
Chapter 13
Ant Colony Optimization Algorithms with
Immigrants Schemes for the Dynamic Travelling
Salesman Problem

Michalis Mavrovouniotis and Shengxiang Yang

Abstract. Ant colony optimization (ACO) algorithms have proved to be power-
ful methods to address dynamic optimization problems (DOPs). However, once the
population converges to a solution and a dynamic change occurs, it is difficult for
the population to adapt to the new environment since high levels of pheromone
will be generated to a single trail and force the ants to follow it even after a dy-
namic change. A good solution is to maintain the diversity via transferring knowl-
edge from previous environments to the pheromone trails using immigrants. In this
chapter, we investigate ACO algorithms with different immigrants schemes for two
types of dynamic travelling salesman problems (DTSPs) with traffic factor, i.e., un-
der random and cyclic dynamic changes. The experimental results based on different
DTSP test cases show that the investigated algorithms outperform other peer ACO
algorithms and that different immigrants schemes are beneficial on different envi-
ronmental cases

13.1 Introduction

Ant colony optimization (ACO) algorithms are inspired from the behaviour of real
ant colonies when they search for food from their nest to food sources. A colony
of ants communicates via the pheromone trails in order to complete their food-
searching task as efficiently as possible. ACO algorithms have proved that they are
good meta-heuristics to many difficult optimization problems [11, 12, 15, 36].

The first optimization problem addressed by ACO algorithms was the travelling
salesman problem (TSP), where a population of ants is placed on each city randomly
and walk to the edges of the cities until each ant generates a feasible tour, in which
all customers are satisfied [13]. Each ant writes pheromone to the trail of its tour for
the other ants to read it while they construct their tours.

Michalis Mavrovouniotis · Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: {mmavrovouniotis,syang}@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 317–341.
DOI: 10.1007/978-3-642-38416-5_13 c© Springer-Verlag Berlin Heidelberg 2013



318 M. Mavrovouniotis and S. Yang

Researchers have mainly focused on ACO for stationary optimization problems
(SOPs), where the environment remains fixed during the execution of the algorithm
[2, 3, 28]. However, in many real-world applications we have to deal with dynamic
optimization problems (DOPs), where the problem, including the objective func-
tion, the variables, the problem instance, the constraints, and so on, may change
over time [26]. Usually, such uncertainties cause the optimum to move. For exam-
ple, a dynamic version of the TSP can be generated where the cost of the edges
between two cities may increased, representing potential traffic jams. The objective
of the dynamic TSP (DTSP) is not only to converge and output a near optimum
(or the optimum) solution quickly, as in the static TSP, but to also track and output
the moving optimum.

Considering the DTSP, traditional ACO algorithms may face a serious challenge
due to the fact that the pheromone trails of the previous environment will not be
compatible with the new environment when a dynamic change occurs. A simple
way to address this problem is to re-initialize the pheromone trails with an equal
amount and consider every dynamic change as the arrival of a new problem that
needs to be solved from scratch. This strategy acts as a restart of the algorithm
which is computationally expensive and usually not efficient. Moreover, in order to
perform this action, the dynamic change needs to be detected which usually is not
possible on DOPs [31].

However, it is believed that ACO algorithms can adapt to DOPs since they are
inspired from nature which is a continuous adaptation process [5, 26]. Since ACO
algorithms have been designed for SOPs lose their adaptation capabilities quickly
because of stagnation behaviour, where all ants follow the same path from the
early stages of the execution. Recently, several approaches have been proposed to
avoid stagnation behaviour and address DTSPs, which includes: (1) local and global
restart strategies [21]; (2) pheromone manipulation schemes to maintain diversity
[16]; (3) increase diversity via immigrants schemes [29, 31]; (4) memory-based ap-
proaches [19, 22]; (5) and memetic algorithms [30].

Among these approaches, immigrants schemes have been found beneficial when
integrated with ACO algorithms for different DTSPs. Every iteration, immigrant
ants are generated and replace a small portion of the worst ants in the current pop-
ulation. This action is performed before pheromone is updated, in order to bias
the ants of the next iteration with the diversity and knowledge transferred from the
immigrant ants. Immigrants schemes mainly differ on the way immigrant ants are
generated.

In this chapter, all different ACO algorithms based on immigrants schemes are
examined intensively, and compared with other peer ACO algorithms for different
DTSPs cases. The contents of this chapter are categorized as follows. Section 13.2
describes the DTSPs used in the experiments. Section 13.3 describes traditional
ACO algorithms for the DTSP, whereas Section 13.4 gives details of the inves-
tigated ACO algorithms based on immigrants schemes. Section 13.5 presents the
experimental results and analysis. Finally, Section 13.6 concludes this contribution
and points out future work.



13 ACO Algorithms with Immigrants Schemes for the DTSP 319

13.2 Dynamic Travelling Salesman Problem with Traffic Factor

The TSP is the most fundamental, popular and well-studied NP-hard combinatorial
optimization problem. It can be described as follows: Given a collection of cities,
we need to find the shortest path that starts from one city and visits each of the other
cities once and only once before returning to the starting city. Usually, the problem
is represented by a fully connected weighted graph G = (V,E), where V is a set of
n vertices and E is a set of edges. The collection of cities is represented by the set V
and the connections between them by the set E . Each connection is associated with
a cost Di j, which represents the distance (or travel time) between cities i and j.

Many algorithms, either exact algorithms or approximation algorithms, includ-
ing ACO have been proposed to solve the static TSP [13, 27, 33]. Although exact
algorithms guarantee to provide the global optimum solution, in the case of NP-hard
problems, they need, in the worst case, exponential time to find it. On the other hand,
approximation algorithms can provide a solution efficiently but cannot guarantee the
global optimum [24, 35].

The TSP becomes more challenging and realistic if it is subject to a dynamic
environment. For example, a salesman wants to distribute items sold in different
cities starting from his home city and returning after he visited all the cities to his
home city again. The task is to optimize his time and plan his tour as efficiently
as possible. Therefore, by considering the distances between cities it can generate
the route and start the tour. However, it is difficult to consider traffic delays that
may affect the route. Traffic delays may change the time planned beforehand, and
the salesman will need a new alternative route fast to avoid long traffic delays and
optimize his time again.

There are several variations of DTSPs considered in the literature, such as chang-
ing the topology of cities by replacing cities [19, 21, 29, 30], and changing the dis-
tances between cities by adding traffic factors to the links between cities [16, 31, 32].
In DTSPs where cities are replaced, each city has a probability m to be replaced reg-
ularly in time, usually measured in a certain number of iterations of running an algo-
rithm. On the other hand, in DTSPs with traffic factors, each link has a probability
m to add or deduce traffic regularly in time.

13.2.1 DTSP with Random Traffic

In this chapter, we generate DTSPs with traffic factors as follows. We assume that
the cost of the link between cities i and j is Di j = Di j×Fi j, where Di j is the normal
travelled distance and Fi j is the traffic factor between cities i and j. Every f iterations
of running an algorithm, a random number in [FL,FU ] is generated probabilistically
to represent the traffic factor between cities, where FL and FU are the lower and
upper bounds of the traffic factor, respectively. Each link has a probability m to add
traffic every f iteration, where the traffic factor Fi j of the remaining links is set to 1,
which indicates no traffic.

For example, a dynamic case with high traffic is constructed by setting traffic
factor values closer to FU with a higher probability to be generated, while for a



320 M. Mavrovouniotis and S. Yang

Fig. 13.1 Illustration of a random dynamic environment with unlimited states and a cyclic dy-
namic environment with 8 states. Each node represents a different environment where white,
light grey, and dark grey, represent low, medium, and high traffic jams, respectively

dynamic case with low traffic, a higher probability is given to traffic factor values
closer to FL. This type of environments are denoted random DTSPs in this chapter
because previously visited environments are not guaranteed to reappear.

13.2.2 DTSP with Cyclic Traffic

Another variation of the DTSP with traffic factors is the DTSP where the dynamic
changes occur with a cyclic pattern. In other words, previous environments will
appear again in the future. Such environments are more realistic since they represent
a 24-hour traffic jam situation in a day.

A cyclic environment can be constructed by generating different dynamic cases
with traffic factors as the base states, representing DTSP environments where each
link has a probability m to add low, normal, or high traffic as in random DTSPs.
Then, the environment cycles among these base states, every f iteration, in a fixed
logical ring as in Fig. 13.1. Depending on the period of the day, dynamic cases with
different traffic factors can be generated. For example, during the rush hour peri-
ods, a higher probability is given to the traffic factors closer to FU , whereas during
evening hour periods, a lower probability is given to FU and a higher probability to
FL. This type of environments are denoted as cyclic DTSPs in this chapter because
previously visited environments will reappear several times.

13.3 Ant Colony Optimization for the DTSP

ACO consists of a population of μ ants that construct solutions, i.e., tours in the
TSP, and update their trails with pheromone according to the solution quality [9].
Considering the TSP, the ants “walk” on the links between the cities, where they
“read” pheromone from the links or “write” additional pheromone to the links.

Initially, all trails are assigned with an equal amount of pheromone, i.e., τinit , and
each ant is placed on a randomly selected city. With a probability 1− q0, where
0≤ q0 ≤ 1 is a parameter of the decision rule, an ant k chooses the next city j from
city i, probabilistically, as follows:



13 ACO Algorithms with Immigrants Schemes for the DTSP 321

pk
i j =

[τi j]
α [ηi j ]

β

∑l∈Nk
i
[τil ]

α [ηil ]
β , if j ∈ Nk

i , (13.1)

where τi j and ηi j = 1/Di j is the existing pheromone trail and heuristic information
available a priori, respectively, where Di j is the cost between cities i and j (including
the traffic factor). Nk

i denotes the neighbourhood of cities of ant k that have not
yet been visited when its current city is i. α and β are the two parameters that
determine the relative influence of the pheromone trail and heuristic information,
respectively. With the probability q0, ant k chooses the next city, i.e, z, with the
maximum probability which satisfies the following formula:

z = argmax
j∈Nk

i

[τi j]
α [ηi j]

β . (13.2)

This process continues until each ant has visited all cities once. Thereafter, the ants
update their pheromone trails. The different variations of ACO algorithms mainly
differ in the way pheromone trails are updated [4, 10, 13, 14, 37].

13.3.1 Standard ACO

The state-of-the-art ACO on the static TSP is the MAX-MIN ant system (MMAS)
[38]. In MMAS, the ants construct solutions using Eq. (13.1) and only the best ants
are allowed to retrace their solution and deposit pheromone as follows:

τi j ← τi j +Δτbest
i j ,∀ (i, j) ∈ T best , (13.3)

where T best is the tour of the best ant and Δτbest
i j = 1/Cbest , where Cbest is the cost

of the tour T best . However, the ant allowed to deposit pheromone may be either the
best-so-far ant, in which case Δτbest

i j = 1/Cbs, where Cbs is the tour cost of the best-

so-far ant, or the iteration-best ant, in which case Δτbest
i j = 1/Cib, where Cib is the

tour cost of the best ant of the iteration. Both update rules are used in an alternative
way under a pre-defined criteria (for more details see [38]).

In addition, a constant amount of pheromone is deducted from all trails due to
the pheromone evaporation, which is defined as:

τi j ← (1−ρ)τi j,∀ (i, j), (13.4)

where 0 < ρ ≤ 1 is the rate of evaporation.
Moreover, the pheromone trail values in MMAS are kept to the interval [τmin,τmax]

and they are re-initialized to τmax every time the algorithm shows a stagnation be-
haviour, where all ants follow the same path or when no improved tour has been
found for several iterations. The MMAS, is denoted as S-ACO, and it is used in the
experimental study later in this chapter.



322 M. Mavrovouniotis and S. Yang

13.3.2 Population-Based ACO (P-ACO)

The P-ACO algorithm was first applied on the static TSP [20]. Later on, it has been
applied to the DTSP where a small portion of cities is replaced by other new ones
[19, 22]. In P-ACO, ants construct solutions using Eq. (13.1). However, it differs
from the S-ACO, since it maintains a population-list (memory) of ants (solutions),
denoted klong of limited size Kl , and stores the iteration-best ant in every iteration.

The pheromone update depends on klong, where every time the iteration-best ant
enters klong, a positive constant update is added to its corresponding pheromone
trails, which is defined as follows:

τi j ← τi j +Δτ ib
i j ,∀ (i, j) ∈ T ib, (13.5)

where Δτ ib
i j = (τmax − τinit)/Kl and T ib is the tour of the iteration-best ant. More-

over, τmax and τinit denote the maximum and initial pheromone amount, respectively.
When klong is full, the iteration-best ant needs to replace an ant k stored in klong, and,
thus, a negative constant update to its corresponding pheromone trails is done, which
is defined as follows:

τi j ← τi j−Δτk
i j,∀ (i, j) ∈ T k, (13.6)

where Δτk
i j is defined as in Eq. (13.5) and T k is the tour of the ant to be replaced.

Pheromone evaporation is not used in the P-ACO algorithm.
Several strategies regarding which ant should the iteration-best ant replace in

klong have been proposed, such as Age, Prob, and Quality [19]. In the default strat-
egy, i.e., Age, the iteration-best ant replaces the ant which has entered klong first. In
the Prob strategy, the iteration-best ant can replace any ant probabilistically, and in
the Quality strategy, the worst ant is replaced. Experiments show that the Age strat-
egy is more consistent and performs better than the others, since other strategies
have more chances to maintain identical ants into klong, which leads the algorithm
to the stagnation behaviour [19]. This is due to the fact that high levels of pheromone
will be generated into a single trail and dominate the search space. Therefore, the
P-ACO algorithm with the Age strategy is used in the experimental study later in
this chapter.

13.3.3 React to Dynamic Changes

In Bonabeau et al. [5], it was discussed that traditional ACO algorithms may have
good performance for DTSPs, since they are very robust algorithms. The mechanism
which enables ACO algorithms to adapt to DOPs is the pheromone evaporation.
Lowering the pheromone values enables the algorithm to forget bad decisions made
in previous iterations. Moreover, when a dynamic change occurs, it will eliminate
the pheromone trails of the previous environment that are not useful in the new
environment, where the ants may be biased and not adapt well.

The S-ACO algorithm can be applied directly to the proposed DTSPs with traffic
factors, either random or cyclic, without any modifications, apart from the heuristic



13 ACO Algorithms with Immigrants Schemes for the DTSP 323

information where the traffic factor needs to be considered. Further special measures
when a dynamic change occurs are not required.

Similar to S-ACO, P-ACO can be applied directly to the proposed DTSPs. The
ants stored in the klong are re-evaluated in every iteration to be consistent with the
changing environments.

13.4 Investigated ACO Algorithms with Immigrants Schemes

ACO algorithms are constructive heuristics, where every iteration ants move from
one city to the next city probabilistically, until they generate feasible solutions as
described in Section 13.3. At the end of each iteration the constructed solutions are
cleared to generate new ones, but every ant deposits pheromone and leave a trail
to the corresponding solutions, e.g., the links between the cities of a TSP tour as
in Eq. 13.3. In contrast, genetic algorithms (GAs) are based on a pre-defined set
of feasible solutions (population of individuals), e.g., a set of tours for TSP. The
population is directly transferred from one iteration to the next using the fittest indi-
viduals [25, 33]. Search operators, i.e., crossover and mutation, are used to generate
the new population of solutions, which is usually better than the previous one.

The P-ACO framework is based on ants that construct solutions, where the best
ant of each iteration is stored in an actual population as in a GA and they are trans-
ferred directly to the next iteration. The solutions in the population are then used
to update the pheromone information for the new ants of the new iteration. The
population-list is updated every iteration as described in Section 13.3.

13.4.1 General Framework of ACO with Immigrants Schemes

The framework of ACO algorithms with immigrants schemes is inspired from the
GA characteristics of the P-ACO framework and the good performance of immi-
grants schemes in GAs for binary-encoded DOPs [39, 40, 43, 45]. Considering that
P-ACO maintains a population of solutions, immigrant ants can be generated and
replace ants in the current population. The aim of the proposed framework is to
maintain the diversity within the population and transfer knowledge from previous
environments to the pheromone trails of the new environment.

The main idea is to generate the pheromone information for every iteration con-
sidering information from the pheromone trails of the previous environment and
extra information from the immigrant ants generated. Therefore, instead of using a
long-term memory klong as in P-ACO, a short-term memory is used, denoted kshort ,
where all ants stored from iteration t− 1 are replaced by the first Ks best ants of the
current iteration t, where Ks is the size of kshort , instead of only replacing the oldest
one as in P-ACO. Moreover, immigrant ants are generated and replace the worst
ants in kshort with the replacement rate r, usually small. Therefore, when ants are
removed, a negative update is made to their pheromone trails as in Eq. (13.6), and
when new ants are added, a positive update is made to their pheromone trails as in
Eq. (13.5). This process is repeated as represented in Fig. 13.2.



324 M. Mavrovouniotis and S. Yang

Fig. 13.2 General framework of ACO algorithms with immigrants schemes

The benefits of using kshort are closely related to the survival of ants in a dynamic
environment, where no ant can survive in more than one iteration. For example, in it-
eration t, if ants are stored from iteration t−2 and an environmental change occurred
in iteration t−1, then the solutions may not be feasible for the current environment
in iteration t, and hence need to be repaired. Usually, a repair procedure is computa-
tionally expensive, and requires prior knowledge of the problem. Furthermore, this
action can be taken only if the environmental changes can be detected, which is usu-
ally not applicable in real-world applications. As discussed previously, the S-ACO
algorithm with a re-initialization of pheromone trails may not be a sufficient choice
on DOPs where the frequency of change is not available beforehand.

The investigated algorithms follow the framework described above, but they dif-
fer on the way immigrant ants are generated. The algorithms have been applied on
different DTSPs as follows. Random immigrants ACO (RIACO), elitism-based im-
migrants ACO (EIACO) and hybrid immigrants ACO (HIACO) were applied on a
DTSP were cities are added/removed [29]. Memory-based immigrants ACO (MI-
ACO) were applied on a DTSP with cyclic traffic factor as described in Section 13.2
[31]. Environmental-information immigrants ACO (EIIACO) were applied on the
DTSP with random traffic factor as described in Section 13.2 [32]. In this chapter,



13 ACO Algorithms with Immigrants Schemes for the DTSP 325

we re-investigate and compare all the algorithms on the same DTSPs, i.e., on both
DTSP with random and cyclic traffic factor.

13.4.2 ACO with Random Immigrants

The traditional random immigrants have been found beneficial for ACO for the
DTSP, since they maintain a certain level of diversity during the execution [29]. The
principle is to introduce new randomly generated immigrant ants to the population.
Therefore, before the pheromone trails are updated, a set Sri of r×Ks immigrants
are randomly generated to replace the worst ants in kshort , where r is the replacement
rate and Ks is the size of kshort .

The RIACO algorithm was proposed to address DTSPs with significantly chang-
ing environments. This is because it was claimed that the adaptation of ACO algo-
rithms makes sense only when the environmental changes of a problem are small to
medium [6, 26]. This is due to the fact that a new environment has more chance to
be similar with the old one. After a change occurs, transferring knowledge from the
old environment to the pheromone trails may move the ants into promising areas in
the new environment.

Considering the above argument, when the changing environments are not simi-
lar or when their is not enough time to gain knowledge from the previous environ-
ment, i.e., fast changing environment, the knowledge transferred may misguide the
ants from tracking the optimum. Therefore, in such environmental cases is better to
generate random diversity, instead of guided diversity by transferring knowledge.
However, there is a high risk of randomization, if too much diversity is generated
from the immigrants.

13.4.3 ACO with Elitism-Based Immigrants

Differently from RIACO, which generates diversity randomly, EIACO generates
guided diversity by transferring knowledge from previous environments and it was
proposed to address DTSPs with slowly and slightly changing environments [29].
For each iteration t, within EIACO, the elite from the previous environment, i.e.,
the best ant from kshort(t − 1), is used as the base to generate a set Sei of r×Ks

elitism-based immigrants, where r is the replacement rate and Ks is the size of the
kshort memory.

An elitism-based immigrant is generated using the inversion operator based on
the inver-over operator as follows [23]. First, one city, i.e., c, is selected randomly
from the best ant of kshort(t− 1); then with probability p (usually 0.02) the second
city c′ is selected from kshort(t− 1); otherwise another ant from μ is randomly se-
lected and assign as the second city c′ the next city to the city c. The segment from
the next city of c to city c′ is reversed and c is set to c′. This process continues until
the selected second city c′ appears next or previous to the first city c. From the re-
sulting tour an elitism-based immigrant is generated, which inherits some segments



326 M. Mavrovouniotis and S. Yang

from the elite of the previous environment and some random segments from other
ants.

The EIACO algorithm is beneficial in cases where the changing environments are
similar, e.g., slightly changing environments, and when the population has sufficient
time to converge into a good solution and gain knowledge in the previous environ-
ment, e.g., slowly changing environments. Transferring the knowledge gained from
the previous environment, to the pheromone trails of the new environment will make
sense and guide the population of ants to promising areas.

However, if too much information is transferred, the run basically starts near a
local optimum, and get stuck there. Therefore, in some cases with slightly changing
environments, EIACO may not perform well. On the contrast, RIACO may generate
high level of diversity in slightly changing environments, and degrade the perfor-
mance of ACO.

13.4.4 ACO with Hybrid Immigrants

The HIACO algorithm uses an immigrants scheme that combines both random
and elitism-based immigrants [29]. For each iteration t within HIACO, a set Shi =
Sri+Sei hybrid immigrants are generated, where Sri and Sei are two sets of (r×Ks)/2
random and elitism-based immigrants, respectively, r is the replacement rate and Ks

is the size of the kshort memory. HIACO attempts to combine the merits of both RI-
ACO and EIACO, where one is good on slowly and slightly changing environments
and the other on fast and significantly changing environments.

Considering the fact that RIACO face the risk of randomization because of too
much diversity, and the fact the EIACO face the risk of too much transferred knowl-
edge, the HIACO may promote the performance of both algorithms. The two types
of immigrants may cooperate to address all cases of dynamic environments. For
example, in cases the random immigrant will generate high levels of diversity, the
elitism-based immigrants will decrease the levels of diversity. On the other hand, if
too much knowledge is transferred from elitism-based immigrants and the popula-
tion gets trapped in local optimum, the random immigrants will help the population
to escape from it.

13.4.5 ACO with Memory-Based Immigrants

Differently from EIACO, where the best ant from the previous environment is used
as the base to generate immigrants, MIACO uses the best ant from several environ-
ments as the base to generate immigrants [31]. The only difference between MIACO
and EIACO lies in that MIACO uses both kshort and klong, where the first type of
memory is updated and used as in RIACO and EIACO. The second type of memory
is initialized with random ants and updated by replacing any of the randomly initial-
ized ants if they still exists in the memory, with the best-so-far ant; otherwise, the
closest ant in the memory is replaced with the best-so-far ant if it is better. Note that
the update strategy of klong in MIACO is different from P-ACO regarding which ant



13 ACO Algorithms with Immigrants Schemes for the DTSP 327

to replace, since in MIACO the most similar memory updating strategy is used [6],
whereas in P-ACO, the new ant replaces the oldest one. In MIACO, a metric of how
close ant i is to ant j is used and defined as follows:

Mi j = 1−CEi j

n
, (13.7)

where CEi j is defined as the number of common edges between ant i and ant j, and
n is the number of cities. A value Mi j closer to 0 means that the ants are closer since
they are more similar [1].

Apart from which ant is replaced in klong, the update strategy of MIACO is differ-
ent from the one used in P-ACO with respect to when an ant is replaced. In P-ACO,
the update occurs every iteration, whereas in MIACO the update occurs whenever
a dynamic change is detected in order to store useful solutions from different envi-
ronments.

For each iteration within MIACO, the ants in klong are re-evaluated in order to
be valid with the new environment and to detect an environmental change. An envi-
ronmental change is detected if there is a change in the total cost of ants currently
stored in klong. Then, the best ant from klong is selected and used as the base to gen-
erate a set Smi of r×Ks memory-based immigrants, where r is the replacement rate
and Ks is the size of the kshort memory. A memory-based immigrant is generated
using the inver-over operator as in EIACO, but instead of selecting the best ant from
kshort(t− 1), the best ant from klong(t) is selected.

MIACO inherits the advantages of the memory scheme to guide the population
directly to an old environment already visited and maintains diversity with immi-
grants in order to avoid the stagnation behaviour of ACO algorithms. It is very im-
portant to store different solutions in klong which represent good solutions for the
different environments that may be useful in the future. The key idea behind MI-
ACO is to provide guided diversity into the pheromone trails in order to avoid the
disruption of the optimization process [41].

MIACO may be beneficial on the same environmental cases with EIACO since it
is a generalized version of EIACO. However, it may be also advantageous in cases
where the previous environments will reappear in the future, e.g., cyclic DTSPs.

13.4.6 ACO with Environmental-Information Immigrants

The information obtained from EIACO and MIACO to transfer knowledge is based
on individual information, i.e., the best ant from kshort and klong, respectively. The
EIIACO algorithm generates immigrants using environmental information, i.e., a
population of best ants, to transfer knowledge from the previous environment to
the new one, in order to address slowly and slightly changing environments [32].
The knowledge transferred from EIIACO contains much more information than the
EIACO and MIACO algorithms. EIIACO follows the same framework with other
ACO algorithms based on immigrants schemes.



328 M. Mavrovouniotis and S. Yang

Environmental information-based immigrants are generated using all the ants
stored in kshort of the previous environment and replace the worst ants in the current
kshort . Within EIIACO, a probabilistic distribution based on the frequency of cities is
extracted, representing information of the previous environment, and is used as the
base to generate immigrant ants. The frequency vector of each city i, i.e, Dci , is con-
structed by taking the ants of kshort as a dataset and locating city ci from them. The
successor and predecessor cities, i.e., ci−1 and ci+1, respectively, of city ci are ob-
tained and update Dci accordingly. Note that both cities are recorded since the TSP
solution is cyclic. For example, one is added to the corresponding position i−1 and
i+ 1 in Dci . The process is repeated for all cities and a table S = (Dc1 , . . . ,Dcn) is
generated (where n is the number of cities) .

An environmental information-based immigrant ant, i.e., Aeii = (c1, . . . ,cn), is
generated as follows. First, randomly select the start city c1; then, the probabilistic
distribution of Dci−1 = (d1, . . . ,dn) is used to select the next city ci probabilistically
as follows:

pi =
di

∑ j∈Dci−1
d j
, if i ∈ Dci−1 , (13.8)

where di is the frequency number where city ci appears before or after city ci−1.
Note that all cities currently selected and stored in Aeii have a probability of 0.0 to
be selected since they are already visited. In the case where the sum of pi = 0.0,
which means that all cities in Dci are visited, a random city j that has not been
visited yet is selected. This probabilistic selection is repeated until all cities are used
in order to generate a valid immigrant ant based on the environmental information.

13.5 Experiments

13.5.1 Experimental Setup

The investigated algorithms were tested on the DTSP instances that are con-
structed from three static benchmark TSP instances taken from TSPLIB1, i.e.,
pr76, pr152, pr264, indicating small, medium, and large scale problem in-
stances in this chapter, respectively, in order to investigate the effect of the cor-
responding immigrants schemes on ACO algorithms for the DTSP.

Our implementation follows the guidelines of the ACOTSP2 application. Using
the methods described in Section 13.2, we have generated two kinds of DTSPs, with
random and cyclic traffic factors, respectively, with FL = 0 and FU = 5. For cyclic
DTSP, four cyclic states are used. For both types of DTSPs, the value of f was
set to 5 and 50, indicating fast and slow environmental changes, respectively. The
value of m was set to 0.1, 0.25, 0.5, and 0.75, indicating the degree of environmental
changes from small, to medium, and large, respectively. As a result, eight dynamic
test DTSPs, i.e., two values of f × four values of m, were generated from each

1 See http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
2 See http://www.aco-metaheuristic.org/aco-code



13 ACO Algorithms with Immigrants Schemes for the DTSP 329

static TSP instance. Therefore, in order to systematically analyse the adaptation and
searching capabilities of each algorithm on the DTSP, 24 dynamic test cases are
used, i.e., three problem instances × eight cases each, for each type of DTSP, i.e.,
with random and cyclic traffic factors.

For each algorithm on a DTSP, 30 independent runs were executed on the same
environmental changes. The algorithms were executed for 1000 iterations and one
observation was taken on each iteration. The overall performance of an algorithm
on a DTSP instance is defined as follows:

P̄best =
1
G

G

∑
i=1

(
1
N

N

∑
j=1

Pbest
i j

)
, (13.9)

where G is the total number of iterations, N is the number of runs and Pbest
i j is the

tour cost of the best-so-far ant, after a change, of iteration i of run j, respectively.

13.5.2 Parameter Settings

The parameters of the investigated algorithms are chosen from our preliminary ex-
periments and some of them are taken from the literature [29, 31]. For all algorithms
α = 1, β = 5, q0 = 0.0, r = 0.3, Ks = 10, and for MIACO Kl = 4.

The population of ants μ for each algorithm varies in order to have the same
number of evaluations every iteration, i.e., 25. The population of RIACO and EI-
IACO was set to μ = 25, for EIACO and HIACO was set to μ = 24 and for MIACO
was set to μ = 21. This is because MIACO has a klong memory of size Kl where
the solutions need to be re-evaluated on every change to detect dynamic changes,
and, thus, μ = μ−Kl , whereas EIACO and HIACO re-evaluates the best ant from
the previous iteration, which counts as a single evaluation, and, thus, μ = μ − 1.
The ants in the kshort memory, including the generated immigrants, do not count as
evaluations since they are removed every iteration. Moreover, the pheromone they
deposit is not based on the quality of the solution as in the S-ACO. Instead, it is a
constant value as in P-ACO.

13.5.3 Experimental Results and Analysis of the Investigated
Algorithms

The experimental results regarding the offline performance of the investigated algo-
rithms in both DTSPs with random and cyclic traffic factors are presented in Tables
13.1 and 13.2, respectively. The corresponding two-tailed t-test results with 58 de-
grees of freedom at a 0.05 level of significance are presented in Table 13.3. In the
comparisons, “+” or “−” indicates that the first algorithm is significantly better
or the second algorithm is significantly better, respectively, and “∼” indicates no
significance between the algorithms. Moreover, to better understand the dynamic
behaviour of algorithms, the offline performance against the first 500 iterations is
plotted in Fig. 13.3 for random DTSPs for f = 50 and m = 0.10 and m = 0.75,



330 M. Mavrovouniotis and S. Yang

Table 13.1 Experimental results of algorithms regarding the offline performance for random
DTSPs

Alg. & Inst. pr76

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 53405.77 61545.11 78939.34 109341.65 50484.60 56943.36 71997.99 95742.96
EIACO 53481.98 61995.73 79939.40 111215.18 50740.69 57488.74 72295.83 96720.11
HIACO 53299.32 61708.22 79278.76 109990.85 50282.14 56778.05 71587.04 95796.19
MIACO 53669.59 62367.39 80503.22 111982.58 50786.29 57582.64 72551.06 96996.51
EIIACO 53856.99 62156.46 79909.29 110854.31 50745.09 57363.72 72405.07 96330.06

Alg. & Inst. pr152

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 43731.12 49856.78 61702.52 84089.01 40606.23 45251.32 55209.46 73016.88
EIACO 43582.79 49869.53 62185.09 84449.34 41013.54 45154.71 54581.22 71855.33
HIACO 43579.22 49922.58 61935.99 84262.97 40561.09 44913.56 54486.51 71830.50
MIACO 43777.26 50226.28 62633.86 85252.96 41047.21 45387.66 54854.02 72307.76
EIIACO 43975.13 50167.45 62216.30 84511.91 41087.96 45643.79 55308.69 72920.66

Alg. & Inst. pr264

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 27803.32 32317.14 41440.08 56978.59 25707.36 29019.14 36155.71 48289.91
EIACO 27631.00 32284.07 41686.12 57496.55 25636.91 28906.24 35834.23 47431.27
HIACO 27801.55 32452.96 41686.40 57321.89 25547.00 28849.66 35877.25 47629.74
MIACO 27720.96 32463.54 41914.54 57863.13 25697.97 29022.73 36038.26 47866.07
EIIACO 27757.27 32338.73 41637.13 57420.54 25788.50 29080.56 36237.60 48362.34

and the offline performance against the first 100 iterations is plotted in Fig. 13.4 for
cyclic DTSPs for f = 5 and m = 0.10 and m = 0.75. From the experimental results,
several observations can be made by comparing the behaviour of the algorithms.

First, RIACO outperforms EIACO, MIACO, EIIACO in almost all dynamic cases
with f = 5 and m = 0.75 in both random and cyclic DTSPs; see the comparisons of
RIACO⇔ EIACO, RIACO⇔MIACO and RIACO⇔ EIIACO in Table 13.3. This
is because both EIACO, MIACO and EIIACO use knowledge, either individual- or
environmental-based information, from previous environments to generate immi-
grant ants, and thus, when not enough time to converge to a good solution is avail-
able, it is difficult to transfer useful knowledge, except if the magnitude of change
is small, i.e., m = 0.10. RIACO generates diversity randomly that is more useful on
dynamic cases with m = 0.50 and m = 0.75, where the changing environments are
not similar.

Second, EIACO outperforms RIACO in almost all dynamic cases with f = 50
and m = 0.10, and m = 0.25 in both random and cyclic DTSPs. This is because
transferring knowledge makes more sense when the environments are similar. How-
ever, if too much knowledge is transferred from the previous environments may lead
the population to start from a local optimum solution and get stuck to it, as in the



13 ACO Algorithms with Immigrants Schemes for the DTSP 331

Table 13.2 Experimental results of algorithms regarding the offline performance for cylic
DTSPs

Alg. & Inst. pr76

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 54082.16 58731.59 69896.53 103643.91 51862.08 54594.27 63953.72 92123.94
EIACO 53560.05 58794.42 70804.71 105641.64 52171.97 54801.34 64591.92 92765.91
HIACO 53601.65 58631.55 70239.99 104357.97 51696.62 54252.89 63789.63 91961.38
MIACO 53698.48 58781.13 70505.11 104851.77 52203.14 54819.25 64559.57 92717.01
EIIACO 53901.79 59191.25 70597.36 105385.63 52162.16 55046.11 64417.57 92590.94

Alg. & Inst. pr152

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 43123.17 50036.28 59777.25 68348.05 40685.18 45311.61 53565.86 60826.87
EIACO 42440.88 50000.39 59599.67 68250.80 40715.22 45520.32 52889.69 60479.81
HIACO 42714.18 50100.98 59754.37 68432.10 40571.04 45090.22 52844.89 60292.85
MIACO 42397.92 50130.10 59610.09 68134.46 40759.33 45545.47 53002.74 60343.23
EIIACO 42774.22 50365.58 59941.62 68406.41 40925.42 45778.35 53769.09 60479.81

Alg. & Inst. pr264

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 27118.23 31176.89 38557.06 52909.78 25413.82 28437.01 34043.66 46071.37
EIACO 26463.93 31166.71 38589.28 53356.77 25351.78 28485.02 33875.45 45133.16
HIACO 26850.52 31287.26 38750.83 53190.87 25314.59 28293.39 33877.79 45433.54
MIACO 26510.63 31180.66 38447.30 52951.17 25357.61 28442.63 33914.93 45122.77
EIIACO 26750.38 31192.29 38595.38 53278.29 25556.66 28620.66 34255.57 45930.70

case of pr152 when f = 50 and m = 0.10 where the RIACO is significantly better
than EIACO; see the comparison of RIACO⇔ EIACO in Table 13.3. Moreover, RI-
ACO outperforms EIACO in almost all cases of the smallest problem instance, i.e.,
pr76. This behaviour may have several reasons: (1) the elitism mechanism used in
EIACO may not be effective since the environmental changes in a smaller search
space have a higher probability to affect the solution that is used to generate guided
immigrants for the new environment; (2) random immigrants have a higher proba-
bility to hit the optimum in a smaller search space and the risk of randomization is
limited, whereas on larger search space it is dangerous; and (3) too much knowledge
transferred from previous environments.

Third, HIACO outperforms both RIACO and EIACO in almost all dynamic cases
with f = 50 in both random and cyclic DTSPs; see comparisons of RIACO⇔ HI-
ACO and EIACO⇔ HIACO in Table 13.3. This behaviour shows that HIACO in-
herited the merit of EIACO which is beneficial on slowly changing environments.
It can be also observed that the HIACO is significantly better than RIACO even
on the smallest problem instance in which EIACO is outperformed. This behaviour
shows that HIACO inherited the merit of RIACO. However, HIACO is significantly
better than EIACO because it may possibly achieve a good balance between the



332 M. Mavrovouniotis and S. Yang

Table 13.3 Statistical test results regarding the offline performance of the algorithms for
random and cyclic DTSPs

Alg. & Inst. pr76 pr152 pr264

Random DTSPs
f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO ∼ + + + − ∼ + + − − + +
RIACO⇔HIACO − + + + − + + + ∼ + + +
RIACO⇔MIACO + + + + ∼ + + + − + + +
RIACO⇔EIIACO + + + + + + + + − ∼ + +
EIACO⇔HIACO − − − − ∼ ∼ − − + + ∼ −
EIACO⇔MIACO + + + + + + + + + + + +
EIACO⇔EIIACO + + ∼ − + + ∼ ∼ + + − −
HIACO⇔MIACO + + + + + + + + − ∼ + +
HIACO⇔EIIACO + + + + + + + + − − − +
MIACO⇔EIIACO + − − − + ∼ − − + − − −

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
RIACO⇔EIACO + + + + + − − − − − − −
RIACO⇔HIACO − − − ∼ ∼ − − − − − − −
RIACO⇔MIACO + + + + + + − − ∼ ∼ − −
RIACO⇔EIIACO + + + + + + ∼ ∼ + + + ∼
EIACO⇔HIACO − − − − − − ∼ ∼ − − ∼ +
EIACO⇔MIACO ∼ ∼ + + ∼ + + + + + + +
EIACO⇔EIIACO ∼ − ∼ − ∼ + + + + + + +
HIACO⇔MIACO + + + + + + + + + + + +
HIACO⇔EIIACO + + + + + + + + + + + +
MIACO⇔EIIACO ∼ − ∼ − ∼ + + + + + + +

Cyclic DTSPs
f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO − ∼ + + − ∼ − − − ∼ + +
RIACO⇔HIACO − − + + − + ∼ + − + + +
RIACO⇔MIACO − ∼ + + − + − − − ∼ − ∼
RIACO⇔EIIACO − + + + − + + ∼ − ∼ + +
EIACO⇔HIACO ∼ − − − + + + + + + + −
EIACO⇔MIACO + ∼ − − ∼ + ∼ − ∼ ∼ − −
EIACO⇔EIIACO + + − − + + + + + + ∼ −
HIACO⇔MIACO + + + + − ∼ − − − − − −
HIACO⇔EIIACO + + + + + + + ∼ − − − +
MIACO⇔EIIACO + + + + + + + + + ∼ + +

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
RIACO⇔EIACO + + + + ∼ + − − − + − −
RIACO⇔HIACO − − − − − − − − − − − −
RIACO⇔MIACO + + + + + + − − − ∼ − −
RIACO⇔EIIACO + + + + + + + + + + + −
EIACO⇔HIACO − − − − − − ∼ − ∼ − ∼ +
EIACO⇔MIACO ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
EIACO⇔EIIACO ∼ + − − + + + + + + + +
HIACO⇔MIACO + + + + + + + ∼ ∼ + + −
HIACO⇔EIIACO + + + + + + + + + + + +
MIACO⇔EIIACO ∼ + ∼ ∼ + + + + + + + +



13 ACO Algorithms with Immigrants Schemes for the DTSP 333

 48000

 50000

 52000

 54000

 56000

 58000

 60000

 62000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76,  f = 50,  m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 90000

 100000

 110000

 120000

 130000

 140000

 150000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76,  f = 50,  m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 42000

 44000

 46000

 48000

 50000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152,  f = 50,  m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 70000

 80000

 90000

 100000

 110000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152,  f = 50,  m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 24000

 25000

 26000

 27000

 28000

 29000

 30000

 31000

 32000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr264,  f = 50,  m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr264,  f = 50,  m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

Fig. 13.3 Dynamic behaviour of the investigated ACO algorithms on random DTSPs



334 M. Mavrovouniotis and S. Yang

 50000

 52000

 54000

 56000

 58000

 60000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76,  f = 5,  m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76,  f = 5,  m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 41000

 42000

 43000

 44000

 45000

 46000

 47000

 48000

 49000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152,  f = 5,  m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152,  f = 5,  m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 25000

 26000

 27000

 28000

 29000

 30000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr264,  f = 5,  m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 45000

 50000

 55000

 60000

 65000

 70000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr264,  f = 5,  m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

Fig. 13.4 Dynamic behaviour of the investigated ACO algorithms on cyclic DTSPs

diversity level and the knowledge transferred. Moreover, in cases with f = 5, HI-
ACO outperforms EIACO, whereas it has a similar behaviour with RIACO, but
slightly degraded. On the other hand, HIACO outperforms EIIACO in all dynamic
cases except on the largest problem instance, i.e., pr264, with m = 0.10, 0.25
and 0.5; see the comparisons of HIACO ⇔ EIIACO in Table 13.3. A similar
observation of this behaviour has been found in [32], where the performance of



13 ACO Algorithms with Immigrants Schemes for the DTSP 335

EIIACO was promoted as the size of the problem instance increased. This because of
the diversity level generated from the environmental-information based immigrants,
which gather more information than the individual-information based immigrants,
i.e., in EIACO and MIACO.

Fourth, MIACO has a similar behaviour with EIACO when compared with other
algorithms, in random DTSPs. However, it is outperformed by EIACO and HIACO
in almost all dynamic cases; see the results regarding MIACO ⇔ EIACO and HI-
ACO⇔MIACO in Table 13.3 and the results in Table 13.1. However, in cyclic DT-
SPs, MIACO outperforms EIACO and HIACO in cases where f = 5 and m = 0.50
and 0.75, whereas it is underperformed in cases where f = 5 and m= 0.10 and 0.25;
see the results regarding MIACO⇔ EIACO and HIACO⇔ MIACO in Table 13.3
and the results in Table 13.2. Furthermore, MIACO and EIACO are insignificant
different in cyclic DTSPs where f = 50, while HIACO significantly outperforms
them. This is because EIACO is beneficial when the changing environment is simi-
lar, either in cyclic or random DTSPs, and MIACO is beneficial when the changing
environment re-appears, i.e., cyclic DTSPs. The reason why EIACO is effective in
slightly changing environments is explained above. The reason why MIACO is ef-
fective in cyclic DTSPs is that it can move the population directly to a previously
visited environment. MIACO stores the best solutions for all cyclic base states and
reuses them by generating memory-based immigrants. Moreover, on the smallest
problem instance, i.e., pr76, RIACO outperforms MIACO in almost all dynamic
cases, either random or cyclic DTSPs. This is because of the same reasons discussed
on EIACO above, since both algorithms use the elitist mechanism to generate im-
migrants.

Finally, EIIACO outperforms RIACO in almost all dynamic cases with f = 5 and
m = 0.10, while it is underperformed in dynamic cases with f = 50; see the compar-
isons of RIACO⇔ EIIACO in Table 13.3 for both random and cyclic DTSPs. This
is because EIIACO transfers knowledge from previous environment and it is bene-
ficial when the changing environments are similar. On the other hand, if too much
knowledge is transferred the performance is degraded as in EIACO. Moreover, EI-
IACO outperforms EIACO and MIACO in f = 5 and m = 0.50 and 0.75, while it is
underperformed in dynamic cases with f = 50. However, on the smallest problem
instance, i.e., pr76, EIIACO overcomes the issue of EIACO and MIACO, which
they have a degraded performance, since it is significantly better. However, in cyclic
DTSPs, MIACO outperforms EIIACO in almost all dynamic cases, as expected; see
the comparisons of EIACO⇔ EIIACO and MIACO⇔ EIIACO in Table 13.3 for
both random and cyclic DTSPs.

13.5.4 Experimental Results and Analysis of the Investigated
Algorithms with Other Peer ACO

In this section, we compare the offline performance of the investigated algorithms
above, with several other existing peer ACO proposed in the literature for different
DTSPs. These peer ACO algorithms are S-ACO and P-ACO described in Section



336 M. Mavrovouniotis and S. Yang

Table 13.4 Experimental results regarding offline performance on the DTSP with m =
rand[0,1] and f = rand[1,100] in lin318

Algorithms S-ACO P-ACO M-ACO RIACO EIACO HIACO MIACO EIIACO

Offline Performance
Mean 35008.25 34960.87 34845.93 34200.89 33794.34 33875.42 33904.18 34215.37

(Std Dev) 96.07 186.63 141.75 140.23 155.60 148.64 163.62 169.32
t-test Results

S-ACO ∼ + + + + + +
P-ACO ∼ + + + + + +
M-ACO − − + + + + +
RIACO − − − + + + ∼
EIACO − − − − − − −
HIACO − − − − + ∼ −
MIACO − − − − + ∼ −
EIIACO − − − ∼ + + +

13.3, and Memetic ACO (M-ACO) [30], which is a hybridization of P-ACO and an
adaptive inversion local search.

In the previous experiments, we have investigated the offline performance and
dynamic behaviour of ACO algorithms with immigrants schemes under two kinds
of dynamic environments, i.e., random and cyclic DTSPs, but with fixed values of f
and m. However, in real-world problems both f and m may vary during the execution
of the algorithm. In order to investigate the behaviour of the investigated algorithms
and compare them with existing algorithms in such kinds of environments, further
experiments were carried out in lin318. The values f and m were generated ran-
domly with a uniform distribution in [1,100] and [0,1], respectively. Since the time
interval of such kind of environment varies, many existing approaches used in ACO
algorithms for DTSPs, e.g. global and local restart strategies and diversity mainte-
nance schemes [16, 21], cannot be applied, since they do not have any mechanism
to detect dynamic changes.

The experimental settings and performance measure were the same as in previous
experiments. The experimental results regarding the offline performance are pre-
sented in Table 13.4 with the corresponding two-tailed t-test results with 58 degrees
of freedom at a 0.05 level of significance, “+” or “−” indicates that the algorithm in
the column is significantly better or the algorithm in the row is significantly better,
respectively, where ∼ indicates no significance between the algorithms. Moreover,
the values of varying f and m are plotted in Fig. 13.5 and the corresponding dy-
namic behaviour of the algorithms is plotted in Fig. 13.6. From the experimental
results, several observations can be drawn.

First, the results in Table 13.4 almost match the analysis of our previous exper-
iments, where EIACO and MIACO are significantly better than RIACO, whereas
EIIACO is significantly worst than RIACO. HIACO improves the performance of
RIACO, whereas it is worst than EIACO. EIACO is the champion algorithm from
all the ACO algorithms with immigrants schemes. This is because the generated
environment is a DTSP with random traffic factors, where EIACO perform well.



13 ACO Algorithms with Immigrants Schemes for the DTSP 337

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 300 400 500 600 700 800 900 1000

V
ar

yi
ng

 M
ag

ni
tu

de

Iteration

lin318 f = rand[1,100], m = rand[0,1]

Fig. 13.5 Varying values for m = rand[0,1] and f = rand[1,100] used for the DTSP

 20000

 30000

 40000

 50000

 60000

 70000

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

lin318 f = rand[1,100], m = rand[0,1]

S-ACO
P-ACO

M-ACO
RIACO
EIACO
HIACO
MIACO
EIIACO

Fig. 13.6 Dynamic behaviour of the investigated ACO algorithms in comparison with other
peer ACO algorithms on the DTSP with m = rand[0,1] and f = rand[1,100]

MIACO is not performing well since it is not guaranteed that previously visited
environments will reappear again.

Second, all investigated algorithms outperform other peer ACO algorithms. This
is because the S-ACO uses only pheromone evaporation to eliminate pheromone
trails from the previous environment that are not useful to the new one, and thus,
needs sufficient time to adapt to the changing environments. On the other hand,
P-ACO eliminates pheromone trails directly if an ant is removed from klong. How-
ever, if identical ants are stored in the klong, then the algorithm will reach stagna-
tion behaviour, and thus, needs sufficient time to escape from it. M-ACO is signif-
icantly better than both S-ACO and P-ACO since the local search that is integrated
with ACO promotes exploitation to improve the solution quality, and the risk of
stagnation is eliminated using a diversity maintenance scheme based on traditional
immigrants. Whenever, klong reaches stagnation behaviour a random immigrant re-
places an ant until the algorithm generates sufficient diversity.



338 M. Mavrovouniotis and S. Yang

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

S-ACO P-ACO M-ACO RIACO EIACO HIACO MIACO EIIACO

T
ot

al
 D

iv
er

si
ty

Algorithm

lin318 f = rand[1,100], m = rand[0,1]

Fig. 13.7 Total diversity of the investigated ACO algorithms in comparison with other peer
ACO algorithms on the DTSP with m = rand[0,1] and f = rand[1,100]

Finally, in order to investigate the effect of immigrants scheme on the population
diversity, we calculate the mean population diversity of all iterations as follows:

Div =
1
G

G

∑
i=1

(
1
N

N

∑
j=1

(
1

μ(μ− 1)

μ

∑
p=1

μ

∑
q�p

Mi j

))
, (13.10)

where G is the number of iterations, N is the number of runs, μ is the size of
the population and Mi j is the common edges between ant p and ant q as defined
in Eq. (13.7). A value closer to 0 means that the ants are identical and a value
closer to 1 means that the ants are completely different. The total diversity results
for the different dynamic cases are presented in Fig. 13.7. It can be observed that
S-ACO has a higher diversity than all algorithms. The P-ACO algorithm has the
lowest diversity level which shows the effect when identical ants are stored in the
population-list. RIACO maintains the highest diversity among the remaining algo-
rithms with different immigrants schemes, since diversity is generated randomly,
whereas the remaining algorithms generate guided diversity via transferring knowl-
edge. However, EIIACO maintains higher diversity than both EIACO and MIACO
which shows that the environmental-information immigrants generate higher diver-
sity than individual-information immigrants. HIACO has a lower diversity than RI-
ACO but higher than EIACO which shows that it has inherited the merits of the two
immigrants schemes. Considering the results of the total diversity with the those
of the offline performance shows that ACO algorithms that maintain high diversity
levels do not always achieve better performance than other ACO algorithms for the
DTSP; see Table 13.4 and Fig. 13.6.

13.6 Conclusions and Future Work

Several immigrants schemes have been successfully applied to ACO algorithms
to address different DTSPs [29, 31, 32]. Immigrant ants are generated to transfer



13 ACO Algorithms with Immigrants Schemes for the DTSP 339

knowledge to the pheromone trails and maintain diversity. In this chapter, we re-
investigate those algorithms, on the way they generate immigrant ants, and apply
them to DTSP with traffic factors. We generate two types of dynamic environments:
(1) the traffic factor changes randomly; and (2) the traffic factor changes in a cyclic
pattern where the environments will reappear.

From the experimental results of comparing the investigated algorithms on dif-
ferent cases of DTSPs and with other peer ACO algorithms, the following conclud-
ing remarks can be drawn. First, immigrants schemes enhance the performance of
ACO for DTSPs. Second, RIACO is advantageous in fast and significantly changing
environments. Third, EIACO is advantageous in slowly and slightly changing envi-
ronments. Fourth, HIACO promotes the performance of EIACO in slowly changing
environments, while it slightly degrades the performance of RIACO in fast chang-
ing environments. Fourth, MIACO is advantageous in cyclic changing environments,
where previous environments will re-appear. Fifth, EIIACO promotes the perfor-
mance of EIACO in environments with significant changes. Sixth, transferring too
much knowledge from previous environments may degrade the performance.Finally,
a high level of diversity do not always enhance the performance of ACO in DTSPs.

In general, almost all ACO algorithms based on immigrants schemes outperform
other peer ACO algorithms. Furthermore, different immigrants schemes are benefi-
cial for different dynamic environmental cases.

For future work, it will be interesting to hybridize more types of immigrants
schemes, to achieve a good balance between the knowledge transferred and the di-
versity maintenance. Another future work is to apply the proposed algorithms to
other relevant problems, e.g., the dynamic vehicle routing problem, and in more
challenging environments, where, apart from dynamic changes, a small amount of
noise may be generated every iteration.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant numbers EP/E060722/1, EP/E060722/2,
and EP/K001310/1.

References

[1] Angus, D.: Niching for population-based ant colony optimization. In: Proc. of the 2nd
IEEE Inter. Conf. on e-Science and Grid Comp., pp. 15–22 (2006)

[2] Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing
problem. Advanced Engineering Informatics 18, 41-48 (2004)

[3] Bullnheimer, B., Haı̈ti, R., Strauss, C.: An improved ant system algorithm for the vehi-
cle routing problem. Ann. Oper. Res. 89(1), 319-328 (1999)

[4] Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank based version of the ant system -
a computational study. Central Eur. J. for Oper. Res. in Economics 7(1), 25–38 (1999)

[5] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artifi-
cial Systems. Oxford University Press, New York (1999)

[6] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput. vol. 3, pp. 1875–1882 (1999)



340 M. Mavrovouniotis and S. Yang

[7] Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput., 15(7), 1427–1448 (2011)

[8] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proc. 5th Int. Conf. on Genetic Algorithm, pp. 523–530 (1993)

[9] Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In:
Proc. 1st Europ. Conf. on Artif. Life, pp. 134–142 (1992)

[10] Cordón, O., de Viana, I.F., Herrera, F., Moreno, L.: A new ACO model integrating evo-
lutionary computation concepts: The best worst Ant System. In: Proc. 2nd Int. Work-
shop on Ant Algorithms, pp. 22-29 (2000)

[11] Di Caro, G., Dorigo, M.: Ant Net: Distributed Stigmergetic Control for Communica-
tions Networks. J. of Artif. Intell. Res. 9(1), 317–365 (1998)

[12] Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: An ant-based hybrid routing
algorithm for mobile ad hoc networks. In: Proc. 8th Int. Conf. on Parallel Problem
Solving from Nature, LNCS 3242, pp. 461–470 (2004)

[13] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooper-
ating agents. IEEE Trans. Syst., Man and Cybern., Part B: Cybern. 26(1), 29–41 (1996)

[14] Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to
the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

[15] Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, London (2004)
[16] Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: Proc. 3rd Int. Work-

shop on Ant Algorithms, pp. 88–99 (2002)
[17] Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assign-

ment problem. J. of the Oper Res Society 50, 167–176 (1999)
[18] Grefenestette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd

Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)
[19] Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic optimiza-

tion problems. In: Proc. 3rd Int. Workshop on Ant Algorithms, LNCS 2463, pp. 111–
122 (2002)

[20] Guntsch, M., Middendorf, M.: A population based approach for ACO. In: EvoWork-
shops 2002: Appl. of Evol. Comput., pp. 72–81 (2002)

[21] Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algorithms
applied to dynamic TSP. In: EvoWorkshops 2001: Appl. of Evol. Comput., pp. 213-222
(2001)

[22] Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization approach to
dynamic TSP. In: Proc. 2001 Genetic and Evol. Comput. Conf., pp. 860–867 (2001)

[23] Guo, T., Michalewicz, Z.: Inver-over operator for the TSP. In: Proc. 5th Int. Conf. on
Parallel Problem Solving from Nature, LNCS 1498, pp. 803–812 (1998)

[24] He, J., Yao, X.: From an individual to a population: An analysis of the first hitting time
of population-based evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 495–511
(2002)

[25] Holland, J.: Adaption in Natural and Artificial Systems, University of Michigan Press
(1975)

[26] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[27] Lin, S., Kerninghan, B.W.: An effective heuristic algorithm for the traveling salesman
problem. Oper. Res. 21(2), 498–516 (1973)

[28] Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem.
IEEE Trans. Knowledge and Data Engineering 9(5), 769–778 (1999)



13 ACO Algorithms with Immigrants Schemes for the DTSP 341

[29] Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes for
dynamic environments. In: Proc. 11th Int. Conf. on Parallel Problem Solving from Na-
ture, LNCS 6239, pp. 371–380 (2010)

[30] Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for the
dynamic travelling salesman problem. Soft Comput. 15(7), 1405–1425 (2011)

[31] Mavrovouniotis, M., Yang, S.: Memory-based immigrants for ant colony optimization
in changing environments. In: EvoWorkshops 2011: Appl. of Evol. Comput., LNCS
6624, pp. 324–333 (2011)

[32] Mavrovouniotis, M., Yang, S.: An immigrants scheme based on environmental informa-
tion for ant colony optimization for the dynamic travelling salesman problem. In: Proc.
10th Int. Conf. Evolution Artificial, LNCS 7401, pp. 1-12 (2011)

[33] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin, third edition (1999)

[34] Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: An new algorithm for a dy-
namic vehicle routing problem based on ant colony system. In: Proc. 2nd Int. Workshop
on Freight Transportation and Logistics, pp. 27–30 (2003)

[35] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm.
Algorithmica 54(2), 243–255 (2009)

[36] Rizzoli, A. E., Montemanni, R., Lucibello, E., Gambardella, L. M.: Ant colony opti-
mization for real-world vehicle routing problems - from theory to applications. Swarm
Intell. 1(2), 135–151 (2007)

[37] Stützle, T., Hoos, H.: The MAX-MIN ant system and local search for the traveling
salesman problem. In: Proc. 1997 IEEE Int. Conf. Evol. Comput., pp. 309–314 (1997)

[38] Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems
8(16), 889–914 (2000)

[39] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments.
In: Proc. 2005 Genetic and Evol. Conf., vol. 2, pp. 1115–1122 (2005)

[40] Yang, S.: Genetic algorithms with elitism based immigrants for changing optimization
problems. In: EvoWorkshops 2007: Appl. of Evol. Comput., LNCS 4448, pp. 627–636
(2007)

[41] Yang, S.: Genetic algorithms with memory and elitism based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

[42] Yang, S., Cheng, H., Wang, F.: Genetic algorithms with immigrants and memory
schemes for dynamic shortest path routing problems in mobile ad hoc networks. IEEE
Trans. Syst., Man, and Cybern. Part C: Appl. and Rev. 40(1), 52-63 (2010)

[43] Yang, S., Tinos, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. of Autom. and Comput. 4(3), 243–254 (2007)

[44] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[45] Yu, X., Tang, K., Yao, X.: An immigrants scheme based on environmental informa-
tion for genetic algorithms in changing environments. In: Proc. 2008 IEEE Congr.
Evol. Comput., pp. 1141–1147 (2008)

[46] Yu, X., Tang, K., Yao, X.: Immigrant schemes for evolutionary algorithms in dynamic
environments: Adapting the replacement rate. Sci. China Series F: Inf. Sci. 53(1), 1–11
(2010)

[47] Yu, X., Tang, K., Chen, T., Yao, X.: Empirical analysis of evolutionary algorithms with
immigrants schemes for dynamic optimization. Memetic Comput. 1(1), 3–24 (2009)


	Chapter 13 Ant Colony Optimization Algorithms with Immigrants Schemes for the Dynamic Travelling Salesman Problem
	13.1 Introduction
	13.2 Dynamic Travelling Salesman Problem with Traffic Factor
	13.2.1 DTSP with Random Traffic
	13.2.2 DTSP with Cyclic Traffic

	13.3 Ant Colony Optimization for the DTSP
	13.3.1 Standard ACO
	13.3.2 Population-Based ACO (P-ACO)
	13.3.3 React to Dynamic Changes

	13.4 Investigated ACO Algorithms with Immigrants Schemes
	13.4.1 General Framework of ACO with Immigrants Schemes
	13.4.2 ACO with Random Immigrants
	13.4.3 ACO with Elitism-Based Immigrants
	13.4.4 ACO with Hybrid Immigrants
	13.4.5 ACO with Memory-Based Immigrants
	13.4.6 ACO with Environmental-Information Immigrants

	13.5 Experiments
	13.5.1 Experimental Setup
	13.5.2 Parameter Settings
	13.5.3 Experimental Results and Analysis of the Investigated Algorithms
	13.5.4 Experimental Results and Analysis of the Investigated Algorithms with Other Peer ACO

	13.6 Conclusions and Future Work
	References




