
Chapter 8
Optimization Viewpoint on Kalman Smoothing
with Applications to Robust and Sparse
Estimation

Aleksandr Y. Aravkin, James V. Burke and Gianluigi Pillonetto

Abstract In this chapter, we present the optimization formulation of the Kalman
filtering and smoothing problems, and use this perspective to develop a variety of
extensions and applications. We first formulate classic Kalman smoothing as a least
squares problem, highlight special structure, and show that the classic filtering and
smoothing algorithms are equivalent to a particular algorithm for solving this prob-
lem. Once this equivalence is established, we present extensions of Kalman smooth-
ing to systems with nonlinear process and measurement models, systems with linear
and nonlinear inequality constraints, systems with outliers in the measurements or
sudden changes in the state, and systems where the sparsity of the state sequence must
be accounted for. All extensions preserve the computational efficiency of the clas-
sic algorithms, and most of the extensions are illustrated with numerical examples,
which are part of an open source Kalman smoothing Matlab/Octave package.

8.1 Introduction

Kalman filtering and smoothing methods form a broad category of computational
algorithms used for inference on noisy dynamical systems. Over the last 50 years,
these algorithms have become a gold standard in a range of applications, including
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space exploration, missile guidance systems, general tracking and navigation, and
weather prediction. In 2009, Rudolf Kalman received the National Medal of Science
from President Obama for the invention of the Kalman filter. Numerous books and
papers have been written on these methods and their extensions, addressing modifi-
cations for use in nonlinear systems, smoothing data over time intervals, improving
algorithm robustness to bad measurements, and many other topics.

The classic Kalman filter [29] is almost always presented as a set of recursive
equations, and the classic Rauch-Tung-Striebel (RTS) fixed-interval smoother [42]
is typically formulated as two coupled Kalman filters. An elegant derivation based
on projections onto spaces spanned by random variables can be found in [2]. In
this chapter, we use the terms ‘Kalman filter’ and ‘Kalman smoother’ much more
broadly, including any method of inference on any dynamical system fitting the
graphical representation of Fig. 8.1. Specific mathematical extensions we consider
include

• Nonlinear process and measurement models.
• Inequality state space constraints.
• Different statistical models for process and measurement errors.
• Sparsity constraints.

We also show numerous applications of these extensions.
The key to designing tractable inference methods for the above applications is

an optimization viewpoint, which we develop in the classic Kalman smoothing case
and then use to formulate and solve all of the above extensions. Though it has been
known for many years that the Kalman filter provides the maximum a posteriori
estimate for linear systems subject to Gaussian noise, the optimization perspective
underlying this idea has not been fully deployed across engineering applications.
Notably, several groups (starting in 1977) have discovered and used variants of this
perspective to implement extensions to Kalman filtering and smoothing, including
singular filtering [33, 39, 40], robust smoothing [7, 22], nonlinear smoothing with
inequality state space constraints [9, 11], and sparse Kalman smoothing [1].

We focus exclusively on smoothing here, leaving online applications of these ideas
to future work (see [41] for an example of using a smoother for an online application).
We start by presenting the classic RTS smoothing algorithm in Sect. 8.2, and show that
the well-known recursive equations are really an algorithm to solve a least squares
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system with special structure. Once this is clear, it becomes much easier to discuss
novel extensions, since as long as special structure is preserved, their computational
cost is on par with the classic smoother (or, put another way, the classic smoothing
equations are viewed as a particular way to solve key subproblems in the extended
approaches).

In the subsequent sections, we build novel extensions, briefly review theory, dis-
cuss the special structure, and present numerical examples for a variety of applica-
tions. In Sect. 8.3, we formulate the problem for smoothing with nonlinear process
and measurement models, and show how to solve it. In Sect. 8.4, we show how state
space constraints can be incorporated, and the resulting problem solved using interior
point techniques. In Sect. 8.5, we review two recent Kalman smoothing formulations
that are highly robust to measurement errors. Finally, in Sect. 8.6, we review recent
work in sparse Kalman smoothing, and show how sparsity can be incorporated into
the other extensions. We end the chapter with discussion in Sect. 8.7.

8.2 Optimization Formulation and RTS Smoother

8.2.1 Probabilistic Model

The model corresponding to Fig. 8.1 is specified as follows:

x1 = g1(x0)+ w1,

xk = gk(xk−1)+ wk k = 2, . . . , N ,

zk = hk(xk)+ vk k = 1, . . . , N , (8.1)

where wk, vk are mutually independent random variables with known positive def-
inite covariance matrices Qk and Rk , respectively. We have xk, wk ∈ R

n , and
zk, vk ∈ R

m(k), so measurement dimensions can vary between time points. The
classic case is obtained by making the following assumptions:

1. x0 is known, and gk , hk are known linear functions, which we denote by

gk(xk−1) = Gk xk−1 hk(xk) = Hk xk (8.2)

where Gk ∈ R
n×n and Hk ∈ R

m(k)×n ,
2. wk, vk are mutually independent Gaussian random variables.

In later sections, we will show how to relax these classic assumptions, and what gains
can be achieved once they are relaxed. In this section, we will formulate estimation
of the entire state sequence, x1, x2, . . . , xN , as an optimization problem, and show
how the RTS smoother solves it.
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8.2.2 Maximum a Posteriori Formulation

To begin, we formulate the maximum a posteriori (MAP) problem under linear and
Gaussian assumptions. Using Bayes’ theorem, we have

P
({xk}

∣∣{zk}
) ∝ P

({zk}
∣∣{xk}

)
P ({xk})

=
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp
(
− 1

2
(zk − Hk xk)

�R−1
k (zk − Hk xk)

− 1

2
(xk − Gk xk−1)

�Q−1
k (xk − Gk xk−1)

)
.

(8.3)

A better (equivalent) formulation to (8.3) is minimizing its negative log posterior:

min{xk }
f ({xk}) :=

N∑

k=1

1

2
(zk − Hk xk)

�R−1
k (zk − Hk xk)+ 1

2
(xk − Gk xk−1)

�Q−1
k (xk − Gk xk−1).

(8.4)
To simplify the problem, we now introduce data structures that capture the entire

state sequence, measurement sequence, covariance matrices, and initial conditions.
Given a sequence of column vectors {uk} and matrices {Tk} we use the notation

vec({uk}) =

⎡

⎢⎢⎢
⎣

u1
u2
...

uN

⎤

⎥⎥⎥
⎦

, diag({Tk}) =

⎡

⎢⎢⎢⎢
⎣

T1 0 · · · 0

0 T2
. . .

...
...

. . .
. . . 0

0 · · · 0 TN

⎤

⎥⎥⎥⎥
⎦

.

We now make the following definitions:

R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN })

G =

⎡

⎢⎢⎢⎢
⎣

I 0

−G2 I
. . .

. . .
. . . 0
−G N I

⎤

⎥⎥⎥⎥
⎦

,

(8.5)
where g0 := g1(x0) = G1x0.

With definitions in (8.5), problem (8.4) can be written
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min
x

f (x) = 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 , (8.6)

where ‖a‖2M = a�Ma. We knew the MAP was a least squares problem already, but
now the structure is fully transparent. In fact, we can write down the closed form
solution by taking the gradient of (8.6) and setting it equal to 0:

0 = H�R−1(H x − z)+ G�Q−1(Gx − w)

= (H�R−1 H + G�Q−1G)x − H�R−1z − G�Q−1w.

The smoothing estimate is therefore given by solving the linear system

(H�R−1 H + G�Q−1G)x = H�R−1z + G�Q−1w. (8.7)

8.2.3 Special Subproblem Structure

The linear system in (8.7) has a very special structure: it is a symmetric positive
definite block tridiagonal matrix. This can be immediately observed from the fact
that both G and Q are positive definite. To be specific, it is given by

C = (H�R−1 H + G�Q−1G) =

⎡

⎢
⎢⎢
⎣

C1 AT
2 0

A2 C2 AT
3 0

0
. . .

. . .
. . .

0 AN CN

⎤

⎥
⎥⎥
⎦

, (8.8)

with Ak ∈ R
n×n and Ck ∈ R

n×n defined as follows:

Ak = −Q−1
k Gk,

Ck = Q−1
k + G�k+1 Q−1

k+1Gk+1 + H�k R−1
k Hk . (8.9)

The special structure of the matrix C in (8.8) can be exploited to solve the linear
system equivalent to the Kalman smoother. While a structure-agnostic matrix inver-
sion scheme has complexity O(n3 N 3), exploiting the block tridiagonal structure
reduces this complexity to O(n3 N ).

A straightforward algorithm for solving any symmetric positive definite block
tridiagonal linear system is given in [10]. We review it here, since it is essential to
build the connection to the standard viewpoint of the RTS smoother.
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8.2.4 Block Tridiagonal (BT) Algorithm

Suppose for k = 1, . . . , N , ck ∈ Rn×n , ek ∈ Rn×�, rk ∈ Bn×�, and for k = 2, . . . , N ,
ak ∈ Rn×n . We define the corresponding block tridiagonal system of equations

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

c1 aT
2 0 · · · 0

a2 c2

.

.

.

.

.

.
. . . 0

0 aN−1 cN−1 aT
N

0 · · · 0 aN cN

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎜
⎝

e1
e2
.
.
.

eN−1
eN

⎞

⎟⎟
⎟⎟
⎟
⎠
=

⎛

⎜⎜
⎜⎜
⎜
⎝

r1
r2
.
.
.

rN−1
rN

⎞

⎟⎟
⎟⎟
⎟
⎠

(8.10)

The following algorithm for (8.10) is given in [10, Algorithm 4].
Algorithm 1 The inputs to this algorithm are {ak}, {ck}, and {rk}. The output is a
sequence {ek} that solves Eq. (8.10).

1. Set d1 = c1 and s1 = r1.
2. For k = 2, . . . , N , set dk = ck − aT

k d−1
k−1ak , sk = rk − aT

k d−1
k−1sk−1.

3. Set eN = d−1
N sN .

4. For k = N − 1, . . . , 1, set ek = d−1
k (sk − ak+1ek+1).

Note that after the first two steps of Algorithm 1, we have arrived at a linear system
equivalent to (8.10) but upper triangular:

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

d1 aT
2 0 · · · 0

0 d2

.

.

.

.

.

.
. . . 0

0 0 dN−1 aT
N

0 · · · 0 0 dN

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎜
⎝

e1
e2
.
.
.

eN−1
eN

⎞

⎟⎟
⎟⎟
⎟
⎠
=

⎛

⎜⎜
⎜⎜
⎜
⎝

s1
s2
.
.
.

sN−1
sN

⎞

⎟⎟
⎟⎟
⎟
⎠

(8.11)

The last two steps of the algorithm then simply back-solve for the ek .

8.2.5 Equivalence of Algorithm (1) to Kalman Filter
and RTS Smoother

Looking at the very first block, we now substitute in the Kalman data structures (8.9)
into step 2 of Algorithm 1:

d2 = c2 − aT
2 d−1

1 a2

= Q−1
2 −

(
Q−1

2 G2

)�

⎛

⎜⎜⎜
⎝

Q−1
1 + H�1 R−1

1 H1
︸ ︷︷ ︸

P−1
1|1

+G�2 Q−1
2 G2

⎞

⎟⎟⎟
⎠

−1

(
Q−1

2 G2

)

︸ ︷︷ ︸
P−1

2|1

+H�2 R−1
2 H2

︸ ︷︷ ︸
P−1

2|2

+G�3 Q−1
3 G3

(8.12)
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These relationships can be seen quickly from [5, Theorem 2.2.7]. The matrices Pk|k ,
Pk|k−1 are common to the Kalman filter framework: they represent covariances of
the state at time k given the the measurements {z1, . . . , zk}, and the covariance of
the a priori state estimate at time k given measurements {z1, . . . , zk−1}, respectively.

From the above computation, we see that

d2 = P−1
2|2 + G�3 Q−1

3 G3.

By induction, it is easy to see that in fact

dk = P−1
k|k + G�k+1 Q−1

k+1Gk+1.

We can play the same game with sk . Keeping in mind that r = H�R−1z+G�Q−1w,
we have

s2 = r2 − aT
2 d−1

1 r1

= H�2 R−1
2 z2 +

(
Q−1

2 G2

)�

⎛

⎜⎜⎜⎜
⎝

Q−1
1 + H�1 R−1

1 H1
︸ ︷︷ ︸

P−1
1|1

+G�2 Q−1
2 G2

⎞

⎟⎟⎟⎟
⎠

−1

(
H�1 R−1

1 z1 + G�1 P−1
0|0 x0

)

︸ ︷︷ ︸
a2|1

︸ ︷︷ ︸
a2|2

(8.13)

These relationships also follow from [5, Theorem 2.2.7]. The quantities a2|1 and a2|2
are from the information filtering literature, and are less commonly known: they are
preconditioned estimates

ak|k = P−1
k|k xk, ak|k−1 = P−1

k|k−1xk|k−1. (8.14)

Again, by induction we have precisely that sk = ak|k .
When you put all of this together, you see that step 3 of Algorithm 1 is given by

eN = d−1
N sN =

(
P−1

N |N + 0
)−1

P−1
N |N xk|k = xk|k, (8.15)

so in fact eN is the Kalman filter estimate (and the RTS smoother estimate) for time
point N .

Step 4 of Algorithm 1 then implements the backward Kalman filter, computing
the smoothed estimates xk|N by back-substitution. Therefore the RTS smoother is
Algorithm 1 applied to (8.7).

The consequences are profound—instead of working with the kinds expressions
seen in (8.13) and (8.12), we can think at a high level, focusing on (8.6), and simply
using Algorithm 1 (or variants) as a subroutine. As will become apparent, the key
to all extensions is preserving the block tridiagonal structure in the subproblems, so
that Algorithm 1 can be used.
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8.2.6 Numerical Example: Tracking a Smooth Signal

In this example, we focus on a very useful and simple model: the process model
for a smooth signal. Smooth signals arise in a range of applications: physics-based
models, biological data, and financial data all have some inherent smoothness.

A surprisingly versatile technique for modeling any such process is to treat it as
integrated Brownian motion. We illustrate on a scalar time series x . We introduce
a new derivative state ẋ , with process model ẋk+1 = ẋk + ẇk, and then model the
signal x or interest as xk+1 = xk + ẋkΔt + wk . Thus we obtain an augmented (2D)
state with process model

[
ẋk+1
xk+1

]
=
[

I 0
Δt I

] [
ẋk

xk

]
+
[

ẇk

wk

]
. (8.16)

Using a well-known connection to stochastic differential equations (see [11, 26,
38]) we use covariance matrix

Qk = σ 2
[

Δt Δt2/2
Δt2/2 Δt3/3

]
. (8.17)

Model equations (8.16) and (8.17) can be applied as a process model for any
smooth process. For our numerical example, we take direct measurements of the sin
function, which is very smooth. Our measurement model therefore is

zk = Hk xk + vk, Hk =
[
0 1
]
. (8.18)

The resulting fit is shown in Fig. 8.2. The measurements guide the estimate to
the true smooth time series, giving very nice results. The figure was generated using
the ckbs package [6], specifically using the example file affine_ok.m. Mea-
surement errors were generated using Rk = 0.352, and this value was given to the
smoother. The σ 2 in (8.17) was taken to be 1. The program and example are available
for download from COIN-OR.

8.3 Nonlinear Process and Measurement Models

In the previous section, we have shown that when gk and hk in model (8.1) are linear,
and vk, wk are Gaussian, then the smoother is equivalent to solving a least squares
problem (8.6). We have also shown that the filter estimates appear as intermediate
results when one uses Algorithm 1 to solve the problem.

In this section, we turn to the case where gk and hk are nonlinear. We first formulate
the smoothing problem as a maximum a posteriori (MAP) problem, and show that
it is a nonlinear least squares (NLLS) problem. To set up for later sections, we also
introduce the broader class of convex composite problems.
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Fig. 8.2 Tracking a smooth
signal (sine wave) using
a generic linear process
model (8.16) and direct
(noisy) measurements (8.18).
Red solid line is true signal,
blue dashed line is Kalman
(RTS) smoother estimate.
Measurements are displayed
as circles

We then review the standard Gauss-Newton method in the broader context of
convex composite models, and show that when applied to the NLLS problem, each
iteration is equivalent to solving (8.6), and therefore to a full execution of the RTS
smoother. We also show how to use a simple line search to guarantee convergence
of the method to a local optimum of the MAP problem.

This powerful approach, known for at least 20 years [9, 12, 21], is rarely used in
practice; instead practitioners favor the EKF or the UKF [18, 28], neither of which
converge to a (local) MAP solution. MAP approaches work very well for a broad
range of applications, and it is not clear why one would throw away an efficient
MAP solver in favor of another scheme. To our knowledge, the optimization (MAP)
approach has never been included in a performance comparison of ‘cutting edge’
methods, such as [34]. While such a comparison is not in the scope of this work,
we lay the foundation by providing a straightforward exposition of the optimization
approach and a reproducible numerical illustration (with publicly available code)
for smoothing the Van Der Pol oscillator, a well known problem where the process
model is a nonlinear ODE.

8.3.1 Nonlinear Smoother Formulation and Structure

In order to develop a notation analogous to (8.6), we define functions g : RnN →
R

n(N+1) and h : R
nN → R

M , with M = ∑
k mk , from components gk and hk as

follows.

g(x) =

⎡

⎢
⎢⎢
⎣

x1
x2 − g2(x1)

...

xN − gN (xN−1)

⎤

⎥
⎥⎥
⎦

, h(x) =

⎡

⎢
⎢⎢
⎣

h1(x1)

h2(x2)
...

hN (xN )

⎤

⎥
⎥⎥
⎦

. (8.19)
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With this notation, the MAP problem, obtained exactly as in Sect. 8.2.2, is given
by

min
x

f (x) = 1

2
‖g(x)− w‖2Q−1 + 1

2
‖h(x)− z‖2R−1, (8.20)

where z and w are exactly as in (8.5), so that z is the entire vector of measurements,
and w contains the initial estimate g1(x0) in the first n entries, and zeros in the
remaining n(N − 1)entries.

We have formulated the nonlinear smoothing problem as a nonlinear least-squares
(NLLS) problem—compare (8.20) with (8.6). We take this opportunity to note that
NLLS problems are a special example of a more general structure. Objective (8.20)
may be written as a composition of a convex function ρ with a smooth function F :

f (x) = ρ(F(x)), (8.21)

where

ρ

(
y1
y2

)
= 1

2
‖y1‖2Q−1 + 1

2
‖y2‖2R−1 , F(x) =

[
g(x)− w
h(x)− z

]
. (8.22)

As we show in the next sub-section, problems of general form (8.21) can be
solved using the Gauss-Newton method, which is typically associated specifically
with NLLS problems. Presenting the Gauss-Newton right away in the more general
setting will make it easier to understand extensions in the following sections of the
chapter.

8.3.2 Gauss-Newton Method for Convex Composite Models

The Gauss-Newton method can be used to solve problems of the form (8.21), and
it uses a very simple strategy: iteratively linearizing the smooth function F [15].
More specifically, the Gauss-Newton method is an iterative method of the form

xν+1 = xν + γ νdν, (8.23)

where dν is the Gauss-Newton search direction, and γ ν is a scalar that guarantees

f (xν+1) < f (xν). (8.24)

The direction dν is obtained by solving the subproblem

dν = arg min
d

f̃ (d) := ρ
(

F(xν)+ ∇F(xν)�d
)

. (8.25)

We then set
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Δ̃ f (xν) = f̃ (dν)− f (xν).

By [15, Lemma 2.3, Theorem 3.6],

f ′(xν; dν) ≤ Δ̃ f (xν) ≤ 0, (8.26)

with equality if and only if xν is a first-order stationary point for f . This implies that
a suitable stopping criteria for the algorithm is the condition Δ f (xν) ∼ 0. Moreover,
xν is not a first-order stationary point for f , then the direction dν is a direction of
strict descent for f at xν .

Once the direction dν is obtained with Δ̃ f (xν) < 0, a step-size γ ν is obtained by a
standard backtracking line-search procedure: pick a values 0 < λ < 1 and 0 < κ < 1
(e.g., λ = 0.5 and κ = 0.001) and evaluate f (xν + λsdν), s = 0, 1, 2, . . . , until

f (xν + λsdν) ≤ f (xν)+ κλsΔ̃ f (xν) (8.27)

is satisfied for some s̄, then set γ ν = λs̄ and make the GN update (8.23). The fact
that there is a finite value of s for which (8.27) is satisfied follows from inequality
f ′(xν; dν) ≤ Δ̃ f (xν) < 0. The inequality (8.27) is called the Armijo inequality.
A general convergence theory for this algorithm as well as a wide range of others
is found in [15]. For the NLLS case, the situation is simple, since ρ is a quadratic,
and standard convergence theory is given for example in [27]. However, the more
general theory is essential in the later sections.

8.3.3 Details for Kalman Smoothing

To implement the Gauss-Newton method described above, one must compute the
solution dν to the Gauss-Newton subproblem (8.25) for (8.20). That is, one must
compute

dν = arg min
d

f̃ (d) = 1

2
‖Gνd − w− g(xν)︸ ︷︷ ︸

wν

‖2Q−1 + 1

2
‖H νd − z − h(xν)︸ ︷︷ ︸

zν

‖2R−1,

(8.28)
where

Gν =

⎡

⎢⎢
⎢⎢
⎣

I 0

−g(1)
2 (xν

1 ) I
. . .

. . .
. . . 0

−g
(1)
N (xν

N−1) I

⎤

⎥⎥
⎥⎥
⎦

, H ν = diag{h(1)
1 (x1), . . . , h(1)

N (xN )}.

(8.29)
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However, the problem (8.28) has exactly the same structure as (8.6); a fact that
we have emphasized by defining

wν := w− g(xν), zν = z − h(xν). (8.30)

Therefore, we can solve it efficiently by using Algorithm 1.
The linearization step in (8.28) should remind the reader of the EKF. Note, how-

ever, that the Gauss-Newton method is iterative, and we iterate until convergence to
a local minimum of (8.20). We also linearize along the entire state space sequence
xν at once in (8.28), rather than re-linearizing as we make our way through the xν

k ’s.

8.3.4 Numerical Example: Van Der Pol Oscillator

The Van der Pol oscillator is a popular nonlinear process for comparing Kalman
filters, see [24] and [30, Sect. 4.1]. The oscillator is governed by a nonlinear ODE
model

Ẋ1(t) = X2(t) and Ẋ2(t) = μ[1− X1(t)
2]X2(t)− X1(t). (8.31)

In contrast to the linear model (8.16), which was a generic process for a smooth
signal, we now take the Euler discretization of (8.31) to be the specific process
model for this situation.

Given X (tk−1) = xk−1 the Euler approximation for X (tk−1 +Δt) is

gk(xk−1) =
(

x1,k−1 + x2,k−1Δt
x2,k−1 + {μ[1− x2

1,k]x2,k − x1,k}Δt

)
. (8.32)

For the simulation, the ‘ground truth’ is obtained from a stochastic Euler approxima-
tion of the Van der Pol oscillator. To be specific, with μ = 2, N = 80 and Δt = 30/N ,
the ground truth state vector xk at time tk = kΔt is given by x0 = (0,−0.5)T and
for k = 1, . . . , N ,

xk = gk(xk−1)+ wk, (8.33)

where {wk} is a realization of independent Gaussian noise with variance 0.01 and gk

is given in (8.32). Our process model for state transitions is also (8.33), with Qk =
0.01 I for k > 1, and so is identical to the model used to simulate the ground truth {xk}.
Thus, we have precise knowledge of the process that generated the ground truth {xk}.
The initial state x0 is imprecisely specified by setting g1(x0) = (0.1,−0.4)T �= x0
with corresponding variance Q1 = 0.1 I . For k = 1, . . . , N noisy measurements zk

direct measurements of the first component only were used

zk = x1,k + vk, (8.34)

with vk ∼ N (0, 1).
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Fig. 8.3 Tracking the Van Der Pol Osciallator using a nonlinear process model (8.32) and direct
(noisy) measurements (8.34) of X1-component only. Black solid line is true signal, blue dashed
line is nonlinear Kalman smoother estimate. Measurements are displayed as circles

The resulting fit is shown in Fig. 8.3. Despite the noisy measurements of only X1,
we are able to get a good fit for both components. The figure was generated using
the ckbs package [6], see the file vanderpol_experiment_simple.m. The
program and example are available for download from COIN-OR.

8.4 State Space Constraints

In almost every real-world problem, additional prior information is known about the
state. In many cases, this information can be represented using state space constraints.
For example, in tracking physical bodies, we often know (roughly or approximately)
the topography of the terrain; this information can be encoded as a simple box
constraint on the state. We may also know physical limitations (e.g., maximum
acceleration or velocity) of objects being tracked, or hard bounds set by biological
or financial systems. These and many other examples can be formulated using state
space constraints. The ability to incorporate this information is particularly useful
when measurements are inaccurate or far between.

In this section, we first show how to add affine inequality constraints to the affine
smoother formulation in Sect. 8.2. This requires a novel methodology: interior point
(IP) methods, an important topic in optimization [32, 37, 49]. IP methods work
directly with optimality conditions, so we derive these conditions for the smoothing
problem. Rather than review theoretical results about IP methods, we give a general
overview and show how they specialize to the linear constrained smoother. The
constrained Kalman smoother was originally proposed in [11], but we improve on
that work here, and present a simplified algorithm, which is also faster and more
numerically stable. We illustrate the algorithm using a numerical example, building
on the example in Sect. 8.2.
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Once the linear smoother with linear inequality constraints is understood, we
review the constrained nonlinear smoother (which can have nonlinear process, mea-
surement, and constraint functions). Using [11] and references therein, we show
that the constrained nonlinear smoother is iteratively solved using linear constrained
smoothing subproblems, analogously to how the nonlinear smoother in Sect. 8.3 is
iteratively solved using linear smoothing subproblems from Sect. 8.2. Because of
this hierarchy, the improvements to the affine algorithm immediately carry over to
the nonlinear case. We end with a nonlinear constrained numerical example.

8.4.1 Linear Constrained Formulation

We start with the linear smoothing problem (8.6), and impose linear inequality con-
straints on the state space x :

Bk xk ≤ bk . (8.35)

By choosing the matrix Bk and bk appropriately, one can ensure xk lies in any
polyhedral set, since such a set is defined by a finite intersection of hyperplanes. Box
constraints, one of the simplest and useful tools for modeling (lk ≤ xk ≤ uk) can be
imposed via [

I
−I

]
xk ≤

[
uk

−lk

]
.

In order to formulate the problem for the entire state space sequence, we define

B = diag({Bk}), b = vec({bk}), (8.36)

and all of the constraints can be written simultaneously as Bx ≤ b. The constrained
optimization problem is now given by

min
x

f (x) = 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1

subject to Bx + s = b, s ≥ 0.

(8.37)

Note that we have rewritten the inequality constraint as an equality constraint by
introducing a new ‘slack’ variable s.

We derive the Karush-Kuhn-Tucker (KKT) conditions using the Lagrangian for-
mulation. The Lagrangian corresponding to (8.36) is given by

L(x, u, s) = 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 + u�(Bx + s − b). (8.38)

The KKT conditions are now obtained by differentiating L with respect to its argu-
ments. Recall that the gradient of (8.6) is given by
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(H�R−1 H + G�Q−1G)x − H�R−1z − G�Q−1w.

As in (8.8) set C = H�R−1 H + G�Q−1G, and for convenience set

c = H�R−1z + G�Q−1w (8.39)

The KKT necessary and sufficient conditions for optimality are given by

∇xL = Cx + c + B�u = 0

∇qL = Bx + s − b = 0

ui si = 0 ∀i ; ui , si ≥ 0.

(8.40)

The last set of nonlinear equations is known as complementarity conditions. In
primal-dual interior point methods, the key idea for solving (8.37) is to succes-
sively solve relaxations of the system (8.40) that converge to a triplet (x̄, ū, s̄) which
satisfy (8.40).

8.4.2 Interior Point Approach

IP methods work directly to find solutions of (8.40). They do so by iteratively relaxing
the complementarity conditions ui si = 0 to ui si = μ as they drive the relaxation
parameter μ to 0. The relaxed KKT system is defined by

Fμ(s, u, x) =
⎡

⎣
s + Bx − b
SU1− μ1

Cx + BT u − c

⎤

⎦. (8.41)

where S and U are diagonal matrices with s and u on the diagonal, and so the second
equation in Fμ implements the relaxation ui si = μ of (8.40). Note that the relaxation
requires that μi , si > 0 for all i . Since the solution to (8.37) is found by driving the
KKT system to 0, at every iteration IP methods attempt to drive Fμ to 0 by Newton’s
method for root finding.

Newton’s root finding method solves the linear system

F (1)
μ (s, u, x)

⎡

⎣
Δs
Δu
Δx

⎤

⎦ = −Fμ(s, u, x). (8.42)

It is important to see the full details of solving (8.42) in order to see why it is so
effective for constrained Kalman smoothing. The full system is given by
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⎡

⎣
I 0 B
U S 0
0 BT C

⎤

⎦

⎡

⎣
Δs
Δu
Δx

⎤

⎦ = −
⎡

⎣
s + Bx − b
SU1− μ1

Cx + BT u − c

⎤

⎦ . (8.43)

Applying the row operations

row2 ← row2 −U row1

row3 ← row3 − BT S−1row2
,

we obtain the equivalent system

⎡

⎣
I 0 B
0 S −U B
0 0 C + BT S−1U B

⎤

⎦

⎡

⎣
Δs
Δu
Δx

⎤

⎦ =

−
⎡

⎣
s + Bx − b

−U (Bx − b)− μ1
Cx + BT u − c + BT S−1 (U (Bx − b)+ μ1)

⎤

⎦ . (8.44)

In order to find the update for Δx , we have to solve the system

(
C + BT S−1U B

)
Δx = Cx + BT u − c + BT S−1 (U (Bx − b)+ μ1) (8.45)

Note the structure of the matrix in the LHS of (8.45). The matrix C is the same as
in (8.6), so it is positive definite symmetric block tridiagonal. The matrices S−1 and
U are diagonal, and we always ensure they have only positive elements. The matrices
B and B� are both block diagonal. Therefore, C+BT S−1U B has the same structure
as C , and we can solve (8.45) using Algorithm 1.

Once we have Δx , the remaining two updates are obtained by back-solving:

Δu = U S−1(B(x +Δx)− b)+ μ

s
(8.46)

and
Δs = −s + b − B(x +Δx). (8.47)

This approach improves the algorithm presented in [11] solely by changing the
order of variables and equations in (8.41). This approach simplifies the derivation
while also improving speed and numerical stability.

It remains to explain how μ is taken to 0. There are several strategies, see
[32, 37, 49]. For the Kalman smoothing application, we use one of the simplest:
for two out of every three iterations μ is aggressively taken to 0 by the update
μ = μ/10; while in the remaining iterations, μ is unchanged. In practice, one sel-
dom needs more than 10 interior point iterations; therefore the constrained linear
smoother performs at a constant multiple of work of the linear smoother.
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8.4.3 Two Linear Numerical Examples

In this section, we present to simple examples, both with linear constraints.

8.4.3.1 Constant Box Constraints

In the first example, we impose box constraints in the example of Sect. 8.2.6. Specif-
ically, we take advantage of the fact the state is bounded:

[−1
] ≤ [x] [1] (8.48)

We can encode this information in form (8.35) with

Bk =
[

1 0
0 −1

]
, bk =

[
1
1

]
. (8.49)

We contrast the performance of the constrained linear smoother with that of the
linear smoother without constraints. To show the advantages of modeling with con-
straints, we increase the measurement noise in both situations to σ 2 = 1. The results
are show in Fig. 8.4. The constrained smoother avoids some of the problems encoun-
tered by the unconstrained smoother. Of particular interest are the middle and end
parts of the track, where the unconstrained smoother goes far afield because of bad
measurement. The constrained smoother is able track portions of the track extremely
well, having avoided the bad measurements with the aid of the bound constraints.
The figure was generated using the ckbs package [6], specifically using the example
file affine_ok_boxC.m.

8.4.3.2 Variable Box Constraints

In the second example, we impose time-varying constraints on the state. Specifically,
we track an exponentially bounded signal with a linear trend:

exp(−αt) sin(βt)+ 0.1t

using the ‘smooth signal’ process model and direct measurements, as in Sect. 8.2.6.
The challenge here is that as the oscillations start to die down because of the exponen-
tial damping, the variance of the measurements remains the same. We can improve the
performance by giving the smoother the exponential damping terms as constraints.

We included the second example to emphasize that ‘linearity’ of constraints means
‘with respect to the state’; in fact, the constraints in the second example are simply box
constraints which are time dependent. The second example is no more complicated
than the first one for the constrained smoother.
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Fig. 8.4 Two examples of linear constraints. Black solid line is true signal, magenta dash-dot
lines is unconstrained Kalman smoother, and blue dashed line is the constrained Kalman smoother.
Measurements are displayed as circles, and bounds are shown as green horizontal lines. In the left
panel, note that performance of the bounded smoother is significantly better around time 4–10—the
unconstrained is fooled by the measurements at times 4 and 8. In the right panel, as the oscillations
die down due to damping, the measurement variance remains unchanged, so it becomes much more
difficult to track the signal without the bound constraints

8.4.4 Nonlinear Constrained Smoother

We now consider the nonlinear constrained smoother, where we allow process func-
tions gk , measurement functions hk to be nonlinear, and also allow nonlinear smooth
constraints ξk(xk) ≤ bk . To be consistent with the notation we use throughout the
paper, we define a new function

ξ(x) =

⎡

⎢⎢⎢
⎣

ξ1(x1)

ξ2(x2)
...

ξN (xN )

⎤

⎥⎥⎥
⎦

, (8.50)

so that all the constraints can be written simultaneously as ξ(x) ≤ b.
The problem we would like to solve now is a constrained reformulation of (8.20)

min
x

f (x) = 1

2
‖g(x)− w‖2Q−1 + 1

2
‖h(x)− z‖2R−1

subject to ξ(x)− b ≤ 0.

(8.51)

At this point, we come back to the convex-composite representation described in
Sect. 8.3.1. The constraint ξ(x)−b ≤ 0 may be represented using an additional term
in the objective function:

δ (ξ(x)− b | R−) , (8.52)

where δ (x | C) is the convex indicator function:
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δ (x | C) =
{

0 x ∈ C

∞ x �∈ C
. (8.53)

Therefore, the objective (8.51) can be represented as follows:

f (x) = ρ(F(x))

ρ

⎛

⎝
y1
y2
y3

⎞

⎠ = 1

2
‖y1‖2Q−1 + 1

2
‖y2‖2R−1 + δ (y3 | R−)

F(x) =
⎡

⎣
g(x)− w
h(x)− z
ξ(x)− b

⎤

⎦ .

(8.54)

The approach to nonlinear smoothing in [11] is essentially the Gauss-Newton
method described in Sect. 8.3.2, applied to (8.54). In other words, at each iteration
ν, the function F is linearized, and the direction finding subproblem is obtained by
solving

min
d

1

2
‖Gνd − w− g(xν)︸ ︷︷ ︸

wν

‖2Q−1 + 1

2
‖H νd − z − h(xν)︸ ︷︷ ︸

zν

‖2R−1 ,

subject to Bνd ≤ b − ξ(xν)︸ ︷︷ ︸
bν

,
(8.55)

where Gν and H ν are exactly as in (8.28), Bν = ∇xξ(xν) is a block diagonal matrix
because of the structure of ξ (8.50), and we have written the indicator function
in (8.54) as an explicit constraint to emphasize the structure of the subproblem.

Note that (8.55) has exactly the same structure as the linear constrained smoothing
problem (8.37), and therefore can be solved using the interior point approach in
the previous section. Because the convex-composite objective (8.54) is not finite
valued (due to the indicator function of the feasible set), to prove convergence of the
nonlinear smoother, [11] uses results from [14]. We refer the interested reader to [11,
Lemma 8, Theorem 9] for theoretical convergence results, and to [11, Algorithm 6]
for the full algorithm, including line search details.

Because of the hierarchical dependence of the nonlinear constrained smoother on
the linear constrained smoother, the simplified improved approach we presented in
Sect. 8.4.2 pays off even more in the nonlinear case, where it is used repeatedly as a
subroutine.
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8.4.5 Nonlinear Constrained Example

The example in this section is reproduced from [11]. Consider the problem of tracking
a ship traveling close to shore where we are given distance measurements from two
fixed stations to the ship as well as the location of the shoreline. Distance to fixed
stations is a nonlinear function, so the measurement model here is nonlinear.

In addition, the corresponding constraint functions { fk} are not affine because the
shoreline is not a straight line. For the purpose of simulating the measurements {zk},
the ship velocity [X1(t), X3(t)] and the ship position [X2(t), X4(t)] are given by

X (t) = [ 1, t, − cos(t), 1.3− sin(t) ]�

Both components of the ship’s position are modeled using the smooth signal model
in Sect. 8.2.6. Therefore we introduce two velocity components, and the process
model is given by

Gk =

⎡

⎢
⎢
⎣

1 0 0 0
Δt 1 0 0
0 0 1 0
0 0 Δt 0

⎤

⎥
⎥
⎦ , Qk =

⎡

⎢
⎢
⎣

Δt Δt2/2 0 0
Δt2/2 Δt3/3 0 0

0 0 Δt Δt2/2
0 0 Δt2/2 Δt3/3

⎤

⎥
⎥
⎦ .

The initial state estimate is given by g1(x0) = X (t1) and Q1 = 100I4 where I4 is the
four by four identity matrix. The measurement variance is constant for this example
and is denoted by σ 2. The distance measurements are made from two stationary
locations on shore. One is located at (0, 0) and the other is located at (2π, 0). The
measurement model is given by

hk(xk) =
⎛

⎝

√
x2

2,k + x2
4,k√

(x2,k − 2π)2 + x2
4,k

⎞

⎠ , Rk =
(

σ 2 0
0 σ 2

)
.

We know that the ship does not cross land, so X4(t) ≥ 1.25 − sin[X2(t)]. This
information is encoded by the constraints

ξk(xk) = 1.25− sin(x2,k)− x4,k ≤ 0.

The initial point for the smoother is [0, 0, 0, 1]�, which is not feasible. The results
are plotted in Fig. 8.5. The constrained smoother performs significantly better than
the unconstrained smoother in this example. The experiment was done using the
ckbs program, specifically see sine_wave_example.m.
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Fig. 8.5 Smoother results for ship tracking example with linear process model, nonlinear mea-
surement model, and nonlinear constraints (with respect to the state). Black solid line is true state,
red triangles denote the constraint, magenta dash-dot line is the unconstrained estimate, and blue
dashed line gives the constrained nonlinear smoothed estimate

8.5 Robust Kalman Smoothing

In many applications, the probalistic model for the dynamics and/or the observations
(8.1) is not well described by a Gaussian distribution. This occurs in the model for
the observations when they are contaminated by outliers, or more generally, when the
measurement noise vk is heavy tailed [44], and it occurs in the model for the dynamics
when tracking systems with rapidly changing dynamics, or jumps in the state values
[31]. A robust Kalman filter or smoother is one that can obtain an acceptable estimate
of the state when Gaussian assumptions are violated, and which continues to perform
well when they are not violated.

We show how to accommodate non-Gaussian densities by starting with a simple
case of non-Gaussian heavy tailed measurement noise vk [7]. However, this general
approach can be extended to wk as well. Heavy tailed measurement noise occurs in
applications related to glint noise [25], turbulence, asset returns, and sensor failure
or machine malfunction. It can also occur in the presence of secondary noise sources
or other kinds of data anomalies. Although it is possible to estimate a minimum
variance estimate of the state using stochastic simulation methods such as Markov
chain Monte-Carlo (MCMC) or particle filters [24, 35], these methods are very
computationally intensive, and convergence often relies on heuristic techniques and
is highly variable. The approach taken here is very different. It is based on the
optimization perspective presented in the previous sections. We develop a method
for computing the MAP estimate of the state sequence under the assumption that the
observation noise comes from the �1-Laplace density often used in robust estimation,
e.g., see [23, Eq. 2.3]. As we will see, the resulting optimization problem will again
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be one of convex composite type allowing us to apply a Gauss-Newton strategy for
computing the MAP estimate. Again, the key to a successful computational strategy
is the preservation of the underlying tri-diagonal structure.

8.5.1 An �1-Laplace Smoother

For u ∈ R
m we use the notation ‖u‖1 for the �1 norm of u; i.e., ‖u‖1 = |u1| + . . .+

|um |. The multivariate �1-Laplace distribution with mean μ and covariance R has
the following density:

p(vk) = det (2R)−1/2 exp
[
−√2

∥∥∥R−1/2(vk − μ)

∥∥∥
1

]
, (8.56)

where R1/2 denotes a Cholesky factor of the positive definite matrix R; i.e.,
R1/2(R1/2)T = R. One can verify that this is a probability distribution with covari-
ance R using the change of variables u = R−1/2(vk − μ). A comparison of the
Gaussian and Laplace distributions is displayed in Fig. 8.6. This comparison includes
the densities, negative log densities, and influence functions, for both distributions.

Fig. 8.6 Gaussian and laplace densities, negative log densities, and influence functions (for
scalar vk )



8 Applications to Robust and Sparse Estimation 259

8.5.1.1 Maximum a Posteriori Formulation

Assume that the model for the dynamics and the observations is given by (8.1), where
wk is assumed to be Gaussian and vk is modeled by the �1-Laplace density (8.56).
Under these assumptions, the MAP objective function is given by

P
({xk}

∣∣{zk}
) ∝ P

({zk}
∣∣{xk}

)
P ({xk})

=
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp

(
−√2

∥∥∥R−1/2(zk − hk(xk))

∥∥∥
1

− 1

2
(xk − gk(xk−1))

�Q−1
k (xk − gk(xk−1))

)
.

(8.57)

Dropping terms that do not depend on {xk}, minimizing this MAP objective with
respect to {xk} is equivalent to minimizing

f ({xk}) :=
√

2
N∑

k=1

∥∥∥R−1/2
k [zk − hk(xk)]

∥∥∥
1
+ 1

2

N∑

k=1

[xk − gk(xk−1)]T Q−1
k [xk − gk(xk−1)],

where, as in (8.1), x0 is known and g0 = g1(x0). Setting

R = diag({Rk})
Q = diag({Qk})
x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN })

, g(x) =

⎡

⎢
⎢
⎢
⎣

x1
x2 − g2(x1)

...

xN − gN (xN−1)

⎤

⎥
⎥
⎥
⎦

, h(x) =

⎡

⎢
⎢
⎢
⎣

h1(x1)

h2(x2)

...

hN (xN )

⎤

⎥
⎥
⎥
⎦

,

(8.58)
as in (8.5) and (8.19), the MAP estimation problem is equivalent to

minimize
x ∈ RNn f (x) = 1

2
‖g(x)− w‖Q−1 +√2

∥∥∥R−1/2(h(x)− z)
∥∥∥

1
. (8.59)

8.5.1.2 The Convex Composite Structure

The objective in (8.59) can again be written as a the composition of a convex function
ρ with a smooth function F :

f (x) = ρ(F(x)), (8.60)
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where

ρ

(
y1
y2

)
= 1

2
‖y1‖2Q−1 +

√
2‖R−1/2 y2‖1, F(x) =

[
g(x)− w
h(x)− z

]
. (8.61)

Consequently, the generalized Gauss-Newton methodology described in Sect. 8.3.2
again applies. That is, given an approximate solution xν to (8.59), we compute a new
approximate solution of the form

xν+1 = xν + γ νdν,

where dν solves the subproblem

minimize
d∈Rn

ρ(F(xν)+ F ′(xν)d), (8.62)

and γ ν is computed using the backtracking line-search procedure described in
Sect. 8.3.2. Following the pattern described in (8.28), the subproblem (8.62), where
ρ and F are given in (8.61), has the form

dν = arg min
d

f̃ (d) = 1

2
‖Gνd−w − g(xν)︸ ︷︷ ︸

wν

‖2Q−1+
√

2‖R−1/2(H νd−z − h(xν)︸ ︷︷ ︸
zν

)‖1,

(8.63)
where

Gν =

⎡

⎢⎢
⎢⎢
⎣

I 0

−g(1)
2 (xν

1 ) I
. . .

. . .
. . . 0

−g
(1)
N (xν

N−1) I

⎤

⎥⎥
⎥⎥
⎦

, H ν = diag{h(1)
1 (x1), . . . , h(1)

N (xN )}.

(8.64)

8.5.1.3 Solving the Subproblem by Interior Point Methods

By (8.63), the basic subproblem that must be solved takes the form

min
d

1

2
‖Gd − w‖2Q−1 +

√
2‖R−1/2(Hd − z)‖1, (8.65)

where, as in (8.5),
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R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
w = vec({w1, w2, . . . , wN })
z = vec({z1, z2, . . . , zN })

G =

⎡

⎢
⎢
⎢⎢
⎣

I 0

−G2 I
. . .

. . .
. . . 0
−G N I

⎤

⎥
⎥
⎥⎥
⎦

.

(8.66)
Using standard optimization techniques, one can introduce a pair of auxiliary non-
negative variables p+, p− ∈ R

M (M = ∑N
k=1 m(k)) so that this problem can be

rewritten as
minimize 1

2 d�Cd + c�d +√2
�
(p+ + p−)

w.r.t. d ∈ R
nN , p+, p− ∈ R

M

subject to Bd + b = p+ − p−,

(8.67)

where

C = G�Q−1G =

⎡

⎢
⎢⎢
⎣

C1 A�2 0
A2 C2 A�3 0

0
. . .

. . .
. . .

0 AN CN

⎤

⎥
⎥⎥
⎦

,

Ak = −Q−1
k Gk

Ck = Q−1
k + G�k+1 Q−1

k+1Gk+1

c = G�w

B = R−1/2 H

b = −R−1/2z

.

The problem (8.67) is a convex quadratic program. If we define

Fμ(p+, p−, s+, s−, d) =

⎡

⎢
⎢⎢⎢
⎣

p+ − p− − b − Bd
diag(p−)diag(s−)1− μ1

s+ + s− − 2
√

2
diag(p+)diag(s+)1− μ1
Cd + c + BT(s− − s+)/2

⎤

⎥
⎥⎥⎥
⎦

, (8.68)

for μ ≥ 0, then the KKT conditions for (8.67) can be written as

F0(p+, p−, s+, s−, d) = 0.

The set of solutions to Fμ(p+, p−, s+, s−, d) = 0 for μ > 0 is called the central
path. We solve the system for μ = 0 by an interior point strategy which, as described
earlier, is a Newton based predictor-corrector method for following the central path
as μ ↓ 0. At each iteration of the interior point method we need to solve a system of
the form

Fμ(p+, p−, s+, s−, d)+ F ′μ(p+, p−, s+, s−, d)

⎡

⎢⎢
⎢⎢
⎣

Δp+
Δp−
Δs+
Δs−
Δy

⎤

⎥⎥
⎥⎥
⎦
= 0,
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where the vectors p+, p−, s+, and s− are componentwise strictly positive. Using
standard methods of Gaussian elimination (as in Sect. 8.4.2), we obtain the solution

Δy = [C + BTT−1 B]−1(ē + BTT−1 f̄ )

Δs− = T−1 BΔy − T−1 f̄

Δs+ = −Δs− + 2
√

2− s+ − s−

Δp− = diag(s−)−1[τ1− diag(p−)Δs−] − p−

Δp+ = Δp− + BΔy + b + By − p+ + p−,

where

d̄ = τ1/s+ − τ1/s− − b − By + p+

ē = BT(
√

2− s−)− Cy − c

f̄ = d̄ − diag(s+)−1diag(p+)(2
√

2− s−)

T = diag(s+)−1diag(p+)+ diag(s−)−1diag(p−).

Since the matrices T and B are block diagonal, the matrix B�T B is also block
diagonal. Consequently, the key matrix C + BTT−1 B has exactly the same form as
the block tri-diagonal matrix in (8.10) with

ck = Q−1
k + G�k+1 Q−1

k+1Gk+1 + H�k T−1
k Hk k = 1, . . . , N ,

ak = −Q−1
k Gk k = 2, . . . , N ,

where Tk = diag(s+k )−1diag(p+k )+diag(s−k )−1diag(p−k ). Algorithm 1 can be applied
to solve this system accurately and stably with O(n3 N ) floating point operations
which preserves the efficiency of the classical Kalman Filter algorithm.

Further discussion on how to incorporate approximate solutions to the quadratic
programming subproblems can be found in [7, Sect. V].

8.5.1.4 A Linear Example

In the linear case, the functions gk and hk is (8.1) are affine so that they equal their
linearizations. In this case, the problems (8.59) and (8.62) are equivalent and only
one subproblem of the form (8.65), or equivalently (8.67), needs to be solved. We
illustrate the �1-Laplace smoother described in Sect. 8.5.1.1 by applying it to the
example studied in Sect. 8.2.6, except now the noise term vk is modeled using the �1-
Laplace density. The numerical experiment described below is take from [7, Sect. VI].

The numerical experiment uses two full periods of X (t) generated with N = 100
and Δt = 4π/N ; i.e., discrete time points equally spaced over the interval [0, 4π ].
For k = 1, . . . , N the measurements zk were simulated by zk = X2(tk) + vk . In
order to test the robustness of the �1 model to measurement noise containing outlier
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data, we generate vk as a mixture of two normals with p denoting the fraction of
outlier contamination; i.e.,

vk ∼ (1− p)N(0, 0.25)+ pN(0, φ). (8.69)

This was done for p ∈ {0, 0.1} and φ ∈ {1, 4, 10, 100}. The model for the mean of
zk given xk is hk(xk) = (0, 1)xk = x2,k . Here x2,k denotes the second component
of xk . The model for the variance of zk given xk is Rk = 0.25. This simulates a
lack of knowledge of the distribution for the outliers; i.e., pN(0, φ). Note that we
are recovering estimates for the smooth function− sin(t) and its derivative− cos(t)
using noisy measurements (with outliers) of the function values.

We simulated 1000 realizations of the sequence {zk} keeping the ground truth
fixed, and for each realization, and each estimation method, we computed the corre-
sponding state sequence estimate {x̂k}. The Mean Square Error (MSE) corresponding
to such an estimate is defined by

MSE = 1

N

N∑

k=1

[x1,k − x̂1,k]2 + [x2,k − x̂2,k]2, (8.70)

where xk = X (tk). In Table 8.1, the Gaussian Kalman Filter is denoted by (GKF),
the Iterated Gaussian Smoother (IGS), and the Iterated �1-Laplace Smoother (ILS).
For each of these estimation techniques, each value of p, and each value of φ,
the corresponding table entry is the median MSE followed by the centralized 95 %
confidence interval for the MSE. For this problem, the model functions {gk(xk−1)}
and {hk(xk)} are linear so the iterated smoothers IGS and ILS only require one
iteration to estimate the sequence {x̂k}.

Note the �1-Laplace smoother performs nearly as well as the Gaussian smoother
at the nominal conditions (p = 0). The �1-Laplace smoother performs better and
more consistently in cases with data contamination ( p ≥ 0.1 and φ ≥ 1 ). It is also
apparent that the smoothers perform better than the filters.

Outlier detection and removal followed by refitting is a simple approach to robust
estimation and can be applied to the smoothing problem. An inherent weakness of
this approach is that the outlier detection is done using an initial fit which assumes
outliers are not present. This can lead to good data being classified as outliers and

Table 8.1 Median MSE and 95 % confidence intervals for the different estimation methods

p φ GKF IGS ILS

0 − 0.34 (0.24, 0.47) 0.04(0.02, 0.1) 0.04(0.01, 0.1)
0.1 1 0.41(0.26, 0.60) 0.06(0.02, 0.12) 0.04(0.02, 0.10)
0.1 4 0.59(0.32, 1.1) 0.09(0.04, 0.29) 0.05(0.02, 0.12)
0.1 10 1.0(0.42, 2.3) 0.17(0.05, 0.55) 0.05(0.02, 0.13)
0.1 100 6.8(1.7, 17.9) 1.3(0.30, 5.0) 0.05(0.02, 0.14)
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Fig. 8.7 Simulation: measurements (+), outliers (o) (absolute residuals more than three standard
deviations), true function (thick line), �1-Laplace estimate (thin line), Gaussian estimate (dashed
line), Gaussian outlier removal estimate (dotted line)

result in over fitting the remaining data. An example of this is illustrated in Fig. 8.7
which plots the estimation results for a realization of {zk} where p = 0.1 and
φ = 100. Outlier removal also makes critical review of the model more difficult. A
robust smoothing method with a consistent model, such as the �1-Laplace smoother,
does not suffer from these difficulties.

8.5.1.5 Stochastic Nonlinear Process Example

We now illustrate the behavior of the �1-Laplace smoother on the Van Der Pol
Oscillator described in Sect. 8.3.4. The numerical experiment we describe is taken
from [7, Sect. VI]. The corresponding nonlinear differential equation is

Ẋ1(t) = X2(t) and Ẋ2(t) = μ[1− X1(t)
2]X2(t)− X1(t).

Given X (tk−1) = xk−1 the Euler approximation for X (tk−1 +Δt) is

gk(xk−1) =
(

x1,k−1 + x2,k−1Δt
x2,k−1 + {μ[1− x2

1,k]x2,k − x1,k}Δt

)
.

For this simulation, the ‘ground truth’ is obtained from a stochastic Euler approx-
imation of the Van der Pol oscillator. To be specific, with μ = 2, N = 164
and Δt = 16/N , the ground truth state vector xk at time tk = kΔt is given by
x0 = (0,−0.5)T and for k = 1, . . . , N ,
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xk = gk(xk−1)+ wk, (8.71)

where {wk} is a realization of independent Gaussian noise with variance 0.01. Our
model for state transitions (8.1) uses Qk = 0.01 I for k > 1, and so is identical to the
model used to simulate the ground truth {xk}. Thus, we have precise knowledge of the
process that generated the ground truth {xk}. The initial state x0 is imprecisely speci-
fied by setting g1(x0) = (0.1,−0.4)T �= x0 with corresponding variance Q1 = 0.1 I .

For k = 1, . . . , N the measurements zk were simulated by zk = x1,k + vk . The
measurement noise vk was generated as follows:

vk ∼ (1− p)N(0, 1.0)+ pN(0, φ). (8.72)

This was done for p ∈ {0, 0.1, 0.2, 0.3} and φ ∈ {10, 100, 1000}. The model for the
mean of zk given xk is hk(xk) = (1, 0)xk = x1,k . As in the previous simulation, we
simulated a lack of knowledge of the distribution for the outliers; i.e., pN(0, φ). In
(8.1), the model for the variance of zk given xk is Rk = 1.0.

We simulated 1,000 realizations of the ground truth state sequence {xk} and the
corresponding measurement sequence {zk}. For each realization, we computed the
corresponding state sequence estimate {x̂k} using both the IGS and IKS procedures.
The Mean Square Error (MSE) corresponding to such an estimate is defined by
equation (8.70), where xk is given by equation (8.71). The results of the simulation
appear in Table 8.2. As the proportion and variance of the outliers increase, the
Gaussian smoother degrades, but the �1-Laplace smoother is not affected.

Figure 8.8 provides a visual illustration of one realization {xk} and its correspond-
ing estimates {x̂k}. The left two panels demonstrate that, when no outliers are present,
both the IGS and ILS generate accurate estimates. Note that we only observe the first
component of the state and that the variance of the observation is relatively large
(see top two panels). The right two panels show what can go wrong when outliers
are present. The Van der Pol oscillator can have sharp peaks as a result of the nonlin-
earity in its process model, and outliers in the measurements can ‘trick’ the IGS into

Table 8.2 Median MSE over 1,000 runs and confidence intervals containing 95 % of MSE results

p φ IGS ILS

0 − 0.07 (0.06, 0.08) 0.07 (0.06, 0.09)
0.1 10 0.07 (0.06, 0.10) 0.07 (0.06, 0.09)
0.2 10 0.08 (0.06, 0.11) 0.08 (0.06, 0.11)
0.3 10 0.08 (0.06, 0.11) 0.08 (0.06, 0.11)
0.1 100 0.10 (0.07, 0.14) 0.07 (0.06, 0.10)
0.2 100 0.12 (0.07, 0.40) 0.08 (0.06, 0.11)
0.3 100 0.13 (0.09, 0.64) 0.08 (0.07, 0.10)
0.1 1000 0.17 (0.11, 1.50) 0.08 (0.06, 0.11)
0.2 1000 0.21 (0.14, 2.03) 0.08 (0.06, 0.11)
0.3 1000 0.25 (0.17, 2.66) 0.09 (0.07, 0.12)
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Fig. 8.8 The left two panels show estimation of x1, (top) and x2 (bottom) with errors from the
nominal model. The stochastic realization is represented by a thick black line; the Gaussian smoother
is the blue dashed line, and the �1-smoother is the magenta dash-dotted line. Right two panels show
the same stochastic realization but with measurement errors now from (p, φ) = (0.2, 100). Outliers
appear on the top and bottom boundary in the top right panel

these modes when they are not really present. In contrast, the Iterated �1-Laplace
Smoother avoids this problem.

8.5.2 Further Extensions with Log-Concave Densities

Let us step back for a moment and examine a theme common to all of the variations
on the Kalman smoother that we have examined thus far and compare the objective
functions in (8.6, 8.20, 8.37, 8.51, 8.59). In all cases, the objective function takes the
form

N∑

k=1

Vk (h(xk)− zk; Rk)+ Jk (xk − g(xk−1); Qk) , (8.73)

where the mappings Vk and Jk are associated with log-concave densities of the form

pv,k(z) ∝ exp (−Vk(z : Rk))) and pw,k(x) ∝ exp (−Jk(x; Qk))
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with pv,k and pw,k having covariance matrices Rk and Qk , respectively. The choice
of the penalty functions Vk and Jk reflect the underlying model for distribution of
the observations and the state, respectively. In many applications, the functions Vk

and Jk are a members of the class of extended piecewise linear-quadratic penalty
functions.

8.5.2.1 Extended Linear-Quadratic Penalties

Definition 1 For a nonempty polyhedral set U ⊂ R
m and a symmetric positive-

semidefinite matrix M ∈ R
m×m (possibly M = 0), define the function θU,M :

R
m → {R ∪∞} := R by

θU,M (w) := sup
u∈U

{
〈u, w〉 − 1

2
〈u, Mu〉

}
. (8.74)

Given and injective matrix B ∈ R
m×n and a vector b ∈ R

m , define ρ : Rn → R as
θU,M (b + By):

ρU,M,b,B(y) := supu∈U

{〈u, b + By〉 − 1
2 〈u, Mu〉}. (8.75)

All functions of the type specified in (8.74) are called piecewise linear-quadratic
(PLQ) penalty functions, and those of the form (8.75) are called extended piecewise
linear-quadratic (EPLQ) penalty functions.

Remarks 1 PLQ penalty functions are extensively studied by Rockafellar and Wets
in [43]. In particular, they present a full duality theory for optimizations problems
based on these functions.

It is easily seen that the penalty functions arising from both the Gaussian and �1-
Laplace distributions come from this EPLQ class. But so do other important densities
such as the Huber and Vapnik densities.

Example 1 : The �2, �1, Huber, and Vapnik penalties are representable in the notation
of Definition 1.

1. L2: Take U = R, M = 1, b = 0, and B = 1. We obtain ρ(y) =
supu∈R

〈
uy − 1

2
u2
〉
. The function inside the sup is maximized at u = y, whence

ρ(y) = 1
2 y2.

2. �1: Take U = [−1, 1], M = 0, b = 0, and B = 1. We obtain ρ(y) =
sup

u∈[−1,1]
〈uy〉 . The function inside the sup is maximized by taking u = sign(y),

whence ρ(y) = |y|.
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3. Huber: Take U = [−K , K ], M = 1, b = 0, and B = 1. We obtain ρ(y) =
sup

u∈[−K ,K ]

〈
uy − 1

2
u2
〉
. Take the derivative with respect to u and consider the

following cases:

a. If y < −K , take u = −K to obtain −K y − 1
2 K 2.

b. If −K ≤ y ≤ K , take u = y to obtain 1
2 y2.

c. If y > K , take u = K to obtain a contribution of K y − 1
2 K 2.

This is the Huber penalty with parameter K , shown in the upper panel of Fig. 8.9.

4. Vapnik: take U = [0, 1] × [0, 1], M =
[

0 0
0 0

]
, B =

[
1
−1

]
, and b =

[−ε

−ε

]
,

for some ε > 0. We obtain ρ(y) = supu1,u2∈[0,1]
〈[

y − ε

−y − ε

]
,

[
u1
u2

]〉
. We can

obtain an explicit representation by considering three cases:

a. If |y| < ε, take u1 = u2 = 0. Then ρ(y) = 0.
b. If y > ε, take u1 = 1 and u2 = 0. Then ρ(y) = y − ε.
c. If y < −ε, take u1 = 0 and u2 = 1. Then ρ(y) = −y − ε.

This is the Vapnik penalty with parameter ε, shown in the lower panel of Fig. 8.9.

8.5.2.2 PLQ Densities

We caution that not every EPLQ function is the negative log of a density function.
For an ELQP function ρ to be associated with a density, the function exp(−ρ(x))

must be integrable on R
n . The integrability of exp(−ρ(x)) can be established under

a coercivity hypothesis.

Definition 2 A function ρ : R
n → R ∪ {+∞} = R is said to be coercive (or

0-coercive) if lim‖x‖→∞ ρ(x) = +∞.

Since the functions ρU,M,b,B defined in (8.75) are not necessarily finite-valued,
their calculus must be treated with care. An important tool in this regard is the
essential dominion. The essential domain of ρ : Rn → R is the set

dom(ρ) := {x : ρ(x) < +∞}.

The affine hull of dom(ρ) is the smallest affine set containing dom(ρ), where a set
is affine if it is the translate of a subspace.

Theorem 1 [4, Theorem 6] (PLQ Integrability). Let ρ := ρU,M,b,B be defined as in
(8.75). Suppose ρ(y) is coercive, and let naff denote the dimension of aff(dom ρ).
Then the function f (y) = exp(−ρ(y)) is integrable on aff(dom ρ) with the naff -
dimensional Lebesgue measure. �
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Theorem 2 [4, Theorem 7] (Coercivity of ρ). The function ρU,M,b,B defined in
(8.75) is coercive if and only if [BTcone(U )]◦ = {0}. �

If ρ := ρU,M,b,B is coercive, then, by Theorem 1, then the function f (y) =
exp(−ρ(y)) is integrable on aff(dom ρ) with the naff -dimensional Lebesgue mea-
sure. If we define

p(y) =
{

c−1
1 exp(−ρ(y)) y ∈ dom ρ

0 else,
(8.76)

where

c1 =
(∫

y∈dom ρ

exp(−ρ(y))dy

)
,

and the integral is with respect to the Lebesgue measure with dimension naff , then p
is a probability density on dom(ρ). We call these PLQ densities.

8.5.2.3 PLQ Densities and Kalman Smoothing

We now show how to build up the penalty functions Vk and Jk in (8.73) using
PLQ densities. We will do this for the linear model (8.1–8.2) for simplicity. The
nonlinear case can be handled as before by applying the Gauss-Newton strategy to
the underlying convex composite function.

Using the notion given in 8.5, the linear model (8.1–8.2) can be written as

w = Gx + w
z = H x + v.

(8.77)

A general Kalman smoothing problem can be specified by assuming that the
noises w and v in the model (8.77) have PLQ densities with means 0, variances Q
and R (8.5). Then, for suitable {U w

k , Mw
k , bw

k , Bw
k } and {U v

k , Mv
k , bv

k , Bv
k }, we have

p(w) ∝ exp(−θU w,Mw(bw + Bw Q−1/2w))

p(v) ∝ exp(−θUv,Mv (bv + Bv R−1/2v)),
(8.78)

where

U w =
N∏

k=1

U w
k ⊂ R

nN

U v =
N∏

k=1

U v
k ⊂ R

M

,
Mw = diag({Mw

k })
Mv = diag({Mv

k })
,

Bw = diag({Bw
k })

Bv = diag({Bv
k })

bw = vec({bw
k })

bv = vec({bv
k })

.

Then the MAP estimator for x in the model (8.77) is
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arg min
x∈RnN

{
θU w,Mw(bw + Bw Q−1/2(Gx − w))

+ θUv,Mv (bv + Bv R−1/2(H x − z))

}

. (8.79)

Note that since wk and vk are independent, problem (8.79) is decomposable into
a sum of terms analogous to (8.73). This special structure follows from the block
diagonal structure of H, Q, R, Bv, Bw, the bidiagonal structure of G, and the product
structure of sets U w and U v , and is key in proving the linear complexity of the solution
method we propose.

8.5.2.4 Solving the Kalman Smoother Problem with PLQ Densities

Recall that, when the sets U w and U v are polyhedral, (8.79) is an Extended Linear
Quadratic program (ELQP), described in [43, Example 11.43]. We solve (8.79) by
working directly with its associated Karush-Kuhn-Tucker (KKT) system.

Lemma 1 [4, Lemma 3.1] Suppose that the sets U w
k and U v

k are polyhedral, that is,
they can be given the representation

U w
k = {u|(Aw

k )T u ≤ aw
k }, U v

k = {u|(Av
k )

T u ≤ av
k }.

Then the first-order necessary and sufficient conditions for optimality in (8.79) are
given by

0 = (Aw)Tuw + sw − aw ; 0 = (Av)Tuv + sv − av

0 = (sw)Tqw ; 0 = (sv)Tqv

0 = b̃w + Bw Q−1/2Gx − Mwuw − Awqw

0 = b̃v − Bv R−1/2 H x − Mvuv − Avqv

0 = GT Q−T/2(Bw)Tuw − HT R−T/2(Bv)Tuv

0 ≤ sw, sv, qw, qv.

, (8.80)

where b̃w = bw − Bw Q−1/2w and b̃v = bv − Bv R−1/2z. �

We propose solving the KKT conditions (8.80) by an Interior Point (IP) method.
IP methods work by applying a damped Newton iteration to a relaxed version of
(8.80) where the relaxation is to the complementarity conditions. Specifically, we
replace the complementarity conditions by

(sw)Tqw = 0→ QwSw1− μ1 = 0
(sv)Tqv = 0 → Qv Sv1− μ1 = 0,

where Qw, Sw, Qv, Sv are diagonal matrices with diagonals qw, sw, qv, sv respec-
tively. The parameter μ is aggressively decreased to 0 as the IP iterations proceed.
Typically, no more than 10 or 20 iterations of the relaxed system are required to
obtain a solution of (8.80), and hence an optimal solution to (8.79). The following
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theorem shows that the computational effort required (per IP iteration) is linear in
the number of time steps whatever PLQ density enters the state space model.

Theorem 3 [4, Theorem 3.2] (PLQ Kalman Smoother Theorem) Suppose that all
wk and vk in the Kalman smoothing model (8.1–8.2) come from PLQ densities that
satisfy Null(M)∩U∞ = {0}. Then an IP method can be applied to solve (8.79) with
a per iteration computational complexity of O(Nn3 + Nm). �

The proof, which can be found in [4], shows that IP methods for solving (8.79) pre-
serve the key block tridiagonal structure of the standard smoother. General smoothing
estimates can therefore be computed in O(Nn3) time, as long as the number of IP
iterations is fixed (as it usually is in practice, to 10 or 20).

It is important to observe that the motivating examples all satisfy the conditions
of Theorem 3.

Corollary 1 [4, Corollary 3.3] The densities corresponding to L1, L2, Huber, and
Vapnik penalties all satisfy the hypotheses of Theorem 3.

Proof We verify that Null(M) ∩ Null(AT) = 0 for each of the four penalties. In
the L2 case, M has full rank. For the L1, Huber, and Vapnik penalties, the respective
sets U are bounded, so U∞ = {0}.

8.5.2.5 Numerical Example: Vapnik Penalty and Functional Recovery

In this section we present a numerical example to illustrate the use of the Vapnik
penalty (see Fig. 8.9) in the Kalman smoothing context, for a functional recovery
application.

We consider the following function

f (t) = exp [sin(8t)]

taken from [19]. Our aim is to reconstruct f starting from 2000 noisy samples
collected uniformly over the unit interval. The measurement noise vk was generated
using a mixture of two normals with p = 0.1 denoting the fraction from each normal;
i.e.,

vk ∼ (1− p)N(0, 0.25)+ pN(0, 25),

where N refers to the Normal distribution. Data are displayed as dots in Fig. 8.10.
Note that the purpose of the second component of the normal mixture is to simulate
outliers in the output data and that all the measurements exceeding vertical axis limits
are plotted on upper and lower axis limits (4 and -2) to improve readability.

The initial condition f (0) = 1 is assumed to be known, while the difference
of the unknown function from the initial condition (i.e., f (·) − 1) is modeled as a
Gaussian process given by an integrated Wiener process. This model captures the
Bayesian interpretation of cubic smoothing splines [48], and admits a 2-dimensional
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Fig. 8.9 Huber (upper) and
Vapnik (lower) penalties
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V (x ) = − K x − 1
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−

y

x

V (x ) = − x − ; x < −
V (x )= 0; − ≤ x ≤
V (x ) = x − ; ≤ x

state space representation where the first component of x(t), which models f (·)−1,
corresponds to the integral of the second state component, modelled as Brownian
motion. To be more specific, letting Δt = 1/2, 000, the sampled version of the state
space model (see [26, 38] for details) is defined by

Gk =
[

1 0
Δt 1

]
, k = 2, 3, . . . , 2, 000

Hk =
[
0 1
]
, k = 1, 2, . . . , 2, 000

with the autocovariance of wk given by

Qk = λ2

[
Δt Δt2

2
Δt2

2
Δt3

3

]

, k = 1, 2, . . . , 2, 000,

where λ2 is an unknown scale factor to be estimated from the data.
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Fig. 8.10 Simulation: measurements (·) with outliers plotted on axis limits (4 and−2), true function
(continuous line), smoothed estimate using either the quadratic loss (dashed line, left panel) or the
Vapnik’s ε-insensitive loss (dashed line, right panel)

The performance of two different Kalman smoothers are compared. The first
(classical) estimator uses a quadratic loss function to describe the negative log of
the measurement noise density and contains only λ2 as unknown parameter. The
second estimator is a Vapnik smoother relying on the ε-insensitive loss, and so
depends on two unknown parameters λ2 and ε. In both of the cases, the unknown
parameters are estimated by means of a cross validation strategy where the 2,000
measurements are randomly split into a training and a validation set of 1,300 and
700 data points, respectively. The Vapnik smoother was implemented by exploiting
the efficient computational strategy described in the previous section, see [8] for
specific implementation details. In this way, for each value of λ2 and ε contained
in a 10 × 20 grid on [0.01, 10, 000] × [0, 1], with λ2 logarithmically spaced, the
function estimate was rapidly obtained by the new smoother applied to the training
set. Then, the relative average prediction error on the validation set was computed,
see Fig. 8.11. The parameters leading to the best prediction were λ2 = 2.15×103 and
ε = 0.45, which give a sparse solution defined by fewer than 400 support vectors.
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The value of λ2 for the classical Kalman smoother was then estimated following
the same strategy described above. In contrast to the Vapnik penalty, the quadratic
loss does not induce any sparsity, so that, in this case, the number of support vectors
equals the size of the training set.

The left and right panels of Fig. 8.10 display the function estimate obtained using
the quadratic and the Vapnik losses, respectively. It is clear that the Gaussian estimate
is heavily affected by the outliers. In contrast, as expected, the estimate coming from
the Vapnik based smoother performs well over the entire time period, and is virtually
unaffected by the presence of large outliers.

8.6 Sparse Kalman Smoothing

In recent years, sparsity promoting formulations and algorithms have made a tremen-
dous impact in signal processing, reconstruction algorithms, statistics, and inverse
problems (see e.g., [13] and the references therein). In some contexts, rigorous math-
ematical theory is available that can guarantee recovery from under-sampled sparse
signals [20]. In addition, for many inverse problems, sparsity promoting optimization
provides a way to exploit prior knowledge of the signal class as a way to improve
the solution to an ill-posed problem, but conditions for recoverability have not yet
been derived [36].

Fig. 8.11 Estimation of the smoothing filter parameters using the Vapnik loss. Average prediction
error on the validation data set as a function of the variance process λ2 and ε
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In the context of dynamic models, several sparse Kalman filters have been recently
proposed [1, 16, 17, 47]. In the applications considered, in addition to process and
measurement models, the state space is also known to be sparse. The aim is to
improve recovery by incorporating sparse optimization techniques. Reference [1]
is very close to the work presented in this section, since they formulate a sparsity
promoting optimization problem over the whole measurement sequence and solve it
with an optimization technique shown to preserve computational efficiency.

In this section, we formulate the sparse Kalman smoothing problem as an
optimization problem over the entire state space sequence, and suggest two new
approaches for the solution of such problems. The first approach is based on the
interior point methodology, and is a natural extension of the mathematics presented
in earlier sections.

The second approach is geared towards problems where the dimension n (state at
a single time point) is large. For this case, we propose a matrix free approach, using
a different (constrained) Kalman smoothing formulation, together with the projected
gradient method. In both methods, the structure of the Kalman smoothing problem
is exploited to achieve computational efficiency.

We present theoretical development for the two approaches, leaving applications
and numerical results to future work.

8.6.1 Penalized Formulation and Interior Point Approach

We consider only the linear smoother (8.6). A straight forward way to impose sparsity
on the state is to augment this formulation with a 1-norm penalty:

min
x

f (x) := 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 + λ‖W x‖1, (8.81)

where W is a diagonal weighting matrix included for modeling convenience. For
example, the elements of W can be set to 0 to exclude certain parts of the state dimen-
sion from the sparse penalty. A straightforward constrained reformulation of (8.81) is

min
x

1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 + λ1T y

s.t. − y ≤ W x ≤ y.

(8.82)

Note that this is different from the constrained problem (8.37), because we have intro-
duced a new variable y, with constraints in x and y. Nonetheless, an interior point
approach may still be used to solve the resulting problem. We rewrite the constraint
in (8.88) using non-negative slack variables s, r :

W x − y + s = 0

−W x − y + r = 0,
(8.83)
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and form the Lagrangian for the corresponding system:

L(s, r, q, p, y, x) = xT Cx+ cT x+λ1T y+qT (W x− y+ s)+ pT (−W x− y+r),

(8.84)
with C as in (8.8) and c as in (8.39)., and where q and p are the dual variables
corresponding to the inequality constraints W x ≤ y and −W x ≤ −y, respectively.
The (relaxed) KKT system is therefore given by

Fμ(s, r, q, p, y, x) :=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

s − y +W x

r − y −W x

D(s)D(q)1− μ1

D(r)D(p)1− μ1

λ1− q − p

Wq −W p + Cx + c

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= 0. (8.85)

The derivative matrix F (1)
μ is given by

F (1)
μ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

I 0 0 0 −I W
0 I 0 0 −I −W

D(q) 0 D(s) 0 0 0
0 D(p) 0 D(r) 0 0
0 0 −I −I 0 0
0 0 W −W 0 C

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (8.86)

and it is row equivalent to the system

⎡

⎢⎢⎢⎢⎢⎢
⎣

I 0 0 0 −I W
0 I 0 0 −I −W
0 0 D(s) 0 D(q) −D(q)W
0 0 0 D(r) D(p) D(p)W
0 0 0 0 Φ −Ψ W
0 0 0 0 0 C +WΦ−1

(
Φ2 − Ψ 2

)
W

⎤

⎥⎥⎥⎥⎥⎥
⎦

where
Φ = D(s)−1 D(q)+ D(r)−1 D(p)

Ψ = D(s)−1 D(q)− D(r)−1 D(p),
(8.87)

and the matrix Φ2 − Ψ 2 is diagonal, with the i i th entry given by 4qiri . Therefore,
the modified system preserves the structure of C ; specifically it is symmetric, block
tridiagonal, and positive definite. The Newton iterations required by the interior point
method can therefore be carried out, with each iteration having complexity O(n3 N ).
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8.6.2 Constrained Formulation and Projected Gradient Approach

Consider again the linear smoother (8.6), but now impose a 1-norm constraint rather
than a penalty:

min
x

f (x) :=1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1

s.t. ‖W x‖1 ≤ τ.

(8.88)

This problem, which equivalent to (8.81) for certain values of λ and τ , is precisely
the LASSO problem [45], and can be written

min
1

2
xT Cx + cT x s.t. ‖W x‖1 ≤ τ. (8.89)

with C ∈ R
nN×nN as in (8.8) and c ∈ R

nN as in (8.39). When n is large, the interior
point method proposed in the previous section may not be feasible, since it requires
exact solutions of the system

(C +WΦ−1
(
Φ2 − Ψ 2

)
W )x = r,

and the block-tridiagonal Algorithm 1 requires the inversion of n × n systems.
The problem (8.89) can be solved without inverting such systems, using the spec-

tral projected gradient method, see e.g., [46, Algorithm 1]. Specifically, the gradient
Cx + c must be repeatedly computed, and then xν − (Cxν + c) is projected onto the
set ‖W x‖1 ≤ τ . (the word ‘spectral’ refers to the fact that the Barzilai-Borwein line
search is used to get the step length).

In the case of the Kalman smoother, the gradient Cx + c can be computed in
O(n2 N ) time, because of the special structure of C . Thus for large systems, the
projected gradient method that exploits the structure of C affords significant savings
per iteration relative to the interior point approach, O(n2 N ) vs. O(n3 N ), and relative
to a method agnostic to the structure of C , O(n2 N ) vs. O(n2 N 2). The projection
onto the feasible set ‖W x‖1 ≤ τ can be done in O(nN log(nN )) time.

8.7 Conclusions

In this chapter, we have presented an optimization approach to Kalman smoothing,
together with a survey of applications and extensions. In Sect. 8.2.5, we showed that
the recursive Kalman filtering and smoothing algorithm is equivalent to Algorithm 1,
an efficient method to solve block tridiagonal positive definite systems. In the fol-
lowing sections, we used this algorithm as a subroutine, allowing us to present new
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ideas on a high level, without needing to explicitly write down modified Kalman
filtering and smoothing equations.

We have presented extensions to nonlinear process and measurement models in
Sect. 8.3, described constrained Kalman smoothing (both the linear and nonlinear
cases) in Sect. 8.4, and presented an entire class of robust Kalman smoothers (derived
by considering log-linear-quadratic densities) in Sect. 8.5. For all of these applica-
tions, nonlinearity in the process, measurements, and constraints can be handled by a
generalized Gauss-Newton method that exploits the convex composite structure dis-
cussed in Sects. 8.3.1 and 8.4.4. The GN subproblem can be solved either in closed
form or via an interior point approach; in both cases Algorithm 1 was used. For all
of these extensions, numerical illustrations have also been presented, and most are
available for public release through the ckbs package [6].

In the case of the robust smoothers, it is possible to extend the density modeling
approach by considering densities outside the log-concave class [3], but we do not
discuss this work here.

We ended the survey of extensions by considering two novel approaches to Kalman
smoothing of sparse systems, for applications where modeling the sparsity of the state
space sequence improves recovery. The first method built on the readers’ familiarity
with the interior point approach as a tool for the constrained extension in Sect. 8.4.
The second method is suitable for large systems, where exact solution of the linear
systems is not possible. Numerical illustrations of the methods have been left to
future work.
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