Chapter 13

Local Reconstruction and Dissimilarity
Preserving Semi-Supervised
Dimensionality Reduction

Feng Li, Zhengqun Wang, Zhongxia Zhou and Wei Xue

Abstract In this paper, a semi-supervised dimensionality reduction algorithm for
feature extraction, named LRDPSSDR, is proposed by combining local recon-
struction with dissimilarity preserving. It focuses on local and global structure
based on labeled and unlabeled samples in learning process. It sets the edge
weights of adjacency graph by minimizing the local reconstruction error and
preserves local geometric structure of samples. Besides, the dissimilarity between
samples is represented by maximizing global scatter matrix so that the global
manifold structure can be preserved well. Comprehensive comparison and
extensive experiments demonstrate the effectiveness of LRDPSSDR.
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13.1 Introduction

Face recognition has become one of the most challenging problems in the appli-
cation of pattern recognition. Face image is a high dimension vector, so numerous
dimension reduction techniques have been proposed over the past few decades [1],
in Principal component analysis (PCA) [2] and Linear discriminant analysis
(LDA) [3] are widely used. Both PCA and LDA assume feature space lie on a
linearly embedded manifold and aim at preserving global structure. However,
many researches have shown that the face images possibly reside on a nonlinear
submanifold [4]. When using PCA and LDA for dimensionality reduction, they
will fail to discover the intrinsic dimension of image space.
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By contrast, manifold learning considers the local information of samples,
aiming to directly discover the globally nonlinear structure. The most important
manifold learning algorithms include isometric feature mapping (Isomap) [5],
locally linear embedding (LLE) [6], and Laplacian eigenmap (LE) [7]. Though
these methods are appropriate for representation of nonlinear structure, they are
implemented restrictedly on training samples and can not show explicit maps on
new testing samples in recognition. Therefore, locality preserving projection (LPP)
[8] is proposed, but it only can focus on the local information of training samples.
To remedy this deficiency, unsupervised discriminant analysis (UDP) [9] is
introduced, which can consider the local structure as well as global structure of
samples. However, it only uses unlabeled data. Therefore, semi-supervised
methods to deal with insufficient labeled data could be learned. It can be directly
applied in the whole input space, while the out-of-sample problem can be effec-
tively solved.

This paper simultaneously investigates two issues. First, How to extract the
effective discriminant feature by using labeled samples? Second, How to minimize
local scatter matrix and maximize global scatter matrix simultaneity, to preserve
the local and global structure information?

The rest of this paper is organized as follows. In Sect. 13.2, we give the details
of LRDPSSDR. The experimental results based on two commonly used face
databases demonstrate the effectiveness and robustness of proposed method in
Sect. 13.3. Finally, the conclusions are summarized in Sect. 13.4.

13.2 Locally Reconstruction and Dissimilarity Preserving
Semi-Supervised Dimensionality Reduction

13.2.1 Local Reconstruction Error

Suppose X = [x1, X2, .-, X1, X141, - - -, X1+ 4] De & set of training samples that include
[ labeled samples and u unlabeled samples, belonging to c classes. For each
sample, we find its k nearest neighbors Ny (x;) from X, where N (x;) is the index set
of the k nearest neighbors of x;. To preserve local structure, design following
objective function:

[+u ?
Ja)=> = Y Cyx (13.1)
i=1 j:x,» c Nk<X,‘)
where ||e|| denotes the Euclidean norm, with two constraints:

) XNCi=1i=1,2,..,l+u
J

(2) C;j =0, if x; does not belong to the set of k nearest neighbors of x;.
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Given samples in low-dimensional linear embedding space as follows:
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(13.2)

where 7r(e)is the notation of trace. Local scatter matrix is defined as follows:
S, = XMX” (13.3)

where M = (I — C)" (1 — C), Lis an (I + u) x (I + u) identity matrix, and matrix
C is calculated by LLE [6] algorithm.

With above two constraints, the local reconstruction weight is invariant to
rotation, rescaling, and translation. So, it can preserve local structure of samples.

13.2.2 Dissimilarity Preserving

Let X = [xy,%2, ..., X, X141, -, X/ ,] be a matrix and each column is a training
samples, belonging to c classes. Represent any x; in term of its projection sequence
G(x;), coefficient vector W(x;, G(x;)), and residue R(x;, G(x;)). Suppose G(x;) =
[gi1, &0, - - -, 8ia] are the eigenvectors corresponding to the first d largest eigen-
values in PCA. Thus, each image can be represented as a linear combination:

Xi = wig&i + wngi2 + - Wiagid (13.4)

where %; denotes the approximation of x;, and the residue R(x;, G(x;)) is given by

R(x;, G(x;)) = xi — (Wi gt + win&i2 + - - - Wia&ia) = Xi — szjgij (13.5)
j=1
When x; is projected on projection sequence G(x;) of x,, noting the corre-
sponding coefficient vector W(x1, G(x;)) and residue R(x;, G(x,)). Based on above
factor, we can design the dissimilarity measure as follows:

@(x1,%2) = \/EDR(x1,x2) + (1 — E)Dw(x1,x2) (13.6)
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where £ € [0,1] indicates the relative importance of the residue and the corre-
sponding coefficients, when both are projected onto the projection sequence G(x7)
of x,, we have

Di(x1,x2) = [|R(x1, G(x2)) — R(x2, G(x2)) || (13.7)

where Dg(xy,x;) is the difference between the residues of x; and x,, and
Dy (x1,x,) compares their corresponding coefficients, which is represented as:

Dy (x1,%2) = [W(x1,G(x2)) = W(x:, G(x)) | (13.8)

Define the objective function of dissimilarity preserving as follows:

i H; (13.9)

where Hj; is the dissimilarity weight matrix, and Hy; = ¢(x;, x;).

7 M+
— N

1 IHu lHu l+u I4u IHu IHu -
T
522 H; ZZ Ty, — W) H,,_W ZZ —x) H;W
i=1 j= i = i=1 j=
I+u IHu I+u l4u I+u lHu
=wl- (ZZx,x H; + ZZx/x H; — ZEZx,x Hu)
i=1 j i=1 j=1 i=l j=
=W’ (XDX" — XHX")W = W SyW
(13.10)
Further, the global scatter matrix is defined as follows:
Sy = XLX" (13.11)

where > Hj; is a diagonal matrix, L = D — H is a Laplacian matrix.

As a result, by maximizing the global scatter matrix can make the nearby
samples of the same class become as compact as possible and simultaneously the
nearby samples belonging to different classes become as far as possible.

13.2.3 The Algorithm of LRDPSSDR

According to above detail analysis, we have two scatter matrices based on labeled
data and unlabeled data. Associated them with Fish criterion, a semi-supervised
learning method will be derived. Design the objective function as follows:

W(S, + pSy)W W' (S, + pXLX")W
T e o uo — argmax —x T
WIS +aS)W % WI(S, + o«XMX")W

W, = arg max (13.12)
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where o, > 0 are the regularization parameters. The optimization problem
solution of formula (13.12) could obtain by following eigen-equation:

(Sp + PXLX)W = A(S; + oXMX")W (13.13)

Based on above discussion, the proposed algorithm LRDPSSDR is briefly stated as
below:

Step 1: For the given training data set, use PCA for dimensionality reduction.
Step 2: Calculate within-class scatter matrix S, and total scatter matrix S, for
labeled data.

Step 3: Construct local scatter matrix Spusing formula (13.3) and global scatter
matrix Sy using formula (13.11).

Step 4: The optimal transformation matrix W is formed by the d eigenvectors
corresponding to the first d largest non-zero eigen-value of formula (13.13).

Step 5: Project the training data set onto the optimal projection vectors obtained in
Step 4, and then use the nearest neighbor classifiers for classification.

13.3 Experiments

In this section, we investigate the performance of our algorithm for face recog-
nition and compare it with PCA, LDA, LPP, and UDP. The KNN classifier is used.
The regularization parameters are set as o = f = 0.1, £ = 0.5.

13.3.1 Experiment on the Yale Dataset

The database consists of 165 face images of 15 individuals. These images are
taken under different lighting condition and different facial expression. All images
are gray scale and normalized to a resolution of 100 x 80 pixels. In the experi-
ment, we select the first five images from each individual to form the training
samples and the remaining six images as testing samples. Some typical images are
shown in Fig. 13.1.

Figure 13.2 show that the recognition rate of LRDPSSDR method has signifi-
cantly improvement compared to other four algorithms with the increase in the
number of projection axis dimension. The projection axis dimension from 20 to 75
stages, the recognition rate tends stable. It can achieve a maximum value when
projection axis dimension reach 55.

Table 13.1 gives the maximum recognition rate of five algorithms. It is not
difficult to see that our method is the best according to Table 13.1 and Fig. 13.2.
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Fig. 13.1 Sample images for one individual in the YALE database
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Table 13.1 Comparison on top accuracy
Algorithms PCA LDA LPP UDP LRDPSSDR
Recognition rate (%) 92.22 83.33 85.86 92.22 95.56
Dimension 35 75 40 70 55
Table 13.2 Comparison on top accuracy
Algorithms PCA LDA LPP UDP LRDPSSDR
Recognition rate (%) 62.98 58.81 61.19 64.52 70.71
Dimension 110 140 160 160 140
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Fig. 13.3 Part of the sample images for one individual in the AR database

13.3.2 Experiment on the AR Dataset

The database consists of 3120 face images 120 individuals. These face images are
captured under varying facial expressions, lighting conditions and occlusions. The
size of every face image is gray scale and normalized to a resolution of 50 x 40
pixels. In the experiment, we select the first seven images from each individual to
form the training samples and next seven images (most are covered) as testing
samples. Some typical images are shown in Fig. 13.3.

From Fig. 13.4, we can see first that the proposed LRDPSSDR method out-
performs PCA, LDA, LPP and UDP, and second that our method is more robust in
different lighting conditions and various facial expressions. With the projection
axis dimension increase, the recognition rate raises from 30 to 140 stages. It can
achieve a maximum value when projection axis dimension is 140.

Table 13.2 shows the maximum recognition rate of five algorithms. It is
obvious that our method is better than other methods, so the effectiveness and
robustness of LRDPSSDR is further verified.
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13.4 Conclusion

In this paper, we present a semi-supervised learning algorithm LRDPSSDR for
dimension reduction, which can make use of both labeled and unlabeled data. The
algorithm is realized based on both local reconstruction error and dissimilarity
preserving, which not only preserves the intraclass compactness and the interclass
separability, but also describes local and global structure of samples.
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