
Chapter 2
Evolutionary Dynamic Optimization:
Methodologies

Trung Thanh Nguyen, Shengxiang Yang, Juergen Branke, and Xin Yao

Abstract. In recent years, Evolutionary Dynamic Optimization (EDO) has attracted
a lot of research effort and has become one of the most active research areas in
evolutionary computation (EC) in terms of the number of activities and publica-
tions. This chapter provides a summary of main EDO approaches in solving DOPs.
The strength and weakness of each approach and their suitability for different
types of DOPs are discussed. Current gaps, challenging issues and future directions
regarding EDO methodolgies are also presented.

2.1 Introduction

Many real-world objects are changing over time. For example, people are aging, the
climate is changing, the stock market is moving up and down, and so on. As a result,
it is important to be able to optimize in a dynamic environment. Changes may affect
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the objective function, the problem instance, and/or the constraints [16, 124]. Hence,
the optimal solution(s) of the problem being considered may change over time.

Formally, a dynamic optimization problem can be defined as follows [71]:

Definition 2.1 (Dynamic optimization problem) Given a time-dependent problem
ft , an optimization algorithm G to solve ft , and a given optimization period[
tbegin, tend

]
, ft is called a dynamic optimization problem in the period

[
tbegin, tend

]
if during

[
tbegin, tend

]
the underlying fitness landscape that G uses to represent ft

changes and G has to react to this change by providing new optimal solutions1.

Evolutionary computation (EC) methods are good tools to solve DOPs due to their
inspiration from natural systems, which have always been subject to changing en-
vironments. The study of applying evolutionary algorithms (EAs) and similar tech-
niques to solving DOPs is termed evolutionary optimization in dynamic environ-
ments or evolutionary dynamic optimization (EDO) in this chapter. Over the last
twenty years, a great number of different EDO methodologies have been proposed.
The purpose of this chapter is to provide a summary of main EDO approaches
in solving DOPs2. In-depth discussion of the strength and weakness of each ap-
proach will be provided, plus the suitability of each approach for different types
of DOPs. Some future research issues and directions regarding EDO will also be
presented.

The rest of this chapter is organized as follows. Section 2.2 reviews different ap-
proaches that have been developed by researchers to address DOPs. The strength
and weakness of different approaches are also discussed there. Section 2.3 presents
theoretical development regarding EDO methodologies. Finally, Section 2.4 sum-
marizes the chapter and presents some discussions on current gaps, challenging
research issues, and future directions regarding EDO methodologies.

2.2 Optimization Approaches

2.2.1 The Goals of EDO Algorithms

In stationary optimization, in most cases the only goal of optimization algorithms
is to find the global optimum as fast as possible. However, in current EDO research
where the considered problems are time-varying, the goal of an algorithm turns from
finding the global optimum to firstly detecting the changes and secondly tracking
the changing optima (local optima or ideally the global optimum) over time. In addi-
tion, in case the problem-after-change somehow correlates with the problem-before-
change, an optimization algorithm also needs to learn from its previous search

1 A more detailed version of this definition for DOPs was provided in [70, Chapter 4] and
[74].

2 An broader literature review, which is extended from this chapter, covering not only
methodologies but also other aspects in EDO, can be found in [71].
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experience as much as possible to hopefully advance the search more effectively.
Otherwise, the optimization process after each change will simply become the pro-
cess of solving a different problem starting with the old population/structure.

The following sections will briefly review typical approaches in EDO that have
been proposed to satisfy the goals above. We will discuss the strength and weakness
of the approaches and their suitability for different types of problems.

2.2.2 Detecting Changes

Many EDO approaches take an explicit action to respond to a change in the envi-
ronment. This either assumes that changes in the environment are made known to
the algorithm, or that the algorithm has to detect the change. If algorithms have to
detect changes, they generally follow one of the following approaches: (a) detect-
ing changes by re-evaluating dedicated detectors, or (b) detecting changes based on
algorithm behaviors.

2.2.2.1 Detecting Changes by Re-evaluating Solutions

Overview
By far the most common change-detection approach is re-evaluating existing so-
lutions. The algorithm regularly re-evaluates some specific solutions (detectors) to
detect changes in their function values and/or feasibility. Detectors can be a part
of the population, such as the current best solutions [48, 54, 58, 70], a memory-
based sub-population [15, 130], or a feasible sub-population [70, 75]. Detectors can
also be maintained separately from the search population. In this case, they can be
just a fixed point [25], one or a set of random solutions [26, 82, 98], a regular grid
of solutions / set of specifically distributed solutions [65], or a list of found peaks
[67, 69].

Strength and Weakenesses
Since using detectors involves additional function evaluations, it might be required
to identify an optimal number of detectors to maximize algorithm performance. A
majority of existing methods just use one or a small number of detectors. However,
in situations where only some parts of the search space change, e.g., see [73, 76, 82]
and in a list of real-world problems cited in [70], using only a small number of detec-
tors might not guarantee that changes are detected [82]. Recent attempts have been
made to overcome this drawback. In [65, 70, 82], different methods were consid-
ered to study the optimal number of detectors depending on the size and complexity
of the problem. A theoretical analysis in [65] showed that problem dimensional-
ity is a prominent factor in the success of change detection. This finding was later
confirmed by the experiments in [82].

One clear advantage of re-evaluting dedicated detectors is that it allows “robust
detection” if a high enough number of detectors is used [82]. Richter [82] also
showed that the more difficult the change detection is, the more favorable the ap-
proach of re-evaluating dedicated detectors is.
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There are some disadvantages in re-evaluating dedicated detectors. First, there is
the additional cost due to that detectors have to be re-evaluated at every generation.
Second, this approach might not be accurate when used in problems with noisy
fitness function because noises may mislead the algorithm to thinking that a change
has occured [51]. It may also miss changes if changes did not occur in the region of
detectors.

2.2.2.2 Detecting Changes Based on Algorithm Behaviors

Overview
Irregularities in algorithm behaviors can also be used to detect changes. In [31] (and
many studies that follow the same idea), changes are detected based on monitoring
the drop in the average of best found solutions over a number of generations. In a
swarm-based study [51] where the swarm was divided into a tree-based hierarchy of
sub-swarms, environmental changes were detected based on observation of changes
in the hierarchy itself. In [65], the possibility of detecting changes based on diver-
sity, and the relationship between the diversity of fitness values and the success rate
of change detection, were studied. In [82], changes were detected based on statis-
tical hypothesis tests to find the difference between distribution of the populations
from two consecutive generations. This technique has been commonly used in en-
vironmental change detection in the real-world applications of biomedicine, data
mining and image processing, as can be seen from the references cited in [82].

Strength and Weakenesses
The clear advantage of this approach is that it does not require any additional func-
tion evaluations. However, because no dedicated detector is used, there is no guar-
antee that changes are detected [82]. In addition, this approach may cause false pos-
itives and hence cause the algorithm to react unnecessarily when no change occurs.
Evidence of false positives was found in [51, 76, 82]. Another possible disadvantage
is that some methods following this approach might be algorithm-specific, such as
the method of monitoring swarm hierarchy in [51].

2.2.3 Introducing Diversity When Changes Occur

2.2.3.1 Overview

In static environments, proper algorithm convergence is required so that the algo-
rithm can focus on finding the best solution. In dynamic environments, however,
convergence may result in negative effects. This is because if the dynamic land-
scape changes in one area and there is no member of the algorithm in this area, the
change will become undetected. As a result, the algorithm will not be able to react
to the change effectively and hence might fail to track the moving global optimum.

Intuitively one simple solution for this drawback is to increase the diversity of an
EA after a change has been detected. This solution is described in the pseudo-code
of Algorithm 1.
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Algorithm 1 Introducing diversity after detecting a change

1. Initialize:: Initialize the population
2. For each generation

a. Evaluate: Evaluate each member of the population
b. Check for changes: Detect changes by monitoring possible signs of changes, e.g. a

reduction in the best fitness values, or re-evaluation of old solutions
c. Increase diversity: If change occurs, increase population’s diversity by changing the

mutations (sizes or rates) or relocating individuals
d. Reproduce: Reproduce a new population using the adjusted muta-

tion/learning/adaptation rate
e. Return to step 2a

Diversity introduction can be done in many ways, for example, by increasing the
current mutation rate as in hyper-mutation [31], by adding randomised individuals
[40, 48], by increasing the mutation step size [107, 115], by moving individuals from
one sub-population to another [40] or by keeping the sub-populations/individuals
away from one another [50, 51].

Some of the first studies following this approach are hyper-mutation [31] and
variable local search (VLS) [108, 109]. In his research, Cob [31] proposed an adap-
tive mutation operator called hyper-mutation whose mutation rate is a multiplication
of the normal mutation rate and a hyper-mutation factor. The hyper-mutation is in-
voked only after a change is detected. In the VLS algorithm, the mutation step size is
controlled by a variable local search range. This range is determined by the formula
(2BIT S− 1) where BITS is a value adjustable during the search [107] or adapted
using a learning strategy borrowed from the feature partitioning algorithm by Vavak
et al. [108].

In [70], hyper-mutation was used to solve dynamic constraint problems. Detec-
tors are placed near the boundary of feasible regions and when the feasibility of
these detectors changes, the EA increases its mutation rate to raise the diversity
level to track the moving feasible regions. The mutation rate is decreased again
once the moving feasible region has been tracked successfully. Riekert and Malan
[86] proposed adaptive genetic programming which not only increases mutation, but
also reduces elitism and increases crossover probability after a change. The idea of
introducing diversity after a change has also been used in dynamic multi-objective
optimization (DMO). For example, in a multi-population algorithm for DMO [40],
when a change is detected, random individuals and some competitor individu-
als from other sub-populations are introduced to each sub-population to increase
diversity.

Diversity introduction is also used in particle swarm optimization (PSO). Hu and
Eberhart [48] introduced a simple mechanism in which a part of the swarm or the
whole swarm will be re-diversified using randomization after a change is detected.
Janson and Middendorf [51] followed a more sophisticated mechanism where in
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addition to partial re-diversification, after each change the swarm is divided into
several sub-swarms for a certain number of generations. The purpose of this is
to prevent the swarm from converging to the old position of the global optimum
too quickly. Daneshyari and Yen [34] proposed a cultural-based PSO where after a
change, the swarms are re-diversified using a framework of knowledge inspired from
the belief space in cultural algorithms. The diversity-introducing approach is still
commonly used in many recent EDO algorithms, e.g., [67, 78, 82, 83, 85, 93, 115].

2.2.3.2 Strength and Weakness

In general, methods following the diversity-introducing approach appear to be good
in solving problems with continuous changes where changes are small and medium.
This is because invoking mutations or distributing individuals around an optimum
resembles a type of “local search”, which is useful to observe the nearby places of
this optimum. Thus, if the optimum does not move very far, it might be tracked
[107, 108].

However, this approach has some drawbacks that might make it not so suitable for
certain type of problems. First, it is dependent on whether changes are known/easy
to detect or not. If a change appears in a place where no individual exists, it will
go undetected [65]. Second, it might be difficult to identify the right amount of di-
versity needed: too small steps will resemble local search while too large steps will
result in random search [52]. Third, the approach might not be effective for solv-
ing problems with random changes or large changes (changes are severe) because
many diversity-introducing methods have their mutation/relocation size restricted to
a specific range. The diversity-introducing approach is still commonly used in many
recent metaheuristics algorithms, e.g., [67, 70, 78, 82, 83, 85].

2.2.4 Maintaining Diversity during the Search

2.2.4.1 Overview

Another related approach is to maintain population diversity throughout the search
process (see Algorithm 2). Methods following this approach do not detect changes

Algorithm 2 Maintaining diversity

1. Initialize: Initialize the population
2. For each generation

a. Evaluate: Evaluate each member of the population
b. Maintain diversity: Add a number of new, diversified individuals to the current pop-

ulation, or select more diversified individuals, or explicitly relocate individuals to
keep them away from one another.

c. Reproduce: Reproduce a new population
d. Return to step 2a
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explicitly. Instead, they rely on their diversity to adaptively cope with the changes.
Diversity can be maintained by regularly introducing random individuals (random
immigrants) to the population [43, 125], by sharing fitness [2], by specifically dis-
tributing some sentinel individuals [65], by explicitly keeping individuals from get-
ting close to one another [10, 11], by dedicating one of the objectives for divesity
purposes [24], or by combining several of the strategies above [1, 102].

In the random immigrants method [43], in every generation a number of gener-
ated random individuals are added to the population to maintain diversity. Exper-
imental results show that the method is more effective in handling dynamics than
regular EA [43]. It was also reported that the high diversity level brought by random
immigrants also helps in handling constraints [70].

In [65], a different mechanism was proposed in which instead of generating
random individuals, the sentinel placement method initializes a number of sen-
tinels which are specifically distributed throughout the search space. Experiments
show that this method might get better results than random immigrants and hyper-
mutation in problems with large and chaotic changes [65].

Yang and Yao [125] proposed two other approaches based on the population-
based incremental learning (PBIL) algorithm - parallel PBIL (PPBIL2) and dual
PBIL (DPBIL). The PBIL algorithm has a probability vector adjusted based on the
best found solutions. In PPBIL2, Yang and Yao [125] improved PBIL for DOPs by
maintaining two parallel probability vectors: a vector similar to the original one in
PBIL and a random initialized probability dedicated to maintain diversity during
the search. To improve PBIL2 in dealing with large changes, Yang and Yao [125]
proposed the DPBIL where two probability vectors are dual with each other, i.e.,
given the first vector P1, the second vector P2 is determined by P2 [i] = 1−P1 [i]
(i = 1, ...,n), where n is the number of variables. During the search only P1 needs to
learn from the best generated solution because P2 will change with P1 automatically.
PBIL and DPBIL were also combined with random-immigrants in [126] with better
results than the original algorithms.

Another approach to maintain diversity is to reward individuals that are genet-
ically different from their parents [110]. In this approach, in addition to a regular
population, the algorithm maintains an additional population where individuals are
selected based on their Hamming distance to their parents (to promote diversity)
and another population where individuals are selected based on their fitness im-
provement compared to their parents (to promote exploitation). By observing its
own performance in stagnation and population diversity, the algorithm adaptively
adjusts the size of the three populations to react to dynamic environments.

Diversity can be maintained in evolution strategies (ESs) by preventing the strat-
egy parameters from converging to zero, e.g. in [53]. The approach of maintain-
ing diversity is also used in PSO to solve dynamic continuous problems. In their
charged PSOs [9–11], Blackwell et al. applied a repulsion mechanism, which is in-
spired from the atom field, to prevent particles/swarms to get too close to each other.
In this mechanism, each swarm is comprised of a nucleus and a cloud of charged
particles which are responsible to maintain diversity. There is a repulsion among
these particles to keep particles from approaching near to each other. In [34], both
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the particle selection and replacement mechanisms are modified so that the most
diversified particles (in term of Hamming distance) are selected and the particles
that have similar positions are replaced. In the compound PSO [59], the degree of
particles deviating from their original directions becomes larger when the velocities
becomes smaller, and distance information was incorporated as one of the criteria
to choose a particle for the update mechanism.

Bui et al. [24] used multiple objectives to maintain diversity. The dynamic prob-
lem is represented by a problem with two objectives: one original objective and
one special objective created to maintain diversity. Similar examples can be found
in [1, 102], of which the latter proposed six different types of objectives, includ-
ing retaining more old solutions; retaining more random solutions; reversing the
first objective; keeping a distance from the closest neighbour; keeping a distance
from all individuals; and keeping a distance from the best individual. The diversity-
maintaining strategy is still the main strategy in many recent approaches, for exam-
ple, see [6, 9, 10, 29, 35, 39, 42, 50, 70, 125, 126].

2.2.4.2 Strength and Weakness

Methods following the diversity-maintaining approach may be good at solving prob-
lems with large changes (e.g. in [70, 73] random immigrants helped significantly im-
prove the performance in dynamic constrained problems where changes are severe
due to the presence of disconnected feasible regions), problems with slow changes
(as shown in e.g. [2, 125]), and problems with competing peaks (as reported in [27]).

However, the diversity-maintaining approach might suffer from some disadvan-
tages. First, continuously focusing on diversity may slow down, or even distract the
optimization process [52]. Second, the approach may become less effective in deal-
ing with small changes where the optima just take a slight move away from their
previous places [32].

2.2.5 Memory Approaches

In situations where DOP changes are periodical or recurrent, and hence the optima
may return to the regions near their previous locations, it might be useful to re-
use previously found solutions to save computational time. The most common way
to re-use old solutions in this manner is to maintain memory components in the
algorithms. The memory can also play the role as a reserved place for storing old
solutions in order to maintain diversity when needed. The memory can be integrated
implicitly as a redundant representation in the algorithms, or maintained explicitly
as a separate memory component.

2.2.5.1 Implicit Memory

The most common implicit memory used in EDO algorithms is redundant coding
using diploid genomes, e.g., [41, 56, 68, 106, 121]. A diploid EA is usually an
algorithm whose chromosomes contain two alleles at each locus. Although most
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Algorithm 3 Multiploid EA for dynamic optimization

1. Initialize: Initialize the population and the multiploid representation
2. For each generation

a. Evaluate: Evaluate each member of the population
b. For each individual:

i. Detect changes
ii. Adjust the dominance level of each allele : If there is any change, adjust the

dominance to accommodate the current change
iii. Select the dominant alleles according to their dominance level

c. Reproduce: Reproduce a new population using the adjusted mutations
d. Return to step 2a

normal EAs for static problems are haploid, it is believed that diploid, and other
multiploid approaches, are suitable for solving dynamic problems [56]. A pseudo
code for multiploid approaches in dynamic environments is described in Algorithm
3, where the following three components need to be incorporated: (i) represent the
redundant code; (ii)readjust the dominance of alleles; and (iii) check for changes.

The dominance of alleles is usually represented by a table [68, 91] or a mask [33]
mapping between genotypes and phenotypes. The dominance then can be changed
adaptively among alleles depending on the detection of changes in the landscape.

2.2.5.2 Explicit Memory

Methods that use explicit memory generally follow the steps in Algorithm 4. The
memory can be maintained directly in the form of previous good solutions [8, 15, 34,
55, 60, 62, 64, 93, 118, 119, 126–128], or it can be maintained indirectly in the form
of associative information. Various type of associative information can be included,
e.g., the environment at the considered time [37, 79]; the list of environmental states

Algorithm 4 Using explicit memory

1. Initialize:

a. Initialize the population
b. Initialize the explicit memory

2. For each generation

a. Evaluate each member of the population
b. Update the memory
c. Reproduce a new population
d. Use information from the memory to update the new population
e. Return to step 2a
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and state transition probabilities [96]; the successful individuals for certain types of
changes[94, 120]; the probability vector that created the best solutions [126]; the
distribution statistics information of the population at the considered time [119];
the probability of the occurrence of good solutions in each area of the landscape
[84, 85]; or the probability of likely feasible regions [83].

Generally the best found elements (direct or associative) of the current gener-
ation will be used to update the memory. These newly found elements will re-
place some existing elements in the memory, which can be the oldest member
[37, 95, 103, 115], the one with the least contributions to the diversity of the popula-
tion [15, 37, 95, 118, 126], or the one with least contribution to fitness [37]. During
the search, usually the best elements in the memory (i.e. the ones that show the best
results when being re-evaluated) will be used to replace the worst individuals in
the population. Replacement can take place after each generation or after a certain
number of generations, or it can be done after each change if the change can be
detected.

2.2.5.3 Strength and Weakness

Memory methods are particularly effective for solving problems with periodically
changing environments. For example, it was shown that the memory-based versions
of EAs and random-immigrant significantly outperform the original algorithms in
cyclic dynamic environments [122]. The approach might also be good in slowing
down convergence and favour diversity [16, 18].

Memory methods, however, have disadvantages that may require them to be used
with some other methods for the best results. First, they might be useful only when
optima reappear at their previous locations or if the environment returns to its pre-
vious states [15, 16]. Second, they might not be good enough to maintain diversity
for the population [15]. Third, the information stored in the memory might become
redundant (and obsolete) and consequently may affect the performance of the algo-
rithm. In addition, redundant coding approaches might not be good for cases where
the number of oscillating states is large.

2.2.6 Prediction Approaches

2.2.6.1 Overview

In DOPs where changes exhibit regular patterns, it might be helpful to try to learn
the patterns from previous search experience, and then try to predict changes in the
future. A pseudo code of methods following this approach is shown in Algorithm 5.

One of the common prediction approaches is to predict the movement of the
moving optima. Hatzakis and Wallace [45] combined a forecasting technique (au-
toregressive) with an EA to predict the location of the next optimal solution after
a change is detected. The forecasting model (time series model) is created using a
sequence of optimum positions found in the past. Experimental results show that if
this algorithm can predict the movements of optima correctly, it can work well with
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Algorithm 5 Prediction approach to solve dynamic problems

1. Initialize phase:

a. Initialize the population
b. Initialize the learning model and training set

2. Search for optimum solutions and detect changes
3. If a change is detected

a. Use the current environment state as the input for the learning model
b. Use the learning model to estimate the type of this current change and/or how the

next change should be
c. Generate new individuals or recall old ones that best match with the estimation
d. Search for the new optimum using the new population
e. Update the training set based on the search results

4. Return to step 2

very fast changes. A similar approach was proposed in [90] where the movement of
optima was predicted using Kalman filters. The predicted information (the next lo-
cation of the optimum) is incorporated into an EA in three ways: First, the mutation
operator is modified by introducing some bias so that individuals’ exploration is di-
rected toward the predicted region. Second, the fitness function is modified so that
individuals close to the estimated future position are rewarded. Third, some “gifted”
individuals are generated at the predicted position, and introduced into the popula-
tion to guide the search. Experiments on a visual tracking benchmark problem show
that the proposed method does improve the tracking of the optimum, both in terms
of distance to the real optimum and smoothness of the tracking.

Prediction was also used to determine the locations that individuals should be
re-initialized to when a change occurs. In [129] this approach is used to solve two
dynamic multi-objective optimization benchmark problems in two ways: First, the
solutions in the Pareto set from the previous change periods were used as a time
series to predict the next re-initialization locations. Second, to improve the chance
of the initial population to cover the new Pareto set, the predicted re-initialization
population is perturbed with a Gaussian noise whose variance is estimated based
on historical data. Compared with random-initialization, the approach was able to
achieve better results on the two tested problems.

Another interesting approach is to predict the time when the next change will
occur and which possible environments will appear in the next change [96, 97].
In these works, the authors used two prediction modules to predict two different
factors. The first module, which uses either a linear regression [96] or a non-linear
regression [97], is used to estimate the generation when the next change will occur.
The second module, which uses Markov chain, monitors the transitions of previous
environments and based on this data provides estimations of which environment will
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appear in the next change. Experimental results show that an EA with the proposed
predictor is able to perform better than a regular EA in cyclic/periodic environments.

A special class of prediction approaches is dynamic time-linkage optimization
[12–14, 72, 74]. Time-linkage problems are problems where the current solutions
made by the algorithms can influence the future dynamics. In such problems, it was
suggested that the only way to solve the problems effectively is to predict future
changes and take into account the possible future outcomes when solving the prob-
lems online. Research in [12–14, 72, 74] followed this idea to solve time-linkage
problems effectively. Another related study is the anticipation approach [20] in
solving dynamic scheduling problems where in addition to finding good solutions,
the solver also tries to move the system “into a flexible state” where adaptation to
changes can be done more easily. Specifically, because it is observed that in the
tested dynamic job-shop scheduling problem, the flexibility of the system can be
increased by avoiding early machine idle times, the authors proposed a scheduling
approach where in addition to the main optimality objective, solutions with early
idle time are penalized. The experimental results show that such an anticipation
approach significantly improved the performance of the system.

2.2.6.2 Strength and Weakness

Prediction approaches may become very effective if their predictions are accurate. In
this case, the algorithms can detect/track/find the global optima quickly, as shown
in [45, 94, 120]. However, prediction/adaptation-based algorithms also have their
own disadvantages, mostly due to training errors. These errors might be resulted by
the unpredictable nature of the problems. If the changes are stochastic, or history
data are misleading, prediction approaches might not get satisfactory results. For
example, [72, 74] illustrated a situation where history data are actually inappropriate
for the prediction and might even mislead the predictor to get worse results.

Prediction errors might also be due to wrong training data, or lack of train-
ing data. As in the case of any learning/predicting/forecasting model, the algo-
rithms may need a large enough set of training data to produce good results. It
also means that the prediction can only be started after sufficient training data have
been collected, e.g., [12, 13, 96, 97]. In the case of dynamic optimization where
there is a need of finding/tracking the optima as quick as possible, this might be a
disadvantage.

2.2.7 Self-adaptive Approaches

In certain cases, the self-adaptive mechanisms of EAs and other meta-heuristics
can be used effectively to cope with changes. One example is the GA with genetic
mutation rate [44], which allows the algorithm to evolve its own mutation strategy
parameters during the search process based on the fitness of the population. In this
method, the mutation rate is encoded in genes and is influenced by the selection
process. The algorithm was tested in both gradual and abrupt dynamic landscapes.
The results show that the algorithm has better performance than a conventional GA.
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However, it is still not better than hyper-mutation (see section 2.2.3 and [31]). A
similar method was proposed by Ursem in his multinational GA (MGA) [104]. Five
different parameters (probability for mutation, probability for crossover, selection
ratio, mutation variance and distance) are encoded in the genomes of his MGA
for adaptation. The adaptation mechanism works well in simple cases where the
velocity of moving peaks is constant. However, in cases where the velocity is not
constant, the adaptation seems to be not fast enough. These two results show the
difficulty of applying adaptive parameter tuning to complex dynamic optimization.

The self-adaptive mechanisms of such EAs as ES or evolutionary programming
(EP) were also investigated for using in dynamic optimization. Angeline [3] ex-
amined self-adaptive EP (saEP) and showed that the strategy is not effective for
all types of tested problems. Bäck [7] showed that the log-normal self-adaptation
in ES may perform better than saEP. Experiments pointed out that algorithm im-
plementation and parameter settings have much less influence on ES in dynamic
environments than in stationary environments [92] and that ES might be unreliable
in rapidly changing environments [114]. Weicker [112] also argued that it is possi-
ble that if Gaussian mutation is used in the standard ES, self-adaptation might not
be appropriate for dynamic optimization.

Some mathematical analyses on the performance of self-adaptive ES in dynamic
environments were proposed. Arnold and Beyer [4] pointed out that the cumulative
mutation step-size adaptation of ES can work well on a variant of the sphere model
with random dynamics of the optimum. The strategy can realize the optimal muta-
tion step-size for the model. However, in the sphere model with linear dynamics,
another research of Arnold and Beyer [5] revealed that the mutation step-size real-
ized by ES is not the optimal one (but the adaptation still ensures that the optimum
can be tracked).

2.2.8 Multi-population Approaches

2.2.8.1 Overview

Multi-population approach, which maintains multiple sub-populations concurrently,
can be seen as a combination of diversity maintaining/introducing, memory and
adaptation. Each sub-population may handle a separate area of the search space.
Each of them may also take responsibility for a separate task. For example, some
sub-populations may focus on searching for the global optimum while some others
may concentrate on tracking any possible changes. These two types of populations
then may communicate with each other to bias the search. A typical pseudo-code of
the multi-population approach is shown in Algorithm 6.

Methods following the approach of using multiple populations usually need to
accomplish two goals: First, they may need to assign different types of tasks to
different sub-populations, for example, Psearch to search and Ptrack to track, so that
the search can be done effectively. Second, they need to divide the sub-populations
appropriately and make sure that the sub-populations are not overlapped to have the
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Algorithm 6 Multi-population approach

1. Initialize:

a. Initialize the set Psearch of sub populations finding the global optima
b. Initialize the set Ptrack of sub populations tracking changes in the landscape

2. For each generation:

a. Search for optima: Sub-populations in Psearch find the global optima
b. Track changes: Sub-populations in Ptrack track any changes
c. Maintain diversity: Re-allocate/split/merge the sub-populations so that they are not

overlapped and can cover a larger area of the search space
d. Adjust: Re-adjust each sub-population in Psearch based on the experience from sub-

populations in Ptrack
e. Reproduce each sub-population
f. Return to step 2a

best diversity and also to avoid the situation where many sub-populations find the
same peak.

For the first goal, assigning different tasks to the sub-populations, there might be
multiple small populations in Psearch searching for new solutions and there is only
one large population in Ptrack to track changing peaks [77], or there might be one
large population to search and multiple sub-population for tracking changes [9, 19,
29, 38, 61, 63, 73], or each sub-population can both search for new solutions and
track changes [39, 57, 58, 104]. Relating to the goal of assigning the tasks to sub-
populations, it should be noted that in dynamic optimization multiple populations
are used not only for exploring different parts of the search space, but also for co-
evolution [40, 73, 75] or maintaining diversity and balancing between exploitation
and exploration [110].

For the second goal, dividing the sub-populations and making sure that the sub-
populations are not overlapping, there are different approaches, of which the most
common is clustering: choosing some solutions in the population as the centres of
the future clusters, then defining each sub-population as a hyper-cube or sphere with
a given size. All individuals within the range of a hyper-cube/sphere will belong to
the corresponding sub-population of that hyper-cube/sphere. For example, the self-
organizing scouts (SOS) algorithm [19] keeps the sub-populations from being over-
lapped by confining each sub-population to a hyper-cube determined by a centre
(the most fit individual in the population) and a pre-defined range. If an individual
of one sub-population ventures to the area monitored by another sub-population,
this individual will simply be discarded and re-initialized (this process is called ex-
clusion). The same approach is also used in DE [61, 63] and PSO [10, 58]. For
example, in multi-swarm PSO (mPSO) [10], swarms are divided into sub-swarms
so that each swarm watches a different peak. In addition, mPSO also maintains a
similar mechanism (named anti-convergence) to the Psearch in SOS so that there is
always one free swarm to continue exploring the search space. Another example is
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the speciation PSO (SPSO) algorithm [58], where each species is a hyper-sphere
whose centre is the best-fit individual in the species and each species can be used
to track a peak. In recent clustering approaches [57, 115], density-based cluster-
ing methods are also used to divide/separate the sub-populations and to allow the
algorithms explore different parts of the search landscape.

Other approaches to divide sub-populations are to incorporate some mechanism
of penalty/rewarding to keep the sub-populations apart [77], and to estimate the
basins of attractions of peaks and use these basins as separate regions for each sub-
population [104].

2.2.8.2 Strength and Weakness

Multi-population approaches are thought to have multiple advantages. First, they
can maintain enough diversity to adaptively start a new search whenever a new
change appears, as illustrated in [17]. Second, they may be able to recall some infor-
mation from the previous generations thanks to one (or several) population(s) ded-
icated for retaining old solutions, as shown in their good performance in problems
with recurrent changes [15, 104]. Third, they can search/track the moves of multi-
ple optima, as analysed in many existing studies on multi-populations, e.g., [17] and
[104]. Finally, they can be very effective for solving problems with competing peaks
or multimodal problems. A survey by Moser [66] showed that among 19 surveyed
algorithms that are designed to solve the moving peaks benchmark (MPB) [15] with
multimodal competing peaks, a majority (15 out of 19) follow the multi-population
approach.

There are also disadvantages in using multi-population approaches. First, too
many sub-populations may slow down the search. For example, Blackwell and
Branke [10] showed that for their multi-swarm PSO algorithm, if the number of
sub-populations (swarms) is larger than the number of peaks, the performance of
the algorithm decreases. It might also be difficult to identify the appropriate number
of sub-populations, as well as the size of each sub-population. Second, the need of
calculating the distance/similarity/regional metrics to separate the sub-populations
might also affect the performance. Third, in academic research, multi-population
approaches have been tested mostly in the continuous domain, and hence more evi-
dence might be needed to confirm their effectiveness on combinatorial problems.

2.3 Theoretical Development of EDO Methodologies

EDO research so far has mainly been empirical. Most theoretical analysis of EDO
has just started in recent years with some results. Analysing EAs for DOPs is consid-
ered more difficult than analysing EAs for static problems due to the extra dynamics
introduced in DOPs. The theoretical studies on EDO methodologies are briefly re-
viewed as follows.
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Initial EDO theoretical works were extensions of the analysis of simple EAs,
e.g., the (1+1) EA3, for static optimization to simple DOPs, e.g., the dynamic bit
matching problem [99]. In [99], the authors presented the transition probabilities of
the (1+1) EA and showed that even small perturbations in the fitness function could
have a significantly negative impact on the performance of the (1+1) EA. Based on
this work, Branke and Wang [23] developed an analytical model for a (1, 2)-ES and
compared different strategies to handle an environmental change within a generation
on the dynamic bit matching problem .

The first hitting time of a (1+1)-ES was analyzed by Droste [36] on the dynamic
bit matching problem, where exactly one bit is changed with a given probability p
after each function evaluation. It was shown that the expected first hitting time of
the (1+1)-ES is polynomial if and only if p = O(logn/n). Arnold and Beyer [4]
investigated the tracking behaviour of an (μ/μ , λ )-ES with self-adaptive mutation
step-size on a single continuously moving peak. They derived a formula to predict
the tracking distance of the population from the target. Jansen and Schellbach [49]
presented a rigorous performance analysis of the (1+λ )-EA on a tracking problem
in a two-dimensional lattice and showed that the expected first hitting time strictly
increases with the offspring population size (i.e., λ ) whereas the expected number
of generations to reach the target decreases with λ . In [114], Weicker and Weicker
analyzed the behaviour of ESs with several mutation variants on a simple rotating
dynamic problem. In [111], Weicker presented a framework for classifying DOPs
and used it to analyze how the offspring population size and two special techniques
for DOPs affect the tracking probability of a (1,λ )-ES. Weicker [113] also used
Markov models to analyze the tracking behaviour of (1,λ )-ESs with different mu-
tation operators for a discrete optimization problem with a single moving optimum.

Rohlfshagen et al. [87] analyzed how the magnitude and frequency of changes
may affect the performance of the (1+1)-EA on two specially designed pseudo-
Boolean functions under the dynamic framework of the XOR DOP generator [118].
They demonstrated two counter-intuitive results, i.e., the algorithm is efficient if
the magnitude of change is large and inefficient when the magnitude of change is
small, and the algorithm is efficient if the frequency of change is very high and
inefficient if the frequency of change is sufficiently low. These results allow us to
gain a better understanding of how the dynamics of a function may affect the runtime
of an algorithm.

In addition to the above runtime analysis of EDO methodologies, there are also
theoretical analysis of dynamic fitness landscape [21, 22, 80, 81, 83, 84, 88, 89, 100,
101]. Readers are referred to [71] for a literature review on research in this area.

3 In a (1+1) EA, there is only one solution maintained in the population. In each iteration,
the unique solution acts as the parent to generate an offspring via mutation. If the fitness
of the offspring is not worse than the parent, the offspring will replace the parent; other-
wise, the parent will survive into the next generation.
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2.4 Summary and Future Research Directions

2.4.1 Summary

The review above showed that each EDO approach seems to be suitable only for
certain types of DOPs, which conforms to the No Free Lunch theorem [116]. The
fact that each approach is likely to be suitable to some particular classes of problems
is also the reason why many recent studies try to combine different approaches
into one single algorithm to solve the problems better. Overall, multi-population
approaches seem to be the most flexible approach to date in the continuous domain.

The review showed that there have been some recent works on the theory behind
EDO. These theoretical studies are still quite basic. However, they have made very
important first steps toward understanding EDO and will surely act as the basis for
further theoretical studies on EDO.

It should be noted that most existing EDO methods were tested and evaluated
on academic problems only. This leads to the question of whether these methods
would still be effective in real-world DOPs. In the next subsection, we will discuss
this question in detail.

2.4.2 The Gaps between Academic Research and Real-World
Problems

The lack of a clear link between EDO academic research and real-world scenarios
has lead to some criticisms on how realistic current academic problems are. Ursem
et al. [105] questioned the importance of current academic benchmarks by stating
that “no research has been conducted to thoroughly evaluate how well they reflect
characteristic dynamics of real-world problems”; Branke et al. [22] pointed out that
“little has been done to characterize and understand the nature of a change in real-
world problems”; Rohlfshagen and Yao [88] criticized that “a large amount of effort
is directed at an academic problem that may only have little relevance in the real
world”; and in [74, 76], it has been showed that there are some classes of real-
world problems whose characteristics have not been captured by existing academic
research yet. Nguyen and Yao [76] also showed evidence of situations where exist-
ing EDO techniques could not solve certain classes of DOPs effectively due to the
uncaptured characteristics of DOPs.

Recently, a detailed analysis [70, Chapter 3] of a large set of recent “real”4 real-
world DOPs has been made to investigate the characteristics of real-world problems
and how they relate to the characteristics of current academic benchmark problems.
This investigation pointed out certain gaps between academic EDO research and real-
world DOPs. First, current studies in academic EDO do not cover all types of com-

4 Only references that actually use real-world data or solve problems in actual real-world
situations were considered. Benchmark problems, even if designed to simulate real-world
applications, were not considered unless there is evidence that the data used to create the
benchmark were taken from real-world applications.
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mon DOPs yet. There are two types of problems that are very common in real-world
situations but received very little attention from the community: dynamic constrained
problems and time-linkage problems. Second, although many current EDO academic
research works only focus on one major optimization goal: optimality (to find the best
fitness value), the study in [70] showed that there might be many other common op-
timization goals. Third, although most current EDO benchmark problems have only
one changing factor, the study in [70] showed that there are also other common types
of changing factors: constraints, number of variables, domain ranges, etc.

In summary, the review in [70] showed that besides the characteristics and as-
sumptions commonly used in EDO academic research, real-world DOPs also have
other important types of problems and problem characteristics that have not been
studied extensively by the EDO community. In order to solve real-world DOPs
more effectively, it is necessary to take these characteristics and problem types into
account when designing new methodolgoies.

2.4.3 Future Research Directions

As reviewed in this chapter, there have been many studies devoted to EDO method-
olgoies and fruitful results have been achieved. However, the research domain of
EDO is still relatively young. Much more effort is needed to fully develop and un-
derstand the domain of EDO. Some future research directions on EDO methodolo-
gies are highlighted and suggested as follows.

First, although a number of EDO approaches have been developed for solving
DOPs, new efficient approaches are of great needs. As the review has shown, dif-
ferent methods have different strength and weakness on different DOPs. Hence, it is
also worthy to further develop and investigate hybrid methods for DOPs in the future.
Here, it is very important to develop adaptive systems that can deal with DOPs of
different characteristics. Active adaptability should also be addressed so that future
algorithms are able to effectively handle dynamics even without change detection.

Second, as shown earlier in this chapter, most EDO methodologies focus on solv-
ing academic problems, where there is no clear link to real-world characteristics.
Although there have been some real-world application studies on EDO, e.g., see
[28–30, 70, 117] (also see [70, 123] for detailed lists of references), the number of
EDO application studies so far is still very limited. One of the important research
direction for the EDO community is to consider and model more real-world DOPs,
and apply EDO and other meta-heuristic methods to solve them in the future. This
will further enhance the applicability and feasibility of EDO in practical situations.

Third, as discussed earlier, theoretical research on EDO is still at the beginning
stage. The relative lack of theoretical proof on EDO makes it difficult to evaluate
the strength and weakness of EDO algorithms on solving different types of DOPs.
As reviewed, the computational complexity analysis of EDO has started with some
promising results. However, this area of study needs to be extended significantly to
gain more insight as to which DOP is difficult or easy to solve for what types of
EDO methods. Here, techniques for analyzing evolutionary optimization on static
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problems, e.g., drift analysis [46, 47], may be applied or adapted to analyze EDO.
It will also be beneficial to analyse the dynamic behavour of EDO algorithms and
how the behavour satisfies the real-world practitioners’ requirements, which are not
always the ability to identify/track the global optimum after each change.
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