
Chapter 74
On Fault Identification of MEWMA
Control Charts Using Support Vector
Machine Models

Li Li and Haiying Jia

Abstract Multivariate exponentially weighted moving average (MEWMA) con-
trol charts are widely used for detecting small mean shifts in manufacturing
processes. However, the MEWMA control chart can only give out-of-control
signals but provide no information on which variable or subset of variables that
leads to the out-of-control signals. We propose a SVM (Support Vector Machine)
based MEWMA fault identification model to help understand the underlying cause
of the out-of-control signals. For each process variable, we build a SVM model for
each variable to classify the out-of-control data of each variable into three classes:
no mean shifts, downward mean shifts and upward mean shifts. The classification
results are combined into the fault identification results. We also examine the
effects of SVM parameters on classification performance and provide a SVM
parameter optimization method.
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74.1 Introduction

Statistical Process Control (SPC) is a widely used process monitoring technique for
keeping processes under control. For key quality characteristics, SPC is designed to
detect the evidence of whether or not there are shifts or changes (both in the process
mean and variance) in manufacturing processes with proper sampling scheme.

In complex products manufacturing processes, it is quite common to simulta-
neously monitor several correlated quality characteristics. MSPC (Multivariate
statistical process control) chart was proposed to monitor process with more than
one correlated variables. The T2 control chart was put forward by Hotelling (1947).
It was tested that the T2 chart is insensitive to minor shifts (Lowry et al. 1992).
Thus the EWMA (Exponentially weighted moving average) and CUSUM
(Cumulative Sum) charts were extended to multivariate process monitoring sce-
narios. The MCUSUM chart was introduced by Woodall and Ncube (1985), Healy
(1987), Crosier (1988), Pignatiello and Runger (1990). The MEWMA chart was
studied by Reynolds and Kim (2005), Zou and Tsung (2008).

With the application of computer technology in manufacturing processes and
the enhancement of data collection technology, machine learning and data mining
techniques have been used in multivariate process monitoring and fault identifi-
cation. The artificial neural network (ANN) has been used as an effective tool for
detecting the deviation of mean and/or covariance matrix in manufacturing pro-
cesses (Guh 2007; Niaki et al. 2005; Wang and Chen 2002). Other related methods
also have been used, such as the combination of ANN and Rough Set (RS) (Hou
et al. 2003) and the combination of ANN and Genetic Algorithm (GA) (Yu and Xi
2009; Yu et al. 2008). A comparison of Support Vector Machine (SVM) and ANN
for drug/nondrug classification has been done by Byvatov et al. (2003) and it was
demonstrated that the SVM system used in the study has capacity to produce
higher overall prediction accuracy than a particular ANN architecture.

In this paper we propose a SVM based model for fault identification in
MEWMA control charts. The rest of this paper is organized as six sections. In the
next section, a SVM-based MEWMA control fault identification model is intro-
duced. Followed by the model training and testing results with scenarios of p = 2.
Then we also examine the effects of two SVM parameters on the performance of
MEWMA fault identification. Finally a summary on the paper is presented.

74.2 Methodology

There are two main modules in the SVM-based MEWMA fault identification model:

(1) Process monitoring. Firstly, we can estimate the process parameters, mean
vector and variance–covariance matrix, using the collected historical process
quality data (If the process parameters are all known, this step can be omitted).
Then we can construct the MEWMA control chart based on the estimated
parameters.
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(2) Model training and testing. Using the estimated process parameters, we can
generate random data with designed mean shift patterns. Then we can train
and test the SVM model using the generated data. When there are out-of-
control signals in the MEWMA control chart, the data are imported into the
trained model. The output of the model will be the fault identification results
which can be used to remove the fault in the manufacturing processes.
In the procedure of model training and testing, we must design different mean
shift patterns. For each variable, we study three kinds of conditions, i.e. no
mean shifts, mean shifts downwardly and mean shifts upwardly. For a process
with p quality variables, there are totally 3p combinations include one in-
control combination and 3p-1 out-of-control combinations. With the increase
of p, the number of such combinations increases exponentially. We proposed a
SVM-based MEWMA fault identification model here (see Fig. 74.1).
In the proposed model, we diagnose the variables independently. There are
three kinds of outputs of each SVM, i.e. 1, 2 and 3. If there are no mean shifts
in a variable, the output of the related SVM should be 1; if the mean of a
variable shifts downwardly the output of the related SVM should be 2. The
output of a SVM should be 3 if the mean of the related variable shifts
upwardly. The number of SVM equals to the number of variables and the
difficulties in model building is linear to the number of variables. Compared to
the models reported by Guh1 and Yu & Xi5 in which the number of the classes
of the output is 3p, the advantage of the proposed model is that the model
building is much easier when p is large.

Fig. 74.1 A proposed SVM-based MEWMA fault identification model
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74.3 SVM Training and Testing

The proposed model is built based on four assumptions. First, we assume that we
can accurately estimate the mean vector and variance–covariance matrix of the
process data given enough data. Second, there will only be mean shifts in the
process while the variance–covariance matrix remains constant. Third, only abrupt
shifts are considered here, which means that the data before and after shifts are all
independently and identically distributed. Lastly, a process is assumed to remain
in-control until a mean shift occurs. The shift will change the parameter estimation
of the process data. We also assume that an out-of-control process will not become
in-control until faults are found and removed.

74.3.1 Training and Testing Data Generation

Let l0 be the in-control process mean vector and R0 the in-control process vari-
ance–covariance matrix. A MEWMA control chart can be built if both parameters
are known. The selection of smoothing factor and control limit of such a control
chart is reported by Lowry et al. (Guh 2007). For presenting the interesting mean
shifts intervals, we set the mean shift coefficients (k1, k2, …, kp) to be the values of
(-3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0). For a process with p variables, there are 7p

combinations include one in-control combination and 7p-1 out-of-control com-
binations, denoted by M. We generated a set of random data using the multivariate
normal random data generation function mvnrnd(.,.) in Matlab�. There were N1

in-control samples and N2 out-of-control samples in the generated data set. The
data generation procedure is described as follows.

(1) Set i = 1 and generate N1 in-control data.
(2) Generate out-of-control data X with a shifted mean vector. l0 þ Dl, where

Dl ¼ ki1r1; ki2r2; . . .; kiprp

� �
; kij; i ¼ 1; 2; . . .;M; j ¼ 1; 2; . . .; p is the ith

mean shift coefficient of the jth variable, and ri; i ¼ 1; 2; . . .; p; is the standard
deviation of the jth variable. The statistics Z and T2 are calculated for each
sample.

(3) Z is compared to the MEWMA control limits. If it is outsides the control
limits, both X and Z are recorded.
Go to step 3 if the number of X is less than N2, otherwise, set i = i ? 1 and
return to step 1.
For model testing, the mean shift coefficients are set to the values of (0.00,
-1.15, -1.35, -1.55, -1.75, -2.25, -2.65, -2.85, -3.05, -3.25, 1.15, 1.35,
1.55, 1.75, 2.25, 2.45, 2.65, 2.85, 3.05, 3.25). The testing data are also gen-
erated using the above procedure.
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74.3.2 SVM Parameters Selection

In this section we aim to determine the optimal SVM parameter values. To do that,
we fix the process parameters and examine the effect of the SVM parameters on
the performance of the proposed model. We consider an in-control process with

l0 ¼ ½0 0� and R0 ¼
1 0:5

0:5 1

� �
. and set the number of in-control samples (N1) to

be 100. To build a SVM model, we construct a vector V = [X Z d], where X is
the raw data, Z is the MEWMA statistic of X and d is the classification label. We
follow Lowry et al.’s suggestion (1992) that the smoothing coefficient of the
MEWMA control and control limit h should be set to 0.1 and 8.66, respectively.
The number of samples considered for each mean shift combination (N2) is set to
be 30.

As we discussed earlier, we use the Gaussian radial basis function as the SVM
kernel function. There are two important parameters in the SVM model; including
the penalty factor C and kernel function parameter b2. We analyze the effects of
these two parameters on the performance of our SVM models for fault identifi-
cation with an example with two variables, i.e. p = 2. We select C = 100, 1,000,
and 10,000, the values of b2 are set to be in the range between 0.5 and 14.9 with an
increment of 0.3. The correct ratio of both SVM1 and SVM2 are analyzed for the
model training and testing. The testing results are presented in Fig. 74.2.

Figure 74.2 illustrates the performance of SVM for C = 100, 1,000, and
10,000. For each value of C, with the increase of b2 the correct ratio values
increase obviously and then reach the max value. After that the correct ratio values
decrease slightly. And the correct ratio values with C = 1,000 and C = 10,000 are
nearly the same when b2 is greater than 5.

Fig. 74.2 The SVM training
and testing performance with
C = 1000 and 10,000
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74.3.3 SVM Training and Testing Results

After choosing the optimal SVM parameters, we analyzed the performance of
SVM training and testing given different correlation coefficients (q). We let the
correlation coefficient be one of the following values (0.1, 0.3, 0.5, 0.7, 0.9). The
SVM parameters are set to be C = 10,000 and b2 = 10.4. We run the simulations
for 1,000 times to each correlation coefficient value and the results are presented in
Table 74.1. The correct ratios are also depicted in Fig. 74.3. It shows that the
correlation coefficient do have effects on the performance of the SVM-based
MEWMA fault identification model. When the correlation coefficient increases,
the correct ratios of the SVM training decrease accordingly. The correct ratio of
SVM1 training decreased from 94.22 % (q = 0.1) to 91.72 % (q = 0.9). The
correct ratio of SVM2 training decreased from 94.33 % (q = 0.1) to 91.72 %
(q = 0.9). Considering both SVM1 and SVM2, the overall correct ratio decreased
from 88.57 % (q = 0.1) to 84.38 % (q = 0.9).

However, the correct ratio increases in the model testing while the correlation
coefficient increased. The correct ratio of SVM1 testing increased from 92.99 %
(q = 0.1) to 95.46 % (q = 0.9). The correct ratio of SVM2 testing increased from
93.03 % (q = 0.1) to 95.42 % (q = 0.9). Considering both SVM1 and SVM2, the
overall correct ratio increased from 86.18 to 91.21 %. The average testing correct
ratio was 88.57 %. Although the proposed approach achieved the highest correct
ratio when the correlation coefficient was the highest, its performance is still
acceptable when the correlation coefficient is small.

Furthermore, most of the variances in both training and testing results were
relatively small. It shows that the performance of our model is stable under dif-
ferent conditions.

74.4 Summary

We proposed a MEWMA control charts fault identification model using SVM
which is built on the concept of SRM. SVM has minor generalization errors
compared to the approaches based on the concept of least-squares or maximum

Table 74.1 Effects of correlation coefficient on model performance

Training performance Testing performance

SVM1 SVM2 Overall SVM1 SVM2 Overall

q = 0.1 94.22 94.33 88.57 92.99 93.03 86.18
q = 0.3 93.10 92.74 85.85 93.39 93.76 87.32
q = 0.5 92.39 92.22 84.76 94.16 94.18 88.46
q = 0.7 91.86 91.90 84.14 94.78 94.73 89.68
q = 0.9 91.72 91.72 84.38 95.46 95.42 91.21
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likelihood. After a brief introduction of MEWMA control charts and SVM, we
gave an SVM-based model for MEWMA control chart fault identification when
there are out-of-control signals in control charts. The raw process data X and the
MEWMA of X are set as the input of the model and the process variables are
diagnosed independently and this can reduce the difficulties of model building
when the dimension of the problem increased.
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