rules, called Ripple Down Rules(RDR) [§]. These rules
could be defined to monitor violations of exception types, which happens for a
specific case or a workitem. This means that the constraint should be mapped
to control-flow or task perspective first. This approach limits the definition of
rules, which needs to be independent of these two perspectives. It means that, if
we want to define a monitoring point for a resource or data perspective, we have
to map it to control-flow or task perspectives. For example, if a customer wants
to get notified when his or her account balance is decreased, we should find all
cases and tasks which have the potential to withdraw money from the customer
account. This limitation is because we are not able to define a constraint for
only data perspective here.

Aspect Oriented Business Process Management(AOBPM) aims to separate
cross-cutting concerns from business processes and model them separately
[IIUT2JT7]. Separated models need to be weaved at runtime. The weaving requires
to check monitoring points to see whether some aspects are specified for them [I§].
Monitoring points are called join points, and rules are called pointcuts. The rules
are defined based on control-flow and task perspectives. This implies some limi-
tations in defining aspects, e.g. enforcing some security policy when an extra con-
firmation is required for activities of a new clerk. Again, we need to define rules
for all tasks of a process instance to check if a new clerk performed it or not.

To sum up, we found a general approach in definition of monitoring rules
in different areas of BPM. These rules are defined based on control-flow and
task perspectives. Other perspectives can be incorporated in rules when one of
these two perspectives are specified. This implies a lot of limitations for defining
business monitoring points for process instances. In fact, it enforces multiple
definition of rules to capture a business monitoring point. Therefore, we define
a new approach to capture monitoring points and defining rules. In the next
section, we introduce this approach.

3 Approach

Monitoring points can be defined with the help of workitem life cycle. The life
cycle is defined by N. Russell et al [25], and it is general for different Workflow
Management Systems(W{MSs) [29]. It consists of the states that a workitem can
have in its life. States can be changed by transitions(events) (look at the dashed

Multi-perspective Business Process Monitoring 203

Suspended

A
Riresume| | R:suspend

(Workitem Lifecycle)
| |
|
|
|
|
|

A 4

|
|
7 |
ot Q |
< s
|
: lg : R: I
Sienab Started complete Completed :
' & X |
|
|
|

R:fail

A 4

Failed

Fig. 2. Workitem Monitoring life cycle

offered to
multiple
resources

rectangle in Figure [2]). Transitions’ names are started with R or S, representing
whether a resource or the system(WIMS) initiates the transition. A. Rogge-Solti
et al, define two more states for a workitem life cycle, i.e. init and enabled [23]-
although they do not consider some other states. We could not consider these
states as workitem life cycle states, since the workitem is not created yet. We
also could not find any application of init state, so we exclude it. However, we
consider the enabled state as one of the wokitem monitoring states because it is
important from the monitoring viewpoint. Therefore, we end up with a new life
cycle for monitoring, which is shown in Figure

The life cycle starts when the WfMS detects a workitem as enabled. All en-
abled workitem will not be created. For example, when a process model contains
a deferred choice, many workitems can be enabled. However, as soon as one of
them is created, others will not be enabled any more [5]. The created workitem
can be ’offered to a single resource’, 'offered to multiple resources’ or ’allocated
to a single resource’. Moreover, it could be started by the WIMS if it is an au-
tomated workitem. The started workitem can be suspended, and the suspended
workitem can be resumed. The started workitem can also be failed or completed.

Furthermore, we should monitor the process instances, called cases. We rec-
ognized different states, which can be monitored during a case life cycle, i.e. cre-
ated, completed, suspended and failed. These states could only be changed by the
WIMS, so we do not incorporate the name of event initiators in event labels.

suspend

fail

Fig. 3. Case Monitoring life cycle

resume

Completed

204 A. Jalali and P. Johannesson

Perspectives
Status Control-flow Data Task Resource
Case Monitoring Lifecycle Case level Workitem level
Created + +(r)
Suspended + +
Failed + +
Completed + +(w)
Workitem Monitoring Lifecycle
Enabled + + - + -
Created + + +(r) + -
offered to a single resource + + + + +
offered to multiple resources + + + + +
allocated to a single resource + + + + +
Started + + + + +
Suspended + + + + +
Failed + + + + +
Completed + + + (w) + +

Fig. 4. The relation between level, states and perspectives

Although there is other states during execution of a case and workitem like
cancelled, there are different from one WfMS to the other. Thus, we consider the
general states which exist in most of WfMSs and limit our Monitoring life cycles
to existing states (see Figure Bl and Figure Bl). The Workitem and Case Moni-
toring life cycles can be used to define monitoring points from different business
process perspectives. Each process model consists of different perspectives, and
each perspective exposes a different kind of monitoring points , so we should
investigate what sort of monitoring points exist in each workitem monitoring
state to define monitoring rules.

Figure M shows what monitoring points could be tracked in each state of
Case and Workitem Monitoring life cycle. The control-flow monitoring points
can always be captured in both life cycles. The data perspective is restricted by
control-flow perspective in a way that it is always defined based on control-flow
perspective [I0]. Thus, we divide data perspective into two sub-categories, i.e.
case level and workitem level. The case level data can be accessed in all states
of both life cycles. The reading operation of data is performed when the case
is created, so we added ’(r)’ to demonstrate this fact in Figure @l The writing
operation of data is performed when the case is completed, which is shown by
(w)” in the figure. The workitem level data can be accessed in all states of
workitem life cycles, but it cannot be accessed in the enabled state of workitem
monitoring life cycle.

Furthermore, The task monitoring points are available during workitem mon-
itoring life cycle. The resource monitoring points are also available during all
states of workitem monitoring life cycle except enabled and created. In these
states, the resource is not yet offered or allocated, so there is no information
about who will carry on the workitem.

Figure M indicates how the rules can be defined for monitoring process in-
stances from different process perspective. For example, if we want to define
a rule to enforce confirmation of all works that have been done by a new
clerk, we should define it as intersect of workitem completed state and resource

Multi-perspective Business Process Monitoring 205

perspective in the figure. Other cells in the same row indicate that we can limit
this rule based on other perspectives. For example, we can limit this rule to
enforce confirmation if the amount is greater than a limit. It is possible because
we have the data perspective in this row.

To evaluate these rules, we define an algorithm which shows how different
monitoring points can be analyzed. This algorithm uses basic terms, which are
given as follow. The terms start with definition of perspectives, which can have
any number of members. Thus, new perspectives can easily be added as a new
member without changing the algorithm.

Definition 1 (Basic Definition).

— P = {Control-flow, Data, Task, Resource} is a set of Perspectives. Here, we limit
ourself to four perspectives, but they can be added just as a member of the set.

— L = {Case, Workitem} is a set of Levels. There are two levels for monitoring,
i.e. Case and Workitem. Case represents the executed instance of a process
model. The workitem is an executed instance of a task.

— Wen, = {s:enable, s:create, s:start on create, s:offer m, R:start s, R:allocate s,
R:allocate m, R:start m, R:suspend, R:resume, R:fail, R:complete, } is a set of
WorklItem Event Names. These names are derived from Workitem life cycle.
We also added s:enable to monitor the workitem when it gets enabled.

— Cen = {create, suspend, resume, complete, fail} is a set of Case Event Names.

— & = Con UWen is a set of Fvent Names, which is a union of case event
names and workitem event names.

— &4 = (P,Value) is FvenetData, which is a tuple. It contains a perspective
and its values.

— Value is a simple string. This string can contain, for example, zml
representing the data perspective.

— Eas = {&4} is a set of Fvent Data.

— C = &y is Condition. The condition is an EventData, which is a tuple con-
taining a perspective and its values. We distinguish between event data and
condition because event data is what happened in execution; while, condition
is abstract representation of the situation that should be monitored.

— Cs = {C} is a set of Condition.

— & = (&n,Eas) is Event. The event is a tuple. It includes an event name and
a set of event data. In this way, each event can carry different data from
different perspectives.

Definition 2 (Monitoring Rules Definition).

- M = (L,&,) is MonitoringPoint. It is a tuple, which contains a level and
an event name. It means that a monitoring point can be any event in case
or workitem level.

— M, ={ M} is a set of Monitoring Points.

— R = (M,Cs) is Rule, which is a tuple. It contains a monitoring point and
a set of conditions. It means that a rule defines the criteria that capture

monitoring points, which can be limited from different perspectives.
— Rs ={R} is a set of Rules (Ruleset).

206 A. Jalali and P. Johannesson

The ruleset is used by the observer service to determine if an event satisfies condi-
tions or not. "Algorithm 1’ shows how events can be examined to see if conditions
in the ruleset are satisfied. The algorithm gets the event, level and the ruleset. It
checks the rules based on specified conditions in the ruleset, and returns the set
of rules, which are satisfied. The condition can have *’ as the value, which means
that all values can be accepted. This algorithm is not designed for any specific
perspective, so it is general. As a result, by adding any perspective to the set of
perspectives the algorithm will not be changed. This algorithm are implemented
in the Observer service which is described in the next Section.

Algorithm 1. Evaluate Monitoring Rules
Input: 1:.L,e:£,rs:'Rs

Output: R,

1: Rs result;

2: for each R r in rs do

3: if rM=(l,e) then

4: Boolean ruleResult := true;

5: for each C ¢ in r.Cs do

6: if ruleResult=true AND c.value<>"*" then
7 for each &, ed in e.£4s do

8: if ed.P=c.P AND ed.Value<>c.Value then
9: ruleResult := false;

10: end if

11: end for

12: end if

13: end for

14: if ruleResult=true then

15: result.Add(r);

16: end if

17: end if

18: end for

19: return result;

4 Implementation

To enable definition of rules in a way that supports all combinations, we devel-
oped a rule editor and an Observer service[d In this section, we describe the rule
editor and the architecture of the service.

4.1 Rule Editor

The rule editor is designed in a very generic way that can be extended easily
to support other states and perspectives. It reads the perspectives and states

2 Both the rule editor and the Observer Service can be downloaded from
http://people.dsv.su.se/~aj/0bserverService/

http://people.dsv.su.se/~aj/ObserverService/

Multi-perspective Business Process Monitoring 207

PointLevel PointStatus ~ Control_flow Data_Case ol Choose Rule level N ﬂ-

7 . level status Control_flow Data_Case Data_Workiten Task Resource
Case Completed |true true false false false
Workitem | Enabled true true false true |false
Workitem | Started true true true true |tue
Worktem | Suspended |true true true true [true
Worktem |Completed |true true true true |tue

Foint Level: Case Point Status: Created

Process: - Task: Salect

Case Data: -

Workitem Data ll2

(a) (b)

Fig. 5. RuleEditor

from an xml file. The xml indicates what information exists in each event. The
result is shown to the user when s(he) wants to define a monitoring rule (see
FigureBl(b)). This window shows a table which is similar to Figure[dl It consists
of possible levels and states for monitoring points. For each state, the editor
shows what perspectives are available to be limited by monitoring rules. For
example, Data Workitem and Resource are not available for workitem enabled
monitoring points. This awareness supports users to define rules, which comply
to the context of events.

The user can limit the data for each perspective in the editor(see Figure[El(a)).
To do that, the user should select the level (workitem or case) and the state for
which s(he) wants to observe the process. The editor enables the user to apply
some limitation for the monitoring point based on information that exists on
that point. This information can be limited from different perspectives.

For example, the bank manager might be interested to monitor all tasks that
have been done by a specific clerk if s(he) works on collateral which worth
more than 1,000,000 USD in all processes. S(he) should select the row from
the table that has "Workitem’ as level and ’Completed’ as the state. Then, the
editor recognizes what information is available in that state, i.e. Control-flow,
Data (both in case and workitem levels) and Resource. The control-flow should
not be limited to any process, so "*’ should be written - which indicates all
processes. The Case-data should not also be limited, so "*’ should be written.
The Workitem-data should be limited to 1,000,000, so an xpath can be written to
check the data condition, i.e. ’//Collateral/Amount >1000000’. The Resource
should also be limited to the specific clerk, so the name of the clerk can be
written in Resource section.

This editor writes all rules in an XML file, that is used by Observer Service
to monitor process instances. We limited the user to select the level and states
when defining the rule. However, if the user is interested to define a rule for all
levels or states, (s)he can still do that by changing the level or state field to ™*’
in the XML file. The architecture of the service is explained in the next section.

208 A. Jalali and P. Johannesson

YAWL
Workflow
Engine
YAWL Resource Observer
Process
. O Service Service
Editor

Rule
Repository

- - 3
Admin I worklist Event
— Lo
Org Model I i

Process >
Repository o
- o__
Users Rule Editor

Fig. 6. Observer Services Architecture

4.2 Architecture

The Observer Service is responsible to track process instances based on monitor-
ing rules, which are composed using the editor. The service is designed based on
Service Oriented Architecture. It monitors process instances using events, which
are received from WIMS. Therefore, it can be configured to observe any WfMS.
We chose YAWL as a WIMS for which we monitor process instances. YAWL is
selected since it supports full workitem life cycle, and it supports many workflow
patterns. It also has formal definition and semantic. Moreover, it is open-source
and is developed based on Service Oriented Architecture [416].

Figure [shows the architecture of our service and its relation to the WIMS.
The service is connected to the YAWL Engine through two interfaces, i.e. B
and X. Interface X is used to monitor case monitoring points and ’s:enable’
event from workitem monitoring life cycle; while, interface B is used to monitor
workitem life cycle.

The resource service also plays an important role here. It is responsible to offer
and allocate workitems to users. Therefore, it initiates changing some workitem
states. This service collaborates with the YAWL engine through interface B to
change the state of Workitems. The Interface A is utilized to upload specification
to the engine, when a user launches a new process. The resource service also reads
the organizational model through Interface O, which can be used for extending
monitoring rules.

The Observer Service does not track other services; instead, it tracks the
changes in workitem and case states through the engine. The service also reads
the rules (composed by the Rule Editor) from Rule Repository. The rules specify
which events should be captured. In the next section, we describe the case study
which we conducted to investigate the relevancy of the artefact.

Multi-perspective Business Process Monitoring 209

Contact

Receive the Validate

notarized share documents decisio
Contact certificate

legal office

Release Send
share certificate and
congrat. letter

Register Check
request documents | documents decision

Resources

& small business manager

6 high-risk fraud manager
Validate Make Release Send certificate

% Branch Manager documents decision share and congrat. letter

Fig. 7. Release Collateral

5 Case Study

In this section, we validate the relevance of our artefact using a banking case
study. In this study, we considered different banking process, among them we
chose the release collateral business process. The aim of the process is to release
the collateral when the debt is not fully paid. The bank can decide about re-
leasing the collateral based on the customer record. There are many types of
collateral such as share, stock, warrant, option and co-signer. We excluded co-
signer collateral since it makes the process much more complex. This complexity
makes presentation of the process not possible in this paper.

Figure [shows this process model from the control-flow perspective. The
process starts when a small business manager receives and registers documents
from customer to release his or her collateral. Then (s)he checks all support-
ing documents. If a document is missed, then (s)he asks the customer to send
complementary documents. When all documents are collected, they are sent to
the high-risk fraud manager for additional review and validating the originality
of documents. It is a security policy in the bank to check the originality of all
documents which are received from other parties, except other banks. Then the
branch manager comes up with any of the following situations:

— Declaration of criminal case: If the high-risk fraud manager detects a
document as fake, the branch manager will declare the case as criminal.

— Completion of documents: The branch manager may ask for more supporting
documents before any decision made to the collateral release.

— Rejection: If s(he) decides the rejection, then the customer will be notified.

— Acceptance: if s(he) accepts the release request, then two different activities
can be performed depending on the type of the collateral:
— If the collateral is stock, warrant or option, then the small business man-
ager contacts the investment brokerage office and receives required informa-
tion such as the most current investment activity statement. Then, the branch

210 A. Jalali and P. Johannesson

manager decides on the case, i.e. rejection or acceptance. If s(he) rejects the
case, the customer will get notified; otherwise, the requested collateral will be
released. Then, the congratulation letter will be sent to the customer.

— If the collateral is a share, then the small business manager contacts the
Investment broker and the lawyer, who had originally published the share
certificate to the customer. When s(he) receives the notarized share cer-
tificate, the high-risk fraud manager should validate the originality of the
document, due to security policy. If the high-risk fraud manager detects the
document as fake, then the branch manager will declare the case as crimi-
nal. Otherwise, the business manager accepts the case, in most of the cases.
However, if s(he) rejects the case, the customer will get notified. In case
of acceptance, the share collateral will be released, and the certificate and
congratulation letter will be sent to the customer.

The business manager might be interested to get notified if someone works on

collateral, which has very high value. The high value is subjective and can be

varied in times, so it should be determined by the business manager. Currently,

we have to define monitoring points for all activities to capture such events.

However, with our artefact we can get this kind of alarm by defining one rule.
The rule is defined as:

<rule process=’releaseAsset’ task=’*’ state=’wi.completed’
data=’\\Collateral \Amount >1000000° />

The modelling phase of this case study is finished, and the implementation phase
is still on progress. We also found out that if tasks can be categorized, it would
be highly beneficial for defining monitoring points. For example, a bank manager
might be interested to monitor all payment tasks, or all financial tasks. If tasks’
types can be defined in process models, it can be also used when tracking them.

6 Limitations

We applied different limitations in different steps of this research such as in
solution, implementation and case study.

In solution, we limit ourselves to general workitem life cycle. This means that
we did not consider some states of case and workitem which are not general in
WIMSs. For example, we did not consider cancelled state in both of life cycles.
Moreover, we did consider limited number of perspectives to define our solution,
i.e. Control-flow, Data and Resource. Therefore, our solution does not cover
other perspectives like time. Although these limitations restrict our solution, it
does not affect the research outcome. It is due to the fact that the solution is
general and can be easily expanded to support other states and perspectives.

In implementation, we did not consider resource perspective because the
YAWL engine is not responsible for that. Indeed, the resource service handles
this responsibility, and the YAWL engine cannot track changes of states, which
are performed by other services. If such state are going to be considered, the re-
source service of YAWL engine should be tracked, instead of the YAWL engine.

Multi-perspective Business Process Monitoring 211

As a result, we had to dismiss ’offered to a single resource’, 'offered to multiple
resource’, ’allocated to a single resource’ states. This limitation does not affect
the result, because other perspectives are implemented and investigated. More-
over, the implementation is general and can be easily extended to support other
perspectives if the WEMS supports it.

In case study, we exclude one sort of collateral, which is used in the bank,
due to reducing complexity for presentation. This limitation does not affect our
goal, since we wanted to show the relevancy of the problem in the real domain.
Moreover, we currently finished the modelling part of the case study, and it is
not implemented completely. The implementation is in progress.

7 Conclusion and Future Works

In this paper, we presented a generic solution to monitor process instances from
different business process perspectives. This solution recognizes the events as
possible points that can be tracked. Each event carries different information
from a different perspective. Therefore, we consider what sort of information
from what perspective can be monitored in what event. The result was a set of
relations that shows how the rules can be defined to comply with the process
content. To validate the result, we developed two applications, i.e. a rule editor
and an Observer Service. The rule editor supports definition of rules based on
the defined relations. The Observer Service monitors business processes based
on rules, which are defined by rule editor. In this way, we can capture events,
which might be interested from a different perspective.

The relevancy of artefact is investigated by a case study in a banking domain.
In this study, we chose 'releasing collateral’ process. This process is used to release
collateral when the customer has not paid his or her dept completely. The mon-
itoring rule can restrict monitoring points to those in which someone works on a
collateral having a high value. Despite other approaches that need to define a lot of
rules for each activity to capture this business event, our artefact monitors it just
by one rule. Moreover, we also distinguished the following future works:

— providing features that enable other services to subscribe for a special event.

— Using Business Rule Management System (BRMS) to define and analyse
more complex monitoring rules.

— Adding more perspectives when defining rules, e.g. time, resource, cost, etc.

— Considering how our artefact can handle more exception handling in process
models.

— Enabling Aspect Oriented Business Process Execution based on this artefact
and investigating how much it supports separation of concerns from different
perspectives.

— Considering how our artefact can extend the Business Activity Monitoring
in terms of defining more measures.

212 A. Jalali and P. Johannesson

Acknowledgement. We would like to appreciate Mrs. Marjan Taheri from
Actax Inc. for her valuable helps in our case study. We also thank Dr. Petia
Wohed to give us valuable feedback on this work.

References

1. van der Aalst, W.M.P.: Workflow verification: Finding control-flow errors using
petri-net-based techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.)
Business Process Management. LNCS, vol. 1806, pp. 161-183. Springer, Heidelberg
(2000)

2. van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonenberg,
H.: Flexibility as a service. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA
2009 Workshops. LNCS, vol. 5667, pp. 319-333. Springer, Heidelberg (2009)

3. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) BPM 2011 Workshops, Part I. LNBIP, vol. 99, pp. 169-194.
Springer, Heidelberg (2012)

4. van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and
implementation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004.
LNCS, vol. 3084, pp. 142-159. Springer, Heidelberg (2004)

5. van der Aalst, W.M.P., Barros, A.P., ter Hofstede, A.H.M., Kiepuszewski, B.: Ad-
vanced workflow patterns. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000.
LNCS, vol. 1901, pp. 18-29. Springer, Heidelberg (2000)

6. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language.
Information Systems 30(4), 245-275 (2005)

7. van der Aalst, W.M.P., Weijters, A.: Process mining: a research agenda. Computers
in Industry 53(3), 231-244 (2004)

8. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic,
extensible and context-aware exception handling for workflows. In: Meersman, R.,
Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 95-112. Springer, Heidelberg
(2007)

9. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A
service-oriented implementation of dynamic flexibility in workflows. In: Meersman,
R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291-308. Springer, Heidelberg
(2006)

10. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of business process mod-
eling. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, pp. 30-49. Springer, Heidelberg (2000)

11. Cappelli, C., Santoro, F.M., do Prado Leite, J.C.S., Batista, T., Medeiros, A.L.,
Romeiro, C.S.C.: Reflections on the modularity of business process models: The
case for introducing the aspect-oriented paradigm. Business Process Management
Journal 16(4), 662-687 (2010)

12. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In: (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168—
182. Springer, Heidelberg (2004)

13. Costello, C., Molloy, O.: Building a process performance model for business activity
monitoring. In: Information Systems Development, pp. 237-248 (2009)

14. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in bpmn. Information and Software Technology 50(12), 1281-1294 (2008)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Multi-perspective Business Process Monitoring 213

Goedertier, S., Vanthienen, J.: Designing compliant business processes with obli-
gations and permissions. In: Eder, J., Dustdar, S. (eds.) BPM 2006 Workshops.
LNCS, vol. 4103, pp. 5-14. Springer, Heidelberg (2006)

Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
lifecycle. In: 10th Int’l Conf. on Enterprise Information Systems, ICEIS 2008, pp.
154-161 (June 2008)

Jalali, A., Wohed, P., Ouyang, C.: Aspect oriented business process modelling with
precedence. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125,
pp. 23-37. Springer, Heidelberg (2012)

Jalali, A., Wohed, P., Ouyang, C.: Operational semantics of aspects in business
process management. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.)
OTM-WS 2012. LNCS, vol. 7567, pp. 649-653. Springer, Heidelberg (2012)
Kang, J.G., Han, K.H.: A business activity monitoring system supporting real-
time business performance management. In: Third International Conference on
Convergence and Hybrid Information Technology, ICCIT 2008, vol. 1, pp. 473478
(November 2008)

Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware in-
formation systems. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. LNBIP, vol. 50,
pp. 94-107. Springer, Heidelberg (2010)

Mulyar, N.A., Schonenberg, M.H., Mans, van der Aalst, W.M.P.: Towards a Tax-
onomy of Process Flexibility (Extended Version). BPM Center Report BPM-07-11.
BPMcenter.org (2007)

Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A core ontology for business
process analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 49-64. Springer, Heidelberg (2008)
Rogge-Solti, A., Weske, M.: Enabling probabilistic process monitoring in non-
automated environments. In: Bider, 1., Halpin, T., Krogstie, J., Nurcan, S., Proper,
E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) EMMSAD 2012 and BPMDS 2012.
LNBIP, vol. 113, pp. 226-240. Springer, Heidelberg (2012)

Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception handling pat-
terns. Process-Aware Information Systems. Technical report, BPM Center Report
BPM-06-04. BPMcenter. org (2006)

Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In: Pastor, O.,
Falcao e Cunha, J. (eds.) CAISE 2005. LNCS, vol. 3520, pp. 216-232. Springer,
Heidelberg (2005)

Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149-164. Springer, Heidelberg (2007)

van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.T.,
van der Aalst, W.M.P.: The proM framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444-454. Springer, Heidelberg (2005)

Weske, M., van der Aalst, W.M.P., Verbeek, H.M.W.: Advances in business process
management. Data and Knowledge Engineering 50(1), 1-8 (2004)

Wohed, P., Russell, N., ter Hofstede, A.H.M., Andersson, B., van der Aalst,
W.M.P.: Patterns-based evaluation of open source bpm systems: The cases of
jbpm, openwfe, and enhydra shark. Information and Software Technology 51(8),
1187-1216 (2009)

	Multi-perspective Business Process Monitoring
	1 Introduction
	2 Background
	3 Approach
	4 Implementation
	4.1 Rule Editor
	4.2 Architecture

	5 Case Study
	6 Limitations
	7 Conclusion and Future Works
	References

