
Studies in Computational Intelligence

1 3

490

Evolutionary Computation
for Dynamic Optimization
Problems

Shengxiang Yang
Xin Yao (Eds.)

Studies in Computational Intelligence

Volume 490

Series Editor

J. Kacprzyk, Warsaw, Poland

For further volumes:
http://www.springer.com/series/7092

Shengxiang Yang · Xin Yao
Editors

Evolutionary Computation
for Dynamic Optimization
Problems

ABC

Editors
Shengxiang Yang
School of Computer Science and Informatics
De Montfort University
The Gateway
Leicester LE1 9BH,
United Kingdom

Xin Yao
School of Computer Science
University of Birmingham
Edgbaston
Birmingham B15 2TT,
United Kingdom

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-642-38415-8 ISBN 978-3-642-38416-5 (eBook)
DOI 10.1007/978-3-642-38416-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013938196

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our families

Preface

Evolutionary computation (EC) represents a class of optimization methodologies
inspired by natural evolution. During the past several decades, evolutionary algo-
rithms (EAs) have been extensively studied by the computer science and artificial
intelligence communities. As a class of stochastic optimization techniques, EAs can
often outperform classical optimization techniques for difficult real-world problems.

Due to the properties of ease-to-use and robustness, EAs have been applied to a
wide variety of optimization problems. Most of these optimization problems tack-
led are stationary and deterministic. However, many real-world optimization prob-
lems are subjected to dynamic environments that are often impossible to avoid in
practice. For example, the objective function, the constraints, and/or environmental
conditions may change over time due to many reasons. For these dynamic opti-
mization problems (DOPs), the objective of an EA is no longer to simply locate the
global optimal solution, but to continuously track the optimum in dynamic environ-
ments. This poses serious challenges to classical optimization techniques as well as
conventional EAs. However, conventional EAs with proper enhancements are still
good choices for DOPs. This is because EAs are inspired by principles of natural
evolution, which takes place in the ever-changing dynamic environment in nature.

Addressing DOPs has been a topic since the early days of EC and has only re-
ceived increasing research interests over the last two decades due to its challenge
and its importance in practice. A number of events, e.g., edited books, journal spe-
cial issues, symposia, workshops and conference special sessions, have taken place,
which are relevant to the field of EC for DOPs. A variety of EC methods for DOPs
have been reported across a range of application backgrounds in recent years. This
motivated the edition of this book. This book aims to timely reflect the most recent
advances, including benchmark test problems, methodologies, theoretical analysis,
and relevant real-world applications, and explore future research directions in the
field.

We have a total of 17 chapters in this book, which cover a broad range of topics
relevant to EC in dynamic environments. The chapters in this book are organized
into the following four categories:

VIII Preface

• Part I: Fundamentals
• Part II: Algorithm Design
• Part III: Theoretical Analysis
• Part IV: Applications

Part I: Fundamentals

During the last two decades, researchers from the EC community have developed
a variety of EC approaches to address DOPs and evaluated them on many bench-
mark and real-world DOPs under different performance measures. Part I of the book
consists of four chapters, which review the developments in terms of test and evalu-
ation environments, methodologies, and challenges, and lay the foundations for the
research field of EC for DOPs.

Chapter 1, contributed by Yang et al., first introduces the concept of DOPs and
reviews existing dynamic test problems (including both benchmark and real-world
DOPs) that are commonly used in the literature with discussions regarding their
major features. Then, this chapter reviews and discusses the performance measures
that are widely used to evaluate and compare EC approaches for DOPs, followed
by suggestions for future improvement regarding dynamic test and evaluation envi-
ronments. Finally, this chapter describes in detail a generalized dynamic benchmark
generator (GDBG), which has been recently developed and used in the 2009 and
2012 IEEE Competitions on EC for DOPs.

Chapter 2, contributed by Nguyen et al., summarizes main EC methodologies
that have been developed over the years for solving DOPs with discussions on the
strength and weakness of each approach and their suitability for different types of
DOPs. Current gaps, challenging issues and future directions regarding EC method-
ologies for DOPs are also presented in this chapter.

In Chapter 3, Rohlfshagen and Yao discuss challenges and perspectives on EC
for DOPs regarding several key issues, including different problem definitions that
have been proposed, the modelling of DOPs in terms of benchmark suites, and the
way the performance of an algorithm is assessed. This chapter critically reviews
the work done in each of these aspects, points out many gaps and vagueness in the
current research, and identifies some promising research directions for the future of
the field.

As well as addressing single-objective DOPs, researchers from the EC commu-
nity have also investigated dynamic multi-objective optimization problems
(DMOPs) in recent years. In the last chapter of Part I (Chapter 4), Raquel and Yao
provide a survey of EC for DMOPs with regards to the definition and classification
of DMOPS, test problems, performance measures and optimization approaches, and
identify gaps, challenges and future directions in the domain of EC for DMOPs.

Preface IX

Part II: Algorithm Design

As mentioned before, many EC methodologies have been developed to address
DOPs during the last two decades. Part II of the book includes four chapters on
the design of different EC methods for solving DOPs with experimental studies.

Particle swarm optimization (PSO) has been widely applied to solve DOPs due
to its efficiency of locating optima. In Chapter 5, Li and Yang review PSO with
variant enhancements, e.g., diversity, memory, multi-population, adaptive, and hy-
brid schemes, for solving DOPs, and discuss the weaknesses and strengths of those
approaches. A set of typical PSO approaches to solving DOPs are chosen to ex-
perimentally compare their performance on the moving peaks problem. Based on
the experimental results and relevant analyses, suggestions are given regarding al-
gorithm design of PSO for DOPs in this chapter.

Memetic algorithms, as a class of hybrid EC methods, have also been studied
for solving DOPs in recent years in the literature. Chapter 6, contributed by Wang
and Yang, investigates the application of memetic algorithms to solving DOPs. A
memetic algorithm that integrates a new adaptive hill climbing method as the lo-
cal search technique is proposed for solving DOPs. In order to address the con-
vergence problem, an adaptive elitism-based immigrants scheme is introduced into
the proposed memetic algorithm. Experiments were conducted to investigate the
performance of the proposed memetic algorithm in comparison with some other
algorithms. The experimental results have showed the efficiency of the proposed
memetic algorithm for solving the tested DOPs.

Hybridizing different enhancement approaches (with proper choices) into EAs
has been shown beneficial and is becoming a trend in solving DOPs due to the
ability of combining different advantages of different enhancement approaches. In
Chapter 7, Alba et al. propose a new EA that is augmented by the memory, bi-
population, local search, and immigrants schemes to solve the dynamic knapsack
problem. The two populations inside the algorithm are used to search in different
directions in the search space: the first one takes charge of exploration while the
second is responsible for exploitation. According to the experimental results, the
proposed algorithm is very competitive in comparison with a few existing EAs taken
from the literature for solving the dynamic knapsack problems.

Dynamic constrained optimization problems (DCOPs) are a class of challeng-
ing DOPs, where constraints are integrated and may also change over time. DCOPs
have recently been investigated by the EC community and are in great need of much
more research. In Chapter 8, Nguyen and Yao investigate EC for continuous DCOPs.
They first present some studies on the characteristics that can make DCOPs diffi-
cult to solve by some existing EAs designed for general DOPs, and then introduce
a set of benchmark problems with these characteristics and experimentally test sev-
eral representative EAs on these problems. The experimental results confirm that
DCOPs do have special characteristics that can significantly affect the performance
of algorithms. Based on the experimental results and analyses, they suggest a list of
potential requirements for an algorithm to solve DCOPs effectively.

X Preface

Part III: Theoretical Analysis

In comparison with the developments of benchmark and test problems and method-
ologies on EC for DOPs, theoretical analysis of EC for DOPs has been significantly
lagged behind with very limited results. This is mainly because it is very challenging
and difficult to theoretically analyze EC methods, even for stationary optimization
problems, let along for much more challenging DOPs. Although challenging and
difficult, theoretical analysis is very important for the field of EC for DOPs since
the relative lack of theoretical analysis makes it difficult to fully justify the strengths
and weaknesses of EC methods for DOPs. In recent years, it is great to see that some
researchers have started to address this challenging issue – formally analyzing EC
methods for DOPs. Part III of the book includes four chapters and serves as a review
as well as an introduction to some recent research in this important area.

Chapter 9, contributed by Rohlfshagen et al., provides a review of theoretical
advances in the field of EC for DOPs. In particular, the authors argue the importance
of theoretical results, highlight the challenges faced by theoretical researchers, and
summarise the work that has been done so far in the area. They subsequently identify
relevant directions for future research regarding theoretical analysis of EC for DOPs.

In Chapter 10, Tinós and Yang apply the dynamical systems approach to describe
the conventional genetic algorithm as a discrete dynamical system for solving DOPs.
Based on this dynamical system model, they define some properties and classes of
DOPs and analyze some DOPs used by researchers in the field of EC for DOPs.
The analysis of DOPs via the dynamical systems approach allows explaining some
behaviors of algorithms observed in the results of the experiments conducted in
the chapter and, hence, is important to understand the experimental results and to
analyze the similarity of such problems to other DOPs.

In Chapter 11, Richter takes a different viewpoint of solving DOPs by EC meth-
ods, i.e., grounding it on the theoretical framework of dynamic fitness landscapes.
The author defines such dynamic fitness landscapes, discusses their properties, and
studies the analytical tools for measuring topological and dynamical landscape prop-
erties. Based on these landscape measures, an approach for drawing conclusion re-
garding characteristic features of a given optimization problem is obtained, which
may allow us to address the question of how difficult the problem is for an EC
approach, and what type of algorithm is most likely to solve it successfully. The
proposed methodology is further experimentally illustrated using the moving peaks
problem in this chapter.

Chapter 12, contributed by Comsa et al., is devoted to the field of analyzing EC
for DMOPs. The authors briefly review some recent work in this field and present
the analysis of a multi-objective genetic algorithm with an external archive and a
combination of Pareto dominance and aggregated fitness function on dynamic multi-
objective subset sum problems.

Preface XI

Part IV: Applications

In recent years, some researchers from the EC community have started to address
real-world DOPs since many real-world optimization problems are DOPs. Part IV
of the book consists of five chapters that are devoted to apply EC methods to solve
real-world DOPs.

Ant colony optimization (ACO) algorithms, as a class of EC methods, have
proved to be powerful methods to address DOPs, especially dynamic travelling
salesman problems (DTSPs). In Chapter 13, Mavrovouniotis and Yang investigate
ACO algorithms with different immigrants schemes, which help to maintain the di-
versity of the population via transferring knowledge from previous environments
to the pheromone trails, to solve DTSPs with traffic factors. The experimental re-
sults based on different DTSP test cases show that the proposed ACO algorithms
outperform other peer ACO algorithms and that different immigrants schemes are
beneficial on different environmental cases.

Nowadays, with the advancement in wireless communications, more and more
mobile ad hoc networks (MANETs) appear in different fields in the real world. For
MANETs, one of the most important characteristics is the topology dynamics, i.e.,
the network topology changes over time due to energy conservation or node mobil-
ity. This topology dynamics poses big challenges to solve routing problems, which
play an important role in MANETs. In Chapter 14, Cheng and Yang investigate the
application of several genetic algorithms with appropriate enhancements to solve
two typical dynamic routing problems, i.e., the dynamic shortest path routing prob-
lem and the dynamic multicast routing problem, in MANETs. The experimental
results show that these specifically designed genetic algorithms can quickly adapt to
the network topology changes and produce high quality solutions after each change.

The capacitated arc routing problem (CARP) is a classic combinatorial optimiza-
tion problem that has many applications in the real world. In Chapter 15, Mei et al.
investigate two EC methods, a repair-based tabu search and a memetic algorithm
with extended neighborhood search, to solve a new dynamic CARP, where stochas-
tic factors are included in the CARP. The objective of the dynamic CARP is to find
a robust solution that shows good performance in uncertain environments. For the
dynamic CARP, the authors define a robustness measure and design the correspond-
ing repair operator according to the real-world considerations, which is used in the
EC methods. Experiments are conducted based on some benchmark instances of the
dynamic CARP generated in this chapter, and the preliminary analysis for the fitness
landscape of the dynamic CARP is provided.

In Chapter 16, Peng et al. apply EAs to solve the online path planning (OPP) and
dynamic weapon target assignment (WTA) problems for the multiple unmanned
aerial combat vehicles anti-ground attack task. A dynamic multi-objective EA with
historical Pareto set linkage and prediction, denoted LP-DMOEA, is proposed to
solve the OPP problem. In the LP-DMOEA, a Bayesian network and fuzzy logic are
used to quantify the bias value to each optimization objective in order to intelligently
select an executive solution from the Pareto set. For the dynamic WTA problem,
an estimation of distribution algorithm with an environment identification based

XII Preface

memory scheme, denoted EI-MEDA, is proposed as the optimizer. The proposed
approaches are validated via simulation. The results show that LP-DMOEA and
EI-MEDA can efficiently solve the OPP and dynamic WTA problems respectively.

Finally, the last chapter in Part IV (Chapter 17), contributed by Ibrahimov et al.,
presents detailed insights into a project for transitioning a wine manufacturing com-
pany from a mostly spreadsheet driven business with isolated silo-operated planning
units into one that makes use of integrated and optimised decision making through
the use of modern heuristics. The authors present the modelling of business entities
and their silo operation and optimization, and pave the path for a further holistic
integration to obtain company-wide globally optimised decisions. They argue that
the use of computational intelligence methods, including EC methods, is essential
in dealing with dynamic and non-linear constraints and solving today’s real-world
problems as exemplified by the given wine supply chain.

In summary, this book fulfils the original aims well. The four parts of the book
represent a variety of work in the area of EC for DOPs. We hope that the publication
of this book will further promote this emerging and important research field.

Shengxiang Yang, De Montfort University, U.K.
Xin Yao, University of Birmingham, U.K.

March 2013

Acknowledgements

We would like to thank Dr. Janusz Kacprzyk for inviting us to edit this book in the
Springer book series “Studies in Computational Intelligence”. We acknowledge the
contributors for their fine work and cooperation during the book preparation and the
reviewers for carefully reviewing the chapters for the book. We are grateful to Mr
Frank Holzwarth, Mr Holger Schäpe, Dr. Thomas Ditzinger, and Dr. Dieter Merkle,
from Springer for their strong support and editorial assistance to the book.

We would also like to thank the Engineering and Physical Sciences Research
Council (EPSRC) of U.K. for funding two linked research projects: 1) “Evolution-
ary Algorithms for Dynamic Optimisation Problems: Design, Analysis and Appli-
cations” under Grant numbers EP/E060722/1, EP/E060722/2, and EP/E058884/1;
and 2) “Evolutionary Computation for Dynamic Optimisation in Network Environ-
ments” under Grant numbers EP/K001310/1 and EP/K001523/1. These two projects
contributed greatly to the successful edition of this book.

Contents

Part I: Fundamentals

1 Evolutionary Dynamic Optimization: Test and Evaluation
Environments . 3
Shengxiang Yang, Trung Thanh Nguyen, Changhe Li
1.1 Introduction . 3
1.2 DOPs: Concepts, Brief Review, and Classification 5

1.2.1 Concepts of DOPs . 5
1.2.2 Dynamic Test Problems: Brief Review 5
1.2.3 Major Characteristics and Classification of DOPs 6

1.3 Typical Dynamic Test Problems and Generators 8
1.3.1 Dynamic Test Problems in the Real Space 8
1.3.2 Dynamic Test Problems in the Binary Space 10
1.3.3 Dynamic Test Problems in the Combinatorial Space 13

1.4 Performance Metrics . 16
1.4.1 Optimality-Based Performance Measures 16
1.4.2 Behaviour-Based Performance Measures 21
1.4.3 Discussion . 24

1.5 The Generalized Dynamic Benchmark Generator (GDBG) 25
1.5.1 Dynamic Rotation Peak Benchmark Generator 27
1.5.2 Dynamic Composition Benchmark Generator 28
1.5.3 Dynamic Test Problems for the CEC 2009

Competition . 29
1.6 Conclusions and Discussions . 31
References . 32

2 Evolutionary Dynamic Optimization: Methodologies 39
Trung Thanh Nguyen, Shengxiang Yang, Juergen Branke, Xin Yao
2.1 Introduction . 39
2.2 Optimization Approaches . 40

XVI Contents

2.2.1 The Goals of EDO Algorithms . 40
2.2.2 Detecting Changes . 41
2.2.3 Introducing Diversity When Changes Occur 42
2.2.4 Maintaining Diversity during the Search 44
2.2.5 Memory Approaches . 46
2.2.6 Prediction Approaches . 48
2.2.7 Self-adaptive Approaches . 50
2.2.8 Multi-population Approaches . 51

2.3 Theoretical Development of EDO Methodologies 53
2.4 Summary and Future Research Directions . 55

2.4.1 Summary . 55
2.4.2 The Gaps between Academic Research and

Real-World Problems . 55
2.4.3 Future Research Directions . 56

References . 57

3 Evolutionary Dynamic Optimization: Challenges and
Perspectives . 65
Philipp Rohlfshagen, Xin Yao
3.1 Introduction . 65
3.2 Challenge I: Problem Definition . 66

3.2.1 Optimization in Uncertain Environments 66
3.2.2 Problem Definitions . 68
3.2.3 Characterisation of Dynamics . 69
3.2.4 Problem Properties, Assumptions and

Generalisations . 70
3.3 Challenge II: Benchmark Problems . 71

3.3.1 Benchmark Problems . 71
3.3.2 Combinatorial Fitness Landscapes 72
3.3.3 Real-World Dynamics . 73
3.3.4 Experimental Settings . 74

3.4 Challenge III: Notions of Optimality . 75
3.4.1 Performance Measures in Evolutionary Dynamic

Optimization . 75
3.4.2 Existence of a Model . 77
3.4.3 Notions of Optimality . 77

3.5 Implications, Perspectives and Conclusions 79
3.5.1 Summary . 79
3.5.2 Implications and Perspectives . 80
3.5.3 Conclusions . 80

References . 81

Contents XVII

4 Dynamic Multi-objective Optimization: A Survey of the
State-of-the-Art . 85
Carlo Raquel, Xin Yao
4.1 Introduction . 85
4.2 Comprehensive Definition of Dynamic Multi-objective

Optimization . 86
4.3 Dynamic Multi-objective Test Problems . 88

4.3.1 Dynamic Multi-objective Optimization Test
Problems . 90

4.4 Performance Measures . 90
4.4.1 Performance Measures for Problems with Known

Pareto Front . 92
4.4.2 Performance Measures for Problems with Unknown

Pareto Fronts . 95
4.5 Dynamic Multi-objective Optimization Approaches 97

4.5.1 Diversity Introduction . 97
4.5.2 Diversity Maintenance . 99
4.5.3 Multiple Populations . 100
4.5.4 Prediction-Based Approaches . 101
4.5.5 Memory-Based Approaches . 102

4.6 Summary and Future Works . 103
References . 104

Part II: Algorithm Design

5 A Comparative Study on Particle Swarm Optimization in
Dynamic Environments . 109
Changhe Li, Shengxiang Yang
5.1 Introduction . 109
5.2 PSO in Dynamic Environments . 110

5.2.1 Particle Swarm Optimization . 110
5.2.2 PSO in Dynamic Environments . 111

5.3 Discussions and Suggestions . 118
5.3.1 Issues with Current Schemes . 118
5.3.2 Future Algorithms for DOPs . 120

5.4 Experimental Study . 121
5.4.1 Experimental Setup . 122
5.4.2 Effect on Varying the Shit Length 124
5.4.3 Effect on Varying the Number of Peaks 126
5.4.4 Effect on Varying the Number of Dimensions 128
5.4.5 Comparison in Hard-to-Detect Environments 130

5.5 Conclusions . 132
References . 133

XVIII Contents

6 Memetic Algorithms for Dynamic Optimization Problems 137
Hongfeng Wang, Shengxiang Yang
6.1 Introduction . 137
6.2 Investigated Algorithms . 139

6.2.1 Framework of GA-Based Memetic Algorithms 139
6.2.2 Local Search . 140
6.2.3 Adaptive Learning Mechanism in Multiple LS

Operators . 143
6.2.4 Diversity Maintaining . 145
6.2.5 Balance between Local Search and Diversity

Maintaining . 147
6.3 Dynamic Test Environments . 148
6.4 Experimental Study . 150

6.4.1 Experimental Design . 150
6.4.2 Experimental Study on the Effect of LS Operators 152
6.4.3 Experimental Study on the Effect of Diversity

Maintaining Schemes . 155
6.4.4 Experimental Study on Comparing the Proposed

Algorithm with Several Peer GAs on DOPs 159
6.5 Conclusions and Future Work . 164
References . 168

7 BIPOP: A New Algorithm with Explicit Exploration/Exploitation
Control for Dynamic Optimization Problems 171
Enrique Alba, Hajer Ben-Romdhane, Saoussen Krichen,
Briseida Sarasola
7.1 Introduction . 172
7.2 Statement of the Problem . 173
7.3 The Proposed Approach: BIPOP-Algorithm 174

7.3.1 Working Principles of BIPOP . 175
7.3.2 Construction of BIPOP . 178
7.3.3 Functions Utilized in the Algorithms 179

7.4 Computational Experiments . 179
7.4.1 Experimental Framework . 179
7.4.2 Analysis . 180

7.5 Conclusions . 189
References . 189

8 Evolutionary Optimization on Continuous Dynamic Constrained
Problems – An Analysis . 193
Trung Thanh Nguyen, Xin Yao
8.1 Introduction . 193
8.2 Characteristics of Real-World Dynamic Constrained

Problems . 194
8.3 A Real-Valued Benchmark to Simulate DCOPs

Characteristics . 195

Contents XIX

8.3.1 Related Literature . 195
8.3.2 Generating Dynamic Constrained Benchmark

Problems . 196
8.3.3 A Dynamic Constrained Benchmark Set 196

8.4 Challenges to Solve DCOPs . 200
8.4.1 Analysing the Performance of Some Common

Dynamic Optimization Strategies in Solving DCOPs . . . 200
8.4.2 Chosen Algorithms and Experimental Settings 202
8.4.3 Experimental Results and Analyses 207
8.4.4 Suggestions to Improve Current Dynamic

Optimization Strategies in Solving DCOPs 213
8.5 Conclusion and Future Research . 214
References . 215

Part III: Theoretical Analysis

9 Theoretical Advances in Evolutionary Dynamic Optimization 221
Philipp Rohlfshagen, Per Kristian Lehre, Xin Yao
9.1 Introduction . 221
9.2 Evolutionary Dynamic Optimization . 222

9.2.1 Optimization Problems . 222
9.2.2 Optimization in Uncertain Environments 223
9.2.3 Evolutionary Algorithms . 224

9.3 Theoretical Foundation . 224
9.3.1 Introduction to Runtime Analysis 224
9.3.2 Runtime Analysis for Dynamic Functions 226
9.3.3 No Free Lunches in the Dynamic Domain 227
9.3.4 Benchmark Problems . 228

9.4 Runtime Analysis for Dynamic Functions . 231
9.4.1 First Hitting Times for Pattern Match 231
9.4.2 Analysis of Frequency and Magnitude of Change 232
9.4.3 Tracking the Optimum in a LATTICE 234

9.5 Conclusions . 235
9.5.1 Summary and Implications . 235
9.5.2 Future Work . 236

References . 237

10 Analyzing Evolutionary Algorithms for Dynamic Optimization
Problems Based on the Dynamical Systems Approach 241
Renato Tinós, Shengxiang Yang
10.1 Introduction . 241
10.2 Exact Model of the GA in Stationary Environments 242
10.3 Dynamic Optimization Problems . 245
10.4 Examples . 249

XX Contents

10.4.1 The XOR DOP Generator . 249
10.4.2 The Dynamic Environment Generator Based on

Problem Difficulty . 253
10.4.3 The Dynamic 0-1 Knapsack Problem 256

10.5 Conclusion and Future Work . 265
References . 265

11 Dynamic Fitness Landscape Analysis . 269
Hendrik Richter
11.1 Introduction . 269
11.2 Dynamic Fitness Landscapes: Definitions and Properties 271

11.2.1 Introductory Example: The Moving Peaks 271
11.2.2 Definition of Dynamic Fitness Landscapes 273
11.2.3 Dynamics and Fitness Landscapes 276

11.3 Analysis Tools for Dynamic Fitness Landscapes 279
11.3.1 Analysis of Topological Properties 280
11.3.2 Analysis of Dynamical Properties 283

11.4 Numerical Experiments . 286
11.5 Conclusion . 293
References . 294

12 Dynamics in the Multi-objective Subset Sum: Analysing the
Behavior of Population Based Algorithms . 299
Iulia Maria Comsa, Crina Grosan, Shengxiang Yang
12.1 Introduction . 299
12.2 Dynamic Optimization . 300
12.3 Multi-objective Aspect . 302
12.4 The Multi-objective Subset Sum Problem . 304
12.5 Analysis of the Dynamic Multi-objective Subset Sum Problem . . 304

12.5.1 Algorithm Description . 305
12.5.2 Numerical Results and Discussions 306

12.6 Conclusions . 309
References . 312

Part IV: Applications

13 Ant Colony Optimization Algorithms with Immigrants Schemes
for the Dynamic Travelling Salesman Problem 317
Michalis Mavrovouniotis, Shengxiang Yang
13.1 Introduction . 317
13.2 Dynamic Travelling Salesman Problem with Traffic Factor 319

13.2.1 DTSP with Random Traffic . 319
13.2.2 DTSP with Cyclic Traffic . 320

13.3 Ant Colony Optimization for the DTSP . 320

Contents XXI

13.3.1 Standard ACO . 321
13.3.2 Population-Based ACO (P-ACO) 322
13.3.3 React to Dynamic Changes . 322

13.4 Investigated ACO Algorithms with Immigrants Schemes 323
13.4.1 General Framework of ACO with Immigrants

Schemes . 323
13.4.2 ACO with Random Immigrants . 325
13.4.3 ACO with Elitism-Based Immigrants 325
13.4.4 ACO with Hybrid Immigrants . 326
13.4.5 ACO with Memory-Based Immigrants 326
13.4.6 ACO with Environmental-Information Immigrants 327

13.5 Experiments . 328
13.5.1 Experimental Setup . 328
13.5.2 Parameter Settings . 329
13.5.3 Experimental Results and Analysis of the

Investigated Algorithms . 329
13.5.4 Experimental Results and Analysis of the

Investigated Algorithms with Other Peer ACO 335
13.6 Conclusions and Future Work . 338
References . 339

14 Genetic Algorithms for Dynamic Routing Problems in Mobile Ad
Hoc Networks . 343
Hui Cheng, Shengxiang Yang
14.1 Introduction . 343
14.2 Related Work . 346

14.2.1 Shortest Path Routing . 346
14.2.2 Multicast Routing . 347

14.3 Network and Problem Models . 348
14.3.1 Mobile Ad Hoc Network Model . 348
14.3.2 Dynamic Shortest Path Routing Problem Model 348
14.3.3 Dynamic Multicast Routing Problem Model 349

14.4 Specialized GAs for the Routing Problems 350
14.4.1 Specialized GA for the Shortest Path Routing

Problem . 350
14.4.2 Specialized GA for the Multicast Routing Problem 352

14.5 Investigated GAs for the Dynamic Routing Problems 354
14.5.1 Traditional GAs . 354
14.5.2 GAs with Immigrants Schemes . 354
14.5.3 Improved GAs with Immigrants Schemes 355
14.5.4 GAs with Memory Schemes . 356
14.5.5 GAs with Memory and Immigrants Schemes 356

14.6 Experimental Study . 357
14.6.1 Dynamic Test Environment . 357
14.6.2 Experimental Study for the DSPRP 357

XXII Contents

14.6.3 Experimental Study for the DMRP 364
14.7 Conclusion . 372
References . 372

15 Evolutionary Computation for Dynamic Capacitated Arc
Routing Problem . 377
Yi Mei, Ke Tang, Xin Yao
15.1 Introduction . 378
15.2 Problem Definition . 380

15.2.1 Static Capacitated Arc Routing Problem 380
15.2.2 Dynamic Capacitated Arc Routing Problem 381

15.3 Evolutionary Computation for Dynamic Capacitated Arc
Routing Problem . 386
15.3.1 Addressing the Capacitated Arc Routing Problem

Issues . 386
15.3.2 Tackling the Dynamic Environment 392

15.4 Benchmark for Dynamic Capacitated Arc Routing Problem 393
15.5 Preliminary Investigation of the Fitness Landscape 396
15.6 Conclusion . 398
References . 399

16 Evolutionary Algorithms for the Multiple Unmanned Aerial
Combat Vehicles Anti-ground Attack Problem in Dynamic
Environments . 403
Xingguang Peng, Shengxiang Yang, Demin Xu, Xiaoguang Gao
16.1 Introduction . 404
16.2 Intelligent Online Path Planning (OPP) . 405

16.2.1 Formulation of the OPP Problem . 406
16.2.2 Problem-Solving Approach: LP-DMOEA 407
16.2.3 Decision-Making on the Selection of Executive

Solution . 410
16.3 Dynamic Target Assignment . 413

16.3.1 Formulation of the Dynamic WTA Problem 413
16.3.2 Problem-Solving Approach: Memory-Based

Estimation of Distribution Algorithm with
Environment Identification . 416

16.3.3 Chromosome Representation . 420
16.3.4 Weapon-UCAV Mapping . 420

16.4 Simulation Results and Analysis . 420
16.4.1 Simulation Scenario . 420
16.4.2 Results and Analysis on the Intelligent OPP Problem . . . 423
16.4.3 Results and Analysis on the Dynamic WTA Problem . . . 427

16.5 Conclusions and Future Work . 429
References . 430

Contents XXIII

17 Advanced Planning in Vertically Integrated Wine Supply
Chains . 433
Maksud Ibrahimov, Arvind Mohais, Maris Ozols, Sven Schellenberg,
Zbigniew Michalewicz
17.1 Introduction . 433
17.2 Literature Review . 435

17.2.1 Supply Chain Management . 436
17.2.2 Time-Varying Constraints . 438
17.2.3 Computational Intelligence . 439

17.3 Wine Supply Chain . 440
17.3.1 Maturity Models . 442
17.3.2 Vintage Intake Planning . 443
17.3.3 Crushing . 443
17.3.4 Tank Farm . 444
17.3.5 Bottling . 444

17.4 Vintage Intake Planning . 444
17.4.1 Description of the Problem. 444
17.4.2 Constraints . 446

17.5 Tank Farm . 447
17.5.1 Description of the Problem. 447
17.5.2 Functionality . 449
17.5.3 Results . 452

17.6 Bottling . 453
17.6.1 Time-Varying Challenges in Wine Bottling 455
17.6.2 Objective . 457
17.6.3 The Algorithm . 457

17.7 Conclusion . 460
References . 462

Author Index . 465

Subject Index . 467

List of Contributors

Enrique Alba
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
E.T.S.I. Informática, Campus de Teatinos, 29071 Málaga, Spain,
e-mail: eat@lcc.uma.es

Hajer Ben-Romdhane
LARODEC Laboratory, Institut Supérieur de Gestion, University of Tunis, 41 Rue
de la Liberté, Le Bardo, Tunisia,
e-mail: hajer1br@hotmail.fr

Juergen Branke
Warwick Business School, University of Warwick, Coventry CV4 7AL, U.K.,
e-mail: juergen.branke@wbs.ac.uk

Hui Cheng
Department of Computer Science and Technology, University of Bedfordshire,
Park Square, Luton LU1 3JU, U.K.,
e-mail: hui.cheng@beds.ac.uk

Iulia Maria Comsa
Department of Computer Science, Babes-Bolyai University, Kogalniceanu 1,
Cluj-Napoca 400084, Romania,
e-mail: iulia.m.comsa@gmail.com

Xiaoguang Gao
School of Electronics and Information, Northwestern Polytechnical University,
Xi’an 710129, China,
e-mail: xggao@nwpu.edu.cn

Crina Grosan
Department of Computer Science, Babes-Bolyai University, Kogalniceanu 1,
Cluj-Napoca 400084, Romania, and Department of Information Systems and
Computing, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.,
e-mail: crina.grosan@brunel.ac.uk

XXVI List of Contributors

Maksud Ibrahimov
School of Computer Science, University of Adelaide, South Australia 5005,
Australia,
e-mail: maksud.ibrahimov@adelaide.edu.au

Saoussen Krichen
FSJEG de Jendouba, University of Jendouba, Avenue de l’U.M.A , 8189 Jendouba,
Tunisia,
e-mail: saoussen.krichen@isg.rnu.tn

Per Kristian Lehre
School of Computer Science, University of Nottingham, Nottingham NG8 1BB,
U.K.,
e-mail: perkristian.lehre@nottingham.ac.uk

Changhe Li
School of Computer, China University of Geosciences, 388 Lumo Road, Wuhan
430074, China,
e-mail: changhe.lw@gmail.com

Michalis Mavrovouniotis
Centre for Computational Intelligence (CCI), School of Computer Science and
Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.,
e-mail: mmavrovouniotis@dmu.ac.uk

Yi Mei
School of Computer Science and Information Technology, RMIT University,
Melbourne VIC 3001, Australia,
e-mail: yi.mei@rmit.edu.au

Zbigniew Michalewicz
School of Computer Science, University of Adelaide, South Australia 5005,
Australia. Institute of Computer Science, Polish Academy of Sciences, ul. Ordona
21, 01-237 Warsaw, Poland, Polish-Japanese Institute of Information Technology,
ul. Koszykowa 86, 02-008 Warsaw, Poland,
e-mail: zbigniew.michalewicz@adelaide.edu.au

Arvind Mohais
SolveIT Software, Pty Ltd., 99 Frome Street, Adelaide, SA 5000 Australia,
e-mail: am@solveitsoftware.com

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations, Liverpool John
Moores University, Liverpool L3 3AF, U.K.,
e-mail: T.T.Nguyen@ljmu.ac.uk

Maris Ozols
SolveIT Software, Pty Ltd., 99 Frome Street, Adelaide, SA 5000 Australia,
e-mail: mo@solveitsoftware.com

List of Contributors XXVII

Xingguang Peng
School of Marine Engineering, Northwestern Polytechnical University, Xi’an
710072, China,
e-mail: pxg0510@gmail.com

Carlo Raquel
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.,
e-mail: crr954@cs.bham.ac.uk

Hendrik Richter
Department of Measurement Technology and Control Engineering, Faculty of
Electrical Engineering and Information Technology, HTWK Leipzig University of
Applied Sciences, D–04251 Leipzig, Germany,
e-mail: richter@eit.htwk-leipzig.de

Philipp Rohlfshagen
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham, Birmingham
B15 2TT, U.K.,
e-mail: philipp.r@gmail.com

Briseida Sarasola
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
E.T.S.I. Informática, Campus de Teatinos, 29071 Málaga, Spain,
e-mail: briseida@lcc.uma.es

Sven Schellenberg
SolveIT Software, Pty Ltd., Level 2, 198 Harbour Esplanade, Docklands, VIC
3008, Australia,
e-mail: ss@solveitsoftware.com

Ke Tang
Nature Inspired Computation and Applications Laboratory (NICAL), School of
Computer Science, University of Science and Technology of China, Hefei 230027,
China,
e-mail: ketang@ustc.edu.cn

Renato Tinós
Department of Computing and Mathematics, FFCLRP, University of São Paulo,
Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil,
e-mail: rtinos@ffclrp.usp.br

Hongfeng Wang
College of Information Science and Engineering, Northeastern University,
Shenyang 110004, China,
e-mail: hfwang@mail.neu.edu.cn

XXVIII List of Contributors

Demin Xu
School of Marine Engineering, Northwestern Polytechnical University, Xi’an
710072, China,
e-mail: xudm@nwpu.edu.cn

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and
Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.,
e-mail: syang@dmu.ac.uk

Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.,
e-mail: x.yao@cs.bham.ac.uk

Part I
Fundamentals

Chapter 1
Evolutionary Dynamic Optimization:
Test and Evaluation Environments

Shengxiang Yang, Trung Thanh Nguyen, and Changhe Li

Abstract. In the last two decades, dynamic optimization problems (DOPs) have
drawn a lot of research studies from the evolutionary computation (EC) community
due to the importance in real-world applications. A variety of evolutionary compu-
tation approaches have been developed to address DOPs. In parallel with developing
new approaches, many benchmark and real-world DOPs have been constructed and
used to compare them under different performance measures. In this chapter, we
describe the concept of DOPs and review existing dynamic test problems that are
commonly used by researchers to investigate their EC approaches in the literature.
Some discussions regarding the major features of existing dynamic test environ-
ments are presented. Typical dynamic benchmark problems and real-world DOPs
are described in detail. We also review the performance measures that are widely
used by researchers to evaluate and compare their developed EC approaches for
DOPs. Suggestions are also given for potential improvement regarding dynamic test
and evaluation environments for the EC community.

1.1 Introduction

In the last two decades, dynamic optimization problems (DOPs) have drawn a lot of
research studies from the evolutionary computation (EC) community. Especially, in

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, Liverpool L3 3AF, U.K.
e-mail: T.T.Nguyen@ljmu.ac.uk

Changhe Li
School of Computer Science, China University of Geosciences, 388 Lumo Road,
Wuhan 430074, China
e-mail: changhe.lw@gmail.com

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 3–37.
DOI: 10.1007/978-3-642-38416-5_1 c© Springer-Verlag Berlin Heidelberg 2013

4 S. Yang, T.T. Nguyen, and C. Li

recent years, there has been a growing interest in studying evolutionary algorithms
(EAs) for DOPs due to its importance in real-world applications since many real-
world optimization problems are DOPs. The research domain of EC for DOPs can
be termed as evolutionary dynamic optimization (EDO). DOPs require EAs to track
the trajectory of changing optima in the search space [11, 30]. This poses great
challenges to traditional EAs due to the convergence problem: once converged, they
can not track the changing optima well. Hence, researchers have developed several
approaches into EAs to enhance their performance for DOPs [30, 83], e.g., diversity
schemes [19, 27, 80], memory schemes [9, 70, 88], multi-population schemes [13,
55, 82], prediction and anticipation schemes [64], and adaptive schemes [45, 84, 85].

In order to study and compare the developed EA approaches for DOPs, there
are two important tasks. One important task is to build up proper dynamic test en-
vironments. Over the years, in parallel with developing EA approaches for DOPs,
researchers have also developed many dynamic benchmark problems, e.g., the mov-
ing peaks benchmark (MPB) problem by Branke [9], the XOR DOP generator by
Yang and Yao [77, 87, 88], the generalized dynamic benchmark generator (GDBG)
by Li and Yang [36], and modelled a number of real-world DOPs, e.g., dynamic
knapsack problems [34, 43, 49], dynamic travelling salesman problems [35, 40],
dynamic routing problems in communication networks [16, 17, 81], and dynamic
vehicle routing problems in logistics and transportation networks [42, 75]. The other
important task is to define proper performance measures to compare different EC ap-
proaches for DOPs. Over the years, researchers have developed a number of differ-
ent performance measures to evaluate the developed EA approaches for DOPs, e.g.,
the offline error measure [9], the accuracy measure [72], and the best-of-generation
measure [18], etc.

In this chapter, we present the concept of DOPs and review existing dynamic test
problems commonly used by researchers to investigate their EC approaches in the
literature. Some discussions regarding the major features and classification of ex-
isting dynamic test environments are presented. Some typical dynamic benchmark
problems and real-world DOPs, which cover the binary, real, and combinatorial
spaces, are also described in detail. We also review the performance measures that
are widely used by researchers to evaluate and compare their developed EC ap-
proaches for DOPs. Suggestions are also given for potential improvement regarding
dynamic test and evaluation environments for the EC community.

The rest of this chapter is organized as follows. The next section first introduces
the concept of DOPs, then historically reviews dynamic test problems in the litera-
ture, and finally describes the major features and classification of existing dynamic
test problems. Section 1.3 describes in detail some dynamic test problems and gen-
erators that are commonly used in the literature, covering the binary space, the real
space, and the combinatorial space. Section 1.4 reviews the typical performance
measures that are used by researchers to compare and justify their algorithms for
DOPs. Section 1.5 presents the GDBG system. Finally, Section 1.6 concludes this
chapter with some discussions on the future work on constructing dynamic test and
evaluation environments for the EC community.

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 5

1.2 DOPs: Concepts, Brief Review, and Classification

1.2.1 Concepts of DOPs

In the literature of EC in dynamic environments, researchers usually define opti-
mization problems that change over time as dynamic problems or time-dependent
problems. In this chapter, we define DOPs as a special class of dynamic problems
that are solved online by an optimization algorithm as time goes by.

It is notable that in many EDO studies, the terms “dynamic problems/time-
dependent problems” and “DOPs” are not distinguished or are used interchangeably.
In these studies, DOPs are either defined as a sequence of static problems linked up
by some dynamic rules [4, 61, 62, 71, 73] or as a problem that has time-dependent
parameters in its mathematical expression [5, 7, 20, 76], without explicitly men-
tioning whether the problems are solved online by an optimization algorithm or
not. However, it is necessary to distinguish a DOP from a general time-dependent
problem because, no matter how the problem changes, from the perspective of an
EA or an optimization algorithm in general, a time-dependent problem is only dif-
ferent from a static problem if it is solved in a dynamic way, i.e., the algorithm
needs to take into account changes during the optimization process as time goes by
[10, 30, 48]. Hence, only DOPs are relevant to EDO research.

1.2.2 Dynamic Test Problems: Brief Review

In order to compare the performance of the developed GA approaches in dynamic
environments, researchers have developed a number of dynamic problem genera-
tors. Generally speaking, DOPs are constructed via changing (the parameters of)
stationary base problem(s). And, ideally, through proper control, different dynamic
environments can be constructed from the stationary base problem(s) regarding the
characteristics of the environmental dynamics, such as the frequency, severity, pre-
dictability, and cyclicity of environmental changes. Below, we briefly review the dy-
namic test environments that have been used/developed by researchers to test their
EC approaches roughly in the time order.

In the early days, the dynamic test environments were quite simple: the envi-
ronment is just switched between two or more stationary problems or between two
or more states of one problem. For example, Cobb and Grefenstette [19] used a
dynamic environment that oscillates between two different fitness landscapes. The
dynamic 0-1 knapsack problem where the knapsack capacity oscillates between two
or more fixed values has been frequently used in the literature [34, 43, 49]. The dy-
namic bit-matching problem has also been used by researchers for analyzing the
performance of EC approaches in dynamic environments [65].

Later in 1999, several researchers have independently developed several dy-
namic environment generators by changing a base fitness landscape predefined in
the multi-dimensional real space [9, 28, 44, 67]. This base fitness landscape consists

6 S. Yang, T.T. Nguyen, and C. Li

of a number of peaks. Each peak can change its own morphology independently,
such as the height, slope, and location of the peak. The center of the peak with the
highest height is taken as the optimal solution of the landscape. Dynamic problems
can be created through changing the parameters of each peak.

More recently, the dynamic 0-1 knapsack problem has been extended to dynamic
multi-dimensional knapsack problems in several studies [14, 68]. In [78], Yang pro-
posed a dynamic environment generator based on the concept of problem difficulty
and unitation and trap functions. An XOR DOP generator, which can generate dy-
namic environments from any binary encoded stationary problem based on a bitwise
exclusive-or (XOR) operator, has been proposed in [77, 87, 88]. In [57, 58, 60],
Richter constructed spatio-temporal fitness landscapes based on coupled map lat-
tices (CML) [15], where such properties as modality, ruggedness, information con-
tent, epistasis, dynamic severity, and Lyapunov exponents can be defined. Bosman
[7] and Nguyen and Yao [52] investigated the online DOPs that have the time-
linkage property, i.e., the current solution found by an optimization algorithm affects
the future behaviour of the problem. In [53], Nguyen and Yao investigated dynamic
constrained optimization problems where constraints change over time. The authors
extended this study to provide a full set of dynamic constraine test problems in
[50, 51]. In order to develop a unified approach of constructing dynamic problems
across the binary space, the real space, and the combinatorial space, the GDBG
system was recently proposed in [36, 37], which can be instantiated to construct
dynamic test environments for all the three solution spaces.

In recent years, researchers have also studied a number of real-world DOPs. For
example, Li et al. [35] studied the dynamic travelling salesman problem where the
cities may change their locations. Mavrovouniotis and Yang investigated the dy-
namic travelling salesman problem where cities may join or leave the topology
over time [40] and the traffic may change over time [41]. In [16, 17, 81], Cheng et
al. studied the dynamic shortest path routing and dynamic multi-cast routing prob-
lems in mobile ad hoc networks (MANETs). In [42, 75], dynamic vehicle routing
problems in logistics and transportation networks have been investigated by the EC
community.

1.2.3 Major Characteristics and Classification of DOPs

As briefly reviewed above, many dynamic test problems have been used in the liter-
ature. These dynamic test problems have different characteristics and can be classi-
fied into different groups based on the following different criteria:

• Time-linkage: Whether the future behaviour of the problem depends on the cur-
rent solution found by an algorithm or not.

• Predictability: Whether the generated changes are predictable or not.
• Visibility: Whether the changes are visible to the optimisation algorithm and, if

so, whether changes can be detected by using just a few detectors.

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 7

• Constrained problem: Whether the problem is constrained or not.
• Number of objectives: Whether the problem is single objective or multiple ob-

jectives.
• Type of changes: Detailed explanation of how changes occur in the search space.
• Cyclicity: Whether the changes are cyclic/recurrent in the search space or not.
• Periodicity: Whether the changes are periodical or not in time.
• Factors that change: Changes may involve parameters of objective functions, do-

main of variables, number of variables, constraints, and other parameters.

The common characteristics of the general-purpose dynamic benchmark problems
used in the literature are summarized as follows.

• Most dynamic test problems are non time-linkage problems. There are only a
couple of general-purpose time-linkage test problems [7, 52] and some problem-
specific time-linkage test problems [7, 8].

• Most of the dynamic test generators/problems in the continuous domain are
unconstrained or domain constrained, except the two most recent studies
[53, 59]

• In the default settings of most general-purpose dynamic test problems, changes
are detectable by using just a few detectors. Exceptions are some problem in-
stances in [19, 67] where only one or some peaks move, and in [53, 59] where
the presences of the visibility mask or constraints make only some parts of the
landscapes change. Due to their highly configurable property some benchmark
generators can be configured to create scenarios where changes are more difficult
to detect.

• In most cases, the factors that change are the objective functions. Exceptions
are one instance in [36] where the dimension also changes and the problems in
[53, 59] where the constraints also change.

• Many generators/problems have unpredictable changes in their default settings.
Some of the generators/problems can be configured to allow predictable changes,
at least in the frequency and periodicity of changes.

• A majority of benchmark generators/problems have cyclic/recurrent changes.
• Most benchmark generators/problems assume periodical changes, i.e., changes

occur every fixed number of generations or fitness evaluations. An exception is
the work in [64], which also studies the cases where the changes occur in some
time pattern.

• Most generators/problems are single-objective. Only a few studies involve
dynamic multi-objective problems, e.g., [23, 31].

In the next section, we describe in details some generators/problems that are com-
monly used in the domain of EC for DOPs in the real space, binary space, and
combinatorial space, respectively.

8 S. Yang, T.T. Nguyen, and C. Li

1.3 Typical Dynamic Test Problems and Generators

1.3.1 Dynamic Test Problems in the Real Space

1.3.1.1 The DF1 Generator

The dynamic problem generator, called the DF1 generator, proposed by Morrison
and De Jong [44], is a kind of moving peaks benchmark generators. Within DF1,
the base landscape in the D-dimensional real space is defined as:

f (x) = max
i=1,...,p

⎡
⎣Hi−Ri×

√√√√ D

∑
j=1

(x j−Xi j)2

⎤
⎦ (1.1)

where x = (x1, · · · ,xD) is a point in the landscape, p specifies the number of peaks
(or cones), and each peak i is independently specified by its height Hi, its slope
Ri, and its center Xi = (Xi1, · · · ,XiD). These peaks are blended together by the max
function. The fitness at a point on the surface is assigned the maximum height of
all optima at that point; the optima with the greatest height at a point is said to be
visible at that point.

DF1 creates dynamic problems by changing the features, i.e., the location, height,
and slope, of each peak independently. The dynamics are controlled by the Logistics
function given by:

Δt = A ·Δt−1 · (1−Δt−1) (1.2)

where A is a constant value in the range [1.0, 4.0] and Δt is used as the step size
of changing a particular parameter (i.e., the location, height, or slope) of peaks at
iteration t after scaled by a scale factor s in order to reduce step sizes that may be
larger than intended for each step.

The logistics function allows a wide range of dynamic performance by a simple
change of the value of A, from simple constant step sizes, to step sizes that alternate
between two values, to step sizes that rotate through several values, to completely
chaotic step sizes. More details on the DF1 generator can be found in [44].

1.3.1.2 The Moving Peaks Benchmark (MPB) Problem

Branke [9] proposed the MPB problem, which has been widely used as dynamic
benchmark problems in the literature. Similar to the DF1 generator described above,
the MPB problem consists of a multi-dimensional fitness landscape in the real space
with a number of peaks, where each peak has three features, i.e., the height, width,
and central position. Within the MPB problem, the optima can be changed by chang-
ing the three features of each peak independently or in a correlative way.

For the D-dimensional landscape, the MPB problem is defined as follows:

F(x, t) = max
i=1,...,p

Hi(t)

1+Wi(t)∑D
j=1 (x j(t)−Xi j(t))2

, (1.3)

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 9

Table 1.1 Default settings for the MPB problem

Parameter Value

p (the number of peaks) 10
U (change frequency) 5000
height severity 7.0
width severity 1.0
peak shape cone
basic function no
s (the shift length) 1.0
D (the number of dimensions) 5
λ (the correlation coefficient) 0
S (the range of allele values) [0, 100]
H (the range of the height of peaks) [30.0, 70.0]
W (the range of the width of peaks) [1, 12]
I (the initial height for all peaks) 50.0

where Wi(t) and Hi(t) are the height and width of peak i at time t, respectively, and
Xi j(t) is the j-th element of the location of peak i at time t. The p independently
specified peaks are blended together by the max function. The position of each peak
is shifted in a random direction by a vector vi of a distance s (s is also called the
shift length, which determines the severity of the problem dynamics), and the move
of a single peak can be described as follows:

vi(t) =
s

|r+ vi(t− 1)| ((1−λ)r+λ vi(t− 1)), (1.4)

where the shift vector vi(t) is a linear combination of a random vector r and the
previous shift vector vi(t−1) and is normalized to the shift length s. The correlated
parameter λ is set to 0, which implies that the peak movements are uncorrelated.

More formally, a change of a single peak can be described as follows:

Hi(t) = Hi(t− 1)+ height severity∗σ (1.5)

Wi(t) =Wi(t− 1)+width severity∗σ (1.6)

Xi(t) = Xi(t)(t− 1)+ vi(t) (1.7)

where σ is a normal distributed random number with mean zero and variation of 1.
The default settings for the MPB benchmark typically used in the literature

can be found in Table 1.1, which are corresponding to Scenario 2 in [9]. In Ta-
ble 1.1, the change frequency (U) means that environment changes every U fitness
evaluations.

10 S. Yang, T.T. Nguyen, and C. Li

1.3.2 Dynamic Test Problems in the Binary Space

1.3.2.1 The Dynamic Bit-Matching Problem

The dynamic bit-matching problem has been used by researchers for the analysis of
the performance of EAs in dynamic environments [21, 65]. For example, Stanhope
and Daida [65] analyzed the behaviour of a simple (1+1) EA based on the dynamic
bit-matching problem. In the dynamic bit-matching problem, an algorithm needs
to find solutions that minimize the Hamming distance to an arbitrary target pattern
(i.e., the match string) that may change over time. Given a solution x ∈ {0,1}L (L
is the length of the binary encoding of a solution for the problem) and the target
pattern a ∈ {0,1}L at time t, the Hamming distance between them is calculated as:

dHamming(x(t),a(t)) =
i=L

∑
i=1
|xi(t)− ai(t)| (1.8)

The dynamics of the problem is controlled by two parameters, g and d, which con-
trol the number of generations between changes and the degree (Hamming distance)
by which the target pattern a is altered (for each change, d distinct and randomly
chosen bits in a are inverted), respectively. For example, setting (g,d) = (0,0) re-
sults in a stationary function whereas setting (g,d) = (10,5) means that every 10
generations, the target pattern a changes by 5 bits randomly.

1.3.2.2 Dynamic Knapsack Problems (DKP) and Dynamic
Multi-dimensional Knapsack Problems (DMKP)

The knapsack problem [32] is a classical NP-hard combinatorial optimization prob-
lem, where the solution space belongs to the binary space. Given a set of items, each
of which has a weight and a profit, and a knapsack with a fixed capacity, the prob-
lem aims to select items to fill up the knapsack to maximize the total profit while
satisfying the capacity constraint of the knapsack. Suppose there are n items, and w,
p, and C, denote the weights of items, the profits of items, and the capacity of the
knapsack, respectively. Then, the knapsack problem can be defined as follows:

Max f (x) =
n

∑
i=1

pi · xi (1.9)

sub ject to :
n

∑
i=1

wi · xi ≤C, (1.10)

where x ∈ {0,1}n is a solution, xi ∈ {0,1} indicates whether item i is included in
the subset or not, pi is the profit of item i, and wi is the weight of item i.

The above knapsack problem has been frequently used to test the performance
of EAs in stationary environments, and its dynamic version has also been used by
researchers to test the performance of EAs in dynamic environments [34, 43, 49]. In

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 11

the dynamic knapsack problem, the system dynamics can be constructed by chang-
ing the weights of items, the profits of items, and/or the knapsack capacity over time
according to some dynamics, respectively. So, the dynamic knapsack problem can
be described as follows:

Max f (x, t) =
n

∑
i=1

pi(t) · xi (1.11)

sub ject to :
n

∑
i=1

wi(t) · xi ≤C(t), (1.12)

where the weight and profit of each item may be bounded in the range of [lw,uw],
[lp,up], and the capacity of knapsack may be bounded in the range of [lc,uc].

Similarly, the static multi-dimensional knapsack problem (MKP) belongs to the
class of NP-complete problems, which has a wide range of real-world applications,
such as cargo loading, selecting projects to fund, budget management, etc. In the
MKP, we have a number of resources (knapsacks), each of which has a capacity,
and a set of items, each of which has a profit and consumes some amount of each
resource. The aim is to select items to maximize the total profit while satisfying the
capacity constraints for all resources.

The DMKP has recently been used to investigate the performance of EAs for
DOPs [14, 68]. As in the DKP, in the DMKP, the profit and resource consumption
for each item as well as the capacity of each resource may change over time. Let r, p,
c denote the resource consumptions of items, the profits of items, and the capacities
of resources, respectively. Then, the DMKP can be defined as follows:

Max f (x, t) =
n

∑
i=1

pi(t) · xi (1.13)

sub ject to :
n

∑
i=1

ri j(t) · xi ≤ ci(t), j = 1,2, · · · ,m (1.14)

where n is the number of items, m is the number of resources, xi and pi are as defined
above, ri j(t) denotes the resource consumption of item i for resource j at time t, and
ci(t) is the capacity constraint of resource i at time t. The system dynamics can be
constructed by changing the profits of items, resource consumptions of items, and
the capacity constraints of resources within certain upper and lower bounds over
time according to some dynamics, respectively.

1.3.2.3 The XOR DOP Generator

In [77, 87], an XOR DOP generator that can generate dynamic environments from
any binary encoded stationary problem using a bitwise exclusive-or (XOR) operator
has been proposed. Given a stationary problem f (x) (x ∈ {0,1}l where l is the
length of binary encoding), DOPs can be constructed from it as follows. Suppose

12 S. Yang, T.T. Nguyen, and C. Li

the environment is changed every τ generations. For each environmental period k,
an XORing mask M(k) is first incrementally generated as follows:

M(k) = M(k− 1)⊕T(k), (1.15)

where “⊕” is the XOR operator (i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 0 = 0) and T(k) is
an intermediate binary template randomly created with ρ × l (ρ ∈ [0.0,1.0]) ones
inside it for environmental period k. Initially, M(0) is set to a zero vector. Then, the
individuals at generation t are evaluated using the following formula:

f (x, t) = f (x⊕M(k)), (1.16)

where k = �t/τ� is the environmental period index.
With this XOR DOP generator, the environmental dynamics can be tuned by two

parameters: τ controls the speed of environmental changes while ρ controls the
severity of changes. The bigger the value of τ , the slower the environment changes.
The bigger the value of ρ , the more severe the environment changes.

The aforementioned XOR DOP generator in fact can construct random dynamic
environments because there is no guarantee that the environment will return to a pre-
vious one after certain changes. In order to test the performance of memory based
EAs, the XOR generator has been extended to construct cyclic dynamic environ-
ments in [79] and cyclic dynamic environments with noise further in [88].

With the XOR generator, cyclic dynamic environments can be constructed as fol-
lows. First, we can generate 2K XOR masks M(0), · · · ,M(2K−1) as the base states
in the search space randomly or in a certain patter. Then, the environment can cycle
among these base states in a fixed logical ring. Suppose the environment changes
every τ generations, then an individual at generation t is evaluated as follows:

f (x, t) = f (x⊕M(It)) = f (x⊕M(k%(2K))), (1.17)

where k = �t/τ� is the index of current environmental period and It = k%(2K) is
the index of the base state that the environment is in at generation t.

The 2K XOR masks can be generated in the following way. First, we construct
K binary templates T(0), · · · ,T(K− 1) that form a random partition of the search
space with each template containing ρ× l = l/K bits of ones1. Let M(0) = 0 denote
the initial state. Then, the other XOR masks are generated iteratively as follows:

M(i+ 1) = M(i)⊕T(i%K), i = 0, · · · ,2K− 1 (1.18)

So, the templates T(0), · · · ,T(K−1) are first used to create K masks till M(K) = 1
and then orderly reused to construct another K masks till M(2K) = M(0) = 0. The
Hamming distance between two neighbour XOR masks is the same and equals ρ× l.
Here, ρ ∈ [1/l,1.0] is the distance factor, determining the number of base states.

1 In the partition each template T(i) (i = 0, · · · ,K−1) has randomly but exclusively selected
ρ × l bits set to 1 while other bits set to 0. For example, T(0) = 0101 and T(1) = 1010
form a partition of the 4-bit search space.

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 13

M(0)=0000000000

State 2

M(2)=0111010011

State 3

M(3)=1101000101

. . .
M(1)=1001011010

State 1

State 4

(Initial State)
State 0

M(2)=1111111111

Base State 2

M(1)=1001011010

(Initial State)
Base State 0

Base State 1

M(0)=0000000000

M(3)=0110100101

Base State 3

M(2)=0111111111

Base State 2

M(1)=1001011011

(Initial State)
Base State 0

Base State 1

M(0)=0000000000

M(3)=0110110101

Base State 3

Bit 1 changed
by noise

Bit 10 changed
by noise

by noise
Bit 6 changed

(a) (b) (c)

Fig. 1.1 Illustration of three kinds of dynamic environments constructed from a 10-bit en-
coded function with ρ = 0.5: (a) random, (b) cyclic, and (c) cyclic with noise

From the above cyclic environment generator, we can further construct cyclic
dynamic environments with noise as below. Each time the environment is about to
move to a next base state M(i), M(i) is bitwise flipped with a small probability
pn. Figure 1.1 illustrates the construction of random, cyclic, and cyclic with noise
dynamic environments respectively from a 10-bit function with ρ = 0.5, where the
XORing mask is used to represent the environmental state.

This XOR DOP generator has two properties. One is that the distances among
the solutions in the search space remains unaltered after an environmental change.
The other is that the properties of the fitness landscape are not changed after an
environmental change, which facilitates the analysis of the behavior of algorithms.
Recently, the XOR DOP generator has been extended to construct dynamic prob-
lems in the real space [66]. In [66], two continuous dynamic problem generators
were proposed using the linear transformation of individuals. The first generator
does the linear transformation by changing the direction of some axes of the search
space while the second one uses successive rotations in different planes.

1.3.3 Dynamic Test Problems in the Combinatorial Space

1.3.3.1 The Spatio-Temporal Fitness Landscapes

In [57, 58], Richter constructed spatio-temporal fitness landscapes based on Cou-
pled Map Lattices (CML). The idea of using CML to construct dynamic fitness
landscapes is interesting since CML facilitate efficient computing of the fitness land-
scape and can reveal a broad variety of complex spatio-temporal behavior [15]. In
[59], Richter further analyzed and quantified the properties of spatio-temporal fit-
ness landscapes constructed from CML using topological and dynamical landscape
measures such as modality, ruggedness, information content, epistasis, dynamic
severity, and two types of dynamic complexity measures, Lyapunov exponents and
bred vector dimension.

In order to build spatio-temporal landscape based on CML, Richter defined a
lattice grid with I× J cells in 2-dimension. A height at time t is assigned to each

14 S. Yang, T.T. Nguyen, and C. Li

cell referred to h(i, j, t), where i and j denote the indices of cells. The change of the
height of a cell is as follows:

h(i, j, t) = (1− ε)g(h(i, j, t))+ ε
4 [g(h(i− 1, j, t))

+g(h(i+ 1, j, t))+ g(h(i, j− 1, t))+ g(h(i, j+ 1, t))]
(1.19)

where ε is the diffusion coupling strength and g(h(i, j, t)) is logistic mapping func-
tion by:

g(h(i, j, t)) = αh(i, j, t)(1− h(i, j, t)) (1.20)

and the period boundary conditions is rendered by:

h(I+ 1, j, t) = h(1, j, t),h(i,J+ 1, t) = h(i,1, t) (1.21)

To convert this integer system into real-valued fitness landscape, scaling factors s1

and s2 ∈ R are employed for the vertical (i) and horizontal extension (j) so that the
search space variable x = (x1,x2)

T is obtained by a rounding condition: (i, j)T =
(�s1x1	,�s2x2)T . Finally, the spatio-temporal fitness landscape in 2-D is produced
by:

f (x, t) =

⎧
⎨
⎩

h(�s1x1	,�s2x2	, t) f or
1≤ �s1x1	 ≤ I
1≤ �s2x2	 ≤ J

0 otherwise

⎫
⎬
⎭ , t ≥ 0 (1.22)

1.3.3.2 Dynamic Travelling Salesman Problems (DTSPs)

TSP is another classical NP-complete combinatorial problem. DTSPs have a wide
range of real applications, especially in the optimization of dynamic networks, like
network planning and designing, load-balance routing, and traffic management.

In [35], a DTSP is defined as a TSP with a dynamic cost (distance) matrix as:

D(t) = {di j(t)}n∗n (1.23)

where di j(t) is the cost from city i to city j, n is the number of cities. DTSP can be
defined as f (x, t), the objective of DTSP is to find a minimum-cost route containing
all cities at time t. It can be described as:

f (x, t) = Min(
n

∑
i=1

dTi,Ti+1(t)) (1.24)

where xi ∈ 1,2, · · · ,n denotes the i-th city in the solution such that xn+1 = x1 and, if
i � j, xi � x j.

1.3.3.3 Dynamic Routing Problems in Communication Networks

In [16, 17, 81], Cheng et al. studied the dynamic shortest path routing and dynamic
multi-cast routing problems in mobile ad hoc networks (MANETs).

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 15

The MANETs in [16, 17, 81] were modeled within a fixed geographical graph
G0, which is composed by a set of wireless nodes and a set of communication links
connecting two neighbor nodes that fall into the radio transmission range. To sim-
ulate the wireless network in dynamic environments in real world, two different
kind of models were created, which are the general dynamics model and the worst
dynamics model, respectively. In the general dynamics model, periodically or ran-
domly, some nodes are scheduled to sleep or some sleeping nodes are scheduled
to wake up due to energy conservation. While, in the worst model, each change is
produced manually by removal of a few links on the current best multi-cast tree.

The models can be described by a MANET G(V,E) and a multi-cast commu-
nication request from node s to a set of receivers R with a delay upper bound δ .
So, the dynamic delay-constrained multi-cast routing problem is to find a series of
trees {Ti|i ∈ {0,1, . . .}} over a series of graphs {Gi|i ∈ {0,1, . . .}}, which satisfy
the dylay constraint and have the least tree cost as follows:

max
r j∈R
{ ∑

l∈PT (s,r j)

dl} ≤ δ (1.25)

C(Ti) = min
T∈Gi
{ ∑

l∈T(VT ,ET)

cl} (1.26)

where Gi(Vi,Ei) is MANET topology after the i-th change, R = {r0,r1, · · · ,rm} is
a set of receivers of a multi-cast request, Ti(VTi ,ETi) is a multi-cast tree with nodes
VTi and links ETi , PT (s,r j) is a path from s to r j on the tree Ti, dl represents the
transmission delay on the communication link l, CTi is the cost of the tree Ti, and
δ (Pi) is the total transmission delay on the path Pi.

1.3.3.4 Dynamic Vehicle Routing Problems

In [42, 75], dynamic vehicle routing problems have been investigated by the EC
community. In [75], a freight transportation planning models was proposed. A stan-
dardized container with an extent of roughly 7.5m×2.6m×2.7m, termed by a swap
body b, was considered as the basic unit of freight. All possible transportation
means are referred as F , and all trucks tr ∈ F can carry v̂(tr) = 2 swap bodies
at once whereas the capacity limits of trains z ∈ F are usually between 30 and 60
(v̂(z) ∈ [30,60]). The schedules of trains, e.g., routes, departure times, and arrival
times, are fixed. Freight trucks can take any route on the map, but must perform
cyclic tours. The locations where a freight may be collected or delivered are re-
ferred to L. Each transportation order has a fixed time window [ťs, t̂s] in which it
must be collected from its source ls ∈ L and a destination location and time window
[ťd , t̂d] in which it must be delivered to its destination ld ∈ L. It also has a volume v
that is the capacity of a swap body times by an integer. Therefore, a transportation
order o can be described by a tuple o = 〈ls, ld , [ťs, t̂s], [ťd , t̂d],v〉. In the model, all or-
ders that need more than one (v > 1) swap body are split into multiple orders where
each requires one swap body.

16 S. Yang, T.T. Nguyen, and C. Li

Finally, the planning process becomes a set of R tours, each tour r is described by
a tuple r = 〈ls, ld , f , ť , t̂,b,o〉 where ls and ld are the start and destination locations,
ťandt̂ are the departure and arrival time, b = {b1,b2, . . .} is a set of swap bodies
which are carried by the vehicle f ∈ F and contains the goods assigned to the orders
o = {o1,o2, . . .}.

1.4 Performance Metrics

In addition to develop different dynamic benchmark generators and problems for
testing EAs for DOPs, another relevant issue is how to compare different algorithms.
Over the years, researchers have developed a number of different performance mea-
sures to evaluate the developed EA approaches for DOPs. The widely used perfor-
mance measures, which can be classified into two main groups: optimality-based
and behaviour-based, are reviewed as follows.

1.4.1 Optimality-Based Performance Measures

Optimality-based performance measures are measures that evaluate the ability of al-
gorithms in finding the solutions with the best objective/fitness values (fitness-based
measures) or finding the solutions that are closest to the global optimum (distance-
based measures). This type of measures is by far the most common in EDO. The
measures can be categorised into groups as follow:

1.4.1.1 Best-of-Generation

This measure is calculated as the averages for many runs of the best values at each
generation on the same problem. It is usually used in two ways: First, the best value
in each generation is plotted against the time axis to create a performance curve.
This measure has been used since the early research in [5, 18, 25, 27, 28]. This
measure is still one of the most commonly used measures in the literature. The
advantage of such performance curves is that they can show the whole picture of
how the tested algorithm has performed. However, because the performance curve
is not quantitative, it is difficult to compare the final outcome of different algorithms
and to see if the difference between two algorithms is statistically significant [47].

To improve the above disadvantage, a variation of the measure is proposed where
the best-of-generation values is averaged over all generations [86]. The measure is
described below:

FBOG =
1
G
×∑i=G

i=1

(
1
N
×∑ j=N

j=1 FBOGi j

)
(1.27)

where FBOG is the mean best-of-generation fitness, G is the number of generations,
N is the total number of runs, and FBOGi j is the best-of-generation fitness of gen-
eration i of run j of an algorithm on a particular problem. An identical measure

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 17

to the FBOG, but with different name, the collective mean fitness, was proposed by
Morrison [47] at the same time.

Recently the idea of plotting performance curves was adapted in [3] to create
two measures: the area below a curve, which is calculated as the definite integral of
FBOG (or other measures such as FC or offline error/performance) over the optimi-
sation process; and the area between curves, which is the area spanned between the
performance curves of two algorithms.

The FBOG is one of the most commonly used measures. The advantage of this
measure, as mentioned above, is to enable algorithm designers to quantitatively
compare the performance of algorithms. The disadvantage of the measure and its
variants is that they are not normalised, hence can be biased by the difference of the
fitness landscapes at different periods of change. For example, if at a certain period
of change the overall fitness values of the landscape is particularly higher than those
at other periods of changes, or if an algorithm is able to get particular high fitness
value at a certain period of change, the final FBOG or FC might be biased toward the
high fitness values in this particular period and hence might not correctly reflect the
overall performance of the algorithm. Similarly, if FBOG is used averagely to eval-
uate the performance of algorithms in solving a group of problems, it is also biased
toward problems with larger fitness values.

1.4.1.2 Best-Error-Before-Change

Proposed in [67] and named Accuracy by the authors, this measure is calculated as
the average of the smallest errors (the difference between the optimum value and the
value of the best individual) achieved at the end of each change period (right before
the moment of change).

EB =
1
m ∑m

i=1 eB (i) (1.28)

where eB (i) is the best error just before the ith change happens; m is the number of
changes.

This measure is useful in situations where we are interested in the final solution
that the algorithm achieved before the change. The measure also makes it possible
to compare the final outcome of different algorithms. However, the measure also
has three important disadvantages. First, it does not say anything about how the
algorithms have done to achieve the current performance. As a result, the measure
is not suitable if what users are interested in is the overall performance or behaviours
of the algorithms. Second, similar to the best-of-generation measure, this measure
is also not normalised and hence can be biased toward periods where the errors are
relatively very large. Third, the measure requires that the global optimum value at
each change is known.

This measures is adapted as the basis for one of the complementary performance
measures in the CEC’09 competition on dynamic optimisation [36].

18 S. Yang, T.T. Nguyen, and C. Li

1.4.1.3 Modified Offline Error and Offline Performance

Proposed in [11] and [12], the modified offline error is measured as the average over,
at every evaluations, the error of the best solution found since the last change of the
environment. This measure is always greater than or equal to zero and would be
zero for a perfect performance.

EMO =
1
n ∑n

j=1 eMO (j) (1.29)

where n is the number of generations so far, and eMO (j) is the best error since the
last change gained by the algorithm at the generation j.

A similar measure, the modified offline performance, is also proposed in the same
reference to evaluate algorithm performance in case the exact values of the global
optima are not known

PMO =
1
n ∑n

j=1 FMO (j) (1.30)

where n is the number of generations so far, and FMO (j) is the best performance
since the last change gained by the algorithm at the generation j.

With this type of measures, the faster the algorithm to find a good solution, the
higher the score. Similar to the FBOG, the offline error/performance are also useful
in evaluating the overall performance of an algorithm and to compare the final out-
comes of different algorithms. These measures however have some disadvantages.
First, they require that the time a change occurs is known. Second, similar to FBOG,
these measures are also not normalised and hence can be biased under certain cir-
cumstances.

In [51][Sect. 5.3.2], the offline error/performance was modified to measure the
performance of algorithms in dynamic constrained environments. Specifically, when
calculating Eq. (1.29) for dynamic constrained problems, the authors only consider
the best errors/fitness values of feasible solutions at each generation. If in any gen-
eration there is no feasible solution, the measure will take the worst possible value
that a feasible solution can have for that particular generation.

Recently based on the modified offline error a new measure named best known
peak error (BKPE) [6] was proposed to measure the convergence speed of the al-
gorithm in tracking optima. Different to the modified offline error, in BKPE at each
generation the error is calculated for each known peak, i.e. it is the difference be-
tween the best found solution in the peak and the top of the peak. Then immediately
before a change, the error of the best individual on a known peak is added to the
total error for the run.

1.4.1.4 Optimisation Accuracy

The optimisation accuracy measure (also known as the relative error) was initially
proposed in [24] and was adopted in [72] for the dynamic case:

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 19

accuracy(t)F,EA =
F(best(t)EA)−Min(t)F

Max(t)F −Min(t)F

(1.31)

where best(t)EA is the best solution in the population at time t, Max(t)F ∈M is the best

fitness value of the search space and Min(t)F ∈ M is the worst fitness value of the
search space. The range of the accuracy measure ranges from 0 to 1, with a value of
1 and 0 represents the best and worst possible values, respectively.

The optimisation accuracy have the same advantages as the FBOG and EMO in
providing quantitative value and in evaluating the overall performance of algo-
rithms. The measure has an advantage over FBOG and EMO: it is independent to
fitness rescalings and hence become less biased to those change periods where the
difference in fitness becomes particularly large. The measure, however, has a dis-
advantage: it requires information about the absolute best and worst fitness values
in the search space, which might not always be available in practical situations. In
addition, as pointed by the author himself [72], the optimisation accuracy measure
is only well-defined if the complete search space is not a plateau at any generation
t, because otherwise the denominator of Eq. (1.31) at t would be equal to zero.

1.4.1.5 Normalised Scores

Another useful way to avoid the possible biases caused different fitness scales in
different change periods and/or different problems is to use the normalised score
[51], which evaluates the overall performance of an algorithm compared to other
peer algorithms in solving a group of problems in a normalised way. The idea is
that, given a group of n tested algorithms and m test instances (which could be m
different test problems or m change periods of a problem), for each instance j the
performance of each algorithm is normalised to the range (0,1) so that the best
algorithm in this instance j will have the score of 1 and the worst algorithm will
get the score of 0. The final overall score of each algorithm will be calculated as
the average of the normalised scores from each individual instance. According to
this calculation, if an algorithm is able to perform best in all tested instances, it
will get an overall score of 1. Similarly, if an algorithm performs worst in all tested
instances, it will get an overall score of 0.

Given a group of n tested algorithms and m test instances, a formal description of
the normalised score of the ith algorithm is given in Eq. (1.32):

Snorm (i) =
1
m ∑m

j=1

|emax (j)− e(i, j)|
|emax (j)− emin (j)| ,∀i = 1 : n. (1.32)

where e(i, j) is the modified offline error of algorithm i in test instance j; and
emax (j) and emin (j) are the largest and smallest errors among all algorithms in solv-
ing instance j. In case the offline errors of the algorithms are not known (because
global optima are not know), we can replace them by the offline performance to get
exactly the same score. The normalised score Snorm can also be calculated based on
the best-of-generation values.

20 S. Yang, T.T. Nguyen, and C. Li

The normalised score has two major advantages. First, it is unbiased. The fact
that an algorithm might get a very large or very small error on a particular problem
or on a particular change period will not bias the overall score as it does when we
use the traditional measures. Second, it does not need the knowledge of the global
optima or the absolute best and worst fitness values of a problem.

The normalised score, however, also has its own disadvantages: First, Snorm is
only feasible in case an algorithm is compared to other peer algorithms because the
scores are calculated based on the performance of peer algorithms. Second, Snorm

only shows the relative performance of an algorithm in comparison with other peer
algorithms in the corresponding experiment. It cannot be used solely as an abso-
lute score to compare algorithm performance from different experiments. For this
purpose, we need to gather the offline errors/offline performance/best-of-generation
of the algorithms first, then calculate the normalised score Snorm for these values.
For example, assume that we have calculated SA

norm for all algorithms in group A,
and SB

norm for all algorithms in group B in a separated experiment. If we need to
compare the performance of algorithms in group A with algorithms in group B,
we cannot compare the SA

norm against SB
norm directly. Instead, we need to gather the

EMO/PMO/FBOG of all algorithms from the two groups first, then based on these er-
rors we calculate the normalised scores SAB

norm of all algorithms in the two groups.

1.4.1.6 Distance-Based Measures

Although most of the optimality-based measures are fitness-based, some perfor-
mance measures do rely on the distances from the current solutions to the global
optimum to evaluate algorithm performance. In [74], a performance measure, which
is calculated as the minimum distance from the individuals in the population to the
global optimum, was proposed. In [63], another distance-based measure was in-
troduced. This measure is calculated as the distance from the mass centre of the
population to the global optimum.

Euclidean distance-based measures are also commonly used to evaluate the per-
formance of dynamic multi-objective (DMO) optimisation algorithms. In [91] the
performance of DMO algorithms are evaluated based on the generational distance
(GD) [69] between the approximated front (which contains the current best func-
tion values) and the Pareto optimal front at the moment just before a change occurs.
In [23] two measures, one is based on the minimum Euclidean distance between
members of the approximated front and the Pareto front, and the other is based on
the minimum Euclidean distance between members of the approximated set and the
Pareto set, were proposed. In [29], these two measures were extended using the idea
of modified offline-error. In [38], a modified version of the original GD named re-
versed GD was proposed for the dynamic case. In [26], an offline measure named
variable space generational distance was also proposed and was calculated based
on the distance between the approximated set and the Pareto set at each time step.

The advantage of distance-based measures is that they are independent to fitness
rescalings and hence are less affected by possible biases caused by the difference
in fitness of the landscapes in different change periods. The disadvantages of these

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 21

measures are that they require knowledge about the exact position of the global op-
timum, which is not always available in practical situation. In addition, compared to
some other measures this type of measures might not always correctly approximate
the exact adaptation characteristics of the algorithm under evaluated, as shown in an
analysis in [72].

1.4.2 Behaviour-Based Performance Measures

Behaviour-based performance measures are those that evaluate whether EDO algo-
rithms exhibit certain behaviours that are believed to be useful in dynamic environ-
ments. Example of such behaviours are maintaining high diversity through out the
run; quickly recovering from a drop in performance when a change happens, and
limiting the fitness drops when changes happen. These measures are usually used
complementarily with optimality-based measures to study the behaviour of algo-
rithms. They can be categorised into the following groups.

1.4.2.1 Diversity

Diversity-based measures, as their name imply, are used to evaluate the ability of
algorithms in maintaining diversity to deal with environmental dynamics. There are
many diversity-based measures, e.g. entropy [43], Hamming distance [54, 56, 80],
moment-of-inertia [46], peak cover [11], and maximum spread [26] of which Ham-
ming distance-based measures are the most common.

Hamming distance-based measures for diversity have been widely used in static
evolutionary optimisation and one of the first EDO research to use this measure for
dynamic environments is the study of [54] where the all possible pair-wise Ham-
ming distance among all individuals of the population was used as the diversity
measure. In [56] the measure was modified so that only the Hamming distances
among the best individuals are taken into account.

A different and interesting diversity measure is the moment-of-inertia [46], which
is inspired from the fact that the moment of inertia of a physical, rotating object can
be used to measure how far the mass of the object is distributed from the centroid.
Morrison and De Jong [46] applied this idea to measuring the diversity of an EA
population. Given a population of P individuals in N-dimensional space, the coordi-
nates C = (c1, ...,cN) of the centroid of the population can be computed as follows:

ci =
∑P

j=1 xi j

P
(1.33)

where xi j is the ith coordinate of the jth individual and ci is the ith coordinate of the
centroid.

Given the computed centroid above, the moment-of-inertia of the population is
calculated as follows:

I =
N

∑
i=1

P

∑
j=1

(xi j− ci)
2 (1.34)

22 S. Yang, T.T. Nguyen, and C. Li

In [46], the authors proved that the moment-of-inertia measure is equal to the pair-
wise Hamming distance measure. The moment-of-inertia, however, has an advan-
tage over the Hamming distance measure: it is more computationally efficient. The
complexity of computing the moment-of-inertia is only linear with the population
size P while the complexity of the pair-wise diversity computation is quadratic.

Another interesting, but less common diversity measure is the peak cover [11],
which counts the number of peaks covered by the algorithms over all peaks. This
measure requires full information about the peaks in the landscape and hence is only
suitable in academic environments.

Diversity measures are also used in dynamic multi-objective approaches. In [26]
the maximum spread commonly used in static MO was modified for the dynamic
case by calculating the average value of the maximum spread over all generations
when time goes by. In [38], the diversity-based hypervolume (HV) measure [69]
commonly used in static MO was extended to a dynamic measure HVR(t), which is
the ratio between the dynamic HV of the approximated front and the Pareto front.

In dynamic constrained environments, a diversity-related measure was also pro-
posed [51][Sect 5.3.2], which counts the percentage of solutions that are infeasible
among the solutions selected in each generation. The average score of this measure
(over all tested generations) is then compared with the percentage of infeasible ar-
eas over the total search area of the landscape. If the considered algorithm is able
to treat infeasible diversified individuals and feasible diversified individuals on an
equal basis (and hence to maintain diversity effectively), the two percentage values
should be equal.

1.4.2.2 Performance Drop after Changes

Some EDO studies also develop measures to evaluate the ability of algorithms in re-
stricting the drop of fitness when a change occurs. Of which, the most representative
measures are the measures stability [72], satisficability and robustness [56].

The measure stability is evaluated by calculating the difference in the fitness-
based accuracy measure (see Eq. (1.31)) of the considered algorithm between each
two time steps

stab(t)F,EA = max{0,accuracy(t−1)
F,EA − accuracy(t)F,EA} (1.35)

where accuracy(t)F,EA has already been defined in Eq. (1.31).
The robustness measure is similar to the measure stability in that it also deter-

mines how much the fitness of the next generation of the EA can drop, given the
current generation’s fitness. The measure is calculated as the ratio of the fitness val-
ues of the best solutions (or the average fitness of the population) between each two
consecutive generations.

The satisficability measure focuses on a slightly different aspect. It determines
how well the system is in maintaining a certain level of fitness and not dropping
below a pre-set threshold. The measure is calculated by counting how many times
the algorithm is able to exceed a given threshold in fitness value.

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 23

1.4.2.3 Convergence Speed after Changes

Convergence speed after changes, or the ability of the algorithm to recover quickly
after a change, is also an aspect that attracts the attention of various studies in EDO.
In fact many of the optimality-based measures, such as the offline error/performance,
best-of-generation, relative-ratio-of-best-value discussed previously can be used to
indirectly evaluate the convergence speed. In addition, in [72], the author also pro-
posed a measure dedicated to evaluating the ability of an adaptive algorithm to react
quickly to changes. The measure is named reactivity and is defined as follows:

react(t)F,A,ε = min

{
t ′ − t|t < t ′ ≤ maxgen, t ′ ∈ N, accuracy

(t′)
F,A

accuracy(t)F,A

≥ (1− ε)

}

∪ {maxgen− t}
(1.36)

where maxgen is the number of generations. The reactivity measure has a disadvan-
tage: it is only meaningful if there is actually a drop in performance when a change
occurs. Otherwise, the value of the measure reactivity is always zero and nothing
can be said about how well the algorithm reacts to changes. In situations like the
dynamic constrained benchmark problems in [53] where the total fitness level of the
search space may increase after a change, the measure reactivity cannot be used.

To avoid the disadvantage of reactivity and to provide more insights on the con-
vergence behaviour of algorithms, recently a pair of measures, the recovery rate
(RR) and the absolute recovery rate (ARR) were proposed [51]. The RR measure is
used to analyse how quick it is for an algorithm to recover from an environmental
change and to start converging on a new solution before the next change occurs.

RR =
1
m ∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i,1)]

p(i) [fbest (i, p(i))− fbest (i,1)]
(1.37)

where fbest (i, j) is the fitness value of the best solution since the last change found
by the tested algorithm until the jth generation of the change period i, m is the
number of changes and p(i) , i = 1 : m is the number of generations at each change
period i. The RR score would be equal to 1 in the best case where the algorithm is
able to recover and converge on a solution immediately after a change, and would
be equal to zero in case the algorithm is unable to recover from the drop at all.

The ARR measure is used to analyse how quick it is for an algorithm to start
converging on the global optimum before the next change occurs:

ARR =
1
m ∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i,1)]

p(i) [f ∗ (i)− fbest (i,1)]
(1.38)

where fbest (i, j) , i, j,m, p(i) are the same as in Eq. (1.37) and f ∗ (i) is the global
optimal value of the landscape at the ith change. The ARR score would be equal
to 1 in the best case when the algorithm is able to recover and converge on the
global optimum immediately after a change, and would be equal to zero in case the

24 S. Yang, T.T. Nguyen, and C. Li

algorithm is unable to recover from the change at all. Note that in order to use the
measure ARR we need to know the global optimum value at each change period.

Beside the advantage of working even in case there is no drop in performance,
the RR and ARR measures can also be used together in an RR-ARR diagram (see
[51][Fig. 5.2, page 118]) to indicate if an algorithm is able to converge on the global
optimum; or if it has suffered from slow convergence or pre-mature convergence.

1.4.2.4 Fitness Degradation over Time

A recent experimental observation [2] showed that in DOPs the performance of an
algorithm might degrade over time due to the fact that the algorithm fails to follow
the optima after some changes have occurred. To measure this degradation, in [2] a
measure named β−degradation was proposed. The measure is calculated by firstly
using linear regression (over the accuracy values achieved at each change period)
to create a regression line, then evaluate the measure as the slope of the regression
line. A positive β−degradation value might indicate that the algorithm is able to
keep track with the moving optima. The measure however does not indicate whether
the degradation in performance is really caused by the long-term impact of DOP,
or simply by an increase in the difficulty level of the problem after a change. In
addition, a positive β−degradation value might also not always be an indication
that the algorithm is able to keep track with the moving optima. In problems where
the total fitness level increases, like in the dynamic constrained benchmark problems
in [53] mentioned above, a positive β−degradation can be achieved even when the
algorithm stays at the same place.

1.4.3 Discussion

There are some open questions about performance measures in EDO. First, it is
not clear if optimality is the only goal of real-world DOPs and if existing perfor-
mance measures really reflect what practitioners would expect from optimisation
algorithms. So far, only a few studies, e.g., [51, 56, 90], tried to justify the meaning
of the measures by suggesting some possible real-world examples where the mea-
sures are applicable. It would be interesting to find the answer for the question of
what are the main goals of real-world DOPs, how existing performance measures
reflect these goals and from that investigate if it is possible to make the performance
measures more specific (if needed) to suit practical requirements. In [51, chapter 3],
a first attempt has been be made to find out more about the main optimisation goals
of real-world DOPs and the link between existing performance measures and the
goals of real-world applications.

Second, as shown in the literature review in this section, many optimality-based
measures are not normalised and hence might be biased by fitness rescalings and
other disproportionate factors caused by the changing landscapes. The accuracy
measure [72] is among the few studies that tried to overcome this disadvantage
by normalising the fitness values at each change period using a window of the
maximum and minimum possible values. This approach, however, requires full

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 25

knowledge of the maximum and minimum possible values at each change period,
which might not be available in practical situations. The normalised score proposed
in [51] offers an alternative way to compare the performance of algorithms in a
normalised way without using problem-specific knowledge.

Third, although the behaviour-based measures are usually used complementary
with the optimality-based measures, it is not clear if the earlier really correlate
with the latter. Recent studies [2] have shown that the behaviour-based measure
stability does not directly relate to the quality of solutions and the results of the
behaviour-based measure reactivity are “usually insignificant” [1, 2]. It would be in-
teresting to systematically study the relationship between behaviour-based measures
and optimality-based measures, and more importantly the relationship between the
quality of solutions and the assumptions of the community about the expected be-
haviours of dynamic optimization algorithms.

1.5 The Generalized Dynamic Benchmark Generator (GDBG)

The dynamic test problems described in Section 1.3 are based on different search
spaces. In order to develop a unified approach of constructing dynamic problems
across the binary, real, and combinatorial spaces, a GDBG system has recently been
proposed in [36, 37]. For the GDBG system, DOPs can be defined as follows:

F = f (x,φ , t) (1.39)

where F is the optimization problem, f is the cost function, x is a feasible solution
in the solution set X, t is the real-world time, and φ is the system control parameter,
which determines the solution distribution in the fitness landscape. The objective is
to find a global optimal solution x∗ such that f (x∗) ≤ f (x)∀x ∈ X (without loss of
generality, minimization problems are considered).

In the GDBG system, the dynamism results from a deviation of solution distribu-
tion from the current environment by tuning the system control parameters. It can
be described as follows:

φ(t + 1) = φ(t)⊕Δφ (1.40)

where Δφ is a deviation from the current system control parameters. Then, we can
get the new environment at the next moment t + 1 as follows:

f (x,φ , t + 1) = f (x,φ(t)⊕Δφ , t) (1.41)

The system control parameters decide the distribution of solutions in the solution
space. They may be different from one specific instance to another instance. The
GDBG system constructs dynamic environments by changing the values of these
system control parameters. There are seven change types of the system control pa-
rameters in the GDBG system, which are defined as follows:

• T1 (small step):
Δφ = α · ‖φ‖ · r ·φseverity (1.42)

26 S. Yang, T.T. Nguyen, and C. Li

• T2 (large step):

Δφ = ‖φ‖ · (α · sign(r)+ (αmax−α) · r) ·φseverity (1.43)

• T3 (random):
Δφ = N(0,1) ·φseverity (1.44)

• T4 (chaotic):
φ(t + 1) = A ·φ(t) · (1−φ(t)/‖φ‖) (1.45)

• T5 (recurrent):

φ(t + 1) = φmin + ‖φ‖(sin(
2π
P

t +ϕ)+ 1)/2 (1.46)

• T6 (recurrent with noise):

φ(t + 1) = φmin + ‖φ‖(sin(
2π
P

t +ϕ)+ 1)/2+N(0,1) ·noiseseverity (1.47)

• T7 (dimensional change):

D(t + 1) = D(t)+ sign ·ΔD, (1.48)

where ‖φ‖ is the change range of φ , φseverity ∈ (0,1) is change severity of φ , φmin

is the minimum value of φ , noisyseverity ∈ (0,1) is noisy severity in recurrent with
noisy change. α ∈ (0,1) and αmax ∈ (0,1) are constant values, which are set to 0.02
and 0.1 in the GDBG system. A logistics function is used in the chaotic change type,
where A is a positive constant between (1.0,4.0), if φ is a vector, the initial values of
the items in φ should be different within ‖φ‖ in chaotic change. P is the period of re-
current change and recurrent change with noise, ϕ is the initial phase, r is a random
number in (−1,1), sign(x) returns 1 when x is greater than 0, returns -1 when x is
less than 0, otherwise, returns 0. N(0,1) denotes a normally distributed one dimen-
sional random number with mean zero and standard deviation one. For T7, ΔD is a
predefined constant, which the default value of is 1. If D(t) = Max D, sign = −1;
if D(t) = Min D, sign = 1. Max D and Min D are the maximum and minimum
number of dimensions. When the number of dimensions deceases by 1, just the last
dimension is removed from the fitness landscape, and the fitness landscape of the
left dimensions does not change. When the number of dimensions increases by 1, a
new dimension with a random value is added into the fitness landscape. Dimensional
change only happens following the non-dimensional change.

The GDBG system can be instantiated to construct specific DOP instances in the
binary space, real space, and combinatorial space, respectively. Both the DF1 [44]
and MPB [9] generators have a disadvantage: the challenge per change is unequal
for algorithms when the position of a peak bounces back from the search boundary.
From the GDBG system, we can construct two different real space DOPs using a rota-
tion method on the peak position to overcome that shortcoming. The two benchmark

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 27

instances are: dynamic rotation peak benchmark generator (DRPBG) and dynamic
composition benchmark generator (DCBG), described as follows.

1.5.1 Dynamic Rotation Peak Benchmark Generator

The DRPBG uses a similar peak-composition structure to those of the MPB [9] and
DF1 [44] generators. Given a problem f (x,φ , t),φ = (H,W,X), where H, W, and X
denote the peak height, width, and position, respectively. The function of f (x,φ , t)
is defined as follows:

f (x,φ , t) =
m

max
i=1

(Hi(t)/(1+Wi(t) ·

√√√√ n

∑
j=1

(x j−Xi
j(t))

2

n
)) (1.49)

where m is the number of peaks and n is the number of dimensions.
H and W change as follows:

H(t + 1) = DynamicChanges(H(t)) (1.50)

W(t + 1) = DynamicChanges(W(t)) (1.51)

where in the height change, height severity should read φ hseverity according to
Eq. (1.49) and ‖φ h‖ is the height range. Accordingly, width severity should read
φ wseverity and ‖φ w‖ is the width change.

A rotation matrix Ri j(θ) is obtained by rotating the projection of −→x in the plane
i− j by an angle θ from the i-th axis to the j-th axis. The peak position X is changed
by the following algorithm:

Step 1: Randomly select l dimensions (l is an even number) from the n dimen-
sions to compose a vector r = [r1,r2, ...,rl].

Step 2: For each pair of dimension r[i] and dimension r[i+1], construct a rotation
matrix Rr[i],r[i+1](θ (t)), where:

θ (t) = DynamicChanges(θ (t− 1)). (1.52)

Step 3: A transformation matrix A(t) is obtained by:

A(t) = Rr[1],r[2](θ (t)) ·Rr[3],r[4](θ (t)) · · ·Rr[l−1],r[l](θ (t)) (1.53)

Step 4: Update the peak position by:

X(t + 1) = X(t) ·A(t) (1.54)

where the change severity of θ (φ θseverity) is set to l in Eq. (4), the range of θ
should read ‖φ θ‖, ‖φ θ‖ ∈ (−π ,π). For the value of l, if n is an even number,

28 S. Yang, T.T. Nguyen, and C. Li

l = n; otherwise l = n−1. Note that, for recurrent and recurrent with noisy changes,
‖φ θ‖ is within (0,π/6).

1.5.2 Dynamic Composition Benchmark Generator

The dynamic composition functions, which are extended from the static composi-
tion functions devised by Suganthan et al. [39], can be described as follows:

F(x,φ , t) =
m

∑
i=1

(wi · (f ′i ((x−Oi(t)+Oiold)/λi ·Mi)+Hi(t))) (1.55)

where the system control parameter φ = (O,M,H), F(x) is the composition func-
tion, fi(x) is i-th basic function used to construct the composition function, m is the
number of basic functions, Mi is orthogonal rotation matrix for each fi(x), Oi(t)
is the optimum of the changed fi(x) caused by rotating the landscape at the time t,
Oiold is the optimum of the original fi(x) without any change. Oiold is 0 for all the
basic functions. The weight value wi for each fi(x) is calculated as:

wi = exp(−sqrt(
∑n

k=1 (xk− ok
i + ok

iold)
2

2nσ2
i

)) (1.56)

wi =

{
wi if wi = max(wi)
wi · (1−max(wi)

10) if wi � max(wi)
(1.57)

wi = wi/
m

∑
i=1

wi (1.58)

where σi is the converge range factor of fi(x), whose default value is 1.0, λi is the
stretch factor for each fi(x), which is defined as:

λi = σi ·
Xmax−Xmin

xi
max− xi

min
(1.59)

where [Xmax,Xmin]
n is the search range of F(x) and [xi

max,x
i
min]

n is the search range
of fi(x).

In Eq. (1.55), f ′i (x) =C · fi(x)/| f i
max|, where C is a constant, which is set to 2000,

and f i
max is the estimated maximum value of fi(x), which is estimated as:

f i
max = fi(xmax ·Mi) (1.60)

In the DCBG, M is initialized using the above transformation matrix construction
algorithm and then remains unchanged. The dynamism of the system control pa-
rameter H and O are changed as the parameters H and X in dynamic rotation peak
benchmark generator. Note that, for both DRPBG and DCBG, chaotic change of
peaks locations directly operates on the value of each dimension instead of using
rotation matrix due to simulating chaotic systems in real applications.

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 29

Table 1.2 Details of the basic benchmark functions

Name Function Range

Sphere f (x) = ∑n
i=1 x2

i [-100,100]
Rastrigin f (x) = ∑n

i=1 (x
2
i −10cos(2πxi)+10) [-5,5]

Weierstrass f (x) =
n
∑

i=1
(

kmax

∑
k=0

[ak cos(2πbk(xi +0.5))])

−n
kmax

∑
k=0

[ak cos(πbk)], a = 0.5,b = 3,kmax = 20 [-0.5,0.5]

Griewank f (x) = 1
4000 ∑n

i=1(xi)
2−∏n

i=1cos(xi√
i
)+1 [-100,100]

Ackley f (x) =−20exp(−0.2
√

1
n

n
∑

i=1
x2

i)−exp(1
n

n
∑

i=1
cos(2πxi))+20+e [-32,32]

Table 1.3 Default settings for the GDBG used for CEC 2009 Competition on Dynamic
Optimization

Parameter Value

number of dimensions D fixed: 10; changing: [5-15]
search range x ∈ [−5,5]D

number of functions or peaks p p = 10
change frequency U 10,000×D fitness evaluations

number of changes K K = 60
period P P = 12

severity of noisy noisyseverity noisyseverity = 0.8
chaotic constant A A = 3.67

step severity α α = 0.04
maximum of α αmax = 0.1

height range h ∈ [10,100]
initial height initial height initial height = 50

severity of height change φ hseverity φ hseverity = 5.0
sampling frequency s f s f = 100

Five basic benchmark functions are used in the GDBG system. Table 1.2 shows
the details of the five functions.

1.5.3 Dynamic Test Problems for the CEC 2009 Competition

The GDBG was used to construct dynamic test problems for the CEC 2009 Compe-
tition on Dynamic Optimization [37], where the following seven different particular
functions are defined: the rotation peak function with 10 peaks (F1 with p = 10), the
rotation peak function with 50 peaks (F1 with p = 50), the composition of Sphere’s
functions (F2), the composition of Rastrigin’s functions (F3), the composition of
Griewank’s functions (F4), the composition of Ackley’s functions (F5), and the
hybrid composition function (F6). The detailed settings of each function can be
found in [37] and the general parameter settings are given in Table 1.3.

30 S. Yang, T.T. Nguyen, and C. Li

n
10

(100)
k+1k

2

5

4

3

2

n
10

(100)

T
7
(10)T

1
(15)- - -T

6
(15)

F
2
(16)- - - F

6
(16)F

1
(20)

Performance(100)

m
10

(50) m
50

(50)

m
10

(50) m
50

(50)

T
7
(10)T

1
(15)- - -T

6
(15)

1

1

Fig. 1.2 Overall performance measurement

There are 49 test cases in total constructed from the seven test problems in the
GDBG benchmark. For an algorithm on each test case, the offline error (eo f f) and
its standard variance (STD) are recorded, which are defined as in [37] as follows:

eo f f =
1

R∗K

R

∑
r=1

K

∑
k=1

elast
r,k (1.61)

STD =

√
∑R

r=1 ∑K
k=1 (e

last
r,k − eo f f)2

R∗K− 1
(1.62)

where R and K are the total number of runs and the number of environmental
changes for each run, respectively, and elast

r,k = | f (xbest(r,k))− f (x∗(r,k))|, where
x∗(r,k) is the global optimum of the k-th environment and xbest(r,k) is the position
of the best particle of the last generation of the k-th environment during the r-th run.

The calculation of the overall performance of an algorithm on all 49 test cases
is as illustrated in Fig. 1.2, where F1-F6 denote the six functions defined in the
GDBG benchmark in [37], T1-T7 represent the seven change types, n10 means that
the number of dimensions is ten, and m10 and m50 denote that the number of peaks
is 10 and 50, respectively. Each test case i is assigned a weight wi and the sum of
weights of all the test cases is 1.0. The mark obtained by an algorithm on test case
i ∈ {1, . . . ,49} is calculated by:

marki =
wi

R∗K

R

∑
r=1

K

∑
k=1

(
rlast

rk /
(
1+

1
S

S

∑
s=1

(1− rs
rk)
))

(1.63)

where rlast
rk is the relative ratio of the best particle fitness of the last generation to

the global optimum of the k-th environment, rs
rk is the relative ratio of the best par-

ticle’s fitness to the global optimum at the s-th sampling during the k-th environment

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 31

(initial population should be sampled), and S = U/s f is the total number of sam-
ples for each environment. The relative ratio rs

rk is defined by

rs
rk =

⎧⎨
⎩

f (xbest (r,k,s))
f (x∗(r,k)) , f = F1

f (x∗(r,k))
f (xbest (r,k,s))

, f ∈ {F2,F3,F4,F5,F6}
(1.64)

where xbest(r,k,s) is the position of the best particle up to the s-th sample in the k-th
environment during the r-th run.

The overall performance of an algorithm on all the test cases is then calculated
as follows:

per f ormance = 100×
49

∑
i=1

marki (1.65)

1.6 Conclusions and Discussions

Developing proper dynamic test and eveluation environments is an important task
in studying EC for DOPs. In this chapter, we present the concept of DOPs and re-
view existing dynamic test problems commonly used by researchers to investigate
their EC approaches in the literature. Some discussions regarding the major features
and classification of existing dynamic test environments are presented. Some typical
dynamic benchmark problems and real-world DOPs, which cover the binary, real,
and combinatorial spaces, are also described in detail. We also review the perfor-
mance measures that are widely used by researchers to evaluate and compare their
developed EC approaches for DOPs.

The review has identified the common assumptions of the community about the
characteristics of DOPs, which can be summarised as follows:

• Optimisation goals: Optimality is the primary goal or the only goal in a majority
of academic EDO studies, as evidently shown by the large number of optimality-
based measures reviewed in Section 1.4.1. Some studies do pay attention to de-
veloping other complementary measures (e.g. the behaviour-based measures in
Section 1.4.2), but these complementary measures mainly focus on analysing the
behaviours of the algorithms rather than checking if the algorithms satisfy users
requirements.

• The time-linkage property: Non time-linkage (the algorithm does not influence
the future dynamics) is the main focus of current academic EDO research, as ev-
idently shown by the fact that almost all commonly used general-purpose bench-
mark problems are non-time-linkage.

• Constraints: Unconstrained or bounded constrained problems are the main fo-
cus of academic research, especially in the continuous domain, as shown by the
majority of academic benchmark problems. There is a clear lack of studies on
constrained and dynamic constrained problems.

• Visibility and detectability of changes: Current EDO methods assume that
changes either are known or can be easily detected using a few detectors.

32 S. Yang, T.T. Nguyen, and C. Li

• Factors that change: The major aspect that changes in academic problems is the
objective function.

• Reason for tracking: The main assumption is that the optima (local or global)
after change is close to the optima (local or global) before change, as shown in a
majority of benchmark problems (although in the Moving peaks [9] and DF1 [44]
benchmarks the new global optima are not close to the previous global optima,
they are still close to a previous local optima). Due to that, tracking is preferred
to restarting.

• Predictability: The predictability of changes has increasingly attracted the at-
tention of the community. However, the number of studies in this topic is still
relatively small compared to the unpredictable case

• Periodicity: The periodicity of changes is a given assumption in many main-
stream approaches as memory and prediction.

The review in this chapter showed that not many of the assumptions above are
backed up by evidence from real-world applications. This leads to the question of
whether these academic assumptions still hold in real-world DOPs and, if yes, then
whether these assumptions are representative in real-world applications and in what
type of applications do they hold. So far there is very little reserach aiming at an-
swering these questions. One exception is the recent study in [51, chap. 3] where a
large set of recent “real”2 real-world dynamic optimisation problems has been re-
viewed to investigate the real characteristics of real-world problems and how they
relate to the characteristics of current academic benchmark problems. The reserch
in [51] has pointed out that there are certain gaps between current EDO academic
research and real-world applications. In future research on EDO, further investiga-
tions should be made to close these gaps and accordingly to bring EDO research
closer to realistic scenarios.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant numbers EP/E060722/1, EP/K001310/1,
and EP/E058884/1, and partially supported by an UK ORS Award and a studentship from the
School of Computer Science, University of Birmingham and an EU-funded project named
“Intelligent Transportation for Dynamic Environment (InTraDE)”.

References

[1] Alba, E., Saucedo Badia, J., Luque, G.: A study of canonical gas for nsops. In: Doerner,
et al. (eds.) Metaheuristics. Operations Research/Computer Science Interfaces Series,
vol. 39, pp. 245–260. Springer (2007)

2 Only references that actual use real-world data or solve problems in actual real-world
situations were considered. Benchmark problems, even if designed to simulate real-world
applications, were not considered unless there is evidence that the data used to create the
benchmark were taken from real-world applications.

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 33

[2] Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization prob-
lems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp.
572–581. Springer, Heidelberg (2010)

[3] Alba, E., Sarasola, B.: Abc, a new performance tool for algorithms solving dynamic
optimization problems. In: Proc. 2010 IEEE World Congr. on Comput. Intell. (WCCI
2010), pp. 734–740 (2010)

[4] Aragón, V.S., Esquivel, S.C.: An evolutionary algorithm to track changes of optimum
value locations in dynamic environments. J. of Comp. Sci. and Tech. 4(3), 127–134
(2004)

[5] Bäck, T.: On the behavior of evolutionary algorithms in dynamic environments. In:
Proc. 1998 IEEE Int. Conf. Evol. Comput., pp. 446–451 (1998)

[6] Bird, S., Li, X.: Informative performance metrics for dynamic optimisation problems.
In: Proc. 9th Annual Conf. on Genetic and Evol. Comput., pp. 18–25 (2007)

[7] Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Yang,
S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain En-
vironments. SCI, vol. 51, pp. 129–152. Springer, Heidelberg (2007)

[8] Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimiza-
tion with evolutionary algorithms: the stochastic case. In: Proc. 9th Annual Conf. on
Genetic and Evol. Comput., pp. 1165–1172 (2007)

[9] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882 (1999)

[10] Branke, J.: Evolutionary approaches to dynamic environments - updated survey. In:
Proc. 2001 GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems, pp. 27–30 (2001)

[11] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers (2002)

[12] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Tsutsui, S., Ghosh, A. (eds.) Theory and Application of Evolutionary
Computation: Recent Trends, pp. 239–262. Springer (2003)

[13] Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to
dynamic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[14] Branke, J., Orbayı, M., Uyar, Ş.: The role of representations in dynamic knapsack prob-
lems. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 764–775.
Springer, Heidelberg (2006)

[15] Chazottes, J., Fernandez, B.: Dynamics of Coupled Map Lattices and of Related Spa-
tially Extended Systems. Springer, Heidelberg (2005)

[16] Cheng, H., Yang, S.: Multi-population genetic algorithms with immigrants scheme for
dynamic shortest path routing problems in mobile ad hoc networks. In: Di Chio, C.,
et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 562–571. Springer,
Heidelberg (2010)

[17] Cheng, H., Yang, S.: Genetic algorithms with immigrants schemes for dynamic multi-
cast problems in mobile ad hoc networks. Engg. Appl. of Artif. Intell. 23(5), 806–819
(2010)

[18] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuouis, time-dependent nonstationary environments.
Technical Report AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

[19] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proc. 5th Int. Conf. Genetic Algorithms, pp. 523–530 (1993)

34 S. Yang, T.T. Nguyen, and C. Li

[20] Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments: A survey
on problems, methods and measures. Soft Comput. 15(7), 1427–1448 (2011)

[21] Droste, S.: Analysis of the (1+1) EA for a dynamically changing onemax-variant. In:
Proc. 2002 IEEE Congr. Evol. Comput., pp. 55–60 (2002)

[22] Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th
Int. Symp. on Micro Machine and Human Science, pp. 39–43 (1995)

[23] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test
cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442
(2004)

[24] Feng, W., Brune, T., Chan, L., Chowdhury, M., Kuek, C., Li, Y.: Benchmarks for testing
evolutionary algorithms. Technical Report, Center for System and Control, University
of Glasgow (1997)

[25] Gaspar, A., Collard, P.: From gas to artificial immune systems: Improving adaptation
in time dependent optimization. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp.
1859–1866 (1999)

[26] Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

[27] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd
Int. Conf. Parallel Problem Solving from Nature, pp. 137–144 (1992)

[28] Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: a genetic algorithm ap-
proach. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 2031–2038 (1999)

[29] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary al-
gorithms: a forward-looking approach. In: Proc. 8th Annual Conf. on Genetic and
Evol. Comput., pp. 1201–1208 (2006)

[30] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

[31] Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-
objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004.
LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

[32] Kellerer, K., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
[33] Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. 1995 IEEE

Int. Conf. on Neural Networks, pp. 1942–1948 (1995)
[34] Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and sim-

ple mutation on non-stationary problems. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 139–148. Springer, Heidel-
berg (1998)

[35] Li, C., Yang, M., Kang, L.: A new approach to solving dynamic traveling salesman
problems. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen,
G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 236–243. Springer, Heidelberg
(2006)

[36] Li, C., Yang, S.: A generalized approach to construct benchmark problems for dy-
namic optimization. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 391–400.
Springer, Heidelberg (2008)

[37] Li, C., Yang, S., Nguyen, T.T., Yu, E.L., Yao, X., Jin, Y., Beyer, H.-G., Suganthan, P.N.:
Benchmark generator for CEC 2009 competition on dynamic optimization. Technical
Report 2008, Department of Computer Science, University of Leicester, U.K. (2008)

[38] Li, X., Branke, J., Kirley, M.: On performance metrics and particle swarm methods for
dynamic multiobjective optimization problems. In: Proc. 2007 IEEE Congr. Evol. Com-
put., pp. 576–583 (2007)

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 35

[39] Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical
global optimization. In: Proc. 2005 IEEE Congr. Evol. Comput., pp. 68–75 (2005)

[40] Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for the
dynamic traveling salesman problem. Soft Comput. 15(7), 1405–1425 (2011)

[41] Mavrovouniotis, M., Yang, S.: Memory-based immigrants for ant colony optimization
in changing environments. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I.
LNCS, vol. 6624, pp. 324–333. Springer, Heidelberg (2011)

[42] Mei, Y., Tang, K., Yao, X.: Capacitated arc routing problem in uncertain environments.
In: Proc. 2010 IEEE Congr. Evol. Comput., pp. 1400–1407 (2010)

[43] Mori, N., Imanishi, S., Kita, H., Nishikawa, Y.: Adaptation to changing environments
by means of the memory based thermodynamical genetic algorithm. In: Proc. 1997 Int.
Conf. on Genetic Algorithms, pp. 299–306 (1997)

[44] Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environ-
ments. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 2047–2053 (1999)

[45] Morrison, R.W., De Jong, K.A.: Triggered hypermutation revisited. In: Proc. 2000 IEEE
Congr. Evol. Comput., pp. 1025–1032 (2000)

[46] Morrison, R.W., De Jong, K.A.: Measurement of population diversity. In: Collet, P.,
Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310,
pp. 31–41. Springer, Heidelberg (2002)

[47] Morrison, R.W.: Performance measurement in dynamic environments. In: Proc. 2003
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 5–8 (2003)

[48] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer, Berlin (2004)

[49] Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for
non-stationary function optimization. In: Proc. 6th Int. Conf. on Genetic Algorithms,
pp. 159–166 (1995)

[50] Nguyen, T.T.: A proposed real-valued dynamic constrained benchmark set. Technical
report, School of Computer Science, Univesity of Birmingham (2008)

[51] Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms.
PhD thesis, School of Computer Science, University of Birmingham (January 2011),
http://etheses.bham.ac.uk/1296 and
http://www.staff.ljmu.ac.uk/enrtngu1/theses/
phd thesis nguyen.pdf

[52] Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et
al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg
(2009)

[53] Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697 (2009)

[54] Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: Improving the ga
in a dynamic environment. In: Proc. 1999 Genetic and Evol. Comput. Conf., vol. 1, pp.
504–510 (1999)

[55] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

[56] Rand, W., Riolo, R.: Measurements for understanding the behavior of the genetic al-
gorithm in dynamic environments: A case study using the shaky ladder hyperplane-
defined functions. In: Yang, S., Branke, J. (eds.) GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization (2005)

http://etheses.bham.ac.uk/1296
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phd_thesis_nguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phd_thesis_nguyen.pdf

36 S. Yang, T.T. Nguyen, and C. Li

[57] Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness land-
scapes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 111–120. Springer,
Heidelberg (2004)

[58] Richter, H.: Evolutionary optimization in spatio–temporal fitness landscapes. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)

[59] Richter, H.: Evolutionary optimization and dynamic fitness landscapes: From reaction-
diffusion systems to chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen,
G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446.
Springer, Heidelberg (2010)

[60] Richter, H.: Memory design for constrained dynamic optimization problems. In: Di
Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561.
Springer, Heidelberg (2010)

[61] Rohlfshagen, P., Yao, X.: Attributes of dynamic combinatorial optimisation. In: Li, X.,
et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 442–451. Springer, Heidelberg (2008)

[62] Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimisation problems: an analysis of
the subset sum problem. Soft Comput. 15(9), 1723–1734 (2011)

[63] Salomon, R., Eggenberger, P.: Adaptation on the evolutionary time scale: A working
hypothesis and basic experiments. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer,
M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 251–262. Springer, Heidelberg
(1998)

[64] Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction
using linear regression and Markov chains. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer,
Heidelberg (2008)

[65] Stanhope, S.A., Daida, J.M.: Optimal mutation and crossover rates for a genetic algo-
rithm operating in a dynamic environment. In: Porto, V.W., Waagen, D. (eds.) EP 1998.
LNCS, vol. 1447, pp. 693–702. Springer, Heidelberg (1998)

[66] Tinos, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-
rithms. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 236–243 (2007)

[67] Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1843–1850 (1999)

[68] Uyar, Ş., Uyar, H.T.: A critical look at dynamic multi-dimensional knapsack problem
generation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp.
762–767. Springer, Heidelberg (2009)

[69] Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analy-
ses, and new innovations. PhD thesis, Air Force Institute of Technolog, Wright Patter-
son AFB, OH, USA (1999)

[70] Wang, H., Wang, D.-W., Yang, S.: Triggered memory-based swarm optimization in dy-
namic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

[71] Weicker, K.: An analysis of dynamic severity and population size. In: Deb, K., Rudolph,
G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

[72] Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

[73] Weicker, K., Weicker, N.: Dynamic rotation and partial visibility. In: Proc. 2003 IEEE
Congr. Evol. Comput., pp. 1125–1131 (2003)

1 Evolutionary Dynamic Optimization: Test and Evaluation Environments 37

[74] Weicker, K., Weicker, N.: On evolution strategy optimization in dynamic environments.
In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 2039–2046 (1999)

[75] Weise, T., Podlich, A., Reinhard, K., Gorldt, C., Geihs, K.: Evolutionary freight
transportation planning. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 768–777. Springer, Heidelberg (2009)

[76] Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable reloca-
tion. IEEE Trans. Evol. Comput. 13(3), 500–513 (2009)

[77] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm.
In: Proc. 2003 IEEE Congr. Evol. Comput., pp. 2246–2253 (2003)

[78] Yang, S.: Constructing dynamic test environments for genetic algorithms based on prob-
lem difficulty. In: Proc. 2004 IEEE Congr. Evol. Comput., vol. 2, pp. 1262–1269 (2004)

[79] Yang, S.: Memory-enhanced univariate marginal distribution algorithms for dynamic
optimization problems. In: Proc. 2005 IEEE Congr. Evol. Comput., vol. 3, pp. 2560–
2567 (2005)

[80] Yang, S.: Genetic algorithms with memory and elitism based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

[81] Yang, S., Cheng, H., Wang, F.: Genetic algorithms with immigrants and memory
schemes for dynamic shortest path routing problems in mobile ad hoc networks. IEEE
Trans. Syst., Man, and Cybern. Part C: Appl. and Rev. 40(1), 52–63 (2010)

[82] Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking mul-
tiple optima in dynamic environments. IEEE Trans. Evol. Comput. 14(6), 959–974
(2010)

[83] Yang, S., Ong, Y.-S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncer-
tain Environments. Springer (2007)

[84] Yang, S., Richter, H.: Hyper-learning for population-based incremental learning in dy-
namic environments. In: Proc. 2009 IEEE Congr. Evol. Comput., pp. 682–689 (2009)

[85] Yang, S., Tinos, R.: Hyper-selection in dynamic environments. In: Proc. 2008 IEEE
Congr. Evol. Comput., pp. 3185–3192 (2008)

[86] Yang, S., Yao, X.: Dual population-based incremental learning for problem optimization
in dynamic environments. In: Proc. 7th Asia Pacific Symp. on Intell. and Evol. Syst.,
pp. 49–56 (2003)

[87] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[88] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[89] Yao, X., Liu, Y.: Fast evolutionary programming. In: Proc. 5th Annual Conf. on Evolu-
tionary Programming, pp. 451–460 (1996)

[90] Yu, X., Jin, Y., Tang, K., Yao, X.: Robust optimization over time – a new perspective
on dynamic optimization problems. In: Proc. 2010 IEEE World Congr. Comput. Intell.,
pp. 3998–4003 (2010)

[91] Zeng, S., Chen, G., Zheng, L., Shi, H., de Garis, H., Ding, L., Kang, L.: A dynamic
multi-objective evolutionary algorithm based on an orthogonal design. In: Proc. 2006
IEEE Congr. Evol. Comput., pp. 573–580 (2006)

Chapter 2
Evolutionary Dynamic Optimization:
Methodologies

Trung Thanh Nguyen, Shengxiang Yang, Juergen Branke, and Xin Yao

Abstract. In recent years, Evolutionary Dynamic Optimization (EDO) has attracted
a lot of research effort and has become one of the most active research areas in
evolutionary computation (EC) in terms of the number of activities and publica-
tions. This chapter provides a summary of main EDO approaches in solving DOPs.
The strength and weakness of each approach and their suitability for different
types of DOPs are discussed. Current gaps, challenging issues and future directions
regarding EDO methodolgies are also presented.

2.1 Introduction

Many real-world objects are changing over time. For example, people are aging, the
climate is changing, the stock market is moving up and down, and so on. As a result,
it is important to be able to optimize in a dynamic environment. Changes may affect

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, Liverpool L3 3AF, U.K.
e-mail: T.T.Nguyen@ljmu.ac.uk

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montford University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

Juergen Branke
Warwick Business School, University of Warwick, Coventry CV4 7AL, U.K.
e-mail: juergen.branke@wbs.ac.uk

Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K.
e-mail: x.yao@cs.bham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 39–64.
DOI: 10.1007/978-3-642-38416-5_2 c© Springer-Verlag Berlin Heidelberg 2013

40 T.T. Nguyen et al.

the objective function, the problem instance, and/or the constraints [16, 124]. Hence,
the optimal solution(s) of the problem being considered may change over time.

Formally, a dynamic optimization problem can be defined as follows [71]:

Definition 2.1 (Dynamic optimization problem) Given a time-dependent problem
ft , an optimization algorithm G to solve ft , and a given optimization period[
tbegin, tend

]
, ft is called a dynamic optimization problem in the period

[
tbegin, tend

]
if during

[
tbegin, tend

]
the underlying fitness landscape that G uses to represent ft

changes and G has to react to this change by providing new optimal solutions1.

Evolutionary computation (EC) methods are good tools to solve DOPs due to their
inspiration from natural systems, which have always been subject to changing en-
vironments. The study of applying evolutionary algorithms (EAs) and similar tech-
niques to solving DOPs is termed evolutionary optimization in dynamic environ-
ments or evolutionary dynamic optimization (EDO) in this chapter. Over the last
twenty years, a great number of different EDO methodologies have been proposed.
The purpose of this chapter is to provide a summary of main EDO approaches
in solving DOPs2. In-depth discussion of the strength and weakness of each ap-
proach will be provided, plus the suitability of each approach for different types
of DOPs. Some future research issues and directions regarding EDO will also be
presented.

The rest of this chapter is organized as follows. Section 2.2 reviews different ap-
proaches that have been developed by researchers to address DOPs. The strength
and weakness of different approaches are also discussed there. Section 2.3 presents
theoretical development regarding EDO methodologies. Finally, Section 2.4 sum-
marizes the chapter and presents some discussions on current gaps, challenging
research issues, and future directions regarding EDO methodologies.

2.2 Optimization Approaches

2.2.1 The Goals of EDO Algorithms

In stationary optimization, in most cases the only goal of optimization algorithms
is to find the global optimum as fast as possible. However, in current EDO research
where the considered problems are time-varying, the goal of an algorithm turns from
finding the global optimum to firstly detecting the changes and secondly tracking
the changing optima (local optima or ideally the global optimum) over time. In addi-
tion, in case the problem-after-change somehow correlates with the problem-before-
change, an optimization algorithm also needs to learn from its previous search

1 A more detailed version of this definition for DOPs was provided in [70, Chapter 4] and
[74].

2 An broader literature review, which is extended from this chapter, covering not only
methodologies but also other aspects in EDO, can be found in [71].

2 Evolutionary Dynamic Optimization: Methodologies 41

experience as much as possible to hopefully advance the search more effectively.
Otherwise, the optimization process after each change will simply become the pro-
cess of solving a different problem starting with the old population/structure.

The following sections will briefly review typical approaches in EDO that have
been proposed to satisfy the goals above. We will discuss the strength and weakness
of the approaches and their suitability for different types of problems.

2.2.2 Detecting Changes

Many EDO approaches take an explicit action to respond to a change in the envi-
ronment. This either assumes that changes in the environment are made known to
the algorithm, or that the algorithm has to detect the change. If algorithms have to
detect changes, they generally follow one of the following approaches: (a) detect-
ing changes by re-evaluating dedicated detectors, or (b) detecting changes based on
algorithm behaviors.

2.2.2.1 Detecting Changes by Re-evaluating Solutions

Overview
By far the most common change-detection approach is re-evaluating existing so-
lutions. The algorithm regularly re-evaluates some specific solutions (detectors) to
detect changes in their function values and/or feasibility. Detectors can be a part
of the population, such as the current best solutions [48, 54, 58, 70], a memory-
based sub-population [15, 130], or a feasible sub-population [70, 75]. Detectors can
also be maintained separately from the search population. In this case, they can be
just a fixed point [25], one or a set of random solutions [26, 82, 98], a regular grid
of solutions / set of specifically distributed solutions [65], or a list of found peaks
[67, 69].

Strength and Weakenesses
Since using detectors involves additional function evaluations, it might be required
to identify an optimal number of detectors to maximize algorithm performance. A
majority of existing methods just use one or a small number of detectors. However,
in situations where only some parts of the search space change, e.g., see [73, 76, 82]
and in a list of real-world problems cited in [70], using only a small number of detec-
tors might not guarantee that changes are detected [82]. Recent attempts have been
made to overcome this drawback. In [65, 70, 82], different methods were consid-
ered to study the optimal number of detectors depending on the size and complexity
of the problem. A theoretical analysis in [65] showed that problem dimensional-
ity is a prominent factor in the success of change detection. This finding was later
confirmed by the experiments in [82].

One clear advantage of re-evaluting dedicated detectors is that it allows “robust
detection” if a high enough number of detectors is used [82]. Richter [82] also
showed that the more difficult the change detection is, the more favorable the ap-
proach of re-evaluating dedicated detectors is.

42 T.T. Nguyen et al.

There are some disadvantages in re-evaluating dedicated detectors. First, there is
the additional cost due to that detectors have to be re-evaluated at every generation.
Second, this approach might not be accurate when used in problems with noisy
fitness function because noises may mislead the algorithm to thinking that a change
has occured [51]. It may also miss changes if changes did not occur in the region of
detectors.

2.2.2.2 Detecting Changes Based on Algorithm Behaviors

Overview
Irregularities in algorithm behaviors can also be used to detect changes. In [31] (and
many studies that follow the same idea), changes are detected based on monitoring
the drop in the average of best found solutions over a number of generations. In a
swarm-based study [51] where the swarm was divided into a tree-based hierarchy of
sub-swarms, environmental changes were detected based on observation of changes
in the hierarchy itself. In [65], the possibility of detecting changes based on diver-
sity, and the relationship between the diversity of fitness values and the success rate
of change detection, were studied. In [82], changes were detected based on statis-
tical hypothesis tests to find the difference between distribution of the populations
from two consecutive generations. This technique has been commonly used in en-
vironmental change detection in the real-world applications of biomedicine, data
mining and image processing, as can be seen from the references cited in [82].

Strength and Weakenesses
The clear advantage of this approach is that it does not require any additional func-
tion evaluations. However, because no dedicated detector is used, there is no guar-
antee that changes are detected [82]. In addition, this approach may cause false pos-
itives and hence cause the algorithm to react unnecessarily when no change occurs.
Evidence of false positives was found in [51, 76, 82]. Another possible disadvantage
is that some methods following this approach might be algorithm-specific, such as
the method of monitoring swarm hierarchy in [51].

2.2.3 Introducing Diversity When Changes Occur

2.2.3.1 Overview

In static environments, proper algorithm convergence is required so that the algo-
rithm can focus on finding the best solution. In dynamic environments, however,
convergence may result in negative effects. This is because if the dynamic land-
scape changes in one area and there is no member of the algorithm in this area, the
change will become undetected. As a result, the algorithm will not be able to react
to the change effectively and hence might fail to track the moving global optimum.

Intuitively one simple solution for this drawback is to increase the diversity of an
EA after a change has been detected. This solution is described in the pseudo-code
of Algorithm 1.

2 Evolutionary Dynamic Optimization: Methodologies 43

Algorithm 1 Introducing diversity after detecting a change

1. Initialize:: Initialize the population
2. For each generation

a. Evaluate: Evaluate each member of the population
b. Check for changes: Detect changes by monitoring possible signs of changes, e.g. a

reduction in the best fitness values, or re-evaluation of old solutions
c. Increase diversity: If change occurs, increase population’s diversity by changing the

mutations (sizes or rates) or relocating individuals
d. Reproduce: Reproduce a new population using the adjusted muta-

tion/learning/adaptation rate
e. Return to step 2a

Diversity introduction can be done in many ways, for example, by increasing the
current mutation rate as in hyper-mutation [31], by adding randomised individuals
[40, 48], by increasing the mutation step size [107, 115], by moving individuals from
one sub-population to another [40] or by keeping the sub-populations/individuals
away from one another [50, 51].

Some of the first studies following this approach are hyper-mutation [31] and
variable local search (VLS) [108, 109]. In his research, Cob [31] proposed an adap-
tive mutation operator called hyper-mutation whose mutation rate is a multiplication
of the normal mutation rate and a hyper-mutation factor. The hyper-mutation is in-
voked only after a change is detected. In the VLS algorithm, the mutation step size is
controlled by a variable local search range. This range is determined by the formula
(2BIT S− 1) where BITS is a value adjustable during the search [107] or adapted
using a learning strategy borrowed from the feature partitioning algorithm by Vavak
et al. [108].

In [70], hyper-mutation was used to solve dynamic constraint problems. Detec-
tors are placed near the boundary of feasible regions and when the feasibility of
these detectors changes, the EA increases its mutation rate to raise the diversity
level to track the moving feasible regions. The mutation rate is decreased again
once the moving feasible region has been tracked successfully. Riekert and Malan
[86] proposed adaptive genetic programming which not only increases mutation, but
also reduces elitism and increases crossover probability after a change. The idea of
introducing diversity after a change has also been used in dynamic multi-objective
optimization (DMO). For example, in a multi-population algorithm for DMO [40],
when a change is detected, random individuals and some competitor individu-
als from other sub-populations are introduced to each sub-population to increase
diversity.

Diversity introduction is also used in particle swarm optimization (PSO). Hu and
Eberhart [48] introduced a simple mechanism in which a part of the swarm or the
whole swarm will be re-diversified using randomization after a change is detected.
Janson and Middendorf [51] followed a more sophisticated mechanism where in

44 T.T. Nguyen et al.

addition to partial re-diversification, after each change the swarm is divided into
several sub-swarms for a certain number of generations. The purpose of this is
to prevent the swarm from converging to the old position of the global optimum
too quickly. Daneshyari and Yen [34] proposed a cultural-based PSO where after a
change, the swarms are re-diversified using a framework of knowledge inspired from
the belief space in cultural algorithms. The diversity-introducing approach is still
commonly used in many recent EDO algorithms, e.g., [67, 78, 82, 83, 85, 93, 115].

2.2.3.2 Strength and Weakness

In general, methods following the diversity-introducing approach appear to be good
in solving problems with continuous changes where changes are small and medium.
This is because invoking mutations or distributing individuals around an optimum
resembles a type of “local search”, which is useful to observe the nearby places of
this optimum. Thus, if the optimum does not move very far, it might be tracked
[107, 108].

However, this approach has some drawbacks that might make it not so suitable for
certain type of problems. First, it is dependent on whether changes are known/easy
to detect or not. If a change appears in a place where no individual exists, it will
go undetected [65]. Second, it might be difficult to identify the right amount of di-
versity needed: too small steps will resemble local search while too large steps will
result in random search [52]. Third, the approach might not be effective for solv-
ing problems with random changes or large changes (changes are severe) because
many diversity-introducing methods have their mutation/relocation size restricted to
a specific range. The diversity-introducing approach is still commonly used in many
recent metaheuristics algorithms, e.g., [67, 70, 78, 82, 83, 85].

2.2.4 Maintaining Diversity during the Search

2.2.4.1 Overview

Another related approach is to maintain population diversity throughout the search
process (see Algorithm 2). Methods following this approach do not detect changes

Algorithm 2 Maintaining diversity

1. Initialize: Initialize the population
2. For each generation

a. Evaluate: Evaluate each member of the population
b. Maintain diversity: Add a number of new, diversified individuals to the current pop-

ulation, or select more diversified individuals, or explicitly relocate individuals to
keep them away from one another.

c. Reproduce: Reproduce a new population
d. Return to step 2a

2 Evolutionary Dynamic Optimization: Methodologies 45

explicitly. Instead, they rely on their diversity to adaptively cope with the changes.
Diversity can be maintained by regularly introducing random individuals (random
immigrants) to the population [43, 125], by sharing fitness [2], by specifically dis-
tributing some sentinel individuals [65], by explicitly keeping individuals from get-
ting close to one another [10, 11], by dedicating one of the objectives for divesity
purposes [24], or by combining several of the strategies above [1, 102].

In the random immigrants method [43], in every generation a number of gener-
ated random individuals are added to the population to maintain diversity. Exper-
imental results show that the method is more effective in handling dynamics than
regular EA [43]. It was also reported that the high diversity level brought by random
immigrants also helps in handling constraints [70].

In [65], a different mechanism was proposed in which instead of generating
random individuals, the sentinel placement method initializes a number of sen-
tinels which are specifically distributed throughout the search space. Experiments
show that this method might get better results than random immigrants and hyper-
mutation in problems with large and chaotic changes [65].

Yang and Yao [125] proposed two other approaches based on the population-
based incremental learning (PBIL) algorithm - parallel PBIL (PPBIL2) and dual
PBIL (DPBIL). The PBIL algorithm has a probability vector adjusted based on the
best found solutions. In PPBIL2, Yang and Yao [125] improved PBIL for DOPs by
maintaining two parallel probability vectors: a vector similar to the original one in
PBIL and a random initialized probability dedicated to maintain diversity during
the search. To improve PBIL2 in dealing with large changes, Yang and Yao [125]
proposed the DPBIL where two probability vectors are dual with each other, i.e.,
given the first vector P1, the second vector P2 is determined by P2 [i] = 1−P1 [i]
(i = 1, ...,n), where n is the number of variables. During the search only P1 needs to
learn from the best generated solution because P2 will change with P1 automatically.
PBIL and DPBIL were also combined with random-immigrants in [126] with better
results than the original algorithms.

Another approach to maintain diversity is to reward individuals that are genet-
ically different from their parents [110]. In this approach, in addition to a regular
population, the algorithm maintains an additional population where individuals are
selected based on their Hamming distance to their parents (to promote diversity)
and another population where individuals are selected based on their fitness im-
provement compared to their parents (to promote exploitation). By observing its
own performance in stagnation and population diversity, the algorithm adaptively
adjusts the size of the three populations to react to dynamic environments.

Diversity can be maintained in evolution strategies (ESs) by preventing the strat-
egy parameters from converging to zero, e.g. in [53]. The approach of maintain-
ing diversity is also used in PSO to solve dynamic continuous problems. In their
charged PSOs [9–11], Blackwell et al. applied a repulsion mechanism, which is in-
spired from the atom field, to prevent particles/swarms to get too close to each other.
In this mechanism, each swarm is comprised of a nucleus and a cloud of charged
particles which are responsible to maintain diversity. There is a repulsion among
these particles to keep particles from approaching near to each other. In [34], both

46 T.T. Nguyen et al.

the particle selection and replacement mechanisms are modified so that the most
diversified particles (in term of Hamming distance) are selected and the particles
that have similar positions are replaced. In the compound PSO [59], the degree of
particles deviating from their original directions becomes larger when the velocities
becomes smaller, and distance information was incorporated as one of the criteria
to choose a particle for the update mechanism.

Bui et al. [24] used multiple objectives to maintain diversity. The dynamic prob-
lem is represented by a problem with two objectives: one original objective and
one special objective created to maintain diversity. Similar examples can be found
in [1, 102], of which the latter proposed six different types of objectives, includ-
ing retaining more old solutions; retaining more random solutions; reversing the
first objective; keeping a distance from the closest neighbour; keeping a distance
from all individuals; and keeping a distance from the best individual. The diversity-
maintaining strategy is still the main strategy in many recent approaches, for exam-
ple, see [6, 9, 10, 29, 35, 39, 42, 50, 70, 125, 126].

2.2.4.2 Strength and Weakness

Methods following the diversity-maintaining approach may be good at solving prob-
lems with large changes (e.g. in [70, 73] random immigrants helped significantly im-
prove the performance in dynamic constrained problems where changes are severe
due to the presence of disconnected feasible regions), problems with slow changes
(as shown in e.g. [2, 125]), and problems with competing peaks (as reported in [27]).

However, the diversity-maintaining approach might suffer from some disadvan-
tages. First, continuously focusing on diversity may slow down, or even distract the
optimization process [52]. Second, the approach may become less effective in deal-
ing with small changes where the optima just take a slight move away from their
previous places [32].

2.2.5 Memory Approaches

In situations where DOP changes are periodical or recurrent, and hence the optima
may return to the regions near their previous locations, it might be useful to re-
use previously found solutions to save computational time. The most common way
to re-use old solutions in this manner is to maintain memory components in the
algorithms. The memory can also play the role as a reserved place for storing old
solutions in order to maintain diversity when needed. The memory can be integrated
implicitly as a redundant representation in the algorithms, or maintained explicitly
as a separate memory component.

2.2.5.1 Implicit Memory

The most common implicit memory used in EDO algorithms is redundant coding
using diploid genomes, e.g., [41, 56, 68, 106, 121]. A diploid EA is usually an
algorithm whose chromosomes contain two alleles at each locus. Although most

2 Evolutionary Dynamic Optimization: Methodologies 47

Algorithm 3 Multiploid EA for dynamic optimization

1. Initialize: Initialize the population and the multiploid representation
2. For each generation

a. Evaluate: Evaluate each member of the population
b. For each individual:

i. Detect changes
ii. Adjust the dominance level of each allele : If there is any change, adjust the

dominance to accommodate the current change
iii. Select the dominant alleles according to their dominance level

c. Reproduce: Reproduce a new population using the adjusted mutations
d. Return to step 2a

normal EAs for static problems are haploid, it is believed that diploid, and other
multiploid approaches, are suitable for solving dynamic problems [56]. A pseudo
code for multiploid approaches in dynamic environments is described in Algorithm
3, where the following three components need to be incorporated: (i) represent the
redundant code; (ii)readjust the dominance of alleles; and (iii) check for changes.

The dominance of alleles is usually represented by a table [68, 91] or a mask [33]
mapping between genotypes and phenotypes. The dominance then can be changed
adaptively among alleles depending on the detection of changes in the landscape.

2.2.5.2 Explicit Memory

Methods that use explicit memory generally follow the steps in Algorithm 4. The
memory can be maintained directly in the form of previous good solutions [8, 15, 34,
55, 60, 62, 64, 93, 118, 119, 126–128], or it can be maintained indirectly in the form
of associative information. Various type of associative information can be included,
e.g., the environment at the considered time [37, 79]; the list of environmental states

Algorithm 4 Using explicit memory

1. Initialize:

a. Initialize the population
b. Initialize the explicit memory

2. For each generation

a. Evaluate each member of the population
b. Update the memory
c. Reproduce a new population
d. Use information from the memory to update the new population
e. Return to step 2a

48 T.T. Nguyen et al.

and state transition probabilities [96]; the successful individuals for certain types of
changes[94, 120]; the probability vector that created the best solutions [126]; the
distribution statistics information of the population at the considered time [119];
the probability of the occurrence of good solutions in each area of the landscape
[84, 85]; or the probability of likely feasible regions [83].

Generally the best found elements (direct or associative) of the current gener-
ation will be used to update the memory. These newly found elements will re-
place some existing elements in the memory, which can be the oldest member
[37, 95, 103, 115], the one with the least contributions to the diversity of the popula-
tion [15, 37, 95, 118, 126], or the one with least contribution to fitness [37]. During
the search, usually the best elements in the memory (i.e. the ones that show the best
results when being re-evaluated) will be used to replace the worst individuals in
the population. Replacement can take place after each generation or after a certain
number of generations, or it can be done after each change if the change can be
detected.

2.2.5.3 Strength and Weakness

Memory methods are particularly effective for solving problems with periodically
changing environments. For example, it was shown that the memory-based versions
of EAs and random-immigrant significantly outperform the original algorithms in
cyclic dynamic environments [122]. The approach might also be good in slowing
down convergence and favour diversity [16, 18].

Memory methods, however, have disadvantages that may require them to be used
with some other methods for the best results. First, they might be useful only when
optima reappear at their previous locations or if the environment returns to its pre-
vious states [15, 16]. Second, they might not be good enough to maintain diversity
for the population [15]. Third, the information stored in the memory might become
redundant (and obsolete) and consequently may affect the performance of the algo-
rithm. In addition, redundant coding approaches might not be good for cases where
the number of oscillating states is large.

2.2.6 Prediction Approaches

2.2.6.1 Overview

In DOPs where changes exhibit regular patterns, it might be helpful to try to learn
the patterns from previous search experience, and then try to predict changes in the
future. A pseudo code of methods following this approach is shown in Algorithm 5.

One of the common prediction approaches is to predict the movement of the
moving optima. Hatzakis and Wallace [45] combined a forecasting technique (au-
toregressive) with an EA to predict the location of the next optimal solution after
a change is detected. The forecasting model (time series model) is created using a
sequence of optimum positions found in the past. Experimental results show that if
this algorithm can predict the movements of optima correctly, it can work well with

2 Evolutionary Dynamic Optimization: Methodologies 49

Algorithm 5 Prediction approach to solve dynamic problems

1. Initialize phase:

a. Initialize the population
b. Initialize the learning model and training set

2. Search for optimum solutions and detect changes
3. If a change is detected

a. Use the current environment state as the input for the learning model
b. Use the learning model to estimate the type of this current change and/or how the

next change should be
c. Generate new individuals or recall old ones that best match with the estimation
d. Search for the new optimum using the new population
e. Update the training set based on the search results

4. Return to step 2

very fast changes. A similar approach was proposed in [90] where the movement of
optima was predicted using Kalman filters. The predicted information (the next lo-
cation of the optimum) is incorporated into an EA in three ways: First, the mutation
operator is modified by introducing some bias so that individuals’ exploration is di-
rected toward the predicted region. Second, the fitness function is modified so that
individuals close to the estimated future position are rewarded. Third, some “gifted”
individuals are generated at the predicted position, and introduced into the popula-
tion to guide the search. Experiments on a visual tracking benchmark problem show
that the proposed method does improve the tracking of the optimum, both in terms
of distance to the real optimum and smoothness of the tracking.

Prediction was also used to determine the locations that individuals should be
re-initialized to when a change occurs. In [129] this approach is used to solve two
dynamic multi-objective optimization benchmark problems in two ways: First, the
solutions in the Pareto set from the previous change periods were used as a time
series to predict the next re-initialization locations. Second, to improve the chance
of the initial population to cover the new Pareto set, the predicted re-initialization
population is perturbed with a Gaussian noise whose variance is estimated based
on historical data. Compared with random-initialization, the approach was able to
achieve better results on the two tested problems.

Another interesting approach is to predict the time when the next change will
occur and which possible environments will appear in the next change [96, 97].
In these works, the authors used two prediction modules to predict two different
factors. The first module, which uses either a linear regression [96] or a non-linear
regression [97], is used to estimate the generation when the next change will occur.
The second module, which uses Markov chain, monitors the transitions of previous
environments and based on this data provides estimations of which environment will

50 T.T. Nguyen et al.

appear in the next change. Experimental results show that an EA with the proposed
predictor is able to perform better than a regular EA in cyclic/periodic environments.

A special class of prediction approaches is dynamic time-linkage optimization
[12–14, 72, 74]. Time-linkage problems are problems where the current solutions
made by the algorithms can influence the future dynamics. In such problems, it was
suggested that the only way to solve the problems effectively is to predict future
changes and take into account the possible future outcomes when solving the prob-
lems online. Research in [12–14, 72, 74] followed this idea to solve time-linkage
problems effectively. Another related study is the anticipation approach [20] in
solving dynamic scheduling problems where in addition to finding good solutions,
the solver also tries to move the system “into a flexible state” where adaptation to
changes can be done more easily. Specifically, because it is observed that in the
tested dynamic job-shop scheduling problem, the flexibility of the system can be
increased by avoiding early machine idle times, the authors proposed a scheduling
approach where in addition to the main optimality objective, solutions with early
idle time are penalized. The experimental results show that such an anticipation
approach significantly improved the performance of the system.

2.2.6.2 Strength and Weakness

Prediction approaches may become very effective if their predictions are accurate. In
this case, the algorithms can detect/track/find the global optima quickly, as shown
in [45, 94, 120]. However, prediction/adaptation-based algorithms also have their
own disadvantages, mostly due to training errors. These errors might be resulted by
the unpredictable nature of the problems. If the changes are stochastic, or history
data are misleading, prediction approaches might not get satisfactory results. For
example, [72, 74] illustrated a situation where history data are actually inappropriate
for the prediction and might even mislead the predictor to get worse results.

Prediction errors might also be due to wrong training data, or lack of train-
ing data. As in the case of any learning/predicting/forecasting model, the algo-
rithms may need a large enough set of training data to produce good results. It
also means that the prediction can only be started after sufficient training data have
been collected, e.g., [12, 13, 96, 97]. In the case of dynamic optimization where
there is a need of finding/tracking the optima as quick as possible, this might be a
disadvantage.

2.2.7 Self-adaptive Approaches

In certain cases, the self-adaptive mechanisms of EAs and other meta-heuristics
can be used effectively to cope with changes. One example is the GA with genetic
mutation rate [44], which allows the algorithm to evolve its own mutation strategy
parameters during the search process based on the fitness of the population. In this
method, the mutation rate is encoded in genes and is influenced by the selection
process. The algorithm was tested in both gradual and abrupt dynamic landscapes.
The results show that the algorithm has better performance than a conventional GA.

2 Evolutionary Dynamic Optimization: Methodologies 51

However, it is still not better than hyper-mutation (see section 2.2.3 and [31]). A
similar method was proposed by Ursem in his multinational GA (MGA) [104]. Five
different parameters (probability for mutation, probability for crossover, selection
ratio, mutation variance and distance) are encoded in the genomes of his MGA
for adaptation. The adaptation mechanism works well in simple cases where the
velocity of moving peaks is constant. However, in cases where the velocity is not
constant, the adaptation seems to be not fast enough. These two results show the
difficulty of applying adaptive parameter tuning to complex dynamic optimization.

The self-adaptive mechanisms of such EAs as ES or evolutionary programming
(EP) were also investigated for using in dynamic optimization. Angeline [3] ex-
amined self-adaptive EP (saEP) and showed that the strategy is not effective for
all types of tested problems. Bäck [7] showed that the log-normal self-adaptation
in ES may perform better than saEP. Experiments pointed out that algorithm im-
plementation and parameter settings have much less influence on ES in dynamic
environments than in stationary environments [92] and that ES might be unreliable
in rapidly changing environments [114]. Weicker [112] also argued that it is possi-
ble that if Gaussian mutation is used in the standard ES, self-adaptation might not
be appropriate for dynamic optimization.

Some mathematical analyses on the performance of self-adaptive ES in dynamic
environments were proposed. Arnold and Beyer [4] pointed out that the cumulative
mutation step-size adaptation of ES can work well on a variant of the sphere model
with random dynamics of the optimum. The strategy can realize the optimal muta-
tion step-size for the model. However, in the sphere model with linear dynamics,
another research of Arnold and Beyer [5] revealed that the mutation step-size real-
ized by ES is not the optimal one (but the adaptation still ensures that the optimum
can be tracked).

2.2.8 Multi-population Approaches

2.2.8.1 Overview

Multi-population approach, which maintains multiple sub-populations concurrently,
can be seen as a combination of diversity maintaining/introducing, memory and
adaptation. Each sub-population may handle a separate area of the search space.
Each of them may also take responsibility for a separate task. For example, some
sub-populations may focus on searching for the global optimum while some others
may concentrate on tracking any possible changes. These two types of populations
then may communicate with each other to bias the search. A typical pseudo-code of
the multi-population approach is shown in Algorithm 6.

Methods following the approach of using multiple populations usually need to
accomplish two goals: First, they may need to assign different types of tasks to
different sub-populations, for example, Psearch to search and Ptrack to track, so that
the search can be done effectively. Second, they need to divide the sub-populations
appropriately and make sure that the sub-populations are not overlapped to have the

52 T.T. Nguyen et al.

Algorithm 6 Multi-population approach

1. Initialize:

a. Initialize the set Psearch of sub populations finding the global optima
b. Initialize the set Ptrack of sub populations tracking changes in the landscape

2. For each generation:

a. Search for optima: Sub-populations in Psearch find the global optima
b. Track changes: Sub-populations in Ptrack track any changes
c. Maintain diversity: Re-allocate/split/merge the sub-populations so that they are not

overlapped and can cover a larger area of the search space
d. Adjust: Re-adjust each sub-population in Psearch based on the experience from sub-

populations in Ptrack
e. Reproduce each sub-population
f. Return to step 2a

best diversity and also to avoid the situation where many sub-populations find the
same peak.

For the first goal, assigning different tasks to the sub-populations, there might be
multiple small populations in Psearch searching for new solutions and there is only
one large population in Ptrack to track changing peaks [77], or there might be one
large population to search and multiple sub-population for tracking changes [9, 19,
29, 38, 61, 63, 73], or each sub-population can both search for new solutions and
track changes [39, 57, 58, 104]. Relating to the goal of assigning the tasks to sub-
populations, it should be noted that in dynamic optimization multiple populations
are used not only for exploring different parts of the search space, but also for co-
evolution [40, 73, 75] or maintaining diversity and balancing between exploitation
and exploration [110].

For the second goal, dividing the sub-populations and making sure that the sub-
populations are not overlapping, there are different approaches, of which the most
common is clustering: choosing some solutions in the population as the centres of
the future clusters, then defining each sub-population as a hyper-cube or sphere with
a given size. All individuals within the range of a hyper-cube/sphere will belong to
the corresponding sub-population of that hyper-cube/sphere. For example, the self-
organizing scouts (SOS) algorithm [19] keeps the sub-populations from being over-
lapped by confining each sub-population to a hyper-cube determined by a centre
(the most fit individual in the population) and a pre-defined range. If an individual
of one sub-population ventures to the area monitored by another sub-population,
this individual will simply be discarded and re-initialized (this process is called ex-
clusion). The same approach is also used in DE [61, 63] and PSO [10, 58]. For
example, in multi-swarm PSO (mPSO) [10], swarms are divided into sub-swarms
so that each swarm watches a different peak. In addition, mPSO also maintains a
similar mechanism (named anti-convergence) to the Psearch in SOS so that there is
always one free swarm to continue exploring the search space. Another example is

2 Evolutionary Dynamic Optimization: Methodologies 53

the speciation PSO (SPSO) algorithm [58], where each species is a hyper-sphere
whose centre is the best-fit individual in the species and each species can be used
to track a peak. In recent clustering approaches [57, 115], density-based cluster-
ing methods are also used to divide/separate the sub-populations and to allow the
algorithms explore different parts of the search landscape.

Other approaches to divide sub-populations are to incorporate some mechanism
of penalty/rewarding to keep the sub-populations apart [77], and to estimate the
basins of attractions of peaks and use these basins as separate regions for each sub-
population [104].

2.2.8.2 Strength and Weakness

Multi-population approaches are thought to have multiple advantages. First, they
can maintain enough diversity to adaptively start a new search whenever a new
change appears, as illustrated in [17]. Second, they may be able to recall some infor-
mation from the previous generations thanks to one (or several) population(s) ded-
icated for retaining old solutions, as shown in their good performance in problems
with recurrent changes [15, 104]. Third, they can search/track the moves of multi-
ple optima, as analysed in many existing studies on multi-populations, e.g., [17] and
[104]. Finally, they can be very effective for solving problems with competing peaks
or multimodal problems. A survey by Moser [66] showed that among 19 surveyed
algorithms that are designed to solve the moving peaks benchmark (MPB) [15] with
multimodal competing peaks, a majority (15 out of 19) follow the multi-population
approach.

There are also disadvantages in using multi-population approaches. First, too
many sub-populations may slow down the search. For example, Blackwell and
Branke [10] showed that for their multi-swarm PSO algorithm, if the number of
sub-populations (swarms) is larger than the number of peaks, the performance of
the algorithm decreases. It might also be difficult to identify the appropriate number
of sub-populations, as well as the size of each sub-population. Second, the need of
calculating the distance/similarity/regional metrics to separate the sub-populations
might also affect the performance. Third, in academic research, multi-population
approaches have been tested mostly in the continuous domain, and hence more evi-
dence might be needed to confirm their effectiveness on combinatorial problems.

2.3 Theoretical Development of EDO Methodologies

EDO research so far has mainly been empirical. Most theoretical analysis of EDO
has just started in recent years with some results. Analysing EAs for DOPs is consid-
ered more difficult than analysing EAs for static problems due to the extra dynamics
introduced in DOPs. The theoretical studies on EDO methodologies are briefly re-
viewed as follows.

54 T.T. Nguyen et al.

Initial EDO theoretical works were extensions of the analysis of simple EAs,
e.g., the (1+1) EA3, for static optimization to simple DOPs, e.g., the dynamic bit
matching problem [99]. In [99], the authors presented the transition probabilities of
the (1+1) EA and showed that even small perturbations in the fitness function could
have a significantly negative impact on the performance of the (1+1) EA. Based on
this work, Branke and Wang [23] developed an analytical model for a (1, 2)-ES and
compared different strategies to handle an environmental change within a generation
on the dynamic bit matching problem .

The first hitting time of a (1+1)-ES was analyzed by Droste [36] on the dynamic
bit matching problem, where exactly one bit is changed with a given probability p
after each function evaluation. It was shown that the expected first hitting time of
the (1+1)-ES is polynomial if and only if p = O(logn/n). Arnold and Beyer [4]
investigated the tracking behaviour of an (μ/μ , λ)-ES with self-adaptive mutation
step-size on a single continuously moving peak. They derived a formula to predict
the tracking distance of the population from the target. Jansen and Schellbach [49]
presented a rigorous performance analysis of the (1+λ)-EA on a tracking problem
in a two-dimensional lattice and showed that the expected first hitting time strictly
increases with the offspring population size (i.e., λ) whereas the expected number
of generations to reach the target decreases with λ . In [114], Weicker and Weicker
analyzed the behaviour of ESs with several mutation variants on a simple rotating
dynamic problem. In [111], Weicker presented a framework for classifying DOPs
and used it to analyze how the offspring population size and two special techniques
for DOPs affect the tracking probability of a (1,λ)-ES. Weicker [113] also used
Markov models to analyze the tracking behaviour of (1,λ)-ESs with different mu-
tation operators for a discrete optimization problem with a single moving optimum.

Rohlfshagen et al. [87] analyzed how the magnitude and frequency of changes
may affect the performance of the (1+1)-EA on two specially designed pseudo-
Boolean functions under the dynamic framework of the XOR DOP generator [118].
They demonstrated two counter-intuitive results, i.e., the algorithm is efficient if
the magnitude of change is large and inefficient when the magnitude of change is
small, and the algorithm is efficient if the frequency of change is very high and
inefficient if the frequency of change is sufficiently low. These results allow us to
gain a better understanding of how the dynamics of a function may affect the runtime
of an algorithm.

In addition to the above runtime analysis of EDO methodologies, there are also
theoretical analysis of dynamic fitness landscape [21, 22, 80, 81, 83, 84, 88, 89, 100,
101]. Readers are referred to [71] for a literature review on research in this area.

3 In a (1+1) EA, there is only one solution maintained in the population. In each iteration,
the unique solution acts as the parent to generate an offspring via mutation. If the fitness
of the offspring is not worse than the parent, the offspring will replace the parent; other-
wise, the parent will survive into the next generation.

2 Evolutionary Dynamic Optimization: Methodologies 55

2.4 Summary and Future Research Directions

2.4.1 Summary

The review above showed that each EDO approach seems to be suitable only for
certain types of DOPs, which conforms to the No Free Lunch theorem [116]. The
fact that each approach is likely to be suitable to some particular classes of problems
is also the reason why many recent studies try to combine different approaches
into one single algorithm to solve the problems better. Overall, multi-population
approaches seem to be the most flexible approach to date in the continuous domain.

The review showed that there have been some recent works on the theory behind
EDO. These theoretical studies are still quite basic. However, they have made very
important first steps toward understanding EDO and will surely act as the basis for
further theoretical studies on EDO.

It should be noted that most existing EDO methods were tested and evaluated
on academic problems only. This leads to the question of whether these methods
would still be effective in real-world DOPs. In the next subsection, we will discuss
this question in detail.

2.4.2 The Gaps between Academic Research and Real-World
Problems

The lack of a clear link between EDO academic research and real-world scenarios
has lead to some criticisms on how realistic current academic problems are. Ursem
et al. [105] questioned the importance of current academic benchmarks by stating
that “no research has been conducted to thoroughly evaluate how well they reflect
characteristic dynamics of real-world problems”; Branke et al. [22] pointed out that
“little has been done to characterize and understand the nature of a change in real-
world problems”; Rohlfshagen and Yao [88] criticized that “a large amount of effort
is directed at an academic problem that may only have little relevance in the real
world”; and in [74, 76], it has been showed that there are some classes of real-
world problems whose characteristics have not been captured by existing academic
research yet. Nguyen and Yao [76] also showed evidence of situations where exist-
ing EDO techniques could not solve certain classes of DOPs effectively due to the
uncaptured characteristics of DOPs.

Recently, a detailed analysis [70, Chapter 3] of a large set of recent “real”4 real-
world DOPs has been made to investigate the characteristics of real-world problems
and how they relate to the characteristics of current academic benchmark problems.
This investigation pointed out certain gaps between academic EDO research and real-
world DOPs. First, current studies in academic EDO do not cover all types of com-

4 Only references that actually use real-world data or solve problems in actual real-world
situations were considered. Benchmark problems, even if designed to simulate real-world
applications, were not considered unless there is evidence that the data used to create the
benchmark were taken from real-world applications.

56 T.T. Nguyen et al.

mon DOPs yet. There are two types of problems that are very common in real-world
situations but received very little attention from the community: dynamic constrained
problems and time-linkage problems. Second, although many current EDO academic
research works only focus on one major optimization goal: optimality (to find the best
fitness value), the study in [70] showed that there might be many other common op-
timization goals. Third, although most current EDO benchmark problems have only
one changing factor, the study in [70] showed that there are also other common types
of changing factors: constraints, number of variables, domain ranges, etc.

In summary, the review in [70] showed that besides the characteristics and as-
sumptions commonly used in EDO academic research, real-world DOPs also have
other important types of problems and problem characteristics that have not been
studied extensively by the EDO community. In order to solve real-world DOPs
more effectively, it is necessary to take these characteristics and problem types into
account when designing new methodolgoies.

2.4.3 Future Research Directions

As reviewed in this chapter, there have been many studies devoted to EDO method-
olgoies and fruitful results have been achieved. However, the research domain of
EDO is still relatively young. Much more effort is needed to fully develop and un-
derstand the domain of EDO. Some future research directions on EDO methodolo-
gies are highlighted and suggested as follows.

First, although a number of EDO approaches have been developed for solving
DOPs, new efficient approaches are of great needs. As the review has shown, dif-
ferent methods have different strength and weakness on different DOPs. Hence, it is
also worthy to further develop and investigate hybrid methods for DOPs in the future.
Here, it is very important to develop adaptive systems that can deal with DOPs of
different characteristics. Active adaptability should also be addressed so that future
algorithms are able to effectively handle dynamics even without change detection.

Second, as shown earlier in this chapter, most EDO methodologies focus on solv-
ing academic problems, where there is no clear link to real-world characteristics.
Although there have been some real-world application studies on EDO, e.g., see
[28–30, 70, 117] (also see [70, 123] for detailed lists of references), the number of
EDO application studies so far is still very limited. One of the important research
direction for the EDO community is to consider and model more real-world DOPs,
and apply EDO and other meta-heuristic methods to solve them in the future. This
will further enhance the applicability and feasibility of EDO in practical situations.

Third, as discussed earlier, theoretical research on EDO is still at the beginning
stage. The relative lack of theoretical proof on EDO makes it difficult to evaluate
the strength and weakness of EDO algorithms on solving different types of DOPs.
As reviewed, the computational complexity analysis of EDO has started with some
promising results. However, this area of study needs to be extended significantly to
gain more insight as to which DOP is difficult or easy to solve for what types of
EDO methods. Here, techniques for analyzing evolutionary optimization on static

2 Evolutionary Dynamic Optimization: Methodologies 57

problems, e.g., drift analysis [46, 47], may be applied or adapted to analyze EDO.
It will also be beneficial to analyse the dynamic behavour of EDO algorithms and
how the behavour satisfies the real-world practitioners’ requirements, which are not
always the ability to identify/track the global optimum after each change.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of UK under Grant numbers EP/E058884/1, EP/K001523/1,
EP/E060722/1, and EP/K001310/1, a UK ORS Award, a studentship from the School of
Computer Science, University of Birmingham, and an EU-funded project named “Intelligent
Transportation for Dynamic Environment (InTraDE)”.

References

[1] Abbass, H.A., Deb, K.: Searching under multi-evolutionary pressures. In: Fonseca,
C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 391–404. Springer, Heidelberg (2003)

[2] Andersen, H.C.: An investigation into genetic algorithms, and the relationship between
speciation and the tracking of optima in dynamic functions. Honours thesis, Queens-
land University of Technology, Brisbane, Australia (1991)

[3] Angeline, P.J.: Tracking extrema in dynamic environments. In: Angeline, P.J., McDon-
nell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 335–345.
Springer, Heidelberg (1997)

[4] Arnold, D.V., Beyer, H.-G.: Random Dynamics Optimum Tracking with Evolution
Strategies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas,
J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 3–12. Springer, Hei-
delberg (2002)

[5] Arnold, D.V., Beyer, H.G.: Optimum tracking with evolution strategies. Evol. Com-
put. 14(3), 291–308 (2006)

[6] Azevedo, C., Araujo, A.: Generalized immigration schemes for dynamic evolutionary
multiobjective optimization. In: Proc. 2011 IEEE Congr. Evol. Comput., pp. 2033–
2040 (2011)

[7] Bäck, T.: On the behavior of evolutionary algorithms in dynamic environments. In:
Proc. 1998 IEEE Int. Conf. on Evol. Comput., pp. 446–451 (1998)

[8] Bendtsen, C.N., Krink, T.: Dynamic memory model for non-stationary optimization.
In: Proc. 2002 IEEE Congr. Evol. Comput., pp. 145–150 (2002)

[9] Blackwell, T.: Particle swarm optimization in dynamic environment. In: Yang, S.,
Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain En-
vironments. SCI, vol. 51, pp. 28–49. Springer, Heidelberg (2007)

[10] Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

[11] Blackwell, T.M., Bentley, P.J.: Dynamic search with charged swarms. In: Proc. 2002
Genetic and Evol. Comput. Conf., pp. 19–26 (2002)

[12] Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dy-
namic optimization. In: Yang, S., Branke, J. (eds.) GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization (2005)

58 T.T. Nguyen et al.

[13] Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Yang,
S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain En-
vironments. SCI, vol. 51, pp. 129–152. Springer, Heidelberg (2007)

[14] Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimiza-
tion with evolutionary algorithms: the stochastic case. In: Proc. 2002 Genetic and Evol.
Comput. Conf., pp. 1165–1172 (2007)

[15] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1875–1882 (1999)

[16] Branke, J.: Evolutionary approaches to dynamic environments - updated survey. In:
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 27–30 (2001)

[17] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2001)
[18] Branke, J.: Evolutionary approaches to dynamic optimization problems – introduction

and recent trends. In: Branke, J. (ed.) GECCO Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems, pp. 2–4 (2003)

[19] Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population ap-
proach to dynamic optimization problems. In: Proc. 4th Int. Conf. Adaptive Com-
put. Des. Manuf., pp. 299–308 (2000)

[20] Branke, J., Mattfeld, D.: Anticipation and flexibility in dynamic scheduling. Int. J. of
Production Research 43(15), 3103–3129 (2005)

[21] Branke, J., Orbayı, M., Uyar, Ş.: The role of representations in dynamic knapsack
problems. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp.
764–775. Springer, Heidelberg (2006)

[22] Branke, J., Salihoglu, E., Uyar, Ş.: Towards an analysis of dynamic environments. In:
Proc. 2005 Genetic and Evol. Comput. Conf., pp. 1433–1439 (2005)

[23] Branke, J., Wang, W.: Theoretical analysis of simple evolution strategies in quickly
changing environments. In: Proc. 2003 Genetic and Evol. Comput. Conf., pp. 537–
548 (2003)

[24] Bui, L., Abbass, H., Branke, J.: Multiobjective optimization for dynamic environ-
ments. In: Proc. 2005 IEEE Congr. Evol. Comput., vol. 3, pp. 2349–2356 (2005)

[25] Carlisle, A., Dozier, G.: Adapting particle swarm optimisationto dynamic environ-
ments. In: Proc. 2000 Int. Conf. on Artif. Intell., pp. 429–434 (2000)

[26] Carlisle, A., Dozier, G.: Tracking changing extrema with adaptive particle swarm op-
timizer. In: Proc. 5th World Automation Congr., vol. 13, pp. 265–270 (2002)

[27] Cedeno, W., Vemuri, V.R.: On the use of niching for dynamic landscapes. In: Proc.
1997 IEEE Int. Conf. on Evol. Comput. (1997)

[28] Cheng, H., Yang, S.: Genetic algorithms with immigrants schemes for dynamic multi-
cast problems in mobile ad hoc networks. Eng. Appl. of Artif. Intell. 23(5), 806–819
(2010)

[29] Cheng, H., Yang, S.: Multi-population genetic algorithms with immigrants scheme for
dynamic shortest path routing problems in mobile ad hoc networks. In: Di Chio, C.,
et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 562–571. Springer,
Heidelberg (2010)

[30] Chitty, D.M., Hernandez, M.L.: A hybrid ant colony optimisation technique for dy-
namic vehicle routing. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp.
48–59. Springer, Heidelberg (2004)

[31] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in
genetic algorithms having continuouis, time-dependent nonstationary environments.
Technical Report AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

2 Evolutionary Dynamic Optimization: Methodologies 59

[32] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proc. 1993 Int. Conf. on Genetic Algorithms, pp. 523–530 (1993)

[33] Collingwood, E., Corne, D., Ross, P.: Useful diversity via multiploidy. In: Proc. 1996
IEEE Int. Conf. on Evol. Comput., pp. 810–813 (1996)

[34] Daneshyari, M., Yen, G.: Dynamic optimization using cultural based pso. In: Proc.
2011 IEEE Congr. Evol. Comput., pp. 509–516 (2011)

[35] Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and
decision-making using modified NSGA-II: A case study on hydro-thermal power
scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO
2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[36] Droste, S.: Analysis of the (1+1) ea for a dynamically changing onemax-variant. In:
Proc. 2002 IEEE Congr. Evol. Comput., pp. 55–60 (2002)

[37] Eggermont, J., Lenaerts, T., Poyhonen, S., Termier, A.: Raising the dead: Extend-
ing evolutionary algorithms with a case-based memory. In: Miller, J., Tomassini, M.,
Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS,
vol. 2038, pp. 280–290. Springer, Heidelberg (2001)

[38] Fernández, J.L., Arcos, J.L.: Adapting particle swarm optimization in dynamic and
noisy environments. In: Proc. 2010 IEEE Congr. Evol. Comput., pp. 765–772 (2010)

[39] de França, F.O., Von Zuben, F.J.: A dynamic artificial immune algorithm applied to
challenging benchmarking problems. In: Proc. 2009 IEEE Congr. Evol. Comput., pp.
423–430 (2009)

[40] Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dy-
namic multiobjective optimization. IEEE Trans. on Evol. Comput. 13(1), 103–127
(2009)

[41] Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algo-
rithms with dominance and diploidy. In: Proc. Int. Conf. on Genetic Algorithms, pp.
59–68 (1987)

[42] Gouvêa Jr., M., Araújo, A.: Adaptive evolutionary algorithm based on population dy-
namics for dynamic environments. In: Proc. 2011 Genetic and Evol. Comput. Conf.,
pp. 909–916 (2011)

[43] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd Int.
Conf. Parallel Problem Solving from Nature, pp. 137–144 (1992)

[44] Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: A genetic algorithm ap-
proach. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 2031–2038 (1999)

[45] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary
algorithms: a forward-looking approach. In: Proc. 2006 Genetic and Evol. Comput.
Conf., pp. 1201–1208 (2006)

[46] He, J., Yao, X.: From an individual to a population: An analysis of the first hitting
time of population-based evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5),
495–511 (2002)

[47] He, J., Yao, X.: A study of drift analysis for estimating computation time of evolution-
ary algorithms. Natural Computing 3(1), 21–35 (2004)

[48] Hu, X., Eberhart, R.: Adaptive particle swarm optimisation: detection and response to
dynamic systems. In: Proc. 2002 IEEE Congr. Evol. Comput., pp. 1666–1670 (2002)

[49] Jansen, T., Schellbach, U.: Theoretical analysis of a mutation-based evolutionary al-
gorithm for a tracking problem in lattice. In: Proc. 2005 Genetic and Evol. Comput.
Conf., pp. 841–848 (2005)

[50] Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive
variant. IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern. 35, 1272–1282 (2005)

60 T.T. Nguyen et al.

[51] Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer for noisy and
dynamic environments. Genetic Programming and Evolvable Machines 7(4), 329–354
(2006)

[52] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

[53] Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the
multi-objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops
2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

[54] Kramer, G.R., Gallagher, J.C.: Improvements to the *CGA enabling online intrinsic in
compact EH devices. In: Proc. 2003 NASA DoD Conf. on Evolvable Hardware, pp.
235–231 (2003)

[55] Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: Brain cine mri segmentation based
on a multiagent algorithm for dynamic continuous optimization. In: Proc. 2011 IEEE
Congr. Evol. Comput., pp. 1695–1702 (2011)

[56] Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and sim-
ple mutation on non-stationary problems. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 139–148. Springer, Heidel-
berg (1998)

[57] Li, C., Yang, S.: A clustering particle swarm optimizer for dynamic optimization. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 439–446 (2009)

[58] Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a
dynamic environment. In: Proc. 2006 Genetic and Evol. Comput. Conf., pp. 51–58
(2006)

[59] Liu, L., Wang, D., Yang, S.: Compound particle swarm optimization in dynamic envi-
ronments. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp.
616–625. Springer, Heidelberg (2008)

[60] Louis, S.J., Xu, Z.: Genetic algorithms for open shop scheduling and re-scheduling.
In: Cohen, M.E., Hudson, D.L. (eds.) Proc. ISCA 11th Int. Conf. on Computers and
their Applications, pp. 99–102 (1996)

[61] Lung, R.I., Dumitrescu, D.: A new collaborative evolutionary-swarm optimization
technique. In: Proc. 2007 Genetic and Evol. Comput. Conf., pp. 2817–2820 (2007)

[62] Mavrovouniotis, M., Yang, S.: Memory-based immigrants for ant colony optimization
in changing environments. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I.
LNCS, vol. 6624, pp. 324–333. Springer, Heidelberg (2011)

[63] Mendes, R., Mohais, A.: Dynde: a differential evolution for dynamic optimization
problems. In: Proc. 2005 IEEE Congr. Evol. Comput., pp. 2808–2815 (2005)

[64] Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means
of the feedback thermodynamical genetic algorithm. In: Eiben, A.E., Bäck, T., Schoe-
nauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 149–158. Springer,
Heidelberg (1998)

[65] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer, Berlin (2004) ISBN 3-540-21231-0

[66] Moser, I.: Review - all currently known publications on approaches which solve the
moving peaks problem. Tech. Rep., Swinburne University of Technology, Melbourne,
Australia (2007)

[67] Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. In: Proc. 2007 IEEE Congr. Evol. Comput.,
pp. 252–259 (2007)

2 Evolutionary Dynamic Optimization: Methodologies 61

[68] Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for
non-stationary function optimization. In: Proc. 6th Int. Conf. on Genetic Algorithms,
pp. 159–166 (1995)

[69] Nguyen, T.T.: Tracking optima in dynamic environments using evolutionary algo-
rithms - rsmg report 5. Tech. Rep., School of Computer Science, University of Birm-
ingham (2008), http://www.cs.bham.ac.uk/˜txn/unpublished/
reports/Report 5 Thanh.pdf

[70] Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms.
Ph.D. thesis, School of Computer Science, University of Birmingham (2011),
http://etheses.bham.ac.uk/1296 and
http://www.staff.ljmu.ac.uk/enrtngu1/theses/
phd thesis nguyen.pdf

[71] Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of
the state of the art. Swarm and Evol. Comput. 6, 1–24 (2012)

[72] Nguyen, T.T., Yang, Z., Bonsall, S.: Dynamic time-linkage problems - the challenges.
In: IEEE RIVF Int. Conf. on Computing and Communication Technologies, Research,
Innovation, and Vision for the Future, pp. 1–6 (2012)

[73] Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697 (2009)

[74] Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et
al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg
(2009)

[75] Nguyen, T.T., Yao, X.: Solving dynamic constrained optimisation problems using
stochastic ranking and repair methods. IEEE Trans. Evol. Comput. (2010) (submit-
ted), http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
Nguyen Yao dRepairGA.pdf

[76] Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimisation - the challenges.
IEEE Trans. Evol. Comput. 16(6), 769–786 (2012)

[77] Oppacher, F., Wineberg, M.: The Shifting Balance Genetic Algorithm: Improving the
GA in a Dynamic Environment. In: Proc. 1999 Genetic and Evol. Comput. Conf.,
vol. 1, pp. 504–510 (1999)

[78] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

[79] Ramsey, C.L., Grefenstette, J.J.: Case-based initialization of genetic algorithms. In:
Proc. 5th Int. Conf. on Genetic Algorithms, pp. 84–91 (1993)

[80] Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness land-
scapes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 111–120. Springer,
Heidelberg (2004)

[81] Richter, H.: Evolutionary optimization in spatio–temporal fitness landscapes. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)

[82] Richter, H.: Detecting change in dynamic fitness landscapes. In: Proc. 2009 IEEE
Congr. Evol. Comput., pp. 1613–1620 (2009)

[83] Richter, H.: Memory design for constrained dynamic optimization problems. In: Di
Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561.
Springer, Heidelberg (2010)

[84] Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions.
In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 596–605.
Springer, Heidelberg (2008)

http://www.cs.bham.ac.uk/~txn/unpublished/reports/Report_5_Thanh.pdf
http://www.cs.bham.ac.uk/~txn/unpublished/reports/Report_5_Thanh.pdf
http://etheses.bham.ac.uk/1296
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phd_thesis_nguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phd_thesis_nguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/Nguyen_Yao_dRepairGA.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/Nguyen_Yao_dRepairGA.pdf

62 T.T. Nguyen et al.

[85] Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic
optimization problems. Soft Comput. 13(12), 1163–1173 (2009)

[86] Riekert, M., Malan, K.M., Engelbrecht, A.P.: Adaptive genetic programming for dy-
namic classification problems. In: Proc. 2009 IEEE Congr. Evol. Comput., pp. 674–
681 (2009)

[87] Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An analysis
of frequency and magnitude of change. In: Proc. 2009 Genetic and Evol. Comput.
Conf., pp. 1713–1720 (2009)

[88] Rohlfshagen, P., Yao, X.: Attributes of dynamic combinatorial optimisation. In: Li, X.,
et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 442–451. Springer, Heidelberg (2008)

[89] Rohlfshagen, P., Yao, X.: On the role of modularity in evolutionary dynamic optimi-
sation. In: Proc. 2010 IEEE Congr. Evol. Comput., pp. 3539–3546 (2010)

[90] Rossi, C., Abderrahim, M., Dı́az, J.C.: Tracking moving optima using kalman-based
predictions. Evol. Comput. 16(1), 1–30 (2008)

[91] Ryan, C.: The degree of oneness. In: Proc. 1st Online Workshop on Soft Computing,
pp. 43–49 (1996)

[92] Salomon, R., Eggenberger, P.: Adaptation on the evolutionary time scale: A working
hypothesis and basic experiments. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer,
M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 251–262. Springer, Heidelberg
(1998)

[93] Simões, A., Costa, E.: Memory-based chc algorithms for the dynamic traveling sales-
man problem. In: Proc. 2011 Genetic and Evol. Comput. Conf., pp. 1037–1044 (2011)

[94] Simões, A., Costa, E.: An immune system-based genetic algorithm to deal with dy-
namic environments: Diversity and memory. In: Pearson, D.W., Steele, N.C., Albrecht,
R. (eds.) Proc. 2003 Int. Conf. on Neural Networks and Genetic Algorithms (ICAN-
NGA 2003), pp. 168–174 (2003)

[95] Simões, A., Costa, E.: Improving memory’s usage in evolutionary algorithms for
changing environments. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 276–283
(2007)

[96] Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction
using linear regression and markov chains. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer,
Heidelberg (2008)

[97] Simões, A., Costa, E.: Improving prediction in evolutionary algorithms for dynamic
environments. In: Proc. 2009 Genetic and Evol. Comput. Conf., pp. 875–882 (2009)

[98] Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility
driven evolutionary algorithm (IDEA) on constrained dynamic single objective opti-
mization problems. In: Proc. 2009 IEEE Congr. Evol. Comput., pp. 3127–3134 (2009)

[99] Stanhope, S.A., Daida, J.M.: Genetic algorithm fitness dynamics in a changing envi-
ronment. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1851–1858 (1999)

[100] Tinos, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-
rithms. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 236–243 (2007)

[101] Tinós, R., Yang, S.: An analysis of the XOR dynamic problem generator based on the
dynamical system. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN
XI, Part I. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)

[102] Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolution-
ary algorithms. Evol. Comput. 11(2), 151–167 (2003)

[103] Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1843–1850 (1999)

2 Evolutionary Dynamic Optimization: Methodologies 63

[104] Ursem, R.K.: Multinational GA optimization techniques in dynamic environments. In:
Proc. 2000 Genetic and Evol. Comput. Conf., pp. 19–26 (2000)

[105] Ursem, R.K., Krink, T., Jensen, M.T., Michalewicz, Z.: Analysis and modeling of con-
trol tasks in dynamic systems. IEEE Trans. Evol. Comput. 6(4), 378–389 (2002)

[106] Uyar, A.S., Harmanci, A.E.: A new population based adaptive domination change
mechanism for diploid genetic algorithms in dynamic environments. Soft Com-
put. 9(11), 803–814 (2005)

[107] Vavak, F., Fogarty, T.C., Jukes, K.: A genetic algorithm with variable range of local
search for tracking changing environments. In: Ebeling, W., Rechenberg, I., Voigt,
H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 376–385. Springer,
Heidelberg (1996)

[108] Vavak, F., Jukes, K., Fogarty, T.C.: Learning the local search range for genetic op-
timisation in nonstationary environments. In: Proc. 1997 IEEE Int. Conf. on Evol.
Comput., pp. 355–360 (1997)

[109] Vavak, F., Jukes, K.A., Fogarty, T.C.: Performance of a genetic algorithm with variable
local search range relative to frequency for the environmental changes. In: Proc. 3rd
Int. Conf. on Genetic Programming, pp. 602–608 (1998)

[110] Wang, Y., Wineberg, M.: Estimation of evolvability genetic algorithm and dynamic
environments. Genetic Programming and Evolvable Machines 7(4), 355–382 (2006)

[111] Weicker, K.: An analysis of dynamic severity and population size. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

[112] Weicker, K.: Evolutionary algorithms and dynamic optimization problems. Der An-
dere Verlag (2003)

[113] Weicker, K.: Analysis of local operators applied to discrete tracking problems. Soft
Comput 9(11), 778–792 (2005)

[114] Weicker, K., Weicker, N.: On evolution strategy optimization in dynamic environ-
ments. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 2039–2046 (1999)

[115] Woldesenbet, Y.G., Yen, G.G.: Dynamic evolutionary algorithm with variable reloca-
tion. IEEE Trans. Evol. Comput. 13(3), 500–513 (2009)

[116] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1(1), 67–82 (1997)

[117] Xing, L., Rohlfshagen, P., Chen, Y., Yao, X.: A hybrid ant colony optimisation algo-
rithm for the extended capacitated arc routing problem. IEEE Trans. Syst., Man and
Cybern., Part B: Cybern. 41(4), 1110–1123 (2011)

[118] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments.
In: Proc. 2005 Genetic and Evol. Comput. Conf., pp. 1115–1122 (2005)

[119] Yang, S.: Associative memory scheme for genetic algorithms in dynamic environ-
ments. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–
799. Springer, Heidelberg (2006)

[120] Yang, S.: A comparative study of immune system based genetic algorithms in dynamic
environments. In: Proc. 2006 Genetic and Evol. Comput. Conf., pp. 1377–1384 (2006)

[121] Yang, S.: On the design of diploid genetic algorithms for problem optimization in
dynamic environments. In: Proc. 2006 IEEE Congr. Evol. Comput., pp. 1362–1369
(2006)

[122] Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

64 T.T. Nguyen et al.

[123] Yang, S., Jiang, Y., Nguyen, T.T.: Metaheuristics for dynamic combinatorial optimiza-
tion problems. IMA J. of Management Mathematics (2012),
doi:10.1093/imaman/DPS021

[124] Yang, S., Jin, Y., Ong, Y.S. (eds.): Evolutionary Computation in Dynamic and Uncer-
tain Environments. Springer, Heidelberg (2007)

[125] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[126] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[127] Yu, E.L., Suganthan, P.N.: Evolutionary programming with ensemble of explicit mem-
ories for dynamic optimization. In: Proc. 2009 IEEE Congr. Evol. Comput., pp. 431–
438 (2009)

[128] Zeng, S., Shi, H., Kang, L., Ding, L.: Orthogonal dynamic hill climbing algorithm:
ODHC. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic
and Uncertain Environments. SCI, vol. 51, pp. 79–105. Springer, Heidelberg (2007)

[129] Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-based population re-
initialization for evolutionary dynamic multi-objective optimization. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp.
832–846. Springer, Heidelberg (2007)

[130] Zou, X., Wang, M., Zhou, A., Mckay, B.: Evolutionary optimization based on chaotic
sequence in dynamic environments. In: Proc. 2004 IEEE Int. Conf. on Networking,
Sensing and Control, vol. 2, pp. 1364–1369 (2004)

Chapter 3
Evolutionary Dynamic Optimization:
Challenges and Perspectives

Philipp Rohlfshagen and Xin Yao

Abstract. The field of evolutionary dynamic optimization is concerned with the
study and application of evolutionary algorithms to dynamic optimization problems.
In this chapter we highlight some of the challenges associated with the time-variant
nature of these problems. We focus particularly on the different problem definitions
that have been proposed, the modelling of dynamic optimization problems in terms
of benchmark suites and the way the performance of an algorithm is assessed. Amid
significant developments in the last decade, several practitioners have highlighted
shortcomings with all of these fundamental issues. In this chapter we review the
work done in each of these areas, evaluate the criticism and subsequently identify
some perspectives for the future of the field.

3.1 Introduction

The field of evolutionary dynamic optimization [5, 7, 8, 14, 21, 32, 52] is con-
cerned with the study and application of evolutionary algorithms (EAs) to dynamic
optimization problems (DOPs). The dynamics of these problems poses many chal-
lenges not commonly found in stationary optimization. In particular, it is generally
understood that the problem’s dependency on time requires an algorithm not only
to locate high quality solutions but also to track them as closely as possible. This
poses numerous problems to traditional EAs and a wealth of new techniques have
been proposed in recent years to improve their performances. Indeed, most efforts
have been dedicated to the design of new algorithms. However, many additional
challenges need to be addressed as each has a fundamental impact on the develop-
ments in evolutionary dynamic optimization. In this chapter we highlight some of
these challenges.

Philipp Rohlfshagen · Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K.
e-mail: philipp.r@gmail.com, X.Yao@cs.bham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 65–84.
DOI: 10.1007/978-3-642-38416-5_3 c© Springer-Verlag Berlin Heidelberg 2013

66 P. Rohlfshagen and X. Yao

We focus in particular on three fundamental inter-dependent challenges, each of
which may have numerous sub-challenges, as outlined in the relevant sections of
this chapter:

1. Problem definition and general framework for dynamic optimization.
2. Specifications of benchmark problems and experimental designs.
3. Problem requirements, notions of optimality and performance measures.

Challenge 1: one of the most fundamental challenges in evolutionary dynamic opti-
mization is the problem definition itself. Although numerous definitions have been
proposed, a general framework that allows practitioners to fully articulate their as-
sumptions about a problem’s properties is still missing. This has a profound impact
on our understanding of the problem domain and the lack of standards often compli-
cates the generalisation of empirical results from specific scenarios to a wider class
of problems; this challenge is discussed in Section 3.2.

Challenge 2: the first challenge is partially addressed by the availability of dy-
namic benchmark problems, used by many practitioners to test and evaluate their
algorithms. However, the design of general benchmarks is particularly challenging
in the dynamic domain, especially in the combinatorial case where fitness landscape
dynamics depend on the algorithm’s representation and variation operators. Several
practitioners have questioned whether these benchmark problems are representa-
tive of real-world dynamics and whether experimental settings are flexible enough
to reflect the requirements of tackling real-world DOPs. We review these issues in
Section 3.3.

Challenge 3: the third major challenge considered is closely related to the require-
ments imposed by real-world problems and concerns the way the performance of an
algorithm is assessed. A performance measure used should reflect the algorithm’s
ability to locate satisfactory solutions given the requirements of the problem: an ap-
propriate notion of optimality thus needs to be defined a priori. Many performance
measures have been proposed in the past yet most of them have not been linked
explicitly to the requirements of the problem. Section 3.4 highlights these issues.

Clearly, all challenges considered are related to one another. For instance, it is
difficult to express a problem’s requirements without the proper tools to do so. Like-
wise, it is impossible to model real-world dynamics without a good understanding
of them. These interdependencies will become apparent throughout this chapter.
Finally, the chapter is concluded in Section 3.5 where we summarise how these
challenges have been addressed to date and subsequently outline some perspectives
for future work in evolutionary dynamic optimization.

3.2 Challenge I: Problem Definition

3.2.1 Optimization in Uncertain Environments

An arbitrary problem domain
F : X → Y (3.1)

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 67

may be modelled as a functional mapping from some search space X to some other
domain Y . The search space X corresponds to the set of the candidate solutions, each
with quality f (x) for each problem instance f ∈F . The function f is usually referred
to as the objective function and the n elements xi are known as the decision or design
variables. The set of all f-values corresponding to all elements in X is denoted f̂ .
The majority of real-world problems have inequality and/or equality constraints as
specified by the functions g : X → Y p and h : X → Y q respectively; a solution is
considered feasible if gi(x)≤ 0, i = 1, . . . , p and h j(x) = 0, j = 1, . . . ,q (see [36]).

A function f ∈ F , as defined above, constitutes an search problem once a notion
of optimality has been defined: a solution concept is required to distinguish between
those points in X that constitute (acceptable) solutions and those that do not [17].
In the majority of cases where one has to content with satisficing (rather than op-
timising), this notion is defined trivially as those points that minimise or maximise
f (see [44], cited in [37]); without loss of generality, we will consider the goal of
maximisation for the remainder of this chapter.

A search algorithm that implements the specified solution concept may subse-
quently be used to locate the desired solutions. In the case of maximisation, the best
possible solutions is known as the function’s global optimum x�, f (x�)≥ f (x), ∀x∈
X which the algorithm should find as quickly as possible. Alternatively, one is inter-
ested in the best solution returned by the algorithm given a predetermined amount
of time. A common obstacle encountered by the algorithm is the presence of local
optima, defined as points x ∈ X such that f (x∗) ≥ f (x), ∀x ∈ N(x∗) where N(x) is
the neighbourhood of x, determined by the algorithm’s variation operators.

Traditionally, the majority of work in evolutionary computation has concentrated
on stationary optimization problems. Nevertheless, a significant effort has also been
devoted to other domains, particularly those characterised by uncertainty. In [21], Jin
and Branke review four distinct types of uncertain environments: noisy optimization
problems, robust optimization, approximate optimization and DOPs, the focus of
this chapter.

Jin and Branke [21] consider DOPs to be the set of functions that are deterministic
at any point in time, but dependent on time t ∈ N:

F : X ×N→ Y (3.2)

The definition set forth in Eq. (3.2) is a straightforward extension to Eq. (3.1). This
generality of this definition is not surprising considering that in principle any com-
ponent of f may change over time (i.e., an arbitrary fa ∈ F may transition to any
fb ∈ F). However, it is questionable how useful such a general problem definition
is: it implies, for instance, that the class of DOPs includes all those problems that do
not actually change over time. Indeed, the Handbook of Approximation Algorithms
and Metaheuristics [28] states that a general definition of DOPs does not exist (as
of 2007). Nevertheless, numerous extended problem definitions have been proposed
in the past that attempt to capture additional properties of DOPs; some of these are
briefly reviewed next.

68 P. Rohlfshagen and X. Yao

3.2.2 Problem Definitions

The fundamental difference between stationary and dynamic optimization problems
is, of course, time: in principle, any component of a problem may depend on time,
leading to a significant variety of problem dynamics. Several attempts have been
made in the past to capture some of these characteristics.

Trojanowski and Michalewicz [48] define a model M of the problem P as
M(P) = (D,F,C) where D is the time-variant domain of the decision variables, F the
potentially time-variant objective function and C the set of time-variant constraints.
The dynamics of the domain may affect either the dimensionality of the problem or
the interval of each decision variable. The authors note that this framework accounts
for both stationary and dynamic optimization problems.

Weicker [51, 52] proposes a much more detailed problem definition, hoping “to
establish a basis for comparison and classification of non-stationary functions as
well as for theoretical results on problem hardness and algorithm’s power.” [51, p
160]. Weicker assumes that each (continuous) dynamic function consists of several
static functions, each of which follows some dynamic rule, defined by a sequence of
distance preserving coordinate transformations, rotations and fitness rescalings. In
other words, the dynamics are defined with respect to the changes in f̂ and Weicker
comments that these properties cannot easily be applied outside the artificial domain
(also see [11]).

Rohlfshagen and Yao [40, 41] restrict their problem definition to those DOPs
where only the parameters (coefficients) of the function change. The dynamic equiv-
alence of the stationary problem f (x,δ) is subsequently defined as f (x,δ (t)), where
δ (t)∈ Δ are the parameters (including constraints) of the function at time t. The dy-
namics of the problem then correspond to different trajectories through the metric
space Δ :

δ (T)−→ δ (T + 1)−→ δ (T + 2)−→ . . . (3.3)

where T is a period index such that δ (T)� δ (T +1), ∀T . It is assumed that time ad-
vances with every call to the objective function and the function changes according
to the frequency of change τ : N×N→ N. The transitions are governed by a time-
variant mapping T : Δ ×N→ Δ that maps from one problem instance to another
such that δ (T + 1) = T (δ (T)).

Nguyen and Yao [35] propose an extended problem definition to account for
numerous aspects the authors believe have not been captured by previous problem
definitions, particularly time-linkage (see Section 3.3.3). The authors propose the
full-description form of a function: the idea is to model the dynamic function as
a parameterised set of stationary functions. It is those external parameters that are
subsequently varied: “most common types of changes in dynamic (time-linkage)
problems can be represented as changes in the parameter space if we can formulate
the problem in a general enough full-description form.” [35, p 739].

The majority of problem definitions concentrates primarily on the type of dy-
namics rather than their frequency. A common simplifying assumption is to equate
every call to the objective function with one time step. In other words, the algorithm
is treated as a discrete clock. The majority of practitioners assume a time-invariant

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 69

frequency of change and often correlated the time of change with the attributes of
the algorithm (see Section 3.3.4).

More recently, robust optimization over time (ROOT) [18, 23, 59] was proposed
as a new problem formulation as it seems to capture some characteristics of real-
world problems. It considers the cost of changing a solution, albeit implicitly, and
prefers the solution that is of high quality over a longer period of time even with
some minor environmental changes. A new solution is generated dynamically only
when the current solution does not perform well.

3.2.3 Characterisation of Dynamics

Numerous ways have been proposed in the past to characterise and classify a prob-
lem’s dynamics. Trojanowski and Michalewicz [48] consider cases where the func-
tion is either stationary or dynamic, with or without stationary/dynamic constraints.
The authors subsequently classify dynamics based on their regularity and distin-
guish between random changes, non-random and non-predictable changes and non-
random and predictable changes. The second classification refers to cases where
functional dependencies exist but are too complex to be captured by the algorithm.
The third classification allows the algorithm to predict future structural properties
and may be divided further into cyclical and non-cyclical changes. Finally, the au-
thors also consider the visibility of change (i.e., whether the algorithm needs to
detect changes) and distinguish between continuous and discrete dynamics. In the
former, the fitness function differs every time a sample is taken while in the latter,
there are periods of stagnation.

In [11], Branke lists classifications proposed by De Jong [25] who distinguishes
between alternating problems, problems with changing morphology, drifting land-
scapes and abrupt and discontinuous problems. Branke himself [8] considers fre-
quency of change, severity of change, predictability of change and cycle length/cycle
accuracy. The frequency of change determines the number of function evaluations
that may be performed between changes and the severity of change refers to the dis-
placement of the global optimum. The predictability of change implies the existence
of exploitable structural properties while the cycle length refers to the reappearance
of a previously encountered problem instance in a deterministic setting.

Younes et al. [58] differentiate between dynamically significant and insignificant
changes: a change is insignificant if it does not alter the structure of the problem in-
stance to such a degree that affects the behaviour of the algorithm used to tackle said
problem. Similarly, Karaman and Etaner-Uyar [26] define an effective environment
change as one that affects the selection probabilities of the candidate solutions.

In [50], Ursem et al. propose a new benchmark generator designed to capture
more closely the properties of real-world problems. The authors consider the fol-
lowing attributes some of which are closely related to those considered by De Jong
[25]: the problem’s periodicity describes the temporal correlation between succes-
sive values of a variable while the stochasticity of a variable describes the degree of

70 P. Rohlfshagen and X. Yao

randomness inherent in its dynamics. Drift is present in a variable if the value of the
variable has a tendency to change towards one direction only and finally, the authors
consider the dependencies amongst the time-variant parameters of the problem.

The multitude of different classifications highlights the variety of properties that
DOPs may exhibit, in particular if one considers all types of problems that corre-
spond to Eq. (3.2). The ability to accurately describe a specific class of dynamic
problems is thus vital. For instance, Pelta points out that we still lack a clear under-
standing of what actually constitutes an instance of a DOP (personal communica-
tion). In the following we highlight the importance to be able to specify a problem’s
properties and discuss several attributes a mathematical framework should be able
to capture.

3.2.4 Problem Properties, Assumptions and Generalisations

EAs are commonly employed as black-box algorithms (see [15]), using as guid-
ance only the f-values returned by the objective function. Clearly, one has to make
assumptions regarding the utility of the f-values in the search for the global opti-
mum and almost all search algorithms make the implicit assumption that, at least in
expectation, higher f-values, found in the vicinity of the currently sampled search
points, will lead to the global optimum. If these assumptions break down, the per-
formance of the algorithm will be degraded. Indeed, it has been shown that over all
functions f : A→ B (A and B are finites sets, B totally ordered [16]) closed under
permutation, any two algorithms α and β will perform equally, precisely because
the expected overall structural properties are removed from this set (No Free Lunch;
see [16, 53]). Subsequently, practitioners tend to concentrate on subsets of func-
tions that are “reasonable” [45] in that they are “simple” and “natural” [16]. In this
case, the performance of a particular algorithm may be superior to another algo-
rithm because the assumptions that were made during the design of the algorithm
are aligned with the underlying probability distribution of functions encountered by
the algorithm [53, p67].

The No Free Lunch theorem for optimization has also been proven for the case
of dynamic optimization problems [53]. It is thus important that any assumptions
inherent in algorithm’s design are communicated clearly to allow other practitioners
to apply the algorithm efficiently. In particular, “when an algorithm is developed for
specific problems, the boundaries of its performance should be clear, and we expect
estimates of reasonably good performance within and (at least modestly) outside its
‘seen’ instance distribution.” [13, p22]. Clearly articulated assumptions may thus
facilitate a more reliable generalisation from benchmark instances to unseen prob-
lem instances; this may overcome possible limitations of testing the algorithm on a
specific set of functions [13]. As Section 3.2.2 has shown, however, very few tools
exist to allow practitioners in evolutionary dynamic optimization to clearly express
their assumptions about the attributes of the problems considered. Indeed, as the
review of classifications of dynamics in Section 3.2.3 has shown, most concepts

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 71

are described in high-level terms and structural properties such as the magnitude of
change are often described in general terms such as “small”, “medium” and “large”.

Most practitioners make the assumption that the global optimum will, on aver-
age, move relatively little and that it may thus be beneficial to restrict the search to
the vicinity of the previously found global optimum: given the algorithm has already
sampled a previous problem instance by the time a change is encountered, “a natural
attempt to speed up optimization after a change would be to somehow use knowl-
edge about the previous search space to advance the search after a change.” [21, p
311]. This distance-based assumption is probably the most widely considered one
in the literature yet it usually relates to properties in the problem’s fitness landscape
(see Section 3.3.2) and thus depends on the algorithm’s chosen representation and
variation operators. It is thus necessary to consider dynamics that affect the problem
itself and it is vital to gain a better understanding of how changes in the problem
lead to different types of dynamics. For instance, there is some empirical evidence
show that the distance by which the global optimum is displaced is directly propor-
tional to the fitness distance correlation of the instance [40] which is determined by
the chosen algorithm.

3.3 Challenge II: Benchmark Problems

3.3.1 Benchmark Problems

The systematic evaluation and comparison of different algorithms necessitates the
use of unified benchmark problems these algorithms may be tested on (see [58]). In
order to account for a variety of different dynamics, numerous benchmark problems
have been proposed in the past.

The most widely used benchmark problem [14] is MOVING PEAKS, due to
Branke [8] ; this problem is conceptually identical to DF1, proposed by Morri-
son independently around the same time [33] . MOVING PEAKS is based on the
continuous domain and corresponds to a retrospective implementation of a dynamic
fitness landscape. It is modelled as a “field of cones” [33], where each cone may be
controlled individually to model different ranges of dynamics. The n-dimensional
function with m peaks is specificed as

f (x, t) := max
i=1,...,m

hi(t)
1+wi(t)∑n

j=1(x j− pi j(t))2 (3.4)

where p entails the peaks’ coordinate positions and w and h describe the width
and height of each peak respectively. The initial morphology is randomly generated
within the bounds specified by the user and the locations, widths and heights of all
peaks are subsequently varied over time. The motivation behind this approach is to
create a problem where the majority of changes are smooth and correlated with the
occasional drastic change when the height of the peaks change in such a way that
any of the local optima surpasses the currently global one [6].

72 P. Rohlfshagen and X. Yao

XOR DOP [54] is probably the most widely used benchmark problem for
the combinatorial domain and generates a dynamic version of any static pseudo-
Boolean problem: given a static fitness function f (x), x∈ {0,1}n, its dynamic equiv-
alence is simply

f (x(t)⊕m(T)) (3.5)

where ⊕ is the bit-wise exclusive-or operator. The period index T = �t/τ	 is deter-
mined by the update period τ . The binary mask m(T) ∈ {0,1}n is initially m(1) = 0
and is subsequently altered for each period k as follows: m(T) = m(T − 1)⊕ p(T)
where p(T) ∈ {0,1}n is a randomly created template for period T that contains
exactly �ρn� ones. The value of ρ ∈ [0,1] thus controls the magnitude of change
which is specified as the Hamming distance between two binary points, d(x,y) =
∑n

i=1 |xi−yi|. The values τ and ρ are usually kept constant throughout the execution
of the algorithm. XOR DOP has also been extended to generate cyclical and noisy
cyclical environments (see [56, 57]).

There are numerous additional dynamic problems that have been used in the eval-
uation of new algorithms and a full overview may be found in [14]. The simplest
functions considered correspond to the dynamic ONEMAX (which may be made
dynamic using XOR DOP) and the moving sphere function, f (x) = g(|x∗ − x|),
where the dynamics, with magnitude θ and direction v, are modelled as x∗(t +1) =
x∗(t)+θv (see [42] for details). These functions are frequently employed in theoret-
ical studies. Other noteworthy examples include in the continuous domain a continu-
ous benchmark with dynamic constraints [34], a test suite based on a multi-objective
optimization concept [22], and, in the combinatorial case, a deceptive function gen-
erator [55], a general purpose combinatorial benchmark based on permutations of
the mapping [58], the dynamic 0/1 knapsack problem [19, 39] and the multiple
knapsack problem [10]. Finally, Li and Yang [29] propose a generalised benchmark
that can be used in both continuous and combinatorial spaces. Similarly, Tinos and
Yang [46] propose an extension of XOR DOP to the continuous domain.

3.3.2 Combinatorial Fitness Landscapes

A significant number of studies in evolutionary dynamic optimization have focussed
on the continuous domain, particularly making use of MOVING PEAKS, DF1 and
numerous other dynamic variants of well-known continuous functions (e.g., dy-
namic Rastrigin or dynamic Rosenbrock; see [14, p 4]). One of the reasons for this
is the role played by the algorithm in visualising the problem’s dynamics. Given
some combinatorial problem f : X → Y , it is often necessary to transform X into a
domain that is suitable for the algorithm. This transformation is achieved using rep-
resentations: a representation is a mapping fg : Xg→ Xp that transforms an element
xg ∈ Xg to an element xp ∈ Xp; the former is commonly referred to as a genotype and
the latter as a phenotype. The objective function then corresponds to the composite
mapping f = fp ◦ fg = fp(fg(xg),δ), where fp : Xp×Δ → R (see [43]).

A significant number of different representations have been proposed for a va-
riety of domains and their impact on the algorithm’s behaviour is often estimated

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 73

by means of the fitness landscape metaphor, an abstract visualisation of the prob-
lem’s topological properties. A fitness landscape may be specified by the tuple
L = (Xg, fp◦g,dg). The distance metric dg is determined by the algorithm’s varia-
tion operators and determines the features of the space Xg, including the presence
of local optima. The chosen representation translates those features to the space Xp

and since the algorithm’s selection mechanism determines the search points visited
next, the combined effect of representation and variation operators determines the
overall topology of the search space.

The notion of a fitness landscape also applies in the dynamic domain. However,
the fitness landscape may now change over time and it follows that the choice of rep-
resentation and variation operators not only determines the structure of the station-
ary fitness landscape at a particular point in time but also the transition from one fit-
ness landscape to another. This makes it partiuclarly challenging to develop general
benchmark problems for the combinatorial domain. Younes et al [58] discuss this
issue and propose to induce dynamics by altering the mapping fg. The XOR DOP
benchmark, on the other hand, overcomes this issue altogether by restricting itself to
the pseudo-Boolean domain. Furthermore, as the analysis of XOR DOP has shown,
the rotations of the search points preserve all structural properties of the problem
(i.e., the underlying function remains stationary) [46, 47].

3.3.3 Real-World Dynamics

The previous section has highlighted the wide variety of problems that have been
considered in evolutionary dynamic optimization. Numerous studies have been ded-
icated to real-world problems yet the majority of work concentrates on artificial
benchmark problems: in [14], the authors present an extensive review of the prob-
lems considered in evolutionary dynamic optimization. The authors distinguish be-
tween synthetic dynamic problems and real world applications. The former has a
total of 144 references listed, whereas the latter lists only 21 references. However,
numerous practitioners have criticised these benchmarks as it has not been estab-
lished how well they represent the requirements of real-world problems.

Morrison and De Jong [33, p 2048] specify several properties they desire from a
useful benchmark generator, including an “easily modifiable landscape complexity
that is scalable to complexity levels representative of problems found in nature”. The
benchmark problems reviewed above do allow full control over important aspects of
the dynamics (e.g., frequency and magnitude of change). However, they have been
criticised by Ursem et al. [50, p 1] as “no research has been conducted to thoroughly
evaluate how well they reflect characteristic dynamics of real-world problems.”. The
same authors point out that these benchmarks “focus on how the landscape changes
instead of the underlying dynamics” (p 379) and conclude, based on the analysis
of their specific control-problem, meant to resemble a real-world problem, that “the
resulting fitness landscapes looked surprisingly different from the landscapes that
can be generated with traditional test-case generators” (p 387).

74 P. Rohlfshagen and X. Yao

Branke et al. make a similar observation: “although these artificial benchmark
problems are quite popular, it is not clear how closely their dynamics resemble the
dynamics of real-world problems.” [11, p 1434]. Likewise, Cruz et al. [14] point out
that it is not clear what real-world attributes should be modelled by the benchmark
problems. Such arguments are supported by the ommission of crtitical attributes
such as dynamic constraints, as pointed out by [34] in the case of dynamic contin-
uous functions. Furthermore, additional aspects such as time-linkage (e.g., [4, 30])
are rarely, if ever, captured.

Indeed, very few studies exists that examine possible dynamics encountered in
real-world scenarios and without such real-world data, it remains difficult to judge
what classes of dynamics may be of interest. Branke et al. [11, p 1434] point out
that “to our knowledge, no one has ever attempted to characterize and measure the
dynamism of the fitness landscape of a given dynamic real-world problem.” One of
the very few studies on this subject matter is by Andrews and Tuson who attempt to
investigate the requirements of practitioners of dynamic optimization with the intent
to “facilitate the appropriate choice of research directions” [2]. The authors attempt
to answer the questions regarding what aspects of the problem change, how they
change and what measure of success is of interest to the practitioner. Unfortunately,
the study is too small to be representative but the results indicate the importance
of dynamic constraints and, more importantly, the relevance of different notions of
optimality that depend on the application of interest.

There are additional drawbacks associated with the (desired) simplicity of the
most common benchmarks: as each peak in MOVING PEAKS (and indeed DF1)
is controlled individually, the complexity of the problem is necessarily limited
and most practitioners consider a relatively low number of peaks. Likewise, as
XOR DOP does not actually alter the underlying search space (the search points
are rotated by some degree but the underlying function is static) it is limited in its
applicability [46, 47]. It is useful at this stage to draw some parallels to the station-
ary domain: MOVING PEAKS, DF1, and XOR DOP are somewhat similar to the
NK-fitness landscape [27] which may be used to generate problem instances with
different characteristics. However, benchmarks such as this are usually used to study
particular attributes of an algorithm, which is subsequently validated on problems
representative of real-world scenarios (e.g., OR-library [3] which provides com-
monly used NP-hard optimization problems). There is a need for an equivalent in
the dynamic case and it may be possible to extract relevant information from the
few studies that do deal with real-world problems.

3.3.4 Experimental Settings

The testing of algorithms in the dynamic domain is a complex endeavour as the dy-
namics of a problem allow for a wide range of different scenarios and Cruz et al.
[14] point out the need to develop experimentation protocols that allows replication
of experiments conducted in empirical studies. In particular, the authors point out
that the concept of a problem instance is not as clearly defined as in the stationary

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 75

optimization case, particularly because the dynamics of the problem are insuffi-
ciently detailed. The authors also point out the need for new measures that may
be used to better understand the algorithm’s behaviour during its execution (i.e.,
beyond simple performance measures) and criticise the lack of non-parametric sta-
tistical tests in most empirical studies.

One of the most prominent attributes of DOPs is the magnitude of change and
most practitioners consider a range of values when evaluating their algorithm. How-
ever, the choice of these values, or indeed the dynamic mechanism itself, is often not
motivated. In particular, the dynamics considered are often random and only little or
no attention is paid to their long-term characteristics or the attributes of the current
configuration of the problem. Furthermore, the frequency of change is often chosen
specifically with a particular algorithm in mind: in order to avoid outdated f-values,
most practitioners adopt their experimental setups specifically to eradicate this is-
sue. In particular, as changes usually assumed to occur at unknown points in time, it
has become a common practice to measure the frequency of change in generations
(i.e., in periods of N function evaluations) and to make changes occur at intervals
that coincide precisely with the generational cycle of the algorithm. The trend has
also been extended to the measurement of an algorithm’s performance (see Section
3.4.1).

Branke and Wang [12] point out that this requirement is an oversimplification
of the requirements of real-world dynamics: the dynamics of a problem should be
treated independently of the algorithm. More specifically, DOPs are usually under-
stood to be real-time optimization processes and, as such, should be assumed to be
completely decoupled from the algorithm that searches for solutions (i.e., the prob-
lem may not be “paused” to grant the algorithm extra computational resources). The
authors subsequently investigate both theoretically and empirically the impact of
changes that take place during the evaluation of the algorithm’s population [9, 12].
The authors point out that it is possible to ignore such changes by updating the
model of the problem only at the end of the generation. However, this (a) assumes
that changes are detected externally and that the algorithm has full control over the
model and (b) potentially implies that solutions are implemented which have been
evaluated before the change (i.e., their real f-value or validity is unknown). The is-
sue of change detection itself has been addressed by Richter [38]) who investigates
the efficacy of population-based and sensor-based detection mechanism.

3.4 Challenge III: Notions of Optimality

3.4.1 Performance Measures in Evolutionary Dynamic
Optimization

A performance measure (or metric) should indicate an algorithm’s degree of
success in finding desired solutions (as specified by the solution concept) to a par-
ticular search problem; it is thus an indicator of how well the algorithm imple-
ments the solution concept. In the case of stationary optimization, practitioners are

76 P. Rohlfshagen and X. Yao

commonly interested in the time taken to find a solution of satisfactory quality or the
best solution quality obtained after some limited amount of time. In dynamic opti-
mization, on the other hand, notions of optimality are more complex: as Trojanowski
and Michalewicz point out, “when a problem is non-stationary, the situation is more
complex, as it is necessary to measure not the final result (which does not exist in the
continuous process of tracking the moving optimum), but rather the search process
itself (e.g., its reactions to different types of changes).” [48, p 236]. The solution to
a DOP is thus generally considered to be a time-series of search points and although
each such point indicates the performance of the algorithm at that particular mo-
ment in time, the temporal aspect may be accounted for in numerous different ways.
and in [14], the authors distinguish between at least 20 distinct measures, citing a
total of 162 references.1 Below we review the basic concept behind the majority of
performance measures.

In stationary optimization, one is usually interested in a single solution but other
metrics have also been suggested that measure a trajectory of solutions. The offline
performance measure [24]:

OFFLINE =
1
t

t

∑
i=1

max{ f1, f2, . . . , fi} (3.6)

The offline performance measure is not suitable for use in the dynamic domain as
the values fi are only valid within some time-dependent context (i.e., once a change
has taken place, an f-value may not longer be accurate). The offline performance
metric has subsequently been modified to account for changes in the problem such
that only the best individual since the last change is considered [8]:

M OFFLINE =
1
t

t

∑
i=1

max{ f�t/τ�1 , . . . , f�t/τ�i} (3.7)

where τ corresponds to a constant period between changes. The modified offline
measure thus takes into account the trajectory of the best points found so far in
between changes and thus requires knowledge regarding the points in time a change
occurs and it has thus become a more common practice to adopt a current-best
metric, rather than a best-so-far one [20]; it should be noted that under elitism, these
measures are identical.

The resulting measure, originally proposed by Morrison, is called the collective
mean fitness [31, 32] and attempts to capture the typical performance of the algo-
rithm across a representative range of dynamics:

COLLECTIVE =
1
G

G

∑
i=1

(BoGi) (3.8)

1 This classification is slightly misleading as several of the measures listed are identical or
very similar to one another.

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 77

where BoGi = max f (Pi) is the best-of-generation (BoG) and G the number of gen-
erations. In order to obtain a representative performance from an experimental point
of view, the value max f (P) is averaged over K trials.

3.4.2 Existence of a Model

Almost all practitioners evaluate their algorithms using an offline approach (i.e.,
modified offline performance), taking into account only the best solution found so
far (or the currently best solution). This compares against the online approach where
every call to the objective functions requires testing in the real world and hence
contributes towards the algorithm’s overall performance. The offline approach as-
sumes the existence of a model of the problem [8]: a model of the problem may
be used to evaluate candidate solutions at a significantly reduced cost as no test-
ing/implementation in the real world is required. Some authors claim that this ap-
proach is a closer reflection of optimality than the online case: Alba and Sarasola [1]
report about the online measure that “it is nowadays usually not reported because it
provides no information about the best values found, which are in fact the values of
interest in real implementations”.

However, this reasoning neglects the issue of obtaining an accurate model in
the first place and Younes et al. suggest that it may be unreasonable to assume an
accurate model of a dynamic real-world process [58]. Mori and Kita [30] point out
that it is necessary to account for possible discrepancies between the real world and
the model. This is particularly stringent as DOPs are commonly viewed as real-time
optimization processes and using an offline evaluation measure necessarily implies
potential discrepancies between the time a solution is evaluated on the model and
implemented in the real world. Furthermore, in many cases, a model may be difficult
to obtain in the first place. In [35], for instance, the authors consider the case where
the dynamics affect the actual function form and hence extensive prior knowledge
would be required to develop an accurate model of the problem.

3.4.3 Notions of Optimality

The variety of performance measures that have been suggested to measure the per-
formance of EAs in the dynamic domain highlights the additional complexity im-
posed by a problem’s dynamics. However, it also raises an important question: what
solutions are we actually interested in? Alternatively, one might ask what actually
constitutes a solution to a problem. This is known as a solution concept (see [17]):
a binary predicate that identifies elements in X that are solutions from those that are
not. This differentiation is usually based upon some number of measurable attributes
and the solution concept should ideally provide a way to evaluate individual points
in the search space that yields a gradient the algorithm can exploit. In many cases,
the notion of optimality is so trivial, it receives no further attention. In more com-
plex domains, however, notions of optimality require a significantly more elaborate

78 P. Rohlfshagen and X. Yao

formulation [17] and dynamic optimization appears to be one such domain. Here,
similarly to multi-objective optimization, one is interested in solutions that consist
of multiple search points.

It is therefore impossible to state which performance measures are more mean-
ingful - this depends entirely on the desired solution concept envisioned by the prac-
titioner. It is possible, however, to highlight the intrinsic attributes of each measure
to allow practitioners to choose a performance metric that is aligned with their in-
tended solution concept. In particular, there are several aspects that determine an
appropriate measure. First and foremost is (a) the goal of the practitioner (e.g., opti-
mum tracking versus robustness) and (b) the availability of a model (i.e., online vs.
offline). The goal may then be refined further: robustness, for instance, may refer
to genotypic or phenotypic variation (or both). Finally, (c) knowledge regarding the
global optimum and the times of change may be exploited in numerous different
ways.

The majority of practitioners assesses the performance of an algorithm using one
of the performance measures reviewed above. In most cases, this corresponds to a
trajectory of f-values, sampled every generation during the algorithm’s execution
(i.e., Eq. (3.8)). Nevertheless, other measures have been used also: Trojanowski and
Michalewicz [49], for instance, only considers a single solution per update period.
More generally, the desired solution to the DOPs is specified by points in time where
a solution is required, presumably because it is implemented in the real world. We
call this the implementation schedule:

Definition 3.1 (Implementation Schedule). A set of points in time within t = 1 and
t = tend that specify when a solution is to be implemented.

The collective mean fitness has led to a rather worrying trend as the candidate solu-
tions of interest corresponds to the best-of-generation and are thus tailored specif-
ically towards the algorithm (i.e., dependent on population size). Furthermore, it is
not obvious whether an algorithm developed for one implementation schedule nec-
essarily performs well for another. In other words, the comparative performance of
two algorithms may differ depending on the trajectory of solutions considered. This
is particularly true if one considers an algorithm-independent schedule of dynamics
(which is part of the problem’s specifications).

Definition 3.2 (Schedule of Dynamics). A set of points in time within t = 1 and
t = tend at which the underlying optimization problem changes.

It is therefore vital for practitioners to clearly state their goals and to choose a per-
formance measure accordingly. In other words, choosing a performance measure
should be done retrospectively, given the desired solution concept. It is therefore vi-
tal to have the means to better express solution concepts as notions such as “tracking
the optimum” are insufficient for this purpose.

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 79

3.5 Implications, Perspectives and Conclusions

3.5.1 Summary

In this chapter we have presented a critical assessment of the field of evolution-
ary dynamic optimization and found that the advances in recent years, although
significant in many aspects, are somewhat overshadowed by a lack of clarity regard-
ing the requirements imposed by the problems’ dynamics. In particular, we looked
at three fundamental challenges faced by practitioners in evolutionary dynamic
optimization.

The first challenge concerns the problem definition itself: generally speaking, the
class of dynamic optimization problems (DOPs) entails all those problems that are
deterministic at any moment in time but change as time goes by. Numerous extended
problem definitions have been proposed in the past, each with a different degrees
of expressional power, yet a commonly accepted framework to fully describe the
properties of DOPs is still missing. The extent to which such a framework is actually
possible remains to be seen but the need to fully articulate one’s assumptions about
the structural properties of a DOP is fundamental to the remainder of the field.

The second challenge concerned the benchmark problems used to test, evaluate
and compare the new algorithms proposed for the dynamic domain. The most com-
monly used benchmark, MOVING PEAKS, is modelled as a dynamic multi-modal
fitness landscape where individuals peaks change in height, width and position over
time; similar approaches for the combinatorial domain have proven difficult given
the algorithm-dependency of combinatorial fitness landscapes. Numerous practi-
tioners have questioned whether the dynamics modelled by these benchmarks re-
flect those found in real-world problems. This is particularly relevant for a field of
research where the majority of publications are motivated by the real-world rele-
vance of such problems. Finally, concern has also been expressed with regard to the
experimental setups used to test new algorithms on these benchmarks. In particu-
lar, the properties of the dynamics often appear to be tailored specifically towards
the algorithm to be tested. The same holds for the performance measure used, as
demonstrated by challenge 3.

The third challenge looked at the variety of performance measures used in dy-
namic optimization. Amongst the most popular is the collective mean fitness mea-
sure which takes into account the best solution found at every generation of the
algorithm’s execution. A DOP is usually seen as some real-time online optimiza-
tion process where the algorithm is required to locate and track high-quality solu-
tions over time. However, only little has been done to identify the requirements of
real-world problems including, for instance, the assumption of a perfect model that
allows for offline performance measures. Although this appears trivial in the case
of stationary optimization, it requires further consideration in the dynamic case. Fi-
nally, clear notions of optimality need to be established a priori and independently
of chosen performance measures.

80 P. Rohlfshagen and X. Yao

3.5.2 Implications and Perspectives

The recent interest in the dynamic domain sparked the development of numerous
new algorithms designed specifically to track high quality solutions over time. The
success of these algorithms is usually demonstrated by comparative empirical stud-
ies that show improvements in performance over traditional EAs. Such studies rely
on three fundamental aspects: a particular class of problems that is of interest, a way
to model the representative characteristics of these problems and finally, a way to
assess the performance of the algorithm. This chapter has highlighted some of the
criticism that has been raised with respect to each of these aspects.

One of the most fundamental aspects is to better understand the class of prob-
lems itself and to have the means to fully describe instances of each problem. Many
benchmark suites exists in the case of stationary optimization (e.g., OR-library [3])
yet an equivalent is still missing for the dynamic domain. Instead, universal bench-
marks like MOVING PEAKS are used to simulate a wide array of different dynamics
yet these benchmarks have been criticised for their potential lack of realism; this
phenomenon appears to extend beyond the problem considered to the experimen-
tal setup. A formal framework may allow one to dissect real-world problems and
to model their properties accordingly. This appears an essential requirement at this
stage to drive forward the field of evolutionary dynamic optimization. Closely re-
lated to this issue is the notion of optimality that is used to define the search problem.
A wide range of performance measures have been suggested yet it is impossible to
differentiate between them as it remains unclear what actually constitutes a desired
solution. In particular, it is essential for practitioners to clearly state their goals and
assumptions and to design their algorithms accordingly.

The last decade of research in evolutionary dynamic optimization has made sig-
nificant progress and numerous important results have been obtained. What is re-
quired is a way to integrate all these results to make the communal effort somewhat
more standardised and streamlined.

3.5.3 Conclusions

The problem’s dependency on time introduces many complexities not found in sta-
tionary optimization. Most notably, the dynamics introduce a significant variety of
possible scenarios and it is vital to (a) identify those cases that are of interest and (b)
have the means to describe such cases unambiguously. This is particularly relevant
in light of the No Free Lunch theorem for dynamic optimization [53]: if one consid-
ers the most abstract of settings, including a set of functions F , a transition function
T : F ×N→ F and a frequency of change τ : N×N→ N, there are an infinite
number of possible “problem instances”. The reduction of this to a well-defined set
of DOPs with exploitable structural properties remains a key issue in evolutionary
dynamic optimization.

Closely related to this issue is the notion of optimality considered and this
too should be grounded in real-world requirements. The explicit articulation of
solution concepts should facilitate an improved development of new algorithms. In

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 81

particular, assuming that the dynamics of the problem are non-random, one should
aim to reduce the black-box uncertainty of future problem instances over time. Cur-
rently, this is achieved primarily using samples of the search space taken at different
points in time. The next step is to extrapolate from these measurements, using tools
from related fields of research, including time-series prediction, optimal control the-
ory, online learning and data mining. This would allow one to gain a better estimate
of the problem’s future states and emphasises the issue of building appropriate mod-
els to deal with the problem’s dynamics. This, in turn, allows a more efficient trans-
fer of knowledge from one state of the problem to another. Benchmark problems
and experimental settings should subsequently be designed to account for this.

Acknowledgements. This work was partially supported by the Engineering and Physical
Sciences Research Council (EPSRC) of UK under Grant EP/E058884/1.

References

[1] Alba, E., Sarasola, B.: Abc, a new performance tool for algorithms solving dynamic op-
timisation problems. In: Proc. IEEE World Congr. Comput. Intell., pp. 734–740 (2010)

[2] Andrews, M., Tuson, A.: Dynamic optimisation: A practitioner requirements study. In:
Proc. 24th Annual Workshop of the UK Planning and Scheduling Special Interest Group
(2005)

[3] Beasley, J.E.: Or-library: Distributing test problems by electronic mail. J. of Oper. Res.
Society 41(11), 1069–1072 (1990)

[4] Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dy-
namic optimization. In: Yang, S., Branke, J. (eds.) GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization (2005)

[5] Branke, J.: Evolutionary algorithms for dynamic optimization problems - a survey.
Tech. Rep. 387, Insitute AIFB, University of Karlsruhe (1999)

[6] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1875–1882 (1999)

[7] Branke, J.: Evolutionary approaches to dynamic environments - updated survey. In:
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 27–30 (2001)

[8] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2002)
[9] Branke, J., Kulzhabayeva, G., Uyar, S.: Addressing change within a generation. Tech.

Rep., University of Karlsruhe (2008)
[10] Branke, J., Orbayı, M., Uyar, Ş.: The role of representations in dynamic knapsack prob-

lems. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 764–775.
Springer, Heidelberg (2006)

[11] Branke, J., Salihoglu, E., Uyar, Ş.: Towards an analysis of dynamic environments. In:
Beyer, H.G.G. (ed.) Genetic and Evolutionary Computation Conference, pp. 1433–
1439. ACM (2005)

[12] Branke, J., Wang, W.: Theoretical analysis of simple evolution strategies in quickly
changing environments. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723,
pp. 537–548. Springer, Heidelberg (2003)

82 P. Rohlfshagen and X. Yao

[13] Corne, D.W., Reynolds, A.P.: Optimisation and generalisation: Footprints in instance
space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part I.
LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010)

[14] Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput. 15(7), 1427–1448 (2011)

[15] Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valuation
of algorithms for black-box optimization. In: Proc. 7th Int. Workshop Foundations of
Genetic Algorithms, pp. 197–214 (2002)

[16] Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics
the (a)nfl theorem, realistic scenarios, and difficult functions. Theoretical Computer
Sci. 287 (2002)

[17] Ficici, S.G.: Solution concepts in coevolutionary algorithms. Ph.D. thesis, Brandeis
University (2004)

[18] Fu, H., Sendhoff, B., Tang, K., Yao, X.: Characterizing environmental changes in robust
optimization over time. In: Proc. 2012 IEEE Congr. Evol. Comput., pp. 551–558 (2012)

[19] Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algo-
rithms with dominance and diploidy. In: Grefenstette, J.J. (ed.) Proc. Int. Conf. Genetic
Algorithms, pp. 59–68. Lawrence Erlbaum Associates (1987)

[20] Grefenstette, J.J.: Evolvability in dynamic fitness landscapes: A genetic algorithm ap-
proach. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 2031–2038 (1999)

[21] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environment - a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[22] Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-
objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004.
LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

[23] Jin, Y., Tang, K., Yu, X., Sendhoff, B., Yao, X.: A framework for finding robust optimal
solutions over time. Memetic Comput. 5(1), 3–18 (2012)

[24] Jong, K.D.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,
Department of Computer and Communication Science, University of Michigan (1975)

[25] Jong, K.D.: Evolving in a changing world. In: Raś, Z.W., Skowron, A. (eds.) ISMIS
1999. LNCS, vol. 1609, pp. 512–519. Springer, Heidelberg (1999)

[26] Karaman, A., Uyar, A.S.: A novel change severity detection mechanism for the dynamic
0/1 knapsack problem. In: Proc. 10th Int. Conf. Soft Computing (2004)

[27] Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)
[28] Leguizamon, G., Blum, C., Alba, E.: Handbook of approximation algorithms and meta-

heuristics, pp. 24.1–24.X. CRC Press (2007)
[29] Li, C., Yang, S.: A generalized approach to construct benchmark problems for dy-

namic optimization. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 391–400.
Springer, Heidelberg (2008)

[30] Mori, N., Kita, H.: Genetic algorithms for adaptation to dynamic environments - a sur-
vey. In: Proc. 26th Annual Conf. IEEE Industrial Electronics Society, vol. 4, pp. 2947–
2952 (2000)

[31] Morrison, R.W.: Performance measurement in dynamic environments. In: Branke, J.
(ed.) GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Prob-
lems, pp. 5–8 (2003)

[32] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments, pp.
3–540. Springer, Berlin (2004) ISBN 3-540-21231-0

[33] Morrison, R.W., DeJong, K.A.: A test problem generator for non-stationary environ-
ments. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 2047–2053 (1999)

3 Evolutionary Dynamic Optimization: Challenges and Perspectives 83

[34] Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697. IEEE Press (2009)

[35] Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et
al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg
(2009)

[36] Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Com-
plexity. Dover (1998)

[37] Rand, W., Riolo, R.: Measurements for understanding the behavior of the genetic al-
gorithm in dynamic environments: A case study using the shaky ladder hyperplane-
defined functions. In: Yang, S., Branke, J. (eds.) GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization (2005)

[38] Richter, H.: Detecting change in dynamic fitness landscapes. In: Proc. 11th IEEE Congr.
Evol. Comput., pp. 1613–1620 (2009)

[39] Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An analysis
of frequency and magnitude of change. In: Proc. 2009 Genetic and Evol. Comput. Conf.,
pp. 1713–1720 (2009)

[40] Rohlfshagen, P., Yao, X.: Attributes of dynamic combinatorial optimisation. In: Li, X.,
et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 442–451. Springer, Heidelberg (2008)

[41] Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimisation problems: An analysis
of the subset sum problems. Soft Comput. 15(9), 1723–1734 (2011)

[42] Rossi, C., Barrientos, A., del Cerro, J.: Two adaptive mutation operators for optima
tracking in dynamic optimization problems with evolution strategies. In: Proc. 9th An-
nual Conf. Genetic and Evol. Comput., pp. 697–704 (2007)

[43] Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Springer (2006)

[44] Simon, H.: Models of Man. Wiley, New York (1957)
[45] Thompson, R.K., Wright, A.H.: Additively decomposable fitness functions. Tech. Rep.,

University of Montana, Computer Science Department (1996)
[46] Tinos, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-

rithms. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 236–243 (2007)
[47] Tinós, R., Yang, S.: An analysis of the XOR dynamic problem generator based on the

dynamical system. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN
XI. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)

[48] Trojanowski, K., Michalewicz, Z.: Evolutionary algorithms for non-stationary environ-
ments. In: Proc. 8th Workshop on Intell. Inform. Syst., pp. 229–240 (1999)

[49] Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1843–1850. IEEE (1999)

[50] Ursem, R.K., Krink, T., Jensen, M.T., Michalewicz, Z.: Analysis and modeling of con-
trol tasks in dynamic systems. IEEE Trans. Evol. Comput. 6(4), 378–389 (2002)

[51] Weicker, K.: An analysis od dynamic severity and population size. In: Deb, K., Rudolph,
G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

[52] Weicker, K.: Evolutionary algorithms and dynamic optimization problems. Der Andere
Verlag (2003)

[53] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1(1), 67–82 (1997)

[54] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algo-
rithms. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, R., Essam, D.,
Gedeon, T. (eds.) Proc. 2003 IEEE Congr. Evol. Comput., vol. 3, pp. 2246–2253 (2003)

84 P. Rohlfshagen and X. Yao

[55] Yang, S.: Constructing dynamic test environments for genetic algorithms based on prob-
lem difficulty. In: Proc. 2004 IEEE Congr. Evol. Comput., vol. 2, pp. 1262–1269 (2004)

[56] Yang, S.: Memory-enhanced univariate marginal distribution algorithms for dynamic
optimization problems. In: Proc. 2005 IEEE Congr. Evol. Comput., vol. 3, pp. 2560–
2567 (2005)

[57] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[58] Younes, A., Calamai, P., Basir, O.: Generalized benchmark generation for dynamic com-
binatorial problems. In: Yang, S., Branke, J. (eds.) GECCO Workshop on Evolutionary
Algorithms for Dynamic Optimization (2005)

[59] Yu, X., Jin, Y., Tang, K., Yao, X.: Robust optimization over time – a new perspective
on dynamic optimization problems. In: Proc. 2010 IEEE Congr. Evol. Comput., pp.
3998–4003 (2010)

Chapter 4
Dynamic Multi-objective Optimization:
A Survey of the State-of-the-Art

Carlo Raquel and Xin Yao

Abstract. Many optimization problems involve multiple objectives, constraints
and parameters that change over time. These problems are called dynamic multi-
objective optimization problems (DMOPs) and have recently attracted a lot of re-
search. In this chapter, we provide a survey of the state-of-the-art on the field of
dynamic multi-objective optimization with regards to the definition and classifica-
tion of DMOPS, test problems, performance measures and optimization approaches.
We provide a comprehensive definition of DMOPs and identify gaps, challenges and
future works in dynamic multi-objective optimization.

4.1 Introduction

Multi-objective evolutionary algorithms (MOEAs) have been applied to solve vari-
ous real-world optimization problem involving two or more objectives which may
be in conflict with one another. MOEAs evolve a population of candidate solutions
to find a set of optimal solutions in a single run. This set of optimal solution is called
Pareto optimal front (POF) while the solutions are called nondominated solutions.

In the past years, there have been significant contributions made on solving multi-
objective optimization problems which are static in nature. However, there are many
optimization problems that involve objectives, constraints and parameters that could
change over time. These problems are called dynamic multi-objective optimization
problems (DMOPs). The dynamic multi-objective optimization problem can be
generally defined as:

{
minxn f (x, t) = { f1(x, t), f2(x, t), ... fM(x, t)}
s.t.g(x, t)≤ 0, h(x, t) = 0

(4.1)

Carlo Raquel · Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U. K.
e-mail: {crr954,x.yao}@cs.bham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 85–106.
DOI: 10.1007/978-3-642-38416-5_4 c© Springer-Verlag Berlin Heidelberg 2013

86 C. Raquel and X. Yao

where x is the vector of decision variables bounded by the decision space Xn and f is
the set of objectives to be minimized with respect to time t. We denote the dynamic
Pareto optimal front at time t as PF∗t which is the set of nondominated solutions
with respect to the objective space at t. The dynamic Pareto optimal set, denoted as
PS∗t is the set of nondominated solutions with respect to the decision space at t.

Whenever there are changes in the environment that affect the solutions of the
DMOP, the optimization goal becomes tracking the changing PF∗. This poses the
challenge to the optimization algorithm to find and converge to the new PF∗ before
the problem landscape changes again. While fast convergence to the new Pareto
front is a desirable capability of an optimization algorithm, it should be able to
address the issue of lack of diversity when the problem landscape changes in order
to explore the new search space.

The purpose of this chapter is to provide a comprehensive definition of dynamic
multi-objective optimization, a review of existing dynamic multi-objective opti-
mization problems and their classifications, performance metrics and optimization
techniques used in solving DMOPs.

4.2 Comprehensive Definition of Dynamic Multi-objective
Optimization

Most DMOPs are described using a general definition such as Eq. (4.1) which does
not explicitly specify the dynamic fitness function, parameters and constraints. In
this section, we model the behavior of dynamic multi-objective optimization prob-
lem by directly adapting definitions proposed by Nguyen et al. in [26]. We add a
dynamic driver DN to model the changing number of objectives and constraints.

Definition 4.1 (Full-description form [26]). Given a finite set of functions F =
{ f1(x), ..., fn(x)}; a full-description form of F is a tuple

〈
fγ (x),{c1, ...,cn}

〉
(4.2)

where fγ (x) is a mathematical expression with its set of parameters γ ∈ Rm,
{c1, ...,cn}, ci ∈ Rm is a set of vectors so that

fγ (x)→ f1(x),γ = c1 (4.3)

...

fγ (x)→ fn(x),γ = cn (4.4)

Each function fi(x), i = 1 : n ∈ N+, i > 1 is called an instance of the full-description
form at γ = ci.

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 87

Definition 4.2 (Dynamic Driver [26]). Given a tuple
〈

f̂ ,γt , t
〉

where t is a time
variable, f̂ is a full-description form of the set of functions F = { f1(x), ..., fn(x)}
with respect to the set of m-element vectors {c1, ...cn} ,ci ∈ Rm and γt ∈ Rm is an
m-element vector containing all m parameters of f̂ at the time t; we call a mapping
D(γt , t) : Rm×N+→ Rm a dynamic driver of f̂ if

γt+1 = D(γt , t) ∈ {c1, ...,cn}∀t ∈ N+ (4.5)

and γt+1is used as the set of parameters of f̂ at the time t + 1.

Definition 4.3 (Time unit [26]). When a time-dependent problem is being solved,
a time unit, or a unit for measuring time periods in the problem, represents the time
durations needed to complete one function evaluation of that problem. The number
of evaluations (or time units) that have been evaluated so far since we started solving
the problem is measured by the variable τ ∈ N+.

Definition 4.4 (Change step and frequency of change [26]). When a time-
dependent problem is being solved, a change step represents the moment when
the problem changes. The number of change steps that have occurred so far in a
time-dependent problem is measured by the variable t ∈ N+. Obviously t is a time-
dependent function of τ-the number of evaluations made so far since we started
solving the problem; t (τ) : N+ → N+. Its dynamics is controlled by a problem-
specific time-based dynamic driver

{
Dt (t (τ) ,τ) = t (τ)+ 1 whenachangeoccurs

Dt (t (τ) ,τ) = t (τ) otherwise
(4.6)

Definition 4.5 (Optimization algorithms and dynamic solutions [26]). Given a
time-dependent problem fD(γt) =

〈
f̂ ,D(γt)

〉
at the change step t and a set Pt of

ktsolutions x1, ...,xkt ∈ St ⊆ Rd is the search space, an optimization algorithm G to
solve f̂D(γt)can be seen as a mapping Gt : Rd×kt → Rd×kt+1 capable of producing

a solution set Pt+1of kt+1 optimized solutions x
G[tb,te]
1 that we get by applying an

algorithm G to solve f̂D(γt) of a given initial population Ptb−1 during the period[
tb, te

]
, tb ≥ 1 is given by

X
G[tbte]
ft

=
te⋃

t=tb

Pt =
te⋃

t=tb

Gt (Pt−1) (4.7)

Definition 4.6 (Time-linkage dynamic driver [26]). Given a tuple
〈

f̂ ,γt , t,X
G[1,t]
f̂

〉

where t is a time variable, f̂ is a full-description form of the set of functions F =
{ f1(x), ..., fn(x)}with respect to the set of m-element vectors {c1, ...cn} ,ci ∈Rm and
γt ∈ Rm is an m-element vector containing all m parameters of f̂ at the time t; and

88 C. Raquel and X. Yao

XG[1,t]
f̂

is a set of k d-dimensional solutions achieved by applying an algorithm G to

solve f during the period [1, t]; we call a mapping D
(

γt ,X
G[1,t]
f̂

, t
)

:Rm×Rd×k→ Rm

a time linkage dynamic driver of f̂ if

γt+1 = D
(

γt ,X
G[1,t]
f̂

)
∈ {c1, ...,cn}∀t ∈ N+ (4.8)

and γt+1is used as the set of parameters of f̂ at time t + 1.

Definition 4.7 (Dynamic multi-objective optimization problem). Given a tuple〈
f̂ ,Ĉ,DP,DD,DN ,DT ,G

〉
a dynamic multi-objective optimization problem in the

period
[
1,τend

]
function evaluations, τend ∈ N+ can be defined as

optimise

⎧
⎨
⎩

τend

∑
τ=1

f̂
γ
(

tτ ,X
G[1,t]
f̂

) (xt)

⎫
⎬
⎭ (4.9)

subject to

Ĉi=1:k∈N+

γ
(

tt ,X
G[1,t]
f̂

) (xt , tτ)≤ 0; and l
(

tτ ,X
G[1,t]
f̂

)
≤ x≤ u

(
tτ ,X

G[1,t]
f̂

)
(4.10)

where

• f̂1, .., f̂m are the full-description forms of the m objective functions, m≥ 2

• Ĉ1, ...,Ĉk are the full-description forms of k dynamic constraints
• DP is the dynamic driver for parameters in objective and constraint
• DD is the dynamic driver for parameters for domain constraints
• DN is the dynamic driver for the changing number of objectives and constraints
• DT is the dynamic driver for times and frequency of changes
• G is the algorithm used to solve the problem
• τ ∈

[
1,τend ⋂N

]
is the number of function evaluations done so far

• tτ or t (τ) ∈ N+ is the current change step; t (τ) is controlled by DT

• X
G[1,t]

f̂
is the set of solutions achieved by applying algorithm G to solve f̂ during

[1, t]

• l (tτ) ,u(tτ) ∈ Rn are domain constraints;

⎧⎨
⎩

l (tτ + 1) = DD

(
l (tτ) ,X

G[1,t]

f̂
, tτ
)

u(tτ + 1) = DD

(
u(tτ) ,X

G[1,t]

f̂
, tτ
)

4.3 Dynamic Multi-objective Test Problems

Recently, there have been significant contributions made in solving dynamic multi-
objective optimization problems (DMOPs) but only few have been devoted to

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 89

defining and classifying them. In [9], Farina et al. classified problems based on the
changes on the Pareto optimal solutions (PSt) at time t and the Pareto optimal front
(PFt) at time t. The following are the four different types of DMOPs that they have
proposed:

• Type I: where PS∗t changes, while PF∗t remains the same
• Type II: where both PS∗t and PF∗t changes
• Type III: where PF∗t changes while PS∗t remains the same
• Type IV: where both PS∗t and PF∗t remain the same

This classification shows the difficulty of solving DMOPs by describing the combi-
nation of changes in the Pareto set and front but it does not take into consideration
the other aspects of dynamism such changes in constraint and time-linkage prob-
lems, changing number of parameters, objectives or constraints. Also, it does not
look into the sources of dynamism in the problem.

In [11], Goh and Tan provided a more general classification based on the spa-
tial and temporal components of the DMOP. The spatial component is divided into
physical and non-physical attributes of change. The physical attributes could have a
changing PS∗t , PF∗t , fitness landscape. The non-physical attributes indicate whether
there is a random, trend or periodic change in the physical attributes. The temporal
attributes refer to how the dynamic change is triggered such as random, fixed in-
terval, scheduled, conditional or none at all. A DMOP may be described by one or
more of these spatial and temporal components. This type of classification provides
more details in terms of the given DMOP but have the same limitation as the first
classification.

In [29], Tantar et al. proposed a component-oriented classification which high-
lights the sources of dynamism of the optimization problem as well as the state
dependency of these components. Let H (Fσ ,D,x, t) model the behavior of a DMOP
having Fσ as the multi-objective support function, D as the vector of time depen-
dent functions, t as the time and σ as the environment derived set of parameters,
generally defined as a constant over time. This classification separates the static and
dynamic components of the DMOP. However, it does not incorporate dynamic con-
strained problems and those with changing dimensions of parameter, objectives and
constraints. Their proposed classification are the following classification:

• 1st order: Dynamic parameter evolution modeled as H (Fσ ,D,x, t) = Fσ (D(x, t))
• 2nd order: Dynamic function evolution modeled as H (Fσ ,D,x, t) = D(Fσ ,x, t))
• 3rd order: Dynamic state-dependency evolution (state-parameter dependency and

state-function dependency) modeled as H
(

Fσ ,T [t− j,t],x, t
)

given a transforma-

tion function T over states t and t− j
• 4th order: Online dynamic evolution where the environment changes over time

modeled as H (Fσ ,D,x, t) = FD(σ ,t)(D(x, t))

While a classification based on the dynamic changes on the Pareto set and front
is important, a classification based on the sources of dynamism provides more

90 C. Raquel and X. Yao

insights on the difficulty of solving DMOPs. A DMOP can be further described in
terms of its spatial or temporal attributes. Given all these classifications together,
they all describe different aspects of the dynamic problem. But what is missing is
the inclusion of DMOPs with dynamic constraints in the classification. By using
Definition 4.7, we can classify DMOPs based on their (1) full description form, (2)
four dynamic drivers, and (3) the algorithms used. In this way, we are able to sep-
arate the static and dynamic components of the problem. The sources of dynamism
are also explicitly specified.

4.3.1 Dynamic Multi-objective Optimization Test Problems

Benchmark problems are important in dynamic multi-objective optimization in or-
der to develop and test effective algorithms. We review general-purpose test prob-
lems based on the characteristic of their Pareto set and front as well as their sources
of dynamism.

Table 4.1 shows information about each set of test problems. The list is by no
means comprehensive as only general test suites were considered. Most of the
test problems represent Type I, II and III problems. Only the last set provides
two Type IV test problems. All the sets of test problems include problems deal-
ing with dynamic function evolution. DIMP and T provide test problems that in-
volve dynamic parameter evolution. The set T proposed problems dealing with time
linkage. The test problems T3 and T4 were designed so that current solutions de-
pend on decision variables and solutions found in a previous state. There are no set
of test function that deals with online dynamic evolution. Tantar et al. [29] pro-
vided a dynamic MNK-landscape problem as a proof of principle for this class of
problems.

All of the test problems are unconstrained or domain constrained although it
should be noted that dynamic constrained multi-objective test problems have al-
ready been designed such as extending a static constrained optimization problem
[36]. In general, the source of dynamism comes mostly from the changing objective
function. More test suites dealing with constrained problems, dynamic parameters,
time linkage and online dynamic problems are needed to be developed. All the test
problems have fixed number of objective functions and constraints. Thus, test prob-
lems with changing number of these sources of dynamism needs to be designed as
well.

4.4 Performance Measures

In order to evaluate the performance of algorithm solving DMOPs, performance
metrics are commonly used. These metrics should be able to assess how well can
optimization algorithms track the changing Pareto front as well as assess the qual-
ity of the generated solution sets. Performance measures proposed in literature are

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 91

Ta
bl

e
4.

1
D

yn
am

ic
M

ul
ti

-o
bj

ec
tiv

e
Te

st
P

ro
bl

em
s

P
ro

bl
em

D
es

cr
ip

ti
on

P
ro

bl
em

Ty
pe

D
yn

am
ic

Pa
ra

m
et

er
E

vo
lu

ti
on

D
yn

am
ic

F
un

ct
io

n
ev

ol
ut

io
n

D
yn

am
ic

st
at

e-
de

pe
nd

en
cy

ev
ol

ut
io

n

D
yn

am
ic

co
ns

tr
ai

nt
ev

ol
ut

io
n

O
nl

in
e

dy
na

m
ic

ev
ol

ut
io

n

F
D

A
[9

]
T

hi
s

se
to

f
te

st
pr

ob
le

m
s

co
ns

is
ts

of
st

at
ic

ob
je

ct
iv

e
fu

nc
ti

on
s

to
ge

th
er

w
it

h
ti

m
e-

de
pe

nd
en

t
fu

nc
ti

on
s

F
w

hi
ch

co
nt

ro
ls

th
e

de
ns

it
y

of
Pa

re
to

so
lu

ti
on

s,
G

co
nt

ro
ls

th
e

sh
ap

e
of

P
S∗ t

an
d

H
co

nt
ro

ls
th

e
sh

ap
e

of
P

F
∗ t
.M

eh
ne

n
et

al
.

[2
3]

pr
op

os
ed

a
ge

ne
ra

li
sa

ti
on

of
th

e
F

D
A

.

F
D

A
1

is
Ty

pe
I,

F
D

A
2

is
Ty

pe
II

I,
F

D
A

3
is

Ty
pe

II
,

F
D

A
4

is
Ty

pe
I

an
d

F
D

A
5

is
Ty

pe
II

no
ye

s
no

no
no

dM
O

P
[1

0]
T

hi
s

se
tw

as
de

ve
lo

pe
d

ba
se

d
on

th
e

co
ns

tr
uc

ti
on

gu
id

el
in

es
pr

ov
id

ed
by

Fa
ri

na
et

al
.i

n
[9

].
T

he
P

F
∗ t

of
th

e
te

st
fu

nc
ti

on
s

ch
an

ge
s

fr
om

co
nv

ex
to

co
n-

ca
ve

.

dM
O

P
1

is
Ty

pe
II

I,
dM

O
P

2
is

Ty
pe

II
an

d
dM

O
P

3
is

Ty
pe

I
w

it
h

th
e

va
ri

ab
le

th
at

co
n-

tr
ol

s
th

e
sp

re
ad

of
th

e
so

lu
ti

on
al

so
ch

an
ge

s.

no
ye

s
no

no
no

D
S

W
[2

3]
T

he
y

ex
te

nd
ed

th
e

st
at

ic
m

ul
ti

-
ob

je
ct

iv
e

pr
ob

le
m

s
pr

op
os

ed
by

S
ch

af
fe

r
[2

8]
to

an
al

yz
e

th
e

sp
ec

ifi
c

ef
fe

ct
of

ea
ch

dy
na

m
ic

co
m

po
ne

nt
of

a
pr

ob
le

m
.T

he
te

st
fu

nc
ti

on
s

ha
ve

a
pa

ra
bo

li
c

Pa
re

to
fr

on
t.

D
S

W
1,

D
S

W
2

an
d

D
S

W
3

ar
e

Ty
pe

II
no

ye
s

no
no

no

H
E

[1
6]

T
he

se
tw

as
ad

ap
te

d
fr

om
Z

D
T

3
te

st
pr

ob
le

m
[3

8]
to

be
co

m
e

dy
na

m
ic

.T
he

se
pr

ob
-

le
m

s
ge

ne
ra

te
a

di
sc

on
ti

nu
ou

s
Pa

re
to

fr
on

t

H
E

1
an

d
H

E
2

ar
e

bo
th

Ty
pe

II
I

no
ye

s
no

no
no

D
IM

P
[2

0]
In

th
is

se
to

f
te

st
fu

nc
ti

on
s,

ea
ch

de
ci

si
on

va
ri

ab
le

is
gi

ve
n

a
di

ff
er

en
tr

at
e

of
ch

an
ge

w
it

h
th

e
ex

ce
pt

io
n

of
x 1

as
si

gn
ed

to
co

nt
ro

lt
he

sp
re

ad
of

th
e

so
lu

ti
on

s

D
IM

P
1

an
d

D
IM

P
2

ar
e

bo
th

Ty
pe

I

ye
s

ye
s

no
no

no

T
[1

7]
T

hi
s

se
to

f
te

st
fu

nc
ti

on
s

in
-

co
rp

or
at

es
ti

m
e

li
nk

ag
e

an
d

dy
na

m
ic

nu
m

be
r

of
pa

ra
m

et
er

s
an

d
ob

je
ct

iv
e

fu
nc

ti
on

s

T
1

is
Ty

pe
IV

,T
2

is
Ty

pe
II

I,
T

3
is

Ty
pe

IV
an

d
T

4
is

Ty
pe

IV

ye
s

ye
s

ye
s

no
no

92 C. Raquel and X. Yao

mostly designed for single objective dynamic optimization problems. However,
there are also performance measures recently proposed for dynamic multi-objective
optimization which are often extension of performance measures from single objec-
tive dynamic optimization. They can be classified as either measures designed for
problem in which the Pareto fronts are known or unknown.

4.4.1 Performance Measures for Problems with Known Pareto
Front

In order to measure the convergence in decision and objective spaces, Farina et
al. [9] proposed the following:

cx(t) =
1

np

np

∑
j=1

min
i=1:nh

∥∥∥∥∥
PS∗i (t)−PSsol

j (t)

R(t)−U(t)

∥∥∥∥∥ (4.11)

c f (t) =
1

np

np

∑
j=1

min
i=1:nh

∥∥PF∗i (t)−PFA
j (t)

∥∥ (4.12)

where nh is the number of solutions of PF∗i and PS∗i , np is the number of generated
solutions, R(t) is the time-dependent nadir point, and U(t) is the time-dependent
utopia point.

Hatzakis and Wallace [15] used these measures to get the time average of the
convergence measures at particular time samples.

c̄x(t) =
1

npτ

τ

∑
t=1

np

∑
j=1

min
i=1:nh

∥∥∥∥∥
PS∗i (t)−PSA

j (t)

R(t)−U(t)

∥∥∥∥∥ (4.13)

c̄ f (t) =
1

npτ

τ

∑
t=1

np

∑
j=1

min
i=1:nh

∥∥PF∗i (t)−PFA
j (t)

∥∥ (4.14)

Li et al. [21] proposed the measure reversed GD(t) or rGD(t) , which is based in the
generational distance measure (GD) proposed by Veldhuizen [30]. The GD mea-
sures the average distance of the nondominated solutions Qt found from the known
Pareto front and only measures the convergence of an optimization algorithm. They
reversed the process by measuring the average distance of the known Pareto front
to the generated Pareto front making it possible to measure convergence diversity of
the solution found with respect to PF∗t .

rGD(t) =
Σ |PF∗t |

i=1 di

| PF∗t |
(4.15)

where di =min|Qt |
k=1

√
ΣM

j=1

(
f ∗(i)j − f (k)j

)2
. In here, f (k)j is the j-th objective function

value of the k-th member of the Qt . It is called reversed because it iterates over

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 93

PF∗t instead of iterating over Qt . The term diis the Euclidean distance between the
nearest solution in Qt for each of the sampling point in PF∗t . There are drawbacks in
using rGD(t) as a performance measure. First, the Pareto front should be known a
priori and it is strongly dependent on the distribution of the sampling points of PF∗t .

In [21], Li et al. also proposed HVR(t) which is based on the hypervolume (HV)
metric proposed in [30]. The hypervolume indicator measures the space covered by
a set of solutions Qt in the objective space using a reference point W . Hypervolume
is computed as

HV = volume
(
∪Q

i=1vi

)
(4.16)

The HV is basically the union of all hypercubes vi with respect to a reference point
W where i ∈ Q. Li et al. proposed HVR(t) for dynamic environment as follows:

HVR(t) =
HV (Qt)

HV (PF∗t)
(4.17)

They suggested that the reference point W (t) be the worst value in each objective
dimension in Qt . HVR(t) measures how well a MOEA tracks the moving optima by
how well HV (Qt) covers HV (Pt

t). This performance measure also requires that the
Pareto front is known and it is dependent on the distribution of the sampling points
on PF∗t .

In order to apply these metrics in measuring the performance of a an algorithm,
they proposed the collective mean error (CME) for the two metrics.

CMErGD =
1
T

T

∑
t=1

rGD(t) (4.18)

CMEHV R =
1
T

T

∑
t=1

HVR(t), (4.19)

where T is the number of iterations of a run. The best value of CMErGD is 0.0 while
1.0 for CMEHV R.

Goh and Tan [10] proposed the two measures variable space GD (VD) and max-
imum spread for dynamic multi-objective environment.

VDo f f line =
1
τ

τ

∑
t=1

VD · I(t) (4.20)

MSo f f line =
1
τ

τ

∑
t=1

MS · I(t) (4.21)

I(t) =

{
1, t%τT

0, otherwise
(4.22)

where % is the modulo operator. VDo f f line measures the distance between PS∗t and
PSA

t .

94 C. Raquel and X. Yao

VD =
1

nPS
·
(

nPS

nPS

∑
i=1

d2
i

) 1
2

(4.23)

where nPS is
∥∥PSA

t

∥∥ and di is the Euclidean distance of the ith member of the PSA
t

and the closest member of PS∗t .
In [35], Zhang proposed three performance measures which deals with an al-

gorithm’s convergence ability and the diversity of solutions it produces. The first
one is the convergent ratio CR which measures the consistency of the algorithm in
tracking the Pareto front. It is based on the coverage metric proposed by Zitzler and
Thiele [39] defined as

C (X ,Y) =
|{y ∈ Y | ∃x ∈ X ,s.t.,x} ≺ y|

|Y | (4.24)

which computes the coverage ratio of the finite sets X and Y . Based on this, CR is
defined as

CR =
1

KT

T

∑
i=1

K−1

∑
j=1

1
K− j

K

∑
l= j+1

C (Xi j,Xil) (4.25)

where K is the number of runs done by the algorithm and C is the coverage metric.
The comparison made is between the simulation runs. A lower value for CR indi-
cates the consistency of the algorithm in tracking the Pareto front but it does not
provide an indication regarding its convergence to the true Pareto front. The second
metric is the average density (AD) metric which measures how evenly distributed
the generated solutions are for every problem change. AD is defined as

AD =
1
τ

τ

∑
i=1

1
d′
· (1

nPF

nPF

∑
i=1

(
d
′
i − d)2

) 1
2

(4.26)

d′ =
1

nPF

nPF

∑
i=1

d
′
i , (4.27)

where nPF is nPF =
∣∣PFA

t

∣∣, di is the Euclidean distance between the ith member
of generated Pareto set and the closes member of the true Pareto front. The third
metric is average coverage scope (AS) measures the average coverage width of the
generated solutions by the algorithm.

AS =
1

Kτ

τ

∑
i=1

K

∑
i=1

max
1≥ j,k≥M

{∥∥ f A
t, j− f A

t,k

∥∥ , f A
t, j , f A

t,k ∈ PSA
t

}
(4.28)

where f A
t,i is the i-th objective in PFA

t .
Tantar et al. [29] proposed the optimal subpattern assignment measure (OSPA)

metric indexPerformance measure!OSPA which was originally used on the multi-
object tracking problem. Consider two Pareto fronts A and B with cardinality m
and n respectively. They defined the distance between two points x and y cut off
by c > 0 as d(c) (x,y) = min{c,d (x,y)}. To compare the two fronts, we need to

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 95

determine which solutions from B are in the neighborhood of a given solution from
A by computing all the permutations of solutions from B, Π|B|. They proposed two
criteria namely localization and cardinality:

Mloc (X ,Y) :=

(
1
n

minπ∈Πn

m

∑
i=1

d(c) (xi,yπ(i)
)p

) 1
p

(4.29)

Mcard (X ,Y) :=

(
cp (n−m)

n

) 1
p

(4.30)

The localization criteria measures the quality of the coverage of A in relation to
B while the cardinality penalty function which is only used when the two sets A
and B have different cardinality. The advantage of this metric is that it is able to
measure the coverage quality without the need for external reference points. The
localization criteria has the disadvantage of computing the entire set of permutations
but they have suggested the use of the Hungarian algorithm to estimate the measure
in polynomial time.

4.4.2 Performance Measures for Problems with Unknown Pareto
Fronts

In [5], Camara et al. proposed a performance measure called accunk(t) indexPerfor-
mance measure!accuracy for dynamic multi-objective optimization problems with
unknown Pareto front based on the accuracy measure proposed by Weicker [32] for
single-objective dynamic environments computed as

accuracy(t)F,EA =
F(best(t)EA)−min(t)F

maxt
F −mint

F
, (4.31)

where f is the fitness function, best(t)EA is the best solution in the population at time

t while max(t)F is the maximum fitness value in the search space while mean(t)F is
the minimum fitness value in the search space. Camara et al. adapted this measure
as accuracy within a window or offset which provides a measure with the current
approximate Pareto front and those with those past and future approximate Pareto
front. The measure requires that the windows or phases are detected first and then the
lengths for each of the windows will be calculated. Algorithm 1 shows the way on
how the length for each window is calculated. The input is a set of N hypervolume
values for the approximate Pareto fronts while the output is a set S of the lengths of
each of the phases.

They noted that other suitable conditions could replace the condition for the
if statement in line 6 of Algorithm 1. Once the windows and their lengths are

96 C. Raquel and X. Yao

Algorithm 1 Calculation of lengths [5]

1: for i = 2 to N do
2: �HVi = HVi−HVi−1
3: end for
4: length = 1
5: for i = 2 to N do
6: if�HVi≥ |�HVi−1 +�HVi+1| then
7: S← S∪ length
8: length = 1
9: else

10: length = length+1
11: end if
12: end for

calculated, the accuracy for each approximate front is measured. If the optimization
problem is minimization, we compute the accuracy as

accminimizing
unk (t) =

HV (Qt)

HVmax(Qp)
(4.32)

If the problem is maximization, we use the following formula:

accmaximizing
unk (t) =

HVmin(Qp)

HV (Qt)
, (4.33)

where HV (Qt)is the approximate Pareto front at time t in the phase being consid-
ered, HVmax(Qp) is the maximum hypervolume of the fronts in the phase being con-
sidered while HVmin(Qp) is the minimum. While this performance measure does not
require that the Pareto front be known a priori, it was designed as an offline measure
and does not take into account the diversity of solutions found.

Camara et al. in [5] adapted Weicker’s [32] stability indexPerformance mea-
sure!stability and reactivity measures whose computation are dependent on the
accuracy measure. A dynamic optimization algorithm is stable if its convergence
ability is not severely affected by environment changes.

stab(t) =

{
stab(t) = acc(t)− acc(t− 1), if stab≥ 0

1, otherwise
(4.34)

The reactivity metric indexPerformance measure!reactivity measures the ability
of an optimization algorithm to react quickly to environmental changes and is
computed as follows:

reacε(t)=min

{{
t ′ − t | t< t ′ ≤maxgen, t ′ ∈N,

acc(t ′)
acc(t)

≥(1− ε)
}
∪{maxgen− t}

}

(4.35)

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 97

Most performance measures for dynamic optimization are designed for measuring
convergence to the Pareto front at particular time samples. The convergence mea-
sures are the coverage measures (c̄ f (t)), collective mean error of reversed genera-
tional distance (CMErGD), collective mean error of hypervolume ratio (CMEHV R),
variable space generational distance (VDo f f line), coverage ratio (CR), localization
criteria (Mloc) and the accuracy measure. On the other hand, the metric c̄x(t) mea-
sures the convergence to the Pareto set. The other metrics are for measuring diversity
of the generated solutions which includes the maximum spread (MS), average den-
sity (AD) and average coverage scope (AS). The other aspects of the performance of
the optimization algorithm can be evaluated by using the stability and reactability
metrics. These different classes of performance metrics indicate that convergence
is not the only optimization goal of dynamic multi-objective optimization. Many
performance measures require that the with known Pareto front. There is only one
proposed performance measure for problems with unknown Pareto front but with the
limitation of being an offline measure. Also, it requires the values of the maximum
and minimum hypervolume for each window for each problem change which might
not be practical to use in real world problems. Thus, we need to carefully consider
which set of performance criteria best suits real-world optimization problems. It is
important to know whether there is correlation between the chosen set of metrics
such as convergence and diversity in terms of the quality of solution produced.

4.5 Dynamic Multi-objective Optimization Approaches

Most approaches in solving DMOPs focus on tracking the moving optima once
change is detected in the problem landscape. Whenever a change is detected, it is
often inefficient to restart the optimization process with new population. There are
various approaches proposed in literature which are discussed in the next sections.

In dynamic optimization, it is important to maintain diversity in the population in
order to improve the process of tracking the moving optima. There are three ways of
handling population diversity are: diversity introduction, diversity maintenance and
using multiple population. Aside from diversity maintenance technique, prediction-
based and memory approaches are also being used to solve DMOPs.

4.5.1 Diversity Introduction

Convergence to the optimal region or solution is ideal when an optimization algo-
rithm is solving a static optimization problem. However, convergence in dynamic
optimization could lead to several problems. First, when the optimization algorithm
has converged to one area in the problem landscape and the landscape change oc-
curred in another area, it would not be possible to detect this change. Second, the
optimization algorithm could find it difficult to find the global optima due to lack of
diversity since it has already converge in a particular region in the landscape. One
way of overcoming this problem is to introduce diversity whenever the problem
changes.

98 C. Raquel and X. Yao

The simplest way of introducing diversity is using random restart. Here, the entire
population is randomly re-initialized if a problem change is detected. The problem
with this approach is information loss since we cannot exploit the information given
by the optimal solution found since they are all re-initialized. Also, optimization
algorithms that use random restart requires time to converge again to the optimal
solution but if the problem changes are fast, then this approach might not be able to
find the optimal solution.

Another approach is hypermutation [6] proposed by Cobb which dramatically
increases mutation whenever a problem change is detected. The step size of the
increase is fixed which poses the problem of being unadaptive. Vavak et al. [31]
proposed an adaptive mutation using variable local search (VLS) which only grad-
ually increase mutation when there is no detected improvement. In order to control
the size of mutation, they proposed a variable local search range by using the for-
mula 2BIT S− 1 where the value of BITS adjusted during the optimization process.
The problem approaches such as hypermutation and VLS is determining the correct
mutation size or radius size. Taking too small mutation step size would be similar to
random restart while too big step sizes would be like random search [18].

Deb et al. [8] extended the Nondominated Sorting Genetic Algorithm - II (NSGA-
II) algorithm to handle a dynamic multi-objective problem specifically the dynamic
hydrothermal power scheduling problem. Algorithm 2 outlines one iteration of
DNSGAII.

Algorithm 2 Dynamic Nondominated Sorting Genetic Algorithm II (DNSGAII)

1: Evaluate all solutions in the child population Qt

2: Test for changes in the environment
3: Randomly select and re-evaluate 10% of solutions from the parent population Pt

4: if there is a change in the environment then re-evaluate the entire parent population Pt

then
5: Combine Ct and Pt into Rt

6: end if
7: Apply nondominated sorting on Rt

8: Truncate Rt to the size of Pt by performing crowding sort
9: if there is a change in the environment then choose a percentage of solutions from Rt

then
10: Either replace the chosen solutions with random solutions or mutate the selected so-

lutions
11: Perform tournament selection
12: Perform recombination and mutation to generate Qt+1
13: end if

One of the modifications in the original algorithm is adding a way to detect prob-
lem changes by randomly re-evaluating 10% of the individuals in the population for
each generation. Two strategies have been proposed whenever a problem change is
detected. The algorithm can be restarted by introducing diversity using random ini-
tialization or mutation of a selected number of solutions from the population. The

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 99

algorithm was tested on a two-objective dynamic problem and applied to the prob-
lem of dynamic hydrothermal power scheduling. The weakness of the approach is
that it solved the problem as an offline optimization problem which assumes that the
problem does not change for a period of time. The approach has only been shown
to work on two problems and should be tested on different optimization problems.

In a dynamic multi-objective optimization algorithm using multi-population pro-
posed by Goh and Tan [10], diversity introduction is performed whenever a problem
change is detected by introducing random individuals as well as some competitor
individuals from other sub-population into the other sub-population.

Diversity introduction approaches depend on the ability of the optimization al-
gorithm to detect problem changes. Also, they may not effectively work when the
problem changes are random, severe or fast.

4.5.2 Diversity Maintenance

Instead of introducing diversity only during restart, the diversity maintenance ap-
proaches aim to preserve diversity throughout the optimization process. Random
immigrants could be used by introducing random individuals into the population
only at fixed intervals during the optimization process. Unlike random restart, only
a portion of the population are replaced. In [14], Grefenstette has shown empirically
that random immigrants can improve the performance of evolutionary algorithms in
handling dynamics.

Using diversity as an additional objective function to maintain diversity was pro-
posed by Bui et al. [4]. This means we treat the single objective optimization prob-
lems as a multi-objective problem by adding a second objective which optimizing
the diversity of the populations.

In [24], Sentinel Placement method is used to maintain diversity. A fixed number
of sentinels are initialized with values from the different part of the search space.
Since they are not removed, they are able to track changes in the landscape and they
can be used in the reproduction process. It has been shown empirically that they
perform better than random immigrants and hypermutation in handling severe and
chaotic changes in the landscape [24].

Zeng et al. proposed Dynamic Orthogonal MOEA (DOMOEA) [34] to solve
dynamic multi-objective optimization problem with continuous decision variables.
Orthogonal design method is used to improve the fitness values of the population
whenever the problem remains static. It treats every problem change as a new opti-
mization problem. It exploits the past information by using the evolutionary results
generated before the problem as the initial population of the new problem instance.
It employs a linear crossover operator as its diversity maintenance scheme. One
iteration in the algorithm is shown in Algorithm 3.

The drawback of this approach is that it can only be used for solving optimiza-
tion problems with continuous decision variables. The orthogonal design method is
mostly useful when the environment change is slow.

100 C. Raquel and X. Yao

Algorithm 3 Dynamic Multi-Objective Evolutionary Algorithm based on Orthogo-
nal Design (DOMOEA)

1: Evaluate all solutions in the child population Qt

2: Test for changes in the environment
3: Randomly select and re-evaluate a percentage of solutions from the parent population Pt

4: if there is a change in the environment then
5: Re-evaluate the entire parent population Pt and set it as Pt+1
6: end if
7: Perform the selection operation
8: Combine Ct and Pt into Rt

9: Truncate Rt to the size of Pt by performing crowding sort
10: Perform the crossover operation
11: Randomly select two solutions from Rt+1
12: if a random number is less than the crossover probability then
13: Perform linear crossover
14: else
15: Perform orthogonal crossover
16: end if

Maintaining diversity could perform well when the optimization problem has
slow changes since it provides time for the optimization algorithm to converge. It
might also be effective when there are severe changes in the problem landscape as
there is better diversity. However, maintaining diversity over time could slow down
the optimization process and may not be as effective when the problem at hand has
only small changes.

4.5.3 Multiple Populations

In using a multiple population approach, parts of the search space is simultaneously
explored by the different population in order to detect changes or the emergence of
new optimal solutions. For instance, one population can be in charge for the current
solutions while the other population would explore different regions. In here, one
must decide what task to assign to each subpopulation as well as making sure that
the subpopulations would not converge to the same location in the search space.

Goh and Tan [10] proposed Dynamic Competitive-Cooperative Coevolutionary
Algorithm (dCOEA) that joins together the competitive and cooperative mecha-
nisms to allow adaptive problem decomposition in solving both static and dynamic
multi-objective optimization. Stochastic competitors track the moving optima. It ex-
ploits evolutionary results by storing them in a temporal memory. The algorithm is
able to adapt to the changing problem landscape.

Greeff and Engelbrecht [13] proposed the use of Vector Evaluated Particle
Swarm Optimiser (VEPSO) to solve dynamic multi-objective optimization prob-
lems. One swarm is dedicated to solve one objective function. VEPSO detects if
a change in the environment occurs by re-evaluating sentry particles, which are a

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 101

random number of particles in the swarm, before the next iteration. If their fitness
values change then a new problem change is detected. If a change is detected, a
portion of the the swarm’s particle are reinitialized by changing their position and
re-evaluating their personal and neighborhood best. The swarm share knowledge
with each other through either a ring or random topology. The algorithm was tested
on several test functions but was not compared with other algorithms. The authors
will do further work on improving the performance of VEPSO by testing on wider
range of functions.

Multi-populations have the advantage of being able to track multiple optima, re-
call previous optima, effective in solving multi-modal problems and can adequately
adapt whenever the problem changes. However, there are disadvantages such as the
number of sub-population could affect the performance of the optimization algo-
rithm and setting the distance value to prevent the subpopulation could be an issue
and as well the issue of managing recurrent optima.

4.5.4 Prediction-Based Approaches

Most approaches in solving DMOPs focus on tracking the moving optima once
change is detected in the problem landscape. Whenever a change is detected, it is
often inefficient to restart the optimization process with new population. Proposed
approaches in tracking the moving optima involves exploiting the past information.
Zeng et al. [34] proposed the dynamic orthogonal MOEA (DOMOEA) wherein it
treats every change in the problem landscape as a new problem instance. However,
they only exploited the past information by reintroducing the nondominated solu-
tions found before the change is detected as the new initial population.

In [15], Hatzakis and Wallace proposed the Dynamic Queuing Multi-objective
Optimizer (D-QMOO). The algorithm exploited the past information in order to
predict the future behavior of the dynamic multi-objective optimization problem. In
here, whenever there is a change in the landscape, the location of optimal solution
is estimated by using an autoregressive model to predict the location of the optimal
solutions. However, it was only tested on only one DMOP problem and its precision
of prediction should be improved further.

In [22], Liu proposed Dynamic Multi-objective Evolutionary Algorithm with
Core Estimation of Distribution (CDDMEA) that utilizes core estimation of distri-
bution model to predict the Pareto optimal solution of the next environment. The
algorithm was tested on two dynamic multi-objective problems and compared to
another algorithm. The performance of the two algorithms were compared by visu-
ally inspecting the graph of the generated solutions. Also, it made of a U-measure to
measure the diversity of the solutions generated by the two algorithms. The author
claimed that CDDMEA performs better than the other algorithm. The use of core
estimation of distribution model is a promising approach to predict the solutions to
the next problem landscape but the experimental results need a more thorough inves-
tigation through the use more performance metrics and tested on various dynamic
optimization problem.

102 C. Raquel and X. Yao

Prediction-based methods could work very efficiently if their prediction is correct
each time. But the problem with these types of approach depends on how well the
predictors are trained. Like any learning process, there could be training errors due
to the presence of wrong or inadequate training data.

4.5.5 Memory-Based Approaches

Another approach in dynamic optimization is to use memory schemes which im-
plicitly or explicitly store relevant information from the current solution and envi-
ronment and reusing these information at a later stage. This approach is specially
useful when periodic changes occur in the environment.

An implicit memory scheme uses a redundant representation that can store more
information than necessary. The most common implicit memory scheme used by
evolutionary algorithm is diploidy [12, 25]. Other forms of implicit memory mech-
anisms were proposed in [7, 33].

In the case of explicit memory, information is stored in a memory bank separate
from the population. Specific storage and retrieval techniques need to be defined for
managing the stored information. Ramsey and Grefensette [27] used a case-based
memory to store good solutions as well as their environment information. After a
problem change, individuals stored in the memory with similar environments are
used to reinitialize part of the population. Branke [1] proposed a memory mecha-
nism that only stores information about the individuals and not the environment. The
best individuals are stored in a finite memory. When it becomes full, a replacement
strategy is used to select which individual will be replaced. Different replacement
strategies to maintain diversity are discussed in [2]. Yang [33] introduced the as-
sociative memory scheme which stores the solution and a distribution estimate as
individuals in a memory. After detecting a problem change, all individuals in the
memory are evaluated. The distribution of the best individuals is used to sample for
reinitializing part of the solution.

An algorithm based on artificial immune system was proposed by Zhang and
Qian [36] called Dynamic Constrained Multi-objective Optimization Artificial Im-
mune System (DCMOAIS) to solve dynamic constrained multi-objective optimiza-
tion (DCMO) problems. It first runs a T-module to detect problem changes and
creates the initial population by using information from previous results. After a
problem change is detected, the B-module finds the Pareto optimal solution of the
current environment. The M-module then stores the generated nondominated solu-
tions into a repository to which the T-module will use to generate the initial popu-
lation whenever a new environment change is detected. In the experimental results,
the DCMOAIS performed well with low-dimensional DCMO problems has shown
potential for DCMO problems with many constraints but needs to provide a more
in-depth analysis.

Memory-based approaches are very useful in dynamic environments with peri-
odic changes and may even help to prevent fast convergence. However, redundancy

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 103

of information could become a problem and may not necessarily promote diversity.
Aside from periodic changes, the memory might not be reused.

4.6 Summary and Future Works

Dynamic multi-objective optimization is an important field of research due to its
promising application to a wide array of real-world problem involving multiple
objectives with dynamic nature. In this chapter, we have provided a comprehen-
sive definition of dynamic multi-objective optimization, reviewed dynamic multi-
objective optimization classifications, test problems performance measures and
optimization approaches.

Several classification of DMOPs have been proposed such as classes based on the
characteristic of the Pareto set and front and sources of dynamism. A more detailed
definition of DMOP have been provided in order to accommodate the different char-
acteristic of dynamic multi-objective optimization problems such as dynamic con-
straints, changing number of parameters and objective functions. As we can see from
the review, most test problems are focused on dynamic objective function evolution
and mostly unconstrained problems. There is a need to develop a set of benchmark
functions on dynamic multi-objective time-linkage problems, constrained problems,
problems wit changing number of objective functions and constraints, and online
dynamic optimization problems.

The performance measures discussed are intended towards evaluating the opti-
mality of generated solutions and the behavior of the optimization algorithms. Most
of them depend on the existence of the known Pareto front. The performance mea-
sure which work with unknown Pareto front may not be feasible to use in real world
problems due to its need to know the maximum and minimum values of the parame-
ters. New performance measures should be developed that are appropriate to certain
classes of DMOPs. Since most evaluation of an optimization algorithm involves us-
ing a set of performance measures, studying the compatibility or suitability of using
these measures together should be undertaken.

Even though there are many dynamic multi-objective optimization algorithms
that have been developed, new algorithms should still be designed that could ad-
dress the other characteristics of DMOP such as those that deal with time linkage
problems, dynamic constrained problems and online dynamic problems. Although
DMO algorithms have been applied to solve real world problems, they are not many.
Research should be carried out in modeling more real world problems with dynamic
features. Lastly, there is a lack of theoretical studies on dynamic multi-objective op-
timization such computational complexity analysis of algorithms. These studies are
important in understanding which class of DMOPS are easy or difficult to solve.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant EP/E058884/1 and Grant EP/K001523/1.
Xin Yao is supported by a Royal Society Wolfson Research Merit Award.

104 C. Raquel and X. Yao

References

[1] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882 (2005)

[2] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers (2001)

[3] Branke, J., Kauler, T., Schmidth, C., Schmeck, H.: A multi-population approach to dy-
namic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[4] Bui, L., Abbass, H., Branke, J.: Multiobjective optimization for dynamic environments.
In: Proc. 2005 IEEE Congr. Evol. Comput., pp. 2349–2356 (2005)

[5] Cámara, M., Ortega, J., de Toro, F.: Performance measures for dynamic multi-objective
optimization. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN
2009, Part I. LNCS, vol. 5517, pp. 760–767. Springer, Heidelberg (2009)

[6] Cobb, H.: An Investigation into the use of hypermutation as an adaptive operator in ge-
netic algorithms having continuous, time-dependent nonstationary environments. Tech-
nical Report, Naval Research Laboratory (1990)

[7] Dasgupta, D., Mcgregor, D.: Nonstationary function 0ptimization using the structured
genetic algorithm. In: Proc. 2nd Int. Conf. Parallel Problem Solving from Nature, pp.
145–154 (1992)

[8] Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-
making using modified NSGA-II: A case study on hydro-thermal power scheduling. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS,
vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[9] Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test
cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442
(2004)

[10] Goh, C., Tan, K.: A competitive-cooperative coevolutionary paradigm for dynamic mul-
tiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

[11] Goh, C.-K., Tan, K.C.: Evolutionary Multi-objective Optimization in Uncertain Envi-
ronments. SCI, vol. 186. Springer, Heidelberg (2009)

[12] Goldberg, D., Smith, R.: Nonstationary function optimization using genetic algorithm
with dominance and diploidy. In: Proc. 2nd Int. Conf. Genetic Algorithms and Their
Applications, pp. 59–68 (1987)

[13] Greeff, M., Engelbrecht, A.: Solving dynamic multi-objective problems with vector
evaluated particle swarm optimisation. In: Proc. 2008 IEEE Congr. Evol. Comput., pp.
2917–2924 (2008)

[14] Grefenstette, J.: Genetic algorithms for changing environments. In: Proc. Int. Conf. Par-
allel Problem Solving from Nature, pp. 137–144 (1992)

[15] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary al-
gorithms: a forward-looking approach. In: Proc. 8th Annual Conf. Genetic and Evol.
Comput., pp. 1201–1208 (2006)

[16] Helbig, M., Engelbrecht, A.: Archive management for dynamic multi-objective opti-
misation problems using vector evaluated particle swarm optimisation. In: Proc. 2011
IEEE Congr. Evol. Comput., pp. 2047–2054 (2011)

4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art 105

[17] Huang, L., Suh, I., Abraham, A.: Dynamic multi-objective optimization based on mem-
brane computing for control of time-varying unstable plants. Inf. Sci. 181(11), 2370–
2391 (2011)

[18] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[19] Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-
objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004.
LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

[20] Koo, W., Goh, C., Tan, K.: A predictive gradient strategy for multiobjective evolutionary
algorithms in a fast changing environment. Memetic Computing 2, 87–110 (2010)

[21] Li, X., Branke, J., Kirley, M.: On performance metrics and particle swarm methods
for dynamic multiobjective optimization problems. In: Proc. 2007 IEEE Congr. Evol.
Comput., pp. 576–583 (2007)

[22] Liu, C.: New dynamic multiobjective evolutionary algorithm with core estimation of
distribution. In: Proc. 2010 Int. Conf. Electrical and Control Engineering, pp. 1345–
1348 (2010)

[23] Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary optimization of dynamic multi-
objective test functions. In: Proc. 2nd Italian Workshop on Evol. Comput. (2006)

[24] Morrison, R.: Designing evolutionary algorithms for dynamic environments. Springer
(2004)

[25] Ng, K., Wong, K.: A wew diploid scheme and dominance change mechanism for non-
stationary function optimization. In: Proc. 6th Int. Conf. Genetic Algorithms, pp. 159–
166 (1995)

[26] Nguyen, T.: Continuous dynamic optimisation using evolutionary algorithms. PhD The-
sis, University of Birmingham (2011)

[27] Ramsey, C., Grefenstette, J.: Case-based initialization of genetic algorithms. In: Proc.
5th Int. Conf. Genetic Algorithms, pp. 84–91 (1993)

[28] Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithms.
In: Proc. 1st Int. Conf. on Genetic Algorithms, pp. 93–100 (1985)

[29] Tantar, A., Tantar, E., Bouvry, P.: A classification of dynamic multi-objective optimiza-
tion problems. In: Proc. 13th Annual Conf. Genetic and Evol. Comput., pp. 105–106
(2011)

[30] Van Veldhuizen, D.: Multiobjective evolutionary algorithms: classifications, analyses,
and new innovations. PhD Thesis, Air Force Institute of Technology (1999)

[31] Vavak, F., Jukes, K., Fogarty, T.: Adaptive combustion balancing in multiple burner
boiler using a genetic algorithm with variable range of local search. In: Proc. 7th Int.
Conf. Genetic Algorithms, pp. 719–726 (1997)

[32] Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

[33] Yang, S.: Associative memory scheme for genetic algorithms in dynamic environments.
In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799.
Springer, Heidelberg (2006)

[34] Zeng, S., Chen, G., Zheng, L., Shi, H., de Garis, H., Ding, L., Kang, L.: A dynamic
multi-objective evolutionary algorithm based on an orthogonal design. In: Proc. 2006
IEEE Congr. Evol. Comput., pp. 573–580 (2006)

[35] Zhang, Z.: Multiobjective optimization immune algorithm in dynamic environments
and its application to greenhouse control. Appl. Soft Comput. 8(2), 959–971 (2008)

106 C. Raquel and X. Yao

[36] Zhang, Z., Qian, S.: Artificial immune system in dynamic environments solving time-
varying non-linear constrained multi-objective problems. Soft Comput. 15(7), 1333–
1349 (2011)

[37] Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-based population re-
initialization for evolutionary dynamic multi-objective optimization. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp.
832–846. Springer, Heidelberg (2007)

[38] Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:
Empirical results. Evol. Comput. 8(2), 173–195 (2000)

[39] Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study
and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

Part II
Algorithm Design

Chapter 5
A Comparative Study on Particle Swarm
Optimization in Dynamic Environments

Changhe Li and Shengxiang Yang

Abstract. Particle swarm optimization (PSO) has been shown an effective opti-
mization tool since it was proposed. Due to the efficiency of locating optima, it
has been widely applied to solve dynamic optimization problems (DOPs) with vari-
ant enhancements, e.g., diversity maintaining schemes, memory schemes, multi-
population schemes, adaptive schemes, and hybrid schemes. In this chapter, we
categorize and review approaches proposed based on PSO for DOPs. Weaknesses
and strengths of those approaches are also discussed in this chapter. In order to in-
vestigate the performance of those approaches, a set of typical algorithms based
on PSO are chosen to compare their performance on the moving peaks problem
(MPB). According to the comparison results, suggestions are also given regarding
future algorithms development for DOPs.

5.1 Introduction

Over the last two decades, dynamic optimization problems (DOPs) have drawn
many researchers from the swarm intelligence (SI) community. Especially, in recent
years, there has been a growing interest in studying particle swarm optimization
(PSO) for DOPs in terms of the number of publications. In dynamic environments,
the aim is not only to locate the global optima but also to track the trajectory of
changing optima. Although PSO has been shown an efficient method for station-
ary optimization problems, like other evolutionary algorithms (EAs), there exist

Changhe Li
School of Computer Science, China University of Geosciences, 388 Lumo Road,
Wuhan 430074, China
e-mail: changhe.lw@gmail.com

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 109–136.
DOI: 10.1007/978-3-642-38416-5_5 c© Springer-Verlag Berlin Heidelberg 2013

110 C. Li and S. Yang

difficulties to apply it to solve DOPs. The difficulties lie in two aspect: outdated
memory due to environment dynamism and diversity loss due to convergence [3].
For the first difficulty, it can be easily solved by re-evaluating particles over time.
However, it is hard to solve the diversity loss issue due to the difficulty in balanc-
ing the exploration and exploitation during the search progress. Hence, to address
the diversity loss issue, different kinds of approaches have been proposed to en-
hance the performance of PSO in dynamic environments, e.g., diversity maintaining
schemes [5, 13], multi-population schemes [12, 15, 18, 25, 33, 39, 52], adaptive
schemes [14, 17, 26, 32, 33, 45], hybrid schemes [13, 15, 16, 22, 36, 37, 40, 51],
and memory schemes [49].

Although the performance of PSO has been improved by using these proposed
approaches, there is no comprehensive study of these approaches in dynamic en-
vironments with different change properties, e.g., severe changes, hard-to-detect
changes, and some complicated changes, including the number of optima change
and dimensional change. This chapter reviews approaches proposed based on PSO
for DOPs and they are categorized as well. Strengths and weaknesses of these ap-
proaches are also discussed. To compare the performance of algorithms, some al-
gorithms, belongingto different categories, are selected and tested on the moving
peaks problem (MPB) [6].

The rest of this chapter is organized as follows. The related researches are
reviewed in Section 5.2, including the PSO algorithm, different kinds of enhance-
ments for PSO in dynamic environments, e.g., diversity maintaining schemes, multi-
population schemes, adaptive schemes, and hybrid schemes. Section 5.4 provides
the comparison results of the involved algorithms on the MPB problem. Finally,
conclusions and future research on PSO for DOPs are given in Section 5.5.

5.2 PSO in Dynamic Environments

5.2.1 Particle Swarm Optimization

Similar to other EAs, PSO is a population based stochastic optimization technique.
A potential solution in the fitness landscape is called a particle in PSO. Each particle
i is represented by a position vector xi and a velocity vector vi, which are updated
as follows:

v′di = ωvd
i +η1r1(x

d
pbesti − xd

i)+η2r2(x
d
gbest − xd

i) (5.1)

x′di = xd
i + v′di , (5.2)

where x′di and xd
i represent the current and previous positions in the d-th dimension

of particle i, respectively, v′i and vi are the current and previous velocity of particle i,
respectively, xpbesti and xgbest are the best position found by particle i so far and the
best position found by the whole swarm so far, respectively, ω ∈ (0,1) is an inertia
weight, which determines how much the previous velocity is preserved; η1 and η2

5 A Comparative Study on PSO in Dynamic Environments 111

are the acceleration constants, and r1 and r2 are random numbers generated in the
interval [0.0,1.0] uniformly.

Ever since PSO was first introduced, several major versions of the PSO algo-
rithm have been developed [43]. There are two main models of the PSO algorithm,
called gbest (global best) and lbest (local best), respectively. The two models differ
in the way of defining the neighborhood for each particle. In the gbest model, the
neighborhood of a particle consists of the particles in the whole swarm, which share
information between each other. On the contrary, in the lbest model, the neighbor-
hood of a particle is defined by several fixed particles. The two models give different
performances on different problems. It was pointed out [23, 43] that the gbest model
has a faster convergence speed but also has a higher probability of getting stuck in
local optima than the lbest model. On the contrary, the lbest model is less vulnerable
to the attraction of local optima, but has a slower convergence speed than the gbest
model. In order to give a standard form for PSO, Bratton and Kennedy proposed a
standard version of PSO in [8]. In the standard PSO, a local ring population topol-
ogy is used and the experimental results have shown that the lbest model is more
reliable than the gbest model on many test problems.

5.2.2 PSO in Dynamic Environments

Due to the efficiency of PSO in stationary environments as well as its simpleness,
PSO has been widely applied to solve DOPs with enhancements in some perspec-
tive. Many ideas have been proposed for PSO to suit different kinds of DOPs.
Among these approaches, the population diversity is an inevitable issue in dynamic
environments regardless what kind of the approach is used. In this section, the ma-
jor ideas are categorized into different groups in terms of their main characteristics
rather than how to solve the population diversity issue, and they are reviewed as
follows.

5.2.2.1 Diversity Maintaining Schemes

The basic idea of diversity maintaining schemes is to maintain the population di-
versity throughout the run by 1) regularly introducing random individuals into pop-
ulation [29]; 2) designing specialized particles to focus on diversity maintaining
[3–5, 11, 16]; 3) increasing diversity after a change by employing the idea of muta-
tion from genetic algorithms (GAs) [13, 36, 37, 53, 55].

The scheme of introducing random individuals is also called random immigrants
scheme. This scheme has been widely applied in GAs for solving DOPs. Due to
the disadvantage of slow search, it is not studied in PSO until a general diversity
maintaining scheme was proposed by Li and Yang in [29] for the MPB problem.
In the paper, the random immigrants scheme is triggered when the total number of
individuals decreases to a certain level, which is determined by the number of peaks
in the MPB problem.

For the second idea, a typical example is a charged PSO (mQSO) model proposed
by Blackwell et al. [3–5], which is inspired from the atom field, to prevent particles

112 C. Li and S. Yang

to get too closed to each other. In this mechanism, each swarm is comprised of a
nucleus and a cloud of charged particles which are responsible to maintain diversity.
There is a repulsion among charged particles to keep them from approaching near
to each other. Thereafter, an enhanced version of mQSO was proposed by applying
two heuristic rules to further enhance the diversity of mQSO in [11]. One of the
two rules is to increase the number of quantum particles and decrease the number of
trajectory particles when a change occurs. The other rule is to re-initialize or pause
the swarms that have bad performance. The quantum concept was also used in [16],
where after a change in environment is detected, some particles change their role
from standard particles to quantum particles.

Using the mutation idea from GAs is also studied in PSO for maintaining the
populations diversity. In [13], a new multi-strategy ensemble PSO (MEPSO) for
DOPs was proposed. In MEPSO, all particles are assigned into two groups. Dif-
ferential mutation operators are applied in one of the two groups of population to
maintain the diversity for exploring promising areas. A collaborative evolutionary
swarm optimization (CESO) was proposed in [36]. The diversity is maintained by a
population that uses the crowding differential evolution (CDE) algorithm [48]. An
algorithm based on the similar idea in CESO, named ESCA, was proposed in [37].
An adaptive mutation operator was developed to maintain the population diversity
as well in a cooperative dual-swarm PSO (CDPSO) algorithm [53].

A novel adaptive mutation PSO (AMPSO) algorithm based on fuzzy matter-
element analysis for generalized dynamic constraints satisfaction (GDCS) was pre-
sented to resolve the coupling domain level and knowledge level constraints in [55].
In AMPSO, the mutation mechanics is introduced to mutate inactive particles and
particles with the smallest fitness according to mutation probability, which is in-
tended to make the algorithm converge faster and respond better to changes in dy-
namic environments.

There are also some other specialized diversity maintaining methods for PSO.
In [10], both the particle selection and replacement mechanisms are modified so
that the most diversified particles (measured by the Hamming distance) are selected
and the particles that have close locations are replaced. In the compound PSO [34],
the degree of particles deviating from their original directions becomes larger when
the velocities becomes smaller, and distance information is incorporated as one
of the criteria to choose a particle for the update mechanism.

5.2.2.2 Adaptive Schemes

To cope with changes in dynamic environments, many adaptive methods are inte-
grated into PSO with the aim of balancing diversity and convergence. The adaptive
techniques roughly fall into two categorizes: 1) adaptively assigning the neighbor-
hood of each particle [31, 33, 35, 41]; and 2) adaptively tuning parameters for PSO
[14, 44].

An early attempt on adaptive PSO for DOPs is the adaptive PSO in [17] where
different environment detection and response methods are investigated on the
parabolic and Rosenbrock benchmark functions. An adaptive particle swarm for

5 A Comparative Study on PSO in Dynamic Environments 113

solving the vehicle routing problem with dynamic requests was presented in [26].
An adaptive memory idea was developed to store good solutions, which are adap-
tively updated throughout the search progress. When a change occurs, particles are
re-initialized by random generation in the search space. However, the pbest position
of a randomly initialized particle will be preserved by the position in the previous
environment rather than uniformly replaced by its corresponding location of x if it
is better than the randomly generated position of the particle.

To adaptively organize the neighborhood of particles, many PSO variants have
been proposed where particles are adaptively grouped into sub-swarms in each it-
eration according to certain principles based on their fitness and distance. The first
work of this kind of research is the speciation based PSO (SPSO) [31, 41] pro-
posed by Parrott and Li. In SPSO, the number and size of swarms is adaptively
adjusted by constructing an ordered list of particles, ranked according to their fit-
ness, with spatially close particles joining a particular species. Recently, a similar
idea, called PSO-CP, was proposed in [35]. Instead of the “fittest first” principle
in SPSO [31, 41], swarms are constructed based on a “worst first” principle, but
each composite particle consists of three fixed particles. Interestingly, thereafter, an
opposite version of PSO-CP was proposed in [33], where a composite particle (a
sub-swarm) is generated based on the “fittest-oriented” principle.

An adaptive PSO algorithm was proposed in [44]. In the proposed algorithm,
exclusion radios and inertia weight are adaptively adjusted by the FCM mechanism
and a local search scheme on the best swarm is employed to accelerate the search
progress. To encourage local search or global search for different swarms, which
are ranked decreasingly according to the fitness of the best particles, an adaptive
inertia weight is adopted by the swarm ranking and swarm evolutionary progress.
As a result, the last swarm, which is the best swarm, will focus on local search by
using the smallest inertia weight, while the first swarm (the worst swarm) will use a
large value of inertia weight for exploring promising areas globally.

To adapt PSO in dynamic and noisy environments, an improved mQSO [5] al-
gorithm with an evaporation mechanism, denoted mQSOE, was proposed in [14],
in which the evaporation mechanism is implemented by reducing the fitness value
of the best position found by each particle along time. In the study, the difficulty
in applying this idea is that a high evaporation factor produces a fast adaptation but
the particles can not reach a good solution in the optimization process. While, a low
evaporation factor achieves a fast convergence with high quality solutions, but the
adaptation is very low. In order to address this issue, an adaptive evaporation factor
was proposed using the particles’ velocity and the difference between the fitness of
its pbest position and the fitness of its current position.

5.2.2.3 Hybrid Schemes

Hybrid schemes are commonly used to enhance the diversity for PSO in dynamic
environments, which can be roughly divided into three categories: 1) hybridization
of swarm topologies [52]; 2) hybridization with other domain knowledge [16, 22,
51]; 3) hybridization with other meta-heuristic methods [13, 15, 36, 37, 51, 53].

114 C. Li and S. Yang

Two different population topologies are used in two sub-swarms in [52], where
the two sub-swarms exchange their best particle at checkpoints. One sub-swarm is
used for searching the global optimum and the other is responsible for local search
and diversity maintaining.

A hybrid model of PSO with cellular automata was proposed in [16] to address
DOps. In the proposed model, a population is split by cells of cellular automata
embedded in the search space. Each cell of cellular automata has a specified number
of particles. The quantum particles introduced in [5] are also applied in order to find
new local optima quickly. The hybrid characteristic of a particle is implemented
by changing their role from the normal particles to quantum particles for a few
iterations after a change happens.

Inspired from the microbial life, the particles in [22] can reproduce infants and
the old ones die. By using the quadratic interpolation method, the infants are able
to be reproduced by high quality particles. The algorithm is adapted to perform in
continuous search spaces by using Euclidian norm to define the neighborhood in
the reproduction procedure. The performance of the proposed approach was com-
pared with some other heuristic optimization algorithms. The results indicate a bet-
ter performance of the proposed algorithm than other tested algorithms in terms of
real-time error, offline performance, and offline error.

In [51], a memetic algorithm with a fuzzy cognition local search method was
proposed for improving the quality of individuals. In the algorithm, a self-organized
random immigrants scheme is also used to enhance the exploration capacity in a
local version of PSO with the ring topology.

A multi-strategy ensemble PSO (MEPSO) was proposed in [13]. In MEPSO, all
particles are divided into two groups, which use Gaussian local search and differ-
ential mutation to exploit local optima and to explore new promising areas, respec-
tively. To enhance the local search ability, a particle has a probability (p) to perform
the Gaussian local search and a probability of 1− p to play the role of the conven-
tional particle.

A collaborative evolutionary swarm optimization (CESO) was proposed in [36].
In CESO, two swarms, which use the crowding DE (CDE) [48] and the PSO model,
respectively, cooperate with each other by a collaborative mechanism. The swarm
using CDE is responsible for preserving diversity while the PSO swarm is used for
tracking the global optimum. The competitive results were reported in [36]. There-
after, a similar algorithm, called evolutionary swarm cooperative algorithm (ESCA),
was proposed in [37] based on the collaboration between a PSO algorithm and an
EA. In ESCA, three populations using different EAs are used. Two of them follow
the rules of CDE [48] to maintain the diversity. The third population uses the rules
of PSO. Three types of collaborative mechanisms are also developed to transmit
information among the three populations.

Like the ideas in CESO [36] and ESCA [37], a cooperative dual-swarm PSO
(CDPSO) was proposed [53] to deal with DOPs. CDPSO adopts a dual-swarm
structure to maintain the swarm diversity and track the changing optima. A frac-
tional global best formation technique is employed to construct artificial global bests
which are potential to be better. An adaptive mutation operator is also developed to

5 A Comparative Study on PSO in Dynamic Environments 115

maintain the population diversity as well. A centralized cooperative strategy, which
is based on tabu search, was proposed for tracking the changing optima in [15].

5.2.2.4 Multi-population Schemes

Branke et al. proposed a self-organizing scouts (SOS) [7] algorithm, which is an
early attempt of a new kind of multi-population methods. Although it is based on
genetic algorithms (GAs), it is worth introducing the SOS algorithm here as it is a
typical example of using multi-population methods. In SOS, the whole population
is composed of a parent population that searches through the entire search space
and child populations that track local optima. The parent population is regularly
analyzed to check the condition for creating child populations, which are split off
from the parent population.

Inspired by a forking mechanism, a multi-swarm optimization algorithm was pro-
posed in [50]. Similar to the SOS algorithm [7], in the multi-swarm algorithm, a
larger main swarm is continuously responsible for exploring new peaks and a num-
ber of smaller child swarms, split off from the main swarm, are used to track the
achieved peaks over the whole run.

Inspired by the SOS algorithm [7], a fast multi-swarm optimization (FMSO) al-
gorithm was proposed in [27] to locate and track multiple optima in dynamic en-
vironments. In FMSO, a parent swarm is used as a basic swarm to detect the most
promising area when the environment changes, and a group of child swarms are
used to search the local optimum in their own sub-spaces. Each child swarm has a
search radius, and there is no overlap among all child swarms since they exclude
from each other. If the distance between two child swarms is less than their radius,
then the whole swarm of the worse one is removed. This guarantees that no more
than one child swarm will cover a single peak. Another similar idea of hibernation
multi-swarm optimization algorithm (HmSO) was introduced in [21], where a child
swarm will hibernate if it is not productive anymore and will be waken up if an
environmental change has been detected.

Swarms are dynamic and the size of each swarm is small in [19]. The whole
population is divided into many small sub-swarms. The sub-swarms will be re-
grouped frequently by using different regrouping schemes and information is ex-
changed among the sub-swarms. Some accelerating operators is apllied to improve
local search ability. A change also needs to be detected and adjustments will be
performed once changes are detected.

An atomic swarm approach has been adapted by Blackwell and Branke [4, 5]
to track multiple optima simultaneously with multiple swarms in dynamic environ-
ments. In their approach, a charged swarm is used for maintaining the diversity
of the swarm, and an exclusion principle ensures that no more than one swarm
surrounds a single peak. In the algorithm, called mQSO in [5], anti-convergence
is introduced to detect new peaks by sharing information among all sub-swarms.
This strategy was experimentally shown to be efficient for the MPB function
[6]. Borrowing the idea of exclusion from [4], Mendes and Mohais developed a
multi-population DE algorithm (DynDE) [38] to solve the MPB problem. In their

116 C. Li and S. Yang

approach, a dynamic strategy for the mutation factor F and probability factor CR in
DE was introduced. Recently, an enhanced version of mQSO was proposed by ap-
plying two heuristic rules to further enhance the diversity of mQSO in [11]. One of
the two rules is to increase the number of quantum particles and decrease the num-
ber of trajectory particles when a change occurs. The other rule is to re-initialize
or pause the swarms that have bad performance. To increase the performance of
mCPSO [5], two strategies were proposed in [40], one of which divides each swarm
into two groups depending on the quality of the particles for addressing the loss of
diversity, and the other control the number of active swarms during the run using a
fuzzy rule. In the approach, swarms with a bad behavior and a certain level of con-
vergence are stopped by using an adaptive and fuzzy rule to increase the efficiency
of mCPSO.

Parrott and Li developed the SPSO algorithm [31, 41], which dynamically ad-
justs the number and size of swarms by constructing an ordered list of particles,
ranked according to their fitness, with spatially close particles joining a particular
species. At each generation, SPSO aims to identify multiple species seeds within a
swarm. Once a species seed has been identified, all the particles within its radius
are assigned to that same species. Parrott and Li also proposed an improved version
with a mechanism to remove redundant duplicate particles in species in [42]. In [1],
Bird and Li developed an adaptive niching PSO (ANPSO) algorithm which adap-
tively determines the radius of a species by using the population statistics. Based
on their previous work, Bird and Li introduced another improved version of SPSO
using a least square regression (rSPSO) in [2]. Recently, in order to determine niche
boundaries, a vector-based PSO [47] algorithm was proposed to locate and maintain
niches by using additional vector operations.

A clustering PSO (CPSO) algorithm has recently been proposed for DOPs in
[28, 54]. CPSO applies a hierarchical clustering method to divide an initial swarm
into sub-swarms that cover different local regions. CPSO was proposed to attempt
to solve some challenging issues associated with multi-population methods. For ex-
ample, how to guide particles to move toward different promising sub-regions and
how to determine the radius of sub-swarms. CPSO has shown some promising re-
sults in comparison with several state-of-the-art algorithms in [54]. Recently, Li and
Yang [29] proposed a general framework for multiple population methods in unde-
tectable dynamic environments based on the clustering method used in in [28, 54].
An algorithm called clustering PSO with restart (CPSOR) was implemented based
on PSO technique. The CPSOR algorithm shows an superior performance compared
with other algorithms especially in dynamic environments where changes are hard
to detect. Although CPSOR is able to solve DOPs without change detection, it is
not able to adapt populations with environmental changes.

Recently, Li et al. [30] proposed another PSO algorithm based on the clustering
idea, called adaptive clustering PSO (ACPSO), which is able to make populations
adaptable with changes, especially for the number of populations needed. In order to
find a proper moment to increase the population diversity, a special technique is pro-
posed by monitoring the decreasing ratio of the number of survived sub-populations.
In order to deal with DOPs with complicated changes, e.g., changes of the number

5 A Comparative Study on PSO in Dynamic Environments 117

of peaks, a novel idea is introduced to figure out the proper number of populations
that are really needed when a change happens. The idea is to compare the number of
survived populations in the current and previous diversity increasing points. If the
number of survived populations in the current check point is larger than that in the
previous check point, the total number of individuals will be increased; otherwise,
the total number of individuals will be decreased. By using these methods, ACPSO
is able to adaptively maintain the population diversity in a proper moment with a
proper number of individuals.

A cultural framework was introduced in [10] for PSO where it defines five differ-
ent kinds of knowledge, named situational knowledge, temporal knowledge, domain
knowledge, normative knowledge and spatial knowledge. The information is used
to detect changes. Once a change is detected, a diversity based repulsion mecha-
nism is applied among particles as well as a migration strategy among swarms. The
knowledge also helps in selecting the leading particles at the personal, swarm, and
global level.

Recently, a similar algorithm to SPSO [42], called PSO with composite particles
(PSO-CP), was proposed in [35]. In PSO-CP, the whole swarm is partitioned into a
set of composite particles by a “worst first” principle, which is opposite to the idea
in SPSO [42]. The members of each composite particle is fixed by three particles.
Inspired by the composite particle phenomenon in physics, the elementary mem-
bers in each composite particle interact via a velocity-anisotropic reflection scheme
to integrate valuable information. The diversity of each composite particle is main-
tained by a scattering operator and an integral movement strategy is also introduced
to promote the swarm diversity. In [33], a novel version of interactions among par-
ticles was proposed based on the previous work of composite model [34, 35]. It
creates each composite particle by one fitter particle from the swarm and other two
particles randomly generated in its neighborhoods. In order to integrate valuable in-
formation for searching the changed optima, a scatter factor is introduced into the
velocity-anisotropic reflection (VAR) scheme and a “fitness-and-distance” based pi-
oneer particle identification (PPI) method is introduced. In addition, the composite
particles interact with other particles in the swarm using an integral movement strat-
egy, which aims to enhance the diversity of the swarm.

In [24], a multi-environmental cooperative model for parallel meta-heuristics was
proposed to handle DOPs that consists of different sub-problems or environments.
A parallel multi-swarm approach is used to dealing with different environments at
the same time by using different algorithms that will exchange information obtained
from these environments. The multi-swarm model was tested on a set of dynamic
vehicle routing problems.

Note that many algorithms from other schemes can also be classified into this
category in terms of the number of swarms that is used, such as algorithms in
[14, 33, 35, 45] from adaptive schemes, algorithms in [5, 29, 36, 37, 53] from di-
versity maintaining schemes, and algorithms in [13, 15, 16, 36, 37, 52] from hybrid
schemes. As they have been introduced before, here we do not review these methods
again.

118 C. Li and S. Yang

5.2.2.5 Memory Schemes

Memory schemes have been rarely studied in PSO as each particle is able to mem-
orize the best position found so far in its corresponding pbest position. Wang et al.
introduced a triggered generator for a memory-based PSO in [49], where the re-
initialization of a population will be immediately triggered once a peak has been
found. It was reported that the triggered generator can be more efficient in explor-
ing the search space than the simple re-initialization method, especially when the
environment does not change frequently.

5.3 Discussions and Suggestions

5.3.1 Issues with Current Schemes

To solve DOPs, one inevitable issue must be considered, which is how to handle
the dynamism in changing environments. So far, most PSO variants developed for
DOPs use some change detection methods [5, 28, 31, 36, 37, 46, 54]. One common
detection method is to monitor the fitness of one or several detectors (i.e., solution(s)
in the search space). A change is detected if the fitness of the detector(s) changes.
Once a change has been detected, different kinds of schemes can be applied to in-
crease the diversity. However, in order to use these strategies efficiently, a condition
must be applied, that is, the environmental changes must be successfully detected.
Hence, a general issue of these detection based schemes is that what the efficiency
will be if they fail to detect a change, such as in the dynamic environments where
only parts of the fitness landscape changes.

5.3.1.1 Issues with Diversity Maintaining Schemes

Maintaining diversity throughout the runtime is a common idea to deal with changes
in dynamic environments. This kinds of methods may be good at solving problems
with severe changes as high diversity is maintained over changes. However, the
issues below should be addressed.

Firstly, the most important issue is when to increase the population diversity.
Increasing diversity too often is not effective because the continuous focus on diver-
sity slows down the optimization process as pointed out in [20], especially for the
first (i.e., regularly introducing random individuals) and second approach (i.e., de-
signing specialized particles) of maintaining diversity, described in Section 5.2.2.1.
Individuals, which are in explorative status, will be eliminated due to new random
immigrants. However, the local areas where they are searching are not sufficiently
exploited. On the other hand, not frequently increasing the population diversity will
lead to lack of diversity for algorithms to locate and track the global optimum in
changing environments. The ideal moment to increase diversity is when changes
happen. However, the change detection issue comes again.

Secondly, the magnitude of diversity to be introduced should also be considered.
Here, the magnitude of diversity is determined by the number of random immigrants

5 A Comparative Study on PSO in Dynamic Environments 119

to be introduced. DOPs can be taken as a series of stationary problems. Therefore,
we can take the magnitude of diversity to be increased in a specific environment as
the initial population size for a stationary problem to be solved. It is related to the
structure of the current environments, and is changeable as the environment changes.
For example, the magnitude will change if the number of peaks changes in the MPB
problem [6].

Thirdly, for the second diversity maintaining approach, i.e., designing specialized
particles to maintain diversity, the problem is how to design effective rules for those
specialized particles to maintain the diversity. In addition, it is inevitable to involve
extra computational cost due to the function of specialized individuals.

5.3.1.2 Issues with Adaptive Schemes

The aim of adaptive schemes is to adaptively maintain the population diversity by
using meta-heuristics to adjust the behavior of optimization algorithms. If effec-
tive meta-heuristics are designed, this kind of approaches will be a good choice
for DOPs. However, there are several issues for current adaptive schemes in the
literature.

Firstly, in order to use heuristic rules, the aid of change detection is needed for
many adaptive methods, e.g., algorithms in [5, 17, 26, 31, 41]. Secondly, it is hard to
develop effective heuristic rules to deal with changes. Although different heuristics
have been proposed, e.g., the inertial weight in [44] and evaporation factor in [14],
they still suffer from some difficulties.

5.3.1.3 Issues with Hybrid Schemes

Although the aim of optimization algorithms is to locate the global optimum, dif-
ferent methods have different characteristics. For example, algorithms based on the
idea of mutation are biased to explore the search space. While algorithms based
on PSO will prefer to exploit in a local area. Therefore, it is easy to work out the
idea of hybridization of methods that have different search behaviors to solve DOPs.
Maintaining diversity is a key issue for solving DOPs. Therefore, in hybrid schemes,
methods that are able to maintain the population diversity are considered on the one
hand. On the other hand, methods that have fast convergence speed are also con-
sidered. And hybrid schemes are normally implemented by multiple populations.
Hence, the major issues with hybrid schemes are how to choose effective meth-
ods that have different search behaviors, and how to organize them for co-operation
during the search.

5.3.1.4 Issues with Multi-population Schemes

Multiple population methods can be roughly classified into three categories accord-
ing to the way to create multiple populations. The first category simply uses a certain
number of randomly generated populations. Simply, all populations use the same
evolutionary strategy with the same number of individuals. However, to enhance the

120 C. Li and S. Yang

capability of locating and tracking the global optimum, in many algorithms of this
category, the populations are assigned into different groups where each group uses
different search methods (e.g., ESCA [37], CESO [36], mQSO [5] and algorithms
proposed recently [10, 24, 52, 52, 53]) to serve different purposes (e.g., explor-
ing new promising sub-areas or exploiting local optima). The second category of
multi-population methods (e.g., SOS [7], NichePSO [9], FMSO [27], HmSO [21],
and FPSO [50]) starts from a main population and maintains it to generate sub-
populations by splitting off from the main population when some predefined criteria
are satisfied (e.g., the best individual in the main population does not improve for
a certain number of iterations). The third category of multi-population methods di-
vides a large randomly generated population into several small sub-populations to
make them cover different sub-areas in the search space. For example, SPSO [31],
PSO-CP [35], CPSO [28, 54], and multi-swarm accelerating PSO (MSA-PSO) [19]
algorithms belong to this category.

Among the three categories of multi-population schemes, the third one seems
to be the best in terms of the aim of multi-population methods, which is to divide
the search space into different sub-areas and to locate and track multiple peaks in
parallel. From this point of view, only the third category is able to create multiple
populations without overlapping between them.

The major common problem of these multi-population methods is that, although
they improve the performance in locating and tracking multiple optima, they also
bring in new issues which are difficult to solve, as discussed below.

It is difficult to define a proper number of populations that is needed in a specific
environment. This is because the proper number of populations is determined by
the number of peaks (optima) in the fitness landscape. Generally speaking, the more
peaks distribute in the fitness landscape, the more populations are needed. Many
experimental studies [5, 38, 54] have shown that the optimal number of populations
is equal to the number of peaks in the fitness landscape in the MPB problem [6]
with ten peaks. However, we should assume that the number of peaks in the fitness
landscape is unknown while solving a problem even though it is known for some
artificially created problems, e.g., the MPB problem.

How to define a proper search radius for a sub-population is also difficult. It is
determined by the structure of the local area where the population is distributed.
Here, we assume an ideal situation where a population only covers a single peak
in the search space. Generally, a peak with a large width needs a population with a
large search area, vice versa. However, the difficulty is how to obtain the structure
information of the fitness landscape of the problem to be solved. In addition, differ-
ent populations should have different search areas because the shapes of different
peaks are different.

5.3.2 Future Algorithms for DOPs

Although a number of algorithms have been proposed to solve different kinds of
DOPs, far more effective algorithms are needed to address the issues of current

5 A Comparative Study on PSO in Dynamic Environments 121

methods. From the above review and discussions about the research that has been
done for DOPs, there are several suggestions for future algorithm development.

Firstly, algorithms should work without the assistance of change detection tech-
niques. Due to the uncertainty characteristic of changes, it is very hard and even
impossible to detect or predict changes as a successful detection is not always guar-
anteed, especially for real-world problems. Therefore, change detection should be
avoided for future algorithms.

Secondly, learning from changing environments to guide the search should be
addressed. Learning is an important feature of evolutionary computation to adapt
population to environmental changes. It is a progress of discovering the structure in-
formation of a problem being considered, which should be used to guide the search,
especially for the diversity maintaining issues.

Thirdly, the multi-population idea is the most flexible and cab be a versatile tool
for solving DOPs. The reason lies in that any kinds of schemes for DOPs can be
applied in multi-population methods. In addition, multi-population methods are ef-
fective approaches to locating and tracking multiple optima, which is very helpful
to track the global optimum.

In summary, adaptive systems without change detection should be encouraged to
solve DOPs with different kinds of characteristics.

5.4 Experimental Study

In this section, in order to compare the performance of algorithms based on dif-
ferent schemes, a number of well-known PSO algorithms are chosen to be tested
on the MPB problem [6]. The investigated algorithms are mQSO [5] from diver-
sity maintaining schemes, SPSO [42], rSPSO [2], ACPSO [30], and PSO-CP [35]
from adaptive schemes, ESCA [37] from hybrid schemes, and mCPSO [5], CPSO
[54], CPSOR [29], and HmSO [21] from multi-population schemes. Note that the
categories of these involved algorithms are in terms of their major characteristics,
some of them use several schemes, e.g., the ESCA [37] algorithm employs the hy-
brid scheme, multi-population scheme, and memory scheme. Table 5.1 presents the
detailed schemes used for each algorithm. It can be seen that multi-population, di-
versity maintaining, and memory schemes are used by most algorithms.

In order to use exactly the same fitness landscapes across all environmental
changes for a fair comparison, all the peer algorithms involved in this paper were
carefully implemented and examined according to their origins where they were
proposed. All the peer algorithms use the suggested configurations from the papers
where they were proposed on the MPB problem. It should be noted that all algo-
rithms achieved a close performance as they were proposed except the PSO-CP [35]
algorithm, whose results are much worse than the results reported in [35] and hence
are presented but not discussed in this study.

122 C. Li and S. Yang

Table 5.1 Schemes used for all the investigated algorithms, where the “�” symbol indicates
that the corresponding scheme is used by an algorithm while the “-” symbol denotes that
corresponding scheme is not used

ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO
Without change detection � � - - - - - - � �
Adaptive scheme � - - - � - � � - -
Diversity maintaining scheme � � � � � � � � - �
Multi-population scheme � � � � � � � � � �
Hybrid scheme - - � � � - - - � �
Memory scheme � � � � � � � � � �

5.4.1 Experimental Setup

5.4.1.1 The Moving Peaks Benchmark (MPB) Problem

The MPB problem, proposed by Branke [6], has been widely used as a dynamic
benchmark problem in the literature. Within the MPB problem, the optima can be
varied by three features, i.e., the location, height, and width of peaks. For the D-
dimensional landscape, the problem is defined as follows:

F(x, t) = max
i=1,...,p

Hi(t)

1+Wi(t)∑D
j=1 (x j(t)−Xi j(t))2

, (5.3)

where Wi(t) and Hi(t) are the height and width of peak i at time t, respectively, and
Xi j(t) is the j-th element of the location of peak i at time t. The p independently
specified peaks are blended together by the max function. The position of each peak
is shifted in a random direction by a vector vi of a distance s (s is also called the
shift length, which determines the severity of the problem dynamics), and the move
of a single peak can be described as follows:

vi(t) =
s

|r+ vi(t− 1)| ((1−λ)r+λ vi(t− 1)), (5.4)

where the shift vector vi(t) is a linear combination of a random vector r and the pre-
vious shift vector vi(t− 1), and is normalized to the shift length s. If the correlated
parameter λ is set to 0, it implies that the peak movements are uncorrelated.

More formally, a change of a single peak can be described as follows:

Hi(t) = Hi(t− 1)+ height severity∗σ (5.5)

Wi(t) =Wi(t− 1)+width severity∗σ (5.6)

Xi(t) = Xi(t)(t− 1)+ vi(t) (5.7)

where σ is a normally distributed random number with mean 0 and variation 1.
The default settings and definition of the benchmark problem used in the ex-

periments of this study can be found in Table 5.2, which are the same for all the
involved algorithms. It should be noted that different from the traditional MPB

5 A Comparative Study on PSO in Dynamic Environments 123

Table 5.2 Default settings for the MPB problem, where the term “change frequency (U)”
means that the environment changes every U fitness evaluations, S denotes the range of allele
values, and I denotes the initial height for all peaks. The height of peaks is shifted randomly
in the range H = [30,70] and the width of peaks is shifted randomly in the range W = [1,12].

Parameter Value

peaks (number of peaks) 10
change frequency (U) 5000

height severity 7.0
width severity 1.0

peak shape cone
basic function no
shift length s 1.0

number of dimensions D 5
correlation coefficient λ 0

percentages of changing peaks cPeaks 1.0
step of number of peaks’ change sPeaks 2

S [0, 100]
H [30.0, 70.0]
W [1, 12]
I 50.0

problem, the percentage of changing peaks (cPeaks), which is a new feature, is
added in the MPB problem in this study. This feature will make the MPB problem
harder to solve because many techniques based on change detection may lose their
functions. Another new feature added into the MPB problem is that, the number of
peaks is allowed to change by a step size of 2 when a change happens if this feature
is activated. This feature is designed to test the adaptability of an algorithm as the
number of peaks changes. If this feature is enabled, the number of peaks changes
by peaks = peaks+ sign · sPeaks, where sign = 1 if peaks <= 10 and sign = −1
if peaks >= 50 and the initial value of sign is one. The traditional MPB problem
is a special case of the MPB problem used in this study where cPeaks = 1.0 and
sPeaks = 0.

5.4.1.2 Performance Evaluation

The first performance measure used in this study is the offline error, which is defined
as follows:

μ =
1
K

K

∑
k=1

(hk− fk), (5.8)

where fk is the best solution obtained by an algorithm just before the k-th environ-
mental change, hk is the optimum value of the k-th environment, μ is the average
of all differences between hk and fk over the environmental changes, and K is the
total number of environments, which is set to K = 100 in this study. All the results
reported are based on the average over 30 independent runs with different random

124 C. Li and S. Yang

seeds. Note that the same set of random seeds are used for all the peer algorithms
over 30 runs for a fair competition.

Another performance measure used in this study is the offline performance,
which is defined as follows:

per =
1
K

K

∑
k=1

(rlast
k /(1+

S

∑
s=1

(1− rs
k)/S)), (5.9)

where rlast
k is the relative value of the best solution to the global optimum after reach-

ing U fitness evaluations for each change; rs
k is the relative value of the best solution

to the global optimum at the s-th sampling during one change, S = U/s f , s f is
the sample frequency, whose value was set to 100; rs

k = (f (xs
k)+ o f f set)/(f (x∗k)+

o f f set) for maximization problems and rs
k = (f (x∗k) + o f f set)/(f (xs

k) + o f f set)
for minimization problems, where o f f set was set to f abs(f (x∗k))+1 and is used to
ensure that (f (x∗k)+ o f f set) is greater than 0.

The offline performance in Eq. (5.9) takes two aspects into account. The first as-
pect is the solution quality, which reflects the capability of locating and tracking the
global optimum for an algorithm. In Eq. (5.9), the better a solution is found by an al-
gorithm, the larger the value of rlast

k is obtained and hence, the larger per is achieved
by the algorithm (the limit of per is 1.0). The second aspect is the converge capa-
bility, which indicates how fast an algorithm can converge to the global optimum
after a change happens. The faster the convergence speed is, the better the offline
performance is. Therefore, the offline performance generally is able to indicate an
algorithm’s performance in terms of both the solution quality and the convergence
speed. However, the offline error is still used in this study because it is the mostly
used performance measurement for EAs in dynamic environments.

5.4.2 Effect on Varying the Shit Length

5.4.2.1 Effect on Varying the Shit Length with Fixed Number of Peaks

Table 5.3 presents the comparison results of all the involved algorithms regarding
different values of the shift length for the MPB problem. In Table 5.3 (and follow-
ing tables in this chapter), the best value achieved among all algorithms regarding
the offline error and offline performance respectively for each problem instance is
highlighted in bond font.

Generally speaking, the difficulty for an algorithm to locate and track a chang-
ing optimum will increases as the shift length increases for the MPB problem. The
larger the shift length is, the further a peak moves and hence, the harder for an algo-
rithm to re-locate and track the new peak. This trend can be clearly observed from
the comparison of the offline errors and the offline performance for most algorithms
except ESCA in Table 5.3. For example, the offline error of ACPSO increases from
0.736 to 1.59 as the shift length (s) increases from 1.0 to 6.0, and accordingly, the
offline performance drops from 0.978 to 0.933. The motivation of the ESCA al-
gorithm is to use a swarm with sufficient diversity to re-start a new search for the

5 A Comparative Study on PSO in Dynamic Environments 125

Table 5.3 Offline error, standard error (±), and offline performance for different algorithms
on the MPB problem with different shift severities, where the default settings for the MPB
problem in Table 5.2 except s were used

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

0
error 0.666 1.57 0.899 2.68 26.2 13.9 0.698 0.807 2.32 0.601
std ±0.784 ±1.23 ±1.05 ±1.26 ±8.62 ±7.95 ±0.841 ±0.972 ±1.64 ±0.439
per 0.989 0.963 0.971 0.953 0.571 0.788 0.987 0.985 0.961 0.989

1
error 0.61 0.448 1.35 3.49 28.3 14.1 2.16 2.28 7.57 1.69
std ±0.865 ±0.626 ±1.12 ±1.65 ±8.02 ±7.18 ±1.45 ±1.49 ±3.57 ±0.784
per 0.98 0.978 0.949 0.937 0.534 0.778 0.956 0.954 0.874 0.965

2
error 1.15 0.588 1.31 3.88 26 12.9 2.9 2.81 7.57 1.84
std ±1.47 ±0.654 ±1.15 ±1.66 ±7.73 ±6.32 ±1.54 ±1.54 ±3.82 ±0.723
per 0.963 0.967 0.939 0.922 0.569 0.789 0.938 0.939 0.867 0.958

3
error 1.14 0.749 1.41 4.22 21.1 11.9 3.4 3.24 8 2.06
std ±1.39 ±0.7 ±1.08 ±1.74 ±4.74 ±4.73 ±1.37 ±1.34 ±3.74 ±0.775
per 0.956 0.958 0.93 0.913 0.643 0.802 0.925 0.927 0.853 0.951

4
error 1.34 0.905 1.51 4.67 20.6 11.4 3.9 4.01 9.08 2.3
std ±1.59 ±0.843 ±1.1 ±2.28 ±4.35 ±3.46 ±1.33 ±1.4 ±4.31 ±0.786
per 0.947 0.948 0.922 0.903 0.652 0.805 0.913 0.91 0.83 0.944

5
error 1.41 1.07 1.58 4.71 21.1 11.1 4.39 4.4 9.94 2.65
std ±1.53 ±0.839 ±1.04 ±2.13 ±4.81 ±2.9 ±1.44 ±1.44 ±4.35 ±0.872
per 0.941 0.941 0.915 0.899 0.641 0.805 0.901 0.9 0.811 0.935

6
error 1.54 1.25 1.52 5.41 21 11.3 5.12 5.19 10.8 2.94
std ±1.63 ±1.04 ±1.06 ±2.36 ±4.48 ±2.82 ±1.46 ±1.52 ±4.58 ±0.744
per 0.935 0.933 0.911 0.886 0.64 0.799 0.886 0.884 0.793 0.927

global optimum whenever a change is detected. A DOP will be treated as a series
of static problems by the ESCA algorithm and hence the moving distance of peaks
will not affect its performance too much.

From the results, CPSOR obtains the best results in terms of both the offline error
and the offline performance for most cases. The comparison shows that CPSOR
has a fast convergence speed to the new global optimum when a change occurs. It
is interesting to see that ACPSO achieves better offline performance than that for
CPSOR on the cases of s = 1 and s = 6 although CPSOR has better offline errors
than that of ACPSO. mQSO obtains the best results on the case of s = 0.

5.4.2.2 Effect on Varying the Shit Length with Variable Number of Peaks

Although CPSOR achieves better results than ACPSO with different shit lengths
on the default settings of the MPB problem in Table 5.3, their performance greatly
decreases when the number of peaks is allowed to change. In such environments,
the total number of peaks in the fitness landscape of the MPB problem will change
according to the description in Sect. 5.4.1.1. Table 5.4 shows the comparison of the
offline errors and offline performance of all the algorithms on the MPB problem
with changing number of peaks.

126 C. Li and S. Yang

Table 5.4 Offline errors, standard error (±) and offline performance for different algorithms
on the MPB problem with different shift severities, where part of the peaks were enabled to
change on the MPB problem

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

0
error 2.15 1.91 1.62 3.13 22.2 12 2.8 2.75 4.43 2.67
std ±3.14 ±2.63 ±2.52 ±3.06 ±12.6 ±8.97 ±3.25 ±3.23 ±4.49 ±3.05
per 0.961 0.963 0.961 0.95 0.63 0.82 0.957 0.957 0.931 0.959

1
error 1.73 1.89 1.76 3.65 22.6 12.7 3.93 3.98 6.62 3.25
std ±2.52 ±2.53 ±2.5 ±3.3 ±12.3 ±8.97 ±3.67 ±3.74 ±5.06 ±3.1
per 0.964 0.96 0.948 0.938 0.622 0.803 0.934 0.933 0.893 0.944

2
error 1.98 1.91 1.88 4.16 21.8 12 4.43 4.29 7.59 3.42
std ±2.73 ±2.51 ±2.59 ±3.76 ±11.9 ±8.95 ±3.96 ±3.84 ±5.3 ±3.19
per 0.955 0.954 0.939 0.923 0.634 0.808 0.921 0.924 0.873 0.938

3
error 2.07 2.05 2 4.2 21.9 11.6 4.72 4.7 8.18 3.41
std ±2.45 ±2.69 ±2.84 ±3.81 ±11.5 ±8.8 ±4.03 ±4.08 ±5.54 ±3.1
per 0.951 0.947 0.932 0.917 0.63 0.811 0.913 0.913 0.859 0.936

4
error 2.31 2.18 2.07 4.22 21.5 12.1 4.98 4.89 8.87 3.45
std ±2.71 ±2.74 ±2.84 ±3.96 ±11.6 ±9.23 ±4.09 ±3.99 ±5.79 ±3.1
per 0.943 0.941 0.926 0.913 0.636 0.8 0.905 0.906 0.843 0.932

5
error 2.39 2.33 2.09 4.3 21.5 11.7 5.33 5.38 9.03 3.54
std ±2.76 ±2.87 ±2.8 ±4.11 ±11.5 ±8.9 ±4.26 ±4.25 ±5.78 ±3.16
per 0.937 0.934 0.922 0.909 0.636 0.801 0.897 0.895 0.837 0.927

6
error 2.49 2.33 2.21 4.32 20.9 11.9 5.67 5.62 9.44 3.58
std ±3.04 ±2.87 ±2.97 ±4.25 ±11.1 ±8.95 ±4.4 ±4.35 ±5.92 ±3.17
per 0.931 0.931 0.917 0.906 0.643 0.796 0.889 0.889 0.826 0.924

In such kind of dynamic environments, an algorithm needs to adaptively adjust
the number of sub-populations that are really needed according to the change of
the number of peaks. Among the algorithms, ACPSO is the only one that is able to
adaptively adjust the number of sub-populations in such environments.

From the results, ACPSO obtains the best performance regarding the offline per-
formance in Table 5.4. With the help of change detection techniques, CPSO achieves
the best offline errors on most cases. However, comparing with ACPSO, it can be
seen that ACPSO achieves better offline performance than that of CPSOR on all
test cases. The performance of the improved algorithm rSPSO is better than that of
the SPSO algorithm, and the mQSO algorithm with anti-convergence and repulsion
also outperforms the mCPSO algorithm.

5.4.3 Effect on Varying the Number of Peaks

To compare the performance of the involved algorithms regarding locating and
tracking the global optimum in the environments with different numbers of peaks,
an experimental study was conducted on the MPB problem with different numbers

5 A Comparative Study on PSO in Dynamic Environments 127

Table 5.5 Offline errors, standard error (±), and offline performance of different algorithms
on the MPB problem with different numbers of peaks and on the MPB problem with changing
number of peaks

peaks ACPSO CPSOR CPSO HmSOPSO-CPESCA rSPSO SPSO mCPSOmQSO

1
error 0.188 0.245 1.4e-4 1.8 61.6 5.15 1.56 1.86 38.4 3.15
std ±0.59 ±0.253±5.9e-4 ±2.09 ±17.1 ±3.96 ±1.35 ±1.45 ±14.8 ±1.21
per 0.984 0.956 0.95 0.947 0.521 0.869 0.95 0.948 0.365 0.918

2
error 1.75 2.4 1.33 0.768 31.9 6.79 0.922 0.986 11.6 4.33
std ±1.68 ±1.54 ±0.913 ±1.13 ±8.53 ±2.97±0.509±0.564 ±7.04 ±1.7
per 0.955 0.92 0.941 0.974 0.529 0.864 0.97 0.97 0.776 0.908

5
error 0.722 0.936 0.97 3.99 36.1 12.4 1.52 1.52 6.46 1.56
std ±0.976 ±0.788 ±0.755 ±1.92 ±7.04 ±6.12±0.751±0.769 ±3.83 ±0.691
per 0.978 0.962 0.953 0.931 0.456 0.799 0.966 0.966 0.884 0.965

7
error 0.645 0.803 0.641 1.81 24.7 12.7 1.23 1.25 4.39 1.19
std ±0.896 ±0.628 ±0.523 ±1.26 ±9.27 ±6.94±0.611±0.569 ±2.34 ±0.638
per 0.98 0.965 0.958 0.96 0.581 0.795 0.972 0.971 0.922 0.972

10
error 0.61 0.448 1.35 3.49 28.3 14.1 2.16 2.28 7.57 1.69
std ±0.865 ±0.626 ±1.12 ±1.65 ±8.02 ±7.18 ±1.45 ±1.49 ±3.57 ±0.784
per 0.98 0.978 0.949 0.937 0.534 0.778 0.956 0.954 0.874 0.965

20
error 1.41 1.38 1.45 3.2 24.9 10.6 3.59 3.59 7.87 2.66
std ±1.01 ±0.983 ±0.965±0.866 ±9.25 ±5.25 ±1.39 ±1.33 ±3.21 ±1
per 0.972 0.97 0.954 0.948 0.598 0.838 0.941 0.94 0.876 0.954

30
error 1.14 1.32 1.2 3.1 26.3 9.4 3.01 3.1 5.68 2.87
std ±0.941 ±1.15 ±0.788±0.854 ±11.9 ±5.85 ±1.44 ±1.53 ±2.91 ±1.43
per 0.976 0.97 0.961 0.951 0.592 0.855 0.949 0.948 0.91 0.95

50
error 1.42 1.76 1.43 3.19 18.8 9.09 3.27 3.38 5.52 2.8
std ±0.836 ±0.999 ±0.747±0.731 ±7.22 ±5.89 ±1.27 ±1.3 ±2.86 ±1.04
per 0.972 0.964 0.96 0.95 0.689 0.86 0.945 0.943 0.912 0.952

100
error 1.62 2.19 1.42 3.5 17 9.53 3.48 3.5 5.64 3.39
std ±0.919 ±1.11 ±0.752±0.953 ±6.63 ±5.82 ±1.45 ±1.47 ±2.79 ±1.53
per 0.97 0.959 0.963 0.946 0.722 0.855 0.943 0.943 0.911 0.944

200
error 1.46 2.22 0.991 2.89 13.6 7.99 3.62 3.54 5.16 3.32
std ±0.893 ±1.39 ±0.55 ±0.772 ±5.8 ±5.37 ±1.74 ±1.76 ±2.99 ±1.92
per 0.973 0.957 0.972 0.956 0.775 0.877 0.941 0.942 0.918 0.944

changing
error 1.73 1.89 1.76 3.65 22.6 12.7 3.93 3.98 6.62 3.25
std ±2.52 ±2.53 ±2.5 ±3.3 ±12.3 ±8.97 ±3.67 ±3.74 ±5.06 ±3.1
per 0.964 0.96 0.948 0.938 0.622 0.803 0.934 0.933 0.893 0.944

of peaks. Table 5.5 presents the comparison results of all the involved algorithms.
The bottom row in Table 5.5 is the results for algorithms on the MPB problem where
the number of peaks changes.

128 C. Li and S. Yang

Generally speaking, the more peaks there are in the fitness landscape, the harder
it is for an algorithm to locate and track the global optimum. This trend can be
observed in Table 5.5 for all the algorithms when the number of peaks is less than
100. However, when the number of peaks is larger than 50, the offline errors and
the offline performance get better for most algorithms. This is because it gets easier
for an algorithm to locate and track a peak whose height is similar to the global
optimum as more such peaks will appear when the number of peaks gets larger.

For the case of one peak, which is the most simple problem, only CPSO success-
fully locate and track the global optimum in every change over all the runs. Although
CPSO obtains a smaller offline error than that of ACPSO, ACPSO achieves a better
offline performance than CPSO. For the remaining cases, ACPSO achieves the best
performance regarding both the offlline error and the offline performance when the
number of peaks is larger than 20.

For the case where the number of peaks changes, the offline error and the of-
fline performance obtained by ACPSO are 1.73 and 0.964, respectively, which are
much better than that obtained by all the other algorithms. The comparison results in
Table 5.5 show that the performance of ACPSO is better than all the peer algorithms
in terms of locating and tracking changing optima in the environments with a large
number of local optima.

HmSO achieves the best results on the case of peaks = 2 where the offline error
and the offline performance are 0.768 and 0.974, respectively. For the overall per-
formance, except the algorithms based on the clustering method (ACPSO, CPSOR,
and CPSO), mQSO and rSPSO achieve better results than the other algorithms.

5.4.4 Effect on Varying the Number of Dimensions

In this section, the peer algorithms are compared on the MPB problem with different
number of dimensions. Table 5.6 and Table 5.7 present the results of all the algo-
rithms in different numbers of dimensions on the MPB problem with 10 and 100
peaks, respectively.

Comparing the results of different algorithms in Table 5.6 and Table 5.7, it can be
seen that the performance decreases for all the involved algorithms when the num-
ber of dimensions increases. Compared with the results of SPSO, the least square
regression, which is used in rSPSO to estimate local optima to accelerate the search,
does not work when the number of dimensions is larger than 5 in both tables. Among
all the algorithms, CPSOR outperforms all the other algorithms on most test cases.
It can also be seen that the effect of increasing the number of dimensions to CP-
SOR and CPSO is the smallest. For example, the offline error of CPSOR increases
from 1.6 to 5.77 when the number of dimensions increases from 3 to 20, while
the corresponding error increases from 2.16 to 11.6 for mQSO, which has the best
performance except CPSOR, CPSO, and ACPSO.

5 A Comparative Study on PSO in Dynamic Environments 129

Table 5.6 Offline errors, standard error (±), and offline performance for different algorithms
on the MPB problem with different numbers of dimensions, where the default settings for the
MPB problem in Table 5.2 were used

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

3
error 0.149 0.134 0.411 2.35 13.6 6.51 0.992 1.03 1.65 0.558
std ±0.443 ±0.235 ±0.724 ±1.7 ±2.6 ±2.72 ±0.635 ±0.655 ±1.42 ±0.532
per 0.988 0.988 0.976 0.957 0.768 0.895 0.981 0.977 0.965 0.985

5
error 0.61 0.448 1.35 3.49 28.3 14.1 2.16 2.28 7.57 1.69
std ±0.865 ±0.626 ±1.12 ±1.65 ±8.02 ±7.18 ±1.45 ±1.49 ±3.57 ±0.784
per 0.98 0.978 0.949 0.937 0.534 0.778 0.956 0.954 0.874 0.965

7
error 1.65 1.3 2.36 3.54 28.3 11.9 8.22 8.16 8.32 2.54
std ±1.18 ±0.779 ±0.908 ±1.02 ±12.8 ±2.47 ±3.33 ±3.19 ±3.26 ±0.703
per 0.965 0.957 0.931 0.935 0.56 0.806 0.862 0.863 0.865 0.952

10
error 4.55 3.04 4.3 10.1 40.3 15.9 114 114 19.9 6.53
std ±2.44 ±1.7 ±1.8 ±2.39 ±11.2 ±5.31 ±15.7 ±15.7 ±4.83 ±1.31
per 0.922 0.914 0.892 0.839 0.478 0.746 0.0527 0.0527 0.679 0.891

15
error 7.5 4.12 6.46 10.8 53.6 35.5 171 171 28.6 8.58
std ±2.97 ±3.65 ±2.67 ±1.88 ±22.7 ±14.4 ±17 ±17 ±9.3 ±1.41
per 0.881 0.888 0.862 0.832 0.337 0.473 0.0405 0.0405 0.561 0.867

20
error 11.4 7.69 9.22 18.4 88 45.8 222 222 69.4 12.8
std ±4.23 ±6.06 ±3.58 ±2.71 ±35.5 ±13.1 ±18.4 ±18.4 ±21 ±1.57
per 0.822 0.836 0.824 0.724 0.229 0.325 0.0299 0.0299 0.233 0.805

Table 5.7 Offline errors, standard error (±), and offline performance for different algorithms
on the MPB problem with different numbers of dimensions, where the default settings for the
MPB problem in Table 5.2 except peaks = 100 were used

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

3
error 0.576 1.6 0.578 1.31 8.96 3.78 1.6 1.67 2.61 2.16
std ±0.46 ±1.07 ±0.477 ±0.645 ±4.15 ±2.06 ±0.932 ±1.03 ±1.54 ±1.35
per 0.987 0.971 0.983 0.975 0.854 0.939 0.974 0.971 0.956 0.965

5
error 1.62 2.19 1.42 3.5 17 9.53 3.48 3.5 5.64 3.39
std ±0.919 ±1.11 ±0.752 ±0.953 ±6.63 ±5.82 ±1.45 ±1.47 ±2.79 ±1.53
per 0.97 0.959 0.963 0.946 0.722 0.855 0.943 0.943 0.911 0.944

7
error 2.27 2.73 1.62 4.24 21.4 13 9.13 9.13 7.03 4.04
std ±1.19 ±1.52 ±0.812 ±1.08 ±8.36 ±6.45 ±4.78 ±4.78 ±3.35 ±1.8
per 0.962 0.948 0.955 0.936 0.653 0.805 0.86 0.86 0.891 0.933

10
error 4.01 2.83 2.66 6.27 36.1 16.2 69.2 69.2 12 6.37
std ±1.62 ±1.46 ±1.18 ±1.49 ±12.4 ±7.99 ±11.5 ±11.5 ±4.81 ±1.97
per 0.937 0.942 0.933 0.906 0.444 0.753 0.101 0.101 0.819 0.899

15
error 6.23 3.49 4.04 8.59 45 25.8 105 105 16.7 8.68
std ±2.21 ±2.48 ±1.95 ±2.69 ±16.9 ±8.88 ±10.5 ±10.5 ±5.28 ±2.27
per 0.905 0.921 0.903 0.871 0.376 0.612 0.0329 0.0329 0.749 0.867

20
error 10.1 5.77 5.75 16.5 61.8 39.9 131 131 35.6 11.6
std ±4.47 ±4.44 ±3.22 ±3.67 ±26.4 ±17.2 ±10.5 ±10.5 ±14.6 ±2.69
per 0.847 0.871 0.869 0.757 0.266 0.445 0.0263 0.0263 0.489 0.826

130 C. Li and S. Yang

Table 5.8 Offline errors, standard error (±) and offline performance for different algorithms
on the MPB problem with different change ratios, where the default settings for the MPB
problem in Table 5.2 except s = 2.0 were used

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

0.1
error 2.86 1.87 9.19 7 18.8 10.3 3.94 3.94 6.07 2.56
std ±3.84 ±2.86 ±7.6 ±5.75 ±8.91 ±7.13 ±3.77 ±3.65 ±4.16 ±3
per 0.944 0.95 0.846 0.884 0.66 0.832 0.931 0.931 0.896 0.952

0.3
error 2.24 1.29 6.86 9.03 22.5 14.4 5.9 6.02 7.07 2.69
std ±2.7 ±1.65 ±7.66 ±3.74 ±7.62 ±6.41 ±2.91 ±2.91 ±2.97 ±1.49
per 0.954 0.961 0.882 0.855 0.609 0.772 0.904 0.902 0.883 0.951

0.5
error 1.51 0.896 2.52 2.54 20.9 8.89 1.53 1.54 3.4 1.1
std ±1.35 ±0.854 ±3.25 ±1.68 ±6.26 ±5.05 ±1.21 ±1.14 ±2.05 ±0.656
per 0.969 0.974 0.948 0.955 0.635 0.86 0.97 0.969 0.941 0.977

0.7
error 1.73 0.936 1.77 3.16 19.7 10.6 3.01 2.98 5.95 1.95
std ±1.54 ±0.84 ±2.05 ±1.73 ±5.32 ±5.96 ±1.43 ±1.48 ±2.45 ±0.795
per 0.964 0.97 0.951 0.944 0.656 0.83 0.946 0.946 0.9 0.962

0.9
error 1.79 0.434 1.1 3.76 19.7 12.7 2.57 2.6 6.58 1.97
std ±2.04 ±0.535 ±1.44 ±1.91 ±5.55 ±6.75 ±1.31 ±1.29 ±3.05 ±0.925
per 0.961 0.978 0.955 0.934 0.662 0.799 0.951 0.951 0.89 0.962

1
error 0.61 0.448 1.35 3.49 28.3 14.1 2.16 2.28 7.57 1.69
std ±0.865 ±0.626 ±1.12 ±1.65 ±8.02 ±7.18 ±1.45 ±1.49 ±3.57 ±0.784
per 0.98 0.978 0.949 0.937 0.534 0.778 0.956 0.954 0.874 0.965

5.4.5 Comparison in Hard-to-Detect Environments

So far, all the comparisons are in the environments where changes are easy to detect.
This section presents the comparison of all the involved algorithms in the environ-
ments where changes are hard to detect. Such kind of environments are simulated by
introducing cPeaks in the MPB problem (see Table 5.2). Note that the highest peak
(i.e., the global optimum) is guaranteed to change in order to test the performance
of algorithms in tracking the global optimum in this experimental study. Table 5.8
shows the comparison of all the algorithms on the MPB problem with the default
settings (s =1.0 and peaks =10).

Generally speaking, the tracking of the global optimum will get harder for an
algorithm as the changing ratio (cPeaks) decreases, especially for algorithms that are
based on change detection. For example, when cPeaks = 1.0 for the MPB problem,
all the peaks are allowed to change, which is the default setting. In such case, any
point in the fitness landscape is able to detect changes. However, when cPeaks is less
than 1.0, a successful change detection will not always be guaranteed depending on
whether detectors are in the areas where changes happen or not. cPeaks can be taken
as the possibility of successful detections. Therefore, cPeaks = 0.1 is the hardest
case to detect changes in this experiments.

From the results in Table 5.8, the performance of all the algorithms on the prob-
lem with cPeaks < 1.0 is worse than that on the problem with cPeaks = 1.0 regard-
ing the offline error and offline performance. Two possible reasons can be explained.

5 A Comparative Study on PSO in Dynamic Environments 131

Table 5.9 Offline errors, standard error (±) and offline performance for different algorithms
on the MPB problem with different change ratios, where the default settings for the MPB
problem in Table 5.2 except s = 2.0 were used

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

0.1
error 2.81 2.13 9.47 7.58 18.4 10.1 4.8 4.78 7.43 2.55
std ±3.83 ±2.91 ±7.64 ±5.85 ±8.45 ±7.14 ±4.21 ±4.24 ±4.52 ±2.79
per 0.941 0.941 0.839 0.871 0.665 0.833 0.915 0.915 0.873 0.951

0.3
error 2.29 1.46 6.72 8.68 22.6 14.5 6.62 6.68 8.23 2.65
std ±2.78 ±1.62 ±7.05 ±3.68 ±7.43 ±7.14 ±3.05 ±3.05 ±3.56 ±1.52
per 0.948 0.953 0.881 0.858 0.603 0.769 0.891 0.89 0.862 0.95

0.5
error 1.64 1.1 2.56 3.7 19.8 9.37 3.24 3.04 5.77 1.47
std ±1.45 ±0.943 ±3.44 ±2.25 ±5.05 ±4.57 ±1.67 ±1.74 ±2.92 ±0.818
per 0.964 0.967 0.943 0.935 0.651 0.85 0.942 0.944 0.901 0.969

0.7
error 1.81 1.16 1.98 4.04 20.4 11.3 4.05 3.99 7.08 2.33
std ±1.6 ±1.01 ±2.3 ±2.01 ±5.38 ±5.85 ±1.6 ±1.66 ±2.75 ±0.827
per 0.957 0.96 0.941 0.925 0.64 0.818 0.926 0.926 0.879 0.954

0.9
error 1.77 0.636 1.11 4.64 20.3 12.5 3.2 3.28 7.77 2.05
std ±2.05 ±0.788 ±1.46 ±2.54 ±4.55 ±7.04 ±1.64 ±1.61 ±3.54 ±0.875
per 0.956 0.967 0.946 0.913 0.648 0.797 0.937 0.936 0.866 0.957

1
error 1.15 0.588 1.31 3.88 26 12.9 2.9 2.81 7.57 1.84
std ±1.47 ±0.654 ±1.15 ±1.66 ±7.73 ±6.32 ±1.54 ±1.54 ±3.82 ±0.723
per 0.963 0.967 0.939 0.922 0.569 0.789 0.938 0.939 0.867 0.958

Firstly, a successful change detection will not be always guaranteed due to the par-
tially changed fitness landscape and hence algorithms that are based on change de-
tection will not work well in such dynamic environments, such as HmSO and CPSO.
Secondly, individuals of the previous environment will be easily attracted by the un-
changed peaks rather than the changed peaks. Individuals on the unchanged peaks
normally have good fitness than those on the changed peaks. As a result, those in-
dividuals on the changed peaks are likely to move to the areas of unchanged peaks
that are covered by individuals of the previous environment due to communications
between individuals.

For HmSO and CPSO, change detection is a very important factor in their perfor-
mance. As explained above, the smaller the value of cPeaks, the harder it is for the
two algorithms to detect changes. From the corresponding results, it can be seen that
the offline error and offline performance obtained by the two algorithms get worse
as cPeaks decreases. For the other algorithms, which do not totally rely on change
detection, the effect is not as serious as for HmSO and CPSO.

CPSOR obtains the best performance among all the involved algorithms, and
mQSO achieves the second best performance due to the working mechanism in
undetectable environments. ACPSO achieves slightly worse results than CPSOR
and mQSO but much better results than the other algorithms. Although CPSOR and
mQSO achieve the best performance on the MPB problem with default settings,
their performances degrade when the shift length (s) is set to 2.0 in Table 5.9 even
if they still outperform the other algorithms. However, the performance of ACPSO

132 C. Li and S. Yang

Table 5.10 Offline errors, standard error (±) and offline performance for different algorithms
on the MPB problem with different change ratios, where the default settings for the MPB
problem in Table 5.2 except peaks = 50 and s = 2.0 were used

s ACPSO CPSOR CPSO HmSO PSO-CP ESCA rSPSO SPSO mCPSO mQSO

0.1
error 3.1 3.32 11.5 7.02 17.3 10.8 6.2 6.12 7.6 4.56
std ±2.08 ±2.11 ±4.68 ±2.72 ±4.63 ±3.95 ±1.88 ±1.92 ±2.29 ±2.02
per 0.948 0.94 0.825 0.892 0.708 0.837 0.904 0.905 0.882 0.927

0.3
error 2.53 2.54 4.44 4.04 19.4 12.7 5.49 5.5 6.66 4.2
std ±1.86 ±1.8 ±4.59 ±2.43 ±8.15 ±6.66 ±2.59 ±2.55 ±3.31 ±2.55
per 0.957 0.955 0.924 0.935 0.67 0.807 0.914 0.914 0.895 0.933

0.5
error 1.94 2.44 2.32 3.57 20.4 9.76 5.44 5.21 6.79 4.33
std ±1.73 ±2.18 ±2.51 ±2.14 ±9.57 ±6.33 ±3.19 ±3.14 ±3.86 ±3.11
per 0.965 0.954 0.952 0.941 0.665 0.851 0.912 0.915 0.891 0.929

0.7
error 1.68 2.28 1.48 3.25 16.4 9.02 3.77 3.76 5.4 2.86
std ±1.12 ±1.42 ±1.2 ±1.35 ±6.83 ±5.36 ±1.6 ±1.71 ±2.76 ±1.58
per 0.968 0.956 0.961 0.945 0.724 0.86 0.936 0.936 0.912 0.951

0.9
error 2.13 2.2 1.9 4.35 19.4 11.4 3.79 3.79 6.39 3.32
std ±1.27 ±1.12 ±1.11 ±1.4 ±7.52 ±6.75 ±1.2 ±1.17 ±3.08 ±1.4
per 0.958 0.953 0.948 0.926 0.676 0.823 0.935 0.934 0.896 0.943

1
error 1.71 2.1 1.51 3.72 18.5 10.2 3.86 3.72 6.7 3.02
std ±0.953 ±1.09 ±0.741 ±0.918 ±6.4 ±6.09 ±1.44 ±1.51 ±3.31 ±1.21
per 0.964 0.953 0.953 0.935 0.689 0.839 0.931 0.933 0.89 0.946

is just slightly affected when s = 2.0 is used in comparison of that of ACPSO in
Table 5.8.

The superior performance of ACPSO is not shown until the problem with a large
number of peaks was tested. Table 5.10 presents the comparison of all the algorithms
on the MPB problem with s = 2.0 and peaks = 50. From the results, it can be seen
that the offline error and the offline performance of ACPSO are much better than
those of the other algorithms on most cases. The performance of algorithms that are
based on the clustering method, including ACPSO, CPSOR, and CPSO, is better
than that of all the other multi-populations methods.

The comparison results in this section show that ACPSO is able to effectively
track changing optima without change detection on the MPB problem, even in un-
detectable environments.

5.5 Conclusions

This chapter reviews the state-of-the-art research of PSO for DOPs, and catego-
rizes them into different groups, including diversity maintaining schemes, adaptive
schemes, hybrid schemes, multi-population schemes, and memory schemes. The
corresponding advantages and shortcomings are also discussed. This chapter also
carries out a comprehensive experimental study with 10 selected well-known PSO
variants on the MPB problems.

5 A Comparative Study on PSO in Dynamic Environments 133

From the related work review and the comparison study in this chapter, we can
draw several conclusions and suggestions for future methodology development of
PSO for DOPs.

Firstly, diversity maintaining mechanism must be considered in dynamic envi-
ronments. As discussed above, the population diversity is the most important issue
to solve DOPs. Algorithms will not work in dynamic environments without this
mechanism.

Secondly, the multi-population method is effective to track and locate a set of
optima and is commonly used by most algorithms. Due to its flexibility, it can be
used with any other schemes.

Thirdly, the memory scheme is rarely used in PSO as PSO has an implicit mem-
ory mechanism where each particle’s pbest is able to memorize the best position
found by a particle.

Fourthly, population adaptation in dynamic environments without change detec-
tion is a promising research direction. From the comparison results, we can see that
the ACPSO, which belongs to such kind of algorithms, outperforms all the other
algorithms in most cases on the MPB problem with different perspectives.

Acknowledgements. This work was supported by the National Natural Science Foundation
of China (NSFC) under Grant 61203306, the Engineering and Physical Sciences Research
Council (EPSRC) of U.K. under Grant numbers EP/E060722/1 and EP/K001310/1, and par-
tially by the State Key Laboratory of Synthetical Automation for Process Industries, North-
eastern University, China.

References

[1] Bird, S., Li, X.: Adaptively choosing niching parameters in a pso. In: 2006 Genetic
Evol. Comput. Conf., pp. 3–10 (2006)

[2] Bird, S., Li, X.: Using regression to improve local convergence. In: Proc. 2007 IEEE
Congr. Evol. Comput., pp. 592–599 (2007)

[3] Blackwell, T.M.: Particle swarm optimization in dynamic environments. In: Yang, S.,
Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Envi-
ronments. SCI, vol. 51, pp. 29–49. Springer, Heidelberg (2007)

[4] Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. In:
Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer,
Heidelberg (2004)

[5] Blackwell, T.M., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

[6] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1875–1882 (1999)

[7] Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to
dynamic optimization problem. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[8] Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Proc.
IEEE Swarm Intel. Symp., pp. 120–127 (2007)

134 C. Li and S. Yang

[9] Brits, R., Engelbrecht, A., van den Bergh, F.: A niching particle swarm optimizer. In:
Proc. 4th Asia-Pacific Conf. Simulated Evolution and Learning, vol. 2, pp. 692–696
(2002)

[10] Daneshyari, M., Yen, G.: Dynamic optimization using cultural based pso. In: Proc. 2011
IEEE Congr. Evol. Comput., pp. 509–516 (2011)

[11] del Amo, I.G., Pelta, D.A., González, J.R.: Using heuristic rules to enhance a multi-
swarm pso for dynamic environments. In: Proc. 2010 IEEE Congr. Evol. Comput., pp.
1–8 (2010)

[12] del Amo, I.G., Pelta, D.A., González, J.R., Novoa, P.: An analysis of particle properties
on a multi-swarm PSO for dynamic optimization problems. In: Meseguer, P., Mandow,
L., Gasca, R.M. (eds.) CAEPIA 2009. LNCS, vol. 5988, pp. 32–41. Springer, Heidel-
berg (2010)

[13] Du, W., Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic opti-
mization. Inform. Sci. 178(15), 3096–3109 (2008)

[14] Fernandez-Marquez, J., Arcos, J.: Adapting particle swarm optimization in dynamic
and noisy environments. In: Proc. 2010 IEEE Congr. Evol. Comput., pp. 1–8 (2010)

[15] Gonzalez, J.R., Masegosa, A.D., Garcia, I.J.: A cooperative strategy for solving dy-
namic optimization problems. Memetic Computing 3(1), 3–14 (2011)

[16] Hashemi, A., Meybodi, M.: A multi-role cellular pso for dynamic environments. In:
Proc. 14th Int. CSI Computer Conf., pp. 412–417 (2009)

[17] Hu, X., Eberhart, R.: Adaptive particle swarm optimization: detection and response to
dynamic systems. In: Proc. 2002 IEEE Congr. Evol. Comput., vol. 2, pp. 1666–1670
(2002)

[18] Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer for noisy and dy-
namic environments. Genetic Programming and Evolvable Machines 7(4), 329–354
(2006)

[19] Jiang, Y., Huang, W., Chen, L.: Applying multi-swarm accelerating particle swarm op-
timization to dynamic continuous functions. In: Proc. 2nd Int. Workshop on Knowledge
Discovery and Data Mining, pp. 710–713 (2009)

[20] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments: a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[21] Kamosi, M., Hashemi, A.B., Meybodi, M.R.: A hibernating multi-swarm optimization
algorithm for dynamic environments. In: Proc. World Congr. on Nature and Biologically
Inspired Computing, NaBIC 2010, pp. 363–369 (2010)

[22] Karimi, J., Nobahari, H., Pourtakdoust, S.: A new hybrid approach for dynamic contin-
uous optimization problems. Appl. Soft Comput. 12(3), 1158–1167 (2012)

[23] Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)
[24] Khouadjia, M., Sarasola, B., Alba, E., Jourdan, L., Talbi, E.: Multi-environmental co-

operative parallel metaheuristics for solving dynamic optimization problems. In: Proc.
2011 IEEE Int. Symp. Parallel and Distributed Processing Workshops and PhD Forum
(IPDPSW), pp. 395–403 (2011)

[25] Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-swarm optimization for dy-
namic combinatorial problems: A case study on dynamic vehicle routing problem. In:
Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 227–238. Springer, Heidel-
berg (2010)

[26] Khouadjia, M.R., Jourdan, L., Talbi, E.G.: Adaptive particle swarm for solving the dy-
namic vehicle routing problem. In: Proc. 2010 IEEE/ACS Int. Conf. Computer Systems
and Applications, pp. 1–8 (2010)

5 A Comparative Study on PSO in Dynamic Environments 135

[27] Li, C., Yang, S.: Fast multi-swarm optimization for dynamic optimization problems. In:
Proc. 4th Int. Conf. Natural Comput., vol. 7, pp. 624–628 (2008)

[28] Li, C., Yang, S.: A clustering particle swarm optimizer for dynamic optimization. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 439–446 (2009)

[29] Li, C., Yang, S.: A general framework of multipopulation methods with clustering in
undetectable dynamic environments. IEEE Trans. Evol. Comput. 16(4), 556–577 (2012)

[30] Li, C., Yang, S.: Population adaptation in dynamic environments via multi-population
methods. Evol. Comput. (2012) (submitted)

[31] Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm
optimizer for multimodal function optimization. In: Deb, K., Tari, Z. (eds.) GECCO
2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004)

[32] Liu, L., Ranjithan, S.R.: An adaptive optimization technique for dynamic environments.
Eng. Appl. Artif. Intell. 23(5), 772–779 (2010)

[33] Liu, L., Wang, D., Tang, J.: Composite particle optimization with hyper-reflection
scheme in dynamic environments. Appl. Soft Comput. 11(8), 4626–4639 (2011)

[34] Liu, L., Wang, D., Yang, S.: Compound particle swarm optimization in dynamic envi-
ronments. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp.
616–625. Springer, Heidelberg (2008)

[35] Liu, L., Yang, S., Wang, D.: Particle swarm optimization with composite particles in dy-
namic environments. IEEE Trans. Syst., Man, & Cybern. Part B: Cybern. 40(6), 1634–
1648 (2010)

[36] Lung, R.I., Dumitrescu, D.: A collaborative model for tracking optima in dynamic en-
vironments. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 564–567 (2007)

[37] Lung, R.I., Dumitrescu, D.: Evolutionary swarm cooperative optimization in dynamic
environments. Natural Computing 9(1), 83–94 (2010)

[38] Mendes, R., Mohais, A.S.: Dynde: a differential evolution for dynamic optimization
problems. In: Proc. 2005 IEEE Congr. Evol. Comput., pp. 2808–2815 (2005)

[39] Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: Evaluating the performance of dnpso
in dynamic environments. In: Proc. 2008 IEEE Int. Conf. Syst., Man, & Cybern., pp.
2640–2645 (2008)

[40] Novoa-Hernandez, P., Corona, C.C., Pelta, D.A.: Efficient multi-swarm pso algorithms
for dynamic environments. Memetic Computing 3(3), 163–174 (2011)

[41] Parrott, D., Li, X.: A particle swarm model for tracking multiple peaks in a dynamic
environment using speciation. In: Proc. 2004 IEEE Congr. Evol. Comput., pp. 98–103
(2004)

[42] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

[43] Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: An overview. Swarm
Intell. 1(1), 33–58 (2007)

[44] Rezazadeh, I., Meybodi, M.R., Naebi, A.: Adaptive particle swarm optimization algo-
rithm for dynamic environments. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI
2011, Part I. LNCS, vol. 6728, pp. 120–129. Springer, Heidelberg (2011)

[45] Rezazadeh, I., Meybodi, M.R., Naebi, A.: Particle swarm optimization algorithm in
dynamic environments: Adapting inertia weight and clustering particles. In: 2011 Fifth
UKSim European Symposium on Computer Modeling and Simulation (EMS), pp. 76–
82 (2011), doi:10.1109/EMS.2011.62

[46] Richter, H.: Detecting change in dynamic fitness landscapes. In: 2009 Congr. Evol.
Comput., pp. 1613–1620 (2009)

136 C. Li and S. Yang

[47] Schoeman, I.L., Engelbrecht, A.P.: A novel particle swarm niching technique based on
extensive vector operations. Natural Computing 9(3), 683–701 (2009)

[48] Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In:
Proc. 2004 IEEE Congr. Evol. Comput., vol. 2, pp. 1382–1389 (2004)

[49] Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dy-
namic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

[50] Wang, H., Wang, N., Wang, D.: Multi-swarm optimization algorithm for dynamic opti-
mization problems using forking. In: Proc. 2008 Chinese Control and Decision Conf.,
pp. 2415–2419 (2008)

[51] Wang, H., Wang, D., Huang, M.: Memetic algorithms in dynamic environments.
Kongzhi Lilun Yu Yingyong/Control Theory and Applications 27(8), 1060–1068 (2010)

[52] Zheng, X., Liu, H.: A different topology multi-swarm pso in dynamic environment. In:
Proc. 2009 IEEE Int. Symp. IT in Medicine Education, vol. 1, pp. 790–795 (2009)

[53] Zheng, X., Liu, H.: A cooperative dual-swarm pso for dynamic optimization problems.
In: Proc. 7th Int. Conf. Natural Comput., vol. 2, pp. 1131–1135 (2011)

[54] Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multi-
ple optima in dynamic environments. IEEE Trans. Evol. Comput., 959–974 (2010)

[55] Yin, Y., Sun, L.: Generalized dynamic constraint satisfaction based on extension particle
swarm optimization algorithm for collaborative simulation. In: Proc. 10th IEEE Int.
Conf. Computer-Aided Design and Computer Graphics, pp. 541–544 (2007)

Chapter 6
Memetic Algorithms for Dynamic Optimization
Problems

Hongfeng Wang and Shengxiang Yang

Abstract. Dynamic optimization problems challenge traditional evolutionary algo-
rithms seriously since they, once converged, cannot adapt quickly to environmental
changes. This chapter investigates the application of memetic algorithms, a class
of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive
hill climbing method is proposed as the local search technique in the framework
of memetic algorithms, which combines the features of greedy crossover-based hill
climbing and steepest mutation-based hill climbing. In order to address the conver-
gence problem, a new immigrants scheme, where the immigrant individuals can be
generated from mutating an elite individual adaptively, is also introduced into the
proposed memetic algorithm for dynamic optimization problems. Based on a series
of dynamic problems generated from several stationary benchmark problems, ex-
periments are carried out to investigate the performance of the proposed memetic
algorithm in comparison with some peer algorithms. The experimental results show
the efficiency of the proposed memetic algorithm in dynamic environments.

6.1 Introduction

Many real-world optimization problems are dynamic optimization problems (DOPs),
where the function landscapes may change over time and, thus, the optimum of these
problems may also change over time. DOPs require powerful heuristics that account
for the uncertainty present in the real world. Since evolutionary algorithms (EAs)

Hongfeng Wang
College of Information Science and Engineering, Northeastern University,
Shenyang 110004, China
e-mail: hfwang@mail.neu.edu.cn

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 137–170.
DOI: 10.1007/978-3-642-38416-5_6 c© Springer-Verlag Berlin Heidelberg 2013

138 H. Wang and S. Yang

draw their inspiration from the principles of natural evolution, which is a stochastic
and dynamic process, they also seem to be suitable for DOPs. However, traditional
EAs face a serious challenge for DOPs because they cannot adapt well to the chang-
ing environment once converged.

In order to address DOPs, many approaches have been developed [46] and can
be grouped into five categories: 1) increasing population diversity after a change is
detected, such as the adaptive mutation methods [5, 38]; 2) maintaining population
diversity throughout the run, such as the immigrants approaches [12, 44]; 3) memory
approaches, including implicit [11, 37] and explicit memory [3, 40, 43, 48] methods;
4) multi-population [4, 27] and speciation approaches [30]; 5) prediction methods
[2, 24, 31, 32]. A comprehensive survey on EAs applied to dynamic environments
can be found in [15, 25, 45]

In recent years, there has been an increasing concern from the evolution com-
putation community on a class of hybrid EAs, called memetic algorithms (MAs),
which hybridize local search (LS) methods with EAs to refine the solution qual-
ity. So far, MAs have been widely used for solving many optimization problems,
such as scheduling problems [14, 20, 21], combinatorial optimization problems
[9, 35, 36], multi-objective problems [10, 13, 19] and other applications [49, 50].
However, these problems for which MAs have been applied are mainly stationary
problems. MAs have rarely been applied for DOPs [7, 8, 41]. During the running
course of general MAs, they may always exhibit very strong exploitation capacity
due to executing efficient local refinement on individuals, but they may lose the ex-
ploration capacity as a result of the population converging to one optimum, which
needs to be avoided in dynamic environments. Therefore, it becomes an interesting
research issue to examine the performance of MAs, which are enhanced by suitable
diversity methods, for DOPs.

In this chapter, we investigate the application of an MA with an adaptive hill
climbing strategy, which combines the features of crossover-based hill climbing
and mutation-based hill climbing in both cooperative and competitive fashions,
to address DOPs. In order to address the convergence problem, a new immigrants
scheme, where three different immigrants schemes are generalized within a uniform
framework, is introduced into the proposed MA to improve its performance in dy-
namic environments. In addition, two different dominated schemes, which are used
to keep the balance of extra computation costs between LS and diversity maintain-
ing, are experimentally investigated in the proposed MAs for DOPs.

The rest of this paper is organized as follows. Section 6.2 describes the proposed
MA in detail, including the framework of general genetic algorithm (GA)-based
MA, the proposed LS operators and immigrants scheme, and discussion on how
to determining the computation costs of LS and diversity maintaining. Section 6.3
introduces a series of DOPs generated by a dynamic problem generator from the sta-
tionary test suite. Section 6.4 reports the experimental results and relevant analysis.
Finally, Section 6.5 concludes this paper with some discussions on relevant future
work.

6 Memetic Algorithms for Dynamic Optimization Problems 139

Procedure General GA-based MA:
begin

parameterize();
t := 0;
initializePopulation(P(0));
evaluatePopulation(P(0));
E(0) := selectForLocalSearch(P(0));
localSearch(E(0));
repeat

P′(t) := selectForReproduction(P(t));
P′′(t) := crossover(P′(t));
mutate(P′′(t));
evaluatePopulation(P′′(t));
P(t +1) := selectForSurvival(P(t), P′′(t));
E(t) := selectForLocalSearch(P(t));
localSearch(E(t));
t := t +1;

until a stop condition is met
end

Fig. 6.1 Pseudo-code for a general GA-based MA

6.2 Investigated Algorithms

6.2.1 Framework of GA-Based Memetic Algorithms

The MAs investigated in this paper are a class of GA-based MAs, which can be ex-
pressed by the pseudo-code shown in Fig. 6.1. Within these MAs, a population P(0)
of pop size individuals are generated randomly and then evaluated at the initializa-
tion step. Then, a set E(0) of individuals are selected from P(0) to be improved by
LS. At each subsequent generation, individuals are selected randomly or proportion-
ally from the current population and undergo the uniform crossover operation with
a crossover probability. Uniform crossover is the generalization of n-point crossover
which creates offspring by deciding, for each bit of one parent, whether to swap the
allele of that bit with the corresponding allele of the other parent. After crossover is
executed, the bit-wise mutation operator is performed for each newly generated off-
spring individual, which may change the allele in each locus of an offspring bitwise
(0 to 1 and vice versa) with a mutation probability. Then, the pop size best individ-
uals among all parents and offspring are selected to proceed into the next generation
and a set E(t) of individuals, which are selected from the newly generated popula-
tion, are improved by the LS strategy.

Obviously, the LS procedure in an MA which is illustrated in the above pseudo-
code would include two steps: first, to select individuals from the population P to
construct the set E , and then to apply LS operation to each selected individual in E

140 H. Wang and S. Yang

to refine it. In the following section, we will give the relevant schemes on the LS op-
erator used in this chapter, where the empirical experience and theoretical reasoning
are both used in the design. Here, the aim that the above-mentioned pseudo-code is
introduced is only to provide a sound basis for understanding the general framework
of used MAs in this chapter.

It is more noticeable that some diversity maintaining approaches have to be used
in order to address the convergence problem when an MA is applied for DOPs,
which always consume extra computational cost since LS operators involve fitness
evaluations. We will also discuss the relevant solutions to the problems when diver-
sity schemes are applied and how to keep the balance of the extra computational
cost between the diversity schemes and the LS operators, in the later sections.

6.2.2 Local Search

In MAs, EA operations are used for rough global exploration and LS operations
are used for directive local refinements to ensure sufficient exploitation during the
course of evolving the population. In many relevant researches, LS is applied to
each newly generated individual, which would consume a huge number of extra
fitness evaluations in the search of higher-quality solution. This traditional scheme
seems to be too costly and infeasible for MAs in dynamic environments where the
environmental changes can occur with the increment of fitness evaluations. Here,
only the best fitness individual elite in the population, which means that the set E
only comprises one member, should be executed the local refinement considering
that elite would lead the running course of algorithm with a greater degree.

Another primary issue that affects the behavior of LS is which LS operator should
be used to improve the quality of an individual. Among many LS methods available
in the literature, hill climbing (HC) is a common strategy. The basic idea is to use
stochastic iterative HC as the move acceptance criterion of the search (i.e., move
the search from the current individual to a candidate individual if the candidate
has a better fitness). In the context of GAs, HC methods may be divided into two
ways: crossover-based hill climbing and mutation-based hill climbing, depending
on whether crossover or mutation is used as the move operator in a local area. Here,
we propose two HC methods, a greedy crossover-based HC (GCHC) and a steepest
mutation-based HC (SMHC), in this section. They are specially designed for MAs
with binary encoding scheme, which are our concern in this chapter. The two HC
methods are described as follows.

1) GCHC: In this strategy, the individual (chr) selected for local improvement is
taken as one parent and another parent is selected from the current population using
the roulette wheel selection scheme. Then, a special uniform crossover is executed
between these two parent individuals to generate an offspring. The offspring will
replace the individual chr if it has a better fitness than the latter. This procedure is
outlined in Fig. 6.2, where a maximization optimization problem is assumed.

2) SMHC: The steepest mutation means that the chromosome only changes sev-
eral bits randomly when executing one mutation operation on it. In SMHC, the

6 Memetic Algorithms for Dynamic Optimization Problems 141

Procedure GCHC(chr):
begin

calculate(ξ , pcls);
for i := 1 to numls do

par chr := selectParentForCrossover(P);
for j := 1 to n do

if random()< pcls then
chi chr[j] := par chr[j];

else
chi chr[j] := chr[j];

endfor
evaluate(chi chr);
if f (chi chr)> f (chr) then chr := chi chr;

endfor
end

GCHC’s denotations:
ξ : a population index used to renew the value of pcls
pcls: the crossover probability in GCHC
par chr: the proportionally selected parent individual
n: individual length (problem dependent)
random(): a random number between 0 and 1
chi chr: the new individual generated by performing a uniform crossover operation

between par chr and chr
chr: the individual selected for LS

Fig. 6.2 Pseudo-code for the GCHC operator

individual (chr) being improved by LS is picked out and several random bits are
changed. If the newly mutated individual has a better fitness, it will replace the in-
dividual chr. The SMHC strategy is outlined in Fig. 6.3.

From Fig. 6.2 and Fig. 6.3, it can be seen that two important parameters, pcls in
GCHC and nmls in SMHC, respectively, may affect their performance. In GCHC
the smaller the value of pcls, the more the offspring inherits from the selected in-
dividual chr. This means executing one step LS operation in a smaller area around
chr. Similar results can be obtained for nmls in SMHC. When the value of nmls is
larger, SMHC will perform the LS operation within a wider range around chr.

Therefore, the question that remains to be answered here is how to set the two
parameters. Generally speaking, the methods of setting strategy parameters in GAs
can be classified into three categories [6]: deterministic mechanism where the value
of the strategy parameter is controlled by some deterministic rules without any feed-
back from the search, adaptive mechanism where there is some form of feedback
information from the search process that is used to direct the setting of a strategy

142 H. Wang and S. Yang

Procedure SMHC(chr):
begin

calculate(ξ ,nmls);
for i := 1 to numls do

for j := 1 to n do
chi chr[j] := chr[j];

endfor
for k := 1 to nmls do

loc := random(1,n);
chi chr[loc] := 1−chi chr[loc];

endfor
evaluate(chi chr);
if f (chi chr)> f (chr) then chr := chi chr;

endfor
end;

SMHC’s denotations:
nmls: the number of bits mutated in SMHC
chi chr: the new individual generated by performing a steepest mutation operation

upon chr
loc: a random selected location for flipping
random(1,n): a random integer between 1 and n
Other settings are the same as those for GCHC

Fig. 6.3 Pseudo-code for the SMHC operator

parameter, and self-adaptive mechanism where the parameter to be adapted is en-
coded into the chromosomes and undergoes genetic operators.

Two different parameter-setting methods will be discussed for pcls and nmls in
the later experiments. In the deterministic method, both pcls and nmls are set to
constant values, which means that the LS operation will always be executed in a
local area of a certain fixed range. In the adaptive method, a population index ξ
which can measure the diversity of the population is considered as the feedback
information to direct the change of the values of pcls and nmls.

Let the normalized Hamming distance between two individuals xi = (xi1, . . . ,xin)
and x j = (x j1, . . . ,x jn) be defined by:

d(xi,x j) =
∑n

k=1 |xik− x jk|
n

(6.1)

and ξ is calculated by the following formula:

ξ =
∑pop size

i=1 d(x∗,xi)

pop size
, (6.2)

6 Memetic Algorithms for Dynamic Optimization Problems 143

where x∗ denotes the best individual achieved so far. Obviously, the index ξ can
measure the convergence state of the population via the Hamming distance. When
ξ decreases to zero, it means that the population has lost its diversity absolutely.

With the definition of ξ , pcls and nmls can be calculated as follows:

pcls = min{α ·ξ · (pcmax
ls − pcmin

ls)+ pcmin
ls , pcmax

ls } (6.3)

nmls = min{β ·ξ · (nmmax
ls − nmmin

ls)+ nmmin
ls ,nmmax

ls }, (6.4)

where pcmax
ls and pcmin

ls are the preset maximum and minimum value of pcls respec-
tively (pcmax

ls =0.6 and pcmin
ls =0.1 in the later experiments), nmmax

ls and nmmin
ls are the

preset maximum and minimum value of nmls respectively (nmmax
ls =4 and nmmin

ls =1
in the later experiments), and α and β are the predefined constants to control the
decreasing or increasing speed of pcls and nmls respectively. From these formulae,
it is easy to understand that both GCHC and SMHC exhibit a wide range LS oper-
ations in the presence of a high population diversity (i.e., when ξ → 1) as a result
of pcls → pcmax

ls and nmls → nmmax
ls . This may help algorithms find the optimum

(maybe local optimum) more quickly. However, when the population is converging
(i.e., when ξ → 0), pcls→ pcmin

ls and nmls→ nmmin
ls , which limits the LS operations

in a very small range in order to perform more efficient local improvement for the
selected individual chr.

6.2.3 Adaptive Learning Mechanism in Multiple LS Operators

It has been reported that multiple LS operators can be employed in an MA frame-
work [22, 33, 34]. This is because each LS operator makes a biased search, which
makes a method efficient for some classes of problems but not efficient for others.
That is, LS is problem-dependent. Therefore, how to achieve improved LS opera-
tors and avoid utilizing inappropriate LS methods becomes a very important issue.
In order to address this problem, many researchers have used multiple LS meth-
ods in their MAs. In comparison with traditional MAs that use a single LS opera-
tor throughout the run, MAs with multiple LS methods can usually obtain a better
performance.

The key idea of using multiple LS operators in MAs is to promote the coopera-
tion and competition of different LS operators, enabling them to work together to
accomplish the shared optimization goal. Some researchers [16, 26] have suggested
that multiple LS operators should be executed simultaneously on those individu-
als that are selected for local improvements and that a certain learning mechanism
should be adopted to give the efficient LS methods greater chances to be chosen in
the later stage. However, Neri et al. [23] have also proposed a multiple LS based MA
with a non-competitive scheme, where different LS methods can be activated dur-
ing different population evolution periods. Inspired by these researches, a learning
mechanism is discussed to hybridizes the GCHC and SMHC methods described in
Section 6.2.2 effectively and an adaptive hill climbing (AHC) strategy is introduced
in this study.

144 H. Wang and S. Yang

In AHC, the GCHC and SMHC operators are both allowed to work in the whole
LS loop and are selected by probability to execute one step LS operation at every
generation when the MA is running. Let pgchc and psmhc denote the probabilities of
applying GCHC and SMHC to the individual that is used for a local search respec-
tively, where pgchc+psmhc=1. At the start of this strategy, pgchc and psmhc are both
set to 0.5, which means giving a fair competition chance to each LS operator. As
each LS operator always makes a biased search, the LS operator which produces
more improvements should be given a greater selection probability. Here, an adap-
tive learning approach is used to adjust the value of pgchc and psmhc for each LS
operator. Let η denote the improvement degree of the selected individual when one
LS operator is used to refine it and η can be calculated by:

η =
| fimp− fini|

fini
, (6.5)

where fimp is the final fitness of the selected individual chr after applying LS and fini

is its initial fitness before executing LS operation. At each generation, the degree of
improvement of each LS operator is calculated when a predefined number (numls)
of iterations is achieved and then pgchc and psmhc are re-calculated to proceed with
the next LS operation.

Suppose ηgchc(t) and ηsmhc(t) respectively denote the total improvement of
GCHC and SMHC at iteration t. The LS selection probabilities pgchc(t + 1) and
psmhc(t +1) at iteration (t +1) can be calculated orderly by the following formulae:

pgchc(t + 1) = pgchc(t)+Δ ·ηgchc(t), (6.6)

psmhc(t + 1) = psmhc(t)+Δ ·ηsmhc(t), (6.7)

pgchc(t + 1) =
pgchc(t + 1)

pgchc(t + 1)+ psmhc(t + 1)
, (6.8)

psmhc(t + 1) = 1− pgchc(t + 1), (6.9)

where Δ signifies the relative influence of the degree of the improvement on the
selection probability. The AHC operator can be expressed by the pseudo-code in
Fig. 6.4.

From the above discussion, the two different HC strategies, GCHC and SMHC,
may not only cooperate to improve the quality of individuals, but also compete with
each other to achieve a greater selection probability in the running process of AHC.
To promote competition between them, the selection probability of LS operators
can be re-calculated according to an adaptive learning mechanism where the LS
operator with a higher fitness improvement is rewarded with more chance of being
chosen for the subsequent individual refinement.

6 Memetic Algorithms for Dynamic Optimization Problems 145

Procedure AHC(chr):
begin

if pgchc and psmhc are not initialized then
set pgchc := psmhc := 0.5;

calculate(ξ , pcls,nmls);
set ηgchc = ηsmhc := 0;
for i := 1 to numls do

if random() < pgchc then // GCHC is selected
GCHC(chr);
update(ηgchc);

else // SMHC is selected
SMHC(chr);
update(ηsmhc);

endfor
recalculate(pgchc, psmhc);

end;

AHC’s denotations are the same as those for GCHC and SMHC

Fig. 6.4 Pseudo-code for the AHC operator

6.2.4 Diversity Maintaining

For stationary optimization problems, where the fitness landscape or objective func-
tion does not change during the course of computation, LS operators in MAs are
designed for exploiting information in the current population and genetic operators,
for example, mutation, are mostly responsible for enhancing the diversity of popu-
lation in order to make an efficient jump from a local optimum. Generally speaking,
the population will converge to a small area in the whole search space as a result
of keeping the sufficient exploitation for the global optimum. Therefore, MAs may
gradually loose their population diversity during the running. However, in dynamic
environments, the fitness landscape may change over time. That is, the current opti-
mum point may become a local optimum and the past local optimum may become
a new global optimum point. Considering that a spread-out population can adapt to
these changes more easily, it is very important and necessary to maintain sufficient
diversity of the population for MAs all the time.

The immigrants scheme is a quite simple and common method to maintain the
diversity level of the population through substituting a portion of individuals in the
population with the same number of newly-generated immigrants every generation.
Obviously, the method of generating new immigrants becomes a very important is-
sue in this strategy. In the original scheme, immigrants are designed to be generated
randomly. However, the random immigrants introduced may divert the searching
force of an algorithm and hence degrade the performance due to their lower fit-
ness level. Another thing to notice is that random individuals are not helpful for

146 H. Wang and S. Yang

Procedure GenerateImmigrants():
begin

for i := 1 to numim do
Pim[i] := mutation(elite, pmim);
evaluate(Pim[i]);

endfor
replace the worst num im individuals in the

current population with Pim
end

Denotations:
pmim: the mutation probability in generating immigrants
num im: the number of generated immigrants
elite: the best fitness individual in the population
Pim: the generated immigrants set

Fig. 6.5 Pseudo-code for the general immigrants scheme

improving the diversity level when being inserted into a spread-out population. In
the literature [44], a special immigrants scheme, called elitism-based immigrants, is
proposed. In this approach, the elitism individual, which is the best fitness individ-
ual in the population, is used as a base to generate a set of immigrant individuals
iteratively by a simple mutation. The key idea behind this scheme is that the immi-
grants can be guided to make a biased detection around the elite. However, it is also
noticeable that this bias may take no effect in a converging population since all the
individuals in the current population have distributed around its elite.

Inspired by the complementarity mechanism in nature, a primal-dual mapping
operator, where two chromosomes with the maximal distance in the solution space
are defined as a pair of primal-dual chromosomes, was be proposed and applied
for GAs in dynamic environments. Here, a new immigrants scheme, called dual-
based immigrants, is proposed with the hybridization the primal-dual mechanism
and elitism-based immigrants scheme. The dual-based immigrants are generated
by executing a simple mutation to the dual of the elite individual and replace the
same number of worst individuals in the current population. It is obvious that the
hyper-immigrants scheme can enhance the diversity level with the maximal degree,
which is helpful to improve the performance of EAs with a converging population
in dynamic environments especially in the significantly changing environments.

It seems very interesting that the above-mentioned three different immigrants
schemes, that is, elitism-based immigrants, random immigrants, and dual-based im-
migrants, can actually be described in a general framework. As shown in Fig. 6.5,
all immigrants are considered to be generated from mutating the elite individual
with a probability. It is easy to understand that the mutation probability pmim can be
used to control the categories of immigrants. The generated immigrants belong to
the elitism-based immigrants when the value of pmim is very small (e.g., pmim→ 0),

6 Memetic Algorithms for Dynamic Optimization Problems 147

while the dual-based immigrants can be achieved when executing the mutation to
elite with a large probability (e.g., pmim→ 1). When pmim = 0.5, the mutation op-
eration always creates random immigrants in fact.

The following problem to be addressed is how to set the mutation probability
pmim. Here, we will utilize the index of population diversity ξ , discussed in Section
6.2.2, to calculate the value of pmim by the following formula.

pmim = max{min{(pmmax
im + pmmin

im ∗ random()− ξ), pmmax
im }, pmmin

im } (6.10)

where random() is a random number between 0 and 1, pmmax
im and pmmin

im are the
preset maximum and minimum value of pmim, respectively (pmmax

im = 0.95 and
pmmin

im = 0.05 in the later experiments). From this formula, it is easy to see that
the elitism-based immigrants are inserted into the population when the population
has a low diversity level (ξ → 1) due to pmim approaches to pmmin

im , while the dual-
based immigrants are generated when the population is converging (ξ → 0) as a
result of pmim→pmmax

im .

6.2.5 Balance between Local Search and Diversity Maintaining

Based on the above description, an adaptive hill climbing operator, where two dif-
ferent LS operators are used in a cooperation fashion, is proposed to enhance the
exploitation capacity of algorithm and hence accelerate its tracking the optimum,
while a hybrid immigrants scheme, where the different category of immigrants are
generated according to the convergence status of population, is used to maintain the
population diversity of algorithm and then improve its performance in dynamic en-
vironments. However, it is noticeable that the extra computation cost, which means
the numbers of fitness evaluation in this paper, would be produced during executing
LS and generating immigrants (step ls in LS and num im in diversity scheme) every
generation.

One main question that follows when both LS operation and diversity maintain-
ing strategy are introduced into an algorithm is how to keep the balance between
them via the extra computational cost. As the generation index is used to set the
change period of environment in the later experiments, it is necessary to maintain a
constant number of evaluations in each generation in order to have fair comparisons
among our investigated MAs and other peer EAs. Therefore, the additional number
of fitness evaluations per generation, denoted as num aepg, is also fixed, that is,
numls + numim = num aepg. Based on this formula, two different methods can be
considered to calculate the values of numls and numls.

The first one is dominated by the effect of LS that the value of numls is firstly
calculated and then numim’s value is achieved by (num aepg−numls). Let numvls(t)
denote the number of valid LS operations, which means the corresponding index
η > 0 after executing one LS operation, at the t-th generation, numls(t + 1) can be
calculated by:

148 H. Wang and S. Yang

numls(t + 1) =

{
max{numls(t) ·λ0,nummin

ls }, if numvls(t)> 0
min{numls(t)/λ0,nummax

ls }, else
(6.11)

where λ0 is a preset constant between 0 and 1, nummax
ls and nummin

ls are the preset
maximum and minimum value of numls respectively (nummax

ls = 0.75 ∗ num aepg
and nummin

ls = 0.25 ∗ num aepg in the later experiments). It is easy to understand
from this formula that the LS operation would be further enhanced at the next gen-
eration, that is, the value of numls is increased, once there exists even one valid LS
operation at a step.

The second method is dominated by the diversity level of the population, i.e.,
the value of numim is firstly calculated and then numls’s value is achieved by
(num aepg− numim). Let numim(t) denote the number of generated immigrants at
the t-th generation, numls(t +1)’s value can be calculated by the following formula.

numim(t + 1) =

{
max{numim(t) ·λ1,nummin

im }, if ξ > ξ0

min{numim(t)/λ1,nummax
im }, else

(6.12)

where λ1 is a preset constant between 0 and 1 to signify the influence degree of
the population diversity upon numim, ξ0 is also a preset constant between 0 and
1, nummax

im and nummin
im are the preset maximum and minimum value of numim re-

spectively (nummax
im = 0.75 ∗ num aepg and nummin

im = 0.25 ∗ num aepg in the later
experiments). It is easy to see from this formula that the number of generated immi-
grants would be increased to maintain the diversity level of the population once its
converge degree is below a threshold (ξ0).

Therefore, the framework of our proposed MAs in this chapter, which hybridizes
the AHC operator and immigrants scheme for DOPs, can be summarized by the
pseudo-code in Fig. 6.6.

6.3 Dynamic Test Environments

In this chapter, a series of dynamic test environments are constructed by a specific
dynamic problem generator from a set of well-studied stationary problems.

Four 100-bit binary-coded functions, denoted OneMax, Plateau, RoyalRoad, and
Deceptive respectively, are selected as the stationary functions to construct dynamic
test environments. Each stationary function consists of 25 copies of 4-bit building
blocks and has an optimum value of 100. Each building block for the four functions
is a unitation-based function, as shown in Fig. 6.7. The unitation function of a bit
string returns the number of ones inside the string. The building block for OneMax is
an OneMax subfunction, which aims to maximize the number of ones in a bit string.
The building block for Plateau contributes 4 (or 2) to the total fitness if its unitation
is 4 (or 3); otherwise, it contributes 0. The building block for RoyalRoad contributes
4 to the total fitness if all its four bits are set to one; otherwise, it contributes 0. The
building block for Deceptive is a fully deceptive sub-function. Generally speaking,
the four functions have an increasing difficulty for GAs in the order from OneMax
to Plateau, RoyalRoad to Deceptive.

6 Memetic Algorithms for Dynamic Optimization Problems 149

Procedure Proposed GA-based MA:
begin

parameterize();
t := 0;
initializePopulation(P(0));
evaluatePopulation(P(0));
calculate(ξ , pcls,nmls, pmim);
set numls(0) := numim(0) := num aepg/2;
elite := selectForLocalSearch(P(0));
AHC(elite);
GenerateImmigrants();
repeat

P′(t) := selectForReproduction(P(t));
P′′(t) := crossover(P′(t));
mutate(P′′(t));
evaluatePopulation(P′′(t));
P(t +1) := selectForSurvival(P′′(t), P(t));
calculate(ξ , pcls,nmls, pmim);
calculate(numls(t +1),numim(t +1));
elite := selectForLocalSearch(P(t +1));
AHC(elite);
GenerateImmigrants();
t := t +1;

until a stop condition is met
end;

Fig. 6.6 Pseudo-code for the proposed GA-based MAs

0 1 2 3 4
0

1

2

3

4

Unitation

F
itn

es
s

OneMax
Plateau
RoyalRoad
Deceptive

Fig. 6.7 The building blocks for the four stationary functions selected to construct dynamic
test problems in this chapter

150 H. Wang and S. Yang

In [42, 47], an XOR DOP generator was proposed. The XOR DOP generator
can generate dynamic environments from any binary-encoded stationary function
f (x) (x ∈ {0,1}l) by a bitwise exclusive-or (XOR) operator. The environment is
changed every τ generations. For each environmental period k, an XOR mask M(k)
is incrementally generated as follows:

M(k) = M(k− 1)⊕T(k), (6.13)

where “⊕” is the XOR operator (i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 0 = 0) and T(k)
is an intermediate binary template randomly created with ρ × l ones for the k-th
environmental period. For the first period k = 1, M(1) = 0. Then, the population at
generation t is evaluated as:

f (x, t) = f (x⊕M(k)), (6.14)

where k = �t/τ	 is the environmental index. One advantage of this XOR generator
lies in that the speed and severity of environmental changes can be easily tuned. The
parameter τ controls the speed of changes while ρ ∈ (0.0,1.0) controls the severity
of changes. A bigger ρ means more severe changes while a smaller τ means more
frequent changes.

The dynamic test environments used in this paper are constructed from the four
stationary functions using the aforementioned XOR DOP generator. The change
severity ρ parameter is set to 0.1, 0.2, 0.5, and 0.9 respectively in order to examine
the performance of algorithms in dynamic environments with different severities:
from slight change (ρ = 0.1 or 0.2) to moderate variation (ρ = 0.5) to intense change
(ρ = 0.9). The change speed parameter τ is set to 10, 50, and 100 respectively,
which means that the environment changes very fast, in the moderate speed, and
slowly respectively.

In total, a series of 12 different dynamic problems are constructed from each sta-
tionary test problem. The dynamics parameter settings are summarized in Table 6.1.

Table 6.1 The index table for dynamic parameter settings

τ Environmental Dynamics Index

10 1 2 3 4
50 5 6 7 8

100 9 10 11 12
ρ → 0.1 0.2 0.5 0.9

6.4 Experimental Study

6.4.1 Experimental Design

In this section, experiments are carried out in order to study the major features of
our proposed MAs and to compare their performance with several existing peer

6 Memetic Algorithms for Dynamic Optimization Problems 151

algorithms where similar dualism and immigrants methods are also used. The fol-
lowing abbreviations represent the algorithms considered in this paper:

• SGA: Standard GA;
• SGAr: SGA with restart from scratch whenever the environment changes;
• EIGA: GA with the elitism-based immigrants scheme [44];
• RIGA: GA with the random immigrants scheme;
• DIGA: GA with the dual-based immigrants scheme (seen in Section 6.2.4);
• CHMA: MA with the GCHC operator;
• MHMA: MA with the SMHC operator;
• AHMA: MA with the AHC operator;
• EIAHMA: AHMA with the elitism-based immigrants scheme;
• RIAHMA: AHMA with the random immigrants scheme;
• DIAHMA: AHMA with the dual-based immigrants scheme;
• IMAHMA: AHMA with the proposed immigrants scheme in Section 6.2.4;

Some parameters in all algorithms were set as follows. The total number of eval-
uations per generation was always set to 120 for all algorithms, which means the
population size (pop size) is equal to 120 for SGA and SGAr. In all MAs, EIGA,
RIGA and DIGA, pop size was set to 100 and the additional number of fitness eval-
uations per generation (num aepg) was set to 20. The uniform crossover probability
pc was set to 0.6 and the bit-wise mutation probability pm was set to 0.01 for all
GAs and MAs. The specific parameters in our MAs were set as follows: α = β = 1,
Δ = 4, λ0 = λ1 = 0.9, and θ0 = 0.5. Other parameters in the studied peer algorithms
were set the same as their original settings.

For each experiment of an algorithm on a test problem, 20 independent runs
were executed with the same set of random seeds. For each run of an algorithm on a
DOP, 10 environmental changes were allowed and the best-of-generation fitness was
recorded per generation. The overall offline performance of an algorithm is defined
as the best-of-generation fitness averaged across the number of total runs and then
averaged over the data gathering period, as formulated below:

FBG =
1
G

G

∑
i=1

(
1
N

N

∑
j=1

FBGi j), (6.15)

where G is the number of generations (i.e., G = 10 ∗ τ), N = 20 is the total number
of runs, and FBGi j is the best-of-generation fitness of generation i of run j.

In order to measure the behavior of an algorithm during the course of running,
another numeric measure is defined as the best-of-generation fitness averaged across
the number of total runs and then averaged from the last change generation τ ′ to the
current generation t. More formally, the running offline performance is defined as:

FBGt =
1

t− τ ′
t−τ ′

∑
i=τ ′

(
1
N

N

∑
j=1

FBGi j) (6.16)

152 H. Wang and S. Yang

0 20 40 60 80 100
65

70

75

80

85

90

95

100
ru

nn
in

g
of

fli
ne

 p
er

fo
rm

an
ce

Generation

CHMA−adapt
CHMA−pc

ls
=0.6

CHMA−pc
ls

=0.1

0 20 40 60 80 100
30

40

50

60

70

80

90

100

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

Generation

CHMA−adapt
CHMA−pc

ls
=0.6

CHMA−pc
ls

=0.1

0 20 40 60 80 100
20

30

40

50

60

70

80

90

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

Generation

CHMA−adapt
CHMA−pc

ls
=0.6

CHMA−pc
ls

=0.1

0 20 40 60 80 100
45

50

55

60

65

70

75

80

85

90

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

Generation

CHMA−adapt
CHMA−pc

ls
=0.6

CHMA−pc
ls

=0.1

Fig. 6.8 Experimental results with respect to the running offline performance of CHMAs with
different pcls settings on stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad,
and (d) Deceptive

6.4.2 Experimental Study on the Effect of LS Operators

In the experimental study on LS operators, we first study the influence of different
settings of pcls in CHMA and nmls in MHMA, with the aim of determining a robust
setting for these two parameters. In particular, we have implemented CHMA just
on stationary test problems. Three different settings for pcls were used: pcls = 0.6
and pcls = 0.1 in the deterministic setting and pcmax

ls = 0.6 and pcmin
ls = 0.1 in the

adaptive setting scheme (see Section 6.2.2). For each run of an algorithm on each
problem, the maximum allowable number of generations was set to 1001. The ex-
perimental results are shown in Fig. 6.8, where the data were averaged over 20 runs.
The results on the Plateau problem are similar to the results on the RoyalRoad prob-
lem and are not shown in Fig. 6.8.

From Fig. 6.8, it can be seen that CHMA with adaptive pcls always outperforms
CHMAs with the deterministic value of pcls on the OneMax, Plateau and Roy-
alRoad problems and that a smaller pcls can help CHMA obtain a better perfor-

1 The number of maximum allowable fitness evaluations is actually 12000 since each algo-
rithm has 120 fitness evaluations per generation.

6 Memetic Algorithms for Dynamic Optimization Problems 153

0 20 40 60 80 100
65

70

75

80

85

90

95

100

Generation

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

MHMA−adapt
MHMA−nm

ls
=4

MHMA−nm
ls

=1

0 20 40 60 80 100
40

50

60

70

80

90

100

Generation

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

MHMA−adapt
MHMA−nm

ls
=4

MHMA−nm
ls

=1

0 20 40 60 80 100
20

30

40

50

60

70

80

90

Generation

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

MHMA−adapt
MHMA−nm

ls
=4

MHMA−nm
ls

=1

0 20 40 60 80 100
50

55

60

65

70

75

80

85

90

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

Generation

MHMA−adapt
MHMA−nm

ls
=4

MHMA−nm
ls

=1

Fig. 6.9 Experimental results with respect to the running offline performance of MHMAs with
different nmls settings on stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad,
and (d) Deceptive

mance on the Deceptive problem. Hence, the adaptive setting scheme for pcls will
always be used in the following experiments considering that the deterministic set-
ting scheme is problem-dependent and the adaptive scheme for pcls always shows
a better adaptive capacity on different problems.

Similar experiments were also carried out to test the influence of different set-
tings of nmls on the performance of MHMA. The value of nmls was set to 4 and 1
respectively for the deterministic scheme and nmmax

ls = 4 and nmmin
ls = 1 in the adap-

tive setting scheme (see Section 6.2.2). The experimental results with respect to the
running offline performance are presented in Fig. 6.9.

From Fig. 6.9, it can be observed that the performance curves of the three MH-
MAs almost overlap together on the Plateau, RoyalRoad and Deceptive problems
except that MHMA with nmls = 1 performs better than MHMA with adaptive nmls

and MHMA with nmls = 4 on the OneMax problem. This indicates that adaptively
varying the search range of the SMHC operator may not improve the performance
of MHMA remarkably. Hence, the value of nmls will always be set to 1 in the later
experiments.

In the following experiments, we investigate the performance of AHMA, MHMA,
CHMA and SGA on the stationary test problems in order to examine the validity of

154 H. Wang and S. Yang

0 20 40 60 80 100
60

65

70

75

80

85

90

95

100
ru

nn
in

g
of

fli
ne

 p
er

fo
rm

an
ce

Generation

SGA
CHMA
MHMA
AHMA

0 20 40 60 80 100
30

40

50

60

70

80

90

100

Generation

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

SGA
CHMA
MHMA
AHMA

0 20 40 60 80 100
20

30

40

50

60

70

80

90

Generation

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

SGA
CHMA
MHMA
AHMA

0 20 40 60 80 100
45

50

55

60

65

70

75

80

85

90

Generation

ru
nn

in
g

of
fli

ne
 p

er
fo

rm
an

ce

SGA
CHMA
MHMA
AHMA

Fig. 6.10 Experimental results with respect to the running offline performance of MAs and
SGA on stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad, and (d) Deceptive

our proposed AHC operator. The experimental results with respect to the running
offline performance are shown in Fig. 6.10.

From Fig. 6.10, it can be seen that all MAs outperform SGA significantly on all
test problems. This shows that proper LS techniques (here AHC in AHMA, SMHC
in MHMA, and GCHC in CHMA) can help MAs obtain a much better performance
than SGA. Of course, these conclusions have been drawn by many researchers.
MHMA exhibits the best performance on the OneMax and Deceptive problems,
while CHMA performs best on the Plateau and RoyalRoad problems among the
three MAs, which shows that the effect of LS operators is problem-dependent.
It can also be seen that AHMA always shows good adaptivity on the four test
problems, where AHMA performs better than CHMA on the OneMax and Decep-
tive problems and better than MHMA on the Plateau and RoyalRoad problems. The
results indicate that AHC always does well although it needs to take some time to
adjust its LS strategy. Since it is almost impossible for an algorithm to achieve all
the characters of a problem in advance, the combination of multiple LS operators
within a single MA framework is a good choice for solving optimization problems.

In the above experimental studies, only the elite chromosome is selected for lo-
cal refinement in order to decrease extra cost due to the fitness evaluations by LS

6 Memetic Algorithms for Dynamic Optimization Problems 155

0 10 20 30 40 50 60 70 80 90 100
60

65

70

75

80

85

90

95

100

Generation

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

n=1
n=4
n=10

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Generation

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

n=1
n=4
n=10

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

Generation

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

n=1
n=4
n=10

0 10 20 30 40 50 60 70 80 90 100
45

50

55

60

65

70

75

80

Generation

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

n=1
n=4
n=10

Fig. 6.11 Experimental results with respect to the running offline performance of AHMAs on
stationary test problems: (a) OneMax, (b) Plateau, (c) RoyalRoad, and (d) Deceptive

operations. In the final experiments on LS operators, we further investigate the influ-
ence of the number of selected individuals for LS upon the performance of AHMA.
In order to make a fair comparison, the number of additional fitness evaluations per
generation (num aepg) is always set to 20 and the number of selected individuals (n)
is set to 1, 4 and 10, respectively, which means the corresponding iteration number
of LS is 20, 5 and 2, respectively. In addition, only the best n individuals in the pop-
ulation would undergo the AHC operation. The experimental results with respect to
the running offline performance are shown in Fig. 6.11.

From Fig. 6.11, it can be seen that the performance of AHMAs degrades with the
increment of the number of selected individuals for LS, especially on the OneMax,
RoyalRoad and Deceptive problems. This means that only executing sufficient local
refinement upon the best individual elite is a good choice when the extra cost is
limited.

6.4.3 Experimental Study on the Effect of Diversity Maintaining
Schemes

Immigrants scheme is a common strategy to address the convergence problem of
EAs in dynamic environments. In Section 6.2.4, three different immigrants schemes
are integrated into a general framework, where different categories of immigrants
can be generated by executing the simple mutation on the best fitness individual
(elite) with different probabilities. In order to investigate the effect of proposed

156 H. Wang and S. Yang

immigrants schemes upon the performance of algorithms in dynamic environments,
we firstly carry out the following experiments on AHMAs with different immigrants
schemes on DOPs with τ=50 and ρ set to 0.1, 0.2, 0.5 and 0.9, respectively. In all
AHMAs, the first method of calculating the values of numls and numim are used.

The experimental results with respect to the overall offline performance are pre-
sented in Table 6.2. The corresponding statistical results of comparing algorithms
by the one-tailed t-test with 38 degrees of freedom at a 0.05 level of significance
are given in Table 6.3. In Table 6.3, the t-test results regarding Alg. 1−Alg. 2 are
shown as “+”, “−”, or “∼” when Alg. 1 is significantly better than, significantly
worse than, or statistically equivalent to Alg. 2, respectively. From Table 6.2 and
Table 6.3, several results can be observed and are analyzed below.

First, EIAHMA performs better than RIAHMA and DIAHMA on all dynamic
OneMax problems and dynamic Plateau problems when the change severity is small.
This is because the immigrant individuals generated by the elitism mechanism can
always make a positive guide for the search of the algorithm on the OnmeMax prob-
lem. In addition, the similar effect of this immigrants scheme can be obtained when
the environmental change is slight, e.g., dynamic Plateau problems with ρ = 0.1 and
ρ = 0.2. It can also be seen that the performance of EIAHMA begins to degrade with
the increasing of the value of ρ . When ρ = 0.5, EIAHMA performs much worse
than RIAHMA on dynamic Plateau, RoyalRoad and Deceptive problems. When the
value of ρ increases to 0.9, EIAHMA is always beaten by DIAHMA with a great
degree.

Second, RIAHMA exhibits the best performance on most dynamic environments
when a random environmental change occurs (ρ=0.5). This is easy to understand.
When the environment changes with ρ = 0.5, almost all building blocks found so far
are demolished. Obviously, RIAHMA can adapt to this environmental change more
easily since the newly-generated random immigrants always do better than those
biased immigrants, that is, the elitism-based immigrants in EIAHMA and the dual-
based immigrants in DIAHMA, in re-achieving the demolished building blocks.

Third, DIAHMA performs better than EIAHMA and RIAHMA on dynamic Roy-
alRoad problems when ρ = 0.9 and on all dynamic Deceptive problems. The reason
lies in that the dual mechanism may help DIAHMA react to significant environmen-
tal changes rapidly and also enable it to escape from the deceptive attractor in the
Deceptive problem.

Fourth, IMAHMA always exhibits good performance in most dynamic environ-
ments except that it is beaten entirely by EIAHMA on dynamic OneMax problems
with the different settings of change severity ρ . In IMAHMA, the probability of
generating immigrants (pmim) can be calculated adaptively according to the conver-
gence degree of population. It means IMAHMA can generate different categories of
immigrants to adapt well to dynamic environments with different change severities.
The experimental results of the good adaptivity of IMAHMA in dynamic environ-
ments confirm our expectation of introducing the proposed immigrants scheme in
Section 6.2.4 to AHMA for DOPs.

6 Memetic Algorithms for Dynamic Optimization Problems 157

Table 6.2 Experimental results with respect to overall offline performance of AHMAs on
dynamic test problems

Dynamics OneMax Problem

τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 97.11±0.27 97.58±0.19 97.00±0.27 97.08±0.28
50 0.2 95.11±0.37 95.86±0.27 95.03±0.27 95.10±0.24
50 0.5 92.99±0.34 93.54±0.39 93.73±0.32 92.97±0.30
50 0.9 97.18±0.17 97.52±0.31 97.06±0.19 97.09±0.21
Dynamics Plateau Problem
τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 93.62±0.45 93.76±0.82 93.62±0.42 93.48±0.54
50 0.2 87.53±0.71 87.93±0.98 87.41±0.93 87.41±0.83
50 0.5 81.94±1.00 79.51±1.70 83.65±0.77 81.25±1.11
50 0.9 93.60±0.66 93.48±1.95 93.42±0.60 93.54±0.46
Dynamics RoyalRoad Problem
τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 85.77±1.19 80.97±3.15 85.64±1.14 85.76±1.13
50 0.2 73.96±1.52 69.76±1.81 73.70±1.82 73.88±1.82
50 0.5 63.83±1.83 55.08±2.20 65.65±1.73 61.55±1.36
50 0.9 85.23±1.02 79.67±4.93 84.93±1.21 85.37±0.94
Dynamics Deceptive Function
τ ρ IMAHMA EIAHMA RIAHMA DIAHMA
50 0.1 83.44±0.46 76.57±1.42 76.72±1.66 83.99±0.72
50 0.2 81.24±0.47 74.47±0.82 74.14±1.02 82.19±0.54
50 0.5 80.29±0.51 73.50±0.72 74.34±0.62 81.19±0.70
50 0.9 84.07±0.60 77.02±1.45 77.22±1.71 84.06±0.60

Table 6.3 The t-test results of comparing the overall offline performance of AHMAs on
dynamic test problems

t-test Result OneMax Plateau RoyalRoad Deceptive

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
IMAHMA − EIAHMA − − − − ∼ ∼ + ∼ + + + + + + + +
IMAHMA − RIAHMA ∼ ∼ − + ∼ ∼ − ∼ ∼ ∼ − ∼ + + + +
IMAHMA − DIAHMA ∼ ∼ ∼ + ∼ ∼ + ∼ ∼ ∼ + ∼ − − − ∼
EIAHMA − RIAHMA + + ∼ + ∼ + − ∼ − − − − ∼ ∼ − ∼
EIAHMA − DIAHMA + + + + ∼ + − ∼ − − − − − − − −
RIAHMA − DIAHMA ∼ ∼ + ∼ ∼ ∼ + ∼ ∼ ∼ + ∼ − − − −

Both LS and diversity maintaining scheme require to cost a certain number of
additional fitness evaluations. Therefore, it becomes a key problem to balance the
two operations considering that the total additional number of evaluations per gen-
eration (num aepg) is always constant. In Section 6.2.5, two different schemes are
proposed to calculate the corresponding values of additional evaluations consumed

158 H. Wang and S. Yang

Table 6.4 Experimental results with respect to overall offline performance of IMAHMAs on
dynamic test problems

Dynamics OneMax Problem

τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 96.73±0.20 97.13±0.24 96.29±0.24
50 0.2 93.86±0.38 94.86±0.29 92.66±0.45
50 0.5 91.45±0.39 92.89±0.30 90.04±0.52
50 0.9 96.66±0.20 97.04±0.20 96.16±0.24
Dynamics Plateau Problem
τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 92.78±0.62 93.48±0.63 92.39±0.60
50 0.2 86.66±0.86 87.70±0.77 85.44±0.94
50 0.5 80.54±0.96 81.43±1.00 79.55±0.86
50 0.9 92.79±0.54 93.45±0.55 92.15±0.57
Dynamics RoyalRoad Problem
τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 84.99±1.31 85.18±1.76 84.72±1.48
50 0.2 73.74±1.58 74.04±1.62 73.17±1.60
50 0.5 63.71±2.07 64.81±2.14 64.42±1.79
50 0.9 85.14±1.55 85.95±1.34 85.30±1.25
Dynamics Deceptive Problem
τ ρ IMAHMA0 IMAHMA1 IMAHMA2
50 0.1 83.25±0.57 83.62±0.53 81.26±0.92
50 0.2 79.69±0.82 81.39±0.48 76.51±0.93
50 0.5 77.74±0.61 79.99±0.46 73.98±0.84
50 0.9 82.77±0.87 83.59±0.72 80.88±1.19

by LS (numls) and immigrants scheme (numim), respectively. In the following ex-
periments, we will examine the effect of proposed schemes upon the performance
of IMAHMAs in dynamic environments. For the sake of convenient description
of the experiments, IMAHMA0, IMAHMA1 and IMAHMA2 are used to denote
IMAHMA with a deterministic scheme where both numls and numim are fixed to
num aepg/2, IMAHMA with the first dominated scheme, and IMAHMA with the
second dominated scheme, respectively.

The experimental results respect to the overall offline performance are presented
in Table 6.4 and the corresponding statistical results of comparing algorithms by the
one-tailed t-test with 38 degrees of freedom at a 0.05 level of significance are given
in Table 6.5. From Table 6.4 and Table 6.5, several results can be observed and are
analyzed below.

First, IMAHMA1 performs better than IMAHMA0 and IMAHMA2 on all test
problems. In IMAHMA1, the value of additional fitness evaluations costed by LS
(numls) is firstly calculated based on the effect of LS. When LS helps to improve the
quality of individuals, that is, the number of valid LS (numvls) is larger than zero,
numls’s value would increase in order to execute more sufficient local refinement,

6 Memetic Algorithms for Dynamic Optimization Problems 159

Table 6.5 The t-test results of comparing the overall offline performance of IMAHMAs on
dynamic test problems

t-test Result OneMax Plateau RoyalRoad Deceptive

τ = 50, ρ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
AHMA0 − AHMA1 − − − − − − − − ∼ ∼ ∼ − − − − −
AHMA0 − AHMA2 + + + + + + + + ∼ ∼ ∼ ∼ + + + +
AHMA1 − AHMA2 + + + + + + + + ∼ + ∼ + + + + +

while the number of generated immigrants (numim) would decrease as a result of
numim = num aepg− numls. The experimental results show that this scheme domi-
nated by LS is a good choice to keep balance between LS and diversity maintaining.

Second, IMAHMA2 is always beaten by IMAHMA0 and IMAHMA1 on most
dynamic problems. In IMAHMA2, the number of generated immigrants is firstly
determined based on the convergence status of population and then the value of
numls is calculated from the formula numls = num aepg− numim. When the index
(ξ) is lower than a threshold, the immigrants’ number (numim) would increase in
order to improve the diversity level of population. Obviously, the idea behind this
scheme is to maintain a spread-out population. However, the experimental results
indicate that this simple scheme cannot achieve the original purpose.

Finally, IMAHMA0 exhibits the good performance on the test problems, which
validate the necessary of hybridizing LS and diversity maintaining scheme in MAs
for DOPs.

6.4.4 Experimental Study on Comparing the Proposed Algorithm
with Several Peer GAs on DOPs

In the final experiments, we compare the performance of IMAHMA with several
peer GAs on the DOPs constructed in Section 6.3. These peer GAs are SGAr,
RIGA, EIGA and DIGA, as described in Section 6.4.1. The experimental results
are presented in Table 6.6 to Table 6.9, respectively. The corresponding statistical
results are given in Table 6.10. From these tables, several results can be observed and
analyzed as follows.

First, IMAHMA always outperforms other peer algorithm on most dynamic prob-
lems and underperforms some of these GAs on some dynamic problems when the
environment changes slowly, i.e., when τ = 50 or τ = 100. When the environ-
ment changes quickly, i.e., when τ = 10, IMAHMA can always locate the opti-
mum (maybe local optimum) more quickly than other GAs because LS has a strong
exploitation capacity. This is why IMAHMA performs the best on all dynamic prob-
lems with τ = 10. When τ = 50 or τ = 100, IMAHMA performs worse than SGAr
on dynamic Plateau and RoyalRoad problems with ρ = 0.5. This happens because
the random environment always requires algorithms to maintain a sufficient popu-
lation diversity (see the relevant analysis in Section 6.4.3) and the restart scheme

160 H. Wang and S. Yang

Table 6.6 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic OneMax problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 91.78±0.60 70.76±0.45 89.50±0.81 87.97±0.66 89.35±0.91
10 0.2 86.38±0.84 70.68±0.36 81.42±0.85 80.58±1.03 81.14±1.09
10 0.5 78.93±0.93 70.66±0.28 71.66±1.73 71.83±0.77 71.52±1.41
10 0.9 91.70±0.42 70.68±0.34 88.32±2.21 87.67±0.84 89.31±0.82
50 0.1 97.11±0.26 91.02±0.14 97.09±0.22 95.06±0.34 97.23±0.25
50 0.2 94.85±0.35 91.10±0.16 94.44±0.45 90.89±0.54 94.50±0.42
50 0.5 92.92±0.34 91.05±0.13 90.05±0.72 89.41±0.32 90.22±0.63
50 0.9 97.11±0.16 91.00±0.31 97.14±0.46 97.08±0.30 97.26±0.24

100 0.1 98.55±0.08 95.50±0.08 98.58±0.06 97.48±0.14 98.59±0.09
100 0.2 97.43±0.13 95.52±0.07 97.21±0.18 95.37±0.24 97.17±0.19
100 0.5 96.46±0.15 95.51±0.08 95.13±0.34 94.69±0.12 95.15±0.33
100 0.9 98.54±0.11 95.52±0.05 98.54±0.25 97.47±0.18 98.60±0.11

Table 6.7 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic Plateau problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 83.03±0.95 47.96±0.60 76.17±2.13 77.53±1.05 76.86±2.72
10 0.2 72.91±1.64 47.77±0.75 63.75±2.02 64.57±1.36 64.31±2.08
10 0.5 57.52±2.02 48.03±0.62 48.12±2.17 49.25±0.87 47.68±1.32
10 0.9 83.46±1.12 47.89±0.72 76.59±4.83 77.79±1.21 78.12±2.74
50 0.1 93.40±0.37 82.99±0.34 92.91±0.83 90.73±0.51 93.01±0.70
50 0.2 87.56±0.96 83.00±0.30 86.45±0.80 82.92±0.83 86.67±1.22
50 0.5 81.42±0.89 82.99±0.40 77.42±1.41 80.37±0.67 78.19±1.18
50 0.9 93.33±0.53 82.81±0.38 92.71±1.94 90.74±0.71 92.93±0.79

100 0.1 96.71±0.32 91.46±0.16 96.24±0.60 95.37±0.33 96.05±0.88
100 0.2 93.32±0.63 91.52±0.17 92.55±0.87 91.13±0.53 92.43±0.93
100 0.5 90.72±0.59 91.51±0.13 86.51±1.19 90.22±0.38 87.18±1.41
100 0.9 96.72±0.31 91.52±0.15 96.07±0.97 95.37±0.36 96.17±0.80

in SGAr can introduce the maximum diversity into the population. The reason why
SGAr outperforms IMAHMA only on the Plateau and RoyalRoad problems lies in
the intrinsic characteristics of these problems. The OneMax problem is simply uni-
modal, which is very suitable for a HC search in IMAHMA. Both the Plateau and
RoyalRoad problems have higher-order building blocks, which take a HC search
much more time to achieve. The Deceptive problem may mislead SGAr’s evolution
due to the existence of deceptive attractor, which can be escaped from by IMAHMA.
IMAHMA is also beaten by DIGA on the dynamic OneMax problems and Deceptive
problems with ρ = 0.5 and τ = 50 or 100. This is because DIGA can especially fit
such an acutely-changing environment and the dual-based immigrants can maintain

6 Memetic Algorithms for Dynamic Optimization Problems 161

Table 6.8 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic RoyalRoad problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 67.27±2.39 32.50±0.87 53.89±4.71 62.30±2.30 53.03±5.37
10 0.2 52.48±2.33 32.52±0.73 43.44±4.53 47.95±1.39 41.75±3.53
10 0.5 38.83±1.53 32.31±0.76 31.67±1.91 33.98±1.48 32.41±1.85
10 0.9 66.09±2.72 32.69±0.73 52.25±4.97 62.29±2.83 54.87±4.79
50 0.1 85.70±1.38 69.32±0.73 76.39±4.13 83.94±1.24 75.84±4.28
50 0.2 74.48±1.10 69.40±1.03 66.33±2.79 72.27±1.54 66.62±3.41
50 0.5 63.40±1.99 69.38±0.83 53.17±2.20 65.58±1.79 53.05±2.44
50 0.9 85.26±1.31 69.10±1.02 77.38±4.31 83.30±1.41 76.28±3.27
100 0.1 91.31±0.98 84.42±0.48 82.56±2.98 90.15±0.99 82.39±4.05
100 0.2 82.64±1.44 84.33±0.43 74.04±2.15 82.13±1.34 73.36±1.96
100 0.5 76.07±2.00 84.39±0.58 62.13±2.17 79.80±1.67 62.55±2.58
100 0.9 91.38±0.79 84.30±0.42 82.99±5.60 90.50±1.10 82.79±3.47

Table 6.9 Experimental results with respect to overall offline performance of IMAHMA and
peer GAs on dynamic Deceptive problems

Dynamics Algorithms
τ ρ IMAHMA SGAr EIGA RIGA DIGA
10 0.1 72.78±2.04 53.13±0.56 69.15±1.75 64.36±1.55 71.77±1.75
10 0.2 66.05±0.98 52.92±0.50 62.94±1.44 57.88±1.26 63.24±1.38
10 0.5 61.73±0.76 53.18±0.47 56.70±1.01 53.28±0.78 57.55±1.05
10 0.9 73.04±1.54 53.23±0.64 69.18±1.19 64.02±1.19 71.63±1.36
50 0.1 83.91±0.99 66.06±0.57 78.07±1.23 75.47±1.66 84.58±0.49
50 0.2 81.50±0.73 66.02±0.62 75.04±1.10 70.49±1.03 81.79±0.49
50 0.5 80.14±0.60 66.17±0.52 73.77±0.71 68.06±0.82 79.61±0.49
50 0.9 83.64±0.51 66.23±0.70 78.20±1.66 75.28±1.90 84.58±0.46
100 0.1 87.14±0.86 73.85±0.54 79.07±1.09 77.86±1.61 87.21±0.45
100 0.2 86.07±0.55 73.96±0.58 77.45±1.10 75.83±1.14 86.20±0.54
100 0.5 85.95±0.34 73.94±0.63 77.41±0.73 74.89±0.76 85.41±0.40
100 0.9 86.93±0.55 73.90±0.43 78.61±1.91 78.51±1.81 87.04±0.57

a very high fitness level on the OneMax and Deceptive problems. The good perfor-
mance of IMAHMA over other peer GAs shows that our investigated IMAHMA has
a strong robustness and adaptivity in dynamic environments.

Second, on dynamic OneMax and Plateau problems EIGA always outperforms
SGAr and RIGA when ρ is set to 0.1 or 0.2, but underperforms them when the
value of ρ is set to 0.5 or 0.9. On dynamic RoyalRoad and Deceptive problems, the
situations become a little different. EIGA performs better than RIGA on dynamic
RoyalRoad problems just when τ = 10 and better than both SGAr and RIGA on all
dynamic Deceptive problems. This happens because the elitism-based immigrants
scheme can introduce higher fitness individuals, which can adapt better to the current

162 H. Wang and S. Yang

Table 6.10 The t-test results of comparing the overall offline performance of AHMA and peer
EAs on dynamic test problems

t-test Result OneMax Plateau RoyalRoad Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
IMAHMA − SGAr + + + + + + + + + + + + + + + +
IMAHMA − EIGA + + + + + + + + + + + + + + + +
IMAHMA − RIGA + + + + + + + + + + + + + + + +
IMAHMA − DIGA + + + + + + + + + + + + + + + +

SGAr − EIGA − − − − − − ∼ − − − ∼ − − − − −
SGAr − RIGA − − − − − − − − − − − − − − ∼ −
SGAr − DIGA − − − − − − ∼ − − − ∼ − − − − −
EIGA − RIGA + + ∼ ∼ − ∼ − ∼ − − − − + + + +
EIGA − DIGA ∼ ∼ ∼ − ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − ∼ − −
RIGA − DIGA − ∼ ∼ − ∼ ∼ + ∼ + + + + − − − −

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9
IMAHMA − SGAr + + + + + + − + + + − + + + + +
IMAHMA − EIGA ∼ + + ∼ + + + ∼ + + + + + + + +
IMAHMA − RIGA + + + + + + + + + + − + + + + +
IMAHMA − DIGA ∼ + + − + + + + + + + + − ∼ + −

SGAr − EIGA − − + − − − + − − + + − − − − −
SGAr − RIGA − + + − − ∼ + − − − + − − − − −
SGAr − DIGA − − + − − − + − − + + − − − − −
EIGA − RIGA + + + + + + − + − − − − + + + +
EIGA − DIGA ∼ ∼ ∼ ∼ ∼ ∼ − ∼ ∼ ∼ ∼ ∼ − − − −
RIGA − DIGA − − − − − − − − + + + + − − − −
τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

IMAHMA − SGAr + + + + + + − + + − − + + + + +
IMAHMA − EIGA ∼ + + ∼ + + + + + + + + + + + +
IMAHMA − RIGA + + + + + + + + + ∼ − + + + + +
IMAHMA − DIGA ∼ + + ∼ + + + + + + + + ∼ ∼ + ∼

SGAr − EIGA − − + − − − + − + + + ∼ − − − −
SGAr − RIGA − + + − − + + − − + + − − − − −
SGAr − DIGA − − + − − − + − + + + + − − − −
EIGA − RIGA + + + + + + − + − − − − + + + ∼
EIGA − DIGA ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ − − − −
RIGA − DIGA − − − − − − + − + + + + − − − −

environment, into EIGA’s population on dynamic OneMax and Plateau problems
when the environment changes slightly, on dynamic RoyalRoad problems when the
environment changes quickly, and on all dynamic Deceptive problems due to the
intrinsic characteristics of these four kinds of functions.

6 Memetic Algorithms for Dynamic Optimization Problems 163

Third, RIGA always performs better than SGAr when the value of ρ is small
on most dynamic test problems. This is because a new environment is close to the
previous one when the value of ρ is very small. Therefore, introducing a portion
of random individuals into the population as done in RIGA may be more beneficial
than re-initializing the whole population as done in SGAr.

Fourth, DIGA exhibits good performance on OneMax, Plateau, and Deceptive
problems although DIGA is beaten by SGAr and RIGA on these dynamic prob-
lems when ρ = 0.5. This also confirms the exception of the dual-based immigrants
scheme for GAs in dynamic environments. DIGA performs better than the other
GAs on all dynamic Deceptive problems. The reason lies in that the dualism mech-
anism may help DIGA react to significant environmental changes rapidly and also
enable it to escape from the deceptive attractor in the Deceptive function.

Finally, the environmental parameters affect the performance of algorithms. The
performance of all algorithms increases when the value of τ increase from 10 to 50
to 100. It is easy to understand. When τ becomes larger, algorithms have more time
to find better solutions before the next change. The effect of the changing severity
parameter ρ is different. For example, when τ is fixed, the performance curve of
IMAHMA always declines when ρ increases from 0.1 to 0.2 to 0.5, but rises when
ρ increases from 0.5 to 0.9.

In order to better understand the experimental results, we make a deeper look
into the dynamic behavior of these algorithms. The dynamic behavior of different
algorithms with respect to the running offline performance is shown in Fig. 6.12 to
Fig. 6.15, where τ is set to 50 and ρ is set to 0.1, 0.2, 0.5, and 0.9, respectively.
From these figures, it can be easily observed that for the dynamic periods SGAr
always performs almost the same as it did for the stationary period (the first 50
generations) and IMAHMA always outperforms other peer GAs for the stationary
period on all test problems while their dynamic behaviors are different on different
dynamic problems.

On the OneMax and Plateau problems (see Figs. 6.12 and 6.13), the dynamic
behavior of IMAHMA for each dynamic period outperforms that for the stationary
period when ρ is very small. When ρ = 0.5, IMAHMA exhibits almost the same per-
formance in both the stationary and dynamic periods. When the value of ρ increases
to 0.9, the performance of IMAHMA in the dynamic period upgrades consistently.
This is because that the proposed AHC operator can help IMAHMA achieve the
optimum quickly once the population can “find” in the area where the optimum is
located. The new optimum may be close to the previous one when the environment
changes slightly, while the immigrants scheme in IMAHMA can help the population
re-locate to the changing optimum quickly when a significant environmental change
occurs. The dynamic behavior of both RIGA and EIGA is affected by the value of
ρ . With the increment of dynamic periods, their performance upgrades consistently
when ρ = 0.1, while their behavior for the dynamic periods underperforms that for
the stationary period when ρ = 0.5 or 0.9. The behavior of DIGA is very simi-
lar to the behavior of RIGA and EIGA when ρ is not very large. However, DIGA
exhibits very nice adaptability to a significantly changing environment. Its behavior
for the dynamic periods outperforms that for the stationary period when ρ=0.9. This

164 H. Wang and S. Yang

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(a)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(b)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(c)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(d)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

Fig. 6.12 Dynamic behavior of IMAHMA and peer GAs on dynamic OneMax problems with
τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

happens because the dual-based immigrants scheme can help DIGA re-locate to the
changing optimum quickly when a sharp environmental change occurs.

On the RoyalRoad and Deceptive problems (see Fig. 6.14), with the increment
of dynamic periods, IMAHMA’s performance drops a little when ρ = 0.5, while
rises when ρ = 0.1, 0.2 and 0.9. The reason lies in that IMAHMA does not find
the optimum in the stationary period on these two problems. When the environment
changes slightly or very significantly, IMAHMA always reruns from the starting
points with a higher fitness in the dynamic periods than that in the stationary period,
while when ρ = 0.5, IMAHMA can only obtain worse starting points in the dynamic
periods.

6.5 Conclusions and Future Work

In this chapter, the application of MAs with an adaptive hill climbing strategy for dy-
namic optimization problems is investigated. In the proposed MA, two local search
methods, a greedy crossover-based hill climbing and a steepest mutation-based hill
climbing, are used to refine the individual that is selected for local improvements.

6 Memetic Algorithms for Dynamic Optimization Problems 165

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(a)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(b)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(c)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

Generation
(d)

IMAHMA
SGAr
EIGA
RIGA
DIGA

Fig. 6.13 Dynamic behavior of IMAHMA and peer GAs on dynamic Plateau problems with
τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

A learning mechanism, which gives the more effective LS operator greater chance
for the later individual refinement, is introduced in order to execute a robust local
search. To maintain a sufficient population diversity for the algorithms to adapt well
to the environmental changes, a new immigrants scheme, where the immigrants can
be generated from mutating an elite individual with a probability adaptively, is intro-
duced into our proposed MA. In order to keep the balance between LS and diversity
maintaining with respect to the extra computation cost, two different dominated
schemes are also discussed in this paper.

In order to test the performance of the proposed MA for DOPs, a series of ex-
perimental studies have been carried out based on a set of constructed dynamic test
problems. From the experimental results, we can draw the following conclusions on
the dynamic test problems.

First, MAs enhanced by suitable diversity methods can exhibit a better perfor-
mance in dynamic environments. For most dynamic test problems, IMAHMA al-
ways outperforms other peer GAs.

Second, the immigrants scheme is efficient for improving the performance of
MAs in dynamic environments. However, different immigrants schemes have dif-
ferent effects in different dynamic environments. The elitism-based immigrants

166 H. Wang and S. Yang

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(a)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(b)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(c)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(d)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

Fig. 6.14 Dynamic behavior of IMAHMA and peer GAs on dynamic RoyalRoad problems
with τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

scheme is suitable for the slightly-changing environments, the random immigrants
scheme performs better when the environmental severity ρ = 0.5, and the dualism-
based immigrants does better when the environment involves significant changes
(i.e., ρ = 0.9). The proposed immigrants scheme in Section 6.2.3 is a good choice
that generalizes three different immigrants schemes within a common framework.

Third, the effect of LS operators is problem dependent. The AHC strategy can
help MAs execute a robust individual refinement since it employs multiple LS op-
erators under the mechanism of cooperation and competition.

Fourth, the difficulty of DOPs depends on the environmental dynamics, including
the severity and speed of changes and the difficulty of the base stationary problems.
According to our experiments, MAs perform better with the increasing of the fre-
quency of changes, and the effect of the severity of changes is problem dependent.

Generally speaking, the experimental results indicate that the proposed MA,
where the adaptive hill climbing operator is used as a local search technique for in-
dividual refinement, with adaptive dual mapping and triggered random immigrants
schemes, seems a good EA optimizer for DOPs.

For the future work, it is straightforward to introduce other mechanisms, such
as memory-based methods [43] and multi-population approaches [30], into MAs

6 Memetic Algorithms for Dynamic Optimization Problems 167

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(a)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(b)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(c)

R
u

n
n

in
g

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Generation
(d)

R
u

n
n

ig
n

 o
ff

lin
e

p
er

fo
rm

an
ce

IMAHMA
SGAr
EIGA
RIGA
DIGA

Fig. 6.15 Dynamic behavior of IMAHMA and peer GAs on dynamic Deceptive problems
with τ = 50 and ρ is set to: (a) ρ = 0.1, (b) ρ = 0.2, (c) ρ = 0.5, and (d) ρ = 0.9

for DOPs. Another interesting research work is to extend the proposed immigrants
scheme to other EAs and examine their performance in dynamic environments. In
addition, it is also valuable to carry out the sensitivity analysis on the effect of pa-
rameters, e.g., α , β , Δ , θ0, λ0, and λ1, on the performance of proposed MAs in the
future.

Acknowledgements. The work by Hongfeng Wang was supported by the National Na-
ture Science Foundation of China (NSFC) under Grant 71001018, the National Innova-
tion Research Community Science Foundation of China under Grant 60521003, the China
Postdoctoral Science Foundation Under Grant 2012T50266, and the Fundamental Research
Funds for the Central Universities Grant N110404019 and Grant N110204005. The work by
Shengxiang Yang was supported by the Engineering and Physical Sciences Research Council
(EPSRC) of U.K. under Grant EP/K001310/1 and partially by the State Key Laboratory of
Synthetical Automation for Process Industries, Northeastern University, China.

168 H. Wang and S. Yang

References

[1] Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Tech. Rep. CMU-CS-94-
163, Carnegie Mellon University, USA (1994)

[2] Bosman, P.A.N., Poutré, H.L.: Learning and anticipation in online dynamic optimiza-
tion with evolutionary algorithms: the stochastic case. In: Proc. 2007 Genetic and Evol.
Comput. Conf., pp. 1165–1172 (2007)

[3] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882 (1999)

[4] Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to
dynamic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[5] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator
in genetic algorithms having continuous, time-dependent nonstationary environment.
Tech. Rep. AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

[6] Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

[7] Eriksson, R., Olsson, B.: On the behavior of evolutionary global-local hybrids with dy-
namic fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 13–22.
Springer, Heidelberg (2002)

[8] Eriksson, R., Olsson, B.: On the Performance of Evolutionary Algorithms with life-time
adaptation in dynamic fitness landscapes. In: Proc. 2004 IEEE Congr. Evol. Comput.,
pp. 1293–1300 (2004)

[9] Gallardo, J.E., Cotta, C., Ferndez, A.J.: On the hybridization of memetic algorithms
with branch-and-bound techniques. IEEE Trans. Syst., Man, and Cybern.-Part B: Cy-
bern. 37(1), 77–83 (2007)

[10] Goh, C.K., Tan, K.C.: A competitive-cooperation coevolutionary paradigm for dynamic
multi-objective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

[11] Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algo-
rithms with dominance and diploidy. In: Proc. 2nd Int. Conf. on Genetic Algorithms,
pp. 59–68 (1987)

[12] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd Int.
Conf. Parallel Problem Solving From Nature, pp. 137–144 (1992)

[13] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algo-
rithms: a forward-looking approach. In: Proc. 2006 Genetic and Evol. Comput. Conf.,
pp. 1201–1208 (2006)

[14] Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)

[15] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–A survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

[16] Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxon-
omy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–487 (2005)

[17] Lau, T.L., Tsang, E.P.K.: Applying a mutation-based genetic algorithm to processor
configuration problems. In: Proc. 8th IEEE Conf. on Tools with Artif. Intell., pp. 17–24
(1996)

6 Memetic Algorithms for Dynamic Optimization Problems 169

[18] Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms
with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

[19] Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based
on particle swarm optimization. IEEE Trans. Syst., Man, and Cybern.-Part B: Cy-
bern. 37(1), 42–50 (2007)

[20] Liu, B., Wang, L., Jin, Y.H.: An effective PSO-based memetic algorithm for flow shop
scheduling. IEEE Trans. Syst., Man, and Cybern.-Part B: Cybern. 37(1), 18–27 (2007)

[21] Man, S., Liang, Y., Leung, K.S., Lee, K.H., Mok, T.S.K.: A memetic algorithm for
multiple-drug cancer chemotherapy schedule optimization. IEEE Trans. Syst., Man, and
Cybern.-Part B: Cybern. 37(1), 84–91 (2007)

[22] Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algorithm for
designing HIV multidrug therapies. IEEE/ACM Trans. Comput. Biology and Bioin-
form. 4(2), 264–278 (2007)

[23] Neri, F., Toivanen, J., Makinen, A.R.E.: An adaptive evolutionary algorithm with in-
telligent mutation local searchers for designing multidrug therapies for HIV. Applied
Intell. 27(3), 219–235 (2007)

[24] Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et
al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg
(2009)

[25] Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the
state of the art. Swarm and Evol. Comput. 6, 1–24 (2012)

[26] Ong, Y.S., Keane, A.J.: Meta-lamarckian learning in memetic algorithms. IEEE
Trans. Evol. Comput. 8(2), 99–110 (2004)

[27] Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: Improving the GA
in a dynamic environment. In: Proc. 1999 Genetic and Evol. Comput. Conf., vol. 1, pp.
504–510 (1999)

[28] O’Reilly, U.M., Oppacher, F.: Program search with a hierarchical variable length repre-
sentation: Genetic programming, simulated annealing and hill climbing. In: Davidor, Y.,
Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 397–406. Springer,
Heidelberg (1994)

[29] O’Reilly, U.M., Oppacher, F.: Hybridized crossover-based search techniques for pro-
gram discovery. In: Proc. 1995 IEEE Int. Conf. Evol. Comput., pp. 573–578 (1995)

[30] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

[31] Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction
using linear regression and markov chains. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer,
Heidelberg (2008)

[32] Simões, A., Costa, E.: Improving prediction in evolutionary algorithms for dynamic
environments. In: Proc. 2009 Genetic and Evol. Comput. Conf., pp. 875–882 (2009)

[33] Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE
Trans. Syst., Man and Cybern.-Part B: Cybern. 37(1), 6–17 (2007)

[34] Talbi, E.G., Bachelet, V.: Cosearch: A parallel cooperative metaheuristic. J. of Mathe-
matical Modelling and Algorithms 5(1), 5–22 (2006)

[35] Tang, J., Lim, M.H., Ong, Y.S.: Diversity-adaptive parallel memetic algorithm for solv-
ing large scale combinatorial optimization problems. Soft Comput. 11(10), 957–971
(2007)

[36] Tang, M., Yao, X.: A memetic algorithm for VLSI floor planning. IEEE Trans. Syst.,
Man and Cybern.-Part B: Cybern. 37(1), 62–69 (2007)

170 H. Wang and S. Yang

[37] Uyar, A.S., Harmanci, A.E.: A new population based adaptive dominance change mech-
anism for diploid genetic algorithms in dynamic environments. Soft Comput. 9(11),
803–815 (2005)

[38] Vavak, F., Fogarty, T.C., Jukes, K.: Adaptive combustion balancing in multiple burner
boilers using a genetic algorithm with variable range of local search. In: Proc. 7th
Int. Conf. on Genetic Algorithms, pp. 719–726 (1996)

[39] Wang, H., Wang, D.: An improved primal-dual genetic algorithm for optimization in
dynamic environments. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP
2006, Part III. LNCS, vol. 4234, pp. 836–844. Springer, Heidelberg (2006)

[40] Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dy-
namic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

[41] William, E.H., Krasnogor, N., Smith, J.E. (eds.): Recent Advances in Memetic Algo-
rithms. Springer, Heidelberg (2005)

[42] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm.
In: Proc. 2003 IEEE Congr. Evol. Comput., vol. 3, pp. 2246–2253 (2003)

[43] Yang, S.: Associative memory scheme for genetic algorithms in dynamic environments.
In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 788–799.
Springer, Heidelberg (2006)

[44] Yang, S.: Genetic algorithms with elitism-based immigrants for changing optimization
problems. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 627–636.
Springer, Heidelberg (2007)

[45] Yang, S., Jiang, Y., Nguyen, T.T.: Metaheuristics for dynamic combinato-
rial optimization problems. IMA J. of Management Mathematics (2012),
doi:10.1093/imaman/DPS021

[46] Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain
Environments. Springer, Heidelberg (2007)

[47] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[48] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[49] Zhou, Z., Ong, Y.S., Lim, M.H.: Memetic algorithm using multi-surrogates for compu-
tationally expensive optimization problems. Soft Comput. 11(9), 873–888 (2007)

[50] Zhu, Z., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a
memetic framework. IEEE Trans. Syst., Man and Cybern.-Part B: Cybern. 37(1), 70–76
(2007)

Chapter 7
BIPOP: A New Algorithm with Explicit
Exploration/Exploitation Control for Dynamic
Optimization Problems

Enrique Alba, Hajer Ben-Romdhane, Saoussen Krichen, and Briseida Sarasola

Abstract. Dynamic optimization problems (DOPs) have proven to be a realistic
model of dynamic environments where the fitness function, problem parameters,
and/or problem constraints are subject to changes. Evolutionary algorithms (EAs)
are getting pride of place in solving DOPs due to their ability to match with Na-
ture evolution processes. Several approaches have been presented over the years
to enhance the performance of EAs to locate the moving optima in the landscape
and avoid premature convergence. We address in this chapter a new bi-population
EA augmented by a memory of past solutions and validate it with the dynamic
knapsack problem (DKP). We suggest, through the use of two populations, to con-
duct the search to different directions in the problem space: the first population
takes in charge exploring while the second population is responsible for exploiting.
Once an environment change is detected, knowledge acquired from the old environ-
ment is stored in order to recall it whenever the same state reappears. We illustrate
our study by presenting several experiments and compare our results to those of
standard algorithms.

Enrique Alba
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
E.T.S.I. Informática, Campus de Teatinos, 29071 Málaga, Spain
e-mail: eat@lcc.uma.es

Hajer Ben-Romdhane
LARODEC Laboratory, Institut Supérieur de Gestion, University of Tunis,
41 Rue de la Liberté, Le Bardo, Tunisia
e-mail: hajer1br@hotmail.fr

Saoussen Krichen
FSJEG de Jendouba, University of Jendouba, Avenue de l’U.M.A, 8189 Jendouba, Tunisia
e-mail: saoussen.krichen@isg.rnu.tn

Briseida Sarasola
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
E.T.S.I. Informática, Campus de Teatinos, 29071 Málaga, Spain
e-mail: briseida@lcc.uma.es

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 171–191.
DOI: 10.1007/978-3-642-38416-5_7 c© Springer-Verlag Berlin Heidelberg 2013

172 E. Alba et al.

7.1 Introduction

Nowadays, dynamic optimization is getting pride of place in solving real-world
problems [27]. Dynamic optimization problems (DOPs) have proved to be a re-
alistic model of dynamic environments where the fitness function, problem pa-
rameters, and/or problem constraints are subject to changes. In dynamic domains,
decision makers are confronted to uncertainty whether from customers’ behavior,
the resource availability (budget or material), or external factors influencing their
decisions. In network routing problems, for example, network topology and link
costs undergo unpredictable and continuous changes due to node/link failure and
network dynamics. These changes require the inclusion of new nodes/links or the
elimination or the replacement of some existing ones, to remedy the problem and
avoid message loss or communication failure. Whatever the problem might be, an
optimal solution for the dynamic process should be dispatched over a set of periods
[17]. All this is valid also for several other domains, notably industrial (price fluctu-
ations), job shop scheduling (new jobs), TSP (new cities to visit), etc. Researchers
have paid a great deal of attention to DOPs to get efficient and accurate solutions
for everyday requirements.

To track the moving optima, there exists a widespread appeal to evolutionary
algorithms (EAs) as suitable techniques to match with Nature evolution processes
[17, 36]. However, the ultimate disadvantage of EAs is their fast convergence to
local or wrong optima. To compensate for this problem and thus enhance EAs abil-
ity to adapt after changes, many researchers presented modified EAs by means of
the following procedures: 1. increase the diversity once a change occurs (by ampli-
fying the mutation rate [11, 15, 23]), 2. maintain population diversity throughout
the evolutionary process (by introducing new random individuals each generation
[9, 15, 22, 33]), 3. introduce a memory to retrieve pertinent information from previ-
ous states (by either implicit or explicit memory [13, 26, 31, 35]), 4. head the search
over different levels via multiple populations [1, 8, 10, 34] and 5. predict future
changes in the landscape (by learning from the past [5, 6, 29, 30]).

The dynamic knapsack problem (DKP) is one of the most important and widely
studied DOPs [27], that finds its applications in several domains as Internet adver-
tising, broadcast bandwidth, keyword auctions, etc. A DKP occurs when a decision
maker is required to allocate a limited amount of resources (a knapsack) among
a given collection of alternatives (or items). As we deal with a dynamic environ-
ment, one or more parts of the problem specification may change over time: the
fitness function, the values of the parameters or the knapsack capacity. Several EAs
were tested via the DKP over the years. Mori et al. [22] used the DKP to test their
thermodynamical genetic algorithm (GA) in maintaining diversity. A structured GA
has been presented in [12]: solutions are structured as multi-layered chromosomes
and additional genetic structures are used to store information about useful chro-
mosomes. More recently, Rohlfshagen and Bullinaria [26] proposed a GA based in
a relevant genetic phenomenon namely the alternative splicing. Many others EAs
were evaluated through DKPs: [13, 14, 16].

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 173

In this work, we propose an EA based memory scheme to solve the DKP: the
bi-population algorithm (BIPOP). To avoid the premature convergence to local op-
tima we suggest the use of two populations. Each in turn -and via specific search
procedures- tries to sweep promising regions in the fitness landscape. This could
also strengthen the capacity of the algorithm to keep balance between discovering
new regions in the landscape and exploiting the found solutions. Furthermore, we
supply BIPOP with a memory in order to quickly recall viable solutions from pre-
vious generations if a cyclic problem is faced.

This chapter is organized as follows. Section 7.2 will be devoted to state the
problem. We present in Section 7.3 the proposed approach and we draw the cor-
responding algorithm. Section 7.4 illustrates the proposed approach via numerical
experimentations and analyzes the results. Finally, in Section 7.5 we present the
concluding remarks.

7.2 Statement of the Problem

In this work we use the DKP to evaluate our algorithmic proposal. In order to bet-
ter explain our contribution (later, in section 7.3) we give a brief overview of the
problem.

Given a set of n items, each with a specific weight wi as well as an associated
value vi, and a knapsack of capacity c, the DKP is to find the best subset which
guarantees the maximization of the knapsack contents without violating the capac-
ity constraint. Besides the standard description of the knapsack problem, the speci-
ficity of a DOP is that it takes into consideration potential changes that may affect
the problem parameters. One of the most likely scenarios in dynamic domains is
the variation of the knapsack capacity along time. In the job shop scheduling for
example, machines may break down or wear out. Subsequently, pending jobs will
be scheduled over a lesser number of machines. This is reflected in the DKP by
a reduction of resources and then the knapsack capacity becomes time-dependent
(c(t) with t = 1,2, ...,T). The rest of the problem parameters as well as the fitness
function are equally subject to variations in dynamic environments and could be
modeled as time-dependent: i.e., vi(t), wi(t) and Z(x, t). Formally, the DKP can be
stated as follows [22]:

Maximize Z(x, t) =
n

∑
i=1

vi(t)xi(t)

Subject to
n

∑
i=1

wi(t)xi(t)≤ c(t) t = 1,2, ...,T

xi(t) = 0 or 1; i = 1,2, ...,n

(7.1)

174 E. Alba et al.

Solutions for this problem are binary-encoded: [x1(t)x2(t)x3(t)...xn(t)] where xi(t)=
1 means item i is chosen at t, and 0 means it is discarded.

We suggest to study in this work the DKP where the capacity constraint oscillates
between two predefined values c(1) and c(2). This case was introduced by Goldberg
and Smith [13] and studied then by several researchers [14, 19]. Our main difference
is that we use instances of much larger dimension and difficulty in our work.

7.3 The Proposed Approach: BIPOP-Algorithm

We propose an EA to solve DOPs. To enforce the search towards all possible promis-
ing areas in the search space, a multi-population approach is developed. Two in-
dependent populations are used in order to sweep the landscape according to two
different procedures: the first population takes in charge exploration while the sec-
ond population is responsible for exploitation. Despite the fact that exploration and
exploitation procedures are run independently, the corresponding populations inter-
communicate by exchanging elite individuals. Immigrant individuals create further
diversity in both populations and could lead the populations to new regions in the
search space.

From one period to the next one, the problem can change, and populations must
be adjusted. One simple manner to deal with changes is to treat the new environment
as a new optimization problem, i.e. to solve the problem from scratch. However,
dynamic environments cause small variations on the problem features which usually
relate the current problem to precedent scenarios. Thus, solving the problem from
scratch once a change is detected might be time and data wasting. In such cases, it
will be beneficial to get back information gained in the past in order to push ahead
the search after the change. Knowledge induced from previous environments might
be memorized and recalled in case of necessity: that is the purpose of using memory
schemes. Therefore incorporating a memory in our EA is of significance to quickly
adapt to the new environment.

In summary, we are incorporating the most successful techniques in the domain
to BIPOP: automatic change detection (the algorithm ignores when changes occur:
it detects them), memory management to deal with cyclic problems if this is the
case, and immigrants for population diversity. Our multi-population is just a bi-
population because we are not speciating or decomposing the problem in any way.
Our motivation is this unified vision of the DOP domain, proposing successful ex-
isting techniques in BIPOP in an efficient way, and including a new ingredient.

Our main contribution is to make explicit the two forces guiding any search tech-
nique: exploration versus exploitation. Most multi-population EAs in the literature
(like in [7, 10]), divide the search space into smaller areas and associate each of
them with a sub-population that is restricted to search in this specific region. A par-
ent population searches simultaneously for new peaks till it converges to a new area.
This area is then never explored in this subpopulation, but assigned to a new spawn
to go on searching in it for a solution. Once an environment change is detected, all
the child populations are merged together. The working principals of our approach

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 175

are indeed different from [7, 10], including in our case the use of exactly two pop-
ulations, fully-connected, and equal-sized: it consists in coordinating concurrently
and independently each search force (exploration and exploitation) via two popula-
tions while allowing both population to cooperate via immigrants. The specificity of
such approach is that is does not restrict any population to search in a limited space
but rather immigrant individuals -from one population to the other one- open new
areas for both populations. A similar approach has already been adopted in particle
swarm optimization to solve DOPs [21, 32] with the main difference in the opti-
mization algorithms being used to evolve each population. Further explanation and
a detailed description of the proposed approach will be provided in the subsequent
sections. The following lists the notations adopted in this chapter.

j Index of the current population
t Period index
g Generation index
gc Exchange generation index
r Number of random individuals
s Number of individuals selected from the previous genera-

tion
m Number of individuals retrieved from the memory
G The total number of generations
Q The total number of runs
T The total number of periods
Pj(g, t) Population j at the gth generation and the tth period
Mt The memory at period t
I
′
, I
′′

Auxiliary individuals
I Offspring individual
μ Population size
E j(g, t) Set of fitness values of the current population memory
ctr j(t) Counter of population improvements at period t
h j(t) The threshold value of population j at the tth period
pc Crossover probability
pm Mutation probability

7.3.1 Working Principles of BIPOP

BIPOP algorithm (see Algorithm 1) is an EA for uncertain environments, attempting
to find good solutions in different scenarios. It encompasses both memory storage
and active operators to quickly and precisely deal with changing extrema, that are
(in addition) automatically detected.

The algorithm works according to the following way: It starts by generating the
two initial populations randomly and saves elite individuals of both populations in
the memory as well as initial values of the improvement criteria. Then, the opti-
mization process begins. At the beginning of each generation, stored individuals

176 E. Alba et al.

Algorithm 1 BIPOP Algorithm

j := 0
t = g := 0
begin
〈Pj(g, t),P1− j(g, t)〉:= RandomIndividuals(μ) /* Populations initialization */

Mt := BestOf(Pj(g, t), P1− j(g, t)) /* Initialize the memory from the current populations */

InitializeImprovCriteria(h j(t), ctr j(t))
repeat

E j(g, t) := Evaluate(Mt)
if E j(g, t) � E j(g−1, t) /* Environmental change detected */ then

for j=0 to 1 do
AppendToMemory(Mt , BestOf(Pj(g−1, t)))
Pj(g, t +1):= Adapt(Pj(g−1, t))
InitializeImprovCriteria(h j(t), ctr j(t))

Update(gc)
t ++

else
Pj(g, t):= Call ReproductionAlgo(j, t)
if g = gc then

/* Copy one individual from population 1 into population 2, and conversely */

Replace WorstOf(Pj(g, t)) by BestOf(P1− j(g−1, t))

if PopImproved(Pj(g, t), Pj(g−1, t)) then

AppendToMemory(Mt , BestOf(Pj(g, t)))
UpdateImprovCriteria(h j(t), ctr j(t))

j := 1− j /* Shift from RA to TA and conversely */

g++

until Stopping criteria;

are reassessed in order to detect any change in the problem specifications. If it is
the case, the algorithm keeps in the memory fundamental information about the ex-
environment and the best individual from the current populations in order to reuse
it if a similar environment reappears. Here it is important to notice that only one
population is evolved -in turns- at each generation. Besides, we suggest the use of a
different approach for each population with the intention to make balance between
exploring new regions and exploiting promising ones. Thereby, after a change the
new environment parameters are used and the optimization continues. The same
population is then adapted to the new environment and the improvement criteria
are re-initialized. Otherwise (no change is detected), the population in question is
evolved via its specific algorithm: the first population (j = 0) is evolved via an

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 177

Algorithm 2 Reproduction Algorithm

Input : Pj(g−1, t)
Output: Pj(g, t)
begin

Pj(g, t):= Evaluate(Pj(g−1, t))
if running-alg=RA then
〈I ′ , I

′′ 〉:= Tournament(n-ind, j) /* Select n-ind=2 individuals from population j (j=0 or 1) */

I:= Cross(I
′
, I
′′
)

I:= Mutate(I)

else
/* TA */

I
′
:= Tournament(n-ind, j) /* Select n-ind=1 individual for the reproduction */

I:= LocalSearch(I
′
)

Replace the WorstOf(Pj(g, t)) by I

exploration algorithm, while the second population (j = 1) is evolved using an ex-
ploitation algorithm. Here Algorithm 1 calls Algorithm 2 which performs the repro-
duction and returns the updated population.

BIPOP organizes in the next step the immigrant exchange phase between the
two populations. This is done by allowing the copy of the best individual of each
population into the other one, at a specific generation gc and once per period. The
inclusion of an individual -issued from a different reproduction approach- into a
given population could improve it and shift the search towards more interesting
areas. At the end of the generation, the algorithm verifies if the current population
is improved in some way (i.g., by calculating the average fitness). In such a case,
useful information about the population is kept by saving individuals and updating
the improvement criteria. Finally, population j gives way to the other population
(1− j) and a new generation starts.

A. Exploration Algorithm (RA)

The idea behind the RA is to explore the search space, searching new possibilities
of solutions. GAs are typical in exploring the landscape and ideal for gathering new
solutions, as they search from a set of solutions (population) and not from a single
point in the space. However, they do not always insure high solution quality [4].

B. Exploitation Algorithm (TA)

TA consists in searching in the surrounding area of the maintained solutions, in order
to improve the population. Unlike the RA, the TA is making use of the best parts
of past solutions to enhance the population and try to reach the global optimum.
For that purpose, we utilize a local search algorithm (LS). LS approaches perform

178 E. Alba et al.

a complementary search to that of the exploration approach in order to enhance (in
general) solutions included in the population.

7.3.2 Construction of BIPOP

We now explain how to construct BIPOP algorithm, from generating basic popula-
tions, through the individual reproduction, till the replacement of the old ones.

A. Generation of Initial Populations

Like any EA, BIPOP starts by generating its two basic populations: P1(0,0) and
P2(0,0). Initial populations are generated randomly by using a uniform distribution.
Once an individual is constructed, validation is needed before including it on the
current population. In our case, we suggest that an individual is valid if and only if
its overall weight fits the capacity constraint. If not, the current individual is repaired
by inverting the value of one -or more- randomly chosen bit (from 1 to 0, as the
constraint can only be violated by excess of weight in the knapsack).

B. Adapt the Population at the Beginning of Periods

In dynamic processes, an environment change notifies the beginning of a new
period: a period is the time interval spent between two environmental changes.
Populations need to be re-started before resuming the optimization. We start by ver-
ifying if the current state was already visited (by checking information stored about
the old environments). If it is the case, the m best stored individuals -corresponding
to a similar period- are retrieved. Besides, s individuals are kept from the last gener-
ation and r individuals are randomly generated. All these individuals form the new
population of size μ .

C. Individual Reproduction

Population evolution is based on the reproduction of individuals. During a given
period, current populations are required to evolve from one generation to the next
one by enhancing individuals quality. At every generation, a single individual is
created to supersede an old one in its same population. Here we must distinguish
between the two populations reproduction. For the first population, we suggest to
use the standard evolutionary operators: selection, recombination, mutation and re-
placement. As for the second population, this is problem dependent. In our case
(DKP), we adopt a LS for the reproduction. Our LS reproduces the selected indi-
vidual according to the following way: the individual in question is submitted to a
series of bit-inversion independently. As individuals are encoded through the con-
catenation of n bits, this results in n offsprings. The individual with the higher fitness
replaces the worst one in the current population.

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 179

7.3.3 Functions Utilized in the Algorithms

The rest of functions used in algorithms work as follows:

• RandomIndividuals(k): Generates k random individuals following a uniform
distribution U(0,1)

• BestOf(Pj(g, t)), WorstOf(Pj(g, t)): Returns the best/worst individual -in terms
of fitness- of the given population

• Evaluate(M), Evaluate(P): Re-evaluates memory individuals and population in-
dividuals respectively

• AppendToMemory(Mt , Ind): Saves the individual into the memory
• Update(gc): Updates the gc parameter, which indicates the next exchange date

between the two populations
• InitializeImprovCriteria(h j(t), ctr j(t)): Initializes the decision parameters of

the population improvement: h j(t)= Average fitness of the initial population and
ctr j(t) = 0

• UpdateImprovCriteria(h j(t), ctr j(t)): Set h j(t)= Average fitness of the current
population and increment ctr j(t)

• PopImproved(Pj(g, t), Pj(g− 1, t)): Verifies if population j has improved since
the last generation. In this work, we use the average population fitness to decide
whether there has been an improvement in the population (or not). A population
has improved if the average fitness of Pj(g, t) is greater then the average fitness
of Pj(g− 1, t) (assuming maximization without loss of generality).

• Retrieve(m, Mt): Retrieves m individuals stored in the indicated memory

7.4 Computational Experiments

This section reports on the computational behavior of BIPOP according to sev-
eral performance measures for dynamic environments. The experimental settings
as well as the obtained results are presented in what follows.

7.4.1 Experimental Framework

BIPOP is implemented in Java on an Intel Centrino Duo processor with 2GB of
RAM. The algorithm is run on four DKP instances of different sizes: 17, 100, 1000
and 5000-item. We note that, to the best of our knowledge, there is no available
data set for the capacity-varying DKP except the (too small) one of Goldberg and
Smith [13]. Consequently, we are adapting well-known static instances (see Table
7.1 for references) for which we created dynamism by oscillating the knapsack
capacity between two fixed values. The first capacity value is the one defined in
the original problem, and we set the second to 50% of the sum of items’ weight.
Thereby, the problem becomes time-dependent and two temporal optima are con-
sidered. We study a fast changing DKP with changes every 10 evaluations and al-
low different number of environmental changes for each instance: 30 changes in the
case of the two smaller instances (size 17 and 100), 150 changes for the instance

180 E. Alba et al.

Table 7.1 Utilized data set references

Problem size Reference

17 Goldberg and Smith [13]
100 Liu and Liu [20]

1000 Pisinger [25]
5000 Pisinger [25]

Table 7.2 Set of configuration parameters for BIPOP

Parameter Specification

Population size 100 individuals
Selection Binary tournament
Crossover Two point crossover (pc = 1)
Mutation Two-bit flip (pm = 2/n)
Replacement The worst in the current population

with size 1000, and 500 changes in the case of the biggest instance (size 5000). The
algorithms were allowed to run longer times on the bigger instances in order to be
sufficiently exposed to the problem dynamics.

In the experiments, 30 independent runs were executed. Table 7.2 reports the
parameterization of the algorithm.

7.4.2 Analysis

In order to measure the effectiveness and the performance of BIPOP, we run our
algorithm as well as four other algorithms over the same instances of DKP. The use
of these algorithms is of great importance in positioning our algorithms with regard
to a standard algorithm for dynamic environments (GA), a non-standard algorithm
adapted -in our case- to solve the DKP (LS), a stochastic optimization algorithm
(particle swarm optimization, PSO), and a sanity check algorithm (Random Search,
RS). More specifically, we intend to control BIPOP behavior when faced to the per-
formance of GAs in browsing the search space, the efficiency of LS in exploitation,
the high adaptability of PSO, and the random shifting in the landscape of RS.

The GA we use here is just a standard one, executing in sequence the evolution-
ary operators (a two-point crossover and a two-bit flip mutation) once per generation
to create a new individual, which replaces the worst individual in the current pop-
ulation. As for the LS, it implements an approach that evolves a set of individuals
by applying a series of bit inversions to the selected individual, equal to its number
of bits (we use a binary encoding). The offsprings are then evaluated and the best
one is retained and introduced in the population. In the same sense, we use the basic
binary version of PSO, proposed in [18], which adjusts the solutions positions based

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 181

on its best history and the position of the best particle in the swarm. RS generates
a random solution at each time step, and its results should be bad compared to a
guided algorithm; we include it here as a sanity check to show that our technique
is having some intelligence in it versus a blind search. These four algorithms are
parameterized the same way as BIPOP (see Table 7.2).

A. Average Best Of Generation (BOG)

The BOG is the most commonly used measure to test algorithms in dynamic environ-
ments. The strength of this measure is that it quantifies the behavior of the algorithm
during the whole optimization without any computational difficulty. It is computed
by double-averaging the best fitness ever encountered (f (BestGenerationg)) over
all G generations, and over Q runs. The higher the BOG, the better the algorithm
performs. The BOG is given by:

BOG =
1
Q

1
G
·

Q

∑
q=1

G

∑
g=1

f (BestGenerationg) (7.2)

Table 7.3 BOG values for BIPOP, GA, LS and RS

Problem Size Evals BIPOP GA LS PSO RS

17 300 77.9 67.5 71.1 66.9 66.8
100 300 21 910.6 18 920.9 19 480.4 18 216.3 18 732.6

1000 1500 351 425.1 271 954.7 274 666.5 272 347.5 272 597.9
5000 5000 1 584 746.9 1 306 435.2 1 305 623.9 1 303 652.2 1 302 972.1

The results of the BOG can be seen in Table 7.3. Results show that BIPOP outper-
forms all considered algorithms for all problem sizes. As to the rest of algorithms,
LS seems to be the second best algorithm, although it gets near to the poor perfor-
mance of PSO and RS with the biggest instance.

B. Off-line Performance

We now measure the average best-so-far during a given period. It provides a mono-
tonically increasing value that indicates how rapidly an algorithm achieves high per-
formance. This measure is also among the most reported in the literature as it is one
the few measures that do not require the optimal fitness to be known. Mathemati-
cally, it is given by averaging the best fitness during a given period (f (BestPeriodt))
over the total number of periods T (see Eq. (7.3)).

O f f line =
1
T
·

T

∑
t=1

f (BestPeriodt) (7.3)

182 E. Alba et al.

Table 7.4 Comparison of offline values for BIPOP, GA, LS, PSO and RS

Problem Size Periods BIPOP GA LS PSO RS

17 30 78.2 68.1 72.1 58.7 66.8
100 30 22 058.9 19 063.2 19 975 16 026.4 18 732.6

1000 150 352 286.5 271 301.1 276 745.2 272 439.3 272 600.8
5000 500 1 585 777.2 1 308 333.2 1 307 786.8 1 303 950.7 1 302 974.8

5 10 15 20 25
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

4

Period

O
ffl

in
e

BIPOP
GA
LS
PSO
RS

Fig. 7.1 Average offline fitness along the time-period obtained via BIPOP, GA, LS, PSO, and
RS (n=100)

Offline values (Table 7.4) obtained by means of the different algorithms indicate
that BIPOP behaves better than the rest of algorithms. Fig. 7.1 shows the final of-
fline performance performed by each algorithm at each period. The highest curve
corresponds to BIPOP, which indicates that it performs the best running fitness, and
LS comes in a second place.

C. Statistical Significance Test: ANOVA Test

We apply first a Kolmogorov-Smirnov test to check whether the results follow a
normal distribution or not. If so, an ANOVA test is done, otherwise we perform a
Kruskal-Wallis test. We consider a confidence level of 95%.

The statistical significance tests were performed using the offline performance as
base measure. Table 7.5 shows that BIPOP is significantly better than all the other
algorithms in (almost) all instances, i.e. all the four algorithms obtain lower fitness
values than BIPOP.

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 183

Table 7.5 ANOVA test results

n RS PSO LS GA

BIPOP

17 � � − �
100 � � � �

1000 � � � �
5000 � � � �

GA

17 − − −
100 � � −

1000 − − �
5000 � � �

LS

17 � −
100 � �

1000 � �
5000 � �

PSO

17 −
100 �

1000 −
5000 �

D. Accuracy

Although the accuracy was originally a metric for static problems, it has been
adopted later as a meaningful measurement for DOPs. It represents an outcome
measure of the population best solution with regards to the known Maximum fitness
and Minimum fitness. Hence, this measure can not be used if we ignore the value of
the global optima and the worst fitness value. The major advantage of the accuracy
over the measures used so far (BOG and offline) is that it derives normalized values,
which can avoid any potential bias in the result. The accuracy of a given generation
g is stated as:

Accuracyg =
f (BestGenerationg)−Min

Max−Min
(7.4)

In our case, Max corresponds to the global optimum that we generate by an exact
algorithm (described in [24]), and Min is set to 0. Accuracy values are in the in-
terval [0,1]: the closer to 1, the higher the accuracy. Values achieved by the four
algorithms (Table 7.6) are decreasing every time we move to a larger instance size.
Despite that BIPOP fulfils the best accuracy level for all problem sizes, scalability
is an interesting side effect of our BIPOP due to our economic efficient selection of
techniques.

Fig. 7.2 reports the detailed behavior of the accuracy during the whole search
process for the problem of size 100. Over the first 30 evaluations, BIPOP and LS
provide close performances and overtop the rest of the algorithms. Moving towards
the right, BIPOP starts to outstrip, and the difference becomes increasingly impor-
tant. This improvement is due to the learning about the already visited areas (i.e.,

184 E. Alba et al.

Table 7.6 Accuracy values for each algorithm

Problem Size Evals BIPOP GA LS PSO RS

17 300 9.8e-01 8.5e-01 8.9e-01 8.4e-01 8.4e-01
100 300 8.7e-01 7.6e-01 7.6e-01 7.2e-01 7.5e-01

1000 1500 7.8e-01 6.1e-01 6.1e-01 6.1e-01 6.1e-01
5000 5000 7.1e-01 5.9e-01 5.9e-01 5.9e-01 5.8e-01

0 50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

Evaluation

A
cc

ur
ac

y

BIPOP
GA
LS
PSO
RS

Fig. 7.2 Accuracy values obtained via BIPOP, GA, LS, PSO, and RS after 300 evaluations
(n = 100)

the memory mechanism is paying off here). LS keeps achieving higher values in
comparison with GA, PSO, and RS, which are permanently missing the new optima
appearing during the different periods.

E. Stability

The stability is accuracy-dependent: it measures how quick an algorithm is able to
adapt after changes. An algorithm is said to be stable if its stability is close to 0 (see
Eq. (7.5)).

Stabilityg = max{0,Accuracyg−Accuracyg−1} (7.5)

The derived results, shown in Table 7.7, are generally satisfying: very close to 0.
Nevertheless, PSO showed to be the more stable than the rest of algorithms in all
cases, whereas LS is the more unstable. These results indicates also that the stability
behavior is independent from the ability of the algorithm to provide solutions of

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 185

Table 7.7 Comparison of algorithm behavior according to the stability metric

Problem Size Evals BIPOP GA LS PSO RS

17 300 1.2e-03 1.6e-03 6.8e-03 7.9e-04 9.1e-04
100 300 2.1e-03 2.8e-03 4.8e-03 5.7e-04 2.7e-03

1000 1500 3.8e-03 3.9e-03 4.2e-03 7.7e-04 3.8e-03
5000 5000 2.8e-03 4.2e-03 4.2e-03 8.1e-04 4.1e-03

good quality. As to BIPOP, it obtains the second best stability and this implies we
have a performing and a rapid algorithm in reacting to changes.

F. Fitness Ratio (FR)

The FR is a measure reflecting the quality of the BIPOP results regarding the optimal
solution f ∗ (see Eq. (7.6)). We denote by f (solutionkg) the fitness of individual k at
the gth generation.

FRg =
1
f ∗
·

μ

∑
k=1

f (solutionkg)

μ
(7.6)

Table 7.8 FR for each algorithm for different problem sizes and number of evaluations

Problem Size Evals BIPOP GA LS PSO RS

17 300 6.1e-01 5.5e-01 5.6e-01 5.3e-01 5.4e-01
100 300 6.4e-01 6.1e-01 6.1e-01 5.8e-01 5.9e-01

1000 1500 5.8e-01 5.6e-01 5.6e-01 5.6e-01 5.6e-01
5000 5000 5.8e-01 5.6e-01 5.7e-01 5.7e-01 5.6e-01

Table 7.8 as well as Fig. 7.3 report the obtained results by the different algo-
rithms (Fig. 7.3 shows only the first 150 evaluations for the sake of clarity). We
mention the outperforming of BIPOP algorithm in comparison with the rest of al-
gorithms. GA and LS seem to have alike behaviors, although LS gets better values
in several periods.

G. Fitness Degradation Measure: βdegradation

An important issue will be to examine the ability of a given algorithm to maintain
its performance to produce good solutions as the optimization process advances:
βdegradation measures how much an algorithm degrades in term of solution quality
over time [3].

y = βdegradation x+ ε (7.7)

186 E. Alba et al.

20 40 60 80 100 120 140

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Evaluation

F
R

BIPOP
GA
LS
PSO
RS

Fig. 7.3 Fitness Ratio behavior along 300 evaluations (n = 100)

Table 7.9 Comparison of the βdegradation of each algorithm for different number of periods

Problem Size Periods BIPOP GA LS PSO RS

17 300 1.1e-03 -5.7e-04 -4.2e-04 -3.7e-04 3.3e-04
100 300 3.4e-03 1.7e-04 -2.1e-04 -4.2e-04 1.9e-04

1000 1500 1.7e-03 -1.6e-05 -1.4e-05 1.1e-08 -1.2e-05
5000 5000 4.0e-04 -1.4e-06 -7.8e-07 -4.6e-07 -9.2e-07

xt =
1
Q
·

Q

∑
q=1

f (BestPeriodqt) (7.8)

We denote, in Eq. (7.7), y an approximation to the overall accuracy, x a vector of
size T , and βdegradation the slope of the regression line. In Eq. (7.8), xt denotes the
accuracy of the best solution found in period t averaged over all independent Q
runs. If the βdegradation reveals a positive value, this means the algorithm is well
performing and still providing good solutions after running for long: the bigger the
improvement in solution quality, the higher the slope value and conversely.

Results of the β slope are presented in Table 7.9. BIPOP provides positive slopes
for all instances, which implies a non-degradation in the solution quality. Solutions
of RS lose quality with the large problem sizes, while GA, LS and PSO are poor
in terms of continuous performance. The algorithms regression lines are drawn in
Fig. 7.4. We can see that BIPOP is having the highest slope, GA and RS just show
timid increasing slopes, and LS and PSO lines are decreasing which explains the
negative βdegradation values.

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 187

5 10 15 20 25 30
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Period

A
cc

ur
ac

y
 ß

degradation
=3.4e−03

(a) BIPOP

5 10 15 20 25 30
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

Period

A
cc

ur
ac

y

 ß
degradation

=1.7e−04

(b) GA

5 10 15 20 25 30

0.78

0.79

0.8

0.81

0.82

Period

A
cc

ur
ac

y

 ß
degradation

=−2.1e−04

(c) LS

0 5 10 15 20 25 30
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Period

A
cc

ur
ac

y

ß
degradation

=−4.2e−04

(d) PSO

5 10 15 20 25 30
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Period

A
cc

ur
ac

y

 ß
degradation

=1.9e−04

(e) RS

Fig. 7.4 Linear regression after 30 periods for BIPOP, GA, LS, PSO, and RS

H. Area Between Curves (ABC)

The ABC for a pair of algorithms A1 and A2 is defined as the area spanned between
the performance curves of the two algorithms. Let pA(x) be the function which de-
termines a certain property values achieved by algorithm A in each generation (BOG
in our case). Mathematically, it is modeled as the integral of the difference of pA1

and pA2 in the interval [1,G] [2].

188 E. Alba et al.

ABCA1,A2
p =

1
G
·
∫ G

1
pA1(x)− pA2(x)dx (7.9)

Table 7.10 Comparisons of ABCA1,A2
BOG values

�����A1

A2 Evals BIPOP GA LS PSO RS

BIPOP

17

×

9.3e+00 4.8e+00 1.0e+01 1.1e+01
100 3.4e+03 2.5e+03 3.6e+03 3.7e+03

1000 7.5e+04 7.4e+04 7.7e+04 7.7e+04
5000 2.8e+05 2.8e+05 2.8e+05 2.8e+05

GA

17 -9.3e+00

×

-4.5e+00 -8.9e-01 1.7e+00
100 -3.4e+03 -9.0e+02 2.6e+02 3.1e+02

1000 -7.5e+05 -6.0e+02 2.4e+03 2.5e+03
5000 -2.8e+05 8.1e+02 2.7e+03 3.5e+03

LS

17 -4.8e+00 4.5e+00

×

5.4e+00 6.2e+00
100 -2.5e+03 9.0e+02 1.2e+03 1.2e+03

1000 -7.4e+04 6.0e+02 3.0e+03 3.1e+03
5000 -2.8e+05 -8.1e+02 1.9e+03 2.6e+03

PSO

17 -1.0e+01 -8.9e-01 -5.4e+00

×

8.0e-01
100 -3.6e+03 -2.6e+02 -1.2e+03 4.7e+01

1000 -7.7e+04 -2.4e+03 -3.0e+03 4.5e+01
5000 -2.8e+05 -2.7e+03 -1.9e+03 7.4e+02

RS

17 -1.1e+01 -1.7e+00 -6.2e+00 -8.0e-01

×100 -3.7e+03 -3.1e+02 -1.2e+03 -4.7e+01
1000 -7.7e+04 -2.5e+03 -3.1e+03 -4.5e+01
5000 -2.8e+05 -3.5e+03 -2.6e+03 -7.4e+02

ABC can take both positive and negative values. ABC gets a positive result if the
curve obtained by A1 according to property p has higher values than the curve of A2,
while a negative result indicates that values acquired by A2 are mostly higher than
that provided by A2.

The ABC measure is applied to each pair of algorithms according to the BOG
property (p = BOG). The first group of rows in the Table 7.10 is clearly identifiable
because of the positive cell values. This indicates that BIPOP surpasses all the other
algorithms. Besides, values corresponding to BIPOP are the larger, which imply
a high distance between it and the rest of algorithms in term of performance. LS
comes in second place, with positive ABCs when confronted to GA, PSO and RS,
whereas RS is the worst, with its entirely negative rows.

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 189

7.5 Conclusions

We proposed a bi-population evolutionary algorithm augmented with immigrants,
local search, and a memory scheme and evaluated it for the DKP. Our approach
tries, over a number of evaluations, to produce fit solutions that survive despite the
environmental changes which affect the problem parameters. Two populations are
subject to evolution, each one according to its specific algorithm, in order to produce
better solutions while making the use of the stored solutions for two purposes: detect
and recall.

Experiments were carried out for the proposed algorithm as well as four other
algorithms over the same problem instances in order to compare their performances.
We measured several metrics to quantify the distance between the algorithms in
terms of performance and in terms of ability to maintain good behavior throughout
the optimization process. Experimental results always showed that BIPOP is the
best in producing better solutions. Besides, it outperforms all the other algorithms
according to the applied measures, what is remarkable.

We also detected the good behavior of LS, since it is an efficient operation to
quickly go for the new optimum. This, however, was not as good as BIPOP itself,
that combined this quick exploitation of existing solutions with a new exploration
after the change to avoid pursuing local optima. In any case, this also settles the
importance of trajectory-based algorithms in DOPS, not just LS but other algorithms
like Variable Neighborhood Search (VNS) could be valuable tools in this domain,
and researchers should pay more attention to this because of its good reported results
[28].

One aspect that we would like to explore in the future is to adapt our BIPOP
to solve different DOPs, and to compare our results to those of well-known DOP
algorithms.

Acknowledgements. Authors acknowledge funds from the Spanish Ministry of Economy
and Competence, and European FEDER under contract TIN2011-28194 (roadME project,
publicly available in URL http://roadme.lcc.uma.es).

References

[1] Alba, E.: Parallel Metaheuristics. John Wiley & Sons, Inc. (2005)
[2] Alba, E., Sarasola, B.: Abc, a new performance tool for algorithms solving dynamic

optimization problems. In: Proc. 2010 IEEE Congr. Evol. Comput., pp. 1–7 (2010)
[3] Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization prob-

lems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp.
572–581. Springer, Heidelberg (2010)

[4] Areibi, S.: Effective exploration & exploitation of the solution space via memetic algo-
rithms for the circuit partition problem. In: Recent Advances in Memetic Algorithms.
STUDFUZZ, vol. 166, pp. 161–182. Springer, Heidelberg (2005)

190 E. Alba et al.

[5] Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dy-
namic optimization. In: Proc. 2005 Workshops on Genetic and Evol. Comput., pp. 39–
47. ACM (2005)

[6] Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Evolu-
tionary Computation in Dynamic and Uncertain Environments. SCI, vol. 51, pp. 129–
152. Springer, Heidelberg (2007)

[7] Branke, J., Kau, T., Schmidt, l., Schmeck, H.: A multi-population approach to dynamic
optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf., pp.
299–308 (2000)

[8] Branke, J., Schmeck, H.: Designing evolutionary algorithms for dynamic optimization
problems. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: The-
ory and Applications. Natural Computing Series, pp. 239–262. Springer-Verlag New
York, Inc. (2003)

[9] Cedeno, W., Vemuri, V.: On the use of niching for dynamic landscapes. In: Proc. 1997
IEEE Int. Conf. Evol. Comput., pp. 361–366 (1997)

[10] Cheng, H., Yang, S.: Multi-population genetic algorithms with immigrants scheme for
dynamic shortest path routing problems in mobile ad hoc networks. In: Di Chio, C.,
et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 562–571. Springer,
Heidelberg (2010)

[11] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proc. 5th Int. Conf. Genetic Algorithms, pp. 523–530 (1993)

[12] Dasgupta, D., Mcgregor, D.R.: Nonstationary function optimization using the structured
genetic algorithm. In: Proc. 2nd Int. Conf. Parallel Problem Solving From Nature, pp.
145–154 (1992)

[13] Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algo-
rithms with dominance and diploidy. In: Proc. 2nd Int. Conf. Genetic Algorithms, pp.
59–68 (1987)

[14] Greene, F.: A method for utilizing diploid/dominance in genetic search. In: Proc. 1st
IEEE Conf. Evol. Comput., pp. 439–444. IEEE Press (1994)

[15] Grefenstette, J.: Genetic algorithms for changing environments. In: Proc. 2nd Int. Conf.
Parallel Problem Solving from Nature, pp. 137–144 (1992)

[16] Hadad, B., Eick, C.: Supporting polyploidy in genetic algorithms using dominance vec-
tors. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.) EP 1997.
LNCS, vol. 1213, pp. 223–234. Springer, Heidelberg (1997)

[17] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments–a survey. IEEE
Trans. Evol. Comput. 9, 303–317 (2005)

[18] Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In:
Proc. 1997 IEEE Int. Conf. Syst., Man, and Cybern., vol. 5, pp. 4104–4108 (1997)

[19] Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and sim-
ple mutation on non-stationary problems. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 139–148. Springer, Heidel-
berg (1998)

[20] Liu, Y., Liu, C.: A schema-guiding evolutionary algorithm for 0-1 knapsack problem.
In: Proc. 2009 Int. Assoc. of Computer Science and Information Technology - Spring
Conf., pp. 160–164. IEEE Computer Society (2009)

[21] Lung, R., Dumitrescu, D.: Evolutionary swarm cooperative optimization in dynamic
environments. Natural Computing 9(1), 83–94 (2010)

7 A New Algorithm with Explicit Exploration/Exploitation Control for DOPs 191

[22] Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of
the thermodynamical genetic algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 513–522. Springer, Heidelberg
(1996)

[23] Morrison, R., De Jong, K.: Triggered hypermutation revisited. In: Proc. 2000 IEEE
Congr. Evol. Comput., vol. 2, pp. 1025–1032 (2000)

[24] Pisinger, D.: A minimal algorithm for the 0-1 knapsack problem. Oper. Res. 45(5),
758–767 (1997)

[25] Pisinger, D.: Core problems in knapsack algorithms. Oper. Res. 47, 570–575 (1999)
[26] Rohlfshagen, P., Bullinaria, J.: Alternative splicing in evolutionary computation: Adap-

tation in dynamic environments. In: Proc. 2006 IEEE Congr. Evol. Comput., pp. 2277–
2284 (2006)

[27] Rohlfshagen, P., Yao, X.: The dynamic knapsack problem revisited: A new bench-
mark problem for dynamic combinatorial optimisation. In: Giacobini, M., et al. (eds.)
EvoWorkshops 2009. LNCS, vol. 5484, pp. 745–754. Springer, Heidelberg (2009)

[28] Sarasola, B., Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Flexible variable
neighborhood search in dynamic vehicle routing. In: Di Chio, C., et al. (eds.) EvoAp-
plications 2011, Part I. LNCS, vol. 6624, pp. 344–353. Springer, Heidelberg (2011)

[29] Simões, A., Costa, E.: Evolutionary algorithms for dynamic environments: Prediction
using linear regression and markov chains. In: Rudolph, G., Jansen, T., Lucas, S.,
Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 306–315. Springer,
Heidelberg (2008)

[30] Simões, A., Costa, E.: Improving prediction in evolutionary algorithms for dynamic
environments. In: Proc. 11th Annual Conf. Genetic and Evol. Comput., pp. 875–882.
ACM (2009)

[31] Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dy-
namic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 637–646. Springer, Heidelberg (2007)

[32] Xiangwei, Z., Hong, L.: A cooperative dual-swarm pso for dynamic optimization prob-
lems. In: Proc. 7th Int. Conf. Natural Computation, vol. 2, pp. 1131–1135 (2011)

[33] Yang, S.: Genetic algorithms with memory-and elitism-based immigrants in dynamic
environments. Evol. Comput. 16, 385–416 (2008)

[34] Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking mul-
tiple optima in dynamic environments. IEEE Trans. Evol. Comput. 14(6), 959–974
(2010)

[35] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[36] Younes, A., Basir, O., Calamai, P.: Adaptive control of genetic parameters for dynamic
combinatorial problems. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W.,
Hartl, R.F., Reimann, M. (eds.) Metaheuristics. Operations Research/Computer Science
Interfaces Series, vol. 39, pp. 205–223. Springer US (2007)

Chapter 8
Evolutionary Optimization on Continuous
Dynamic Constrained Problems – An Analysis

Trung Thanh Nguyen and Xin Yao

Abstract. Many real-world dynamic problems have constraints, and in certain cases
not only the objective function changes over time, but also the constraints. However,
there is little research on whether current algorithms work well on continuous dy-
namic constrained optimization problems (DCOPs). This chapter investigates this
issue. The chapter will present some studies on the characteristics that can make
DCOPs difficult to solve by some existing dynamic optimization (DO) algorithms.
We will then introduce a set of benchmark problems with these characteristics and
test several representative DO strategies on these problems. The results confirm that
DCOPs do have special characteristics that can significantly affect algorithm per-
formance. Based on the analyses of the results, a list of potential requirements that
an algorithm should meet to solve DCOPs effectively will be proposed.

8.1 Introduction

This chapter attempts to investigate the characteristics, difficulty and solutions of
a very common class of problem - dynamic constrained optimization problems
(DCOPs). DCOPs are constrained optimization problems that have two properties:
(a) the objective functions, the constraints, or both, may change over time, and (b)
the changes are taken into account in the optimization process. It is believed that
a majority of real-world dynamic problems are DCOPs. However, there are few

Trung Thanh Nguyen
School of Engineering, Technology and Maritime Operations,
Liverpool John Moores University, Liverpool L3 3AF, U.K.
e-mail: T.T.Nguyen@ljmu.ac.uk

Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K.
e-mail: X.Yao@cs.bham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 193–217.
DOI: 10.1007/978-3-642-38416-5_8 c© Springer-Verlag Berlin Heidelberg 2013

194 T.T. Nguyen and X. Yao

studies on continuous dynamic constrained optimization. Existing studies in con-
tinuous dynamic optimization only focus on the unconstrained or domain con-
straint dynamic cases (which in this chapter both are regarded as “unconstrained”
problems).

This lack of attention to DCOPs in the continuous domain raises some important
research questions: What are the essential characteristics of these types of problems?
How well would existing dynamic optimization strategies perform in dynamic con-
strained environments if most of them are designed for and tested in unconstrained
dynamic problems only? Why do they work well or not? How can one evaluate if
an algorithm works well or not? And finally, what are the requirements for a “good”
algorithm that effectively solves these types of problems?

As a large number of real-world applications are DCOPs, finding the answers
to the questions above is essential to have better understanding about the practical
issues of DCOPs and to solve this class of problem more effectively. Note that this
chapter only investigates the impact of DCOPs on dynamic optimization strategies.
For a study on the impact of DCOPs on constraint handling strategies, readers are
referred to [23].

The chapter is organized as follows. Section 8.2 discusses the special charac-
teristics from real-world DCOPs and discuss how the characteristics make DCOPs
different from unconstrained dynamic optimization problems (DOPs). Section 8.3
reviews related literature about continuous benchmark problems, identifies the gaps
between them and real-world problems and proposes a new set of DCO benchmark
problems. Section 8.4 discusses the possibility of solving DCOPs using some repre-
sentative DO strategies. Experimental analyses about the strengths and weaknesses,
and the effect of the mentioned characteristics on each strategy will be reported.
Based on the experimental results, a list of requirements that algorithms should meet
to solve DCOPs effectively is proposed. Finally, Section 8.5 concludes the chapter
and identifies future directions.

8.2 Characteristics of Real-World Dynamic Constrained
Problems

Constraints make real-world DCOPs very different from the unconstrained or do-
main constraint problems considered in academic research. In real-world DCOPs
the objective function and constraint functions can be combined in three different
types: (a) both the objective function and the constraints are dynamic [2, 27, 35]; (b)
only the objective function is dynamic while the constraints are static [3, 31, 33];
and (c) the objective function is static and the constraints are dynamic [8, 12, 15]. In
all three types, the presence of infeasible areas can affect how the global optimum
moves, or appears each change. This leads to some special characteristics which are
not found in the unconstrained cases and fixed constrained cases.

First, constraint dynamics can lead to changes in the shape/percentage/structure
of the feasible/infeasible areas. Second, objective function dynamics might cause
the global optima to switch from one disconnected feasible region to another on

8 Evolutionary Dynamic Constrained Optimization 195

problems with disconnected feasible regions, which are very common in real-world
constrained problems, especially the scheduling problems [1, 13, 34]. Third, in prob-
lems with fixed objective functions and dynamic constraints, the changing infeasible
areas might expose new, better global optima without changing the existing optima.
One example is the Dynamic 0-1 Knapsack Problem: significantly increasing the
capacity of the knapsack can create a new global optimum without changing the
existing optimum.

In addition to the three special characteristics above, DCOPs might also have
the common characteristics of constrained problems such as global optima in the
boundaries of feasible regions, global optima in search boundary, and multiple dis-
connected feasible regions. These characteristics are widely regarded as being com-
mon in real-world applications.

8.3 A Real-Valued Benchmark to Simulate DCOPs
Characteristics

8.3.1 Related Literature

In the continuous domain, there is no existing continuous benchmark that fully
reflects the characteristics of DCOPs listed in Section 8.2. Among existing con-
tinuous benchmarks, there are only few recent studies that are related to dynamic
constraints. The first study was [14] in which two simple unimodal constrained
problems were proposed. These problems take the time variable t as their only time-
dependant parameter and hence the dynamic was created by the increase over time
of t. These problems have some important disadvantages which prevent them from
being used to capture/simulate the mentioned properties of DCOPs: they only cap-
ture a simple linear change. In addition, the two problems do not reflect common
situations like dynamic objective + fixed constraints or fixed objective + dynamic
constraints and other common properites of DCOPs.

The second study was [29]. In that research, a dynamic constrained bench-
mark problem was proposed by combining an existing “field of cones on a zero
plane” dynamic fitness function with four dynamic norm-based constraints with the
square/diamond/sphere-like shapes (see Fig. 2 in [29]). Although the framework
used to generate this benchmark problem is highly configurable, the current single
benchmark problem generated by the framework in [29] was designed for a different
purpose and hence does not simulate the properties mentioned in Section 8.2. For
example, the benchmark problem might not be able to simulate common properties
of DCOPs such as optima in boundary; disconnected feasible regions; and moving
constraints exposing optima in a controllable way. In addition, there is only one sin-
gle type of benchmark problem and hence it might be difficult to use the problem to
evaluate the performance of algorithms under different situations.

The third study was [39]. Based on an existing static test problem [9], the au-
thors assigned six pre-defined values (scalars or matrices) to the coefficients of this
static functions to represent six different time steps. Because only six values were

196 T.T. Nguyen and X. Yao

given to each coefficient, the dynamic of the problems were defined only up to six
time steps. This prevents users from testing the problem in the long run. In addition,
there appears to be no specified rule for the dynamics, making it difficult to sim-
ulate any dynamic rules from real-world applications. Besides this limitation, the
problem also does not reflect common situations such as dynamic objective + fixed
constraints, fixed objective + dynamic constraints. It is also unclear if other common
properites of DCOPs can be simulated.

The lack of benchmark problems for DCOPs makes it difficult to (a) evaluate how
well existing DO algorithms would work on DCOPs, and (b) design new algorithms
specialising in DCOPs. Given that a majority of recent real-world DOPs are DCOPs
[20], this can be considered an important gap in DO research.

This gap motivates the authors to develop general-purpose benchmark problems
to capture the special characteristics of DCOPs. Some initial results involving five
benchmark problems were reported in an earlier study [21]. This framework then
was extended in [23] to develop full sets of benchmark problems, which are able to
capture all characteristics mentioned in the previous section. Two sets of benchmark
problems, one with multimodal, scalable objective functions and one with unimodal
objective functions, were developed. In this chapter we will describe the benchmark
set with unimodal objective functions (many problems in the set still have multiple
optima due to the constraints) in detail. Detailed descriptions of the multimodal,
scalable set can be found in a technical report [19].

8.3.2 Generating Dynamic Constrained Benchmark Problems

One useful way to create dynamic benchmark problems is to combine existing static
benchmark problems with the dynamic rules found in dynamic constrained applica-
tions. This can be done by applying the dynamic rules to the parameters of the static
problems, as described below.

Given a static function fP (x) with a set of parameters P = {p1, ...pk}, one can
always generalise fP (x) to its dynamic version fPt (x, t) by replacing each static pa-
rameter pi ∈ P with a time-dependent expression pi (t). The dynamic of the dynamic
problem then depends on how pi (t) varies over time. One can use any type of dy-
namic rule to represent pi (t), and hence can create any type of dynamic problem.
Details of the concept and a mathematical framework for the idea is described in
[19]. Some additional information is provided in [22] (Section 3).

8.3.3 A Dynamic Constrained Benchmark Set

A set of 18 benchmark problems named G241 was introduced using the new proce-
dure described in the previous subsection. The general form for each problem in the
G24 set is as follows:

1 This benchmark set was named after a static function originally from in [10]. This static
function was named G24 in the “CEC06 competition on constrained real-parameter opti-
mization”. The static G24 function was adapted to create the f (1), g(1)and g(2) function
forms of this DCOP G24 benchmark set.

8 Evolutionary Dynamic Constrained Optimization 197

Table 8.1 The objective function form and set of constraint function forms for each problem

Benchmark problem objective function
G24 8a & G24 8b f (x) = f (2)

All other problems f (x) = f (1)

Benchmark problem Set G of constraints
G24 u; G24 uf; G24 2u; G24 8a G = { /0}
G24 6a G =

{
g(3),g(6)

}

G24 6b G =
{

g(3)
}

G24 6c G =
{

g(3),g(4)
}

G24 6d G =
{

g(5),g(6)
}

All other problems G =
{

g(1),g(2)
}

minimise f (x)
subject to gi (x)≤ 0, gi (x) ∈ G, i = 1, ..,n

where the objective function f (x) can be one of the function forms set out in Eq.
(8.1-8.2), each constraint gi (x) can be one of the function forms given in Eq. (8.3-
8.8), and G is the set of n constraint functions for that particular benchmark problem.
The detailed descriptions of f (x) and gi (x) for each problem are described in Table
8.1.

Eqs. (8.1-8.2) describe the general function forms for the objective functions in
the G24 set. Of these function forms, f (2)is used to design the objective function for
G24 8a and G24 8b, and f (1) is used to design the objective functions for all other
problems. f (1) is modified from a static function proposed in [10] and f (2)is a newly
designed function.

f (1) = −(X1 +X2) (8.1)

f (2) = −3exp

(
−
√√

(X1)
2 +(X2)

2

)
(8.2)

where Xi = Xi (xi, t) = pi (t)(xi + qi (t));0≤ x1 ≤ 3;0≤ x2 ≤ 4 with pi (t) and qi (t)
(i = 1,2) as the dynamic parameters, which determine how the dynamic objective
function of each benchmark problem changes over time.

Eqs. (8.3-8.8) describe the general function forms for the constraint functions
in the G24 set. Of these function forms, g(1) and g(2) were modified from two
static functions proposed in [10] and g(3),g(4), g(5) and g(6) are newly designed
functions.

198 T.T. Nguyen and X. Yao

g(1) = −2Y 4
1 + 8Y 3

1 − 8Y2
1 +Y2− 2 (8.3)

g(2) = −4Y 4
1 + 32Y3

1 − 88Y2
1 + 96Y1 +Y2− 36 (8.4)

g(3) = 2Y1 + 3Y2− 9 (8.5)

g(4) =

{
−1 if (0≤ Y1 ≤ 1)or(2≤ Y1 ≤ 3)

1 otherwise
(8.6)

g(5) =

{
−1 if (0≤ Y1 ≤ 0.5)or(2≤Y1 ≤ 2.5)

1 otherwise
(8.7)

g(6) =

⎧
⎨
⎩
−1 if [(0≤ Y1 ≤ 1)and(2≤ Y2 ≤ 3)]

or (2≤ Y1 ≤ 3)
1 otherwise

(8.8)

where Yi = Yi (x, t) = ri (t)(x+ si (t));0 ≤ x1 ≤ 3;0 ≤ x2 ≤ 4 with ri (t) and si (t)
(i = 1,2) as the dynamic parameters, which determine how the constraint functions
of each benchmark problem change over time.

Each benchmark problem may have a different mathematical expression for
pi (t), qi (t), ri (t) and si (t). Note that although many benchmark problems share the
same general function form in Eqs. (8.3-8.8), their individual expressions for pi (t)
and qi (t) make their actual dynamic objective functions very different. Similarly,
the individual expressions for ri (t) and si (t) make each actual dynamic constraint
functions very different although they may share the same function form. The indi-
vidual expressions of pi (t), qi (t), ri (t), and si (t) for each benchmark function are
described in Table 8.2.

Two guidelines were used to design the test problems: (a) problems should sim-
ulate the common properties of DCOPs as mentioned in Section 8.2 and (b) there
should always be a pair of problems for each characteristic. The two problems in
each pair should be almost identical except that one has a particular characteristic
(e.g. fixed constraints) and the other does not. By comparing the performance of
an algorithm on the two problems in the pair, it is possible to analyse whether the
considered characteristic has any effect on the tested algorithm and to what extent
that effect is significant.

Based on the two guidelines above, 18 different test problems were created in
[23] (Table 8.2). Each test problem is able to capture one or several of the mentioned
characteristics of DCOPs, as shown in Table 8.3. In addition, the problems and their
relationships are carefully designed so that they can be arranged in 21 pairs (Table
8.4), of which each pair is a different test case to test a single characteristic of
DCOPs (the two problems in each pair are almost identical except that one has a
special characteristic and the other does not).

8 Evolutionary Dynamic Constrained Optimization 199

Table 8.2 Dynamic parameters for all test problems in the benchmark set G24. Each dynamic
parameter is a time-dependant rule/function which governs the way the problems change
(reproduced with permission from [23])

Prob Parameter settings
G24 u p1 (t) = sin

(
kπt + π

2

)
; p2 (t) = 1;qi (t) = 0

G24 1 p2 (t) = ri (t) = 1; qi (t) = si (t) = 0
p1 (t) = sin

(
kπt + π

2

)
G24 f pi (t) = ri (t) = 1; qi (t) = si (t) = 0
G24 uf pi (t) = 1; qi (t) = 1

G24 2 if (t mod2 = 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)={ p2(t−1) if t>0
p2(0)=0 if t=0

if (t mod2 � 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = si (t) = 0; ri (t) = 1

G24 2u if (t mod2 = 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)={ p2(t−1) if t>0
p2(0)=0 if t=0

if (t mod2 � 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = 0
G24 3 pi (t) = ri (t) = 1;qi (t) = s1 (t) = 0

s2 (t) = 2− t. x2 max−x2 min
S

G24 3b p1 (t) = sin
(
kπt + π

2

)
; p2 (t) = 1

qi (t) = s1 (t) = 0; ri (t) = 1;
s2 (t) = 2− t. x2 max−x2 min

S
G24 3f pi (t) = ri (t) = 1;qi (t) = s1 (t) = 0;s2 (t) = 2
G24 4 p2 (t) = ri (t) = 1; qi (t) = s1 (t) = 0

p1 (t) = sin
(
kπt + π

2

)
;s2 (t) = t. x2 max−x2 min

S

G24 5 if (t mod2 = 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)={p2(t−1) if t>0
p2(0) if t=0

if (t mod2 � 0)
{ p1(t)=sin(kπt

2 + π
2)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = s1 (t) = 0; ri (t) = 1;
s2 (t) = t. x2 max−x2 min

S
G24 6a/b/c/dp1 (t) = sin

(
πt + π

2

)
; p2 (t) = 1;

qi (t) = si (t) = 0;ri (t) = 1
G24 7 pi (t) = ri (t) = 1; qi (t) = s1 (t) = 0;

s2 (t) = t. x2 max−x2 min
S

G24 8a pi (t) =−1;q1 (t) =−(c1 + ra.cos (kπt))
q2 (t) =−(c2 + ra.sin(kπt)) ;

G24 8b pi (t) =−1;q1 (t) =−(c1 + ra.cos (kπt))
q2 (t) =−(c2 + ra.sin(kπt)) ;ri (t) = 1; si (t) = 0

k k determines the severity of function changes.
k = 1 ∼large; k = 0.5 ∼ medium; k = 0.25 ∼ small

S S determines the severity of constraint changes
S = 10 ∼large; S = 20 ∼ medium; S = 50 ∼ small

c1,c2,ra c1 = 1.470561702;c2 = 3.442094786232;
(G24 8a/b
only)

ra = 0.858958496 .

i i is the variable index, i = 1,2

200 T.T. Nguyen and X. Yao

Table 8.3 Properties of each test problem in the G24 benchmark set (reproduced with per-
mission from [23])

Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path
G24 u Dynamic NoC 1 No No No Yes N/A
G24 1 Dynamic Fixed 2 Yes No Yes No N/A
G24 f Fixed Fixed 2 No No Yes No N/A
G24 uf Fixed NoC 1 No No No Yes N/A
G24 2* Dynamic Fixed 2 Yes No Yes&No Yes&No N/A
G24 2u Dynamic NoC 1 No No No Yes N/A
G24 3 Fixed Dynamic 2-3 No Yes Yes No N/A
G24 3b Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 3f Fixed Fixed 1 No No Yes No N/A
G24 4 Dynamic Dynamic 2-3 Yes No Yes No N/A
G24 5* Dynamic Dynamic 2-3 Yes No Yes&No Yes&No N/A
G24 6a Dynamic Fixed 2 Yes No No Yes Hard
G24 6b Dynamic NoC 1 No No No Yes N/A
G24 6c Dynamic Fixed 2 Yes No No Yes Easy
G24 6d Dynamic Fixed 2 Yes No No Yes Hard
G24 7 Fixed Dynamic 2 No No Yes No N/A
G24 8a Dynamic NoC 1 No No No No N/A
G24 8b Dynamic Fixed 2 Yes No Yes No N/A
DFR number of Disconnected Feasible Regions
SwO Switched global Optimum between disconnected regions
bNAO better Newly Appear Optimum without changing existing ones
OICB global Optimum is In the Constraint Boundary
OISB global Optimum is In the Search Boundary
Yes&No It means OICB/OISB is true at some other changes and false at some others
Path Indicate if it is easy or difficult to use mutation to travel

between feasible regions
Dynamic The function is dynamic
Fixed There is no change
NoC There is no constraint
* In some change periods, the landscape either is a plateau or

contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes

8.4 Challenges to Solve DCOPs

8.4.1 Analysing the Performance of Some Common Dynamic
Optimization Strategies in Solving DCOPs

The purpose of this section is to discuss whether the DO strategies commonly used
in existing literature can be applied directly to solving DCOPs. We also report our
analyses in [23] of whether the special characteristics of DCOPs might have any
effect on the performance of these strategies and why. The results of the analysis
will also provide insight in understanding how to design suitable algorithms for
solving DCOPs.

8 Evolutionary Dynamic Constrained Optimization 201

Table 8.4 The 21 test cases (pairs) to be used in this chapter (reproduced with permission
from [23])

Static problems: Unconstrained vs Fixed constraints
1 G24 uf (fF, noC) vs G24 f (fF, fC)
Fixed objectives vs Dynamic objectives
2 G24 uf (fF, noC) vs G24 u (dF, noC)
3 G24 f (fF, fC, OICB) vs G24 1 (dF, fC, OICB)
4 G24 f (fF, fC, OICB) vs G24 2 (dF, fC, ONICB)
Dynamic objectives: Unconstrained vs Fixed constraints
5 G24 u (dF, noC) vs G24 1 (dF, fC, OICB)
6 G24 2u (dF, noC) vs G24 2 (dF, fC, ONICB)
Fixed constraints vs Dynamic constraints
7 G24 1 (dF, fC, OICB) vs G24 4 (dF, dC, OICB)
8 G24 2 (dF, fC, ONICB) vs G24 5 (dF, dC, ONICB)
9 G24 f (fF, fC) vs G24 7 (fF, dC, NNAO)
10 G24 3f (fF, fC) vs G24 3 (fF, dC, NAO)
No constraint vs Dynamic constraints
11 G24 u (dF, noC) vs G24 4 (dF, dC, OICB)
12 G24 2u (dF, noC) vs G24 5 (dF, dC, ONICB)
13 G24 uf (fF, noC) vs G24 7 (fF, dC)
Moving constraints expose better optima vs not expose optima
14 G24 3f (fF, fC) vs G24 3 (fF, dC, NAO)
15 G24 3 (fF, dC, NAO) vs G24 3b (dF, dC, NAO)
Connected feasible regions vs Disconnected feasible regions
16 G24 6b (1R) vs G24 6a (2DR, hard)
17 G24 6b (1R) vs G24 6d (2DR, hard)
18 G24 6c (2DR, easy) vs G24 6d (2DR, hard)
Optima in constraint boundary vs Optima NOT in constr boundary
19 G24 1 (dF, fC, OICB) vs G24 2 (dF, fC, ONICB)
20 G24 4 (dF, dC, OICB) vs G24 5 (dF, dC, ONICB)
21 G24 8b (dF, fC, OICB) vs G24 8a (dF, noC, ONISB)

dF dynamic objective func fF fixed objective function
dC dynamic constraints fC fixed constraints
OICB optima in constraint bound ONICB opt. not in constraint bound
OISB optima in search bound ONISB optima not in search bound
NAO better newly appear optima NNAO No better newly appear opt
2DR 2 Disconn. feasible regions 1R One single feasible region
Easy easy for mutation to travel

between disconn. regions
Hard less easy to travel among

regions
noC unconstrained problem SwO Switched optimum between

disconnected regions

The strategies being considered are (1) introducing diversity, (2) maintaining di-
versity and (3) tracking the previous optima. These three are among the four most
commonly used strategies (the other strategy is memory-based) to solve DOPs. The
diversity-introducing strategy was proposed based on the assumption that by the
time a change occurs in the environment, an evolutionary algorithm (EA) might

202 T.T. Nguyen and X. Yao

have already converged to a specific area and hence would lose its ability to deal
with changes in other areas of the search space. Consequently, it is necessary to
increase the diversity level in the population, either by increasing the mutation rate
or re-initialising/re-locating the individuals. This strategy was introduced years ago
[7] but is still extensively used [18, 26].

The diversity-introducing strategy requires that changes must be visible to the
algorithm. To avoid this disadvantage, the diversity-maintaining strategy was intro-
duced so that population diversity can be maintained without explicitly detecting
changes [11]. This strategy is still the main strategy in many recent approaches
[5, 38].

The third strategy, tracking-previous-optima, is used where the optima might
only slightly change. The region surrounding the current optima is monitored to
detect changes and “track” the movement of these optima. Similar to the two strate-
gies above, the tracking strategy has also been used for years [7] and it has al-
ways been one of the main strategies for solving DOPs. Recently this strategy
has been combined with the diversity maintaining/introducing strategy to achieve
better performance. Typical examples are the multi-population/multi-swarm ap-
proaches, where multiple sub-populations are used to maintain diversity and each
sub-population/sub-swarm focuses on tracking one single optimum [5, 6].

8.4.2 Chosen Algorithms and Experimental Settings

8.4.2.1 Chosen Algorithms

Two commonly used algorithms: triggered hyper-mutation GA (HyperM [7]) and
random-immigrant GA (RIGA [11]) were chosen to evaluate the performance of
the three strategies mentioned above in DCOPs. HyperM is basically a simple GA
with an adaptive mechanism to switch from a low mutation rate (standard-mutation-
rate) to a high mutation rate (hyper-mutation-rate, to increase diversity) and vice
versa depending on whether or not there is a degradation of the best solution in the
population. It represents the “introducing diversity” and “tracking previous optima”
strategies in DO.

RIGA is another derivative of a basic GA. After the normal mutation step, a frac-
tion of the population is replaced with randomly generated individuals. This fraction
is determined by a random-immigrant-rate (also named replacement rate). By con-
tinuously replacing a part of the population with random solutions, the algorithm
is able to maintain diversity throughout the search process to cope with dynamics.
RIGA represents the “maintaining diversity” strategy in DO.

One reason to choose these algorithms for the test is that their strategies are still
commonly used in most current state-of-the-art DO algorithms. Another reason is
the strategies in these algorithms are very simple and straightforward, making it
easy to test and analyse their behaviour. In addition, because these two algorithms
are very well studied, using them would help in comparing new experimental data
with existing results. Finally, because both algorithms are developed from a basic
GA (actually the only difference between HyperM/RIGA and a basic GA is the

8 Evolutionary Dynamic Constrained Optimization 203

Table 8.5 Test settings for all algorithms used in the chapter

All the Pop size (pop size) 5, 15, 25 (medium), 50, 100
algorithms Elitism Elitism & non-elitism if applicable
(exceptions Selection method Non-linear ranking as in [16]
below) Mutation method Uniform, P = 0.15.

Crossover method Arithmetic, P = 0.1.
HyperM Triggered mutate Uniform, P = 0.5 as in [7].
RIGA Rand-immig. rate P = 0.3 as in [11].
Benchmark Number of runs 50
problem Number of changes 5/k (see below)
settings Change frequency 250, 500, 1000 (med), 2000, 4000

evaluations
ObjFunc severity k 0.25 (small), 0.5 (med), 1.0 (large)
Constr. severity S 10 (small), 20 (medium), 50 (large)

mutation strategy), it would be easier to compare/analyse their performance. The
performance of HyperM and RIGA was also compared with a basic GA to see if
they work well on the tested problems.

8.4.2.2 Parameter Settings

Table 8.5 shows the detailed parameter settings for HyperM, RIGA and GA. All al-
gorithms use real-valued representations. The algorithms were tested on 18 bench-
mark problems described in Section 8.3. To create a fair testing environment, the
algorithms were tested in a wide range of dynamic settings (different values of pop-
ulation size, severity of change and frequency of change) with five levels: small,
medium small, medium, medium large, large.

The evolutionary parameters of all tested algorithms were set to similar values or
the best known values if possible. The base mutation rate of the algorithms is 0.15,
which is the average value of the best mutation rates commonly used for GA-based
algorithms in various existing studies on continuous DO, which are 0.1 ([28, 30])
and 0.2 ([4, 6]). For HyperM and RIGA, the best hyper-mutation-rate and random-
immigrant-rate parameter values observed in the original papers [7, 11] were used.
The same implementations as described in [7] and [11] were used to reproduce
these two algorithms. A crossover rate of 0.1 was chosen for all algorithms because,
according to the analysis in [25], this value was one of the few settings where all
tested algorithms perform well on this benchmark set.

A further study of the effect of different values of the base mutation rates, hyper-
mutation rates, random-immigrant rates and crossover rates on algorithm perfor-
mance was also carried out. Detailed experimental results and discussion for this
analysis can be found in [25] where it was found that the overall behaviours of the
algorithms are not different from those using the default/best known settings, ex-
cept for the followings: (i) When the base mutation rate is very low (≤ 0.01), the
performance of GA and HyperM drop significantly; (ii) generally to work well in

204 T.T. Nguyen and X. Yao

the tested DCOPs, algorithms need to use high base mutation rates. The range of
best mutation rates is 0.3-0.8. (iii) Algorithms like RIGA and HyperM also need
high random-immigrant/hyper-mutation rates to solve DCOPs. The best results are
usually achieved with the rates of 0.6-0.8; (iv) The suitable range of crossover rate
is 0.1-1.0.

8.4.2.3 Constraint Handling

It is necessary to integrate existing DO algorithms with a CH mechanism to use
these algorithms for solving DCOPs. That CH mechanism should not interfere with
the original DO strategies so that it is possible to correctly evaluate whether the
original DO strategies would still be effective in solving DCOPs. To satisfy this
requirement, the penalty function approach in [17] was chosen because it is the sim-
plest way to apply existing unconstrained DO algorithms directly to solving DCOPs
without changing the algorithms. Also this penalty method can be effective in solv-
ing difficult numerical problems without requiring users to choose any penalty factor
or other parameter [17].

8.4.2.4 Performance Measures

For measuring the performance of the algorithms in this particular experiment, an
existing measure: the offline error [6] was modified. The measure is calculated as
the average over, at every evaluation, the error of the best solution found since the
last change of the environment.

Because the measure above is designed for unconstrained environments, it is nec-
essary to modify it to evaluate algorithm performance in constrained environments:
At every generation, instead of considering the best errors/fitness values of any solu-
tions regardless of feasibility as implemented in the original measure, only the best
fitness values / best errors of feasible solutions at each generation are considered. If
in any generation there is no feasible solution, the measure takes the worst possible
value that a feasible solution can have for that particular generation. This measure
is called the modified offline error for DCOPs, or offline error for short.

EMO =
1

num o f gen ∑num o f gen
j=1 eMO (j) (8.9)

where eMO (j) is the best feasible error since the last change at the generation j.
Five new measures were also proposed to analyse why a particular algorithm

might work well on a particular problem. The first two measures are the recovery
rate (RR) and the absolute recovery rate (ARR) to analyse the convergence be-
haviour of algorithms in dynamic environments. The RR measure is used to analyse
how quickly an algorithm recovers from an environmental change and starts con-
verging to a new solution before the next change occurs. The new solution is not
necessarily the global optimum.

8 Evolutionary Dynamic Constrained Optimization 205

RR =
1
m ∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i,1)]

p(i) [fbest (i, p(i))− fbest (i,1)]
(8.10)

where fbest (i, j) is the fitness value of the best feasible solution since the last change
found by the tested algorithm until the jth generation of the change period i , m is the
number of changes and p(i) , i = 1 : m is the number of generations at each change
period i. The RR score would be 1 in the best case where the algorithm is able to
recover and converge to a solution immediately after a change, and would be close
to zero in case the algorithm is unable to recover from the change at all 2.

The RR measure only indicates if the considered algorithm converges to a solu-
tion and if it converges quickly. It does not indicate whether the converged solution
is the global optimum. For example, RR can still be 1 if the algorithm does noth-
ing but keep re-evaluating the same solution. Because of that, another measure is
needed: the absolute recovery rate (ARR). This measure is very similar to the RR
but is used to analyse how quick it is for an algorithm to start converging to the
global optimum before the next change occurs:

ARR =
1
m ∑m

i=1

∑p(i)
j=1 [fbest (i, j)− fbest (i,1)]

p(i) [f ∗ (i)− fbest (i,1)]
(8.11)

where fbest (i, j) , i, j,m, p(i) are the same as in Eq. 8.10 and f ∗ (i) is the global
optimal value of the search space at the ith change. The ARR score would be 1
in the best case when the algorithm is able to recover and converge to the global
optimum immediately after a change, and would be zero in case the algorithm is
unable to recover from the change at all. Note that the score of ARR should always
be less than or equal to that of RR. In the ideal case (converged to global optimum),
ARR should be equal to RR3.

The RR and ARR measures can be used together to indicate if an algorithm is
able to converge to the global optimum within the given time frame between changes
and if so how quickly it takes to converge. The RR-ARR diagram in Fig. 8.1 shows
some analysis guidelines.

A third measure, percentage of selected infeasible individuals, is proposed to
analyse algorithm ability to balance exploiting feasible regions and exploring in-
feasible regions in DCOPs. This measure finds the percent of infeasible individuals
selected for the next generation. The average (over all tested generations) is then
compared with the percentage of infeasible areas in the search space. If the consid-
ered algorithm is able to accept infeasible diversified individuals in the same way
as it accepts feasible diversified individuals (and hence to maintain diversity effec-
tively), the two percentage values should be equal.

To analyse the behaviour of algorithms using triggered-mutation mechanisms
such as HyperM, a fourth measure: triggered-time count, which counts the number

2 Note that RR will never be equal to zero because there is at least one generation where
fbest (i, j) = fbest (i, p(i)).

3 Note that to use the measure ARR it is necessary to know the global optimum value at
each change period.

206 T.T. Nguyen and X. Yao

Fig. 8.1 Diagram (a) provides a guideline for analysing the convergence behaviour/recovery
speed of an algorithm given its RR/ARR scores. These scores can be represented as the x and
y coordinations of a point on the diagonal thick line or inside the shaded area. The position
of the point represents the behaviour of the corresponding algorithm. The closer the point
is to the right, the faster the algorithm was in recovering and re-converging, and vice versa.
In addition, if the point lies on the thick diagonal line (where RR = ARR) like point A, the
algorithm has been able to recover from the change and converged to the new global optimum.
Otherwise, if the point lies inside the shaded area, the algorithm either has converged to a local
solution (e.g. point C); or has not been converged yet (e.g. point D - recover slowly; and point
B - recover quickly). Diagram (b) shows the mapping of the RR/ARR scores of GA, RIGA,
and HyperM to the RR-ARR diagram. (Reproduced with permission from [23]).

of times the hyper-mutation-rate is triggered by the algorithm, and a fifth measure:
detected-change count, which counts the number of triggers actually associated with
a change, are also proposed. For HyperM, triggers associated with a change are
those that are invoked by the algorithm within ν generations after a change, where
ν is the maximum number of generations (five in this implementation) needed for
HyperM to detect a drop in performance. These two measures indicate how many
times an algorithm triggers its hyper-mutation; whether each trigger time corre-
sponds to a new change; and if there is any change that goes undetected during the
search process.

Note that all of the measures used here are specifically designed for dynamic
problems. This creates a problem for the experiments in this chapter because in
the G24 benchmark set there are not only dynamic problems but also stationary
problems. To overcome this issue, in this study stationary problems are consid-
ered a special type of dynamic problem which still have “changes” with the same
change frequency as other dynamic problems. However, in stationary problems the
“changes” do not alter the search space.

8 Evolutionary Dynamic Constrained Optimization 207

8.4.3 Experimental Results and Analyses

The full offline-error results of the tested algorithms on all 18 benchmark problems
for all test scenarios are presented in the tables in [24]. These data were further anal-
ysed from different perspectives to achieve a better understanding of how existing
DO strategies work in DCOPs and how each characteristic of DCOPs would affect
the performance of existing DO algorithms. First of all, the average performance of
the tested algorithms on each major group of problems under different parameter
settings and dynamic ranges were summarised to have an overall picture of algo-
rithm behaviour on different types of problems (see Fig. 8.2). Then the effect of
each problem characteristic on each algorithm was analysed in 21 test cases (each
case is a pair of almost identical problems, one with a particular characteristic and
one without) as shown in Table 8.4 of Section 8.3 (see test results in Figs. 8.4 and
8.5). For each particular algorithm, some further analyses were also carried out us-
ing the five newly proposed measures mentioned above. Details of these analyses
will be described in the next subsections. Only the summarised results are presented
in Fig. 8.2 with different settings (small / medium / large). For other detailed figures
and tables, the results will only be presented in the default settings (all parameters
and dynamic range are set to medium). For detailed results in other settings, readers
are referred to [24].

The experimental results show some interesting findings.

8.4.3.1 The Impact of Different Dynamic Ranges on Algorithm Performance

The summarised results in groups of problems (Fig. 8.2) show that (i) generally the
behaviour of algorithms and their relative strengths/weaknesses in comparison with
other algorithms still remain roughly the same when the dynamic settings change;
and (ii) as expected in most cases algorithms’ performance decrease when the condi-
tions become more difficult (magnitude of change becomes larger; change frequency
becomes higher; population size becomes much smaller). Among the variations in
dynamic settings, it seems that the variations in frequency of change affect algo-
rithms’ performance the most, followed by variations in magnitude of changes and
in population size.

8.4.3.2 The Effect of Elitism on Algorithm Performance

The summarised results in groups of problems (Fig. 8.2) and the pair-wise compar-
isons in Fig. 8.4 and Fig. 8.5 reveal an interesting effect of elitism on both uncon-
strained and constrained dynamic cases: the elitism versions of GA/RIGA/HyperM
perform better than their non-elitism counterparts in most tested problems. The rea-
son for this effect (with evidence shown in the next paragraph) is that elitism helps
algorithms with diversity-maintaining strategies to converge faster. This effect is
independent of the combined CH techniques.

Two measures proposed in Section 8.4.2.4: recovery rate (RR) and absolute re-
covery rate (ARR) were used to study the inefficiency of GA/RIGA/HyperM in

208 T.T. Nguyen and X. Yao

Fig. 8.2 Algorithm performance in groups of problem (part 1 - see Fig. 8.3 for part 2). Per-
formance (vertical axis in logarithmic scale) is evaluated by calculating the ratio between the
base line (worst error among all scenarios) and the error of each algorithm in each problem
to see how many times their performance is better (smaller) than the base line. Explanations
for abbreviations can be found in Table 8.4.

the non-elitism case. The scores of the algorithms on these measures are given in
Fig. 8.1b. The figure shows that none of the algorithms are close to the optimum
line, meaning there are problems/ change periods where the algorithms were un-
able to converge to the global optimum. In addition, for RIGA, its elitism version is
closer to the top-right corner while its non-elitism version is closer to the bottom-left
corner, meaning that non-elitism makes RIGA converge slower/less accurately. Fi-
nally, for GA/HyperM, their elitism versions are closer to the global optimum while
their non-elitism versions are closer to the bottom-right corner, meaning that the

8 Evolutionary Dynamic Constrained Optimization 209

Fig. 8.3 Algorithm performance in groups of problem (part 2 - see Fig. 8.2 for part 1 and
explanation)

210 T.T. Nguyen and X. Yao

0

20

40

60
(1) noC vs fC (fF)

0

20

40

60

H
o

w
 m

a
n

y
 t

im
e
s
 b

e
tt

e
r

th
a
n

 b
a
s
e
li

n
e
 e

rr
o

r

(4) fF vs dF (fC, ONICB)

0

20

40

60
(7) fC vs dC (dF, OICB)

0

20

40

60

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(11) noC vs dC (dF, OICB)

(2) fF vs dF (noC)

(5) noC vs fC (dF, OICB)

(8) fC vs dC (dF, ONICB)

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(12) noC vs dC (dF, ONICB)

(3) fF vs dF (fC, OICB)

(6) noC vs fC (dF, ONICB)

(9) fC vs dC (fF, NNAO)

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(13) noC vs dC (fF)

fF, noC G24−uf

fF, fC G24−f

fF, noC G24−uf

dF,noC G24−u

fF, fC G24−f

dF, fC G24−1

fF, fC G24−f

dF, fC G24−2

dF,noC G24−u

dF, fC G24−1

dF, noC G24−2u

dF, fC G24−2

dF, fC G24−1

dF, dC G24−4

dF, fC G24−2

dF, dC G24−5

fF, fC G24−f

fF, dC G24−7

dF,noC G24−u

dF, dC G24−4

dF, noC G24−2u

dF, dC G24−5

fF, noC G24−uf

fF, dC G24−7

Fig. 8.4 The effect of twelve different problem characteristics on algorithm performance
(medium case). Performance (vertical axis) is evaluated based on the ratio between the base
line error (described in Figure 8.2) and algorithm errors. Each subplot represents algorithm
performance (pair of adjacent bars) in a pair of almost identical problems (one has a spe-
cial characteristic and the other does not). The larger the difference between the bar heights,
the greater the impact of the corresponding DCOP characteristic on performance. Subplots’
title represent the test case numbers (in brackets) followed by an abbreviated description.
Explanations for the abbreviations are in the last rows of Table 8.4.

0

5

10

15

20
(14) NNAO vs NAO (fF)

0

5

10

15

20

H
o

w
 m

an
y

ti
m

es
 b

et
te

r
th

an
 b

as
el

in
e

er
ro

r

(16) 1 FR vs 2 FR

0

5

10

15

20
(18) 2 FR(easy) vs 2 FR(hard)

0

10

20

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(20) OICB vs ONICB (dC)

(15) NAO(fF) vs NAO(dF)

(17) 1 FR vs 2 FR

(19) OICB vs ONICB (fC)

.GA−noElit

.RIGA−noElit

.HyperM
−noElit

.GA−elit

.RIGA−elit

.HyperM
−elit

(21) OICB vs ONISB

fF, fC G24−3f

fF, dC G24−3

fF, dC G24−3

dF, dC G24−3b

1R G24−6b

2DR,hard G24−6a

1R G24−6b

2DR,hard G24−6d

2DR,easy G24−6c

2DR,hard G24−6d

dF, fC G24−1

dF, fC G24−2

dF, dC G24−4
dF, dC G24−5

dF, fC, OICB G24−8b
dF, nC, ONISB G24−8a

Fig. 8.5 The effect of the other eight different problem properties on algorithm performance
(medium case). Instructions to read this figure can be found in Figure 8.4.

8 Evolutionary Dynamic Constrained Optimization 211

non-elitism versions of GA/HyperM are more suceptible to premature convergence.
The results hence show that the high diversity maintained by the random-immigrant
rate in RIGA and the high mutation rate in GA/HyperM comes with a trade-off:
the convergence speed is affected. In such a situation, elitism can be used to speed
up the convergence process. Elite members can guide the population to exploit the
good regions faster while still maintaining diversity.

8.4.3.3 Effect of Infeasible Areas on Maintaining/Introducing Diversity

Another interesting observation is that the presence of constraints makes the per-
formance of diversity-maintaining/introducing strategies less effective when used
in combination with the tested penalty functions. This behaviour can be seen in
Fig. 8.2 where the performance of all algorithms in the unconstrained dynamic case
(dF+noC) is significantly better than their performance in all dynamic constrained
cases (dF+fC, fF+dC, dF+dC). This behaviour can also be seen in the more accurate
pair-wise comparisons in Fig. 8.4 and Fig. 8.5: for each pair of problems in which
one has constraints and the other does not, GA, RIGA and HyperM always perform
worse on the problem with constraints (see pairs 1, 5, 6, 11, 12, 13 in Fig. 8.4 and
pair 21 in Fig. 8.5).

The reason for this inefficiency is the use of tested penalty functions prevents
diversity-maintaining/introducing mechanisms from working effectively. In solving
unconstrained dynamic problems, all diversified individuals generated by the diver-
sity maintaining/introducing strategies are useful because they contribute to either
(1) detecting newly appearing optima or (2) finding the new place of the moving
optima. In DCOPs, however, there are two difficulties that prevent diversified in-
dividuals that are infeasible from being useful in existing DO strategies. One dif-
ficulty is many diversified but infeasible individuals might not be selected for the
next generation population because they are penalised with lower fitness values by
the penalty functions. Consequently, these diversified individuals cannot be used for
maintaining diversity unless they are re-introduced again in the next generation. To
demonstrate this drawback, the previously proposed measure percentage of selected
infeasible individuals was used. As can be seen in Table 8.6, in the elitism case the
percentage of infeasible solutions in the population (23 - 37.6%) is much smaller
than the percentage of infeasible areas over the total search space (60.8%). This
means only a few of the diversified, infeasible solutions are retained and hence the
algorithms are not able to maintain diversity in the infeasible regions4.

The second difficulty is that, even if a diversified but infeasible individual is se-
lected for the next generation, it might no longer have its true fitness value. Conse-
quently, environmental changes might not be accurately detected or tracked.

4 Non-elitism algorithms are able to retain more infeasible individuals, of which some might
be diversified solutions. However, as shown in Subsection 8.4.3.2, in the non-elitism case
this higher percentage of infeasible individuals comes with a trade-off of slower/less accu-
rate convergence, which leads to the generally poorer performance.

212 T.T. Nguyen and X. Yao

Table 8.6 Average percentage of selected infeasible individuals over 18 problems. The last
row shows the average percentage of infeasible areas. (Reproduced with permission from
[23])

Algorithms Percent of infeasible solutions

.GA-elit 23.0%

.RIGA-elit 37.6%

.HyperM-elit 26.4%

.GA-noElit 46.3%

.RIGA-noElit 49.1%

.HyperM-noElit 45.3%
Percentage of infeasible areas 60.8%

8.4.3.4 Effect of Switching Global Optima (between Disconnected Feasible
Regions) on Strategies That Use Penalty functions

The results show existing DO methods become less effective when they are used
in combination with the tested penalty functions to solve a special class of DCOPs:
problems with disconnected feasible regions where the global optimum switches
from one region to another whenever a change occurs. In addition, the more sep-
arated the disconnected regions are, the more difficult it is for algorithms using
penalty functions to solve.

The reason for this difficulty is it is necessary to have a path through the infeasi-
ble areas that separate the disconnected regions to track the moving optimum. This
path might not be available if penalty functions are used because penalties make it
unlikely infeasible that individuals are accepted. Obviously the larger the infeasi-
ble areas between disconnected regions, the harder it is to establish the path using
penalty methods.

Three test cases (pairs of almost identical problems) 16, 17, 18 in Table 8.4 were
used to verify the statement above. In all three test cases the objective functions
are the same and the global optimum switches between two locations whenever a
change occurs. However, each case represents a different dynamic situation. Case 16
tests the situation where in one problem of the pair (G24 6b) there is a feasible path
connecting the two locations and in the other problem (G24 6a) the path is infeasi-
ble, i.e., there is an infeasible area separating two feasible regions. Case 17 is the
same as case 16 except that the infeasible area separating two feasible regions has
a different shape. Case 18 tests a different situation where in one problem (G24 6c)
the infeasible area separating the two feasible regions is small whereas in the other
problem (G24 6d) this infeasible area is large.

The experimental results in these three test cases (pairs 16, 17, 18 in Fig. 8.5)
confirm the hypotheses stated in the beginning of this subsection. In cases 16 and
17, the performance of the tested algorithms did decrease when the path between
the two regions is infeasible. In case 18, the larger the infeasible area separating the
two regions, the worse the performance of the tested algorithms.

8 Evolutionary Dynamic Constrained Optimization 213

Table 8.7 The triggered-time count scores and the detected-change count scores of HyperM
in a pair of problems with moving constraints exposing new optima after 11 changes. (Re-
produced with permission from [23])

Value stdDev Value stdDev Value stdDev Value stdDev
HyperM-noElit 188.70 8.40 1.74 0.78 199.83 5.88 11.00 0.00
HyperM-elit 0.00 0.00 0.00 0.00 30.43 0.57 11.00 0.00
NAO - Newly Appearing Optimum
fF / dF - fixed / dynamic objective Function

Algorithms

G24_3 (NAO+fF) G24_3b (NAO+dF)
Trigger Count Detected Change

Count
Trigger count Detected

Change Count

8.4.3.5 Effect of Moving Infeasible Areas on Strategies That Track the
Previous Optima

Algorithms relying on tracking previous global optimum such as HyperM might
become less effective when the moving constraints expose new, better optima with-
out changing the existing optima. The reason is HyperM cannot detect changes in
such DCOPs and hence might not be able to trigger its hyper-mutation rate. With
the currently chosen base mutation of 0.15, HyperM is still able to produce good
results because the mutation is high enough for the algorithm to maintain diversity.
However, in a previous study [21], when a much smaller base mutation rate was
used, HyperM becomes significantly worse compared to other algorithms in solving
problems like G24 3.

To illustrate this drawback, the newly proposed measures triggered-time count
and detected-change count were used to analyse how the triggered-hypermutation
mechanism works on problem G24 3. As can be seen in Table 8.7, HyperM either
was not able to trigger its hyper-mutation rate to deal with changes (elitism case,
triggered-time count=0 & detected-change count=0) or was not able to trigger its
hyper-mutation rate correctly when a change occurs (non-elitism case, triggered-
time count∼188.7 & detected-change count∼1.74). It is worth noting in the non-
elitism case, most of the trigger times are caused by the selection process because
in non-elitism selection the best solution in the population is not always selected for
the next generation.

Table 8.7 also shows that in problem G24 3b, which is almost identical to G24 3
except it has its existing optima changed, HyperM was able to detect changes and
hence trigger its hyper-mutation timely whenever a change occurs. It shows HyperM
only becomes less effective where environmental changes do not change the value
of existing optima.

8.4.4 Suggestions to Improve Current Dynamic Optimization
Strategies in Solving DCOPs

The experimental results suggest some directions for addressing the drawbacks
listed in the previous subsections:

214 T.T. Nguyen and X. Yao

(i) Based on the observation that elitism is useful for diversity-maintaining strate-
gies in solving DCOPs, it might be useful to develop algorithms that support both
elitism and diversity maintaining mechanisms.

(ii) Given that methods like HyperM are not able to detect changes because they
mainly use change detectors (the best solution in case of HyperM) in the feasible
regions, it might be useful to use change detectors and search in both regions and
infeasible regions.

(iii) Because experimental results show that tracking the existing optima might
not be effective in certain cases of DCOPs, it might be useful to track the moving
feasible regions instead. Because after a change in DCOPs the global optimum al-
ways either moves along with the feasible areas or appears in a new feasible area,
an algorithm able to track feasible areas would have higher chance of tracking the
actual global optimum.

Recent experimental results have shown that the directions above could be helpful
for improving the performance of DO algorithms in solving DCOPs. The use of
elitism was shown to have positive effects in [25, 37], detecting and/or searching in
infeasible areas helped improve performance in [25, 29, 32], and tracking feasible
areas gave superior results in [21, 25].

8.5 Conclusion and Future Research

In this chapter we have reviewed some important and not well studied character-
istics of DCOPs that might cause significant challenges to existing DO strategies.
Although these characteristics are common in real-world applications, in the con-
tinuous domain they have not been considered in most existing DO studies and they
have not been captured in most existing continuous DO benchmark problems.

A set of dynamic constrained benchmark problems for simulating the character-
istics of DCOPs, together with eight performance measures, have been discussed to
help close this gap.

Using the benchmark problems and measures, we discussed detailed experimen-
tal analyses to investigate the strengths and weaknesses of existing DO strategies
(GA/RIGA/HyperM) in solving DCOPs. The experimental analyses reveal some in-
teresting findings about the ability of existing algorithms in solving DCOPs. These
findings can be categorised as follows.

First, three findings about the performance of existing DO strategies in DCOPs
have been identified: (a) the use of elitism might have a positive impact on the
performance of existing diversity-maintaining strategies but might have a negative
impact on the performance of diversity-introducing strategies if they are not used
with diversity-maintaining strategies; (b) the presence of infeasible areas has a nega-
tive impact on the performance of diversity-introducing/maintaining strategies; and
(c) the presence of switching optima (between disconnected regions) has a nega-
tive impact on the performance of DO strategies if they are combined with penalty
functions.

8 Evolutionary Dynamic Constrained Optimization 215

Second, based on the findings about the strengths and weaknesses of some exist-
ing DO strategies, a list of possible requirements that DO algorithms should meet to
solve DCOPs effectively have been suggested. This list of requirements can be used
as a guideline to design new algorithms to solve DCOPs in future research.

The results and discussions in this chapter raise some open questions for fu-
ture research. One direction is to develop new algorithms specialised in solving
DCOPs based on our suggested list of requirements. We also plan to apply the results
achieved in this chapter to real-world applications, especially to dynamic environ-
ments such as container terminals where there is the need to provide dynamic op-
timization solutions for such problems as dynamic scheduling of automatic-guided
vehicles, dynamic allocation of quay-side and stack-side cranes, and dynamic stack-
ing of containers.

Acknowledgements. This work was partially supported by the Engineering and Physical
Sciences Research Council (EPSRC) of UK under Grant EP/E058884/1, a UK ORS Award,
a studentship from the School of Computer Science, University of Birmingham and an
EU-funded project named ”Intelligent Transportation for Dynamic Environment (InTraDE)”.
The programs in this chapter were developed from the source code provided by Williams
[36].

References

[1] Aickelin, U., Dowsland, K.: Exploiting problem structure in a genetic algorithm ap-
proach to a nurse rostering problem. J. of Sched. 3, 139–153 (2000)

[2] Andrews, M., Tuson, A.L.: Dynamic optimisation: A practitioner requirements study.
In: Proc. 24th Annual Workshop of the UK Planning and Scheduling Special Interest
Group (2005)

[3] Araujo, L., Merelo, J.J.: A genetic algorithm for dynamic modelling and prediction of
activity in document streams. In: Proc. 9th Annual Conf. Genetic and Evol. Comput.,
pp. 1896–1903 (2007)

[4] Ayvaz, D., Topcuoglu, H., Gurgen, F.: A comparative study of evolutionary optimization
techniques in dynamic environments. In: Proc. 8th Annual Conf. Genetic and Evol.
Comput., pp. 1397–1398 (2006)

[5] Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

[6] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2001)
[7] Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator

in genetic algorithms having continuouis, time-dependent nonstationary environments.
Tech. Rep. AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

[8] Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-
making using modified NSGA-II: A case study on hydro-thermal power scheduling. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS,
vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[9] Deb, K., Saha, A.: Finding multiple solutions for multimodal optimization problems
using a multi-objective evolutionary approach. In: Proc. 12th Annual Conf. Genetic and
Evol. Comput., pp. 447–454 (2010)

216 T.T. Nguyen and X. Yao

[10] Floudas, C., Pardalos, P., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis,
J., Meyer, C., Schweiger, C.: Handbook of Test Problems in Local and Global Opti-
mization. In: Noncovex Optimization and Its Applications, vol. 33. Kluwer Academic
Publishers (1999)

[11] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd Int.
Conf. Parallel Problem Solving from Nature, pp. 137–144 (1992)

[12] Ioannou, P., Chassiakos, A., Jula, H., Unglaub, R.: Dynamic optimization of cargo
movement by trucks in metropolitan areas with adjacent ports. Tech. Rep., METRANS
Transportation Center, University of Southern California, Los Angeles, CA 90089, USA
(2002), http://www.metrans.org/research/final/
00-15 Final.htm

[13] Kim, H.: Target exploration for disconnected feasible regions in enterprise-driven multi-
level product design. American Institute of Aeronautics and Astronautics Journal 44(1),
67–77 (2006)

[14] Liu, C.A.: New dynamic constrained optimization pso algorithm. In: Proc. 4th Int. Conf.
Natural Comput., pp. 650–653 (2008)

[15] Mertens, K., Holvoet, T., Berbers, Y.: The DynCOAA algorithm for dynamic constraint
optimization problems. In: Proc. 5th Int. Joint Conf. Autonomous Agents and Multia-
gent Syst., pp. 1421–1423 (2006)

[16] Michalewicz, Z.: The second version of Genocop III: a system which handles also non-
linear constraints, http://www.cs.adelaide.edu.au/
zbyszek/EvolSyst/gcopIII10.tar.Z (accessed February 2009)

[17] Morales, K.A., Quezada, C.: A universal eclectic genetic algorithm for constrained op-
timization. In: Proc. 6th Europ. Congr. Intell. & Soft Comput., pp. 518–522 (1998)

[18] Moser, I., Hendtlass, T.: A simple and efficient multi-component algorithm for solving
dynamic function optimisation problems. In: Proc. 2007 IEEE Congr. Evol. Comput.,
pp. 252–259 (2007)

[19] Nguyen, T.T.: A proposed real-valued dynamic constrained benchmark set. Tech. Rep.,
School of Computer Science, Univesity of Birmingham (2008),
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
DCOPbenchmark.pdf

[20] Nguyen, T.T.: Continuous Dynamic Optimisation Using Evolutionary Algorithms.
Ph.D. thesis, School of Computer Science, University of Birmingham (2011),
http://etheses.bham.ac.uk/1296 and
http://www.staff.ljmu.ac.uk/enrtngu1/theses/
phdthesisnguyen.pdf

[21] Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697 (2009)

[22] Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et
al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg
(2009)

[23] Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimisation - the challenges.
IEEE Trans. Evol. Comput. 166, 769–786 (2012)

[24] Nguyen, T.T., Yao, X.: Detailed experimental results of GA, RIGA, HyperM and
GA+Repair on the G24 set of benchmark problems. Tech. Rep., School of Computer
Science, University of Birmingham (2010),
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
DCOPfulldata.pdf

http://www.metrans.org/research/final/00-15_Final.htm
http://www.metrans.org/research/final/00-15_Final.htm
http://www.cs.adelaide.edu.au/zbyszek/EvolSyst/gcopIII10.tar.Z
http://www.cs.adelaide.edu.au/zbyszek/EvolSyst/gcopIII10.tar.Z
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPbenchmark.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPbenchmark.pdf
http://etheses.bham.ac.uk/1296
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phdthesisnguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/theses/phdthesisnguyen.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPfulldata.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/DCOPfulldata.pdf

8 Evolutionary Dynamic Constrained Optimization 217

[25] Nguyen, T.T., Yao, X.: Solving dynamic constrained optimisation problems using
stochastic ranking and repair methods. IEEE Trans. Evol. Comput. (2010) (submitted),
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/
NguyenYaodRepairGA.pdf

[26] Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm
model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

[27] Prata, D.M., Lima, E.L., Pinto, J.C.: Simultaneous data reconciliation and parameter
estimation in bulk polypropylene polymerizations in real time. Macromolecular Sym-
posia 243(1), 91–103 (2006)

[28] Richter, H.: Detecting change in dynamic fitness landscapes. In: Proc. 2009 IEEE
Congr. Evol. Comput., pp. 1613–1620 (2009)

[29] Richter, H.: Memory design for constrained dynamic optimization problems. In: Di
Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561.
Springer, Heidelberg (2010)

[30] Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic op-
timization problems. Soft Comput. 13(12), 1163–1173 (2009)

[31] Rocha, M., Neves, J., Veloso, A.: Evolutionary algorithms for static and dynamic opti-
mization of fed-batch fermentation processes. In: Ribeiro, B., et al. (eds.) Adaptive and
Natural Computing Algorithms, pp. 288–291. Springer (2005)

[32] Singh, H.K., Isaacs, A., Nguyen, T.T., Ray, T., Yao, X.: Performance of infeasibility
driven evolutionary algorithm (IDEA) on constrained dynamic single objective opti-
mization problems. In: Proc. 2009 IEEE Congr. Evol. Comput., pp. 3127–3134 (2009)

[33] Tawdross, P., Lakshmanan, S.K., Konig, A.: Intrinsic evolution of predictable behav-
ior evolvable hardware in dynamic environment. In: Proc. 6th Int. Conf. Hybrid Intell.
Syst., p. 60 (2006)

[34] Thompson, J.M., Dowsland, K.A.: A robust simulated annealing based examination
timetabling system. Comput. Oper. Res. 25(7-8), 637–648 (1998)

[35] Wang, Y., Wineberg, M.: Estimation of evolvability genetic algorithm and dynamic en-
vironments. Genetic Programming and Evolvable Machines 7(4), 355–382 (2006)

[36] Williams, K.P.: Simple genetic algorithm (SGA) source code (in C),
http://www.kenwilliams.org.uk/code/ga2.c
(accessed December 2008)

[37] Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

[38] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[39] Zhang, Z., Liao, M., Wang, L.: Multi-objective immune genetic algorithm solving dy-
namic single-objective multimodal constrained optimization. In: Proc. 8th Int. Conf.
Natural Comput., pp. 864–868 (2012)

http://www.staff.ljmu.ac.uk/enrtngu1/Papers/NguyenYaodRepairGA.pdf
http://www.staff.ljmu.ac.uk/enrtngu1/Papers/NguyenYaodRepairGA.pdf
http://www.kenwilliams.org.uk/code/ga2.c

Part III
Theoretical Analysis

Chapter 9
Theoretical Advances in Evolutionary Dynamic
Optimization

Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao

Abstract. The field of evolutionary dynamic optimization is concerned with the
study and application of evolutionary algorithms to dynamic optimization prob-
lems: a significant number of new algorithms have been proposed in recent years
that are designed specifically to overcome the limitations faced by traditional al-
gorithms in the dynamic domain. Subsequently, a wealth of empirical studies have
been published that evaluate the performance of these algorithms on a variety of
benchmark problems. However, very few theoretical results have been obtained dur-
ing this time. This relative lack of theoretical findings makes it difficult to fully as-
sess the strengths and weaknesses of the individual algorithms. In this chapter we
provide a review of theoretical advances in evolutionary dynamic optimization. In
particular, we argue the importance of theoretical results, highlight the challenges
faced by theoreticians and summarise the work that has been done to date. We sub-
sequently identify relevant directions for future research.

9.1 Introduction

The field of evolutionary dynamic optimization is concerned with the study and
application of evolutionary algorithms (EAs) to the class of dynamic optimization
problems (DOPs): the dependency on time of such problems poses many new chal-
lenges to the design of EAs as pointed out by numerous monographs published
in early 2000 [5, 35, 56]. This raised noticeable interest in evolutionary dynamic

Philipp Rohlfshagen · Xin Yao
Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K.
e-mail: philipp.r@gmail.com, X.Yao@cs.bham.ac.uk

Per Kristian Lehre
School of Computer Science, University of Nottingham, Nottingham NG8 1BB, U.K.
e-mail: perkristian.lehre@nottingham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 221–240.
DOI: 10.1007/978-3-642-38416-5_9 c© Springer-Verlag Berlin Heidelberg 2013

222 P. Rohlfshagen, P.K. Lehre, and X. Yao

optimization and a significant number of nature-inspired techniques have subse-
quently been proposed to address the potential shortcomings of traditional EAs in the
dynamic domain. The majority of techniques, many of which are reviewed through-
out this book, employ additional features, such as the preservation of population
diversity, in order to efficiently track high quality solutions over time.

The wealth of techniques developed is well documented by the numerous reviews
that have been published in the last decade, particularly in 1999/2001 [3, 4], 2005
[26] and 2011 [8]. These reviews not only highlight the significant developments
in terms of new algorithms but also the simultaneous lack of theoretical results and
although the degree of theoretical results in evolutionary computation is generally
overshadowed by the sheer quantity of empirical results, this discrepancy is even
more apparent in the case of DOPs: the only review to mention theoretical results is
by Jin and Branke [26], limited to a total of four references.

This relative lack of theoretical results, caused primarily by the added difficulty
of having to account for the problem’s dynamics, makes it difficult to fully assess
the strengths and weaknesses of the individual algorithms. Furthermore, the lack of
a clearly defined framework has made it difficult for practitioners to fully express
their assumptions and to generalise from specific test scenarios to a wider class of
problem dynamics. In order to draw attention to this issues, this chapter provides a
self-contained overview of theoretical advances in evolutionary dynamic optimiza-
tion: we argue the importance of theoretical results, highlight the challenges faced
by theoreticians and summarise the work that has been done to date. Finally, we
subsequently identify relevant directions for future research.

The remainder of this chapter is structured as follows: in section 9.2, we provide a
brief overview of evolutionary algorithms and optimization, particularly in uncertain
environments. In section 9.3 we then lay the foundation for the review of theoretical
results, including an introduction to runtime analysis in the dynamic domain. The
review of previous work is found in section 9.4 and finally, the chapter is concluded
in section 9.5 where we summarise the reviewed work, assess its implications and
outline some prospects for future work.

9.2 Evolutionary Dynamic Optimization

9.2.1 Optimization Problems

An optimization problem f : X →Y is a mapping, also known as the objective func-
tion, from a search space X to the domain Y (e.g.,R); the value f (x) ∈Y, x∈ X indi-
cates the quality of x and the elements xi are usually referred to as design or decision
variables. The dimensionality of the problem is |x| = n and the set of all f-values,
corresponding to all elements in X is denoted as f̂ . The goal of an optimization al-
gorithm is usually to find the global optimum x� ∈ X such that f (x�)≥ f (x), ∀x ∈ X
in as little time as possible. An obstacle faced by the algorithm in doing so are local
optima, defined as points x ∈ X such that f (x) ≥ f (z), ∀z ∈ N(x) where N(x) is the
neighbourhood of x, determined by the algorithm’s variation operators. It should

9 Theoretical Advances in Evolutionary Dynamic Optimization 223

be noted that, without loss of generality, we assume that functions are to be max-
imised. Furthermore, we only consider combinatorial optimization problems (i.e.,
those with a discrete search space).

9.2.2 Optimization in Uncertain Environments

Traditionally, the majority of work in evolutionary computation has concentrated on
deterministic stationary optimization problems; nevertheless, a significant effort has
also been devoted to problems characterised by uncertainty. In [26], Jin and Branke
review four distinct types of uncertain environments as outlined next.

Noisy optimization problems are characterised by an objective function that is
subject to noise. This implies that every time a point x ∈ X is evaluated, the value
f (x) varies according to some additive noise z that follows some (usually normal)
distribution:

f (x) :=
∫ ∞

−∞
[f (x)+ z] p(z) dz = f (x), z∼ N(0,σ2) (9.1)

Algorithms should subsequently work on the expected f-values of the search points.
In robust optimization, it is the decision variables xi, i = 1, . . . ,n that are subject

to minor perturbations λ after the value f (x) has been determined (e.g., manufac-
turing variances):

f (x) :=
∫ ∞

−∞
[f (x+λ)] p(λ) dλ (9.2)

Desired solutions are those whose f-values vary within acceptable margins given
minor alterations to the solution’s decision variables.

The third class of problems considered by Jin and Branke [26] is approximate
optimization (also known as surrogate-assisted optimization) where the objective
function is too expensive to be queried continuously. A (meta-) model, which pro-
duces approximate f-values with error e(x), is used instead and the algorithm only
calls the original objective function intermittently:

f (x) :=

{
f (x) if original objective function is used;
f (x)+ e(x) if meta-model is used.

(9.3)

Here it is vital for the algorithm to determine a reasonable trade-off between the ac-
curacy of f-values obtained by the meta-model and the computational cost required
to do so.

Finally, the fourth type of uncertain optimization problems corresponds to dy-
namic optimization problems which are deterministic at any moment in time but
may change over time. The class of DOPs is difficult to define as, in principle, any
component of f may change over time and the Handbook of Approximation Al-
gorithms and Metaheuristics [30] states that a general definition of DOPs does not
exist. Jin and Branke [26] deliberately keep the problem definition as general as
possible:

f (x) := f (x, t) (9.4)

224 P. Rohlfshagen, P.K. Lehre, and X. Yao

The dynamics of the problem correspond to the mapping T : F ×N → F such
that f (T + 1) = T (f (T)). We assume that time t advances with every call to the
objective function such that T τ ≤ t < (T + 1)τ where τ ≥ 1 is the frequency of
change. It follows that T is a period index for each problem instance encountered.

The majority of practitioners attempt to design algorithms that are able to track
high quality solution as closely as possible over time. In particular, a single solution
is considered insufficient and instead, the algorithm should return a trajectory of
solutions over time. One of the main motivations driving the development of new
algorithms is the transfer of knowledge from one problem instance encountered to
the next [5]: practitioners commonly assume that successive problem instances en-
countered by the algorithms are correlated to one another, allowing the algorithm to
outperform a random restart by making use of the search points found so far.

9.2.3 Evolutionary Algorithms

The field of evolutionary computation provides a variety of nature-inspire meta-
heuristics that have been utilised successfully to obtain high quality solutions to
a variety of NP-hard optimization problems. In this chapter we concentrate exclu-
sively on those algorithms that are understood to be evolutionary algorithms (EAs):
EAs are population-based global search algorithms inspired loosely by the general
principles of evolutionary systems. Roughly speaking, EAs attempt to obtain solu-
tions of increasing quality by means of selection, crossover and mutation: selection
favours those individuals in the algorithm’s population (the multiset P) that repre-
sent solutions of higher quality (exploitation) whereas crossover and mutation, the
algorithm’s variation operators, generate offspring from those individuals to ad-
vance the search (exploration).

Two simple algorithms that have been analysed theoretically in the dynamic do-
main are the (1+λ)−EA and the (1+1)−EA. The former maintains at any moment
in time a single parent that produces λ offspring by means of mutation. The next
generation is chosen from the set of all individuals (i.e., the offspring and the par-
ent). The pseudo-code for this algorithm is shown in Algorithm 1. A special (and
simpler) variant of this algorithm is the (1+1) EA where the offspring population is
limited to a single individual, akin of stochastic local search. Both algorithms rely
solely on their mutation operator which alters elements in x with some probability
pm.

9.3 Theoretical Foundation

9.3.1 Introduction to Runtime Analysis

The theoretical foundations for EAs are less well developed than for classical al-
gorithms which are often accompanied with rigorously proven guarantees on the
quality of their solutions and bounds on the worst-case cost of obtaining them. In
contrast, EAs have traditionally been evaluated empirically on selected problem

9 Theoretical Advances in Evolutionary Dynamic Optimization 225

Algorithm 1 (1+λ)−EA.
set t = 1
initialise x(0) uniformly at random

while terminate = false do
for i := 1 to λ do

xi(t) := x(t)
Alter each position of xi(t) with probability pm.

end for
xbest(t) := xi(t) | f (xi(t))≥ f (x j(t)), j = 1, . . . ,λ
if f (xbest(t))≥ f (x(t)) then

x(t +1) := xbest(t)
end if
t := t +1

end while

instances, and strong guarantees about their performance are often not available.
This lack of formal performance guarantees is partly because EAs are hard to anal-
yse. In particular, they are designed to simulate some aspect of nature without regard
as to whether they can be studied formally or not. In contrast, classical algorithms
are often designed specifically with runtime bounds in mind.

Nevertheless, significant progress has been made during the last decade in the
runtime analysis of EAs [1, 41, 42]. The black-box scenario is the common theoret-
ical framework in most of these studies [17]: the algorithm is assumed to be oblivi-
ous to the structure of the function that is to be optimised (i.e., auxiliary information
like gradients is not available). Information about the function can only be gained
by querying for f-value of search points the algorithm chooses. However, it is as-
sumed that the algorithm knows the class of functions F (problem) from which the
function (problem instance) is taken. As a consequence of the No Free Lunch theo-
rems [16, 61], it is necessary to assume that the function class F has some structure
which can be exploited by the algorithm as otherwise it is impossible to distinguish
the (average case) performance of different algorithms (see section 9.3.3).

The expected runtime of an algorithm A on a function f is the expected number
of times the algorithm evaluates the objective function before the global optimum
is found for the first time (the algorithm’s hitting time). The expectation is with
respect to the random choices made by the algorithm and the expected runtime on
F is the maximum of the expected runtimes over all f ∈ F . In addition to allow a
precise definition of the runtime of particular algorithms, it is also possible to define
the complexity of function classes, the so-called black-box complexity [17, 32].
This is the minimum expected runtime on the problem class among all black-box
algorithms.

Initial runtime studies were concerned with simple EAs like the (1+1) EA on
artificial pseudo-boolean functions [13, 15, 55], highlighting how different com-
ponents of evolutionary algorithms impact their runtime (e.g., the crossover oper-
ator [25, 51], population size [21, 59], diversity mechanisms [19], and selection

226 P. Rohlfshagen, P.K. Lehre, and X. Yao

pressure [31]). This effort also considered other types of meta-heuristics (e.g., ant
colony optimization [38, 40], particle swarm optimization [52, 60], and estimation
of distribution algorithms [7]) as well as new problem settings (e.g., multi-objective
[20, 21, 37] and continuous [23] optimization). A significant amount of work has
been directed towards studying classical combinatorial optimization problems, like
maximum matching [22], sorting [47], Eulerian cycles [9], minimum spanning trees
[39], and more generally matroid optimization problems [44]. For NP-hard prob-
lems, the focus has been on interesting sub-classes such as for the vertex cover prob-
lem [43], on the algorithm’s approximation quality [18, 58], and on fixed-parameter
tractability [28, 29]. There has also been some work trying to estimate the runtime
on problems close to industrial applications, in particular in software engineering
[33, 34].

9.3.2 Runtime Analysis for Dynamic Functions

The rigorous analysis of an algorithm’s runtime can be very challenging and it has
been common practice in the past to consider relatively simple algorithms (e.g.,
(1+1) EA) and problems (e.g., ONEMAX; see section 9.3.4). However, in recent
years, significant progress has been made and the use of new techniques (e.g., drift
analysis) allowed theoreticians to obtains proofs for significantly more complex sce-
narios. However, runtime analysis in the dynamic domain is further complicated by
the dynamics of the function which have to be taken into account in addition to the
dynamics of the algorithm. The fundamental impact of this added complexity is il-
lustrated by the need to define a new notion of optimality for DOPs as traditional
measures are often no longer applicable. In particular, the majority of practitioners
is interested in multiple solutions across the life cycle of the problem and hence one
has to evaluate and quantify the notion by which the quality of an algorithm is to be
judged.

In the stationary case, the goal of an optimization algorithm is usually to find the
global optimum in as few steps (number of calls to the objective functions) as pos-
sible for any number of inputs n. In his work, Droste [10, 11] translates this notion
of optimality directly to the dynamic case: the author considers the expected first
hitting time of the (1+1) EA in the continuously changing ONEMAX problem. The
expected first hitting time in this case is more accurately referred to as expected tem-
poral first hitting time as we are interested in the time the current global optimum
is first found (which, in turn, may be lost as soon as a change occurs). However, the
goal in the dynamic case is usually understood to be the tracking of the global opti-
mum over time [5]. In other words, the algorithm has to repeatedly locate the global
optimum, prompting Droste to mention additional measures that may be taken into
account such as the degree to which a found optimum is lost or the average distance
to the nearest optimum over time [11, p 56]. The notion of distance to the optimum
was also considered by Jansen and Schellbach [24] who quantified this concept via
the time until the distance between the sequence obtained by the algorithm and the

9 Theoretical Advances in Evolutionary Dynamic Optimization 227

target point is larger than kdmax, assuming that the initial distance is less than dmax.
Informally, this is the time until the algorithm has “lost” the target point.

In [46], the authors take the concept of dynamic runtime a step further and con-
sider the time required by the algorithm to relocate the global optimum once it has
been lost due to update of the function; this measure is called the second hitting time,
a specific case of the more general expected ith hitting time. Considering multiple
hitting times, it is natural to take into account the duration with which the algorithm
resides at the optimum, a measure called the séjour time. These concepts may be
formalised as follows.

Definition 9.1 (Dynamic Runtime [46]). Given a search space X and a dynamic
fitness function f : X×N0→R, let x(t), t ≥ 0, be the current search point at iteration
t of optimization algorithm A on dynamic fitness function f . Then the hitting times
Tj and the séjour times Si of algorithm A on function f are defined as

Ti := min
t
{t ≥ 0 | ∀y ∈ X , f (x(Qi + t),Qi + t)≥ f (y,Qi + t)},

Si := min
t
{t ≥ 0 | ∃y ∈ X , f (x(Zi + t),Zi + t)< f (y,Zi + t)},

where i≥ 1 and

Qk :=

{
0 if k = 1,

∑k−1
l=1 (Tl +Sl) otherwise

Zk :=

{
T1 if k = 1,

T1 +∑k−1
l=1 (Sl +Tl+1) otherwise

This definition of dynamic runtime accounts for the common notion of optimality
in the dynamic domain which is concerned with the algorithm’s ability to locate
and track the global optimum over time. To be considered efficient in the dynamic
domain, it is necessary that the algorithm locates the optimum within reasonable
(i.e., polynomial) time and that the second and subsequent hitting times should not
be larger than the first: the first hitting time usually assumes a uniformly random
distribution from which the initial search points are selected. In the dynamic case,
however, once a change takes place, the algorithm has already spent τ steps op-
timising the function and is thus at a non-random point (e.g., the previous global
optimum) when faced with a new instance of the problem. If this is not the case, a
restart strategy should be favoured over continuous tracking of the optimum.

9.3.3 No Free Lunches in the Dynamic Domain

Informally, the No Free Lunch theorem for optimization (NFL; [61]) states that any
two black-box algorithms a1 and a2 perform, on average, identically across the set
of all possible functionsF =Y X . Similarly, in the case of time-variant functions, the
average performance of any two algorithms is identical across the set of all possible
dynamics T : F ×N→F . The following summarises these results.

Assuming optimization algorithm a only maps to points not previously vis-
ited, the algorithm corresponds to the mapping a : d ∈ D → {x | x � dx} where

228 P. Rohlfshagen, P.K. Lehre, and X. Yao

D is the set of all possible samples and dx the set of unique points sampled
so far. Over m iterations, the time-ordered distinct visited points correspond to
dm ≡{(dx

m(1),d
y
m(1)), . . . ,(dx

m(m),dy
m(m))} and it is important to note that this sam-

ple contains all points sampled by the algorithm, not just those accepted. The perfor-
mance of an algorithm a iterated m times on function f corresponds to the likelihood
that a particular sample dy

m has been obtained: P(dy
m | f ,m,a). The NFL theorem

then states that

∑
f

P(dy
m | f ,m,a1) = ∑

f

P(dy
m | f ,m,a2) (9.5)

It follows that for any performance measure Φ(dy
m) based on the samples dy

m, the
average performance over all functions is independent of a. Wolpert and McReady
[61] extend this analysis to the class of time-variant functions, highlighting two
particularly interesting issues:

1. How the dynamic functions are defined.
2. How the performance of an algorithm is measured.

The authors consider the case where the algorithm starts with function f1 and with
each subsequent iteration of the algorithm, the function is transformed to a new
function by the bijective mapping T : F ×N→F . The authors note that an algo-
rithm’s performance in the dynamic domain is not trivially defined and propose two
measures: in the first scheme, the y-value corresponding to a particular point x is
determined by the function at the time the point was evaluated. In the second case,
the y-values correspond to the values obtained for each x sampled according to the
final function encountered.

Subsequently, a similar result to equation 9.5 may then be obtained. In this case,
the average is over all possible dynamics T (rather than functions f):

∑
T

P(dy
m | f1,T,m,a1) = ∑

T
P(dy

m | f1,T,m,a2) (9.6)

9.3.4 Benchmark Problems

Numerous dynamic benchmark problems have been proposed in the past, allowing
practitioners to test, evaluate and compare their algorithms. These benchmarks in-
clude tools to generate a wide range of dynamics (e.g., MOVING PEAKS[5] and
DF1[35]) and dynamic variants of well-known NP-hard stationary optimization
problems (e.g., Travelling Salesman Problem or Scheduling Problems). Naturally,
theoreticians have concentrated on simpler problems with well-defined dynamics.
The XOR DOP [62, 63] benchmark may be used to impose artificial dynamics on
any pseudo-Boolean optimization problem. It is a generalisation of the dynamic pat-
tern match problem that was used in the first attempt to analyse the runtime of an
EA in the dynamic domain. Finally, a third problem that has been considered by
theoreticians is a simple tracking problem in a lattice. These problems are reviewed
below.

9 Theoretical Advances in Evolutionary Dynamic Optimization 229

9.3.4.1 Dynamic Match Function

Standhope and Daida [49, 50] propose a simple dynamic function for an initial anal-
ysis of the behaviour of the (1+1) EA. The function is a generalisation of the well-
known ONEMAX problem to the dynamic domain. The f-values in the ONEMAX

problem simply correspond to the number of ones found in the solution x:

ONEMAX(x) =
n

∑
i=1

xi (9.7)

In the case of the dynamic match function, the algorithm must reduce the Hamming
distance d(x,z) = ∑n

i=1 |xi− zi| to an arbitrary target pattern (match string) στ that
may change over time:

f (a,στ) =
n

∑
i=1

¬(ai⊕στi) (9.8)

where ¬ is the logical not operator and ⊕ logical xor. The dynamics of στ are con-
trolled by two parameters, g and d which control the number of generations between
changes and the degree (Hamming distance) by which the target pattern is altered
(d distinct and randomly chosen bit in σ are inverted). The values (0,0) result in a
stationary function whereas the values (2,5) would imply that every 2 generations,
the target changes by 5 bits.

9.3.4.2 The XOR DOP Problem

XOR DOP [62, 63] is the only widely accepted benchmark problem in dynamic
optimization for the combinatorial domain and generates a dynamic version of any
static pseudo-Boolean problem. It is a generalisation of the dynamic match function
and imposes dynamics on any stationary pseudo-boolean function f : B→ R by
means of a bit-wise exclusive-or operation that is applied to each search point x ∈
{0,1}n prior to each function evaluation. The dynamic equivalent of any stationary
function is simply

f (x(t) ⊕ m(T)) (9.9)

where⊕ is the xor operator. The vector m(T)∈ {0,1}n, which initially is equivalent
to 0n, is a binary mask, generated by m(T) =m(T−1)⊕ p(T) where p(T)∈ {0,1}n

is a randomly created template that contains exactly �ρn� ones. The value of ρ ∈
[0,1] thus controls the magnitude of change which is specified as the Hamming
distance between two binary points. It follows that ρn is the actual number of bits
inverted. The period index T = �t/τ	 is determined by the duration τ > 0 between
changes.

XOR DOP was analysed by Tinós and Yang [53]: if we assume that the trans-
formation of each encoding x(t) by m(T) yields a vector z(t) = x(t)⊕m(T), then
it is possible to rewrite this expression as zn(t) = A(T)xn(t) where x ∈ {0,1}n is
normalised to xn(t) ∈ {−1,1}n and where A(T) is a linear transformation:

230 P. Rohlfshagen, P.K. Lehre, and X. Yao

A(π) =

⎡
⎢⎢⎢⎣

A1(π) 0 . . . 0
0 A2(π) . . . 0

. . .

0 0 . . . An(T)

⎤
⎥⎥⎥⎦

where

Ai(π) =
{

1 if mi(T) = 0
−1 if mi(T) = 1

for i = 1,2, . . . ,n. It follows that XOR DOP does not alter the underlying function
but instead rotates each search point x prior to each function evaluation.

This analysis was extended in [54] using a dynamical system analysis. In partic-
ular, the authors showed that XOR DOP corresponds to a DOP with permutations:
the class of DOPs with permutation are those with dynamics that permute the as-
signment between elements in X and those in f̂ . The authors subsequently showed
that the xor operator may be replaced with a single mutational step performed when-
ever the function is meant to change. In other words, given two dynamic processes,
one governed by XOR DOP, the other by an initial mutational step, “if both evo-
lutionary processes have the same initial population and parameters, and the fitness
function in the first change cycle for the first process is equal to the fitness function
in the second process, then the evolution of the population in the two processes is
identical, i.e., the two evolutionary processes are equivalent.”.

9.3.4.3 Tracking Problem

Weicker [57] considered a simple tracking problem modelled on the integer lattice
as a sequence of target points a1,a2, . . . ∈ Z2 together with a time-variant objec-
tive function f : Z2×N→ R which is to be minimised. The first argument to the
objective function is a point in the lattice, and the second argument is the time pa-
rameter. The function is defined for all x and t as f (x, t) := ‖x− at‖, where ‖ · ‖ is
the �1-norm. Essentially, f (x, t) is the Manhattan-distance between the point x and
the current target point at time t.

The sequence a1,a2, . . ., representing a moving target, is unknown to the algo-
rithm, and can be deterministic, stochastic, or chosen by an adversary. The only
assumption made about the sequence is that for some parameter dmax, ‖at−at+1‖ ≤
dmax holds for all t ≥ 0 (i.e., the speed of the target point is no more than dmax). The
special case dmax = 0 corresponds a static optimization problem.

Informally, the objective of an algorithm in the tracking problem is to obtain a se-
quence of search points x1,x2, . . .∈ Z2 that are close to the sequence of target points.
Various aspects of this informal objective have been formalised. First, the algorithm
needs to obtain a search point that is within acceptable distance to the target point,
then it must track the moving target. Jansen and Schellbach [24] considered the first
hitting-time Tmaxd (n), defined as the number of function evaluations until a search
point xt has been obtained for which ‖xt − at‖ ≤ dmax, assuming that the algorithm
is provided with an initial search point x1 for which ‖x1− a1‖= n.

9 Theoretical Advances in Evolutionary Dynamic Optimization 231

9.4 Runtime Analysis for Dynamic Functions

9.4.1 First Hitting Times for Pattern Match

The (1+1) EA has been analysed on several variants of the dynamic ONEMAX

(match function), extending the work carried out previously on its stationary coun-
terpart (e.g., [2, 14, 36]). The dynamic variants of the ONEMAX differ in their tran-
sitions from one instance to the next, a property which may drastically affect the
runtime of the algorithm.1

The first consideration of a non-empirical analysis is due to Stanhope and Daida
[50] who consider the (1+1) EA with simplified mutation operator on the dynamic
pattern match function with intergenerational updates. The mutation operator con-
sidered inverts exactly r bit, chosen uniformly at random; the mutation rate r re-
mains constant throughout the algorithm execution. The authors first consider the
case (0,0) (i.e., a stationary function) and then generalise to the dynamic case (d,g).
The authors use a hypergeometric random variable to describe the probability dis-
tribution over neighbouring search points that may be generated by the mutation op-
erator. The dynamics of the pattern matching function are modelled as an additional
mutational step that inverts d bits every g generations (c.f., analysis of XOR DOP
in section 9.3.4). The authors subsequently derive a distribution function on the fit-
ness if a selected individual. The transition probabilities are validated empirically
by a comparison to Monte-Carlo generated fitness distributions and amongst other
things, Stanhope and Daida showed that even small perturbations in the fitness func-
tion could have a significantly negative impact on the performance of the (1+1) EA.

In a sequence of papers [11, 12], Droste considered the dynamic ONEMAX prob-
lem. The initial model considered the target sequence modified by a single, uni-
formly chosen, bit-flip with probability p in each iteration. The goal of the study
was to determine values of p for which the (1+1) EA has polynomial expected first
hitting time. Since the parameter setting p = 0 corresponds to the static ONEMAX-
problem, for which the (1+1) EA has expected first hitting time O(n logn) [15], it
is clear that exponential first hitting time can only occur for strictly larger values. It
should be noted that the (1+1) EA considered by Droste [10] was adapted specif-
ically to the dynamic domain by calling the objective function twice during each
iteration to prevent the use of outdated f-values.

Droste found that the first hitting time remains polynomial as long as p =
O(logn/n). At this rate, the target sequence is modified O(log2(n)) times in expec-
tation during a time interval of n logn iterations. This rate turned out to be critical,
as the expected first hitting time becomes exponential for p = ω(log(n)/n).

The dynamic ONEMAX-model considered by Droste can be generalised. Instead
of only flipping one bit with a certain probability, one can define a random operator
M that acts on the target sequence in each iteration. One such natural operator, is

1 As pointed out in [49], the pattern match function is equivalent to the application of
XOR DOP to the ONEMAX function. Furthermore, the runtime analysis may be sim-
plified if the dynamics are viewed as an additional mutation operator that acts directly on
x (depending of magnitude and frequency of change; see section 9.3.4.2).

232 P. Rohlfshagen, P.K. Lehre, and X. Yao

to flip each bit position in the target sequence with some probability p′ in each it-
eration. While the second model leads to a more involved analysis, the results are
essentially the same in the two models. Note first that by setting p′ := p/n, the ex-
pected number of bit-flips to the target sequence per time step is the same in the both
models. Droste found that the expected first hitting time remains polynomial as long
as p′ = O(log(n)/n2), whereas the expected first hitting time becomes exponential
as soon as p′′ = ω(log(n)/n2).

9.4.2 Analysis of Frequency and Magnitude of Change

In [46], the authors look at the two most prominent attributes of most DOPs, the
magnitude of change and the frequency of change. The former is generally regarded
as the relatedness of two successive problem instances, f (T) and f (T + 1) and a
common assumption is that smaller magnitudes of change are easier to adapt to, pri-
marily by “transferring knowledge from the past” [26, p 311]. The authors attempt
to shed light on the question whether this is always the case or whether examples
exist where a large magnitude of change may make it easier for the algorithm to
relocate the global optimum.

For the magnitude of change, a specially designed function called MAGNITUDE

is proposed: informally, this bi-modal function features a local optimum (LOCAL)
surrounded by a valley of low f-values (TRAP). Beyond the valley is a region (ZERO)
that leads a path that leads to the global optimum (GLOBAL). This stationary func-
tion is subsequently made dynamic using the XOR DOP framework to yield a dy-
namic MAGNITUDE function. The authors subsequently found that for (1+1) EA on
MAGNITUDE with an update time τ ≥ n2 logn, and a magnitude of change θ , the
second hitting T2 satisfies

1. For small magnitudes of change, i.e. when 1≤ θ ≤ q− cn,

E [T2] = eΩ(n)

2. For large magnitudes of change, i.e. when 3q≤ θ ≤ n,

Pr
[
T2 ≤ n2 logn

]
= 1− e−Ω(n).

The proof idea for the runtime of the (1+1) EA follows directly from the function
definition and is based on two concepts: the behaviour of the algorithm during each
update period (i.e., in time of stagnation) and the impact of the dynamics on the
algorithm, given the algorithm is either at LOCAL or GLOBAL. It is assumed that
the time between changes is sufficiently long for the algorithm to reach one of the
two optima with high probability; depending on the magnitude of change, different
behaviours emerge. The initial search point may be in TRAP or ZERO. The proba-
bility to be on PATH is exceedingly small. If the algorithm starts in TRAP, it will
be led away from the other regions of the search space towards the point LOCAL.
Subsequently, if a small change occurs, the rotated search point will still be in the
region TRAP and is hence attracted again to the local optimum. If, on the other hand,

9 Theoretical Advances in Evolutionary Dynamic Optimization 233

the initial search point is not in TRAP, the algorithm is led to the beginning of the
path which leads directly to GLOBAL. The situation at GLOBAL is similar to the one
at LOCAL. If the magnitude of change is small, the search point will be rotated into
the TRAP region. If the magnitude of change is large, on the other hand, the search
point will jump across the trap into ZERO or PATH. Similarly, if the algorithm is
at LOCAL and a large change takes place, the search point is rotated beyond the
boundary of the TRAP region.

The authors also looked at the frequency of change and similarly to the result
above, showed that a high frequency of change may allow the algorithm to locate
the function’s global optimum whereas a low frequency of change does not. More
specifically, it is shown that the dynamic optimization problem called BALANCE is
hard for the (1+1) EA at low frequencies, and easy at high frequencies. Informally,
the function is defined as follows: the algorithm is drawn towards the global opti-
mum along the z-axis while the dynamics “tilt” the plane along the x-axis, elevating
the f-values at different parts across the y-axis. This potentially draws the algorithm
towards a trap-region that allows the algorithm to only get within a specific distance
to the global optimum. If the algorithm is not trapped, on the other hand, the global
optimum may be found by incremental improvements to the search points sampled.

The function is also made dynamic using the XOR DOP framework but a spe-
cially designed mask m is used to alter the search points in specific ways:

m(T) :=

{
0n/2 ·0n/2 if T mod 2 = 0, and

0n/2 ·1n/2 otherwise.

Hence, only the suffix of the point x is affected, and the magnitude of change is
equivalent to n/2.

Theorem 9.1 ([46]). The expected first hitting time of (1+1) EA on BALANCE with
update time τ is

E [T] =

{
nΩ(

√
n) if τ > 40n, and

O(n2) if τ = 2.

The idea for the proof shows that the algorithm will balance along the centre of the
vertical axis when the frequency of change is high, while the algorithm is likely
to fall into one of the trap regions when the frequency of change is sufficiently
low. This can be proved by analysing the horizontal and vertical drift. Informally,
the drift of a search point is the distance the search point moves per iteration. The
horizontal drift corresponds to the change in number of leading 1-bits in the prefix,
and the vertical drift corresponds to the change in number of 1-bits in the suffix. As
long as the trap region has not been reached, the position along the vertical axis can
be changed by flipping any of at least n/16 bits, and no other bits. In contrast, in
order to reduce the distance to the optimum along the horizontal axis, it is necessary
to flip the single left-most 0-bit, an event that happens with much lower probability.
Therefore, the vertical drift is much larger than the horizontal drift. If the frequency
of change is sufficiently low, then the current search point will have enough time

234 P. Rohlfshagen, P.K. Lehre, and X. Yao

to reach one of the trap regions before the optimum is found. On the other hand,
if the frequency of change is sufficiently high, then the search point will not have
time to reach the trap region during one period. In the following period, the vertical
drift will be in the opposite direction, and the vertical displacement of the search
point is off-set. These informal ideas can be turned into a rigorous analysis using
the simplified drift theorem.

9.4.3 Tracking the Optimum in a LATTICE

Jansen and Schellbach [24] analysed the performance of the (1+ λ) EA on the
tracking problem described in section 9.3.4.3. An offspring is generated by adding
to the parent K vectors sampled uniformly at random with replacement from the set
{(±1,0),(0,±1)}, where K is a Poisson distributed random variable with param-
eter 1. Hence, the offspring has expected distance 1 from the parent. The analysis
assumes that the time steps of the objective function is synchronised with the gen-
eration counter of the EA. Hence, in each generation t ≥ 1, the algorithm evaluates
the distance between λ offspring and the current target point at . Intuitively, a larger
population size should be beneficial for the EA within this scenario, because each
generation provides more information about the position of the current target point.

For the special case of dmax = 0, (i.e., a static optimization problem), they ob-
tained the following asymptotically tight bound on the first hitting time.

Theorem 9.2 ([24])

E
[
Tλ ,0(n)

]
=Θ

(
λ ·

(
1+

n · loglogλ
logλ

))
.

As the algorithm makes λ function evaluations per generation, and needs to over-
come a distance of n, the result informally means that the speed of the algorithm
is on the order of Θ(logλ/ loglogλ) per generation. Increasing the population size
λ decreases the expected number of generations needed to reach the (static) target
point.

The potential difficulty of the tracking problem increases with the parame-
ter dmax. In the worst case, the target point moves in the opposite direction of
the current search point. Intuitively, if dmax is significantly lower than the speed
Θ(logλ/ loglogλ) of the algorithm, then one would expect the algorithm to be able
to reach the target point. The following theorem confirms this intuition.

Theorem 9.3 ([24]). Let b := 4/e, n′ := n−dmax, c̃ > 1, and s :=
⌊

logb λ
2c̃ logb logb λ

⌋
. For

dmax ≤ (2/3− o(1/λ))s, it holds

Pr
[

Tλ ,dmax(n) = O

(
λ (1+

n′ loglogλ
logλ

)

)]
= 1− 2−Ω(n′/s)

Once the algorithm is within distance dmax of the moving target point, it is intuitive
that the algorithm does not loose track of the target point. The following theorem

9 Theoretical Advances in Evolutionary Dynamic Optimization 235

shows that the expected time until the target point is lost grows exponentially with
the population size.

Theorem 9.4 ([24]). Let s be as in Theorem 9.3. For dmax ≤ (2/3)s, and any integer
k≥ 2, the expected number of generations until the (1+λ) EA has a distance to the
target of at least kdmax after having a distance of at most dmax is bounded below by
eΩ(k

√
λ).

In contrast, when dmax is significantly higher than Θ(logλ/ loglogλ), and the tar-
get point moves in an adverserial way, it is to be expected that the tracking problem
becomes hard for the (1+λ) EA. Jansen and Schellbach [24] provide some theoreti-
cally motivated arguments that support this view.

9.5 Conclusions

9.5.1 Summary and Implications

The number of contributions in evolutionary dynamic optimization has risen dra-
matically in recent years and a wealth of novel evolutionary algorithms (EAs) have
been suggested that attempt to track the global optimum of some dynamic function
over time. However, theoretical results on the expected runtimes of these algorithms
are almost non-existent and almost all findings are based exclusively on empirical
data. This imbalance may make it difficult to validate an algorithm’s performance
and to identify a broader class of functions the algorithm may work well on. Fur-
thermore, the lack of theoretical results may lead to incorrect empirical validation
of common assumptions about the dynamic domain. In this chapter, we reviewed
previous theoretical results in an attempt to highlight some of the gaps in our under-
standing of evolutionary dynamic optimization. These results may be summarised
as follows.

The results by Droste [11, 12] showed how the rate of change plays a crucial
role in the algorithm’s (temporal) first hitting time. In a more general sense, this is a
first step in understanding how subtle differences in the problem’s dynamics make
the problem tractable or not. This result extended the earlier study by Stanhope and
Daida [50] that even small perturbations in the fitness function could have a signif-
icantly negative impact on the performance of the (1+1) EA. The results by Rohlf-
shagen et al. [46] have shown that it is possible to show examples where common
assumptions (i.e., that a larger magnitude of change / higher frequency of change
makes a DOP harder) break down. This has important ramifications regarding the
treatment of such problems and how one generalise empirical results from specific
test cases to more general classes of DOPs. Similarly, Chen et al. [6] proved that
adaptive and self-adaptive mutations may not perform as well as one might have
thought in a dynamic environment. A fixed and non-adaptive scheme can some-
time be just as good as any adaptive schemes in a dynamic environment. Finally,
Jansen and Schellbach [24] is the only work to consider an offspring population.
Within the framework considered, the authors showed that increasing the algorithm’s

236 P. Rohlfshagen, P.K. Lehre, and X. Yao

population size decreases the expected number of generations needed to reach the
target point and that the expected time until the target point is lost grows exponen-
tially with the population size.

These theoretical studies have some important implications. First of all, they
highlight the difficulty in defining the problem itself, including ways to unambigu-
ously describe some of its properties such as the magnitude of change. Furthermore,
the performance of an algorithm may be measured in numerous different ways and
there are subtle differences between each approach; it is important to better un-
derstand these differences as they clearly have an impact on how one evaluates a
particular algorithm on a particular problem.

9.5.2 Future Work

As the review in section 9.4 has shown, the scope of existing theoretical results is
limited. Nevertheless, the progress to date is essential to further developments in
the field and build the basis for future work. We believe the following constitutes
important directions for future theoretical work in evolutionary dynamic optimiza-
tion especially with regard to the significant advances made recently in the runtime
analysis of EAs in the stationary domains.

1. Framework and problem complexity. A theoretical framework is required
that allows practitioners and theoreticians to unambiguously describe different
instances of DOPs. This framework would subsequently allow for the classifi-
cation of different types of DOPs and may subsequently facilitate an analysis
of problem complexity. In particular, currently it is not possible to identify and
distinguish between those types of DOPs that are easier to solve than stationary
problems and those that are harder; empirical evidence from biology seems to
suggest that certain types of dynamics allows for faster rates of adaptation (e.g.,
[27]).

2. Notion of optimality. As the review has highlighted, numerous different no-
tions of optimality/runtime may be applied in the dynamic domain and their
relationship remains to be established. A general definition of runtime analysis
in the dynamic domain should also be grounded in practical requirements and
hence be able to account for trajectory-based performance measures as used in
most practical applications.

3. Populations. One of the main motivations behind the application of EAs to
DOPs is their use of populations. In particular, it is thought that the sampling
of multiple search points simultaneously allows for better rates of adaptation
in the new environments. The work by Jansen and Schellbach [24] provides
an initial analysis of the role played by populations yet further examples are
required where populations are provably beneficial.

4. Diversity. Diversity is considered one of the key issues that determines the
performance of an EA on a particular DOP and the majority of algorithms de-
veloped aim to maintain high levels of diversity throughout the algorithm’s ex-
ecution. However, it is clear that not all types of diversity are equally useful and

9 Theoretical Advances in Evolutionary Dynamic Optimization 237

hence a better understanding is required to identify mechanisms that are able to
produce useful levels of diversity given a particular DOP.

5. Crossover. Related to the issues of populations and diversity comes a better
understanding of crossover operators; so far, only EAs with mutation have been
considered yet almost all population-based algorithms developed for DOPs also
employ crossover operators. Nevertheless, there is little evidence that substanti-
ates the impact of crossover on the algorithm’s performance. There is evidence
from biology that the evolution of sexual reproduction (i.e., crossover) is di-
rectly linked to uncertainty in the environment (e.g., [45, 48]).

6. Beyond EAs and toy problems. There are many additional population-based
algorithms, such as ant colony optimization and particle swarm optimization,
that have already been considered from a practical point of view. Furthermore,
it is important to extend the theoretical treatment from simple artificial prob-
lems to simple dynamics variants of well-known NP hard problems such as the
travelling salesman problem.

Acknowledgements. This work was partially supported by the Engineering and Physical
Sciences Research Council (EPSRC) of UK under Grant EP/E058884/1.

References

[1] Auger, A., Doerr, B. (eds.): Theory of randomized search heuristics. World Scientific
Publishing (2011)

[2] Back, T.: Optimal mutation rates in genetic search. In: Forrest, S. (ed.) Proc. 5th Int.
Conf. Genetic Algorithms, pp. 2–8. Morgan Kaufmann (1993)

[3] Branke, J.: Evolutionary algorithms for dynamic optimization problems - a survey.
Tech. Rep. 387, Insitute AIFB, University of Karlsruhe (1999)

[4] Branke, J.: Evolutionary approaches to dynamic environments - updated survey. In:
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 27–30 (2001)

[5] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer (2002)
[6] Chen, T., Chen, Y., Tang, K., Chen, G., Yao, X.: The impact of mutation rate on the com-

putation time of evolutionary dynamic optimization. arXiv preprint arXiv:1106.0566
(2011)

[7] Chen, T., Lehre, P.K., Tang, K., Yao, X.: When is an estimation of distribution algorithm
better than an evolutionary algorithm? In: Proc. 2009 IEEE Congr. Evol. Comput., pp.
1470–1477. IEEE (2009)

[8] Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput. 15(7), 1427–1448 (2011)

[9] Doerr, B., Klein, C., Storch, T.: Faster evolutionary algorithms by superior graph repre-
sentation. In: Proc. 1st IEEE Symp. Foundations of Comput. Intell., pp. 245–250 (2007)

[10] Droste, S.: Analysis of the (1+1) ea for a dynamically changing objective function.
Tech. rep., Universität Dortmund (2001)

[11] Droste, S.: Analysis of the (1+1) ea for a dynamically changing onemax-variant. In:
Proc. 2002 IEEE Congr. Evol. Comput., pp. 55–60 (2002)

238 P. Rohlfshagen, P.K. Lehre, and X. Yao

[12] Droste, S.: Analysis of the (1+1) ea for a dynamically bitwise changing onemax. In:
Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 909–921. Springer,
Heidelberg (2003)

[13] Droste, S., Jansen, T., Wegener, I.: On the optimization of unimodal functions with the
(1 + 1) evolutionary algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 13–22. Springer, Heidelberg (1998)

[14] Droste, S., Jansen, T., Wegener, I.: A rigorous complexity analysis of the (1+1) evolu-
tionary algorithm for linear functions with boolean inputs. Evol. Comput. 6(2), 185–196
(1998)

[15] Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) Evolutionary Algorithm.
Theoretical Computer Science 276, 51–81 (2002)

[16] Droste, S., Jansen, T., Wegener, I.: Optimization with randomized search heuristics the
(a)nfl theorem, realistic scenarios, and difficult functions. Theoretical Computer Sci-
ence 287 (2002)

[17] Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Electronic Colloquium on Computational Com-
plexity (ECCC) 48, 2003 (2004)

[18] Friedrich, T., Hebbinghaus, N., Neumann, F., He, J., Witt, C.: Approximating covering
problems by randomized search heuristics using multi-objective models. In: Proc. 9th
Annual Conf. Genetic and Evol. Comput., pp. 797–804 (2007)

[19] Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving mech-
anisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

[20] Giel, O.: Zur analyse von randomisierten suchheuristiken und online-heuristiken. Ph.D.
thesis, Universität Dortmund (2005)

[21] Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective opti-
misation. Evol. Comput. 18(3), 335–356 (2010)

[22] Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem.
In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer,
Heidelberg (2003)

[23] Jägersküpper, J.: Probabilistic analysis of evolution strategies using isotropic mutations.
Ph.D. thesis, Universität Dortmund (2006)

[24] Jansen, T., Schellbach, U.: Theoretical analysis of a mutation-based evolutionary algo-
rithm for a tracking problem in lattice. In: Beyer, H.G.G. (ed.) Proc. 2005 Genetic and
Evol. Comput. Conf., pp. 841–848. ACM (2005)

[25] Jansen, T., Wegener, I.: Real royal road functions–where crossover provably is essential.
Discrete Applied Mathematics 149(1-3), 111–125 (2005)

[26] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environment - a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[27] Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution.
PNAS 104(34), 13,711–13,716 (2007)

[28] Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed parameter evolutionary algo-
rithms and maximum leaf spanning trees: A matter of mutation. In: Schaefer, R., Cotta,
C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 204–213. Springer,
Heidelberg (2010)

[29] Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex cover
problem. In: Proc. 2009 Genetic and Evol. Comput. Conf., pp. 293–300 (2009)

[30] Leguizamon, G., Blum, C., Alba, E.: Handbook of approximation algorithms and meta-
heuristics, pp. 24.1–24.X. CRC Press (2007)

9 Theoretical Advances in Evolutionary Dynamic Optimization 239

[31] Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010)

[32] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proc. 12th Annual
Conf. Genetic and Evol. Comput., pp. 1441–1448. ACM, New York (2010)

[33] Lehre, P.K., Yao, X.: Runtime analysis of search heuristics on software engineering
problems. Frontiers of Computer Science in China 3(1), 64–72 (2009)

[34] Lehre, P.K., Yao, X.: Runtime analysis of the (1+1) EA on computing unique input
output sequences. Inform. Sci. (2011)

[35] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer, Berlin (2004) ISBN 3-540-21231-0

[36] Muhlenbein, H.: How genetic algorithms really work i: Mutation and hillclimbing. In:
Manner, R., Manderick, B. (eds.) Proc. 2nd Int. Conf. Parallel Problem Solving from
Nature, pp. 15–25 (1992)

[37] Neumann, F.: Combinatorial optimization and the analysis of randomized search heuris-
tics. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel (2006)

[38] Neumann, F., Sudholt, D., Witt, C.: A few ants are enough: Aco with iteration-best up-
date. In: Proc. 12th Annual Conf. Genetic and Evol. Comput., pp. 63–70. ACM (2010)

[39] Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. Theoretical Computer Science 378(1), 32–40 (2007)

[40] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm.
In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer, Heidelberg
(2006)

[41] Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization. Natu-
ral Computation Series. Springer (2010)

[42] Oliveto, P.S., He, J., Yao, X.: Time complexity of evolutionary algorithms for combi-
natorial optimization: A decade of results. Int. J. of Automation and Computing 4(1),
100–106 (2007)

[43] Oliveto, P.S., He, J., Yao, X.: Analysis of population-based evolutionary algorithms for
the vertex cover problem. In: Proc. 2008 IEEE World Congr. Comput. Intell., pp. 1563–
1570 (2008)

[44] Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems.
Algorithmica 57(1), 187–206 (2010)

[45] Ridley, M.: The Red Queen: Sex and the Evolution of Human Nature. Penguin Books
Ltd. (1993)

[46] Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimisation: An analysis
of frequency and magnitude of change. In: Proc. 2009 Genetic and Evol. Comput. Conf.,
pp. 1713–1720 (2009)

[47] Scharnow, J., Tinnefeld, K., Wegener, I.: Fitness landscapes based on sorting and short-
est paths problems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 54–63.
Springer, Heidelberg (2002)

[48] Smith, J.M.: The Evolution of Sex. Cambridge University Press, Cambridge (1978)
[49] Stanhope, S.A., Daida, J.M.: Optimal mutation and crossover rates for a genetic algo-

rithm operating in a dynamic environment. In: Porto, V.W., Waagen, D. (eds.) EP 1998.
LNCS, vol. 1447, pp. 693–702. Springer, Heidelberg (1998)

[50] Stanhope, S.A., Daida, J.M. (1+1) genetic algorithm fitness dynamics in a changing
environments. In: Proc. 1999 IEEE Congr. Evol. Comput., vol. 3, pp. 1851–1858 (1999)

240 P. Rohlfshagen, P.K. Lehre, and X. Yao

[51] Storch, T., Wegener, I.: Real royal road functions for constant population size. Theoret-
ical Computer Science 320(1), 123–134 (2004)

[52] Sudholt, D., Witt, C.: Runtime analysis of binary pso. In: GECCO 2008: Proc. 10th
Annual Conf. Genetic and Evol. Comput., pp. 135–142. ACM, New York (2008)

[53] Tinos, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-
rithms. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 236–243 (2007)

[54] Tinós, R., Yang, S.: An analysis of the XOR dynamic problem generator based on the
dynamical system. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN
XI. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)

[55] Wegener, I., Witt, C.: On the analysis of a simple evolutionary algorithm on quadratic
pseudo-boolean functions. Journal of Discrete Algorithms 3(1), 61–78 (2005)

[56] Weicker, K.: Evolutionary algorithms and dynamic optimization problems. Der Andere
Verlag (2003)

[57] Weicker, K.: Analysis of local operators applied to discrete tracking problems. Soft
Comput. 9(11), 778–792 (2005)

[58] Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56.
Springer, Heidelberg (2005)

[59] Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theoretical
Computer Science 403(1), 104–120 (2008)

[60] Witt, C.: Why standard particle swarm optimisers elude a theoretical runtime analysis.
In: Proc. 10th Int. Workshop Foundations of Genetic Algorithms, pp. 13–20. ACM,
New York (2009)

[61] Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1) (1997)

[62] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algo-
rithms. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, R., Essam, D.,
Gedeon, T. (eds.) Proc. 2003 IEEE Congr. Evol. Comput., vol. 3, pp. 2246–2253 (2003)

[63] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments.
In: Proc. 2005 Genetic and Evol. Comput. Conf., pp. 1115–1122. ACM (2005)

Chapter 10
Analyzing Evolutionary Algorithms for
Dynamic Optimization Problems Based on the
Dynamical Systems Approach

Renato Tinós and Shengxiang Yang

Abstract. The study of evolutionary algorithms for dynamic optimization problems
(DOPs) has attracted a rapidly growing interest in recent years. However, few work
has addressed the theory in this domain. In this chapter, we use the exact model
(or dynamical systems approach) to describe the standard genetic algorithm as a
discrete dynamical system for DOPs. Based on this dynamical system model, we
define some properties and classes of DOPs and analyze some DOPs used by re-
searchers in the dynamic evolutionary optimization area. The analysis of DOPs via
the dynamical systems approach allows explaining some behaviors observed in ex-
perimental results. The theoretical analysis of the properties of well-known DOPs
is important to understand the results obtained in experiments and to analyze the
similarity of such problems to other DOPs.

10.1 Introduction

A significant increasing number of scientific papers on evolutionary algorithms
(EAs) applied to dynamic optimization problems (DOPs) have appeared in recent
years [4, 11, 25]. The growing interest in studying DOPs is due to its importance
to real world applications of EAs, where, often, new solutions should be found in
a short time after a change in the problem [2]. Most papers in EAs for DOPs ex-
perimentally investigate algorithms for DOPs, and very few investigate the theory

Renato Tinós
Department of Computing and Mathematics, FFCLRP, University of São Paulo,
Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
e-mail: rtinos@ffclrp.usp.br

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 241–267.
DOI: 10.1007/978-3-642-38416-5_10 c© Springer-Verlag Berlin Heidelberg 2013

242 R. Tinós and S. Yang

behind DOPs [1, 6, 14, 16–18]. Most work on analyzing EAs for DOPs usually
extends the analysis of EAs for stationary optimization to simple DOPs.

In [18], the standard genetic algorithm (GA) with mutation and selection is in-
vestigated on DOPs with regular changes (see Section 10.3) based on the dynamical
system approach (or exact model) of the GA [22]. Despite demanding a large num-
ber of equations to track all possible solutions represented by the individuals of the
GA, the use of the exact model is very useful as it allows a complete description of
the population dynamics [13].

In this chapter, we use the dynamical system approach to define some properties
and some classes of DOPs. Then, we analyze DOPs generated by: the XOR DOP
Generator [23, 27], the dynamic environment generator based on problem difficulty
[24], and three variations of the dynamic 0-1 knapsack problem [15]. The analysis
of the properties of a DOP is relevant in order to understand the results obtained in
the experiments with EAs and to analyze the similarity of such problems to other
problems. In this way, the analysis of DOPs via the dynamical system approach can
help researchers to investigate whether DOPs widely used in the evolutionary opti-
mization area are appropriated to represent a given real-world DOP and to identify
classes of DOPs where a given algorithm should present good performance.

The rest of this chapter is organized as follows. The exact model for the GA in sta-
tionary environments is briefly presented in Section 10.2. Some concepts of DOPs
are discussed and formally described based on the dynamical system approach in
Section 10.3. Section 10.4 analyses five different examples of DOPs using the dy-
namical system approach. Finally, the conclusions with discussions on relevant fu-
ture work are presented in Section 10.5.

10.2 Exact Model of the GA in Stationary Environments

The description of the standard GA as a discrete dynamical system [13], approach
known as exact model and proposed by Vose [22], is an attempt to understand the
behavior of the GA according to the analysis of its population dynamics. For this
purpose, the rule for changing the population probabilities in each generation are
defined, and the properties of the resulting discrete dynamical system, like its fixed
points, are analyzed. In a GA with binary codification, an individual of a population
codifies a possible solution x ∈ {0,1}l. In the exact model, all possible solutions
are represented in a discrete space χ , where each possible solution is enumerated
as {0,1, . . . ,n− 1} and n = 2l . A population is then defined by a n-dimensional
vector, where each element defines the proportion of each possible solution in the
population, i.e.,

p =
v
N
, (10.1)

where the k-th element of v indicates the number of copies of the k-th possible
solution in the population with size N. As the sum of the elements of p is equal to
1, population vectors can be described as members of a simplex Λ , i.e.,

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 243

Λ =

{
p ∈ Rn : pk ≥ 0, for k = 0,1, . . . ,n− 1 and

n−1

∑
k=0

pk = 1

}
, (10.2)

where pk is the k-th element of the population vector p and the vertices of the sim-
plex represent populations with copies of only one solution. In this way, the popula-
tion evolution can be described as a trajectory in the simplex and population vectors
can be used to describe the probability distribution of the individuals in the search
space. Thus, a generational operator G : Λ →Λ can be defined as follows:

G(p) = p′, (10.3)

where p′ is the probability distribution sampled to generate the next population after
p, i.e., G(p) is the expected next population [22].

Each time the generational operator is applied corresponds to one generation. In
this way, the vector G(p) describes the average over all possible populations in the
next generation with variance inversely proportional to the population size N. In the
limit N→ ∞ (infinite population case), the variance goes to zero, and the trajectory
of the population in the simplex can be deterministically described. Thus, we can
define the evolutionary process of a GA considering its genotypical dynamics for
the general case where the generational operator can change in each generation t.

Definition 10.1 (GA). The GA, in the infinite population case, is a discrete dynam-
ical system defined by the successive application of the rule:

p(t) = G
(
p(t− 1), t

)
, (10.4)

where G(., t) : Λ ×N+→Λ is the generational operator (map), p(t) is the expected
population at generation t ∈ N+, and p(0) is the initial population vector.

For the stationary case, the generational operator is G(., t) = G(.) for all t ≥ 1, and
the trajectory of the population is given by p(0), G

(
p(0)

)
, G2

(
p(0)

)
,

In this way, in generation t for the stationary case, the expected population vector
for the infinite population model is given by:

p(t) = Gt(p(0)). (10.5)

Let us consider now the standard GA with mutation and proportional selection.
Then, the generational operator can be represented by:

G = U ◦F , (10.6)

where the proportional selection operator is given by:

F(p) = F p
fTp

, (10.7)

244 R. Tinós and S. Yang

f is the vector with the fitness of each solution xi in χ , and F = diag(f) is a diagonal
matrix generated by f. The fitness vector f gives information about the structure of
the search space. The mutation operator is given by:

U(p) =Up, (10.8)

where U is the mutation matrix. Each element Ui j indicates the probability of gen-
erating the i-th element of χ by mutating the j-th element of χ . By Eqs. 10.6-10.8,
the generational operator can be written as:

G(p) = UF p
fTp

. (10.9)

The analysis of Eq. (10.9) can provide insights in understanding the behavior of the
stationary GA. In next section, this analysis will be extended to the dynamic case.
For the stationary case, the fixed points of G, i.e., points where G(y) = y, are given
by the eigenvectors of UF . For each eigenvector y, an eigenvalue fTy, corresponding
to the average fitness of y, can be computed. As UF has only positive values, there is
only one eigenvector in Λ , corresponding to the eigenvalue with the largest absolute
value [13]. Then, all trajectories in Λ converge to this fixed point, i.e. the system is
asymptotically stable [8, 22].

The remaining eigenvectors are not properly fixed points, as, for example, they
can lie outside the simplex, and are called metastable states in the dynamical sys-
tem approach [13]. However, they play an important role in the evolutionary process
as they can change the trajectory in the simplex and can trap finite populations for
several generations [21]. The metastable states that are encountered during a trajec-
tory depends on the initial population, the dynamics of the GA, and random events
related to the stochastic operators. In DOPs, as the generational operator changes
during the evolutionary process, we do not use the term fixed points for the points
where G(y) = y, using instead the term metastable states. For the point y with the
current largest average fitness (i.e., fTy), which is inside the simplex, we refer it as
the current main metastable state.

When the crossover is added to the GA, the generational operator is given by:

G = C ◦U ◦F , (10.10)

where each element k of the crossover operator is computed by:

Ck(p) = pTMkp, (10.11)

where Mk is a matrix formed by the probabilities of generating individual k ∈ χ
from crossing two individuals of the population. By equations 10.9-10.11, the gen-
erational operator can be now computed by:

Gk(p) =
pTFUTMkUF p

(fTp)2 . (10.12)

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 245

As Eq. (10.9), Eq. (10.12) can be used to investigate the metastable states of the GA.
In this case, the metastable states can be obtained by using a linearization procedure
in states near the fixed points of the generational operator described by Eq. (10.12)
[22].

10.3 Dynamic Optimization Problems

In this section, we define how the discrete dynamical system of the GA can be
adapted to DOPs. For this purpose, it is necessary to define some aspects of the
changing optimization problem in the context of the dynamical systems approach.
In this way, we can define some classes of DOPs, analyzing how the dynamical
system of the GA is modified during the evolutionary process. Here we focus on
DOPs where the fitness landscape is modified by the changes intrinsic to the opti-
mization problem. Before defining a DOP in the context of GAs (Definition 10.1),
it is necessary to define changes in the dynamical system approach.

Definition 10.2 (Change in the GA). Consider a GA (Definition 10.1) where the
generational operator G(., t) at generation t is hyperbolic for all t ≥ 1 and has n f

points yi(t) = G
(
yi(t), t

)
for i = 1, . . . ,n f , i.e., yi(t) is the i-th metastable state of

G(., t). A change in the GA occurs at generation t when

yi(t) � yi(t− 1) = G
(
yi(t− 1), t

)
(10.13)

for at least one yi(t) for i = 1, . . . ,n f , i.e., at least one metastable state of G(., t) is
not preserved.

Here we consider that changes occur only between the application of two consec-
utive generational operators. One can observe that not all modifications in the gen-
erational operator G (see Eq. (10.12) for the standard GA with crossover) can be
described as a change according to Definition 10.2. Other important observation is
that a change does not necessarily imply a modification in the current population or
in its current trajectory. For example, if the change does not modify the current tra-
jectory of the population to the metastable points, no effect will be observed in the
evolutionary process. The same occurs if the population has converged to a given
metastable state and this one is not modified by the change. Interestingly, the usual
way to detect a change by reevaluating the fitness of only a few best or sentinel so-
lutions [4] may be inefficient in cases where those solutions are not affected by the
change.

Based on Definition 10.2, DOPs in the context of GAs can be defined according
to the dynamical system approach for the standard GA.

Definition 10.3 (DOP). A DOP in the context of GAs (Definition 10.1) is an op-
timization problem where at least one change (Definition 10.2) occurs during the
evolutionary process.

As the generation operator is modified after a change, Eq. (10.5) is not valid any-
more for every generation t in a DOP. We now define change cycle.

246 R. Tinós and S. Yang

Definition 10.4 (Change cycle). A change cycle is a series of generational opera-
tions between two consecutive changes. The first change cycle begins in the first
generation of the evolutionary process and ends one generation before the first
change, while the last change cycle begins in the generation after the last change
and ends in the last generation of the evolutionary process.

The change cycle duration de is the number of consecutive generations in change
cycle e. If change cycle e begins at generation t, then

G(., t) = G(, t + 1) = G(., t + 2) = . . .= G
(
., t + de− 1

)
, (10.14)

where de ∈ N+. In abuse of notation, we define now G(.,e) as the generational op-
erator in change cycle e. In this way, for the infinite population case, the population
in generation t is now given by:

p(t) = G(t−∑e−1
i=1 di)(.,e)◦Gde−1(.,e− 1) . . .Gd2(.,2)◦Gd1

(
p(0),1

)
, (10.15)

where e > 0. It can be observed that a DOP can be viewed as a sequence of sta-
tionary processes, where the initial population in the i-th change cycle is the last
population generated in the change cycle i− 1. The minimum value of di is one
generation, which is the case where the generational operator is modified just one
generation after the prior change, while the maximum value of di is equal to the
index of the current generation, which is the case where the problem is stationary
(until the current generation) and Eq. (10.15) reproduces Eq. (10.5).

If the standard GA is employed, a change modifies at least one term of the gener-
ational operator defined by Eq. (10.12). In general, changes in the mutation matrix
U and in the crossover matricesMk are related to changes in the algorithm, e.g., if
the mutation rate is increased, like in the case of an adaptive mutation operator, the
mutation matrix U is modified. According to Definition 10.3, both changes in the
GA induced by the programmer or intrinsic to the optimization problem can cause
DOPs. In fact, changes in the operators (e.g., the use of adaptive operators) can re-
duce the effects of changes intrinsic to the optimization problem. This property can
be used to develop and/or understand adaptive approaches used in EAs for DOPs.

Some changes intrinsic to the optimization problem can modify the mutation and
crossover operators too, e.g., in some algorithms, changes in the constraints of the
problem can imply a modification in the mutation and crossover matrices as some
solutions are not anymore allowed. In this work, we are not interested in problems
with such changes. In this way, we define DOPs with fitness landscape changes.

Definition 10.5 (DOP with fitness landscape changes). A DOP with fitness land-
scape changes is a DOP (Definition 10.3) where the fitness landscape is modified by
a change (Definition 10.2) at least one time during the optimization process, i.e.,

f(e) � f(e− 1), (10.16)

in at least one change cycle e > 1, where f(e) is the fitness vector in change cycle e.

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 247

It can be observed that in a DOP with fitness landscape changes (Definition 10.5),
not all elements of f(e) are necessarily modified during the evolutionary process,
e.g., the change can affect only a small fraction of the fitness landscape. According
to Definition 10.2, only changes in f(e) that modify at least one metastable state of
the GA before the change are considered. Definition 10.5 is very general, and not all
problems with fitness landscape changes has attracted attention to the evolutionary
computation community.

In general, researchers investigate problems where the fitness landscape changes
according to a specific rule, stochastic or deterministic. For example, in continu-
ous dynamic optimization, a traditional benchmark is the moving peaks benchmark
[2, 10], where the dynamism of the problem is defined by changing a set of fit-
ness landscape parameters (aggregated here in a vector named system control vector
φ(e)), e.g., the location and width of each peak. The system control vector φ(e) is
computed in each change cycle e using its past values according to a given rule. As
an example, the vector φ(e) can be obtained adding a random deviation, taken from
a normal distribution, to the vector φ(e− 1). In this way, we can classify the DOP
according to the rule that modifies the fitness landscape. In a first moment, we can
define single time-dependent DOPs, which compose a interesting subset of DOPs
with fitness landscape changes.

Definition 10.6 (Single time-dependent DOP). A single time-dependent DOP is a
DOP with fitness landscape changes (Definition 10.5) where the fitness landscape
in change cycle e depends on the fitness landscape in change cycle e− g, i.e.,

f(e) = h
(
f(e− g),φ(e)

)
, (10.17)

where g ∈ N+, e− g ≥ 1, h(.) is a real function, and φ(e) is the system control
vector. The changing in the fitness landscape is defined by tuning φ(e).

It can be observed that the previous definition of single time-dependent DOP (Defi-
nition 10.6) is different from the definition of single time-dependent systems in [18].
By changing the function h(.,e) in Definition 10.6, we can define other DOPs, like
periodic DOPs.

Definition 10.7 (Periodic DOP). Assume a single time-dependent DOP (Definition
10.6) where the fitness landscape in change cycle e is equal to the fitness landscape
in change cycle e− g, i.e.,

f(e) = f(e− g), (10.18)

where g ∈N+ and e− g≥ 1. Such a DOP is called a periodic DOP.

In periodic DOPs (Definition 10.7), the changes are deterministic and predictable.
As a consequence, memory-based approaches [9] can be, in general, successfully
employed. Another special case of single time-dependent DOP (Definition 10.6) is
when g = 1.

Definition 10.8 (Last environment dependent DOP). Assume a single time-
dependent DOP (Definition 10.6) where the fitness landscape in change cycle e
depends only on the fitness landscape in change cycle e− 1, i.e.,

248 R. Tinós and S. Yang

f(e) = h
(
f(e− 1),φ(e)

)
, (10.19)

where e > 1, h(.) is a real function, and φ(e) is the system control vector. Such first
order DOP is called a last environment dependent DOP.

From changing the function h in Definition 10.8, we can define many last environ-
ment dependent DOP subsets. Here, we will present some special cases.

Definition 10.9 (Linear DOP). A linear DOP is a last environment dependent DOP
(Definition 10.8) where the fitness landscape in change cycle e− 1 is modified ac-
cording to a linear transformation, i.e.,

f(e) = A(φ(e))f(e− 1)+b(φ(e)),

where A(.) ∈ Rn×n and b(.) ∈ Rn.

If the linear system is homogeneous and the matrix A(φ(e)) is orthogonal, another
last environment dependent DOP subset can be defined.

Definition 10.10 (Orthogonal DOP). An orthogonal DOP is a homogeneous linear
DOP (Definition 10.9) where the fitness landscape in change cycle e−1 is modified
according to an orthogonal matrix, i.e.,

f(e) = P(φ(e))f(e− 1), (10.20)

where P(φ(e)) ∈ Rn×n is an orthogonal matrix, i.e.,

P(φ(e))TP(φ(e)) = P(φ(e))P(φ(e))T = I, (10.21)

where I denotes the identity matrix.

An orthogonal matrix has some important properties [12], e.g.:

i) if A and B are orthogonal, then AB is orthogonal too.
ii) if λ is an eigenvalue of the orthogonal matrix A, then |λ |= 1.
iii) if A is an orthogonal matrix, then ‖Ax‖2 = ‖x‖2 for every vector x, where ‖x‖2

denotes the Euclidean norm of the vector x.

A geometrical interpretation of item iii) is that the linear transformation A preserves
the angles and magnitudes of vector x, i.e., the linear transformation behaves like a
rotation in the space. A special case of an orthogonal matrix is a permutation matrix
[22].

Definition 10.11 (DOP with permutation). A DOP with permutation is an orthog-
onal DOP (Definition 10.10) where the fitness landscape in change cycle e− 1 is
modified according to a permutation matrix, i.e.,

f(e) = σ(φ(e))f(e− 1), (10.22)

where σ(φ(e)) is a permutation matrix defined by the control system parameter
vector φ(.) at change cycle e. The permutation matrix maps the elements of vector
f(e− 1) to the elements of vector f(e).

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 249

In a DOP with permutation (Definition 10.11), the fitness values are preserved in the
search space, i.e., they are only resorted. In [18], DOPs with regular changes, which
are a special subset of DOPs with permutation (Definition 10.11), are defined.

Definition 10.12 (DOP with regular changes). A DOP with regular changes [18]
is a DOP with permutation (Definition 10.11) where the transitional rule is deter-
ministic and belongs to a permutation group where σ(φ(e+ t)) =

(
σ(φ(e))

)t
for

t ∈ N+.

Periodic (Definition 10.7) changes and the stationary case are special cases of reg-
ular changes. In [18], the standard GA without crossover applied to DOPs with
regular changes are analyzed by using the dynamic system approach. In this spe-
cial case, the fixed points can be computed and, in [18], the asymptotic states are
analyzed in the sense of time-dependent quasispecies [7].

As a DOP can be viewed as a sequence of stationary environments (see Eq.
(10.15)), the analysis of how the metastable states for each stationary environment
are changed can provide insights in understanding GA’s behavior on DOPs. Here,
the state of the DOP in a change cycle corresponding to the fixed point in the re-
spective stationary environment is called main metastable state. It is important to
observe that the metastable states (including the main metastable state) are generally
not fixed points of the DOP, as the problem changes and the population of the stan-
dard GA generally does not converge to a fixed point. However, the metastable states
control the trajectory of the population during each change cycle and their analysis
helps the understanding of the dynamics of the GA in DOPs. In the next section,
some examples of DOPs are analyzed using the dynamical systems approach.

10.4 Examples

Here, we analyse DOPs produced by the XOR DOP Generator (Section 10.4.1),
the Dynamic Environment Generator Based on Problem Difficulty (Section 10.4.2),
and three variations of the Dynamic 0-1 Knapsack Problem (Section 10.4.3). Some
simulations, where Eq. (10.15) is employed to generate the population vector p(t),
i.e., the exact model with infinite population is employed in order to generate the
expected next population during the evolutionary process, are presented. For sim-
plicity, we will consider the standard GA with mutation and proportional selection
as it allows the direct computation of the metastable points of the dynamical sys-
tem (GA). In all simulations, the initial population (p0) is uniformly distributed, the
mutation rate employed is equal to 0.01, and l = 8.

10.4.1 The XOR DOP Generator

The XOR DOP Generator generates DOPs from any binary encoded problem [23,
27]. Given a stationary problem with fitness function f (x), where the solution x ∈
{0,1}l, the fitness function f (x,e) of an environment, periodically changed every τ
generations, is computed by:

250 R. Tinós and S. Yang

f (x,e) = f
(
x⊕m(e)

)
, (10.23)

where e = �t/τ	 is the change cycle index, t is the generation index, and m(e) ∈
{0,1}l is a binary mask for change cycle e, which is incrementally generated by:

m(e) = m(e− 1)⊕ r(e), (10.24)

where r(e) ∈ {0,1}l is a binary template randomly created for change cycle e con-
taining �ρ× l� ones, and {ρ ∈ R | 0.0≤ ρ ≤ 1.0} controls the degree of change for
the DOP. For e = 1, m(1) is equal to the zero vector.

In environments created by the XOR DOP Generator, each individual of the cur-
rent population is moved to a new location in the fitness landscape before being
evaluated [19]: instead of evaluating the fitness of the individual at x, the fitness
is evaluated at x⊕m(e). In [20], the XOR DOP Generator was analyzed based on
the dynamical systems approach. The XOR DOP Generator produces a special kind
of DOP with permutation (Definition 10.11) where the permutations in the fitness
space are ruled by

f(e) = σr(e)f(e− 1), (10.25)

where σr(e) is a permutation matrix at change cycle e, which maps the element at
position i of the vector f(e− 1) to the element at position i⊕ r(e) of the vector
f(e), where ⊕ is the bitwise exclusive-or (XOR), or addition modulo 2, operator.
The vector i ∈ {0,1}l indicates the position of the element in the fitness vector. The
vector r(e) ∈ {0,1}l controls the permutation of the elements of the fitness vector
(see Eq. (10.24)), i.e., r(e) is the system control vector (φ(e)) in Definition 10.11,
controlling the changing in the fitness landscape. Permutation matrices σr(e) have
the following properties:

i) σr(e) are symmetric matrices.
ii) σr(i)σr(j) = σr(i)⊕r(j) .
iii)σr(e) commute and are self-inverse.

In this way, the i-th eigenvector yi(e) of U(e)F(e) in change cycle e, which defines
a metastable state, can be obtained by the permutation of the respective eigenvector
for the environment in change cycle e−1. Besides, the eigenvalues of U(e)F(e) for
two environments defined by change cycles e−1 and e are the same, which implies
that the average fitness at the main metastable state remains the same.

The authors in [20] also proposed that the dynamical system of the GA with
mutation and fitness proportional selection in a DOP with permutation (Definition
10.11) ruled by Eq. (10.25), as in the environments created by the XOR DOP Gener-
ator, is similar to the dynamical system of the same GA in a stationary environment
where the population is changed according to the same permutation matrices used
in the DOP with permutation in every de generations, where de is the duration of
change cycle e for the DOP with permutation. As a consequence, the XOR DOP
Generator can be simplified: instead of computing the fitness of each individual of
the population at the new position xt ⊕me in every generation, each individual of
the initial population in change cycle e is moved to xt = xt ⊕ re, i.e., the population

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 251

0 50 100 150 200 250 300 350 400
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

generation

fit
n
e
ss

(a)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

generation

d
is

ta
n

ce

(b)

Fig. 10.1 Trajectory of the population during six change cycles with τ = 70 and τ = 0.875 in
the DOP created by the XOR DOP Generator: mean fitness of the population (a); distance to
the current first (solid) and second (dotted) main metastable states (b)

is moved only one time, and the fitness is computed as f (xt), like in the stationary
environment, which reduces the complexity of the procedure.

We present here simulations for the evolution of the population in a DOP created
by the XOR DOP Generator from a simple stationary fitness function, chosen here
due its simplicity. The stationary fitness function used here has two optima, and is
defined by:

f (x) =

{
l, if u(x) = l

(l− 1)− u(x), otherwise,
(10.26)

where u(x) is the unitation function of a binary vector x of length l, which is given
by the number of ones in this vector. In the simulations presented here, seven values
of τ (from τ = 10 to τ = 70) and seven values of ρ (from ρ = 0.125 to ρ = 0.875
with a step size 0.125) are considered. In this way, 49 simulations were executed,
one for each pair of τ and ρ . Each evolutionary process is simulated for 30 change
cycles of the infinite population model.

Figure 10.1 shows a simulation with ρ = 0.875 and τ = 70, where the mean
fitness of the population during the evolution and the Euclidean distance between
the population in the current generation and the two eigenvectors with the largest
eigenvalues are presented. The first eigenvector corresponds to the current main
metastable state (where the number of individuals of the population at the global
optimum is larger than the number of individuals at any other place), while the
second eigenvector is the metastable state with the second largest eigenvalue (where
the number of individuals of the population at the local optimum is larger than the
individuals at any other place). It can be observed that, in some change cycles, the
population goes to the neighborhood of the second metastable state and, after some
generations, goes to the main metastable state.

Figure 10.2 presents the results for all simulations. From Fig. 10.2, some ob-
servations can be made. When τ is close to 70 generations, i.e., in slow chang-
ing environments, the population always reaches the main metastable state after
changes with small degree of change ρ . When τ is large, there is enough time for the

252 R. Tinós and S. Yang

0.2
0.4

0.6
0.8

10
20

30
40

50
60

7070
0.7

0.8

0.9

1

rho

(a)

tau

fit
n
e
ss

0.2
0.4

0.6
0.8

10
20

30
40

50
60

70

0

0.5

1

rho

(b)

tau

d
is

ta
n

ce

Fig. 10.2 Normalized fitness (a) and distance to the current main metastable state (b) in the
DOP created by by the XOR DOP Generator for different τ and ρ . The values are relative
to the average (over 30 change cycles) obtained by the population vector in the generation
before the change.

population to go from the neighborhood of the main metastable state (where most
of the population is at the global optimum) in change cycle e− 1 to the neighbor-
hood of the main metastable state in change cycle e. As a consequence, the fitness
in the end of each change cycle is higher when τ is large and ρ is small. In the XOR
DOP Generator, the parameter ρ controls the degree of change. As ρ controls the
percentage of changed bits from template me−1 to template me, the hamming dis-
tance between me−1 and me is h(me,me−1) = �ρ× l�. In this way, larger ρ implies
larger Hamming distance between the optima in two consecutive change cycles and
in longer trajectories of the population in the simplex, and, thus, more time to reach
the neighborhood of the main metastable point.

However, it can be observed that a higher degree of modification in the fitness
landscape (larger ρ) does not necessarily imply a worse performance of the GA in
the DOP for medium and small τ . One can observe that for medium and small τ ,
the simulations with ρ = 0.375 presented worse performance than those for larger
ρ . This behavior can be found in experiments with the XOR DOP Generator for
different algorithms (for example, see [26]). The performance of the GA is related
to trajectories of the population in the simplex, and the trajectories are related to
the fitness vector and the transformation operators. In a medium velocity or fast
changing environment, generally, when the population reaches the neighborhood of
the main metastable point in change cycle e− 2, the population after the change is
closer to the second metastable state in the next change cycle when ρ is large. In
this case, the population does not have enough time to be closer to the new main
metastable state neighborhood in change cycle e−1 than to the old main metastable
neighborhood. However, when the problem changes again, the population is close to
the neighborhood of the main metastable state in change cycle e for ρ close to 1. The
mean Hamming distance of template me between two change cycles, which is given
by h̄(me,me−2) = 2l(ρ −ρ2), explains the behavior of the GA in this case. It can
be observed that the mean fitness generally alternates between two different values
for larger ρ and medium or small τ . One can observe that the values of distance

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 253

in Fig. 10.2 are higher for ρ close to one than for ρ close to zero, as in part of the
change cycles, the population remains in the neighborhood of the second metastable
state for larger ρ .

Two observations can be made for the previous analysis. First, a higher degree of
modification (ρ) in the templates re does not necessarily imply a worse performance
of the GA. This result has been observed in several experiments with the XOR DOP
Generator. The performance of the GA is related to the trajectories of the population
in the simplex, which makes more complex the analysis of the performance of the
algorithms.

Second, the metrics used to compare the algorithms in DOPs cannot be adequate
for some problems. For example, in the problem investigated here, an algorithm
that keeps the population close to the second metastable neighborhood for a high
degree of change in a fast changing environment can have higher mean fitness than
an algorithm that allows the population escaping from the local optima, but does not
have enough time to reach the main metastable state neighborhood.

10.4.2 The Dynamic Environment Generator Based on Problem
Difficulty

In another approach, Yang [24] proposed a dynamic environment generator based
on unitation and trap functions. A trap function is defined as follows:

f (x) =
{ a

z (z− u(x)), if u(x)≤ z
c

l−z (u(x)− z), otherwise
(10.27)

where u(x) is the unitation function of the binary vector x, a is the local and possi-
bly deceptive optimum, c is the global optimum, and z is the slope-change location
which separates the attraction basins of the two optima. A trap function is decep-
tive on average if the ratio of the fitness of the local optimum to that of the global
optimum is constrained by the following relation: [5].

r ≥ 2− 1/(l− z)
2− 1/z

(10.28)

In the generator proposed in [24], the deception difficulty can be modified by chang-
ing, in every τ generations, the parameters a, c, and z in Eq. (10.27). The diffi-
culty of the problem can also be controlled by changing the scaling of the function,
what is not done here. We consider that the deception difficulty is modified in two
consecutive change cycles by setting a between two values, amin and amax, where
0 < amin < c and amax > c.

In this way, the global optimum changes in each change cycle between c (located
at x = 1) and amax (located at x = 0). The dynamic fitness function can be defined
as follows:

f (x,e) =

{
a(e)

z (z− u(x)), if u(x)≤ z
c

l−z (u(x)− z), otherwise
(10.29)

254 R. Tinós and S. Yang

where a(e) = amin if a(e− 1) = amax and a(e) = amax if a(e− 1) = amin. One can
observe that the fitness for the subspace of solutions where u(x)> z does not change
during the whole evolutionary process, i.e., for e > 1:

f (x,e) = f (x,e− 1) if u(x)> z (10.30)

The fitness of the remaining solutions is changed for e > 1 according to:

f (x,e) =
{ amin

amax
f (x,e− 1), if u(x)≤ z and a(e− 1) = amax

amax
amin

f (x,e− 1), if u(x)≤ z and a(e− 1) = amin
(10.31)

In this way, we can write:
f(e) = B(e)f(e− 1) (10.32)

where B(e) = diag(b(e)) is a diagonal matrix. The i-th element of b(e), for e > 1,
is given by:

bi(e) =
1

bi(e− 1)
(10.33)

where:

bi(1) =

{ amin
amax

, if u(xi)≤ z
1, if u(xi)> z

(10.34)

From Eq. (10.32), one can observe that the Dynamic Environment Generator Based
on Problem Difficulty generates deterministic homogeneous linear DOPs (Defini-
tion 10.9) with diagonal matrices, where the parameter a(e) controls the changing
in the problem (i.e., it is the control system parameter).

Figure 10.3 shows six change cycles of a simulation of a DOP created by the
generator proposed in [24] for τ = 110 and amin = 0.78 or amin = 0.94. In the
simulations presented in this section, l = 8, c = 1.0, amax = 1.5 and z = 5 (see
Eq. (10.29)). While amin = 0.78 creates environments that are non-deceptive on av-
erage, amin = 0.94 creates environments that are deceptive on average (Eq. (10.28)).
Figure 10.3 shows the mean fitness of the population during the simulation and
the Euclidean distance between the population in the current generation and two
metastable points (eigenvectors of UF(e)). The two metastable points correspond
to locations in the population space where most individuals are at the optima posi-
tions 0 and 1. From previous equations, we can observe that f (1) = c and f (0) is
switched in consecutive change cycles between amin and amax.

It can be observed that for the environments that are non-deceptive on average
(amin = 0.78), the population goes to the neighborhood of the metastable states
where most of the population are at the local optima and, after some generations,
goes to the main metastable state. However, in the change cycles where the envi-
ronments are deceptive on average (amin = 0.94), the population vector remains in
the metastable state where most of the population are at the local optima, except for
the first change cycle (e = 1). Such behavior can be observed in Fig. 10.4, where the
normalized fitness and the distance to the current main metastable state for different
values of τ and amin are plotted. From Eq. (10.28), the minimum value where the

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 255

0 110 220 330 440 550 660
0

0.5

1

1.5

generation

fit
n
e
ss

(a)

0 110 220 330 440 550 660
0

0.2

0.4

0.6

0.8

1

generation

d
is

ta
n
ce

(b)

0 110 220 330 440 550 660
0

0.5

1

1.5

generation

fit
n
e
ss

(c)

0 110 220 330 440 550 660
0

0.2

0.4

0.6

0.8

1

generation

d
is

ta
n
ce

(d)

Fig. 10.3 Trajectory of the population during six change cycles with τ = 110 in the DOP
created by the generator proposed in [24]: mean fitness of the population for amin = 0.78 (a)
and amin = 0.94 (c); distance to the current metastable states where most of the population
are located at the optima positions 0 (dotted) and 1 (solid) for amin = 0.78 (b) and amin = 0.94
(d)

0.78
0.82

0.86
0.9

0.94
0.98

10
60

110
160

210
260

310
0.85

0.9

0.95

1

a
min

(a)

tau

fit
n
e
ss

0.78
0.82

0.86
0.9

0.94
0.98

10
60

110
160

210
260

310
0

0.2

0.4

0.6

a
min

(b)

tau

d
is

ta
n
ce

Fig. 10.4 Normalized fitness (a) and distance to the current main metastable state (b) in the
DOP created by the generator proposed in [24] for different τ and amin. The values are relative
to the average (over 30 change cycles) obtained by the population vector in the generation
before the change.

trap function is deceptive on average is r = 0.9259. We can observe that the popula-
tion reaches the main metastable state for values of amin < r and large τ . However,
a shorter distance to the main metastable state does not necessarily imply larger fit-
ness for the population. One can observe that the fitness is higher for amin = 0.98

256 R. Tinós and S. Yang

when compared to the values obtained for amin = 0.94. This fact is explained be-
cause the population vector remains closer to the metastable state where most of the
population are in the local optima for amin = 0.98.

10.4.3 The Dynamic 0-1 Knapsack Problem

In the 0-1 knapsack problem, the subset of items with the highest sum of profits, and
in which total sum of weights is less than the knapsack capacity, should be found.
In the dynamic version, the 0-1 knapsack problem is a DOP where the weights and
profits of the items, the total number of items, and the knapsack capacity can change
(see [15] for a dynamic benchmark problem based upon the 0-1 knapsack problem).
Here, we will consider that the total number of items is static along the evolutionary
optimization process and that the fitness is given by:

f (x,e) = c(x,e)v(x,e) (10.35)

where x ∈ {0,1}l. The sum of the profits of the items in the knapsack in change
cycle e is computed by:

v(x,e) = pT(e)x, (10.36)

p(e) ∈ R+l is the vector with the profits of all items in change cycle e, and the
constraint c(x,e) is given by:

c(x,e) =
{

E, if wT(e)x >C(e)
1, otherwise

(10.37)

where E ∈ R+ is a small number (in the simulations presented here, E = 10−5),
C(e) is the knapsack capacity in change cycle e, and w(e) ∈ R+l is the vector with
the weights of all items in change cycle e. In the following, we will consider the
Dynamic 0-1 Knapsack Problem with changes in C(e), p(e), or w(e), respectively
(i.e., the control system vector φ(e) is formed by C(e), p(e), or w(e)).

10.4.3.1 Changing Knapsack Capacity

We can consider that the knapsack capacity change for e > 1 according to:

C(e) =C(e− 1)+ r(e), (10.38)

where
(
r(e) ∈ R : r(e)+C(e−1)> 0

)
gives the change in the knapsack capacity in

change cycle e, e.g., r(e) can be obtained by a random sample taken from a normal
distribution. Here, the weights and profits of the items remain stationary during the
evolutionary optimization process. Thus, we can write:

c(x,e) = a
(
C(e− 1),r(e),x

)
c(x,e− 1), (10.39)

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 257

0 100 200
0

100

200

300

400

e=1

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=2

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=3

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=4

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=5

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=6

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=7

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=8

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=9

solution

fit
n

e
ss

Fig. 10.5 Fitness for all possible solutions during nine change cycles in a simulation with
τ = 100 and ρ = 0.2 of the 0-1 Knapsack Problem with changing knapsack capacity

where:

a
(
C(e− 1),r(e),x

)
=

⎧
⎨
⎩

E, if wTx≤C(e− 1) and wTx >C(e− 1)+ r(e)
1/E, if wTx >C(e− 1) and wTx≤C(e− 1)+ r(e)
1, otherwise

(10.40)
In this way, the fitness function in change cycle e is given by:

f (x,e) = a
(
C(e− 1),r(e),x

)
c(x,e− 1)v(x) = a

(
C(e− 1),r(e),x

)
f (x,e− 1)

(10.41)
and the fitness vector:

f(e) = B(e)f(e− 1) (10.42)

where B(e) = diag(b(e)) is a diagonal matrix. The i-th element of b(e) is given by:

bi(e) = a
(
C(e− 1),r(e),xi

)
. (10.43)

In this way, the 0-1 Knapsack Problem with changing knapsack capacity (defined
by Eq. (10.38)) is a last environment dependent DOP (Definition 10.8) with fitness
landscape changes ruled by Eq. (10.42).

Figures 10.5-10.7 show nine change cycles (all with duration given by τ) of a
simulation of the 0-1 Knapsack Problem with changing knapsack capacity. In the
simulations, the total number of items (l) is 8 and the weights and profits of each
item are randomly generated from uniform distribution in the initial generation.
The weights are real numbers generated in the range [50,150], while the profits

258 R. Tinós and S. Yang

0 100 200
0

0.2

0.4

0.6

0.8

1
e=1

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=2

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=3

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=4

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=5

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=6

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=7

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=8

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=9

solution

p

Fig. 10.6 Population vector in the last generation of each change cycle in a simulation with
τ = 100 and ρ = 0.2of the 0-1 Knapsack Problem with changing knapsack capacity

0 100 200 300 400 500 600 700 800 900
150

200

250

300

350

400

generation

fit
n
e
ss

(a)

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

generation

d
is

ta
n
ce

 t
o
 m

a
in

 f
ix

e
d
 p

o
in

t

(b)

Fig. 10.7 Trajectory of the population during nine change cycles with τ = 100 and ρ = 0.2 of
the 0-1 Knapsack Problem with changing knapsack capacity: mean fitness of the population
(a); distance to the current main metastable state (b)

are generated in the range]0,100]. The initial knapsack capacity
(
C(1)

)
is equal to

0.7wtotal , where wtotal is the sum of the weights of all items. The knapsack capacity
changes in every change cycle according to a random deviation generated from a
normal distribution with standard deviation equal to ρwtotal . In this way, ρ controls
the degree of change in the knapsack capacity, while τ controls the frequency of
change.

Figure 10.5 shows the fitness of all solutions (f) in each change cycle. One can
observe that the fitness of some solutions (including some optima) are drastically
changed according to the value of Ce. Figure 10.6 shows the population vector (p)

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 259

0.05
0.1

0.15
0.2

0.25
0.3

10
30

50
70

90
110

130
0.85

0.9

0.95

1

rho

(a)

tau

fit
n
e
ss

0.1

0.2

0.3 10
30

50
70

90
110

130

0

0.2

0.4

0.6

tau

(b)

rho

d
is

ta
n
ce

Fig. 10.8 Normalized Fitness (a) and distance to the current main metastable state (b) in the
0-1 Knapsack Problem with changing knapsack capacity for different τ and ρ . The values
are relative to the average (over 30 change cycles) obtained by the population vector in the
generation before the change.

in the end of each change cycle. It is possible to observe that, in this simulation, the
global optima were found in every change cycle e. In the same simulation, Fig. 10.7
shows the mean fitness of the population and the Euclidean distance between the
population in the current generation and the main metastable point (eigenvector of
UF(e) with the largest eigenvalue) in each change cycle.

Figure 10.8 shows the normalized fitness and the distance to the current main
metastable state for different values of τ and ρ . We can observe that, despite some
random fluctuation, the population reaches the main metastable state for values of
τ > 10.

10.4.3.2 Changing the Weights of the Items

In this case, only the weights of the items change during the evolutionary optimiza-
tion process. We can consider that the weights of the items are modified for e > 1
according to:

w(e) = w(e− 1)+ r(e), (10.44)

where
(
r(e)∈Rl : w(e−1)+r(e)> 0

)
gives the changes in the weights of the items

in change cycle e. The deviation r(e) can be obtained by random samples ri(e) for
i = 1, . . . , l. If only nc items are changed, then l− nc elements of r(e) are equal to
zero, while the other nc elements are randomly generated. Thus, we can write:

c(x,e) = a
(
w(e− 1),r(e),x

)
c(x,e− 1), (10.45)

where:

a
(
w(e− 1),r(e),x

)
=

⎧
⎪⎨
⎪⎩

E, if wT(e− 1)x≤C and
(
w(e− 1)+ r(e)

)Tx >C

1/E, if wT(e− 1)x >C and
(
w(e− 1)+ r(e)

)Tx≤C
1, otherwise

(10.46)

260 R. Tinós and S. Yang

0 100 200
0

100

200

300

400

e=1

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=2

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=3

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=4

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=5

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=6

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=7

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=8

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=9

solution

fit
n

e
ss

Fig. 10.9 Fitness for all possible solutions during nine change cycles in a simulation with
τ = 100 and nc = 3 of the 0-1 Knapsack Problem with changing weights of the items

In this way, the fitness function in change cycle e is given by:

f (x,e) = a
(
w(e− 1),r(e),x

)
c(x,e− 1)v(x) = a

(
w(e− 1),r(e),x

)
f (x,e− 1)

(10.47)
and the fitness vector:

f(e) = B(e)f(e− 1) (10.48)

where B(e) = diag(b(e)) is a diagonal matrix. The i-th element of b(e) is given by:

bi(e) = a
(
w(e− 1),r(e),xi

)
. (10.49)

In this way, this 0-1 Knapsack Problem with changing weights of the items is a last
environment dependent DOP (Definition 10.8) with fitness landscape changes ruled
by Eq. (10.48).

Figures 10.9-10.11 show nine change cycles of a simulation of the 0-1 Knapsack
Problem with changing weights of the items. The same parameters presented in last
section were used. In each change cycle, the weights of nc random items change by
adding random samples taken from normal distribution with zero mean and standard
deviation equal to 30 (Eq. (10.44)).

Figure 10.9 shows the fitness of all solutions (f) in each change cycle. Figure
10.10 shows the population vector (p) in the end of each change cycle. In the same
simulation, Fig. 10.11 shows the mean fitness of the population and the Euclidean

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 261

0 100 200
0

0.2

0.4

0.6

0.8

1
e=1

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=2

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=3

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=4

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=5

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=6

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=7

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=8

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=9

solution

p

Fig. 10.10 Population vector in the last generation of each change cycle in a simulation with
τ = 100 and nc = 3 of the 0-1 Knapsack Problem with changing weights of the items

0 100 200 300 400 500 600 700 800 900
150

200

250

300

350

400

generation

fit
n
e
ss

(a)

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

generation

d
is

ta
n
ce

 t
o
 m

a
in

 f
ix

e
d
 p

o
in

t

(b)

Fig. 10.11 Trajectory of the population during nine change cycles with τ = 100 and nc = 3 of
the 0-1 Knapsack Problem with changing weights of the items: mean fitness of the population
(a); distance to the current main metastable state (b)

distance between the population in the current generation and the main metastable
point in each change cycle.

Figure 10.12 shows the normalized fitness and the distance to the current main
metastable state for different values of τ and nc. We can observe that, as for the prob-
lem with changing knapsack capacity, the population reaches the main metastable
state for values of τ > 10.

262 R. Tinós and S. Yang

1
2

3
4

5
6

10
30

50
70

90
110

130130
0.85

0.9

0.95

1

n
c

(a)

tau

fit
n
e
ss

123456
10

30
50

70
90

110
130130

0

0.2

0.4

0.6

tau

(b)

n
c

d
is

ta
n

ce

Fig. 10.12 Normalized Fitness (a) and distance to the current main metastable state (b) in the
0-1 Knapsack Problem with changing weights of the items for different τ and nc. The values
are relative to theaverage (over 30 change cycles) obtained by the population vector in the
generation before the change.

10.4.3.3 Changing the Profits of the Items

Here, while the knapsack capacity and the weights of the items remain fixed dur-
ing the evolutionary optimization process, the profits of the items change for e > 1
according to:

p(e) = p(e− 1)+ r(e), (10.50)

where
(
r(e) ∈ Rl : p(e−1)+ r(e)> 0

)
gives the changes in the profits of the items

in change cycle e. As for the problem with changing weights, the deviation r(e) can
be obtained by random samples ri(e) for i = 1, . . . , l.

From Eq. (10.36) and Eq. (10.50), we can write:

v(x,e) =
(
p(e− 1)+ r(e)

)Tx = v(x,e− 1)+ rT(e)x. (10.51)

Substituting Eq. (10.51) in Eq. (10.35):

f (x,e) = f (x,e− 1)+ c(x)rT(e)x. (10.52)

The fitness vector can be written as:

f(e) = f(e− 1)+b(p(e− 1),r(e)), (10.53)

where the i-th element of b(p(e− 1),r(e)) is equal to c(xi)rT(e)xi.
One can observe that the 0-1 Knapsack Problem with changing profits of the

items is a last environment dependent DOP (Definition 10.8) with fitness landscape
changes ruled by Eq. (10.53). When only nc < l items are changed, the percentage
of the fitness space (fitness vector) that are modified is equal to (1− 2−nc)100%.

Figures 10.13-10.15 show nine change cycles of a simulation of the 0-1 Knapsack
Problem with changing profits of the items. The same parameters presented in last
section were used. In each change cycle, the profits of nc random items changes by

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 263

0 100 200
0

100

200

300

400

e=1

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=2

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=3

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=4

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=5

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=6

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=7

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=8

solution

fit
n

e
ss

0 100 200
0

100

200

300

400

e=9

solution

fit
n

e
ss

Fig. 10.13 Fitness for all possible solutions during nine change cycles in a simulation with
τ = 100 and nc = 3 of the 0-1 Knapsack Problem with changing profits of the items

0 100 200
0

0.2

0.4

0.6

0.8

1
e=1

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=2

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=3

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=4

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=5

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=6

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=7

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=8

solution

p

0 100 200
0

0.2

0.4

0.6

0.8

1
e=9

solution

p

Fig. 10.14 Population vector in the last generation of each change cycle in a simulation with
τ = 100 and nc = 3of the 0-1 Knapsack Problem with changing profits of the items

264 R. Tinós and S. Yang

0 100 200 300 400 500 600 700 800 900
100

150

200

250

300

350

400

generation

fit
n
e
ss

(a)

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

generation

d
is

ta
n
ce

 t
o
 m

a
in

 f
ix

e
d
 p

o
in

t

(b)

Fig. 10.15 Trajectory of the population during nine change cycles with τ = 100 and nc = 3 of
the 0-1 Knapsack Problem with changing profits of the items: mean fitness of the population
(a); distance to the current main metastable state (b)

1
2

3
4

5
6

10
30

50
70

90
110

130
0.85

0.9

0.95

1

n
c

(a)

tau

fit
n

e
ss

123456 1030507090110130

0

0.1

0.2

0.3

0.4

0.5

0.6

tau

(b)

n
c

d
is

ta
n
ce

Fig. 10.16 Normalized Fitness (a) and distance to the current main metastable state (b) in the
0-1 Knapsack Problem with changing profits of the items for different τ and nc. The values
are relative to the average (over 30 change cycles) obtained by the population vector in the
generation before the change.

adding random samples (Eq. (10.50)) with zero mean and standard deviation equal
to 30.

Figure 10.13 shows the fitness of all solutions (f) in each change cycle. Figure
10.14 shows the population vector (p) in the end of each change cycle. In the same
simulation, Fig. 10.15 shows the mean fitness of the population and the Euclidean
distance between the population in the current generation and the main metastable
point in each change cycle.

Figure 10.16 shows the normalized fitness and the distance to the current main
metastable state for different values of τ and nc. We can observe that, as for the
previous knapsack problem instances, the population reaches the main metastable
state for values of τ > 10.

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 265

10.5 Conclusion and Future Work

In this chapter, dynamic changes and DOPs are defined based on the dynamical
system approach (or exact model) of GAs [22]. Some classes of DOPs with fitness
changes are also defined. Such definitions, and others that can be defined based on
the same approach, can be useful to classify real-world DOPs and, as a consequence,
to allow a systematic analysis of such problems based on the properties of each
class. The performance of EAs for DOPs is, generally, related in problems of the
same class. For example, if an algorithm has a good performance in problems of
a class of DOPs (e.g., periodic DOPs), it can be tested in a new DOP identified as
belonging to the same class. New DOP generators can be developed to explore the
properties of such DOPs, e.g., generators for linear DOPs. However, it is important
that the proposed classes of DOPs reproduce properties of real-world DOPs, which
should be identified in a systematic approach by the study of real-world DOPs.

It can be observed that algorithms exploring the properties described on the anal-
ysis of the DOPs can be proposed. However, it is not clear if such algorithms are
useful in real-world DOPs. To answer this question, the class of the real world DOP
should be identified and similarities with well-known DOPs, if they exist, should be
described. In this way, a very relevant future investigation is to analyze real-world
DOPs, to classify them according to their properties, and to develop DOPs gener-
ators based on the identified class of DOPs. New forms of detecting changes and
measuring the performance of different algorithms can still be investigated based on
the analysis presented here. Another relevant future work is to analyze algorithms
proposed for DOPs, e.g., GA with hypermutation and GA with random immigrants,
according to approach presented here.

The theoretical analysis of EAs in DOPs is a relatively recent topic in Evolution-
ary Computation. Works in this area can significantly help researchers to develop
and analyse new algorithms and real-world problems. Like for EAs in stationary
problems, the theoretical works are, in general, based on different approaches, that
are not necessary independent. A unified view combining different theoretical ap-
proaches, like those presented in this book, is a natural step to understand the per-
formance of EAs in DOPs in near future.

Acknowledgements. This work was supported by CNPq and FAPESP of Brazil under Grant
2010/09273-1, and by the Engineering and Physical Sciences Research Council of U.K. under
Grant EP/E060722/1 and Grant EP/E060722/2.

References

[1] Arnold, D., Beyer, H.-G.: Random dynamics optimum tracking with evolution strate-
gies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L.,
Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 3–12. Springer, Heidelberg
(2002)

266 R. Tinós and S. Yang

[2] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, Dordrecht (2001)

[3] Cob, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Forrest, S. (ed.) Proc. 5th Int. Conf. on Genetic Algorithms, pp. 523–530 (1993)

[4] Cruz, C., González, J., Pelta, D.: Optimization in dynamic environments: a survey on
problems, methods and measures. Soft Comput. 15(7) (2011) 1432–7643

[5] Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Foundation of Ge-
netic Algorithms 2, pp. 93–108 (1993)

[6] Droste, S.: Analysis of the (1+ 1) EA for a dynamically changing onemax-variant. In:
Proc. 2002 IEEE Congr. Evol. Comput., pp. 55–60 (2002)

[7] Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. of Physical Chem-
istry 92(24), 6881–6891 (1988)

[8] Hayes, C., Gedeon, T.: Hyperbolicity of the fixed point set for the simple genetic algo-
rithm. Theoretical Computer Science 411(25), 2368–2383 (2010)

[9] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

[10] Morrison, R.W.: Designing evolutionary algorithms for dynamic environments.
Springer-Verlag New York Inc. (2004)

[11] Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the
state of the art. Swarm and Evol. Comput. 6, 1–24 (2012)

[12] Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice-Hall (1977)
[13] Reeves, C.R., Rowe, J.E.: Genetic Algorithms - Principles and Perspectives: A Guide

to GA Theory. Kluwer Academic Publishers (2003)
[14] Rohlfshagen, P., Lehre, P.K., Yao, X.: Dynamic evolutionary optimization: an analysis

of frequency and magnitude of change. In: Proc. 2009 Genetic and Evol. Comput. Conf.,
pp. 1713–1720 (2009)

[15] Rohlfshagen, P., Yao, X.: The dynamic knapsack problem revisited: A new bench-
mark problem for dynamic combinatorial optimisation. In: Giacobini, M., et al. (eds.)
EvoWorkshops 2009. LNCS, vol. 5484, pp. 745–754. Springer, Heidelberg (2009)

[16] Rowe, J.E.: Finding attractors for periodic fitness functions. In: Proc. 1999 Genetic and
Evol. Comput. Conf., pp. 557–563 (1999)

[17] Rowe, J.E.: Cyclic attractors and quasispecies adaptability. In: Kellel, L., Naudts,
B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 251–259.
Springer (2001)

[18] Ronnewinkel, C., Wilke, C.O., Martinetz, T.: Genetic algorithms in time-dependent en-
vironments. In: Kellel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolu-
tionary Computing, pp. 263–288. Springer (2001)

[19] Tinós, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-
rithms. In: Proc. 2007 IEEE Congr. Evol. Comput., pp. 236–243 (2007)

[20] Tinós, R., Yang, S.: An analysis of the xor dynamic problem generator based on the
dynamical system. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN
XI, Part I. LNCS, vol. 6238, pp. 274–283. Springer, Heidelberg (2010)

[21] Van Nimwegen, E., Crutchfield, J.P., Mitchell, M.: Finite populations induce metasta-
bility in evolutionary search. Physics Letters A 229(3), 144–150 (1997)

[22] Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press
(1999)

[23] Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm.
In: Proc. 2003 IEEE Congr. Evol. Comput., vol. 3, pp. 2246–2253 (2003)

10 Analyzing EAs for DOPs Based on the Dynamical Systems Approach 267

[24] Yang, S.: Constructing dynamic test environments for genetic algorithms based on prob-
lem difficulty. In: Proc. 2004 IEEE Congr. Evol. Comput., vol. 2, pp. 1262–1269 (2004)

[25] Yang, S., Jiang, Y., Nguyen, T.T.: Metaheuristics for dynamic combinatorial optimiza-
tion problems. IMA J. of Management Mathematics (2012),
doi:10.1093/imaman/DPS021

[26] Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. of Autom. and Comput. 4(3), 243–254 (2007)

[27] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

Chapter 11
Dynamic Fitness Landscape Analysis

Hendrik Richter

Abstract. Solving optimization problems with time varying objective functions by
methods of evolutionary computation can be grounded on the theoretical framework
of dynamic fitness landscapes. In this chapter, we define such dynamic fitness land-
scapes and discuss their properties. To this end, analyzing tools for measuring topo-
logical and dynamical landscape properties are studied. Based on these landscape
measures we obtain an approach for drawing conclusion regarding characteristic
features of a given optimization problem. This may allow to address the question
of how difficult the problem is for an evolutionary search, and what type of algo-
rithm is most likely to solve it successfully. The methodology is illustrated using a
well–known example, the moving peaks.

11.1 Introduction

Evolutionary algorithms obtain their considerable problem–solving powers by con-
necting rather simple elements. They integrate parallelization due to the intrinsic
population-based approach with an intensive dependence on random and the cor-
rective guidance of evaluating and utilizing fitness. These simple elements finally
come into effect by repeating them for a large number of instances. For the sim-
plicity of its ingredients, an evolutionary algorithm could, at least in principle, be
executed by pencil-and-paper. However, any of its practical applications are un-
thinkable without using a digital computer for calculation and thereby carrying out
a numerical experiment. In fact, every numerical calculation using a computer can
be seen as constituting an experiment. In conclusion, studies in evolutionary com-
putation are frequently, and if so massively, driven by numerical experiments. For

Hendrik Richter
Department of Measurement Technology and Control Engineering,
Faculty of Electrical Engineering and Information Technology, HTWK Leipzig
University of Applied Sciences, D–04251 Leipzig, Germany
e-mail: richter@eit.htwk-leipzig.de

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 269–297.
DOI: 10.1007/978-3-642-38416-5_11 c© Springer-Verlag Berlin Heidelberg 2013

270 H. Richter

instance, if a specific problem needs to be solved and an evolutionary approach is
used to do so, or if a specific variant of an evolutionary algorithm is improved, and
the improvement is tested and verified using different problem instances. As evolu-
tionary computation is so clearly experiment-centered, a complementary theoretical
approach is both important and useful to guide the experiments and to offer possible
explanations of their outcome.

A theoretical understanding in evolutionary computation can come from to two
starting points: the optimization problems to be solved or the class of evolutionary
algorithms considered. The latter approach frequently leads to a theoretical model-
ing of the algorithm, for instance to mathematical descriptions using the framework
of Markov chains, infinite population models, or ideas based on thermodynamics,
statistical mechanics, or population dynamics, see for instance other chapters of
this book. These mathematical models are subsequently employed to study ques-
tions such as the convergence and run-time behavior, or more generally to help the
designer of evolutionary algorithms in employing appropriate parameters and op-
erators and in constructing useful modifications. Ideally this lead to mathematical
proofs for the studied topic.

A second starting point for an theoretical outlook is the problem to be solved
by the evolutionary algorithm and the related question of what behavior and per-
formance is likely to occur in solving. It explicitly includes to offer clues for the
working principles and working modes of evolutionary algorithms. A key element
in such a problem-driven theoretical approach is the concept of fitness landscapes.
Fitness landscapes were introduced in theoretical biology to explain the effects that
variations of the genetic make-up of individuals or species have on survival or per-
ish [62]. They were later adopted by computer science to have a conceptual frame-
work for posing questions such as how difficult is a specific optimization problem
for an evolutionary algorithm, how is the behavior of the algorithm related to prop-
erties of the optimization problem, or ideally what performance of the algorithm can
be expected [11, 14, 22, 23, 27, 51, 59]. The individuals of the evolutionary algo-
rithm can be regarded as inhabiting the fitness landscape, and moving in it in order
to find high–fitness regions, thereby solving the posed optimization problem. So,
the explanatory power of a fitness landscape approach is mainly the result of giving
a framework for studying how the population of the evolutionary algorithm inter-
acts with the fitness landscape and hence with the optimization problem. Based on
studying this interaction we may conclude what likely evolutionary paths for the in-
dividuals are and hence how probable in a given frame of time it is that high-fitness
regions that may present solutions of the optimization problem are found.

The large majority of works on fitness landscapes has been done for the static
case, that is for landscapes that do not change their topology during the run time of
the evolutionary search. As solving dynamic optimization problems became more
and more important [6, 8, 17, 28, 64], it appeared desirable to advance the treatment
toward dynamic fitness landscapes. So far, this topic is rather underrepresented in
the literature on evolutionary computation; some primary works are [10, 15, 38,
41]. This chapter also intends to summarizes these findings and serve as a starting
point for further research. Therefore, in the next section we define dynamic fitness

11 Dynamic Fitness Landscape Analysis 271

landscapes and discuss their properties. Dynamic fitness landscapes have topolog-
ical and dynamical features that interdependent. So, we are particularly interested
how the topological features (that can be understood as static in itself) interact with
the dynamics. As a result of this interaction, dynamic fitness landscapes express
spatio-temporal dynamics and should be regarded as spatial extended dynamical
systems. Following this discussion, we study topological and dynamical landscape
measures usable to characterize fitness landscapes and so the corresponding opti-
mization problem. These measures are illustrated by numerical experiments using
a well-known example, the moving peaks.

11.2 Dynamic Fitness Landscapes: Definitions and Properties

11.2.1 Introductory Example: The Moving Peaks

Before we come to defining dynamic fitness landscapes and to studying their prop-
erties, we start with recalling a well-known example, the so-called moving peaks
benchmark [5, 29]. It uses as fitness function a static n-dimensional field of peaks
(or cones) on a zero plane. The peaks have randomly chosen heights and slopes and
are distributed across the landscape. So, we get

f (x) = max
{

0 , max
1≤i≤N

[hi− si‖x− ci‖]
}
, (11.1)

where x ∈ S is an element in search space S ⊂ Rn, N is the number of peaks (or
cones) in the landscape, ci are the coordinates of the i-th cone, and hi, si specify its
height and slope, see Fig. 11.1 for typical landscapes in R2.

This fitness function is tunable in several ways, which allows to specify the de-
gree of hardness that the associated optimization problem poses. Apart from the
dimensionality and the size (extension) of the search space, general factors con-
tributing to the problem hardness of Eq. (11.1) are all of its defining elements: the
number of cones N, their distribution in the search space (and hence the coordinates)
and the slopes and heights (or more precisely the slope/height ratio). Intuitively ob-
vious is that for a given state space dimension, an evolutionary algorithm has more
difficulties in finding the maximum value if the number of cones N increases. At the
same time it is also clear that this relationship cannot hold for an arbitrary number
of cones. If the search space extension is limited, then a further increasing of an
already large number most likely leads to cones starting to nest in each other. So,
smaller cones are hidden by larger ones and do not continue to effect the search
process. For instance, all landscapes in Fig. 11.1 are for randomly chosen cones,
where ci is normally distributed, and hi and si are uniformly distributed, and there
are always N = 7 peaks on a search space with limits xmin = −5, xmax = 5 (max-
imal extension Emax = ‖(xmax)− xmin‖ = 14.14). To have all seven peaks clearly
appearing is a rare event if the ci, hi, si are numerically generated as realizations of
a random process, even for such a small number of cones and dimension. In Fig.
11.1a we can distinguish 5 peaks, in Fig. 11.1b only 2 peaks. The reason for this

272 H. Richter

−5

0

5

−5

0

5

0

0.5

1

x2x1

f

−5

0

5

−5

0

5

0

0.5

1

x2x1

f

(a) (b)

−5

0

5

−5

0

5

0

0.5

1

x2x1

f

−5

0

5

−5

0

5

0

0.5

1

x2x1

f

(c) (d)

Fig. 11.1 Four instances of the moving peaks benchmark (Eq. (11.1))

behavior is that larger cones with small slopes cover smaller ones with larger slopes.
If a random selection of hi, si leads to certain hi− si-combinations this effect be-
comes more or less prominent. This is also the reason why the hi− si-ratio is more
important for the landscape’s appearance that the absolute values. Also note that
for a small number of realizations of a random variable, the statistical properties of
the sample might (possibly largely) differ from the statistical properties of the un-
derlying distribution. This effect clearly depends on the random number generator
used, but is always present to a larger or smaller degree. To summarize, this means
that for a formally same landscape (same dimensionality, same maximal extension,
same number of peak), a very different problem hardness for a potential evolution-
ary algorithm used to solve the problem is obtained. This somehow questions the
comparability of seemingly very similar fitness landscapes. We will formalize this
discussion in the Sec. 11.3 where measures for fitness landscapes are discussed.

Apart from the number of cones in the landscape, another aspect of problem hard-
ness is how the cones are distributed. They can rather group, such as in Fig. 11.1c,
or rather being scattered, as in Fig. 11.1d. In particular if the optima are scattered
and separated by low-fitness or even by same-fitness areas, an evolutionary algo-
rithm usually has problems to operate successfully. This is because a low-fitness or
same-fitness area is hard to pass for the individuals of an evolutionary algorithm as
they prefer to follow increasing fitness values and hence there are usually difficulties
to draw them to such regions. The most promising way to do so is to have a strong

11 Dynamic Fitness Landscape Analysis 273

random component or more generally a prolonged exploration phase, for instance
be a high mutation-rate and mutation-strength. However, this strong random drive is
disadvantageous for finding the actual optima once the most promising region has
been found. In other words, optimization problems with such a fitness landscape
require a special setting of the balance between exploration and exploitation.

Up to now the problem hardness of an optimization problem is entirely due to the
static appearance of the fitness landscape. To transform the static fitness function
into a dynamic one, there is the need to change the static features of Eq. (11.1) with
the run-time of the evolutionary algorithm. This means that N cones are to move
in terms of coordinates, heights and slopes by using a discrete time variable k, for
instance k ∈ Z. By defining dynamic sequences for coordinates c(k), heights h(k)
and slopes s(k), a dynamic fitness landscape

f (x,k) = max
{

0 , max
1≤i≤N

[hi(k)− si(k)‖x− ci(k)‖]
}

(11.2)

can be obtained. A 2D visualization can also be imagined from Fig. 11.1, where
now the cones move across the landscape, changing their heights and slopes at the
same time. From the picture possible problems in finding the optima get visible.
Finding the maximum means finding the highest peak; so for the dynamic case this
is tracking the highest peak.

11.2.2 Definition of Dynamic Fitness Landscapes

As with the introductory examples of the moving peaks, dynamic fitness landscapes
are frequently constructed from their static counterpart. So, a static fitness landscape
ΛS can be defined by

ΛS = (S,n, f), (11.3)

where S is the search space with elements x ∈ S, n(x) is a neighborhood function
which orders for every x∈ S a set of direct and possibly also more distant neighbors,
and f (x) : S→ R is the fitness function giving every search space element a fitness
value, e.g., see [19, 48]. The search space is either the product of a genotype–to–
fitness mapping or constructed from encoding and distancing the set of all possible
solutions of an optimization problem. Either way it is basically the representation
that the evolutionary algorithm uses (for instance binary, integer, real, tree etc.) and
the design of the genetic operators that defines the search space and also its neigh-
borhood structure. This is in line with the general understanding that the concept
of fitness landscapes is particularly useful for studying how the evolutionary search
algorithm interrelates with the fitness function. Moreover, as shown in [18], the
neighborhood structure of a fitness landscape may vary with variation of the genetic
operators. Hence, an analysis of the fitness landscape can be helpful for designing
genetic operators as it gives insight into which design is more likely than others to
belong to the landscape easiest searchable in average [51]. If the representation is
fixed, for instance as real numbers, then the search space frequently has a metric
and the neighborhood structure is inherent. The exact design and the parameters

274 H. Richter

of the genetic operators, for instance the mutation strength, defines which points
can be reached in average from a given starting point in the landscape within one
generation.

The geometrical interpretation that is central to the intuitive understanding of fit-
ness landscapes is particularly visible if S ⊆ R2, see Fig. 11.1. It means that fitness
can be viewed as elevation of the search space. In other words, fitness is a prop-
erty belonging to the search space as its orthogonal projection. Therefore, search
space points with high fitness appear as peaks, while low fitness regions are valleys,
and points with the same fitness plateaus. Solving the corresponding optimization
problem hence means to find the highest peak

fS = max
x∈S

f (x), (11.4)

and its location xS = arg fS. The individuals of an evolutionary algorithm used to
solve the given optimization problem can be thought of as to populate the fitness
landscape. The design of the genetic operators (basically selection, recombination,
and mutation) is meant to organize that they (at least in average) perform a climbing
of the hills in the fitness landscape and ideally find the highest one, even in the pres-
ence of other (but smaller) hills. With the movement the individuals contribute to
the dynamics of the population and hence to the evolutionary dynamics. Note that
in analyzing these processes there can be made a distinction between the dynam-
ics generated by genetic variation (mutation and recombination) and the dynamics
generated by corrective guidance (selection), which is of considerable interest for
fine–tuning the genetic operators.

For defining a dynamic fitness landscape there is the need to set how the element
in Eq. (11.3) change over time. So, all of its three defining ingredients – search space
S, fitness function f (x), and neighborhood structure n(x) – can, at least in principle,
be dynamically changing. Hence, we additionally need for description a time set
and mappings that tell how S, f (x) and/or n(x) evolve with time [37, 38, 41]. Dy-
namic optimization problems considered in the literature so far address all these
possibilities of change to some extend. Whereas a real alteration of the fundamen-
tal components of a search space such as dimensionality or representation (binary,
integer, discrete, real, etc.) is really rare, a change in the feasibility of individuals is
another and less substantial kind of a dynamic search space and is discussed within
the problem setting of dynamic constraints [34, 42, 43]. The works on dynamic
routing can partially be interpreted as a changing neighborhood structures [4, 54],
while most of the work so far has been devoted to time-dependent fitness functions
[26, 30, 36, 39, 40, 45, 53, 63]. For these reasons a dynamically changing search
space and neighborhood structure is omitted in the following definition, while the
fitness function is time–dependent.

We can next define a dynamic fitness landscape as

ΛD = (S,n,K,F,φ f). (11.5)

11 Dynamic Fitness Landscape Analysis 275

Equivalent to the static landscape (Eq. (11.3)) the search space S represents all possi-
ble solutions of the optimization problem and the neighborhood function n(x) gives
a set of neighbors to every search space point. The time set K ⊆ Z provides a scale
for measuring and ordering dynamic changes; F is the set of all fitness functions
in time k ∈ K and so every f ∈ F with f : S×K → R also depends on time and
gives fitness values to every search space point for any k ∈ K. The transition map
φ f : F× S×K→ F defines how the fitness function changes over time. It must sat-
isfy the temporal identity and composition conditions, that is φ f (f ,x,0) = f (x,0)
and φ f (f ,x,k1+k2)= φ f (φ f (f ,x,k1),x,k2), ∀ f ∈F , ∀x∈ S, ∀k1,k2 ∈K and the spa-
tial boundary conditions φ f (f ,xbound ,k) = f (xbound,k), ∀ f ∈ F , ∀k ∈ K and xbound

being the boundary set of search space S. With these definitions we assume that the
changes in the fitness landscape happen (or come into effect) at discrete points in
time and are the result of comparing the landscape for points in time k to the fol-
lowing points k+1. This is in line with fitness landscapes being a tool for analyzing
the behavior of evolutionary algorithms. The population dynamics of evolutionary
algorithms develops along discrete generations τ . A generation of an evolutionary
algorithm can be defined as the time interval between subsequent fitness function
evaluations of the whole population. In other words, a generation indicates the time
between serial and self–contained steps in the solution finding process. As fitness
evaluation in an evolutionary algorithm usually takes place just once in a genera-
tion, a difference in fitness can only be noticed by the algorithm as discrete points
in time. Hence, if we model the changes by a fitness landscape, the most natural and
straightforward time regime is discrete time.

The intuitive geometrical interpretation of a static fitness landscape as pointed out
above still holds to some extend for the dynamic case. The main difference is that the
hills and valleys move within the search space and/or change their topological form.
This includes that hills grow and shrink, valleys deepen or flatten, or the landscape
completely or partially turns inside out. The corresponding dynamic optimization
problem now reads

fS(k) = max
x∈S

f (x,k), ∀k ≥ 0, (11.6)

which yields the temporarily highest fitness fS(k) and its solution trajectory

xS(k) = arg fS(k), ∀k ≥ 0. (11.7)

As before the individuals of the evolutionary algorithm are meant to climb the hills,
and moreover to follow if they are moving and find hills that dynamically appear.
Even from such a simplifying picture it becomes obvious that the standard genetic
operators (selection, recombination, mutation) might not be sufficient to perform
the task. Indeed, there exists a multitude of modification to deal with the changes
induced by a dynamic fitness landscape, which are discussed in other chapters of
this book. With Eq. (11.6) and Eq. (11.7) we have a description of the dynamic op-
timization problem and its solutions. However, for evaluating the performance and
the behavior of an evolutionary algorithm used to deliver such solutions, other quan-
tities can be more interesting, meaningful and significant. These quantities usually

276 H. Richter

generalize the notion (Eq. (11.6)) and (Eq. (11.7)) over the run time and/or runs of
the evolutionary algorithm, may include data from the evolving population’s fitness
and make them statistically evaluable, see [1, 58] and references cited there for an
overview.

11.2.3 Dynamics and Fitness Landscapes

Dynamic fitness landscapes differ from static ones in that their topological features
changes with time. The changes relevant for discussions in evolutionary comput-
ing must be on a time scale comparable to the generations (or iterations) of the
search algorithm. If the dynamics is very fast, for instance several changes of the
landscape within one generation, then the evolutionary algorithm would have to
solve a different optimization problem every generation. As a fundamental work-
ing principle of evolutionary approaches is parallelized population-based, fitness-
and-random driven search with improvements over a certain number of generations,
an one-generation optimum finding seems unlikely and in every sense contradicts
those basic ideas. The only context where such a scenario seems to be fitting is if
the changes are very light (that is have s small dynamic severity, see Sec. 11.3.2)
and hence the evolutionary search is only lightly interrupted by the dynamics of the
fitness landscape. On the other hand, if the changes are slow (depending on problem
hardness and dimension a general number is slower that every 50–100 generations),
then the problem is no longer to be considered a dynamic one, but a series of static
problems, where one solution instance has no influence on the next.

For describing static fitness landscapes algebraic equations can be used, see
Eq. (11.3). For dynamic fitness landscapes we need to add a mathematical prescrip-
tion for evolving the fitness values forward in time. In principle, there are two ways
for doing so. A first is to take the algebraic description of a static fitness func-
tion, select some terms from these equations, and define how these terms depend on
an additional (and usually external defined) time regime. Geometrically speaking,
this means that we define dynamics laws for how selected topological features in
the landscape evolve with time. This only implicitly results in explaining the land-
scape’s dynamics in the whole. On the other hand, this also implies that we in fact
have dynamics only for certain elements in the landscape, for instance in the moving
peaks benchmark (Eq. (11.2)) the peaks can change by the coordinates ci(k), heights
hi(k) and slopes si(k) of the cones. By changing these elements dynamically, we im-
plicitly also describe how the neighborhood of the peaks behave with time. We will
call this kind of dynamics generation external.

In a second approach for describing the dynamic changes we may formulate a
general law for the fitness landscape’s time evolution that applies for all fitness
values in the search landscape. In it the fitness of every point f (x,k+1) may depend
on the fitness one time step before, f (x,k) and the (element–wise) fitness values of
all of its neighbors, f (n(x),k). So, we can write

f (x,k+ 1) = ψ(f (x,k), f (n(x),k)). (11.8)

11 Dynamic Fitness Landscape Analysis 277

Table 11.1 Hierarchy of fitness landscapes; S static, D discrete, C continuous

Class Space Time Possible model Dynamics

1 D S Discrete fitness function no
2 C S Continuous fitness function no
3 D D Discrete fitness function with discrete dynamics internal/external
4 C D Continuous fitness function with discrete dynamics external
5 D C Lattice of coupled ordinary differential equation (ODE) internal
6 C C Partial differential equation (PDE) internal

With a description (Eq. (11.8)), we have formulated a dynamic fitness landscape as
spatially extended dynamical system. To have such description means that the topol-
ogy and the dynamics of the fitness landscape are generated simultaneously and by
the same equation. In other words, the dynamics is here internal to the fitness land-
scapes. An example for such an evolution law are fitness landscapes constructed
from Ordinary Differential Equations (ODE), Partial Differential Equations (PDE)
and Coupled Map Lattices (CML). A special property of this type of dynamic fitness
landscape is that not only time is discrete but also the search space has a countable
number of elements. Such a search space characteristic corresponds strictly speak-
ing to combinatorial optimization problems, see [38, 41] for further discussion.

The distinction between external and internal dynamics has, apart from charac-
terizing the source of changes in the fitness landscape, implications for the spec-
ification of the dynamics of neighboring points in the search space. For internal
dynamics, the landscape’s time evolution law (Eq. (11.8)) states how the fitness of
all points in the search space and all their neighboring points change with time. In
other words, the changes are explained for every search space point. With an exter-
nal dynamics, we only define changes of selected and characteristic features in the
landscape. Here, the changes are explicitly explained for only a discrete subset of
search space points. Their neighborhood may change too, but according the to the
same time regime as the points themselves.

To put these facts into a wider context there has been a attempt to draw a con-
nection to spatially extended systems and to establish a hierarchy of fitness land-
scapes [41], which is based on a hierarchy of spatio-temporal dynamics [7, 20], see
Table 11.1 . The hierarchy comes form the different combinations of discretizing
space and time in the fitness landscape. For the landscape being static, the search
space can be either continuous or discrete (binary), which results in the problem
classes 1 and 2. If the discrete search space consists additionally of a finite number
of elements, the corresponding optimization problem is a combinatorial one. The
class 3 are discrete fitness functions with discrete dynamics. This dynamics can be
external, as for instance in the XOR DOP generator [63], or dynamic combinatorial
optimization problems such a dynamic knapsack, dynamic royal road or dynamic
bit-matching [49]. An example for internal dynamics are the before mentioned fit-
ness landscapes constructed from Coupled Map Lattices (CML). Continuous fitness
functions with discrete dynamics form class 4. Examples with external dynamics

278 H. Richter

include the moving peaks benchmark, but also other similar problems such a dy-
namic sphere, dynamic Ackley, dynamic Rosenbrook etc. To define an internal dy-
namics for class 4 problems would mean to have a description (Eq. (11.8)) for a
non–countable number of points in the fitness landscape, which is impractical for
any numerical calculation. Therefore, class 4 problems with internal dynamics do
not play a role in the literature. The class 5 and 6 fitness landscapes have continuous
time and discrete or continuous search spaces. Possible models for such dynamic
fitness landscapes are lattices of ODEs or PDEs. Such models might be suitable for
formulating general fitness landscapes and mainly found in modeling and studying
fundamental properties of evolution [24, 31–33, 61], but rarely in studies in evolu-
tionary computation (see e.g. [3] for such a work). The reason for this might be that,
as mentioned before, the discrete population dynamics of an evolutionary algorithm
is best linked to fitness landscapes with discrete time characteristics. In addition,
both types of mathematical description do, at least not in general, have an ana-
lytic solution. So, any numerical calculation involves a discretization of time and/or
space, for instance in numerical integrating ODEs and PDEs. So, both classes can,
at least from a numerical point of view, be reduced to class 3 problems.

If a dynamic fitness landscape relies on external dynamics questions of how to
generate dynamic sequences arise. A first step is to select terms in the algebraic
fitness landscape description that are to change with time. For the moving peak
(Eq. (11.2)), these are ci(k), hi(k) and si(k). The dynamic changes are induced by
moving sequences x(k), that is

ci(k) = xci(k), hi(k) = xhi(k), si(k) = xsi(k). (11.9)

In principle, the dynamic changes can be of three types:

• regular dynamics
• chaotic dynamics
• random dynamics.

According to these types, the moving sequences x(k) can be generated. Regular
changes are usually obtained by analytic coordinate transformations, for instance
cyclic dynamics where each x(k) repeats itself after a certain period of time and
shows recurrence or translatory dynamics where the quantities ascribe a pre–defined
track or tour. The period of the recurrence, the cycle width, and the step–length are to
be adjusted and normalized so that moving sequences become comparable. Chaotic
changes can be generated by a discrete-time dynamical system x(k+ 1) = g(x(k)).
Such systems are known to show chaotic behavior for certain parameter values and
initial states x(0), for instance the generalized Hénon map, see [35, 36] for details
of the generation process. For using these moving sequences in numerical exper-
iments, there might be the need for preprocessing as depending on the dynamical
systems used the amplitudes x(k+1) might be not unitary. If so, a re–normalization
should take place. Random changes we get if we select that each ci(k), hi(k), si(k)
for each k is an independent realization of, for example, a normally or uniformly
distributed random variable. Again, the statistical properties of the random variable
should guarantee (maybe after renormalization) comparability. A general feature

11 Dynamic Fitness Landscape Analysis 279

of the three types of dynamics is that regular dynamics is completely predictable,
chaotic dynamics is short-term predictable, and random dynamics unpredictable.

11.3 Analysis Tools for Dynamic Fitness Landscapes

In the previous section, we have defined dynamic fitness landscapes. The main con-
tent of analyzing fitness landscapes is to have a notion of how the population of an
evolutionary algorithm interrelates with properties of the optimization problem un-
der study. In doing so, we may get information about how difficult a certain problem
is for the search algorithm, or at least we may determine some characteristic features
of the problems usable for recommending which type of algorithm is most likely to
succeed in solving it. We can view a static fitness landscape as heights orthogonal
to the search space. These heights form geometrical structures that can be thought
of (in visualizable dimension) as hills, valleys, plateaus or ridges. If the fitness land-
scape gives indication for problem hardness, then this information should be found
in properties of the geometrical structures. If the geometrical structures change with
time, as in dynamical fitness landscapes, then properties of these changes should
be related, too. For this reasons, we can distinguish two types of fitness landscape
properties, which we will call topological properties and dynamical properties. For
both types of properties, there exist analyzing tools. These analyzing tools account
for so-called landscape measures.

Landscapes measures serve as quantitative evaluation as a visual inspection of a
fitness landscape is only possible in a 2D search space (for an attempt to visualize
higher-dimensional fitness landscapes, see [60]) and can be misleading even then.
For static fitness landscapes, measures have been intensively studied and a large va-
riety of different measures has been proposed and studied [11, 14, 19, 47, 48, 56].
All these measures of landscape analysis intend to catch properties that are related
to static problem hardness. Such properties are basically the number and distribu-
tion of local optima, and the accessibility (or basin of attraction) of these optima.
Considering the working principles of evolutionary algorithms, it appears easily un-
derstandable that the number of optima scales with the hardness for the algorithm to
find the global one amongst them. The individuals of the evolutionary algorithm are
initially set in the fitness landscape and are meant to move in it, ideally finding the
global optima on their way. They move by using their fitness values and random as
driving forces. In average, the movement means an increase in fitness. If there are
several optima then there are around them locally increasing fitness values which
may attract individuals. Therefore, the larger the number of optima, the more likely
it is that individuals get (at least temporally) occupied on them. In short, the larger
the number of optima, the more difficult it should be in average. Distribution of
the optima plays a role insofar as optima widely scattered on an otherwise neutral
(or almost neutral) landscape may be more challenging than optima grouped. Also,
accessibility (that is the availability and easy localizability of an evolutionary path
form the start population to the global optima) is important as neutrality [50] or
long–path problems show [16]. To account for these fitness landscape features and

280 H. Richter

their interdependence, there are landscape measures. The majority of these mea-
sure are analytical in that they calculate a quantity, usually a number, for the fitness
landscape under study. There are also descriptive measures, as for instance GA–
deceptiveness [9]. As pointed out before problem hardness cannot be attributed to
a single quantity, for instance modality, but depends on how other factors such as
distribution or accessibility contribute, modify, intensify or weaken the effect of the
sheer number of optima. In the same way, no single landscape measure can be suf-
ficient to express problem hardness, let alone for all types of fitness landscapes. As
has been shown [2], a single measure can sometimes lead to an incorrect prediction
of problem hardness, in particular if the global optimum is not known (as is usu-
ally the case with real–world problems). For a class of static fitness landscapes, the
so–called combinatorial SAT problem, and a class of evolutionary algorithms, the
(1+1) evolution strategy, it has been even shown by proof that there can be no sin-
gle measure that catches all aspects of problem difficulty and allows prediction of
performance [11]. For these reasons it is sensible to have a variety of measures. An
application of these topological measures to dynamic fitness landscapes has been
suggested in [37, 38, 42], where the main focus was to analyze CML-based fit-
ness landscapes, which are of class 3 with internal dynamics. In the following these
measures are recalled and modifications to consider class 4 problems with external
dynamics are given. So, these measures generalize the static ones by considering
their time dependence.

11.3.1 Analysis of Topological Properties

11.3.1.1 Modality

A first and most straightforward measure is modality with counts the number of
optima. Obviously this measure can only be easily calculated for constructed fit-
ness landscapes for which an equation–like mathematical description is available.
Therefore, this measure also serves as a quantity of comparison to other measures.
On the other hand, it has been clearly shown that modality is an influential factor
on problem hardness for a considerable number of fitness landscapes. A dynamic
fitness landscape has a local optima at search space point x and time k if all points
in its neighborhood do not exceed its fitness value

f (x,k) ≥ f (n(x),k). (11.10)

For the moving peaks benchmark (Eq. (11.2)) modality can be calculated by enu-
meration. At time k, the i-th peak with coordinates ci(k), slope si(k) and height hi(k)
is a maxima if

max
1≤ j≤N

j�i

[h j(k)− s j(k)‖ci(k)− c j(k)‖]< hi(k). (11.11)

Note that not all peaks must be optima which is due to the effect of nesting, de-
scribed in Sec. 11.2.1. We denote #LM(k) the number of local maxima at time k,
which is the number of cones for which condition (Eq. (11.11)) holds. In a dynamic

11 Dynamic Fitness Landscape Analysis 281

fitness landscape, obviously, this number may vary with time and can be regarded
as a time series. Therefore, we consider this quantity statistically and will analyze
its time average #LM.

11.3.1.2 Ruggedness

As given above modality is a good indicator for the probability that an evolutionary
search is easy or not. On the other hand, modality is impractical to calculate for
a given fitness landscape. The essence of modality is the appearance of hills and
valley, which means regions with fitness values strictly higher or lower than the
surrounding ones. In other words, modality can be viewed as the degree of alteration
between high and low fitness values in a given segment of the landscape, or as
the question of how predictable it is if the fitness value of a neighboring point is
higher or lower than the own. Consider for instance a single sphere that curves
down uniformly into all search space directions, or alternatively a large collection
of spiky peaks laying closely to each other. The former appears smooth and it is
highly predictable from a given sequence of points and fitness values if the next
point in the sequence will have a higher or lower value than the current one. The
latter is rugged and a like–wise prediction much harder. This characteristics even
applies for a superficially rugged landscape where repeatedly but predictable high
fitness values follow low fitness values, but there is a high correlation if we are to
move on this landscape. So, to have a quantitative measure, correlation between
fitness values on a tour on the fitness landscape that can be used. Starting point for
calculating a measure for ruggedness is a random walk on the fitness landscape.
This random walk should have the length T and the step size tS. So, we can obtain a
random walk on the fitness landscape as

x(j+ 1) = x(j)+ ts · rand (11.12)

with rand being independent realizations of a random variable, usually normally or
uniformly distributed. The random walk starts from a random position and must be
corrected if it oversteps the bounds xbound of the search space. In this case, we reset
the walk to a randomly selected point within the search space. For the random walk
(Eq. (11.12)) we can record the fitness value as time series:

f (j,k) = f (x(j),k)), j = 1,2, . . .T. (11.13)

From these fitness values we can calculate the spatial correlation which is widely
used in determining ruggedness of static landscapes [14, 47, 59]. The spatial corre-
lation r(tL,k) can be obtained from the autocorrelation function of the time series
with time lag tL, also called random walk correlation function:

r(tL,k) =

T−tL
∑
j=1

(
f (j,k)− f̄ (k)

)(
f (j+ tL,k)− f̄ (k)

)

T
∑
j=1

(
f (j,k)− f̄ (k)

)2
, (11.14)

282 H. Richter

where f̄ (k) = 1
T

T
∑
j=1

f (j,k) and T � tL > 0. The spatial random walk correlation

function measures the correlation between different segments of the fitness land-
scape for a fixed k. As r(tL,k) changes over time, we may consider its time average
r(tL). Next, the correlation of the lag tL

λR(tL) =−
1

ln(|r(tL)|)
(11.15)

can be calculated. It has been shown that ruggedness is best expressed by the corre-
lation length with lag tL = 1, [47]:

λR =− 1
ln(|r(1)|) . (11.16)

The lower the value of λR, the lower the correlation and therefore, the more rugged
is the landscape.

11.3.1.3 Information Content

In contrast to the correlation based measure ruggedness, the information content
accounts an entropic quantity [25, 52, 55, 56]. Starting point for this method to
evaluate landscapes is again, as for the correlation structure considered above, a time
series (Eq. (11.13)), f (j,k), which is generated by a random walk on the dynamic
landscape for a fixed time k. Taking this time series, we express the differences in
fitness between two consecutive walking steps by a code using the symbols s j ∈ S,
j = 1,2, . . . ,T − 1, taken from the set S = {−1,0,1}. These symbols are obtained
by

s j(e,k) =

⎧
⎨
⎩
−1, if f (j+ 1,k)− f (j,k) < −e

0, if | f (j+ 1,k)− f (j,k)| ≤ e
1, if f (j+ 1,k)− f (j,k) > e

(11.17)

for a fixed e∈ [0,L], where L is the maximum difference between two fitness values.
The obtained symbols are concatenated to a string

S(e,k) = s1s2 . . .sT−1. (11.18)

The parameter e defines the sensitivity by which the string S(e,k) accounts for dif-
ferences in the fitness values. For e = 0, the string S(e,k) contains the symbol s j = 0
only if the random walk has reached an area with neutrality. It hence discriminates
very sensitively between increasing and decreasing fitness values. On the other hand,
for e = L, the string only contains the symbol s j = 0, which makes evaluating the
structure of the landscape futile. So, with a fixed value of e with 0< e< L, we define
a level of detail for the information content of the landscape. The string (Eq. (11.18))
expresses this information depending on e and codes it by subblocks over the set S.
In other words, varying the sensitivity e allows to zoom in on or to zoom out of the
information structure of the landscape.

11 Dynamic Fitness Landscape Analysis 283

For defining entropic measures of the landscape, we analyze the distribution of
subblocks of length two, s js j+1, j = 1,2, . . .T − 2, within the string (11.18). These
subblocks express local patterns in the landscape. We denote the probability of the
occurrence of the pattern δ1δ2 with δ1,δ2 ∈ S and δ1 � δ2 by pδ1δ2

. For numerical
calculation, we approximate this probability by the relative frequency of the patterns
within the string S(e,k). As the set S consists of three elements, we find 6 different
kinds of subblock s js j+1 = δ1δ2 with δ1 � δ2 within the string. From their prob-
abilities at a fixed time k and a given sensitivity level e we calculate the entropic
measure [56]

hIC(e,k) =− ∑
δ1,δ2∈S
δ1�δ2

pδ1δ2
(e,k) log6

(
pδ1δ2

(e,k)
)
, (11.19)

which is called information content of the fitness landscape. Note that by taking the
logarithm in Eq. (11.19) with the base 6, the information content is scaled to the
interval [0,1]. As for the other landscape measures, for evaluating dynamic fitness
landscapes, we consider the time average hIC(e).

11.3.1.4 Fitness Distance Correlation

With the landscape measure fitness distance correlation we determine how closely
fitness values and distance to the nearest optimum are related. Again, we start with
a random walk resulting in a time series (Eq. (11.13)), f (j,k). Also, for the random
walk (Eq. (11.12)), x(j) we record the minimum distance d j(k) = ‖x(j)−xS(k)‖ to
the global optimum using the solution xS(k) of the dynamic optimization problem,
see eq. (11.7). We then can calculate the quantity

ρ(k) =
1

σ f σdT

T

∑
j=1

(
f (j,k)− f̄ (k)

)(
d j(k)− d̄(k)

)
(11.20)

where f̄ (k) = 1
T

T
∑
j=1

f (j,k), d̄(k) = 1
T

T
∑
j=1

d(k) and σ f , σd are the standard deviations

of f (j,k) and d(k), respectively. The problem should be easy if a decrease of dis-
tance to the optimum relates strongly to an increase of fitness. This may suggest that
an easily localizable evolutionary path to the optimum exists via increasing fitness
values, which poses no obstacles for an evolutionary search. Such a strong inverse
relation we obtain for ρ(k) =−1, thus indicating low problem hardness. A ρ(k) = 1
would show the exact opposite. In the numerical experiments we again consider the
time average ρ .

11.3.2 Analysis of Dynamical Properties

Next to topological properties that have effect on the difficulties an evolutionary
search has in a fitness landscape, features of the dynamics play an important role.

284 H. Richter

While topological landscape measures are an established topic in evolutionary com-
puting, a like–wise treatment of the dynamic effects plays still a considerably minor
role; some primary works can be found in [10, 15, 38, 41]. It is, again intuitively,
clear that two main features of dynamics should have a strong influence on the
performance of the evolutionary search: change frequency and dynamic severity.
Change frequency indicates the speed with which the fitness landscapes change rel-
atively to the evolutionary algorithm. Dynamic severity signifies how fundamental
these changes are in terms of their magnitude. Change frequency should be impor-
tant as a high speed (the fitness landscape changes its topology frequently) gives the
evolutionary algorithm just a few generations to find the optimum. A high dynamic
severity results in optima moving considerable distances in the search space, and
hence recovering it might be complicated or takes time.

11.3.2.1 Change Frequency

An evolutionary search routine takes information out of the fitness landscape and
therefore actively interacts with it by evaluating fitness at selected search space
points, that are the places the individuals of its population occupy at a given gen-
eration. As this is the only form of information extraction, it is also a (repeated but
otherwise) isolated instance of interplay with the dynamics of the fitness landscape.
In most evolutionary search algorithms, fitness function evaluation takes place once
in a generation (iteration); in all algorithms it happens at disjunct points in time.
In this sense, the evolutionary algorithm samples the fitness landscape at discrete
points in space and time.

For these facts, it is reasonable to measure the speed of the fitness landscape rel-
atively to the evolutionary search algorithm. This can be done by counting the num-
ber of fitness function evaluations or the generations from one landscape change
to the next. For the number of individuals being constant, both countings approxi-
mately scale directly linear. In the following we prefer to count landscape speed by
the number of generation between changes; this number we call change frequency
γ ∈ N. By linking the speed of the fitness landscape to the generations of the evo-
lutionary algorithm, we also establish a connection in real time. The dynamics of
the landscape is a results of the dynamic optimization problem undergoing changes.
For a real–world problem these changes are in real time. Via the linear link the
change frequency can be counted as generations. On the other hand, generations
of an evolutionary algorithm reflect the CPU time for doing the fitness evaluation
and performing the genetic operators. For a given hardware and implementation, we
hence get an approximation of the computer’s real running time, too. An evolution-
ary algorithm should have a certain number of generations (depending on problem
hardness and population size) for finding the optimum to perform well. If we define
this number of generations for a real-world dynamic optimization problem, we in
fact define our requirements on hardware and implementation for the evolutionary
algorithm. Via the linear link, the realized running time (and hence the number of
generation calculated) can be checked against the change pattern of the problem.

11 Dynamic Fitness Landscape Analysis 285

The population dynamics of the evolutionary algorithm is counted by the discrete
generations τ . So, with the change frequency γ we have the link

τ = γk (11.21)

to the landscape time k. Change frequency γ is usually considered as constant over
the run time of the algorithm, but in general γ might also by varying for an ongoing
search, or even be a random number to be considered as the realization of an integer
random process.

11.3.2.2 Dynamic Severity

The second influential factor on dynamic problem hardness is dynamic severity. It
measure the (relative) strength of the landscape change by comparing the landscape
before and after a change. If a change happens and the optimum moves, the individ-
uals momentarily lose it. This may go along with a drop in the individuals’ fitness.
For the evolutionary search it hence makes a difference if the optimum moves a
long or a short way from its current position. In the former it might be complicated
and time-consuming to recover and track it, in the latter the individuals might be
still close enough to catch it again quickly. However, this general observation is not
without exceptional cases, as it is easy to construct counterexamples, for instance
XOR dynamic pseudo-Boolean functions, and show for the (1+ 1) evolution strat-
egy a contrary behavior [44]. Dynamic severity intends to measure this dynamic
property, which can be done using several notations [6, 36, 57]. They all account for
the (relative and time average) distance the optimum moves from one point in land-
scape time k to the next k+ 1. Using the notation of solution xS(k) of the dynamic
optimization problem (Eq. (11.7)) we can put dynamic severity η(k) as

η(k+ 1) = ‖xS(k+ 1)− xS(k)‖. (11.22)

As this quantity varies over time k, we calculate the time average severity

η = lim
K→∞

1
K

K−1

∑
k=0

η(k). (11.23)

Change frequency and dynamic severity are features that are highly influential on
the success an evolutionary search has in solving the corresponding dynamic opti-
mization problem. However, in some sense both quantities are much more adjustable
parameters than measures if the fitness landscape has an external dynamics. Change
frequency is not a direct property of the fitness landscape but a comparison of its
time variable to the generations of the evolutionary algorithm. Dynamic severity
depends entirely on the moving sequence (Eq. (11.9)) and is hence much more a
property of the external dynamics. So, the question is of interest how the (external)
dynamics interacts with topological features of the landscape, particularly such that
are influential on problem hardness. In principle, this question can be addressed by
measures for spatio–temporal dynamics such as complexity. In [41], for instance,

286 H. Richter

Lyapunov exponents and bred vector dimensions have been studied for CML-based
dynamic fitness landscapes. However, for dynamic fitness landscapes with external
dynamics this approach is not accessible. The reason is that both quantities measure
the effect that small changes in the landscape’s fitness have on the time evolution
of fitness values in the neighborhood of the perturbed point. For fitness landscapes
with external dynamics local perturbability is not fully given. As discussed in Sec.
11.2.3, external dynamics means to have dynamics for selected elements in the land-
scape only. In consequence, the general law (Eq. (11.8)) does not apply unrestricted.
The time evolution of a fitness value does not explicitly depend on the fitness values
of its neighbors. Therefore, perturbations afflicted on its neighbors do not have ef-
fect on how the fitness value moves forward in time. Therefore, all spatio-temporal
complexity measures based on perturbation ideas are not applicable for fitness land-
scapes with external dynamics.

For analysis accessible, however, is the external dynamics itself. The moving
sequence (Eq. (11.9)) can be evaluated using tools form nonlinear and/or statistical
time series analysis, see e.g. [21] for an overview. For instance, for all three types
of considered dynamics (regular, chaotic, random) a Lyapunov exponent λ of the
time series can be calculated (for cyclic dynamics, we obtain λ = 0, for chaotic
dynamics, λ > 0 and for random dynamics λ = ∞). Also, the time series can be
analyzed statistically. The obtained quantities can be compared to measures directly
extracted from the fitness landscape. In this, we have a way to address the question of
how dynamical properties of the external drive are reflected by the fitness landscape.

11.4 Numerical Experiments

In this section, we analyze a dynamic fitness landscape using the measures pre-
sented and discussed in Sec. 11.3. As fitness landscape we consider the moving
peaks (Eq. (11.2)). This landscape is rather simple and gives the experimenter a
large degree of control as all topological landscape features can be adjusted. The
control extends even to the dynamics which is defined by an external moving se-
quence. Nonetheless, we belief that considering this dynamic fitness landscape here
is instructive as it allows to illustrate the usage of these landscape measures for a
well–known and rather easy understandable environment. It should be made clear
that the following experimental study is not meant to offer a comprehensive treat-
ment. This is not the focus of the chapter and also, such a study would require to
link the obtained data to a specific evolutionary search algorithm, which is not our
intention here.

Further specification for the moving peaks are dimension n = 2 and we only let
the peaks’ coordinates ci(k) have dynamics. If the number of cones is not varied in
the experiments, we use N = 20. The slopes si and heights hi remain constant over
the runs. Unless otherwise stated, the si and hi are realizations of a random variable
uniformly distributed on the interval [0,1].

As pointed out before, the dynamics of the landscape is defined externally as
moving sequence. In the experiments, we study 6 different forms of dynamics. Two

11 Dynamic Fitness Landscape Analysis 287

types of regular dynamics, cycle and closed–loop linear track, chaotic dynamics
with the generating equations being the Hénon map [12]

x(k+ 1) =

(
1.4− x1(k)2 + 0.3x2(k)

x1(k)

)
(11.24)

with Lyapunov exponent λ = 0.38 and the Holmes map [13]

x(k+ 1) =

(
x2(k)

−0.2x1(k)+ 2.77x2(k)− x2(k)3

)
, (11.25)

with Lyapunov exponent λ = 0.59, and random dynamics which is generated by a
stochastic process with normal distribution N (0,0.75) and uniform distribution on
the interval [−2,2]. Figure 11.2 shows the 6 different dynamics as plots of the points
in the search space the coordinates ci(k) can have. Hence, every such point can be
seen as a possible location for optima at a given point in time k. The point sets in Fig.
11.2 can hence be understood as to depict timely realizations of the spatial optima
distribution in the dynamic fitness landscape. In Fig. 11.3, the dynamic severity
η , Eq. (11.23), is given over the number of cones N. It is almost constant for the
number of cones increasing, but not the same for the different dynamics. This allows
on the one hand to test if other (topological) measures are capable of distinguishing
between different severity. Also, the point sets can be subsequently normalized to
obtain equal severity for testing how the dynamics itself scales to the measures.

For the random walks that are used to calculate ruggedness, information con-
tent and fitness distance correlation the listed parameters were used following a
recommendation in a similar study for static fitness landscapes [25]: walk length
T = 10000 and step size ts = Emax/100, where Emax is the maximal extension in the
search space.

In a first experiment we look at the temporal distribution of modality for the
moving cones, depending on the maximal number of cones N, see Fig. 11.4. In this
figures, histograms for the relative frequency h of optima over the normalized num-
ber of optima #LM/N for different N and the different dynamics are shown, using
10 bins in the histogram. The histograms give the distributions for 2500 different
dynamic realizations of the landscape for each considered dynamics. It can be seen
that the distributions of the number of optima is not Gaussian. In particular, Holmes
chaos (which has a larger Lyapunov exponent as Hénon chaos and hence a higher
chaoticity) gives a distribution that largely differs from normal. Further, it can be
seen that increasing the number of cones leads to getting a smaller and smaller pro-
portion of high ratios #LM/N. This means that the larger the number of cones N
is, the less likely is it that this number is realized as optima in the landscape, the
nesting effect mentioned in Sec. 11.2.1. Note that with 2500 dynamic realizations
of the fitness landscape we considered a rather larger number that fairly represents
the long term dynamic behavior. For a smaller number the relative frequencies might
be distributed largely different.

Next, in Fig. 11.5 we give the average number of optima #LM for different com-
binations of slopes si and heights hi. Therefore, the si and hi are generated as

288 H. Richter

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

(a) circle (b) track

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

(c) Hénon chaos (d) Holmes chaos

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

(e) normal random (f) uniform random

Fig. 11.2 Dynamics of the moving sequence

realizations of a random variable uniformly distributed on the interval [0,hmax] and
[0,smax], respectively. The results in Fig. 11.5a are for Hénon chaos and N = 15, and
again 2500 dynamic realizations are averaged. Only for selected combinations of si

and hi the average number of optima #LM reaches the number of cones N. For other
combinations only a fraction is obtained. This again can be attributed to the nesting
effect for the moving cones. This becomes even more visible if we consider the ratio
hmax
smax

, see Fig. 11.5b, where #LM is depicted over hmax
smax

and different numbers of cones

N. Only for hmax
smax

close to zero, the quantity #LM reaches the maximum value N; for
hmax
smax

getting larger #LM soon takes very small values, meaning that only a fraction of

11 Dynamic Fitness Landscape Analysis 289

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

henon

holmes

normal

uniform

circle

track

N

η

Fig. 11.3 Severity η for the 6 different dynamics of moving sequences

circle
track

henon
holmes

normal
uniform

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

0.25

#LM/N

h

circle
track

henon
holmes

normal
uniform

0

0.2

0.4

0.6

0.8

0

0.05

0.1

0.15

0.2

0.25

#LM/N

h

(a) N = 10 (b) N = 15

circle
track

henon
holmes

normal
uniform

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

#LM/N

h

circle
track

henon
holmes

normal
uniform

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

#LM/N

h

(c) N = 20 (d) N = 25

Fig. 11.4 The distribution of the ratio #LM/N between average number of optima and number
of cones for the 6 different dynamics considered and different N

the intended optima are actually obtained. Further it can be seen that increasing hmax

generally leads to a decrease in the average number of optima #LM , while increasing
smax mildly increases #LM too. The results for the other dynamics look very similar
and are therefore not depicted here.

290 H. Richter

0

2

4

6 0
2

4
6

8
10

0

5

10

15

smaxhmax

L
M

10

15

20

0
2

4
6

8
10

0

5

10

15

20

hmax/smaxN

L
M

(a) (b)

Fig. 11.5 The average number of optima #LM : (a) over the maximal slopes smax and heights
hmax, (b) over the ratio hmax

smax
and different numbers of cones N

0 10 20 30 40 50 60 70
0.85

0.9

0.95

1

1.05

henon

holmes

normal

uniform

circle

track

tL

r(
t L
)

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

henon

holmes

normal

uniform

circle

track

tL

λ R
(t L
)

(a) Correlation r(tL) over time lag tL (b) Correlation length λR(tL) over time lag tL

Fig. 11.6 The spatial correlations (Eq. (11.14)) and (Eq. (11.15)) over the time lag tL in
correlograms

In Sec. 11.3.1 measures for topological landscape properties are discussed. In the
following, we present results for ruggedness λR and information content hic, where
we analyze the influence of parameters used in calculating these quantities. These
are the time lag tL for ruggedness in Eq. (11.14) and Eq. (11.15) and the sensitivity
e for information content (Eq. (11.19)). In Fig. 11.6 the correlograms for different
dynamics and N = 20 are given, again for 2500 different dynamic realizations. The
correlation r(tL) gradually falls with the time lag tL; this effect is even more visible
of the correlation of length tL, λR(tL), see Fig. 11.6b. This is the expected result as
the correlation between the fitness of two points in the landscape weakens for the
random walks on it getting a larger spatial difference. Generally it can be noticed
that the spatial correlation in the moving peak landscape is high and remains high,
even for larger time lags tL. Also, there is little difference in the graphs for the
different types of dynamics. The information content hIC(e) over sensitivity e is
shown in Fig. 11.7. For increasing e we see a temporal increasing or constant hIC(e)
that tapers off for increasing e further. Based in these experiment we fix the value
tL = 1 and e = 0.01 for the subsequent numerical experiments.

11 Dynamic Fitness Landscape Analysis 291

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

henon

holmes

normal

uniform

circle

track

e

h I
C
(e
)

Fig. 11.7 Information content hIC over the sensitivity e

0 10 20 30 40 50 60 70 80
2

4

6

8

10

12

henon

holmes

normal

uniform

circle

track

N

L
M

0 10 20 30 40 50 60 70 80
100

150

200

250

300

350

henon
holmes
normal
uniform
circle
track

N

λ R

(a) (b)

0 10 20 30 40 50 60 70 80
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

henon

holmes

normal

uniform

circle

track

N

ρ

0 10 20 30 40 50 60 70 80
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

henon
holmes
normal
uniform
circle
track

N

h I
C

(c) (d)

Fig. 11.8 The topological landscape measures over cones N. a) modality #LM , b) ruggedness
λR, c) fitness distance correlation ρ , d) information content hIC

In Fig. 11.8 the analyzed topological landscape measure modality #LM , rugged-
ness λR, fitness distance correlation ρ and information content hIC are given for
varying number of cones N in the landscape and the different dynamics. The results
are for 1500 different dynamic realization, which were averaged. We can see that the
average number of optima increases with N, but we do not get a linear relationship
and the increase wears off for increasing N. The fitness distance correlation is nega-
tive and slightly increasing, while ruggedness and information content are generally

292 H. Richter

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
4

5

6

7

8

9

10

11

henon

holmes

normal

uniform

circle

track

η

L
M

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
100

150

200

250

300

350

henon
holmes
normal
uniform
circle
track

η

λ R

(a) (b)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

henon

holmes

normal

uniform

circle

track

η

ρ

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.05

0.1

0.15

0.2

0.25

0.3

henon
holmes
normal
uniform
circle
track

η

h I
C

(c) (d)

Fig. 11.9 The topological landscape measures over severity η . a) modality #LM , b) ruggedness
λR, c) fitness distance correlation ρ , d) information content hIC

falling. This is in agreement with the general understanding that a rise in modality
also means a more difficult search for the optima. On the other hand, the values of
the measures show that the considered problem is indeed a rather simple one. The
correlation length remains relatively high, the fitness distance correlation remains
negative, meaning there is an easily localizable evolutionary path to the optima, and
the information content is rather low. The data shown here, and other experimental
results not depicted here suggest that fitness distance correlation ρ scales best to
dynamic severity. In a second experimental set we calculated the measure for vary-
ing severity η . Therefore, the severity was normalized to the value η = 2 for all
considered dynamics and then collectively varied, see Fig. 11.9. Again, modality
and information content rise with increasing severity, ruggedness falls, while fitness
distance correlation is negative and very slightly rising. So, it can be concluded for
the considered moving peaks that there is a clear and evaluable relation between
the considered measures and topological problem hardness also for dynamic fitness
landscapes.

Interestingly, there is no clear cut conclusion regarding the considered dynam-
ics to be gain from the topological measures. So, for dynamic fitness landscapes
with internal dynamics, dynamics measures are needed as discussed and applied
for CML-based landscapes in [38, 41]. For external dynamics these measures are
no applicable as discussed above. Based on the topological measures given, the

11 Dynamic Fitness Landscape Analysis 293

behavior of an evolutionary algorithm used to solve such dynamic optimization
problems can be analyzed by additionally considering quantities to measure the ex-
ternal
dynamics.

11.5 Conclusion

In this chapter we presented an introduction in dynamic fitness landscape analy-
sis. It was shown that solving a dynamic optimization problem using an evolution-
ary search algorithm can be grounded on the theoretical framework of dynamic
fitness landscapes. These landscapes were defined and their characteristic features
discussed. Moreover, tools for analyzing dynamic fitness landscapes to account for
both topological and dynamical properties were introduced. We considered modal-
ity, ruggedness, fitness distance correlation and information content as topological
measures and dynamic severity as dynamical measure. The usage and calculation of
these measures were illustrated using a well-known example, the moving peaks.

Unlike studying static fitness landscapes, which has meanwhile reached a certain
maturity, the treatment of their dynamic counterparts is still a new topic in evolu-
tionary computation. Our hope is that the methodology presented in this chapter can
serve as a starting point for further research. Although some foundations stones for
defining and measuring dynamic fitness landscapes are laid, many important issues
remain unresolved. A main issue is how the landscape measures are linked to real
performance and behavior data of an evolutionary search algorithm employed to
solve the corresponding dynamic optimization problem. A considerable difficulty
with establishing a reasonably strong, meaningful and convincing relation is that
there are a large variety of evolutionary search algorithms, and an even larger va-
riety of the algorithms’ parameters. As the performance solving a given dynamic
optimization problem sensitively depends on this choice of algorithm and parame-
ters, there would be the need for a large data base over an exhaustive variation of
both. This is still not available for dynamic optimization and might be hard to come
by. This is additionally complicated by the fact that simple and theoretically analyz-
able evolutionary algorithms such as the (1+ 1) evolution strategy mostly deliver
poor results in numerical problem solving. However, that this is a possible way to go
is shown in studies of static fitness landscapes where the question was answered for
certain algorithm-problem combinations [27, 51]. A first step towards this aim might
be to have a general set of rules that allow to distinguish different generic types of
dynamic problems and link these types to expectable behavior of certain types of
evolutionary algorithms regardless of the actual performance. A second interesting
issue is how measures of the external dynamics are reflected by landscape measures
and the behavior of evolutionary algorithms. Some qualitative works have been done
on this topic [10, 36, 40, 46, 57], but so far they are clearly centered on specific im-
plementation variants of evolutionary algorithms. Again, it might be illuminating to
use a simple evolutionary algorithm and analyze the behavior unconcerned about
the performance. Another open topic is how the fitness landscape approach are to

294 H. Richter

adapt to other types of populations-based search algorithm. As has been shown other
types of algorithms such as PSO, differential evolution or memetic algorithms are
sometimes more successful in solving dynamic optimization problems. In principle,
the arguments made for the interplay between the individuals of an evolutionary al-
gorithm with the fitness landscape should apply for them in a largely similar way. A
final point surely is applying the approach to real-world problems. So far, analyzing
dynamic fitness landscapes is using constructed landscape models, but the analyzing
tools are usable for all kind of dynamic optimization problems.

References

[1] Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization prob-
lems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp.
572–581. Springer, Heidelberg (2010)

[2] Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample. In:
Bäck, T. (ed.) Proc. 7th Int. Conf. on Genetic Algorithms, pp. 57–64. Morgan Kauf-
mann, San Francisco (1997)

[3] Asselmeyer, T., Ebeling, W., Rosé, H.: Analytical and numerical investigations of evo-
lutionary algorithms in continuous spaces. In: Voigt, H.-M., Ebeling, W., Rechenberg,
I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 111–121. Springer, Heidel-
berg (1996)

[4] Bosman, P.A.N., La Poutré, H.: Computationally intelligent online dynamic vehicle
routing by explicit load prediction in an evolutionary algorithm. In: Runarsson, T.P.,
Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006.
LNCS, vol. 4193, pp. 312–321. Springer, Heidelberg (2006)

[5] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.)
Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882. IEEE Press, Piscataway (1999)

[6] Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic
Publishers, Dordrecht (2001)

[7] Crutchfield, J.P., Kaneko, K.: Phenomenology of spatiotemporal chaos. In: Hao, B. (ed.)
Directions in Chaos, vol. 1, pp. 272–353. World Scientific, Singapore (1987)

[8] Cruz, C., Gonzlez, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput. 15, 1427–1448 (2011)

[9] Deb, K., Goldberg, D.E.: Sufficient conditions for deceptive and easy binary functions.
Ann. Math. Artif. Intell. 10, 385–408 (1994)

[10] Eriksson, R., Olsson, B.: On the performance of evolutionary algorithms with life-time
adaptation in dynamic fitness landscapes. In: Greenwood, G.W. (ed.) Proc. 2004 IEEE
Congr. Evol. Comput., pp. 1293–1300. IEEE Press, Piscataway (2004)

[11] He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box
optimization: classification, realizations and predictability. Evolut. Comput. 15, 435–
443 (2007)

[12] Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math.
Phys. 50, 69–77 (1976)

[13] Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. Lon-
don A 292, 419–448 (1979)

[14] Hordijk, W.: A measure of landscapes. Evolut. Comput. 4, 335–360 (1996)

11 Dynamic Fitness Landscape Analysis 295

[15] Hordijk, W., Kauffman, S.A.: Correlation analysis of coupled fitness landscapes. Com-
plexity 10, 42–49 (2005)

[16] Horn, J., Goldberg, D.E., Deb, K.: Long path problems. In: Davidor, Y., Schwefel, H.-
P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–158. Springer, Heidelberg
(1994)

[17] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – A survey.
IEEE Trans. Evol. Comput. 9, 303–317 (2005)

[18] Jones, T.: Evolutionary algorithms, fitness landscape and search. PhD thesis, The Uni-
versity of New Mexico, Albuquerque (1995)

[19] Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search land-
scapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary
Computing, pp. 177–208. Springer, Heidelberg (2001)

[20] Kaneko, K., Tsuda, I.: Complex Systems: Chaos and Beyond. Springer, Heidelberg
(2001)

[21] Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge (1999)

[22] Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged land-
scapes. J. Theor. Biology 128, 11–45 (1987)

[23] Kauffman, S.A.: The Origin of Order: Self-Organization and Selection in Evolution.
Oxford University Press, New York (1993)

[24] Li, Y., Wilke, C.O.: Digital evolution in time–dependent fitness landscapes. Artificial
Life 10, 123–134 (2004)

[25] Malan, K., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using
entropy. In: Tyrrell, A. (ed.) Proc. 2009 IEEE Congr. Evol. Comput., pp. 1440–1447.
IEEE Press, Piscataway (2009)

[26] Mendes, R., Mohais, A.: DynDE: Differential Evolution for dynamic optimization prob-
lems. In: Corne, D. (ed.) Proc. 2005 IEEE Congr. Evol. Comput., pp. 2808–2815. IEEE
Press, Piscataway (2005)

[27] Merz, P.: Advanced fitness landscape analysis and the performance of memetic algo-
rithms. Evolut. Comput. 12, 303–325 (2004)

[28] Morrison, R.W.: Designing Evolutionary Algorithms for Dynamic Environments.
Springer, Heidelberg (2004)

[29] Morrison, R.W., De Jong, K.A.: A test problem generator for non–stationary environ-
ments. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.)
Proc. 1999 IEEE Congr. Evol. Comput., Piscataway, NJ, pp. 2047–2053 (1999)

[30] Morrison, R.W., De Jong, K.A.: Triggered hypermutation revisited. In: Zalzala, A., et al.
(eds.) Proc. 2000 IEEE Congr. Evol. Comput., pp. 1025–1032. IEEE Press, Piscataway
(2000)

[31] Nilsson, M., Snoad, N.: Error thresholds for quasi-species on dynamic fitness land-
scapes. Phys. Rev. Lett. 84, 191–194 (2000)

[32] Nilsson, M., Snoad, N.: Quasi-species evolution on dynamic fitness landscapes. In:
Crutchfield, J.P., Schuster, P. (eds.) Evolutionary Dynamics: Exploring the Interplay of
Selection, Accident, Neutrality and Function. Santa Fe Institute Studies in the Sciences
of Complexity Series, pp. 275–290. Oxford University Press, New York (2002)

[33] Nilsson, M., Snoad, N.: Optimal mutation rates in dynamic environments. Bull. Math.
Biol. 64, 1033–1043 (2002)

[34] Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In:
Tyrrell, A. (ed.) Proc. 2009 IEEE Congr. Evol. Comput., pp. 690–697. IEEE Press,
Piscataway (2009)

296 H. Richter

[35] Richter, H.: Behavior of evolutionary algorithms in chaotically changing fitness land-
scapes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 111–120. Springer,
Heidelberg (2004)

[36] Richter, H.: A study of dynamic severity in chaotic fitness landscapes. In: Corne, D.
(ed.) Proc. 2005 IEEE Congr. Evol. Comput., pp. 2824–2831 (2005)

[37] Richter, H.: Evolutionary optimization in spatio–temporal fitness landscapes. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao,
X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 1–10. Springer, Heidelberg (2006)

[38] Richter, H.: Coupled map lattices as spatio-temporal fitness functions: Landscape mea-
sures and evolutionary optimization. Physica D237, 167–186 (2008)

[39] Richter, H., Yang, S.: Memory based on abstraction for dynamic fitness functions.
In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 596–605.
Springer, Heidelberg (2008)

[40] Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic op-
timization problems. Soft Comput. 13, 1163–1173 (2009)

[41] Richter, H.: Evolutionary optimization and dynamic fitness landscapes: From reaction–
diffusion systems to chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen,
G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446.
Springer, Heidelberg (2010)

[42] Richter, H.: Memory design for constrained dynamic optimization problems. In: Di
Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561.
Springer, Heidelberg (2010)

[43] Richter, H., Dietel, F.: Solving dynamic constrained optimization problems with asyn-
chronous change pattern. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I.
LNCS, vol. 6624, pp. 334–343. Springer, Heidelberg (2011)

[44] Rohlfshagen, P., Lehre, P.K., Yao, Y.: Dynamic evolutionary optimisation: An analysis
of frequency and magnitude of change. In: Rothlauf, F. (ed.) Proc. 2009 Genetic and
Evol. Comput. Conf., pp. 1713–1720. ACM, Seattle (2009)

[45] Simões, A., Costa, E.: Variable-size memory evolutionary algorithm to deal with dy-
namic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448,
pp. 617–626. Springer, Heidelberg (2007)

[46] Simões, A., Costa, E.: The influence of population and memory sizes on the evolution-
ary algorithm’s performance for dynamic environments. In: Giacobini, M., et al. (eds.)
EvoWorkshops 2009. LNCS, vol. 5484, pp. 705–714. Springer, Heidelberg (2009)

[47] Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20, 1–45
(1996)

[48] Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor. Biol. 8,
389–431 (2003)

[49] Stanhope, S.A., Daida, J.M.: (1+1) Genetic algorithm fitness dynamics in a changing
environment. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A.
(eds.) Proc. 1999 IEEE Congr. Evol. Comput., pp. 1851–1858 (1999)

[50] Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability.
Evolut. Comput. 10(1), 1–34 (2002)

[51] Tavares, J., Pereira, F.B., Costa, E.: Multidimensional knapsack problem: a fitness land-
scape analysis. IEEE Trans. Syst., Man, and Cyber. Part B: Cybern. 38, 604–616 (2008)

[52] Teo, J., Abbass, H.A.: An information–theoretic landscape analysis of neuro-controlled
embodied organisms. Neural Comput. Appl. 13, 80–89 (2004)

11 Dynamic Fitness Landscape Analysis 297

[53] Tinós, R., Yang, S.: A self–organizing random immigrants genetic algorithm for dy-
namic optimization problems. Genetic Programming and Evolvable Machines 8, 255–
286 (2007)

[54] van Hemert, J.I., La Poutré, J.A.: Dynamic routing problems with fruitful regions:
Models and evolutionary computation. In: Yao, X., et al. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 692–701. Springer, Heidelberg (2004)

[55] Vassilev, V.K.: Information analysis of fitness landscapes. In: Husbands, P., Harvey, I.
(eds.) Proc. 4th European Conf. on Artificial Life, pp. 116–124. MIT Press, Cambridge
(1997)

[56] Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure
of landscapes. Evol. Comput. 8(1), 31–60 (2000)

[57] Weicker, K.: An analysis of dynamic severity and population size. In: Deb, K., Rudolph,
G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000.
LNCS, vol. 1917, pp. 159–168. Springer, Heidelberg (2000)

[58] Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

[59] Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biol. Cybern. 63, 325–336 (1990)

[60] Wiles, J., Tonkes, B.: Hyperspace geography: Visualizing fitness landscapes beyond 4D.
Artificial Life 12, 211–216 (2006)

[61] Wilke, C.O., Ronnewinkel, C., Martinetz, T.: Dynamic fitness landscapes in molecular
evolution. Phys. Rep. 349, 395–446 (2001)

[62] Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution.
In: Jones, D.F. (ed.) Proc. 6th Int. Congr. on Genetics, pp. 356–366 (1932)

[63] Yang, S., Yao, X.: Experimental study on population–based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[64] Yang, S., Ong, Y.S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain
Environments. Springer, Heidelberg (2007)

Chapter 12
Dynamics in the Multi-objective Subset Sum:
Analysing the Behavior of Population Based
Algorithms

Iulia Maria Comsa, Crina Grosan, and Shengxiang Yang

Abstract. Real-world problems often present two characteristics that are challeng-
ing to examine theoretically: 1) they are dynamic (they change over time), and 2)
they have multiple objectives. However, current research in the field of dynamic
multi-objective optimization (DMO) is relatively sparse. In this chapter, we review
recent work in this field and present our analysis of the subset sum problem in the
DMO variant. Our approach uses a genetic algorithm with an external archive and a
combination of Pareto dominance and aggregated fitness function. We show that the
algorithm performs better on a smaller number of objectives, on type III dynamicity
problems, and sometimes, counter-intuitively, on a larger data set.

12.1 Introduction

Many real-life optimization problems present two characteristics that are challeng-
ing for theoretical study: firstly, they are dynamic (i.e., they change over time), and
secondly, they require the optimization of multiple objectives at the same time.

Iulia Maria Comsa
Department of Computer Science, Babes-Bolyai University, Kogalniceanu 1,
Cluj-Napoca 400084, Romania
e-mail: iulia.m.comsa@gmail.com

Crina Grosan
Department of Computer Science, Babes-Bolyai University, Kogalniceanu 1,
Cluj-Napoca 400084, Romania, and Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
e-mail: crina.grosan@brunel.ac.uk

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and
Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 299–313.
DOI: 10.1007/978-3-642-38416-5_12 c© Springer-Verlag Berlin Heidelberg 2013

300 I.M. Comsa, C. Grosan, and S. Yang

This chapter aims to study theoretically a dynamic and multi-objective version
of the subset sum problem. The theoretical study is original, as no other study on
the dynamic multi-objective subset sum problem has been made (there are currently
very few studies on any dynamic multi-objective problem).

The subset sum problem arises in practice whenever a set of objects have to be
stored efficiently in a container with a finite capacity. One example of the subset
sum problem applications is transporting in a limited weight truck several items
with certain weights. The problem becomes dynamic when, for example, the stor-
age capacities or the objects to be stored change over time. For multiple trucks, it
becomes a multi-objective problem.

In dynamic problems, either the Pareto set, the Pareto front, or both, can change
with time, giving rise to three types of dynamicity. We study all three types for
the subset sum problem with 2, 3 and 4 objectives, on two sets of data, with a
genetic algorithm (GA). The GA uses an external archive to preserve the best (non-
dominated) solutions and assure elitism, and an aggregate fitness function.

The rest of the chapter is organized as follows. Section 12.2 briefly reviews the
domain of dynamic optimization. Section 12.3 discuses the multi-objective aspect of
it. Section 12.4 describes the multi-objective subset sum version considered in this
work. Section 12.5 is dedicated to numerical experiments and discussions followed
by conclusions in Section 12.6.

12.2 Dynamic Optimization

Real life optimization problems often involve a degree of uncertainty. There are
four types of uncertainty that a problem can exhibit [16]: noise (the fitness func-
tion is noisy, such as the measurement errors of sensors), environmental changes
after finding an optimal solution (which requires the found solution to be robust
against such changes), fitness approximation errors (since accurate fitness functions
may be too expensive, approximate functions, also called meta-models, are used
instead, which inevitably suffer from approximation errors), time-dependence of
the optimum (the fitness value is deterministic, but changes in time, so the algo-
rithm should be able to track its changes). In this chapter, we are interested in the
fourth type of uncertainty for problems solved using evolutionary algorithms (EAs).
An optimization problem that exhibits this type of uncertainty is called a dynamic
problem.

If a static optimization problem can be defined as:

Find x ∈ Xm that minimizes y = f (x),

a dynamic optimization problem can be defined as:

Find the sequence xk ∈ Xm that minimizes y = f (xk) ,k = 1,2,

12 Dynamics in the Multi-objective Subset Sum 301

The simplest way of dealing with dynamic behavior is restarting the algorithm
whenever a change occurs. However, since the algorithm has already sampled the
search space while searching for the old solution, restarting the algorithm leads to
the loss of potentially valuable information. Moreover, in some cases, attempting
to detect at every time step whether a change has occurred in the problem may not
be practical. Thus, we are interested in reusing the information already gained by
the algorithm. This information may speed up the process of finding the new opti-
mal solution. We take this approach assuming that the new optimum is somewhat
close to the previous optimum; in the case of a more dramatic change, restarting the
algorithm may be a better choice.

In general, there are four strategies for coping with dynamic problems when
using EAs [16]: increasing the diversity, maintaining the diversity, using multiple
populations, and keeping archives. The first strategy is to increase significantly the
population diversity, for example by a significant increase in the mutation rate
(hypermutation) after a change occurs. This would lead to the current population
spreading away from the previous optimum, while still keeping some information
(genes) close to the previous optimum. An example is the macromutation used in
[3], which involves generating several new random individuals and increasing sig-
nificantly the mutation rates (recrudescence) in order to reorganize the individual
fitness landscape. A disadvantage of this strategy is the difficulty of achieving the
right amount of diversification. Too much diversification leads to a high chance that
potentially useful information will be lost; while too little diversification may lead
to the premature convergence of the solution.

Another useful strategy is maintaining good diversity in the population during
the search process. This could help identify promising search space regions more
easily in the event of a change. An example of an algorithm emphasizing diversity
is the thermodynamical GA (TDGA) [18]. This algorithm employs a temperature
parameter that regulates diversification. However, it has been noted that there are
cases when enforcing diversity hinders the search [2].

The third strategy for dealing with dynamic problems is the use of multiple pop-
ulations to track promising areas of the search space. Such an approach is presented
in [4], where a main population is searching for promising peaks, while multiple
smaller populations are keeping track of each peak. This approach, as well as main-
taining diversity, can be especially useful when it is not possible to detect whether a
change in the problem has occurred.

The fourth strategy is to use an archive (memory) to store the best solutions from
the current population over time and reuse these stored solutions when a change
occurs [5]. The memory based strategy can greatly improve the performance of
EAs when the dynamic problem is subject to cyclic dynamic environments, i.e., old
environments may re-appear in the future.

Performance assessment is somewhat difficult in dynamic environments. Weiker
[22] described three qualities of a dynamic optimization algorithm. Firstly, the al-
gorithm should be accurate: the best solution in the population should be as close as
possible to the optimal solution. Secondly, the population should be stable – its ac-
curacy should not fluctuate severely in the event of a change. Thirdly, the algorithm

302 I.M. Comsa, C. Grosan, and S. Yang

should be able to react quickly to changes in order to recover its accuracy when
a change occurs. An example of a simple performance measurement is the offline
performance index. This is calculated by averaging the best solutions found at each
time step, where a new time step marks a dynamic change in the problem.

12.3 Multi-objective Aspect

The domain of dynamic multi-objective optimization is still in its infancy and there
are few publications in the field so far. Proposed algorithms include evolutionary
(usually hybrid) algorithms [10, 14, 15, 23], immunity-inspired algorithms [21, 24]
or other innovative methods [1].

A DMO problem can be defined as:

Minimize y = (y1,y2, ...,yn) = f (x, t) ∈ Y n

s.t. x = (x1,x2, ...,xm) ∈ Xm,
possibly under certain constraints g(x)> 0,h(x) = 0.

The Pareto-optimal set (POS) and the Pareto-optimal front (POF) of a DMO prob-
lem can change at every time step. Farina et al. [10] described four types of DMO
problems depending on the POF and POS dynamics, as presented in Table 12.1. The
problems of interest in this chapter are of Type I, Type II and Type III.

Table 12.1 Types of DMO problems

Static POS Dynamic POS
Static POF Type IV Type I
Dynamic POF Type III Type II

In order to solve DMO problems with EAs, ones has to pay attention to issues
from both multi-objective optimization and dynamic optimization problems. Several
approaches are common for both types of problems, such as diversity preservation
and usage of multiple populations. Nevertheless, designing a good EA for DMO
problems requires more effort than in a simpler case. Although, ideally, an EA for
a DMO problem should work well on any search space, it is often easier to design
algorithms for specific search spaces.

An extensive suite of DMO test problems was proposed in [10]. The proposed test
problems give rise to different challenges regarding the time-dependent search space,
such as nonconvexity, disconnectedness, or deceptiveness. The suite includes a few
mathematically derived problems (including FDA1), DMO versions of the knapsack
problem and the traveling salesman problem, and a DMO controller problem. Other
test problems can be created based on the given construction procedure.

Farina et al. [10] proposed a direction-based search method for tackling DMO
problems. The algorithm is a dynamic adaptation of the hybrid algorithm for multi-
objective problems found in [9]. The direction-based search method employs EAs to
achieve a global search on the decision space. Their research suggests the need for

12 Dynamics in the Multi-objective Subset Sum 303

more efficient algorithms, perhaps adapted from the state of the art multi-objective
EAs, such as the nondominated sorting genetic algorithm II (NSGA-II) [7], strength
Pareto EA 2 (SPEA2) [25], and Pareto envelope-based selection algorithm (PESA)
[6].

Shang et al. [21] proposes an innovative algorithm inspired by the human im-
mune system – the clonal selection algorithm (CSADMO). The algorithm struc-
turally resembles an EA, but defines some unique operators. The clonal selection
is implemented on a population consisting of antibodies to allow information ex-
change among individuals. Mutation is nonuniform, as it depends on the current
generation: at the beginning of the algorithm, it promotes vast search space explo-
ration, but as the algorithm advances, its effect is limited to solution fine-tuning. Fi-
nally, a distance method is used to assure the diversity of the population. This algo-
rithm outperforms the direction-based algorithm [10]. Another immunity-inspired
algorithm is described in [24].

An interesting algorithm inspired by artificial life (ALife) was proposed in [1],
which provides an approximation of the Pareto-optimal front. Under the tag line “the
dumbest smart thing you can do is stay alive”, the idea of the algorithm is to con-
sider a population of social chromosomes, and to allow them to interact. When two
individuals meet, they will either reproduce to create offspring that are added to the
population, or the stronger individual will kill the other. Individuals can also repro-
duce asexually when they do not meet another individual, which results in a mutated
copy of the parent. The algorithm tracks successfully changes of the Pareto set.

Hatzakis and Wallace [15] presented an EA for DMO problems merged with a
forecasting module that aims to predict the future location of the optimum. The
forecasting module makes its prediction based on information regarding the previ-
ous evolution of the optimum. In response to the forecast, several individuals are
placed in the estimated region.

Zeng et al. [23] proposed a simple genetic algorithm, called DOMOEA. This
algorithm works on continuous search spaces and uses the results obtained at a
time step as a starting population for the next time step. Between two consecutive
time steps, the algorithm employs an “orthogonal design method” to improve the
population fitness.

A real-life application of DMO was presented in [8]. The NSGA-II algorithm is
adapted for dynamic environment and applied to the hydrothermal power schedul-
ing problem. This algorithm does not automatically detect changes, but rather re-
evaluates 10% of the population at every generation in order to detect changes.

Goh and Tan [14] proposed a new evolutionary paradigm involving multiple pop-
ulations. Their algorithm combines co-evolution with competition in order to allow
a flexible, adaptive decomposition of the problem. Several subpopulations compete
for representing a particular subcomponent of the problem; in the end, the winners
cooperate for producing globally optimal solutions.

The majority of these approaches are derived from static multi-objective prob-
lems, and are tested against benchmark functions. They are often based on so-
phisticated or hybridized methods. The domain of DMO remains open for further
research.

304 I.M. Comsa, C. Grosan, and S. Yang

12.4 The Multi-objective Subset Sum Problem

The subset sum problem is a classic NP-complete problem [13]. Its widely studied
decision variant can be stated as follows:

Given a set of items (numbers)W = {w1,w2, ...,wn} ,find a subset of W
whose sum of elements equals a given sum S.

No exact solution in polynomial time exists for the problem. However, there have
been attempts to find exact solutions in pseudo-polynomial time (that run in practice
as if they were polynomial) by Flaxman and Przydatek [11] and Galil and Margalit
[12], or even in linear time for certain constraints by Pisinger [19].

We are interested in the combinatorial version of the problem:

Given a set of items (numbers)W = {w1,w2, ...,wn} ,find a subset of W
whose sum of elements is as close as possible to, without exceeding, a
given sum S.

Although real-life applications exist for the subset sum problem, it is also useful
to employ it as a toy problem for testing and analyzing the behavior of existing
algorithms. Khuri et al. [17] were the first to study this problem, in its combinatorial
version, using GAs. They performed an analysis of a standard GA on instances of
size (number of elements in W) 100 and 1000, with very good results. An interesting
finding of their study is that the problem size does not influence the results of the
algorithm.

Rohlfshagen and Yao [20] presented an extensive analysis of the subset sum
problem in its dynamic form. Their analysis showed that, in non-extreme cases,
the severity of change affecting the parameters (the actual magnitude of change) is
proportional to the distance between successive global optima (the observed rate of
change).

12.5 Analysis of the Dynamic Multi-objective Subset Sum
Problem

We are interested in the following dynamic and multi-objective version of the subset
sum problem:

Given a set of n positive numbers W = {w1,w2, ...,wn}and a set of m
positive integers S = {S1,S2, ...,Sm} , find m disjoint subsets of W,
such as the sum of elements in subset i (i = 1,2, ...,m) is as close as
possible to, without exceeding, Si.

We will study the behavior of a GA whose aim is to approximate the Pareto-optimal
front, i.e. to find as many Pareto-optimal solutions as possible. We will analyze

12 Dynamics in the Multi-objective Subset Sum 305

Table 12.2 The algorithm parameters

Representation
X = {x1x2...xn}, xi ∈ {0,1, ...,m}
with the meaning :
wi belongs to subset j if xi = j, i = 1, ...,n, j = 1, ...,m

Fitness function

f (X) = (f1(X), ... fm(X));

fi(X)=ki ∗ (Si−
n
∑

j=1
w j ∗ p ji)+(1−ki)∗ (

n
∑

j=1
w j ∗ p ji),

where p ji = {
1,i f x j = i
0,otherwise

,

ki = {
1, if

m
∑

j=1
(w j ∗ p ji)≤ Si

0, otherwise (the chromosome is invalid)
Selection Binary tournament selection
Crossover rate 0.8
Mutation rate 0.5 / n
Population size Small data set: 50

Large data set: 100
Iterations until change Small data set: 20

Large data set: 50

situations of Type I, Type II, and Type III (as defined in Table 12.1). For the subset
sum problem, the dynamics are defined as follows:

Type I. The set W changes over time, while the set S of objective sums does not
change.

Type II. The set W does not change, while the S of objective sums change with
time, such that the Pareto-optimal set changes at every time step.

Type III. The set W does not change, while the set S of objective sums change
with time, but the Pareto-optimal set does not change.

12.5.1 Algorithm Description

We use a standard GA to search for Pareto-optimal solutions. The algorithm pa-
rameters are summarized in Table 12.2. A chromosome X is encoded as a set of n
integers X = {x1x2 · · ·xn}, where xi ∈ {1,2, · · · ,m} (i= 1,2, · · · ,n) and xi = j means
wi belongs to subset j. A chromosome that encodes a solution where at least one of
the objective sums is exceeded is considered invalid. The strategy for dealing with
invalid chromosomes is a penalty incorporated in the fitness function. This approach
is often used in conjunction with the subset sum problem [17, 20].

When comparing two chromosomes, we first use Pareto dominance: a solution
dominates another when its fitness is better (lower) with respect to one objective
and equal or better with respect to the other objectives. If neither of the solutions
is dominant, the chromosomes are non-dominant and therefore considered equally
good.

306 I.M. Comsa, C. Grosan, and S. Yang

Table 12.3 Data at time step t = 0 for two objectives

2 objective sums
Small data set Large data set
W S W S

Type I problem 1, 2, 3, 20, 21, 80 10, 46 1, 2, 3, 4, 5, 30, 31,
32, 135, 150, 200

15, 108

Type II problem 1, 2, 3, 4, 5, 30 4, 25 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 100

6, 65

Type III problem 1, 2, 3, 20, 21, 80 6, 70 1, 2, 3, 4, 5, 30, 31,
32, 135, 150, 200

15, 118

This comparison did not yield very good results on the second large data set (dy-
namic Pareto set), as it found around 70% of the Pareto optimal solutions. Therefore,
we further compare the non-dominant solutions using the sum of fitness values with
respect to every objective, considering as better the chromosome which minimizes
this sum. The results improved (which was also influenced by the crossover and
mutation rates), with more than 90% of the Pareto optimal solutions found.

Chromosome comparison is performed during the analysis according to a mod-
ified form of the Pareto dominance relation. We experimentally observed that the
algorithm performs better if the comparison between chromosomes favors: a) the
valid chromosome, if the other chromosome is invalid, and b), in the case of non-
dominance, the chromosome with smaller absolute value of the sum of fitness func-
tion components. Therefore, the objective function values are aggregated into a sin-
gle value for the purpose of selection.

We use an external memory in the form of a separate archive, updated at ev-
ery generation with new found solutions. The archive contains the best set of non-
dominated solutions found so far, without influencing the rest of the population.
Such a memory was needed for multi-objective optimization: since the population
was completely replaced at every iteration and mutations were involved, there was
little chance that all the solutions would be present in the population at the last
iteration before the change. Thus, the GA can be classified as elitist.

The archive is completely erased at every time change. The population is not
modified, but it is re-evaluated. Therefore, the past knowledge to be reused with
respect to the problem dynamicity consists of the current population.

The result of the algorithm at every time step is considered to be the set of solu-
tions found in the archive at the last iteration.

12.5.2 Numerical Results and Discussions

We constructed our own data sets for each type of problem, using 2, 3 and 4 objective
sums. The data for the 2, 3, and 4 objective problems are described in Table 12.3,
Table 12.4, and Table 12.5, respectively. The dynamics are given in Table 12.6. An
analysis regarding the size of the search space in each case is shown in Table 12.7.

12 Dynamics in the Multi-objective Subset Sum 307

Table 12.4 Data at time step t = 0 for three objectives

3 objective sums
Small data set Large data set
W S W S

Type I problem 15, 16, 17, 32, 35,
8

25, 55, 65 18, 35, 24, 30, 74,
56, 58, 11, 2, 3, 12

25, 55, 175

Type II problem 2, 4, 14, 15, 21, 25 6, 20, 15 14, 15, 21, 55, 32,
87, 90, 107, 112, 2,
3

215, 98, 130

Type III problem 20 45 60 100 300
1

66, 236, 301 20, 50, 65, 70, 400,
345, 250, 900, 950,
1, 1200

101, 511, 936

Table 12.5 Data at time step t = 0 for four objectives

4 objective sums
Small data set Large data set
W S W S

Type I problem 52, 13, 11, 61, 5,
6

75, 27, 58, 22 11, 24, 38, 174,
112, 113, 256, 32,
34, 76, 78

145, 201, 98, 77

Type II problem 18, 52, 45, 3, 7, 8 17, 22, 46, 80 21, 2, 47, 58, 65,
97, 101, 23, 11, 78,
81

45, 87, 210, 153

Type III problem 1, 2, 3, 20, 21, 80 6, 70, 86, 16 20, 21, 22, 23,
60, 61, 600, 1000,
1001, 1002, 2000

45, 55, 127,
1657

We performed 10 runs for every test data. Since the data was relatively small,
we were able to compute the real Pareto-optimal set using exhaustive search. For
each time step of every run, we averaged the percentage of Pareto-optimal solutions
found by the algorithm. The results are summarized in Table 12.8.

Since the average may not fully reflect particularities of the GA behavior as the
time step changes, we present in Figs. 12.1, 12.2, and 12.3 the evolution of the
algorithm in terms of Pareto-optimal solutions found at every time step, for one data
set for each problem type. We show the best and the worst number of solutions
discovered during the 10 runs. It can be seen that the differences between runs are
often considerable, ranging from a close approximation at one run to almost no
solutions at another run.

The GA performed visibly better in the tests for two objective sums and for the
problems of Type III, while the performance for Type II problems and more than
two objectives was low. This behavior does not seem to depend on the size of the
search space, which confirms the remark found in [17] for the subset sum problem
in its single objective, static version – that the performance does not seem to depend
on the problem size. We also found that doubling the number of generations or the

308 I.M. Comsa, C. Grosan, and S. Yang

Table 12.6 Data dynamics

ProblemNumber of objective sums
type 2 3 4
Type I Si(t+1) = Si(t), i = 1,2

Small data set:
Wi(t+1) = Wi(t)+1,
i=1,2,3
Wi(t+1) =Wi(t) – 1, i= 4,5
Wi(t+1) =Wi(t), i = 6
Large data set:
Wi(t+1) = Wi(t)+1,
i=1,...,5
Wi(t+1) =Wi(t) – 1, i= 6,7
Wi(t+1) =Wi(t), i= 8,...,11

Si(t+1) = Si(t), i = 1,2,3
Small data set:
Wi(t+1) = Wi(t)+ 1, i =
1,4
Wi(t+1) = Wi(t) – 1, i =
2,3
Wi(t+1) =Wi(t), i = 5,6
Large data set:
Wi(t+1) = Wi(t)+ 1, i =
2,3
Wi(t+1) = Wi(t) – 1, i =
1,4
Wi(t+1) = Wi(t), i =
5,...,11

Si(t+1) = Si(t), i =
1,2,3,4
Wi(t+1) = Wi(t)+ 1, i =
2,3
Wi(t+1) = Wi(t) – 1, i =
1,4
Wi(t+1) = Wi(t), i =
5,...,n

Type II Wi(t+1) =Wi(t), i = 1,...,n
S1(t+1) = S1(t)+ 1
S2(t+1) = S2(t) – 1

Wi(t+1) = Wi(t), i =
1,...,n
Si(t+1) = Si(t)+ 1, i =
1,3
S2(t+1) = S2(t) – 1

Wi(t+1) = Wi(t), i =
1,...,n
Si(t+1) = Si(t)+ 1, i =
1,3
Si(t+1) = Si(t) – 1, i = 2,4

Type
III

Wi(t+1) =Wi(t), i = 1,...,n
S1(t+1) = S1(t)+ 1
S2(t+1) = S2(t) – 1

Wi(t+1) = Wi(t), i =
1,...,n
Si(t+1) = Si(t)+ 1, i =
1,3
S2(t+1) = S2(t) – 1

Wi(t+1) = Wi(t), i =
1,...,n
Si(t+1) = Si(t)+ 1, i =
1,3
Si(t+1) = Si(t) – 1, i = 2,4

Table 12.7 The search space size

Number of objective sums Small data set Large data set
2 729 177 147
3 4 096 4 194 304
4 15 625 48 828 125

population size did not influence the results for the instances where the performance
was low.

To further explain the results, we calculated two statistics for every test data: the
average Hamming distance between the Pareto-optimal solutions at the same time
step, and the average Hamming distance between every Pareto-optimal solution at
time step t+1 and every Pareto-optimal solution at time step t. In the case of three
and four objective sums, a larger difference between solutions at consecutive time
steps (the second statistic) is consistently correlated with a lower performance of
the GA. The average difference between solutions at the same time step (the first

12 Dynamics in the Multi-objective Subset Sum 309

Table 12.8 Results and statistics for each problem, where Column A is the percentage of
real Pareto-optimal solutions found by the GA, Column B is the average Hamming distance
between the Pareto-optimal solutions (averaged for every time step), and Column C is the
average Hamming distance between Pareto-optimal solutions at consecutive time steps

Problem type
2 objective sums

Small Large
A B C A B C

Type I 79.53 1.63 1.4 90.39 2.08 1.91
Type II 94.02 2.36 2.25 96.03 3.04 2.97
Type III 86.02 1.71 1.5 99.57 2.58 2.5

Problem type
3 objective sums

Small Large
A B C A B C

Type I 34.87 3.69 3.61 2.66 4.40 5.82
Type II 43,02 1.82 2.46 0.22 5.78 6.96
Type III 96.12 2.08 1.94 27.36 5.05 4.88

Problem type
4 objective sums

Small Large
A B C A B C

Type I 33.19 3.51 3.57 1.13 4.56 5.26
Type II 43.33 3.17 3.19 0,43 6.21 6.67
Type III 84.09 2.28 2.25 46.42 3.27 3.22

statistic) is smaller when the GA performs better in the case of type I and type II
problems, for three and four objective sums. It is interesting to note that in the case
of two objective sums, when the algorithm performs considerably better, the results
are sometimes better when the differences between solutions are greater, both at the
same time step and at consecutive time steps.

12.6 Conclusions

This chapter has described the most important aspects of dynamic multi-objective
optimization and has analyzed a combinatorial optimization problem in the multi-
objective and dynamic form.

Dynamic multi-objective optimization is a relatively recent field of study. Al-
gorithms for solving this class of problems are usually adapted from versions em-
ployed for static multi-objective problems. General techniques that are used include
maintaining diversity, elitism, multiple subpopulations, and mutation increase after
changes.

The analysis was done on the dynamic subset sum problem with two, three and
four objectives, using a standard genetic algorithm. An external memory in form of
an archive was used to ensure elitism and the fitness function was aggregated. We
found that the performance of the algorithm was significantly better in the case of

310 I.M. Comsa, C. Grosan, and S. Yang

Fig. 12.1 Algorithm behavior in the case of the Type I problem, small data set, for 2 objectives
(top), 3 objectives (bottom-left) and 4 objectives (bottom-right)

Fig. 12.2 Algorithm behavior in the case of the Type II problem, small data set, for 2 objec-
tives (top), 3 objectives (bottom-left) and 4 objectives (bottom-right)

12 Dynamics in the Multi-objective Subset Sum 311

Fig. 12.3 Algorithm behavior in the case of the Type III problem, large data set, for 2 objec-
tives (top), 3 objectives (bottom-left) and 4 objectives (bottom-right)

two objectives and problems of type III. We also found that, counter-intuitively, the
performance of the algorithm was better for a larger data set than for a smaller data
set. This may be caused by the larger population and larger number of iterations for
the large data set, and may confirm the remark found in [17] about the independence
of the problem size and algorithm generations in terms of performance. We also
found that the performance of the algorithm fluctuates considerably during different
runs. This, coupled with the low performance obtained on three and four objectives
for problems of type I and II, calls for more advanced algorithms.

Further work that we envisage is studying dynamic multi-objective problems with
improved algorithms, including evolutionary models with multiple populations. An-
other desirable improvement is exploiting further the information about the search
space gathered before a change, perhaps by inserting certain individuals in a sepa-
rate archive using decision making models.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant numbers EP/E060722/1, EP/E060722/2,
and EP/K001310/1.

312 I.M. Comsa, C. Grosan, and S. Yang

References

[1] Amato, P., Farina, M.: An ALife-inspired evolutionary algorithm for dynamic multi-
objective optimization problems. In: Hoffmann, F., Köppen, M., Klawonn, F., Roy, R.
(eds.) Soft Computing: Methodologies and Applications, Part III, pp. 113–125 (2005)

[2] Andrews, M., Tuson, A.: Diversity does not necessarily imply adaptability. In: Proc.
GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems,
pp. 24–28 (2003)

[3] Aragón, V.S., Esquivel, S.C.: An evolutionary algorithm to track changes of optimum
value locations in dynamic environments. J. of Comput. Sci. and Tech. 4(3), 127–134
(2004)

[4] Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dy-
namic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[5] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput., pp. 1875–1882 (1999)

[6] Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algo-
rithm for multi-objective optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo,
J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp.
839–848. Springer, Heidelberg (2000)

[7] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

[8] Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-
making using modified NSGA-II: A case study on hydro-thermal power scheduling. In:
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS,
vol. 4403, pp. 803–817. Springer, Heidelberg (2007)

[9] Farina, M.: A minimal cost hybrid strategy for Pareto optimal front approximation.
Evol. Optim. 3(1), 41–52 (2001)

[10] Farina, M., Deb, K., Amato, P.: Dynamic multi-objective optimization problems: test
cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442
(2004)

[11] Flaxman, A.D., Przydatek, B.: Solving medium-density subset sum problems in ex-
pected polynomial time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 305–314. Springer, Heidelberg (2005)

[12] Galil, Z., Margalit, O.: An almost linear-time algorithm for the dense subset-sum prob-
lem. SIAM J. Computing 20(6), 1157–1189 (1991)

[13] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-completeness. WH Freeman & Co., New York (1979)

[14] Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic
multi-objective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)

[15] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algo-
rithms: A forward-looking approach. In: Proc. 8th Annual Conf. on Genetic and Evol.
Comput., pp. 1201–1208 (2006)

[16] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[17] Khuri, S., Bäck, T., Heitkötter, J.: An evolutionary approach to combinatorial optimiza-
tion problems. In: Proc. 22nd Annual ACM Computer Science Conf., pp. 66–73 (1994)

12 Dynamics in the Multi-objective Subset Sum 313

[18] Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of
the thermodynamical genetic algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 513–522. Springer, Heidelberg
(1996)

[19] Pisinger, D.: Linear time algorithms for knapsack problems with bounded weights. J. of
Algorithms 33, 1–14 (1999)

[20] Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimisation problems: An analysis
of the subset sum problem. Soft Comput. 15(9), 1723–1734 (2011)

[21] Shang, R., Jiao, L., Gong, M., Lu, B.: Clonal selection algorithm for dynamic multiob-
jective optimization. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-M., Yin, H., Jiao, L.,
Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 846–851. Springer,
Heidelberg (2005)

[22] Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)

[23] Zeng, S., Chen, G., Zheng, L., Shi, H., de Garis, H., Ding, L., Kang, L.: A dynamic
multi-objective evolutionary algorithm based on an orthogonal design. In: Proc. 2006
IEEE Congr. on Evol. Comput., pp. 573–580 (2006)

[24] Zhang, Z.: Multi-objective optimization immune algorithm in dynamic environments
and its application to greenhouse control. Applied Soft Comput 8, 959–971 (2008)

[25] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolution-
ary algorithm for multi-objective optimization. In: Proc. Evol. Methods Des., Optimi-
sation Control., pp. 95–100 (2002)

Part IV
Applications

Chapter 13
Ant Colony Optimization Algorithms with
Immigrants Schemes for the Dynamic Travelling
Salesman Problem

Michalis Mavrovouniotis and Shengxiang Yang

Abstract. Ant colony optimization (ACO) algorithms have proved to be power-
ful methods to address dynamic optimization problems (DOPs). However, once the
population converges to a solution and a dynamic change occurs, it is difficult for
the population to adapt to the new environment since high levels of pheromone
will be generated to a single trail and force the ants to follow it even after a dy-
namic change. A good solution is to maintain the diversity via transferring knowl-
edge from previous environments to the pheromone trails using immigrants. In this
chapter, we investigate ACO algorithms with different immigrants schemes for two
types of dynamic travelling salesman problems (DTSPs) with traffic factor, i.e., un-
der random and cyclic dynamic changes. The experimental results based on different
DTSP test cases show that the investigated algorithms outperform other peer ACO
algorithms and that different immigrants schemes are beneficial on different envi-
ronmental cases

13.1 Introduction

Ant colony optimization (ACO) algorithms are inspired from the behaviour of real
ant colonies when they search for food from their nest to food sources. A colony
of ants communicates via the pheromone trails in order to complete their food-
searching task as efficiently as possible. ACO algorithms have proved that they are
good meta-heuristics to many difficult optimization problems [11, 12, 15, 36].

The first optimization problem addressed by ACO algorithms was the travelling
salesman problem (TSP), where a population of ants is placed on each city randomly
and walk to the edges of the cities until each ant generates a feasible tour, in which
all customers are satisfied [13]. Each ant writes pheromone to the trail of its tour for
the other ants to read it while they construct their tours.

Michalis Mavrovouniotis · Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: {mmavrovouniotis,syang}@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 317–341.
DOI: 10.1007/978-3-642-38416-5_13 c© Springer-Verlag Berlin Heidelberg 2013

318 M. Mavrovouniotis and S. Yang

Researchers have mainly focused on ACO for stationary optimization problems
(SOPs), where the environment remains fixed during the execution of the algorithm
[2, 3, 28]. However, in many real-world applications we have to deal with dynamic
optimization problems (DOPs), where the problem, including the objective func-
tion, the variables, the problem instance, the constraints, and so on, may change
over time [26]. Usually, such uncertainties cause the optimum to move. For exam-
ple, a dynamic version of the TSP can be generated where the cost of the edges
between two cities may increased, representing potential traffic jams. The objective
of the dynamic TSP (DTSP) is not only to converge and output a near optimum
(or the optimum) solution quickly, as in the static TSP, but to also track and output
the moving optimum.

Considering the DTSP, traditional ACO algorithms may face a serious challenge
due to the fact that the pheromone trails of the previous environment will not be
compatible with the new environment when a dynamic change occurs. A simple
way to address this problem is to re-initialize the pheromone trails with an equal
amount and consider every dynamic change as the arrival of a new problem that
needs to be solved from scratch. This strategy acts as a restart of the algorithm
which is computationally expensive and usually not efficient. Moreover, in order to
perform this action, the dynamic change needs to be detected which usually is not
possible on DOPs [31].

However, it is believed that ACO algorithms can adapt to DOPs since they are
inspired from nature which is a continuous adaptation process [5, 26]. Since ACO
algorithms have been designed for SOPs lose their adaptation capabilities quickly
because of stagnation behaviour, where all ants follow the same path from the
early stages of the execution. Recently, several approaches have been proposed to
avoid stagnation behaviour and address DTSPs, which includes: (1) local and global
restart strategies [21]; (2) pheromone manipulation schemes to maintain diversity
[16]; (3) increase diversity via immigrants schemes [29, 31]; (4) memory-based ap-
proaches [19, 22]; (5) and memetic algorithms [30].

Among these approaches, immigrants schemes have been found beneficial when
integrated with ACO algorithms for different DTSPs. Every iteration, immigrant
ants are generated and replace a small portion of the worst ants in the current pop-
ulation. This action is performed before pheromone is updated, in order to bias
the ants of the next iteration with the diversity and knowledge transferred from the
immigrant ants. Immigrants schemes mainly differ on the way immigrant ants are
generated.

In this chapter, all different ACO algorithms based on immigrants schemes are
examined intensively, and compared with other peer ACO algorithms for different
DTSPs cases. The contents of this chapter are categorized as follows. Section 13.2
describes the DTSPs used in the experiments. Section 13.3 describes traditional
ACO algorithms for the DTSP, whereas Section 13.4 gives details of the inves-
tigated ACO algorithms based on immigrants schemes. Section 13.5 presents the
experimental results and analysis. Finally, Section 13.6 concludes this contribution
and points out future work.

13 ACO Algorithms with Immigrants Schemes for the DTSP 319

13.2 Dynamic Travelling Salesman Problem with Traffic Factor

The TSP is the most fundamental, popular and well-studied NP-hard combinatorial
optimization problem. It can be described as follows: Given a collection of cities,
we need to find the shortest path that starts from one city and visits each of the other
cities once and only once before returning to the starting city. Usually, the problem
is represented by a fully connected weighted graph G = (V,E), where V is a set of
n vertices and E is a set of edges. The collection of cities is represented by the set V
and the connections between them by the set E . Each connection is associated with
a cost Di j, which represents the distance (or travel time) between cities i and j.

Many algorithms, either exact algorithms or approximation algorithms, includ-
ing ACO have been proposed to solve the static TSP [13, 27, 33]. Although exact
algorithms guarantee to provide the global optimum solution, in the case of NP-hard
problems, they need, in the worst case, exponential time to find it. On the other hand,
approximation algorithms can provide a solution efficiently but cannot guarantee the
global optimum [24, 35].

The TSP becomes more challenging and realistic if it is subject to a dynamic
environment. For example, a salesman wants to distribute items sold in different
cities starting from his home city and returning after he visited all the cities to his
home city again. The task is to optimize his time and plan his tour as efficiently
as possible. Therefore, by considering the distances between cities it can generate
the route and start the tour. However, it is difficult to consider traffic delays that
may affect the route. Traffic delays may change the time planned beforehand, and
the salesman will need a new alternative route fast to avoid long traffic delays and
optimize his time again.

There are several variations of DTSPs considered in the literature, such as chang-
ing the topology of cities by replacing cities [19, 21, 29, 30], and changing the dis-
tances between cities by adding traffic factors to the links between cities [16, 31, 32].
In DTSPs where cities are replaced, each city has a probability m to be replaced reg-
ularly in time, usually measured in a certain number of iterations of running an algo-
rithm. On the other hand, in DTSPs with traffic factors, each link has a probability
m to add or deduce traffic regularly in time.

13.2.1 DTSP with Random Traffic

In this chapter, we generate DTSPs with traffic factors as follows. We assume that
the cost of the link between cities i and j is Di j = Di j×Fi j, where Di j is the normal
travelled distance and Fi j is the traffic factor between cities i and j. Every f iterations
of running an algorithm, a random number in [FL,FU] is generated probabilistically
to represent the traffic factor between cities, where FL and FU are the lower and
upper bounds of the traffic factor, respectively. Each link has a probability m to add
traffic every f iteration, where the traffic factor Fi j of the remaining links is set to 1,
which indicates no traffic.

For example, a dynamic case with high traffic is constructed by setting traffic
factor values closer to FU with a higher probability to be generated, while for a

320 M. Mavrovouniotis and S. Yang

Fig. 13.1 Illustration of a random dynamic environment with unlimited states and a cyclic dy-
namic environment with 8 states. Each node represents a different environment where white,
light grey, and dark grey, represent low, medium, and high traffic jams, respectively

dynamic case with low traffic, a higher probability is given to traffic factor values
closer to FL. This type of environments are denoted random DTSPs in this chapter
because previously visited environments are not guaranteed to reappear.

13.2.2 DTSP with Cyclic Traffic

Another variation of the DTSP with traffic factors is the DTSP where the dynamic
changes occur with a cyclic pattern. In other words, previous environments will
appear again in the future. Such environments are more realistic since they represent
a 24-hour traffic jam situation in a day.

A cyclic environment can be constructed by generating different dynamic cases
with traffic factors as the base states, representing DTSP environments where each
link has a probability m to add low, normal, or high traffic as in random DTSPs.
Then, the environment cycles among these base states, every f iteration, in a fixed
logical ring as in Fig. 13.1. Depending on the period of the day, dynamic cases with
different traffic factors can be generated. For example, during the rush hour peri-
ods, a higher probability is given to the traffic factors closer to FU , whereas during
evening hour periods, a lower probability is given to FU and a higher probability to
FL. This type of environments are denoted as cyclic DTSPs in this chapter because
previously visited environments will reappear several times.

13.3 Ant Colony Optimization for the DTSP

ACO consists of a population of μ ants that construct solutions, i.e., tours in the
TSP, and update their trails with pheromone according to the solution quality [9].
Considering the TSP, the ants “walk” on the links between the cities, where they
“read” pheromone from the links or “write” additional pheromone to the links.

Initially, all trails are assigned with an equal amount of pheromone, i.e., τinit , and
each ant is placed on a randomly selected city. With a probability 1− q0, where
0≤ q0 ≤ 1 is a parameter of the decision rule, an ant k chooses the next city j from
city i, probabilistically, as follows:

13 ACO Algorithms with Immigrants Schemes for the DTSP 321

pk
i j =

[τi j]
α [ηi j]

β

∑l∈Nk
i
[τil]

α [ηil]
β , if j ∈ Nk

i , (13.1)

where τi j and ηi j = 1/Di j is the existing pheromone trail and heuristic information
available a priori, respectively, where Di j is the cost between cities i and j (including
the traffic factor). Nk

i denotes the neighbourhood of cities of ant k that have not
yet been visited when its current city is i. α and β are the two parameters that
determine the relative influence of the pheromone trail and heuristic information,
respectively. With the probability q0, ant k chooses the next city, i.e, z, with the
maximum probability which satisfies the following formula:

z = argmax
j∈Nk

i

[τi j]
α [ηi j]

β . (13.2)

This process continues until each ant has visited all cities once. Thereafter, the ants
update their pheromone trails. The different variations of ACO algorithms mainly
differ in the way pheromone trails are updated [4, 10, 13, 14, 37].

13.3.1 Standard ACO

The state-of-the-art ACO on the static TSP is the MAX-MIN ant system (MMAS)
[38]. In MMAS, the ants construct solutions using Eq. (13.1) and only the best ants
are allowed to retrace their solution and deposit pheromone as follows:

τi j ← τi j +Δτbest
i j ,∀ (i, j) ∈ T best , (13.3)

where T best is the tour of the best ant and Δτbest
i j = 1/Cbest , where Cbest is the cost

of the tour T best . However, the ant allowed to deposit pheromone may be either the
best-so-far ant, in which case Δτbest

i j = 1/Cbs, where Cbs is the tour cost of the best-

so-far ant, or the iteration-best ant, in which case Δτbest
i j = 1/Cib, where Cib is the

tour cost of the best ant of the iteration. Both update rules are used in an alternative
way under a pre-defined criteria (for more details see [38]).

In addition, a constant amount of pheromone is deducted from all trails due to
the pheromone evaporation, which is defined as:

τi j ← (1−ρ)τi j,∀ (i, j), (13.4)

where 0 < ρ ≤ 1 is the rate of evaporation.
Moreover, the pheromone trail values in MMAS are kept to the interval [τmin,τmax]

and they are re-initialized to τmax every time the algorithm shows a stagnation be-
haviour, where all ants follow the same path or when no improved tour has been
found for several iterations. The MMAS, is denoted as S-ACO, and it is used in the
experimental study later in this chapter.

322 M. Mavrovouniotis and S. Yang

13.3.2 Population-Based ACO (P-ACO)

The P-ACO algorithm was first applied on the static TSP [20]. Later on, it has been
applied to the DTSP where a small portion of cities is replaced by other new ones
[19, 22]. In P-ACO, ants construct solutions using Eq. (13.1). However, it differs
from the S-ACO, since it maintains a population-list (memory) of ants (solutions),
denoted klong of limited size Kl , and stores the iteration-best ant in every iteration.

The pheromone update depends on klong, where every time the iteration-best ant
enters klong, a positive constant update is added to its corresponding pheromone
trails, which is defined as follows:

τi j ← τi j +Δτ ib
i j ,∀ (i, j) ∈ T ib, (13.5)

where Δτ ib
i j = (τmax − τinit)/Kl and T ib is the tour of the iteration-best ant. More-

over, τmax and τinit denote the maximum and initial pheromone amount, respectively.
When klong is full, the iteration-best ant needs to replace an ant k stored in klong, and,
thus, a negative constant update to its corresponding pheromone trails is done, which
is defined as follows:

τi j ← τi j−Δτk
i j,∀ (i, j) ∈ T k, (13.6)

where Δτk
i j is defined as in Eq. (13.5) and T k is the tour of the ant to be replaced.

Pheromone evaporation is not used in the P-ACO algorithm.
Several strategies regarding which ant should the iteration-best ant replace in

klong have been proposed, such as Age, Prob, and Quality [19]. In the default strat-
egy, i.e., Age, the iteration-best ant replaces the ant which has entered klong first. In
the Prob strategy, the iteration-best ant can replace any ant probabilistically, and in
the Quality strategy, the worst ant is replaced. Experiments show that the Age strat-
egy is more consistent and performs better than the others, since other strategies
have more chances to maintain identical ants into klong, which leads the algorithm
to the stagnation behaviour [19]. This is due to the fact that high levels of pheromone
will be generated into a single trail and dominate the search space. Therefore, the
P-ACO algorithm with the Age strategy is used in the experimental study later in
this chapter.

13.3.3 React to Dynamic Changes

In Bonabeau et al. [5], it was discussed that traditional ACO algorithms may have
good performance for DTSPs, since they are very robust algorithms. The mechanism
which enables ACO algorithms to adapt to DOPs is the pheromone evaporation.
Lowering the pheromone values enables the algorithm to forget bad decisions made
in previous iterations. Moreover, when a dynamic change occurs, it will eliminate
the pheromone trails of the previous environment that are not useful in the new
environment, where the ants may be biased and not adapt well.

The S-ACO algorithm can be applied directly to the proposed DTSPs with traffic
factors, either random or cyclic, without any modifications, apart from the heuristic

13 ACO Algorithms with Immigrants Schemes for the DTSP 323

information where the traffic factor needs to be considered. Further special measures
when a dynamic change occurs are not required.

Similar to S-ACO, P-ACO can be applied directly to the proposed DTSPs. The
ants stored in the klong are re-evaluated in every iteration to be consistent with the
changing environments.

13.4 Investigated ACO Algorithms with Immigrants Schemes

ACO algorithms are constructive heuristics, where every iteration ants move from
one city to the next city probabilistically, until they generate feasible solutions as
described in Section 13.3. At the end of each iteration the constructed solutions are
cleared to generate new ones, but every ant deposits pheromone and leave a trail
to the corresponding solutions, e.g., the links between the cities of a TSP tour as
in Eq. 13.3. In contrast, genetic algorithms (GAs) are based on a pre-defined set
of feasible solutions (population of individuals), e.g., a set of tours for TSP. The
population is directly transferred from one iteration to the next using the fittest indi-
viduals [25, 33]. Search operators, i.e., crossover and mutation, are used to generate
the new population of solutions, which is usually better than the previous one.

The P-ACO framework is based on ants that construct solutions, where the best
ant of each iteration is stored in an actual population as in a GA and they are trans-
ferred directly to the next iteration. The solutions in the population are then used
to update the pheromone information for the new ants of the new iteration. The
population-list is updated every iteration as described in Section 13.3.

13.4.1 General Framework of ACO with Immigrants Schemes

The framework of ACO algorithms with immigrants schemes is inspired from the
GA characteristics of the P-ACO framework and the good performance of immi-
grants schemes in GAs for binary-encoded DOPs [39, 40, 43, 45]. Considering that
P-ACO maintains a population of solutions, immigrant ants can be generated and
replace ants in the current population. The aim of the proposed framework is to
maintain the diversity within the population and transfer knowledge from previous
environments to the pheromone trails of the new environment.

The main idea is to generate the pheromone information for every iteration con-
sidering information from the pheromone trails of the previous environment and
extra information from the immigrant ants generated. Therefore, instead of using a
long-term memory klong as in P-ACO, a short-term memory is used, denoted kshort ,
where all ants stored from iteration t− 1 are replaced by the first Ks best ants of the
current iteration t, where Ks is the size of kshort , instead of only replacing the oldest
one as in P-ACO. Moreover, immigrant ants are generated and replace the worst
ants in kshort with the replacement rate r, usually small. Therefore, when ants are
removed, a negative update is made to their pheromone trails as in Eq. (13.6), and
when new ants are added, a positive update is made to their pheromone trails as in
Eq. (13.5). This process is repeated as represented in Fig. 13.2.

324 M. Mavrovouniotis and S. Yang

Fig. 13.2 General framework of ACO algorithms with immigrants schemes

The benefits of using kshort are closely related to the survival of ants in a dynamic
environment, where no ant can survive in more than one iteration. For example, in it-
eration t, if ants are stored from iteration t−2 and an environmental change occurred
in iteration t−1, then the solutions may not be feasible for the current environment
in iteration t, and hence need to be repaired. Usually, a repair procedure is computa-
tionally expensive, and requires prior knowledge of the problem. Furthermore, this
action can be taken only if the environmental changes can be detected, which is usu-
ally not applicable in real-world applications. As discussed previously, the S-ACO
algorithm with a re-initialization of pheromone trails may not be a sufficient choice
on DOPs where the frequency of change is not available beforehand.

The investigated algorithms follow the framework described above, but they dif-
fer on the way immigrant ants are generated. The algorithms have been applied on
different DTSPs as follows. Random immigrants ACO (RIACO), elitism-based im-
migrants ACO (EIACO) and hybrid immigrants ACO (HIACO) were applied on a
DTSP were cities are added/removed [29]. Memory-based immigrants ACO (MI-
ACO) were applied on a DTSP with cyclic traffic factor as described in Section 13.2
[31]. Environmental-information immigrants ACO (EIIACO) were applied on the
DTSP with random traffic factor as described in Section 13.2 [32]. In this chapter,

13 ACO Algorithms with Immigrants Schemes for the DTSP 325

we re-investigate and compare all the algorithms on the same DTSPs, i.e., on both
DTSP with random and cyclic traffic factor.

13.4.2 ACO with Random Immigrants

The traditional random immigrants have been found beneficial for ACO for the
DTSP, since they maintain a certain level of diversity during the execution [29]. The
principle is to introduce new randomly generated immigrant ants to the population.
Therefore, before the pheromone trails are updated, a set Sri of r×Ks immigrants
are randomly generated to replace the worst ants in kshort , where r is the replacement
rate and Ks is the size of kshort .

The RIACO algorithm was proposed to address DTSPs with significantly chang-
ing environments. This is because it was claimed that the adaptation of ACO algo-
rithms makes sense only when the environmental changes of a problem are small to
medium [6, 26]. This is due to the fact that a new environment has more chance to
be similar with the old one. After a change occurs, transferring knowledge from the
old environment to the pheromone trails may move the ants into promising areas in
the new environment.

Considering the above argument, when the changing environments are not simi-
lar or when their is not enough time to gain knowledge from the previous environ-
ment, i.e., fast changing environment, the knowledge transferred may misguide the
ants from tracking the optimum. Therefore, in such environmental cases is better to
generate random diversity, instead of guided diversity by transferring knowledge.
However, there is a high risk of randomization, if too much diversity is generated
from the immigrants.

13.4.3 ACO with Elitism-Based Immigrants

Differently from RIACO, which generates diversity randomly, EIACO generates
guided diversity by transferring knowledge from previous environments and it was
proposed to address DTSPs with slowly and slightly changing environments [29].
For each iteration t, within EIACO, the elite from the previous environment, i.e.,
the best ant from kshort(t − 1), is used as the base to generate a set Sei of r×Ks

elitism-based immigrants, where r is the replacement rate and Ks is the size of the
kshort memory.

An elitism-based immigrant is generated using the inversion operator based on
the inver-over operator as follows [23]. First, one city, i.e., c, is selected randomly
from the best ant of kshort(t− 1); then with probability p (usually 0.02) the second
city c′ is selected from kshort(t− 1); otherwise another ant from μ is randomly se-
lected and assign as the second city c′ the next city to the city c. The segment from
the next city of c to city c′ is reversed and c is set to c′. This process continues until
the selected second city c′ appears next or previous to the first city c. From the re-
sulting tour an elitism-based immigrant is generated, which inherits some segments

326 M. Mavrovouniotis and S. Yang

from the elite of the previous environment and some random segments from other
ants.

The EIACO algorithm is beneficial in cases where the changing environments are
similar, e.g., slightly changing environments, and when the population has sufficient
time to converge into a good solution and gain knowledge in the previous environ-
ment, e.g., slowly changing environments. Transferring the knowledge gained from
the previous environment, to the pheromone trails of the new environment will make
sense and guide the population of ants to promising areas.

However, if too much information is transferred, the run basically starts near a
local optimum, and get stuck there. Therefore, in some cases with slightly changing
environments, EIACO may not perform well. On the contrast, RIACO may generate
high level of diversity in slightly changing environments, and degrade the perfor-
mance of ACO.

13.4.4 ACO with Hybrid Immigrants

The HIACO algorithm uses an immigrants scheme that combines both random
and elitism-based immigrants [29]. For each iteration t within HIACO, a set Shi =
Sri+Sei hybrid immigrants are generated, where Sri and Sei are two sets of (r×Ks)/2
random and elitism-based immigrants, respectively, r is the replacement rate and Ks

is the size of the kshort memory. HIACO attempts to combine the merits of both RI-
ACO and EIACO, where one is good on slowly and slightly changing environments
and the other on fast and significantly changing environments.

Considering the fact that RIACO face the risk of randomization because of too
much diversity, and the fact the EIACO face the risk of too much transferred knowl-
edge, the HIACO may promote the performance of both algorithms. The two types
of immigrants may cooperate to address all cases of dynamic environments. For
example, in cases the random immigrant will generate high levels of diversity, the
elitism-based immigrants will decrease the levels of diversity. On the other hand, if
too much knowledge is transferred from elitism-based immigrants and the popula-
tion gets trapped in local optimum, the random immigrants will help the population
to escape from it.

13.4.5 ACO with Memory-Based Immigrants

Differently from EIACO, where the best ant from the previous environment is used
as the base to generate immigrants, MIACO uses the best ant from several environ-
ments as the base to generate immigrants [31]. The only difference between MIACO
and EIACO lies in that MIACO uses both kshort and klong, where the first type of
memory is updated and used as in RIACO and EIACO. The second type of memory
is initialized with random ants and updated by replacing any of the randomly initial-
ized ants if they still exists in the memory, with the best-so-far ant; otherwise, the
closest ant in the memory is replaced with the best-so-far ant if it is better. Note that
the update strategy of klong in MIACO is different from P-ACO regarding which ant

13 ACO Algorithms with Immigrants Schemes for the DTSP 327

to replace, since in MIACO the most similar memory updating strategy is used [6],
whereas in P-ACO, the new ant replaces the oldest one. In MIACO, a metric of how
close ant i is to ant j is used and defined as follows:

Mi j = 1−CEi j

n
, (13.7)

where CEi j is defined as the number of common edges between ant i and ant j, and
n is the number of cities. A value Mi j closer to 0 means that the ants are closer since
they are more similar [1].

Apart from which ant is replaced in klong, the update strategy of MIACO is differ-
ent from the one used in P-ACO with respect to when an ant is replaced. In P-ACO,
the update occurs every iteration, whereas in MIACO the update occurs whenever
a dynamic change is detected in order to store useful solutions from different envi-
ronments.

For each iteration within MIACO, the ants in klong are re-evaluated in order to
be valid with the new environment and to detect an environmental change. An envi-
ronmental change is detected if there is a change in the total cost of ants currently
stored in klong. Then, the best ant from klong is selected and used as the base to gen-
erate a set Smi of r×Ks memory-based immigrants, where r is the replacement rate
and Ks is the size of the kshort memory. A memory-based immigrant is generated
using the inver-over operator as in EIACO, but instead of selecting the best ant from
kshort(t− 1), the best ant from klong(t) is selected.

MIACO inherits the advantages of the memory scheme to guide the population
directly to an old environment already visited and maintains diversity with immi-
grants in order to avoid the stagnation behaviour of ACO algorithms. It is very im-
portant to store different solutions in klong which represent good solutions for the
different environments that may be useful in the future. The key idea behind MI-
ACO is to provide guided diversity into the pheromone trails in order to avoid the
disruption of the optimization process [41].

MIACO may be beneficial on the same environmental cases with EIACO since it
is a generalized version of EIACO. However, it may be also advantageous in cases
where the previous environments will reappear in the future, e.g., cyclic DTSPs.

13.4.6 ACO with Environmental-Information Immigrants

The information obtained from EIACO and MIACO to transfer knowledge is based
on individual information, i.e., the best ant from kshort and klong, respectively. The
EIIACO algorithm generates immigrants using environmental information, i.e., a
population of best ants, to transfer knowledge from the previous environment to
the new one, in order to address slowly and slightly changing environments [32].
The knowledge transferred from EIIACO contains much more information than the
EIACO and MIACO algorithms. EIIACO follows the same framework with other
ACO algorithms based on immigrants schemes.

328 M. Mavrovouniotis and S. Yang

Environmental information-based immigrants are generated using all the ants
stored in kshort of the previous environment and replace the worst ants in the current
kshort . Within EIIACO, a probabilistic distribution based on the frequency of cities is
extracted, representing information of the previous environment, and is used as the
base to generate immigrant ants. The frequency vector of each city i, i.e, Dci , is con-
structed by taking the ants of kshort as a dataset and locating city ci from them. The
successor and predecessor cities, i.e., ci−1 and ci+1, respectively, of city ci are ob-
tained and update Dci accordingly. Note that both cities are recorded since the TSP
solution is cyclic. For example, one is added to the corresponding position i−1 and
i+ 1 in Dci . The process is repeated for all cities and a table S = (Dc1 , . . . ,Dcn) is
generated (where n is the number of cities) .

An environmental information-based immigrant ant, i.e., Aeii = (c1, . . . ,cn), is
generated as follows. First, randomly select the start city c1; then, the probabilistic
distribution of Dci−1 = (d1, . . . ,dn) is used to select the next city ci probabilistically
as follows:

pi =
di

∑ j∈Dci−1
d j
, if i ∈ Dci−1 , (13.8)

where di is the frequency number where city ci appears before or after city ci−1.
Note that all cities currently selected and stored in Aeii have a probability of 0.0 to
be selected since they are already visited. In the case where the sum of pi = 0.0,
which means that all cities in Dci are visited, a random city j that has not been
visited yet is selected. This probabilistic selection is repeated until all cities are used
in order to generate a valid immigrant ant based on the environmental information.

13.5 Experiments

13.5.1 Experimental Setup

The investigated algorithms were tested on the DTSP instances that are con-
structed from three static benchmark TSP instances taken from TSPLIB1, i.e.,
pr76, pr152, pr264, indicating small, medium, and large scale problem in-
stances in this chapter, respectively, in order to investigate the effect of the cor-
responding immigrants schemes on ACO algorithms for the DTSP.

Our implementation follows the guidelines of the ACOTSP2 application. Using
the methods described in Section 13.2, we have generated two kinds of DTSPs, with
random and cyclic traffic factors, respectively, with FL = 0 and FU = 5. For cyclic
DTSP, four cyclic states are used. For both types of DTSPs, the value of f was
set to 5 and 50, indicating fast and slow environmental changes, respectively. The
value of m was set to 0.1, 0.25, 0.5, and 0.75, indicating the degree of environmental
changes from small, to medium, and large, respectively. As a result, eight dynamic
test DTSPs, i.e., two values of f × four values of m, were generated from each

1 See http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
2 See http://www.aco-metaheuristic.org/aco-code

13 ACO Algorithms with Immigrants Schemes for the DTSP 329

static TSP instance. Therefore, in order to systematically analyse the adaptation and
searching capabilities of each algorithm on the DTSP, 24 dynamic test cases are
used, i.e., three problem instances × eight cases each, for each type of DTSP, i.e.,
with random and cyclic traffic factors.

For each algorithm on a DTSP, 30 independent runs were executed on the same
environmental changes. The algorithms were executed for 1000 iterations and one
observation was taken on each iteration. The overall performance of an algorithm
on a DTSP instance is defined as follows:

P̄best =
1
G

G

∑
i=1

(
1
N

N

∑
j=1

Pbest
i j

)
, (13.9)

where G is the total number of iterations, N is the number of runs and Pbest
i j is the

tour cost of the best-so-far ant, after a change, of iteration i of run j, respectively.

13.5.2 Parameter Settings

The parameters of the investigated algorithms are chosen from our preliminary ex-
periments and some of them are taken from the literature [29, 31]. For all algorithms
α = 1, β = 5, q0 = 0.0, r = 0.3, Ks = 10, and for MIACO Kl = 4.

The population of ants μ for each algorithm varies in order to have the same
number of evaluations every iteration, i.e., 25. The population of RIACO and EI-
IACO was set to μ = 25, for EIACO and HIACO was set to μ = 24 and for MIACO
was set to μ = 21. This is because MIACO has a klong memory of size Kl where
the solutions need to be re-evaluated on every change to detect dynamic changes,
and, thus, μ = μ−Kl , whereas EIACO and HIACO re-evaluates the best ant from
the previous iteration, which counts as a single evaluation, and, thus, μ = μ − 1.
The ants in the kshort memory, including the generated immigrants, do not count as
evaluations since they are removed every iteration. Moreover, the pheromone they
deposit is not based on the quality of the solution as in the S-ACO. Instead, it is a
constant value as in P-ACO.

13.5.3 Experimental Results and Analysis of the Investigated
Algorithms

The experimental results regarding the offline performance of the investigated algo-
rithms in both DTSPs with random and cyclic traffic factors are presented in Tables
13.1 and 13.2, respectively. The corresponding two-tailed t-test results with 58 de-
grees of freedom at a 0.05 level of significance are presented in Table 13.3. In the
comparisons, “+” or “−” indicates that the first algorithm is significantly better
or the second algorithm is significantly better, respectively, and “∼” indicates no
significance between the algorithms. Moreover, to better understand the dynamic
behaviour of algorithms, the offline performance against the first 500 iterations is
plotted in Fig. 13.3 for random DTSPs for f = 50 and m = 0.10 and m = 0.75,

330 M. Mavrovouniotis and S. Yang

Table 13.1 Experimental results of algorithms regarding the offline performance for random
DTSPs

Alg. & Inst. pr76

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 53405.77 61545.11 78939.34 109341.65 50484.60 56943.36 71997.99 95742.96
EIACO 53481.98 61995.73 79939.40 111215.18 50740.69 57488.74 72295.83 96720.11
HIACO 53299.32 61708.22 79278.76 109990.85 50282.14 56778.05 71587.04 95796.19
MIACO 53669.59 62367.39 80503.22 111982.58 50786.29 57582.64 72551.06 96996.51
EIIACO 53856.99 62156.46 79909.29 110854.31 50745.09 57363.72 72405.07 96330.06

Alg. & Inst. pr152

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 43731.12 49856.78 61702.52 84089.01 40606.23 45251.32 55209.46 73016.88
EIACO 43582.79 49869.53 62185.09 84449.34 41013.54 45154.71 54581.22 71855.33
HIACO 43579.22 49922.58 61935.99 84262.97 40561.09 44913.56 54486.51 71830.50
MIACO 43777.26 50226.28 62633.86 85252.96 41047.21 45387.66 54854.02 72307.76
EIIACO 43975.13 50167.45 62216.30 84511.91 41087.96 45643.79 55308.69 72920.66

Alg. & Inst. pr264

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 27803.32 32317.14 41440.08 56978.59 25707.36 29019.14 36155.71 48289.91
EIACO 27631.00 32284.07 41686.12 57496.55 25636.91 28906.24 35834.23 47431.27
HIACO 27801.55 32452.96 41686.40 57321.89 25547.00 28849.66 35877.25 47629.74
MIACO 27720.96 32463.54 41914.54 57863.13 25697.97 29022.73 36038.26 47866.07
EIIACO 27757.27 32338.73 41637.13 57420.54 25788.50 29080.56 36237.60 48362.34

and the offline performance against the first 100 iterations is plotted in Fig. 13.4 for
cyclic DTSPs for f = 5 and m = 0.10 and m = 0.75. From the experimental results,
several observations can be made by comparing the behaviour of the algorithms.

First, RIACO outperforms EIACO, MIACO, EIIACO in almost all dynamic cases
with f = 5 and m = 0.75 in both random and cyclic DTSPs; see the comparisons of
RIACO⇔ EIACO, RIACO⇔MIACO and RIACO⇔ EIIACO in Table 13.3. This
is because both EIACO, MIACO and EIIACO use knowledge, either individual- or
environmental-based information, from previous environments to generate immi-
grant ants, and thus, when not enough time to converge to a good solution is avail-
able, it is difficult to transfer useful knowledge, except if the magnitude of change
is small, i.e., m = 0.10. RIACO generates diversity randomly that is more useful on
dynamic cases with m = 0.50 and m = 0.75, where the changing environments are
not similar.

Second, EIACO outperforms RIACO in almost all dynamic cases with f = 50
and m = 0.10, and m = 0.25 in both random and cyclic DTSPs. This is because
transferring knowledge makes more sense when the environments are similar. How-
ever, if too much knowledge is transferred from the previous environments may lead
the population to start from a local optimum solution and get stuck to it, as in the

13 ACO Algorithms with Immigrants Schemes for the DTSP 331

Table 13.2 Experimental results of algorithms regarding the offline performance for cylic
DTSPs

Alg. & Inst. pr76

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 54082.16 58731.59 69896.53 103643.91 51862.08 54594.27 63953.72 92123.94
EIACO 53560.05 58794.42 70804.71 105641.64 52171.97 54801.34 64591.92 92765.91
HIACO 53601.65 58631.55 70239.99 104357.97 51696.62 54252.89 63789.63 91961.38
MIACO 53698.48 58781.13 70505.11 104851.77 52203.14 54819.25 64559.57 92717.01
EIIACO 53901.79 59191.25 70597.36 105385.63 52162.16 55046.11 64417.57 92590.94

Alg. & Inst. pr152

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 43123.17 50036.28 59777.25 68348.05 40685.18 45311.61 53565.86 60826.87
EIACO 42440.88 50000.39 59599.67 68250.80 40715.22 45520.32 52889.69 60479.81
HIACO 42714.18 50100.98 59754.37 68432.10 40571.04 45090.22 52844.89 60292.85
MIACO 42397.92 50130.10 59610.09 68134.46 40759.33 45545.47 53002.74 60343.23
EIIACO 42774.22 50365.58 59941.62 68406.41 40925.42 45778.35 53769.09 60479.81

Alg. & Inst. pr264

f = 5 f = 50
m⇒ 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

RIACO 27118.23 31176.89 38557.06 52909.78 25413.82 28437.01 34043.66 46071.37
EIACO 26463.93 31166.71 38589.28 53356.77 25351.78 28485.02 33875.45 45133.16
HIACO 26850.52 31287.26 38750.83 53190.87 25314.59 28293.39 33877.79 45433.54
MIACO 26510.63 31180.66 38447.30 52951.17 25357.61 28442.63 33914.93 45122.77
EIIACO 26750.38 31192.29 38595.38 53278.29 25556.66 28620.66 34255.57 45930.70

case of pr152 when f = 50 and m = 0.10 where the RIACO is significantly better
than EIACO; see the comparison of RIACO⇔ EIACO in Table 13.3. Moreover, RI-
ACO outperforms EIACO in almost all cases of the smallest problem instance, i.e.,
pr76. This behaviour may have several reasons: (1) the elitism mechanism used in
EIACO may not be effective since the environmental changes in a smaller search
space have a higher probability to affect the solution that is used to generate guided
immigrants for the new environment; (2) random immigrants have a higher proba-
bility to hit the optimum in a smaller search space and the risk of randomization is
limited, whereas on larger search space it is dangerous; and (3) too much knowledge
transferred from previous environments.

Third, HIACO outperforms both RIACO and EIACO in almost all dynamic cases
with f = 50 in both random and cyclic DTSPs; see comparisons of RIACO⇔ HI-
ACO and EIACO⇔ HIACO in Table 13.3. This behaviour shows that HIACO in-
herited the merit of EIACO which is beneficial on slowly changing environments.
It can be also observed that the HIACO is significantly better than RIACO even
on the smallest problem instance in which EIACO is outperformed. This behaviour
shows that HIACO inherited the merit of RIACO. However, HIACO is significantly
better than EIACO because it may possibly achieve a good balance between the

332 M. Mavrovouniotis and S. Yang

Table 13.3 Statistical test results regarding the offline performance of the algorithms for
random and cyclic DTSPs

Alg. & Inst. pr76 pr152 pr264

Random DTSPs
f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO ∼ + + + − ∼ + + − − + +
RIACO⇔HIACO − + + + − + + + ∼ + + +
RIACO⇔MIACO + + + + ∼ + + + − + + +
RIACO⇔EIIACO + + + + + + + + − ∼ + +
EIACO⇔HIACO − − − − ∼ ∼ − − + + ∼ −
EIACO⇔MIACO + + + + + + + + + + + +
EIACO⇔EIIACO + + ∼ − + + ∼ ∼ + + − −
HIACO⇔MIACO + + + + + + + + − ∼ + +
HIACO⇔EIIACO + + + + + + + + − − − +
MIACO⇔EIIACO + − − − + ∼ − − + − − −

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
RIACO⇔EIACO + + + + + − − − − − − −
RIACO⇔HIACO − − − ∼ ∼ − − − − − − −
RIACO⇔MIACO + + + + + + − − ∼ ∼ − −
RIACO⇔EIIACO + + + + + + ∼ ∼ + + + ∼
EIACO⇔HIACO − − − − − − ∼ ∼ − − ∼ +
EIACO⇔MIACO ∼ ∼ + + ∼ + + + + + + +
EIACO⇔EIIACO ∼ − ∼ − ∼ + + + + + + +
HIACO⇔MIACO + + + + + + + + + + + +
HIACO⇔EIIACO + + + + + + + + + + + +
MIACO⇔EIIACO ∼ − ∼ − ∼ + + + + + + +

Cyclic DTSPs
f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO − ∼ + + − ∼ − − − ∼ + +
RIACO⇔HIACO − − + + − + ∼ + − + + +
RIACO⇔MIACO − ∼ + + − + − − − ∼ − ∼
RIACO⇔EIIACO − + + + − + + ∼ − ∼ + +
EIACO⇔HIACO ∼ − − − + + + + + + + −
EIACO⇔MIACO + ∼ − − ∼ + ∼ − ∼ ∼ − −
EIACO⇔EIIACO + + − − + + + + + + ∼ −
HIACO⇔MIACO + + + + − ∼ − − − − − −
HIACO⇔EIIACO + + + + + + + ∼ − − − +
MIACO⇔EIIACO + + + + + + + + + ∼ + +

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75
RIACO⇔EIACO + + + + ∼ + − − − + − −
RIACO⇔HIACO − − − − − − − − − − − −
RIACO⇔MIACO + + + + + + − − − ∼ − −
RIACO⇔EIIACO + + + + + + + + + + + −
EIACO⇔HIACO − − − − − − ∼ − ∼ − ∼ +
EIACO⇔MIACO ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
EIACO⇔EIIACO ∼ + − − + + + + + + + +
HIACO⇔MIACO + + + + + + + ∼ ∼ + + −
HIACO⇔EIIACO + + + + + + + + + + + +
MIACO⇔EIIACO ∼ + ∼ ∼ + + + + + + + +

13 ACO Algorithms with Immigrants Schemes for the DTSP 333

 48000

 50000

 52000

 54000

 56000

 58000

 60000

 62000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr76, f = 50, m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 90000

 100000

 110000

 120000

 130000

 140000

 150000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr76, f = 50, m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 42000

 44000

 46000

 48000

 50000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr152, f = 50, m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 70000

 80000

 90000

 100000

 110000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr152, f = 50, m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 24000

 25000

 26000

 27000

 28000

 29000

 30000

 31000

 32000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr264, f = 50, m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

0 100 200 300 400 500

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr264, f = 50, m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

Fig. 13.3 Dynamic behaviour of the investigated ACO algorithms on random DTSPs

334 M. Mavrovouniotis and S. Yang

 50000

 52000

 54000

 56000

 58000

 60000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr76, f = 5, m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr76, f = 5, m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 41000

 42000

 43000

 44000

 45000

 46000

 47000

 48000

 49000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr152, f = 5, m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr152, f = 5, m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

 25000

 26000

 27000

 28000

 29000

 30000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr264, f = 5, m = 0.10

RIACO
EIACO
HIACO
MIACO
EIIACO

 40000

 45000

 50000

 55000

 60000

 65000

 70000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

pr264, f = 5, m = 0.75

RIACO
EIACO
HIACO
MIACO
EIIACO

Fig. 13.4 Dynamic behaviour of the investigated ACO algorithms on cyclic DTSPs

diversity level and the knowledge transferred. Moreover, in cases with f = 5, HI-
ACO outperforms EIACO, whereas it has a similar behaviour with RIACO, but
slightly degraded. On the other hand, HIACO outperforms EIIACO in all dynamic
cases except on the largest problem instance, i.e., pr264, with m = 0.10, 0.25
and 0.5; see the comparisons of HIACO ⇔ EIIACO in Table 13.3. A similar
observation of this behaviour has been found in [32], where the performance of

13 ACO Algorithms with Immigrants Schemes for the DTSP 335

EIIACO was promoted as the size of the problem instance increased. This because of
the diversity level generated from the environmental-information based immigrants,
which gather more information than the individual-information based immigrants,
i.e., in EIACO and MIACO.

Fourth, MIACO has a similar behaviour with EIACO when compared with other
algorithms, in random DTSPs. However, it is outperformed by EIACO and HIACO
in almost all dynamic cases; see the results regarding MIACO ⇔ EIACO and HI-
ACO⇔MIACO in Table 13.3 and the results in Table 13.1. However, in cyclic DT-
SPs, MIACO outperforms EIACO and HIACO in cases where f = 5 and m = 0.50
and 0.75, whereas it is underperformed in cases where f = 5 and m= 0.10 and 0.25;
see the results regarding MIACO⇔ EIACO and HIACO⇔ MIACO in Table 13.3
and the results in Table 13.2. Furthermore, MIACO and EIACO are insignificant
different in cyclic DTSPs where f = 50, while HIACO significantly outperforms
them. This is because EIACO is beneficial when the changing environment is simi-
lar, either in cyclic or random DTSPs, and MIACO is beneficial when the changing
environment re-appears, i.e., cyclic DTSPs. The reason why EIACO is effective in
slightly changing environments is explained above. The reason why MIACO is ef-
fective in cyclic DTSPs is that it can move the population directly to a previously
visited environment. MIACO stores the best solutions for all cyclic base states and
reuses them by generating memory-based immigrants. Moreover, on the smallest
problem instance, i.e., pr76, RIACO outperforms MIACO in almost all dynamic
cases, either random or cyclic DTSPs. This is because of the same reasons discussed
on EIACO above, since both algorithms use the elitist mechanism to generate im-
migrants.

Finally, EIIACO outperforms RIACO in almost all dynamic cases with f = 5 and
m = 0.10, while it is underperformed in dynamic cases with f = 50; see the compar-
isons of RIACO⇔ EIIACO in Table 13.3 for both random and cyclic DTSPs. This
is because EIIACO transfers knowledge from previous environment and it is bene-
ficial when the changing environments are similar. On the other hand, if too much
knowledge is transferred the performance is degraded as in EIACO. Moreover, EI-
IACO outperforms EIACO and MIACO in f = 5 and m = 0.50 and 0.75, while it is
underperformed in dynamic cases with f = 50. However, on the smallest problem
instance, i.e., pr76, EIIACO overcomes the issue of EIACO and MIACO, which
they have a degraded performance, since it is significantly better. However, in cyclic
DTSPs, MIACO outperforms EIIACO in almost all dynamic cases, as expected; see
the comparisons of EIACO⇔ EIIACO and MIACO⇔ EIIACO in Table 13.3 for
both random and cyclic DTSPs.

13.5.4 Experimental Results and Analysis of the Investigated
Algorithms with Other Peer ACO

In this section, we compare the offline performance of the investigated algorithms
above, with several other existing peer ACO proposed in the literature for different
DTSPs. These peer ACO algorithms are S-ACO and P-ACO described in Section

336 M. Mavrovouniotis and S. Yang

Table 13.4 Experimental results regarding offline performance on the DTSP with m =
rand[0,1] and f = rand[1,100] in lin318

Algorithms S-ACO P-ACO M-ACO RIACO EIACO HIACO MIACO EIIACO

Offline Performance
Mean 35008.25 34960.87 34845.93 34200.89 33794.34 33875.42 33904.18 34215.37

(Std Dev) 96.07 186.63 141.75 140.23 155.60 148.64 163.62 169.32
t-test Results

S-ACO ∼ + + + + + +
P-ACO ∼ + + + + + +
M-ACO − − + + + + +
RIACO − − − + + + ∼
EIACO − − − − − − −
HIACO − − − − + ∼ −
MIACO − − − − + ∼ −
EIIACO − − − ∼ + + +

13.3, and Memetic ACO (M-ACO) [30], which is a hybridization of P-ACO and an
adaptive inversion local search.

In the previous experiments, we have investigated the offline performance and
dynamic behaviour of ACO algorithms with immigrants schemes under two kinds
of dynamic environments, i.e., random and cyclic DTSPs, but with fixed values of f
and m. However, in real-world problems both f and m may vary during the execution
of the algorithm. In order to investigate the behaviour of the investigated algorithms
and compare them with existing algorithms in such kinds of environments, further
experiments were carried out in lin318. The values f and m were generated ran-
domly with a uniform distribution in [1,100] and [0,1], respectively. Since the time
interval of such kind of environment varies, many existing approaches used in ACO
algorithms for DTSPs, e.g. global and local restart strategies and diversity mainte-
nance schemes [16, 21], cannot be applied, since they do not have any mechanism
to detect dynamic changes.

The experimental settings and performance measure were the same as in previous
experiments. The experimental results regarding the offline performance are pre-
sented in Table 13.4 with the corresponding two-tailed t-test results with 58 degrees
of freedom at a 0.05 level of significance, “+” or “−” indicates that the algorithm in
the column is significantly better or the algorithm in the row is significantly better,
respectively, where ∼ indicates no significance between the algorithms. Moreover,
the values of varying f and m are plotted in Fig. 13.5 and the corresponding dy-
namic behaviour of the algorithms is plotted in Fig. 13.6. From the experimental
results, several observations can be drawn.

First, the results in Table 13.4 almost match the analysis of our previous exper-
iments, where EIACO and MIACO are significantly better than RIACO, whereas
EIIACO is significantly worst than RIACO. HIACO improves the performance of
RIACO, whereas it is worst than EIACO. EIACO is the champion algorithm from
all the ACO algorithms with immigrants schemes. This is because the generated
environment is a DTSP with random traffic factors, where EIACO perform well.

13 ACO Algorithms with Immigrants Schemes for the DTSP 337

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 300 400 500 600 700 800 900 1000

V
ar

yi
ng

 M
ag

ni
tu

de

Iteration

lin318 f = rand[1,100], m = rand[0,1]

Fig. 13.5 Varying values for m = rand[0,1] and f = rand[1,100] used for the DTSP

 20000

 30000

 40000

 50000

 60000

 70000

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e

Pe
rf

or
m

an
ce

Iteration

lin318 f = rand[1,100], m = rand[0,1]

S-ACO
P-ACO

M-ACO
RIACO
EIACO
HIACO
MIACO
EIIACO

Fig. 13.6 Dynamic behaviour of the investigated ACO algorithms in comparison with other
peer ACO algorithms on the DTSP with m = rand[0,1] and f = rand[1,100]

MIACO is not performing well since it is not guaranteed that previously visited
environments will reappear again.

Second, all investigated algorithms outperform other peer ACO algorithms. This
is because the S-ACO uses only pheromone evaporation to eliminate pheromone
trails from the previous environment that are not useful to the new one, and thus,
needs sufficient time to adapt to the changing environments. On the other hand,
P-ACO eliminates pheromone trails directly if an ant is removed from klong. How-
ever, if identical ants are stored in the klong, then the algorithm will reach stagna-
tion behaviour, and thus, needs sufficient time to escape from it. M-ACO is signif-
icantly better than both S-ACO and P-ACO since the local search that is integrated
with ACO promotes exploitation to improve the solution quality, and the risk of
stagnation is eliminated using a diversity maintenance scheme based on traditional
immigrants. Whenever, klong reaches stagnation behaviour a random immigrant re-
places an ant until the algorithm generates sufficient diversity.

338 M. Mavrovouniotis and S. Yang

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

S-ACO P-ACO M-ACO RIACO EIACO HIACO MIACO EIIACO

T
ot

al
 D

iv
er

si
ty

Algorithm

lin318 f = rand[1,100], m = rand[0,1]

Fig. 13.7 Total diversity of the investigated ACO algorithms in comparison with other peer
ACO algorithms on the DTSP with m = rand[0,1] and f = rand[1,100]

Finally, in order to investigate the effect of immigrants scheme on the population
diversity, we calculate the mean population diversity of all iterations as follows:

Div =
1
G

G

∑
i=1

(
1
N

N

∑
j=1

(
1

μ(μ− 1)

μ

∑
p=1

μ

∑
q�p

Mi j

))
, (13.10)

where G is the number of iterations, N is the number of runs, μ is the size of
the population and Mi j is the common edges between ant p and ant q as defined
in Eq. (13.7). A value closer to 0 means that the ants are identical and a value
closer to 1 means that the ants are completely different. The total diversity results
for the different dynamic cases are presented in Fig. 13.7. It can be observed that
S-ACO has a higher diversity than all algorithms. The P-ACO algorithm has the
lowest diversity level which shows the effect when identical ants are stored in the
population-list. RIACO maintains the highest diversity among the remaining algo-
rithms with different immigrants schemes, since diversity is generated randomly,
whereas the remaining algorithms generate guided diversity via transferring knowl-
edge. However, EIIACO maintains higher diversity than both EIACO and MIACO
which shows that the environmental-information immigrants generate higher diver-
sity than individual-information immigrants. HIACO has a lower diversity than RI-
ACO but higher than EIACO which shows that it has inherited the merits of the two
immigrants schemes. Considering the results of the total diversity with the those
of the offline performance shows that ACO algorithms that maintain high diversity
levels do not always achieve better performance than other ACO algorithms for the
DTSP; see Table 13.4 and Fig. 13.6.

13.6 Conclusions and Future Work

Several immigrants schemes have been successfully applied to ACO algorithms
to address different DTSPs [29, 31, 32]. Immigrant ants are generated to transfer

13 ACO Algorithms with Immigrants Schemes for the DTSP 339

knowledge to the pheromone trails and maintain diversity. In this chapter, we re-
investigate those algorithms, on the way they generate immigrant ants, and apply
them to DTSP with traffic factors. We generate two types of dynamic environments:
(1) the traffic factor changes randomly; and (2) the traffic factor changes in a cyclic
pattern where the environments will reappear.

From the experimental results of comparing the investigated algorithms on dif-
ferent cases of DTSPs and with other peer ACO algorithms, the following conclud-
ing remarks can be drawn. First, immigrants schemes enhance the performance of
ACO for DTSPs. Second, RIACO is advantageous in fast and significantly changing
environments. Third, EIACO is advantageous in slowly and slightly changing envi-
ronments. Fourth, HIACO promotes the performance of EIACO in slowly changing
environments, while it slightly degrades the performance of RIACO in fast chang-
ing environments. Fourth, MIACO is advantageous in cyclic changing environments,
where previous environments will re-appear. Fifth, EIIACO promotes the perfor-
mance of EIACO in environments with significant changes. Sixth, transferring too
much knowledge from previous environments may degrade the performance.Finally,
a high level of diversity do not always enhance the performance of ACO in DTSPs.

In general, almost all ACO algorithms based on immigrants schemes outperform
other peer ACO algorithms. Furthermore, different immigrants schemes are benefi-
cial for different dynamic environmental cases.

For future work, it will be interesting to hybridize more types of immigrants
schemes, to achieve a good balance between the knowledge transferred and the di-
versity maintenance. Another future work is to apply the proposed algorithms to
other relevant problems, e.g., the dynamic vehicle routing problem, and in more
challenging environments, where, apart from dynamic changes, a small amount of
noise may be generated every iteration.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant numbers EP/E060722/1, EP/E060722/2,
and EP/K001310/1.

References

[1] Angus, D.: Niching for population-based ant colony optimization. In: Proc. of the 2nd
IEEE Inter. Conf. on e-Science and Grid Comp., pp. 15–22 (2006)

[2] Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for the vehicle routing
problem. Advanced Engineering Informatics 18, 41-48 (2004)

[3] Bullnheimer, B., Haı̈ti, R., Strauss, C.: An improved ant system algorithm for the vehi-
cle routing problem. Ann. Oper. Res. 89(1), 319-328 (1999)

[4] Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank based version of the ant system -
a computational study. Central Eur. J. for Oper. Res. in Economics 7(1), 25–38 (1999)

[5] Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artifi-
cial Systems. Oxford University Press, New York (1999)

[6] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. Evol. Comput. vol. 3, pp. 1875–1882 (1999)

340 M. Mavrovouniotis and S. Yang

[7] Cruz, C., González, J.R., Pelta, D.A.: Optimization in dynamic environments: a survey
on problems, methods and measures. Soft Comput., 15(7), 1427–1448 (2011)

[8] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proc. 5th Int. Conf. on Genetic Algorithm, pp. 523–530 (1993)

[9] Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In:
Proc. 1st Europ. Conf. on Artif. Life, pp. 134–142 (1992)

[10] Cordón, O., de Viana, I.F., Herrera, F., Moreno, L.: A new ACO model integrating evo-
lutionary computation concepts: The best worst Ant System. In: Proc. 2nd Int. Work-
shop on Ant Algorithms, pp. 22-29 (2000)

[11] Di Caro, G., Dorigo, M.: Ant Net: Distributed Stigmergetic Control for Communica-
tions Networks. J. of Artif. Intell. Res. 9(1), 317–365 (1998)

[12] Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: An ant-based hybrid routing
algorithm for mobile ad hoc networks. In: Proc. 8th Int. Conf. on Parallel Problem
Solving from Nature, LNCS 3242, pp. 461–470 (2004)

[13] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooper-
ating agents. IEEE Trans. Syst., Man and Cybern., Part B: Cybern. 26(1), 29–41 (1996)

[14] Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to
the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

[15] Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, London (2004)
[16] Eyckelhof, C.J., Snoek, M.: Ant Systems for a Dynamic TSP. In: Proc. 3rd Int. Work-

shop on Ant Algorithms, pp. 88–99 (2002)
[17] Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assign-

ment problem. J. of the Oper Res Society 50, 167–176 (1999)
[18] Grefenestette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd

Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)
[19] Guntsch, M., Middendorf, M.: Applying population based ACO to dynamic optimiza-

tion problems. In: Proc. 3rd Int. Workshop on Ant Algorithms, LNCS 2463, pp. 111–
122 (2002)

[20] Guntsch, M., Middendorf, M.: A population based approach for ACO. In: EvoWork-
shops 2002: Appl. of Evol. Comput., pp. 72–81 (2002)

[21] Guntsch, M., Middendorf, M.: Pheromone modification strategies for ant algorithms
applied to dynamic TSP. In: EvoWorkshops 2001: Appl. of Evol. Comput., pp. 213-222
(2001)

[22] Guntsch, M., Middendorf, M., Schmeck, H.: An ant colony optimization approach to
dynamic TSP. In: Proc. 2001 Genetic and Evol. Comput. Conf., pp. 860–867 (2001)

[23] Guo, T., Michalewicz, Z.: Inver-over operator for the TSP. In: Proc. 5th Int. Conf. on
Parallel Problem Solving from Nature, LNCS 1498, pp. 803–812 (1998)

[24] He, J., Yao, X.: From an individual to a population: An analysis of the first hitting time
of population-based evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 495–511
(2002)

[25] Holland, J.: Adaption in Natural and Artificial Systems, University of Michigan Press
(1975)

[26] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE
Trans. Evol. Comput. 9(3), 303–317 (2005)

[27] Lin, S., Kerninghan, B.W.: An effective heuristic algorithm for the traveling salesman
problem. Oper. Res. 21(2), 498–516 (1973)

[28] Maniezzo, V., Colorni, A.: The ant system applied to the quadratic assignment problem.
IEEE Trans. Knowledge and Data Engineering 9(5), 769–778 (1999)

13 ACO Algorithms with Immigrants Schemes for the DTSP 341

[29] Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes for
dynamic environments. In: Proc. 11th Int. Conf. on Parallel Problem Solving from Na-
ture, LNCS 6239, pp. 371–380 (2010)

[30] Mavrovouniotis, M., Yang, S.: A memetic ant colony optimization algorithm for the
dynamic travelling salesman problem. Soft Comput. 15(7), 1405–1425 (2011)

[31] Mavrovouniotis, M., Yang, S.: Memory-based immigrants for ant colony optimization
in changing environments. In: EvoWorkshops 2011: Appl. of Evol. Comput., LNCS
6624, pp. 324–333 (2011)

[32] Mavrovouniotis, M., Yang, S.: An immigrants scheme based on environmental informa-
tion for ant colony optimization for the dynamic travelling salesman problem. In: Proc.
10th Int. Conf. Evolution Artificial, LNCS 7401, pp. 1-12 (2011)

[33] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin, third edition (1999)

[34] Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: An new algorithm for a dy-
namic vehicle routing problem based on ant colony system. In: Proc. 2nd Int. Workshop
on Freight Transportation and Logistics, pp. 27–30 (2003)

[35] Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm.
Algorithmica 54(2), 243–255 (2009)

[36] Rizzoli, A. E., Montemanni, R., Lucibello, E., Gambardella, L. M.: Ant colony opti-
mization for real-world vehicle routing problems - from theory to applications. Swarm
Intell. 1(2), 135–151 (2007)

[37] Stützle, T., Hoos, H.: The MAX-MIN ant system and local search for the traveling
salesman problem. In: Proc. 1997 IEEE Int. Conf. Evol. Comput., pp. 309–314 (1997)

[38] Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Systems
8(16), 889–914 (2000)

[39] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments.
In: Proc. 2005 Genetic and Evol. Conf., vol. 2, pp. 1115–1122 (2005)

[40] Yang, S.: Genetic algorithms with elitism based immigrants for changing optimization
problems. In: EvoWorkshops 2007: Appl. of Evol. Comput., LNCS 4448, pp. 627–636
(2007)

[41] Yang, S.: Genetic algorithms with memory and elitism based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

[42] Yang, S., Cheng, H., Wang, F.: Genetic algorithms with immigrants and memory
schemes for dynamic shortest path routing problems in mobile ad hoc networks. IEEE
Trans. Syst., Man, and Cybern. Part C: Appl. and Rev. 40(1), 52-63 (2010)

[43] Yang, S., Tinos, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. of Autom. and Comput. 4(3), 243–254 (2007)

[44] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[45] Yu, X., Tang, K., Yao, X.: An immigrants scheme based on environmental informa-
tion for genetic algorithms in changing environments. In: Proc. 2008 IEEE Congr.
Evol. Comput., pp. 1141–1147 (2008)

[46] Yu, X., Tang, K., Yao, X.: Immigrant schemes for evolutionary algorithms in dynamic
environments: Adapting the replacement rate. Sci. China Series F: Inf. Sci. 53(1), 1–11
(2010)

[47] Yu, X., Tang, K., Chen, T., Yao, X.: Empirical analysis of evolutionary algorithms with
immigrants schemes for dynamic optimization. Memetic Comput. 1(1), 3–24 (2009)

Chapter 14
Genetic Algorithms for Dynamic Routing
Problems in Mobile Ad Hoc Networks

Hui Cheng and Shengxiang Yang

Abstract. Routing plays an important role in various types of networks. There are
two main ways to route the packets, i.e., unicast and multicast. In most cases, the
unicast routing problem is to find the shortest path between two nodes in the network
and the multicast routing problem is to find an optimal tree spanning the source and
all the destinations. In recent years, both the shortest path routing and the multicast
routing have been well addressed using intelligent optimization techniques. With
the advancement in wireless communications, more and more mobile wireless net-
works appear, e.g., mobile ad hoc networks (MANETs). One of the most important
characteristics in MANETs is the topology dynamics, that is, the network topol-
ogy changes over time due to energy conservation or node mobility. Therefore, both
routing problems turn out to be dynamic optimization problems in MANETs. In this
chapter, we investigate a series of dynamic genetic algorithms to solve both the dy-
namic shortest path routing problem and the dynamic multicast routing problem in
MANETs. The experimental results show that these specifically designed dynamic
genetic algorithms can quickly adapt to environmental changes (i.e., the network
topology changes) and produce high quality solutions after each change.

14.1 Introduction

Routing plays an important role in various types of networks. There are two main
ways to route the packets. One is unicast and the other is multicast. Unicast refers

Hui Cheng
Department of Computer Science and Technology, University of Bedfordshire, Park Square,
Luton LU1 3JU, U.K.
e-mail: hui.cheng@beds.ac.uk

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 343–375.
DOI: 10.1007/978-3-642-38416-5_14 c© Springer-Verlag Berlin Heidelberg 2013

344 H. Cheng and S. Yang

to one-to-one communication between a source and a destination. Multicast refers
to one-to-many communication where the same source sends the same packets to a
set of destinations. In most cases, the unicast routing problem is to find the shortest
path between two nodes in the network and the multicast routing problem is to
find an optimal tree spanning the source and all the destinations. In recent years,
both the shortest path routing and the multicast routing have been well addressed
using intelligent optimization techniques, e.g., artificial neural networks, genetic
algorithms (GAs), and particle swarm optimization (PSO), etc.

With the advancement in wireless communications, more and more mobile wire-
less networks appear, e.g., mobile ad hoc networks (MANETs) and wireless sen-
sor networks . A MANET [26] is a self-organizing and self-configuring multi-hop
wireless network, which is comprised of a set of mobile hosts (MHs) that can move
around freely and cooperate in relaying packets on behalf of one another. A MANET
supports robust and efficient operations by incorporating the routing functionality
into MHs. In multi-hop networks, routing is one of the most important issues that
has a significant impact on the network’s performance. In a MANET, each mobile
node is a router and forwards packets on behalf of other nodes. Multi-hop forward-
ing paths are established for nodes beyond the direct wireless communication range.
Routing protocols for MANETs must discover such paths and maintain connectivity
when links in these paths break due to effects such as the node movement, battery
drainage, and wireless interference.

In this chapter, we investigate two main routing problems in MANETs, i.e., the
shortest path (SP) routing problem and the multicast routing problem. The SP rout-
ing problem aims to find the shortest path from a source to a destination in a given
network while minimizing the total cost associated with the path. The SP routing
problem is a classical combinatorial optimization problem arising in many design
and planning contexts [3]. There are several deterministic search algorithms for the
SP problem: the Dijkstra’s algorithm, the breadth-first search algorithm, and the
Bellman-Ford algorithm, etc. All these algorithms have a polynomial time com-
plexity. They are effective in fixed infrastructure wireless or wired networks. But,
they exhibit an unacceptable high computational complexity for real-time commu-
nications involving rapidly changing network topologies [4]. Therefore, for the dy-
namic shortest path routing problem (DSPRP) in a changing network environment,
we need to employ appropriate new approaches. The DSPRP has become a topic of
interest in recent years.

Multicast [38] is an important network service, which is the delivery of informa-
tion from a source to multiple destinations simultaneously using the most efficient
strategy to deliver the messages over each link of the network only once, creating
copies only when the links to the destinations split. It provides underlying network
support for collaborative group communications, such as the video conference, dis-
tant education, and content distribution. Quality-of-service (QoS) requirements [38]
proposed by different network applications are often versatile. Among them, the
end-to-end delay [18, 32] is a pretty important QoS metric since the real-time de-
livery of multimedia data is required. An efficient QoS multicast algorithm should
construct a multicast routing tree, by which the data can be transmitted from the

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 345

source to all the destinations with a guaranteed QoS. The multicast tree cost, which
is used to evaluate the utilization of network resources, is also an important metric
especially in wireless mobile networks where limited radio resources are available.

The QoS multicast routing problem also involves a classical combinatorial op-
timization problem [29]. In a MANET, the network topology keeps changing due
to its inherent characteristics. Therefore, for the dynamic multicast routing problem
(DMRP), an effective multicast algorithm should track the topological changes and
adapt the best multicast tree to the changes accordingly. There are mainly two types
of algorithms for the multicast routing problem: the deterministic algorithms and
the search heuristics. Given the multicast routing request, only one multicast tree is
constructed for a given topology by a deterministic algorithm, e.g., the shortest path
tree (SPT) [27] algorithm. However, by the search heuristics, such as GAs [4] and
simulated annealing (SA) algorithms [38], lots of multicast trees are searched and
the best one is selected as the final result.

Both the DSPRP and the DMRP are real-world dynamic optimization problems
(DOPs) in MANETs. In recent years, studying evolutionary algorithms (EAs) for
DOPs has attracted a growing interest due to its importance in real-world applica-
tions of EAs [49]. The simplest way of addressing DOPs is to restart EAs from
scratch whenever an environment change is detected. Though the restart scheme
really works for some cases [48], for many DOPs it is more efficient to develop
other approaches that make use of knowledge gathered from old environments. Over
the years, several approaches have been developed for EAs to address dynamic en-
vironments [45], such as maintaining diversity during the run via random immi-
grants [13, 37], increasing diversity after a change [9], using memory schemes to
reuse stored useful information [5, 35, 41], applying multi-population and specia-
tion schemes to search in different regions of the search space [6, 30], and adapting
(the parameters of) operators to quickly respond to a new environment [25, 47].

In this chapter, we adapt and investigate several genetic algorithms that are de-
veloped to deal with general DOPs to solve the DSPRP [44] and the DMRP [8] in
MANETs. First, we design the components of the standard GA specifically for each
problem. Then, we integrate several immigrants and memory schemes and their
combination into the GA to enhance its searching capacity for the shortest paths
in dynamic environments. We also integrate several improved immigrants schemes
into the GA to enhance its searching capacity for the optimal multicast trees in dy-
namic environments. Once the topology is changed, new immigrants or the useful
information stored in the memory can help guide the search of good solutions in the
new environment. For comparison purposes, for each problem we also implement
two traditional GA schemes, i.e., Standard GA and Restart GA, as the peer algo-
rithms. Via simulation experiments, we evaluate these GAs under different parame-
ter settings to find the best combinations. More importantly, we evaluate them under
various settings of dynamic environments to see their performance and find the best
match between algorithms and environmental characteristics. Generally speaking,
the investigated well-designed dynamic GAs work well for both the DSPRP and the
DMRP in MANETs.

346 H. Cheng and S. Yang

The rest of this chapter is organized as follows. We discuss related work in Sec-
tion 14.2. The MANET network model, the DSPRP model and the DMRP model are
described in Section 14.3. Section 14.4 presents the design of specialized GAs for
the static SP routing problem and the static multicast routing problem, respectively.
The investigated dynamic GAs that are the integration of several immigrants and/or
memory schemes are described in Section 14.5. The extensive experimental study
and relevant analysis are presented in Section 14.6. Finally, Section 14.7 concludes
this chapter.

14.2 Related Work

Both the shortest path routing problem and the multicast routing problem have been
extensively investigated in the literature.

14.2.1 Shortest Path Routing

Since deterministic algorithms with a polynomial time complexity are not suitable
for the real-time computation of shortest paths, quite a few research works have
been conducted to solve the SP problem using artificial intelligence techniques, e.g.,
artificial neural networks [3], GAs [4], and PSO [23].

In [3], a near-optimal routing algorithm employing a modified Hopfield neural
network (HNN) was proposed. It uses every piece of information that is available at
the peripheral neurons, in addition to the highly correlated information that is avail-
able at the local neuron. Therefore, it can achieve a faster convergence and a better
route optimality than other HNN based algorithms. In [4], a genetic algorithmic
approach was presented to the SP routing problem. Computer simulations showed
that the GA based SP algorithm exhibits a much better quality of solution (i.e., the
route optimality) and a much higher rate of convergence than other algorithms. A
population-sizing equation that facilitates a solution with the desired quality was
also developed. In [23], a PSO-based search algorithm was proposed. A priority-
based indirect path-encoding scheme is used to widen the scope of the search space
and a heuristic operator is used to reduce the probability of invalid loop creations
during the path construction procedure. It was claimed that the PSO-based SP algo-
rithm is superior to those using GAs including the one in [4].

However, all these algorithms address the static SP routing problem only. When
the network topology changes, they will regard it as a new network and restart
the algorithms over the new topology. It is well known that the topology changes
rapidly in MANETs due to the characteristics of wireless networks. Therefore, for
the DSPRP in MANETs, these algorithms are not good choices since they require
frequent restart and cannot meet the real-time requirement. In this regard, immi-
grants and memory enhanced GAs have their inherent advantages. These GAs use
the immigrants or the useful information stored in the memory to help the popu-
lation quickly adapt to the new environment after a change occurs. Hence, these

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 347

algorithms can keep running over the continuously changing topologies and avoid
the expensive and inefficient restart.

14.2.2 Multicast Routing

Multicast routing trees produced by deterministic algorithms can be classified into
two types, i.e., Steiner minimum tree (SMT) [16] and shortest path tree [27]. An
SMT is also the minimum-cost multicast tree. An SPT is constructed by applying the
shortest path algorithm to find the shortest (e.g., minimum cost or delay) path from
the source to each destination and then merging them. The problem of finding an
SMT has been proved to be NP-complete [17] and lots of approximation algorithms
[2, 14, 33] have been developed. An SPT provides a good solution for finding delay-
constrained multicast tree because it determines the minimum delay path from the
source to each destination. Inspired by SMT and SPT, many heuristic algorithms
[18, 19, 32] have been proposed to construct a QoS-aware multicast tree by making
a tradeoff between them. QoS multicast routing is still a challenging problem due to
its intractability and comprehensive application backgrounds.

Intelligent search heuristics is a type of promising techniques to solve combina-
torial optimization problems [31] including the SMT problem. GAs are a type of
stochastic meta-heuristic optimization methods that model the biological principles
of Darwinian theory of evolution and Mendelian principles of inheritance [15]. GAs
have been extensively used in solving the QoS multicast problems in various net-
works such as the wired multimedia networks [38] and optical networks [12]. In
[38], we also developed a unified framework for producing QoS multicast trees us-
ing intelligent search heuristics and proposed three QoS multicast algorithms based
on GAs, simulated annealing, and tabu search, separately.

In [38], the binary encoding is adopted where each bit of the binary string cor-
responds to a different node in the network. For each binary string, a graph G

′
is

derived from the network topology G by including all the nodes appearing in the
string and the links connecting these nodes. Then, the minimum spanning tree T of
G
′

acts as the candidate multicast tree represented by the binary string. This encod-
ing method is a bit complicated and each binary string cannot directly represent a
candidate solution. A multicast tree is a union of the routing paths from the source
to each receiver. Hence, it is a natural choice to adopt the path-oriented encoding
method [4, 12] instead of the binary encoding.

In MANETs, a number of multicast routing protocols, using a variety of basic
routing algorithms and techniques, have been proposed [10]. However, they mainly
focus on the discovery of the optimal multicast forwarding structure (i.e., tree or
mesh) spanning mobile nodes and do not consider the everlasting changes in the
network topologies. Topology dynamics is the inherent characteristics in wireless
mobile networks. For example, at time T1, the network topology is G1. At time
T2, the network topology may change to G2. Although G1 and G2 are different,
they are highly relevant since each change alters part of the topology only. There-
fore, the solutions obtained on G1 could benefit the search of good solutions on G2.

348 H. Cheng and S. Yang

An effective multicast algorithm should track the topological changes and adapt
the multicast trees to the changes accordingly. We are not aware of any other work
that considers the dynamic multicast routing in the environment where the network
topology keeps changing in a continuous way, although there are quite a few works
that are related to some relevant aspects. For example, some researchers have inves-
tigated the multicast problem where the dynamic group membership exists [1, 50].
In a dynamic group, nodes are allowed to join or leave it.

14.3 Network and Problem Models

In this section, we first present our network model and then formulate both the
DSPRP and the DMRP.

14.3.1 Mobile Ad Hoc Network Model

We consider a mobile ad hoc network operating within a fixed geographical region.
We model it by an undirected and connected topology graph G0(V0, E0), where V0

represents the set of wireless nodes (i.e., routers) and E0 represents the set of com-
munication links connecting two neighboring routers falling into the radio trans-
mission range. A communication link (i, j) can not be used for packet transmission
unless both node i and node j have a radio interface each with a common channel.
However, the channel assignment is beyond the scope of this chapter. In addition,
message transmission on a wireless communication link will incur remarkable delay
and cost.

Here, we summarize some notations that we use throughout this chapter.

• G0(V0, E0), the initial MANET topology graph.
• Gi(Vi, Ei), the MANET topology graph after the i-th change.
• s, the source node.
• r, the destination node.
• Pi(s, r), a path from s to r on the graph Gi.
• C(Pi), the total cost of the path Pi.
• R = {r0,r1,...rm}, the set of receivers of the multicast routing request.
• Ti(VTi , ETi), a multicast tree with nodes VTi and links ETi .
• PTi(s, r j), a path from s to r j on the tree Ti.
• CTi , the cost of the tree Ti.
• dl, the transmission delay on the communication link l.
• cl , the cost on the communication link l.
• Δ (Pi), the total transmission delay on the path Pi.

14.3.2 Dynamic Shortest Path Routing Problem Model

The DSPRP can be informally described as follows. Initially, given a network of
wireless routers, a delay upper bound, a source node and a destination node, we

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 349

wish to find a delay-bounded least cost loop-free path on the topology graph. Since
the end-to-end delay [32] is a pretty important QoS metric to guarantee the real-
time data delivery, we also require the routing path to satisfy the delay constraint.
Then, periodically or stochastically, due to energy conservation or some other issues,
some nodes are scheduled to sleep or some sleeping nodes are scheduled to wake
up. Therefore, the network topology changes from time to time. The objective of the
dynamic SP routing problem is to quickly find the new optimal delay-constrained
least cost acyclic path after each topology change.

More formally, consider a mobile ad hoc network G(V, E) and a unicast com-
munication request from the source node s to the destination node r with the delay
upper bound Δ . The dynamic delay-constrained shortest path problem is to find a
series of paths {Pi|i ∈ {0,1, ...}} over a series of graphs {Gi|i ∈ {0,1, ...}}, which
satisfy the delay constraint as shown in Eq. (14.1) and have the least path cost as
shown in Eq. (14.2).

Δ(Pi) = ∑
l∈Pi(s,r)

dl ≤ Δ (14.1)

C(Pi) = min
P∈Gi

{
∑

l∈P(s,r)

cl

}
(14.2)

14.3.3 Dynamic Multicast Routing Problem Model

The DMRP can be informally described as follows. Initially, given a MANET con-
sisting of wireless routers, a delay upper bound, and a multicast communication re-
quest from a source node to a set of receiver nodes, we wish to find a delay-bounded
least cost loop-free multicast tree on the topology graph. Then, after each topology
change, the objective of our problem is to quickly find the new delay-constrained
least cost acyclic tree.

It is an extremely difficult job to completely model the network dynamics in a
single way. Here, we propose two models to describe it and they are named as the
general dynamics model and the worst dynamics model, respectively. In the general
model, periodically or stochastically, due to energy conservation or other reasons,
some nodes are scheduled to sleep or some sleeping nodes are scheduled to wake
up. Therefore, the network topology changes from time to time. Since in most cases,
the selected nodes may not belong to the present best multicast tree, the topological
changes have relatively moderate effect on the routing problem. In the worst model,
each change is generated manually by removing a few links on the present best mul-
ticast tree. Thus, the topological changes will destroy the present best solution and
thereby cause the worst effect on the problem. Although these two models cannot
cover the full cases of network dynamics, they correspond to the general scenario
and the worst scenario, respectively. Based on these two representative models, the
multicast routing problem can be investigated in a relatively thorough way.

More formally, we consider a MANET G(V, E) and a multicast communication
request from the source node s to the set of receivers R with the delay upper bound

350 H. Cheng and S. Yang

Δ . The dynamic delay-constrained multicast routing problem is to find a series of
trees {Ti|i ∈ {0,1, ...}} over a series of graphs {Gi|i ∈ {0,1, ...}}, which satisfy the
delay constraint as shown in Eq. (14.3) and have the least tree cost as shown in
Eq. (14.4).

max
r j∈R

⎧
⎨
⎩ ∑

l∈PT (s,r j)

dl

⎫
⎬
⎭≤ Δ . (14.3)

C(Ti) = min
T∈Gi

{
∑

l∈T (VT ,ET)

cl

}
. (14.4)

14.4 Specialized GAs for the Routing Problems

This section describes the design of the GA for both the shortest path routing prob-
lem and the multicast routing problem. The design of the GA involves several key
components: genetic representation, population initialization, fitness function, se-
lection scheme, crossover and mutation.

14.4.1 Specialized GA for the Shortest Path Routing Problem

A routing path consists of a sequence of adjacent nodes in the network. Hence, it is a
natural choice to adopt the path-oriented encoding method. For the routing problem,
the path-oriented encoding and the path-based crossover and mutation are also very
popular [4, 12].

14.4.1.1 Genetic Representation

A routing path is encoded by a string of positive integers that represent the IDs of
nodes through which the path passes. Each locus of the string represents an order
of a node (indicated by the gene of the locus). The gene of the first locus is for the
source node and the gene of the last locus is for the destination node. The length
of a routing path should not exceed the maximum length |V0|, where V0 is the set
of nodes in the MANET. Chromosomes are encoded under the delay constraint. In
case it is violated, the encoding process is usually repeated so as to satisfy the delay
constraint.

14.4.1.2 Population Initialization

In the GA, each chromosome corresponds to a potential solution. The initial popu-
lation Q is composed of a certain number of, say q, chromosomes. To promote the
genetic diversity, in our algorithm, for each chromosome in the initial population,
the corresponding routing path is randomly generated. We start to search a random
path from s to r by randomly selecting a node v1 from N(s), the neighborhood of s.
Then, we randomly select a node v2 from N(v1). This process is repeated until r is

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 351

reached. Since the path should be loop-free, those nodes that are already included
in the current path are excluded from being selected as the next node to be added
into the path, thereby avoiding reentry of the same node into a path. In this way, we
get a random path P(s, r)={s, v1, v2, ..., r}. Repeating this process for q times, the
initial population Q = {Ch0, Ch1, ..., Chq−1} can be obtained.

14.4.1.3 Fitness Function

Given a solution, we should accurately evaluate its quality (i.e., the fitness value),
which is determined by the fitness function. In our algorithm, we aim to find the least
cost path between the source and the destination. Our primary criterion of solution
quality is the path cost. Therefore, among a set of candidate solutions (i.e., unicast
paths), we choose the one with the least path cost. The fitness value of chromosome
Chi (representing the path P), denoted as f (Chi), is given by:

f (Chi) = [∑
l∈P(s,r)

cl]
−1 (14.5)

The proposed fitness function is to be maximized and only involves the total path
cost. As mentioned above, the delay constraint is checked for each chromosome
during the evolutionary process.

14.4.1.4 Selection Scheme

Selection plays an important role in improving the average quality of the popula-
tion by passing the high quality chromosomes to the next generation. The selection
of chromosome is based on the fitness value. We adopt the scheme of pair-wise
tournament selection without replacement [20] as it is simple and effective. The
tournament size is 2.

14.4.1.5 Crossover and Mutation

GA relies on two basic genetic operators - crossover and mutation. Crossover pro-
cesses the current solutions so as to find better ones. Mutation helps a GA keep
away from local optima [4]. The performance of GA very much depends on them.
The type and implementation of operators depend on encoding as well as the prob-
lem in hand.

In our algorithm, since chromosomes are expressed by the path structure, we
adopt the single point crossover to exchange partial chromosomes (sub-paths) at
positionally independent crossing sites between two chromosomes [4]. With the
crossover probability, each time we select two chromosomes Chi and Ch j for
crossover. Chi and Ch j should possess at least one common node. Among all the
common nodes, one node, denoted as v, is randomly selected. In Chi, there is a path

consisting of two parts: (s
Chi−→ v) and (v

Chi−→ r). In Ch j, there is a path consisting of

352 H. Cheng and S. Yang

two parts: (s
Chj−→ v) and (v

Ch j−→ r). The crossover operation exchanges the subpaths

(v
Chi−→ r) and (v

Ch j−→ r).
The population will undergo the mutation operation after the crossover operation.

With the mutation probability, each time we select one chromosome Chi on which
one gene is randomly selected as the mutation point (i.e., mutation node), denoted

as v. The mutation will replace the subpath (v
Chi−→ r) by a new random subpath.

Both crossover and mutation may produce new chromosomes which represent
infeasible solutions. Therefore, we check if the path represented by a new chromo-
some is acyclic. If not, a repair function [28] will be applied to eliminate the loops.
The delay checking is incorporated into the crossover and mutation operations to
guarantee that all new chromosomes produced satisfy the delay constraint.

14.4.2 Specialized GA for the Multicast Routing Problem

A multicast tree is a union of the routing paths from the source to each receiver.
Hence, it is also a natural choice to adopt the path-oriented encoding method [4, 12].

14.4.2.1 Genetic Representation

For a multicast tree T spanning the source s and the set of receivers R, there are
|R| routing paths all originating from s. Therefore, a tree is encoded by an integer
array in which each row encodes a routing path along the tree. For example, for a
tree T that spans s and R, the j-th row in the corresponding array A lists up node IDs
on the routing path from s to r j along T. Therefore, A is an array of |R| rows. All
the solutions are encoded under the delay constraint. In case the delay constraint is
violated, the encoding process is usually repeated so that it is satisfied.

14.4.2.2 Population Initialization

Similarly, the initial population Q is assumed to have q chromosomes. We use the
same method in the specialized GA for the SP problem to search a random path
PT (s,r j) from s to r j ∈ R. Since no loop is allowed on the multicast tree, the nodes
that are already included in the current tree are excluded, thereby avoiding reentry
of the same node. In this way, the initial population Q = {Ch0, Ch1, ..., Chq−1} is
obtained. The pseudo-code is shown in Algorithm 1.

14.4.2.3 Fitness Function

We aim to find the least cost multicast tree from the source to a set of receivers. The
criterion used to evaluate the solution quality is the tree cost. Therefore, among a
set of candidate solutions (i.e., multicast trees), we choose the one with the minimal
tree cost. The fitness value of chromosome Chi (representing the tree T), denoted as
f (Chi), is given by:

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 353

Algorithm 1 Population Initialization

1: i =: 0;
2: while i < q do
3: // Generate chromosome Chi
4: j =: 0;
5: VT := ET := /0;
6: while j < |R| do
7: Search a random path PT (s,r j) which can guarantee T ∪PT be an acyclic graph;
8: Add all the nodes and links in PT into VT and ET , respectively;
9: j++;

10: end while
11: i++;
12: end while

f (Chi) = [∑
l∈T (VT ,ET)

cl]
−1 (14.6)

The proposed fitness function is to be maximized and only involves the total tree
cost. As aforementioned, the delay constraint is checked for each chromosome dur-
ing the evolutionary process.

14.4.2.4 Selection Scheme

We also adopt the pair-wise tournament selection without replacement [20].

14.4.2.5 Crossover and Mutation

In our algorithm, since a chromosome is expressed by a tree data structure, we adopt
a single point crossover to exchange partial chromosomes (sub-trees) at positionally
independent crossing sites between two chromosomes [4]. With a crossover proba-
bility, each time we select two chromosomes Chi and Ch j for crossover. To at least
one receiver, Chi and Ch j should possess at least one common node from which one,
denoted as v, is randomly selected. In Chi, there is a path consisting of two parts: (s
Chi−→ v) and (v

Chi−→ rk). In Ch j, there is a path consisting of two parts: (s
Ch j−→ v) and

(v
Ch j−→ rk). The crossover operation exchanges the paths (v

Chi−→ rk) and (v
Ch j−→ rk).

The population will undergo the mutation operation after the crossover operation.
With a mutation probability, each time we select one chromosome Chi on which one

receiver rk is randomly selected. On the path (s
Chi−→ rk) one gene is selected as the

mutation point (i.e., mutation node) denoted as v. The mutation will replace the path

(v
Chi−→ rk) by a new random path.
Both crossover and mutation may produce new chromosomes which represent

infeasible solutions. Therefore, we check if the multicast trees represented by the
new chromosomes are acyclic. If not, the repair function used in [28] will be applied
to eliminate the loops. The delay checking is incorporated into both the crossover

354 H. Cheng and S. Yang

and mutation operations to guarantee that all the new chromosomes produced satisfy
the delay constraint.

14.5 Investigated GAs for the Dynamic Routing Problems

In this chapter, we investigate both traditional GAs and several dynamic GAs for
the two dynamic routing optimization problems.

14.5.1 Traditional GAs

For the two dynamic routing problems, we can still address them using the spe-
cialized GAs described above with two variants, denoted Standard GA (SGA) and
Restart GA. In the SGA, when an environmental change leads to infeasible solu-
tions, SGA handles them by taking the measure of penalty. That is, infeasible so-
lutions are set to a very low fitness. In this way, the population in SGA can keep
evolving even in a continuously changing environment. In the Restart GA, once a
change is detected, the population will be re-initialized based on the new network
topology.

14.5.2 GAs with Immigrants Schemes

In stationary environments, convergence at a proper pace is really what we expect
for GAs to locate the optimum solutions for many optimization problems. However,
for DOPs, convergence usually becomes a big problem for GAs because chang-
ing environments usually require GAs to keep a certain population diversity level
to maintain their adaptability. To address this problem, the random immigrants ap-
proach is a quite natural and simple way [13, 34, 46, 51, 52]. It was proposed by
Grefenstette with the inspiration from the flux of immigrants that wander in and
out of a population between two generations in nature. It maintains the diversity
level of the population through replacing some individuals of the current population
with random individuals, called random immigrants, every generation. As to which
individuals in the population should be replaced, usually there are two strategies:
replacing random individuals or replacing the worst ones [37]. In order to avoid that
random immigrants disrupt the ongoing search progress too much, especially dur-
ing the period when the environment does not change, the ratio of the number of
random immigrants to the population size is usually set to a small value, e.g., 0.2.

However, in a slowly changing environment, the introduced random immigrants
may divert the searching force of the GA during each environment before a change
occurs and hence may degrade the performance. On the other hand, if the environ-
ment only changes slightly in terms of severity of changes, random immigrants may
not have any actual effect even when a change occurs because individuals in the
previous environment may still be quite fit in the new environment. Based on the
above consideration, an immigrants approach, called elitism-based immigrants, was
proposed for GAs to address DOPs [42].

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 355

Within the elitism-based immigrants GA (EIGA), for each generation t, after the
normal genetic operations (i.e., selection and recombination), the elite E(t−1) from
previous generation is used as the base to create immigrants. From E(t−1), a set of
rei ∗ n individuals are iteratively generated by mutating E(t− 1) with a probability
pi

m, where n is the population size and rei is the ratio of the number of elitism-based
immigrants to the population size. The generated individuals then act as immigrants
and replace the worst individuals in the current population. The elitism-based im-
migrants scheme combines the idea of elitism with traditional random immigrants
scheme. It uses the elite from previous population to guide the immigrants toward
the current environment, which is expected to improve the performance of GAs in
dynamic environments.

In order to address significant changes that a DOP may suffer, the elitism-based
immigrants can be hybridized with traditional random immigrants scheme. The new
scheme is called hybrid immigrants GA (HIGA). Within HIGA, in addition to the
rei∗n immigrants created from the elite of previous generation, rri ∗n immigrants are
also randomly created, where rri is the ratio of the number of random immigrants
to the population size. These two sets of immigrants will then replace the worst
individuals in the current population.

14.5.3 Improved GAs with Immigrants Schemes

In the DMRP, when a change is caused by removing a few links from the present
optimal multicast tree, the present population undergoes dramatic changes and some
individuals become infeasible. We name this type of environmental changes as the
worst model of network dynamics. The general immigrants based GAs do not con-
sider this case and thereby cannot perform well under the worst dynamics model. We
propose improved RIGA, EIGA, and HIGA, denoted as iRIGA, iEIGA, and iHIGA,
respectively, to address these difficulties.

When there is no environmental changes detected, the above three improved im-
migrants based GAs just follow the procedures of their corresponding original GAs,
respectively. When a change occurs, in iRIGA, all the infeasible individuals are re-
placed by random immigrants. In iEIGA, all the infeasible individuals are repaired
to become feasible and then the elitism is re-selected. In iHIGA, when the environ-
mental change occurs, for each infeasible solution, we either replace it by a random
immigrant or repair it with an equal probability of 0.5.

In iEIGA, since the infeasible solutions are previous elitisms, it is required to keep
as many feasible components in them as possible. Therefore, the repair should result
in the least change to the tree structure. The proposed repair method works as follows.
For each removed link, we search a random path starting from its downstream node.
Once an existing tree node is encountered, the search ends. This random path is added
to the tree to solve the unconnected problem caused by that removed link. After all the
removed links are dealt with, the tree becomes feasible again. Intuitively, this simple
method can repair an infeasible tree with the least cost added.

356 H. Cheng and S. Yang

14.5.4 GAs with Memory Schemes

While the immigrants schemes use random immigrants or elitism-based immigrants
to maintain the population diversity to adapt to the changing environments, the
memory scheme aims to enhance the performance of GAs for DOPs in a different
way. It works by storing useful information from the current environment, either im-
plicitly through redundant representations [11, 21, 36] or explicitly by storing good
(usually best) solutions of the current population in an extra memory [5, 22, 24].
The stored information can be reused later in new environments. For example, for
the explicit memory scheme, when the environment changes, old solutions in the
memory that fit the new environment well will be reactivated and hence may adapt
GAs to the new environment more directly than random immigrants would do. Es-
pecially, when the environment changes cyclically, memory can work very well.
This is because in cyclic dynamic environments, with time going, the environment
will return to some old environment precisely and the solution in the memory, which
has been optimized with respect to the old environment, will instantaneously move
the GA to the reappeared optimum of that environment.

The GA with the memory scheme studied in this chapter is called memory-
enhanced GA (MEGA) [43]. MEGA (and other memory based GAs used in this
chapter) uses a memory of size m. The memory in MEGA is re-evaluated every gen-
eration to detect environmental changes. The environment is detected as changed
if the fitness of at least one individual in the memory has been detected to have
changed its fitness. If an environmental change is detected, the memory is merged
with the current population and the best n−m individuals are selected as an interim
population to undergo genetic operations for a new population while the memory
remains unchanged.

14.5.5 GAs with Memory and Immigrants Schemes

The random immigrants approach aims to improve GA’s performance in dynamic
environments through maintaining the population diversity level with random
immigrants and the memory approach aims to move the GA directly to an old en-
vironment that is similar to the new one through reusing old good solutions. It is
straightforward that the random immigrants and memory approaches can be com-
bined into GAs to deal with DOPs [35]. Therefore, the GA with memory and random
immigrants was developed, denoted as MRIGA [43]. MRIGA differs from MEGA
only in that in MRIGA before entering the next generation, ri∗n random immigrants
are swapped into the population to replace those worst individuals in the population.

However, a more efficient approach of hybridizing memory and random immi-
grants for GAs to deal with dynamic environments is the memory-based immigrants
scheme, denoted as MIGA [41]. MIGA uses the same memory updating scheme as
MEGA and MRIGA. However, the memory retrieval does not depend on the de-
tection of environmental changes and is hybridized with the random immigrants
scheme via the mutation mechanism. For each generation, the memory is reeval-
uated and the best memory point is retrieved as the base to create immigrants.

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 357

A set of rri ∗ n individuals are iteratively generated by performing mutation with
a probability pi

m on the best memory point. The generated individuals then act as
immigrants and replace the worst rri ∗ n individuals in the population. In summary,
the key idea behind MIGA is that the memory is used to guide the immigrants to
make them more biased to the current environment (be it a new one or not) than
random immigrants.

14.6 Experimental Study

In the simulation experiments, we implement both the traditional GAs (i.e., SGA
and Restart GA) and the dynamic GAs (i.e., RIGA, EIGA, HIGA, iRIGA, iEIGA,
iHIGA, MEGA, MRIGA, MIGA). In SGA, if the change makes one individual in
the current population become infeasible (e.g., one or more links in the correspond-
ing path are lost), we add a penalty value to that individual. By simulation experi-
ments, we evaluate their performance in a continuously changing wireless network.

14.6.1 Dynamic Test Environment

The initial network topology is generated using the following method. We first spec-
ify a square region with the area of 200 ∗ 200 that has the width [0, 200] on the x
axis and the height [0, 200] on the y axis. Then we generate 100 nodes and the posi-
tion (x,y) of each node is randomly specified within the square area. If the distance
between two nodes falls into the radio transmission range D, a link will be added
to connect them and both the cost and the delay of this link are randomly assigned
within the corresponding ranges. Finally, we check if the generated topology is con-
nected. If not, the above process is repeated until a connected topology is generated.
In the experiments, D is given a reasonable value 50.

All the algorithms start from the initial network topology. Then, after a certain
number (say, R) of generations (i.e., the change interval), a certain number (say,
M) of nodes are scheduled to sleep or wake up depending on their current status.
It means that the selected working nodes will be turned off to sleep and the se-
lected sleeping nodes will be turned on to work. Therefore, the network topology is
changed accordingly since some links are lost and some other links appear again.
By this means, we create a series of network topologies corresponding to the con-
tinuous network changes. Furthermore, these adjacent topologies are highly related
since each time the changes affect only part of the nodes. It can be seen that R and
M determine the change frequency and severity respectively. The larger the value of
R, the slower the changes. The larger the value of M, the more severe the changes.

14.6.2 Experimental Study for the DSPRP

14.6.2.1 Parameter Setting

In the following experiments, we set R to 5, 10 and 15 respectively to see the impact
of the change frequency on the performance of GAs. We also set M to 2, 3, and 4

358 H. Cheng and S. Yang

respectively. Thus, by the number of nodes changed per time, we have three different
series of topologies. When M is set to 2, 3 and 4, we generate the topology series
#2, #3, and #4 respectively. Each of these three series has 21 different topologies. In
addition, since memory schemes are claimed to work well in the cyclicly changing
environment, we set M to 2 and generate a cyclic topology series, named as #1. In
topology series #1, topology 1 is the same as topology 21 and the sub-series from
topology 1 to 21 is repeated 5 times. Therefore, the cyclic topology series consist of
101 topologies in total. All the experiments are based on the four topology series.

In all the experiments, the population size is set to 50 and the mutation proba-
bility is set to 0.1. For RIGA and EIGA, the ratios of the number of immigrants to
the population size, rri and rei, are set to 0.2. However, to guarantee the comparison
fairness (i.e., the same number of immigrants are introduced every generation) in
HIGA, rri and rei are set to 0.1. In EIGA, HIGA, and MIGA, the mutation probabil-
ity pi

m for generating new immigrants, is set to 0.8. Both the source and destination
nodes are randomly selected and they are not allowed to be scheduled in any change.
The delay upper bound Δ is set to be 2 times of the minimum end-to-end delay.

At each generation, for each algorithm, we select the best individual from the
current population and output the cost of the shortest path represented by it. We first
set up basic experiments to evaluate the impact of the change interval and the change
severity, and the improvements over traditional GAs using RIGA, EIGA and HIGA.
Then, since the memory related schemes (i.e., MEGA, MRIGA, and MIGA) are
mainly designed for dynamic environments where changes occur in a cyclic way,
we set up cyclic environments to evaluate their performance.

For each experiment of an algorithm on a dynamic problem, 10 independent
runs are executed with the same set of random seeds. For each run, 21 environ-
mental changes in acyclic dynamic environments and 101 environmental changes
in cyclic dynamic environments are allowed. In acyclic dynamic environments, they
are equivalent to 105, 210, and 315 generations for R = 5, 10, and 15, respectively.
In cyclic dynamic environments, they are equivalent to 505, 1010, and 1515 genera-
tions for R = 5, 10, and 15, respectively. For each run, at each generation we record
the best-of-generation fitness which is averaged over the 10 runs.

14.6.2.2 Basic Experimental Results and Analysis

First, we investigate the impact of the change interval on the algorithm performance.
When the change interval is 5, the population evolves only 5 generations between
two sequential changes. Intuitively, a larger interval will give the population more
time to evolve and search better solutions than what a smaller interval does. We take
HIGA as an example to compare the quality of solutions obtained at different inter-
vals. However, one problem is that the total generations are different for different
intervals, i.e., 105, 210 and 315 versus the interval 5, 10, and 15. Since the number
of change points (i.e., the generation at which a new topology is applied) is the same
for all the intervals, we take the data at each change point and its left two and right
two generations. Thus, the three data sets can be aligned over the three intervals.
Figs. 14.1(a) and (b) show the results over topology series #3 and #4 respectively.

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 359

0 10 20 30 40 50 60 70 80 90 100
400

420

440

460

480

500

520

540

560

580

600

Pseudo Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 P

a
th

 C
o

st

HIGA:5
HIGA:10
HIGA:15

(a)

0 10 20 30 40 50 60 70 80 90 100
400

450

500

550

600

650

Pseudo Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 P

a
th

 C
o

st

HIGA:5
HIGA:10
HIGA:15

(b)

Fig. 14.1 Comparison results of the quality of solution for HIGA with different change inter-
vals over: (a) topology series #3 and (b) topology series #4

Since the generation number does not correspond to the actual number when the in-
terval is 10 or 15, we rename it as pseudo generation. From the two subfigures, it can
be seen that the solution quality becomes better when the change interval becomes
larger. Therefore, in a relatively slowly changing environment, the studied GAs can
achieve a good performance.

Second, we investigate the impact of the change severity on the performance of
algorithms. In our problem, the change severity is reflected by the number of nodes
involved per change. Therefore, we choose topology series #2 and #4 as the two
environments with different change severity. This time we pick up RIGA, EIGA,
and HIGA together as the examples. To see the reaction of the algorithms to the

360 H. Cheng and S. Yang

200 210 220 230 240 250 260 270 280 290 300
400

420

440

460

480

500

520

540

560

580

Generation

B
e
st

−
O

f−
G

e
n
e
ra

tio
n
 P

a
th

 C
o
st

RIGA
EIGA
HIGA

(a)

200 210 220 230 240 250 260 270 280 290 300
400

450

500

550

600

650

700

750

800

850

900

950

Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 P

a
th

 C
o

st

RIGA
EIGA
HIGA

(b)

Fig. 14.2 Comparison results of the response speed to changes for RIGA, EIGA, and HIGA
over: (a) topology series #2 and (b) topology series #4

changes clearly, we set the interval to 15. Figs. 14.2(a) and (b) show the results over
topology series #2 and #4, respectively.

From Fig. 14.2(a), it can be seen that there are two drastic change points: one
is at generation 210 and the other is at generation 240. We count the number of
the generations that the population spends to find the best solution before the next
change. For generation 210, it is 10, 9, and 11 for RIGA, EIGA, and HIGA, re-
spectively. For generation 240, it is 13, 10, and 11 for them, respectively. The total
average value is 10.67. From Fig. 14.2(b), we can see that there are three remark-
able change points at generation 240, 255, and 270, respectively. We also count the
above mentioned number. For generation 240, it is 11, 10, and 14 for RIGA, EIGA,

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 361

and HIGA, respectively. For generation 255, it is 12, 13, and 14, respectively. For
generation 270, it is 15, 12, and 13, respectively. The total average value is 12.67. In
average, two more generations are spent for achieving good solutions in the topol-
ogy series where more severe changes occur. Therefore, we can conclude that these
dynamic GAs respond to the environmental changes in a reasonable speed and the
more severe the changes, the longer the response time.

Third, we compare the dynamic GAs with the traditional GAs over the dynamic
shortest path problem. Since the dynamic GAs are designed for the dynamic envi-
ronments, they should show better performance than the traditional GAs over our
problem. We compare RIGA, EIGA, and HIGA with SGA and Restart GA. We
choose topology series #2 and #3 as the two dynamic environments. The interval is
set to 10 here and also in the following experiments. Figs. 14.3(a) and (b) show the
comparison results over topology series #2 and #3 respectively. From Figs. 14.3(a)
and (b), it can be seen that the Restart GA exhibits the worst performance even
when the changes have trivial impacts on the current population. The reason is that
the Restart GA does not exploit any useful information in the old environment and
that the frequent restart sacrifices its evolving capability. Although SGA is much
better than the Restart GA, the best solutions that it can find in the new environ-
ment are not competitive to those found by any of the three GAs with immigrants
schemes. The immigrants bring more diversity to the populations in RIGA, EIGA
and HIGA and therefore enhance their search capabilities.

Fourth, we compare the immigrants based GAs with the memory related GAs
(i.e., MEGA, MRIGA, and MIGA) in the acyclic environments. According to the
above experiments, HIGA is a good representative of the three immigrants based
GAs. Therefore, we evaluate the quality of solutions for HIGA, MEGA, MRIGA,
and MIGA over topology series #2 and #3 respectively. The memory size is set to
20. Figs. 14.4(a) and (b) show the results. In Fig. 14.4(a), it can be seen that HIGA
and MIGA show a competitive performance. MEGA performs the worst among all
the memory based GAs. The reason is that in our problem, when a change occurs,
the best individual in the memory may become infeasible. Therefore, the memory
scheme may lose its power. However, in MRIGA and MIGA, the random immi-
grants are added or the individuals in the memory are just used to generate im-
migrants by mutation. Therefore, the infeasible solutions from the memory have a
very high probability to be replaced by feasible solutions. In Fig. 14.4(b), it can be
seen that although HIGA is not always the best, the memory degrades the algorithm
performance when changes occur. Therefore, we conclude that the memory related
schemes have no advantages in acyclic dynamic environments.

14.6.2.3 Experimental Results and Analysis in Cyclic Dynamic
Environments

In this section, we focus on the cyclic dynamic environments and topology series #1
build such an environment for our experiments. We repeat 20 different toplogies 5
times and the memory schemes will show more power when the same environments

362 H. Cheng and S. Yang

100 110 120 130 140 150 160 170 180 190 200
400

450

500

550

600

650

Generation

B
e
st

−
O

f−
G

e
n
e
ra

tio
n
 P

a
th

 C
o
st

RIGA
EIGA
HIGA
SGA
Restart

(a)

100 110 120 130 140 150 160 170 180 190 200
420

440

460

480

500

520

540

560

580

600

Generation

B
e
st

−
O

f−
G

e
n
e
ra

tio
n
 P

a
th

 C
o
st

RIGA
EIGA
HIGA
SGA
Restart

(b)

Fig. 14.3 Comparison results of the quality of solution for RIGA, EIGA, HIGA, SGA, and
Restart GA over: (a) topology series #2 and (b) topology series #3

are visited more times. Therefore, we sample the data from the latter part of the
evolutionary process in MEGA, MRIGA and MIGA. The memory size is set to 20.

First, we compare the memory related schemes with the traditional GAs in the
cyclic dynamic environment. Since the immigrants based GAs beat both SGA and
Restart GA in the acyclic dynamic environment, we also want to know if the tra-
ditional GAs are suitable for cyclic dynamic environments. We evaluate MEGA,
MRIGA, MIGA, SGA, and Restart GA over topology series #1. Figs. 14.5(a) and
(b) show the results. From Figs. 14.5(a) and (b), it can be seen that the results are
similar as the ones in Fig. 14.3. The Restart GA always exhibits the worst perfor-
mance. The frequent restart severely sacrifices its capability of searching the good

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 363

0 10 20 30 40 50 60 70 80 90 100
415

425

435

445

455

465

475

485

495

505

515

Generation

B
e

st
−

O
f−

G
e

n
e

ra
tio

n
 P

a
th

 C
o

st

HIGA
MEGA
MRIGA
MIGA

(a)

0 10 20 30 40 50 60 70 80 90 100
400

440

480

520

560

600

640

680

720

Generation

B
es

t−
O

f−
G

en
er

at
io

n
P

at
h

C
os

t

HIGA
MEGA
MRIGA
MIGA

(b)

Fig. 14.4 Comparison results of the quality of solution for HIGA, MEGA, MRIGA, and
MIGA over: (a) topology series #2 and (b) topology series #3

solutions. Although SGA is much better than the Restart GA, the best solutions that
it can find in the new environment are not competitive to those found by any of the
three memory related GAs. Therefore, the traditional GAs do not work well in a
cyclic dynamic environment, either.

Second, we compare the three memory related GAs with the immigrants based
GAs in the cyclic environments. We also pick up HIGA as the representative of the
immigrants schemes. Figs. 14.6(a) and (b) show the results. We can see that in both
subfigures the three memory related schemes perform better than HIGA. It is con-
trary to the results shown in Fig. 14.4. In Fig. 14.6(a), when a change occurs, MEGA
just takes 1 generation to find the good solution while RIGA takes 8 generations but
still finds a worse solution. In Fig. 14.6(b), MEGA, MRIGA and MIGA also takes 1

364 H. Cheng and S. Yang

800 810 820 830 840 850 860 870 880 890 900
410

450

490

530

570

610

620

Generation

B
es

t−
O

f−
G

en
er

at
io

n
P

at
h

C
os

t

MEGA
MRIGA
MIGA
SGA
Restart

(a)

900 910 920 930 940 950 960 970 980 990 1000
410

450

490

530

570

610

650

690

730

Generation

B
es

t−
O

f−
G

en
er

at
io

n
P

at
h

C
os

t

MEGA
MRIGA
MIGA
SGA
Restart

(b)

Fig. 14.5 Comparison results of the quality of solution for MEGA, MRIGA, MIGA, SGA, and
Restart GA in the cyclic topology series from: (a) generation 800 to 899 and (b) generation
900 to 999

generation to find the good solution for the new environment. The reason is that the
good solution stored in the memory can be retrieved immediately when the popu-
lation enters an environment which has been visited before. Therefore, the memory
related schemes are really suitable for cyclic dynamic environments.

14.6.3 Experimental Study for the DMRP

For the DMRP, we implement the two traditional GAs (i.e., SGA and Restart GA)
and the six immigrants based GAs (i.e., RIGA, EIGA, HIGA, iRIGA, iEIGA, and

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 365

400 410 420 430 440 450 460 470 480 490 500
410

420

430

440

450

460

470

480

490

500

Generation

B
es

t−
O

f−
G

en
er

at
io

n
P

at
h

C
os

t

HIGA
MEGA
MRIGA
MIGA

(a)

800 810 820 830 840 850 860 870 880 890 900
415

420

425

430

435

440

445

Generation

B
es

t−
O

f−
G

en
er

at
io

n
P

at
h

C
os

t

HIGA
MEGA
MRIGA
MIGA

(b)

Fig. 14.6 Comparison results of the quality of solution for HIGA, MEGA, MRIGA, and
MIGA in the cyclic topology series from: (a) generation 400 to 499 and (b) generation 800
to 899

iHIGA). There are two dynamics models, i.e., general and worst. In the general
dynamics model, every R generations, M nodes are scheduled to sleep or wake up
depending on their current status. The network topology is changed accordingly
since some links are lost and some other links appear again. The nodes are randomly
selected and thereby the affected links may belong to the present multicast tree or
not. The source and all the destinations are not allowed to be scheduled in any
change. All the experiments under the general model are based on topology series
#2 and #4 because they represent different change severity. We set up experiments
to evaluate the improvements over traditional GAs using RIGA, EIGA and HIGA.

366 H. Cheng and S. Yang

In the worst dynamics model, every R generations, the present best multicast tree
is first identified. Then, a certain number (say, U) of links on the tree are selected
for removal. It means that the selected links will be forced to be removed from
the network topology. Just before the next change occurs, the network topology is
recovered to its original state and ready for the coming change. The population is
severely affected by each topology change since the optimal solution and possibly
some other good solutions become infeasible suddenly. To be fair, at most one link
is allowed to be removed on the tree path from the source to each receiver. We
let U range from 1 to 3 to see the effect of the change severity. Under the worst
dynamics model, the topology series cannot be generated in advance because every
change is correlated with the algorithm running. However, similarly, we also allow
20 changes. We set up the experiments to evaluate the impact of the change interval
and the change severity, and the improvements over traditional GAs using iRIGA,
iEIGA and iHIGA.

14.6.3.1 Parameter Setting

In both models, all the algorithms start from the initial network topology. Every
change interval R, the network topology is changed in a way corresponding to the
dynamics model used. In the following experiments, we set R to 5, 10 and 15 sep-
arately to see the impact of the change frequency on the performance of dynamic
GAs. In all the experiments, the crossover probability was set to 0.95 and the mu-
tation probability was set to 0.05. For RIGA, iRIGA, EIGA, and iEIGA, the ratios
of the number of immigrants to the population size, rri and rei, were set to 0.2. In
HIGA and iHIGA, rri and rei were set to 0.1. In EIGA, iEIGA, HIGA, and iHIGA,
the mutation probability pi

m for generating new immigrants, was set to 0.8. Both
the source and destination nodes were randomly selected. The delay upper bound Δ
was set to be 2 times of the minimum end-to-end delay.

In order to have fair comparisons among GAs, the population size and immi-
grants ratios were set such that each GA has 60 fitness evaluations per generation as
follows:

(1+ ri)∗ n = 60, (14.7)

where n is the whole population size, which was set to 50. Hence, we have n = 60
for SGA and Restart GA, and n = 50 for RIGA, EIGA, HIGA, iRIGA, iEIGA, and
iHIGA. At each generation, for each algorithm, we select the best individual from
the current population and output the cost of the optimal tree represented by it. For
each experiment of an algorithm on a dynamic problem, 10 independent runs were
executed with the same set of random seeds. For each run, at each generation we
record the best-of-generation fitness which is averaged over the 10 runs.

14.6.3.2 Under the General Dynamics Model

Since under the general dynamics model, the environment changes do not have
significant effects on the GAs, the investigation on both the change interval and
the change severity are put under the worst dynamics model. However, under this

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 367

100 110 120 130 140 150 160 170 180 190 200
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

RIGA
EIGA
HIGA
SGA
Restart

(a)

100 110 120 130 140 150 160 170 180 190 200
500

1000

1500

2000

2500

3000

3500

4000

Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

RIGA
EIGA
HIGA
SGA
Restart

(b)

Fig. 14.7 Comparison results of the quality of solution for RIGA, EIGA, HIGA, SGA, and
Restart GA over: (a) topology series #2 and (b) topology series #4

model, we are still interested in the comparison between the dynamic GAs with
the traditional GAs over the dynamic multicast routing problem. Since the dynamic
GAs are designed for the dynamic environments, they should show a better perfor-
mance than the traditional GAs over our problem. We compared RIGA, EIGA, and
HIGA with SGA and Restart GA in the experiments using topology series #2 and
#4 as the two dynamic environments. The interval of changes was set to 10 here.

Figs. 14.7(a) and (b) show the comparison results over topology series #2 and
#4, respectively. From Figs. 14.7(a) and (b), it can be seen that SGA always exhibits
the worst performance. When the topology is changed and infeasible solutions oc-
cupy the population, SGA cannot recover the population by generating new feasible

368 H. Cheng and S. Yang

solutions through the standard evolutionary operations. Therefore, simple penalty
cannot make the population adapt to the complicated environmental changes. On
average, the Restart GA is also worse than any of the three immigrants based GAs.
The reason is that the Restart GA does not exploit any useful information in the
old environment and that the frequent restart sacrifices its evolving capability. Im-
migrants bring more diversity to the populations in RIGA, EIGA and HIGA and
therefore enhance their search capabilities. Among the three dynamic GAs, EIGA
achieves the worst performance in most of the time. The reason lies in that in EIGA,
new immigrants are generated from the mutation of the elitism. In our problem, the
mutation operation just changes a partial path on the tree. Thus, the new immigrants
share most of the tree components and bring less diversity into the population than
RIGA and HIGA.

14.6.3.3 Under the Worst Dynamics Model

First, we investigate the impact of the change interval on the performance of al-
gorithms. Here, the number of links removed per change was set to 2. When the
change interval is 5, the population evolves only 5 generations between two se-
quential changes. Intuitively, a larger interval will give the population more time to
evolve and search better solutions than what a smaller interval does. We take both
iRIGA and iHIGA as examples to compare the quality of solutions obtained under
different change intervals. However, one problem is that the total generations are
different for different change intervals. We use the same method in Section 14.6.2
to get the three data sets aligned over the three intervals.

Figs. 14.8(a) and (b) show the results regarding iRIGA and iHIGA, respectively.
Since the generation number does not correspond to the actual generation number
when the interval is 10 or 15, we rename it as pseudo generation. In Fig. 14.8(a),
over the 20 topologies, the iRIGA with change interval 15 achieves 11 best solu-
tions while the iRIGA with change intervals 10 and 5 achieve 6 and 3, respectively.
In Fig. 14.8(b), over the 20 topologies, the iRIGA with change interval 15 achieves
16 best solutions while the iRIGA with change interval 10 achieves 4. It can be con-
cluded that the solution quality becomes better when the change interval becomes
larger. Therefore, in a relatively slowly changing environment, the improved immi-
grants based GAs can achieve a good performance.

Second, we investigate the impact of the change severity on the performance of
algorithms. Under the worst dynamics model, the change severity is reflected by the
number of links removed from the present optimal tree per change. Therefore, we
generate two topology series by removing different number of links each change.
One is to remove only one link each change and the other is to remove three links
each change. These two topology series act as the two environments with different
change severities. This time, we pick up iRIGA, iEIGA, and iHIGA together as the
example algorithms and we set the change interval to 10. Figs. 14.9(a) and (b) show
the results in the two different environments, respectively.

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 369

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
900

1100

1300

1500

1700

1900

2100

2300

2500

2700

2900

3000

Pseudo Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

iRIGA:5
iRIGA:10
iRIGA:15

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Pseudo Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

iHIGA:5
iHIGA:10
iHIGA:15

(b)

Fig. 14.8 Comparison results of the quality of solution under different change intervals for:
(a) iRIGA and (b) iHIGA

From Fig. 14.9(a), it can be seen that iRIGA takes almost 9 generations to get
its best solution after one change occurs. iEIGA takes about 5 generations to get
its best solution. However, iHIGA can quickly adapt to the environmental changes
and get the best solution among these three GAs in 90% of the time. Therefore, in
the environment with a low change severity, iHIGA performs the best since it takes
the advantages of both iRIGA and iEIGA. From Fig. 14.9(b), it can be seen that for
both iRIGA and iHIGA, they need almost 9 generations to get their best solutions
after one change occurs and iHIGA achieves a better solution quality than iRIGA.
However, in this environment with a high change severity, iEIGA performs very
well which takes 2 to 5 generations to get the overall best solution. The reason is

370 H. Cheng and S. Yang

0 10 20 30 40 50 60 70 80 90 100

800

1000

1200

1400

1600

1800

2000

Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

iRIGA
iEIGA
iHIGA

(a)

100 110 120 130 140 150 160 170 180 190 200
800

1200

1600

2000

2400

2800

3200

3600

3800

Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

iRIGA
iEIGA
iHIGA

(b)

Fig. 14.9 Comparison results of the response speed to changes for iRIGA, iEIGA, and iHIGA
over two different topology series where: (a) each change removes 1 link and (b) each change
removes 3 links from the present optimal tree

that in the highly dynamic environment, after a change occurs, the proposed repair
method can reserve the useful components of the elitism and repair the broken part
with the least added cost. The new immigrants generated by repairing the elitisms
can quickly adapt to the severe changes. However, as we have discussed under the
general dynamics model, iEIGA brings a less diversity to the population compared
to both iRIGA and iHIGA. Therefore, we can conclude that these dynamic GAs
respond to the environmental changes in a reasonable speed and perform well.

Third, we compare the dynamic GAs with the traditional GAs under the worst
dynamics model. Here, the number of links removed per change is set to 2 and

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 371

0 10 20 30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

iRIGA
iEIGA
iHIGA
SGA
Restart

(a)

100 110 120 130 140 150 160 170 180 190 200
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

Generation

Be
st−

Of
−G

en
er

at
ion

 T
re

e
Co

st

iRIGA
iEIGA
iHIGA
SGA
Restart

(b)

Fig. 14.10 Comparison results of the quality of solution for iRIGA, iEIGA, iHIGA, SGA,
and Restart GA from: (a) generation 1 to 99 and (b) generation 100 to 199

the change interval is 10. Figs. 14.10(a) and (b) show the results. Similar as under
the general model, SGA performs the worst since it does not explicitly handle the
environmental changes. Most of the time, Restart GA performs worse than all the
improved immigrants based GAs. However, occasionally, iRIGA is worse than it.
Overall, iEIGA is better than iHIGA as it has shown in the environment with a high
change severity. It can be concluded that the three improved immigrants based GAs
greatly outperform the two standard GAs under the worst dynamics model.

372 H. Cheng and S. Yang

14.7 Conclusion

Mobile ad hoc network is a self-organizing and self-configuring multi-hop wire-
less network, which has a wide usage nowadays. The shortest path routing problem
aims to establish a multi-hop forwarding path from a source node to a destination
node and is one important issue that significantly affects the network performance.
MANETs have also seen various collaborative multimedia applications which re-
quire an efficient information delivery service from a designated source to multiple
receivers. An QoS multicast tree is preferred to support this service. However, the
optimal QoS multicast routing problem is proved to be NP-hard.

So far, quite some works have been done to address the shortest path routing
problem and the multicast routing problem by genetic algorithms or other artifi-
cial intelligence techniques. These works consider the fixed network topology only.
However, in a continuously changing network like MANETs, it is much more chal-
lenging to deal with the routing optimization problems than to solve the static ones
in a fixed infrastructure. In this chapter, we formulate both the dynamic shortest
path routing problem and the dynamic multicast routing problem in MANETs. By
observing that dynamic GAs perform very well over many dynamic benchmark op-
timization problems, we apply them to both the DSPRP and the DMRP in MANETs.

Among approaches developed for GAs to deal with DOPs, immigrants schemes
aim at maintaining the diversity of the population throughout the run via introducing
random individuals into the current population, while memory schemes aim at stor-
ing useful information for possible reuse in a cyclic dynamic environment. Based on
the characteristics of the multicast routing problem, we also propose three improved
versions of immigrants based GAs, i.e., iRIGA, iEIGA, and iHIGA, to handle highly
dynamic environments. Specialized GAs are designed for the shortest path routing
problem and the multicast routing problem in MANETs. Several immigrants and/or
memory schemes are adapted and integrated into the specialized GAs (which give
several GA variants) to solve both problems. Extensive simulation experiments are
conducted based on a large scale MANET constructed to evaluate various aspects of
these GA variants for the DSPRP and the DMRP. Experimental results demonstrate
that our algorithms can adapt to the environmental changes well and achieve better
solutions after each change than the traditional GAs. Therefore, they are promising
techniques for dealing with dynamic telecommunication optimization problems.

Acknowledgements. This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of U.K. under Grant numbers EP/E060722/1, EP/E060722/2,
and EP/K001310/1, and partially by the State Key Laboratory of Synthetical Automation for
Process Industries, Northeastern University, China.

References

[1] Adelstein, F., Richard, G., Schwiebert, L.: Distributed multicast tree generation with
dynamic group membership. Comput. Commun. 26(10), 1105–1128 (2003)

[2] Aharoni, E., Cohen, R.: Restricted dynamic Steiner trees for scalable multicast in data-
gram networks. IEEE/ACM Trans. Netw. 6(3), 286–297 (1998)

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 373

[3] Ahn, C.W., Ramakrishna, R.S., Kang, C.G., Choi, I.C.: Shortest path routing algorithm
using hopfield neural network. Electron. Lett. 37(19), 1176–1178 (2001)

[4] Ahn, C.W., Ramakrishna, R.S.: A genetic algorithm for shortest path routing problem
and the sizing of populations. IEEE Trans. Evol. Comput. 6(6), 566–579 (2002)

[5] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 Congr. Evol. Comput., pp. 1875–1882 (1999)

[6] Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dy-
namic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[7] Cheng, H., Wang, X., Yang, S., Huang, M.: A multipopulation parallel genetic simu-
lated annealing based QoS routing and wavelength assignment integration algorithm
for multicast in optical networks. Appl. Soft Comput. 9(2), 677–684 (2009)

[8] Cheng, H., Yang, S.: Genetic algorithms with immigrants schemes for dynamic multi-
cast problems in mobile ad hoc networks. Eng. Appl. Artif. Intel. 23(5), 806–819 (2010)

[9] Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments.
In: Proc. 5th Int. Conf. Genetic Algorithms, pp. 523–530 (1993)

[10] Cordeiro, C., Gossain, H., Agrawal, D.: Multicast over wireless mobile ad hoc networks:
present and future directions. IEEE Netw. 17(1), 52–59 (2003)

[11] Dasgupta, D., McGregor, D.: Nonstationary function optimization using the structured
genetic algorithm. In: Proc. 2nd Int. Conf. Parallel Problem Solving from Nature, pp.
145–154 (1992)

[12] Din, D.: Anycast routing and wavelength assignment problem on WDM network. IEICE
Trans. Commun. E88-B(10), 3941–3951 (2005)

[13] Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. 2nd
Int. Conf. Parallel Problem Solving from Nature, pp. 137–144 (1992)

[14] Helvig, C., Robins, G., Zelikovsky, A.: An improved approximation scheme for the
group Steiner problem. Networks 37(1), 8–20 (2000)

[15] Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

[16] Hwang, F., Richards, D.: Steiner tree problems. Networks 22(1), 55–89 (1992)
[17] Jia, X., Pissinou, N., Makki, K.: A real-time multicast routing algorithm for multimedia

applications. Comput. Commun. 20(12), 1098–1106 (1997)
[18] Jia, X.: A distributed algorithm of delay-bounded multicast routing for multimedia ap-

plications in wide area networks. IEEE/ACM Trans. Netw. 6(6), 828–837 (1998)
[19] Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning and shortest

path trees. Algorithmica 14(4), 305–321 (1995)
[20] Lee, S., Soak, S., Kim, K., Park, H., Jeon, M.: Statistical properties analysis of real

world tournament selection in genetic algorithms. Appl. Intel. 28(2), 195–205 (2008)
[21] Lewis, J., Hart, E., Ritchie, G.: A comparison of dominance mechanisms and sim-

ple mutation on non-stationary problems. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 139–148. Springer, Heidel-
berg (1998)

[22] Louis, S., Xu, Z.: Genetic algorithms for open shop scheduling and re-scheduling. In:
Proc. 11th ISCA Int. Conf. Comput. Their Appl., pp. 99–102 (1996)

[23] Mohemmed, A.W., Sahoo, N.C., Geok, T.K.: Solving shortest path problem using par-
ticle swarm optimization. Appl. Soft Comput. 8(4), 1643–1653 (2008)

[24] Mori, H., Nishikawa, Y.: Adaptation to changing environments by means of the memory
based thermodynamical genetic algorithm. In: Proc. 7th Int. Conf. Genetic Algorithms,
pp. 299–306 (1997)

374 H. Cheng and S. Yang

[25] Morrison, R.W., De Jong, K.A.: Triggered hypermutation revisited. In: Proc. 2000
Congr. Evol. Comput., vol. 2, pp. 1025–1032 (2000)

[26] Siva Ram Murthy, C., Manoj, B.S.: Ad Hoc Wireless Networks: Architectures and Pro-
tocols. Prentice Hall PTR (2004)

[27] Narvaez, R., Siu, K.-Y., Tzeng, H.-Y.: New dynamic algorithms for shortest path tree
computation. IEEE/ACM Trans. Netw. 8(6), 734–746 (2000)

[28] Oh, S., Ahn, C., Ramakrishna, R.: A genetic-inspired multicast routing optimization al-
gorithm with bandwidth and end-to-end delay constraints. In: King, I., Wang, J., Chan,
L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4234, pp. 807–816. Springer, Hei-
delberg (2006)

[29] Oliveira, C., Pardalos, P.: A survey of combinatorial optimization problems in multicast
routing. Comput. & Oper. Res. 32(8), 1953–1981 (2005)

[30] Oppacher, F., Wineberg, M.: The shifting balance genetic algorithm: improving the GA
in a dynamic environment. In: Proc. 1999 Genetic Evol. Comput. Conf., vol. 1, pp.
504–510 (1999)

[31] Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complex-
ity. Dover Publications Inc., NY (1998)

[32] Parsa, M., Zhu, Q., Garcia-Luna-Aceves, J.: An iterative algorithm for delay-
constrained minimum-cost multicasting. IEEE/ACM Trans. Netw. 6(4), 461–474 (1998)

[33] Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proc.
ACM/SIAM Symp. on Discrete Algorithms, pp. 770–779 (2000)

[34] Tinos, R., Yang, S.: A self-organizing random immigrants genetic algorithm for dy-
namic optimization problems. Genet. Program. Evolvable Mach. 8(3), 255–286 (2007)

[35] Trojanowski, K., Michalewicz, Z.: Evolutionary optimization in non-stationary envi-
ronments. J. Comput. Sci. Tech. 1(2), 93–124 (2000)

[36] Uyar, A., Harmanci, A.: A new population based adaptive dominance change mech-
anism for diploid genetic algorithms in dynamic environments. Soft Comput. 9(11),
803–815 (2005)

[37] Vavak, F., Fogarty, T.C.: A comparative study of steady state and generational genetic al-
gorithms for use in nonstationary environments. In: Fogarty, T.C. (ed.) AISB-WS 1996.
LNCS, vol. 1143, pp. 297–304. Springer, Heidelberg (1996)

[38] Wang, X., Cao, J., Cheng, H., Huang, M.: QoS multicast routing for multimedia group
communications using intelligent computational methods. Comput. Commun. 29(12),
2217–2229 (2006)

[39] Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der an-
dere Verlag, Osnabrück (2003)

[40] Xu, Y., Salcedo-Sanz, S., Yao, X.: Metaheuristic approaches to traffic grooming in
WDM optical networks. Int. J. of Comput. Intel. Appl. 5(2), 231–249 (2005)

[41] Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments.
In: Proc. 2005 Genetic Evol. Comput. Conf., vol. 2, pp. 1115–1122 (2005)

[42] Yang, S.: Genetic algorithms with elitism-based immigrants for changing optimization
problems. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 627–636.
Springer, Heidelberg (2007)

[43] Yang, S.: Genetic algorithms with memory- and elitism-based immigrants in dynamic
environments. Evol. Comput. 16(3), 385–416 (2008)

[44] Yang, S., Cheng, H., Wang, F.: Genetic algorithms with immigrants and memory
schemes for dynamic shortest path routing problems in mobile ad hoc networks. IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev. 40(1), 52–63 (2010)

[45] Yang, S., Ong, Y.-S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncer-
tain Environments. Springer (2007)

14 GAs for Dynamic Routing Problems in Mobile Ad Hoc Networks 375

[46] Yang, S., Tinos, R.: A hybrid immigrants scheme for genetic algorithms in dynamic
environments. Int. J. Autom. Comput. 4(3), 243–254 (2007)

[47] Yang, S., Tinos, R.: Hyper-selection in dynamic environments. In: Proc. 2008
Congr. Evol. Comput., pp. 3185–3192 (2008)

[48] Yang, S., Yao, X.: Experimental study on population-based incremental learning algo-
rithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

[49] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

[50] Yong, K., Poo, G., Cheng, T.: Proactive rearrangement in delay constrained dynamic
membership multicast. Comput. Commun. 31(10), 2566–2580 (2008)

[51] Yu, X., Tang, K., Chen, T., Yao, X.: Empirical analysis of evolutionary algorithms with
immigrants schemes for dynamic optimization. Memetic Comput. 1(1), 3–24 (2009)

[52] Yu, X., Tang, K., Yao, X.: An immigrants scheme based on environmental information
for genetic algorithms in changing environments. In: Proc. 2008 Congr. Evol. Comput.,
pp. 1141–1147 (2008)

Chapter 15
Evolutionary Computation for Dynamic
Capacitated Arc Routing Problem

Yi Mei, Ke Tang, and Xin Yao

Abstract. In this chapter, a new dynamic capacitated arc routing problem (CARP) is
defined and investigated. Compared with the static CARP and other dynamic CARP
investigated by the existing researches, the new dynamic CARP is more general and
closer to reality, and thus is more worthwhile to be solved. Due to the stochastic
factors included in the dynamic CARP, the objective is not to obtain the optimal
solution in a specific environment, but to find a robust solution that shows good
performance in all the possible environments. For the dynamic CARP, a robustness
measure based on repair operator is defined. The corresponding repair operator is
designed according to the real-world considerations. Then, the benchmark instances
of the dynamic CARP are generated by extending from the static counterparts to
facilitate evaluating potential approaches. After that, the preliminary analysis for
the fitness landscape of the dynamic CARP is conducted by experimental studies.

Yi Mei
School of Computer Science and Information Technology, RMIT University,
Melbourne VIC 3001, Australia
e-mail: yi.mei@rmit.edu.au

Ke Tang
Nature Inspired Computation and Applications Laboratory (NICAL),
School of Computer Science, University of Science and Technology of China,
Hefei 230027, China
e-mail: ketang@ustc.edu.cn

Xin Yao
Nature Inspired Computation and Applications Laboratory (NICAL), The USTC-
Birmingham Joint Research Institute in Intelligent Computation and Its Applications (UBRI),
School of Computer Science, University of Science and Technology of China, Hefei 230027,
China, and Centre of Excellence for Research in Computational Intelligence and Applica-
tions (CERCIA), School of Computer Science, University of Birmingham,
Birmingham B15 2TT, U.K.
e-mail: x.yao@cs.bham.ac.uk

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 377–401.
DOI: 10.1007/978-3-642-38416-5_15 c© Springer-Verlag Berlin Heidelberg 2013

378 Y. Mei, K. Tang, and X. Yao

15.1 Introduction

The capacitated arc routing problem (CARP) is a classic combinatorial optimiza-
tion problem that has wide applications in the real world including the salt routing
optimization [4, 23, 24, 28, 29, 42], urban waste collection [14, 16, 33, 34, 39] and
snow removal [11, 41].

CARP can be described as follows: Given a connected graph, some edges (called
the tasks) of the graph are required to be served by a vehicle fleet located at the depot
vertex. The problem aims to determine a least-cost plan subject to the following
constraints:

• Each vehicle must start and end at the depot vertex;
• Each task is served exactly once by one vehicle;
• The total demand of the tasks served by each route cannot exceed its capacity.

CARP has been proven to be NP-hard by Golden and Wong in [26]. That is, the
computational complexity of finding the global optimum increases exponentially
with the increase of problem size. On the other hand, the real-world problems often
have quite large problem sizes, making it impractical to find the global optimum by
the exact methods. In this situation, methods based on evolutionary computation are
promising methods due to their capability of obtaining good sub-optimal solutions
within a given time budget.

So far, intensive investigations have been conducted for solving CARP. Most of
them are focused on the static CARP, in which all the problem parameters are ex-
actly known in advance and do not change as time goes on. However, in the real
world, the above assumption can hardly be guaranteed, and some or all of the prob-
lem parameters cannot be known in advance or change over time. For example, in
the snow removal application, the amount of snow to be removed for each street
cannot be known exactly until the truck finishes the removal, and the traffic jam or
road maintenance influences the time needed to traverse a street.

When the problem contains stochastic or dynamic problem parameters, the cor-
responding CARP can be called the dynamic CARP . Although the dynamic CARP
is closer to the reality than the static counterpart, it has been overlooked so far, and
there are only a few related research done. Fleury et al. proposed a stochastic CARP
model in [21]. In the model, the task demands are considered to be stochastic. In
this case, a solution that is expected to be feasible may be actually infeasible since
the actual total demand served by a route may be larger than expected and exceed
the capacity. Therefore, the solution must be made feasible by some repair operator
before the calculation of its total cost.

The methods proposed for solving the dynamic CARP are also quite few. Fleury
et al. proposed an evolutionary algorithm in [21], which employs a simple repair
operator and optimizes the total cost of the repaired solution. Christiansen et al.
proposed a branch-and-price algorithm in [13]. Laporte et al. proposed an adaptive
large neighborhood search heuristic in [34].

Compared with the dynamic CARP, the stochastic vehicle routing problem
(SVRP) , which is the node routing counterpart of the dynamic CARP, has received

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 379

much more research interest. Starting from the one-vehicle special case of VRP, i.e.,
the stochastic traveling salesman problem (TSP) , the presence of customers and the
travel times between the customers are considered to be stochastic. The TSP with
stochastic customers was proposed by Jaillet [31] along with a number of mathemat-
ical models, while there has been no mathematical model for the TSP with stochastic
travel times. In the m-vehicle version of the TSP with stochastic travel times, there
are m vehicles available instead of only one vehicle. In the problem, all the vehicles
have to depart from and arrive at a common depot, and a deadline is imposed on
each vehicle route. A penalty is induced for the completion delay. For stochastic
VRPs, research works are focused on stochastic demand of customers [5, 18, 45]
and on the stochastic presence of customers [5, 47], and both [6]. A comprehensive
survey of the aforementioned problems is given in [22], and a dynamic replanning
for VRP in case of unforseen situations such as traffic jams is considered in [48] and
[49].

In summary, three stochastic factors have been considered in previous research
work: (1) the presence of tasks (vertices in VRP and edges in CARP); (2) the de-
mand of the tasks and (3) the deadheading costs (e.g., travel time) between the
tasks. In fact, a fourth stochastic factor can be considered: the availability of the
path between each pair of vertices. For example, when a street is on its mainte-
nance, it becomes temporarily unavailable to be traversed and thus disappears from
the graph. The above four stochastic factors can occur simultaneously in the prob-
lem. Unfortunately, a corresponding model has not been investigated. Most research
works consider them separately or combine at most two of them together (e.g., the
presence and demand of the tasks are combined in [6]). In this chapter, a more gen-
eral dynamic CARP with all the above four stochastic factors embedded is defined.
This dynamic CARP is different from the static CARP with respect to the inputs,
outputs, objective and constraints. In the dynamic CARP, the inputs are random
variables and the outputs include a solution and a repair operator that can make the
solution feasible in any possible environment. The objective of the dynamic CARP
switches from obtaining the optimal solution in a specific environment to finding a
robust solution, i.e., a solution that shows relatively good performance in all possi-
ble environment. The goal of the constraints of the dynamic CARP is no longer to
guarantee the feasibility of the solution, but to help improving the robustness of the
obtained solution.

After the problem has been defined, preliminary investigations are conducted on
it. First, in order to facilitate the potential approaches for the dynamic CARP, the
benchmark instances are generated by extending from the static CARP benchmark
instances. Then, a rough analysis and discussion about the fitness landscape of the
dynamic CARP is conducted. It has been found that for the dynamic CARP, merely
using the expected information does not necessarily lead to robust solutions, and the
optimal solution for the corresponding static counterpart may be much less robust
than other solutions for the dynamic CARP.

The rest of the chapter is organized as follows: First, the dynamic CARP is de-
fined in Section 15.2. After that, the related work for solving the dynamic CARP
and its static counterpart is comprehensively reviewed in Section 15.3. Then, the

380 Y. Mei, K. Tang, and X. Yao

benchmark instances for dynamic CARP is generated in Section 15.4. The prelim-
inary investigation of the fitness landscape of the dynamic CARP is conducted in
Section 15.5. Finally, the conclusion and future work is given in Section 15.6.

15.2 Problem Definition

Before defining the dynamic CARP, the simpler and more basic static CARP is
first introduced to help understanding. Then, the dynamic CARP is defined and
compared with the static CARP.

15.2.1 Static Capacitated Arc Routing Problem

The static CARP is the most basic and simplest version of CARP. It is defined on
a weighted connected graph G(V,E,A), where V , E and A are the sets of vertices,
undirected edges and directed edges, respectively. For the sake of convenience, the
undirect edges will be called edges while the directed edges will be called arcs. All
the edges (vi,v j) ∈ E and arcs 〈vi,v j〉 ∈ A are associated with a nonnegative serv-
ing cost sc(vi,v j), a positive deadheading cost dc(vi,v j) and a nonnegative demand
d(vi,v j). The edges and arcs having positive demands are called the tasks and must
be served. The serving cost of an edge or arc indicates the cost induced by serving it
if it is a task, while the deadheading cost indicates the cost induced by traversing it
without serving. The sets of edge tasks, arc tasks and total tasks are represented by
ER = {(vi,v j)∈ E|d(vi,v j)> 0}, AR = {〈vi,v j〉 ∈ A|d(vi,v j)> 0} and R = ER∪AR.
A number of vehicles, each with capacity of Q, are located at the depot vertex v0 ∈V
to serve the tasks in R.

A CARP solution can be essentially represented by a route set X = {X1, ...,Xm}
and a corresponding 0-1 vector set Y = {Y1, ...,Ym}. The kth route Xk = (xk1, ...,xklk),
indicating the route traversed by the kth vehicle, is a sequence of vertices starting and
ending at v0, i.e., xk1 = xklk = v0. The corresponding 0-1 vectorYk =(yk1, ...,yk(lk−1))
is defined as follows: if (xki,xk(i+1)) is a task and is served at the current position,
then yki = 1; otherwise, yki = 0. Under such a solution representation scheme, the
static CARP can be stated as follows:

min tc(S) =
m

∑
k=1

lk−1

∑
i=1

(sc(xki,xk(i+1)) · yki + dc(xki,xk(i+1)) · (1− yki)) (15.1)

s.t. : xk1 = xklk = v0, k = 1,2, ...,m (15.2)

m

∑
k=1

lk−1

∑
i=1

yki = |R| (15.3)

(xki,xk(i+1)) ∈ ER∪AR, ∀yki = 1 (15.4)

(xk1i1 ,xk1(i1+1)) � (xk2i2 ,xk2(i2+1)), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.5)

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 381

(xk1i1 ,xk1(i1+1)) � (xk2(i2+1),xk2i2), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.6)

lk−1

∑
i=1

d(xki,xk(i+1)) · yki � Q, k = 1,2, ...,m (15.7)

xki ∈V, dc(xki,xk(i+1))< ∞, yki = 0 or 1 (15.8)

where |R| is the number of tasks in R. In constraints (15.5) and (15.6), the inequality
(k1, i1) � (k2, i2) is satisfied if and only if at least one of the two inequalities k1 � k2

and i1 � i2 is satisfied. Objective (15.1) is to minimize the total cost tc(S). Constraint
(15.2) indicates all the routes start and end at the depot v0. Constraints (15.3)–(15.6)
guarantee that all the tasks are served exactly once. Constraint (15.7) is the capacity
constraint, i.e., the total demands served by each route cannot exceed the capacity
Q. Constraint (15.8) defines the domain of the variables.

15.2.2 Dynamic Capacitated Arc Routing Problem

The above static CARP can be characterized by the following four aspects: inputs,
outputs, objective and constraints. To be specific, the inputs include the deadheading
costs dc(vi,v j), the serving costs sc(vi,v j), the demand of the tasks d(vi,v j) and
the capacity Q. The output is a solution represented by a route vector X and a 0-1
vector Y . The objective is to minimize the total cost of the solution. The constraints
include the basic constraints (each route starts and ends at the depot and each task
is served exactly once) and the capacity constraint. Next, the dynamic CARP is
described from the above four aspects as well, and compared with the static CARP
with respect to each aspect.

15.2.2.1 Inputs of the Dynamic Capacitated Arc Routing Problem

In the static CARP, all the input parameters are assumed to be known in advantage
and fixed over time. As mentioned in Section 15.1, in the real-world applications,
this is usually not the case, and it is more appropriate to represent the input param-
eters as random variables rather than constants.

As mentioned in Section 15.1, there are four stochastic factors in the dynamic
CARP: (1) presence of tasks; (2) demand of tasks; (3) presence of paths between
vertices and (4) deadheading costs between vertices. These stochastic factors trans-
form the deadheading costs dc(vi,v j) and the demand of tasks d(vi,v j) from con-
stants to random variables. It should be noted that the serving costs sc(vi,v j) are
also affected by the stochastic factors. Here, for the sake of simplicity, one can as-
sume that the serving costs are proportional to the deadheading costs, or even equal
to them. Then, the two random variables dc(vi,v j) and sc(vi,v j) can be combined
into a single random variable dc(vi,v j).

When a task (vi,v j) is absent, one can consider that its demand d(vi,v j) is
zero. Similarly, dc(vi,v j) = ∞ implies that the edge (vi,v j) temporarily disappears.

382 Y. Mei, K. Tang, and X. Yao

Therefore, the distribution of the random variables can be seen as a combination of
a constant (including infinity) for the case of absence and a random distribution for
the case of presence.

In the real-world applications, an implementation process of a solution can be
seen as a sample of the random variables. To be specific, during the implementation
process, the presence and actual demand of each task is unknown until it has been
served, and the presence and deadheading cost between each pair of vertices can
only be known after the path has been traversed.

15.2.2.2 Outputs of the Dynamic Capacitated Arc Routing Problem

The stochastic nature of the input parameters in the dynamic CARP influence both
the quality and feasibility of solutions. First, it is natural that the change of dead-
heading costs leads to the change of the total cost, which determines the solution
quality. Second, the change of demand or the presence of the tasks that are expected
to be absent will make the total demand served by a route larger than expected, and
thus violates the capacity constraint. Third, the absence of a path existing in the solu-
tion makes the corresponding route disconnected so that the solution becomes illegal
unless another path is found to connect the separated vertices. In summary, given a
solution, the quality and feasibility changes in the dynamic environment. That is, a
solution is feasible in one environment, but is infeasible in another environment. A
high-quality solution in one environment may perform quite badly in another envi-
ronment.

The change of feasibility can only be found during the implementation process.
For example, a vehicle can only know whether its remaining capacity can afford the
actual demand of the next task after serving it. If the change of feasibility has been
detected, i.e., the solution becomes infeasible in the current environment, the solu-
tion must be modified (repaired) so that it becomes feasible again. For this purpose,
a corresponding repair operator is needed to make the solution feasible whenever it
becomes infeasible.

In summary, the outputs of the dynamic CARP should include a solution and a
repair operator. The repair operator must be able to make the solution feasible in
any possible environment.

15.2.2.3 Objective of the Dynamic Capacitated Arc Routing Problem

It is known that the quality and feasibility of solution are different in different envi-
ronments. Therefore, it is meaningless to obtain the optimal solution in one specific
environment since its performance may severely deteriorate when the environment
changes. Instead, the objective of the dynamic CARP should be to obtain a robust
solution, i.e., a solution that shows relatively good performance under all possible
environments. To this end, a proper robustness measure for the dynamic CARP so-
lutions is to be defined.

Taguchi proposed the concept of robustness optimization for the first time in [43],
in which the quality of solution depends on a noise parameter ξ that is out of the

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 383

control of the designer as well as the control parameter x. To evaluate a solution in
this situation, Taguchi defined the following robustness measure:

MSD =
1
k

k

∑
i=1

(y(x,ξ i)− ŷ)2 (15.9)

where y(x,ξ i) is the actual performance under the control parameter x and the noise
ξ i), k indicates the number of all possible noises, and ŷ is the target performance.
MSD can be seen as the deviation of the actual performance y of the solution x,
which is influenced by the noise ξ , from the target performance ŷ.

After that, the concept of robustness optimization in uncertain and dynamic
environments has received the research interest in various scientific fields such as
operations research and engineering design (e.g., [3] [19] [32]), and many other
robustness measures have been proposed. Some of the representative measures are
introduced below:

1. Worst-case Performance Rw(x): Take minimizing the objective function f (x) as
an example, the worst-case performance is defined as:

Rw(x) = sup
x′∈N (x)

f (x′) (15.10)

where N (x) stands for a predefined neighborhood of x. When the actual parame-
ter fluctuates within the neighborhoodN (x) of the solution x due to the stochastic
nature, optimizing Rw(x) means optimizing the performance of the solution in the
worst case. Examples of the worst-case performance measure can be found in [20]
[30] [35] [37].

2. Expected Performance Re(x): The expected performance measures the expec-
tation of f (x) with respect to the environmental parameter ξ . It can be stated as:

Re(x) = E[f (x,ξ)|ξ] =
∫

f (x;ξ)dξ (15.11)

The expected performance has been adopted in [9] [10] [15] [50] to evaluate the
robustness of solutions.

3. Threshold-based Robustness Measure Rt(x): In many real-world cases, the ob-
jective is not to maximize the performance, but to meet the predefined quality thresh-
old q. In such a situation, one can maximize the probability of reaching the quality
threshold, i.e.,

Rt(x) = Pr[f (x) � q] (15.12)

4. Reliability-based Robustness Measure: Unlike the above three measures, this
measure is used to deal with the stochastic factors that appear in the constraints
and change the practical feasibility of solution. Given the following optimization
problem:

384 Y. Mei, K. Tang, and X. Yao

min f (x) (15.13)

s.t. gi(x) � 0, i = 1, ..., I (15.14)

h j(x) = 0, j = 1, ...,J (15.15)

in which there is a stochastic constraint gk(x;ξ) � 0 affected by the environmental
parameter ξ . For the same value of x, there may exist ξ 1 and ξ 2 so that gk(x;ξ 1)� 0
and gk(x;ξ 2) > 0. In other words, x is feasible in environment ξ 1, while becomes
infeasible in environment ξ 2. In such a situation, the reliability-based robustness
measure transforms the original constraint gk(x;ξ) � 0 to the following constraint
Pr[gk(x;ξ) � 0] � P0, which means the probability of satisfying the constraint is no
less than the confidence probability P0. This measure employs the same idea of the
probabilistic constrained programming in stochastic programming [7], and has been
widely used in the design optimization problems based on reliability [1, 2, 12, 27,
36, 40].

5. Repair-based Robustness Measure: This measure is used to deal with the
stochastic factors appearing in constraints as well. As the name implies, the mea-
sure defines a repair operator Φ to make infeasible solutions feasible again. Given
a solution x and a sample of the environmental parameter ξ , if x is feasible in the
current environment, then it remains unchanged. Otherwise, it is modified by Φ to
a feasible solution, i.e., x→Φ(x,ξ). Here, the repair operator Φ has to be defined
in such a way that for any solution x and environment sample ξ , Φ(x,ξ) must be
a feasible solution. The measure was adopted in [21] in the context of the CARP
with stochastic task demands. Under the assumption that the demand of each single
task is much smaller than the capacity, the repair operator simply cut the infeasible
routes before the last task.

The dynamic CARP has stochastic factors in both the objective function and the
constraints. As mentioned above, the stochastic constraints are addressed by the
repair operator, and thus the corresponding repair-based robustness measure is to be
used. As for the stochastic objective function, measures 1–3 reflect different aspects
and can be chosen according to practical consideration.

Then, the robustness measure for the dynamic CARP solutions can be defined as:

R(S) = R∗(Φ(S,ξ)) (15.16)

Here, R∗ can be Rw, Re or Rt , and Φ(S,ξ) is the feasible solution obtained by ap-
plying the repair operator Φ on the solution S according to the environment ξ .

15.2.2.4 Constraints of the Dynamic Capacitated Arc Routing Problem

Unlike the static CARP, the feasibility of solution cannot be guaranteed by imposing
the constraints since it depends on the actual environment parameters. However,
proper constraints can still help find more robust solutions. For example, one can
impose a capacity constraint based on the expected demand of tasks so that the
obtained solution is expected to satisfy the actual capacity constraint. In practice,

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 385

different constraints can lead to different optimal solutions in terms of the defined
robustness measure.

15.2.2.5 Summary

Table 15.1 summaries the differences between the dynamic CARP and the static
CARP with respect to the above four aspects. In the table, “SCARP” and “DCARP”
stand for the static and dynamic CARPs, respectively.

Table 15.1 Comparison between the dynamic and static CARPs

Aspect SCARP DCARP

Input The inputs are constants The inputs include constants
and random variables

Output A feasible solution in the given
specific environment

A solution along with an opera-
tor to repair the solution when-
ever it becomes infeasible

Objective Minimize the total cost Optimize the robustness

Constraints To guarantee the feasibility of
solutions

To help obtain more robust so-
lutions

Finally, by setting the robustness measures as Re and imposing proper constraints,
the dynamic CARP can be stated as follows:

min Re(Φ(S,ξ)) (15.17)

s.t. : xk1 = xklk = v0, k = 1,2, ...,m (15.18)

m

∑
k=1

lk−1

∑
i=1

yki = |R| (15.19)

(xki,xk(i+1)) ∈ ER∪AR, ∀yki = 1 (15.20)

(xk1i1 ,xk1(i1+1)) � (xk2i2 ,xk2(i2+1)), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.21)

(xk1i1 ,xk1(i1+1)) � (xk2(i2+1),xk2i2), ∀yk1i1 = 1,yk2i2 = 1,(k1, i1) � (k2, i2) (15.22)

E[
lk−1

∑
i=1

d(xki,xk(i+1),ξ) · yki|ξ] � Q, k = 1,2, ...,m (15.23)

xki ∈V, dc(xki,xk(i+1),ξ)< ∞, yki = 0 or 1 (15.24)

386 Y. Mei, K. Tang, and X. Yao

Constraints (15.18)–(15.22) and (15.24) are the basic constraints and domain of the
variables, while constraint (15.23) implies that the expected total demand of each
route does not exceed the capacity.

15.3 Evolutionary Computation for Dynamic Capacitated Arc
Routing Problem

The challenges of solving the dynamic CARP come from both the complicatedness
of CARP itself and the difficulties caused by the dynamic environment. Next, we
will discuss how to address each of the two issues with evolutionary computation,
respectively.

15.3.1 Addressing the Capacitated Arc Routing Problem Issues

In this sub-section, two competitive approaches proposed for CARP are introduced,
i.e., the Repair-based Tabu Search (RTS) [38] and the Memetic Algorithm with
Extended Neighborhood Search (MAENS) [44].

15.3.1.1 The Global Repair Operator and the Repair-Based Tabu Search

The capacity constraint is one of the most important constraints that lead to the
complicatedness of CARP. Without the capacity constraint, the problem can be seen
as a single routing problem. However, with the capacity constraint imposed, the
problem becomes a combination of a routing sub-problem and a clustering sub-
problem, both of which are difficult to solve. Therefore, it is important to tackle the
capacity constraint properly.

For a solution S = (X ,Y), the total cost depends only on the route set X , while
the 0-1 vector Y determines whether the solution satisfies the capacity constraint and
if not, the extent of the violation. Since a task can be traversed multiple times but
only served once in the vertex sequence, a single X can be associated with several
different Y ’s. An example is given in Fig. 15.1. In Fig. 15.1, the vertex o represents
the depot. All the 6 edges {(o,a),(o,b),(o,c),(a,b),(a,c),(b,c)} are tasks. The
capacity of each vehicle is 4. The number on each edge denotes its demand, e.g.,
d(a,b) = 3. The right part of Fig. 15.1 shows two different solutions S1 and S2,
which share the same route set, but are different in the 0-1 vector. As a result, S1 is
infeasible with one unit capacity violation, i.e., d(a,b)+ d(b,o) = 3+ 2 = 5 > 4,
whereas S2 is the global optimum.

During the search process, a low-cost route set and the corresponding feasible
0-1 vector are not easy to be obtained simultaneously, and an infeasible solution is
usually discarded because of the bad 0-1 vector despite its promising route set. In
order to address this issue, the Global Repair Operator (GRO) [38] is proposed.

Given an infeasible solution, GRO preserves its route set and re-assigns the 0-
1 variables to minimize the constraint violation. In other words, GRO seeks the
optimal assignment of 0-1 variables for a given route set. Such a repair process

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 387

Fig. 15.1 An example of two different solutions sharing the same route set

takes into account all routes involved in the solution, and thus GRO can be viewed
as a global operator.

Suppose we have an infeasible solution with m routes, re-assigning the 0-1 vari-
ables can be formulated as the following problem:

min
m

∑
i=1

(
max{

N

∑
j=1

s jxi j−Q,0}
)

(15.25)

s.t. : ∑
i∈Ω(j)

xi j = 1, ∀ j = 1,2, ...,N, (15.26)

xi j = 0 or 1,∀ i = 1,2, ...,m; j = 1,2, ...,N. (15.27)

where N is the total number of tasks and s j denotes the serving cost for task j. xi j is
set to 1 if task j is served in the route i, and set to 0 otherwise. Ω(j) is defined as

Ω(j) = { i | task j is traversed in route i in S}

Given the vertex sequence, constraints (15.26) and (15.27) guarantee that each task
is served only once among the routes it is traversed.

Let {a1,a2, ...,aN} and {b1,b2, ...,bm} be a set of items and bins, respectively.
The above problem can be viewed as a bin-packing problem, where the size of the
item j is s j, and all the bins share an identical capacity Q. GRO employs an insertion
heuristic followed by a short-term tabu search to solve the bin-packing problem.
The general idea of the insertion heuristic is straightforward. We sequentially pick
an item out of the whole set and insert it into a bin, until all the items have been
inserted. Each item is inserted in a bin that minimizes the objective function (15.25).
Such procedure can be described as follows:

Step 1: Initialize xi j = 0,∀i, j. Let A = {1,2, ...,N} and cl(bi) = 0,∀i. Here, cl(bi)
is the current load of bi. Then repeat step 2 to step 4 until A = /0.

Step 2: For each j ∈ A, identify the set Ω ′(j) satisfying Ω ′(j) = {i∈Ω(j)|cl(bi)+
s j � Q}. Select the item corresponding to the smallest |Ω ′(j)| as the one

388 Y. Mei, K. Tang, and X. Yao

to be inserted. If multiple items share the smallest |Ω ′(j)|, the one with
the largest s j will be selected. Then ties are broken by selecting the item
with the smallest index (j). The selected index is j∗. Selecting the items in
this way guarantees that the item with the least choice of insertion without
violating the constraints is chosen first.

Step 3: Identify the bi with the smallest cl(bi) from Ω ′(j∗). If more than one bin
has the smallest cl(bi), the one with the smallest

∑
j∈A

IΩ(j)(i) · s j

is selected, where IΩ(j)(i) is an indicator function. IΩ(j)(i) = 1 if i ∈Ω(j),
and 0 otherwise. The above equation indicates that the bin available for
the least untreated items is considered first. After that, ties are broken by
selecting the bin with the smallest index (i). The selected index is i∗.

Step 4: Insert the selected item a j∗ in the chosen bin bi∗ . Set xi∗ j∗ = 1, remove j∗

from A and update cl(bi∗) with s j∗ .

After obtaining the initial solution with the insertion heuristic, a standard tabu search
is employed to further improve it. The tabu search is described in Algorithm 1. S0

is the solution obtained by the insertion heuristic, and f (S) is the objective function
(15.25). The neighborhood N(S) of solution S indicates the set of solutions that can
be obtained by moving an item to another admissible bin. The tabu list is designed
as follows: when an item is moved from one bin to another, it is not allowed to be
moved back to its original bin in a certain number of subsequent iterations, unless
the movement leads to a better solution than the current best solution. Here, the tabu
tenure is set to F/2, where F is the number of items with more than one admissi-
ble bin (|Ω(j)| > 1). The tabu search process terminates after N iterations or N/2
consecutive iterations without improvement.

Based on a solution of the bin-packing problem, a new solution of CARP can
be directly obtained by updating the 0-1 variables according to xi j’s. However, the
tabu search process might generate multiple assignments of 0-1 variables that all
correspond to feasible solutions of the CARP, which are saved in the archive A
(lines 9–11 of Algorithm 1). A further refinement procedure is needed to select the
best solution in A.

In the insertion heuristic and tabu search process, the total cost is not considered
since the route set is assumed to be unchanged. However, after the change of 0-1
variables, the adjacent services may be connected with shorter paths. Hence, as the
final step of the GRO, all the archived assignments of 0-1 variables are transformed
to the corresponding solutions of CARP, and then the route sets of these solutions
are refined by updating the vertices between each pair of adjacent services with the
shortest path. Finally, the solution with the smallest cost is chosen as the output of
the GRO.

To summarize, the major steps of the GRO are listed as follows:

1. Formulate the repair operation as a bin-packing problem and get a solution via
the insertion heuristic;

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 389

Algorithm 1 A = TS(f , S0)

1: Set the current solution S = S0, the current best solution Sb = S0. Set A = /0;
2: while the stopping criteria are not satisfied do
3: Set f (S′) = ∞;
4: for all S′′ ∈ N(S) do
5: if S′′ is not tabu and f (S′′)< f (S′) then
6: S′ = S′′, f (S′) = f (S′′);
7: end if
8: end for
9: if f (S′) = 0 then

10: A = A∪S′;
11: end if
12: if f (S′)< f (Sb) then
13: Sb = S′, f (Sb) = f (S′);
14: end if
15: Update the tabu list and set S = S′;
16: if A = /0 then
17: A = {Sb};
18: end if
19: end while
20: return A;

2. Utilize a tabu search process to further improve the solution obtained in the first
step, and get an archive of candidate assignments of 0-1 variables.

3. Obtain new solutions of CARP based on the archived assignments of 0-1 vari-
ables and update these solutions with the further refinement procedure. The
solution with the smallest cost is chosen as the output.

The GRO can be easily embedded in any search-based approach to enhance its
search capability. The RTS is thus proposed by simply embedding the GRO into
an existing competitive tabu search algorithm [8]. Specifically, for each infeasible
solution with promising total cost (which is smaller than the total cost of the best
feasible solution found so far), the GRO is applied to reduce its violation to the
capacity constraint.

15.3.1.2 Memetic Algorithm with Extended Neighborhood Search

Another difficulty of CARP is that the existing search operators are with small step
sizes, and thus have difficulty to explore in the large solution space. In this situation,
a search operator with large step size is more desirable. However, it is not a trivial
task to design such a search operator. An intuitive idea is to apply the traditional
search operators for multiple times. Nevertheless, the neighborhood size increases
exponentially with the number of times to apply the search operators. As a result,
it is prohibitive to enumerate all the possible solutions in the neighborhood. One
simple solution to this problem is to randomly sample a part of the huge neighbor-
hood. However, it is often the case that some regions in the solution space are more

390 Y. Mei, K. Tang, and X. Yao

promising than the others. Hence, random sampling is a bit blind and might waste
a lot of computational resource. To summarize, although a large step-size local
search can be beneficial, it cannot be implemented by simply extending the tra-
ditional move operators, and a more refined approach is required. For this purpose,
a Merge-Split (MS) operator [44] is developed.

The MS operator aims to improve a given solution by modifying multiple routes
of it. As indicated by its name (Merge-Split), this operator has two components, i.e.,
the Merge and Split components. Given a solution, the Merge component randomly
selects p (p > 1) routes of it, combines them together to form an unordered list
of tasks, which contains all the tasks of the selected routes. The Split component
directly operates on the unordered list generated by the Merge component, which
is composed of the path scanning (PS) heuristic [25] and Ulusoy’s split procedure
[46]. Given a set of tasks and the whole graph, PS is used to quickly generate a
set of feasible routes that serve all the given tasks with a relatively low total cost.
It starts by initializing an empty path. At each iteration, it seeks the tasks that do
not violate the capacity constraint. If no task satisfies the constraint, it connects
the end of the current path to the depot with the shortest path between them to
form a route, and then initializes a new empty path. If a unique task satisfies the
constraint, PS connects that task to the end of the current path (again, with the
shortest path between them). If multiple tasks satisfy the constraint, the one closest
to the end of the current path is chosen. If multiple tasks not only satisfy the capacity
constraint, but also are the closest to the end of the current path, five rules are further
adopted to determine which to choose: (1) maximize the distance from the head of
task to the depot; (2) minimize the distance from the head of task to the depot; (3)
maximize the term d(t)/sc(t), where d(t) and sc(t) are demand and serving cost of
task t, respectively; (4) minimize the term d(t)/sc(t); (5) use rule (1) if the vehicle
is less than half-full, otherwise use rule (2). If multiple tasks still remain, ties are
broken arbitrarily. PS terminates when all the tasks in the unordered list have been
selected. Note that PS does not use the five rules alternatively. Instead, it scans the
unordered list of tasks for five times. In each scan, only one rule is used. Hence, PS
will generate five route sets in total. Then, Ulusoy’s split procedure is applied to all
the five route sets to further improve them. Here, the route sets can be seen as an
ordered list of tasks, and Ulusoy’s split procedure can obtain the optimal feasible
route sets for the ordered list of tasks.

To summarize, the MS operator first merges multiple routes to obtain an un-
ordered list of tasks, then employs PS to sort the unordered list. After that, Ulusoy’s
splitting procedure is used to split the ordered lists into new routes in the optimal
way. Finally, we may obtain five new solutions of CARP by embedding the new
routes back into the original solution, and the best one is chosen as the output of the
MS operator. Figure 15.2 demonstrates the whole process of the MS operator.

The advantages of the MS operator are twofold. First, it can generate new solu-
tions that are significantly different from the current one as it conducts on routes
instead of tasks. In general, the larger the p (i.e., the number of routes involved in
MS), the more distant the new solution is from the current solution. Second, the
new solutions obtained by the MS operator tend to have low total cost due to the

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 391

Fig. 15.2 The process of the MS operator

Algorithm 2 The brief description of MAENS

1: Initialization: Generate an initial population;
2: while Stopping criteria are not satisfied do
3: Select the parent solutions and generate offsprings by the crossover operator;
4: for each offspring do
5: Perform extended neighborhood search around it with probability Pls;
6: Select solutions from the original ones and the offsprings to form the population in

the next generation.
7: end for
8: end while

adoption of PS and Ulusoy’s splitting procedure, both of which are known to be ca-
pable of generating relatively good solutions. On the other hand, the major drawback
is its high computational complexity. Fortunately, such a drawback may be more or
less alleviated by a careful coordination of the MS operator and other search oper-
ators. For this purpose, the memetic algorithm framework is adopted and the MS
and traditional move operators are integrated to form the local search with extended
neighborhood. The resultant algorithm is thus called the Memetic Algorithm with
Extended Neighborhood Search (MAENS). A brief description of MAENS is given
in Algorithm 2.

During the extended neighborhood search process, the MS and traditional search
operators are employed in the following way: Given an offspring individual gener-
ated by the crossover operator, the traditional move operators (i.e., the single inser-
tion, double insertion and swap) are applied to the individual until the local optimum
is reached. After that, the MS operator is applied to this local optimal solution to
form the second stage of the local search, and the local optimum with respect to the
extended neighborhood is obtained. Finally, the traditional-neighborhood-based lo-
cal search is again applied to further refine the local optimum obtained in the second
stage and exploit the new local region.

392 Y. Mei, K. Tang, and X. Yao

It has been demonstrated in [38] and [44] that the RTS and MAENS are both com-
petitive approaches for CARP. RTS can obtain solutions as well as the best-known
ones in a shorter time than other state-of-the-art methods, while MAENS is able to
find better solutions than the best-known ones at the cost of more computational
efforts.

15.3.2 Tackling the Dynamic Environment

The dynamic environment changes the actual feasibility of solutions. As mentioned
before, a repair operator must be designed to make the solution feasible whenever
it becomes infeasible in the current environment. An ideal repair operator should
not only be able to repair any infeasible solution, but also be practical. In many
real-world applications, the departments in charge wish to keep the modification as
small as possible during the repair process. Based on such practical consideration,
the repair operator Φ should satisfy the following conditions:

• If all the constraints are satisfied, then Φ should not make any change on the
solution;

• If the solution violates the capacity constraint, then Φ should cut the infeasible
routes into several feasible routes;

• If the path between adjacent vertices in the solution becomes absent, then Φ
connects them with another path in the graph.

All the above operations minimizes the modification of the solution.
The sampling values of the random variables can only be known during the im-

plementation process. To be specific, the vehicle does not know whether the path
from vertex xki to its successor xk(i+1) is connected until it reaches xki. The dead-
heading cost of (xki,xk(i+1)) can only be known after the vehicle has arrived at
xk(i+1). Besides, if (xki,xk(i+1)) is a task, its demand cannot be known until the ve-
hicle finishes its service and reaches xk(i+1). In this situation, the repair operation
of Φ can be defined as follows: Given a solution S = ({X1, ...,Xm},{Y1, ...,Ym}),
each vehicle starts from xk1 = v0 and traverses according to the vertex sequence
Xk = (xk1, ...,xklk). Once the vehicle arrives at a new vertex (including the starting
vertex v0), Φ checks the value of the first time occurring yk j = 1 in the sub-vector
Yk = (yki, ...,yk(lk−1)) to locate the position of the next task (xk j ,xk(j+1)). If there
is no task left, then it returns the depot through the predefined path. Otherwise,
Φ examines whether the current residue is enough to serve the expected demand
E[d(xk j,xk(j+1),ξ)|ξ]. If so, then the vehicle traverses to xk j. Otherwise, the vehi-
cle returns to the depot and update the capacity, then goes to xk j again. Note that
the practical demand of (xk j ,xk(j+1)) may be larger than expected and exhaust the
capacity on the way of its service. In this case, the vehicle neglects the remaining
demand and returns to the depot to update the capacity, and then goes back to xk j and
finish the service of (xk j,xk(j+1)). All the above repair operations are done through
the shortest paths between the origin and the target. In this way, the satisfactory
of the capacity constraint can be guaranteed. On the other hand, if it is found that
the path from the current vertex xki to the next vertex xk(i+1) disappears, Φ simply

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 393

update the deadheading cost matrix by setting dc(xki,xk(i+1)) = ∞, and calculate
the shortest path under the updated cost matrix by Dijstra’s alorithm [17]. Then, it
replaces the interrupted path with the new shortest path.

Based on the above descriptions, Φ can be divided into a repair operator Φd to
deal with stochastic task demands and a repair operator Φc to deal with stochastic
presence of paths. Given an infeasible solution, it is first repaired by Φd , and then
repaired by Φc. Algorithms 3 and 4 give the pseudo codes of the repair operators
Φd and Φc, respectively.

In Algorithms 3 and 4, the function X .push(a) indicates inserting the element a
(can be a single element or a sequence) into the end of the sequence X , and |X | stands
for the length of X . 0l represents the sequence composed with l 0’s. ESP(vi,v j) is
the shortest path from vi to v j under the expected deadheading cost matrix, while
SP(vi,v j,ξ) is that under the practical deadheading cost matrix of the environmental
parameter ξ .

Under the definition of Φd and Φc, an infeasible solution S is repaired at the
following two steps: 1) S′ = Φd(S); 2) Sξ = Φc(S′).

15.4 Benchmark for Dynamic Capacitated Arc Routing
Problem

In order to evaluate the performance of potential approaches, benchmark instances
of the dynamic CARP are needed. However, there has been no benchmark instance
proposed so far. In [21], the well-known gdb test set with static CARP instances was
extended to a stochastic CARP test set by replacing the deterministic demand d(ti)
of each task ti with a Gaussian distributed random variable D(ti) ∼ N(d(ti),σ2

i),
where the variance σi = k× d(ti) is proportional to d(ti). Here, we generate the
benchmark instances for the dynamic CARP similarly. In contrast with [21], we
choose Gamma distribution instead of normal distribution. The reason is that all the
random variables in the dynamic CARP is nonnegative, and Gamma distribution
is one of the most commonly used distribution with nonnegative support set for
simulating real environments. Besides, d(vi,v j) equals zero with probability 1− pi j,
and dc(vi,v j) equals infinity with probability 1− pi j. Hence, in the dynamic CARP,
the random variables should satisfy the following distributions:

D(vi,v j)

{
∼ G(kd

i j,θ d
i j), r < pi j;

= 0, otherwise.
(15.28)

DC(vi,v j)

{
∼ G(kc

i j,θ c
i j), r < qi j;

= ∞, otherwise.
(15.29)

where G(k,θ) is the Gamma distribution with the shape parameter k and the
scale parameter θ . The probability density function of G(k,θ) is pd f (x;k,θ) =
xk−1 e−x/θ

θ kΓ (k)
for x > 0 and k,θ > 0, where Γ (k) =

∫ ∞
0 tk−1etdt. It is known that the

mean of the Gamma distribution G(k,θ) is μ = kθ and G(k,θ) converges to the

394 Y. Mei, K. Tang, and X. Yao

Algorithm 3 S′ = Φd(S, ξ)

1: for k = 1→ m do
2: Set X ′k = (v0), Y ′k = (), ΔQ = Q;
3: for i = 1→ |Xk|−1 do
4: if yki = 0 then
5: X ′k.push(xk(i+1)), Y ′k .push(0);
6: else
7: if d(xki,xk(i+1),ξ) = 0 then
8: X ′k.push(xk(i+1));
9: Y ′k .push(0);

10: else if ΔQ < d(xki,xk(i+1),ξ) then
11: X ′k.push(ESP(xk(i+1),v0));
12: X ′k.push(v0);
13: Y ′k .push(1);
14: Y ′k .push(0|ESP(xk(i+1),v0)|);

15: X ′k.push(ESP(v0,xki));
16: Y ′k .push(0|ESP(v0,xki)|);
17: X ′k.push(xki), Yk.push(0);
18: ΔQ← ΔQ+Q−d(xki,xk(i+1),ξ);
19: else
20: X ′k.push(xk(i+1)), Y ′k .push(1), ΔQ← ΔQ−d(xki,xk(i+1),ξ);
21: end if
22: for j = i+1→ |Xk|−1 do
23: if Yk j = 1 then
24: break;
25: end if
26: end for
27: if Yk j = 1&ΔQ < E[d(xk j,xk(j+1),ξ)|ξ] then
28: X ′k.push(ESP(xk(i+1),v0));
29: X ′k.push(v0);
30: Y ′k .push(0|ESP(xk(i+1),v0)|+1;

31: X ′k.push(ESP(v0,xk j));
32: X ′k.push(xk j);
33: Y ′k .push(0|ESP(v0,xk j)|+1);
34: i← j, ΔQ← Q;
35: end if
36: end if
37: end for
38: end for
39: return S′ = ({X ′1, ...,X ′m},{Y ′1, ...,Y ′m});

Gaussian distribution when the shape parameter k becomes infinite. According to
the idea of the dynamic CARP instance generation in [21], the random variables in
the dynamic CARP should have the following properties:

Property 1: The Gamma distribution is close to Gaussian distribution;
Property 2: The expected value of the random variables equals their static values;

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 395

Algorithm 4 Sξ = Φc(S′, ξ)

1: for k = 1→ m do
2: Set Xξ

k = (v0), Y ξ
k = ();

3: for i = 1→ |X ′k|−1 do
4: if dc(x′ki,x

′
k(i+1),ξ)< ∞ then

5: Xξ
k .push(x′k(i+1)), Y ξ

k .push(y′ki);
6: else
7: Xξ

k .push(SP(x′ki,x
′
k(i+1),ξ)), Xξ

k .push(x′k(i+1));

8: Y ξ
k .push(0|SP(x′ki,x

′
k(i+1),ξ)|+1);

9: end if
10: end for
11: end for
12: return Sξ = ({Xξ

1 , ...,X
ξ
m},{Y ξ

1 , ...,Y ξ
m});

Property 1 can be realized by setting a sufficiently large k. For Property 2, on the
other hand, the realizations of the stochastic demands and deadheading costs are dif-
ferent. For the task demand D(vi,v j), Property 2 can be realized by directly setting

E[D(vi,v j)] = pi jk
d
i jθ

d
i j +(1− pi j)× 0 = d(vi,v j) (15.30)

However, the above equation is not available for the deadheading cost DC(vi,v j)
since it is likely to become infinity. Therefore, we neglect such case and only set

E[DC(vi,v j)] = kc
i jθ

c
i j = dc(vi,v j) (15.31)

In practice, the shape parameters kd
i j and kc

i j are set to 20. Figure 15.3 gives the prob-
ability density functions of the Gamma distribution with k= 20 and θ = 1.0,1.5,2.0.
The settings of θ d

i j and θ c
i j can be derived from Eq. (15.30) and (15.31) as follows:

θ d
i j =

d(vi,v j)

pi jkd
i j

(15.32)

θ c
i j =

dc(vi,v j)

kc
i j

(15.33)

Finally, pi and qi j can be intuitively set to 0.9 and 0.95, respectively.
The C++ source code of the instance generator for extending the static CARP

instances to the dynamic CARP instances can be downloaded from the website
at http://goanna.cs.rmit.edu.au/∼e04499, along with the dynamic CARP instances,
namely the Dgdb, Dval and Degl sets, respectively. For each static instance, 30 sam-
pling instances were generated one by one by the instance generator with the starting
random seed of 0. If necessary, users can also generate more samplings with other
random seeds.

396 Y. Mei, K. Tang, and X. Yao

0 10 20 30 40 50 60 70 80

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
PDF of the Gamma distribution

x

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

(P
D

F)

k=20, θ=1

k=20, θ=1.5

k=20, θ=2

Fig. 15.3 Probability density functions of Gamma distribution with k = 20 and θ =
1.0,1.5,2.0

15.5 Preliminary Investigation of the Fitness Landscape

The stochastic characteristic of the random variables makes the fitness landscape of
the dynamic CARP much more complicated than the static CARP. To investigate
the fitness landscape of the dynamic CARP and the impact of the stochastic factors
on the performance of the search algorithms, the two static CARP approaches intro-
duced in Section 15.3.1, i.e., RTS and MAENS, were applied to the Dgdb set, which
is the simplest and smallest test set among the three dynamic CARP benchmark sets
generated in Section 15.4. In this way, it is easier to observe how the performance
of the algorithms are influenced by the dynamic environment, but not the compli-
catedness of the problem itself. As demonstrated in [38] and [44], the two selected
algorithms are able to reach the global optima for all the static version of the Dgdb
instances, i.e., the gdb instances.

In the experiments, RTS and MAENS were implemented once on all the gdb in-
stances, and the sequences of best feasible solutions updated during the search pro-
cess were recorded. Recalling that the expected values of the random variables of
the Dgdb instances are equal to the corresponding static values of the gdb instances.
Thus, by solving the gdb instances, the algorithms can be seen as solving the Dgdb
instances by utilizing the expectation of the random variables. For each solution
recorded in the best feasible solution sequence obtained by RTS and MAENS, de-
noted as (S11, ...,S1l1) and (S21, ...,S2l2), the robustness R(Si j) is calculated in terms

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 397

of the average total cost of the 30 corresponding Dgdb instance samples generated
in Section 15.4, i.e.,

R(Si j) =
1

30

30

∑
k=1

tc(Si j,ξk
) (15.34)

where Si j,ξk
=Φ(Si j ,ξk) is the feasible solution obtained by applying Φ to Si j under

ξk, which is the environmental parameter of the kth sample.
Table 15.2 presents the experimental results. In the table, the columns headed

“tcBest” and “RBest” stand for the solutions with the lowest tc(S) and the lowest
R(S) among all the recorded solutions. The column headed “RBK” presents the best-
known solution with respect to R(S). The columns headed “tc(S)” and “R(S)” are
the objective functions defined for the static and uncertain versions, respectively.
tc(S) is defined in Eq. (15.1) and R(S) is defined in Eq. (15.16). For tc(S), the
optimal values are marked in bold. As mentioned before, MAENS and RTS can
both reach the optimal solutions for the static version of the instances. Therefore,
the best tc(S) obtained by them were marked in bold for all the instances.

From Table 15.2, it is observed that R(S) is not proportional to tc(S). For
MAENS, the solution with the lowest tc(S) and the solution with the lowest R(S) are
different on 9 out of the total 23 instances. For RTS, such a phenomenon occurs also
on 9 instances. Another interesting observation is that for the lowest tc(S) obtained
by MAENS and RTS, although their values are the same and optimal, the corre-
sponding R(S) of the solution can be very different (e.g., in Dgdb12, the solutions
with lowest tc(S) obtained by the two algorithms have their R(S)’s of 642.03 and
603.54, respectively). Based on the above observation, one can conclude that for a
static CARP instance, there often exist multiple global optima. However, their ro-
bustness in the corresponding dynamic versions may be quite different. When look-
ing at the best-known solutions with respect to R(S), it is seen that for 16 out of the
total 23 instances, the best-known solutions have non-optimal tc(S)’s. This implies
that the global optimum (in terms of robustness) in a dynamic CARP instance may
be quite far away from the global optimum in its static counterpart. Comparing with
the results obtained by MAENS and RTS, the R(S) values of the best-known solu-
tions are much smaller than the lowest R(S)’s obtained by the two algorithms, not
to mention the R(S) of the solutions with lowest tc(S). Therefore, we can conclude
that when solving Dgdb instances by applying algorithms to the gdb counterparts, it
is difficult to achieve highly robust solutions.

One possible reason that the algorithms for the static CARP cannot perform well
when applied to the dynamic CARP may be explained as follows: the algorithms
ignore the possibility that the routes may be cut at certain intermediate positions
due to the violation of the capacity constraint during the implementation. If the cut
position is distant from the depot, the repaired solution will have a much larger
total cost. Since the cut position depends on the allocation of the task services, one
solution to address this issue is to modify the allocation of the task services so that
the possible cut positions are close to the depot.

In summary, the following observations can be drawn:

398 Y. Mei, K. Tang, and X. Yao

Table 15.2 The experimental results of MAENS and RTS on the Dgdb set. The optimal
tc(S)’s are marked in bold.

Name MAENS RTS RBK

tcBest RBest tcBest RBest

tc(S) R(S) tc(S) R(S) tc(S) R(S) tc(S) R(S) tc(S) R(S)

1 316 380.63 316 380.63 316 401.95 323 387.32 323 349.49
2 339 436.69 345 401.24 339 417.96 339 417.96 353 383.72
3 275 331.19 275 331.19 275 323.81 275 323.81 296 307.00
4 287 350.40 287 350.40 287 345.77 287 345.77 287 328.32
5 377 492.38 383 472.44 377 492.00 377 492.00 395 437.79
6 298 353.69 298 353.69 298 369.63 310 367.10 319 342.18
7 325 380.06 325 380.06 325 400.50 325 400.50 325 356.09
8 348 470.18 354 456.70 348 464.33 356 449.56 362 443.87
9 303 404.34 309 391.77 303 394.75 303 394.75 337 385.86
10 275 306.72 275 306.72 275 325.48 275 325.48 283 291.61
11 395 431.86 395 431.86 395 442.19 395 442.19 409 419.06
12 458 642.03 468 595.33 458 603.54 468 601.58 474 587.33
13 536 598.03 554 593.66 536 623.52 552 603.43 544 569.82
14 100 118.44 100 118.44 100 118.47 100 118.47 100 107.90
15 58 60.76 58 60.76 58 58.91 58 58.91 58 58.09
16 127 146.53 129 145.73 127 146.97 127 146.97 129 133.43
17 91 94.36 91 94.36 91 96.17 91 96.17 91 92.32
18 164 180.75 164 180.75 164 181.48 168 179.16 164 170.90
19 55 67.49 55 67.49 55 64.24 55 64.24 55 63.04
20 121 139.06 125 135.89 121 141.43 122 134.82 123 126.01
21 156 171.60 156 171.60 156 177.74 158 174.79 158 165.41
22 200 217.01 200 217.01 200 218.59 202 217.35 204 210.17
23 233 263.60 235 256.52 233 260.97 233 260.97 235 252.35

• The robustness of solution in the dynamic CARP is conflicting with the absolute
performance, and the two measures can hardly reach optimum at the same time;

• Static CARP instances often have multiple global optimal solutions. However,
their robustness in the corresponding dynamic version may be quite different;

• Only utilizing the expected information cannot lead to highly robust solutions.
• The algorithms for the static CARP cannot perform well for the dynamic CARP

because the possible cut position and the additional cost induced by the cut is
not considered. To address this issue, one can estimate the probability of the cut
position and adjust the task services so as to reduce the expected additional cost
caused by the cut.

15.6 Conclusion

In this chapter, a general dynamic CARP is defined and investigated with evolution-
ary computation. The dynamic CARP model includes the following four stochastic
factors: (1) presence of tasks; (2) demand of tasks; (3) presence of paths between

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 399

vertices and (4) deadheading costs between vertices. These stochastic factors exist
in both the objective and constraints of the problem, and thus influence both the
performance and feasibility of solution. Unlike the static CARP the outputs of the
dynamic CARP include a solution and a repair operator to modify the solution so
that all the constraints can be satisfied during the implementation process. Besides,
the objective of the dynamic CARP is to optimize the robustness rather than the
absolute quality in a specific environment.

The dynamic CARP has the difficulties caused by the complicatedness of CARP
and the dynamic environment. To address the two issues, two competitive ap-
proaches for CARP, i.e., RTS and MAENS, are introduced, and a repair operator
is designed under the practical considerations.

Then, to investigate the fitness landscape of the dynamic CARP, RTS and MAENS
were tested on the Dgdb benchmark set, which is extended from the gdb static CARP
benchmark set. It is found that, although the two algorithms showed excellent per-
formance for static CARP, they were not able to find robust solutions for the dy-
namic CARP. Therefore, the future work is to design new algorithms that can find
more robust solutions by taking advantage of more information. One possible di-
rection is to select the solutions in which the adjacent tasks can be connected by
multiple paths with nearly the same lengths to avoid the additional cost induced by
the absence of edges.

Although no effective approach has been proposed for the dynamic CARP in this
chapter, the formal definition of the problem and the generated benchmark provide a
solid foundation of further research work, and the analysis and discussions about the
problem characteristics give some guidelines for the algorithm design. The future
work includes developing algorithms by taking these analytical results into account.

Acknowledgements. This work was supported by the National Natural Science Foundation
of China (NSFC) grant No. 61028009.

References

[1] Agarwal, H.: Reliability based design optimization: Formulations and methodologies.
Ph.D. thesis, University of Notre Dame, South Bend, IN, USA (2004)

[2] Agarwal, H., Renaud, J.: Reliability based design optimization using response surfaces
in application to multidisciplinary systems. Engineering Optimization 36(3), 291–311
(2004)

[3] Allen, J., Seepersad, C., Choi, H., Mistree, F.: Robust design for multiscale and multi-
disciplinary applications. Journal of Mechanical Design 128(4), 832–843 (2006)

[4] Amberg, A., Domschke, W., Voß, S.: Multiple center capacitated arc routing problems:
A tabu search algorithm using capacitated trees. European Journal of Operational Re-
search 124(2), 360–376 (2000)

[5] Bertsimas, D.: Probabilistic combinatorial optimization problems. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Department of Mathematics (1988)

[6] Bertsimas, D.: A vehicle routing problem with stochastic demand. Operations Research,
574–585 (1992)

[7] Birge, J., Louveaux, F.: Introduction to stochastic programming. Springer (1997)
[8] Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated arc

routing problem. Computers and Operations Research 35(4), 1112–1126 (2008)

400 Y. Mei, K. Tang, and X. Yao

[9] Branke, J.: Creating robust solutions by means of evolutionary algorithms. In: Eiben,
A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498,
pp. 119–128. Springer, Heidelberg (1998)

[10] Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic Pub.
(2002)

[11] Campbell, J., Langevin, A.: Roadway snow and ice control. In: Arc Routing: Theory,
Solutions and Applications, pp. 389–418. Kluwer, Boston (2000)

[12] Chan, K., Skerlos, S., Papalambros, P.: Monotonicity and active set strategies in proba-
bilistic design optimization. Journal of Mechanical Design 128(4), 893–900 (2006)

[13] Christiansen, C., Lysgaard, J., Wøhlk, S.: A Branch-and-Price Algorithm for the Ca-
pacitated Arc Routing Problem with Stochastic Demands. Operations Research Let-
ters 37(6), 392–398 (2009)

[14] Chu, F., Labadi, N., Prins, C.: A scatter search for the periodic capacitated arc routing
problem. European Journal of Operational Research 169(2), 586–605 (2006)

[15] Das, I.: Robustness optimization for constrained nonlinear programming problems. En-
gineering Optimization 32(5), 585–618 (2000)

[16] De Rosa, B., Improta, G., Ghiani, G., Musmanno, R.: The arc routing and scheduling
problem with transshipment. Transportation Science 36(3), 301–313 (2002)

[17] Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1(1), 269–271 (1959)

[18] Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with stochastic demands: Properties
and solution frameworks. Transportation Science 23(3), 166–176 (1989)

[19] Du, X., Wang, Y., Chen, W.: Methods for robust multidisciplinary design. Tech. rep.,
American Institute of Aeronautics and Astronautics (2000)

[20] El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain
data. SIAM Journal on Matrix Analysis and Applications 18(4), 1035–1064 (1997)

[21] Fleury, G., Lacomme, P., Prins, C.: Evolutionary algorithms for stochastic arc routing
problems. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 501–
512. Springer, Heidelberg (2004)

[22] Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. European Journal of
Operational Research 88(1), 3–12 (1996)

[23] Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Tabu search heuristics for the
arc routing problem with intermediate facilities under capacity and length restrictions.
Journal of Mathematical Modelling and Algorithms 3(3), 209–223 (2004)

[24] Ghiani, G., Improta, G., Laporte, G.: The capacitated arc routing problem with interme-
diate facilities. Networks 37(3), 134–143 (2001)

[25] Golden, B., DeArmon, J., Baker, E.: Computational experiments with algorithms for a
class of routing problems. Computer and Operations Research 10(1), 47–59 (1983)

[26] Golden, B., Wong, R.: Capacitated arc routing problems. Networks 11(3), 305–316
(1981)

[27] Gunawan, S., Papalambros, P.: A Bayesian Approach to Reliability-Based Optimization
With Incomplete Information. Journal of Mechanical Design 128(4), 909–918 (2006)

[28] Handa, H., Chapman, L., Yao, X.: Robust route optimization for gritting/salting trucks:
a CERCIA experience. IEEE Computational Intelligence Magazine 1(1), 6–9 (2006)

[29] Handa, H., Chapman, L., Yao, X.: Robust Salting Route Optimization Using Evolutionary
Algorithms. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic
and Uncertain Environments. SCI, vol. 51, pp. 497–517. Springer, Heidelberg (2007)

[30] Herrmann, J.: A genetic algorithm for minimax optimization problems. In: Proceedings
of the 1999 Congress on Evolutionary Computation, vol. 2, pp. 1099–1103. Citeseer
(1999)

15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem 401

[31] Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Department of Civil Engineering (1985)

[32] Kalsi, M., Hacker, K., Lewis, K.: A comprehensive robust design approach for decision
trade-offs in complex systems design. Journal of Mechanical Design 123(1), 1–10 (2001)

[33] Lacomme, P., Prins, C., Ramdane-Cherif, W.: Evolutionary algorithms for periodic arc
routing problems. European Journal of Operational Research 165(2), 535–553 (2005)

[34] Laporte, G., Musmanno, R., Vocaturo, F.: An Adaptive Large Neighbourhood Search
Heuristic for the Capacitated Arc-Routing Problem with Stochastic Demands. Trans-
portation Science 160(1), 139–153 (2009)

[35] Lewis, A.: Robust regularization. Tech. rep., Simon Fraser University, Vancouver,
Canada (2002)

[36] Li, M., Azarm, S., Boyars, A.: A new deterministic approach using sensitivity region
measures for multi-objective robust and feasibility robust design optimization. Journal
of Mechanical Design 128(4), 874–883 (2006)

[37] McIlhagga, M., Husbands, P., Ives, R.: A comparison of search techniques on a wing-
box optimisation problem. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 614–623. Springer, Heidelberg (1996)

[38] Mei, Y., Tang, K., Yao, X.: A Global Repair Operator for Capacitated Arc Routing Prob-
lem. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(3),
723–734 (2009)

[39] Mourão, M., Amado, L.: Heuristic method for a mixed capacitated arc routing problem:
A refuse collection application. European Journal of Operational Research 160(1), 139–
153 (2005)

[40] Papadrakakis, M., Lagaros, N., Plevris, V.: Design optimization of steel structures con-
sidering uncertainties. Engineering Structures 27(9), 1408–1418 (2005)

[41] Polacek, M., Doerner, K., Hartl, R., Maniezzo, V.: A variable neighborhood search
for the capacitated arc routing problem with intermediate facilities. Journal of Heuris-
tics 14(5), 405–423 (2008)

[42] Tagmouti, M., Gendreau, M., Potvin, J.: Arc routing problems with time-dependent
service costs. European Journal of Operational Research 181(1), 30–39 (2007)

[43] Taguchi, G.: Introduction to quality engineering. Asian Productivity Organization,
Tokyo (1990)

[44] Tang, K., Mei, Y., Yao, X.: Memetic Algorithm with Extended Neighborhood Search
for Capacitated Arc Routing Problems. IEEE Transactions on Evolutionary Computa-
tion 13(5), 1151–1166 (2009)

[45] Tillman, F.: The multiple terminal delivery problem with probabilistic demands. Trans-
portation Science 3(3), 192–204 (1969)

[46] Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. European Journal
of Operational Research 22(3), 329–337 (1985)

[47] Waters, C.: Vehicle-scheduling problems with uncertainty and omitted customers. The
Journal of the Operational Research Society 40(12), 1099–1108 (1989)

[48] Weise, T., Podlich, A., Gorldt, C.: Solving Real-World Vehicle Routing Problems with
Evolutionary Algorithms. In: Chiong, R., Dhakal, S. (eds.) Natural Intelligence for
Scheduling, Planning and Packing Problems. SCI, vol. 250, pp. 29–53. Springer, Hei-
delberg (2009)

[49] Weise, T., Podlich, A., Reinhard, K., Gorldt, C., Geihs, K.: Evolutionary Freight
Transportation Planning. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 768–777. Springer, Heidelberg (2009)

[50] Wiesmann, D., Hammel, U., Back, T.: Robust design of multilayer optical coatings by
means of evolutionary algorithms. IEEE Trans. Evol. Comput. 2(4), 162–167 (1998)

Chapter 16
Evolutionary Algorithms for the Multiple
Unmanned Aerial Combat Vehicles Anti-ground
Attack Problem in Dynamic Environments

Xingguang Peng, Shengxiang Yang, Demin Xu, and Xiaoguang Gao

Abstract. This chapter aims to solve the online path planning (OPP) and dy-
namic target assignment problems for the multiple unmanned aerial combat vehi-
cles (UCAVs) anti-ground attack task using evolutionary algorithms (EAs). For the
OPP problem, a model predictive control framework is adopted to continuously up-
date the environmental information for the planner. A dynamic multi-objective EA
with historical Pareto set linkage and prediction is proposed to optimize in the plan-
ning horizon. In addition, Bayesian network and fuzzy logic are used to quantify
the bias value to each optimization objective so as to intelligently select an execu-
tive solution from the Pareto set. For dynamic target assignment, a weapon target
assignment model that considers the inner dependence among the targets and the
expected damage type is built up. For solving the involved dynamic optimization
problems, an environment identification based memory scheme is proposed to en-
hance the performance of estimation of distribution algorithms. The proposed ap-
proaches are validated via simulation with a scenario of suppression of enemy air
defense mission.

Xingguang Peng · Demin Xu
School of Marine Engineering, Northwestern Polytechnical University, Xi’an 710072, China
e-mail: pxg0510@gmail.com, xudm@nwpu.edu.cn

Shengxiang Yang
Centre for Computational Intelligence (CCI), School of Computer Science and Informatics,
De Montfort University, The Gateway, Leicester LE1 9BH, U.K.
e-mail: syang@dmu.ac.uk

Xiaoguang Gao
School of Electronics and Information, Northwestern Polytechnical University,
Xi’an 710129, China
e-mail: xggao@nwpu.edu.cn

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 403–431.
DOI: 10.1007/978-3-642-38416-5_16 c© Springer-Verlag Berlin Heidelberg 2013

404 X. Peng et al.

16.1 Introduction

The application of unmanned aerial combat vehicles (UCAVs) for various military
missions has received a growing attention in the last decade. Apart from the obvi-
ous advantage of not placing human life at risk, the lack of a human pilot enables
significant weight savings and lower costs. UCAVs also provide an opportunity for
new operational paradigms. To realize these advantages, UCAVs must have a high
level of autonomy and preferably work cooperatively in groups.

In general, there are three layers in the design of autonomy of UCAVs, which
are the strategic layer (path planning, task allocation, search patterns, and hu-
man mission command, etc), the tactical layer (target observation, path following,
communication and cooperation, and human monitor interaction, etc), and the dy-
namic/control layer (flying control, formation control, and navigation, etc). Since
each of the three layers may involve dynamic optimization problems (DOPs), the
study on dynamic optimization methods and their application to autonomous con-
trol of UCAVs has become a key issue to improve the combat effectiveness.

Evolutionary algorithm (EAs) are now an established research field at the in-
tersection among artificial intelligence, computer science, and operations research.
However, most research in EAs has focused on static optimization problems. The
main problem of using traditional EAs for DOPs lies in that they eventually con-
verge to an optimum and thereby lose their population diversity which is necessary
for efficiently exploring the search space, which consequently deprives them of the
ability to adapt to the changes in the environment. To enhance EAs to solve DOPs,
over the past two decades, a number of researchers have developed many methods
to maintain diversity for traditional EAs to continuously adapt to the changing envi-
ronment. Most of these methods can be categorized into the following four types of
approaches: (1) increasing the diversity after a change, such as the hyper-mutation
method [7]; (2) maintaining the diversity throughout the run, such as the random
immigrants scheme [10], sharing or crowding mechanisms [5], and the thermody-
namical genetic algorithm (GA) [14]; (3) memory-based approaches [1, 19, 26];
and (4) multi-population approaches, such as the self-organizing scouts GA [3], the
multi-national GA [23], and the shift balance GA [24]. Comprehensive surveys on
EAs applied to dynamic environments can be found in [2, 13, 15, 18, 25].

This chapter focuses on applying EAs to design the autonomy of UCAVs. We
will formulate the DOPs involved in anti-ground attack of a fleet of UCAVs and
design corresponding EAs to solve them, respectively. In general, the process of
anti-ground attack can be summarized as follows. A feet of UCAVs safely fly to the
targets via an intelligent tactic flight to coordinately attack single or multiple targets.
There are two key DOPs involved in the anti-ground attack. The first one is the
intelligent tactic flight, which is an integration of information gathering, situation
assessment, and path planning. The leader of the fleet is required to intelligently
assess the dangerous level of the hostile environment like a pilot according to the
information gathered from onboard sensors or data links. Then, the leader needs
to plan an optimal path dynamically for the fleet to minimize the flight time and
maximize the safety simultaneously. The second one is target assignment, which is

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 405

also required to be solved dynamically since some factors of the assignment may be
time-variant. For example, the importance values of the targets may be time-variant
since the working states of the targets are changeable.

The outline of the rest of this chapter is briefly given as follows. The problems
of dynamic online path planning (OPP) and dynamic target assignment are formu-
lated in Sect. 16.2 and Sect. 16.3, respectively. In each section, a problem-solving
dynamic EA is designed and the simulation of a suppression of enemy air-defense
(SEAD) mission that integrates the above two DOPs is given in Sect. 16.4 to vali-
date the proposed approaches. Finally, conclusions and discussions on the relevant
future work are given in Sect. 16.5.

16.2 Intelligent Online Path Planning (OPP)

The intelligent flight is the basic issue for UCAVs to carry out any complicated
mission. When the environment is static and known beforehand, the flight path can
be well-designed offline [6, 17]. However, when the environment is changeable or
there is no exact knowledge about the environment, an UCAV needs to intelligently
plan its path online.

In general, path planning involves multiple optimal objectives. For instance, the
maximal safety and minimal energy cost are the two common objectives. In some
research in the literature, multi-objective optimization problems (MOPs) are trans-
formed to single-objective ones by weighting objectives and summing them up [28].
This requires that the bias to objectives of the optimizer is known beforehand. Un-
fortunately, sometimes it is difficult to achieve this knowledge. Therefore, from the
nature of dynamic MOPs (DMOPs), we optimize all the objectives simultaneously.
Moreover, considering the fact that no exact information about the environment is
known beforehand and the environment may change during the mission, the objec-
tives involved in path planning are time variant. Accordingly, we need a dynamic
multi-objective optimization method to deal with the problem at hand.

In this section, based on the work in [20], we propose a multi-objective EA
(MOEA), called a dynamic MOEA with Pareto set linking and prediction and de-
noted LP-DMOEA, which stores and analyzes the historic information to enhance
its performance on DMOPs, to solve the OPP problem. Within LP-DMOEA, the
historic Pareto solutions are first linked to construct several time series, and then
a prediction method is employed to anticipate the Pareto set of the next problem.
Benefiting from such anticipation, the initial population for the new problem can be
heuristically generated to accelerate the convergence in the new environment. It is
noteworthy that the obtainment of Pareto optimal solutions is not the end of solving
an MOP. One solution should be selected from the Pareto set by the decision-maker
(DM). As for UCAVs, there are no actual DMs to deal with such decision mission.
They should intelligently make such a decision without interacting with human be-
ings. To this end, we employ a Bayesian network (BN) to model the inference pro-
cess of a pilot when he is assessing the dangerous level of environment. In addition,
the fuzzy logic is used to quantify the decision bias reference to inference results.

406 X. Peng et al.

Fig. 16.1 Illustration of the
online path planning (OPP)
problem

UAV

 Path Planned at tp+1

 Path Planned at tpA

B

16.2.1 Formulation of the OPP Problem

From the practice point of view, an offline global path planning is likely to be invalid
when the environment is uncertain and time-variant. A UCAV has to independently
plan its online path referring to the local information detected by its onboard sen-
sors. Pongpunwattana has proposed an OPP scheme in the sense of model predictive
control (MPC) in [21]. As shown in Fig. 16.1, suppose the UCAV has planned a path
starting from point A at tp. Instead of executing the whole planning result, a partial
path (e.g., the path between A and B) will be executed. While flying from A to B,
it is planning a new path that starts from B. When it arrives at B at time tp+1, this
new path will be used. Of course, part of the new path will be executed. Hence,the
OPP can be achieved by iteratively executing the steps above and the environmental
information can be continuously updated to adapt the planner for a changing envi-
ronment. It is obviously that the path between A and B is the executing horizon and
the paths planned at A or B are the planning horizon. The optimization problem in
each time window can be time-variant. Hence, the OPP problem is indeed a DOP.

In a 2-D case, we formulate the OPP problem as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min f = { f1(u, t), f2 (u, t)}

f1 (u, t) =
n
∏
i=1

pkill

(
x(t)+

i
∑
j=1

g(u j)

)

f2 (u, t) =

∥∥∥∥x(t)+
n
∑

i=1
g(ui)−T

∥∥∥∥
2

ui ∈ u(i = 1, . . . ,n)

(16.1)

where u is the sequential control input vector of a UCAV from t to t +ΔTs(ΔTs =
n×Δ t), g(ui) denotes the Euclidean deviation of the UCAV caused by the control
input ui, x(t) and T are the vectors of position values of UCAV and destination,
respectively. pkill(x(t)) means the probability of being destroyed. So, the first opti-
mization objective is to minimize the destroy probability when the UCAV flies along
the planning path. The second optimization objective is easy to understand: it aims
at minimizing the distance between the UCAV (at the termination of a path seg-
ment) and its goal. For the convenience of simulation, we use a probabilistic threat
exposure map [27] to model the battle field. The probability of becoming disabled
by the i-th threat is characterized by the multi-dimensional Gaussian law.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 407

Fig. 16.2 Follow chart of
the LP-DMOEA

Pareto Solutions
Selection for linking

Construction of
Time Series

Prediction and
Generation of Initial

Population
MOEA

Selection

Crossover

Mutation

Environment
changes

Yes No

() ()pS t O t

()pS t

()pS t

(1)P t

()O t

TS

pi
kill(t) =

1

2π
√

det(Ki)
exp

[
−1

2
(x(t)− μi)

T K−1
i (x(t)− μi)

]
(16.2)

where μi = [μx,i,μy,i] and Ki =

[
σ2

x,i 0
0 σ2

y,i

]
. Here, μi denotes the position of a threat

and Ki determines its acting range.

16.2.2 Problem-Solving Approach: LP-DMOEA

In order to deal with the DMOP at hand, we propose the LP-DMOEA. The main
idea of LP-DMOEA lies in heuristically generating the initial population for a new
problem by making prediction from the historical information. Historical Pareto so-
lutions are linked to construct several time series, and then a prediction method is
employed to anticipate the Pareto set of the next problem. At last, the initial popu-
lation for the new problem can be heuristically generated to accelerate the conver-
gence speed for the new problem.

As shown in Fig. 16.2, suppose the environment changes (a new problem arrives)
at t, the Pareto set Sp(t) in the offspring O(t) is used to generate the next popula-
tion P(t +1). There are three major steps in LP-DMOEA. Firstly, LP-DMOEA will
select some representative Pareto solutions S′p(t) from Sp(t) considering both the
computational complexity of prediction and the diversity of Pareto front. Secondly,
S′p(t) and its historical counterparts are used to construct several time series TS. At
last, an anticipating method will be applied to TS to predict the location of the new
Pareto set, and the initial population can then be generated base on the prediction
results.

408 X. Peng et al.

Fig. 16.3 Diagram of the
hyper-box based selection
(HBS)

P1
P2

1

2

f1

f 2

16.2.2.1 Selecting Pareto Solutions for Linking

As for selecting Pareto solutions for linking, there are two major ideas in the liter-
ature. The first one accomplishes this by considering the feature of each candidate
in the objective space. In [11, 12], the anchor points and closest-to-ideal point of
a Pareto front in the objective space are chosen as the key feature points, and the
corresponding solutions in the decision space are used to make anticipation. This
approach uses two or three key points to characterize the Pareto front. However,
this approach may be invalid when the front is concave or very complex. As for the
other idea, the candidates are selected directly in the decision space under a special
principle. In [29], all the Pareto solutions got before an environmental change are
used to anticipate. This approach is more direct because the factors involved in the
time series construction are only in the context of the decision space. However, each
Pareto solution will be linked to a time series, which may lead to a large number of
time series and the computational complexity may be enormous.

In this paper, we follow the second idea. The difference to [29] lies in that we
use a hyper-box based selection (HBS) to construct time series from the Pareto sets.
As shown in Fig. 16.3, suppose there are two decision values and the range of each
value is divided into many sections by a preset parameter ε1 or ε2. Thus, the whole
decision space is divided into lots of hyper-boxes. Instead of the whole Pareto set,
partial solutions will be selected for the time series construction. The HBS allows
a hyper-box being occupied by only one Pareto solution in the Pareto set. If there
are two or more solutions in a hyper-box, only the one that is the closest to the left-
bottom corner of the hyper-box is the winner. For example, P1 and P2 are in the same
hyper-box, P2 is the winner and is selected to construct the time series since P2 is
closer to the left-bottom corner of the hyper-box.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 409

16.2.2.2 Construction of Time Series

As for constructing time series, the key issue is how to identify the relationship
between the solutions selected by HBS. In this study, we use the minimal distance
principle to identify the relationship between two solutions. Each Pareto solution
xS(i, t) in S′p(t) will be added to the end of a time series and the number of TS is
equal to the number of xS(i, t). Suppose T S(j) ∈ TS is a time series constructed
previously and xT is its last element. If the Euclidean distance from xS(i, t) to xT is
the shortest, then xS(i, t) should be added to TS(j), i.e.

T S(i) = arg min
xs∈S′p(t),xT∈T S(i)

‖xs− xT‖2 (16.3)

Considering the limitation of memory and computation resource, we use a preset
parameter K to control the maximal order number of a time series. This means there
are at most K elements in a time series. If the length of a time series is shorter than
K, then xS(t) will be added to the end of the time series directly. Otherwise, the
elements in the time series will follow the first-in-first-out principle.

16.2.2.3 Prediction and Generation of the Initial Population

Many methods can be used to analyze the time series constructed above. In this
study, the following simple linear model is adopted:

x̃t+1 = xt +(xt− xt−1). (16.4)

Considering the forecasting error caused by the inaccuracy of the forecasting model
and the searching algorithm, the prediction results may not be directly used to ini-
tialize the new population. The diversity should be maintain to some degree. Here
we maintain diversity in two aspects:

a) Only generating part of the initial population based on the prediction results:
A preset parameter α is used to control the rate of the individuals which will be
initialized refereing to the prediction and the rest individuals in the initial population
will be randomly generated.

b) Variation with a noise: Similar to [29], we bring in a Gaussian noise λ to
improve the chance of the initial population to cover the true Pareto set. This noise
is added to the predicted result of each decision value. The standard deviation δ of
noise is estimated by looking at the changes occurred before:

δ 2 =
1

4n
‖xt − xt−1‖2

2 (16.5)

16.2.2.4 Chromosome Representation

The chromosome is the bridge between the optimization problem and the search
space. For a path section, it is straightforward to code it as a series of consecutive
line segments. However, this coding method is ambiguous for the control system

410 X. Peng et al.

Fig. 16.4 Diagram of the
chromosome representation

S

u1 u2 u3 un

Timet t 3t t2t t t n tt

u1

u2
u3

()t tx

()tx
(2)t tx

(3)t tx

()t n tx

since the control system can not get an explicit input signal from such a chromo-
some. In this study, we use a series of consecutive yaw angle changing values to
code a chromosome. In each time step (i.e., Δ t), a UCAV flies at a corresponding
yaw angle and the resulting path can be obtained. Suppose the UCAV cruises at a
constant velocity and only the 2-D case is considered. As shown in Fig. 16.4, the
UCAV makes a change of u1 in its yaw angle at the moment of t, and a line segment
from x(t) to x(t +Δ t) can be geometrically calculated using the kinematics of the
UCAV.

16.2.3 Decision-Making on the Selection of Executive Solution

Although a set of Pareto solutions can be dynamically obtained using the LP-
DMOEA, the OPP problem is not solved until one feasible solution is selected out
for executing. In this section, we focus on how to select a solution referring to the
bias of the DM and how to intelligently make such a decision.

16.2.3.1 Methodology to Select Solutions from the Pareto Set

In this work, we use the weighted stress function method (WSFM) proposed in
[9] to integrate the DM preference after the search process has been made. For a
problem with M optimization objectives, the WSFM converts it to a single-objective
optimization problem as follows:

x = arg min
x∈S

(
∑

1≤i< j≤M

∣∣γi (fi(x))− γ j (f j(x))
∣∣
)

(16.6)

where x and S denote the decision value vector and the decision space, respectively,
γi (fi(x)) denotes the “stress” associated to the corresponding objective according to
the weight (ωi (∑M

i wi = 1), given by the DM) contributed to each objective, see [9]
for more information. Since the equation above considers the maximization problem
and each objective should be normalized, we rewrite the original objective function
(Eq. (16.1)) as follows:

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 411

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min f = { f1(u, t), f2 (u, t)}

f1 (u, t) = 1−
n
∏
i=1

pkill

(
x(t)+

i
∑
j=1

g(u j)

)

f2 (u, t) = 1−

∥∥∥∥x(t)+
n
∑

i=1
g(ui)−T

∥∥∥∥
2
−(‖x(t)−T‖2−nVΔT)

2nVΔT
ui ∈ u(i = 1, . . . ,n)

(16.7)

16.2.3.2 Intelligent Situation Assessment via Bayesian Network (BN)

Now the problem turns to how to set ωi intelligently. The weights ω1 and ω2 reflect
the DM’s bias to safety (i.e., f1) and path length (i.e., f2), respectively. In this study,
the BN is employed to assess the dangerous level of the battle filed. The construction
process of a BN, including the structure and parameters, is indeed the integration of
the DM’s knowledge. The resulting BN will make an intelligent inference instead
of the DM. In this work, the enemy air defense (i.e., threats for UCAVs) consists
of two types of anti-air weapons: the anti-air guns (AAGuns) and the surface-to-air
missiles (SAMs). The threat type is written as TT for short. A threat may work in
one of the following states: No targets are found and the system is inactive (IA),
surveillance radar detects the targets (Surv), targets have been intercepted by radars
(Intercept), targets are being traced by radars (Trace) and open fire (Fire). There are
five environmental dangerous levels (EDLs): very dangerous (VD), dangerous (D),
medium (M), safe (S), and very safe (VS). If the working states of the threats (TS)
could be known, the EDL can be easily inferred.

However, the TS is difficult to be known directly and a UCAV has to infer such
information referring to the local information collected by its onboard sensors. Sup-
pose there are two major onboard sensors assembled on a UCAV: the missile launch-
ing detector (MLD) and the radar warning receiver (RWR). For these sensors, there
are two working states: active (A) and inactive (IA). When the RWR works in state
A, the UCAV has been detected or traced by enemy radars and the anti-air weapons
may be launched in a short future. The matter is worse when the MLD is working
in state A which means the UCAV is under attack.

In addition to the sensors’ information, the distance between a threat and the
UCAV is also a key factor that impacts the EDL. Suppose there are five range (R)
scales: R1 (0∼1 km), R2 (1∼2 km), R3 (2∼4 km), R4 (4∼6 km), and R5 (larger than
6 km). The BN structure is shown in Fig. 16.5 and the corresponding conditional
probability tables (CPTs) are given in Table 16.1 and Table 16.2, respectively.

16.2.3.3 Quantification of Environmental Assessment Results

Since the BN is a qualitative inference tool, we need to quantify the inference re-
sults (i.e., the EDLs) to obtain the weight values associated to each optimization
objective. In this work, we use a fuzzy logic to set the value of ω1 and the fuzzy
rules are given in Fig. 16.6. The triangular-shaped membership function (as shown
in Fig. 16.7) and the center of gravity defuzzification are adopted. After the quan-
tification of ω1, ω2 can be easily calculated since ω1 +ω2 = 1.

412 X. Peng et al.

Fig. 16.5 The BN structure
of the environmental assess-
ment model

Threat Type
(TT)

Threat State
(TS)

Range
(R)

Missile Launching
Detector
(MLD)

Radar Warning Reciver
(RWR)

Environmental
Dangerous Level

(EDL)TS R,TTP

MLD TSP

EDL TS,TTP

RWR TSP

Table 16.1 The conditional probability tables P(RWR | TS) and P(MLD | TS) of the BN of
the environmental assessment model

RWR
TS

MLD
TS

IA Surv Intercept Trace Fire IA Surv Intercept Trace Fire
A 0 1 1 1 0 A 0 0 0 0 1
IA 1 0 0 0 1 IA 1 1 1 1 0

Table 16.2 The conditional probability tables P(TS | R, TT) and P(EDL | TS, TT) of the BN
of the environmental assessment model

TT TS
R

TT EDL
TS

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

AAGun

IA 0 0 0.05 0.95 1

AAGun

VD 0 0 0 0.95 1
Surv 0 0.05 0.9 0.05 0 D 0 0 0.05 0.05 0
Intercept 0 0.9 0.05 0 0 M 0 0.1 0.9 0 0
Trace 0.6 0.05 0 0 0 S 0 0.8 0.05 0 0
Fire 0.4 0 0 0 0 VS 1 0.1 0 0 0

SAM

IA 0 0 0 0.05 0.95

SAM

VD 0 0 0 0.1 1
Surv 0 0 0.05 0.9 0.05 D 0 0 0.2 0.8 0
Intercept 0 0.05 0.9 0.05 0 M 0 0.2 0.7 0.1 0
Trace 0.05 0.9 0.05 0 0 S 0 0.7 0.1 0 0
Fire 0.95 0.05 0 0 0 VS 1 0.1 0 0 0

Fig. 16.6 Fuzzy rules be-
tween EDL and ω1

IF EDL is VD, THEN w1is very high;
IF EDL is D, THEN w1 is high;
IF EDL is M, THEN w1 is medium;
IF EDL is S, THEN w1 is low;
IF EDL is VD, THEN w1 is very low.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 413

10.1 0.3 0.5 0.7

Very Low Low Medium High Very
High

-0.1 1.1

1

1w

Membership degree

Fig. 16.7 The triangular-shaped membership function. Suppose the value range of ω1 is [0.1,
1].

16.3 Dynamic Target Assignment

In this section, we consider the following dynamic target assignment problem: a
fleet of UCAVs are assigned to attack an anti-air defense site which is composed
of several combat units including a command center, surveillance radars, SAMs
or AAGuns. These units work cooperatively and their functions are coupled. This
means a unit works depending on the states of other units. For example, an AAGun
can not work without the target information and commands provided by the radars
and the control center, respectively. Similarly, the control center runs depending on
the target information from the radars, and the radars should work under the control
of the control center. In addition to the inner dependence, the states of the targets
are time-variant according to the opposed nature of the battlefield. This may change
the importance of the corresponding targets (the targets whose states have changed
and the targets that work depending on the state-changed targets). For example,
considering the surveillance task and the threat from anti-radiation missiles (a class
of missiles which are designed to detect enemy radio emission sources, e.g., radars),
networked surveillance radars may keep active (search) in turn. If a radar changes its
state from “inactive (radio quiescence)” to “active (search)”, the importance of the
radar and the SAM launchers or AAGuns that work depending on it will increase.
Consequently, the target assignment problem should be achieved dynamically to
adapt to the time-variant importance of the targets.

The goal of dynamic target assignment is to assign enemy targets to a group of
UCAVs. We achieve this in two steps. Firstly, by dynamically solving the weapon
target assignment (WTA) problem, each onboard air-to-ground missile (AGM) of
the UCAVs will engage a target. Secondly, the result of the WTA will be transformed
to a target list for each UCAV via the weapon-UCAV mapping.

16.3.1 Formulation of the Dynamic WTA Problem

As for an anti-air defense site, the importance values of the combat units are dif-
ferent from each other according to their roles. These units work according to there
inner dependence. As for the attacking side, an expected damage should be given

414 X. Peng et al.

by operators as their mission goal. The definitions of the importance vector, inner
dependence matrix, and expected damage are given as follows.

Definition 16.1. AN×N is an inner dependence matrix of N members, where ai j in-
dicates the probability that the j-th member goes fail if the i-th member becomes
invalid.

Definition 16.2. W is the vector of weight values of N members, where Wi indicates
the importance value of the i-th member and ∑N

i=1 Wi = 100.

Definition 16.3. E is the vector of expected damage types of the targets, where ei =
{1,2,3} indicates the expected damage type (1-destroyed, 2-disabled, or
3-suppressed) of the i-th target.

Suppose M weapons are assigned to attack N targets. The WTA problem is a kind
of combinatorial optimization problem whose objective is to maximize the utility
function FWTA of a set of weapon-to-target pairs {(k1, l1),(k2, l2), . . . ,(ki, li)}, i =
1,2, . . .M, where li indicates the target of weapon ki. The WTA problem can be
formulated as follows:

minFWTA =
M
∑

i=1
Δ(ki, li)

∀ki ∈ {1,2, . . . ,M},ki � k j, if i � j
∀li ∈ {1,2, . . . ,N}

(16.8)

where Δ(ki, li) is the utility increment of assigning weapon ki to target li. In the rest
of this section, we will show how to calculate Δ(ki, li).

In general, Δ(ki, li) is the difference value between gains increment (Δ+(ki, li))
and cost increment (Δ−(ki, li)). In other words, Δ(ki, li) is calculated as follows:

Δ(ki, li) = Δ+(ki, li)−Δ−(ki, li) (16.9)

Δ+(ki, li) can be considered as the incremental loss of potential combat capability of
the enemy. Similarly, Δ−(ki, li) is the incremental loss of potential combat capability
of the attacking side. Suppose i− 1 missiles have engaged their targets, at the i−th
assignment step, Δ+(ki, li) can be calculated as follows:

Δ+(ki, li) = F+
i −F+

i−1

=
N

∑
j=1

Wi, j

(
1−

N

∏
k=1

(
1−Pi(k)ak j

))

−
N

∑
j=1

Wi−1, j

(
1−

N

∏
k=1

(
1−Pi−1(k)ak j

)
) (16.10)

where Wi, j and Pi(k) are calculated iteratively as follows. Pi(k) is the invalid proba-
bility of the k-th target after the i-th AGM has engaged its target. Qi(k) = 1−Pi(k)
is the corresponding valid probability of the k-th target.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 415

Pi(k) =

{
Pi−1(k),k � li
1− γ(ki,k)Qi−1(k),k = li

(16.11)

Wi, j =Wi−1, j
1−Pi (li)ali j

1−Pi−1 (li)ali j
(16.12)

where γ(ki, li) = 1− ξ (ki, li) and ξ (ki, li) is the kill probability that AGM ki dam-
ages target li to the expected damage type (i.e., destroyed, disabled, or suppressed).
ξ (ki, li) can be calculated as follows:

ξ (ki, li) =
phit(ki, li)(1− pa)

OM(ki, li)
(16.13)

where phit(ki, li) is the hit probability of AGM ki, pa is the probability that AGM ki

is intercepted by the anti-air defense, and OM(ki, li) denotes the required number of
AGMs for destroying target li to the expected damage type, i.e., eli . Note that those
AGMs are of the same kind to AGM ki.

As for Δ−(ki, li), it can be calculated as follows:

Δ−(ki, li) = F−i −F−i−1

=
N
∑
j=1

Wi, j

⎛
⎝1− 1−(1−Qi−1(li)λi−1(li))ali j

1−
(

1−Qi−1(li)λi−1(li)
γ(ki ,li)

)
ali j

×
N
∏

k=1

(
1−

(
1− Qi−1(k)λi−1(k)

γ(ki,li)

)
ak j

)⎞
⎠

−
N
∑
j=1

Wi−1, j

(
1−

N
∏

k=1

(
1− ak j (1−λi−1 (k)Qi−1 (k))

))

(16.14)

where λi−1(k) = ∏
ν∈NT

γ(ν,k) and NT is the set of the remaining weapons after i− 1

assignment steps.
According to the above formulation of WTA, the dynamic version of WTA can

be easily formulated. In this study, as mentioned above, we consider the case that
surveillance radars of the anti-air defense keep active (working in the state of search)
in turn to avoid being locked by anti-radiation missiles. This will lead to the change
of the importance values of the targets. Therefore, the weight vector W is no longer
static but time-variant, we write it as W (t). Accordingly, the dynamic version of
Eq. (16.8) can be formulated as follows.

minFWTA(t) =
M
∑

i=1
Δ(ki, li,W (t))

∀ki ∈ {1,2, . . . ,M},ki � k j, if i � j
∀li ∈ {1,2, . . . ,N}

(16.15)

416 X. Peng et al.

16.3.2 Problem-Solving Approach: Memory-Based Estimation of
Distribution Algorithm with Environment Identification

In order to solve the dynamic combinational optimization problem which is for-
mulated above, a memory-based estimation of distribution algorithm (EDA) [19]
is adopted considering the fact that the changing tendency of the radars’ working
states is cyclic to some extent.

EDAs are a class of probability model based EAs, where the processes of learning
and sampling the probability model replace the genetic operations (e.g., crossover
and mutation) in conventional GAs. A probability model indicates the joint prob-
ability distribution of high-performance solutions. That is, it characterizes the set
of good solutions. If the historic information could be stored as probability models,
we would not only save the memory space but also simplify the memory manage-
ment scheme. Consequently, EDAs are suitable for being extended to be memory-
enhanced EAs to solve DOPs.

To this end, an environment identification based memory management scheme
(EI-MMS) is applied in this study. Within this scheme, a probability model is re-
garded as the learning result of the probability distribution of high-performance
solutions in an environment. A probability model together with the best individual
in the solutions from which the probability model is learnt are stored as a mem-
ory element. In order to retrieve the memory elements in EI-MMS, an environment
identification method is proposed to select the suitable element according to a spe-
cial environment. The EI-MMS can be used to extend any binary-encoded static
EDA to its dynamic version and we name the corresponding algorithm as EDA with
environment identification based memory scheme (EI-MEDA).

16.3.2.1 The EI-MMS

The EI-MMS scheme uses an additional memory and the elements stored are the
probability models learnt from the population. Before giving the details, we assume
that the environmental changes are detectable. In all the algorithms studied below,
the environmental change is detected in each generation by checking whether there
is at least one memory element whose evaluation value has changed.

In order to utilize the intervals between every two environmental changes to
learn a high-quality probability model, EI-MEDA updates its memory just after
the environment changes. As shown in Fig. 16.8, the whole dynamic optimization
process is divided into many static optimization processes. In each static process,
EDA searches the optimum in the conventional manner. When the e-th environment
comes at generation t, EI-MMS manages its memory M in three major steps. First,
it stores the probability model obtained from the generation just before the environ-
mental change, i.e., PM(t− 1), into the memory. Then, it finds a memory element
M(ke) (ke = 1,2, . . . ,m) which best fits the new environment to retrieve using an
environment identification method. Finally, the probability model of this memory
element, i.e., mPM(ke), is sampled to generate the first generation of population in
the new environment.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 417

mPM(ke-2)

Memory

e Environment

EDA EDA EDA

Retrieve

Update
Environment
Identification

mPM(ke-3)

PM(t-1)
mPM(ke-1)

ke-3 ke-2 ke-1 m

1e2e3e

PM(t-1) PM(t-1)

Fig. 16.8 Illustration of the EI-MMS

16.3.2.2 The Environment Identification Method

The environment identification method is very important due to its role of linking
between the memory and the dynamic environment. A key aspect of EI-MMS is
to find the suitable memory element to retrieve according to the new environment.
An intuitive way of achieving this is to consider the average fitness of the solutions
sampled from a special element. Considering the computational complexity and the
accuracy, we propose a samples averaging plus best individual (SA + BI) method to
evaluate the elements in the memory and select the suitable one.

The Samples Averaging (SA) Method. The idea of this method is to evaluate a
memory element by averaging the fitness of solutions sampled from it. For each
memory element M(k) (k = 1,2, . . . ,m), NS solutions are sampled from it and the
average fitness of these sampled solutions is calculated in the current environment
as the evaluation value of M(k) as follows.

fM(k) =
1

NS

NS

∑
i=1

f k
ind(i) (16.16)

where f k
ind(i) denotes the fitness of the i-th solution sampled from the probability

model, i.e. mPM(k), of M(k). This method is the most intuitive way to evaluate a
memory element but its computational complexity is high.

The Best Individual (BI) Method. In this method, each memory element con-
sists of two parts: a probability model and the best individual of the population
from which the probability model is learnt. Here we denote the memory element by
M(k) = 〈BM(k),mPM(k)〉 (k = 1,2, . . . ,m), where BM(k) denotes the best individ-
ual. The evaluation of the memory element M(k) is defined as follows:

fM(k) = f (BM(k)) (16.17)

where f (BM(k)) denotes the fitness of BM(k) in the current environment. This
method is similar to the method used in [15, 16].

418 X. Peng et al.

In contrast with the SA method, the accuracy is sacrificed for the sake of the
computational complexity. The BI method uses the fitness of the best individual to
evaluate the probability model learning from a set of individuals. This may lead
to inaccuracy. For example, it is impossible to differentiate two elements when the
fitness of their best individuals is equal.

The SA+BI Method. In order to balance the accuracy and the computational com-
plexity, we combine the above two methods, resulting in the SA+BI method. For
comparing two memory elements, if the fitness of the best individuals are differ-
ent, the BI method is applied; otherwise, the SA method is applied to differentiate
the memory elements. The pseudo-code of the proposed EI-MEDA with the SA+BI
method is shown in Fig. 16.9, where Npop denotes the population size and ps de-
notes the truncation selection rate (i.e., for each generation, the ps×Npop best sam-
ples generated from the current model PM(t) are selected to build up the model
PM(t + 1) for the next generation).

begin
PM(0, i) := 0.5, mPM(j, i) := 0.5, i ∈ [1, l], j ∈ [1,m];
Randomly generate BM(j), t := 0, k := 0;
Randomly initialize first population P0;

repeat
if an environment change is detected then
〈BM(k),mPM(k)〉 := 〈B(t−1),PM(t−1)〉;
Update the fitness value of each BM(j), j ∈ [1,m];
Select a proper mPM(k) using the SA+BI method;
PM(t) := mPM(k);
Sample PM(t) to generate Pt ;

else
Evaluate Pt ;
Select the ps×Npop best individuals from Pt

Learn PM(t);
Compensate the diversity for PM(t) by the method described in Sect. 16.3.2.3;
Sample PM(t) to generate the t-th offspring Ot ;
Evaluate Ot and replace the worst individuals in Pt ;
B(t) := BestIndvidual(Pt);

t := t +1;
until terminated = true;

end;

Fig. 16.9 Pseudocode for the proposed EI-MEDA

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 419

16.3.2.3 Diversity Loss and Counteracting Methods

As mentioned above, EI-MMS is in fact a diversity maintaining method accord-
ing to the environmental changes. In addition to diversity maintaining in dynamic
landscapes, it is also important to counteract the diversity loss in static EDA which
searches the optimum in each environment.

It is well known that the variance of a sample of size N has an expected value
of σ2(1− 1/N) where σ2 is the variance in the parent distribution. Most EDAs do
not compensate for this. When the new probability model is produced, it attempts
to model the new population and therefore has a reduced variance. When this is
iterated repeatedly, the variance of the sampled population gets smaller and smaller
and decays to zero. The probability model evolves to one which can only generate
identical configurations. In [22] Shapiro analyzed the dynamics of EDAs in terms
of Markov chains and declared that the general EDAs can not satisfy two necessary
conditions for being effective search algorithms. Hence, we must counteract the
diversity loss to improve the efficiency of an EDA. In this study, we adopt a diversity
compensation method that combines the loss correction and boundary correction
methods [4], denoted LC+BC in this study.

The Loss Correction (LC) Method. Let l be the length of a chromosome and γi

(i = 1, · · · , l) be the probability that the allele of the i-th gene is equal to 1, γi is
transformed to γ ′i to counteract the diversity loss as follows:

γ ′i =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−
√

1− 4(1− γi)/Ls

2
, γi ≤

1

2
(1−

√
1−LS)

1+
√

1− 4(1− γi)/Ls

2
, γi ≥

1

2
(1+

√
1−LS)

0.5, otherwise

(16.18)

where LS =
ps×Npop− 1

ps×Npop− ps
.

The Boundary Correction (BC) Method. For the BC method, γi is transformed
to γ ′i to counteract the diversity loss as follows:

γ ′i =

⎧
⎪⎨
⎪⎩

β , γi < β
1−β , γi > 1−β
γi, otherwise

(16.19)

where β is a preset parameter to prevent the distribution from converging to 1 or 0.
To guarantee the minimal diversity level, β is set to 1/l in this study unless stated
otherwise.

The LC+BC Method. For the LC+BC method, LC and BC are applied in turn. In
other words, LC is first applied to γi, then the resulting γ ′i is taken as the input to the
BC method.

420 X. Peng et al.

16.3.3 Chromosome Representation

A binary-encoded chromosome is used to represent a solution of the WTA problem
at a certain moment. As shown in Fig. 16.10, the decimal number of a target is coded
into a binary string. The whole chromosome is composed of the target numbers of
all weapons, encoded in binary strings.

0000

Weapon-1

0110

Weapon-2

1110

Weapon-3

...

...

0111

Weapon-N

Target-1 Target-7 Target-15 Target-8

Fig. 16.10 Chromosome representation of the WTA problem

16.3.4 Weapon-UCAV Mapping

One can observe that the attacking sequence to the targets has been considered to
some extent in the procedure of WTA. The high-value targets whose working states
can affect the validity of other targets will be attacked in priority and will be al-
located more AGMs. However, the importance of the independent targets (whose
working states can not affect other targets) can not be reflected by the sequence in
which they are attacked. In order to plan a sequential target list for each UCAV, we
firstly refine the WTA result according to the following additional principles.Then,
the refined WTA result is mapped to the target lists for the UCAVs according to the
owner-member relationship between the AGMs and the UCAVs.

1. If there is no dependence between two targets, the one with a higher weight will
be attacked in priority.

2. If there is no dependence between two targets and their weight values are the
same, the one that is closer to the attacker will be attacked in priority.

16.4 Simulation Results and Analysis

16.4.1 Simulation Scenario

In this section, we will validate and test the proposed approaches via the simula-
tion with a SEAD mission scenario. Four UCVAs (red side) are assigned to attack
the anti-air defense equipments of the blue side. The brief procedure can be de-
scribed as following: The UCAVs maneuver according to the intelligent tactic flight
so as to dynamically avoid the threats in partly known or fully unknown battlefield.
Meanwhile, the targets will be dynamically engaged by the UCAVs according to the
changing working states of the targets. This procedure keeps on going until the fire
condition is satisfied and then the AGMs are released.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 421

Table 16.3 Weapon configuration of the UCAVs

UCAV-1 UCAV-2 UCAV-3 UCAV-4

Weapon station-1 No.1 (AGM-A) No.2 (AGM-B) No.3 (AGM-A) No.4 (AGM-B)
Weapon station-2 No.5 (AGM-A) No.6 (AGM-B) No.7 (AGM-A) No.8 (AGM-B)
Weapon station-3 No.9 (AGM-A) No.10 (AGM-B) No.11 (AGM-A) No.12 (AGM-B)
Weapon station-4 No.13 (AGM-A) No.14 (AGM-B) No.15 (AGM-A) No.16 (AGM-B)

16.4.1.1 Red Side

Among the four UCAVs, UCAV-1 is the leader who will be in charge of the intel-
ligent OPP problem. The other three wing UCAVs will maneuver to follow their
leader in a desired formation1. The initial position of UCVA-1 is (0,10) km and
the initial yaw angle is zero (in east-north-height coordination). The UCAVs are
equipped electronic warning equipments to report the event that being traced by
enemy radars or being locked by enemy anti-air missiles. Each UCAV carries four
AGMs of the same class. There are two classes of AGMs: AGM-A and AGM-B.
The hit probability (phit) of AGM-A is 0.85 and that of AGM-B is 0.7, the maximal
attack range of the two classes of AMGs is 10 km. The weapon configuration of the
UCAVs is shown in Table 16.3.

16.4.1.2 Blue Side

The air-defense of the blue side is composed of sixteen combat units: one command
center, three surveillance radars, and twelve AAGuns. Detailed parameters (posi-
tions, weight values, and expected damage types) of the blue units are shown in
Table 16.4. In order to reduce the risk of being locked by anti-radiation missiles, the
surveillance radars will keep active (searching) for two seconds in turn. The weight
value of an active surveillance radar is sixteen and any AAGun that works depend-
ing on this active radar will have a weight value of five. The weight value of an
inactive radar and the related AAGuns are nine and two, respectively.

The inner dependence matrix is shown in Table 16.5. Table 16.6 shows the
required number of AGM-A and AGM-B for destroying a certain target to the
expected damage type. The interception probability pa could be calculated by
Eq. (16.20) according to the quantity of AGMs (i.e., M).

1 Formation control is a well-studied issue in multiagent cooperative control and is not in
the scope of this study. We assume the formation can be kept well in this simulation and
the relative distance and angle are 100 m and 60orespectively

422 X. Peng et al.

Table 16.4 Parameters of the air-defense units

No. Role Position (km) Weight valuea Expected damage type

1 Command center (21.23, -10.67) 30 e1 = 1 (destroyed)
2 Surveillance radar (19.50, -9.67) 16 e2 = 1 (destroyed)
3 AAGun (21.23, -8.67) 5 e3 = 2 (disabled)
4 AAGun (22.96, -9.67) 5 e4 = 2 (disabled)
5 AAGun (20.50, -9.67) 5 e5 = 2 (disabled)
6 AAGun (18.50, -9.67) 5 e6 = 2 (disabled)
7 Surveillance radar (19.50, -8.67) 9 e7 = 1 (destroyed)
8 AAGun (19.50, -10.67) 2 e8 = 2 (disabled)
9 AAGun (22.23, -8.67) 2 e9 = 2 (disabled)
10 AAGun (20.23, -8.67) 2 e10 = 2 (disabled)
11 AAGun (21.23, -7.67) 2 e11 = 2 (disabled)
12 Surveillance radar (21.23, -9.67) 9 e12 = 1 (destroyed)
13 AAGun (23.96, -9.67) 2 e13 = 2 (disabled)
14 AAGun (21.96, -9.67) 2 e14 = 2 (disabled)
15 AAGun (22.96, -8.67) 2 e15 = 2 (disabled)
16 AAGun (22.96, -10.67) 2 e16 = 2 (disabled)

a Initial weight values that will change according to the time-variant
working states of the targets.

Table 16.5 The inner dependence matrix

1 2 3 4 5 6 7 8 9 10- 11 12 13 14 15 16

1 1.0 0.7 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8
2 0.33 1 0.9 0.9 0.9 0.9 0 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
7 0.33 0 0.1 0.1 0.1 0.1 1 0.9 0.9 0.9 0.9 0 0.1 0.1 0.1 0.1
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
12 0.33 0 0.1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1 1 0.9 0.9 0.9 0.9
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 423

Table 16.6 The required number of AGM-A and AGM-B for destroying a certain target to
the expected damage type

Destroyed Disabled Suppressed
AGM-A AGM-B AGM-A AGM-B AGM-A AGM-B

Command center 2.5 2 1.8 1.5 1.1 1.0
Surveillance radar 2.0 1.8 1.3 1.2 1.0 1.0

AAGun 2.0 1.8 1.3 1.2 1.0 1.0

Table 16.7 Parameters of the threats

(μx,μy)/km (σx,σy) Type

Threat-1 (5,5) (1.4,1) SAM
Threat-2 (5,-5) (2,2) SAM
Threat-3 (15,-11) (1.4,1.4) AAGun
Threat-4 (13,2) (1.0,1.0) SAM

pa =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.16M/5 , M ≤ 5
0.077M/10 , M ≤ 10

0.05M/20 , M ≤ 20
0.04M/30 , M ≤ 30
0.03M/40 , M ≤ 40

0.02 , M > 40

(16.20)

In addition to the targeted anti-air defense site, there are another four independent
threats in the battlefield. The parameters of these threats are given in Table 16.7.

16.4.2 Results and Analysis on the Intelligent OPP Problem

In the following experiments, we chose NSGA2 [8] as the basic MOEA. We ap-
ply LP-DMOEA and random restart methods to NSGA2 and the resulting dynamic
MOEAs are written as LP-DNSGA2 and R-DNSGA2, respectively. For comparison
study, the OPP algorithms that adopt LP-DNSGA2 and R-DNSGA2 are denoted as
OPP-A and OPP-B, respectively.

1) Parameters involved in NSGA2: the population size was set to 100, the length
of a chromosome was set to 20, the probabilities of simulated binary crossover
(SBX) and polynomial mutation (PM) were set to 0.9 and 1/20, respectively, and
the special parameters of SBX and PM are 10 and 20, respectively.

424 X. Peng et al.

2) Parameters involved in LP-DNSGA2: The rate of the heuristically generated
individuals was set to 50% (i.e. α = 0.5), the maximal order number of a time series
was set to 5 (i.e. K = 5), both ε1 and ε2 were set to 0.1.

3) Parameters involved in OPP: The time step Δ t was set to 1s, executing horizon
was set to one time step (i.e., 1s) and the number of time steps (planning horizon)
of a sequential control input was set to 20 (i.e., the chromosome length n = 20).

16.4.2.1 Validation of LP-DMOEA Based OPP Algorithm

In order to test the validity of the LP-DMOEA based OPP algorithm (i.e., OPP-A),
we consider a moving-threat case. In this case, two enemy moving threats patrol in
the mission field. A UCAV should dynamically plan its flying path to avoid being
detected. Fig. 16.11 shows the simulation snapshots. It can be seen that the UCAV
can successfully keep its stealth. In other words, in the 215 s simulation, the UCAV
successfully keeps its survival probability equal to 1.0.

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 30 s

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 75 s

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 87 s

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 95 s

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 105 s

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 115 s

0 10 20 30 40
−10

0

10

20

30

X (km)

Y
 (

km
)

t = 135 s

0 10 20 30 40

0

10

20

30

40

X (km)

Y
 (

jm
)

t = 215 s

Fig. 16.11 A set of simulation snapshots of online path planning for a UCAV. There are two
moving threats (e.g. enemy aircrafts) with σx = σy = 2 flying at a constant speed of 150 m/s.
The speed of the UCAV is 200 m/s, ω1 = 0.7, and ω2 = 0.3.

16.4.2.2 Comparison of Two OPP Algorithms

We compare OPP-A with OPP-B to show the advantage of the proposed dynamic
MOEA over the random restart method. Besides, we would like to test the validity
of WSFM. Therefore, in the following experiments, the intelligent decision-making
method will not be used. Two OPP algorithms will be tested in unknown environ-
ment (no information about the four threats are known in advance) with fixed bias
weight values (ω1 = 0.7 and ω2 = 0.3, or ω1 = 0.3 and ω2 = 0.7).

As shown in Fig. 16.12, the paths obtained by OPP-A (solid line) are more rea-
sonable and smoother than that of OPP-B (dotted line). This can be explained by
Fig. 16.13 where the curves of the yaw angle are compared. It can be seen that the

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 425

X (km)

Y
 (

km
)

0 5 10 15 20 25

−10

−5

0

5

10

2

3

4

Start point

Radar (ID: 12)

Radar (ID: 7)

AGM release border

Command center (ID: 1)

AAGun

Radar (ID: 2)

1

X (km)

Y
 (

km
)

0 5 10 15 20 25

−10

−5

0

5

10

2

3

4

Start point

Radar (ID: 12)

Radar (ID: 7)

AGM release border

Command center (ID: 1)

AAGun

Radar (ID: 2)

1

(a) ω1 = 0.7 and ω2 = 0.3 (b) ω1 = 0.3 and ω2 = 0.7

Fig. 16.12 Planned pathes of OPP-A (solid line) and OPP-B (dotted line)

0 10 20 30 40 50 60 70
−150

−100

−50

0

50

Time (s)

Y
aw

 a
ng

le
 (

de
gr

ee
)

OPP−A
OPP−B

0 10 20 30 40 50 60 70
−150

−100

−50

0

50

Time (s)

Y
aw

 a
ng

le
 (

de
gr

ee
)

OPP−A
OPP−B

(a) ω1 = 0.7 and ω2 = 0.3 (b) ω1 = 0.3 and ω2 = 0.7

Fig. 16.13 The curves of yaw angle of OPP-A and OPP-B

yaw angle curve calculated by OPP-B fluctuates more violently, which is harmful
for the control mechanism of an actual UCAV.

Besides, the results of the survival probability and flight time are given in Ta-
ble 16.8. It is obvious that OPP-A outperforms OPP-B again. This is because LP-
DNSGA2 employed by OPP-A can effectively improve the dynamic optimization
performance in contrast to R-DNSGA2. In addition, the paths considering the DM
bias of ω1 = 0.7 and ω2 = 0.3 are more likely to keep away from the threats in
contrast to the bias of ω1 = 0.3 and ω2 = 0.7. This reveals that the WSFM can
effectively integrate the DM bias into the automatic planner.

16.4.2.3 Validation of Intelligent Behavior against A Pop-up Threat

In the following experiments, we will show the validity of the intelligent OPP which
is the combination of OPP-A and the intelligent environment assessment. Here, we
assume that Threat-4 does not appear or work until the UCAV flies for 50 seconds.
In such case, the UCAV should assess the environment and react to the pop-up threat
intelligently.

426 X. Peng et al.

Table 16.8 Result values of the objective functions, i.e., the survival probability and flight
time of the leader UCAV

Survival probability Flight time (s)

OPP-A, w1 = 0.7,w2 = 0.3 0.987 72
OPP-B, w1 = 0.7,w2 = 0.3 0.979 77
OPP-A, w1 = 0.3,w2 = 0.7 0.821 69
OPP-B, w1 = 0.3,w2 = 0.7 0.808 72

X (km)

Y
 (

km
)

0 5 10 15 20 25

−10

−5

0

5

10

2

3

4

Start point

Radar (ID: 12)

Radar (ID: 7)

AGM release border

Command center (ID: 1)

AAGun

Radar (ID: 2)

1
Pop−up

SAM

X (km)

Y
 (

km
)

0 5 10 15 20 25

−10

−5

0

5

10

2

3

4

Start point

Radar (ID: 12)

Radar (ID: 7)

AGM release border

Command center (ID: 1)

AAGun

Radar (ID: 2)

1

(a) Simulation snapshot at 50s (b) Simulation snapshot at 64s.

X (km)

Y
 (

km
)

0 5 10 15 20 25

−10

−5

0

5

10

2

3

4

Start point

Radar (ID: 12)

Radar (ID: 7)

AGM release border

Command center (ID: 1)

AAGun

Radar (ID: 2)

1

(c) Final simulation snapshot

Fig. 16.14 Path planned by intelligent OPP algorithm proposed in this paper

As shown in Fig. 16.14, in the first 50 seconds, the UCAV has successfully
evaded the threats and would straightly fly to-ward to its goal if the hostile envi-
ronment would not change. Then, a pop-up threat (Thread-4) suddenly appears at
50s. Fortunately, as seen from the dotted path, the UCAV can react to this change
by flying away from the pop-up threat as quickly as possible. At this moment, the
intelligent environmental assessment works effectively to increase the probability
of P(EDL = VD) accordingly and the weight value (ω1) associated to the safety is
set to a higher one. As seen from Fig. 16.15(a), the probability P(EDL =VD) raises

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 427

0 20 40 60 80
0

1

0 20 40 60 80
0

1

0 20 40 60 80
0

1

Pr
ob

ab
ili

ty

0 20 40 60 80
0

1

0 20 40 60 80
0

1

Time (s)

P(EDL=VD)

P(EDL=D)

P(EDL=M)

P(EDL=S)

P(EDL=VS)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time (s)

w
1

(a) The probabilities of each EDL versus time (b) The value of ω1 versus time

Fig. 16.15 Results of environment assessment

at 50s and goes down again (at about 58s) when the UCAV has flied away from the
pop-up threat. Accordingly, as shown in Fig. 16.15(b), the value of ω1 is set to 0.9
from 50s to 58s and goes down when the environment seems safe again.

16.4.3 Results and Analysis on the Dynamic WTA Problem

We apply EI-MEDA to univariate marginal distribution algorithm (UMDA) [16],
named EI-MUMDA in this set of experiments. The corresponding parameters are
given as follows. The population size was set to 200, the memory size was 10, and
the truncation selection rate of the UMDA was set to 0.5.

The results of the last thirty seconds on the dynamic WTA problem are shown in
Fig. 16.16 and the last three times of UCAV-to-target assignment are given in Ta-
ble 16.9. It can be seen that the command center is the most important priority target
to be attacked and is allocated more attacking resources comparing with the radars
and AAGuns. After the survival probability of the command center has gone down
to a certain level, its importance value will significantly decrease. This will make
the WTA process adapt its priority target to the active anti-air units (i.e., the active
surveillance radar and its relative AAGuns). Among the combat units of an anti-air
site, the AAGuns work according to the target information from the surveillance
radar. Thus, the surveillance radar is the priority target in an active anti-air site. It
is noteworthy that the priority of an active radar is only reflected in the quantity of
the allocated AGMs. The attacking sequence to the surveillance radars is not con-
sidered since there is no dependence among them. In order to assign each UCAV a
sequential target list, the principles in Sect. 16.3.4 are used to refine the WTA re-
sults. As can be seen from Table 16.9, each UCAV has its reasonable target list and
the coordinated target assignment is achieved.

428 X. Peng et al.

t = 40 s: 1−1−1−7−12−2−1−12−2−7−1−2−12−12−12
t = 42 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 44 s: 1−1−1−2−1−1−12−1−7−7−12−12−2−7−2−9
t = 46 s: 7−1−1−7−12−2−1−12−2−7−1−1−2−12−12−12
t = 48 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 50 s: 1−1−1−2−1−1−12−1−7−7−12−12−2−7−2−9
t = 52 s: 1−1−1−7−12−2−2−12−2−7−1−1−12−12−12−12
t = 54 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 56 s: 1−1−1−1−1−1−12−2−7−7−12−12−2−7−2−10
t = 58 s: 1−1−1−7−12−2−1−12−2−7−1−7−2−12−12−12
t = 60 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 62 s: 1−1−1−2−1−1−12−1−7−7−12−12−2−7−2−9
t = 64 s: 1−1−1−7−12−2−7−12−2−7−1−1−2−12−12−12
t = 66 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 68 s: 1−1−1−2−1−1−12−1−7−7−12−12−2−7−2−10
t = 70 s: 1−1−1−7−12−2−7−12−2−7−1−1−2−12−12−12
t = 72 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 74 s: 1−1−1−2−1−1−12−1−7−7−12−12−2−7−2−10
t = 76 s: 1−1−1−7−12−1−1−12−2−7−2−1−2−12−12−12
t = 78 s: 1−1−1−7−1−1−2−1−2−2−2−7−7−2−12−12
t = 80 s: 1−1−1−2−1−1−12−1−7−7−12−12−2−7−2−9

Fig. 16.16 The results of dynamic WTA in the last 30 seconds

Table 16.9 The last three times of UCAV-to-target assignment

UCAV number Target list at t = 76s Target list at t = 78s Target list at t = 80s

UCAV-1 1−12−2−2 1−1−2−7 1−1−7−2
UCAV-2 1−1−12−7 1−1−2−2 1−1−7−7
UCAV-3 1−1−12−2 1−2−2−12 1−2−12−12
UCAV-4 12−12−1−7 7−1−7−12 2−1−12−9

For comparison, the random immigrant method [10] is applied to the UMDA,
denoted RUMDA, to solve the dynamic WTA problem. Fig. 16.17 shows the com-
parison of the fitness of the best individuals of EI-MUMDA and RUMDA. One can
see that the proposed EI-MMS can significantly improve the performance of UMDA
and thereby the target assignment result.

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 429

0 10 20 30 40 50 60 70 80
80

85

90

95

100

105

110

115

120

t (s)

F
itn

es
s

of
 te

 b
es

t i
nd

iv
id

ua
ls

EI−MUMDA
RUMDA

Fig. 16.17 Fitness of the best individuals of EI-MUMDA and RUMDA. The immigrant rate
for RUMDA is 0.1.

16.5 Conclusions and Future Work

Usually, the mission area of UCAVs is unknown and might change arbitrarily.
Therefore, the involved optimization problems should be solved dynamically. The
major contribution of this chapter is to solve DOPs in the UCAVs anti-ground at-
tack with EAs. Firstly, we have formulated the MPC-like OPP as a dynamic multi-
objective real-valued optimization problem and a dynamic MOEA with the idea of
Pareto set linkage and prediction (LP-DMOEA) has been proposed to solve this
problem. This dynamic MOEA was then used to optimize the planning horizon of
the MPC. The intelligent behavior is achieved by adopting the BN and fuzzy logic
to model and quantify the environmental assessment which is accomplished by a pi-
lot in a manned aircraft. Secondly, the dynamic WTA problem has been formulated
with respect to the inner dependence among the targets and the expected damage
type. Then, a memory-based EDA with environment identification (EI-MEDA) has
been proposed to solve the dynamic combinational optimization problem. At last,
the proposed approaches have been tested and validated through a computational
simulation with a SEAD scenario.

The experimental results show that the LP-DMOEA works more effectively for
the OPP in contrast to the restart method due to the positive impact on heuristically
initializing the population. The intelligent methods for selecting executive solutions
can automatically assess the changing environment and adapt the path planner. The
formulation of WTA is practical to model a group of anti-air defense units and
the expected damage intention of the attacking side. The EI-MEDA can effectively
solve the dynamic WTA problem and significantly outperforms the algorithm with
random immigrants.

In the future work, we plan to extend our intelligent OPP algorithm to the 3-D
case and pay more attention to the kinetic and dynamic models of a real UCAV. As

430 X. Peng et al.

for the dynamic WTA problem, we hope to extend our research to the case where
targets are detected one by one and assigned dynamically.

Acknowledgements. This work was supported by the National Nature Science Foundation
of China under Grant 61105068 and the NPU Foundation for Fundamental Research under
Grant JCY20130110, and partially by the State Key Laboratory of Synthetical Automation
for Process Industries, Northeastern University, China.

References

[1] Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proc. 1999 IEEE Congr. on Evol. Comput., vol. 3, pp. 1875–1882 (1999)

[2] Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic Pub.
(2002)

[3] Branke, J., Kaußler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dy-
namic optimization problems. In: Proc. 4th Int. Conf. Adaptive Comput. Des. Manuf.,
pp. 299–308 (2000)

[4] Branke, J., Lode, C., Shapiro, J.: Addressing sampling errors and diversity loss in umda.
In: Proc. 9th Annual Conf. Genetic and Evol. Comput., pp. 508–515 (2007)

[5] Cedeno, W., Vemuri, V.: On the use of niching for dynamic landscapes. In: Proc. 1997
IEEE Congr. on Evol. Comput., pp. 361–366 (1997)

[6] Chandler, P.R., Rasmussen, S., Pachter, M.: Uav cooperative path planning. In: AIAA
Guidence, Navigation, and Control Conference and Exhibit (2000)

[7] Cobb, H.: An investigation into the use of hypermutation as an adaptive operator in ge-
netic algorithms having continuous, time-dependent nonstationary environments. Tech.
Rep. AIC-90-001, Naval Research Lab, Washington, D.C. (1990)

[8] Deb, K.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on
Evol. Comput. 6(2), 182–197 (2002)

[9] Ferreira, J.C., Fonseca, C.M., Gaspar-Cunha, A.: Methodology to select solutions from
the pareto-optimal set: A comparative study. In: Proc. 9th Annual Conf. Genetic and
Evol. Comput., pp. 789–796 (2007)

[10] Grefenstette, J.: Genetic algorithms for changing environments. In: Proc. 2nd Int. Conf.
Parallel Problem Solving from Nature, pp. 137–144 (1992)

[11] Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary al-
gorithms: A forward-looking approach. In: Proc. 8th Annual Conf. Genetic and Evol.
Comput., pp. 1201–1208 (2006)

[12] Hatzakis, I., Wallace, D.: Topology of anticipatory populations for evolutionary dy-
namic multi-objective optimization. In: 11th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conf. (2006)

[13] Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Trans. on Evol. Comput. 9(3), 303–317 (2005)

[14] Mori, N., Kita, H., Nishikawa, Y.: Adaption to a changing environment by means of
the thermodynamical genetic algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M.,
Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 513–522. Springer, Heidelberg
(1996)

[15] Morrison, R.: Designing evolutionary algorithms for dynamic environments (2004)

16 EAs for the Multiple UCAVs Anti-ground Attack Problem 431

[16] Mühlenbein, H., Paass, G.: From recombination of genes to the estimation of distri-
butions i. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

[17] Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary algo-
rithm based offline/online path planner for uav navigation. IEEE Trans. on Syst., Man,
and Cybern.–Part B: Cybern. 33(6), 898–912 (2003)

[18] Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the
state of the art. Swarm and Evol. Comput. 6, 1–24 (2012)

[19] Peng, X., Gao, X., Yang, S.: Environment identification based memory scheme for es-
timation of distribution algorithms in dynamic environments. Soft Computing 15(2),
311–326 (2011)

[20] Peng, X., Xu, D., Yan, W.: Intelligent flight for uav via integration of dynamic moea,
bayesian network and fuzzy logic. In: Proc. 50th IEEE Conf. on Decision and Control
and European Control Conf., pp. 3870–3875 (2011)

[21] Pongpunwattana, A., Rysdyk, R.: Evolution-based dynamic path planning for au-
tonomous vehicles. In: Chahl, J.S., Jain, L.C., Mizutani, A., Sato-Ilic, M. (eds.) In-
novations in Intelligent Machines - 1. SCI, vol. 70, pp. 113–145. Springer, Heidelberg
(2007)

[22] Shapiro, J.: Drift and scaling in estimation of distribution algorithms. Evol. Com-
put. 13(1), 99–123 (2005)

[23] Ursem, R.: Multinational gas: Multimodal optimization techniques in dynamic environ-
ments. In: Proc. 2000 Genetic and Evol. Comput. Conf., pp. 19–26 (2000)

[24] Wineberg, M.O.F.: Enhancing the ga’s ability to cope with dynamic environments. In:
Proc. 2000 Genetic and Evol. Comput. Conf., pp. 3–10 (2000)

[25] Yang, S., Jiang, Y., Nguyen, T.T.: Metaheuristics for dynamic combinato-
rial optimization problems. IMA J. of Management Mathematics (2012),
doi:10.1093/imaman/DPS021

[26] Yang, S., Yao, X.: Population-based incremental learning with associative memory for
dynamic environments. IEEE Trans. on Evol. Comput. 12(5), 542–561 (2008)

[27] Zengin, U., Dogan, A.: Dynamic target pursuit by uavs in probabilistic threat expo-
sure map. In: AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and
Exhibit, Chicago, Illinois (2004)

[28] Zheng, C., Li, L., Xu, F., Sun, F., Ding, M.: Evolutionary route planner for unmanned
air vehicles. IEEE Trans. on Robotics 21(4), 609–620 (2005)

[29] Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Prediction-based population re-
initialization for evolutionary dynamic multi-objective optimization. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp.
832–846. Springer, Heidelberg (2007)

Chapter 17
Advanced Planning in Vertically Integrated
Wine Supply Chains

Maksud Ibrahimov, Arvind Mohais, Maris Ozols, Sven Schellenberg,
and Zbigniew Michalewicz

Abstract. This chapter gives detailed insights into a project for transitioning a wine
manufacturing company from a mostly spreadsheet driven business with isolated
silo-operated planning units into one that makes use of integrated and optimised de-
cision making by use of modern heuristics. We present a piece of the puzzle – the
modelling of business entities and their silo operations and optimizations, and pave
the path for a further holistic integration to obtain company-wide globally optimised
decisions. We argue that the use of “Computational Intelligence” methods is essen-
tial to cater for dynamic, time-variant and non-linear constraints and solve today’s
real-world problems exemplified by the given wine supply chain.

17.1 Introduction

In managing supply chain thousands of individual decisions have to be made at
regular intervals. These decisions are of different scope and significance

Maksud Ibrahimov
School of Computer Science, University of Adelaide, South Australia 5005, Australia
e-mail: maksud.ibrahimov@adelaide.edu.au

Arvind Mohais ·Maris Ozols
SolveIT Software, Pty Ltd., 99 Frome Street, Adelaide, SA 5000 Australia
e-mail: {am,mo}@solveitsoftware.com
Sven Schellenberg
SolveIT Software, Pty Ltd., Level 2, 198 Harbour Esplanade, Docklands, VIC 3008, Aus-
tralia. School of Computer Science, RMIT University, Building 14, Level 8 City campus,
414-418 Swanston Street, Melbourne, Vic 3000 Australia
e-mail: sven.schellenberg@rmit.edu.au

Zbigniew Michalewicz
School of Computer Science, University of Adelaide, South Australia 5005, Australia, In-
stitute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, 01-237 Warsaw,
Poland, Polish-Japanese Institute of Information Technology, ul. Koszykowa 86,
02-008 Warsaw, Poland
e-mail: zbigniew.michalewicz@adelaide.edu.au

S. Yang and X. Yao (Eds.): Evolutionary Computation for DOPs, SCI 490, pp. 433–463.
DOI: 10.1007/978-3-642-38416-5_17 c© Springer-Verlag Berlin Heidelberg 2013

434 M. Ibrahimov et al.

(e.g., operational, tactical, strategic); there are also countless trade-offs between var-
ious decisions. Further, supply chain networks are extremely complex and they are
set in constrained and dynamic environment, with many (usually conflicting) objec-
tives. Any successful implementation of Advance Planning System (APS) for such
complex network should be capable of addressing several key issues; these include
dealing with huge search spaces, many objectives, variable constraints, and variabil-
ity and uncertainty.

Due to the high level of complexity, it becomes virtually impossible for determin-
istic systems or human domain experts to find an optimal solution – not to mention
that the term ‘optimal solution’ loses its meaning in multi-objective environment,
as often we can talk only about trade-offs between different solutions. Moreover,
the manual iteration and adjustment of scenarios (what-if scenarios and trade-off
analysis), which is needed for strategic planning, becomes an expensive, if not un-
affordable, exercise. Many texts on Advance Planning and Supply Chain Manage-
ment (SCM) (e.g., [29]) describe several commercial software applications (e.g.,
AspenTech – aspenONE, i2 Technologies – i2 Six.Two, Oracle – JDEdwards Enter-
priseOne Supply Chain Planning, SAP – SCM, and many others), which emerged
mainly in 1990s. However, it seems that the areas of supply chain management in
general, and advanced planning in particular, are ready for a new genre of applica-
tions which are based on Computational Intelligence methods. Many supply chain
related projects run at large corporations worldwide failed miserably (projects that
span a few years and cost many millions). In [29], the authors wrote:

“In recent years since the peak of the e-business hype Supply Chain Management
and especially Advanced Planning Systems were viewed more and more critically by
industry firms, as many SCM projects failed or did not realize the promised business
value.”

The authors also identified three main reasons for such failures:

• the perception that the more you spend on IT (e.g., APS) the more value you will
get from it,

• an inadequate alignment of the SCM concept with the supply chain strategy, and
• the organizational and managerial culture of industry firms.

While it is difficult to argue with the above points, it seems that the forth (and
unlisted) reason is the most important: maturity of technology. Small improvements
and upgrades of systems created in 1990s do not suffice any longer for solving
companies’ problems of 21st Century. A new approach is necessary which would
combine seamlessly the forecasting, simulation, and optimization components in
a new architecture. Further, many existing applications are not flexible enough in
the sense that they cannot cope with any exceptions, i.e., it is very difficult, if not
impossible, to include some problem-specific features – and most businesses have
some unique features which need to be included in the underlying model, and are not
adequately captured by off-the-shelf standard applications. Thus the results are often
not realistic and the team of operators return to their spreadsheets and whiteboards
rather than to rely on unrealistic recommendations of the software.

17 Advanced Planning in Vertically Integrated Wine Supply Chains 435

Several studies have investigated optimization techniques for various supply
chain components, including the job-shop scheduling problem [8, 11, 32], plan-
ning and cutting problems [20, 21], routing problems [31], allocation and distribu-
tion problems [10, 37], to name a few. Many algorithms were developed to solve
various supply chain components in a single silo environment [22, 33, 36]. How-
ever, optimization of each silo without considering relationships with other silos
usually does not lead to a globally optimal solution of the whole supply chain. Be-
cause of that, large businesses started to become more interested in optimization of
their whole system rather than the optimization of single components of the system.
This approach is commonly referred in the literature as coordinated supply chain
management. Davis, one of the experts in supply chain optimization, described this
situation as follows [12]:

“...companies should be able to use solutions to optimise across their sourcing and
procurement, production and distribution processes all at the same time. Instead, sup-
ply chain solutions tend to break those functions out into separate modules, each of
which runs separately from the others. The answer you get when you first do produc-
tion and then do distribution or any of these functions independently is not as good as
the answer you get when you do them together.”

And Ackoff [1] correctly identified this issue over 30 years ago:

“Problems require holistic treatment. They cannot be treated effectively by decompos-
ing them analytically into separate problems to which optimal solutions are sought.”

In this chapter a wine supply chain of five component is described. The current state
of implementation models these components as individual silos tackling some of
the dynamic challenges and business objectives. We describe one part of the journey
towards a fully integrated company-wide decision support system.

The rest of the chapter is organized as follows. The next section provides a review
of relevant literature of supply chain management and Computational Intelligence
methods. Section 17.3 discusses briefly different components of the wine supply
chain. Three of those components are described in more detail in the following sec-
tions respectively. Section 17.4 explains vintage intake planning, the process from
harvesting grapes to their processing in a winery. Section 17.5 presents tank farm
processing. Section 17.6 discusses the bottling wine problem. The last section con-
cludes the chapter.

17.2 Literature Review

In this section, a brief literature review on coordinated supply chain management is
provided, together with some discussion on time-varying constraints and the impor-
tance of Computational Intelligence methods.

436 M. Ibrahimov et al.

17.2.1 Supply Chain Management

Supply chain management is a field that combines management of various business
functions with a broad range of theoretical domains such as systems theory, in-
ventory control, optimization, logistics, mathematical and computer modelling and
other. The Global Supply Chain Forum defines Supply Chain Management as the
integration of key business processes across the supply chain for the purpose of cre-
ating value for customers and stakeholders as mentioned in [17]. The term supply
chain management was first mentioned in 1982 by [24], however, the concept of
supply chain management was born long before, in the early 20th century, with the
creation of the assembly line. In 1960s appearance of IBM computers helped raising
interest to modern supply chain management.

In recent years, there has been an increased interest in solving supply chain
management problems using Computational Intelligence methods. Naso et al. [23]
looked at the problem of coordination of just-in-time production and transporta-
tion in a network of partially independent facilities of ready-mixed concrete. They
optimized the network of independent and distributed production centres serving a
number of customers distributed across a certain geographical area. This problem,
which has high complexity and strict time delivery constraints, was approached
with a meta-heuristic based on a hybrid genetic algorithm with combined con-
structive heuristics. Altiparmak et al. [3] proposed algorithms using mixed-integer,
non-linear programming model for multi-objective optimization of a supply chain
network based on the real world problem of a company that produces plastic prod-
ucts. They compared three approaches to find the set of Pareto-optimal solutions and
discuss the pros and cons of each of them. Zhou et al. [36] presented a novel genetic
algorithm to solve bi-criteria, multiple warehouse allocation problem. The proposed
method finds the Pareto-front of wide range of non-dominated solutions without the
arbitrary determination of weighting coefficients. In [33], an evolutionary algorithm
was developed for dealing with the coordination of supply chain flows between dif-
ferent members of the chain. The authors of that paper recognized the importance of
an overarching algorithm that optimises the whole system. Their work looked at the
flow of materials in terms of supply and demand, but did not consider the intricacies
of production within each business silo. Lee and Choi [18] applied genetic algo-
rithms to solve a single machine scheduling problem with distinct dates and attempt
to minimize all penalties. This method produces near optimal solutions, which they
proved by comparison with an exact algorithm. Lee et al. [19] addressed the prob-
lem of inventory management of a refinery that imports several types of crude oil
and proposes a mixed-integer linear programming model. Martin et al. [22] created
a linear programming model to optimise flat glass production.

Large businesses typically split their business into operational components such
as purchasing, production, distribution, etc. In the past, organisations have concen-
trated their research and efforts on these single operational components of the sup-
ply chain. As optimization of each individual silo in isolation may not lead to the
global optimum, large businesses started to become more interested in optimiza-
tion of their whole system rather than optimization of single components of the

17 Advanced Planning in Vertically Integrated Wine Supply Chains 437

system. This approach is commonly referred in the literature as coordinated supply
chain management. Although the field of supply chain management emerged not a
long time ago, the idea of coordinated planning was already proposed in 1960 by
Clark and Scarf [9]. They investigated multi-echelon inventory problem based on
sequential and tree-like models – and they approached the problem using recursive
decomposition method. Vidal and Goetschalckx [34] provides a review of strategic
production-distribution systems with global integration. They stressed that very lit-
tle research exists that addresses optimization of the whole supply chain rather than
its single components. They mainly concentrated on mixed integer programming
models. Aikens [2] presented a problem of optimal location of warehouses starting
with simple uncapacitated single-commodity case with zero echelons and ending
with more complex capacitated multicommodity and multi-echelon facility loca-
tion models. Review by [30] defines three categories of operational coordination:
Buyer-Vendor coordination, Production-Distribution coordination, and Inventory-
Distribution coordination. The model described later in this chapter belongs to the
second category. Within the production-distribution coordination category, several
researchers approached it with dynamic programming heuristics, mixed integer pro-
gramming, and Markov chains. Authors underline the complexity of problems of
this category and discuss strategic planning supply chain models, the majority of
the which are mixed integer programming based models.

In one of the first papers on production-distribution coordination [13] the author
considered several models with interacting silos and stochastic demands and dis-
cusses an analytical approach to find optimum inventory levels. Production orders
are processed in weekly batches. Pyke and Cohen in [27] considers a single-product,
three silo supply chain that include a factory, finished goods stockpile and a distribu-
tion centre. The whole model is demand driven and based on the Markov chain. The
finished goods stockpile in this model is used more like a buffer between production
and distribution silos. Authors present near-optimal algorithms to determine batch
size, normal reorder point, and expedite reorder point. The companion paper [28]
upgrades their system to support multi-product situations. Pankaj and Marshall in
[7] developed a two component demand driven model where products are first pro-
duced at the production plant and then distributed by the fleet of trucks to a number
of retail outlets (also known as vehicle routing problem). Then, the authors com-
pared two approaches, in the first one they solve the production and vehicle routing
problems separately, and then together combined under a single optimization algo-
rithm. The production planning problem is solved optimally and the vehicle routing
problem is solved using heuristics. Their results show an advantage of using the
second approach. However, the authors used relatively small datasets for their prob-
lem. Multi-echelon inventory optimization systems have been studied by various
researchers. Caggiano et al. [5] used a greedy algorithm for his multi-item, multi-
echelon service parts distribution system. Caglar et al. [6] solved his multi-item,
two-echelon problem with Lagrangian decomposition. Wong et al. [35] approached
the same problem with a greedy algorithm.

438 M. Ibrahimov et al.

17.2.2 Time-Varying Constraints

The dynamic nature of real-world optimization problems is well known, but a closer
examination reveals a few different aspects of the problem that can be described
as dynamic. In this section, we introduce a classification of dynamic optimization
problems into three categories:

1. Time-varying objective functions.
2. Time-varying input variables.
3. Time-varying constraints.

There is a large body of research literature that addresses dynamic property of such
optimization problems, and we will undertake a brief review of work in each of the
areas. It will be noticed that while there is an abundance of work on problems fitting
into the categories of time-varying objective functions and time-varying input vari-
ables, there are relatively few published reports dealing with dynamic optimization
problems of the ‘third kind’, that is one that deal with time-varying constraints.

These are problems in which the constraints of the environment within which a
solution must be found change from day to day. These varying constraints add an
additional level of complexity to the problem because a good approach must be able
to operate equally well regardless of how many of these constraints are in place, and
in what particular combination they occur. An example of a varying constraint is the
requirement that a new production schedule be created that meshes seamlessly with
the existing schedule once a number of days of the current production schedule have
been fixed. In general, we do not know what the current schedule might be at any
given moment in time, yet we must create an algorithm that produces a new solution
that matches up with the existing one, and still produces an optimal result for the
long term.

Good example of the types of problems that can be categorized as time-varying
constraints can be found in [15], wherein the authors described circumstances that
require the generation of regular new production schedules due to uncertainties
(both expected and unexpected) in the production environment. They touch on typ-
ical examples such as machine breakdowns, increased order priority, rush orders
arrival and cancellations. All of these issues are also considered in this article, from
the perspective of an integrated evolutionary algorithms-based software solution.
There are many other example of works recognizing this type of problem, for ex-
ample [14, 16, 25], considering other Computational Intelligence methods.

Based on our experience in solving real-world optimization problems for
commercial organisations, we have found that the type of problems commonly
experienced in industry are those that belong to the second and third categories.
Interestingly we have found that the vast majority of published research in evo-
lutionary algorithms addresses the first category and to a lesser extent the second
category. However, dynamic optimization of the ‘third kind’, i.e., where the prob-
lem involves time-varying constraints, although well-recognised in other domains,
has been the subject of relatively few investigations in the literature. This observa-
tion is especially true when we extend our search to fully-fledged application of a

17 Advanced Planning in Vertically Integrated Wine Supply Chains 439

Computational Intelligence method to a dynamic real-world problem. In the same
time, Computational Intelligence methods are very well suited for powering soft-
ware applications for addressing these operational issues; we discuss them briefly
in the following subsection.

17.2.3 Computational Intelligence

Computational Intelligence is considered an alternative to classical artificial intel-
ligence and it relies on heuristic algorithms (such as in fuzzy systems, neural net-
works and evolutionary computation). In addition, Computational Intelligence also
embraces techniques such as swarm intelligence, fractals and chaos theory, artificial
immune systems, and others. Computational Intelligence techniques often combine
elements of learning, adaptation, evolution and fuzzy logic to create programs that
are, in some sense, intelligent.

An interesting question, which is being raised from time to time, asks for guid-
ance on the types of problems for which Computational Intelligence methods are
more appropriate than, say, standard Operation Research methods. From our per-
spective, the best answer to this question is given in a single phrase: complexity. Let
us explain. Real-world problems are usually difficult to solve for several reasons,
and include the following:

• The number of possible solutions is so large as to forbid an exhaustive search for
the best answer.

• The evaluation function that describes the quality of any proposed solution is
noisy or varies with time, thereby requiring not just a single solution but an entire
series of solutions.

• The possible solutions are so heavily constrained that constructing even one fea-
sible answer is difficult, let alone searching for an optimum solution.

Naturally, this list could be extended to include many other possible obstacles. For
example, we could include noise associated with our observations and measure-
ments, uncertainly about given information, and the difficulties posed by problems
that have multiple and possibly conflicting objectives (which may require a set of
solutions rather than a single solution). All these reasons are just various aspects of
the complexity of the problem.

Note that every time we solve a problem we must realise that we are in reality
only finding the solution to a model of the problem. All models are a simplification
of the real world - otherwise they would be as complex and unwieldy as the natural
setting itself. Thus, the process of problem solving consists of two separate general
steps: (i) creating a model of the problem, and (ii) using that model to generate a
solution:

Problem→Model→ Solution.

Note that the “solution” is only a solution in terms of the model. If our model has
a high degree of fidelity, we can have more confidence that our solution will be

440 M. Ibrahimov et al.

meaningful. In contrast, if the model has too many unfulfilled assumptions and
rough approximations, the solution may be meaningless, or worse. So, in solving
real-world problems there are at least two ways to proceed:

1. we can try to simplify the model so that traditional methods might return better
answers, or

2. we can keep the model with all its complexities, and use non-traditional ap-
proaches, to find a near-optimum solution.

In other words, the more complex the problem (e.g., size of the search space, evalu-
ation function, noise, constraints), the more appropriate it is to use a non-traditional
method, e.g., Computational Intelligence method. Anyway, it is difficult to obtain
a precise solution to a problem because we either have to approximate a model or
approximate the solution. And a large volume of experimental evidence shows that
this latter approach can often be used to practical advantage: many Computational
Intelligence methods have already been incorporated into software applications
that handle levels of supply chain complexity that is unapproachable by traditional
methods.

17.3 Wine Supply Chain

Wine supply chain is a complex multi-component system with various kinds of
inter- and intra- company dependencies. A typical supply chain may consist of com-
ponents such as maturity models, vintage intake planning, crushing, tank farm, bot-
tling, supply of dry goods (for example bottles, corks, bottle labels, etc), various
distribution components (such as distribution depots and hubs), storage components
(warehouses), external sourcing of raw materials and other. In [29], the authors de-
fined that

“...supply chain consists of two or more legally separated organizations, being linked
by material, information and financial flows.”

In order to reduce the complexity of this enormous supply chain, a company may
concentrate on the subset of the supply chain that belongs to this company. This type
of management control where several consecutive stages of supply chain operated
by a single company called vertical integration and a supply chain with this style of
management is called vertically integrated supply chain. In Fig. 17.1 dashed boxes
represent external components to the company, for example dry goods suppliers,
distribution companies, storages, etc. The components represent the vertically inte-
grated wine supply chain, all components of which belong to the given company.
Material flow goes from left to right on this figure, whereas information flows from
right to left. The vertically integrated supply chain on this figure is represented by
five components: Maturity Models, Vintage Intake Planning, Crushing, Tank Farm
and Bottling.

From the broader perspective, these entities may not be legally separated, espe-
cially in vertically integrated supply chains, as they are within jurisdiction of a single
wine company. In more generic sense a supply chain consists of generally separate

17 Advanced Planning in Vertically Integrated Wine Supply Chains 441

Maturity
Models

Vintage
Planning

Crushing
Tank
Farm

Bottling

Fig. 17.1 Wine Supply Chain. Blue arrows on this diagram represent a material flow, black
arrows represent information flow. The dashed boxes illustrate external components of the
company (e.g., suppliers or data feeds). A screen shot of the applications can be found in
subsequent sections describing the application components.

entities (within one structure) involved in production and distribution of a certain
commodity with possibly different key performance indicators (KPIs), being linked
by material, information and financial flows. This vertically integrated system can
have two types of KPIs: global, which reflect a measure of the supply chain as a
whole and local, which shows the performance of individual component.

Concentrating on the vertically integrated supply chain which is a core element
in the whole system for the company opens many benefits from the financial and
business points of view. A software application has been developed for each of the
components. All these software applications were based on the paradigms of Com-
putational Intelligence. When deployed together and later on integrated, these appli-
cations have the potential to optimise all planning and scheduling activities across a
winery’s entire supply chain and can help wineries to optimise various business pro-
cesses, predict and deal with unexpected events, and address key operational issues,
such as:

• Creating optimal harvest schedules that can accommodate last-minute changes.
• Maximising the utilisation of crushers, pressers, and fermenters.
• Optimising tank farm transfers and activities.
• Dealing with sudden changes (e.g., delayed transport, demand spikes, equipment

failure, extreme weather conditions, etc.)
• Improving resource allocation under risk and uncertainty.
• Minimising transportation and other logistics costs.
• Improving the accuracy of demand forecasts.

Having a system that controls the whole supply chain becomes even more essential
because of the dynamic nature of the market and constantly coming and changing
customer orders with many, often conflicting, objectives. Apart from the finding
the globally optimal solution of how to run the supply chain in a relatively short
period of time, this vertically integrated system has additional benefits such as the
ability to quickly react on dynamic changes to the schedule which gives a company
a highly competitive advantage, a quick identification of bottlenecks and problems
which significantly decreases the chance of having a human error. One of the most

442 M. Ibrahimov et al.

significant benefits is the global what-if scenario analysis which is the ability to
quickly analyse the impact of certain changes in one or several parts of the supply
chain on other parts is essential for schedulers and analysts. Looking at KPIs (both
global and local) schedulers can evaluate whether a certain change made a positive
or negative effect on the whole system.

This section briefly describes five components of a vertically integrated wine
supply chain. These software applications include predictive modelling for grape
maturity, vintage planning, crush scheduling, tank farm optimization, bottling-line
sequencing, and demand forecasting. In the later sections, due to the space limita-
tions, only three of these components are described in details.

This represents the current state of the project. Later on, all systems are coordi-
nated by a global module which facilitates the cooperation between the components
for the whole vertically integrated supply chain.

17.3.1 Maturity Models

Vintage intake plans are heavily dependent on the
prediction of expected grape maturity dates. It is
possible to export the prediction dates from some
external system that functions as a black box pro-
viding only one date when it believes the harvesting
should occur. However, limited visibility into the
prediction process often prompts requests to revisit
the prediction functionality of this process. So the

maturity models deploy a new prediction module that provides improved prediction
dates and visibility of the prediction-calculation provided.

Grape maturity can be defined as the physiological age of the berry on the vine. It
is important to define the optimal grape maturity for wine production and to develop
clear chemical or biochemical traits that can be used to define the peak of ripeness.
The definition of optimal maturity will vary depending upon the style of wine being
made; the working definition of quality; varietal; rootstock; site; interaction of va-
rietal, rootstock and site; seasonal specific factors; viticultural practices; and down-
stream processing events and goals. If a clear descriptive analysis of the quality
target exists, then the time of harvest can be optimised to meet those goals. Sev-
eral grape and cluster characteristics have been used to assess ripeness (e.g., sugar,
pH, acidity, berry metabolites, berry proteins, taste). There are, of course, other
non-compositional factors that influence the decision to harvest, including labour
availability; seasonal changes such as rainfall; heat waves; tank space limitations;
and other factors beyond the winemaker’s control.

A “black box” prediction approach provides no audit capability for the user mak-
ing it difficult to detect and promptly address issues related to accuracy of predic-
tion. These factors can easily cause errors in forecasting maturity dates to go un-
noticed and unrectified for prolonged periods of time. Decisions on when to book
certain grapes for harvesting and crushing are relying heavily on the experience of

17 Advanced Planning in Vertically Integrated Wine Supply Chains 443

the personnel involved in the process, and may result in a non-optimal allocation
of harvesting and crushing resources. Each of these situations could result in higher
costs for harvesting, transportation, and crushing, and reduction in grape quality.

17.3.2 Vintage Intake Planning

Vintage intake planning manages the grape supply
intake from the “vineyard to the weighbridge”. The
functionality of this module supports the creation
and maintenance of vintage intake plans that satisfy
capacity constraints and facilitate the harvesting of
grapes during periods of time when the quality is the
highest. This stage is described in detail in Section
17.4.

17.3.3 Crushing

Crushers are used to process wine grapes and are
often connected to different types of pressing ma-
chines, The optimal processing capacity of the
crushing machines is about 40-45 tons per hour.
However, but if necessary, it may be increased to 60-
80 tons per hour. The most important limiting factor
is the capacity of the pressing machines and fermen-
tation containers. The processing capacity for the

pressing machines ranges from 4 to 12 tonnes per hour depending on the type of
grapes. It is important to generate optimal schedules for all crushers over some time
horizon. However, the generated weekly schedule may incur frequent changes due
to contractual influences, weather conditions, seasonal influences, and daily produc-
tion variances. When the changes occur, The Crush Scheduler re-optimises and gen-
erates alternative schedules to fill available capacity. Also, a variety of constraints
are present in this part of the wine supply chain, including:

• constraints in time (e.g., not processing fruit during the hottest part of the day).
• constraints in the throughput of presses.
• constraints in the throughput of fermentation vessels.
• the throughput of trucks via the crusher to be a continuous flow.
• scheduled repairs and maintenance of equipment.
• scheduled changeover and clean up (white to red, or lower grade grape-to-higher

grade grape).
• special demand-fulfilling variety shortages to address meeting capacity needs.

444 M. Ibrahimov et al.

17.3.4 Tank Farm

Wineries make daily decisions on the processing
and storage of wines and juices in their tank farms,
with major wineries having several hundred tanks
that have differing capacities and attributes. These
tanks may be insulated or refrigerated, for in-
stance, and could have an agitator. Some of these
tanks might be used to store juice after the grapes
are crushed, fermented, and pressed, while others
might be primarily designated for blending. Differ-

ent types of juices may also require specific tank attributes for processing, such as
refrigeration jackets or agitators. This stage is described in details in Section 17.5.

17.3.5 Bottling

The primary task of the Bottling-Line Scheduler is
to generate optimal production schedules for the
wineries’ bottling operations. The software uses
advanced optimization techniques for generating
optimal production schedules. Opportunities for op-
timization include manipulating the sequencing or-
der, selecting which bottling lines to use, consoli-
dating similar orders within the planning horizon,
and suggesting changes to the requested dates that

improve the overall schedule. Some of the key objectives are to maximise export
and domestic service levels (i.e., DIFOT), maximising production efficiency, and
minimising cost. This stage is described in details in section 17.6.

17.4 Vintage Intake Planning

This section describes Vintage Intake Planning component of the wine supply chain
in details.

17.4.1 Description of the Problem

The aim of the vintage intake is to harvest grape blocks from vineyards, carry the
grapes into wineries where they will be further processed. Vintage intake planning
in the scope of this chapter describes the planning of all necessary actions of bring-
ing wine grapes from vineyards into wineries and the immediate subsequent grape
processing steps within the winery. The vintage intake planning finishes once the
juice’s fermentation is over and the wine will be refined in the tank farm (17.5).

17 Advanced Planning in Vertically Integrated Wine Supply Chains 445

Parties that are involved in the intake process are harvesting and carrier companies
and the winery personnel.

While wineries and the winery equipment such as crushers, presses, centrifuges
and fermenters are owned by the wine producing company, the harvesting and trans-
portation of grapes into the winery is carried out by contractors. Those contractors
usually provide their services to many wine producers. Due to the nature of the
ripening process of grapes and the inherent variations caused by different grape va-
rieties, locations of the blocks and constantly changing weather conditions during
the maturity process, contractors such as harvester or truck providers’ availability
fluctuates significantly and is often unknown until very close to the actual date their
services become necessary.

The uncertainty around logistics resources and the inability to control them by
the vintage planners demand a constant update of the plans. The further uncertainty
imposed by sudden unpredicted weather changes which impacts on the grape matu-
rity and thus the preferred wine intake day limits the planning horizon to only one
or two weeks. These short-term plans are created in the week before the planning
week commences, but do not get locked in until two days prior. At this point in
time, the logistics manager for a particular region finished the process of requesting
the required capacities to harvest and carry the grapes, and the service providers re-
sponded with their offer of available resources that meet or undercut the necessary
requirements. This process will continue until all resource requirements are met or
if none of the available providers within the region has any capacities left. The re-
sources will be booked and locked in to the plan. After locking in the available
resources, only unexpected events such as technical problems or human error can
compromise the plan.

Harvesters and Trucks are not the only resources to take into consideration when
drafting a vintage intake plan. The intake does not finish at the arrival at the winery,
but after the wine grapes have been processed. At the winery the processing of the
grapes begins:

• Grapes get weighted on weighbridges.
• Depending on which process for the harvested grapes to follow, the grapes will

be crushed (usually, only red grapes get crushed).
• Some crushed grapes may require to stay together with the stalks and skins for a

few days.
• Grapes get pressed (usually whites).
• The resulting press cut juices gets centrifuged.
• Finally, the juice is fermented in fermenters for about 1-2 weeks.

These processing steps are by no means complete, but they represent steps that pose
major constraints on the grape intake. They represent the constraints human planners
would take into account when assessing the winery intake capacity for drafting an
intake plan.

446 M. Ibrahimov et al.

17.4.2 Constraints

The logistic constraints during peak season of the vintage are probably the most
pressing capacity constraints a vintage intake planner faces. Not only do they take
into account preferred harvesters of growers, but also do they compete with other
wine producing companies in allocating and booking carrier capacities.

Harvester Carrier

Winery

Weighbridge/
Crusher

Press Centrifuge Fermenter

Fig. 17.2 Grape flow at intake. Note that not all grape processing steps within a winery are
mandatory.

The first resource at the winery that poses a capacity bottleneck is the weigh-
bridge as in most cases it can only be used sequentially. In some instances, it may
be connected with the crushers in which case grapes will be loaded into special bins
which incorporate a weighing machine. The filled bin will be subsequently tipped
into the crushers which grind the grapes. Prior to the crushing, the winemaker un-
dertakes a final assessment of the quality of the grapes and classifies the grapes into
their final usage. This final usage determines the processes the grapes go through
the manufacturing network all the way to the final bottling of the product.

Depending on the quality of the grapes and the intended final product they con-
tribute to, the grapes will be routed through different processing stages, the process.

Presses pose the next potential bottleneck in the grape processing pipeline.
Presses are also used to extract juice from grapes, but they deploy a much finer ex-
traction technique than crushers. Through presses, the winemaker is able to extract
different quality grades from the grapes, the so-called press cuts or pressings. They
are constrained by the capacity of grapes they can be filled with (typically around
40 Tonnes) and the actual time it takes to carry out the pressing (approximately six
hours, depending on the load and type of press).

Further clarification prior to fermentation is carried out in the centrifuges. Unlike
presses, centrifuges are able to process a constant stream of juice. Depending on the
type of centrifuge and the state of the infeed, centrifuges can reach a rate of 60,000L
of juice per hour [4].

The last step of the intake is the fermentation of juice. Fermenters can be filled
over a period of days. It takes approximately 10-14 days until the fermentation is
finished and the fermentation vessel is available for new juice. In some instances,
however, the fermentation tank is used for storage also so that it will not return to
the pool of empty tanks. This may be the case when capacity shortages in the tank
farm occur which may have causes the planner cannot anticipate.

The above mentioned winery equipment has a physical processing capacity limit.
Those limits vary only rarely so that planning of their usage and anticipated comple-
tion time can be easily determined. Issues arise if winery equipment is not functional

17 Advanced Planning in Vertically Integrated Wine Supply Chains 447

Fig. 17.3 Screenshot of the vintange intake planning system

(unplanned outages) or personnel that operates the equipment is not available. In
these cases subsequent assignments become infeasible as they rely on the operation
of the now unavailable equipment. The next weekly plan has to take into account
and adopt to the change in operational resources.

Figure 17.3 shows the screenshot of the Vintage Intake Planning system illus-
trating the flow of material and the conversion from grapes to juice to wine by
various processing steps. The figures in the table represent the quantity of grapes
being harvesters, carried and crushed. From the press stage on downwards, the val-
ues are shown in litres. Note that constraint violations are highlighted in the upper
overview table (red background cell colour). A selection of the violating cell, will
bring up the below detailed table with all necessary information on the root cause
of the violation.

17.5 Tank Farm

This section describes Tank Farm component of the wine supply chain in details.

17.5.1 Description of the Problem

The tank farm of a large winery is a major and integral part of the successful and
efficient wine manufacturing enterprise. It interfaces to all the other major processes,

448 M. Ibrahimov et al.

by accepting juice and wine from the intake process; providing wine for bottling;
and being the source and destination of the company-level activities of interwinery
transfers, bulk wine exports, and wine purchased for blending. It is also the scene
for wine production, through the carrying out additive, maturation, fermentation
and blending tasks. The complexity and range of varied products and activities in
the tank make it a significant planning problem, and one operating at a wide range
of time scales, and needing to adapt to a dynamically changing environment.

The tank farm itself is generally a large area containing many (in the order of
several hundred to a thousand) wine tanks in a range of sizes. At any given time a
proportion of these tanks will be empty, in order to provide spare capacity for re-
ceiving wine and to increase the flexibility for blending and other tasks may require
transfers between tanks. Within the tank farm there may be groupings of tanks by
function (for example, an area with tanks receiving intake; or an area for storing
wines ready for bottling) but overall the tank farm is usually in a relatively compact
area (e.g., in an approximate square) in order to allow relatively flexible transfers
between any pair of tanks, without incurring the penalty of needing to transfer over
extremely large distances.

Apart form size variations, some tanks are distinguished by having specific fea-
tures, such as having agitators, refrigeration, insulation, or provision for oaking
wine. Apart from the tanks themselves, the tank farm may include a number of
additional elements. These include various types of equipment (such as filters, cen-
trefuges or heat exchangers); some of this equipment is portable, but some are at
fixed locations within tank farm. In addition, the tank farm may have a a fixed pip-
ing and manifold system for transferring wine between tanks, supplemented with
portable ground pipes for the same purpose, providing more flexibility, but with
higher labour and setup costs.

17.5.1.1 Tank Selection

Overall there are two main optimization tasks for organising activities within the
tank farm, and these can be simply described as relating to which tank(s) should be
chosen, and when a specific operation on the tanks (such as a transfer) should occur.
The first of these activities can be divided between the two quite distinct tasks of
Source Tank Selection and Destination Tank Selection.

Obviously the primary constraint in source tank selection concerns the actual
content of a tank from which we plan to draw. If we need to bottle of order for 5,000
litres of 2009 Shiraz, then we must be drawing from source tanks with the correct
variety and vintage year. This constraint is common to any system of warehousing
or stocking of multiple types of product. What is specific to wine industry, and the
tank farm situation in particular, is the need to do this in a way that avoids oxidation
of wine through contact with the air. If wine is left in a partially filled tank, then,
over time, the wine will degrade and significantly lose value. It is such a serious
problem to be avoided in the wine industry, that it has specific terms: ullage is the
proportion of air within a wine tank, and being on ullage refers to a tank and its
content having non-zero ullage.

17 Advanced Planning in Vertically Integrated Wine Supply Chains 449

For destination tank selection, we are frequently dealing with empty tanks. An
important rule for optimising the global behaviour is to ensure that specialist tanks
are not selected if not needed - for example, fermentation tanks should not be se-
lected as a destination for a generic transfer (particularly during the vintage season)
unless other tanks are not available.

Other rules, that relate equally to source and destination tank selection, revolve
around reducing the costs associated with the execution of the transfers. A transfer
over a longer distance is more expensive, due to increased setup times (for example
to lay out a ground pipe) and the additional wastage and water use that is required
for cleaning out the longer pipe. In a similar way, having many transfers to or from
many smaller tanks will be more expensive than a single transfer involving a single
pair of tanks.

17.5.1.2 Labour and Resource Scheduling

Once the operations of the tank farm, and the selection of tank. have been decided,
there remains the scheduling issue of when the operation will occur, by whom, and
with what specific equipment resources.

Each operation can be divided into a number of subtasks, such as setup, startup,
execution, and finish-up. For each such task there are fixed amounts of time, labour,
and potentially equipment, that are required. With the execution task, such as for a
transfer between tanks, there may also be a variable cost in time, dependent on the
number of litres being transferred.

For routine planning, a standard schedule of times that various shifts of tank
farm workers is defined, and the various types and numbers of equipment can be
acquired. But in the dynamic real world, this is not sufficient: workers can call in
sick, and pieces of equipment can become unavailable for maintenance or repair.
Such variations need to be handled by a real-world system.

17.5.2 Functionality

The Tank Farm Optimiser is designed to deal with all the tank farm issues of tank
selection, and resource scheduling, across the full range of scenarios, including re-
ceiving vintage intake, wine manufacturing operations, servicing bottling requests,
as well as blend planning, and management of bulk wine transfers (interwinery, ex-
port, and purchasing.) We describe some major features, with particular emphasis
on optimization and dealing with dynamic changes.

The Tank Farm Optimiser is arranged via a series of tabs that allow access the
main planning activities (intake, operation, bottling, bulk wine movement and blend-
ing) as well more generic informational screens (tank farm maps and schedule, ca-
pacity plan, the vintage plan, and the long term production plan). This arrangement
allows customising the interface for specific user roles: for example, an intake plan-
ner may just have the vintage plan, intake, and tank farm map/schedule tabs.

The Tank Farm map and table give two distinct visual representations of the
contents and events of the tanks in the tank farm (see Fig. 17.4 and 17.5).

450 M. Ibrahimov et al.

Fig. 17.4 Tank farm map view screenshot. The circles represent physical layout and contents
(by colour). An Activities popup shows the transactions on a single tank.

In Fig. 17.4 the map view gives a graphical layout of the tanks on a specific date.
The sizes of the circles tanks reflect the total capacity of the tanks; the colours denote
the type of content (this is customisable, but might represent the grape variety, such
as Shiraz or Chardonnay); and the proportions that are coloured indicate how full the
tanks are: tanks that all full or all white (empty) would represent a situation where
no tank is left on ullage. Arrows between tank circles represent scheduled transfers,
whilst warning markers indicate the presence of issues at some point in the tank’s
timeline (such as possible constraint violations).

Simply clicking on a tank circle reveals other basic facts about the contents of
the tank, displayed in the lower part of Fig. 17.4, including the precise varieties,
vintages years, exact volume, status of the wine (e.g., ready for bottling) and a suc-
cinct representation of analysis results (such as current measurements of the wine
sweetness and alcohol levels). By opening up any tank, an Activities screen for the
tank is displayed (visible in the upper part of the figure) which displays the sequence
of all transactions that relate to that tank in the model, such as transfers of fluids in
or out, operations (such as additives), and synchronisations with updated content
information.

The Table view (see Fig. 17.5) is similar to the Map view, but the tanks are listed
in a tablular form, rather than arranged by geographical location. Each row presents
data for a single tank, and the various textual and numerical columns (visible on the
left of the figure) give various attributes of the tank and its content for a specific
date (these columns are particularly useful for sorting and filtering for tanks having
specific properties.) On the right of Fig. 17.5 we see the timeline of the content
of the tank represented, providing a graphical view of the dynamic changes of the
tank, both historical and future planned. The colour of each bar represents the type

17 Advanced Planning in Vertically Integrated Wine Supply Chains 451

Fig. 17.5 Tank farm table view Screenshot. Timelines for the tanks are visible on the right,
coloured by the wine variety.

of content (using the same colour mapping as used in the Map view colouring of
the circles) and the height of the bar represent the proportion that the tank is filled.
Transfers are represented as icons on the bars. Scrolling the right side of this table
allows the timeframe of these timelines to be altered. A wide range of filters can be
applied to both views, and the selection context and filtering is maintained as the
user switches between Map and Table views.

In the lower left of Fig. 17.5 a warning icon on a row has been opened to a
warning details panel, giving information about contraints that have been violated
on the tank on that row. These constraints may be volume violations (e.g., attempting
to transfer more from a tank than it contains at the time that transfer is scheduled) or
contents violations (e.g., mixing content of one tank into another tank, which would
break configured rules of what varieties may be mixed).

The underlying model of tank transfer events is an effective way of dealing with
the dynamic temporal aspects. For example, the tank model may show that a 20,000
litre tank T100 has 10,000 litres of 2009 Shiraz, and suppose this is precisely what
is required for us to service a bottling request for the next two days. A manual op-
erator may be tempted to use this for the bottling; but instead, the optimiser might
suggest to only take 4,000l from T100, whilst taking the remaining 6,000l from a
small 6,000 litre tank, full of 2009 Shiraz. It seems like a poor solution, since T100
now continues to be left on ullage, with 4,000 litres. The explanation is that there
is already a booking in the system that will take 6,000 from T100 in several days
time. The optimiser is looking ahead at existing scheduled transfer bookings, and

452 M. Ibrahimov et al.

selecting to ensure that we do not take too much from a tank (leaving an already
scheduled and approved transfer infeasible.)

The tank selection algorithm (either for source or destination) primarily works
by evaluating each tank as a potential candidate. Firstly, infeasible tanks are re-
jected, and a reason for rejection is recorded for such tanks. For the feasible tank,
and weighted set of penalties is calculated and recorded. The weighting cover the
various requirements for tank selection listed before: minimising transfer distance,
avoiding ullages, avoiding fermenter tanks when fermentation is not required. There
also penalties that aim to improve future efficiency of the tank farm, such as by en-
couraging clustering of tanks of the same type of wine in the same area. The highest
weighted tank is the one selected. If this tank does not completely satisfy the re-
quirement (e.g., it did not provide sufficient capacity for a large export order) then
the values are recalculated, as the previously second-ranked tank may not be the
most appropriate given that the first tank is now being used. For example, it is quite
likely that the second tank might be left on ullage, and so a smaller tank would now
be preferable, that more closely matches the outstanding requirement.

The optimization of the schedule relies on tracking the resources, and placing ear-
liest due tasks earlier than later tasks. However there can occur task order inversion,
on the basis of availability of specific resources. Furthermore the algorithm assesses
the costs of varied resources, aiming to use lower cost resources in preferences.

17.5.3 Results

Both the tank selection and labour and resource optimization features of the Tank
Farm Optimiser system provide effective and timely solutions, and adapt well the
real world, dynamical changes. An important aspect of the utility of the system is
how it interacts with the workflows of the users and with their individual planning.

17.5.3.1 Tank Selection

As new orders and requests enter the system, via a batch loading system, they are
automatically optimised together providing a level of integration towards a more
global optimum. This provides new tank selection allocations, without disrupting
existing allocations. This is important to help provide stability of the tank farm
for the users, and to preserve the additional planning information already added
for existing allocations. When requests are revised for requests, particularly for
volume, this is highlighted to users visually, but does not result in an automated
re-optimization. This is because the users may still wish to use existing tank alloca-
tions, and will merely add or remove tanks from the existing assignment.

A particularly important aspect of the use of the tank selection, has been the
presentation of the penalties and constraints involved with tank selection, when de-
manded by the user. Users have needed to be able to refer to such decision making
data, in order to gain trust in the choices made by the Tank Farm Optimiser. We
believe that this may partly due to the traditional based aspect of the wine mak-
ing process, where individual winemakers have been used to considerable personal

17 Advanced Planning in Vertically Integrated Wine Supply Chains 453

control and responsibility with all aspects of the process, and hence a relative un-
willingness to give up aspects of this, particularly if the optimization appears as a
black box. Another importance in presenting the optimization reasoning, is so that
users can deal better with the effects of dynamic changes. For example, a user who
is allocated a tank which appears ”inferior” to that allocated to someone who books
later than them, can sense an aspect of unfairness - and perhaps suboptimality - in
the system. However, once the optimization records are presented, they can see that
at the time of their booking’s optimization, their selection was indeed optimal.

Since the incremental approach of allocating tank is not guaranteed to be glob-
ally optimal, users also make use of other features that give extra flexibility. These
include reoptimising selections that occurred previously, and manually stipulating
tank selection, by-passing the optimiser. One of the noted results of manual bypass-
ing of the optimiser is that the users’ deliberate choices can work to undermine the
global goals of the optimization program - such as reducing the clustering of tanks
for the same or similar wines.

17.5.3.2 Tank Farm Resources Scheduling

The labour and resource scheduling is carried out automatically, at the same time as
the tank selection, when tank operation records are loaded into the system.

Interestingly, although the Tank Farm Optimiser does not provide a rationale for
its resource scheduling, this does not seem to be a major concern to users. This
may be because they have less inherent interest in at which particular hour, and by
which cellar hand, the work will be carried out; or it may be because in a visual
presentation of the schedule, the interlinked and cross-dependent complexity of the
problem is more evident, leading to less obvious substitute solutions.

As a result, the changes that are made to the schedule appear more in the nature
of refinements and improvements, constructively using the existing schedule as a
basis. Examples of such changes arise from the users noting that the setup time for
a following task may be reduced, or even eliminated, since it may be able to use the
equipment setup up the preceding task - and thus reflect a global optimization that
is not yet accessible to the Tank Farm Optimiser.

17.6 Bottling

This section describes the Bottling component of the wine supply chain in detail. It
is based on a real-world wine bottling system for mass-production environment. The
problem and its various challenges are discussed, particularly concerning the issue
of time-varying constraints. Methods to overcome these difficulties are introduced.
This system has been deployed into fully live production environment and is in daily
use.

Before getting to the point where wine is bottled into a finished product, the
liquid would have gone through a series of fermentation and other processing
steps. We will assume that we are at the point where the liquid is in a finished,

454 M. Ibrahimov et al.

consumable state, and is residing in a bulk storage tank, which ranges in capacity
between several tens of thousands to one million litres. This bulk liquid remains in
storage awaiting the bottling process wherein it is pumped into a bottling factory
and put into consumer size bottles, with a typical volume of less than one litre.

A bottling factory houses several bottling lines. These are machines that are con-
nected to intermediate feeding tanks that contain finished wine, and are used to
transfer the wine into bottles. The bottling lines also take care of related tasks such
as capping the bottle with a screw cap or a cork, applying a label to the bottle, and
packaging the bottles into cartons. Each bottling line is capable of bottling a sub-
set of the types of finished wine products manufactured by the wine company (e.g.,
some lines are only capable of producing only red wines).

These two elements, the bulk wine liquid, and the bottling lines, constitute the
basic working elements of the wine bottling problem. The bottling process is illus-
trated in Fig. 17.6. Which bulk wines are put into which bottles, and when that is
done, are determined by the demand. The wine company receives orders for partic-
ular finished goods from their clients and it is those orders that must be carefully
considered in order to determine the best way of running the bottling plant. In an
ideal situation, customers place their orders with sufficient lead time to ensure timely
bottling of their goods.

Large−Scale Bulk Storage
"Tank Farm"

Intermediate

Bottling Tank
Packaging (Boxes)Bottling Line

Fig. 17.6 The wine bottling process

The problem is to determine a sequence of orders to be carried out on each bot-
tling line, hence classifying it as a scheduling problem, such that optimal use is make
of the company’s resources, from the point of view of making maximum profit,
and also maximising customer satisfaction. Hence a good schedule will minimise
production costs, and at the same time ensure that orders are produced in full, suf-
ficiently before their due dates. This is the fundamental part of the wine bottling

17 Advanced Planning in Vertically Integrated Wine Supply Chains 455

problem, that is deciding how to schedule production so as to make the best use of
limited resources.

Before getting into the business intricacies that give rise to the time-varying con-
straints, we will first consider some more basic issues that affect the scheduling
problem:

• Due dates: When a customer places an order, the sales department will assign it
a due date that is acceptable to the customer, and which should also be realistic
taking into account the size of the order and available resources at the bottling
plant.

• Bulk wine availability: Some orders may need to be inevitably delayed due to the
fact that the bulk wine needed to fill the bottles may not yet be ready.

• Dry Materials: In addition to the liquid wine, there are a few dry goods that are
required to produce a bottle of wine.

• Job run lengths: It is inefficient to have machines frequently changing from one
type of bottling job to another because this incurs set-up and take-down time and
reduces the overall utilization of the machine. Hence, the scheduling algorithm
must attempt to group similar orders for sequential execution so this type of
inefficiency is avoided.

• Wine changeovers: Wines are categorized broadly in terms of their color, there is
red, white, and rose (pink). When a bottling line finishes working with one type of
wine and switches over to another type, this is referred to as a wine changeover.
Bottling line must be cleaned during changeovers, to varying degrees, depending
on the nature of the change.

• Other changeovers: Although wine changeovers incur the most time, there are a
variety of other changeovers that can happen, even within a run of the same color
wine.

• Bottling line availability: Some industries use machines that are kept in operation
continuously. This is sometimes the case in large-scale wine companies, but for
only limited periods of time.

• Routings: Each product can be bottled on a number of different lines.

Our work on the wine bottling problem resulted in a full-featured piece of software
integrated around a core evolutionary algorithm that deals with all of the above listed
issues, and creates feasible, optimal schedules for satisfying customer orders for
wine. The application was launched for a major global wine company, and it experi-
ences heavy daily usage at international sites. It is a cornerstone of their scheduling
department, and we think it is a good example of an integrated evolutionary algo-
rithm serving robustly in prime time.

17.6.1 Time-Varying Challenges in Wine Bottling

In this subsection, we will look at some business requirements that led to time-
varying constraints that had to be addressed in the software. Here we will only
consider the issues, and their actual solution, including algorithmic details, will be
covered in a later section.

456 M. Ibrahimov et al.

Fig. 17.7 Visualisation of a schedule on multiple production lines in the software application

• Manual assignments: There are various scenarios in which the human scheduler
would need the ability to override the schedule. For instance, it might be that a
very important customer makes a late, but urgent request for a large quantity of
wine. Even if this causes severe disruptions to the smooth running of the bottling
plant, this type of request if usually accommodated due to the high value placed
on some customers, and the importance maintaining a good business relationship
with them. The software application that was developed had to be flexible enough
to allow its built-in algorithm to work in interactive way that it could actively seek
out an optimal solution that satisfies the constraints described before, but at the
same time allowed inefficient manual overrides dictated by a human operator to
co-exist with the otherwise optimal solution.

• Machine breakdowns: From time to time, a bottling line will break down and
become unavailable for use. It may be that a solution found by the optimiser pre-
viously would have been planned around that machine being available during a
period of time that has now become unavailable due to the breakdown. The soft-
ware must be flexible enough to repair the previous solution to take into account
the breakdown.

• Freeze periods: Once the schedule is accepted and saved to an internal database,
subsequent daily use of the optimiser to schedule newly arriving customer or-
ders must be done in a controller manner so that there a buffer period at the

17 Advanced Planning in Vertically Integrated Wine Supply Chains 457

beginning of the schedule that remains the same as it was yesterday. This un-
changing portion of the schedule is referred to as a freeze period.

• Modified orders: Once a schedule has been created and saved, there might be a
situation in which the next time the software package is opened, it realizes that
there was a modification made to one of the scheduled orders in the database.
This might be for example a change in quantity. More, or less bottles of wine
may be required, and by adjusting the scheduled order, the start and end times of
all subsequent orders on the same bottling line become affected.

• Poor/Excellent Job Execution: Due to a number of factors, the efficiency of a bot-
tling machine may be better or worse on any given day, and the factory manager
would expect the scheduling optimiser to take this into account when creating a
new schedule, or when adjusting an existing one.

17.6.2 Objective

The problem is to determine the best sequence of orders to be scheduled on the
bottling lines in such a way that minimum number of constraints mentioned in the
previous section are violated. Each constraint has a penalty coefficient associated
with if violated. So the total penalty of the solution is

TotalPenalty= ∑
i

kiPi

where ki is the coefficient for penalty Pi.

17.6.3 The Algorithm

In this subsection, we will look at the structural, algorithmic and programmatic
details required to solve the problem using an evolutionary algorithm.

17.6.3.1 Representation

For the wine bottling scheduling problem, the core of the problem was conceptual-
ized as having a number of orders that must be placed on a fixed number of bottling
machines in an efficient sequence. Hence the natural representation to use is one
of a mapping of lists of orders to machines. This can be visualized as in Fig. 17.8.
The representation illustrated in this diagram is quite similar to the final schedule
presented visually in Fig. 17.7 above.

The representation shown in Fig. 17.8 is stored programmatically as a map of
machines to variable-length lists of orders. The list on any given machine is sorted
chronologically in terms of which orders will be carried out first. The individual is
constructed in such a way that the assignment of orders to machines is always valid,
in other words the assigned orders always respects product routings.

458 M. Ibrahimov et al.

Machine 1

Machine 2

Machine 3

Machine n

Fig. 17.8 Scheduling individual representation

17.6.3.2 Decoding

In order to manage the decoding process, we employed a concept we referred to as
time blocks. Each such block keeps track of a start time, an end time and an activity
that is performed during that time, allow for the possibility that nothing is done
actually done, in which case the time block is referred to as an available time block.
The link to the activity performed during a time block may point to an external data
structure that contains any information on any level of detail required to accurately
model a scenario.

Decoding begins with a series of multiply-linked-lists of time block nodes as-
sociated with each machine. Each machine has a list of available time blocks, and
occupied time blocks. At the outset, before anything is placed on a machine, it would
only contain a list of available time blocks, each representing a chunk of time during
which the machine is available for use.

Decoding proceeds by going through all machine-job pairs found in the individ-
ual representation and proceeding to the corresponding machine, finding an avail-
able time block node, and marking it as occupied for the corresponding job. Some
jobs may not be able to fit in the first available time block, and may need to be split
into multiple parts. How this is done, indeed, if it is permissible at all depends on
the policies of the business for which the scheduling application is being created. In
the case of the wine bottling application that we are considering, orders were split
across adjacent available time blocks.

17.6.3.3 Operators

A number of operators were used to manipulate the representation given above. To
avoid the problem of having to perform extensive repairs based on invalid repre-
sentation states, crossover-type operators were avoided. The operators listed below,
which are typical examples from the set used, may all be considered as mutation
operators.

• Routing Mutation: This operator modifies the machine that was selected to exe-
cute a job. An alternative is randomly chosen from the set of possible options.

17 Advanced Planning in Vertically Integrated Wine Supply Chains 459

• Load Balancing Mutation: There is a variation to the routing mutation operator
which, instead of merely randomly choosing an alternative machine for an order,
could choose from a subset of machines that are under-loaded. Such an approach
would help with load-balancing of the machines.

• Grouping: This operator groups orders based on some common characteristic,
such as wine colour, bottle type, or destination export country. There are several
variants of the grouping operators. Some operate quite randomly, looking for a
group of orders based on some characteristic and then looking left or right for a
similar group and then merging the two. Other examples are given below.

• Recursive Grouping: A more directed variation on grouping is recursive group-
ing. This operator seeks out an existing group of jobs based on wine colour, then
within that group perform random grouping based on some other characteristic,
such as bottle size. This process may then be repeated inside one of the sub-
groups.

• Outward Grouping: Outward grouping is a term we use to describe the process
of identifying groups in a list of jobs based on a primary characteristic, then
randomly selecting one of them and from that location looking left and right
for another group with a common secondary characteristic and finally bringing
together the two.

• Order Prioritization: Orders that may be showing up as being produced late after
decoding an individual are stochastically prioritized by moving them left in the
decoding queue. Again, this type of operator could be made more intelligent than
random by moving groups of jobs along with the one that is identified as being
late. That way the job gets prioritized, but at the same time disruption to grouping
is minimized. This operator works on one of the most important objectives of the
solution, to maximize DIFOT.

17.6.3.4 Addressing the Dynamic Issues

We will now look at how we dealt with the time-varying issues that were identified in
section 17.6.1. As will be observed, the problems were addressed by a combination
of modifications made to the initial time block node linked-lists, to the decoding
process, by altering the input variables to the optimiser, and by introducing a step
between the optimiser and the human user call solution re-alignment.

• Addressing Manual Overrides: This problem was solved by applying a constraint
to the decoding process, and indirectly affecting the fitness function. The soft-
ware application allows the user to select a particular order, and specify which
machine it should be done on, as well as the date and time of assignment. This
becomes a timetable constraint for the genotype decoder. When a candidate in-
dividual is being decoded, the initial state of the machine time block usages in-
cludes the manually assigned orders as part of the list of occupied time blocks.

With this approach, it is primarily the fitness function that would guide the
search to a relatively good solution built around the manual assignment. However
it is also important to de-emphasize some of the more structured and aggressive
operators such as recursive grouping and outward grouping, which were designed

460 M. Ibrahimov et al.

with a clean slate in mind. They would still contribute toward the search for a
good solution in parts of the time period that do not contain manual assignments,
but the main evolutionary algorithm loop should keep track of the performance
of these operators and adjust their probability of application accordingly.

• Addressing Freeze Periods: The application allows the user to select a freeze date
and time on each machine used in the bottling plant. During an optimization run,
all assignments in the existing schedule that are before the freeze period cutoff
are internally marked as manual assignments, and therefore behave in exactly the
same way as described above for user-defined manual assignments.

• Addressing Machine Breakdowns, Modified Orders, and Poor/Excellent Job
Execution: These three problems were solved using a similar approach. Take
Modified Orders for example. When the application re-loads and realizes that an
existing order has been modified, for example its quantity has been increased or
decreased, then the necessary action to be taken is at the level of modifying the
existing solution, prior to it being fed back into the next run of the evolutionary
algorithm. This was accomplished using a process call solution re-alignment.

As we already mentioned earlier in paper, the system has been deployed into live
production environment at a few locations and is in daily use.

17.7 Conclusion

The previous sections described five applications modelling functional units of a
vertically integrated wine supply chain. These five applications integrate operations
and decision support that was previously carried out in isolation and often without
visibility of peer’s decisions. We consider this as first step in the roadmap towards
an integrated company-wide decision support system that leverages the ability to
‘see’ across fragmented business units to find a more globally optimal solution. The
benefits can already be materialised through the integration of sub processes into
each of the five modules, but their full potential will be realised by an even higher
degree of integration by providing an environment in which these five applications
can cooperate. The benefits are:

• Better use of available production capacity.
• reduced risk of late deliveries due to production capacity issues, supply issues,

or scheduling errors, and better visibility of potential risk.
• Schedulers can quantify the relative merits of different schedules, make informed

decisions as to which scheduled to choose.
• Higher confidence in production schedules may allow running at lower inventory

levels.
• Long-term planning from sales forecasts (e.g., assist with production capacity

planning and production smoothing, supply planning for long lead-time items,
and inventory planning, what-if scenarios for strategic and operational planning,
testing the impact of changes on business rules, infrastructure investment, over-
time or extra shifts).

17 Advanced Planning in Vertically Integrated Wine Supply Chains 461

• Reporting on production (e.g., identification of capacity problems, identification
of production or supply bottlenecks, high-level overview as well as information
on specific orders).

• Reduction in overall transfers, leading to less water consumed in the wine pro-
duction process, a smaller carbon footprint, less spillage, less plant maintenance,
and increased safety.

• Reduction in labour requirements through labour balancing, a reduction in labour-
intensive operations, and a reduction in overall transfers.

• Reduction in “free working space” on the tank farm, leading to increased tank
utilisation, capacity, and throughput.

• Process improvement in the area of work order handling, by reducing paper han-
dling and data duplication.

• Provision of centralised applications that are maintained and supported.
• Provision of a scalable platform for future extensions.
• Straightforward integration with other applications for prediction and optimiza-

tion.
• Provision of integrated views (carrier, winery, etc.)
• Provision of integrated inputs (e.g., for Grower Liaison Officers and Logistics

Coordinators).
• Provision of optimised capacity planning (i.e., automated “smoothing”).
• Automatic generation of robust, optimised production schedules that maximise

service levels and utilisation, while minimising cost.
• Faster feedback to production planners, management, sales, and other interested

parties for placing orders or requesting changes.

There are also a number of flow-on benefits, e.g., planners require less time to pro-
duce bottling plans, less chance of human error, identification of potential data prob-
lems, ability to handle dynamic changes to the schedule, whilst minimising the im-
pact on existing Work Orders near their production date.

To achieve such an ambitious goal, a global module would need to interact be-
tween the sub modules in a cooperative manner, such as in [26]. Another possibility
is to employ an agent-based system with each of the sub modules acting as com-
peting or cooperating units negotiating for resources and capacities. The options for
further integration are manifold and we will explore them in a later publication.

One statement, however, from the beginning of this chapter can already be con-
firmed: To realise all these benefits, Computational Intelligence method must play
the central role in the development of the software. It would be very difficult, for
example, to build a linear model of such whole supply chain, representing all ob-
jectives, constraints, and dependencies – further, most standard software packages
also failed in this complex environment over the last 15 years. As we have already
indicated in the Introduction, a new genre of applications (based on Computational
Intelligence methods) is necessary to address complex issues of advanced planning
in the supply chain management – and this section illustrated this point.

462 M. Ibrahimov et al.

Acknowledgements. This work was partially funded by the ARC Discovery Grant
DP0985723 and by grants N 516 384734 and N N519 578038 from the Polish Ministry of
Science and Higher Education (MNiSW).

References

[1] Ackoff, R.L.: The future of operational research is past. J. Oper. Res. Soc. 30, 93–104
(1979)

[2] Aikens, C.H.: Facility location models for distribution planning. Europ. J. Oper.
Res. 22(3), 263–279 (1985)

[3] Altiparmak, F., Gen, M., Lin, L., Paksoy, T.: A genetic algorithm approach for multi-
objective optimization of supply chain networks. Comput. Ind. Eng. 51(1), 196–215
(2006)

[4] Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E.: Principles and Practices of
Winemaking. Springer (1998)

[5] Caggiano, K.E., Jackson, P.L., Muckstadt, J.A., Rappold, J.A.: Optimizing Service
Parts Inventory in a Multiechelon, Multi-Item Supply Chain with Time-Based Customer
Service-Level Agreements. Oper. Res. 55(2), 303–318 (2007)

[6] Caglar, D., Li, C.L., Simchi-Levi, D.: Two-echelon spare parts inventory system subject
to a service constraint. IIE Transactions 36(7), 655–666 (2004)

[7] Chandra, P., Fisher, M.L.: Coordination of production and distribution planning. Europ.
J. Oper. Res. 72(3), 503–517 (1994)

[8] Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems
using genetic algorithms—i: representation. Comput. Ind. Eng. 30(4), 983–997 (1996)

[9] Clark, A.J., Scarf, H.: Optimal policies for a multi-echelon inventory problem. Manage.
Sci. 50(12 suppl.), 1782–1790 (2004)

[10] Coit, D.W., Smith, A.E.: Solving the redundancy allocation problem using a combined
neural network/genetic algorithm approach. Comput. Oper. Res. 23(6), 515–526 (1996)

[11] Davis, L.: Job shop scheduling with genetic algorithms. In: Proc. 1st Int. Conf. Genetic
Algorithms, pp. 136–140 (1985)

[12] Davis, L.: Embracing complexity. Toward a 21st century supply chain solution (2008),
Web-resource http://sdcexec.com/online/printer.jsp?id=9012

[13] Hanssmann, F.: Optimal inventory location and control in production and distribution
networks. Oper. Res. 7(4), 483–498 (1959)

[14] Holthaus, O.: Scheduling in job shops with machine breakdowns: an experimental
study. Comput. Ind. Eng. 36(1), 137–162 (1999)

[15] Jain, A.K., Elmaraghy, H.A.: Production scheduling/rescheduling in flexible manufac-
turing. Int. J. Prod. Res. 35(1), 281–309 (1997)

[16] Kutanoglu, E., Sabuncuoglu, I.: Routing-based reactive scheduling policies for machine
failures in dynamic job shops. Int. J. Prod. Res. 39(14), 3141–3158 (2001)

[17] Lambert, D.M.: Supply chain management: Implementation issues and research oppor-
tunities. Int. J. of Logistics Management 9, 1–20 (1998)

[18] Lee, C.Y., Choi, J.Y.: A genetic algorithm for job sequencing problems with distinct
due dates and general early-tardy penalty weights. Comput. Oper. Res. 22(8), 857–869
(1995)

[19] Lee, H., Pinto, J.M., Grossmann, I.E., Park, S.: Mixed-integer linear programming
model for refinery short-term scheduling of crude oil unloading with inventory man-
agement. Ind. Eng. Chem. Res. 35(5), 1630–1641 (1996)

http://sdcexec.com/online/printer.jsp?id=9012

17 Advanced Planning in Vertically Integrated Wine Supply Chains 463

[20] Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and
cutting stock problems. J. Oper. Res. Soc. 55(7), 705–716 (2004)

[21] Liang, K.H., Yao, X., Newton, C., Hoffman, D.: A new evolutionary approach to cutting
stock problems with and without contiguity. Comput. Oper. Res. 29(12), 1641–1659
(2002)

[22] Martin, C.H., Dent, D.C., Eckhart, J.C.: Integrated production, distribution, and inven-
tory planning at libbey-owens-ford. Interfaces 23(3), 68–78 (1993)

[23] Naso, D., Surico, M., Turchiano, B., Kaymak, U.: Genetic algorithms for supply-chain
scheduling: A case study in the distribution of ready-mixed concrete. Europ. J. Oper.
Res. 177(3), 2069–2099 (2007)

[24] Oliver, R.K., Webber, M.D.: Supply-chain management: Logistics catches up with strat-
egy. In: Logistics. Chapman and Hall (1982) (Reprint from Outlook)

[25] Petrovic, D., Alejandra, D.: A fuzzy logic based production scheduling/rescheduling
in the presence of uncertain disruptions. Fuzzy Sets and Systems 157(16), 2273–2285
(2006)

[26] Potter, M.: The design and analysis of a computational model of cooperative coevolu-
tion. Ph.D. Thesis, George Mason University (1997)

[27] Pyke, D.F., Cohen, M.A.: Performance characteristics of stochastic integrated
production-distribution systems. Europ. J. Oper. Res. 68(1), 23–48 (1993)

[28] Pyke, D.F., Cohen, M.A.: Multiproduct integrated production–distribution systems. Eu-
rop. J. Oper. Res. 74(1), 18–49 (1994)

[29] Stadtler, H., Kilger, C.: Supply Chain Management and Advanced Planning. Springer
(2008)

[30] Thomas, D.J., Griffin, P.M.: Coordinated supply chain management. Europ. J. Oper.
Res. 94(1), 1–15 (1996)

[31] Toth, P., Vigo, D.: The Vehicle routing problem. Society for Industrial and Applied
Mathematics (2001)

[32] Van Laarhoven, P.J.M.: Job shop scheduling by simulated annealing. Oper. Res. 40, 113
(1992)

[33] Vergara, F.E., Khouja, M., Michalewicz, Z.: An evolutionary algorithm for optimizing
material flow in supply chains. Comput. Ind. Eng. 43(3), 407–421 (2002)

[34] Vidal, C.J., Goetschalckx, M.: Strategic production-distribution models: A critical re-
view with emphasis on global supply chain models. Europ. J. Oper. Res. 98(1), 1–18
(1997)

[35] Wong, H., Kranenburg, B., van Houtum, G., Cattrysse, D.: Efficient heuristics for two-
echelon spare parts inventory systems with an aggregate mean waiting time constraint
per local warehouse. OR Spectrum 29(4), 699–722 (2007)

[36] Zhou, G., Min, H., Gen, M.: A genetic algorithm approach to the bi-criteria allocation
of customers to warehouses. Int. J. Prod. Econ. 86(1), 35–45 (2003)

[37] Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.D.: Parameter study for differen-
tial evolution using a power allocation problem including interference cancellation. In:
Proc. 2006 IEEE Congr. Evol. Comput., pp. 1857–1864 (2006)

Author Index

Alba, Enrique 171

Ben-Romdhane, Hajer 171
Branke, Juergen 38

Cheng, Hui 342
Comsa, Iulia Maria 298

Gao, Xiaoguang 402
Grosan, Crina 298

Ibrahimov, Maksud 432

Krichen, Saoussen 171

Lehre, Per Kristian 220
Li, Changhe 3, 108

Mavrovouniotis, Michalis 316
Mei, Yi 376
Michalewicz, Zbigniew 432
Mohais, Arvind 432

Nguyen, Trung Thanh 3, 192, 38

Ozols, Maris 432

Peng, Xingguang 402

Raquel, Carlo 85
Richter, Hendrik 268
Rohlfshagen, Philipp 65, 220

Sarasola, Briseida 171
Schellenberg, Sven 432

Tang, Ke 376
Tinós, Renato 241

Wang, Hongfeng 137

Yang, Shengxiang 3, 38, 108, 137, 241,
298, 316, 342, 402

Yao, Xin 38, 65, 85, 192, 220, 376

Subject Index

(1+1)−EA, 224
n-point crossover, 139

ACO, see Ant colony optimization
Advance planning system, 434
Ant colony optimization, 317

ACO with immigrants schemes, 323
ACO with elitism-based immigrants

(EIACO), 325
ACO with environmental information

immigrants (EIIACO), 327
ACO with hybrid immigrants (HIACO),

326
ACO with memory-based immigrants

(MIACO), 326
ACO with random immigrants

(RIACO), 325
general framework, 323

MAX-MIN ant system (MMAS), 321
population-based ACO (P-ACO), 322
standard ACO, 321

Approximate optimization problem, 223
Artificial immune system, 102

Bayesian network (BN), 411
Black-box complexity, 225
Black-box optimization, 225

CEC 2009 Competition, 29
Cellular automata, 114
Change cycle, 246
Change frequency, 284
Computational intelligence, 439
Coupled map lattices (CML), 6

Crowding differential evolution (CDE), 112

Diversity maintaining, 145
DMO, see Dynamic multi-objective

optimization
DMOP, see Dynamic multi-objective

optimization problem
DOP, see Dynamic optimization problem
Dynamic benchmark problem, 228

dynamic match function, 229
dynamic onemax, 231
moving peaks benchmark (MPB), 271,

286
tracking problem, 230
xor, 229

Dynamic constrained multi-objective
optimization (DCMO), 102

Dynamic constrained optimization, 193
Dynamic constrained optimization problem,

6
benchmark, 195

G24 benchmark set, 196
challenges, 200
characteristics, 194
constraint-handling

penalty, 203
repair, 203

performance measures, 204
solvers, 202

Dynamic driver, 87
Dynamic environment

chaotic, 287
constrained, 7
cyclic, 7

468 Subject Index

periodic, 7
predictable, 6
time-linkage, 6
visible, 6

Dynamic fitness landscape, 270
definition, 275
hierarchy, 277
landscape measures, 279

Dynamic multi-objective optimization, 302
DMO approaches, 97

diversity introduction, 97
diversity maintenance, 99
memory-based approaches, 102
multiple populations, 100
prediction-based approaches, 101

performance measure, 90
average coverage scope, 94
average density, 94
collective mean error, 93
convergence measure, 92
convergent ratio, 94
hypervolume ratio, 93
maximum spread, 93
reverse generational distance, 92
variable space GD, 93

test problems, 90, 91
Dynamic multi-objective optimization

problem, 85
classification, 88
definition, 88
full-description form, 86

Dynamic multi-objective subset sum
problem, 304

Dynamic optimization problem, 3, 67, 223,
241, 270, 275, 300

characteristics, 6
classification, 6
concept, 5
definition, 40, 300
DF1, 71
DOP with fitness landscape changes, 246
DOP with permutation, 248
DOP with regular changes, 249
implementation schedule, 78
last environment dependent DOP, 248
linear DOP, 248
moving peaks, 71
orthogonal DOP, 248
periodic DOP, 247

schedule of dynamics, 78
single time-dependent DOP, 247
XOR, 72

Dynamic problem, 5
Dynamic runtime, 227
Dynamic severity, 285
Dynamic test problems, 5, 8

DF1 generator, 8
dynamic bit matching problem, 54
dynamic bit-matching problem, 10
dynamic capacitated arc routing problem,

378
dynamic composition benchmark

generator, 28
dynamic constrained problems, 195

G24 benchmark, 196
dynamic delay-constrained multicast

routing problem, 350
dynamic delay-constrained shortest path

problem, 349
dynamic environment generator based on

problem difficulty, 253
dynamic knapsack problem, 10, 255
dynamic multi-dimensional knapsack

problem, 10
dynamic multicast routing problem

(DMRP), 345, 349
dynamic rotation peak benchmark

generator, 27
dynamic routing problem, 14
dynamic shortest path routing problem

(DSPRP), 344, 348
dynamic travelling salesman problem

(DTSP), 14
cyclic DTSP, 320
DTSP with cyclic traffic, 320
DTSP with random traffic, 320
DTSP with traffic factor, 319
random DTSP, 320

dynamic vehicle routing problem, 15
dynamic weapon target assignment

problem, 413
generalized dynamic benchmark

generator (GDBG), 25
moving peaks benchmark (MPB), 8, 271
online path planning (OPP), 405
spatio-temporal fitness landscapes, 13
stochastic traveling salesman problem,

379

Subject Index 469

stochastic vehicle routing problem, 378
XOR DOP generator, 11, 150, 249, 277

Dynamic time-linkage optimization, 50
Dynamical system, 242

EDO, see Evolutionary dynamic optimiza-
tion

Estimation of distribution algorithm (EDA)
memory-based EDA with environment

identification (EI-MEDA), 416
Evolution strategy (ES), 45

(1,λ)-ES, 54
(μ/μ , λ)-ES, 54
(1+1)-ES, 54

Evolutionary algorithms, 224, 241
Evolutionary computation, 3, 386

memetic algorithm, 386
Evolutionary dynamic optimization, 4, 40

methodologies, 40
associative memory, 48
detecting changes, 41
direct memory, 48
explicit memory, 47
hyper-mutation, 202
implicit memory, 47
introducing diversity after a change, 42
maintaining diversity during the search,

44
memory approach, 47
multi-population approach, 52
prediction approach, 48
random immigrants, 45, 202
self-adaptive approach, 50

theoretical analysis, 53
Evolutionary programming (EP), 51

self-adaptive EP (saEP), 51
Exact model, 242

First hitting time, 54, 226
Fitness landscape, 73
Frequency of change, 232

Generational operator, 243, 244
Genetic algorithm (GA)

GA with immigrants schemes, 354
elitism-based immigrants GA (EIGA),

355
hybrid immigrants GA (HIGA), 355

memory-enhanced GA (MEGA), 356

specialized GAs for routing problems,
350

Hill climbing (HC), 140
adaptive HC (AHC), 143
adaptive hill climbing strategy, 138
crossover-based HC, 138
greedy crossover-based HC (GCHC), 140
mutation-based HC, 138
steepest mutation-based HC (SMHC),

140
Hitting time, 225
Hyper-box based selection (HBS), 408

Immigrants scheme, 145
dual-based immigrants, 146
elitism-based immigrants, 146
hyper-immigrants, 146
random immigrants, 145

Load balancing mutation, 459
Local search (LS), 138, 140

adaptive learning mechanism, 143
multiple LS operators, 143

Magnitude of change, 75, 232
Memetic algorithm (MA), 138

GA-based MA, 139
MA with extended neighborhood search

(MAENS), 389
Merge-split (MS) operator, 390
Meta-heuristics

tabu search, 386
Metastable states, 244
Mobile ad hoc network (MANET), 344, 348
MOEA, see Multi-objective evolutionary

algorithm
Moving peaks benchmark (MPB), 271, 286
Multi-objective evolutionary algorithm

MOEA with Pareto set linking and
prediction (LP-MOEA), 405, 407

Multi-objective optimization problem
(MOP), 405

Multi-objective subset sum problem, 304
Multicast routing problem, 345, 347

No Free Lunch theorem, 70, 227
Noisy optimization problem, 223

Objective function, 67

470 Subject Index

Optimization problem, 222

Parameter setting
adaptive mechanism, 141
deterministic mechanism, 141
self-adaptive mechanism, 142

Particle swarm optimization, 109
adaptive clustering PSO (ACPSO), 116
adaptive mutation PSO (AMPSO), 112
adaptive niching PSO (ANPSO), 116
charged PSO, 45
clustering PSO (CPSO), 116
collaborative evolutionary swarm

optimization (CESO), 112, 114
compound PSO, 46
cooperative dual-swarm PSO (CDPSO),

112, 114
cultural-based PSO, 44
evolutionary swarm cooperative algorithm

(ESCA), 114
fast multi-swarm optimization (FMSO),

115
hibernation multi-swarm optimization

(HmSO), 115
memory-based PSO, 118
multi-strategy ensemble PSO (MEPSO),

112, 114
multi-swarm PSO (mPSO), 52
PSO with composite particles (PSO-CP),

117
speciation based PSO (SPSO), 113, 116
speciation PSO (SPSO), 53

Performance measure, 16, 75, 90
β−degradation, 24
absolute recovery rate, 23
best-error-before-change, 17
best-of-generation, 16
collective mean fitness, 76
distance-based measures, 20
diversity, 21
modified offline error, 18
modified offline performance, 18
normalised score, 19
offline performance, 76
online performance, 76
optimisation accuracy, 18
reactivity, 23
recovery rate, 23
robustness, 22, 379

satisficability, 22
stability, 22

PSO, see Particle swarm optimization

Representation, 72
Robust optimization problem, 223
Robustness optimization, 382

expected performance, 383
reliability-based robustness measure, 383
repair-based robustness measure, 384
worse case performance, 383
worse threshold-based robustness

measure, 383
Roulette wheel selection, 140
Routing mutation, 458
Runtime, 225

Self-organizing scouts (SOS), 52, 115
Shortest path routing problem, 344, 346
Solution concept, 77
Spatio-temporal fitness landscape, 6
Subset sum problem, 304
Supply chain management, 436

coordinated supply chain, 437
vertically integrated supply chain, 440

Swarm intelligence, 109

Tabu search
repair-based tabu search, 386

Time-dependent problem, 5
Time-linkage, 87
Time-varying constraints, 438
Time-varying input variables, 438
Time-varying objective functions, 438
Trap function, 253
Travelling salesman problem (TSP), 319

Uniform crossover, 139
Unitation function, 253
Univariate marginal distribution algorithm

(UMDA), 426
Unmanned aerial combat vehicles (UCAVs),

404

Vehicle routing problem, 437
Vintage intake planning, 444

Wine supply chain, 440
Wireless sensor network, 344

	Preface
	Acknowledgements
	Contents
	List of Contributors
	Part I Fundamentals
	Chapter 1 Evolutionary Dynamic Optimization: Test and Evaluation Environments
	1.1 Introduction
	1.2 DOPs: Concepts, Brief Review, and Classification
	1.2.1 Concepts of DOPs
	1.2.2 Dynamic Test Problems: Brief Review
	1.2.3 Major Characteristics and Classification of DOPs

	1.3 Typical Dynamic Test Problems and Generators
	1.3.1 Dynamic Test Problems in the Real Space
	1.3.2 Dynamic Test Problems in the Binary Space
	1.3.3 Dynamic Test Problems in the Combinatorial Space

	1.4 Performance Metrics
	1.4.1 Optimality-Based Performance Measures
	1.4.2 Behaviour-Based Performance Measures
	1.4.3 Discussion

	1.5 The Generalized Dynamic Benchmark Generator (GDBG)
	1.5.1 Dynamic Rotation Peak Benchmark Generator
	1.5.2 Dynamic Composition Benchmark Generator
	1.5.3 Dynamic Test Problems for the CEC 2009 Competition

	1.6 Conclusions and Discussions
	References

	Chapter 2 Evolutionary Dynamic Optimization: Methodologies
	2.1 Introduction
	2.2 Optimization Approaches
	2.2.1 The Goals of EDO Algorithms
	2.2.2 Detecting Changes
	2.2.3 Introducing Diversity When Changes Occur
	2.2.4 Maintaining Diversity during the Search
	2.2.5 Memory Approaches
	2.2.6 Prediction Approaches
	2.2.7 Self-adaptive Approaches
	2.2.8 Multi-population Approaches

	2.3 Theoretical Development of EDO Methodologies
	2.4 Summary and Future Research Directions
	2.4.1 Summary
	2.4.2 The Gaps between Academic Research and Real-World Problems
	2.4.3 Future Research Directions

	References

	Chapter 3 Evolutionary Dynamic Optimization: Challenges and Perspectives
	3.1 Introduction
	3.2 Challenge I: Problem Definition
	3.2.1 Optimization in Uncertain Environments
	3.2.2 Problem Definitions
	3.2.3 Characterisation of Dynamics
	3.2.4 Problem Properties, Assumptions and Generalisations

	3.3 Challenge II: Benchmark Problems
	3.3.1 Benchmark Problems
	3.3.2 Combinatorial Fitness Landscapes
	3.3.3 Real-World Dynamics
	3.3.4 Experimental Settings

	3.4 Challenge III: Notions of Optimality
	3.4.1 Performance Measures in Evolutionary Dynamic Optimization
	3.4.2 Existence of a Model
	3.4.3 Notions of Optimality

	3.5 Implications, Perspectives and Conclusions
	3.5.1 Summary
	3.5.2 Implications and Perspectives
	3.5.3 Conclusions

	References

	Chapter 4 Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art
	4.1 Introduction
	4.2 Comprehensive Definition of Dynamic Multi-objective Optimization
	4.3 Dynamic Multi-objective Test Problems
	4.3.1 Dynamic Multi-objective Optimization Test Problems

	4.4 Performance Measures
	4.4.1 Performance Measures for Problems with Known Pareto Front
	4.4.2 Performance Measures for Problems with Unknown Pareto Fronts

	4.5 Dynamic Multi-objective Optimization Approaches
	4.5.1 Diversity Introduction
	4.5.2 Diversity Maintenance
	4.5.3 Multiple Populations
	4.5.4 Prediction-Based Approaches
	4.5.5 Memory-Based Approaches

	4.6 Summary and Future Works
	References

	Part II Algorithm Design
	Chapter 5 A Comparative Study on Particle Swarm Optimization in Dynamic Environments
	5.1 Introduction
	5.2 PSO in Dynamic Environments
	5.2.1 Particle Swarm Optimization
	5.2.2 PSO in Dynamic Environments

	5.3 Discussions and Suggestions
	5.3.1 Issues with Current Schemes
	5.3.2 Future Algorithms for DOPs

	5.4 Experimental Study
	5.4.1 Experimental Setup
	5.4.2 Effect on Varying the Shit Length
	5.4.3 Effect on Varying the Number of Peaks
	5.4.4 Effect on Varying the Number of Dimensions
	5.4.5 Comparison in Hard-to-Detect Environments

	5.5 Conclusions
	References

	Chapter 6 Memetic Algorithms for Dynamic Optimization Problems
	6.1 Introduction
	6.2 Investigated Algorithms
	6.2.1 Framework of GA-Based Memetic Algorithms
	6.2.2 Local Search
	6.2.3 Adaptive Learning Mechanism in Multiple LS Operators
	6.2.4 Diversity Maintaining
	6.2.5 Balance between Local Search and Diversity Maintaining

	6.3 Dynamic Test Environments
	6.4 Experimental Study
	6.4.1 Experimental Design
	6.4.2 Experimental Study on the Effect of LS Operators
	6.4.3 Experimental Study on the Effect of Diversity Maintaining Schemes
	6.4.4 Experimental Study on Comparing the Proposed Algorithm with Several Peer GAs on DOPs

	6.5 Conclusions and Future Work
	References

	Chapter 7 BIPOP: A New Algorithm with Explicit Exploration/Exploitation Control for Dynamic Optimization Problems
	7.1 Introduction
	7.2 Statement of the Problem
	7.3 The Proposed Approach: BIPOP-Algorithm
	7.3.1 Working Principles of BIPOP
	7.3.2 Construction of BIPOP
	7.3.3 Functions Utilized in the Algorithms

	7.4 Computational Experiments
	7.4.1 Experimental Framework
	7.4.2 Analysis

	7.5 Conclusions
	References

	Chapter 8 Evolutionary Optimization on Continuous Dynamic Constrained Problems – An Analysis
	8.1 Introduction
	8.2 Characteristics of Real-World Dynamic Constrained Problems
	8.3 A Real-Valued Benchmark to Simulate DCOPs Characteristics
	8.3.1 Related Literature
	8.3.2 Generating Dynamic Constrained Benchmark Problems
	8.3.3 A Dynamic Constrained Benchmark Set

	8.4 Challenges to Solve DCOPs
	8.4.1 Analysing the Performance of Some Common Dynamic Optimization Strategies in Solving DCOPs
	8.4.2 Chosen Algorithms and Experimental Settings
	8.4.3 Experimental Results and Analyses
	8.4.4 Suggestions to Improve Current Dynamic Optimization Strategies in Solving DCOPs

	8.5 Conclusion and Future Research
	References

	Part III Theoretical Analysis
	Chapter 9 Theoretical Advances in Evolutionary Dynamic Optimization
	9.1 Introduction
	9.2 Evolutionary Dynamic Optimization
	9.2.1 Optimization Problems
	9.2.2 Optimization in Uncertain Environments
	9.2.3 Evolutionary Algorithms

	9.3 Theoretical Foundation
	9.3.1 Introduction to Runtime Analysis
	9.3.2 Runtime Analysis for Dynamic Functions
	9.3.3 No Free Lunches in the Dynamic Domain
	9.3.4 Benchmark Problems

	9.4 Runtime Analysis for Dynamic Functions
	9.4.1 First Hitting Times for Pattern Match
	9.4.2 Analysis of Frequency and Magnitude of Change
	9.4.3 Tracking the Optimum in a

	9.5 Conclusions
	9.5.1 Summary and Implications
	9.5.2 Future Work

	References

	Chapter 10 Analyzing Evolutionary Algorithms for Dynamic Optimization Problems Based on the Dynamical Systems Approach
	10.1 Introduction
	10.2 Exact Model of the GA in Stationary Environments
	10.3 Dynamic Optimization Problems
	10.4 Examples
	10.4.1 The XOR DOP Generator
	10.4.2 The Dynamic Environment Generator Based on Problem Difficulty
	10.4.3 The Dynamic 0-1 Knapsack Problem

	10.5 Conclusion and Future Work
	References

	Chapter 11 Dynamic Fitness Landscape Analysis
	11.1 Introduction
	11.2 Dynamic Fitness Landscapes: Definitions and Properties
	11.2.1 Introductory Example: The Moving Peaks
	11.2.2 Definition of Dynamic Fitness Landscapes
	11.2.3 Dynamics and Fitness Landscapes

	11.3 Analysis Tools for Dynamic Fitness Landscapes
	11.3.1 Analysis of Topological Properties
	11.3.2 Analysis of Dynamical Properties

	11.4 Numerical Experiments
	11.5 Conclusion
	References

	Chapter 12 Dynamics in the Multi-objective Subset Sum: Analysing the Behavior of Population Based Algorithms
	12.1 Introduction
	12.2 Dynamic Optimization
	12.3 Multi-objective Aspect
	12.4 The Multi-objective Subset Sum Problem
	12.5 Analysis of the Dynamic Multi-objective Subset Sum Problem
	12.5.1 Algorithm Description
	12.5.2 Numerical Results and Discussions

	12.6 Conclusions
	References

	Part IV Applications
	Chapter 13 Ant Colony Optimization Algorithms with Immigrants Schemes for the Dynamic Travelling Salesman Problem
	13.1 Introduction
	13.2 Dynamic Travelling Salesman Problem with Traffic Factor
	13.2.1 DTSP with Random Traffic
	13.2.2 DTSP with Cyclic Traffic

	13.3 Ant Colony Optimization for the DTSP
	13.3.1 Standard ACO
	13.3.2 Population-Based ACO (P-ACO)
	13.3.3 React to Dynamic Changes

	13.4 Investigated ACO Algorithms with Immigrants Schemes
	13.4.1 General Framework of ACO with Immigrants Schemes
	13.4.2 ACO with Random Immigrants
	13.4.3 ACO with Elitism-Based Immigrants
	13.4.4 ACO with Hybrid Immigrants
	13.4.5 ACO with Memory-Based Immigrants
	13.4.6 ACO with Environmental-Information Immigrants

	13.5 Experiments
	13.5.1 Experimental Setup
	13.5.2 Parameter Settings
	13.5.3 Experimental Results and Analysis of the Investigated Algorithms
	13.5.4 Experimental Results and Analysis of the Investigated Algorithms with Other Peer ACO

	13.6 Conclusions and Future Work
	References

	Chapter 14 Genetic Algorithms for Dynamic Routing Problems in Mobile Ad Hoc Networks
	14.1 Introduction
	14.2 RelatedWork
	14.2.1 Shortest Path Routing
	14.2.2 Multicast Routing

	14.3 Network and Problem Models
	14.3.1 Mobile Ad Hoc Network Model
	14.3.2 Dynamic Shortest Path Routing Problem Model
	14.3.3 Dynamic Multicast Routing Problem Model

	14.4 Specialized GAs for the Routing Problems
	14.4.1 Specialized GA for the Shortest Path Routing Problem
	14.4.2 Specialized GA for the Multicast Routing Problem

	14.5 Investigated GAs for the Dynamic Routing Problems
	14.5.1 Traditional GAs
	14.5.2 GAs with Immigrants Schemes
	14.5.3 Improved GAs with Immigrants Schemes
	14.5.4 GAs with Memory Schemes
	14.5.5 GAs with Memory and Immigrants Schemes

	14.6 Experimental Study
	14.6.1 Dynamic Test Environment
	14.6.2 Experimental Study for the DSPRP
	14.6.3 Experimental Study for the DMRP

	14.7 Conclusion
	References

	Chapter 15 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem
	15.1 Introduction
	15.2 Problem Definition
	15.2.1 Static Capacitated Arc Routing Problem
	15.2.2 Dynamic Capacitated Arc Routing Problem

	15.3 Evolutionary Computation for Dynamic Capacitated Arc Routing Problem
	15.3.1 Addressing the Capacitated Arc Routing Problem Issues
	15.3.2 Tackling the Dynamic Environment

	15.4 Benchmark for Dynamic Capacitated Arc Routing Problem
	15.5 Preliminary Investigation of the Fitness Landscape
	15.6 Conclusion
	References

	Chapter 16 Evolutionary Algorithms for the Multiple Unmanned Aerial Combat Vehicles Anti-ground Attack Problem in Dynamic Environments
	16.1 Introduction
	16.2 Intelligent Online Path Planning (OPP)
	16.2.1 Formulation of the OPP Problem
	16.2.2 Problem-Solving Approach: LP-DMOEA
	16.2.3 Decision-Making on the Selection of Executive Solution

	16.3 Dynamic Target Assignment
	16.3.1 Formulation of the Dynamic WTA Problem
	16.3.2 Problem-Solving Approach: Memory-Based Estimation of Distribution Algorithm with Environment Identification
	16.3.3 Chromosome Representation
	16.3.4 Weapon-UCAV Mapping

	16.4 Simulation Results and Analysis
	16.4.1 Simulation Scenario
	16.4.2 Results and Analysis on the Intelligent OPP Problem
	16.4.3 Results and Analysis on the Dynamic WTA Problem

	16.5 Conclusions and Future Work
	References

	Chapter 17 Advanced Planning in Vertically Integrated Wine Supply Chains
	17.1 Introduction
	17.2 Literature Review
	17.2.1 Supply Chain Management
	17.2.2 Time-Varying Constraints
	17.2.3 Computational Intelligence

	17.3 Wine Supply Chain
	17.3.1 Maturity Models
	17.3.2 Vintage Intake Planning
	17.3.3 Crushing
	17.3.4 Tank Farm
	17.3.5 Bottling

	17.4 Vintage Intake Planning
	17.4.1 Description of the Problem
	17.4.2 Constraints

	17.5 Tank Farm
	17.5.1 Description of the Problem
	17.5.2 Functionality
	17.5.3 Results

	17.6 Bottling
	17.6.1 Time-Varying Challenges in Wine Bottling
	17.6.2 Objective
	17.6.3 The Algorithm

	17.7 Conclusion
	References

	Author Index
	Subject Index

