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Abstract. Sparse representation is a parsimonious principle that a signal can be
approximated by a sparse superposition of basis functions. The main topic of my
thesis research is to apply this principle in the machine learning fields including
classification, feature extraction, feature selection, and optimization.
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1 Introduction

Sparse representation (SR) is a principle that a signal can be approximated by a sparse
linear combination of dictionary atoms [2]. It can be formulated as b = x1a1 + · · · +
xkak + ε = Ax + ε, where A = [a1, · · · ,ak] is called a dictionary, ai is called
a dictionary atom or basis vector, x is a sparse coefficient vector, and ε is an error
term. Sparse representation involves sparse coding and dictionary learning. Given a new
signal b and dictionary A, learning the sparse coefficient x is termed sparse coding.
Given training data D, learning the dictionary A is called dictionary learning.

For understanding SR, an example of l1-regularized SR is given in the following
from a Bayesian perspective (more details can be found in [13]). Suppose each atom ai

is normally distributed with zero mean and diagonal covariance, x follows a Laplace
distribution with zero mean and diagonal covariance, and the error ε follows a Gaussian
distribution with zero mean and diagonal covariance. First, we fix the dictionary A to
learn x. Its maximum a posteriori (MAP) estimation can be formulated as

min
x

f(x) =
1

2
‖b−Ax‖22 + λ‖x‖1, (1)

where λ ≥ 0 is a scalar to balance the trade-off between reconstructive error and spar-
sity. This model is called l1-least-squares (l1LS) sparse coding. In regularization the-
ory, it is known as a l1-regularized model. Equation (1) coincides with the well-known
LASSO [14]. Second, The l1-regularized dictionary learning model can be expressed as

min
A,Y

f(A,Y ) =
1

2
‖D −AY ‖2F +

α

2

k∑

i=1

‖ai‖22 + λ

n∑

i=1

‖yi‖1, (2)

where α ≥ 0 controls the scale of the dictionary atoms.
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It has been reported that SR is very robust to noise and redundancy in the data [3].
The main problem I am addressing in my doctoral research is to apply the SR prin-
ciple in machine learning. Since machine learning is a wide area, I focus on feature
extraction, feature selection, and classification in my dissertation. I categorize the im-
plementations of the SR principle into two groups – i) the methods using sparse coding
only, ii) and the methods using both sparse coding and dictionary learning. In the sub-
sequent sections, the problem in each group is defined and the existing solutions are
surveyed. The optimization issue is also addressed. I describe my current solutions and
mention future works to be completed in my thesis. My methods have been applied in
various high-throughput genomic data analysis. However, due to page limit, I omit this
part in this paper. Interested readers are referred to [1, 12, 13]. Hereafter, I denote the
training data by D ∈ R

m×n where m and n are the numbers of features and samples,
respectively. The class labels are in the column vector c ∈ {1, 2, · · · , C}n where C is
the number of classes. A set of p new samples is represented with B ∈ R

m×p.

2 Sparse Coding for Classification

2.1 Problem Statement

Sparse coding classification methods are based on the assumption that a new sample can
be approximated by a sparse superposition of all training samples. Given the training
data {D, c}, in order to predict the class label of a new sample b using sparse coding,
the sparse coefficient x must be obtained first by optimizing a model, and then the class
label of b is predicted by defining a decision function g(b|x,D, c) ∈ {1, 2, · · · , C}.

2.2 Existing Solutions

Basis pursuit (equivalent to Equation (1)) has been applied to face recognition in [15].
First, the sparse code is learned by basis pursuit. Next, nearest subspace (NS) rule is
used as a decision function. The NS rule is defined as g(b) = argmin1≤i≤C ri(b),
where ri(b) is the regression residual corresponding to the i-th class: ri(b) = ‖b −
Aδi(x)‖22, where A = D, δi(x) : Rn → R

n returns the coefficients for class i. Its
j-th element is given by xj , if atom aj is in class i, otherwise 0.

In [16], a kernel extension of a l1-model is proposed, it is equivalent to minx f(x) =
1
2‖b′ −A′x‖22 + λ‖x‖1, where b′ = (φ(A))Tφ(b) and A′ = (φ(A))Tφ(A). φ(·) is a
function that maps a sample from input space into high-dimensional feature space. The
essence of their idea is to first map all samples in high-dimensional feature space, and
then project them onto n-dimensional space by the transformation matrix φ(A). In the
n-dimensional space, basis pursuit is applied.

2.3 My Contributions

Instead of using the l1-regularized model, I propose the following non-negative sparse
coding for classification [11]:

min
x

f(x) =
1

2
‖b−Ax‖22, x ≥ 0. (3)
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This is inspired by non-negative matrix factorization (NMF). In usual circumstance, the
optimal solution to Equation (3) is very sparse. The relation between non-negativity and
sparsity can be explained by either the active-set theory in optimization, or a Bernoulli
prior in Bayesian inference [13]. Combining the l1-norm and non-negativity I obtain
the l1-non-negative sparse coding model [9, 13]:

min
x

f(x) =
1

2
‖b−Ax‖22 + λTx, x ≥ 0, (4)

where λ = {λ}n. In sparse coding, I name the training samples corresponding to
nonzero coefficients the support atoms. The rational of using non-negative sparse cod-
ing is that a unknown sample resides in the conical region of the active atoms. The
minimum cone of a unknown sample may be well explained by its vertices (that is
the active atoms). The classification methods of using the above two models are called
non-negative least squares (NNLS) and l1NNLS approaches. I propose the k-nearest
neighbor (k-NN) based decision rule, in [13], which can take less time than the NS rule,
but obtain similar accuracy. I have demonstrated that NNLS requires very few training
samples in order to obtain significant accuracy. Through strict statistical comparison, it
has also been shown that NNLS has a performance comparable to that of SVM.

I have extended the l1LS, NNLS, and l1NNLS models to kernel versions by applying
the dimension-free property in sparse coding. My rational is in the following. Since
least squares optimization is a specific quadratic programming (QP) problem, we can
reformulate Equation (1) to a l1-regularized QP (l1QP) problem:

min
x

f(x) =
1

2
xTHx+ gTx+ λ‖x‖1, (5)

where H = (φ(A))Tφ(A), and g = −(φ(A))Tφ(b). Similarly, the non-negative and
l1-non-negative models can be reformulated to the following non-negative QP problem:

min
x

1

2
xTHx+ gTx, s.t. x ≥ 0, (6)

where g = −(φ(A))Tφ(b) for NNLS, and g = λ−(φ(A))Tφ(b) for l1NNLS. Thus the
optimization of sparse coding models is dimension-free. Via replacing inner products
with kernel matrices, we can easily obtain the kernel sparse coding. It has been reported
that my kernel sparse coding based classifier can obtain good performance [9, 13].

2.4 Future Works

First, the learning bound of sparse coding approaches will be studied under the statis-
tical learning theory. Qualitatively speaking, the first term in Equations (1), (3), and
(4) aims to minimize the empirical error, while the sparsity-inducing term is to reduce
the Vapnik-Chervonenkis dimension. Second, the choice of an appropriate kernel is cru-
cial in order to obtain good classification performance. Thus my future work in this
direction will be focused on kernel learning for space coding approaches.
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3 Dictionary Learning for Feature Extraction

3.1 Problem Statement

The sparse coding based approach is an instance-based learning. For each new sample,
a large QP needs to be solved, it is hence inefficient for large-scale data. We thus need
to learn a dictionary to capture the main latent patterns. For classification, dictionary
learning is a scheme of dimension reduction. The classification involves three phases.
First, a dictionary A is learned from training data D and possibly c, that is solving the
matrix decomposition D ≈ AY . Columns of Y are the images of training samples
in the feature space. Second, a classifier g is trained over Y and c. Third, the images
(denoted by X) of the new samples in the feature space are obtained as well by solving
the sparse coding B ≈ AX , and their class labels are predicted by the classifier g(X).

3.2 Existing Solutions

We can view NMF as a model of unsupervised dictionary learning. It has been used for
clustering and feature extraction before my study. For instance, it has been applied to
reduce the dimensionality of gene expression data [7]. New samples are usually pro-
jected into the feature space by applying pseudo-inverse X = A†B. The drawback of
this is that the non-negative constraint of X is violated. A kernel solution to a l1-model
was proposed in [4]. It is inefficient because the sparse code of each sample is updated
separately and the dictionary atoms are not well-represented in the feature space.

3.3 My Contributions

I present a fast generic unsupervised dictionary learning framework in [13] and [8]. It
solves the following two generic models:

min
A,Y

1

2
‖D −AY ‖2F + λ‖Y ‖1 s.t. ‖ai‖2 = 1; if t = true,Y ≥ 0, (7)

min
A,Y

1

2
‖D −AY ‖2F +

α

2

k∑

i=1

‖ai‖22 + λ

n∑

i=1

‖yi‖1 s.t. if t = true,Y ≥ 0, (8)

where t indicates if non-negative constraint should apply on Y . The advantages of this
framework are that i) A can be updated analytically; ii) columns of Y are updated in
a parallel fashion; and iii) inner products among training data and dictionary are only
required in optimization rather than the original data. The inner product AT

φAφ, rather
than the intractable Aφ, is iteratively updated for nonlinear kernel. I also propose a
supervised dictionary learning method in [10], where I reveal that the sparse coding of
a new sample must be consistent with the dictionary learning model in training phase.

3.4 Future Works

First, unlike PCA and ICA, SR can learn non-orthogonal and redundant basis vectors.
Independent basis vectors are selected during the sparse coding of a signal. Hence it
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is interesting to investigate how accuracy changes with the number of basis vectors.
Second, I plan to enforce sparsity on dictionary as well which is useful for variable
selection. Third, spurred by Bayesian factor regression modeling, I plan to design a
supervised dictionary learning model that combines dictionary learning and Bayesian
regression. Finally, kernel supervised dictionary learning models will also be addressed.

4 Optimization for Sparse Representation

4.1 Problem Statement

Fast sparse coding algorithm is crucial in sparse coding and dictionary learning. Un-
fortunately, as in Equations (5) and (6), sparse coding is a large-scale QP problem.
Moreover, the l1-regularized models are non-smooth. Therefore, solving this QP prob-
lem efficiently for huge amount of data is an important topic in sparse representation.

4.2 Existing Solutions

There are two typical sparse coding algorithms for the l1-regularized model. One is the
interior-point method [6], and another the is proximal method [5]. The former approxi-
mates the non-smooth l1-norm by a smooth function. The later is a first-order approach.
It has been shown that first-order methods are efficient for non-smooth problems.

4.3 My Contributions

I proposed to use active-set algorithms for various sparse coding models in [8, 13]. I
applied the following three properties. First, the optimization is dimension-free, therefore
the input of my algorithms are inner products. Second, the active-set method is usually
quite efficient for small and medium-sized problems. It thus makes dictionary learning
very fast. Third, there are many common but expensive computations among the sparse
coding of different signals using active-set method. My algorithms hence allow the sparse
coding of multiple signals to share common computations in a parallel fashion.

4.4 Future Works

Inspired by the optimization of SVM, I am working on a decomposition method for
large-scale sparse coding. The basic idea is in fact an implementation of the block-
coordinate-descent scheme. In each iteration, a few coefficients violating the Karush-
Kuhn-Tucker (KKT) conditions are selected in the working set, and the rest are fixed.
Only the coefficients in the working set are updated by a fast QP solver. This procedure
iterates until no coefficient violates the KKT conditions. Sequential minimal optimiza-
tion (SMO) is the extreme case of the decomposition method for SVM. I am devising
SMO for large-scale sparse coding.

5 Conclusions

The main topic of my thesis dissertation is to devising learning methods which apply
the principle of sparse representation. The problems or challenges, and current solutions



Sparse Representation for Machine Learning 357

are presented in this paper. The future works mentioned above will be finalized and
included in my dissertation. Meanwhile, I am developing two open-source toolboxes
[1,12] including the implementations of low level optimizations and high level machine
learning applications. The purpose is to serve the machine learning community and
receive constructive suggestions for my study.
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