
O. Zaïane and S. Zilles (Eds.): Canadian AI 2013, LNAI 7884, pp. 174–186, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cost-Sensitive Boosting Algorithms
for Imbalanced Multi-instance Datasets

Xiaoguang Wang1, Stan Matwin2, Nathalie Japkowicz1,3, and Xuan Liu1

1 School of Electrical Engineering and Computer Science, University of Ottawa, Canada

Bwang009@eecs.uottawa.ca, Xliu107@uottawa.ca
2 Faculty of Computer Science, Dalhousie University, Canada

Stan@cs.dal.ca
3 Department of Computer Science, Northern Illinois University, USA

Nat@eecs.uottawa.ca

Abstract. Multi-instance learning is different than standard propositional
classification, because it uses a set of bags containing many instances as input.
The instances in each bag are not labeled, but the bags themselves are labeled
positive or negative. Our research shows that classification of multi-instance
data with imbalanced class distributions significantly decreases the performance
normally achievable by most multi-instance algorithms, which is the same as
the performance of most standard, single-instance classifier learning algorithms.
In this paper, we present and analyze this multi-instance class imbalance
problem, and propose a novel solution framework. We focus on how to utilize
the extended AdaBoost techniques applicable to most multi-instance classifier
learning algorithms. Cost-sensitive boosting algorithms are developed by
introducing cost items into the learning framework of AdaBoost, to enable
classification of imbalanced multi-instance datasets.

Keywords: multi-instance classification, class imbalance problem, AdaBoost,
cost-sensitive learning.

1 Introduction

Multi-instance learning (MIL) differs from traditional supervised learning algorithms,
in that a multi-instance dataset consists of bags of individual instances with unknown
classifications, and only the bags are labeled. Each bag can contain several instances,
but the number of instances in each is different, and the same instance can belong to
several bags.

While MIL has been used in many applications, including drug activity recognition
[3], text-categorization [15] and computer vision recognition [14], [20], there is a vast
amount of research about, and many different approaches to, solving the MIL
problem. For example, Diverse Density (DD) [4] and the Expectation-Maximization
version [10] were proposed as general frameworks for solving multi-instance learning
problems. The k Nearest Neighbour approach, known as Citation kNN, was adapted
for MIL problems in [8]. Andrews et al. [15] proposed two approaches to modify
Support Vector Machines: mi-SVM for instance-level classification, and MI-SVM for

 Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets 175

bag-level classification. For tree methods, Blockeel et al. [17] proposed a multi-
instance tree method (MITI), and Bjerring et al. [21] extended this in their work by
adopting MITI to learn rules (MIRI).

A dataset is imbalanced if the classes are not represented approximately equally. In
a two-class imbalanced dataset, there are often far more negative examples than
positive examples, and in this situation a default classifier will always predict
‘negative’. In practice, one would want to penalize errors on positive examples more
strongly than errors on negative examples. There have been attempts to deal with
imbalanced datasets in real life domains, such as text classification [16], image
classification [7], disease detection [18] and others [9], [13]. However, the data
imbalance problem still exists for multi-instance classification without specialized
solution provided. Although there are many published works about multi-instance
classification, there is very little related discussion about imbalanced multi-instance
classification problems. The multi-instance data imbalanced problem is presented in
this paper, and cost-sensitive boosting algorithms are developed by introducing cost
items into the learning framework of AdaBoost, for classification of imbalanced
multi-instance datasets.

The paper examines two class classification problems, and the algorithms
discussed can be extended to multi-class classification. The rest of the paper is
organized as follows: Section 2 presents the class imbalance problem for multi-
instance datasets and related concepts. In Section 3, the AdaBoost algorithm and its
cost-sensitive adaptations for the single-instance class imbalance problem are
discussed. Cost-sensitive boosting algorithms for the multi-instance class imbalance
problem are presented in Section 4. Section 5 illustrates the efficiency of our
algorithm as determined by experimentation, and offers some final remarks. Finally,
Section 6 presents the conclusion and future work.

2 The Class Imbalance Problem of Multi-instance Datasets

The multi-instance learning problem can be defined as:
Given:

• A set of bags ߯௜ , ݅ ൌ 1, … , ܰ, where each bag can consist of an arbitrary number of
instances and a given label: ߯௜ ൌ ൛ݔ௜ଵ, ,௜ଶݔ … , ;௜௡೔ݔ ,௜ൟݕ ݅ ൌ 1, … , ܰ, ௜ݕ א ሼെ1, ൅1ሽ,
where each instance ݔ௜௡೔ is an M-tuple of attribute values belonging to a certain
domain or instance space Թ.

• The existence of an unknown function f that classifies individual instances as ൅1
or െ1, and for which it holds that cሺ χ୧ሻ ൌ ൅1 if and only if ׌x୧୬౟ א χ୧: f൫x୧୬౟൯ ൌ൅1. (multi-instance constraint, MIC)

From this definition we derive the standard assumption of MI learning, which is that a
bag is negative if and only if all instances in the bag are negative; if the bag contains
one or more positive instances, the bag is positive.

Although specific discussions about the multi-instance class imbalance problem
are rarely found in previous work, the issue occurs frequently in real life application
areas such as computer vision recognition and text mining. In our related research
[23], multi-instance classification algorithms are used in underwater mine like object

176 X. Wang et al.

sonar image processing. Each target to be classified has many images from different
angles and distances and these images build a multi-instance dataset. In real world
environment the number of non-mine like objects is much greater than the number of
mine like objects, so the class imbalance problem is an important factor affecting the
performance of the classifiers. Our research shows that for most multi-instance
dataset with imbalanced class distributions, classification of these datasets
significantly decrease the performance normally achievable by most multi-instance
algorithms but we can hardly find solutions to deal with this problem from these
algorithms. This motivated us to investigate the problem of multi-instance class
imbalance more thoroughly.

As we already know, a single-instance dataset is defined as imbalanced if at least
one class is under-represented relative to others. For multi-instance datasets, the
problem is similar but the circumstances are more complex. The class imbalance
situation occurs not only at the instance-level, but also at the bag-level. Figure 1
shows the imbalanced multi-instance classification problem with the separating plane
and the margin. Since the final margin of multi-instance classification is at bag-level,
the default classifier would tend to penalize errors on positive bags more strongly than
errors on negative bags. In Figure 1, there are far more majority bags than minority
bags, and the margin learned by the default classifier is ‘pushed’ closer to the
minority bags from the ideal margin.

Fig. 1. The imbalanced multi-instance classification problem with the separating plane and the
margin. Black dots denote instances of minority class while diamond dots denote instances of
majority class. Rectangle frames with round corner denote minority bags and rectangle frames
denote majority bags. The solid line denotes the learned margin by classifier and the dotted line
denotes the ideal margin of two classes.

For the single-instance data imbalance problem, the machine learning community
has addressed the issue of class imbalances in two different ways to solve the skewed
vector space problem. The first method, which is classifier-independent, is to balance
the distributions by considering the representative proportions of class examples
in the distribution of the original data. The simplest way to balance a dataset is to

 Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets 177

under-sample or over-sample (randomly or selectively) the majority class, while
maintaining the original minority class population [16]. One of the most common pre-
processing methods to balance a dataset, Synthetic Minority Over-sampling
Technique (SMOTE) [13], over-samples the minority class by taking each minority
class sample and introducing synthetic examples along the line segments joining any
or all of the k minority class nearest neighbors. Evidence shows that synthetic
sampling methods are effective when dealing with learning from imbalanced data [9],
[13], [16].

Working with classifiers to adapt datasets is another way to deal with the single-
instance imbalanced data problem. The theoretical foundations and algorithms of
cost-sensitive methods naturally apply to imbalanced learning problems [7], [11].
Thus, for imbalanced learning domains, cost-sensitive techniques provide a viable
alternative to sampling methods. Recent research ([9], [11], [16]) suggests that
assigning distinct costs to the training examples is a fundamental approach of this
type, and various experimental studies of this ([5], [7], [18]) have been performed
using different kinds of classifiers.

3 AdaBoost and Cost-Sensitive Adaptations

Boosting has been proven to be an effective method of combining multiple models in
order to enhance the predictive accuracy of a single model [1], [6]. AdaBoost is a
version of boosting that uses the confidence-rated predictions described in [1], [6]. It
applies a base learner to induce multiple individual classifiers in sequential trials, and
a weight is assigned to each example. After each trial, the vector of weights is
adjusted to reflect the importance of each training example in the next induction trial.
This adjustment effectively increases the weights of misclassified examples, and
decreases the weights of correctly classified examples. Finally, the individual
classifiers are combined to form a composite classifier.

Take as input the training set ሺݔଵ, ,ଵሻݕ … , ሺݔ௠, ௜ݔ ;௠ሻݕ א ߯, ௜ݕ א ሼെ1, ൅1ሽ, where
each ݔ௜ is an n-tuple of attribute values belonging to a certain domain or instance
space X, and y୧ is a label in a label set Y. The key process of the AdaBoost.M1
method [1] is to iteratively update the distribution function over the training data. This
means that for every iteration ݐ ൌ 1, … , ܶ, where T is a given number of the total
number of iterations, the distribution function D୲ is updated sequentially, and used to
train a new hypothesis:

௧ାଵሺ݅ሻܦ ൌ ௧ሺ݅ሻܦ exp ሺെߙ௧ݕ௜݄௧ሺݔ௜ሻሻܼ௧ (1)

where ௧ߙ ൌ ଵଶ ݈݊ ቀଵିఌ೟ఌ೟ ቁ is the weight updating parameter, ݄௧ሺݔ௜ሻ is the prediction

output of hypothesis ݄௧ on the instance ݔ௜ ௧ is the error of hypothesis ݄௧ over theߝ ,
training data, and ܼ௧ is a normalization factor.

Schapire and Singer [6] used a generalized version of Adaboost. As shown in [6],
the training error of the final classifier is bounded as:

178 X. Wang et al.

1݉ |ሼ݅: ௜ሻݔሺܪ ് |௜ሽݕ ൑ ෑ ܼ௧௧ (2)

where

ܼ௧ ൌ ෍ ௧ሺ݅ሻ௜ܦ exp൫െߙ௧ݕ௜݄௧ሺݔ௜ሻ൯ ൑ ෍ ௧ሺ݅ሻ௜ܦ ቆ1 ൅ ௜ሻ2ݔ௜݄௧ሺݕ ݁ିఈ ൅ 1 ൅ ௜ሻ2ݔ௜݄௧ሺݕ ݁ఈቇ (3)

Minimizing ܼ௧ on each round, ߙ௧ is induced as:

௧ߙ ൌ 12 ݈݊ ቆ∑ ∑௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ௫೔ሻܦ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ௫೔ሻܦ ቇ (4)

The weighting strategy of AdaBoost identifies samples on their classification outputs
as correctly classified or misclassified. However, it treats samples of different classes
equally. The weights of misclassified samples from different classes are increased by
an identical ratio, and the weights of correctly classified samples from different
classes are decreased by an identical ratio.

Since boosting is suitable for cost-sensitive adaption, motivated by [6]’s analysis
and methods for choosing ߙ௧, several cost-sensitive boosting methods for imbalanced
learning have been proposed in recent years. Three cost-sensitive boosting methods,
AdaC1, AdaC2 and AdaC3, were proposed in [18], which introduced cost items into
the weight updating strategy of AdaBoost. AdaCost [5] is another cost-sensitive
boosting algorithm that follows a similar methodology.

4 Proposed Methods

Similar to the methods for managing the single-instance class imbalance problem in
Refs. [5], [7], [11], [18], the learning objective in dealing with the multi-instance class
imbalance problem is to improve the identification performance on the minority class.
In our research, the first strategy is to target the multi-instance imbalanced learning
problem by using different cost matrices that describe the costs for misclassifying any
particular data example. When used for single-instance learning, this method
reportedly improved classification performance on class imbalanced datasets
significantly [11], [12].

For multi-instance class imbalance datasets, the optimal prediction for a bag χ is
the class ݅ that minimizes ܮሺ߯, ݅ሻ ൌ ෍ ܲሺ݆|߯ሻܥሺ݅, ݆ሻ௝ (5)

where ܥ denotes the cost matrix [11], and ሺ݅, ݆ሻ is the cost of predicting class ݅
when the true class is ݆. ܲሺ݆|߯ሻ denotes the probability of each class ݆ being the true
class of bag ߯.

Our second strategy is to apply cost-minimizing techniques to the combination
schemes of ensemble methods. This learning objective expects that the weighting
strategy of a boosting algorithm will preserve a considerable weighted sample size of
the minority class. A preferred boosting strategy is one that can distinguish different

 Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets 179

types of samples, and boost more weights on those samples associated with higher
identification importance.

To denote the different identification importance among bags, each bag is
associated with a cost item; the higher the value, the higher the importance of
correctly identifying the sample. For an imbalanced multi-instance dataset, there are
many more bags with class label y ൌ െ1 than bags with class label y ൌ ൅1. Using
the same learning framework as AdaBoost, the cost items can be fed into the weight
update formula of AdaBoost (Eq. (1)) to bias the weighting strategy. The proposed
methods are similar to those proposed in Ref. [18]. Figure 2 shows the proposed
algorithms.

Given: A multi-instance training dataset with a set of bags ߯௜, ݅ ൌ 1, … , ܰ, where each bag can
consist of an arbitrary number of instances and a given label: ߯௜ ൌ ൛ݔ௜ଵ, ,௜ଶݔ … , ;௜௡೔ݔ ,௜ൟݕ ݅ ൌ1, … , ܰ, ௜ݕ א ሼെ1, ൅1ሽ, and each instance ݔ௜௡೔ is an M-tuple of attribute values belonging to a

certain domain or instance space Թ.
Initialize ܦଵሺ݅ሻ ൌ 1/݉.
For ݐ ൌ 1, … , ܶ && the constraint condition ߟ is satisfied:

• Train a weak learner using distribution ܦ௧.
• Get a weak hypothesis ݄௧: ߯ ՜ Թ.
• Choose ߙ௧ א Թ.
• Update: ܦ௧ାଵሺ݅ሻ ൌ ,௧ሺ߯௜ܭ௧ሺ݅ሻܦ ௜ሻܼ௧ݕ (6)

where Z୲ is a normalization factor (chosen so that ܦ௧ାଵ will be a distribution).

Output the final hypothesis: ܪሺ߯ሻ ൌ ݊݃݅ݏ ൭෍ ௧݄௧ሺ்߯ߙ
௧ୀଵ ሻ൱ (7)

Fig. 2. Cost-sensitive Adaboost for Multi-Instance Learning Algorithm

For the original adaboost, ,௧ሺ߯௜ܭ ௜ሻݕ ൌ exp ሺെߙ௧ݕ௜݄௧ሺ߯௜ሻሻ , our proposed algorithms
introduced four cost items into the weight update formula of AdaBoost: inside the
exponent, outside the exponent, or in two ways both inside and outside the exponent.
Each modification can be a new boosting algorithm, denoted as Ab1, Ab2, Ab3 and
Ab4 respectively. Ab1, Ab2 and Ab3 are similar to AdaC1, AdaC2 and AdaC3
respectively for single-instance learning in Ref. [18]. The difference is, in our
algorithms the training samples are bags of instances, not instances.

The modifications of ܭ௧ሺ߯௜, :௜ሻ are then given byݕ

• Ab1: ܭ௧ሺ߯௜, ௜ሻݕ ൌ exp ሺെܥ௜ߙ௧ݕ௜݄௧ሺχ௜ሻሻ (8)

• Ab2: ܭ௧ሺ߯௜, ௜ሻݕ ൌ ݌ݔ௜݁ܥ ሺെߙ௧ݕ௜݄௧ሺ߯௜ሻሻ (9)

180 X. Wang et al.

• Ab3: ܭ௧ሺ߯௜, ௜ሻݕ ൌ ݌ݔ௜݁ܥ ሺെܥ௜ߙ௧ݕ௜݄௧ሺ߯௜ሻሻ (10)

• Ab4: ܭ௧ሺ߯௜, ௜ሻݕ ൌ ݌ݔ௜ଶ݁ܥ ሺെܥ௜ଶߙ௧ݕ௜݄௧ሺ߯௜ሻሻ (11)

Now we induce the weight update parameter ߙ௧ and constraint condition ߟ in Figure
2 for Ab4. From Eq. (11) we get:

௧ାଵሺ݅ሻܦ ൌ ௧ሺ݅ሻܦ௜ଶܥ exp൫െܥ௜ଶߙ௧ݕ௜݄௧ሺ߯௜ሻ൯ܼ௧ ൌ ௜ଶ௧expܥ ሺെܥ௜ଶݕ௜݂ሺχ௜ሻሻ݉ ∏ ܼ௧௧ (12)

where ݂ሺχሻ ൌ ෍ ௧݄௧ሺχሻ௧ߙ (13)

and ܼ௧ ൌ ෍ ௧ሺ݅ሻ௜ܦ௜ଶܥ exp൫െܥ௜ଶߙ௧ݕ௜݄௧ሺχ௜ሻ൯ (14)

The overall training error is bounded as: 1݉ |ሼ݅: ሺχ௜ሻܪ ് |௜ሽݕ ൑ 1݉ ෍ ௜ଶ௜ܥ expሺെܥ௜ଶݕ௜݂ሺχ௜ሻሻ ൌ ෑ ܼ௧௧ ෍ ௜ଶ௧௜ܥ௜ଶܥ ௧ାଵሺ݅ሻ (15)ܦ

According to Ref. [6], for weak hypotheses ௜݄௧൫χ௜൯ݕ௧ߙ௜ଶܥ א ሾെ1, ൅1ሿ with
range ሾെ1, ൅1ሿ, ߙ can be obtained by approximating ܼ as follows:

ܼ௧ ൌ ෍ ௧ሺ݅ሻ௜ܦ௜ଶܥ exp ቀെܥ௜ଶߙ௧ݕ௜݄௧ሺχ௜ሻቁ ൑ ෍ ௧ሺ݅ሻ௜ܦ௜ଶܥ ቆ1 ൅ ௜݄௧ሺχ௜ሻ2ݕ௜ଶܥ ݁ିఈ೟ ൅ 1 െ ௜݄௧ሺχ௜ሻ2ݕ௜ଶܥ ݁ఈ೟ቇ (16)

Let

௧ሻߙሺܩ ൌ ෍ ௧ሺ݅ሻ௜ܦ௜ଶܥ ቆ1 ൅ ௜݄௧ሺχ௜ሻ2ݕ௜ଶܥ ݁ିఈ೟ ൅ 1 െ ௜݄௧ሺχ௜ሻ2ݕ௜ଶܥ ݁ఈ೟ቇ (17)

Our purpose is for ߙ௧ to minimize ܩሺߙ௧ሻ, so we can obtain:

௧ሻߙᇱሺܩ ൌ ௧ߙ݀ܩ݀ ൌ 0 (18)

Next, we can analytically obtain ߙ௧ from Eq. (18), giving:

௧ߙ ൌ 12 ݈݊ ቆ∑ ௧ሺ݅ሻ௜ܦ௜ଶܥ ൅ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ସܥ െ ∑ ∑௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ସܥ ௧ሺ݅ሻ௜ܦ௜ଶܥ െ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ସܥ ൅ ∑ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ସܥ ቇ (19)

The sample weight updating goal of AdaBoost is to decrease the weight of the
training samples that are correctly classified, and increase the weights of the opposite

 Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets 181

samples [1], [6]. Therefore, ߙ௧ should be a positive value, and the training error
should be less than random guessing, based on the current data distribution.

To ensure that ߙ௧ is positive, we get ෍ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ସܥ ൐ ෍ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ସܥ (20)

This is the constraint condition ߟ in Figure 2.
Similarly, we can analytically choose ߙ௧ and constraint condition ߟ for the other

three modifications of Eq. (1) ([6], [18]). Table 1 lists all ߙ௧ and ߟ of Ab1 to Ab4.

Table 1. Parameter ߙ௧ and ߟ chosen for Figure 2

ߟ ௧ߙ
Ab1

12 ݈݊ ቆ1 ൅ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ܥ െ ∑ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻ1ܦ௜ܥ െ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ܥ ൅ ∑ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ܥ ቇ ෍ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ܥ ൐ ෍ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ܥ

Ab2
12 ݈݊ ቆ∑ ∑௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ܥ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ܥ ቇ ෍ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ܥ ൐ ෍ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ܥ

Ab3
12 ݈݊ ቆ∑ ௧ሺ݅ሻ௜ܦ௜ܥ ൅ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ଶܥ െ ∑ ∑௧ሺ݅௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ଶܥ ௧ሺ݅ሻ௜ܦ௜ܥ െ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ଶܥ ൅ ∑ ௧ሺ݅௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ଶܥ ෍ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ଶܥ ൐ ෍ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ଶܥ

Ab4
12 ݈݊ ቆ∑ ௧ሺ݅ሻ௜ܦ௜ଶܥ ൅ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ସܥ െ ∑ ∑௧ሺ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ସܥ ௧ሺ݅ሻ௜ܦ௜ଶܥ െ ∑ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ସܥ ൅ ∑ ௧ሺ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ସܥ ෍ ௧ሺ݅ሻ௜,௬೔ୀ௛೟ሺ஧೔ሻܦ௜ସܥ ൐ ෍ ௧ሺ݅ሻ௜,௬೔ஷ௛೟ሺ஧೔ሻܦ௜ସܥ

We also used AdaCost [5] as a cost-sensitive boosting algorithm to deal with the

multi-instance class imbalance problem. In Figure 2, AdaCost is developed when
dealing with multi-instance classification by introducing: ܭ௧ሺ߯௜, ௜ሻݕ ൌ exp ሺെߙ௧ݕ௜݄௧ሺχ௜ሻߚሺ݅ሻሻ (21)

where ߚሺ݅ሻ ൌ ,௜݄௧ሺχ௜ሻሻݕሺsignሺߚ ௜ሻ (22)ܥ

Like Ab1, AdaCost introduces cost sensitivity inside the exponent of the weight
updating formula of Adaboost. However, instead of applying the cost items directly,
AdaCost employs a cost-adjustment function that aggressively increases the weights
of costly misclassifications, while conservatively decreasing the weights of high-cost
examples that are correctly classified.

5 Experiments

In this section, we explain our experiments to investigate and compare the following
boosting and non-boosting algorithms: Base learner, Cost Sensitive, Adaboost,
AdaCost, Ab1, Ab2, Ab3 and Ad4 with two weak learners using tree methods (MITI
[17] and MIRI [21] respectively). Tree methods were chosen as the weak learners
because they are 1) stable in multi-instance learning [17], [21], and 2) suitable to be
weak learners in many related works [12], [18].

182 X. Wang et al.

For these experiments parameter ܶ , which governs the number of classifiers
generated, was set to ten in each boosting algorithm. For the cost sensitive methods,
the original costs were chosen according to the bag number of each class. For the cost
sensitive boosting methods, the iteration rounds of boosting could be terminated
through one of two conditions: a) the prefixed number ܶ , or b) the constraint
condition ߟ in Figure 2. The Ten-fold Cross-Validation method was used in all
experiments.

5.1 Details of Datasets

The first seven datasets used in our experiments are those employed in [19] and [21].
The original datasets are not imbalanced, so to make them all imbalanced we chose
only a portion of the bags in one class.

Table 2 shows the details of the datasets used in our experiment. These datasets
can be retrieved from http://www.eecs.uottawa.ca/~bwang009/.

Table 2. Details of Datasets (‘#’ denotes ‘number of’ and ‘%’ denotes of ‘percentage of’).

Dataset Size #attribute #minority
bags

%minority
bags

#minority
instances

%minority
instances

Elephant 125 230 25 20 150 19.69
Fox 121 230 21 17.36 134 20.71
Tiger 126 230 26 20.63 164 30.15
Mutagenesis_atom 167 10 42 25.15 365 34.02
Mutagenesis_bond 160 16 35 21.88 603 20.41
Mutagenesis_chain 152 24 27 17.76 514 12.49
Process 142 200 29 20.42 281 9.78

5.2 Experimental Results

When learning extremely imbalanced data, a trivial classifier that predicts every case
as the majority class can still achieve very high accuracy. Thus, the overall
classification accuracy is often not an effective measure of performance. We chose
Gmean [2] as the measure for our algorithms and experiments. The definition of
Gmean is found in Eq. (23) and the confusion matrix is defined in Table 3.

Table 3. Confusion Matrix

 Predicted Positive Class Predicted Negative Class
Actual Positive class TP (True Positive) FN (False Negative)
Actual Negative class FP (False Positive) TN (True Negative)

Gmean ൌ ሺ ܶܰܶܰ ൅ ܲܨ ൈ ܶܲܶܲ ൅ ሻଵܰܨ ଶ⁄ (23)

 Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets 183

Table 4. Experiment results on MITI (Gmean)

Dataset Base CS AdaCost Adaboost Ab1 Ab2 Ab3 Ab4

Elephant 0.4313 0.6 0.5485 0.5238 0.5426 0.5514 0.5514 0.6099
Fox 0.2149 0.4337 0.4445 0 0.296 0.4655 0.5555 0.4928
Tiger 0.5463 0.7317 0.7038 0.6928 0.7805 0.7114 0.7671 0.6923
Mutagenesis_atom 0.5831 0.6309 0.6973 0.6234 0.5995 0.7059 0.657 0.6928
Mutagenesis_bond 0.5493 0.7538 0.7928 0.7085 0.6943 0.7335 0.7899 0.7783
Mutagenesis_chain 0.4251 0.6742 0.7272 0.503 0.7542 0.7242 0.7933 0.8327
Process 0.7096 0.7913 0.8156 0.8194 0.8593 0.8194 0.8043 0.842

Table 5. Experiment results on MIRI (Gmean)

Dataset Base CS AdaCost Adaboost Ab1 Ab2 Ab3 Ab4

Elephant 0.5158 0.6536 0.5786 0.5571 0.5514 0.56 0.5817 0.6033
Fox 0.2116 0.4337 0.5014 0.4276 0.4756 0.3546 0.4499 0.4024
Tiger 0.5004 0.6844 0.6785 0.6725 0.7114 0.7981 0.7894 0.7442
Mutagenesis_atom 0.7005 0.7709 0.7358 0.7579 0.7554 0.7926 0.7687 0.7916
Mutagenesis_bond 0.7219 0.7746 0.7517 0.767 0.7783 0.7838 0.7697 0.7453
Mutagenesis_chain 0.631 0.7055 0.7694 0.6713 0.811 0.7976 0.8348 0.7797
Process 0.8358 0.8396 0.8993 0.8119 0.8554 0.8706 0.8502 0.8316

Tables 4 and 5 present the experimental results of the base learners and all the

presented algorithms using the base learners. MITI [17] is chosen as the base learner
in Table 4, and MIRI [21] is the base learner in Table 5. In the Tables, ‘Base’ denotes
the base learner, and ‘CS’ indicates the cost sensitive method.

As Friedman’s test [23] is a non-parametric statistical test for multiple classifiers
and multiple domains, we performed it on the results in Tables 4 and 5. The null
hypothesis for this test is that all the classifiers perform equally, and rejection of the
null hypothesis means that there is at least one pair of classifiers with significantly
different performance.

For Table 4 the test results are Friedman chi-squared = 25.0017, ݂݀ ൌ 7, and p-
value = 0.0007583, and for Table 5 the results are Friedman chi-squared = 22.2381, ݂݀ ൌ 7, and p-value = 0.002311. The critical value for the chi-square distribution is
14.07 for a 0.05 level of significance for a single-tailed test. As 25.0017 and 22.2381
are both larger than 14.07, we can reject the hypothesis for both Tables 4 and 5.

We applied Nemenyi’s post-hoc test [23] to determine which classifier has the best
performance. First we ranked the Gmean values for each dataset with different
classifiers. The sum of the ranks for all datasets is represented as ܴ.௜ , where ݅
represents a classifier. Then we used the following formula to calculate the ݍ value
between different classifiers:

௜௝ݍ ൌ ሺܴపഥ െ ఫܴഥ ሻ ඨ݇ሺ݇ ൅ 1ሻ6݊൘ (24)

184 X. Wang et al.

where ݇ is the number of classifiers and ݊ is the number of datasets. We then
determined if one algorithm is better than another by comparing their ݍ values with
the critical value ݍఈ ൌ 3.19 (gotten from [22]), as shown in Table 6. The result of 6-1-
0 for Ab3 with MITI as the base learner means that the algorithm wins six times, is
equal once, and loses zero times. If we set the scores as win=1, equal=0 and lose=-1,
the total score of each algorithm in Tables 4 and 5 can be calculated. The result is
shown in Table 6.

Table 6. Experiment result using the statistical test method (sorted by score from high to low)

 Ab3 Ab2 Ab4 AdaCost Ab1 CS Adaboost Base

MITI 6-1-0 4-1-2 6-1-0 4-1-2 2-1-4 2-1-4 1-0-6 0-0-7
MIRI 6-1-0 6-1-0 2-3-2 2-3-2 2-3-2 2-3-2 1-0-6 0-0-7
Score 12 8 6 2 -2 -2 -10 -14

The experimental results show that all the proposed algorithms can improve the

performance of the base learner. CS did not overcome the cost sensitive boosting
methods, since it does not adopt a weight updating strategy. AdaCost did not
outperform Ab3, Ab2 and Ab4, since in Ref. [5] AdaCost requires that ߚ for the
minority class be non-increasing with respect to ௡ܥ , which means the reward for
correct classification is low when the cost is high [7]. The performance of Ab3 is
the best in all experiments, and Ab2 and Ab4 are also competitive. The weighted
updating strategy of cost-sensitive boosting algorithms increases the weights on
the misclassified bags from the minority class more than it does on those from the
majority class. Similarly, it decreases the weight on correctly classified bags from
the minority class less than on those from the majority class.

6 Conclusions and Future Research

We have presented and analyzed the multi-instance class imbalance problem, and
provided a novel framework for the design of cost-sensitive boosting algorithms for
this problem. We compared the cost sensitive method, the Adacost algorithm, and the
four proposed weight updating cost-sensitive boosting algorithms, along with two
multi-instance tree methods.

Experimental evidence derived from standard datasets was presented to support the
cost-sensitive optimality of the proposed algorithms. We found that cost-sensitive
boosting consistently outperformed all other methods tested. In the future, we plan to
investigate whether the proposed methods are sensitive to the cost setup. On the given
datasets in our experiments, the updating strategies of Ab3 and Ab2 are more suitable
than that of Ab4. Since the imbalance ratio is not very large for the chosen datasets in
these experiments, in future work it would be worthwhile to investigate whether Ab4
can provide better result than Ab3 and Ab2 on highly class imbalanced multi-instance
datasets. We also intend to research the application of the cost-sensitive boosting
algorithms for multi-instance classification, and investigate other related algorithms.

 Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets 185

Acknowledgement. The authors acknowledge the support of the Defence R&D
Canada Centre for Operational Research and Analysis for this work. This work was
funded by Defence R&D Canada Centre for Operational Research and Analysis under
PWGSC Contract #W7714-115078/001/SV.

References

1. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine
Learning: Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)

2. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided
selection. In: Proceddings of the Fourteenth International Conference on Machine
Learning, pp. 179–186 (1997)

3. Dietterich, T., Lathrop, R., Lozano-P´erez, T.: Solving the multiple instance problem with
the axis-parallel rectangles. Artificial Intelligence 89(1-2), 31–71 (1997)

4. Maron, O., Lozano-Pérez, T.: A framework for multiple instance learning. In: Proc. of the
1997 Conf. on Advances in Neural Information Processing Systems 10, pp. 570–576
(1998)

5. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: Misclassification Cost-Sensitive
Boosting. In: Proc. Int’l Conf. Machine Learning, pp. 97–105 (1999)

6. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Machine Learning 37(3), 297–336 (1999)

7. Ting, K.M.: A Comparative Study of Cost-Sensitive Boosting Algorithms. In: Proc. Int’l
Conf. Machine Learning, pp. 983–990 (2000)

8. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach.
In: ICML (2000)

9. Japkowicz, N.: Learning from Imbalanced Data Sets: A Comparison of Various Strategies.
In: Proc. Am. Assoc. for Artificial Intelligence (AAAI) Workshop Learning from
Imbalanced Data Sets, pp. 10-15 (Technical Report WS-00-05) (2000)

10. Zhang, Q., Goldman, S.A.: EM-DD: An improved multiple instance learning technique.
In: Neural Information Processing Systems 14 (2001)

11. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. Int’l Joint Conf.
Artificial Intelligence, pp. 973–978 (2001)

12. Ting, K.M.: An Instance-Weighting Method to Induce Cost-Sensitive Trees. IEEE Trans.
Knowledge and Data Eng. 14(3), 659–665 (2002)

13. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

14. Zhang, M.L., Goldman, S.: Em-dd: An improved multi-instance learning technique.
In: NIPS (2002)

15. Andrews, S., Tsochandaridis, I., Hofman, T.: Support vector machines for multiple
instance learning. Adv. Neural. Inf. Process. Syst. 15, 561–568 (2003)

16. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several
Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations
Newsletter 6(1), 20–29 (2004)

17. Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: ICML (2005)
18. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-Sensitive Boosting for

Classification of Imbalanced Data. Pattern Recognition 40(12), 3358–3378 (2007)

186 X. Wang et al.

19. Foulds, J., Frank, E.: Revisiting multiple-instance learning via embedded instance
selection. In: Wobcke, W., Zhang, M. (eds.) 21st Australasian Joint Conference on
Artificial Intelligence Auckland, New Zealand, pp. 300–310 (2008)

20. Leistner, C., Saffari, A., Bischof, H.: MIForests: Multiple-instance learning with
randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI.
LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010)

21. Bjerring, L., Frank, E.: Beyond trees: Adopting MITI to learn rules and ensemble
classifiers for multi-instance data. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS
(LNAI), vol. 7106, pp. 41–50. Springer, Heidelberg (2011)

22. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective.
Cambridge University Press (2011)

23. Wang, X., Shao, H., Japkowicz, N., Matwin, S., Liu, X., Bourque, A., Nguyen, B.: Using
SVM with Adaptively Asymmetric Misclassification Costs for Mine-Like Objects
Detection. In: ICMLA (2012)

	Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets
	1 Introduction
	2 The Class Imbalance Problem of Multi-instance Datasets
	3 AdaBoost and Cost-Sensitive Adaptations
	4 Proposed Methods
	5 Experiments
	5.1 Details of Datasets
	5.2 Experimental Results

	6 Conclusions and Future Research
	References

