
Chapter 1
Evolutionary Dynamic Optimization:
Test and Evaluation Environments

Shengxiang Yang, Trung Thanh Nguyen, and Changhe Li

Abstract. In the last two decades, dynamic optimization problems (DOPs) have
drawn a lot of research studies from the evolutionary computation (EC) community
due to the importance in real-world applications. A variety of evolutionary compu-
tation approaches have been developed to address DOPs. In parallel with developing
new approaches, many benchmark and real-world DOPs have been constructed and
used to compare them under different performance measures. In this chapter, we
describe the concept of DOPs and review existing dynamic test problems that are
commonly used by researchers to investigate their EC approaches in the literature.
Some discussions regarding the major features of existing dynamic test environ-
ments are presented. Typical dynamic benchmark problems and real-world DOPs
are described in detail. We also review the performance measures that are widely
used by researchers to evaluate and compare their developed EC approaches for
DOPs. Suggestions are also given for potential improvement regarding dynamic test
and evaluation environments for the EC community.

1.1 Introduction

In the last two decades, dynamic optimization problems (DOPs) have drawn a lot of
research studies from the evolutionary computation (EC) community. Especially, in
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recent years, there has been a growing interest in studying evolutionary algorithms
(EAs) for DOPs due to its importance in real-world applications since many real-
world optimization problems are DOPs. The research domain of EC for DOPs can
be termed as evolutionary dynamic optimization (EDO). DOPs require EAs to track
the trajectory of changing optima in the search space [11, 30]. This poses great
challenges to traditional EAs due to the convergence problem: once converged, they
can not track the changing optima well. Hence, researchers have developed several
approaches into EAs to enhance their performance for DOPs [30, 83], e.g., diversity
schemes [19, 27, 80], memory schemes [9, 70, 88], multi-population schemes [13,
55, 82], prediction and anticipation schemes [64], and adaptive schemes [45, 84, 85].

In order to study and compare the developed EA approaches for DOPs, there
are two important tasks. One important task is to build up proper dynamic test en-
vironments. Over the years, in parallel with developing EA approaches for DOPs,
researchers have also developed many dynamic benchmark problems, e.g., the mov-
ing peaks benchmark (MPB) problem by Branke [9], the XOR DOP generator by
Yang and Yao [77, 87, 88], the generalized dynamic benchmark generator (GDBG)
by Li and Yang [36], and modelled a number of real-world DOPs, e.g., dynamic
knapsack problems [34, 43, 49], dynamic travelling salesman problems [35, 40],
dynamic routing problems in communication networks [16, 17, 81], and dynamic
vehicle routing problems in logistics and transportation networks [42, 75]. The other
important task is to define proper performance measures to compare different EC ap-
proaches for DOPs. Over the years, researchers have developed a number of differ-
ent performance measures to evaluate the developed EA approaches for DOPs, e.g.,
the offline error measure [9], the accuracy measure [72], and the best-of-generation
measure [18], etc.

In this chapter, we present the concept of DOPs and review existing dynamic test
problems commonly used by researchers to investigate their EC approaches in the
literature. Some discussions regarding the major features and classification of ex-
isting dynamic test environments are presented. Some typical dynamic benchmark
problems and real-world DOPs, which cover the binary, real, and combinatorial
spaces, are also described in detail. We also review the performance measures that
are widely used by researchers to evaluate and compare their developed EC ap-
proaches for DOPs. Suggestions are also given for potential improvement regarding
dynamic test and evaluation environments for the EC community.

The rest of this chapter is organized as follows. The next section first introduces
the concept of DOPs, then historically reviews dynamic test problems in the litera-
ture, and finally describes the major features and classification of existing dynamic
test problems. Section 1.3 describes in detail some dynamic test problems and gen-
erators that are commonly used in the literature, covering the binary space, the real
space, and the combinatorial space. Section 1.4 reviews the typical performance
measures that are used by researchers to compare and justify their algorithms for
DOPs. Section 1.5 presents the GDBG system. Finally, Section 1.6 concludes this
chapter with some discussions on the future work on constructing dynamic test and
evaluation environments for the EC community.
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1.2 DOPs: Concepts, Brief Review, and Classification

1.2.1 Concepts of DOPs

In the literature of EC in dynamic environments, researchers usually define opti-
mization problems that change over time as dynamic problems or time-dependent
problems. In this chapter, we define DOPs as a special class of dynamic problems
that are solved online by an optimization algorithm as time goes by.

It is notable that in many EDO studies, the terms “dynamic problems/time-
dependent problems” and “DOPs” are not distinguished or are used interchangeably.
In these studies, DOPs are either defined as a sequence of static problems linked up
by some dynamic rules [4, 61, 62, 71, 73] or as a problem that has time-dependent
parameters in its mathematical expression [5, 7, 20, 76], without explicitly men-
tioning whether the problems are solved online by an optimization algorithm or
not. However, it is necessary to distinguish a DOP from a general time-dependent
problem because, no matter how the problem changes, from the perspective of an
EA or an optimization algorithm in general, a time-dependent problem is only dif-
ferent from a static problem if it is solved in a dynamic way, i.e., the algorithm
needs to take into account changes during the optimization process as time goes by
[10, 30, 48]. Hence, only DOPs are relevant to EDO research.

1.2.2 Dynamic Test Problems: Brief Review

In order to compare the performance of the developed GA approaches in dynamic
environments, researchers have developed a number of dynamic problem genera-
tors. Generally speaking, DOPs are constructed via changing (the parameters of)
stationary base problem(s). And, ideally, through proper control, different dynamic
environments can be constructed from the stationary base problem(s) regarding the
characteristics of the environmental dynamics, such as the frequency, severity, pre-
dictability, and cyclicity of environmental changes. Below, we briefly review the dy-
namic test environments that have been used/developed by researchers to test their
EC approaches roughly in the time order.

In the early days, the dynamic test environments were quite simple: the envi-
ronment is just switched between two or more stationary problems or between two
or more states of one problem. For example, Cobb and Grefenstette [19] used a
dynamic environment that oscillates between two different fitness landscapes. The
dynamic 0-1 knapsack problem where the knapsack capacity oscillates between two
or more fixed values has been frequently used in the literature [34, 43, 49]. The dy-
namic bit-matching problem has also been used by researchers for analyzing the
performance of EC approaches in dynamic environments [65].

Later in 1999, several researchers have independently developed several dy-
namic environment generators by changing a base fitness landscape predefined in
the multi-dimensional real space [9, 28, 44, 67]. This base fitness landscape consists
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of a number of peaks. Each peak can change its own morphology independently,
such as the height, slope, and location of the peak. The center of the peak with the
highest height is taken as the optimal solution of the landscape. Dynamic problems
can be created through changing the parameters of each peak.

More recently, the dynamic 0-1 knapsack problem has been extended to dynamic
multi-dimensional knapsack problems in several studies [14, 68]. In [78], Yang pro-
posed a dynamic environment generator based on the concept of problem difficulty
and unitation and trap functions. An XOR DOP generator, which can generate dy-
namic environments from any binary encoded stationary problem based on a bitwise
exclusive-or (XOR) operator, has been proposed in [77, 87, 88]. In [57, 58, 60],
Richter constructed spatio-temporal fitness landscapes based on coupled map lat-
tices (CML) [15], where such properties as modality, ruggedness, information con-
tent, epistasis, dynamic severity, and Lyapunov exponents can be defined. Bosman
[7] and Nguyen and Yao [52] investigated the online DOPs that have the time-
linkage property, i.e., the current solution found by an optimization algorithm affects
the future behaviour of the problem. In [53], Nguyen and Yao investigated dynamic
constrained optimization problems where constraints change over time. The authors
extended this study to provide a full set of dynamic constraine test problems in
[50, 51]. In order to develop a unified approach of constructing dynamic problems
across the binary space, the real space, and the combinatorial space, the GDBG
system was recently proposed in [36, 37], which can be instantiated to construct
dynamic test environments for all the three solution spaces.

In recent years, researchers have also studied a number of real-world DOPs. For
example, Li et al. [35] studied the dynamic travelling salesman problem where the
cities may change their locations. Mavrovouniotis and Yang investigated the dy-
namic travelling salesman problem where cities may join or leave the topology
over time [40] and the traffic may change over time [41]. In [16, 17, 81], Cheng et
al. studied the dynamic shortest path routing and dynamic multi-cast routing prob-
lems in mobile ad hoc networks (MANETs). In [42, 75], dynamic vehicle routing
problems in logistics and transportation networks have been investigated by the EC
community.

1.2.3 Major Characteristics and Classification of DOPs

As briefly reviewed above, many dynamic test problems have been used in the liter-
ature. These dynamic test problems have different characteristics and can be classi-
fied into different groups based on the following different criteria:

• Time-linkage: Whether the future behaviour of the problem depends on the cur-
rent solution found by an algorithm or not.

• Predictability: Whether the generated changes are predictable or not.
• Visibility: Whether the changes are visible to the optimisation algorithm and, if

so, whether changes can be detected by using just a few detectors.
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• Constrained problem: Whether the problem is constrained or not.
• Number of objectives: Whether the problem is single objective or multiple ob-

jectives.
• Type of changes: Detailed explanation of how changes occur in the search space.
• Cyclicity: Whether the changes are cyclic/recurrent in the search space or not.
• Periodicity: Whether the changes are periodical or not in time.
• Factors that change: Changes may involve parameters of objective functions, do-

main of variables, number of variables, constraints, and other parameters.

The common characteristics of the general-purpose dynamic benchmark problems
used in the literature are summarized as follows.

• Most dynamic test problems are non time-linkage problems. There are only a
couple of general-purpose time-linkage test problems [7, 52] and some problem-
specific time-linkage test problems [7, 8].

• Most of the dynamic test generators/problems in the continuous domain are
unconstrained or domain constrained, except the two most recent studies
[53, 59]

• In the default settings of most general-purpose dynamic test problems, changes
are detectable by using just a few detectors. Exceptions are some problem in-
stances in [19, 67] where only one or some peaks move, and in [53, 59] where
the presences of the visibility mask or constraints make only some parts of the
landscapes change. Due to their highly configurable property some benchmark
generators can be configured to create scenarios where changes are more difficult
to detect.

• In most cases, the factors that change are the objective functions. Exceptions
are one instance in [36] where the dimension also changes and the problems in
[53, 59] where the constraints also change.

• Many generators/problems have unpredictable changes in their default settings.
Some of the generators/problems can be configured to allow predictable changes,
at least in the frequency and periodicity of changes.

• A majority of benchmark generators/problems have cyclic/recurrent changes.
• Most benchmark generators/problems assume periodical changes, i.e., changes

occur every fixed number of generations or fitness evaluations. An exception is
the work in [64], which also studies the cases where the changes occur in some
time pattern.

• Most generators/problems are single-objective. Only a few studies involve
dynamic multi-objective problems, e.g., [23, 31].

In the next section, we describe in details some generators/problems that are com-
monly used in the domain of EC for DOPs in the real space, binary space, and
combinatorial space, respectively.
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1.3 Typical Dynamic Test Problems and Generators

1.3.1 Dynamic Test Problems in the Real Space

1.3.1.1 The DF1 Generator

The dynamic problem generator, called the DF1 generator, proposed by Morrison
and De Jong [44], is a kind of moving peaks benchmark generators. Within DF1,
the base landscape in the D-dimensional real space is defined as:

f (x) = max
i=1,...,p

⎡
⎣Hi−Ri×

√√√√ D

∑
j=1

(x j−Xi j)2

⎤
⎦ (1.1)

where x = (x1, · · · ,xD) is a point in the landscape, p specifies the number of peaks
(or cones), and each peak i is independently specified by its height Hi, its slope
Ri, and its center Xi = (Xi1, · · · ,XiD). These peaks are blended together by the max
function. The fitness at a point on the surface is assigned the maximum height of
all optima at that point; the optima with the greatest height at a point is said to be
visible at that point.

DF1 creates dynamic problems by changing the features, i.e., the location, height,
and slope, of each peak independently. The dynamics are controlled by the Logistics
function given by:

Δt = A ·Δt−1 · (1−Δt−1) (1.2)

where A is a constant value in the range [1.0, 4.0] and Δt is used as the step size
of changing a particular parameter (i.e., the location, height, or slope) of peaks at
iteration t after scaled by a scale factor s in order to reduce step sizes that may be
larger than intended for each step.

The logistics function allows a wide range of dynamic performance by a simple
change of the value of A, from simple constant step sizes, to step sizes that alternate
between two values, to step sizes that rotate through several values, to completely
chaotic step sizes. More details on the DF1 generator can be found in [44].

1.3.1.2 The Moving Peaks Benchmark (MPB) Problem

Branke [9] proposed the MPB problem, which has been widely used as dynamic
benchmark problems in the literature. Similar to the DF1 generator described above,
the MPB problem consists of a multi-dimensional fitness landscape in the real space
with a number of peaks, where each peak has three features, i.e., the height, width,
and central position. Within the MPB problem, the optima can be changed by chang-
ing the three features of each peak independently or in a correlative way.

For the D-dimensional landscape, the MPB problem is defined as follows:

F(x, t) = max
i=1,...,p

Hi(t)

1+Wi(t)∑D
j=1 (x j(t)−Xi j(t))2

, (1.3)
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Table 1.1 Default settings for the MPB problem

Parameter Value

p (the number of peaks) 10
U (change frequency) 5000
height severity 7.0
width severity 1.0
peak shape cone
basic function no
s (the shift length) 1.0
D (the number of dimensions) 5
λ ( the correlation coefficient) 0
S (the range of allele values) [0, 100]
H (the range of the height of peaks) [30.0, 70.0]
W (the range of the width of peaks) [1, 12]
I (the initial height for all peaks) 50.0

where Wi(t) and Hi(t) are the height and width of peak i at time t, respectively, and
Xi j(t) is the j-th element of the location of peak i at time t. The p independently
specified peaks are blended together by the max function. The position of each peak
is shifted in a random direction by a vector vi of a distance s (s is also called the
shift length, which determines the severity of the problem dynamics), and the move
of a single peak can be described as follows:

vi(t) =
s

|r+ vi(t− 1)| ((1−λ )r+λ vi(t− 1)), (1.4)

where the shift vector vi(t) is a linear combination of a random vector r and the
previous shift vector vi(t−1) and is normalized to the shift length s. The correlated
parameter λ is set to 0, which implies that the peak movements are uncorrelated.

More formally, a change of a single peak can be described as follows:

Hi(t) = Hi(t− 1)+ height severity∗σ (1.5)

Wi(t) =Wi(t− 1)+width severity∗σ (1.6)

Xi(t) = Xi(t)(t− 1)+ vi(t) (1.7)

where σ is a normal distributed random number with mean zero and variation of 1.
The default settings for the MPB benchmark typically used in the literature

can be found in Table 1.1, which are corresponding to Scenario 2 in [9]. In Ta-
ble 1.1, the change frequency (U) means that environment changes every U fitness
evaluations.
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1.3.2 Dynamic Test Problems in the Binary Space

1.3.2.1 The Dynamic Bit-Matching Problem

The dynamic bit-matching problem has been used by researchers for the analysis of
the performance of EAs in dynamic environments [21, 65]. For example, Stanhope
and Daida [65] analyzed the behaviour of a simple (1+1) EA based on the dynamic
bit-matching problem. In the dynamic bit-matching problem, an algorithm needs
to find solutions that minimize the Hamming distance to an arbitrary target pattern
(i.e., the match string) that may change over time. Given a solution x ∈ {0,1}L (L
is the length of the binary encoding of a solution for the problem) and the target
pattern a ∈ {0,1}L at time t, the Hamming distance between them is calculated as:

dHamming(x(t),a(t)) =
i=L

∑
i=1
|xi(t)− ai(t)| (1.8)

The dynamics of the problem is controlled by two parameters, g and d, which con-
trol the number of generations between changes and the degree (Hamming distance)
by which the target pattern a is altered (for each change, d distinct and randomly
chosen bits in a are inverted), respectively. For example, setting (g,d) = (0,0) re-
sults in a stationary function whereas setting (g,d) = (10,5) means that every 10
generations, the target pattern a changes by 5 bits randomly.

1.3.2.2 Dynamic Knapsack Problems (DKP) and Dynamic
Multi-dimensional Knapsack Problems (DMKP)

The knapsack problem [32] is a classical NP-hard combinatorial optimization prob-
lem, where the solution space belongs to the binary space. Given a set of items, each
of which has a weight and a profit, and a knapsack with a fixed capacity, the prob-
lem aims to select items to fill up the knapsack to maximize the total profit while
satisfying the capacity constraint of the knapsack. Suppose there are n items, and w,
p, and C, denote the weights of items, the profits of items, and the capacity of the
knapsack, respectively. Then, the knapsack problem can be defined as follows:

Max f (x) =
n

∑
i=1

pi · xi (1.9)

sub ject to :
n

∑
i=1

wi · xi ≤C, (1.10)

where x ∈ {0,1}n is a solution, xi ∈ {0,1} indicates whether item i is included in
the subset or not, pi is the profit of item i, and wi is the weight of item i.

The above knapsack problem has been frequently used to test the performance
of EAs in stationary environments, and its dynamic version has also been used by
researchers to test the performance of EAs in dynamic environments [34, 43, 49]. In
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the dynamic knapsack problem, the system dynamics can be constructed by chang-
ing the weights of items, the profits of items, and/or the knapsack capacity over time
according to some dynamics, respectively. So, the dynamic knapsack problem can
be described as follows:

Max f (x, t) =
n

∑
i=1

pi(t) · xi (1.11)

sub ject to :
n

∑
i=1

wi(t) · xi ≤C(t), (1.12)

where the weight and profit of each item may be bounded in the range of [lw,uw],
[lp,up], and the capacity of knapsack may be bounded in the range of [lc,uc].

Similarly, the static multi-dimensional knapsack problem (MKP) belongs to the
class of NP-complete problems, which has a wide range of real-world applications,
such as cargo loading, selecting projects to fund, budget management, etc. In the
MKP, we have a number of resources (knapsacks), each of which has a capacity,
and a set of items, each of which has a profit and consumes some amount of each
resource. The aim is to select items to maximize the total profit while satisfying the
capacity constraints for all resources.

The DMKP has recently been used to investigate the performance of EAs for
DOPs [14, 68]. As in the DKP, in the DMKP, the profit and resource consumption
for each item as well as the capacity of each resource may change over time. Let r, p,
c denote the resource consumptions of items, the profits of items, and the capacities
of resources, respectively. Then, the DMKP can be defined as follows:

Max f (x, t) =
n

∑
i=1

pi(t) · xi (1.13)

sub ject to :
n

∑
i=1

ri j(t) · xi ≤ ci(t), j = 1,2, · · · ,m (1.14)

where n is the number of items, m is the number of resources, xi and pi are as defined
above, ri j(t) denotes the resource consumption of item i for resource j at time t, and
ci(t) is the capacity constraint of resource i at time t. The system dynamics can be
constructed by changing the profits of items, resource consumptions of items, and
the capacity constraints of resources within certain upper and lower bounds over
time according to some dynamics, respectively.

1.3.2.3 The XOR DOP Generator

In [77, 87], an XOR DOP generator that can generate dynamic environments from
any binary encoded stationary problem using a bitwise exclusive-or (XOR) operator
has been proposed. Given a stationary problem f (x) (x ∈ {0,1}l where l is the
length of binary encoding), DOPs can be constructed from it as follows. Suppose
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the environment is changed every τ generations. For each environmental period k,
an XORing mask M(k) is first incrementally generated as follows:

M(k) = M(k− 1)⊕T(k), (1.15)

where “⊕” is the XOR operator (i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 0 = 0) and T(k) is
an intermediate binary template randomly created with ρ × l (ρ ∈ [0.0,1.0]) ones
inside it for environmental period k. Initially, M(0) is set to a zero vector. Then, the
individuals at generation t are evaluated using the following formula:

f (x, t) = f (x⊕M(k)), (1.16)

where k = �t/τ� is the environmental period index.
With this XOR DOP generator, the environmental dynamics can be tuned by two

parameters: τ controls the speed of environmental changes while ρ controls the
severity of changes. The bigger the value of τ , the slower the environment changes.
The bigger the value of ρ , the more severe the environment changes.

The aforementioned XOR DOP generator in fact can construct random dynamic
environments because there is no guarantee that the environment will return to a pre-
vious one after certain changes. In order to test the performance of memory based
EAs, the XOR generator has been extended to construct cyclic dynamic environ-
ments in [79] and cyclic dynamic environments with noise further in [88].

With the XOR generator, cyclic dynamic environments can be constructed as fol-
lows. First, we can generate 2K XOR masks M(0), · · · ,M(2K−1) as the base states
in the search space randomly or in a certain patter. Then, the environment can cycle
among these base states in a fixed logical ring. Suppose the environment changes
every τ generations, then an individual at generation t is evaluated as follows:

f (x, t) = f (x⊕M(It)) = f (x⊕M(k%(2K))), (1.17)

where k = �t/τ� is the index of current environmental period and It = k%(2K) is
the index of the base state that the environment is in at generation t.

The 2K XOR masks can be generated in the following way. First, we construct
K binary templates T(0), · · · ,T(K− 1) that form a random partition of the search
space with each template containing ρ× l = l/K bits of ones1. Let M(0) = 0 denote
the initial state. Then, the other XOR masks are generated iteratively as follows:

M(i+ 1) = M(i)⊕T(i%K), i = 0, · · · ,2K− 1 (1.18)

So, the templates T(0), · · · ,T(K−1) are first used to create K masks till M(K) = 1
and then orderly reused to construct another K masks till M(2K) = M(0) = 0. The
Hamming distance between two neighbour XOR masks is the same and equals ρ× l.
Here, ρ ∈ [1/l,1.0] is the distance factor, determining the number of base states.

1 In the partition each template T(i) (i = 0, · · · ,K−1) has randomly but exclusively selected
ρ × l bits set to 1 while other bits set to 0. For example, T(0) = 0101 and T(1) = 1010
form a partition of the 4-bit search space.



1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 13

M(0)=0000000000

State 2

M(2)=0111010011

State 3

M(3)=1101000101

. . .
M(1)=1001011010

State 1

State 4

(Initial State)
State 0

M(2)=1111111111

Base State 2

M(1)=1001011010

(Initial State)
Base State 0

Base State 1

M(0)=0000000000

M(3)=0110100101

Base State 3

M(2)=0111111111

Base State 2

M(1)=1001011011

(Initial State)
Base State 0

Base State 1

M(0)=0000000000

M(3)=0110110101

Base State 3

Bit 1 changed
by noise

Bit 10 changed
by noise

by noise
Bit 6 changed

(a) (b) (c)

Fig. 1.1 Illustration of three kinds of dynamic environments constructed from a 10-bit en-
coded function with ρ = 0.5: (a) random, (b) cyclic, and (c) cyclic with noise

From the above cyclic environment generator, we can further construct cyclic
dynamic environments with noise as below. Each time the environment is about to
move to a next base state M(i), M(i) is bitwise flipped with a small probability
pn. Figure 1.1 illustrates the construction of random, cyclic, and cyclic with noise
dynamic environments respectively from a 10-bit function with ρ = 0.5, where the
XORing mask is used to represent the environmental state.

This XOR DOP generator has two properties. One is that the distances among
the solutions in the search space remains unaltered after an environmental change.
The other is that the properties of the fitness landscape are not changed after an
environmental change, which facilitates the analysis of the behavior of algorithms.
Recently, the XOR DOP generator has been extended to construct dynamic prob-
lems in the real space [66]. In [66], two continuous dynamic problem generators
were proposed using the linear transformation of individuals. The first generator
does the linear transformation by changing the direction of some axes of the search
space while the second one uses successive rotations in different planes.

1.3.3 Dynamic Test Problems in the Combinatorial Space

1.3.3.1 The Spatio-Temporal Fitness Landscapes

In [57, 58], Richter constructed spatio-temporal fitness landscapes based on Cou-
pled Map Lattices (CML). The idea of using CML to construct dynamic fitness
landscapes is interesting since CML facilitate efficient computing of the fitness land-
scape and can reveal a broad variety of complex spatio-temporal behavior [15]. In
[59], Richter further analyzed and quantified the properties of spatio-temporal fit-
ness landscapes constructed from CML using topological and dynamical landscape
measures such as modality, ruggedness, information content, epistasis, dynamic
severity, and two types of dynamic complexity measures, Lyapunov exponents and
bred vector dimension.

In order to build spatio-temporal landscape based on CML, Richter defined a
lattice grid with I× J cells in 2-dimension. A height at time t is assigned to each
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cell referred to h(i, j, t), where i and j denote the indices of cells. The change of the
height of a cell is as follows:

h(i, j, t) = (1− ε)g(h(i, j, t))+ ε
4 [g(h(i− 1, j, t))

+g(h(i+ 1, j, t))+ g(h(i, j− 1, t))+ g(h(i, j+ 1, t))]
(1.19)

where ε is the diffusion coupling strength and g(h(i, j, t)) is logistic mapping func-
tion by:

g(h(i, j, t)) = αh(i, j, t)(1− h(i, j, t)) (1.20)

and the period boundary conditions is rendered by:

h(I+ 1, j, t) = h(1, j, t),h(i,J+ 1, t) = h(i,1, t) (1.21)

To convert this integer system into real-valued fitness landscape, scaling factors s1

and s2 ∈ R are employed for the vertical (i) and horizontal extension ( j) so that the
search space variable x = (x1,x2)

T is obtained by a rounding condition: (i, j)T =
(�s1x1	,�s2x2	)T . Finally, the spatio-temporal fitness landscape in 2-D is produced
by:

f (x, t) =

⎧
⎨
⎩

h(�s1x1	,�s2x2	, t) f or
1≤ �s1x1	 ≤ I
1≤ �s2x2	 ≤ J

0 otherwise

⎫
⎬
⎭ , t ≥ 0 (1.22)

1.3.3.2 Dynamic Travelling Salesman Problems (DTSPs)

TSP is another classical NP-complete combinatorial problem. DTSPs have a wide
range of real applications, especially in the optimization of dynamic networks, like
network planning and designing, load-balance routing, and traffic management.

In [35], a DTSP is defined as a TSP with a dynamic cost (distance) matrix as:

D(t) = {di j(t)}n∗n (1.23)

where di j(t) is the cost from city i to city j, n is the number of cities. DTSP can be
defined as f (x, t), the objective of DTSP is to find a minimum-cost route containing
all cities at time t. It can be described as:

f (x, t) = Min(
n

∑
i=1

dTi,Ti+1(t)) (1.24)

where xi ∈ 1,2, · · · ,n denotes the i-th city in the solution such that xn+1 = x1 and, if
i � j, xi � x j.

1.3.3.3 Dynamic Routing Problems in Communication Networks

In [16, 17, 81], Cheng et al. studied the dynamic shortest path routing and dynamic
multi-cast routing problems in mobile ad hoc networks (MANETs).
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The MANETs in [16, 17, 81] were modeled within a fixed geographical graph
G0, which is composed by a set of wireless nodes and a set of communication links
connecting two neighbor nodes that fall into the radio transmission range. To sim-
ulate the wireless network in dynamic environments in real world, two different
kind of models were created, which are the general dynamics model and the worst
dynamics model, respectively. In the general dynamics model, periodically or ran-
domly, some nodes are scheduled to sleep or some sleeping nodes are scheduled
to wake up due to energy conservation. While, in the worst model, each change is
produced manually by removal of a few links on the current best multi-cast tree.

The models can be described by a MANET G(V,E) and a multi-cast commu-
nication request from node s to a set of receivers R with a delay upper bound δ .
So, the dynamic delay-constrained multi-cast routing problem is to find a series of
trees {Ti|i ∈ {0,1, . . .}} over a series of graphs {Gi|i ∈ {0,1, . . .}}, which satisfy
the dylay constraint and have the least tree cost as follows:

max
r j∈R
{ ∑

l∈PT (s,r j)

dl} ≤ δ (1.25)

C(Ti) = min
T∈Gi
{ ∑

l∈T(VT ,ET )

cl} (1.26)

where Gi(Vi,Ei) is MANET topology after the i-th change, R = {r0,r1, · · · ,rm} is
a set of receivers of a multi-cast request, Ti(VTi ,ETi) is a multi-cast tree with nodes
VTi and links ETi , PT (s,r j) is a path from s to r j on the tree Ti, dl represents the
transmission delay on the communication link l, CTi is the cost of the tree Ti, and
δ (Pi) is the total transmission delay on the path Pi.

1.3.3.4 Dynamic Vehicle Routing Problems

In [42, 75], dynamic vehicle routing problems have been investigated by the EC
community. In [75], a freight transportation planning models was proposed. A stan-
dardized container with an extent of roughly 7.5m×2.6m×2.7m, termed by a swap
body b, was considered as the basic unit of freight. All possible transportation
means are referred as F , and all trucks tr ∈ F can carry v̂(tr) = 2 swap bodies
at once whereas the capacity limits of trains z ∈ F are usually between 30 and 60
(v̂(z) ∈ [30,60]). The schedules of trains, e.g., routes, departure times, and arrival
times, are fixed. Freight trucks can take any route on the map, but must perform
cyclic tours. The locations where a freight may be collected or delivered are re-
ferred to L. Each transportation order has a fixed time window [ťs, t̂s] in which it
must be collected from its source ls ∈ L and a destination location and time window
[ťd , t̂d ] in which it must be delivered to its destination ld ∈ L. It also has a volume v
that is the capacity of a swap body times by an integer. Therefore, a transportation
order o can be described by a tuple o = 〈ls, ld , [ťs, t̂s], [ťd , t̂d ],v〉. In the model, all or-
ders that need more than one (v > 1) swap body are split into multiple orders where
each requires one swap body.



16 S. Yang, T.T. Nguyen, and C. Li

Finally, the planning process becomes a set of R tours, each tour r is described by
a tuple r = 〈ls, ld , f , ť , t̂,b,o〉 where ls and ld are the start and destination locations,
ťandt̂ are the departure and arrival time, b = {b1,b2, . . .} is a set of swap bodies
which are carried by the vehicle f ∈ F and contains the goods assigned to the orders
o = {o1,o2, . . .}.

1.4 Performance Metrics

In addition to develop different dynamic benchmark generators and problems for
testing EAs for DOPs, another relevant issue is how to compare different algorithms.
Over the years, researchers have developed a number of different performance mea-
sures to evaluate the developed EA approaches for DOPs. The widely used perfor-
mance measures, which can be classified into two main groups: optimality-based
and behaviour-based, are reviewed as follows.

1.4.1 Optimality-Based Performance Measures

Optimality-based performance measures are measures that evaluate the ability of al-
gorithms in finding the solutions with the best objective/fitness values (fitness-based
measures) or finding the solutions that are closest to the global optimum (distance-
based measures). This type of measures is by far the most common in EDO. The
measures can be categorised into groups as follow:

1.4.1.1 Best-of-Generation

This measure is calculated as the averages for many runs of the best values at each
generation on the same problem. It is usually used in two ways: First, the best value
in each generation is plotted against the time axis to create a performance curve.
This measure has been used since the early research in [5, 18, 25, 27, 28]. This
measure is still one of the most commonly used measures in the literature. The
advantage of such performance curves is that they can show the whole picture of
how the tested algorithm has performed. However, because the performance curve
is not quantitative, it is difficult to compare the final outcome of different algorithms
and to see if the difference between two algorithms is statistically significant [47].

To improve the above disadvantage, a variation of the measure is proposed where
the best-of-generation values is averaged over all generations [86]. The measure is
described below:

FBOG =
1
G
×∑i=G

i=1

(
1
N
×∑ j=N

j=1 FBOGi j

)
(1.27)

where FBOG is the mean best-of-generation fitness, G is the number of generations,
N is the total number of runs, and FBOGi j is the best-of-generation fitness of gen-
eration i of run j of an algorithm on a particular problem. An identical measure
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to the FBOG, but with different name, the collective mean fitness, was proposed by
Morrison [47] at the same time.

Recently the idea of plotting performance curves was adapted in [3] to create
two measures: the area below a curve, which is calculated as the definite integral of
FBOG (or other measures such as FC or offline error/performance) over the optimi-
sation process; and the area between curves, which is the area spanned between the
performance curves of two algorithms.

The FBOG is one of the most commonly used measures. The advantage of this
measure, as mentioned above, is to enable algorithm designers to quantitatively
compare the performance of algorithms. The disadvantage of the measure and its
variants is that they are not normalised, hence can be biased by the difference of the
fitness landscapes at different periods of change. For example, if at a certain period
of change the overall fitness values of the landscape is particularly higher than those
at other periods of changes, or if an algorithm is able to get particular high fitness
value at a certain period of change, the final FBOG or FC might be biased toward the
high fitness values in this particular period and hence might not correctly reflect the
overall performance of the algorithm. Similarly, if FBOG is used averagely to eval-
uate the performance of algorithms in solving a group of problems, it is also biased
toward problems with larger fitness values.

1.4.1.2 Best-Error-Before-Change

Proposed in [67] and named Accuracy by the authors, this measure is calculated as
the average of the smallest errors (the difference between the optimum value and the
value of the best individual) achieved at the end of each change period (right before
the moment of change).

EB =
1
m ∑m

i=1 eB (i) (1.28)

where eB (i) is the best error just before the ith change happens; m is the number of
changes.

This measure is useful in situations where we are interested in the final solution
that the algorithm achieved before the change. The measure also makes it possible
to compare the final outcome of different algorithms. However, the measure also
has three important disadvantages. First, it does not say anything about how the
algorithms have done to achieve the current performance. As a result, the measure
is not suitable if what users are interested in is the overall performance or behaviours
of the algorithms. Second, similar to the best-of-generation measure, this measure
is also not normalised and hence can be biased toward periods where the errors are
relatively very large. Third, the measure requires that the global optimum value at
each change is known.

This measures is adapted as the basis for one of the complementary performance
measures in the CEC’09 competition on dynamic optimisation [36].
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1.4.1.3 Modified Offline Error and Offline Performance

Proposed in [11] and [12], the modified offline error is measured as the average over,
at every evaluations, the error of the best solution found since the last change of the
environment. This measure is always greater than or equal to zero and would be
zero for a perfect performance.

EMO =
1
n ∑n

j=1 eMO ( j) (1.29)

where n is the number of generations so far, and eMO ( j) is the best error since the
last change gained by the algorithm at the generation j.

A similar measure, the modified offline performance, is also proposed in the same
reference to evaluate algorithm performance in case the exact values of the global
optima are not known

PMO =
1
n ∑n

j=1 FMO ( j) (1.30)

where n is the number of generations so far, and FMO ( j) is the best performance
since the last change gained by the algorithm at the generation j.

With this type of measures, the faster the algorithm to find a good solution, the
higher the score. Similar to the FBOG, the offline error/performance are also useful
in evaluating the overall performance of an algorithm and to compare the final out-
comes of different algorithms. These measures however have some disadvantages.
First, they require that the time a change occurs is known. Second, similar to FBOG,
these measures are also not normalised and hence can be biased under certain cir-
cumstances.

In [51][Sect. 5.3.2], the offline error/performance was modified to measure the
performance of algorithms in dynamic constrained environments. Specifically, when
calculating Eq. (1.29) for dynamic constrained problems, the authors only consider
the best errors/fitness values of feasible solutions at each generation. If in any gen-
eration there is no feasible solution, the measure will take the worst possible value
that a feasible solution can have for that particular generation.

Recently based on the modified offline error a new measure named best known
peak error (BKPE) [6] was proposed to measure the convergence speed of the al-
gorithm in tracking optima. Different to the modified offline error, in BKPE at each
generation the error is calculated for each known peak, i.e. it is the difference be-
tween the best found solution in the peak and the top of the peak. Then immediately
before a change, the error of the best individual on a known peak is added to the
total error for the run.

1.4.1.4 Optimisation Accuracy

The optimisation accuracy measure (also known as the relative error) was initially
proposed in [24] and was adopted in [72] for the dynamic case:
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accuracy(t)F,EA =
F(best(t)EA)−Min(t)F

Max(t)F −Min(t)F

(1.31)

where best(t)EA is the best solution in the population at time t, Max(t)F ∈M is the best

fitness value of the search space and Min(t)F ∈ M is the worst fitness value of the
search space. The range of the accuracy measure ranges from 0 to 1, with a value of
1 and 0 represents the best and worst possible values, respectively.

The optimisation accuracy have the same advantages as the FBOG and EMO in
providing quantitative value and in evaluating the overall performance of algo-
rithms. The measure has an advantage over FBOG and EMO: it is independent to
fitness rescalings and hence become less biased to those change periods where the
difference in fitness becomes particularly large. The measure, however, has a dis-
advantage: it requires information about the absolute best and worst fitness values
in the search space, which might not always be available in practical situations. In
addition, as pointed by the author himself [72], the optimisation accuracy measure
is only well-defined if the complete search space is not a plateau at any generation
t, because otherwise the denominator of Eq. (1.31) at t would be equal to zero.

1.4.1.5 Normalised Scores

Another useful way to avoid the possible biases caused different fitness scales in
different change periods and/or different problems is to use the normalised score
[51], which evaluates the overall performance of an algorithm compared to other
peer algorithms in solving a group of problems in a normalised way. The idea is
that, given a group of n tested algorithms and m test instances (which could be m
different test problems or m change periods of a problem), for each instance j the
performance of each algorithm is normalised to the range (0,1) so that the best
algorithm in this instance j will have the score of 1 and the worst algorithm will
get the score of 0. The final overall score of each algorithm will be calculated as
the average of the normalised scores from each individual instance. According to
this calculation, if an algorithm is able to perform best in all tested instances, it
will get an overall score of 1. Similarly, if an algorithm performs worst in all tested
instances, it will get an overall score of 0.

Given a group of n tested algorithms and m test instances, a formal description of
the normalised score of the ith algorithm is given in Eq. (1.32):

Snorm (i) =
1
m ∑m

j=1

|emax ( j)− e(i, j)|
|emax ( j)− emin ( j)| ,∀i = 1 : n. (1.32)

where e(i, j) is the modified offline error of algorithm i in test instance j; and
emax ( j) and emin ( j) are the largest and smallest errors among all algorithms in solv-
ing instance j. In case the offline errors of the algorithms are not known (because
global optima are not know), we can replace them by the offline performance to get
exactly the same score. The normalised score Snorm can also be calculated based on
the best-of-generation values.
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The normalised score has two major advantages. First, it is unbiased. The fact
that an algorithm might get a very large or very small error on a particular problem
or on a particular change period will not bias the overall score as it does when we
use the traditional measures. Second, it does not need the knowledge of the global
optima or the absolute best and worst fitness values of a problem.

The normalised score, however, also has its own disadvantages: First, Snorm is
only feasible in case an algorithm is compared to other peer algorithms because the
scores are calculated based on the performance of peer algorithms. Second, Snorm

only shows the relative performance of an algorithm in comparison with other peer
algorithms in the corresponding experiment. It cannot be used solely as an abso-
lute score to compare algorithm performance from different experiments. For this
purpose, we need to gather the offline errors/offline performance/best-of-generation
of the algorithms first, then calculate the normalised score Snorm for these values.
For example, assume that we have calculated SA

norm for all algorithms in group A,
and SB

norm for all algorithms in group B in a separated experiment. If we need to
compare the performance of algorithms in group A with algorithms in group B,
we cannot compare the SA

norm against SB
norm directly. Instead, we need to gather the

EMO/PMO/FBOG of all algorithms from the two groups first, then based on these er-
rors we calculate the normalised scores SAB

norm of all algorithms in the two groups.

1.4.1.6 Distance-Based Measures

Although most of the optimality-based measures are fitness-based, some perfor-
mance measures do rely on the distances from the current solutions to the global
optimum to evaluate algorithm performance. In [74], a performance measure, which
is calculated as the minimum distance from the individuals in the population to the
global optimum, was proposed. In [63], another distance-based measure was in-
troduced. This measure is calculated as the distance from the mass centre of the
population to the global optimum.

Euclidean distance-based measures are also commonly used to evaluate the per-
formance of dynamic multi-objective (DMO) optimisation algorithms. In [91] the
performance of DMO algorithms are evaluated based on the generational distance
(GD) [69] between the approximated front (which contains the current best func-
tion values) and the Pareto optimal front at the moment just before a change occurs.
In [23] two measures, one is based on the minimum Euclidean distance between
members of the approximated front and the Pareto front, and the other is based on
the minimum Euclidean distance between members of the approximated set and the
Pareto set, were proposed. In [29], these two measures were extended using the idea
of modified offline-error. In [38], a modified version of the original GD named re-
versed GD was proposed for the dynamic case. In [26], an offline measure named
variable space generational distance was also proposed and was calculated based
on the distance between the approximated set and the Pareto set at each time step.

The advantage of distance-based measures is that they are independent to fitness
rescalings and hence are less affected by possible biases caused by the difference
in fitness of the landscapes in different change periods. The disadvantages of these
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measures are that they require knowledge about the exact position of the global op-
timum, which is not always available in practical situation. In addition, compared to
some other measures this type of measures might not always correctly approximate
the exact adaptation characteristics of the algorithm under evaluated, as shown in an
analysis in [72].

1.4.2 Behaviour-Based Performance Measures

Behaviour-based performance measures are those that evaluate whether EDO algo-
rithms exhibit certain behaviours that are believed to be useful in dynamic environ-
ments. Example of such behaviours are maintaining high diversity through out the
run; quickly recovering from a drop in performance when a change happens, and
limiting the fitness drops when changes happen. These measures are usually used
complementarily with optimality-based measures to study the behaviour of algo-
rithms. They can be categorised into the following groups.

1.4.2.1 Diversity

Diversity-based measures, as their name imply, are used to evaluate the ability of
algorithms in maintaining diversity to deal with environmental dynamics. There are
many diversity-based measures, e.g. entropy [43], Hamming distance [54, 56, 80],
moment-of-inertia [46], peak cover [11], and maximum spread [26] of which Ham-
ming distance-based measures are the most common.

Hamming distance-based measures for diversity have been widely used in static
evolutionary optimisation and one of the first EDO research to use this measure for
dynamic environments is the study of [54] where the all possible pair-wise Ham-
ming distance among all individuals of the population was used as the diversity
measure. In [56] the measure was modified so that only the Hamming distances
among the best individuals are taken into account.

A different and interesting diversity measure is the moment-of-inertia [46], which
is inspired from the fact that the moment of inertia of a physical, rotating object can
be used to measure how far the mass of the object is distributed from the centroid.
Morrison and De Jong [46] applied this idea to measuring the diversity of an EA
population. Given a population of P individuals in N-dimensional space, the coordi-
nates C = (c1, ...,cN) of the centroid of the population can be computed as follows:

ci =
∑P

j=1 xi j

P
(1.33)

where xi j is the ith coordinate of the jth individual and ci is the ith coordinate of the
centroid.

Given the computed centroid above, the moment-of-inertia of the population is
calculated as follows:

I =
N

∑
i=1

P

∑
j=1

(xi j− ci)
2 (1.34)
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In [46], the authors proved that the moment-of-inertia measure is equal to the pair-
wise Hamming distance measure. The moment-of-inertia, however, has an advan-
tage over the Hamming distance measure: it is more computationally efficient. The
complexity of computing the moment-of-inertia is only linear with the population
size P while the complexity of the pair-wise diversity computation is quadratic.

Another interesting, but less common diversity measure is the peak cover [11],
which counts the number of peaks covered by the algorithms over all peaks. This
measure requires full information about the peaks in the landscape and hence is only
suitable in academic environments.

Diversity measures are also used in dynamic multi-objective approaches. In [26]
the maximum spread commonly used in static MO was modified for the dynamic
case by calculating the average value of the maximum spread over all generations
when time goes by. In [38], the diversity-based hypervolume (HV) measure [69]
commonly used in static MO was extended to a dynamic measure HVR(t), which is
the ratio between the dynamic HV of the approximated front and the Pareto front.

In dynamic constrained environments, a diversity-related measure was also pro-
posed [51][Sect 5.3.2], which counts the percentage of solutions that are infeasible
among the solutions selected in each generation. The average score of this measure
(over all tested generations) is then compared with the percentage of infeasible ar-
eas over the total search area of the landscape. If the considered algorithm is able
to treat infeasible diversified individuals and feasible diversified individuals on an
equal basis (and hence to maintain diversity effectively), the two percentage values
should be equal.

1.4.2.2 Performance Drop after Changes

Some EDO studies also develop measures to evaluate the ability of algorithms in re-
stricting the drop of fitness when a change occurs. Of which, the most representative
measures are the measures stability [72], satisficability and robustness [56].

The measure stability is evaluated by calculating the difference in the fitness-
based accuracy measure (see Eq. (1.31)) of the considered algorithm between each
two time steps

stab(t)F,EA = max{0,accuracy(t−1)
F,EA − accuracy(t)F,EA} (1.35)

where accuracy(t)F,EA has already been defined in Eq. (1.31).
The robustness measure is similar to the measure stability in that it also deter-

mines how much the fitness of the next generation of the EA can drop, given the
current generation’s fitness. The measure is calculated as the ratio of the fitness val-
ues of the best solutions (or the average fitness of the population) between each two
consecutive generations.

The satisficability measure focuses on a slightly different aspect. It determines
how well the system is in maintaining a certain level of fitness and not dropping
below a pre-set threshold. The measure is calculated by counting how many times
the algorithm is able to exceed a given threshold in fitness value.
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1.4.2.3 Convergence Speed after Changes

Convergence speed after changes, or the ability of the algorithm to recover quickly
after a change, is also an aspect that attracts the attention of various studies in EDO.
In fact many of the optimality-based measures, such as the offline error/performance,
best-of-generation, relative-ratio-of-best-value discussed previously can be used to
indirectly evaluate the convergence speed. In addition, in [72], the author also pro-
posed a measure dedicated to evaluating the ability of an adaptive algorithm to react
quickly to changes. The measure is named reactivity and is defined as follows:

react(t)F,A,ε = min

{
t ′ − t|t < t ′ ≤ maxgen, t ′ ∈ N, accuracy

(t′)
F,A

accuracy(t)F,A

≥ (1− ε)

}

∪ {maxgen− t}
(1.36)

where maxgen is the number of generations. The reactivity measure has a disadvan-
tage: it is only meaningful if there is actually a drop in performance when a change
occurs. Otherwise, the value of the measure reactivity is always zero and nothing
can be said about how well the algorithm reacts to changes. In situations like the
dynamic constrained benchmark problems in [53] where the total fitness level of the
search space may increase after a change, the measure reactivity cannot be used.

To avoid the disadvantage of reactivity and to provide more insights on the con-
vergence behaviour of algorithms, recently a pair of measures, the recovery rate
(RR) and the absolute recovery rate (ARR) were proposed [51]. The RR measure is
used to analyse how quick it is for an algorithm to recover from an environmental
change and to start converging on a new solution before the next change occurs.

RR =
1
m ∑m

i=1

∑p(i)
j=1 [ fbest (i, j)− fbest (i,1)]

p(i) [ fbest (i, p(i))− fbest (i,1)]
(1.37)

where fbest (i, j) is the fitness value of the best solution since the last change found
by the tested algorithm until the jth generation of the change period i, m is the
number of changes and p(i) , i = 1 : m is the number of generations at each change
period i. The RR score would be equal to 1 in the best case where the algorithm is
able to recover and converge on a solution immediately after a change, and would
be equal to zero in case the algorithm is unable to recover from the drop at all.

The ARR measure is used to analyse how quick it is for an algorithm to start
converging on the global optimum before the next change occurs:

ARR =
1
m ∑m

i=1

∑p(i)
j=1 [ fbest (i, j)− fbest (i,1)]

p(i) [ f ∗ (i)− fbest (i,1)]
(1.38)

where fbest (i, j) , i, j,m, p(i) are the same as in Eq. (1.37) and f ∗ (i) is the global
optimal value of the landscape at the ith change. The ARR score would be equal
to 1 in the best case when the algorithm is able to recover and converge on the
global optimum immediately after a change, and would be equal to zero in case the
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algorithm is unable to recover from the change at all. Note that in order to use the
measure ARR we need to know the global optimum value at each change period.

Beside the advantage of working even in case there is no drop in performance,
the RR and ARR measures can also be used together in an RR-ARR diagram (see
[51][Fig. 5.2, page 118] ) to indicate if an algorithm is able to converge on the global
optimum; or if it has suffered from slow convergence or pre-mature convergence.

1.4.2.4 Fitness Degradation over Time

A recent experimental observation [2] showed that in DOPs the performance of an
algorithm might degrade over time due to the fact that the algorithm fails to follow
the optima after some changes have occurred. To measure this degradation, in [2] a
measure named β−degradation was proposed. The measure is calculated by firstly
using linear regression (over the accuracy values achieved at each change period)
to create a regression line, then evaluate the measure as the slope of the regression
line. A positive β−degradation value might indicate that the algorithm is able to
keep track with the moving optima. The measure however does not indicate whether
the degradation in performance is really caused by the long-term impact of DOP,
or simply by an increase in the difficulty level of the problem after a change. In
addition, a positive β−degradation value might also not always be an indication
that the algorithm is able to keep track with the moving optima. In problems where
the total fitness level increases, like in the dynamic constrained benchmark problems
in [53] mentioned above, a positive β−degradation can be achieved even when the
algorithm stays at the same place.

1.4.3 Discussion

There are some open questions about performance measures in EDO. First, it is
not clear if optimality is the only goal of real-world DOPs and if existing perfor-
mance measures really reflect what practitioners would expect from optimisation
algorithms. So far, only a few studies, e.g., [51, 56, 90], tried to justify the meaning
of the measures by suggesting some possible real-world examples where the mea-
sures are applicable. It would be interesting to find the answer for the question of
what are the main goals of real-world DOPs, how existing performance measures
reflect these goals and from that investigate if it is possible to make the performance
measures more specific (if needed) to suit practical requirements. In [51, chapter 3],
a first attempt has been be made to find out more about the main optimisation goals
of real-world DOPs and the link between existing performance measures and the
goals of real-world applications.

Second, as shown in the literature review in this section, many optimality-based
measures are not normalised and hence might be biased by fitness rescalings and
other disproportionate factors caused by the changing landscapes. The accuracy
measure [72] is among the few studies that tried to overcome this disadvantage
by normalising the fitness values at each change period using a window of the
maximum and minimum possible values. This approach, however, requires full
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knowledge of the maximum and minimum possible values at each change period,
which might not be available in practical situations. The normalised score proposed
in [51] offers an alternative way to compare the performance of algorithms in a
normalised way without using problem-specific knowledge.

Third, although the behaviour-based measures are usually used complementary
with the optimality-based measures, it is not clear if the earlier really correlate
with the latter. Recent studies [2] have shown that the behaviour-based measure
stability does not directly relate to the quality of solutions and the results of the
behaviour-based measure reactivity are “usually insignificant” [1, 2]. It would be in-
teresting to systematically study the relationship between behaviour-based measures
and optimality-based measures, and more importantly the relationship between the
quality of solutions and the assumptions of the community about the expected be-
haviours of dynamic optimization algorithms.

1.5 The Generalized Dynamic Benchmark Generator (GDBG)

The dynamic test problems described in Section 1.3 are based on different search
spaces. In order to develop a unified approach of constructing dynamic problems
across the binary, real, and combinatorial spaces, a GDBG system has recently been
proposed in [36, 37]. For the GDBG system, DOPs can be defined as follows:

F = f (x,φ , t) (1.39)

where F is the optimization problem, f is the cost function, x is a feasible solution
in the solution set X, t is the real-world time, and φ is the system control parameter,
which determines the solution distribution in the fitness landscape. The objective is
to find a global optimal solution x∗ such that f (x∗) ≤ f (x)∀x ∈ X (without loss of
generality, minimization problems are considered).

In the GDBG system, the dynamism results from a deviation of solution distribu-
tion from the current environment by tuning the system control parameters. It can
be described as follows:

φ(t + 1) = φ(t)⊕Δφ (1.40)

where Δφ is a deviation from the current system control parameters. Then, we can
get the new environment at the next moment t + 1 as follows:

f (x,φ , t + 1) = f (x,φ(t)⊕Δφ , t) (1.41)

The system control parameters decide the distribution of solutions in the solution
space. They may be different from one specific instance to another instance. The
GDBG system constructs dynamic environments by changing the values of these
system control parameters. There are seven change types of the system control pa-
rameters in the GDBG system, which are defined as follows:

• T1 (small step):
Δφ = α · ‖φ‖ · r ·φseverity (1.42)
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• T2 (large step):

Δφ = ‖φ‖ · (α · sign(r)+ (αmax−α) · r) ·φseverity (1.43)

• T3 (random):
Δφ = N(0,1) ·φseverity (1.44)

• T4 (chaotic):
φ(t + 1) = A ·φ(t) · (1−φ(t)/‖φ‖) (1.45)

• T5 (recurrent):

φ(t + 1) = φmin + ‖φ‖(sin(
2π
P

t +ϕ)+ 1)/2 (1.46)

• T6 (recurrent with noise):

φ(t + 1) = φmin + ‖φ‖(sin(
2π
P

t +ϕ)+ 1)/2+N(0,1) ·noiseseverity (1.47)

• T7 (dimensional change):

D(t + 1) = D(t)+ sign ·ΔD, (1.48)

where ‖φ‖ is the change range of φ , φseverity ∈ (0,1) is change severity of φ , φmin

is the minimum value of φ , noisyseverity ∈ (0,1) is noisy severity in recurrent with
noisy change. α ∈ (0,1) and αmax ∈ (0,1) are constant values, which are set to 0.02
and 0.1 in the GDBG system. A logistics function is used in the chaotic change type,
where A is a positive constant between (1.0,4.0), if φ is a vector, the initial values of
the items in φ should be different within ‖φ‖ in chaotic change. P is the period of re-
current change and recurrent change with noise, ϕ is the initial phase, r is a random
number in (−1,1), sign(x) returns 1 when x is greater than 0, returns -1 when x is
less than 0, otherwise, returns 0. N(0,1) denotes a normally distributed one dimen-
sional random number with mean zero and standard deviation one. For T7, ΔD is a
predefined constant, which the default value of is 1. If D(t) = Max D, sign = −1;
if D(t) = Min D, sign = 1. Max D and Min D are the maximum and minimum
number of dimensions. When the number of dimensions deceases by 1, just the last
dimension is removed from the fitness landscape, and the fitness landscape of the
left dimensions does not change. When the number of dimensions increases by 1, a
new dimension with a random value is added into the fitness landscape. Dimensional
change only happens following the non-dimensional change.

The GDBG system can be instantiated to construct specific DOP instances in the
binary space, real space, and combinatorial space, respectively. Both the DF1 [44]
and MPB [9] generators have a disadvantage: the challenge per change is unequal
for algorithms when the position of a peak bounces back from the search boundary.
From the GDBG system, we can construct two different real space DOPs using a rota-
tion method on the peak position to overcome that shortcoming. The two benchmark
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instances are: dynamic rotation peak benchmark generator (DRPBG) and dynamic
composition benchmark generator (DCBG), described as follows.

1.5.1 Dynamic Rotation Peak Benchmark Generator

The DRPBG uses a similar peak-composition structure to those of the MPB [9] and
DF1 [44] generators. Given a problem f (x,φ , t),φ = (H,W,X), where H, W, and X
denote the peak height, width, and position, respectively. The function of f (x,φ , t)
is defined as follows:

f (x,φ , t) =
m

max
i=1

(Hi(t)/(1+Wi(t) ·

√√√√ n

∑
j=1

(x j−Xi
j(t))

2

n
)) (1.49)

where m is the number of peaks and n is the number of dimensions.
H and W change as follows:

H(t + 1) = DynamicChanges(H(t)) (1.50)

W(t + 1) = DynamicChanges(W(t)) (1.51)

where in the height change, height severity should read φ hseverity according to
Eq. (1.49) and ‖φ h‖ is the height range. Accordingly, width severity should read
φ wseverity and ‖φ w‖ is the width change.

A rotation matrix Ri j(θ ) is obtained by rotating the projection of −→x in the plane
i− j by an angle θ from the i-th axis to the j-th axis. The peak position X is changed
by the following algorithm:

Step 1: Randomly select l dimensions (l is an even number) from the n dimen-
sions to compose a vector r = [r1,r2, ...,rl ].

Step 2: For each pair of dimension r[i] and dimension r[i+1], construct a rotation
matrix Rr[i],r[i+1](θ (t)), where:

θ (t) = DynamicChanges(θ (t− 1)). (1.52)

Step 3: A transformation matrix A(t) is obtained by:

A(t) = Rr[1],r[2](θ (t)) ·Rr[3],r[4](θ (t)) · · ·Rr[l−1],r[l](θ (t)) (1.53)

Step 4: Update the peak position by:

X(t + 1) = X(t) ·A(t) (1.54)

where the change severity of θ (φ θseverity) is set to l in Eq. (4), the range of θ
should read ‖φ θ‖, ‖φ θ‖ ∈ (−π ,π). For the value of l, if n is an even number,
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l = n; otherwise l = n−1. Note that, for recurrent and recurrent with noisy changes,
‖φ θ‖ is within (0,π/6).

1.5.2 Dynamic Composition Benchmark Generator

The dynamic composition functions, which are extended from the static composi-
tion functions devised by Suganthan et al. [39], can be described as follows:

F(x,φ , t) =
m

∑
i=1

(wi · ( f ′i ((x−Oi(t)+Oiold)/λi ·Mi)+Hi(t))) (1.55)

where the system control parameter φ = (O,M,H), F(x) is the composition func-
tion, fi(x) is i-th basic function used to construct the composition function, m is the
number of basic functions, Mi is orthogonal rotation matrix for each fi(x), Oi(t)
is the optimum of the changed fi(x) caused by rotating the landscape at the time t,
Oiold is the optimum of the original fi(x) without any change. Oiold is 0 for all the
basic functions. The weight value wi for each fi(x) is calculated as:

wi = exp(−sqrt(
∑n

k=1 (xk− ok
i + ok

iold)
2

2nσ2
i

)) (1.56)

wi =

{
wi if wi = max(wi)
wi · (1−max(wi)

10) if wi � max(wi)
(1.57)

wi = wi/
m

∑
i=1

wi (1.58)

where σi is the converge range factor of fi(x), whose default value is 1.0, λi is the
stretch factor for each fi(x), which is defined as:

λi = σi ·
Xmax−Xmin

xi
max− xi

min
(1.59)

where [Xmax,Xmin]
n is the search range of F(x) and [xi

max,x
i
min]

n is the search range
of fi(x).

In Eq. (1.55), f ′i (x) =C · fi(x)/| f i
max|, where C is a constant, which is set to 2000,

and f i
max is the estimated maximum value of fi(x), which is estimated as:

f i
max = fi(xmax ·Mi) (1.60)

In the DCBG, M is initialized using the above transformation matrix construction
algorithm and then remains unchanged. The dynamism of the system control pa-
rameter H and O are changed as the parameters H and X in dynamic rotation peak
benchmark generator. Note that, for both DRPBG and DCBG, chaotic change of
peaks locations directly operates on the value of each dimension instead of using
rotation matrix due to simulating chaotic systems in real applications.



1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 29

Table 1.2 Details of the basic benchmark functions

Name Function Range

Sphere f (x) = ∑n
i=1 x2

i [-100,100]
Rastrigin f (x) = ∑n

i=1 (x
2
i −10cos(2πxi)+10) [-5,5]

Weierstrass f (x) =
n
∑

i=1
(

kmax

∑
k=0

[ak cos(2πbk(xi +0.5))])

−n
kmax

∑
k=0

[ak cos(πbk)], a = 0.5,b = 3,kmax = 20 [-0.5,0.5]

Griewank f (x) = 1
4000 ∑n

i=1(xi)
2−∏n

i=1cos( xi√
i
)+1 [-100,100]

Ackley f (x) =−20exp(−0.2
√

1
n

n
∑

i=1
x2

i )−exp( 1
n

n
∑

i=1
cos(2πxi))+20+e [-32,32]

Table 1.3 Default settings for the GDBG used for CEC 2009 Competition on Dynamic
Optimization

Parameter Value

number of dimensions D fixed: 10; changing: [5-15]
search range x ∈ [−5,5]D

number of functions or peaks p p = 10
change frequency U 10,000×D fitness evaluations

number of changes K K = 60
period P P = 12

severity of noisy noisyseverity noisyseverity = 0.8
chaotic constant A A = 3.67

step severity α α = 0.04
maximum of α αmax = 0.1

height range h ∈ [10,100]
initial height initial height initial height = 50

severity of height change φ hseverity φ hseverity = 5.0
sampling frequency s f s f = 100

Five basic benchmark functions are used in the GDBG system. Table 1.2 shows
the details of the five functions.

1.5.3 Dynamic Test Problems for the CEC 2009 Competition

The GDBG was used to construct dynamic test problems for the CEC 2009 Compe-
tition on Dynamic Optimization [37], where the following seven different particular
functions are defined: the rotation peak function with 10 peaks (F1 with p = 10), the
rotation peak function with 50 peaks (F1 with p = 50), the composition of Sphere’s
functions (F2), the composition of Rastrigin’s functions (F3), the composition of
Griewank’s functions (F4), the composition of Ackley’s functions (F5), and the
hybrid composition function (F6). The detailed settings of each function can be
found in [37] and the general parameter settings are given in Table 1.3.
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Fig. 1.2 Overall performance measurement

There are 49 test cases in total constructed from the seven test problems in the
GDBG benchmark. For an algorithm on each test case, the offline error (eo f f ) and
its standard variance (STD) are recorded, which are defined as in [37] as follows:

eo f f =
1

R∗K

R

∑
r=1

K

∑
k=1

elast
r,k (1.61)

STD =

√
∑R

r=1 ∑K
k=1 (e

last
r,k − eo f f )2

R∗K− 1
(1.62)

where R and K are the total number of runs and the number of environmental
changes for each run, respectively, and elast

r,k = | f (xbest(r,k))− f (x∗(r,k))|, where
x∗(r,k) is the global optimum of the k-th environment and xbest(r,k) is the position
of the best particle of the last generation of the k-th environment during the r-th run.

The calculation of the overall performance of an algorithm on all 49 test cases
is as illustrated in Fig. 1.2, where F1-F6 denote the six functions defined in the
GDBG benchmark in [37], T1-T7 represent the seven change types, n10 means that
the number of dimensions is ten, and m10 and m50 denote that the number of peaks
is 10 and 50, respectively. Each test case i is assigned a weight wi and the sum of
weights of all the test cases is 1.0. The mark obtained by an algorithm on test case
i ∈ {1, . . . ,49} is calculated by:

marki =
wi

R∗K

R

∑
r=1

K

∑
k=1

(
rlast

rk /
(
1+

1
S

S

∑
s=1

(1− rs
rk)
))

(1.63)

where rlast
rk is the relative ratio of the best particle fitness of the last generation to

the global optimum of the k-th environment, rs
rk is the relative ratio of the best par-

ticle’s fitness to the global optimum at the s-th sampling during the k-th environment
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(initial population should be sampled), and S = U/s f is the total number of sam-
ples for each environment. The relative ratio rs

rk is defined by

rs
rk =

⎧⎨
⎩

f (xbest (r,k,s))
f (x∗(r,k)) , f = F1

f (x∗(r,k))
f (xbest (r,k,s))

, f ∈ {F2,F3,F4,F5,F6}
(1.64)

where xbest(r,k,s) is the position of the best particle up to the s-th sample in the k-th
environment during the r-th run.

The overall performance of an algorithm on all the test cases is then calculated
as follows:

per f ormance = 100×
49

∑
i=1

marki (1.65)

1.6 Conclusions and Discussions

Developing proper dynamic test and eveluation environments is an important task
in studying EC for DOPs. In this chapter, we present the concept of DOPs and re-
view existing dynamic test problems commonly used by researchers to investigate
their EC approaches in the literature. Some discussions regarding the major features
and classification of existing dynamic test environments are presented. Some typical
dynamic benchmark problems and real-world DOPs, which cover the binary, real,
and combinatorial spaces, are also described in detail. We also review the perfor-
mance measures that are widely used by researchers to evaluate and compare their
developed EC approaches for DOPs.

The review has identified the common assumptions of the community about the
characteristics of DOPs, which can be summarised as follows:

• Optimisation goals: Optimality is the primary goal or the only goal in a majority
of academic EDO studies, as evidently shown by the large number of optimality-
based measures reviewed in Section 1.4.1. Some studies do pay attention to de-
veloping other complementary measures (e.g. the behaviour-based measures in
Section 1.4.2), but these complementary measures mainly focus on analysing the
behaviours of the algorithms rather than checking if the algorithms satisfy users
requirements.

• The time-linkage property: Non time-linkage (the algorithm does not influence
the future dynamics) is the main focus of current academic EDO research, as ev-
idently shown by the fact that almost all commonly used general-purpose bench-
mark problems are non-time-linkage.

• Constraints: Unconstrained or bounded constrained problems are the main fo-
cus of academic research, especially in the continuous domain, as shown by the
majority of academic benchmark problems. There is a clear lack of studies on
constrained and dynamic constrained problems.

• Visibility and detectability of changes: Current EDO methods assume that
changes either are known or can be easily detected using a few detectors.
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• Factors that change: The major aspect that changes in academic problems is the
objective function.

• Reason for tracking: The main assumption is that the optima (local or global)
after change is close to the optima (local or global) before change, as shown in a
majority of benchmark problems (although in the Moving peaks [9] and DF1 [44]
benchmarks the new global optima are not close to the previous global optima,
they are still close to a previous local optima). Due to that, tracking is preferred
to restarting.

• Predictability: The predictability of changes has increasingly attracted the at-
tention of the community. However, the number of studies in this topic is still
relatively small compared to the unpredictable case

• Periodicity: The periodicity of changes is a given assumption in many main-
stream approaches as memory and prediction.

The review in this chapter showed that not many of the assumptions above are
backed up by evidence from real-world applications. This leads to the question of
whether these academic assumptions still hold in real-world DOPs and, if yes, then
whether these assumptions are representative in real-world applications and in what
type of applications do they hold. So far there is very little reserach aiming at an-
swering these questions. One exception is the recent study in [51, chap. 3] where a
large set of recent “real”2 real-world dynamic optimisation problems has been re-
viewed to investigate the real characteristics of real-world problems and how they
relate to the characteristics of current academic benchmark problems. The reserch
in [51] has pointed out that there are certain gaps between current EDO academic
research and real-world applications. In future research on EDO, further investiga-
tions should be made to close these gaps and accordingly to bring EDO research
closer to realistic scenarios.
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[68] Uyar, Ş., Uyar, H.T.: A critical look at dynamic multi-dimensional knapsack problem
generation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp.
762–767. Springer, Heidelberg (2009)

[69] Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analy-
ses, and new innovations. PhD thesis, Air Force Institute of Technolog, Wright Patter-
son AFB, OH, USA (1999)

[70] Wang, H., Wang, D.-W., Yang, S.: Triggered memory-based swarm optimization in dy-
namic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

[71] Weicker, K.: An analysis of dynamic severity and population size. In: Deb, K., Rudolph,
G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

[72] Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
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