
Chapter 6
Memetic Algorithms for Dynamic Optimization
Problems

Hongfeng Wang and Shengxiang Yang

Abstract. Dynamic optimization problems challenge traditional evolutionary algo-
rithms seriously since they, once converged, cannot adapt quickly to environmental
changes. This chapter investigates the application of memetic algorithms, a class
of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive
hill climbing method is proposed as the local search technique in the framework
of memetic algorithms, which combines the features of greedy crossover-based hill
climbing and steepest mutation-based hill climbing. In order to address the conver-
gence problem, a new immigrants scheme, where the immigrant individuals can be
generated from mutating an elite individual adaptively, is also introduced into the
proposed memetic algorithm for dynamic optimization problems. Based on a series
of dynamic problems generated from several stationary benchmark problems, ex-
periments are carried out to investigate the performance of the proposed memetic
algorithm in comparison with some peer algorithms. The experimental results show
the efficiency of the proposed memetic algorithm in dynamic environments.

6.1 Introduction

Many real-world optimization problems are dynamic optimization problems (DOPs),
where the function landscapes may change over time and, thus, the optimum of these
problems may also change over time. DOPs require powerful heuristics that account
for the uncertainty present in the real world. Since evolutionary algorithms (EAs)
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draw their inspiration from the principles of natural evolution, which is a stochastic
and dynamic process, they also seem to be suitable for DOPs. However, traditional
EAs face a serious challenge for DOPs because they cannot adapt well to the chang-
ing environment once converged.

In order to address DOPs, many approaches have been developed [46] and can
be grouped into five categories: 1) increasing population diversity after a change is
detected, such as the adaptive mutation methods [5, 38]; 2) maintaining population
diversity throughout the run, such as the immigrants approaches [12, 44]; 3) memory
approaches, including implicit [11, 37] and explicit memory [3, 40, 43, 48] methods;
4) multi-population [4, 27] and speciation approaches [30]; 5) prediction methods
[2, 24, 31, 32]. A comprehensive survey on EAs applied to dynamic environments
can be found in [15, 25, 45]

In recent years, there has been an increasing concern from the evolution com-
putation community on a class of hybrid EAs, called memetic algorithms (MAs),
which hybridize local search (LS) methods with EAs to refine the solution qual-
ity. So far, MAs have been widely used for solving many optimization problems,
such as scheduling problems [14, 20, 21], combinatorial optimization problems
[9, 35, 36], multi-objective problems [10, 13, 19] and other applications [49, 50].
However, these problems for which MAs have been applied are mainly stationary
problems. MAs have rarely been applied for DOPs [7, 8, 41]. During the running
course of general MAs, they may always exhibit very strong exploitation capacity
due to executing efficient local refinement on individuals, but they may lose the ex-
ploration capacity as a result of the population converging to one optimum, which
needs to be avoided in dynamic environments. Therefore, it becomes an interesting
research issue to examine the performance of MAs, which are enhanced by suitable
diversity methods, for DOPs.

In this chapter, we investigate the application of an MA with an adaptive hill
climbing strategy, which combines the features of crossover-based hill climbing
and mutation-based hill climbing in both cooperative and competitive fashions,
to address DOPs. In order to address the convergence problem, a new immigrants
scheme, where three different immigrants schemes are generalized within a uniform
framework, is introduced into the proposed MA to improve its performance in dy-
namic environments. In addition, two different dominated schemes, which are used
to keep the balance of extra computation costs between LS and diversity maintain-
ing, are experimentally investigated in the proposed MAs for DOPs.

The rest of this paper is organized as follows. Section 6.2 describes the proposed
MA in detail, including the framework of general genetic algorithm (GA)-based
MA, the proposed LS operators and immigrants scheme, and discussion on how
to determining the computation costs of LS and diversity maintaining. Section 6.3
introduces a series of DOPs generated by a dynamic problem generator from the sta-
tionary test suite. Section 6.4 reports the experimental results and relevant analysis.
Finally, Section 6.5 concludes this paper with some discussions on relevant future
work.
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Procedure General GA-based MA:
begin

parameterize();
t := 0;
initializePopulation(P(0));
evaluatePopulation(P(0));
E(0) := selectForLocalSearch(P(0));
localSearch(E(0));
repeat

P′(t) := selectForReproduction(P(t));
P′′(t) := crossover(P′(t));
mutate(P′′(t));
evaluatePopulation(P′′(t));
P(t +1) := selectForSurvival(P(t), P′′(t));
E(t) := selectForLocalSearch(P(t));
localSearch(E(t));
t := t +1;

until a stop condition is met
end

Fig. 6.1 Pseudo-code for a general GA-based MA

6.2 Investigated Algorithms

6.2.1 Framework of GA-Based Memetic Algorithms

The MAs investigated in this paper are a class of GA-based MAs, which can be ex-
pressed by the pseudo-code shown in Fig. 6.1. Within these MAs, a population P(0)
of pop size individuals are generated randomly and then evaluated at the initializa-
tion step. Then, a set E(0) of individuals are selected from P(0) to be improved by
LS. At each subsequent generation, individuals are selected randomly or proportion-
ally from the current population and undergo the uniform crossover operation with
a crossover probability. Uniform crossover is the generalization of n-point crossover
which creates offspring by deciding, for each bit of one parent, whether to swap the
allele of that bit with the corresponding allele of the other parent. After crossover is
executed, the bit-wise mutation operator is performed for each newly generated off-
spring individual, which may change the allele in each locus of an offspring bitwise
(0 to 1 and vice versa) with a mutation probability. Then, the pop size best individ-
uals among all parents and offspring are selected to proceed into the next generation
and a set E(t) of individuals, which are selected from the newly generated popula-
tion, are improved by the LS strategy.

Obviously, the LS procedure in an MA which is illustrated in the above pseudo-
code would include two steps: first, to select individuals from the population P to
construct the set E , and then to apply LS operation to each selected individual in E
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to refine it. In the following section, we will give the relevant schemes on the LS op-
erator used in this chapter, where the empirical experience and theoretical reasoning
are both used in the design. Here, the aim that the above-mentioned pseudo-code is
introduced is only to provide a sound basis for understanding the general framework
of used MAs in this chapter.

It is more noticeable that some diversity maintaining approaches have to be used
in order to address the convergence problem when an MA is applied for DOPs,
which always consume extra computational cost since LS operators involve fitness
evaluations. We will also discuss the relevant solutions to the problems when diver-
sity schemes are applied and how to keep the balance of the extra computational
cost between the diversity schemes and the LS operators, in the later sections.

6.2.2 Local Search

In MAs, EA operations are used for rough global exploration and LS operations
are used for directive local refinements to ensure sufficient exploitation during the
course of evolving the population. In many relevant researches, LS is applied to
each newly generated individual, which would consume a huge number of extra
fitness evaluations in the search of higher-quality solution. This traditional scheme
seems to be too costly and infeasible for MAs in dynamic environments where the
environmental changes can occur with the increment of fitness evaluations. Here,
only the best fitness individual elite in the population, which means that the set E
only comprises one member, should be executed the local refinement considering
that elite would lead the running course of algorithm with a greater degree.

Another primary issue that affects the behavior of LS is which LS operator should
be used to improve the quality of an individual. Among many LS methods available
in the literature, hill climbing (HC) is a common strategy. The basic idea is to use
stochastic iterative HC as the move acceptance criterion of the search (i.e., move
the search from the current individual to a candidate individual if the candidate
has a better fitness). In the context of GAs, HC methods may be divided into two
ways: crossover-based hill climbing and mutation-based hill climbing, depending
on whether crossover or mutation is used as the move operator in a local area. Here,
we propose two HC methods, a greedy crossover-based HC (GCHC) and a steepest
mutation-based HC (SMHC), in this section. They are specially designed for MAs
with binary encoding scheme, which are our concern in this chapter. The two HC
methods are described as follows.

1) GCHC: In this strategy, the individual (chr) selected for local improvement is
taken as one parent and another parent is selected from the current population using
the roulette wheel selection scheme. Then, a special uniform crossover is executed
between these two parent individuals to generate an offspring. The offspring will
replace the individual chr if it has a better fitness than the latter. This procedure is
outlined in Fig. 6.2, where a maximization optimization problem is assumed.

2) SMHC: The steepest mutation means that the chromosome only changes sev-
eral bits randomly when executing one mutation operation on it. In SMHC, the
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Procedure GCHC(chr):
begin

calculate(ξ , pcls);
for i := 1 to numls do

par chr := selectParentForCrossover(P);
for j := 1 to n do

if random()< pcls then
chi chr[ j] := par chr[ j];

else
chi chr[ j] := chr[ j];

endfor
evaluate(chi chr);
if f (chi chr)> f (chr) then chr := chi chr;

endfor
end

GCHC’s denotations:
ξ : a population index used to renew the value of pcls
pcls: the crossover probability in GCHC
par chr: the proportionally selected parent individual
n: individual length (problem dependent)
random(): a random number between 0 and 1
chi chr: the new individual generated by performing a uniform crossover operation

between par chr and chr
chr: the individual selected for LS

Fig. 6.2 Pseudo-code for the GCHC operator

individual (chr) being improved by LS is picked out and several random bits are
changed. If the newly mutated individual has a better fitness, it will replace the in-
dividual chr. The SMHC strategy is outlined in Fig. 6.3.

From Fig. 6.2 and Fig. 6.3, it can be seen that two important parameters, pcls in
GCHC and nmls in SMHC, respectively, may affect their performance. In GCHC
the smaller the value of pcls, the more the offspring inherits from the selected in-
dividual chr. This means executing one step LS operation in a smaller area around
chr. Similar results can be obtained for nmls in SMHC. When the value of nmls is
larger, SMHC will perform the LS operation within a wider range around chr.

Therefore, the question that remains to be answered here is how to set the two
parameters. Generally speaking, the methods of setting strategy parameters in GAs
can be classified into three categories [6]: deterministic mechanism where the value
of the strategy parameter is controlled by some deterministic rules without any feed-
back from the search, adaptive mechanism where there is some form of feedback
information from the search process that is used to direct the setting of a strategy
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Procedure SMHC(chr):
begin

calculate(ξ ,nmls);
for i := 1 to numls do

for j := 1 to n do
chi chr[ j] := chr[ j];

endfor
for k := 1 to nmls do

loc := random(1,n);
chi chr[loc] := 1−chi chr[loc];

endfor
evaluate(chi chr);
if f (chi chr)> f (chr) then chr := chi chr;

endfor
end;

SMHC’s denotations:
nmls: the number of bits mutated in SMHC
chi chr: the new individual generated by performing a steepest mutation operation

upon chr
loc: a random selected location for flipping
random(1,n): a random integer between 1 and n
Other settings are the same as those for GCHC

Fig. 6.3 Pseudo-code for the SMHC operator

parameter, and self-adaptive mechanism where the parameter to be adapted is en-
coded into the chromosomes and undergoes genetic operators.

Two different parameter-setting methods will be discussed for pcls and nmls in
the later experiments. In the deterministic method, both pcls and nmls are set to
constant values, which means that the LS operation will always be executed in a
local area of a certain fixed range. In the adaptive method, a population index ξ
which can measure the diversity of the population is considered as the feedback
information to direct the change of the values of pcls and nmls.

Let the normalized Hamming distance between two individuals xi = (xi1, . . . ,xin)
and x j = (x j1, . . . ,x jn) be defined by:

d(xi,x j) =
∑n

k=1 |xik− x jk|
n

(6.1)

and ξ is calculated by the following formula:

ξ =
∑pop size

i=1 d(x∗,xi)

pop size
, (6.2)
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where x∗ denotes the best individual achieved so far. Obviously, the index ξ can
measure the convergence state of the population via the Hamming distance. When
ξ decreases to zero, it means that the population has lost its diversity absolutely.

With the definition of ξ , pcls and nmls can be calculated as follows:

pcls = min{α ·ξ · (pcmax
ls − pcmin

ls )+ pcmin
ls , pcmax

ls } (6.3)

nmls = min{β ·ξ · (nmmax
ls − nmmin

ls )+ nmmin
ls ,nmmax

ls }, (6.4)

where pcmax
ls and pcmin

ls are the preset maximum and minimum value of pcls respec-
tively (pcmax

ls =0.6 and pcmin
ls =0.1 in the later experiments), nmmax

ls and nmmin
ls are the

preset maximum and minimum value of nmls respectively (nmmax
ls =4 and nmmin

ls =1
in the later experiments), and α and β are the predefined constants to control the
decreasing or increasing speed of pcls and nmls respectively. From these formulae,
it is easy to understand that both GCHC and SMHC exhibit a wide range LS oper-
ations in the presence of a high population diversity (i.e., when ξ → 1) as a result
of pcls → pcmax

ls and nmls → nmmax
ls . This may help algorithms find the optimum

(maybe local optimum) more quickly. However, when the population is converging
(i.e., when ξ → 0), pcls→ pcmin

ls and nmls→ nmmin
ls , which limits the LS operations

in a very small range in order to perform more efficient local improvement for the
selected individual chr.

6.2.3 Adaptive Learning Mechanism in Multiple LS Operators

It has been reported that multiple LS operators can be employed in an MA frame-
work [22, 33, 34]. This is because each LS operator makes a biased search, which
makes a method efficient for some classes of problems but not efficient for others.
That is, LS is problem-dependent. Therefore, how to achieve improved LS opera-
tors and avoid utilizing inappropriate LS methods becomes a very important issue.
In order to address this problem, many researchers have used multiple LS meth-
ods in their MAs. In comparison with traditional MAs that use a single LS opera-
tor throughout the run, MAs with multiple LS methods can usually obtain a better
performance.

The key idea of using multiple LS operators in MAs is to promote the coopera-
tion and competition of different LS operators, enabling them to work together to
accomplish the shared optimization goal. Some researchers [16, 26] have suggested
that multiple LS operators should be executed simultaneously on those individu-
als that are selected for local improvements and that a certain learning mechanism
should be adopted to give the efficient LS methods greater chances to be chosen in
the later stage. However, Neri et al. [23] have also proposed a multiple LS based MA
with a non-competitive scheme, where different LS methods can be activated dur-
ing different population evolution periods. Inspired by these researches, a learning
mechanism is discussed to hybridizes the GCHC and SMHC methods described in
Section 6.2.2 effectively and an adaptive hill climbing (AHC) strategy is introduced
in this study.
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In AHC, the GCHC and SMHC operators are both allowed to work in the whole
LS loop and are selected by probability to execute one step LS operation at every
generation when the MA is running. Let pgchc and psmhc denote the probabilities of
applying GCHC and SMHC to the individual that is used for a local search respec-
tively, where pgchc+psmhc=1. At the start of this strategy, pgchc and psmhc are both
set to 0.5, which means giving a fair competition chance to each LS operator. As
each LS operator always makes a biased search, the LS operator which produces
more improvements should be given a greater selection probability. Here, an adap-
tive learning approach is used to adjust the value of pgchc and psmhc for each LS
operator. Let η denote the improvement degree of the selected individual when one
LS operator is used to refine it and η can be calculated by:

η =
| fimp− fini|

fini
, (6.5)

where fimp is the final fitness of the selected individual chr after applying LS and fini

is its initial fitness before executing LS operation. At each generation, the degree of
improvement of each LS operator is calculated when a predefined number (numls)
of iterations is achieved and then pgchc and psmhc are re-calculated to proceed with
the next LS operation.

Suppose ηgchc(t) and ηsmhc(t) respectively denote the total improvement of
GCHC and SMHC at iteration t. The LS selection probabilities pgchc(t + 1) and
psmhc(t +1) at iteration (t +1) can be calculated orderly by the following formulae:

pgchc(t + 1) = pgchc(t)+Δ ·ηgchc(t), (6.6)

psmhc(t + 1) = psmhc(t)+Δ ·ηsmhc(t), (6.7)

pgchc(t + 1) =
pgchc(t + 1)

pgchc(t + 1)+ psmhc(t + 1)
, (6.8)

psmhc(t + 1) = 1− pgchc(t + 1), (6.9)

where Δ signifies the relative influence of the degree of the improvement on the
selection probability. The AHC operator can be expressed by the pseudo-code in
Fig. 6.4.

From the above discussion, the two different HC strategies, GCHC and SMHC,
may not only cooperate to improve the quality of individuals, but also compete with
each other to achieve a greater selection probability in the running process of AHC.
To promote competition between them, the selection probability of LS operators
can be re-calculated according to an adaptive learning mechanism where the LS
operator with a higher fitness improvement is rewarded with more chance of being
chosen for the subsequent individual refinement.
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Procedure AHC(chr):
begin

if pgchc and psmhc are not initialized then
set pgchc := psmhc := 0.5;

calculate(ξ , pcls,nmls);
set ηgchc = ηsmhc := 0;
for i := 1 to numls do

if random() < pgchc then // GCHC is selected
GCHC(chr);
update(ηgchc);

else // SMHC is selected
SMHC(chr);
update(ηsmhc);

endfor
recalculate(pgchc, psmhc);

end;

AHC’s denotations are the same as those for GCHC and SMHC

Fig. 6.4 Pseudo-code for the AHC operator

6.2.4 Diversity Maintaining

For stationary optimization problems, where the fitness landscape or objective func-
tion does not change during the course of computation, LS operators in MAs are
designed for exploiting information in the current population and genetic operators,
for example, mutation, are mostly responsible for enhancing the diversity of popu-
lation in order to make an efficient jump from a local optimum. Generally speaking,
the population will converge to a small area in the whole search space as a result
of keeping the sufficient exploitation for the global optimum. Therefore, MAs may
gradually loose their population diversity during the running. However, in dynamic
environments, the fitness landscape may change over time. That is, the current opti-
mum point may become a local optimum and the past local optimum may become
a new global optimum point. Considering that a spread-out population can adapt to
these changes more easily, it is very important and necessary to maintain sufficient
diversity of the population for MAs all the time.

The immigrants scheme is a quite simple and common method to maintain the
diversity level of the population through substituting a portion of individuals in the
population with the same number of newly-generated immigrants every generation.
Obviously, the method of generating new immigrants becomes a very important is-
sue in this strategy. In the original scheme, immigrants are designed to be generated
randomly. However, the random immigrants introduced may divert the searching
force of an algorithm and hence degrade the performance due to their lower fit-
ness level. Another thing to notice is that random individuals are not helpful for
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Procedure GenerateImmigrants():
begin

for i := 1 to numim do
Pim[i] := mutation(elite, pmim);
evaluate(Pim[i]);

endfor
replace the worst num im individuals in the

current population with Pim
end

Denotations:
pmim: the mutation probability in generating immigrants
num im: the number of generated immigrants
elite: the best fitness individual in the population
Pim: the generated immigrants set

Fig. 6.5 Pseudo-code for the general immigrants scheme

improving the diversity level when being inserted into a spread-out population. In
the literature [44], a special immigrants scheme, called elitism-based immigrants, is
proposed. In this approach, the elitism individual, which is the best fitness individ-
ual in the population, is used as a base to generate a set of immigrant individuals
iteratively by a simple mutation. The key idea behind this scheme is that the immi-
grants can be guided to make a biased detection around the elite. However, it is also
noticeable that this bias may take no effect in a converging population since all the
individuals in the current population have distributed around its elite.

Inspired by the complementarity mechanism in nature, a primal-dual mapping
operator, where two chromosomes with the maximal distance in the solution space
are defined as a pair of primal-dual chromosomes, was be proposed and applied
for GAs in dynamic environments. Here, a new immigrants scheme, called dual-
based immigrants, is proposed with the hybridization the primal-dual mechanism
and elitism-based immigrants scheme. The dual-based immigrants are generated
by executing a simple mutation to the dual of the elite individual and replace the
same number of worst individuals in the current population. It is obvious that the
hyper-immigrants scheme can enhance the diversity level with the maximal degree,
which is helpful to improve the performance of EAs with a converging population
in dynamic environments especially in the significantly changing environments.

It seems very interesting that the above-mentioned three different immigrants
schemes, that is, elitism-based immigrants, random immigrants, and dual-based im-
migrants, can actually be described in a general framework. As shown in Fig. 6.5,
all immigrants are considered to be generated from mutating the elite individual
with a probability. It is easy to understand that the mutation probability pmim can be
used to control the categories of immigrants. The generated immigrants belong to
the elitism-based immigrants when the value of pmim is very small (e.g., pmim→ 0),
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while the dual-based immigrants can be achieved when executing the mutation to
elite with a large probability (e.g., pmim→ 1). When pmim = 0.5, the mutation op-
eration always creates random immigrants in fact.

The following problem to be addressed is how to set the mutation probability
pmim. Here, we will utilize the index of population diversity ξ , discussed in Section
6.2.2, to calculate the value of pmim by the following formula.

pmim = max{min{(pmmax
im + pmmin

im ∗ random()− ξ ), pmmax
im }, pmmin

im } (6.10)

where random() is a random number between 0 and 1, pmmax
im and pmmin

im are the
preset maximum and minimum value of pmim, respectively (pmmax

im = 0.95 and
pmmin

im = 0.05 in the later experiments). From this formula, it is easy to see that
the elitism-based immigrants are inserted into the population when the population
has a low diversity level (ξ → 1) due to pmim approaches to pmmin

im , while the dual-
based immigrants are generated when the population is converging (ξ → 0) as a
result of pmim→pmmax

im .

6.2.5 Balance between Local Search and Diversity Maintaining

Based on the above description, an adaptive hill climbing operator, where two dif-
ferent LS operators are used in a cooperation fashion, is proposed to enhance the
exploitation capacity of algorithm and hence accelerate its tracking the optimum,
while a hybrid immigrants scheme, where the different category of immigrants are
generated according to the convergence status of population, is used to maintain the
population diversity of algorithm and then improve its performance in dynamic en-
vironments. However, it is noticeable that the extra computation cost, which means
the numbers of fitness evaluation in this paper, would be produced during executing
LS and generating immigrants (step ls in LS and num im in diversity scheme) every
generation.

One main question that follows when both LS operation and diversity maintain-
ing strategy are introduced into an algorithm is how to keep the balance between
them via the extra computational cost. As the generation index is used to set the
change period of environment in the later experiments, it is necessary to maintain a
constant number of evaluations in each generation in order to have fair comparisons
among our investigated MAs and other peer EAs. Therefore, the additional number
of fitness evaluations per generation, denoted as num aepg, is also fixed, that is,
numls + numim = num aepg. Based on this formula, two different methods can be
considered to calculate the values of numls and numls.

The first one is dominated by the effect of LS that the value of numls is firstly
calculated and then numim’s value is achieved by (num aepg−numls). Let numvls(t)
denote the number of valid LS operations, which means the corresponding index
η > 0 after executing one LS operation, at the t-th generation, numls(t + 1) can be
calculated by:
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numls(t + 1) =

{
max{numls(t) ·λ0,nummin

ls }, if numvls(t)> 0
min{numls(t)/λ0,nummax

ls }, else
(6.11)

where λ0 is a preset constant between 0 and 1, nummax
ls and nummin

ls are the preset
maximum and minimum value of numls respectively (nummax

ls = 0.75 ∗ num aepg
and nummin

ls = 0.25 ∗ num aepg in the later experiments). It is easy to understand
from this formula that the LS operation would be further enhanced at the next gen-
eration, that is, the value of numls is increased, once there exists even one valid LS
operation at a step.

The second method is dominated by the diversity level of the population, i.e.,
the value of numim is firstly calculated and then numls’s value is achieved by
(num aepg− numim). Let numim(t) denote the number of generated immigrants at
the t-th generation, numls(t +1)’s value can be calculated by the following formula.

numim(t + 1) =

{
max{numim(t) ·λ1,nummin

im }, if ξ > ξ0

min{numim(t)/λ1,nummax
im }, else

(6.12)

where λ1 is a preset constant between 0 and 1 to signify the influence degree of
the population diversity upon numim, ξ0 is also a preset constant between 0 and
1, nummax

im and nummin
im are the preset maximum and minimum value of numim re-

spectively (nummax
im = 0.75 ∗ num aepg and nummin

im = 0.25 ∗ num aepg in the later
experiments). It is easy to see from this formula that the number of generated immi-
grants would be increased to maintain the diversity level of the population once its
converge degree is below a threshold (ξ0).

Therefore, the framework of our proposed MAs in this chapter, which hybridizes
the AHC operator and immigrants scheme for DOPs, can be summarized by the
pseudo-code in Fig. 6.6.

6.3 Dynamic Test Environments

In this chapter, a series of dynamic test environments are constructed by a specific
dynamic problem generator from a set of well-studied stationary problems.

Four 100-bit binary-coded functions, denoted OneMax, Plateau, RoyalRoad, and
Deceptive respectively, are selected as the stationary functions to construct dynamic
test environments. Each stationary function consists of 25 copies of 4-bit building
blocks and has an optimum value of 100. Each building block for the four functions
is a unitation-based function, as shown in Fig. 6.7. The unitation function of a bit
string returns the number of ones inside the string. The building block for OneMax is
an OneMax subfunction, which aims to maximize the number of ones in a bit string.
The building block for Plateau contributes 4 (or 2) to the total fitness if its unitation
is 4 (or 3); otherwise, it contributes 0. The building block for RoyalRoad contributes
4 to the total fitness if all its four bits are set to one; otherwise, it contributes 0. The
building block for Deceptive is a fully deceptive sub-function. Generally speaking,
the four functions have an increasing difficulty for GAs in the order from OneMax
to Plateau, RoyalRoad to Deceptive.
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Procedure Proposed GA-based MA:
begin

parameterize();
t := 0;
initializePopulation(P(0));
evaluatePopulation(P(0));
calculate(ξ , pcls,nmls, pmim);
set numls(0) := numim(0) := num aepg/2;
elite := selectForLocalSearch(P(0));
AHC(elite);
GenerateImmigrants();
repeat

P′(t) := selectForReproduction(P(t));
P′′(t) := crossover(P′(t));
mutate(P′′(t));
evaluatePopulation(P′′(t));
P(t +1) := selectForSurvival(P′′(t), P(t));
calculate(ξ , pcls,nmls, pmim);
calculate(numls(t +1),numim(t +1));
elite := selectForLocalSearch(P(t +1));
AHC(elite);
GenerateImmigrants();
t := t +1;

until a stop condition is met
end;

Fig. 6.6 Pseudo-code for the proposed GA-based MAs

0 1 2 3 4
0

1

2

3

4

Unitation

F
itn

es
s

OneMax
Plateau
RoyalRoad
Deceptive

Fig. 6.7 The building blocks for the four stationary functions selected to construct dynamic
test problems in this chapter
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In [42, 47], an XOR DOP generator was proposed. The XOR DOP generator
can generate dynamic environments from any binary-encoded stationary function
f (x) (x ∈ {0,1}l) by a bitwise exclusive-or (XOR) operator. The environment is
changed every τ generations. For each environmental period k, an XOR mask M(k)
is incrementally generated as follows:

M(k) = M(k− 1)⊕T(k), (6.13)

where “⊕” is the XOR operator (i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 0 = 0) and T(k)
is an intermediate binary template randomly created with ρ × l ones for the k-th
environmental period. For the first period k = 1, M(1) = 0. Then, the population at
generation t is evaluated as:

f (x, t) = f (x⊕M(k)), (6.14)

where k = �t/τ	 is the environmental index. One advantage of this XOR generator
lies in that the speed and severity of environmental changes can be easily tuned. The
parameter τ controls the speed of changes while ρ ∈ (0.0,1.0) controls the severity
of changes. A bigger ρ means more severe changes while a smaller τ means more
frequent changes.

The dynamic test environments used in this paper are constructed from the four
stationary functions using the aforementioned XOR DOP generator. The change
severity ρ parameter is set to 0.1, 0.2, 0.5, and 0.9 respectively in order to examine
the performance of algorithms in dynamic environments with different severities:
from slight change (ρ = 0.1 or 0.2) to moderate variation (ρ = 0.5) to intense change
(ρ = 0.9). The change speed parameter τ is set to 10, 50, and 100 respectively,
which means that the environment changes very fast, in the moderate speed, and
slowly respectively.

In total, a series of 12 different dynamic problems are constructed from each sta-
tionary test problem. The dynamics parameter settings are summarized in Table 6.1.

Table 6.1 The index table for dynamic parameter settings

τ Environmental Dynamics Index

10 1 2 3 4
50 5 6 7 8

100 9 10 11 12
ρ → 0.1 0.2 0.5 0.9

6.4 Experimental Study

6.4.1 Experimental Design

In this section, experiments are carried out in order to study the major features of
our proposed MAs and to compare their performance with several existing peer
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algorithms where similar dualism and immigrants methods are also used. The fol-
lowing abbreviations represent the algorithms considered in this paper:

• SGA: Standard GA;
• SGAr: SGA with restart from scratch whenever the environment changes;
• EIGA: GA with the elitism-based immigrants scheme [44];
• RIGA: GA with the random immigrants scheme;
• DIGA: GA with the dual-based immigrants scheme (seen in Section 6.2.4);
• CHMA: MA with the GCHC operator;
• MHMA: MA with the SMHC operator;
• AHMA: MA with the AHC operator;
• EIAHMA: AHMA with the elitism-based immigrants scheme;
• RIAHMA: AHMA with the random immigrants scheme;
• DIAHMA: AHMA with the dual-based immigrants scheme;
• IMAHMA: AHMA with the proposed immigrants scheme in Section 6.2.4;

Some parameters in all algorithms were set as follows. The total number of eval-
uations per generation was always set to 120 for all algorithms, which means the
population size (pop size) is equal to 120 for SGA and SGAr. In all MAs, EIGA,
RIGA and DIGA, pop size was set to 100 and the additional number of fitness eval-
uations per generation (num aepg) was set to 20. The uniform crossover probability
pc was set to 0.6 and the bit-wise mutation probability pm was set to 0.01 for all
GAs and MAs. The specific parameters in our MAs were set as follows: α = β = 1,
Δ = 4, λ0 = λ1 = 0.9, and θ0 = 0.5. Other parameters in the studied peer algorithms
were set the same as their original settings.

For each experiment of an algorithm on a test problem, 20 independent runs
were executed with the same set of random seeds. For each run of an algorithm on a
DOP, 10 environmental changes were allowed and the best-of-generation fitness was
recorded per generation. The overall offline performance of an algorithm is defined
as the best-of-generation fitness averaged across the number of total runs and then
averaged over the data gathering period, as formulated below:

FBG =
1
G

G

∑
i=1

(
1
N

N

∑
j=1

FBGi j), (6.15)

where G is the number of generations (i.e., G = 10 ∗ τ), N = 20 is the total number
of runs, and FBGi j is the best-of-generation fitness of generation i of run j.

In order to measure the behavior of an algorithm during the course of running,
another numeric measure is defined as the best-of-generation fitness averaged across
the number of total runs and then averaged from the last change generation τ ′ to the
current generation t. More formally, the running offline performance is defined as:

FBGt =
1

t− τ ′
t−τ ′

∑
i=τ ′

(
1
N

N

∑
j=1

FBGi j) (6.16)
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Fig. 6.8 Experimental results with respect to the running offline performance of CHMAs with
different pcls settings on stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad,
and (d) Deceptive

6.4.2 Experimental Study on the Effect of LS Operators

In the experimental study on LS operators, we first study the influence of different
settings of pcls in CHMA and nmls in MHMA, with the aim of determining a robust
setting for these two parameters. In particular, we have implemented CHMA just
on stationary test problems. Three different settings for pcls were used: pcls = 0.6
and pcls = 0.1 in the deterministic setting and pcmax

ls = 0.6 and pcmin
ls = 0.1 in the

adaptive setting scheme (see Section 6.2.2). For each run of an algorithm on each
problem, the maximum allowable number of generations was set to 1001. The ex-
perimental results are shown in Fig. 6.8, where the data were averaged over 20 runs.
The results on the Plateau problem are similar to the results on the RoyalRoad prob-
lem and are not shown in Fig. 6.8.

From Fig. 6.8, it can be seen that CHMA with adaptive pcls always outperforms
CHMAs with the deterministic value of pcls on the OneMax, Plateau and Roy-
alRoad problems and that a smaller pcls can help CHMA obtain a better perfor-

1 The number of maximum allowable fitness evaluations is actually 12000 since each algo-
rithm has 120 fitness evaluations per generation.
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Fig. 6.9 Experimental results with respect to the running offline performance of MHMAs with
different nmls settings on stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad,
and (d) Deceptive

mance on the Deceptive problem. Hence, the adaptive setting scheme for pcls will
always be used in the following experiments considering that the deterministic set-
ting scheme is problem-dependent and the adaptive scheme for pcls always shows
a better adaptive capacity on different problems.

Similar experiments were also carried out to test the influence of different set-
tings of nmls on the performance of MHMA. The value of nmls was set to 4 and 1
respectively for the deterministic scheme and nmmax

ls = 4 and nmmin
ls = 1 in the adap-

tive setting scheme (see Section 6.2.2). The experimental results with respect to the
running offline performance are presented in Fig. 6.9.

From Fig. 6.9, it can be observed that the performance curves of the three MH-
MAs almost overlap together on the Plateau, RoyalRoad and Deceptive problems
except that MHMA with nmls = 1 performs better than MHMA with adaptive nmls

and MHMA with nmls = 4 on the OneMax problem. This indicates that adaptively
varying the search range of the SMHC operator may not improve the performance
of MHMA remarkably. Hence, the value of nmls will always be set to 1 in the later
experiments.

In the following experiments, we investigate the performance of AHMA, MHMA,
CHMA and SGA on the stationary test problems in order to examine the validity of
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Fig. 6.10 Experimental results with respect to the running offline performance of MAs and
SGA on stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad, and (d) Deceptive

our proposed AHC operator. The experimental results with respect to the running
offline performance are shown in Fig. 6.10.

From Fig. 6.10, it can be seen that all MAs outperform SGA significantly on all
test problems. This shows that proper LS techniques (here AHC in AHMA, SMHC
in MHMA, and GCHC in CHMA) can help MAs obtain a much better performance
than SGA. Of course, these conclusions have been drawn by many researchers.
MHMA exhibits the best performance on the OneMax and Deceptive problems,
while CHMA performs best on the Plateau and RoyalRoad problems among the
three MAs, which shows that the effect of LS operators is problem-dependent.
It can also be seen that AHMA always shows good adaptivity on the four test
problems, where AHMA performs better than CHMA on the OneMax and Decep-
tive problems and better than MHMA on the Plateau and RoyalRoad problems. The
results indicate that AHC always does well although it needs to take some time to
adjust its LS strategy. Since it is almost impossible for an algorithm to achieve all
the characters of a problem in advance, the combination of multiple LS operators
within a single MA framework is a good choice for solving optimization problems.

In the above experimental studies, only the elite chromosome is selected for lo-
cal refinement in order to decrease extra cost due to the fitness evaluations by LS
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Fig. 6.11 Experimental results with respect to the running offline performance of AHMAs on
stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad, and (d) Deceptive

operations. In the final experiments on LS operators, we further investigate the influ-
ence of the number of selected individuals for LS upon the performance of AHMA.
In order to make a fair comparison, the number of additional fitness evaluations per
generation (num aepg) is always set to 20 and the number of selected individuals (n)
is set to 1, 4 and 10, respectively, which means the corresponding iteration number
of LS is 20, 5 and 2, respectively. In addition, only the best n individuals in the pop-
ulation would undergo the AHC operation. The experimental results with respect to
the running offline performance are shown in Fig. 6.11.

From Fig. 6.11, it can be seen that the performance of AHMAs degrades with the
increment of the number of selected individuals for LS, especially on the OneMax,
RoyalRoad and Deceptive problems. This means that only executing sufficient local
refinement upon the best individual elite is a good choice when the extra cost is
limited.

6.4.3 Experimental Study on the Effect of Diversity Maintaining
Schemes

Immigrants scheme is a common strategy to address the convergence problem of
EAs in dynamic environments. In Section 6.2.4, three different immigrants schemes
are integrated into a general framework, where different categories of immigrants
can be generated by executing the simple mutation on the best fitness individual
(elite) with different probabilities. In order to investigate the effect of proposed



156 H. Wang and S. Yang

immigrants schemes upon the performance of algorithms in dynamic environments,
we firstly carry out the following experiments on AHMAs with different immigrants
schemes on DOPs with τ=50 and ρ set to 0.1, 0.2, 0.5 and 0.9, respectively. In all
AHMAs, the first method of calculating the values of numls and numim are used.

The experimental results with respect to the overall offline performance are pre-
sented in Table 6.2. The corresponding statistical results of comparing algorithms
by the one-tailed t-test with 38 degrees of freedom at a 0.05 level of significance
are given in Table 6.3. In Table 6.3, the t-test results regarding Alg. 1−Alg. 2 are
shown as “+”, “−”, or “∼” when Alg. 1 is significantly better than, significantly
worse than, or statistically equivalent to Alg. 2, respectively. From Table 6.2 and
Table 6.3, several results can be observed and are analyzed below.

First, EIAHMA performs better than RIAHMA and DIAHMA on all dynamic
OneMax problems and dynamic Plateau problems when the change severity is small.
This is because the immigrant individuals generated by the elitism mechanism can
always make a positive guide for the search of the algorithm on the OnmeMax prob-
lem. In addition, the similar effect of this immigrants scheme can be obtained when
the environmental change is slight, e.g., dynamic Plateau problems with ρ = 0.1 and
ρ = 0.2. It can also be seen that the performance of EIAHMA begins to degrade with
the increasing of the value of ρ . When ρ = 0.5, EIAHMA performs much worse
than RIAHMA on dynamic Plateau, RoyalRoad and Deceptive problems. When the
value of ρ increases to 0.9, EIAHMA is always beaten by DIAHMA with a great
degree.

Second, RIAHMA exhibits the best performance on most dynamic environments
when a random environmental change occurs (ρ=0.5). This is easy to understand.
When the environment changes with ρ = 0.5, almost all building blocks found so far
are demolished. Obviously, RIAHMA can adapt to this environmental change more
easily since the newly-generated random immigrants always do better than those
biased immigrants, that is, the elitism-based immigrants in EIAHMA and the dual-
based immigrants in DIAHMA, in re-achieving the demolished building blocks.

Third, DIAHMA performs better than EIAHMA and RIAHMA on dynamic Roy-
alRoad problems when ρ = 0.9 and on all dynamic Deceptive problems. The reason
lies in that the dual mechanism may help DIAHMA react to significant environmen-
tal changes rapidly and also enable it to escape from the deceptive attractor in the
Deceptive problem.

Fourth, IMAHMA always exhibits good performance in most dynamic environ-
ments except that it is beaten entirely by EIAHMA on dynamic OneMax problems
with the different settings of change severity ρ . In IMAHMA, the probability of
generating immigrants (pmim) can be calculated adaptively according to the conver-
gence degree of population. It means IMAHMA can generate different categories of
immigrants to adapt well to dynamic environments with different change severities.
The experimental results of the good adaptivity of IMAHMA in dynamic environ-
ments confirm our expectation of introducing the proposed immigrants scheme in
Section 6.2.4 to AHMA for DOPs.
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Table 6.2 Experimental results with respect to overall offline performance of AHMAs on
dynamic test problems

Dynamics OneMax Problem

τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 97.11±0.27 97.58±0.19 97.00±0.27 97.08±0.28
50 0.2 95.11±0.37 95.86±0.27 95.03±0.27 95.10±0.24
50 0.5 92.99±0.34 93.54±0.39 93.73±0.32 92.97±0.30
50 0.9 97.18±0.17 97.52±0.31 97.06±0.19 97.09±0.21
Dynamics Plateau Problem
τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 93.62±0.45 93.76±0.82 93.62±0.42 93.48±0.54
50 0.2 87.53±0.71 87.93±0.98 87.41±0.93 87.41±0.83
50 0.5 81.94±1.00 79.51±1.70 83.65±0.77 81.25±1.11
50 0.9 93.60±0.66 93.48±1.95 93.42±0.60 93.54±0.46
Dynamics RoyalRoad Problem
τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 85.77±1.19 80.97±3.15 85.64±1.14 85.76±1.13
50 0.2 73.96±1.52 69.76±1.81 73.70±1.82 73.88±1.82
50 0.5 63.83±1.83 55.08±2.20 65.65±1.73 61.55±1.36
50 0.9 85.23±1.02 79.67±4.93 84.93±1.21 85.37±0.94
Dynamics Deceptive Function
τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 83.44±0.46 76.57±1.42 76.72±1.66 83.99±0.72
50 0.2 81.24±0.47 74.47±0.82 74.14±1.02 82.19±0.54
50 0.5 80.29±0.51 73.50±0.72 74.34±0.62 81.19±0.70
50 0.9 84.07±0.60 77.02±1.45 77.22±1.71 84.06±0.60

Table 6.3 The t-test results of comparing the overall offline performance of AHMAs on
dynamic test problems

t-test Result OneMax Plateau RoyalRoad Deceptive

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
IMAHMA − EIAHMA − − − − ∼ ∼ + ∼ + + + + + + + +
IMAHMA − RIAHMA ∼ ∼ − + ∼ ∼ − ∼ ∼ ∼ − ∼ + + + +
IMAHMA − DIAHMA ∼ ∼ ∼ + ∼ ∼ + ∼ ∼ ∼ + ∼ − − − ∼
EIAHMA − RIAHMA + + ∼ + ∼ + − ∼ − − − − ∼ ∼ − ∼
EIAHMA − DIAHMA + + + + ∼ + − ∼ − − − − − − − −
RIAHMA − DIAHMA ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ − − − −

Both LS and diversity maintaining scheme require to cost a certain number of
additional fitness evaluations. Therefore, it becomes a key problem to balance the
two operations considering that the total additional number of evaluations per gen-
eration (num aepg) is always constant. In Section 6.2.5, two different schemes are
proposed to calculate the corresponding values of additional evaluations consumed



158 H. Wang and S. Yang

Table 6.4 Experimental results with respect to overall offline performance of IMAHMAs on
dynamic test problems

Dynamics OneMax Problem

τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 96.73±0.20 97.13±0.24 96.29±0.24
50 0.2 93.86±0.38 94.86±0.29 92.66±0.45
50 0.5 91.45±0.39 92.89±0.30 90.04±0.52
50 0.9 96.66±0.20 97.04±0.20 96.16±0.24
Dynamics Plateau Problem
τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 92.78±0.62 93.48±0.63 92.39±0.60
50 0.2 86.66±0.86 87.70±0.77 85.44±0.94
50 0.5 80.54±0.96 81.43±1.00 79.55±0.86
50 0.9 92.79±0.54 93.45±0.55 92.15±0.57
Dynamics RoyalRoad Problem
τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 84.99±1.31 85.18±1.76 84.72±1.48
50 0.2 73.74±1.58 74.04±1.62 73.17±1.60
50 0.5 63.71±2.07 64.81±2.14 64.42±1.79
50 0.9 85.14±1.55 85.95±1.34 85.30±1.25
Dynamics Deceptive Problem
τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 83.25±0.57 83.62±0.53 81.26±0.92
50 0.2 79.69±0.82 81.39±0.48 76.51±0.93
50 0.5 77.74±0.61 79.99±0.46 73.98±0.84
50 0.9 82.77±0.87 83.59±0.72 80.88±1.19

by LS (numls) and immigrants scheme (numim), respectively. In the following ex-
periments, we will examine the effect of proposed schemes upon the performance
of IMAHMAs in dynamic environments. For the sake of convenient description
of the experiments, IMAHMA0, IMAHMA1 and IMAHMA2 are used to denote
IMAHMA with a deterministic scheme where both numls and numim are fixed to
num aepg/2, IMAHMA with the first dominated scheme, and IMAHMA with the
second dominated scheme, respectively.

The experimental results respect to the overall offline performance are presented
in Table 6.4 and the corresponding statistical results of comparing algorithms by the
one-tailed t-test with 38 degrees of freedom at a 0.05 level of significance are given
in Table 6.5. From Table 6.4 and Table 6.5, several results can be observed and are
analyzed below.

First, IMAHMA1 performs better than IMAHMA0 and IMAHMA2 on all test
problems. In IMAHMA1, the value of additional fitness evaluations costed by LS
(numls) is firstly calculated based on the effect of LS. When LS helps to improve the
quality of individuals, that is, the number of valid LS (numvls) is larger than zero,
numls’s value would increase in order to execute more sufficient local refinement,
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Table 6.5 The t-test results of comparing the overall offline performance of IMAHMAs on
dynamic test problems

t-test Result OneMax Plateau RoyalRoad Deceptive

τ = 50, ρ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
AHMA0 − AHMA1 − − − − − − − − ∼ ∼ ∼ − − − − −
AHMA0 − AHMA2 + + + + + + + + ∼ ∼ ∼ ∼ + + + +
AHMA1 − AHMA2 + + + + + + + + ∼ + ∼ + + + + +

while the number of generated immigrants (numim) would decrease as a result of
numim = num aepg− numls. The experimental results show that this scheme domi-
nated by LS is a good choice to keep balance between LS and diversity maintaining.

Second, IMAHMA2 is always beaten by IMAHMA0 and IMAHMA1 on most
dynamic problems. In IMAHMA2, the number of generated immigrants is firstly
determined based on the convergence status of population and then the value of
numls is calculated from the formula numls = num aepg− numim. When the index
(ξ ) is lower than a threshold, the immigrants’ number (numim) would increase in
order to improve the diversity level of population. Obviously, the idea behind this
scheme is to maintain a spread-out population. However, the experimental results
indicate that this simple scheme cannot achieve the original purpose.

Finally, IMAHMA0 exhibits the good performance on the test problems, which
validate the necessary of hybridizing LS and diversity maintaining scheme in MAs
for DOPs.

6.4.4 Experimental Study on Comparing the Proposed Algorithm
with Several Peer GAs on DOPs

In the final experiments, we compare the performance of IMAHMA with several
peer GAs on the DOPs constructed in Section 6.3. These peer GAs are SGAr,
RIGA, EIGA and DIGA, as described in Section 6.4.1. The experimental results
are presented in Table 6.6 to Table 6.9, respectively. The corresponding statistical
results are given in Table 6.10. From these tables, several results can be observed and
analyzed as follows.

First, IMAHMA always outperforms other peer algorithm on most dynamic prob-
lems and underperforms some of these GAs on some dynamic problems when the
environment changes slowly, i.e., when τ = 50 or τ = 100. When the environ-
ment changes quickly, i.e., when τ = 10, IMAHMA can always locate the opti-
mum (maybe local optimum) more quickly than other GAs because LS has a strong
exploitation capacity. This is why IMAHMA performs the best on all dynamic prob-
lems with τ = 10. When τ = 50 or τ = 100, IMAHMA performs worse than SGAr
on dynamic Plateau and RoyalRoad problems with ρ = 0.5. This happens because
the random environment always requires algorithms to maintain a sufficient popu-
lation diversity (see the relevant analysis in Section 6.4.3) and the restart scheme
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Table 6.6 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic OneMax problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 91.78±0.60 70.76±0.45 89.50±0.81 87.97±0.66 89.35±0.91
10 0.2 86.38±0.84 70.68±0.36 81.42±0.85 80.58±1.03 81.14±1.09
10 0.5 78.93±0.93 70.66±0.28 71.66±1.73 71.83±0.77 71.52±1.41
10 0.9 91.70±0.42 70.68±0.34 88.32±2.21 87.67±0.84 89.31±0.82
50 0.1 97.11±0.26 91.02±0.14 97.09±0.22 95.06±0.34 97.23±0.25
50 0.2 94.85±0.35 91.10±0.16 94.44±0.45 90.89±0.54 94.50±0.42
50 0.5 92.92±0.34 91.05±0.13 90.05±0.72 89.41±0.32 90.22±0.63
50 0.9 97.11±0.16 91.00±0.31 97.14±0.46 97.08±0.30 97.26±0.24

100 0.1 98.55±0.08 95.50±0.08 98.58±0.06 97.48±0.14 98.59±0.09
100 0.2 97.43±0.13 95.52±0.07 97.21±0.18 95.37±0.24 97.17±0.19
100 0.5 96.46±0.15 95.51±0.08 95.13±0.34 94.69±0.12 95.15±0.33
100 0.9 98.54±0.11 95.52±0.05 98.54±0.25 97.47±0.18 98.60±0.11

Table 6.7 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic Plateau problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 83.03±0.95 47.96±0.60 76.17±2.13 77.53±1.05 76.86±2.72
10 0.2 72.91±1.64 47.77±0.75 63.75±2.02 64.57±1.36 64.31±2.08
10 0.5 57.52±2.02 48.03±0.62 48.12±2.17 49.25±0.87 47.68±1.32
10 0.9 83.46±1.12 47.89±0.72 76.59±4.83 77.79±1.21 78.12±2.74
50 0.1 93.40±0.37 82.99±0.34 92.91±0.83 90.73±0.51 93.01±0.70
50 0.2 87.56±0.96 83.00±0.30 86.45±0.80 82.92±0.83 86.67±1.22
50 0.5 81.42±0.89 82.99±0.40 77.42±1.41 80.37±0.67 78.19±1.18
50 0.9 93.33±0.53 82.81±0.38 92.71±1.94 90.74±0.71 92.93±0.79

100 0.1 96.71±0.32 91.46±0.16 96.24±0.60 95.37±0.33 96.05±0.88
100 0.2 93.32±0.63 91.52±0.17 92.55±0.87 91.13±0.53 92.43±0.93
100 0.5 90.72±0.59 91.51±0.13 86.51±1.19 90.22±0.38 87.18±1.41
100 0.9 96.72±0.31 91.52±0.15 96.07±0.97 95.37±0.36 96.17±0.80

in SGAr can introduce the maximum diversity into the population. The reason why
SGAr outperforms IMAHMA only on the Plateau and RoyalRoad problems lies in
the intrinsic characteristics of these problems. The OneMax problem is simply uni-
modal, which is very suitable for a HC search in IMAHMA. Both the Plateau and
RoyalRoad problems have higher-order building blocks, which take a HC search
much more time to achieve. The Deceptive problem may mislead SGAr’s evolution
due to the existence of deceptive attractor, which can be escaped from by IMAHMA.
IMAHMA is also beaten by DIGA on the dynamic OneMax problems and Deceptive
problems with ρ = 0.5 and τ = 50 or 100. This is because DIGA can especially fit
such an acutely-changing environment and the dual-based immigrants can maintain
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Table 6.8 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic RoyalRoad problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 67.27±2.39 32.50±0.87 53.89±4.71 62.30±2.30 53.03±5.37
10 0.2 52.48±2.33 32.52±0.73 43.44±4.53 47.95±1.39 41.75±3.53
10 0.5 38.83±1.53 32.31±0.76 31.67±1.91 33.98±1.48 32.41±1.85
10 0.9 66.09±2.72 32.69±0.73 52.25±4.97 62.29±2.83 54.87±4.79
50 0.1 85.70±1.38 69.32±0.73 76.39±4.13 83.94±1.24 75.84±4.28
50 0.2 74.48±1.10 69.40±1.03 66.33±2.79 72.27±1.54 66.62±3.41
50 0.5 63.40±1.99 69.38±0.83 53.17±2.20 65.58±1.79 53.05±2.44
50 0.9 85.26±1.31 69.10±1.02 77.38±4.31 83.30±1.41 76.28±3.27
100 0.1 91.31±0.98 84.42±0.48 82.56±2.98 90.15±0.99 82.39±4.05
100 0.2 82.64±1.44 84.33±0.43 74.04±2.15 82.13±1.34 73.36±1.96
100 0.5 76.07±2.00 84.39±0.58 62.13±2.17 79.80±1.67 62.55±2.58
100 0.9 91.38±0.79 84.30±0.42 82.99±5.60 90.50±1.10 82.79±3.47

Table 6.9 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic Deceptive problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 72.78±2.04 53.13±0.56 69.15±1.75 64.36±1.55 71.77±1.75
10 0.2 66.05±0.98 52.92±0.50 62.94±1.44 57.88±1.26 63.24±1.38
10 0.5 61.73±0.76 53.18±0.47 56.70±1.01 53.28±0.78 57.55±1.05
10 0.9 73.04±1.54 53.23±0.64 69.18±1.19 64.02±1.19 71.63±1.36
50 0.1 83.91±0.99 66.06±0.57 78.07±1.23 75.47±1.66 84.58±0.49
50 0.2 81.50±0.73 66.02±0.62 75.04±1.10 70.49±1.03 81.79±0.49
50 0.5 80.14±0.60 66.17±0.52 73.77±0.71 68.06±0.82 79.61±0.49
50 0.9 83.64±0.51 66.23±0.70 78.20±1.66 75.28±1.90 84.58±0.46
100 0.1 87.14±0.86 73.85±0.54 79.07±1.09 77.86±1.61 87.21±0.45
100 0.2 86.07±0.55 73.96±0.58 77.45±1.10 75.83±1.14 86.20±0.54
100 0.5 85.95±0.34 73.94±0.63 77.41±0.73 74.89±0.76 85.41±0.40
100 0.9 86.93±0.55 73.90±0.43 78.61±1.91 78.51±1.81 87.04±0.57

a very high fitness level on the OneMax and Deceptive problems. The good perfor-
mance of IMAHMA over other peer GAs shows that our investigated IMAHMA has
a strong robustness and adaptivity in dynamic environments.

Second, on dynamic OneMax and Plateau problems EIGA always outperforms
SGAr and RIGA when ρ is set to 0.1 or 0.2, but underperforms them when the
value of ρ is set to 0.5 or 0.9. On dynamic RoyalRoad and Deceptive problems, the
situations become a little different. EIGA performs better than RIGA on dynamic
RoyalRoad problems just when τ = 10 and better than both SGAr and RIGA on all
dynamic Deceptive problems. This happens because the elitism-based immigrants
scheme can introduce higher fitness individuals, which can adapt better to the current
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Table 6.10 The t-test results of comparing the overall offline performance of AHMA and peer
EAs on dynamic test problems

t-test Result OneMax Plateau RoyalRoad Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
IMAHMA − SGAr + + + + + + + + + + + + + + + +
IMAHMA − EIGA + + + + + + + + + + + + + + + +
IMAHMA − RIGA + + + + + + + + + + + + + + + +
IMAHMA − DIGA + + + + + + + + + + + + + + + +

SGAr − EIGA − − − − − − ∼ − − − ∼ − − − − −
SGAr − RIGA − − − − − − − − − − − − − − ∼ −
SGAr − DIGA − − − − − − ∼ − − − ∼ − − − − −
EIGA − RIGA + + ∼ ∼ − ∼ − ∼ − − − − + + + +
EIGA − DIGA ∼ ∼ ∼ − ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − ∼ − −
RIGA − DIGA − ∼ ∼ − ∼ ∼ + ∼ + + + + − − − −

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
IMAHMA − SGAr + + + + + + − + + + − + + + + +
IMAHMA − EIGA ∼ + + ∼ + + + ∼ + + + + + + + +
IMAHMA − RIGA + + + + + + + + + + − + + + + +
IMAHMA − DIGA ∼ + + − + + + + + + + + − ∼ + −

SGAr − EIGA − − + − − − + − − + + − − − − −
SGAr − RIGA − + + − − ∼ + − − − + − − − − −
SGAr − DIGA − − + − − − + − − + + − − − − −
EIGA − RIGA + + + + + + − + − − − − + + + +
EIGA − DIGA ∼ ∼ ∼ ∼ ∼ ∼ − ∼ ∼ ∼ ∼ ∼ − − − −
RIGA − DIGA − − − − − − − − + + + + − − − −
τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

IMAHMA − SGAr + + + + + + − + + − − + + + + +
IMAHMA − EIGA ∼ + + ∼ + + + + + + + + + + + +
IMAHMA − RIGA + + + + + + + + + ∼ − + + + + +
IMAHMA − DIGA ∼ + + ∼ + + + + + + + + ∼ ∼ + ∼

SGAr − EIGA − − + − − − + − + + + ∼ − − − −
SGAr − RIGA − + + − − + + − − + + − − − − −
SGAr − DIGA − − + − − − + − + + + + − − − −
EIGA − RIGA + + + + + + − + − − − − + + + ∼
EIGA − DIGA ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − − − −
RIGA − DIGA − − − − − − + − + + + + − − − −

environment, into EIGA’s population on dynamic OneMax and Plateau problems
when the environment changes slightly, on dynamic RoyalRoad problems when the
environment changes quickly, and on all dynamic Deceptive problems due to the
intrinsic characteristics of these four kinds of functions.
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Third, RIGA always performs better than SGAr when the value of ρ is small
on most dynamic test problems. This is because a new environment is close to the
previous one when the value of ρ is very small. Therefore, introducing a portion
of random individuals into the population as done in RIGA may be more beneficial
than re-initializing the whole population as done in SGAr.

Fourth, DIGA exhibits good performance on OneMax, Plateau, and Deceptive
problems although DIGA is beaten by SGAr and RIGA on these dynamic prob-
lems when ρ = 0.5. This also confirms the exception of the dual-based immigrants
scheme for GAs in dynamic environments. DIGA performs better than the other
GAs on all dynamic Deceptive problems. The reason lies in that the dualism mech-
anism may help DIGA react to significant environmental changes rapidly and also
enable it to escape from the deceptive attractor in the Deceptive function.

Finally, the environmental parameters affect the performance of algorithms. The
performance of all algorithms increases when the value of τ increase from 10 to 50
to 100. It is easy to understand. When τ becomes larger, algorithms have more time
to find better solutions before the next change. The effect of the changing severity
parameter ρ is different. For example, when τ is fixed, the performance curve of
IMAHMA always declines when ρ increases from 0.1 to 0.2 to 0.5, but rises when
ρ increases from 0.5 to 0.9.

In order to better understand the experimental results, we make a deeper look
into the dynamic behavior of these algorithms. The dynamic behavior of different
algorithms with respect to the running offline performance is shown in Fig. 6.12 to
Fig. 6.15, where τ is set to 50 and ρ is set to 0.1, 0.2, 0.5, and 0.9, respectively.
From these figures, it can be easily observed that for the dynamic periods SGAr
always performs almost the same as it did for the stationary period (the first 50
generations) and IMAHMA always outperforms other peer GAs for the stationary
period on all test problems while their dynamic behaviors are different on different
dynamic problems.

On the OneMax and Plateau problems (see Figs. 6.12 and 6.13), the dynamic
behavior of IMAHMA for each dynamic period outperforms that for the stationary
period when ρ is very small. When ρ = 0.5, IMAHMA exhibits almost the same per-
formance in both the stationary and dynamic periods. When the value of ρ increases
to 0.9, the performance of IMAHMA in the dynamic period upgrades consistently.
This is because that the proposed AHC operator can help IMAHMA achieve the
optimum quickly once the population can “find” in the area where the optimum is
located. The new optimum may be close to the previous one when the environment
changes slightly, while the immigrants scheme in IMAHMA can help the population
re-locate to the changing optimum quickly when a significant environmental change
occurs. The dynamic behavior of both RIGA and EIGA is affected by the value of
ρ . With the increment of dynamic periods, their performance upgrades consistently
when ρ = 0.1, while their behavior for the dynamic periods underperforms that for
the stationary period when ρ = 0.5 or 0.9. The behavior of DIGA is very simi-
lar to the behavior of RIGA and EIGA when ρ is not very large. However, DIGA
exhibits very nice adaptability to a significantly changing environment. Its behavior
for the dynamic periods outperforms that for the stationary period when ρ=0.9. This
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Fig. 6.12 Dynamic behavior of IMAHMA and peer GAs on dynamic OneMax problems with
τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

happens because the dual-based immigrants scheme can help DIGA re-locate to the
changing optimum quickly when a sharp environmental change occurs.

On the RoyalRoad and Deceptive problems (see Fig. 6.14), with the increment
of dynamic periods, IMAHMA’s performance drops a little when ρ = 0.5, while
rises when ρ = 0.1, 0.2 and 0.9. The reason lies in that IMAHMA does not find
the optimum in the stationary period on these two problems. When the environment
changes slightly or very significantly, IMAHMA always reruns from the starting
points with a higher fitness in the dynamic periods than that in the stationary period,
while when ρ = 0.5, IMAHMA can only obtain worse starting points in the dynamic
periods.

6.5 Conclusions and Future Work

In this chapter, the application of MAs with an adaptive hill climbing strategy for dy-
namic optimization problems is investigated. In the proposed MA, two local search
methods, a greedy crossover-based hill climbing and a steepest mutation-based hill
climbing, are used to refine the individual that is selected for local improvements.
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Fig. 6.13 Dynamic behavior of IMAHMA and peer GAs on dynamic Plateau problems with
τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

A learning mechanism, which gives the more effective LS operator greater chance
for the later individual refinement, is introduced in order to execute a robust local
search. To maintain a sufficient population diversity for the algorithms to adapt well
to the environmental changes, a new immigrants scheme, where the immigrants can
be generated from mutating an elite individual with a probability adaptively, is intro-
duced into our proposed MA. In order to keep the balance between LS and diversity
maintaining with respect to the extra computation cost, two different dominated
schemes are also discussed in this paper.

In order to test the performance of the proposed MA for DOPs, a series of ex-
perimental studies have been carried out based on a set of constructed dynamic test
problems. From the experimental results, we can draw the following conclusions on
the dynamic test problems.

First, MAs enhanced by suitable diversity methods can exhibit a better perfor-
mance in dynamic environments. For most dynamic test problems, IMAHMA al-
ways outperforms other peer GAs.

Second, the immigrants scheme is efficient for improving the performance of
MAs in dynamic environments. However, different immigrants schemes have dif-
ferent effects in different dynamic environments. The elitism-based immigrants



166 H. Wang and S. Yang

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(a)

R
u

n
n

in
g

 o
ff

lin
e 

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(b)

R
u

n
n

in
g

 o
ff

lin
e 

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(c)

R
u

n
n

in
g

 o
ff

lin
e 

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(d)

R
u

n
n

in
g

 o
ff

lin
e 

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

Fig. 6.14 Dynamic behavior of IMAHMA and peer GAs on dynamic RoyalRoad problems
with τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

scheme is suitable for the slightly-changing environments, the random immigrants
scheme performs better when the environmental severity ρ = 0.5, and the dualism-
based immigrants does better when the environment involves significant changes
(i.e., ρ = 0.9). The proposed immigrants scheme in Section 6.2.3 is a good choice
that generalizes three different immigrants schemes within a common framework.

Third, the effect of LS operators is problem dependent. The AHC strategy can
help MAs execute a robust individual refinement since it employs multiple LS op-
erators under the mechanism of cooperation and competition.

Fourth, the difficulty of DOPs depends on the environmental dynamics, including
the severity and speed of changes and the difficulty of the base stationary problems.
According to our experiments, MAs perform better with the increasing of the fre-
quency of changes, and the effect of the severity of changes is problem dependent.

Generally speaking, the experimental results indicate that the proposed MA,
where the adaptive hill climbing operator is used as a local search technique for in-
dividual refinement, with adaptive dual mapping and triggered random immigrants
schemes, seems a good EA optimizer for DOPs.

For the future work, it is straightforward to introduce other mechanisms, such
as memory-based methods [43] and multi-population approaches [30], into MAs
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Fig. 6.15 Dynamic behavior of IMAHMA and peer GAs on dynamic Deceptive problems
with τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

for DOPs. Another interesting research work is to extend the proposed immigrants
scheme to other EAs and examine their performance in dynamic environments. In
addition, it is also valuable to carry out the sensitivity analysis on the effect of pa-
rameters, e.g., α , β , Δ , θ0, λ0, and λ1, on the performance of proposed MAs in the
future.
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[2] Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimiza-
tion with evolutionary algorithms: the stochastic case. In: Proc. 2007 Genetic and Evol.
Comput. Conf., pp. 1165–1172 (2007)

[3] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882 (1999)

[4] Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to
dynamic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[5] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependent nonstationary environment.
Tech. Rep. AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

[6] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

[7] Eriksson, R., Olsson, B.: On the behavior of evolutionary global-local hybrids with dy-
namic fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
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