
Chapter 38
Leaf Classification Methods Based
on SVM and SIFT

Yida Ye

Abstract In this research, Support Vector Machine (SVM) and Scale-Invariant
Feature Transform (SIFT) are used to identify plants. For each leaf image, the
algorithm localizes the keypoints and assigns orientations for each keypoint. Then
it matches the sample leaves with the comparison leaves to find out whether they
belong to the same category. After conducting edge detection and feature
extraction, the experimental result shows that the method for classification gives
average accuracy of approximately 99 % when it is tested on 12 descriptive
features.
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38.1 Introduction

Trees can be seen everywhere in our daily life, but seldom do we observe trees
carefully. Leaves vary a lot from shape to size and have some interesting speci-
alities such as phototropism [1]. In this paper some features of leaves are first
discussed and then several models to classify leaves and weigh leaves are built.
Finally, the strength and weakness of our methods and propose some improve-
ments are analyzed.
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38.2 Leaf Classification

38.2.1 Leaf Classification Based on SVM

38.2.1.1 Feature Extraction

Twelve commonly used digital morphological features, derived from five basic
features, are extracted so that a computer or smart phone can obtain feature values
quickly and automatically.

Basic Geometric Features

• Diameter: The diameter is defined as the longest distance between any two
points on the margin of the leaf. It is denoted as D.

• Physiological length: The distance between the two terminals of the main veins
of the leaf is defined as the physiological length. It is denoted as Lp.

• Physiological width: The maximum length of a line, which is orthogonal to the
main vein, is defined as the physiological width. It is denoted as Wp. Since the
coordinates of pixels are discrete, two lines are orthogonal if their degree is
90 ± 0.5�. The relationship between Physiological Length and Physiological
Width is shown in Fig. 38.1.

• Leaf area: The value of leaf area is easy to evaluate, just counting the number
of pixels of binary value 1 on smoothed leaf image. It is denoted as A.

• Leaf perimeter: Denoted as P, leaf perimeter is calculated by counting the
number of pixels consisting leaf margin.

Fig. 38.1 The relationship between Lp and Wp
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Digital Morphological Features

• Smooth factor: smooth factor is defined as the ratio between area of leaf image
smoothed by 5 9 5 rectangular averaging filter and the one smoothed by 2 9 2
rectangular averaging filter [2].

• Aspect ratio: the aspect ratio is defined as the ratio of physiological length Lp to
physiological width Wp, thus Lp/Wp.

• Form factor: This feature is used to describe the difference between a leaf and a
circle. It is defined as 4pA=P2, where A is the leaf area and P is the perimeter of
the leaf margin.

• Rectangularity: Rectangularity describes the similarity between a leaf and a
rectangle. It is defined as LpWp/A, where Lp is the physiological length, Wp is
the physiological width and A is the leaf area.

• Narrow factor: Narrow factor is defined as the ratio of the diameter D and
physiological length Lp, thus D/Lp.

• Perimeter ratio of diameter: Ratio of perimeter to diameter, representing the
ratio of leaf perimeter P and leaf diameter D, is calculated by P/D.

• Perimeter ratio of physiological length and physiological width: This feature
is defined as the ratio of leaf perimeter P and the sum of physiological length Lp
and physiological width Wp, thus P/(Lp ? Wp).

38.2.1.2 Support Vector Machine

The support vector machine is currently the most popular approach for supervised
learning.

SVM finds the OSH (optimum separation hyperplane) by maximizing the
margin between the classes [3]. The main concepts of SVM are to first transform
input data into a higher dimensional space by means of a kernel function and then
construct an OSH between the two classes in the transformed space. Those data
vectors nearest to the constructed line in the transformed space are called the
support vectors. The SVM estimates a function for classifying data into two
classes. Using a nonlinear transformation that depends on a regularization
parameter, the input vectors are placed into a high-dimensional feature space,
where a linear separation is employed.

To construct a nonlinear support vector classifier, the inner product (x,y) is
replaced by a kernel function K(x,y)

f ðxÞ ¼ sgn
Xl

i¼1

aiyiKðxixÞ þ b

 !

where f(x) determines the membership of x. In this study, the normal subjects were
labeled as -1 and other subjects as +1. The SVM has two layers. During the
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learning process, the first layer selects the basis K(xi, x), i = 1,2, …, N from the
given set of kernels, while the second layer constructs a linear function in the
space. This is equivalent to finding the optimal hyper plane in the corresponding
feature space [4, 5]. The SVM algorithm can construct a variety of learning
machines using different kernel functions. Based on 100 trials, the result of
classification is approximately 99 % accuracy (Fig. 38.2).

38.2.2 Leaf Classification Based on SIFT

38.2.2.1 SIFT Algorithm

Scale-Space Extrema Detection

This is the stage where the interest points, which are called keypoints in the SIFT
framework, are detected. For this, the image is convolved with Gaussian filters at
different scales, and then the difference of successive Gaussian-blurred images are
taken. Keypoints are then taken as maxima/minima of the Difference of Gaussians
(DoG) that occur at multiple scales [6]. Specifically, a DoG image D(x, y, r) is
given by

Dðx; y; rÞ ¼ Lðx; y; kirÞ � Lðx; y; kjrÞ

where L(x, y, r) is the convolution of the original image I(x, y) with the Gaussian
blur G(x, y, r) at scale kr, i.e.,

Lðx; y; krÞ ¼ Gðx; y; krÞ � Iðx; yÞ

Keypoint Localization

Scale-space extrema detection produces too many keypoint candidates, some of
which are unstable. The next step in the algorithm is to perform a detailed fit to the
nearby data for accurate location, scale, and ratio of principal curvatures. This

Fig. 38.2 Leaf class and sample leaf
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information allows points to be rejected that have low contrast (and are therefore
sensitive to noise) or are poorly localized along an edge.

Interpolation of Nearby Data for Accurate Position

First, for each candidate keypoint, interpolation of nearby data is used to accu-
rately determine its position. The initial approach was to just locate each keypoint
at the location and scale of the candidate keypoint. The new approach calculates
the interpolated location of the extremum, which substantially improves matching
and stability. The interpolation is done using the quadratic Taylor expansion of the
Difference-of-Gaussian scale-space function, D(x, y, r) with the candidate key-
point as the origin. This Taylor expansion [6] is given by:

DðxÞ ¼ Dþ oDT

ox
xþ 1

2
xT o2D

ox2
x

where D and its derivatives are evaluated at the candidate keypoint and x = (x, y, r)
is the offset from this point. The location of the extremum, x̂, is determined by
taking the derivative of this function with respect to x and setting it to zero. If the
offset x̂ is larger than 0.5 in any dimension, then that’s an indication that the
extremum lies closer to another candidate keypoint.

Eliminating Edge Responses

For poorly defined peaks in the DoG function, the principal curvature across the
edge would be much larger than the principal curvature along it. Finding these
principal curvatures amounts to solving for the eigenvalues of the second-order
Hessian matrix, H:

H ¼ Dxx Dxy

Dxy Dyy

� �

The eigenvalues of H are proportional to the principal curvatures of D. It turns out
that the ratio of the two eigenvalues, say a is the larger one, and b the smaller one,
with ratio r = a/b, is sufficient for SIFT’s purposes. The trace of H, i.e.,
Dxx ? Dyy, gives us the sum of the two eigenvalues, while its determinant, i.e.,
DxxDyy � D2

xy, yields the product. The ratio can be shown to be equal to, which
depends only on the ratio of the eigenvalues rather than their individual values.

Orientation Assignment

In this step, each keypoint is assigned one or more orientations based on local
image gradient directions. This is key step in achieving invariance to rotation as
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the keypoint descriptor can be represented relative to this orientation and therefore
achieve invariance to image rotation. The Gaussian-smoothed image L(x, y, r) at
the keypoint’s scale r is taken so that all computations are performed in a scale-
invariant manner. For an image sample L(x, y) at scale r, the gradient magnitude
m(x, y), and orientation h(x, y), are precomputed using pixel differences:

mðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLðxþ 1; yÞ � Lðx� 1; yÞÞ2 þ ðLðx; yþ 1Þ � Lðx; y� 1ÞÞ2

q

hðx; yÞ ¼ tan�1 Lðx; yþ 1Þ � Lðx; y� 1Þ
Lðxþ 1; y� Lðx� 1; yÞ

� �

Keypoint Descriptor

It is important to compute a descriptor vector for each keypoint such that the
descriptor is highly distinctive and partially invariant to the remaining variations
such as illumination, 3D viewpoint, etc. First a set of orientation histograms are
created on 4 9 4 pixel neighborhoods with eight bins each. These histograms are
computed from magnitude and orientation values of samples in a 16 9 16 region
around the keypoint such that each histogram contains samples from a 4 9 4
subregion of the original neighborhood region. The magnitudes are further
weighted by a Gaussian function with r equal to one half the width of the
descriptor window. The descriptor then becomes a vector of all the values of these
histograms. Since there are 4 9 4 = 16 histograms each with eight bins the vector
has 128 elements. This vector is then normalized to unit length in order to enhance
invariance to affine changes in illumination. To reduce the effects of non-linear
illumination a threshold of 0.2 is applied and the vector is again normalized
(Figs. 38.3, 38.4).

It can clearly draw from both graphs that the heads and tails are matched
perfectly and several key points on the margin are also matched [7]. It is difficult to
get the optimized match in the absence of a large database on the a leaf shape.
However, the effectivity of the SIFT algorithm in leaf classification is quite
obvious and can be applied better [8] (Figs. 38.5, 38.6).

Fig. 38.3 72 key points
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38.3 Summary

Two models are built to automatically classify leaves. Model one is based on SVM
and edge detection is conducted to get a compact and abstract representation of a
leaf. Then six typical descriptive features of leaves are applied to train SVM and
the accuracy of classification is approximately 99 %. Model two is based on SIFT.
The algorithm localizes the keypoints and assigns orientations for each keypoint.
The leaves’ heads and tails and keypoints along the margins are perfectly matched.
The classification will be more accurate if based on a larger comparison group.

Fig. 38.4 85 key points

Fig. 38.5 11 matches

Fig. 38.6 20 matches
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