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Covariance Intersection Fusion Robust
Steady-State Kalman Filter for Two-
Sensor Systems with Time-Delayed
Measurements

Wenjuan Qi, Peng Zhang, Wenqing Feng and Zili Deng

Abstract For two-sensor systems with time-delayed measurements and uncertain
noise variances, this paper presents a measurements transformation approach
which transforms the systems with time-delayed measurements into the equivalent
systems without measurement delays. Further the local robust steady-state Kalman
filter with conservative upper bounds of unknown noise variances is presented, and
then the covariance intersection (CI) fusion robust steady-state Kalman filter is
also presented. The robustness of these filters is proved based on the Lyapunov
equation. It is proved that the robust accuracy of the CI fuser is higher than that of
each local robust Kalman filter. A Monte-Carlo simulation example shows its
correctness and effectiveness.

Keywords Multi-sensor information fusion � Covariance intersection fusion �
Robust Kalman filter � Time-delayed measurements � Uncertain noise variances

24.1 Introduction

The multi-sensor information fusion has received great attentions and has been
widely applied in many high-technology fields, such as tracking, signal proceed-
ing, GPS position, robotics and so on. Usually, the standard systems without time-
delayed observations are considered, but in many fields, such as the communi-
cation and control engineering, the systems with observations delays exist [1, 2].

The optimal Kalman filtering needs to exactly know system model and noise
variances, the robust Kalman filters are designed to solve the filtering problems for
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uncertain systems. In recent years, several results have been derived for any
admissible uncertainty of model parameters [3, 4] based on the Riccati equations.

Recently, the covariance intersection fusion (CI) method has been presented by
Julier and Uhlman [5], which can handle the systems with unknown variances and
cross-covariances.

In this paper, the two-sensor systems with uncertain noise variances and time-
delayed measurements are considered. The local steady-state robust Kalman filter
is presented and the covariance intersection (CI) fusion robust Kalman filter is
proposed by the convex combination of the local robust Kalman filters. The
robustness of the filters is proved based on the Lyapunov equation.

24.2 Measurement Transformation

Consider the two-sensor uncertain system with time-delayed measurements

x t þ 1ð Þ ¼ Ux tð Þ þ Cw tð Þ ð24:1Þ

zi tð Þ ¼ Hix t � kið Þ þ ei tð Þ; i ¼ 1; 2; ð24:2Þ

where t is the discrete time, x tð Þ 2 Rn is the state, zi tð Þ 2 Rmi is the measurement of
the ith subsystem, ki� 0 is the time-delay, w tð Þ 2 Rr; ei tð Þ 2 Rmi are uncorrelated
white noises with zeros mean and unknown actual variances �Q and �Ri, respec-
tively. U, C and Hi are known constant matrices. Assume that Q and Ri are
conservative upper bounds of �Q and �Ri, respectively, i.e.

�Q�Q; �Ri�Ri; i ¼ 1; 2 ð24:3Þ

where A�B means that B� A� 0 is a semi-positive definite matrix. Assume that
each subsystem is completely observable and completely controllable.

Introducing the new measurements yi tð Þ and the measurement noises vi tð Þ

yi tð Þ ¼ zi t þ kið Þ; vi tð Þ ¼ ei t þ kið Þ; i ¼ 1; 2 ð24:4Þ

From (24.2), we have the observation equations without time-delayed

yi tð Þ ¼ Hix tð Þ þ vi tð Þ; i ¼ 1; 2 ð24:5Þ

where vi tð Þ also has the variances �Ri. From (24.4), we have

x̂z
i tjtð Þ ¼ x̂i tjt � kið Þ; i ¼ 1; 2 ð24:6Þ

where x̂z
i tjtð Þ are the estimates of x tð Þ based on zi tð Þ; zi t � 1ð Þ; � � �ð Þ x̂i tjt � kið Þ are

the estimates of x tð Þ based on yi t � kið Þ; yi t � ki � 1ð Þ; � � �ð Þ.
Define the local steady-state cross-covariance as

Pz
ij ¼ E ~xz

i tjtð Þ~xzT
j tjtð Þ

h i
;Pij ki; kj

� �
¼ E ~xi tjt � kið Þ~xT

j tjt � kj

� �h i
ð24:7Þ
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where ~xz
i tjtð Þ ¼ x tð Þ � x̂z

i tjtð Þ, ~xi tjt � kið Þ ¼ x tð Þ � x̂i tjt � kið Þ, from (24.6), we can
get Pz

ij ¼ Pij ki; kj

� �
. When i ¼ j, defining Pz

i ¼ Pz
ii, Pi kið Þ ¼ Pii ki; kið Þ, we have

Pz
i ¼ Pi kið Þ.

The problem is to find the local robust steady-state Kalman filter xz
i tjtð Þ and the

CI fused robust steady-state Kalman filter xz
CI tjtð Þ.

24.3 Local Robust Steady-State Kalman Filter

For two-sensor system (24.1) and (24.5), the local conservative steady-state Kal-
man one-step predictor with conservative variances Q and Ri are given by Sun and
Deng [6], Kailath et al. [7]

x̂i t þ 1jtð Þ ¼ wpix̂i tjt � 1ð Þ þ Kpiyi tð Þ ð24:8Þ

wpi ¼ U� KpiHi;Kpi ¼ URiH
T
i HiRiH

T
i þ Ri

� ��1 ð24:9Þ

where Wpi is a stable matrix and conservative one-step predictor error variance Ri

satisfies the steady-state Riccati equation

Ri ¼ U Ri � RiH
T
i HiRiH

T
i þ Ri

� ��1
HiRi

h i
UT þ CQCT ð24:10Þ

From (24.8), it can be rewritten as the Layapunov equation

Ri ¼ wpiRiw
T
pi þ CQCT þ KpiRiK

T
pi ð24:11Þ

Defining the actual steady-state one-step predictor error variance as

�Ri ¼ E ~xi t þ 1jtð Þ~xT
i t þ 1jtð Þ

� �
; ~xi t þ 1jtð Þ ¼ x t þ 1ð Þ � x̂i t þ 1jtð Þ ð24:12Þ

Theorem 1 The Kalman one-step predictor (24.8)–(24.11) is robust for all
admissible actual variances �Q and �Ri satisfying �Q�Q; �Ri�Ri, in the sense that

�Ri�Ri ð24:13Þ

Proof From (24.1), we have x̂i t þ 1jtð Þ ¼ Ux̂i tjtð Þ, applying (24.12) yields
~xi t þ 1jtð Þ ¼ U~xi tjtð Þ þ Cw tð Þ, where ~xi tjtð Þ ¼ In � KfiH

� �
~xi tjt � 1ð Þ � Kfivi tð Þ

and Kfi ¼ RiHT
i HiRiHT

i þ Ri

� ��1
, we have the actual prediction error formula

~xi t þ 1jtð Þ ¼ wpi~xi tjt � 1ð Þ þ Cw tð Þ � Kpivi tð Þ ð24:14Þ

According to (24.12), applying (24.14) yields the actual steady-state one-step
predictor error variance as

�Ri ¼ wpi
�Riw

T
pi þ C�QCT þ Kpi�RiK

T
pi ð24:15Þ

24 Covariance Intersection Fusion Robust 211



Defining DRi ¼ Ri � �Ri, subtracting (24.15) from (24.11) yields the Lyapunov
equation

DRi ¼ wpiDRiw
T
pi þ C Q� �Qð ÞCT þ Kpi Ri � �Rið ÞKT

pi ð24:16Þ

Applying (24.3), noting that wpi is a stable matrix, and applying the property of the
Lyapunov equation [1] yield that DRi� 0, i.e. �Ri�Ri: h

For (24.1) and (24.5), the steady-state multi-step Kalman predictors are given
by [6, 7]

x̂i t þ kijtð Þ ¼ Uki�1x̂i t þ 1jtð Þ; ki� 2 ð24:17Þ

The local steady-state multi-step predictor error variances are given as

Pi kið Þ ¼ Uki�1Ri Uki�1
� �Tþ

Xki�2

j¼0

U jCQCT U j
� �T

; ki� 2 ð24:18Þ

Defining the actual steady-state multi-step predictor error variance as

�Pi kið Þ ¼ E ~xi t þ kijtð Þ~xT
i t þ kijtð Þ

� �
; ~xi t þ kijtð Þ ¼ x t þ kið Þ � x̂i t þ kijtð Þ ð24:19Þ

Theorem 2 The conservative Kalman multi-step predictor (24.17)–(24.18) is
robust for all admissible actual variances �Q and �Ri satisfying �Q�Q; �Ri�Ri. i.e.

�Pi kið Þ�Pi kið Þ ð24:20Þ

Proof Iterating N � 1 steps for (24.1), we obtain the non-recursive formula as

x t þ kið Þ ¼ Uki�1x t þ 1ð Þ þ
Xki�2

j¼0

U jCw t � 1ð Þ ð24:21Þ

Substituting (24.17) and (24.21) into ~xi t þ kijtð Þ ¼ x t þ kið Þ � x̂i t þ kijtð Þ, we have

~xi t þ kijtð Þ ¼ Uki�1~x t þ 1jtð Þ þ
Xki�2

j¼0

U jCw t � 1ð Þ ð24:22Þ

Substituting (24.22) into (24.19) yields the actual steady-state filtering error var-
iance as

�Pi kið Þ ¼ Uki�1 �Ri Uki�1
� �Tþ

Xki�2

j¼0

U jC�QCT U j
� �T

; ki� 2 ð24:23Þ

Defining DPi kið Þ ¼ Pi kið Þ � �Pi kið Þ, subtracting (24.23) from (24.18) yields

DPi kið Þ ¼ Uki�1 Ri � �Rið Þ Uki�1
� �Tþ

Xki�2

j¼0

U jC Q� �Qð ÞCT U j
� �T ð24:24Þ

Applying (24.3) and (24.13) yields DPi kið Þ� 0, (24.20) holds. h
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24.4 CI Fusion Robust Steady-State Kalman Filter

For two-sensor system (24.1) and (24.2), applying the CI fused algorithm [5], the
CI fusion robust steady-state Kalman filters are given as

x̂z
CI tjtð Þ ¼ Pz

CI x Pz
1

� ��1
x̂z

1 tjtð Þ þ 1� xð Þ Pz
2

� ��1
x̂z

2 tjtð Þ
� �

ð24:25Þ

Pz
CI ¼ x Pz

1

� ��1þ 1� xð Þ Pz
1

� ��1
h i�1

ð24:26Þ

Applying (24.25), (24.26), (24.6) and (24.7) yields

x̂z
CI tjtð Þ ¼ Pz

CI xP�1
1 k1ð Þx̂1 tjt � k1ð Þ þ 1� xð ÞP�1

2 k2ð Þx̂2 tjt � k2ð Þ
� �

ð24:27Þ

Pz
CI ¼ xP�1

1 k1ð Þ þ 1� xð ÞP�1
2 k2ð Þ

� ��1 ð24:28Þ

with the constraint x� 0, when ki ¼ 1, we have P1 1ð Þ ¼ R1;P2 1ð Þ ¼ R2.
The weighting coefficient x is obtained by minimizing the performance index

min
x

trPz
CI ¼ min

x2 0;1½ �
tr xP�1

1 k1ð Þ þ 1� xð ÞP�1
2 k2ð Þ

� ��1
n o

ð24:29Þ

where the symbol tr denotes the trace of matrix. The optimal weights x can be
quickly obtained by the 0.618 method or the Fibinacci method.

Theorem 3 The covariance intersection fused filter (24.27) and (24.28) has the
actual error variance �PCI as

�Pz
CI ¼E ~xz

CI tjtð Þ~xzT
CI tjtð Þ

� �

¼Pz
CI x2P�1

1 k1ð Þ�P1 k1ð ÞP�1
1 k1ð Þ þ x 1� xð ÞP�1

1 k1ð Þ�P12 k1; k2ð ÞP�1
2 k2ð Þ

�

þx 1� xð ÞP�1
2 k2ð Þ�P21 k2; k1ð ÞP�1

1 k1ð Þ þ 1� xð Þ2P�1
2 k2ð Þ�P2 k2ð ÞP�1

2 k2ð Þ
i
Pz

CI

ð24:30Þ

where �P12 k1; k2ð Þ ¼ E ~x1 tjt � k1ð Þ~xT
2 tjt � k2ð Þ

� �
and

�P12 k1; k2ð Þ ¼Uk1�1wk2�k1
p1

�R12 Uk2�1
� �T

þ
Xk2�2

r¼k1�1

Uk1�1wk1�r�1
pi C�QCT Urð ÞT þ

Xk1�2

r¼0

UrC�QC Urð ÞT ;k2 � k1 � 2

ð24:31Þ

�P12 k1; k2ð Þ ¼ Uk1�1 �R12w
k1�k2
p2 Uk2�1

� �T

þ
Xk1�2

r¼k2�1

UrC�QCTw k2�r�1ð ÞT
p2 W k2�1ð ÞT þ

Xk2�2

r¼0

UrC�QC Urð ÞT ;k1 � k2 � 2

ð24:32Þ
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Especially

�P12 1; 1ð Þ ¼ �R12; �R12 ¼ wp1
�R12w

T
p2 þ C�QCT ð24:33Þ

�P12 k1; 1ð Þ ¼ Uk1�1 �R12w
k1�1
p2 þ

Xk1�2

r¼0

UrC�QCTWrT
p2 ð24:34Þ

�P12 1; k2ð Þ ¼ wk2�1
p1

�R12 Uk2�1
� �Tþ

Xk2�2

r¼0

wr
piC�QCT Urð ÞT ð24:35Þ

Proof From (24.28), we have x tð Þ ¼ Pz
CI xP�1

1 k1ð Þ þ 1� xð ÞP�1
2 k2ð Þ

� �
x tð Þ. Using

(24.27), we easily obtain the CI actual fused filtering error

~xz
CI tjtð Þ ¼ Pz

CI xP�1
1 k1ð Þ~x1 tjt � k1ð Þ þ 1� xð ÞP�1

2 k2ð Þ~x2 tjt � k2ð Þ
� �

ð24:36Þ

which yields (24.30). Equations (24.31)–(24.35) have been proved in Ref. [6]. h

Remark 1 Applying (24.20), Ref. [5] proved that the two-sensor CI fuser is robust
for all admissible �Q and �Ri satisfying (24.3), i.e.

�Pz
CI �Pz

CI ð24:37Þ

24.5 Accuracy Analysis

Theorem 4 For the two-sensor system (24.1)–(24.2) with time-delayed mea-
surements, the local steady-state robust Kalman filter and CI fuser have the
accuracy relations

�Pz
i ¼ �Pi kið Þ;Pz

i ¼ Pi kið Þ ð24:38Þ

tr�Pz
i � trPz

i ; i ¼ 1; 2 ð24:39Þ

tr�Pz
CI � trPz

CI � trPz
i ; i ¼ 1; 2 ð24:40Þ

Proof From the robustness (24.20) the accuracy relation (24.39) holds. From
(24.37), the first inequality of (24.40) holds. Applying (24.29), taking x ¼ 1 yields
trPz

CI ¼ trPz
1 and x ¼ 0 yields trPz

CI ¼ trPz
2, Hence when x 2 0; 1½ �, we have the

accuracy relation trPz
CI � trPz

i ; i ¼ 1; 2 h.

Remark 2 Inequalities (24.39) and (24.40) show that the robust accuracy of the CI
fuser is higher than that of each local robust filter.
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24.6 Simulation Example

Consider the two-sensor tracking system (24.1)–(24.2)with time-delayed mea-

surements, where U ¼ 1 T0

0 1

� 	
;C ¼ 0:5T2

0
T0

� 	
; H1 ¼ 1 0½ �; H2 ¼ I2; T0 ¼

0:25 is the sampled period, x tð Þ ¼ x1 tð Þ; x2 tð Þ½ �T is the state, x1 tð Þ and x2 tð Þ are the
position and velocity of target at time tT0. w tð Þ and vi tð Þ are independent Gaussion
white noises with zero mean and unknown variances Q and Ri respectively. In the
simulation, we take Q ¼ 0:5; R1 ¼ 0:58; R2 ¼ diag 4; 0:25ð Þ; �Q ¼ 0:45; �R1 ¼
0:5; �R2 ¼ diag 3; 0:16ð Þ; k1 ¼ 1; k2 ¼ 2

In order to give a geometric interpretation of the accuracy relations, the
covariance ellipse is defined as the locus of points x : xT P�1x ¼ c


 �
, where P is

the variance matrix and c is a constant. Generally, we select c ¼ 1. It has been
proved in [8] that P1�P2 is equivalent to that the covariance ellipse of P1 is
enclosed in that of P2. The accuracy comparison of the covariance ellipses is
shown in Fig. 24.1. From Fig. 24.1, we see that the ellipse of the actual variances
�R1or�P2 2ð Þ is enclosed in that of R1orP2 2ð Þ, respectively, which verify the con-
sistent (24.13) and (24.20). The ellipse of actual CI fused variance �PCI is enclosed
in that of PCI , which verifies the robustness of (24.37).

In order to verify the above theoretical accuracy relations, taking q ¼ 200 runs,
the curves of the mean square errors (MSE) of local and fused Kalman filters are
shown in Fig. 24.2, which verifies the accuracy relations (24.39), (24.40) and the
accuracy relations in Table 24.1.
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Fig. 24.1 The covariance
ellipses of robust Kalman
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24.7 Conclusion

For two-sensor systems with uncertain noise variances and time-delayed measure-
ments, the local and CI robust fused robust steady-state Kalman filters have been
presented, and their robustness was proved based on the Lyapunov equation. The
robust accuracy of CI fuser is higher than that the robust accuracy of each local filter
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