
Chapter 15
Evolutionary Computation for Dynamic
Capacitated Arc Routing Problem

Yi Mei, Ke Tang, and Xin Yao

Abstract. In this chapter, a new dynamic capacitated arc routing problem (CARP) is
defined and investigated. Compared with the static CARP and other dynamic CARP
investigated by the existing researches, the new dynamic CARP is more general and
closer to reality, and thus is more worthwhile to be solved. Due to the stochastic
factors included in the dynamic CARP, the objective is not to obtain the optimal
solution in a specific environment, but to find a robust solution that shows good
performance in all the possible environments. For the dynamic CARP, a robustness
measure based on repair operator is defined. The corresponding repair operator is
designed according to the real-world considerations. Then, the benchmark instances
of the dynamic CARP are generated by extending from the static counterparts to
facilitate evaluating potential approaches. After that, the preliminary analysis for
the fitness landscape of the dynamic CARP is conducted by experimental studies.
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15.1 Introduction

The capacitated arc routing problem (CARP) is a classic combinatorial optimiza-
tion problem that has wide applications in the real world including the salt routing
optimization [4, 23, 24, 28, 29, 42], urban waste collection [14, 16, 33, 34, 39] and
snow removal [11, 41].

CARP can be described as follows: Given a connected graph, some edges (called
the tasks) of the graph are required to be served by a vehicle fleet located at the depot
vertex. The problem aims to determine a least-cost plan subject to the following
constraints:

• Each vehicle must start and end at the depot vertex;
• Each task is served exactly once by one vehicle;
• The total demand of the tasks served by each route cannot exceed its capacity.

CARP has been proven to be NP-hard by Golden and Wong in [26]. That is, the
computational complexity of finding the global optimum increases exponentially
with the increase of problem size. On the other hand, the real-world problems often
have quite large problem sizes, making it impractical to find the global optimum by
the exact methods. In this situation, methods based on evolutionary computation are
promising methods due to their capability of obtaining good sub-optimal solutions
within a given time budget.

So far, intensive investigations have been conducted for solving CARP. Most of
them are focused on the static CARP, in which all the problem parameters are ex-
actly known in advance and do not change as time goes on. However, in the real
world, the above assumption can hardly be guaranteed, and some or all of the prob-
lem parameters cannot be known in advance or change over time. For example, in
the snow removal application, the amount of snow to be removed for each street
cannot be known exactly until the truck finishes the removal, and the traffic jam or
road maintenance influences the time needed to traverse a street.

When the problem contains stochastic or dynamic problem parameters, the cor-
responding CARP can be called the dynamic CARP . Although the dynamic CARP
is closer to the reality than the static counterpart, it has been overlooked so far, and
there are only a few related research done. Fleury et al. proposed a stochastic CARP
model in [21]. In the model, the task demands are considered to be stochastic. In
this case, a solution that is expected to be feasible may be actually infeasible since
the actual total demand served by a route may be larger than expected and exceed
the capacity. Therefore, the solution must be made feasible by some repair operator
before the calculation of its total cost.

The methods proposed for solving the dynamic CARP are also quite few. Fleury
et al. proposed an evolutionary algorithm in [21], which employs a simple repair
operator and optimizes the total cost of the repaired solution. Christiansen et al.
proposed a branch-and-price algorithm in [13]. Laporte et al. proposed an adaptive
large neighborhood search heuristic in [34].

Compared with the dynamic CARP, the stochastic vehicle routing problem
(SVRP) , which is the node routing counterpart of the dynamic CARP, has received
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much more research interest. Starting from the one-vehicle special case of VRP, i.e.,
the stochastic traveling salesman problem (TSP) , the presence of customers and the
travel times between the customers are considered to be stochastic. The TSP with
stochastic customers was proposed by Jaillet [31] along with a number of mathemat-
ical models, while there has been no mathematical model for the TSP with stochastic
travel times. In the m-vehicle version of the TSP with stochastic travel times, there
are m vehicles available instead of only one vehicle. In the problem, all the vehicles
have to depart from and arrive at a common depot, and a deadline is imposed on
each vehicle route. A penalty is induced for the completion delay. For stochastic
VRPs, research works are focused on stochastic demand of customers [5, 18, 45]
and on the stochastic presence of customers [5, 47], and both [6]. A comprehensive
survey of the aforementioned problems is given in [22], and a dynamic replanning
for VRP in case of unforseen situations such as traffic jams is considered in [48] and
[49].

In summary, three stochastic factors have been considered in previous research
work: (1) the presence of tasks (vertices in VRP and edges in CARP); (2) the de-
mand of the tasks and (3) the deadheading costs (e.g., travel time) between the
tasks. In fact, a fourth stochastic factor can be considered: the availability of the
path between each pair of vertices. For example, when a street is on its mainte-
nance, it becomes temporarily unavailable to be traversed and thus disappears from
the graph. The above four stochastic factors can occur simultaneously in the prob-
lem. Unfortunately, a corresponding model has not been investigated. Most research
works consider them separately or combine at most two of them together (e.g., the
presence and demand of the tasks are combined in [6]). In this chapter, a more gen-
eral dynamic CARP with all the above four stochastic factors embedded is defined.
This dynamic CARP is different from the static CARP with respect to the inputs,
outputs, objective and constraints. In the dynamic CARP, the inputs are random
variables and the outputs include a solution and a repair operator that can make the
solution feasible in any possible environment. The objective of the dynamic CARP
switches from obtaining the optimal solution in a specific environment to finding a
robust solution, i.e., a solution that shows relatively good performance in all possi-
ble environment. The goal of the constraints of the dynamic CARP is no longer to
guarantee the feasibility of the solution, but to help improving the robustness of the
obtained solution.

After the problem has been defined, preliminary investigations are conducted on
it. First, in order to facilitate the potential approaches for the dynamic CARP, the
benchmark instances are generated by extending from the static CARP benchmark
instances. Then, a rough analysis and discussion about the fitness landscape of the
dynamic CARP is conducted. It has been found that for the dynamic CARP, merely
using the expected information does not necessarily lead to robust solutions, and the
optimal solution for the corresponding static counterpart may be much less robust
than other solutions for the dynamic CARP.

The rest of the chapter is organized as follows: First, the dynamic CARP is de-
fined in Section 15.2. After that, the related work for solving the dynamic CARP
and its static counterpart is comprehensively reviewed in Section 15.3. Then, the
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benchmark instances for dynamic CARP is generated in Section 15.4. The prelim-
inary investigation of the fitness landscape of the dynamic CARP is conducted in
Section 15.5. Finally, the conclusion and future work is given in Section 15.6.

15.2 Problem Definition

Before defining the dynamic CARP, the simpler and more basic static CARP is
first introduced to help understanding. Then, the dynamic CARP is defined and
compared with the static CARP.

15.2.1 Static Capacitated Arc Routing Problem

The static CARP is the most basic and simplest version of CARP. It is defined on
a weighted connected graph G(V,E,A), where V , E and A are the sets of vertices,
undirected edges and directed edges, respectively. For the sake of convenience, the
undirect edges will be called edges while the directed edges will be called arcs. All
the edges (vi,v j) ∈ E and arcs 〈vi,v j〉 ∈ A are associated with a nonnegative serv-
ing cost sc(vi,v j), a positive deadheading cost dc(vi,v j) and a nonnegative demand
d(vi,v j). The edges and arcs having positive demands are called the tasks and must
be served. The serving cost of an edge or arc indicates the cost induced by serving it
if it is a task, while the deadheading cost indicates the cost induced by traversing it
without serving. The sets of edge tasks, arc tasks and total tasks are represented by
ER = {(vi,v j)∈ E|d(vi,v j)> 0}, AR = {〈vi,v j〉 ∈ A|d(vi,v j)> 0} and R = ER∪AR.
A number of vehicles, each with capacity of Q, are located at the depot vertex v0 ∈V
to serve the tasks in R.

A CARP solution can be essentially represented by a route set X = {X1, ...,Xm}
and a corresponding 0-1 vector set Y = {Y1, ...,Ym}. The kth route Xk = (xk1, ...,xklk ),
indicating the route traversed by the kth vehicle, is a sequence of vertices starting and
ending at v0, i.e., xk1 = xklk = v0. The corresponding 0-1 vectorYk =(yk1, ...,yk(lk−1))
is defined as follows: if (xki,xk(i+1)) is a task and is served at the current position,
then yki = 1; otherwise, yki = 0. Under such a solution representation scheme, the
static CARP can be stated as follows:

min tc(S) =
m

∑
k=1

lk−1

∑
i=1

(sc(xki,xk(i+1)) · yki + dc(xki,xk(i+1)) · (1− yki)) (15.1)

s.t. : xk1 = xklk = v0, k = 1,2, ...,m (15.2)

m

∑
k=1

lk−1

∑
i=1

yki = |R| (15.3)

(xki,xk(i+1)) ∈ ER∪AR, ∀yki = 1 (15.4)

(xk1i1 ,xk1(i1+1)) � (xk2i2 ,xk2(i2+1)), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.5)
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(xk1i1 ,xk1(i1+1)) � (xk2(i2+1),xk2i2), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.6)

lk−1

∑
i=1

d(xki,xk(i+1)) · yki � Q, k = 1,2, ...,m (15.7)

xki ∈V, dc(xki,xk(i+1))< ∞, yki = 0 or 1 (15.8)

where |R| is the number of tasks in R. In constraints (15.5) and (15.6), the inequality
(k1, i1) � (k2, i2) is satisfied if and only if at least one of the two inequalities k1 � k2

and i1 � i2 is satisfied. Objective (15.1) is to minimize the total cost tc(S). Constraint
(15.2) indicates all the routes start and end at the depot v0. Constraints (15.3)–(15.6)
guarantee that all the tasks are served exactly once. Constraint (15.7) is the capacity
constraint, i.e., the total demands served by each route cannot exceed the capacity
Q. Constraint (15.8) defines the domain of the variables.

15.2.2 Dynamic Capacitated Arc Routing Problem

The above static CARP can be characterized by the following four aspects: inputs,
outputs, objective and constraints. To be specific, the inputs include the deadheading
costs dc(vi,v j), the serving costs sc(vi,v j), the demand of the tasks d(vi,v j) and
the capacity Q. The output is a solution represented by a route vector X and a 0-1
vector Y . The objective is to minimize the total cost of the solution. The constraints
include the basic constraints (each route starts and ends at the depot and each task
is served exactly once) and the capacity constraint. Next, the dynamic CARP is
described from the above four aspects as well, and compared with the static CARP
with respect to each aspect.

15.2.2.1 Inputs of the Dynamic Capacitated Arc Routing Problem

In the static CARP, all the input parameters are assumed to be known in advantage
and fixed over time. As mentioned in Section 15.1, in the real-world applications,
this is usually not the case, and it is more appropriate to represent the input param-
eters as random variables rather than constants.

As mentioned in Section 15.1, there are four stochastic factors in the dynamic
CARP: (1) presence of tasks; (2) demand of tasks; (3) presence of paths between
vertices and (4) deadheading costs between vertices. These stochastic factors trans-
form the deadheading costs dc(vi,v j) and the demand of tasks d(vi,v j) from con-
stants to random variables. It should be noted that the serving costs sc(vi,v j) are
also affected by the stochastic factors. Here, for the sake of simplicity, one can as-
sume that the serving costs are proportional to the deadheading costs, or even equal
to them. Then, the two random variables dc(vi,v j) and sc(vi,v j) can be combined
into a single random variable dc(vi,v j).

When a task (vi,v j) is absent, one can consider that its demand d(vi,v j) is
zero. Similarly, dc(vi,v j) = ∞ implies that the edge (vi,v j) temporarily disappears.
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Therefore, the distribution of the random variables can be seen as a combination of
a constant (including infinity) for the case of absence and a random distribution for
the case of presence.

In the real-world applications, an implementation process of a solution can be
seen as a sample of the random variables. To be specific, during the implementation
process, the presence and actual demand of each task is unknown until it has been
served, and the presence and deadheading cost between each pair of vertices can
only be known after the path has been traversed.

15.2.2.2 Outputs of the Dynamic Capacitated Arc Routing Problem

The stochastic nature of the input parameters in the dynamic CARP influence both
the quality and feasibility of solutions. First, it is natural that the change of dead-
heading costs leads to the change of the total cost, which determines the solution
quality. Second, the change of demand or the presence of the tasks that are expected
to be absent will make the total demand served by a route larger than expected, and
thus violates the capacity constraint. Third, the absence of a path existing in the solu-
tion makes the corresponding route disconnected so that the solution becomes illegal
unless another path is found to connect the separated vertices. In summary, given a
solution, the quality and feasibility changes in the dynamic environment. That is, a
solution is feasible in one environment, but is infeasible in another environment. A
high-quality solution in one environment may perform quite badly in another envi-
ronment.

The change of feasibility can only be found during the implementation process.
For example, a vehicle can only know whether its remaining capacity can afford the
actual demand of the next task after serving it. If the change of feasibility has been
detected, i.e., the solution becomes infeasible in the current environment, the solu-
tion must be modified (repaired) so that it becomes feasible again. For this purpose,
a corresponding repair operator is needed to make the solution feasible whenever it
becomes infeasible.

In summary, the outputs of the dynamic CARP should include a solution and a
repair operator. The repair operator must be able to make the solution feasible in
any possible environment.

15.2.2.3 Objective of the Dynamic Capacitated Arc Routing Problem

It is known that the quality and feasibility of solution are different in different envi-
ronments. Therefore, it is meaningless to obtain the optimal solution in one specific
environment since its performance may severely deteriorate when the environment
changes. Instead, the objective of the dynamic CARP should be to obtain a robust
solution, i.e., a solution that shows relatively good performance under all possible
environments. To this end, a proper robustness measure for the dynamic CARP so-
lutions is to be defined.

Taguchi proposed the concept of robustness optimization for the first time in [43],
in which the quality of solution depends on a noise parameter ξ that is out of the
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control of the designer as well as the control parameter x. To evaluate a solution in
this situation, Taguchi defined the following robustness measure:

MSD =
1
k

k

∑
i=1

(y(x,ξ i)− ŷ)2 (15.9)

where y(x,ξ i) is the actual performance under the control parameter x and the noise
ξ i), k indicates the number of all possible noises, and ŷ is the target performance.
MSD can be seen as the deviation of the actual performance y of the solution x,
which is influenced by the noise ξ , from the target performance ŷ.

After that, the concept of robustness optimization in uncertain and dynamic
environments has received the research interest in various scientific fields such as
operations research and engineering design (e.g., [3] [19] [32]), and many other
robustness measures have been proposed. Some of the representative measures are
introduced below:

1. Worst-case Performance Rw(x): Take minimizing the objective function f (x) as
an example, the worst-case performance is defined as:

Rw(x) = sup
x′∈N (x)

f (x′) (15.10)

where N (x) stands for a predefined neighborhood of x. When the actual parame-
ter fluctuates within the neighborhoodN (x) of the solution x due to the stochastic
nature, optimizing Rw(x) means optimizing the performance of the solution in the
worst case. Examples of the worst-case performance measure can be found in [20]
[30] [35] [37].

2. Expected Performance Re(x): The expected performance measures the expec-
tation of f (x) with respect to the environmental parameter ξ . It can be stated as:

Re(x) = E[ f (x,ξ )|ξ ] =
∫

f (x;ξ )dξ (15.11)

The expected performance has been adopted in [9] [10] [15] [50] to evaluate the
robustness of solutions.

3. Threshold-based Robustness Measure Rt(x): In many real-world cases, the ob-
jective is not to maximize the performance, but to meet the predefined quality thresh-
old q. In such a situation, one can maximize the probability of reaching the quality
threshold, i.e.,

Rt(x) = Pr[ f (x) � q] (15.12)

4. Reliability-based Robustness Measure: Unlike the above three measures, this
measure is used to deal with the stochastic factors that appear in the constraints
and change the practical feasibility of solution. Given the following optimization
problem:
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min f (x) (15.13)

s.t. gi(x) � 0, i = 1, ..., I (15.14)

h j(x) = 0, j = 1, ...,J (15.15)

in which there is a stochastic constraint gk(x;ξ ) � 0 affected by the environmental
parameter ξ . For the same value of x, there may exist ξ 1 and ξ 2 so that gk(x;ξ 1)� 0
and gk(x;ξ 2) > 0. In other words, x is feasible in environment ξ 1, while becomes
infeasible in environment ξ 2. In such a situation, the reliability-based robustness
measure transforms the original constraint gk(x;ξ ) � 0 to the following constraint
Pr[gk(x;ξ ) � 0] � P0, which means the probability of satisfying the constraint is no
less than the confidence probability P0. This measure employs the same idea of the
probabilistic constrained programming in stochastic programming [7], and has been
widely used in the design optimization problems based on reliability [1, 2, 12, 27,
36, 40].

5. Repair-based Robustness Measure: This measure is used to deal with the
stochastic factors appearing in constraints as well. As the name implies, the mea-
sure defines a repair operator Φ to make infeasible solutions feasible again. Given
a solution x and a sample of the environmental parameter ξ , if x is feasible in the
current environment, then it remains unchanged. Otherwise, it is modified by Φ to
a feasible solution, i.e., x→Φ(x,ξ ). Here, the repair operator Φ has to be defined
in such a way that for any solution x and environment sample ξ , Φ(x,ξ ) must be
a feasible solution. The measure was adopted in [21] in the context of the CARP
with stochastic task demands. Under the assumption that the demand of each single
task is much smaller than the capacity, the repair operator simply cut the infeasible
routes before the last task.

The dynamic CARP has stochastic factors in both the objective function and the
constraints. As mentioned above, the stochastic constraints are addressed by the
repair operator, and thus the corresponding repair-based robustness measure is to be
used. As for the stochastic objective function, measures 1–3 reflect different aspects
and can be chosen according to practical consideration.

Then, the robustness measure for the dynamic CARP solutions can be defined as:

R(S) = R∗(Φ(S,ξ )) (15.16)

Here, R∗ can be Rw, Re or Rt , and Φ(S,ξ ) is the feasible solution obtained by ap-
plying the repair operator Φ on the solution S according to the environment ξ .

15.2.2.4 Constraints of the Dynamic Capacitated Arc Routing Problem

Unlike the static CARP, the feasibility of solution cannot be guaranteed by imposing
the constraints since it depends on the actual environment parameters. However,
proper constraints can still help find more robust solutions. For example, one can
impose a capacity constraint based on the expected demand of tasks so that the
obtained solution is expected to satisfy the actual capacity constraint. In practice,
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different constraints can lead to different optimal solutions in terms of the defined
robustness measure.

15.2.2.5 Summary

Table 15.1 summaries the differences between the dynamic CARP and the static
CARP with respect to the above four aspects. In the table, “SCARP” and “DCARP”
stand for the static and dynamic CARPs, respectively.

Table 15.1 Comparison between the dynamic and static CARPs

Aspect SCARP DCARP

Input The inputs are constants The inputs include constants
and random variables

Output A feasible solution in the given
specific environment

A solution along with an opera-
tor to repair the solution when-
ever it becomes infeasible

Objective Minimize the total cost Optimize the robustness

Constraints To guarantee the feasibility of
solutions

To help obtain more robust so-
lutions

Finally, by setting the robustness measures as Re and imposing proper constraints,
the dynamic CARP can be stated as follows:

min Re(Φ(S,ξ )) (15.17)

s.t. : xk1 = xklk = v0, k = 1,2, ...,m (15.18)

m

∑
k=1

lk−1

∑
i=1

yki = |R| (15.19)

(xki,xk(i+1)) ∈ ER∪AR, ∀yki = 1 (15.20)

(xk1i1 ,xk1(i1+1)) � (xk2i2 ,xk2(i2+1)), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.21)

(xk1i1 ,xk1(i1+1)) � (xk2(i2+1),xk2i2), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.22)

E[
lk−1

∑
i=1

d(xki,xk(i+1),ξ ) · yki|ξ ] � Q, k = 1,2, ...,m (15.23)

xki ∈V, dc(xki,xk(i+1),ξ )< ∞, yki = 0 or 1 (15.24)
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Constraints (15.18)–(15.22) and (15.24) are the basic constraints and domain of the
variables, while constraint (15.23) implies that the expected total demand of each
route does not exceed the capacity.

15.3 Evolutionary Computation for Dynamic Capacitated Arc
Routing Problem

The challenges of solving the dynamic CARP come from both the complicatedness
of CARP itself and the difficulties caused by the dynamic environment. Next, we
will discuss how to address each of the two issues with evolutionary computation,
respectively.

15.3.1 Addressing the Capacitated Arc Routing Problem Issues

In this sub-section, two competitive approaches proposed for CARP are introduced,
i.e., the Repair-based Tabu Search (RTS) [38] and the Memetic Algorithm with
Extended Neighborhood Search (MAENS) [44].

15.3.1.1 The Global Repair Operator and the Repair-Based Tabu Search

The capacity constraint is one of the most important constraints that lead to the
complicatedness of CARP. Without the capacity constraint, the problem can be seen
as a single routing problem. However, with the capacity constraint imposed, the
problem becomes a combination of a routing sub-problem and a clustering sub-
problem, both of which are difficult to solve. Therefore, it is important to tackle the
capacity constraint properly.

For a solution S = (X ,Y ), the total cost depends only on the route set X , while
the 0-1 vector Y determines whether the solution satisfies the capacity constraint and
if not, the extent of the violation. Since a task can be traversed multiple times but
only served once in the vertex sequence, a single X can be associated with several
different Y ’s. An example is given in Fig. 15.1. In Fig. 15.1, the vertex o represents
the depot. All the 6 edges {(o,a),(o,b),(o,c),(a,b),(a,c),(b,c)} are tasks. The
capacity of each vehicle is 4. The number on each edge denotes its demand, e.g.,
d(a,b) = 3. The right part of Fig. 15.1 shows two different solutions S1 and S2,
which share the same route set, but are different in the 0-1 vector. As a result, S1 is
infeasible with one unit capacity violation, i.e., d(a,b)+ d(b,o) = 3+ 2 = 5 > 4,
whereas S2 is the global optimum.

During the search process, a low-cost route set and the corresponding feasible
0-1 vector are not easy to be obtained simultaneously, and an infeasible solution is
usually discarded because of the bad 0-1 vector despite its promising route set. In
order to address this issue, the Global Repair Operator (GRO) [38] is proposed.

Given an infeasible solution, GRO preserves its route set and re-assigns the 0-
1 variables to minimize the constraint violation. In other words, GRO seeks the
optimal assignment of 0-1 variables for a given route set. Such a repair process
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Fig. 15.1 An example of two different solutions sharing the same route set

takes into account all routes involved in the solution, and thus GRO can be viewed
as a global operator.

Suppose we have an infeasible solution with m routes, re-assigning the 0-1 vari-
ables can be formulated as the following problem:

min
m

∑
i=1

(
max{

N

∑
j=1

s jxi j−Q,0}
)

(15.25)

s.t. : ∑
i∈Ω( j)

xi j = 1, ∀ j = 1,2, ...,N, (15.26)

xi j = 0 or 1,∀ i = 1,2, ...,m; j = 1,2, ...,N. (15.27)

where N is the total number of tasks and s j denotes the serving cost for task j. xi j is
set to 1 if task j is served in the route i, and set to 0 otherwise. Ω( j) is defined as

Ω( j) = { i | task j is traversed in route i in S}

Given the vertex sequence, constraints (15.26) and (15.27) guarantee that each task
is served only once among the routes it is traversed.

Let {a1,a2, ...,aN} and {b1,b2, ...,bm} be a set of items and bins, respectively.
The above problem can be viewed as a bin-packing problem, where the size of the
item j is s j, and all the bins share an identical capacity Q. GRO employs an insertion
heuristic followed by a short-term tabu search to solve the bin-packing problem.
The general idea of the insertion heuristic is straightforward. We sequentially pick
an item out of the whole set and insert it into a bin, until all the items have been
inserted. Each item is inserted in a bin that minimizes the objective function (15.25).
Such procedure can be described as follows:

Step 1: Initialize xi j = 0,∀i, j. Let A = {1,2, ...,N} and cl(bi) = 0,∀i. Here, cl(bi)
is the current load of bi. Then repeat step 2 to step 4 until A = /0.

Step 2: For each j ∈ A, identify the set Ω ′( j) satisfying Ω ′( j) = {i∈Ω( j)|cl(bi)+
s j � Q}. Select the item corresponding to the smallest |Ω ′( j)| as the one
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to be inserted. If multiple items share the smallest |Ω ′( j)|, the one with
the largest s j will be selected. Then ties are broken by selecting the item
with the smallest index ( j). The selected index is j∗. Selecting the items in
this way guarantees that the item with the least choice of insertion without
violating the constraints is chosen first.

Step 3: Identify the bi with the smallest cl(bi) from Ω ′( j∗). If more than one bin
has the smallest cl(bi), the one with the smallest

∑
j∈A

IΩ( j)(i) · s j

is selected, where IΩ( j)(i) is an indicator function. IΩ( j)(i) = 1 if i ∈Ω( j),
and 0 otherwise. The above equation indicates that the bin available for
the least untreated items is considered first. After that, ties are broken by
selecting the bin with the smallest index (i). The selected index is i∗.

Step 4: Insert the selected item a j∗ in the chosen bin bi∗ . Set xi∗ j∗ = 1, remove j∗

from A and update cl(bi∗) with s j∗ .

After obtaining the initial solution with the insertion heuristic, a standard tabu search
is employed to further improve it. The tabu search is described in Algorithm 1. S0

is the solution obtained by the insertion heuristic, and f (S) is the objective function
(15.25). The neighborhood N(S) of solution S indicates the set of solutions that can
be obtained by moving an item to another admissible bin. The tabu list is designed
as follows: when an item is moved from one bin to another, it is not allowed to be
moved back to its original bin in a certain number of subsequent iterations, unless
the movement leads to a better solution than the current best solution. Here, the tabu
tenure is set to F/2, where F is the number of items with more than one admissi-
ble bin (|Ω( j)| > 1). The tabu search process terminates after N iterations or N/2
consecutive iterations without improvement.

Based on a solution of the bin-packing problem, a new solution of CARP can
be directly obtained by updating the 0-1 variables according to xi j’s. However, the
tabu search process might generate multiple assignments of 0-1 variables that all
correspond to feasible solutions of the CARP, which are saved in the archive A
(lines 9–11 of Algorithm 1). A further refinement procedure is needed to select the
best solution in A.

In the insertion heuristic and tabu search process, the total cost is not considered
since the route set is assumed to be unchanged. However, after the change of 0-1
variables, the adjacent services may be connected with shorter paths. Hence, as the
final step of the GRO, all the archived assignments of 0-1 variables are transformed
to the corresponding solutions of CARP, and then the route sets of these solutions
are refined by updating the vertices between each pair of adjacent services with the
shortest path. Finally, the solution with the smallest cost is chosen as the output of
the GRO.

To summarize, the major steps of the GRO are listed as follows:

1. Formulate the repair operation as a bin-packing problem and get a solution via
the insertion heuristic;
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Algorithm 1 A = TS( f , S0)

1: Set the current solution S = S0, the current best solution Sb = S0. Set A = /0;
2: while the stopping criteria are not satisfied do
3: Set f (S′) = ∞;
4: for all S′′ ∈ N(S) do
5: if S′′ is not tabu and f (S′′)< f (S′) then
6: S′ = S′′, f (S′) = f (S′′);
7: end if
8: end for
9: if f (S′) = 0 then

10: A = A∪S′;
11: end if
12: if f (S′)< f (Sb) then
13: Sb = S′, f (Sb) = f (S′);
14: end if
15: Update the tabu list and set S = S′;
16: if A = /0 then
17: A = {Sb};
18: end if
19: end while
20: return A;

2. Utilize a tabu search process to further improve the solution obtained in the first
step, and get an archive of candidate assignments of 0-1 variables.

3. Obtain new solutions of CARP based on the archived assignments of 0-1 vari-
ables and update these solutions with the further refinement procedure. The
solution with the smallest cost is chosen as the output.

The GRO can be easily embedded in any search-based approach to enhance its
search capability. The RTS is thus proposed by simply embedding the GRO into
an existing competitive tabu search algorithm [8]. Specifically, for each infeasible
solution with promising total cost (which is smaller than the total cost of the best
feasible solution found so far), the GRO is applied to reduce its violation to the
capacity constraint.

15.3.1.2 Memetic Algorithm with Extended Neighborhood Search

Another difficulty of CARP is that the existing search operators are with small step
sizes, and thus have difficulty to explore in the large solution space. In this situation,
a search operator with large step size is more desirable. However, it is not a trivial
task to design such a search operator. An intuitive idea is to apply the traditional
search operators for multiple times. Nevertheless, the neighborhood size increases
exponentially with the number of times to apply the search operators. As a result,
it is prohibitive to enumerate all the possible solutions in the neighborhood. One
simple solution to this problem is to randomly sample a part of the huge neighbor-
hood. However, it is often the case that some regions in the solution space are more
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promising than the others. Hence, random sampling is a bit blind and might waste
a lot of computational resource. To summarize, although a large step-size local
search can be beneficial, it cannot be implemented by simply extending the tra-
ditional move operators, and a more refined approach is required. For this purpose,
a Merge-Split (MS) operator [44] is developed.

The MS operator aims to improve a given solution by modifying multiple routes
of it. As indicated by its name (Merge-Split), this operator has two components, i.e.,
the Merge and Split components. Given a solution, the Merge component randomly
selects p (p > 1) routes of it, combines them together to form an unordered list
of tasks, which contains all the tasks of the selected routes. The Split component
directly operates on the unordered list generated by the Merge component, which
is composed of the path scanning (PS) heuristic [25] and Ulusoy’s split procedure
[46]. Given a set of tasks and the whole graph, PS is used to quickly generate a
set of feasible routes that serve all the given tasks with a relatively low total cost.
It starts by initializing an empty path. At each iteration, it seeks the tasks that do
not violate the capacity constraint. If no task satisfies the constraint, it connects
the end of the current path to the depot with the shortest path between them to
form a route, and then initializes a new empty path. If a unique task satisfies the
constraint, PS connects that task to the end of the current path (again, with the
shortest path between them). If multiple tasks satisfy the constraint, the one closest
to the end of the current path is chosen. If multiple tasks not only satisfy the capacity
constraint, but also are the closest to the end of the current path, five rules are further
adopted to determine which to choose: (1) maximize the distance from the head of
task to the depot; (2) minimize the distance from the head of task to the depot; (3)
maximize the term d(t)/sc(t), where d(t) and sc(t) are demand and serving cost of
task t, respectively; (4) minimize the term d(t)/sc(t); (5) use rule (1) if the vehicle
is less than half-full, otherwise use rule (2). If multiple tasks still remain, ties are
broken arbitrarily. PS terminates when all the tasks in the unordered list have been
selected. Note that PS does not use the five rules alternatively. Instead, it scans the
unordered list of tasks for five times. In each scan, only one rule is used. Hence, PS
will generate five route sets in total. Then, Ulusoy’s split procedure is applied to all
the five route sets to further improve them. Here, the route sets can be seen as an
ordered list of tasks, and Ulusoy’s split procedure can obtain the optimal feasible
route sets for the ordered list of tasks.

To summarize, the MS operator first merges multiple routes to obtain an un-
ordered list of tasks, then employs PS to sort the unordered list. After that, Ulusoy’s
splitting procedure is used to split the ordered lists into new routes in the optimal
way. Finally, we may obtain five new solutions of CARP by embedding the new
routes back into the original solution, and the best one is chosen as the output of the
MS operator. Figure 15.2 demonstrates the whole process of the MS operator.

The advantages of the MS operator are twofold. First, it can generate new solu-
tions that are significantly different from the current one as it conducts on routes
instead of tasks. In general, the larger the p (i.e., the number of routes involved in
MS), the more distant the new solution is from the current solution. Second, the
new solutions obtained by the MS operator tend to have low total cost due to the
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Fig. 15.2 The process of the MS operator

Algorithm 2 The brief description of MAENS

1: Initialization: Generate an initial population;
2: while Stopping criteria are not satisfied do
3: Select the parent solutions and generate offsprings by the crossover operator;
4: for each offspring do
5: Perform extended neighborhood search around it with probability Pls;
6: Select solutions from the original ones and the offsprings to form the population in

the next generation.
7: end for
8: end while

adoption of PS and Ulusoy’s splitting procedure, both of which are known to be ca-
pable of generating relatively good solutions. On the other hand, the major drawback
is its high computational complexity. Fortunately, such a drawback may be more or
less alleviated by a careful coordination of the MS operator and other search oper-
ators. For this purpose, the memetic algorithm framework is adopted and the MS
and traditional move operators are integrated to form the local search with extended
neighborhood. The resultant algorithm is thus called the Memetic Algorithm with
Extended Neighborhood Search (MAENS). A brief description of MAENS is given
in Algorithm 2.

During the extended neighborhood search process, the MS and traditional search
operators are employed in the following way: Given an offspring individual gener-
ated by the crossover operator, the traditional move operators (i.e., the single inser-
tion, double insertion and swap) are applied to the individual until the local optimum
is reached. After that, the MS operator is applied to this local optimal solution to
form the second stage of the local search, and the local optimum with respect to the
extended neighborhood is obtained. Finally, the traditional-neighborhood-based lo-
cal search is again applied to further refine the local optimum obtained in the second
stage and exploit the new local region.
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It has been demonstrated in [38] and [44] that the RTS and MAENS are both com-
petitive approaches for CARP. RTS can obtain solutions as well as the best-known
ones in a shorter time than other state-of-the-art methods, while MAENS is able to
find better solutions than the best-known ones at the cost of more computational
efforts.

15.3.2 Tackling the Dynamic Environment

The dynamic environment changes the actual feasibility of solutions. As mentioned
before, a repair operator must be designed to make the solution feasible whenever
it becomes infeasible in the current environment. An ideal repair operator should
not only be able to repair any infeasible solution, but also be practical. In many
real-world applications, the departments in charge wish to keep the modification as
small as possible during the repair process. Based on such practical consideration,
the repair operator Φ should satisfy the following conditions:

• If all the constraints are satisfied, then Φ should not make any change on the
solution;

• If the solution violates the capacity constraint, then Φ should cut the infeasible
routes into several feasible routes;

• If the path between adjacent vertices in the solution becomes absent, then Φ
connects them with another path in the graph.

All the above operations minimizes the modification of the solution.
The sampling values of the random variables can only be known during the im-

plementation process. To be specific, the vehicle does not know whether the path
from vertex xki to its successor xk(i+1) is connected until it reaches xki. The dead-
heading cost of (xki,xk(i+1)) can only be known after the vehicle has arrived at
xk(i+1). Besides, if (xki,xk(i+1)) is a task, its demand cannot be known until the ve-
hicle finishes its service and reaches xk(i+1). In this situation, the repair operation
of Φ can be defined as follows: Given a solution S = ({X1, ...,Xm},{Y1, ...,Ym}),
each vehicle starts from xk1 = v0 and traverses according to the vertex sequence
Xk = (xk1, ...,xklk ). Once the vehicle arrives at a new vertex (including the starting
vertex v0), Φ checks the value of the first time occurring yk j = 1 in the sub-vector
Yk = (yki, ...,yk(lk−1)) to locate the position of the next task (xk j ,xk( j+1)). If there
is no task left, then it returns the depot through the predefined path. Otherwise,
Φ examines whether the current residue is enough to serve the expected demand
E[d(xk j,xk( j+1),ξ )|ξ ]. If so, then the vehicle traverses to xk j. Otherwise, the vehi-
cle returns to the depot and update the capacity, then goes to xk j again. Note that
the practical demand of (xk j ,xk( j+1)) may be larger than expected and exhaust the
capacity on the way of its service. In this case, the vehicle neglects the remaining
demand and returns to the depot to update the capacity, and then goes back to xk j and
finish the service of (xk j,xk( j+1)). All the above repair operations are done through
the shortest paths between the origin and the target. In this way, the satisfactory
of the capacity constraint can be guaranteed. On the other hand, if it is found that
the path from the current vertex xki to the next vertex xk(i+1) disappears, Φ simply
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update the deadheading cost matrix by setting dc(xki,xk(i+1)) = ∞, and calculate
the shortest path under the updated cost matrix by Dijstra’s alorithm [17]. Then, it
replaces the interrupted path with the new shortest path.

Based on the above descriptions, Φ can be divided into a repair operator Φd to
deal with stochastic task demands and a repair operator Φc to deal with stochastic
presence of paths. Given an infeasible solution, it is first repaired by Φd , and then
repaired by Φc. Algorithms 3 and 4 give the pseudo codes of the repair operators
Φd and Φc, respectively.

In Algorithms 3 and 4, the function X .push(a) indicates inserting the element a
(can be a single element or a sequence) into the end of the sequence X , and |X | stands
for the length of X . 0l represents the sequence composed with l 0’s. ESP(vi,v j) is
the shortest path from vi to v j under the expected deadheading cost matrix, while
SP(vi,v j,ξ ) is that under the practical deadheading cost matrix of the environmental
parameter ξ .

Under the definition of Φd and Φc, an infeasible solution S is repaired at the
following two steps: 1) S′ = Φd(S); 2) Sξ = Φc(S′).

15.4 Benchmark for Dynamic Capacitated Arc Routing
Problem

In order to evaluate the performance of potential approaches, benchmark instances
of the dynamic CARP are needed. However, there has been no benchmark instance
proposed so far. In [21], the well-known gdb test set with static CARP instances was
extended to a stochastic CARP test set by replacing the deterministic demand d(ti)
of each task ti with a Gaussian distributed random variable D(ti) ∼ N(d(ti),σ2

i ),
where the variance σi = k× d(ti) is proportional to d(ti). Here, we generate the
benchmark instances for the dynamic CARP similarly. In contrast with [21], we
choose Gamma distribution instead of normal distribution. The reason is that all the
random variables in the dynamic CARP is nonnegative, and Gamma distribution
is one of the most commonly used distribution with nonnegative support set for
simulating real environments. Besides, d(vi,v j) equals zero with probability 1− pi j,
and dc(vi,v j) equals infinity with probability 1− pi j. Hence, in the dynamic CARP,
the random variables should satisfy the following distributions:

D(vi,v j)

{
∼ G(kd

i j,θ d
i j), r < pi j;

= 0, otherwise.
(15.28)

DC(vi,v j)

{
∼ G(kc

i j,θ c
i j), r < qi j;

= ∞, otherwise.
(15.29)

where G(k,θ ) is the Gamma distribution with the shape parameter k and the
scale parameter θ . The probability density function of G(k,θ ) is pd f (x;k,θ ) =
xk−1 e−x/θ

θ kΓ (k)
for x > 0 and k,θ > 0, where Γ (k) =

∫ ∞
0 tk−1etdt. It is known that the

mean of the Gamma distribution G(k,θ ) is μ = kθ and G(k,θ ) converges to the



394 Y. Mei, K. Tang, and X. Yao

Algorithm 3 S′ = Φd(S, ξ )

1: for k = 1→ m do
2: Set X ′k = (v0), Y ′k = (), ΔQ = Q;
3: for i = 1→ |Xk|−1 do
4: if yki = 0 then
5: X ′k.push(xk(i+1)), Y ′k .push(0);
6: else
7: if d(xki,xk(i+1),ξ ) = 0 then
8: X ′k.push(xk(i+1));
9: Y ′k .push(0);

10: else if ΔQ < d(xki,xk(i+1),ξ ) then
11: X ′k.push(ESP(xk(i+1),v0));
12: X ′k.push(v0);
13: Y ′k .push(1);
14: Y ′k .push(0|ESP(xk(i+1),v0)|);

15: X ′k.push(ESP(v0,xki));
16: Y ′k .push(0|ESP(v0,xki)|);
17: X ′k.push(xki), Yk.push(0);
18: ΔQ← ΔQ+Q−d(xki,xk(i+1),ξ );
19: else
20: X ′k.push(xk(i+1)), Y ′k .push(1), ΔQ← ΔQ−d(xki,xk(i+1),ξ );
21: end if
22: for j = i+1→ |Xk|−1 do
23: if Yk j = 1 then
24: break;
25: end if
26: end for
27: if Yk j = 1&ΔQ < E[d(xk j,xk( j+1),ξ )|ξ ] then
28: X ′k.push(ESP(xk(i+1),v0));
29: X ′k.push(v0);
30: Y ′k .push(0|ESP(xk(i+1),v0)|+1;

31: X ′k.push(ESP(v0,xk j));
32: X ′k.push(xk j);
33: Y ′k .push(0|ESP(v0,xk j)|+1);
34: i← j, ΔQ← Q;
35: end if
36: end if
37: end for
38: end for
39: return S′ = ({X ′1, ...,X ′m},{Y ′1, ...,Y ′m});

Gaussian distribution when the shape parameter k becomes infinite. According to
the idea of the dynamic CARP instance generation in [21], the random variables in
the dynamic CARP should have the following properties:

Property 1: The Gamma distribution is close to Gaussian distribution;
Property 2: The expected value of the random variables equals their static values;
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Algorithm 4 Sξ = Φc(S′, ξ )

1: for k = 1→ m do
2: Set Xξ

k = (v0), Y ξ
k = ();

3: for i = 1→ |X ′k|−1 do
4: if dc(x′ki,x

′
k(i+1),ξ )< ∞ then

5: Xξ
k .push(x′k(i+1)), Y ξ

k .push(y′ki);
6: else
7: Xξ

k .push(SP(x′ki,x
′
k(i+1),ξ )), Xξ

k .push(x′k(i+1));

8: Y ξ
k .push(0|SP(x′ki,x

′
k(i+1),ξ )|+1);

9: end if
10: end for
11: end for
12: return Sξ = ({Xξ

1 , ...,X
ξ
m},{Y ξ

1 , ...,Y ξ
m});

Property 1 can be realized by setting a sufficiently large k. For Property 2, on the
other hand, the realizations of the stochastic demands and deadheading costs are dif-
ferent. For the task demand D(vi,v j), Property 2 can be realized by directly setting

E[D(vi,v j)] = pi jk
d
i jθ

d
i j +(1− pi j)× 0 = d(vi,v j) (15.30)

However, the above equation is not available for the deadheading cost DC(vi,v j)
since it is likely to become infinity. Therefore, we neglect such case and only set

E[DC(vi,v j)] = kc
i jθ

c
i j = dc(vi,v j) (15.31)

In practice, the shape parameters kd
i j and kc

i j are set to 20. Figure 15.3 gives the prob-
ability density functions of the Gamma distribution with k= 20 and θ = 1.0,1.5,2.0.
The settings of θ d

i j and θ c
i j can be derived from Eq. (15.30) and (15.31) as follows:

θ d
i j =

d(vi,v j)

pi jkd
i j

(15.32)

θ c
i j =

dc(vi,v j)

kc
i j

(15.33)

Finally, pi and qi j can be intuitively set to 0.9 and 0.95, respectively.
The C++ source code of the instance generator for extending the static CARP

instances to the dynamic CARP instances can be downloaded from the website
at http://goanna.cs.rmit.edu.au/∼e04499, along with the dynamic CARP instances,
namely the Dgdb, Dval and Degl sets, respectively. For each static instance, 30 sam-
pling instances were generated one by one by the instance generator with the starting
random seed of 0. If necessary, users can also generate more samplings with other
random seeds.
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Fig. 15.3 Probability density functions of Gamma distribution with k = 20 and θ =
1.0,1.5,2.0

15.5 Preliminary Investigation of the Fitness Landscape

The stochastic characteristic of the random variables makes the fitness landscape of
the dynamic CARP much more complicated than the static CARP. To investigate
the fitness landscape of the dynamic CARP and the impact of the stochastic factors
on the performance of the search algorithms, the two static CARP approaches intro-
duced in Section 15.3.1, i.e., RTS and MAENS, were applied to the Dgdb set, which
is the simplest and smallest test set among the three dynamic CARP benchmark sets
generated in Section 15.4. In this way, it is easier to observe how the performance
of the algorithms are influenced by the dynamic environment, but not the compli-
catedness of the problem itself. As demonstrated in [38] and [44], the two selected
algorithms are able to reach the global optima for all the static version of the Dgdb
instances, i.e., the gdb instances.

In the experiments, RTS and MAENS were implemented once on all the gdb in-
stances, and the sequences of best feasible solutions updated during the search pro-
cess were recorded. Recalling that the expected values of the random variables of
the Dgdb instances are equal to the corresponding static values of the gdb instances.
Thus, by solving the gdb instances, the algorithms can be seen as solving the Dgdb
instances by utilizing the expectation of the random variables. For each solution
recorded in the best feasible solution sequence obtained by RTS and MAENS, de-
noted as (S11, ...,S1l1) and (S21, ...,S2l2), the robustness R(Si j) is calculated in terms
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of the average total cost of the 30 corresponding Dgdb instance samples generated
in Section 15.4, i.e.,

R(Si j) =
1

30

30

∑
k=1

tc(Si j,ξk
) (15.34)

where Si j,ξk
=Φ(Si j ,ξk) is the feasible solution obtained by applying Φ to Si j under

ξk, which is the environmental parameter of the kth sample.
Table 15.2 presents the experimental results. In the table, the columns headed

“tcBest” and “RBest” stand for the solutions with the lowest tc(S) and the lowest
R(S) among all the recorded solutions. The column headed “RBK” presents the best-
known solution with respect to R(S). The columns headed “tc(S)” and “R(S)” are
the objective functions defined for the static and uncertain versions, respectively.
tc(S) is defined in Eq. (15.1) and R(S) is defined in Eq. (15.16). For tc(S), the
optimal values are marked in bold. As mentioned before, MAENS and RTS can
both reach the optimal solutions for the static version of the instances. Therefore,
the best tc(S) obtained by them were marked in bold for all the instances.

From Table 15.2, it is observed that R(S) is not proportional to tc(S). For
MAENS, the solution with the lowest tc(S) and the solution with the lowest R(S) are
different on 9 out of the total 23 instances. For RTS, such a phenomenon occurs also
on 9 instances. Another interesting observation is that for the lowest tc(S) obtained
by MAENS and RTS, although their values are the same and optimal, the corre-
sponding R(S) of the solution can be very different (e.g., in Dgdb12, the solutions
with lowest tc(S) obtained by the two algorithms have their R(S)’s of 642.03 and
603.54, respectively). Based on the above observation, one can conclude that for a
static CARP instance, there often exist multiple global optima. However, their ro-
bustness in the corresponding dynamic versions may be quite different. When look-
ing at the best-known solutions with respect to R(S), it is seen that for 16 out of the
total 23 instances, the best-known solutions have non-optimal tc(S)’s. This implies
that the global optimum (in terms of robustness) in a dynamic CARP instance may
be quite far away from the global optimum in its static counterpart. Comparing with
the results obtained by MAENS and RTS, the R(S) values of the best-known solu-
tions are much smaller than the lowest R(S)’s obtained by the two algorithms, not
to mention the R(S) of the solutions with lowest tc(S). Therefore, we can conclude
that when solving Dgdb instances by applying algorithms to the gdb counterparts, it
is difficult to achieve highly robust solutions.

One possible reason that the algorithms for the static CARP cannot perform well
when applied to the dynamic CARP may be explained as follows: the algorithms
ignore the possibility that the routes may be cut at certain intermediate positions
due to the violation of the capacity constraint during the implementation. If the cut
position is distant from the depot, the repaired solution will have a much larger
total cost. Since the cut position depends on the allocation of the task services, one
solution to address this issue is to modify the allocation of the task services so that
the possible cut positions are close to the depot.

In summary, the following observations can be drawn:
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Table 15.2 The experimental results of MAENS and RTS on the Dgdb set. The optimal
tc(S)’s are marked in bold.

Name MAENS RTS RBK

tcBest RBest tcBest RBest

tc(S) R(S) tc(S) R(S) tc(S) R(S) tc(S) R(S) tc(S) R(S)

1 316 380.63 316 380.63 316 401.95 323 387.32 323 349.49
2 339 436.69 345 401.24 339 417.96 339 417.96 353 383.72
3 275 331.19 275 331.19 275 323.81 275 323.81 296 307.00
4 287 350.40 287 350.40 287 345.77 287 345.77 287 328.32
5 377 492.38 383 472.44 377 492.00 377 492.00 395 437.79
6 298 353.69 298 353.69 298 369.63 310 367.10 319 342.18
7 325 380.06 325 380.06 325 400.50 325 400.50 325 356.09
8 348 470.18 354 456.70 348 464.33 356 449.56 362 443.87
9 303 404.34 309 391.77 303 394.75 303 394.75 337 385.86
10 275 306.72 275 306.72 275 325.48 275 325.48 283 291.61
11 395 431.86 395 431.86 395 442.19 395 442.19 409 419.06
12 458 642.03 468 595.33 458 603.54 468 601.58 474 587.33
13 536 598.03 554 593.66 536 623.52 552 603.43 544 569.82
14 100 118.44 100 118.44 100 118.47 100 118.47 100 107.90
15 58 60.76 58 60.76 58 58.91 58 58.91 58 58.09
16 127 146.53 129 145.73 127 146.97 127 146.97 129 133.43
17 91 94.36 91 94.36 91 96.17 91 96.17 91 92.32
18 164 180.75 164 180.75 164 181.48 168 179.16 164 170.90
19 55 67.49 55 67.49 55 64.24 55 64.24 55 63.04
20 121 139.06 125 135.89 121 141.43 122 134.82 123 126.01
21 156 171.60 156 171.60 156 177.74 158 174.79 158 165.41
22 200 217.01 200 217.01 200 218.59 202 217.35 204 210.17
23 233 263.60 235 256.52 233 260.97 233 260.97 235 252.35

• The robustness of solution in the dynamic CARP is conflicting with the absolute
performance, and the two measures can hardly reach optimum at the same time;

• Static CARP instances often have multiple global optimal solutions. However,
their robustness in the corresponding dynamic version may be quite different;

• Only utilizing the expected information cannot lead to highly robust solutions.
• The algorithms for the static CARP cannot perform well for the dynamic CARP

because the possible cut position and the additional cost induced by the cut is
not considered. To address this issue, one can estimate the probability of the cut
position and adjust the task services so as to reduce the expected additional cost
caused by the cut.

15.6 Conclusion

In this chapter, a general dynamic CARP is defined and investigated with evolution-
ary computation. The dynamic CARP model includes the following four stochastic
factors: (1) presence of tasks; (2) demand of tasks; (3) presence of paths between
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vertices and (4) deadheading costs between vertices. These stochastic factors exist
in both the objective and constraints of the problem, and thus influence both the
performance and feasibility of solution. Unlike the static CARP the outputs of the
dynamic CARP include a solution and a repair operator to modify the solution so
that all the constraints can be satisfied during the implementation process. Besides,
the objective of the dynamic CARP is to optimize the robustness rather than the
absolute quality in a specific environment.

The dynamic CARP has the difficulties caused by the complicatedness of CARP
and the dynamic environment. To address the two issues, two competitive ap-
proaches for CARP, i.e., RTS and MAENS, are introduced, and a repair operator
is designed under the practical considerations.

Then, to investigate the fitness landscape of the dynamic CARP, RTS and MAENS
were tested on the Dgdb benchmark set, which is extended from the gdb static CARP
benchmark set. It is found that, although the two algorithms showed excellent per-
formance for static CARP, they were not able to find robust solutions for the dy-
namic CARP. Therefore, the future work is to design new algorithms that can find
more robust solutions by taking advantage of more information. One possible di-
rection is to select the solutions in which the adjacent tasks can be connected by
multiple paths with nearly the same lengths to avoid the additional cost induced by
the absence of edges.

Although no effective approach has been proposed for the dynamic CARP in this
chapter, the formal definition of the problem and the generated benchmark provide a
solid foundation of further research work, and the analysis and discussions about the
problem characteristics give some guidelines for the algorithm design. The future
work includes developing algorithms by taking these analytical results into account.
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