
Chapter 8
Evolutionary Optimization on Continuous
Dynamic Constrained Problems – An Analysis

Trung Thanh Nguyen and Xin Yao

Abstract. Many real-world dynamic problems have constraints, and in certain cases
not only the objective function changes over time, but also the constraints. However,
there is little research on whether current algorithms work well on continuous dy-
namic constrained optimization problems (DCOPs). This chapter investigates this
issue. The chapter will present some studies on the characteristics that can make
DCOPs difficult to solve by some existing dynamic optimization (DO) algorithms.
We will then introduce a set of benchmark problems with these characteristics and
test several representative DO strategies on these problems. The results confirm that
DCOPs do have special characteristics that can significantly affect algorithm per-
formance. Based on the analyses of the results, a list of potential requirements that
an algorithm should meet to solve DCOPs effectively will be proposed.

8.1 Introduction

This chapter attempts to investigate the characteristics, difficulty and solutions of
a very common class of problem - dynamic constrained optimization problems
(DCOPs). DCOPs are constrained optimization problems that have two properties:
(a) the objective functions, the constraints, or both, may change over time, and (b)
the changes are taken into account in the optimization process. It is believed that
a majority of real-world dynamic problems are DCOPs. However, there are few

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, Liverpool L3 3AF, U.K.
e-mail: T.T.Nguyen@ljmu.ac.uk

Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K.
e-mail: X.Yao@cs.bham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 193–217.
DOI: 10.1007/978-3-642-38416-5_8 c© Springer-Verlag Berlin Heidelberg 2013

194 T.T. Nguyen and X. Yao

studies on continuous dynamic constrained optimization. Existing studies in con-
tinuous dynamic optimization only focus on the unconstrained or domain con-
straint dynamic cases (which in this chapter both are regarded as “unconstrained”
problems).

This lack of attention to DCOPs in the continuous domain raises some important
research questions: What are the essential characteristics of these types of problems?
How well would existing dynamic optimization strategies perform in dynamic con-
strained environments if most of them are designed for and tested in unconstrained
dynamic problems only? Why do they work well or not? How can one evaluate if
an algorithm works well or not? And finally, what are the requirements for a “good”
algorithm that effectively solves these types of problems?

As a large number of real-world applications are DCOPs, finding the answers
to the questions above is essential to have better understanding about the practical
issues of DCOPs and to solve this class of problem more effectively. Note that this
chapter only investigates the impact of DCOPs on dynamic optimization strategies.
For a study on the impact of DCOPs on constraint handling strategies, readers are
referred to [23].

The chapter is organized as follows. Section 8.2 discusses the special charac-
teristics from real-world DCOPs and discuss how the characteristics make DCOPs
different from unconstrained dynamic optimization problems (DOPs). Section 8.3
reviews related literature about continuous benchmark problems, identifies the gaps
between them and real-world problems and proposes a new set of DCO benchmark
problems. Section 8.4 discusses the possibility of solving DCOPs using some repre-
sentative DO strategies. Experimental analyses about the strengths and weaknesses,
and the effect of the mentioned characteristics on each strategy will be reported.
Based on the experimental results, a list of requirements that algorithms should meet
to solve DCOPs effectively is proposed. Finally, Section 8.5 concludes the chapter
and identifies future directions.

8.2 Characteristics of Real-World Dynamic Constrained
Problems

Constraints make real-world DCOPs very different from the unconstrained or do-
main constraint problems considered in academic research. In real-world DCOPs
the objective function and constraint functions can be combined in three different
types: (a) both the objective function and the constraints are dynamic [2, 27, 35]; (b)
only the objective function is dynamic while the constraints are static [3, 31, 33];
and (c) the objective function is static and the constraints are dynamic [8, 12, 15]. In
all three types, the presence of infeasible areas can affect how the global optimum
moves, or appears each change. This leads to some special characteristics which are
not found in the unconstrained cases and fixed constrained cases.

First, constraint dynamics can lead to changes in the shape/percentage/structure
of the feasible/infeasible areas. Second, objective function dynamics might cause
the global optima to switch from one disconnected feasible region to another on

8 Evolutionary Dynamic Constrained Optimization 195

problems with disconnected feasible regions, which are very common in real-world
constrained problems, especially the scheduling problems [1, 13, 34]. Third, in prob-
lems with fixed objective functions and dynamic constraints, the changing infeasible
areas might expose new, better global optima without changing the existing optima.
One example is the Dynamic 0-1 Knapsack Problem: significantly increasing the
capacity of the knapsack can create a new global optimum without changing the
existing optimum.

In addition to the three special characteristics above, DCOPs might also have
the common characteristics of constrained problems such as global optima in the
boundaries of feasible regions, global optima in search boundary, and multiple dis-
connected feasible regions. These characteristics are widely regarded as being com-
mon in real-world applications.

8.3 A Real-Valued Benchmark to Simulate DCOPs
Characteristics

8.3.1 Related Literature

In the continuous domain, there is no existing continuous benchmark that fully
reflects the characteristics of DCOPs listed in Section 8.2. Among existing con-
tinuous benchmarks, there are only few recent studies that are related to dynamic
constraints. The first study was [14] in which two simple unimodal constrained
problems were proposed. These problems take the time variable t as their only time-
dependant parameter and hence the dynamic was created by the increase over time
of t. These problems have some important disadvantages which prevent them from
being used to capture/simulate the mentioned properties of DCOPs: they only cap-
ture a simple linear change. In addition, the two problems do not reflect common
situations like dynamic objective + fixed constraints or fixed objective + dynamic
constraints and other common properites of DCOPs.

The second study was [29]. In that research, a dynamic constrained bench-
mark problem was proposed by combining an existing “field of cones on a zero
plane” dynamic fitness function with four dynamic norm-based constraints with the
square/diamond/sphere-like shapes (see Fig. 2 in [29]). Although the framework
used to generate this benchmark problem is highly configurable, the current single
benchmark problem generated by the framework in [29] was designed for a different
purpose and hence does not simulate the properties mentioned in Section 8.2. For
example, the benchmark problem might not be able to simulate common properties
of DCOPs such as optima in boundary; disconnected feasible regions; and moving
constraints exposing optima in a controllable way. In addition, there is only one sin-
gle type of benchmark problem and hence it might be difficult to use the problem to
evaluate the performance of algorithms under different situations.

The third study was [39]. Based on an existing static test problem [9], the au-
thors assigned six pre-defined values (scalars or matrices) to the coefficients of this
static functions to represent six different time steps. Because only six values were

196 T.T. Nguyen and X. Yao

given to each coefficient, the dynamic of the problems were defined only up to six
time steps. This prevents users from testing the problem in the long run. In addition,
there appears to be no specified rule for the dynamics, making it difficult to sim-
ulate any dynamic rules from real-world applications. Besides this limitation, the
problem also does not reflect common situations such as dynamic objective + fixed
constraints, fixed objective + dynamic constraints. It is also unclear if other common
properites of DCOPs can be simulated.

The lack of benchmark problems for DCOPs makes it difficult to (a) evaluate how
well existing DO algorithms would work on DCOPs, and (b) design new algorithms
specialising in DCOPs. Given that a majority of recent real-world DOPs are DCOPs
[20], this can be considered an important gap in DO research.

This gap motivates the authors to develop general-purpose benchmark problems
to capture the special characteristics of DCOPs. Some initial results involving five
benchmark problems were reported in an earlier study [21]. This framework then
was extended in [23] to develop full sets of benchmark problems, which are able to
capture all characteristics mentioned in the previous section. Two sets of benchmark
problems, one with multimodal, scalable objective functions and one with unimodal
objective functions, were developed. In this chapter we will describe the benchmark
set with unimodal objective functions (many problems in the set still have multiple
optima due to the constraints) in detail. Detailed descriptions of the multimodal,
scalable set can be found in a technical report [19].

8.3.2 Generating Dynamic Constrained Benchmark Problems

One useful way to create dynamic benchmark problems is to combine existing static
benchmark problems with the dynamic rules found in dynamic constrained applica-
tions. This can be done by applying the dynamic rules to the parameters of the static
problems, as described below.

Given a static function fP (x) with a set of parameters P = {p1, ...pk}, one can
always generalise fP (x) to its dynamic version fPt (x, t) by replacing each static pa-
rameter pi ∈ P with a time-dependent expression pi (t). The dynamic of the dynamic
problem then depends on how pi (t) varies over time. One can use any type of dy-
namic rule to represent pi (t), and hence can create any type of dynamic problem.
Details of the concept and a mathematical framework for the idea is described in
[19]. Some additional information is provided in [22] (Section 3).

8.3.3 A Dynamic Constrained Benchmark Set

A set of 18 benchmark problems named G241 was introduced using the new proce-
dure described in the previous subsection. The general form for each problem in the
G24 set is as follows:

1 This benchmark set was named after a static function originally from in [10]. This static
function was named G24 in the “CEC06 competition on constrained real-parameter opti-
mization”. The static G24 function was adapted to create the f (1), g(1)and g(2) function
forms of this DCOP G24 benchmark set.

8 Evolutionary Dynamic Constrained Optimization 197

Table 8.1 The objective function form and set of constraint function forms for each problem

Benchmark problem objective function
G24 8a & G24 8b f (x) = f (2)

All other problems f (x) = f (1)

Benchmark problem Set G of constraints
G24 u; G24 uf; G24 2u; G24 8a G = { /0}
G24 6a G =

{
g(3),g(6)

}

G24 6b G =
{

g(3)
}

G24 6c G =
{

g(3),g(4)
}

G24 6d G =
{

g(5),g(6)
}

All other problems G =
{

g(1),g(2)
}

minimise f (x)
subject to gi (x)≤ 0, gi (x) ∈ G, i = 1, ..,n

where the objective function f (x) can be one of the function forms set out in Eq.
(8.1-8.2), each constraint gi (x) can be one of the function forms given in Eq. (8.3-
8.8), and G is the set of n constraint functions for that particular benchmark problem.
The detailed descriptions of f (x) and gi (x) for each problem are described in Table
8.1.

Eqs. (8.1-8.2) describe the general function forms for the objective functions in
the G24 set. Of these function forms, f (2)is used to design the objective function for
G24 8a and G24 8b, and f (1) is used to design the objective functions for all other
problems. f (1) is modified from a static function proposed in [10] and f (2)is a newly
designed function.

f (1) = −(X1 +X2) (8.1)

f (2) = −3exp

(
−
√√

(X1)
2 +(X2)

2

)
(8.2)

where Xi = Xi (xi, t) = pi (t)(xi + qi (t));0≤ x1 ≤ 3;0≤ x2 ≤ 4 with pi (t) and qi (t)
(i = 1,2) as the dynamic parameters, which determine how the dynamic objective
function of each benchmark problem changes over time.

Eqs. (8.3-8.8) describe the general function forms for the constraint functions
in the G24 set. Of these function forms, g(1) and g(2) were modified from two
static functions proposed in [10] and g(3),g(4), g(5) and g(6) are newly designed
functions.

198 T.T. Nguyen and X. Yao

g(1) = −2Y 4
1 + 8Y 3

1 − 8Y2
1 +Y2− 2 (8.3)

g(2) = −4Y 4
1 + 32Y3

1 − 88Y2
1 + 96Y1 +Y2− 36 (8.4)

g(3) = 2Y1 + 3Y2− 9 (8.5)

g(4) =

{
−1 if (0≤ Y1 ≤ 1)or(2≤ Y1 ≤ 3)

1 otherwise
(8.6)

g(5) =

{
−1 if (0≤ Y1 ≤ 0.5)or(2≤Y1 ≤ 2.5)

1 otherwise
(8.7)

g(6) =

⎧
⎨
⎩
−1 if [(0≤ Y1 ≤ 1)and(2≤ Y2 ≤ 3)]

or (2≤ Y1 ≤ 3)
1 otherwise

(8.8)

where Yi = Yi (x, t) = ri (t)(x+ si (t));0 ≤ x1 ≤ 3;0 ≤ x2 ≤ 4 with ri (t) and si (t)
(i = 1,2) as the dynamic parameters, which determine how the constraint functions
of each benchmark problem change over time.

Each benchmark problem may have a different mathematical expression for
pi (t), qi (t), ri (t) and si (t). Note that although many benchmark problems share the
same general function form in Eqs. (8.3-8.8), their individual expressions for pi (t)
and qi (t) make their actual dynamic objective functions very different. Similarly,
the individual expressions for ri (t) and si (t) make each actual dynamic constraint
functions very different although they may share the same function form. The indi-
vidual expressions of pi (t), qi (t), ri (t), and si (t) for each benchmark function are
described in Table 8.2.

Two guidelines were used to design the test problems: (a) problems should sim-
ulate the common properties of DCOPs as mentioned in Section 8.2 and (b) there
should always be a pair of problems for each characteristic. The two problems in
each pair should be almost identical except that one has a particular characteristic
(e.g. fixed constraints) and the other does not. By comparing the performance of
an algorithm on the two problems in the pair, it is possible to analyse whether the
considered characteristic has any effect on the tested algorithm and to what extent
that effect is significant.

Based on the two guidelines above, 18 different test problems were created in
[23] (Table 8.2). Each test problem is able to capture one or several of the mentioned
characteristics of DCOPs, as shown in Table 8.3. In addition, the problems and their
relationships are carefully designed so that they can be arranged in 21 pairs (Table
8.4), of which each pair is a different test case to test a single characteristic of
DCOPs (the two problems in each pair are almost identical except that one has a
special characteristic and the other does not).

8 Evolutionary Dynamic Constrained Optimization 199

Table 8.2 Dynamic parameters for all test problems in the benchmark set G24. Each dynamic
parameter is a time-dependant rule/function which governs the way the problems change
(reproduced with permission from [23])

Prob Parameter settings
G24 u p1 (t) = sin

(
kπt + π

2

)
; p2 (t) = 1;qi (t) = 0

G24 1 p2 (t) = ri (t) = 1; qi (t) = si (t) = 0
p1 (t) = sin

(
kπt + π

2

)
G24 f pi (t) = ri (t) = 1; qi (t) = si (t) = 0
G24 uf pi (t) = 1; qi (t) = 1

G24 2 if (t mod2 = 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)={ p2(t−1) if t>0
p2(0)=0 if t=0

if (t mod2 � 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = si (t) = 0; ri (t) = 1

G24 2u if (t mod2 = 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)={ p2(t−1) if t>0
p2(0)=0 if t=0

if (t mod2 � 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = 0
G24 3 pi (t) = ri (t) = 1;qi (t) = s1 (t) = 0

s2 (t) = 2− t. x2 max−x2 min
S

G24 3b p1 (t) = sin
(
kπt + π

2

)
; p2 (t) = 1

qi (t) = s1 (t) = 0; ri (t) = 1;
s2 (t) = 2− t. x2 max−x2 min

S
G24 3f pi (t) = ri (t) = 1;qi (t) = s1 (t) = 0;s2 (t) = 2
G24 4 p2 (t) = ri (t) = 1; qi (t) = s1 (t) = 0

p1 (t) = sin
(
kπt + π

2

)
;s2 (t) = t. x2 max−x2 min

S

G24 5 if (t mod2 = 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)={p2(t−1) if t>0
p2(0) if t=0

if (t mod2 � 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = s1 (t) = 0; ri (t) = 1;
s2 (t) = t. x2 max−x2 min

S
G24 6a/b/c/dp1 (t) = sin

(
πt + π

2

)
; p2 (t) = 1;

qi (t) = si (t) = 0;ri (t) = 1
G24 7 pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0;

s2 (t) = t. x2 max−x2 min
S

G24 8a pi (t) =−1;q1 (t) =−(c1 + ra.cos (kπt))
q2 (t) =−(c2 + ra.sin(kπt)) ;

G24 8b pi (t) =−1;q1 (t) =−(c1 + ra.cos (kπt))
q2 (t) =−(c2 + ra.sin(kπt)) ;ri (t) = 1; si (t) = 0

k k determines the severity of function changes.
k = 1 ∼large; k = 0.5 ∼ medium; k = 0.25 ∼ small

S S determines the severity of constraint changes
S = 10 ∼large; S = 20 ∼ medium; S = 50 ∼ small

c1,c2,ra c1 = 1.470561702;c2 = 3.442094786232;
(G24 8a/b
only)

ra = 0.858958496 .

i i is the variable index, i = 1,2

200 T.T. Nguyen and X. Yao

Table 8.3 Properties of each test problem in the G24 benchmark set (reproduced with per-
mission from [23])

Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path
G24 u Dynamic NoC 1 No No No Yes N/A
G24 1 Dynamic Fixed 2 Yes No Yes No N/A
G24 f Fixed Fixed 2 No No Yes No N/A
G24 uf Fixed NoC 1 No No No Yes N/A
G24 2* Dynamic Fixed 2 Yes No Yes&No Yes&No N/A
G24 2u Dynamic NoC 1 No No No Yes N/A
G24 3 Fixed Dynamic 2-3 No Yes Yes No N/A
G24 3b Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 3f Fixed Fixed 1 No No Yes No N/A
G24 4 Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 5* Dynamic Dynamic 2-3 Yes No Yes&No Yes&No N/A
G24 6a Dynamic Fixed 2 Yes No No Yes Hard
G24 6b Dynamic NoC 1 No No No Yes N/A
G24 6c Dynamic Fixed 2 Yes No No Yes Easy
G24 6d Dynamic Fixed 2 Yes No No Yes Hard
G24 7 Fixed Dynamic 2 No No Yes No N/A
G24 8a Dynamic NoC 1 No No No No N/A
G24 8b Dynamic Fixed 2 Yes No Yes No N/A
DFR number of Disconnected Feasible Regions
SwO Switched global Optimum between disconnected regions
bNAO better Newly Appear Optimum without changing existing ones
OICB global Optimum is In the Constraint Boundary
OISB global Optimum is In the Search Boundary
Yes&No It means OICB/OISB is true at some other changes and false at some others
Path Indicate if it is easy or difficult to use mutation to travel

between feasible regions
Dynamic The function is dynamic
Fixed There is no change
NoC There is no constraint
* In some change periods, the landscape either is a plateau or

contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes

8.4 Challenges to Solve DCOPs

8.4.1 Analysing the Performance of Some Common Dynamic
Optimization Strategies in Solving DCOPs

The purpose of this section is to discuss whether the DO strategies commonly used
in existing literature can be applied directly to solving DCOPs. We also report our
analyses in [23] of whether the special characteristics of DCOPs might have any
effect on the performance of these strategies and why. The results of the analysis
will also provide insight in understanding how to design suitable algorithms for
solving DCOPs.

8 Evolutionary Dynamic Constrained Optimization 201

Table 8.4 The 21 test cases (pairs) to be used in this chapter (reproduced with permission
from [23])

Static problems: Unconstrained vs Fixed constraints
1 G24 uf (fF, noC) vs G24 f (fF, fC)
Fixed objectives vs Dynamic objectives
2 G24 uf (fF, noC) vs G24 u (dF, noC)
3 G24 f (fF, fC, OICB) vs G24 1 (dF, fC, OICB)
4 G24 f (fF, fC, OICB) vs G24 2 (dF, fC, ONICB)
Dynamic objectives: Unconstrained vs Fixed constraints
5 G24 u (dF, noC) vs G24 1 (dF, fC, OICB)
6 G24 2u (dF, noC) vs G24 2 (dF, fC, ONICB)
Fixed constraints vs Dynamic constraints
7 G24 1 (dF, fC, OICB) vs G24 4 (dF, dC, OICB)
8 G24 2 (dF, fC, ONICB) vs G24 5 (dF, dC, ONICB)
9 G24 f (fF, fC) vs G24 7 (fF, dC, NNAO)
10 G24 3f (fF, fC) vs G24 3 (fF, dC, NAO)
No constraint vs Dynamic constraints
11 G24 u (dF, noC) vs G24 4 (dF, dC, OICB)
12 G24 2u (dF, noC) vs G24 5 (dF, dC, ONICB)
13 G24 uf (fF, noC) vs G24 7 (fF, dC)
Moving constraints expose better optima vs not expose optima
14 G24 3f (fF, fC) vs G24 3 (fF, dC, NAO)
15 G24 3 (fF, dC, NAO) vs G24 3b (dF, dC, NAO)
Connected feasible regions vs Disconnected feasible regions
16 G24 6b (1R) vs G24 6a (2DR, hard)
17 G24 6b (1R) vs G24 6d (2DR, hard)
18 G24 6c (2DR, easy) vs G24 6d (2DR, hard)
Optima in constraint boundary vs Optima NOT in constr boundary
19 G24 1 (dF, fC, OICB) vs G24 2 (dF, fC, ONICB)
20 G24 4 (dF, dC, OICB) vs G24 5 (dF, dC, ONICB)
21 G24 8b (dF, fC, OICB) vs G24 8a (dF, noC, ONISB)

dF dynamic objective func fF fixed objective function
dC dynamic constraints fC fixed constraints
OICB optima in constraint bound ONICB opt. not in constraint bound
OISB optima in search bound ONISB optima not in search bound
NAO better newly appear optima NNAO No better newly appear opt
2DR 2 Disconn. feasible regions 1R One single feasible region
Easy easy for mutation to travel

between disconn. regions
Hard less easy to travel among

regions
noC unconstrained problem SwO Switched optimum between

disconnected regions

The strategies being considered are (1) introducing diversity, (2) maintaining di-
versity and (3) tracking the previous optima. These three are among the four most
commonly used strategies (the other strategy is memory-based) to solve DOPs. The
diversity-introducing strategy was proposed based on the assumption that by the
time a change occurs in the environment, an evolutionary algorithm (EA) might

202 T.T. Nguyen and X. Yao

have already converged to a specific area and hence would lose its ability to deal
with changes in other areas of the search space. Consequently, it is necessary to
increase the diversity level in the population, either by increasing the mutation rate
or re-initialising/re-locating the individuals. This strategy was introduced years ago
[7] but is still extensively used [18, 26].

The diversity-introducing strategy requires that changes must be visible to the
algorithm. To avoid this disadvantage, the diversity-maintaining strategy was intro-
duced so that population diversity can be maintained without explicitly detecting
changes [11]. This strategy is still the main strategy in many recent approaches
[5, 38].

The third strategy, tracking-previous-optima, is used where the optima might
only slightly change. The region surrounding the current optima is monitored to
detect changes and “track” the movement of these optima. Similar to the two strate-
gies above, the tracking strategy has also been used for years [7] and it has al-
ways been one of the main strategies for solving DOPs. Recently this strategy
has been combined with the diversity maintaining/introducing strategy to achieve
better performance. Typical examples are the multi-population/multi-swarm ap-
proaches, where multiple sub-populations are used to maintain diversity and each
sub-population/sub-swarm focuses on tracking one single optimum [5, 6].

8.4.2 Chosen Algorithms and Experimental Settings

8.4.2.1 Chosen Algorithms

Two commonly used algorithms: triggered hyper-mutation GA (HyperM [7]) and
random-immigrant GA (RIGA [11]) were chosen to evaluate the performance of
the three strategies mentioned above in DCOPs. HyperM is basically a simple GA
with an adaptive mechanism to switch from a low mutation rate (standard-mutation-
rate) to a high mutation rate (hyper-mutation-rate, to increase diversity) and vice
versa depending on whether or not there is a degradation of the best solution in the
population. It represents the “introducing diversity” and “tracking previous optima”
strategies in DO.

RIGA is another derivative of a basic GA. After the normal mutation step, a frac-
tion of the population is replaced with randomly generated individuals. This fraction
is determined by a random-immigrant-rate (also named replacement rate). By con-
tinuously replacing a part of the population with random solutions, the algorithm
is able to maintain diversity throughout the search process to cope with dynamics.
RIGA represents the “maintaining diversity” strategy in DO.

One reason to choose these algorithms for the test is that their strategies are still
commonly used in most current state-of-the-art DO algorithms. Another reason is
the strategies in these algorithms are very simple and straightforward, making it
easy to test and analyse their behaviour. In addition, because these two algorithms
are very well studied, using them would help in comparing new experimental data
with existing results. Finally, because both algorithms are developed from a basic
GA (actually the only difference between HyperM/RIGA and a basic GA is the

8 Evolutionary Dynamic Constrained Optimization 203

Table 8.5 Test settings for all algorithms used in the chapter

All the Pop size (pop size) 5, 15, 25 (medium), 50, 100
algorithms Elitism Elitism & non-elitism if applicable
(exceptions Selection method Non-linear ranking as in [16]
below) Mutation method Uniform, P = 0.15.

Crossover method Arithmetic, P = 0.1.
HyperM Triggered mutate Uniform, P = 0.5 as in [7].
RIGA Rand-immig. rate P = 0.3 as in [11].
Benchmark Number of runs 50
problem Number of changes 5/k (see below)
settings Change frequency 250, 500, 1000 (med), 2000, 4000

evaluations
ObjFunc severity k 0.25 (small), 0.5 (med), 1.0 (large)
Constr. severity S 10 (small), 20 (medium), 50 (large)

mutation strategy), it would be easier to compare/analyse their performance. The
performance of HyperM and RIGA was also compared with a basic GA to see if
they work well on the tested problems.

8.4.2.2 Parameter Settings

Table 8.5 shows the detailed parameter settings for HyperM, RIGA and GA. All al-
gorithms use real-valued representations. The algorithms were tested on 18 bench-
mark problems described in Section 8.3. To create a fair testing environment, the
algorithms were tested in a wide range of dynamic settings (different values of pop-
ulation size, severity of change and frequency of change) with five levels: small,
medium small, medium, medium large, large.

The evolutionary parameters of all tested algorithms were set to similar values or
the best known values if possible. The base mutation rate of the algorithms is 0.15,
which is the average value of the best mutation rates commonly used for GA-based
algorithms in various existing studies on continuous DO, which are 0.1 ([28, 30])
and 0.2 ([4, 6]). For HyperM and RIGA, the best hyper-mutation-rate and random-
immigrant-rate parameter values observed in the original papers [7, 11] were used.
The same implementations as described in [7] and [11] were used to reproduce
these two algorithms. A crossover rate of 0.1 was chosen for all algorithms because,
according to the analysis in [25], this value was one of the few settings where all
tested algorithms perform well on this benchmark set.

A further study of the effect of different values of the base mutation rates, hyper-
mutation rates, random-immigrant rates and crossover rates on algorithm perfor-
mance was also carried out. Detailed experimental results and discussion for this
analysis can be found in [25] where it was found that the overall behaviours of the
algorithms are not different from those using the default/best known settings, ex-
cept for the followings: (i) When the base mutation rate is very low (≤ 0.01), the
performance of GA and HyperM drop significantly; (ii) generally to work well in

204 T.T. Nguyen and X. Yao

the tested DCOPs, algorithms need to use high base mutation rates. The range of
best mutation rates is 0.3-0.8. (iii) Algorithms like RIGA and HyperM also need
high random-immigrant/hyper-mutation rates to solve DCOPs. The best results are
usually achieved with the rates of 0.6-0.8; (iv) The suitable range of crossover rate
is 0.1-1.0.

8.4.2.3 Constraint Handling

It is necessary to integrate existing DO algorithms with a CH mechanism to use
these algorithms for solving DCOPs. That CH mechanism should not interfere with
the original DO strategies so that it is possible to correctly evaluate whether the
original DO strategies would still be effective in solving DCOPs. To satisfy this
requirement, the penalty function approach in [17] was chosen because it is the sim-
plest way to apply existing unconstrained DO algorithms directly to solving DCOPs
without changing the algorithms. Also this penalty method can be effective in solv-
ing difficult numerical problems without requiring users to choose any penalty factor
or other parameter [17].

8.4.2.4 Performance Measures

For measuring the performance of the algorithms in this particular experiment, an
existing measure: the offline error [6] was modified. The measure is calculated as
the average over, at every evaluation, the error of the best solution found since the
last change of the environment.

Because the measure above is designed for unconstrained environments, it is nec-
essary to modify it to evaluate algorithm performance in constrained environments:
At every generation, instead of considering the best errors/fitness values of any solu-
tions regardless of feasibility as implemented in the original measure, only the best
fitness values / best errors of feasible solutions at each generation are considered. If
in any generation there is no feasible solution, the measure takes the worst possible
value that a feasible solution can have for that particular generation. This measure
is called the modified offline error for DCOPs, or offline error for short.

EMO =
1

num o f gen ∑num o f gen
j=1 eMO (j) (8.9)

where eMO (j) is the best feasible error since the last change at the generation j.
Five new measures were also proposed to analyse why a particular algorithm

might work well on a particular problem. The first two measures are the recovery
rate (RR) and the absolute recovery rate (ARR) to analyse the convergence be-
haviour of algorithms in dynamic environments. The RR measure is used to analyse
how quickly an algorithm recovers from an environmental change and starts con-
verging to a new solution before the next change occurs. The new solution is not
necessarily the global optimum.

8 Evolutionary Dynamic Constrained Optimization 205

RR =
1
m ∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i,1)]

p(i) [fbest (i, p(i))− fbest (i,1)]
(8.10)

where fbest (i, j) is the fitness value of the best feasible solution since the last change
found by the tested algorithm until the jth generation of the change period i , m is the
number of changes and p(i) , i = 1 : m is the number of generations at each change
period i. The RR score would be 1 in the best case where the algorithm is able to
recover and converge to a solution immediately after a change, and would be close
to zero in case the algorithm is unable to recover from the change at all 2.

The RR measure only indicates if the considered algorithm converges to a solu-
tion and if it converges quickly. It does not indicate whether the converged solution
is the global optimum. For example, RR can still be 1 if the algorithm does noth-
ing but keep re-evaluating the same solution. Because of that, another measure is
needed: the absolute recovery rate (ARR). This measure is very similar to the RR
but is used to analyse how quick it is for an algorithm to start converging to the
global optimum before the next change occurs:

ARR =
1
m ∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i,1)]

p(i) [f ∗ (i)− fbest (i,1)]
(8.11)

where fbest (i, j) , i, j,m, p(i) are the same as in Eq. 8.10 and f ∗ (i) is the global
optimal value of the search space at the ith change. The ARR score would be 1
in the best case when the algorithm is able to recover and converge to the global
optimum immediately after a change, and would be zero in case the algorithm is
unable to recover from the change at all. Note that the score of ARR should always
be less than or equal to that of RR. In the ideal case (converged to global optimum),
ARR should be equal to RR3.

The RR and ARR measures can be used together to indicate if an algorithm is
able to converge to the global optimum within the given time frame between changes
and if so how quickly it takes to converge. The RR-ARR diagram in Fig. 8.1 shows
some analysis guidelines.

A third measure, percentage of selected infeasible individuals, is proposed to
analyse algorithm ability to balance exploiting feasible regions and exploring in-
feasible regions in DCOPs. This measure finds the percent of infeasible individuals
selected for the next generation. The average (over all tested generations) is then
compared with the percentage of infeasible areas in the search space. If the consid-
ered algorithm is able to accept infeasible diversified individuals in the same way
as it accepts feasible diversified individuals (and hence to maintain diversity effec-
tively), the two percentage values should be equal.

To analyse the behaviour of algorithms using triggered-mutation mechanisms
such as HyperM, a fourth measure: triggered-time count, which counts the number

2 Note that RR will never be equal to zero because there is at least one generation where
fbest (i, j) = fbest (i, p(i)).

3 Note that to use the measure ARR it is necessary to know the global optimum value at
each change period.

206 T.T. Nguyen and X. Yao

Fig. 8.1 Diagram (a) provides a guideline for analysing the convergence behaviour/recovery
speed of an algorithm given its RR/ARR scores. These scores can be represented as the x and
y coordinations of a point on the diagonal thick line or inside the shaded area. The position
of the point represents the behaviour of the corresponding algorithm. The closer the point
is to the right, the faster the algorithm was in recovering and re-converging, and vice versa.
In addition, if the point lies on the thick diagonal line (where RR = ARR) like point A, the
algorithm has been able to recover from the change and converged to the new global optimum.
Otherwise, if the point lies inside the shaded area, the algorithm either has converged to a local
solution (e.g. point C); or has not been converged yet (e.g. point D - recover slowly; and point
B - recover quickly). Diagram (b) shows the mapping of the RR/ARR scores of GA, RIGA,
and HyperM to the RR-ARR diagram. (Reproduced with permission from [23]).

of times the hyper-mutation-rate is triggered by the algorithm, and a fifth measure:
detected-change count, which counts the number of triggers actually associated with
a change, are also proposed. For HyperM, triggers associated with a change are
those that are invoked by the algorithm within ν generations after a change, where
ν is the maximum number of generations (five in this implementation) needed for
HyperM to detect a drop in performance. These two measures indicate how many
times an algorithm triggers its hyper-mutation; whether each trigger time corre-
sponds to a new change; and if there is any change that goes undetected during the
search process.

Note that all of the measures used here are specifically designed for dynamic
problems. This creates a problem for the experiments in this chapter because in
the G24 benchmark set there are not only dynamic problems but also stationary
problems. To overcome this issue, in this study stationary problems are consid-
ered a special type of dynamic problem which still have “changes” with the same
change frequency as other dynamic problems. However, in stationary problems the
“changes” do not alter the search space.

8 Evolutionary Dynamic Constrained Optimization 207

8.4.3 Experimental Results and Analyses

The full offline-error results of the tested algorithms on all 18 benchmark problems
for all test scenarios are presented in the tables in [24]. These data were further anal-
ysed from different perspectives to achieve a better understanding of how existing
DO strategies work in DCOPs and how each characteristic of DCOPs would affect
the performance of existing DO algorithms. First of all, the average performance of
the tested algorithms on each major group of problems under different parameter
settings and dynamic ranges were summarised to have an overall picture of algo-
rithm behaviour on different types of problems (see Fig. 8.2). Then the effect of
each problem characteristic on each algorithm was analysed in 21 test cases (each
case is a pair of almost identical problems, one with a particular characteristic and
one without) as shown in Table 8.4 of Section 8.3 (see test results in Figs. 8.4 and
8.5). For each particular algorithm, some further analyses were also carried out us-
ing the five newly proposed measures mentioned above. Details of these analyses
will be described in the next subsections. Only the summarised results are presented
in Fig. 8.2 with different settings (small / medium / large). For other detailed figures
and tables, the results will only be presented in the default settings (all parameters
and dynamic range are set to medium). For detailed results in other settings, readers
are referred to [24].

The experimental results show some interesting findings.

8.4.3.1 The Impact of Different Dynamic Ranges on Algorithm Performance

The summarised results in groups of problems (Fig. 8.2) show that (i) generally the
behaviour of algorithms and their relative strengths/weaknesses in comparison with
other algorithms still remain roughly the same when the dynamic settings change;
and (ii) as expected in most cases algorithms’ performance decrease when the condi-
tions become more difficult (magnitude of change becomes larger; change frequency
becomes higher; population size becomes much smaller). Among the variations in
dynamic settings, it seems that the variations in frequency of change affect algo-
rithms’ performance the most, followed by variations in magnitude of changes and
in population size.

8.4.3.2 The Effect of Elitism on Algorithm Performance

The summarised results in groups of problems (Fig. 8.2) and the pair-wise compar-
isons in Fig. 8.4 and Fig. 8.5 reveal an interesting effect of elitism on both uncon-
strained and constrained dynamic cases: the elitism versions of GA/RIGA/HyperM
perform better than their non-elitism counterparts in most tested problems. The rea-
son for this effect (with evidence shown in the next paragraph) is that elitism helps
algorithms with diversity-maintaining strategies to converge faster. This effect is
independent of the combined CH techniques.

Two measures proposed in Section 8.4.2.4: recovery rate (RR) and absolute re-
covery rate (ARR) were used to study the inefficiency of GA/RIGA/HyperM in

208 T.T. Nguyen and X. Yao

Fig. 8.2 Algorithm performance in groups of problem (part 1 - see Fig. 8.3 for part 2). Per-
formance (vertical axis in logarithmic scale) is evaluated by calculating the ratio between the
base line (worst error among all scenarios) and the error of each algorithm in each problem
to see how many times their performance is better (smaller) than the base line. Explanations
for abbreviations can be found in Table 8.4.

the non-elitism case. The scores of the algorithms on these measures are given in
Fig. 8.1b. The figure shows that none of the algorithms are close to the optimum
line, meaning there are problems/ change periods where the algorithms were un-
able to converge to the global optimum. In addition, for RIGA, its elitism version is
closer to the top-right corner while its non-elitism version is closer to the bottom-left
corner, meaning that non-elitism makes RIGA converge slower/less accurately. Fi-
nally, for GA/HyperM, their elitism versions are closer to the global optimum while
their non-elitism versions are closer to the bottom-right corner, meaning that the

8 Evolutionary Dynamic Constrained Optimization 209

Fig. 8.3 Algorithm performance in groups of problem (part 2 - see Fig. 8.2 for part 1 and
explanation)

210 T.T. Nguyen and X. Yao

0

20

40

60
(1) noC vs fC (fF)

0

20

40

60

H
o

w
 m

a
n

y
 t

im
e
s
 b

e
tt

e
r

th
a
n

 b
a
s
e
li

n
e
 e

rr
o

r

(4) fF vs dF (fC, ONICB)

0

20

40

60
(7) fC vs dC (dF, OICB)

0

20

40

60

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(11) noC vs dC (dF, OICB)

(2) fF vs dF (noC)

(5) noC vs fC (dF, OICB)

(8) fC vs dC (dF, ONICB)

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(12) noC vs dC (dF, ONICB)

(3) fF vs dF (fC, OICB)

(6) noC vs fC (dF, ONICB)

(9) fC vs dC (fF, NNAO)

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(13) noC vs dC (fF)

fF, noC G24−uf

fF, fC G24−f

fF, noC G24−uf

dF,noC G24−u

fF, fC G24−f

dF, fC G24−1

fF, fC G24−f

dF, fC G24−2

dF,noC G24−u

dF, fC G24−1

dF, noC G24−2u

dF, fC G24−2

dF, fC G24−1

dF, dC G24−4

dF, fC G24−2

dF, dC G24−5

fF, fC G24−f

fF, dC G24−7

dF,noC G24−u

dF, dC G24−4

dF, noC G24−2u

dF, dC G24−5

fF, noC G24−uf

fF, dC G24−7

Fig. 8.4 The effect of twelve different problem characteristics on algorithm performance
(medium case). Performance (vertical axis) is evaluated based on the ratio between the base
line error (described in Figure 8.2) and algorithm errors. Each subplot represents algorithm
performance (pair of adjacent bars) in a pair of almost identical problems (one has a spe-
cial characteristic and the other does not). The larger the difference between the bar heights,
the greater the impact of the corresponding DCOP characteristic on performance. Subplots’
title represent the test case numbers (in brackets) followed by an abbreviated description.
Explanations for the abbreviations are in the last rows of Table 8.4.

0

5

10

15

20
(14) NNAO vs NAO (fF)

0

5

10

15

20

H
o

w
 m

an
y

ti
m

es
 b

et
te

r
th

an
 b

as
el

in
e

er
ro

r

(16) 1 FR vs 2 FR

0

5

10

15

20
(18) 2 FR(easy) vs 2 FR(hard)

0

10

20

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(20) OICB vs ONICB (dC)

(15) NAO(fF) vs NAO(dF)

(17) 1 FR vs 2 FR

(19) OICB vs ONICB (fC)

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(21) OICB vs ONISB

fF, fC G24−3f

fF, dC G24−3

fF, dC G24−3

dF, dC G24−3b

1R G24−6b

2DR,hard G24−6a

1R G24−6b

2DR,hard G24−6d

2DR,easy G24−6c

2DR,hard G24−6d

dF, fC G24−1

dF, fC G24−2

dF, dC G24−4
dF, dC G24−5

dF, fC, OICB G24−8b
dF, nC, ONISB G24−8a

Fig. 8.5 The effect of the other eight different problem properties on algorithm performance
(medium case). Instructions to read this figure can be found in Figure 8.4.

8 Evolutionary Dynamic Constrained Optimization 211

non-elitism versions of GA/HyperM are more suceptible to premature convergence.
The results hence show that the high diversity maintained by the random-immigrant
rate in RIGA and the high mutation rate in GA/HyperM comes with a trade-off:
the convergence speed is affected. In such a situation, elitism can be used to speed
up the convergence process. Elite members can guide the population to exploit the
good regions faster while still maintaining diversity.

8.4.3.3 Effect of Infeasible Areas on Maintaining/Introducing Diversity

Another interesting observation is that the presence of constraints makes the per-
formance of diversity-maintaining/introducing strategies less effective when used
in combination with the tested penalty functions. This behaviour can be seen in
Fig. 8.2 where the performance of all algorithms in the unconstrained dynamic case
(dF+noC) is significantly better than their performance in all dynamic constrained
cases (dF+fC, fF+dC, dF+dC). This behaviour can also be seen in the more accurate
pair-wise comparisons in Fig. 8.4 and Fig. 8.5: for each pair of problems in which
one has constraints and the other does not, GA, RIGA and HyperM always perform
worse on the problem with constraints (see pairs 1, 5, 6, 11, 12, 13 in Fig. 8.4 and
pair 21 in Fig. 8.5).

The reason for this inefficiency is the use of tested penalty functions prevents
diversity-maintaining/introducing mechanisms from working effectively. In solving
unconstrained dynamic problems, all diversified individuals generated by the diver-
sity maintaining/introducing strategies are useful because they contribute to either
(1) detecting newly appearing optima or (2) finding the new place of the moving
optima. In DCOPs, however, there are two difficulties that prevent diversified in-
dividuals that are infeasible from being useful in existing DO strategies. One dif-
ficulty is many diversified but infeasible individuals might not be selected for the
next generation population because they are penalised with lower fitness values by
the penalty functions. Consequently, these diversified individuals cannot be used for
maintaining diversity unless they are re-introduced again in the next generation. To
demonstrate this drawback, the previously proposed measure percentage of selected
infeasible individuals was used. As can be seen in Table 8.6, in the elitism case the
percentage of infeasible solutions in the population (23 - 37.6%) is much smaller
than the percentage of infeasible areas over the total search space (60.8%). This
means only a few of the diversified, infeasible solutions are retained and hence the
algorithms are not able to maintain diversity in the infeasible regions4.

The second difficulty is that, even if a diversified but infeasible individual is se-
lected for the next generation, it might no longer have its true fitness value. Conse-
quently, environmental changes might not be accurately detected or tracked.

4 Non-elitism algorithms are able to retain more infeasible individuals, of which some might
be diversified solutions. However, as shown in Subsection 8.4.3.2, in the non-elitism case
this higher percentage of infeasible individuals comes with a trade-off of slower/less accu-
rate convergence, which leads to the generally poorer performance.

212 T.T. Nguyen and X. Yao

Table 8.6 Average percentage of selected infeasible individuals over 18 problems. The last
row shows the average percentage of infeasible areas. (Reproduced with permission from
[23])

Algorithms Percent of infeasible solutions

.GA-elit 23.0%

.RIGA-elit 37.6%

.HyperM-elit 26.4%

.GA-noElit 46.3%

.RIGA-noElit 49.1%

.HyperM-noElit 45.3%
Percentage of infeasible areas 60.8%

8.4.3.4 Effect of Switching Global Optima (between Disconnected Feasible
Regions) on Strategies That Use Penalty functions

The results show existing DO methods become less effective when they are used
in combination with the tested penalty functions to solve a special class of DCOPs:
problems with disconnected feasible regions where the global optimum switches
from one region to another whenever a change occurs. In addition, the more sep-
arated the disconnected regions are, the more difficult it is for algorithms using
penalty functions to solve.

The reason for this difficulty is it is necessary to have a path through the infeasi-
ble areas that separate the disconnected regions to track the moving optimum. This
path might not be available if penalty functions are used because penalties make it
unlikely infeasible that individuals are accepted. Obviously the larger the infeasi-
ble areas between disconnected regions, the harder it is to establish the path using
penalty methods.

Three test cases (pairs of almost identical problems) 16, 17, 18 in Table 8.4 were
used to verify the statement above. In all three test cases the objective functions
are the same and the global optimum switches between two locations whenever a
change occurs. However, each case represents a different dynamic situation. Case 16
tests the situation where in one problem of the pair (G24 6b) there is a feasible path
connecting the two locations and in the other problem (G24 6a) the path is infeasi-
ble, i.e., there is an infeasible area separating two feasible regions. Case 17 is the
same as case 16 except that the infeasible area separating two feasible regions has
a different shape. Case 18 tests a different situation where in one problem (G24 6c)
the infeasible area separating the two feasible regions is small whereas in the other
problem (G24 6d) this infeasible area is large.

The experimental results in these three test cases (pairs 16, 17, 18 in Fig. 8.5)
confirm the hypotheses stated in the beginning of this subsection. In cases 16 and
17, the performance of the tested algorithms did decrease when the path between
the two regions is infeasible. In case 18, the larger the infeasible area separating the
two regions, the worse the performance of the tested algorithms.

8 Evolutionary Dynamic Constrained Optimization 213

Table 8.7 The triggered-time count scores and the detected-change count scores of HyperM
in a pair of problems with moving constraints exposing new optima after 11 changes. (Re-
produced with permission from [23])

Value stdDev Value stdDev Value stdDev Value stdDev
HyperM-noElit 188.70 8.40 1.74 0.78 199.83 5.88 11.00 0.00
HyperM-elit 0.00 0.00 0.00 0.00 30.43 0.57 11.00 0.00
NAO - Newly Appearing Optimum
fF / dF - fixed / dynamic objective Function

Algorithms

G24_3 (NAO+fF) G24_3b (NAO+dF)
Trigger Count Detected Change

Count
Trigger count Detected

Change Count

8.4.3.5 Effect of Moving Infeasible Areas on Strategies That Track the
Previous Optima

Algorithms relying on tracking previous global optimum such as HyperM might
become less effective when the moving constraints expose new, better optima with-
out changing the existing optima. The reason is HyperM cannot detect changes in
such DCOPs and hence might not be able to trigger its hyper-mutation rate. With
the currently chosen base mutation of 0.15, HyperM is still able to produce good
results because the mutation is high enough for the algorithm to maintain diversity.
However, in a previous study [21], when a much smaller base mutation rate was
used, HyperM becomes significantly worse compared to other algorithms in solving
problems like G24 3.

To illustrate this drawback, the newly proposed measures triggered-time count
and detected-change count were used to analyse how the triggered-hypermutation
mechanism works on problem G24 3. As can be seen in Table 8.7, HyperM either
was not able to trigger its hyper-mutation rate to deal with changes (elitism case,
triggered-time count=0 & detected-change count=0) or was not able to trigger its
hyper-mutation rate correctly when a change occurs (non-elitism case, triggered-
time count∼188.7 & detected-change count∼1.74). It is worth noting in the non-
elitism case, most of the trigger times are caused by the selection process because
in non-elitism selection the best solution in the population is not always selected for
the next generation.

Table 8.7 also shows that in problem G24 3b, which is almost identical to G24 3
except it has its existing optima changed, HyperM was able to detect changes and
hence trigger its hyper-mutation timely whenever a change occurs. It shows HyperM
only becomes less effective where environmental changes do not change the value
of existing optima.

8.4.4 Suggestions to Improve Current Dynamic Optimization
Strategies in Solving DCOPs

The experimental results suggest some directions for addressing the drawbacks
listed in the previous subsections:

214 T.T. Nguyen and X. Yao

(i) Based on the observation that elitism is useful for diversity-maintaining strate-
gies in solving DCOPs, it might be useful to develop algorithms that support both
elitism and diversity maintaining mechanisms.

(ii) Given that methods like HyperM are not able to detect changes because they
mainly use change detectors (the best solution in case of HyperM) in the feasible
regions, it might be useful to use change detectors and search in both regions and
infeasible regions.

(iii) Because experimental results show that tracking the existing optima might
not be effective in certain cases of DCOPs, it might be useful to track the moving
feasible regions instead. Because after a change in DCOPs the global optimum al-
ways either moves along with the feasible areas or appears in a new feasible area,
an algorithm able to track feasible areas would have higher chance of tracking the
actual global optimum.

Recent experimental results have shown that the directions above could be helpful
for improving the performance of DO algorithms in solving DCOPs. The use of
elitism was shown to have positive effects in [25, 37], detecting and/or searching in
infeasible areas helped improve performance in [25, 29, 32], and tracking feasible
areas gave superior results in [21, 25].

8.5 Conclusion and Future Research

In this chapter we have reviewed some important and not well studied character-
istics of DCOPs that might cause significant challenges to existing DO strategies.
Although these characteristics are common in real-world applications, in the con-
tinuous domain they have not been considered in most existing DO studies and they
have not been captured in most existing continuous DO benchmark problems.

A set of dynamic constrained benchmark problems for simulating the character-
istics of DCOPs, together with eight performance measures, have been discussed to
help close this gap.

Using the benchmark problems and measures, we discussed detailed experimen-
tal analyses to investigate the strengths and weaknesses of existing DO strategies
(GA/RIGA/HyperM) in solving DCOPs. The experimental analyses reveal some in-
teresting findings about the ability of existing algorithms in solving DCOPs. These
findings can be categorised as follows.

First, three findings about the performance of existing DO strategies in DCOPs
have been identified: (a) the use of elitism might have a positive impact on the
performance of existing diversity-maintaining strategies but might have a negative
impact on the performance of diversity-introducing strategies if they are not used
with diversity-maintaining strategies; (b) the presence of infeasible areas has a nega-
tive impact on the performance of diversity-introducing/maintaining strategies; and
(c) the presence of switching optima (between disconnected regions) has a nega-
tive impact on the performance of DO strategies if they are combined with penalty
functions.

8 Evolutionary Dynamic Constrained Optimization 215

Second, based on the findings about the strengths and weaknesses of some exist-
ing DO strategies, a list of possible requirements that DO algorithms should meet to
solve DCOPs effectively have been suggested. This list of requirements can be used
as a guideline to design new algorithms to solve DCOPs in future research.

The results and discussions in this chapter raise some open questions for fu-
ture research. One direction is to develop new algorithms specialised in solving
DCOPs based on our suggested list of requirements. We also plan to apply the results
achieved in this chapter to real-world applications, especially to dynamic environ-
ments such as container terminals where there is the need to provide dynamic op-
timization solutions for such problems as dynamic scheduling of automatic-guided
vehicles, dynamic allocation of quay-side and stack-side cranes, and dynamic stack-
ing of containers.

Acknowledgements. This work was partially supported by the Engineering and Physical
Sciences Research Council (EPSRC) of UK under Grant EP/E058884/1, a UK ORS Award,
a studentship from the School of Computer Science, University of Birmingham and an
EU-funded project named ”Intelligent Transportation for Dynamic Environment (InTraDE)”.
The programs in this chapter were developed from the source code provided by Williams
[36].

References

[1] Aickelin, U., Dowsland, K.: Exploiting problem structure in a genetic algorithm ap-
proach to a nurse rostering problem. J. of Sched. 3, 139–153 (2000)

[2] Andrews, M., Tuson, A.L.: Dynamic optimisation: A practitioner requirements study.
In: Proc. 24th Annual Workshop of the UK Planning and Scheduling Special Interest
Group (2005)

[3] Araujo, L., Merelo, J.J.: A genetic algorithm for dynamic modelling and prediction of
activity in document streams. In: Proc. 9th Annual Conf. Genetic and Evol. Comput.,
pp. 1896–1903 (2007)

[4] Ayvaz, D., Topcuoglu, H., Gurgen, F.: A comparative study of evolutionary optimization
techniques in dynamic environments. In: Proc. 8th Annual Conf. Genetic and Evol.
Comput., pp. 1397–1398 (2006)

[5] Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

[6] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2001)
[7] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator

in genetic algorithms having continuouis, time-dependent nonstationary environments.
Tech. Rep. AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

[8] Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-
making using modified NSGA-II: A case study on hydro-thermal power scheduling. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS,
vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[9] Deb, K., Saha, A.: Finding multiple solutions for multimodal optimization problems
using a multi-objective evolutionary approach. In: Proc. 12th Annual Conf. Genetic and
Evol. Comput., pp. 447–454 (2010)

216 T.T. Nguyen and X. Yao

[10] Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis,
J., Meyer, C., Schweiger, C.: Handbook of Test Problems in Local and Global Opti-
mization. In: Noncovex Optimization and Its Applications, vol. 33. Kluwer Academic
Publishers (1999)

[11] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd Int.
Conf. Parallel Problem Solving from Nature, pp. 137–144 (1992)

[12] Ioannou, P., Chassiakos, A., Jula, H., Unglaub, R.: Dynamic optimization of cargo
movement by trucks in metropolitan areas with adjacent ports. Tech. Rep., METRANS
Transportation Center, University of Southern California, Los Angeles, CA 90089, USA
(2002), http://www.metrans.org/research/final/
00-15 Final.htm

[13] Kim, H.: Target exploration for disconnected feasible regions in enterprise-driven multi-
level product design. American Institute of Aeronautics and Astronautics Journal 44(1),
67–77 (2006)

[14] Liu, C.A.: New dynamic constrained optimization pso algorithm. In: Proc. 4th Int. Conf.
Natural Comput., pp. 650–653 (2008)

[15] Mertens, K., Holvoet, T., Berbers, Y.: The DynCOAA algorithm for dynamic constraint
optimization problems. In: Proc. 5th Int. Joint Conf. Autonomous Agents and Multia-
gent Syst., pp. 1421–1423 (2006)

[16] Michalewicz, Z.: The second version of Genocop III: a system which handles also non-
linear constraints, http://www.cs.adelaide.edu.au/
zbyszek/EvolSyst/gcopIII10.tar.Z (accessed February 2009)

[17] Morales, K.A., Quezada, C.: A universal eclectic genetic algorithm for constrained op-
timization. In: Proc. 6th Europ. Congr. Intell. & Soft Comput., pp. 518–522 (1998)

[18] Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. In: Proc. 2007 IEEE Congr. Evol. Comput.,
pp. 252–259 (2007)

[19] Nguyen, T.T.: A proposed real-valued dynamic constrained benchmark set. Tech. Rep.,
School of Computer Science, Univesity of Birmingham (2008),
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
DCOPbenchmark.pdf

[20] Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms.
Ph.D. thesis, School of Computer Science, University of Birmingham (2011),
http://etheses.bham.ac.uk/1296 and
http://www.staff.ljmu.ac.uk/enrtngu1/theses/
phdthesisnguyen.pdf

[21] Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697 (2009)

[22] Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et
al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg
(2009)

[23] Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimisation - the challenges.
IEEE Trans. Evol. Comput. 166, 769–786 (2012)

[24] Nguyen, T.T., Yao, X.: Detailed experimental results of GA, RIGA, HyperM and
GA+Repair on the G24 set of benchmark problems. Tech. Rep., School of Computer
Science, University of Birmingham (2010),
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
DCOPfulldata.pdf

http://www.metrans.org/research/final/00-15_Final.htm
http://www.metrans.org/research/final/00-15_Final.htm
http://www.cs.adelaide.edu.au/zbyszek/EvolSyst/gcopIII10.tar.Z
http://www.cs.adelaide.edu.au/zbyszek/EvolSyst/gcopIII10.tar.Z
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPbenchmark.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPbenchmark.pdf
http://etheses.bham.ac.uk/1296
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phdthesisnguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phdthesisnguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPfulldata.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPfulldata.pdf

8 Evolutionary Dynamic Constrained Optimization 217

[25] Nguyen, T.T., Yao, X.: Solving dynamic constrained optimisation problems using
stochastic ranking and repair methods. IEEE Trans. Evol. Comput. (2010) (submitted),
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
NguyenYaodRepairGA.pdf

[26] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

[27] Prata, D.M., Lima, E.L., Pinto, J.C.: Simultaneous data reconciliation and parameter
estimation in bulk polypropylene polymerizations in real time. Macromolecular Sym-
posia 243(1), 91–103 (2006)

[28] Richter, H.: Detecting change in dynamic fitness landscapes. In: Proc. 2009 IEEE
Congr. Evol. Comput., pp. 1613–1620 (2009)

[29] Richter, H.: Memory design for constrained dynamic optimization problems. In: Di
Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561.
Springer, Heidelberg (2010)

[30] Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic op-
timization problems. Soft Comput. 13(12), 1163–1173 (2009)

[31] Rocha, M., Neves, J., Veloso, A.: Evolutionary algorithms for static and dynamic opti-
mization of fed-batch fermentation processes. In: Ribeiro, B., et al. (eds.) Adaptive and
Natural Computing Algorithms, pp. 288–291. Springer (2005)

[32] Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility
driven evolutionary algorithm (IDEA) on constrained dynamic single objective opti-
mization problems. In: Proc. 2009 IEEE Congr. Evol. Comput., pp. 3127–3134 (2009)

[33] Tawdross, P., Lakshmanan, S.K., Konig, A.: Intrinsic evolution of predictable behav-
ior evolvable hardware in dynamic environment. In: Proc. 6th Int. Conf. Hybrid Intell.
Syst., p. 60 (2006)

[34] Thompson, J.M., Dowsland, K.A.: A robust simulated annealing based examination
timetabling system. Comput. Oper. Res. 25(7-8), 637–648 (1998)

[35] Wang, Y., Wineberg, M.: Estimation of evolvability genetic algorithm and dynamic en-
vironments. Genetic Programming and Evolvable Machines 7(4), 355–382 (2006)

[36] Williams, K.P.: Simple genetic algorithm (SGA) source code (in C),
http://www.kenwilliams.org.uk/code/ga2.c
(accessed December 2008)

[37] Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

[38] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[39] Zhang, Z., Liao, M., Wang, L.: Multi-objective immune genetic algorithm solving dy-
namic single-objective multimodal constrained optimization. In: Proc. 8th Int. Conf.
Natural Comput., pp. 864–868 (2012)

http://www.staff.ljmu.ac.uk/enrtngu1/Papers/NguyenYaodRepairGA.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/NguyenYaodRepairGA.pdf
http://www.kenwilliams.org.uk/code/ga2.c

	Chapter 8 Evolutionary Optimization on Continuous Dynamic Constrained Problems – An Analysis
	8.1 Introduction
	8.2 Characteristics of Real-World Dynamic Constrained Problems
	8.3 A Real-Valued Benchmark to Simulate DCOPs Characteristics
	8.3.1 Related Literature
	8.3.2 Generating Dynamic Constrained Benchmark Problems
	8.3.3 A Dynamic Constrained Benchmark Set

	8.4 Challenges to Solve DCOPs
	8.4.1 Analysing the Performance of Some Common Dynamic Optimization Strategies in Solving DCOPs
	8.4.2 Chosen Algorithms and Experimental Settings
	8.4.3 Experimental Results and Analyses
	8.4.4 Suggestions to Improve Current Dynamic Optimization Strategies in Solving DCOPs

	8.5 Conclusion and Future Research
	References

