
Biochemistry of Metals/Metalloids
Toward Remediation Process

Magdalena Victoria Monferrán and Daniel Alberto Wunderlin

Abstract The use of phytoremediation for restoration or amelioration of soils
polluted with heavy metals is a promising technique for the near future. Generally,
if a plant can accumulate more than 1000 mg kg-1 (or 1000 ppm) of Cu, Co, Cr,
Ni, or Pb, or more than 10,000 mg kg-1 (or 10,000 ppm) of Mn or Zn, it is defined
as a hyperaccumulator. The discovery and elucidation of the mechanism used by
hyperaccumulators to take up, translocate, and fix heavy metals in aerial parts is of
great interest to understand the role of such plants in biorestoration. The perfor-
mance of plants for heavy metals phytoremediation depends on several factors,
starting from the bioavailability of metals in the soil, which is conditioned by
cation exchange capacity, soil pH and organic matter content, the oxidation state
of the metal, presence of both natural and synthetic chelants, interaction with soil
microorganisms, etc. The mechanism used by roots to uptake bioavailable metals
from the soil is also crucial for the success of bioaccumulation, in addition to
mechanisms used to translocate metals from root to shoots after absorption. Sig-
nificant progress in understanding the mechanisms governing metal hyperaccu-
mulation has been made in the last decade through comparative physiological,
genomic, and proteomic studies of hyperaccumulators and related non-hyperac-
cumulator plants. Parts of these studies are discussed here. Finally, the efficiency
in detoxification and sequestration is a key property of hyperaccumulators,
allowing them to concentrate huge amounts of heavy metals in aerial organs
without apparent phytotoxic effect. This exceptionally high heavy metal accu-
mulation becomes even more surprising considering that it mainly occurs in leaves
where photosynthesis, essential for plant survival, is accomplished, and that the
photosynthetic apparatus is a major target for most of these contaminants.
Although extensive laboratory studies on phytoextraction by plants have been
reported, less research has been dedicated to evaluate the performance in field
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studies, which seems necessary to both validate laboratory studies and fully
demonstrate the usefulness of this technique for site restoration.

Keywords Heavy metals � Phytoextraction � Soil restoration � Hyperaccumula-
tors � Translocation � Fixation � Detoxification
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1 Introduction

Soil is one of the key elements for all terrestrial ecosystems, providing nutrients
for plants as well as degradation and transfer of biomass. Heavy metal contami-
nation of soils has become a serious problem in both industrial and intensive
agricultural areas, affecting crop yield and quality, soil biomass and fertility, and
leads to the bioaccumulation of metals in plants, which can pose serious risks for
humans through the ingestion of heavy metals bioaccumulated through the food
chain (Gupta and Gupta 1998; Gratao et al. 2005; Rajkumar et al. 2009; Peralta-
Videa et al. 2009). This is mainly due to the pollution of agricultural soils by
increasing dependence on chemical fertilizers, which has imposed a long-term risk
on environmental health (McLaughlin et al. 1999; Wong et al. 2002). Industrial-
ized countries have regulated the emission of toxic substances. Conversely, many
developing countries present rapid industrial development, which is sometimes
associated with population increase coupled with lack of pollution control, causing
huge increase in heavy metal contamination of agricultural soils (Ji et al. 2000).

Numerous efficient soil cleanup techniques are available, but most of them are
costly, labor-intensive, and cause soil disturbances, having limited acceptability
among the communities. Conventional remediation methods involve pneumatic
fracturing, solidification/stabilization, vitrification, excavation, and removal of
contaminated soil layer, physical stabilization or washing of contaminated soils
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with strong acids or chelating agents, in addition to alternative methods like
chemical stabilization, i.e., metal immobilization by using different amendments
(Steele and Pichtel 1998; Khan et al. 2004; Bhargava et al. 2012; Addy et al.
2012). Common methods for the immobilization of metals in soils are to apply
lime, phosphates, organic matter residues, and other natural or synthetic additives,
like zeolites, beringite, and hydrous oxides of Al, Fe, and Mn and also vermiculite
(Vangronsveld et al. 1990; Gworek 1992; Khattak and Page 1992; Bolan and
Duraisamy 2003; Malandrino et al. 2011).

1.1 Plants as Accumulators of Metals

Plants that take up heavy metals from the soil offer an alternative and less expensive
method to strip heavy metals directly from the soil. The use of such plants to
remediate soils and water contaminated with pollutants, a technique known as
phytoremediation, is emerging as a new tool for in situ remediation (Yang et al.
2005). Phytoremediation takes advantage of the fact that a living plant acts as a
solar-driven pump, which can extract and concentrate certain heavy metals from the
environment (Raskin et al. 1997). This remediation method maintains the biological
properties and physical structure of the soil. The technique is environmentally
friendly, potentially cheap, visually unobtrusive, and offers the possibility of bi-
orecovery of the heavy metals (Yang et al. 2005). That is because phytoremediation
has gained the increasing attention of scientists, remediation engineers, and envi-
ronmental professionals in governments and industries.

Phytoremediation technologies include phytoextraction, phytostabilization,
phytovolatilization, phytofiltration, and phytodegradation (Fulekar et al. 2009;
Marques et al. 2009). Phytoextraction refers to the uptake of contaminants from
soil or water by plant roots and their translocation into the shoot, or any other
harvestable plant part, to remove contaminants and promote long-term cleanup of
soil or wastewater (Sas-Nowosielska et al. 2008). In this approach, plants capable
of accumulating heavy metals are grown on contaminated sites and the metal-rich
aboveground biomass is harvested on maturity. As a result, a fraction of the soil
contaminant is removed. The success of phytoextraction depends on factors like
metal availability for uptake as well as plant ability to absorb and accumulate
metals in its aerial parts (Fig. 1). As per the economic feasibility, the harvested
biomass is usually incinerated or composted and rarely recycled for reuse (Prasad
and Freitas 2003).

Plants ideal for phytoextraction should possess multiple traits like ability to
grow outside their area of collection, fast growth, high biomass, easy harvesting,
and accumulation of a range of heavy metals in their harvestable parts (Jabeen
et al. 2009; Seth 2012).

Plants take up essential and non-essential elements from soils in response to
concentration gradients induced by selective uptake of ions by roots, or by
diffusion of elements in the soil. The level of accumulation of elements differs
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between and within species (Huang and Cunningham 1996; McGrath and Zhao
2003). Baker (1981) suggested that plants could be classified into three categories:
(1) excluders: those that grow in metal-contaminated soil and maintain the shoot
concentration at low level up to a critical soil value above which relatively
unrestricted root-to-shoot transport results, (2) Hyperaccumulators: those that
concentrate metals in the aerial part, and (3) indicators: where uptake and transport
of metals to the shoot are regulated so that internal concentration reflects external
levels, at least until toxicity occurs (Fig. 1).

1.2 Hyperaccumulator Plants

The term ‘‘hyperaccumulator’’ was coined by Brooks et al. (1977) for plants that, in a
different way from the excluder plants, actively take up large amounts of one or more
heavy metals from the soil. Moreover, heavy metals are not retained in the roots but
translocated to the shoot and accumulated in aboveground organs, especially leaves,
at concentrations 100- to 1000-fold higher than those found in non-hyperaccumu-
lating species. They show no symptoms of phytotoxicity (Rascioa 2011; Reeves
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2006). Although a distinct feature, hyperaccumulation also relies on hypertolerance,
an essential key property allowing plants to avoid heavy metal poisoning, to which
hyperaccumulator plants are as sensitive as non-hyperaccumulators (Chaney et al.
1997).

Usually if a plant can accumulate more than 1000 mg kg-1 (or 1000 ppm) of
Cu, Co, Cr, Ni, or Pb, or more than 10,000 mg kg-1 (or 10,000 ppm) of Mn or Zn,
it is defined as a hyperaccumulator (Wu et al. 2010). The hyperaccumulator
species are distributed in a wide range of vaguely related families, occurring on
metal-rich soils in both tropical and temperate zones. Hyperaccumulators are
found from South Africa, New Caledonia, Latin America to North America, and
Europe (Baker and Brooks 1989). Initially the term hyperaccumulator referred to
plants able to accumulate more than 1 mg g-1 Ni (dry weight) in the shoot, an
exceptionally high heavy metal concentration, considering that in vegetative
organs of most plants Ni toxicity starts from 10 to 15 g g-1. Threshold values
were successively provided to define the hyperaccumulation of other heavy metals,
based on their specific phytotoxicity. According to such criterion, hyperaccumu-
lators are plants that concentrate [10 mg g-1 (1 %) Mn or Zn, [1 mg g-1

(0.1 %) As, Co, Cr, Cu, Ni, Pb, Sb, Se, or Tl, and [0.1 mg g-1 (0.01 %) Cd in
aerial organs of such plants, without evidences of phytotoxic damage (Verbruggen
et al. 2009). Ni is hyperaccumulated by a great number of taxa (more than 75 %),
reaching the highest concentration in plants. Conversely, a low number of hy-
peraccumulators has been found for Cd.

The time that plants use to diminish the amount of heavy metals in contami-
nated soils depends on the biomass production and on their bioconcentration factor
(BCF), which is the ratio of metal concentration in the shoot tissue to the soil
(McGrath and Zhao 2003). BCF is determined by the capacity of the roots to take
up metals and their ability to accumulate, store, and detoxify metals while
maintaining metabolism, growth, and biomass production (Gleba et al. 1999;
Guerinot and Salt 2001; Clemens et al. 2002). With the exception of hyperaccu-
mulators, most plants have metal bioconcentration factors lower than 1, which
means that it takes longer than a human lifespan to reduce soil contamination by
50 % (Peuke and Rennenberg 2005). Hyperaccumulators have a bioconcentration
factor greater than 1, sometimes reaching values as high as 50–100.

1.3 High Biomass Crops

For successful and economically feasible phytoextraction, it is necessary to use
plants with BCF of 20 (or more) and a biomass production of 10 t ha-1; or plants
with a BCF of 10 and a biomass production of 20 t ha-1 (Peuke and Rennenberg
2005). The rate of phytoextraction is directly proportional to plant growth rate and
the total amount of metal phytoextracted is correlated to the plant biomass, which
makes the process of phytoextraction very slow (Shah and Nongkynrih 2007). This
triggers the need for identification of fast growing and strongly metal-accumulating
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genotypes, namely biotechnological modifications, whose description is out of the
scope of this chapter.

Nowadays, the use of high-biomass crops for phytoextraction of metals is
attracting huge attention (Doty 2008; Capuana 2011). Fast growing trees are ideal
low-cost candidates for phytoextraction due to their extensive root systems, high
rates of water uptake and transpiration, rapid growth, large biomass production,
and easy harvesting with subsequent growth of new plant generations without
disturbance of the site (Peuke and Rennenberg 2005). Several tree species are
currently under study for use in the phytoremediation of metal contaminated soils
(Pulford and Watson 2003; Rosselli et al. 2003; Meers et al. 2007; Unterbrunner
et al. 2007; Brunner et al. 2008; Domínguez et al. 2008). Plants ideal for phy-
toextraction should possess multiple traits like the ability to grow outside their area
of collection, fast growth, high biomass, easy harvesting, and accumulation of a
range of heavy metals in their harvestable parts (Jabeen et al. 2009; Seth 2012).

The relationship between metal hyperaccumulation and tolerance is still a
subject of debate. Scientific reports range from no correlation between hyperac-
cumulators and the degree of tolerance to metals (Baker et al. 1994) to strong
association between them (Chaney et al. 1997). There is a growing consensus that
plants must also tolerate the metals that they accumulate; thus, being able to cope
with high concentrations of metals in their tissues (Fig. 1).

There is also a general agreement that metal hyperaccumulation is an evolu-
tionary adaptation by specialized plants to live in habitats that are naturally rich in
specific minerals, giving them the ability to tolerate high levels of metals, in
addition to protection against herbivores or pathogens, drought tolerance, and
allelopathy (Boyd and Martens 1992; Macnair 1993). The hypothesis of protection
against pathogens and herbivores is considered the most accepted (Boyd and
Martens 1992; Huitson and Macnair 2003; Boyd 2007; Noret et al. 2007; Galeas
et al. 2008). However, the mechanisms of metal uptake, tolerance to high metal
concentrations, and the exact roles that high level of elements play in the survival
of hyperaccumulators remains controversial.

The degree of hyperaccumulation of one or more heavy metals can vary sig-
nificantly from species to species, even in diverse populations and ecotypes of the
same species (Deng et al. 2007). However, hyperaccumulation depends on three
basic characteristics distinguishing hyperaccumulators from related non-hyperac-
cumulator taxa:

• A high bioconcentration factor (BCF);
• A faster and effective root-to-shoot translocation of metals;
• A much greater ability to detoxify and sequester huge amounts of heavy metals

in the leaves.

Significant progress in understanding the mechanisms governing metal
hyperaccumulation has been made in the last decade through comparative physi-
ological, genomic, and proteomic studies of hyperaccumulators and related
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non-hyperaccumulator plants. Part of these studies will be discussed in the fol-
lowing sections.

2 Factors Affecting Metal Uptake by Plants

The uptake of heavy metals by plants depends on several factors some, of which
are discussed below.

Several edaphic factors like sorptive capacity of the soil, heavy metal content,
cation exchange capacity (CEC), soil pH, and organic matter content affect metal
hyperaccumulation in plants (Alloway 1995; Tiller et al. 1995; Cheng 2003;
Chaney et al. 2007).

Soil is a complex heterogeneous medium, which consists of solid phases con-
taining minerals, organic matter, and fluid phases (soil water and soil air), which
interact allowing the entering of ions into the soil system (Alloway 1995). The
ability of soils to adsorb metals from aqueous solution has decisive consequences
for both agricultural issues such as soil fertility but is also associated with envi-
ronmental questions such as soil pollution, remediation, and waste deposition.
Heavy metals are the most toxic inorganic pollutants occurring in soils and can be
of natural or anthropogenic origin (Siegel 2002). Some of them are toxic, even if
their concentration is very low. Moreover, heavy metals toxicity increases with
their accumulation in water, soils, and interfaces (sediments, etc.). Adsorption is
the main process responsible for accumulation of heavy metals into soils and
sediments (Bradl 2004).

The most important interfaces involved in the adsorption of heavy metal
adsorption to soils are inorganic colloids such as clays, metal oxides and
hydroxides (Bradl 2004), metal carbonates and phosphates. Also, organic colloidal
matter arising from detritus and living organisms such as algae and bacteria
provide interfaces for heavy metal adsorption (Kerndorf and Schnitzer 1980; Lion
et al. 1982; Fein et al. 1999; Fein and Delea 1999). The adsorption of heavy metals
onto the soil matrix regulates their further release, forming solutions that are also
influenced by inorganic and organic ligands, some of them natural, such as humic
and fulvic acids (Schlautmann and Morgan 1994; Duker et al. 1995; Zachara et al.
1994), but also man-supplied such as NTA, EDTA, polyphosphates, and others
(Bowers and Huang 1986; Zachara et al. 1995a, b; Szecsody et al. 1994), which
can be found in contaminated soils and wastewater. The most important param-
eters controlling heavy metal adsorption and their distribution between soil and
water are soil type, metal speciation, metal concentration, soil pH, solid/solution
mass ratio, and contact time (Cavallaro and McBride 1980; Stahl and James 1991;
Martinez and Motto 2000; Temminghoff et al. 1997; Kent et al. 2000). In general,
greater metal retention and lower solubility occurs at high soil pH (Teminghoff
et al. 1994, 1995; Semu et al. 1987; Barrow and Cox 1992; Yin et al. 1996). The
above-mentioned processes affect not only the adsorption (Bradl 2004) but also the

Biochemistry of Metals/Metalloids Toward Remediation Process 49



release of metals from contaminated soils and should be considered for remedi-
ation techniques.

Generally, only a fraction of soil metal is readily available (bioavailable) for
plant uptake since the bulk of soil metals is commonly found as insoluble com-
pounds unavailable for transport into roots (Lasat 2002). Cations of heavy metals
are often bound to soil particles because of soil CEC. The CEC is a measure of the
soil’s capacity to exchange ions. The negative charges are supplied by clay and
organic matter of the soil. The binding affinity of cations reduces cation movement
in vascular plants. Thus, the higher the CEC of the soil, the greater the sorption and
immobilization of the metals.

Metal solubility and availability are dependent on soil characteristics and are
strongly influenced by soil pH, which is considered as the major factor influencing
the availability of elements in the soil for plant uptake. Plants absorb mineral
elements in ionic form in solution, the presence of these forms being strongly
influenced by matrix pH (Dzantor and Beauchamp 2002). A lower soil pH
increases the concentration of heavy metals in the solution by decreasing their
adsorption. In soil, the solution concentrations of metal contaminants tend to
increase with decreasing pH, mainly because of their displacement from
exchangeable sites on solid surfaces by increasing the activity of hydrogen ions as
there is a decrease in pH. This can increase the availability of the contaminant for
plant uptake, but can also result in concentrations of elements at levels that are
toxic to the plant. Many metal cations like Cd, Cu, Hg, Pb, and Zn are reported to
be more soluble and available in the soil solution at low pH (below 5.5) (Blaylock
and Huang 2000). The increased availability of metals at low pH has led phy-
toextraction researchers to study the incorporation of acidifiers (NH4+ containing
fertilizers, organic and inorganic acids, and elemental S) into metal contaminated
soils to improve the success of phytoextraction. However, in spite of the promise
of some acidifying agents, little research has been carried out on this subject,
which needs further investigation.

The organic content of the soil also has a strong bearing on the extent of
phytoextraction of heavy metals. The addition of peat and manure is reported to
increase Cu, Zn, and Ni accumulation in wheat (Narwal and Singh 1998). Peat and
manure are heterogeneous substances that can concurrently exert mobilizing and
stabilizing effects (Schmidt 2003). Acid peat reduces soil pH, which increases
concentration of soluble metals in the soil. It also increases the CEC of soils,
provides sorption sites, reduces metal mobility, and promotes higher binding
affinity (Schmidt 2003).

The oxidation state of a metal contaminant also determines its solubility and
relative availability for uptake by plant systems. In general, the oxidized forms of
most common metal contaminants are less soluble and consequently less available
for plant uptake, chromium being the exception. Synthetic chelating agents have
been used to increase the uptake and translocation of metals, affording a high
removal rate (Lasat 2000). Synthetic chelating agents such as EDTA can effec-
tively increase the solubility of metal contaminants in soils (Ebbs et al. 1998).
However, the use of synthetic chelating agents often leads to poor biodegradability
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and decreased plant growth and biomass production (Grcman et al. 2001; Blaylock
et al. 1997). There are also some concerns on the mobility of chelated metals by
leaching from polluted soil (Grcman et al. 2001). Recently, the use of natural low
molecular weight organic acids (NLMWOA) is emerging as an alternative to
synthetic chelating agents for the remediation of heavy metals. It is well known
that exudation of NLMWOA by roots plays a significant role in heavy metal
solubility (Krishnamurti et al. 1998; Nigam et al. 2001) and increased root growth
(Uren and Reisenamer 1998). Some studies have shown that the application of
NLMWOA has positive effects on the phytoextraction of heavy metals from soil
(Krishnamurti et al. 1998; Nigam et al. 2001). However, higher concentrations of
NLMWOA lead to decreased biomass, while lower concentrations of NLMWOA
result in poor phytoextraction (Long et al. 2002). In addition, the effectiveness of
NLMWOA is dependent on the species of plant being used (Long et al. 2002).

Since plant-associated microbes possess the capability of plant growth pro-
motion and/or metal mobilization/immobilization, there has been increasing
interest in the possibility of manipulating plant–microbe interactions in metal
contaminated soils (Aafi et al. 2012; Azcón et al. 2010; Braud et al. 2009; Dimkpa
et al. 2008, 2009a, b; Hrynkiewicz et al. 2012; Kuffner et al. 2010; Luo et al. 2011,
2012; Maria et al. 2011; Mastretta et al. 2009; Orłowska et al. 2011; Sheng et al.
2008a, b). Microbial metabolites/processes promote plant growth and metal
mobilization/immobilization in vitro, but are unable to confer beneficial traits on
their host in metal contaminated soils. Although promising results have been
reported under laboratory conditions, showing that inoculation of beneficial
microbes, particularly plant growth promoting bacteria and/or mycorrhizae, may
stimulate heavy phytoextraction or phytostabilization, only a few studies have
demonstrated the effectiveness of the microbial assisted heavy metal phytoreme-
diation in field conditions (Brunetti et al. 2011; Juwarkar and Jambhulkar 2008;
Rajkumar et al. 2012; Wu et al. 2011; Yang et al. 2012).

3 Mechanism of Glutathione-Mediated Metal Stress
Tolerant in Plants

GSH plays a fundamental role in many cellular detoxification processes of
xenobiotics and heavy metals. GSH does this by prior activation and conjugation
with such compounds (Alfenito et al. 1998). The conjugation of GSH with such
molecules is governed by glutathione S transferase (Edwards and Dixon 2005).
The conjugates are subsequently transported to the vacuole and protects plant cell
from their harmful effects (Yazaki 2006). One protective role of GSH in plants
during heavy metal stress exposure is the quenching of ROS. Second, GSH acts as
a precursor for the synthesis of phytochelatins (PCs). PCs are a set of novel heavy
metal-binding peptides. These were first isolated from cell suspension cultures of a
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higher plant after exposure to Cd (Grill et al. 1985). Since then, PCs have been
found in some eukaryotes, including higher plants (Grill et al. 1988; Gekeler et al.
1989). PCs are synthesized inductively by exposure to not only Cd, but also by
other heavy metals such as Hg, Cu, Zn, Pb, and Ni. During the exposure of plants
to such metals, PCs are synthesized from GSH, catalyzed by phytochelatin syn-
thase (PCS). Thereafter, numerous physiological studies have indicated their role
in heavy metal detoxification as well as in the maintenance of ionic homeostasis
(Zenk 1996; Hirata et al. 2005).

4 Metals Uptake by Plants

Comparative studies have revealed that the enhanced Zn uptake into T. caerulescens
and A. halleri roots, in comparison to congener non-hyperaccumulator species, can
be attributed to the constitutive overexpression of some genes belonging to the Zinc-
regulated transporter Iron-regulated transporter Proteins (ZIP) family, coding for
plasma membrane located cation transporters (Assuncão et al. 2001) (Fig. 2).
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In non-hyperaccumulating plants, the expression of these ZIP genes (ZTN1 and
ZTN2 in T. caerulescens and ZIP 6 and ZIP 9 in A. Halleri) is Zn-regulated (Ass-
uncão et al. 2010), occurring at detectable levels only under Zn deficiency, while
hyperaccumulators is irrespective of Zn supply still persisting at high Zn availability
(Assuncão et al. 2001; Weber et al. 2004).

The electrochemical potential gradient of the plasma membrane in the root cells
of plants drives Cd and other cations into the root cells (Blaylock and Huang 2000;
Huang et al. 1992; Wang et al. 1994). However, external factors such as Fe
concentration can reduce the uptake of Cd. For instance, in Hordeum vulgare
(barley), Fe concentrations of 0–10 M reduced the Cd uptake (Sharma et al. 2004a,
b). In Thlaspi caerulescens Ganges ecotype, Fe deficiency upregulates the expres-
sion of genes encoding for Fe(II) uptake, which promotes the uptake of Cd (Lombi
et al. 2002). Also, in Arabidopsis halleri the transfer of Cd from the growing medium
to the root xylem is partially shared with Zn and/or Fe transport (Ueno et al. 2008).
In maize plants (Zea mays) the exposure to Cd enhances the release of the phytos-
iderophore 2-deoxymugineic acid from the roots under Fe deficiency conditions,
which chelates Cd. This weak complex enables the uptake of Cd and Fe. On the other
hand, it seems that in Lactuca sativa, an Mn-enriched medium promotes the uptake
of Cd, 64 % of which is accumulated in the cell walls and potentially translocated to
the consumers (Ramos et al. 2002).

The decreasing uptake of Cd by roots, supplied with increasing Zn concen-
tration, found in the Cd/Zn hyperaccumulator A. halleri and in most ecotypes of
T. caerulescens, clearly demonstrates that Cd influx is largely due to Zn trans-
porters, with a strong preference for Zn over Cd ((Zhao et al. 2002). Surprisingly,
in plants of the Ganges ecotype of T. caerulescens, which exhibit an exceptionally
high ability to hyperaccumulate Cd in aerial tissues, Cd uptake is not inhibited by
Zn, thus suggesting the presence in root cells of a specific and efficient indepen-
dent Cd transport system (Lombi et al. 2001). The supposed existence of a
transporter specific to this metal, regarded as unessential, raises the question as to
whether Cd might play some physiological roles in that T. caerulescens accession.
In shoots of the Ganges plants a positive correlation between Cd concentration and
carbonic anhydrase activity has been found (Liu et al. 2007). The only physio-
logical function of this heavy metal had previously been noticed in the marine
diatom Thalassiosira weissflogii, owing to its finding in the active metal-binding
site of a peculiar Cd-containing carbonic anhydrase (Lane et al. 2005).

Chromium enters plants by reduction and/or complexation with root exudates,
such as organic acids, which increase the solubility and mobility of Cr through the
root xylem (Bluskov et al. 2005). Both Cr(VI) and Cr(III) enter into the root cells
by the symplast pathway, where Cr(VI) is reduced and accumulated in the cortex
(Shanker et al. 2005). Though Cr is poorly translocated to aerial parts, it is
mobilized and accumulated inside tissues depending on its chemical form (James
and Barlett 1983). Hexavalent Cr damages root membranes because it has high
oxidation power. In addition, it has been reported that Cr(VI) reduces the uptake of
the essential elements Fe, K, Mg, Mn, P, and Ca (Gardea-Torresdey et al. 2005).
Because of their similarity in ionic radius, Cr(III) replaces Fe(III) in heme proteins,
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decreasing their activity (Pandey and Sharma 2003). Zayed and Terry (2003)
reported that Cr enters to plants as Cr(III) by a passive mechanism, while Cr(VI)
uptake is inhibited by SO4

2- and Ca2+ ions. Kim et al. (2006) suggested that
Cr(VI) enters Nicotiana tabacum by sulfate or phosphate transport system, or by
an active mechanism, being retained in the vacuoles by the cell wall. At neutral
pH, Cr(VI) compounds are tetrahedral and are transported across cell membranes
through similar tetrahedral ion channels, while Cr(III) is octahedral and trans-
ported through diffusion across membranes (Cohen et al. 2006). Montes-Holguin
et al. (2006) reported that Convolvulus arvensis plants, treated with potassium
dichromate or chromium nitrate, had different percents of chromium compounds in
leaves, similar to chromium acetate, chromium phosphate, and chromium nitrate.
The highest percent of chromium nitrate-type compounds suggests, due to the high
solubility of chromium nitrate, that plants with high capability of chromium
accumulation can contribute Cr to the food chain as trivalent Cr.

As Pb is not an essential element, plants do not have channels for Pb uptake.
Instead, this element is bound to carboxylic groups of mucilage uronic acids on
root surfaces (Morel et al. 1986; Sharma and Dubey 2005), but it is still unknown
how this element goes into the root tissue. Although some plants species tolerate
Pb through complexation and inactivation (Allium cepa, H. vulgare, and Z. mays),
other species show toxicity (Brassica napus and Phaseolus vulgaris), because Pb
obstructs some metabolic pathways (Wierzbicka 1999).

Several studies have shown that most of the absorbed Pb remains in roots,
which makes the root the first barrier for the Pb translocation to the aboveground
plant parts (Blaylock and Huang 2000).

Specific transporters for Ni hyperaccumulation have not yet been recognized.
However, the preference of Zn over Ni by some Zn/Ni hyperaccumulators, sup-
plied with the same concentration of both heavy metals, strongly suggests that a Zn
transport system might also be employed for Ni entrance into roots (Assuncão
et al. 2008). Substantial evidence exists that As can enter plant roots as arsenate,
via transporters of the chemical analog phosphate (Meharg and Whitaker 2002)
(Fig. 2). In root cells of the As hyperaccumulator Pteris vittata, plasma mem-
branes have a higher density of phosphate/arsenate transporters than non-hyper-
accumulator P. tremula, probably due to constitutive gene overexpression (Caille
et al. 2005). Furthermore, the enhanced As uptake by the hyperaccumulating fern
depends on the higher affinity for arsenate by the phosphate/arsenate transport
systems (Poynton et al. 2004) as well as on the plant’s ability to increase as
bioavailability in the rhizosphere by reducing pH via root exudation of large
amounts of dissolved organic carbon (Gonzaga et al. 2009). The pH decrease, in
fact, enhances the water soluble As that can be taken up by the roots (Gonzaga
et al. 2009; Fitz and Wenzel 2002).

The chemical similarity between sulfate and selenate accounts for the root uptake
of Se in this form through high-affinity sulfate transporters (Fig. 2), whose activity is
regulated by the S status of the plant (Hirai et al. 2003). In Se hyperaccumulators,
such as Astragalus bisulcatus (Fabaceae) and Stanleya pinnata (Brassicaceae), the
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Se/S ratios in shoots are much higher than in non-hyperaccumulator related species.
This supports the idea of a role in this increased Se uptake of one or more sulfate
transporters, which may have acquired a Se-specificity, becoming independent of
the plant S status (Galeas et al. 2007).

5 Root-to-Shoot Translocation

Enhanced metal xylem loading, and translocation to the shoots, is a next key
physiological step in the metal hyperaccumulation trait that accounts for the
increased metal flow toward the shoot, where metals are detoxified and stored.

Different from non-hyperaccumulator plants, which retain in root cells most of
the heavy metal taken up from the soil, detoxifying them by chelation in the
cytoplasm or storing them into vacuoles, hyperaccumulators rapidly and efficiently
translocate these elements to the shoot via the xylem. This involves, of course, the
heavy metal availability for xylem loading, which derives from a low sequestration
into and a ready efflux out of the vacuoles, plausibly due to specific features of root
cell tonoplast (Lasat et al. 2000). Once in the xylem, metals are generally chelated
to organic acids such as histidine (Krämer et al. 1996), nicotianamine (NA), cit-
rate, and malate or oxalate (Senden et al. 1995), although also free Zn2+ has been
found in xylem sap of T. caerulescens (Salt et al. 1999) (Fig. 2). Histidine has
generally been reported as the ligand involved in the long distance root-to-shoot
transport of Ni through xylem, such as in the Ni hyperaccumulator Alyssum les-
biacum (Krämer et al. 1996), but probably also in T. caerulescens (Morel et al.
2009). Krämer et al. (1996) showed that exogenously applied Ni, to enhance the Ni
content of A. lesbiacum plants, increased free histidine levels, while external
application of histidine to non-accumulator A. montanum plants greatly enhanced
root elongation and plant biomass (Ni tolerance), and Ni influx through the xylem.
Citrate has been shown to be transported into the xylem by FRD3, a member of the
MATE family. This protein is essential for efficient iron translocation via vascular
tissues (Durrett et al. 2007). Citrate is probably also involved in Zn translocation as
FRD3 is much higher expressed in roots of T. caerulescens than those of
A. thaliana (van de Mortel et al. 2006). This could be a side effect though, of a
high Zn uptake compromising Fe uptake.

Fe and a few divalent metal ions like Zn, Ni, and Cu are also chelated and
transported in plants by NA (Ling et al. 1999; Pich et al. 2001; Takahashi et al.
2003). NA is synthesized by trimerization of S-adenosylmethionine by the enzyme
nicotianamine synthetase (NAS) (Shojima et al. 1990). All four NAS genes are
highly expressed in T. caerulescens compared to A. thaliana (van de Mortel et al.
2006), and often show a different pattern of expression, indicating their involve-
ment in the hyperaccumulation of Zn, Cd, and/or Ni. This could be direct or
indirect. In the chloronerva mutant of tomato, which is impaired in NA biosyn-
thesis (Ling et al. 1999), Fe, Zn, and Mn xylem transport are not, or hardly,
affected compared to wild type. Cu xylem transport, however, was strongly
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reduced and Cu accumulated in the roots (Pich and Scholz 1996). NA is also
important for Ni transport in T. caerulescens. Ouerdane et al. (2006) identified Ni–
NA complexes in Ni-exposed T. caerulescens plants. They did not quantify Ni–His
complexes, so it is not clear what the relative contributions of Ni–His and Ni–NA
are to Ni root-to-shoot translocation, but both appear to be important.

A large body of evidence indicates that fast and efficient root-to-shoot trans-
location of large amounts of heavy metals in hyperaccumulator plants relies on
enhanced xylem loading by a constitutive overexpression of genes coding for
transport systems common to non-hyperaccumulators. The P1B-type ATPases, a
class of proteins, also named Heavy Metal transporting ATPases (HMAs), are of
particular importance. They operate in heavy metal transport and play a role in
metal homeostasis and tolerance (Axelsen and Palmgren 1998). Genes encoding
bivalent cation transporters belonging to HMAs (among which HMA4) are
overexpressed in roots and shoots of Zn/Cd hyperaccumulators T. caerulescens
and A. halleri (Talke et al. 2006; Papoyan and Kochian 2004; Hanikenne et al.
2008). Moreover, the HMA4 expression is upregulated when these plants are
exposed to high levels of Cd and Zn, whereas it is downregulated in non-hyper-
accumulator relatives (Papoyan and Kochian 2004). The overexpression of HMA4
supports a role of the HMA4 protein (which belongs to the Zn/Co/Cd/Pb HMA
subclass and is localized at xylem parenchyma plasma membranes) in Cd and Zn
efflux from the root symplasm into the xylem vessels, necessary for shoot hy-
peraccumulation. In fact, the increased expression of HMA4 enhances the
expression of genes belonging to the ZIP family, implicated in heavy metal uptake.
This strongly suggests that the root-to-shoot translocation acts as a driving force of
the hyperaccumulation, by creating a permanent metal deficiency response in roots
(Hanikenne et al. 2008).

As(III) and/or biotransformed to less toxic organic compounds such as DMA,
MMA, or as inorganic As(III) complexed with thiol groups. For instance, Indian
mustard store As in roots complexed with thiolate ligands (Pickering et al. 2000).
In addition, the majority of plants are able to synthesize enough arsenate reductase,
which reduces most of the As(V) to As(III) (Dhankher et al. 2006). Lopez et al.
(2008) used X-ray absorption spectroscopy and liquid chromatography-mass
spectrometry to study the speciation of As in Honey mesquite (Prosopis species).
These researchers treated the plants with 50 mg As(V) L-1 but the analyses
showed both species (As(III) and As(V)) in roots; while As(III) was found to be
the predominant species in stems, demonstrating that mesquite reduced As(V) to
As(III). Moreover, when plants were exposed to As(III), a percentage of the As
was oxidized to As(V) in the soil matrix and was then absorbed by the roots.
Arsenic was mobilized within plant tissues in the soluble fraction and chelated
with cyclohexylenedinitrotetraacetic acid, nitrilo triacetic acid, or As-sulfur
complexes.

In wheat, Cd is stored in root cell vacuoles by phytochelatins that are presumed
to influence the symplastic radial Cd movement (Stolt et al. 2003; Cobbett 2000).
Concerning Cd transport inside plants, Diatloff et al. (2006) reported for the first
time that a low affinity cation transporter (LCT1), responsible for Ca transport in
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wheat, is also responsible for Cd transport in the yeast Pichia pastoris. It is likely
that this transporter is also involved in Cd transport in many plants. It has also been
determined that the gene ZntA, which in Arabidopsis is localized in the plasma
membrane, participates in the transport of Cd from the roots to the shoots (Lee
et al. 2003). Engineered crop plants bearing the ZntA gene would potentially be
capable of growing in Cd impacted lands without incurring the risk of transporting
Cd to the food chain. However, it seems that in Z. mays the entrance of Cd into the
root symplast is unregulated, but its translocation toward the shoots is controlled
and restricted to some extent by unknown factors (Perriguey et al. 2008). S. kali, a
potential Cd hyperaccumulator handles Cd through the production of low
molecular weight thiols (LMWT), mainly in roots and stems (de la Rosa et al.
2004). However, these same researchers have proposed that LMWT are at most
contributing to half of the total-Cd binding in leaves (de la Rosa et al. 2005). In
rice, the concentration of Cd in grains is governed somewhat by its uptake and
transport from roots to shoots, and to a greater extent, by the transport of Cd from
shoots to grain. In a study performed in China by Liu et al. (2007), it was found
that about 0.73 % of the total Cd taken up by six rice cultivars was transferred to
the grain. This represents an average of 1.02 mg kg-1, which is 100 times higher
than the concentration allowed by the European Union for Cd concentration in rice
grain (Olsson et al. 2005).

In the roots, most of the Pb is bound to ion exchangeable sites in the cell walls
and extracellular precipitation as phosphate and carbonate (Blaylock and Huang
2000; Sharma and Dubey 2005). The unbound Pb is moved through Ca channels,
accumulating near the endodermis (Huang and Cunningham 1996; Antosiewicz
2005). Previous experimental results suggest that at low concentration, the
Casparian strip of the endodermis is a partial barrier for Pb movement into the
central cylinder tissue (Seregin et al. 2004). Varga et al. (1997) found that, in roots
of wheat, Pb is fixed to the cell wall but it can be removed as a complex using
citric acid. However, Marmiroli et al. (2005) reported that in European walnut
(Juglans regia) Pb is retained in the lignocellulosic structure of roots. As described
by Cobbett (2000), Pb, like other toxic elements, is complexed by the cysteine-rich
low molecular weight polypeptides, widely known as phytochelatins. However, in
Sesbania drummondii, Pb is transported to stems and leaves in structures similar to
Pb-acetate, Pb-nitrate, and Pb-sulfide (Sharma et al. 2004a, b) (Fig. 2). In addition,
Lopez et al. (2007, 2009) have reported the formation of different Pb complexes in
stems and leaves of alfalfa.

6 Detoxification/Sequestration

Great efficiency in detoxification and sequestration is a key property of
hyperaccumulators which allows them to concentrate huge amounts of heavy
metals in aboveground organs without suffering any phytotoxic effect. This
exceptionally high heavy metal accumulation becomes even more astonishing
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bearing in mind that it principally occurs in leaves where photosynthesis, essential
for plant survival, is accomplished, and that the photosynthetic apparatus is a
major target for most of these contaminants. The preferential heavy metal
detoxification/sequestration does occur in locations, such as epidermis (Freeman
et al. 2006), trichomes (Kupper et al. 2000), and even cuticle (Robinson et al.
2003), where they do least damage to the photosynthetic machinery. In many
cases, heavy metals are also excluded from both subsidiary and guard cells of
stomata (Frey et al. 2000; Cosio et al. 2005).

This may preserve the functional stomatal cells from metal phytotoxic effects.
The detoxifying/sequestering mechanisms in aerial organs of hyperaccumulators
consist mainly in heavy metal complexation with ligands and/or in their removal
from metabolically active cytoplasm by moving them into inactive compartments,
mainly vacuoles and cell walls (Fig. 2). Comparative transcriptome analyses
between hyperaccumulator and related non-hyperaccumulator species have dem-
onstrated that also the sequestration trait relies, at least in part, on constitutive
overexpression of genes that, in this case, encode proteins operating in heavy metal
transfer across the tonoplast and/or plasma membrane and involved in excluding
them from cytoplasm. Cation Diffusion Facilitator (CDF) family members, also
named Metal Transporter Proteins (MTPs), which mediate bivalent cation efflux
from the cytosol, are important candidates. MTP1, a gene encoding a protein
localized at tonoplast, is highly overexpressed in leaves of Zn/Ni hyperaccumu-
lators (Kim et al. 2004; Gustin et al. 2009). It has been suggested that MTP1,
besides the role in Zn tolerance, may also play a role in enhancing Zn
accumulation.

The Zn transport into the vacuole, in fact, may initiate a systemic Zn deficiency
response that includes the enhancement of the heavy metal uptake and translo-
cation via the increased expression of ZIP transporters in hyperaccumulator plants
(Gustin et al. 2009). MTP members also mediate the Ni vacuolar storage in
T. goesingense shoots (Persant et al. 2001). Moreover, the finding that MTP1 is

localized at both vacuolar and plasma membrane suggests that it can also operate
in Zn and Ni efflux from cytoplasm to cell wall (Kim et al. 2004).

Small ligands, such as organic acids, have a major role as detoxifying factors.
Such ligands may be instrumental in preventing the persistence of heavy metals as
free ions in the cytoplasm and even more in enabling their entrapment in vacuoles
where the metal–organic acid chelates are primarily located. Citrate, for instance,
is the main ligand of Ni in leaves of T. goesingense (Kramer et al. 2000), while
citrate and acetate bind Cd in leaves of S. nigrum (Sun et al. 2006). Moreover,
most Zn in A. halleri and Cd in T. caerulescens are complexed with malate (Sarret
et al. 2002).

Leaf cell vacuoles are the sites of sequestration of excess essential and
non-essential metals (Vogeli-Lange and Wagner 1990). Küpper et al. (1999) found
that the highest concentration of leaf Zn and Cd was present in leaf epidermal
cells, which contained four times higher concentrations of these metals compared
to mesophyll cells. The epidermis may be preferred, since most epidermis cells
lack chloroplasts, which could be compromised by high metal concentrations.
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Milner and Kochian (2008) suggested the role of TcZNT1 in facilitating uptake of
Zn from leaf apoplast into bundle sheath and mesophyll cells in T. caerulescens.

Once metals have reached their target destinations, they need to be stored in
vacuoles. The main candidates for this function are members of the CDF protein
family. These proteins have also been established as conferring tolerance to var-
ious metals like Zn, Mn, Cd, Co, or Ni by sequestering metals in the vacuoles
(Montanini et al. 2007). In T. caerulescens, a CDF family member TcZTP1
(similar to AtMTP1/AtZAT) (van der Zaal et al. 1999; Desbrosses-Fonrouge et al.
2005) showed constitutively high expression and was suggested to play a role in
Zn tolerance (Assuncão et al. 2001). Overexpression of TcZTP1 enhances toler-
ance and accumulation of Zn and Cd in A. thaliana, accumulation of Zn, and
tolerance to Zn, Cd, and Ni in N. tabacum (Hassan and Aarts 2011).

Recently, Guimarães et al. (2009) reported that shoots and roots have different
roles in metal hyperaccumulation and hypertolerance in T. caerulescens. Reci-
procal grafting experiments using T. caerulescens and the non-hyperaccumulator
T. perfoliatum showed that in T. caerulescens, Zn hyperaccumulation is mainly
controlled by root processes, while shoot processes control the hypertolerance to
Zn. The authors advocated that shoot-governed hypertolerance would be driven
mainly by MTP1 (ZTP1) (Assuncão et al. 2001; Persant et al. 2001). This supports
the idea that tissue-specific expression of potential genes will be crucial in mim-
icking metal tolerance and hyperaccumulation traits in engineered high biomass
plants useful for phytoremediation. Furthermore, one can hypothesize that since
shoot tissues involved in tolerance do not seem to influence the hyperaccumulation
trait, there appears to be no feedback mechanism from shoots to roots for metals
that are loaded and stored in the shoot tissues. This suggests that hyperaccumu-
lators are disturbed in the feedback signal transduction pathway indicating to roots
that shoots are becoming overloaded with metals and that metal uptake needs to
cease. However, Hanikenne et al. (2008) postulated that, for A. halleri, strong
activity of HMA4 in fact depletes root cells from Zn, even at high Zn concen-
trations, which somehow leads them to continue Zn uptake at a high rate.

The heavy metal detoxification in hyperaccumulators, in contrast with tolerant
non-hyperaccumulator plants, does not rely on high molecular mass ligands, such
as phytochelatins (Schat et al. 2002; Raab et al. 2004), likely because of the
excessive sulfur amounts and the prohibitive metabolic cost that a massive syn-
thesis of this kind of chelators would require (Zaho et al. 2002).

7 Improvement for Enhanced Phytoextraction

The development of transgenic plants with increased metal uptake, accumulation,
and tolerance to toxicity is now being considered a promising alternative. Genetic
engineering is a technique that can be applied advantageously to the development
of ideal phytoremediation plants that combine high metal accumulating capacity
and high aboveground biomass yield (Kärenlampi et al. 2000).
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With the use of genetic engineering, it is feasible to manipulate a plant’s
capacity to tolerate, accumulate, and/or metabolize pollutants, and to create an
ideal plant for environmental cleanup (Bhargava et al. 2012). Many genes are
reported to be involved in metal uptake, translocation, sequestration, chemical
modification, and tolerance. The introduction and overexpression of the hyper-
accumulating genes into a non-hyperaccumulator plant could be a possible way to
enhance metal uptake, accumulation, tolerance, and detoxification process
(Clemens et al. 2002). The overexpression of genes encoding the rate-limiting
gene product is expected to lead a faster overall rate of the pathway and to more
efficient phytoremediation (Pilon-Smits and Pilon 2002).

Several reports on transgenic plants tolerant to the presence of toxic levels of
metals have appeared in recent years (Reisinger et al. 2008; Bhuiyan et al. 2011;
Balestrazzi et al. 2009; Haydon and Cobbett 2007; Nagata et al. 2006). In most of
these studies, the overexpression of genes encoding for the enzymes of phyto-
chelatin synthetase, ACC deaminase, S-metabolism, glutathione, Hg2+-reductase,
arsenate reductase, aldolase/aldehyde reductase, enzymes of histidine biosynthesis,
and metallothionein (MT)-genes have been effectively carried out (Shah and
Nongkynrih 2007). The bioengineering of transporter genes to manipulate the
transport of metal ions inside the cell has also been successfully exploited and a
combination of these genes in rapidly growing plant species has led to promising
results.

Modification or overexpression of the enzymes that are involved in the syn-
thesis of PCs is a promising approach to enhance heavy metal tolerance and
accumulation in plants and has been tried to genetically transform high biomass
plants into efficient phytoremediators (Zhu et al. 1999). Several attempts have been
made to increase the formation of PCs by overexpressing genes encoding enzymes
that could stimulate the synthesis of cysteine and glutathione.

8 Conclusions

The use of phytoremediation for site restoration or amelioration of polluted soils is
a promising technique for the near future. The discovery and elucidation of the
mechanism used by hyperaccumulators is of great interest to understand the role of
such plants in biorestoration. However, there is a need for testing different plants
under realistic field conditions to fully evaluate their usefulness for soil restoration.

On the other hand, the use of both synthetic and natural chelating agents,
microorganisms (siderophores) needs further research to improve the uptake
capacity of plants, leading to increased bioavailability of heavy metals, avoiding
leachates of soluble metals that could reach groundwater or non-polluted areas.
There is also a need to develop methods for biorecovery of heavy metals fixed in
the aerial parts of plants, in addition to the safe use of wood arising from trees used
for biorestoration. All in all, phytoremediation is a promising technique that needs
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both field and laboratory research to fulfill requisites necessaries for safe use in
restoring polluted environments.
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