
Chapter 9
Theoretical Advances in Evolutionary Dynamic
Optimization

Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao

Abstract. The field of evolutionary dynamic optimization is concerned with the
study and application of evolutionary algorithms to dynamic optimization prob-
lems: a significant number of new algorithms have been proposed in recent years
that are designed specifically to overcome the limitations faced by traditional al-
gorithms in the dynamic domain. Subsequently, a wealth of empirical studies have
been published that evaluate the performance of these algorithms on a variety of
benchmark problems. However, very few theoretical results have been obtained dur-
ing this time. This relative lack of theoretical findings makes it difficult to fully as-
sess the strengths and weaknesses of the individual algorithms. In this chapter we
provide a review of theoretical advances in evolutionary dynamic optimization. In
particular, we argue the importance of theoretical results, highlight the challenges
faced by theoreticians and summarise the work that has been done to date. We sub-
sequently identify relevant directions for future research.

9.1 Introduction

The field of evolutionary dynamic optimization is concerned with the study and
application of evolutionary algorithms (EAs) to the class of dynamic optimization
problems (DOPs): the dependency on time of such problems poses many new chal-
lenges to the design of EAs as pointed out by numerous monographs published
in early 2000 [5, 35, 56]. This raised noticeable interest in evolutionary dynamic
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optimization and a significant number of nature-inspired techniques have subse-
quently been proposed to address the potential shortcomings of traditional EAs in the
dynamic domain. The majority of techniques, many of which are reviewed through-
out this book, employ additional features, such as the preservation of population
diversity, in order to efficiently track high quality solutions over time.

The wealth of techniques developed is well documented by the numerous reviews
that have been published in the last decade, particularly in 1999/2001 [3, 4], 2005
[26] and 2011 [8]. These reviews not only highlight the significant developments
in terms of new algorithms but also the simultaneous lack of theoretical results and
although the degree of theoretical results in evolutionary computation is generally
overshadowed by the sheer quantity of empirical results, this discrepancy is even
more apparent in the case of DOPs: the only review to mention theoretical results is
by Jin and Branke [26], limited to a total of four references.

This relative lack of theoretical results, caused primarily by the added difficulty
of having to account for the problem’s dynamics, makes it difficult to fully assess
the strengths and weaknesses of the individual algorithms. Furthermore, the lack of
a clearly defined framework has made it difficult for practitioners to fully express
their assumptions and to generalise from specific test scenarios to a wider class of
problem dynamics. In order to draw attention to this issues, this chapter provides a
self-contained overview of theoretical advances in evolutionary dynamic optimiza-
tion: we argue the importance of theoretical results, highlight the challenges faced
by theoreticians and summarise the work that has been done to date. Finally, we
subsequently identify relevant directions for future research.

The remainder of this chapter is structured as follows: in section 9.2, we provide a
brief overview of evolutionary algorithms and optimization, particularly in uncertain
environments. In section 9.3 we then lay the foundation for the review of theoretical
results, including an introduction to runtime analysis in the dynamic domain. The
review of previous work is found in section 9.4 and finally, the chapter is concluded
in section 9.5 where we summarise the reviewed work, assess its implications and
outline some prospects for future work.

9.2 Evolutionary Dynamic Optimization

9.2.1 Optimization Problems

An optimization problem f : X →Y is a mapping, also known as the objective func-
tion, from a search space X to the domain Y (e.g.,R); the value f (x) ∈Y, x∈ X indi-
cates the quality of x and the elements xi are usually referred to as design or decision
variables. The dimensionality of the problem is |x| = n and the set of all f-values,
corresponding to all elements in X is denoted as f̂ . The goal of an optimization al-
gorithm is usually to find the global optimum x� ∈ X such that f (x�)≥ f (x), ∀x ∈ X
in as little time as possible. An obstacle faced by the algorithm in doing so are local
optima, defined as points x ∈ X such that f (x) ≥ f (z), ∀z ∈ N(x) where N(x) is the
neighbourhood of x, determined by the algorithm’s variation operators. It should
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be noted that, without loss of generality, we assume that functions are to be max-
imised. Furthermore, we only consider combinatorial optimization problems (i.e.,
those with a discrete search space).

9.2.2 Optimization in Uncertain Environments

Traditionally, the majority of work in evolutionary computation has concentrated on
deterministic stationary optimization problems; nevertheless, a significant effort has
also been devoted to problems characterised by uncertainty. In [26], Jin and Branke
review four distinct types of uncertain environments as outlined next.

Noisy optimization problems are characterised by an objective function that is
subject to noise. This implies that every time a point x ∈ X is evaluated, the value
f (x) varies according to some additive noise z that follows some (usually normal)
distribution:

f (x) :=
∫ ∞

−∞
[ f (x)+ z] p(z) dz = f (x), z∼ N(0,σ2) (9.1)

Algorithms should subsequently work on the expected f-values of the search points.
In robust optimization, it is the decision variables xi, i = 1, . . . ,n that are subject

to minor perturbations λ after the value f (x) has been determined (e.g., manufac-
turing variances):

f (x) :=
∫ ∞

−∞
[ f (x+λ )] p(λ ) dλ (9.2)

Desired solutions are those whose f-values vary within acceptable margins given
minor alterations to the solution’s decision variables.

The third class of problems considered by Jin and Branke [26] is approximate
optimization (also known as surrogate-assisted optimization) where the objective
function is too expensive to be queried continuously. A (meta-) model, which pro-
duces approximate f-values with error e(x), is used instead and the algorithm only
calls the original objective function intermittently:

f (x) :=

{
f (x) if original objective function is used;
f (x)+ e(x) if meta-model is used.

(9.3)

Here it is vital for the algorithm to determine a reasonable trade-off between the ac-
curacy of f-values obtained by the meta-model and the computational cost required
to do so.

Finally, the fourth type of uncertain optimization problems corresponds to dy-
namic optimization problems which are deterministic at any moment in time but
may change over time. The class of DOPs is difficult to define as, in principle, any
component of f may change over time and the Handbook of Approximation Al-
gorithms and Metaheuristics [30] states that a general definition of DOPs does not
exist. Jin and Branke [26] deliberately keep the problem definition as general as
possible:

f (x) := f (x, t) (9.4)
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The dynamics of the problem correspond to the mapping T : F ×N → F such
that f (T + 1) = T ( f (T )). We assume that time t advances with every call to the
objective function such that T τ ≤ t < (T + 1)τ where τ ≥ 1 is the frequency of
change. It follows that T is a period index for each problem instance encountered.

The majority of practitioners attempt to design algorithms that are able to track
high quality solution as closely as possible over time. In particular, a single solution
is considered insufficient and instead, the algorithm should return a trajectory of
solutions over time. One of the main motivations driving the development of new
algorithms is the transfer of knowledge from one problem instance encountered to
the next [5]: practitioners commonly assume that successive problem instances en-
countered by the algorithms are correlated to one another, allowing the algorithm to
outperform a random restart by making use of the search points found so far.

9.2.3 Evolutionary Algorithms

The field of evolutionary computation provides a variety of nature-inspire meta-
heuristics that have been utilised successfully to obtain high quality solutions to
a variety of NP-hard optimization problems. In this chapter we concentrate exclu-
sively on those algorithms that are understood to be evolutionary algorithms (EAs):
EAs are population-based global search algorithms inspired loosely by the general
principles of evolutionary systems. Roughly speaking, EAs attempt to obtain solu-
tions of increasing quality by means of selection, crossover and mutation: selection
favours those individuals in the algorithm’s population (the multiset P) that repre-
sent solutions of higher quality (exploitation) whereas crossover and mutation, the
algorithm’s variation operators, generate offspring from those individuals to ad-
vance the search (exploration).

Two simple algorithms that have been analysed theoretically in the dynamic do-
main are the (1+λ )−EA and the (1+1)−EA. The former maintains at any moment
in time a single parent that produces λ offspring by means of mutation. The next
generation is chosen from the set of all individuals (i.e., the offspring and the par-
ent). The pseudo-code for this algorithm is shown in Algorithm 1. A special (and
simpler) variant of this algorithm is the (1+1) EA where the offspring population is
limited to a single individual, akin of stochastic local search. Both algorithms rely
solely on their mutation operator which alters elements in x with some probability
pm.

9.3 Theoretical Foundation

9.3.1 Introduction to Runtime Analysis

The theoretical foundations for EAs are less well developed than for classical al-
gorithms which are often accompanied with rigorously proven guarantees on the
quality of their solutions and bounds on the worst-case cost of obtaining them. In
contrast, EAs have traditionally been evaluated empirically on selected problem
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Algorithm 1 (1+λ )−EA.
set t = 1
initialise x(0) uniformly at random

while terminate = false do
for i := 1 to λ do

xi(t) := x(t)
Alter each position of xi(t) with probability pm.

end for
xbest(t) := xi(t) | f (xi(t))≥ f (x j(t)), j = 1, . . . ,λ
if f (xbest(t))≥ f (x(t)) then

x(t +1) := xbest(t)
end if
t := t +1

end while

instances, and strong guarantees about their performance are often not available.
This lack of formal performance guarantees is partly because EAs are hard to anal-
yse. In particular, they are designed to simulate some aspect of nature without regard
as to whether they can be studied formally or not. In contrast, classical algorithms
are often designed specifically with runtime bounds in mind.

Nevertheless, significant progress has been made during the last decade in the
runtime analysis of EAs [1, 41, 42]. The black-box scenario is the common theoret-
ical framework in most of these studies [17]: the algorithm is assumed to be oblivi-
ous to the structure of the function that is to be optimised (i.e., auxiliary information
like gradients is not available). Information about the function can only be gained
by querying for f-value of search points the algorithm chooses. However, it is as-
sumed that the algorithm knows the class of functions F (problem) from which the
function (problem instance) is taken. As a consequence of the No Free Lunch theo-
rems [16, 61], it is necessary to assume that the function class F has some structure
which can be exploited by the algorithm as otherwise it is impossible to distinguish
the (average case) performance of different algorithms (see section 9.3.3).

The expected runtime of an algorithm A on a function f is the expected number
of times the algorithm evaluates the objective function before the global optimum
is found for the first time (the algorithm’s hitting time). The expectation is with
respect to the random choices made by the algorithm and the expected runtime on
F is the maximum of the expected runtimes over all f ∈ F . In addition to allow a
precise definition of the runtime of particular algorithms, it is also possible to define
the complexity of function classes, the so-called black-box complexity [17, 32].
This is the minimum expected runtime on the problem class among all black-box
algorithms.

Initial runtime studies were concerned with simple EAs like the (1+1) EA on
artificial pseudo-boolean functions [13, 15, 55], highlighting how different com-
ponents of evolutionary algorithms impact their runtime (e.g., the crossover oper-
ator [25, 51], population size [21, 59], diversity mechanisms [19], and selection
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pressure [31]). This effort also considered other types of meta-heuristics (e.g., ant
colony optimization [38, 40], particle swarm optimization [52, 60], and estimation
of distribution algorithms [7]) as well as new problem settings (e.g., multi-objective
[20, 21, 37] and continuous [23] optimization). A significant amount of work has
been directed towards studying classical combinatorial optimization problems, like
maximum matching [22], sorting [47], Eulerian cycles [9], minimum spanning trees
[39], and more generally matroid optimization problems [44]. For NP-hard prob-
lems, the focus has been on interesting sub-classes such as for the vertex cover prob-
lem [43], on the algorithm’s approximation quality [18, 58], and on fixed-parameter
tractability [28, 29]. There has also been some work trying to estimate the runtime
on problems close to industrial applications, in particular in software engineering
[33, 34].

9.3.2 Runtime Analysis for Dynamic Functions

The rigorous analysis of an algorithm’s runtime can be very challenging and it has
been common practice in the past to consider relatively simple algorithms (e.g.,
(1+1) EA) and problems (e.g., ONEMAX; see section 9.3.4). However, in recent
years, significant progress has been made and the use of new techniques (e.g., drift
analysis) allowed theoreticians to obtains proofs for significantly more complex sce-
narios. However, runtime analysis in the dynamic domain is further complicated by
the dynamics of the function which have to be taken into account in addition to the
dynamics of the algorithm. The fundamental impact of this added complexity is il-
lustrated by the need to define a new notion of optimality for DOPs as traditional
measures are often no longer applicable. In particular, the majority of practitioners
is interested in multiple solutions across the life cycle of the problem and hence one
has to evaluate and quantify the notion by which the quality of an algorithm is to be
judged.

In the stationary case, the goal of an optimization algorithm is usually to find the
global optimum in as few steps (number of calls to the objective functions) as pos-
sible for any number of inputs n. In his work, Droste [10, 11] translates this notion
of optimality directly to the dynamic case: the author considers the expected first
hitting time of the (1+1) EA in the continuously changing ONEMAX problem. The
expected first hitting time in this case is more accurately referred to as expected tem-
poral first hitting time as we are interested in the time the current global optimum
is first found (which, in turn, may be lost as soon as a change occurs). However, the
goal in the dynamic case is usually understood to be the tracking of the global opti-
mum over time [5]. In other words, the algorithm has to repeatedly locate the global
optimum, prompting Droste to mention additional measures that may be taken into
account such as the degree to which a found optimum is lost or the average distance
to the nearest optimum over time [11, p 56]. The notion of distance to the optimum
was also considered by Jansen and Schellbach [24] who quantified this concept via
the time until the distance between the sequence obtained by the algorithm and the
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target point is larger than kdmax, assuming that the initial distance is less than dmax.
Informally, this is the time until the algorithm has “lost” the target point.

In [46], the authors take the concept of dynamic runtime a step further and con-
sider the time required by the algorithm to relocate the global optimum once it has
been lost due to update of the function; this measure is called the second hitting time,
a specific case of the more general expected ith hitting time. Considering multiple
hitting times, it is natural to take into account the duration with which the algorithm
resides at the optimum, a measure called the séjour time. These concepts may be
formalised as follows.

Definition 9.1 (Dynamic Runtime [46]). Given a search space X and a dynamic
fitness function f : X×N0→R, let x(t), t ≥ 0, be the current search point at iteration
t of optimization algorithm A on dynamic fitness function f . Then the hitting times
Tj and the séjour times Si of algorithm A on function f are defined as

Ti := min
t
{t ≥ 0 | ∀y ∈ X , f (x(Qi + t),Qi + t)≥ f (y,Qi + t)},

Si := min
t
{t ≥ 0 | ∃y ∈ X , f (x(Zi + t),Zi + t)< f (y,Zi + t)},

where i≥ 1 and

Qk :=

{
0 if k = 1,

∑k−1
l=1 (Tl +Sl) otherwise

Zk :=

{
T1 if k = 1,

T1 +∑k−1
l=1 (Sl +Tl+1) otherwise

This definition of dynamic runtime accounts for the common notion of optimality
in the dynamic domain which is concerned with the algorithm’s ability to locate
and track the global optimum over time. To be considered efficient in the dynamic
domain, it is necessary that the algorithm locates the optimum within reasonable
(i.e., polynomial) time and that the second and subsequent hitting times should not
be larger than the first: the first hitting time usually assumes a uniformly random
distribution from which the initial search points are selected. In the dynamic case,
however, once a change takes place, the algorithm has already spent τ steps op-
timising the function and is thus at a non-random point (e.g., the previous global
optimum) when faced with a new instance of the problem. If this is not the case, a
restart strategy should be favoured over continuous tracking of the optimum.

9.3.3 No Free Lunches in the Dynamic Domain

Informally, the No Free Lunch theorem for optimization (NFL; [61]) states that any
two black-box algorithms a1 and a2 perform, on average, identically across the set
of all possible functionsF =Y X . Similarly, in the case of time-variant functions, the
average performance of any two algorithms is identical across the set of all possible
dynamics T : F ×N→F . The following summarises these results.

Assuming optimization algorithm a only maps to points not previously vis-
ited, the algorithm corresponds to the mapping a : d ∈ D → {x | x � dx} where
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D is the set of all possible samples and dx the set of unique points sampled
so far. Over m iterations, the time-ordered distinct visited points correspond to
dm ≡{(dx

m(1),d
y
m(1)), . . . ,(dx

m(m),dy
m(m))} and it is important to note that this sam-

ple contains all points sampled by the algorithm, not just those accepted. The perfor-
mance of an algorithm a iterated m times on function f corresponds to the likelihood
that a particular sample dy

m has been obtained: P(dy
m | f ,m,a). The NFL theorem

then states that

∑
f

P(dy
m | f ,m,a1) = ∑

f

P(dy
m | f ,m,a2) (9.5)

It follows that for any performance measure Φ(dy
m) based on the samples dy

m, the
average performance over all functions is independent of a. Wolpert and McReady
[61] extend this analysis to the class of time-variant functions, highlighting two
particularly interesting issues:

1. How the dynamic functions are defined.
2. How the performance of an algorithm is measured.

The authors consider the case where the algorithm starts with function f1 and with
each subsequent iteration of the algorithm, the function is transformed to a new
function by the bijective mapping T : F ×N→F . The authors note that an algo-
rithm’s performance in the dynamic domain is not trivially defined and propose two
measures: in the first scheme, the y-value corresponding to a particular point x is
determined by the function at the time the point was evaluated. In the second case,
the y-values correspond to the values obtained for each x sampled according to the
final function encountered.

Subsequently, a similar result to equation 9.5 may then be obtained. In this case,
the average is over all possible dynamics T (rather than functions f ):

∑
T

P(dy
m | f1,T,m,a1) = ∑

T
P(dy

m | f1,T,m,a2) (9.6)

9.3.4 Benchmark Problems

Numerous dynamic benchmark problems have been proposed in the past, allowing
practitioners to test, evaluate and compare their algorithms. These benchmarks in-
clude tools to generate a wide range of dynamics (e.g., MOVING PEAKS[5] and
DF1[35]) and dynamic variants of well-known NP-hard stationary optimization
problems (e.g., Travelling Salesman Problem or Scheduling Problems). Naturally,
theoreticians have concentrated on simpler problems with well-defined dynamics.
The XOR DOP [62, 63] benchmark may be used to impose artificial dynamics on
any pseudo-Boolean optimization problem. It is a generalisation of the dynamic pat-
tern match problem that was used in the first attempt to analyse the runtime of an
EA in the dynamic domain. Finally, a third problem that has been considered by
theoreticians is a simple tracking problem in a lattice. These problems are reviewed
below.
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9.3.4.1 Dynamic Match Function

Standhope and Daida [49, 50] propose a simple dynamic function for an initial anal-
ysis of the behaviour of the (1+1) EA. The function is a generalisation of the well-
known ONEMAX problem to the dynamic domain. The f-values in the ONEMAX

problem simply correspond to the number of ones found in the solution x:

ONEMAX(x) =
n

∑
i=1

xi (9.7)

In the case of the dynamic match function, the algorithm must reduce the Hamming
distance d(x,z) = ∑n

i=1 |xi− zi| to an arbitrary target pattern (match string) στ that
may change over time:

f (a,στ ) =
n

∑
i=1

¬(ai⊕στi) (9.8)

where ¬ is the logical not operator and ⊕ logical xor. The dynamics of στ are con-
trolled by two parameters, g and d which control the number of generations between
changes and the degree (Hamming distance) by which the target pattern is altered
(d distinct and randomly chosen bit in σ are inverted). The values (0,0) result in a
stationary function whereas the values (2,5) would imply that every 2 generations,
the target changes by 5 bits.

9.3.4.2 The XOR DOP Problem

XOR DOP [62, 63] is the only widely accepted benchmark problem in dynamic
optimization for the combinatorial domain and generates a dynamic version of any
static pseudo-Boolean problem. It is a generalisation of the dynamic match function
and imposes dynamics on any stationary pseudo-boolean function f : B→ R by
means of a bit-wise exclusive-or operation that is applied to each search point x ∈
{0,1}n prior to each function evaluation. The dynamic equivalent of any stationary
function is simply

f (x(t) ⊕ m(T )) (9.9)

where⊕ is the xor operator. The vector m(T )∈ {0,1}n, which initially is equivalent
to 0n, is a binary mask, generated by m(T ) =m(T−1)⊕ p(T ) where p(T )∈ {0,1}n

is a randomly created template that contains exactly �ρn� ones. The value of ρ ∈
[0,1] thus controls the magnitude of change which is specified as the Hamming
distance between two binary points. It follows that ρn is the actual number of bits
inverted. The period index T = �t/τ	 is determined by the duration τ > 0 between
changes.

XOR DOP was analysed by Tinós and Yang [53]: if we assume that the trans-
formation of each encoding x(t) by m(T ) yields a vector z(t) = x(t)⊕m(T ), then
it is possible to rewrite this expression as zn(t) = A(T )xn(t) where x ∈ {0,1}n is
normalised to xn(t) ∈ {−1,1}n and where A(T ) is a linear transformation:
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A(π) =

⎡
⎢⎢⎢⎣

A1(π) 0 . . . 0
0 A2(π) . . . 0

. . .

0 0 . . . An(T )

⎤
⎥⎥⎥⎦

where

Ai(π) =
{

1 if mi(T ) = 0
−1 if mi(T ) = 1

for i = 1,2, . . . ,n. It follows that XOR DOP does not alter the underlying function
but instead rotates each search point x prior to each function evaluation.

This analysis was extended in [54] using a dynamical system analysis. In partic-
ular, the authors showed that XOR DOP corresponds to a DOP with permutations:
the class of DOPs with permutation are those with dynamics that permute the as-
signment between elements in X and those in f̂ . The authors subsequently showed
that the xor operator may be replaced with a single mutational step performed when-
ever the function is meant to change. In other words, given two dynamic processes,
one governed by XOR DOP, the other by an initial mutational step, “if both evo-
lutionary processes have the same initial population and parameters, and the fitness
function in the first change cycle for the first process is equal to the fitness function
in the second process, then the evolution of the population in the two processes is
identical, i.e., the two evolutionary processes are equivalent.”.

9.3.4.3 Tracking Problem

Weicker [57] considered a simple tracking problem modelled on the integer lattice
as a sequence of target points a1,a2, . . . ∈ Z2 together with a time-variant objec-
tive function f : Z2×N→ R which is to be minimised. The first argument to the
objective function is a point in the lattice, and the second argument is the time pa-
rameter. The function is defined for all x and t as f (x, t) := ‖x− at‖, where ‖ · ‖ is
the �1-norm. Essentially, f (x, t) is the Manhattan-distance between the point x and
the current target point at time t.

The sequence a1,a2, . . ., representing a moving target, is unknown to the algo-
rithm, and can be deterministic, stochastic, or chosen by an adversary. The only
assumption made about the sequence is that for some parameter dmax, ‖at−at+1‖ ≤
dmax holds for all t ≥ 0 (i.e., the speed of the target point is no more than dmax). The
special case dmax = 0 corresponds a static optimization problem.

Informally, the objective of an algorithm in the tracking problem is to obtain a se-
quence of search points x1,x2, . . .∈ Z2 that are close to the sequence of target points.
Various aspects of this informal objective have been formalised. First, the algorithm
needs to obtain a search point that is within acceptable distance to the target point,
then it must track the moving target. Jansen and Schellbach [24] considered the first
hitting-time Tmaxd (n), defined as the number of function evaluations until a search
point xt has been obtained for which ‖xt − at‖ ≤ dmax, assuming that the algorithm
is provided with an initial search point x1 for which ‖x1− a1‖= n.
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9.4 Runtime Analysis for Dynamic Functions

9.4.1 First Hitting Times for Pattern Match

The (1+1) EA has been analysed on several variants of the dynamic ONEMAX

(match function), extending the work carried out previously on its stationary coun-
terpart (e.g., [2, 14, 36]). The dynamic variants of the ONEMAX differ in their tran-
sitions from one instance to the next, a property which may drastically affect the
runtime of the algorithm.1

The first consideration of a non-empirical analysis is due to Stanhope and Daida
[50] who consider the (1+1) EA with simplified mutation operator on the dynamic
pattern match function with intergenerational updates. The mutation operator con-
sidered inverts exactly r bit, chosen uniformly at random; the mutation rate r re-
mains constant throughout the algorithm execution. The authors first consider the
case (0,0) (i.e., a stationary function) and then generalise to the dynamic case (d,g).
The authors use a hypergeometric random variable to describe the probability dis-
tribution over neighbouring search points that may be generated by the mutation op-
erator. The dynamics of the pattern matching function are modelled as an additional
mutational step that inverts d bits every g generations (c.f., analysis of XOR DOP
in section 9.3.4). The authors subsequently derive a distribution function on the fit-
ness if a selected individual. The transition probabilities are validated empirically
by a comparison to Monte-Carlo generated fitness distributions and amongst other
things, Stanhope and Daida showed that even small perturbations in the fitness func-
tion could have a significantly negative impact on the performance of the (1+1) EA.

In a sequence of papers [11, 12], Droste considered the dynamic ONEMAX prob-
lem. The initial model considered the target sequence modified by a single, uni-
formly chosen, bit-flip with probability p in each iteration. The goal of the study
was to determine values of p for which the (1+1) EA has polynomial expected first
hitting time. Since the parameter setting p = 0 corresponds to the static ONEMAX-
problem, for which the (1+1) EA has expected first hitting time O(n logn) [15], it
is clear that exponential first hitting time can only occur for strictly larger values. It
should be noted that the (1+1) EA considered by Droste [10] was adapted specif-
ically to the dynamic domain by calling the objective function twice during each
iteration to prevent the use of outdated f-values.

Droste found that the first hitting time remains polynomial as long as p =
O(logn/n). At this rate, the target sequence is modified O(log2(n)) times in expec-
tation during a time interval of n logn iterations. This rate turned out to be critical,
as the expected first hitting time becomes exponential for p = ω(log(n)/n).

The dynamic ONEMAX-model considered by Droste can be generalised. Instead
of only flipping one bit with a certain probability, one can define a random operator
M that acts on the target sequence in each iteration. One such natural operator, is

1 As pointed out in [49], the pattern match function is equivalent to the application of
XOR DOP to the ONEMAX function. Furthermore, the runtime analysis may be sim-
plified if the dynamics are viewed as an additional mutation operator that acts directly on
x (depending of magnitude and frequency of change; see section 9.3.4.2).



232 P. Rohlfshagen, P.K. Lehre, and X. Yao

to flip each bit position in the target sequence with some probability p′ in each it-
eration. While the second model leads to a more involved analysis, the results are
essentially the same in the two models. Note first that by setting p′ := p/n, the ex-
pected number of bit-flips to the target sequence per time step is the same in the both
models. Droste found that the expected first hitting time remains polynomial as long
as p′ = O(log(n)/n2), whereas the expected first hitting time becomes exponential
as soon as p′′ = ω(log(n)/n2).

9.4.2 Analysis of Frequency and Magnitude of Change

In [46], the authors look at the two most prominent attributes of most DOPs, the
magnitude of change and the frequency of change. The former is generally regarded
as the relatedness of two successive problem instances, f (T ) and f (T + 1) and a
common assumption is that smaller magnitudes of change are easier to adapt to, pri-
marily by “transferring knowledge from the past” [26, p 311]. The authors attempt
to shed light on the question whether this is always the case or whether examples
exist where a large magnitude of change may make it easier for the algorithm to
relocate the global optimum.

For the magnitude of change, a specially designed function called MAGNITUDE

is proposed: informally, this bi-modal function features a local optimum (LOCAL)
surrounded by a valley of low f-values (TRAP). Beyond the valley is a region (ZERO)
that leads a path that leads to the global optimum (GLOBAL). This stationary func-
tion is subsequently made dynamic using the XOR DOP framework to yield a dy-
namic MAGNITUDE function. The authors subsequently found that for (1+1) EA on
MAGNITUDE with an update time τ ≥ n2 logn, and a magnitude of change θ , the
second hitting T2 satisfies

1. For small magnitudes of change, i.e. when 1≤ θ ≤ q− cn,

E [T2] = eΩ(n)

2. For large magnitudes of change, i.e. when 3q≤ θ ≤ n,

Pr
[
T2 ≤ n2 logn

]
= 1− e−Ω(n).

The proof idea for the runtime of the (1+1) EA follows directly from the function
definition and is based on two concepts: the behaviour of the algorithm during each
update period (i.e., in time of stagnation) and the impact of the dynamics on the
algorithm, given the algorithm is either at LOCAL or GLOBAL. It is assumed that
the time between changes is sufficiently long for the algorithm to reach one of the
two optima with high probability; depending on the magnitude of change, different
behaviours emerge. The initial search point may be in TRAP or ZERO. The proba-
bility to be on PATH is exceedingly small. If the algorithm starts in TRAP, it will
be led away from the other regions of the search space towards the point LOCAL.
Subsequently, if a small change occurs, the rotated search point will still be in the
region TRAP and is hence attracted again to the local optimum. If, on the other hand,
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the initial search point is not in TRAP, the algorithm is led to the beginning of the
path which leads directly to GLOBAL. The situation at GLOBAL is similar to the one
at LOCAL. If the magnitude of change is small, the search point will be rotated into
the TRAP region. If the magnitude of change is large, on the other hand, the search
point will jump across the trap into ZERO or PATH. Similarly, if the algorithm is
at LOCAL and a large change takes place, the search point is rotated beyond the
boundary of the TRAP region.

The authors also looked at the frequency of change and similarly to the result
above, showed that a high frequency of change may allow the algorithm to locate
the function’s global optimum whereas a low frequency of change does not. More
specifically, it is shown that the dynamic optimization problem called BALANCE is
hard for the (1+1) EA at low frequencies, and easy at high frequencies. Informally,
the function is defined as follows: the algorithm is drawn towards the global opti-
mum along the z-axis while the dynamics “tilt” the plane along the x-axis, elevating
the f-values at different parts across the y-axis. This potentially draws the algorithm
towards a trap-region that allows the algorithm to only get within a specific distance
to the global optimum. If the algorithm is not trapped, on the other hand, the global
optimum may be found by incremental improvements to the search points sampled.

The function is also made dynamic using the XOR DOP framework but a spe-
cially designed mask m is used to alter the search points in specific ways:

m(T ) :=

{
0n/2 ·0n/2 if T mod 2 = 0, and

0n/2 ·1n/2 otherwise.

Hence, only the suffix of the point x is affected, and the magnitude of change is
equivalent to n/2.

Theorem 9.1 ([46]). The expected first hitting time of (1+1) EA on BALANCE with
update time τ is

E [T ] =

{
nΩ(

√
n) if τ > 40n, and

O(n2) if τ = 2.

The idea for the proof shows that the algorithm will balance along the centre of the
vertical axis when the frequency of change is high, while the algorithm is likely
to fall into one of the trap regions when the frequency of change is sufficiently
low. This can be proved by analysing the horizontal and vertical drift. Informally,
the drift of a search point is the distance the search point moves per iteration. The
horizontal drift corresponds to the change in number of leading 1-bits in the prefix,
and the vertical drift corresponds to the change in number of 1-bits in the suffix. As
long as the trap region has not been reached, the position along the vertical axis can
be changed by flipping any of at least n/16 bits, and no other bits. In contrast, in
order to reduce the distance to the optimum along the horizontal axis, it is necessary
to flip the single left-most 0-bit, an event that happens with much lower probability.
Therefore, the vertical drift is much larger than the horizontal drift. If the frequency
of change is sufficiently low, then the current search point will have enough time
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to reach one of the trap regions before the optimum is found. On the other hand,
if the frequency of change is sufficiently high, then the search point will not have
time to reach the trap region during one period. In the following period, the vertical
drift will be in the opposite direction, and the vertical displacement of the search
point is off-set. These informal ideas can be turned into a rigorous analysis using
the simplified drift theorem.

9.4.3 Tracking the Optimum in a LATTICE

Jansen and Schellbach [24] analysed the performance of the (1+ λ ) EA on the
tracking problem described in section 9.3.4.3. An offspring is generated by adding
to the parent K vectors sampled uniformly at random with replacement from the set
{(±1,0),(0,±1)}, where K is a Poisson distributed random variable with param-
eter 1. Hence, the offspring has expected distance 1 from the parent. The analysis
assumes that the time steps of the objective function is synchronised with the gen-
eration counter of the EA. Hence, in each generation t ≥ 1, the algorithm evaluates
the distance between λ offspring and the current target point at . Intuitively, a larger
population size should be beneficial for the EA within this scenario, because each
generation provides more information about the position of the current target point.

For the special case of dmax = 0, (i.e., a static optimization problem), they ob-
tained the following asymptotically tight bound on the first hitting time.

Theorem 9.2 ([24])

E
[
Tλ ,0(n)

]
=Θ

(
λ ·

(
1+

n · loglogλ
logλ

))
.

As the algorithm makes λ function evaluations per generation, and needs to over-
come a distance of n, the result informally means that the speed of the algorithm
is on the order of Θ(logλ/ loglogλ ) per generation. Increasing the population size
λ decreases the expected number of generations needed to reach the (static) target
point.

The potential difficulty of the tracking problem increases with the parame-
ter dmax. In the worst case, the target point moves in the opposite direction of
the current search point. Intuitively, if dmax is significantly lower than the speed
Θ(logλ/ loglogλ ) of the algorithm, then one would expect the algorithm to be able
to reach the target point. The following theorem confirms this intuition.

Theorem 9.3 ([24]). Let b := 4/e, n′ := n−dmax, c̃ > 1, and s :=
⌊

logb λ
2c̃ logb logb λ

⌋
. For

dmax ≤ (2/3− o(1/λ ))s, it holds

Pr
[

Tλ ,dmax(n) = O

(
λ (1+

n′ loglogλ
logλ

)

)]
= 1− 2−Ω(n′/s)

Once the algorithm is within distance dmax of the moving target point, it is intuitive
that the algorithm does not loose track of the target point. The following theorem
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shows that the expected time until the target point is lost grows exponentially with
the population size.

Theorem 9.4 ([24]). Let s be as in Theorem 9.3. For dmax ≤ (2/3)s, and any integer
k≥ 2, the expected number of generations until the (1+λ ) EA has a distance to the
target of at least kdmax after having a distance of at most dmax is bounded below by
eΩ(k

√
λ ).

In contrast, when dmax is significantly higher than Θ(logλ/ loglogλ ), and the tar-
get point moves in an adverserial way, it is to be expected that the tracking problem
becomes hard for the (1+λ ) EA. Jansen and Schellbach [24] provide some theoreti-
cally motivated arguments that support this view.

9.5 Conclusions

9.5.1 Summary and Implications

The number of contributions in evolutionary dynamic optimization has risen dra-
matically in recent years and a wealth of novel evolutionary algorithms (EAs) have
been suggested that attempt to track the global optimum of some dynamic function
over time. However, theoretical results on the expected runtimes of these algorithms
are almost non-existent and almost all findings are based exclusively on empirical
data. This imbalance may make it difficult to validate an algorithm’s performance
and to identify a broader class of functions the algorithm may work well on. Fur-
thermore, the lack of theoretical results may lead to incorrect empirical validation
of common assumptions about the dynamic domain. In this chapter, we reviewed
previous theoretical results in an attempt to highlight some of the gaps in our under-
standing of evolutionary dynamic optimization. These results may be summarised
as follows.

The results by Droste [11, 12] showed how the rate of change plays a crucial
role in the algorithm’s (temporal) first hitting time. In a more general sense, this is a
first step in understanding how subtle differences in the problem’s dynamics make
the problem tractable or not. This result extended the earlier study by Stanhope and
Daida [50] that even small perturbations in the fitness function could have a signif-
icantly negative impact on the performance of the (1+1) EA. The results by Rohlf-
shagen et al. [46] have shown that it is possible to show examples where common
assumptions (i.e., that a larger magnitude of change / higher frequency of change
makes a DOP harder) break down. This has important ramifications regarding the
treatment of such problems and how one generalise empirical results from specific
test cases to more general classes of DOPs. Similarly, Chen et al. [6] proved that
adaptive and self-adaptive mutations may not perform as well as one might have
thought in a dynamic environment. A fixed and non-adaptive scheme can some-
time be just as good as any adaptive schemes in a dynamic environment. Finally,
Jansen and Schellbach [24] is the only work to consider an offspring population.
Within the framework considered, the authors showed that increasing the algorithm’s
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population size decreases the expected number of generations needed to reach the
target point and that the expected time until the target point is lost grows exponen-
tially with the population size.

These theoretical studies have some important implications. First of all, they
highlight the difficulty in defining the problem itself, including ways to unambigu-
ously describe some of its properties such as the magnitude of change. Furthermore,
the performance of an algorithm may be measured in numerous different ways and
there are subtle differences between each approach; it is important to better un-
derstand these differences as they clearly have an impact on how one evaluates a
particular algorithm on a particular problem.

9.5.2 Future Work

As the review in section 9.4 has shown, the scope of existing theoretical results is
limited. Nevertheless, the progress to date is essential to further developments in
the field and build the basis for future work. We believe the following constitutes
important directions for future theoretical work in evolutionary dynamic optimiza-
tion especially with regard to the significant advances made recently in the runtime
analysis of EAs in the stationary domains.

1. Framework and problem complexity. A theoretical framework is required
that allows practitioners and theoreticians to unambiguously describe different
instances of DOPs. This framework would subsequently allow for the classifi-
cation of different types of DOPs and may subsequently facilitate an analysis
of problem complexity. In particular, currently it is not possible to identify and
distinguish between those types of DOPs that are easier to solve than stationary
problems and those that are harder; empirical evidence from biology seems to
suggest that certain types of dynamics allows for faster rates of adaptation (e.g.,
[27]).

2. Notion of optimality. As the review has highlighted, numerous different no-
tions of optimality/runtime may be applied in the dynamic domain and their
relationship remains to be established. A general definition of runtime analysis
in the dynamic domain should also be grounded in practical requirements and
hence be able to account for trajectory-based performance measures as used in
most practical applications.

3. Populations. One of the main motivations behind the application of EAs to
DOPs is their use of populations. In particular, it is thought that the sampling
of multiple search points simultaneously allows for better rates of adaptation
in the new environments. The work by Jansen and Schellbach [24] provides
an initial analysis of the role played by populations yet further examples are
required where populations are provably beneficial.

4. Diversity. Diversity is considered one of the key issues that determines the
performance of an EA on a particular DOP and the majority of algorithms de-
veloped aim to maintain high levels of diversity throughout the algorithm’s ex-
ecution. However, it is clear that not all types of diversity are equally useful and
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hence a better understanding is required to identify mechanisms that are able to
produce useful levels of diversity given a particular DOP.

5. Crossover. Related to the issues of populations and diversity comes a better
understanding of crossover operators; so far, only EAs with mutation have been
considered yet almost all population-based algorithms developed for DOPs also
employ crossover operators. Nevertheless, there is little evidence that substanti-
ates the impact of crossover on the algorithm’s performance. There is evidence
from biology that the evolution of sexual reproduction (i.e., crossover) is di-
rectly linked to uncertainty in the environment (e.g., [45, 48]).

6. Beyond EAs and toy problems. There are many additional population-based
algorithms, such as ant colony optimization and particle swarm optimization,
that have already been considered from a practical point of view. Furthermore,
it is important to extend the theoretical treatment from simple artificial prob-
lems to simple dynamics variants of well-known NP hard problems such as the
travelling salesman problem.
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[23] Jägersküpper, J.: Probabilistic analysis of evolution strategies using isotropic mutations.
Ph.D. thesis, Universität Dortmund (2006)

[24] Jansen, T., Schellbach, U.: Theoretical analysis of a mutation-based evolutionary algo-
rithm for a tracking problem in lattice. In: Beyer, H.G.G. (ed.) Proc. 2005 Genetic and
Evol. Comput. Conf., pp. 841–848. ACM (2005)

[25] Jansen, T., Wegener, I.: Real royal road functions–where crossover provably is essential.
Discrete Applied Mathematics 149(1-3), 111–125 (2005)

[26] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environment - a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[27] Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution.
PNAS 104(34), 13,711–13,716 (2007)

[28] Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed parameter evolutionary algo-
rithms and maximum leaf spanning trees: A matter of mutation. In: Schaefer, R., Cotta,
C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 204–213. Springer,
Heidelberg (2010)

[29] Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex cover
problem. In: Proc. 2009 Genetic and Evol. Comput. Conf., pp. 293–300 (2009)

[30] Leguizamon, G., Blum, C., Alba, E.: Handbook of approximation algorithms and meta-
heuristics, pp. 24.1–24.X. CRC Press (2007)



9 Theoretical Advances in Evolutionary Dynamic Optimization 239

[31] Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010)

[32] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proc. 12th Annual
Conf. Genetic and Evol. Comput., pp. 1441–1448. ACM, New York (2010)

[33] Lehre, P.K., Yao, X.: Runtime analysis of search heuristics on software engineering
problems. Frontiers of Computer Science in China 3(1), 64–72 (2009)

[34] Lehre, P.K., Yao, X.: Runtime analysis of the (1+1) EA on computing unique input
output sequences. Inform. Sci. (2011)

[35] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer, Berlin (2004) ISBN 3-540-21231-0

[36] Muhlenbein, H.: How genetic algorithms really work i: Mutation and hillclimbing. In:
Manner, R., Manderick, B. (eds.) Proc. 2nd Int. Conf. Parallel Problem Solving from
Nature, pp. 15–25 (1992)

[37] Neumann, F.: Combinatorial optimization and the analysis of randomized search heuris-
tics. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel (2006)

[38] Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: Aco with iteration-best up-
date. In: Proc. 12th Annual Conf. Genetic and Evol. Comput., pp. 63–70. ACM (2010)

[39] Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Theoretical Computer Science 378(1), 32–40 (2007)

[40] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm.
In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer, Heidelberg
(2006)

[41] Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization. Natu-
ral Computation Series. Springer (2010)

[42] Oliveto, P.S., He, J., Yao, X.: Time complexity of evolutionary algorithms for combi-
natorial optimization: A decade of results. Int. J. of Automation and Computing 4(1),
100–106 (2007)

[43] Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for
the vertex cover problem. In: Proc. 2008 IEEE World Congr. Comput. Intell., pp. 1563–
1570 (2008)

[44] Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems.
Algorithmica 57(1), 187–206 (2010)

[45] Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. Penguin Books
Ltd. (1993)

[46] Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An analysis
of frequency and magnitude of change. In: Proc. 2009 Genetic and Evol. Comput. Conf.,
pp. 1713–1720 (2009)

[47] Scharnow, J., Tinnefeld, K., Wegener, I.: Fitness landscapes based on sorting and short-
est paths problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
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