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Abstract Cognitive radio has become one of the most promising solutions for
addressing the spectral under-utilization problem in wireless communication sys-
tems. As a key technology, spectrum sensing enables cognitive radios to find spectrum
holes and improve spectral utilization efficiency. To exploit more spectral opportuni-
ties, wideband spectrum sensing approaches should be adopted to search multiple fre-
quency bands at a time. However, wideband spectrum sensing systems are difficult to
design, due to either high implementation complexity or high financial/energy costs.
Sub-Nyquist sampling and compressed sensing play crucial roles in the efficient
implementation of wideband spectrum sensing in cognitive radios. In this chapter,
Sect. 6.1 presents the fundamentals of cognitive radios. A literature review of spec-
trum sensing algorithms is given in Sect. 6.2. Wideband spectrum sensing algorithms
are then discussed in Sect. 6.3. Special attention is paid to the use of Sub-Nyquist
sampling and compressed sensing techniques for realizing wideband spectrum sens-
ing. Finally, Sect. 6.4 shows an adaptive compressed sensing approach for wideband
spectrum sensing in cognitive radio networks.

6.1 Cognitive Radio Networks

Nowadays, radio frequency (RF) spectrum is a scarce and valuable natural resource
due to its unique character in wireless communications. Under the current policy, the
primary user of a frequency band has exclusive rights of using the licensed band. With
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the explosive growth of wireless communication applications, the demands for the
RF spectrum are constantly increasing. It becomes evident that such spectral demands
cannot be met under the exclusive spectral allocation policy. On the other hand, it
has been reported that the temporal and geographic spectral utilization efficiency is
very low. For example, the maximal occupancy of the frequency spectrum between
30 MHz and 3 GHz (in New York City) has been reported to be only 13.1 %, with
the average occupancy of 5.2 % [1]. As depicted by Fig. 6.1, the spectral under-
utilization problem can be addressed by allowing secondary users to dynamic access
the licensed band when its primary user is absent. Cognitive radio is one of the key
technologies that could improve the spectral utilization efficiency as suggested by
Prof. S. Haykin [2]:

Cognitive radio is viewed as a novel approach for improving the utilization of a precious
natural resource: the radio electromagnetic spectrum.

6.1.1 Cognitive Radio Definition and Components

The term cognitive radio, first coined by Dr. J. Mitola [4], has the following formal
definition [2]:

Cognitive radio is an intelligent wireless communication system that is aware of its sur-
rounding environment (i.e., outside world), and uses the methodology of understanding-by-
building to learn from the environment and adapt its internal states to statistical variations
in the incoming RF stimuli by making corresponding changes in certain operating parame-
ters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two
primary objectives in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilisation of the radio spectrum.
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Fig. 6.1 Dynamic spectrum access and spectrum holes [3]
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From the definition, the key characteristic of cognitive radio is cognitive capability.
It means that cognitive radio should interact with its environment, and intelligently
determine appropriate communication parameters based on quality of service (QoS)
requirements. These tasks can be implemented by a basic cognitive cycle as illustrated
in Fig. 6.2:

• Spectrum sensing: To improve the spectral utilization efficiency, cognitive radio
should regularly monitor the RF spectral environment. Cognitive radio should
not only find spectrum holes, which are not currently used by primary users, by
scanning the whole RF spectrum, but also needs to detect the status of primary
users for avoiding causing potential interference.

• Spectrum analysis: After spectrum sensing, the characteristics of spectrum holes
should be estimated. The following parameters need to be known, e.g., channel side
information, capacity, delay, and reliability, and will be delivered to the spectrum
decision step.

• Spectrum decision: Based on the characteristics of spectrum holes, an appropriate
spectral band will be chosen for a particular cognitive radio node according to
its QoS requirement while considering the whole network fairness. After that,
cognitive radio could determine new configuration parameters, e.g., data rate,
transmission mode, and bandwidth of the transmission, and then reconfigure itself
by using software defined radio techniques.
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Fig. 6.2 The cognitive capability of cognitive radio enabled by a basic cognitive cycle [5]
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6.1.2 Applications of Cognitive Radio Networks

Because cognitive radio is aware of the RF spectral environment and is capable
of adapting its transmission parameters to the RF spectral environment, cognitive
radio and the concepts of cognitive radio can be applied to a variety of wireless
communication environments, especially in commercial and military applications.
A few of applications are listed below:

• Coexistence of wireless technologies: Cognitive radio techniques were primarily
considered for reusing the spectrum that is currently allocated to the TV service.
Wireless regional area network (WRAN) users can take advantage of broadband
data delivery by the opportunistic usage of the underutilized spectrum. Addi-
tionally, the dynamic spectrum access techniques will play an important role in
full interoperability and coexistence among diverse technologies for wireless net-
works. For example, cognitive radio concepts can be used to optimize and manage
the spectrum when the wireless local area network (WLAN) and the Bluetooth
devices coexist.

• Military networks: In military communications, bandwidth is often at a premium.
By using cognitive radio concepts, military radios can not only achieve substantial
spectral efficiency on a noninterfering basis, but also reduce implementation com-
plexity for defining the spectrum allocation for each user. Furthermore, military
radios can obtain benefits from the opportunistic spectrum access function sup-
ported by the cognitive radio [6]. For example, the military radios can adapt their
transmission parameters to use Global System for Mobile (GSM) bands, or other
commercial bands when their original frequencies are jammed. The mechanism of
spectrum management can help the military radios achieve information superiority
on the battlefield. Furthermore, from the soldiers’ perspective, cognitive radio can
help the soldiers to reach an objective through its situational awareness.

• Heterogeneous wireless networks: From a user’s point of view, a cognitive radio
device can dynamically discover information about access networks, e.g., WiFi
and GSM, and makes decisions on which access network is most suitable for its
requirements and preferences. Then the cognitive radio device will reconfigure
itself to connect to the best access network. When the environmental conditions
change, the cognitive radio device can adapt to these changes. The information
as seen by the cognitive radio user is as transparent as possible to changes in the
communication environment.

6.2 Traditional Spectrum Sensing Algorithms

As a key technology in cognitive radio, spectrum sensing should sense spectrum
holes and detect the presence/absence of primary users. The most efficient way to
sense spectrum holes is to detect active primary transceivers in the vicinity of cogni-
tive radios. However, as some primary receivers are passive, such as TVs, some are
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Table 6.1 Summary of advantages and disadvantages of traditional spectrum sensing algorithms

Spectrum sensing algorithm Advantages Disadvantages

Matched filter [7] Optimal performance Require prior information
Low computational cost of the primary user

Energy detection [8] Do not require prior information Poor performance for low SNR
Low computational cost Cannot differentiate users

Cyclostationary [9] Valid in slow SNR region Require partial prior information
Robust against interference High computational cost

Wavelet based detection [10] Valid for dynamic and wideband High sampling rate
spectrum sensing High computational cost

difficult to detect in practice. Tractional spectrum sensing techniques can be used
to detect the primary transmitters, i.e., matched filtering [7], energy detection [8],
cyclostationary detection [9], and wavelet based detection [10]. The implementation
of these algorithms requires different conditions, and their detection performance
are correspondingly distinguished. The advantages and disadvantages of these algo-
rithms are summarized in Table 6.1.

6.2.1 Matched Filter

A block diagram of a matched filter is shown in Fig. 6.3a.The matched filter method
is an optimal approach for spectrum sensing in the sense that it maximizes the signal-
to-noise ratio (SNR) in the presence of additive noise [11]. Another advantage of
the matched filter method is that it requires less observation time since the high
processing gain can be achieved by coherent detection. For example, to meet a given
probability of detection, only O(1/SNR) samples are required [7]. This advantage
is achieved by correlating the received signal with a template to detect the presence
of a known signal in the received signal. However, it relies on prior knowledge of
the primary user, such as modulation type, and packet format, and requires cognitive
radio to be equipped with carrier synchronization and timing devices. With more
types of primary users, the implementation complexity grows making the matched
filter impractical.

6.2.2 Energy Detection

If the information about the primary user is unknown in cognitive radio, a commonly
used method for detecting the primary users is energy detection [8]. Energy detection
is a non-coherent detection method that avoids the need for complicated receivers
required by a matched filter. An energy detector can be implemented in both the time
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Fig. 6.3 Block diagrams for traditional spectrum sensing algorithms: a Matched filter. b Time
domain energy detection. c Frequency domain energy detection. d Cyclostationary detection

and the frequency domain. For time domain energy detection as shown in Fig. 6.3b, a
bandpass filter (BPF) is applied to select a center frequency and bandwidth of interest.
Then the energy of the received signal is measured by a magnitude squaring device,
with an integrator to control the observation time. Finally, the energy of the received
signal will be compared with a predetermined threshold to decide whether the primary
user is present or not. However, to sense a wide spectrum span, sweeping the BPF
will result in a long measurement time. As shown in Fig. 6.3c, in the frequency
domain, the energy detector can be implemented similarly to a spectrum analyzer
with a fast Fourier transform (FFT). Specifically, the received signal is sampled at or
above the Nyquist rate over a time window. Then the power spectral density (PSD) is
computed using an FFT. The FFT is employed to analyze a wide frequency span in
a short observation time, rather than sweeping the BPF in Fig. 6.3b. Finally, the PSD
will be compared with a threshold, λ, to decide whether the corresponding frequency
is occupied or not.

The advantages of energy detection are that prior knowledge of the primary users is
not required, and both the implementation and the computational complexity are gen-
erally low. In addition, a short observation time is required, for example, O(1/SNR2)

samples are required to satisfy a given probability of detection [7]. Although energy
detection has a low implementation complexity, it has some drawbacks. A major
drawback is that it has poor detection performance under low SNR scenarios as it
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is a non-coherent detection scheme. Another drawback is that it cannot differentiate
between the signal from a primary user and the interference from other cognitive
radios, thus, it cannot take advantage of adaptive signal processing, such as inter-
ference cancelation. Furthermore, noise level uncertainty can lead to further per-
formance loss. These disadvantages can be overcome by using two-stage spectrum
sensing technique, i.e., coarse spectrum sensing and fine spectrum sensing. Coarse
spectrum sensing can be implemented by energy detection or wideband spectrum
analyzing techniques. The aim of coarse spectrum sensing is to quickly scan the
wideband spectrum and identify some possible spectrum holes in a short observa-
tion time. By contrast, fine spectrum sensing further investigates and analysis these
suspected frequencies. More sophisticated detection techniques can be used at this
stage, such as cyclostationary detection described below.

6.2.3 Cyclostationary Detection

A block diagram of cyclostationary detection is shown in Fig. 6.3d. Cyclostationary
detection is a method for detecting the primary users by exploiting the cyclostation-
ary features in the modulated signals. In most cases, the received signals in cognitive
radios are modulated signals, which in general exhibit built-in-periodicity within
the training sequence or cyclic prefixes. This periodicity is generated by the pri-
mary transmitter so that the primary receiver can use it for parameter estimation,
such as channel estimation, and pulse timing [12]. The cyclic correlation function,
also called cyclic spectrum function (CSF), is used for detecting signals with a par-
ticular modulation type in the presence of noise. This is because noise is usually
wide-sense stationary (WSS) without correlation, by contrast, modulated signals are
cyclostationary with spectral correlation. Furthermore, since different modulated sig-
nals will exhibit different characteristics, cyclostationary detection can be used for
distinguishing between different types of transmitted signals, noise, and interference
in low SNR environments. One of the drawbacks of cyclostationary detection is that
it still requires partial information of the primary user. Another drawback is that the
computational cost is high as the CSF is a two-dimensional function dependent on
frequency and cyclic frequency [9].

6.2.4 Wavelet Based Spectrum Sensing

In [10], Tian and Giannakis proposed a wavelet-based spectrum sensing approach.
It provides an advantage of flexibility in adapting to a dynamic spectrum. In this
approach, the PSD of the Fourier spectrum is modeled as a train of consecutive
frequency subbands, where the PSD is smooth within each subband but exhibits dis-
continuities and irregularities on the border of two neighboring subbands as shown in
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Fig. 6.4 Demonstration of the Fourier spectrum of interest. The PSD is smooth within each subband,
and exhibits discontinuities and irregularities with the adjacent subbands [10, 13]

Fig. 6.4. The wavelet transform of the wideband PSD is used to locate the singularities
of the PSD.

Let ϕ( f ) be a wavelet smoothing function, the dilation of ϕ( f ) is given by

ϕd( f ) = 1

d
ϕ

(
f

d

)
(6.1)

where d is a dyadic scale that can take values that are powers of 2, i.e., d = 2 j . The
continuous wavelet transform (CWT) of the PSD is given by [10]

CWT{S( f )} = S( f ) ∗ ϕd( f ) (6.2)

where “∗” denotes the convolution and S( f ) is the PSD of the received signal.
Then the first and second derivative of the CWT{S( f )} are used to locate the

irregularities and discontinuities in the PSD. Specifically, the boundaries of each
subbands are located by using the local maxima of the first derivative of CWT{S( f )},
and locations of the subbands are finally tracked by finding zero crossings in the
second derivative of CWT{S( f )}. By controlling the wavelet smoothing function, the
wavelet-based spectrum sensing approach has flexibility in adapting to the dynamic
spectrum.

6.3 Wideband Spectrum Sensing Algorithms

As the discussions in previous section, spectrum sensing is composed of data acquisi-
tion (sampling) process and decision-making process. For implementing wideband
data acquisition, cognitive radio needs some essential components, i.e., wideband
antenna, wideband RF front end, and high speed analog-to-digital converter (ADC).
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Considering the Nyquist sampling theory, the sampling rate of ADC is required to
exceed 2W samples per second (known as Nyquist rate), if W denotes the bandwidth
of the received signal (e.g., bandwidth W = 10 GHz). In [14], Yoon et al. have
shown that the −10 dB bandwidth of the newly designed antenna can be 14.2 GHz.
Hao and Hong [15] have designed a compact highly selective wideband bandpass
filter with a bandwidth of 13.2 GHz. By contrast, the development of ADC technol-
ogy is relatively behind. When we require an ADC to have a high resolution and a
reasonable power consumption, the achievable sampling rate of the state-of-the-art
ADC is 3.6 Gsps [16]. Thus, ADC becomes a bottleneck in such a wideband data
acquisition system. Even if there exists ADC with more than 20 Gsps sampling rate,
the real-time digital signal processing of 20 Gb/s of data could be very expensive.
This dilemma motivates researchers to look for technologies to reduce the sampling
rate while retaining W by using sub-Nyquist sampling techniques.

Sub-Nyquist sampling refers to the problem of recovering signals from partial
measurements that are obtained by using sampling rate lower than the Nyquist
rate [17]. Three important sub-Nyquist sampling techniques are: multi-coset sub-
Nyquist sampling, multi-rate sub-Nyquist sampling, and compressed sensing based
sub-Nyquist sampling.

6.3.1 Multi-Coset Sub-Nyquist Sampling

Multi-coset sampling is a selection of some samples from a uniform grid, which can
be obtained when uniformly sampling signal at a rate of fN greater than the Nyquist
rate. The uniform grid is then divided into blocks of L consecutive samples, and in
each block v(v < L) samples are retained while the rest of samples, i.e., L − v

samples, are skipped. A constant set C that describes the indexes of these v samples
in each block is called a sampling pattern as

C = {t i }vi=1, 0 ≤ t1 < t2 < · · · < tv ≤ L − 1. (6.3)

As shown in Fig. 6.5, the multi-coset sampling can be implemented by using v

sampling channels with sampling rate of fN
L , where the i-th sampling channel is

offset by t i

fN
from the origin as below

xi [n] =
{

x( n
fN

), n = mL + t i , m ∈ Z

0, otherwise
(6.4)

where x(t) denotes the received signal to be sampled.
The discrete-time Fourier transform (DTFT) of the samples can be linked to the

unknown Fourier transform of signal x(t) by
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Fig. 6.5 Block diagram
of multi-coset sub-Nyquist
sampling

Y( f ) = ΦX( f ) (6.5)

where Y( f ) denotes a vector of DTFT of these measurements from v channels,
X( f ) is a vector of the Fourier transform of x(t), and Φ is the measurement matrix
whose elements are determined by the sampling pattern C . The problem of wideband
spectrum sensing is thus equivalent to recovering X( f ) from Y( f ). In order to get a
unique solution from (6.5), every set of v columns of Φ should be linearly indepen-
dent. However, searching for this sampling pattern is a combinatorial problem.

In [18, 19], some sampling patterns are proved to be valid for reconstruction.
The advantage of multi-coset sampling is that the sampling rate in each channel is L
times lower than the Nyquist rate. Moreover, the number of measurements is v

L lower
than the Nyquist sampling case. One drawback of the multi-coset sampling is that
accurate time offsets between sampling channels are required to satisfy a specific
sampling pattern. Another one is that the number of sampling channels should be
sufficiently high [20].

6.3.2 Multi-Rate Sub-Nyquist Sampling

An alternative model for compressing the wideband spectrum in the analog domain is
a multirate sampling system as shown in Fig. 6.6. Asynchronous multirate sampling
(MRS) and synchronous multirate sampling (SMRS) were used for reconstructing
sparse multiband signals in [22] and [23], respectively. In addition, MRS has been
successfully implemented in experiments using an electro-optical system with three
sampling channels as described in [21]. Both systems employ three optical pulsed
sources that operate at different rates and at different wavelengths. The received
signal is modulated with optical pulses, which provided by an optical pulse generator
(OPG), in each channel. In order to reconstruct a wideband signal with an 18 GHz
bandwidth, the modulated pulses are amplified, and sampled by an ADC at a rate of
4 GHz in each channel.
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Fig. 6.6 Multirate sampling system implemented by electro-optical devices [21]. In each channel,
the received signal is modulated by a train of short optical pulses. The modulated signal is then
detected by an optical detector, amplified, and sampled by a low-rate ADC

In [22], the sampling channels of the MRS can be implemented separately with-
out synchronisation. However, reconstruction of the spectrum requires that each
frequency of the signal must be non-aliased in at least one of the sampling chan-
nels. In [23] SMRS reconstructs the spectrum from linear equations, which relate the
Fourier transform of the signal to the Fourier transform of its samples. Using com-
pressed sensing theory, sufficient conditions for perfectly reconstructing the spec-
trum are obtained; v ≥ 2k (the Fourier transform of the signal is k-sparse) sampling
channels are required. In order to reconstruct the spectrum using MRS with fewer
sampling channels, the spectrum to be recovered should possess certain properties,
e.g., minimal bands, and uniqueness. Nonetheless, the spectral components from pri-
mary users may not possess these properties. Obviously, even though the multirate
sampling system has broad application, there is a long way to go to implement it in a
cognitive radio network because of its stringent requirements on both optical devices
and the number of sampling channels.

6.3.3 Compressed Sensing Based Sub-Nyquist Sampling

In the classic work [13], Tian and Giannakis introduced compressed sensing theory
to realize wideband spectrum sensing by exploiting the sparsity of radio signals. The
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technique takes advantage of using fewer samples closer to the information rate,
rather than the inverse of the bandwidth, to perform wideband spectrum sensing.
After reconstruction of the wideband spectrum, wavelet-based edge detection was
used to detect the wideband spectrum as shown in Fig. 6.7.

Let x(t) represent a wideband signal received at cognitive radio. If x(t) is sampled
at the Nyquist sampling rate, the sequence vector, i.e., x (x ∈ C

N ), will be obtained.
The Fourier transform of the sequence, X = Fx, will therefore be alias-free, where
F denotes the Fourier matrix. When the spectrum, X, is k-sparse (k � N ), which
means k out of N values in X are not neglectable, x(t) can be sampled at a sub-
Nyquist rate while its spectrum can be reconstructed with a high probability. The
sub-sampled/compressed signal, y ∈ C

M (k < M � N ), is linked to the Nyquist
sequence x by [13],

y = Φx (6.6)

where Φ ∈ C
M×N is the measurement matrix, which is a selection matrix that

randomly chooses M columns of the size-N identity matrix. Namely, N −M samples
out of N samples are skipped. The relationship between the spectrum X and the
compressed sequence y is given by [13]

y = ΦF−1X (6.7)

where F−1 denotes the inverse Fourier matrix.
Approximating X from y in (6.7) is a linear inverse problem and is NP-hard. The

basis pursuit (BP) [24] algorithm can be used to solve X by linear programming [13]:

X̃ = arg min ‖X‖1, s. t. y = ΦF−1X. (6.8)

After reconstructing the full spectrum X, the PSD is calculated using X̃ . Then the
wavelet detection approach can be used to analyze the edges in the PSD. Although
less measurements are used for characterizing the wideband spectrum, the require-
ment of high sampling rate on ADC is not relaxed. By contrast, in [25], Polo
et al. suggested using an analog-to-information converter (AIC) model (also known
as random demodulator, [26]) for compressing the wideband signal in the analog
domain. The block diagram of AIC is given in Fig. 6.8.

A pseudorandom number generator is used to produce a discrete-time sequence
ε0, ε1, . . ., called a chipping sequence, the number of which takes values of ±1 with
equal probability. The waveform should randomly alternate at or above the Nyquist
rate, i.e., � ≥ 2W , where W is the bandwidth of signal. The output of the pseu-
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Fig. 6.8 Block diagram for the analog-to-information converter [26]. The received signal, x(t), is
randomly demodulated by a pseudorandom chipping sequence, integrated by an accumulator, and
sampled at a sub-Nyquist rate

dorandom number generator, i.e., pc(t), is employed to demodulate a continuous-
time input x(t) by a mixer. Then an accumulator sums the demodulated signal for
1/w seconds, and the filtered signal is sampled at a sub-Nyquist rate of w. This
sampling approach is called integrate-and-dump sampling since the accumulator is
reset after each sample is taken. The samples acquired by the AIC, y ∈ C

w, can be
related to the received signal, x ∈ C

� , by

y = Φx (6.9)

where Φ ∈ C
w×� is the measurement matrix describing the overall action of the

AIC system on the input signal x. The signal x can be identified by solving the convex
optimization problem,

x̃ = arg min ‖x‖1, s. t. y = Φx, (6.10)

by BP or other greedy pursuit algorithms. The PSD of the wideband spectrum can
be estimated using the recovered signal x̃ , followed by a hypothesis test on the
PSD. Alternatively, the PSD can be directly recovered from the measurements using
compressed sensing algorithms [25]. Although the AIC bypasses the requirement for
a high sampling rate ADC, it leads to a high computational complexity as the huge-
scale of the measurement matrix. Furthermore, it has been identified that the AIC
model can easily be influenced by design imperfections or model mismatches [27].

In [27], Mishali and Eldar proposed a parallel implementation of the AIC model,
called modulated wideband converter (MWC), as shown in Fig. 6.9. The key dif-
ference is that in each channel the accumulator for integrate-and-dump sampling
is replaced by a general low-pass filter. One of the benefits of introducing paral-
lel structure is that the dimension of the measurement matrix is reduced making the
reconstruction easier. Another benefit is that it provides robustness to noise and model
mismatch. On the other hand, the implementation complexity increases as multiple
sampling channels are involved. An implementation issue of using MWC is that
the storage and transmission of the measurement matrix must be considered when
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it is used in a distributed cognitive radio network under a data fusion collaborative
scheme.

6.4 Adaptive Compressed Sensing Framework for Wideband
Spectrum Sensing

The compressed sensing technologies require that the signal to be sampled should
be sparse in a suitable basis. If it is sparse, the signal can be reconstructed from
partial measurements by using some recovery algorithms, e.g., orthogonal matching
pursuit (OMP) or compressive sampling matching pursuit (CoSaMP) [28]. Given
the low spectral occupancy, the wideband signal that is received by cognitive radios
can be assumed to be sparse in the frequency domain [13]. If this sparsity level
(denoted by k) is known, we can choose an appropriate number of measurements
M to secure the quality of spectral recovery, e.g., M = C0k log(N/k), where C0
denotes a constant and N denotes the number of measurements when using the
Nyquist rate [13]. However, in order to avoid incorrect spectral recovery in the cog-
nitive radio system, traditional compressed sensing approaches must pessimistically
choose the parameter C0, which results in excessive number of measurements. As
shown in Fig. 6.10, considering k = 10, traditional compressed sensing approaches
tend to choose M = 37 %N measurements for achieving a high successful recovery
rate. We note that, with 20 %N measurements, we can still achieve 50 % successful
recovery rate. If these 50 % successful recovery cases can be identified, we could save
the number of measurements. In addition, in a practical cognitive radio system, the
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Fig. 6.10 An example of a traditional compressed sensing system, where the successful recovery
rate varies when the number of measurements and the sparsity level vary. In simulations, considering
N = 200, we varied the number of measurements M from 20 to 180 in eight equal-length steps. The
sparsity level k was set to between 1 and M . The measurement matrix was assumed to be Gaussian.
The figure was obtained with 5,000 trials of each parameter setting

sparsity level of the instantaneous spectrum is often unknown or difficult to estimate
because of either the dynamic activities of primary users or the time-varying fading
channels between the primary users and cognitive radios. Due to this sparsity level
uncertainty, traditional compressed sensing approaches should further increase the
number of measurements. For example, in Fig. 6.10, if k is known to be 10 ≤ k ≤ 20,
traditional compressed sensing approaches would select M = 50 %N , which does
not fully exploit the advantages of using compressed sensing technologies for wide-
band spectrum sensing. Further, the sparsity level uncertainty could also result in
early or late termination of greedy recovery algorithms. Due to the effects of under-
fitting or over-fitting caused by the early or late iteration termination, traditional
compressed sensing recovery algorithms will lead to unfavorable spectral recovery
quality.

To address these challenges, adaptive compressed sensing approach should be
adopted for reconstructing the wideband spectrum by using an appropriate number
of compressive measurements without prior knowledge of the instantaneous spec-
tral sparsity level. Specifically, the adaptive framework divides the spectrum sensing
interval into several equal-length time slots, and performs compressive measurements
in each time slot. The measurements are then partitioned into two complementary
subsets, performing the spectral recovery on the training subset, and validating the
recovery result on the testing subset. Both the signal acquisition and the spectral esti-
mation will be terminated if the designed �1 norm validation parameter meets certain
requirements. In the next section, we will introduce the adaptive compressed sens-
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ing approach in detail for addressing wideband spectrum sensing issues in cognitive
radios.

6.4.1 Problem Statement

Suppose that an analog primary signal x(t) is received at a cognitive radio, and the
frequency range of x(t) is 0 ∼ W (Hz). If the signal x(t)were sampled at the sampling
rate f (Hz) in the observation time τ (seconds), a signal vector x ∈ C

N×1 would be
obtained, where N denotes the number of samples and can be written as N = f τ .
Without loss of generality, we assume that N is an integer number. However, here we
consider that the signal is sampled at sub-Nyquist rate as enhanced by compressed
sensing.

The compressed sensing theory relies on the fact that we can represent many
signals using only a few non-zero coefficients in a suitable basis or dictionary. Such
signals may therefore be acquired by sub-Nyquist sampling, which leads to fewer
samples than predicted on the basis of Nyquist sampling theory. The sub-Nyquist
sampler, e.g., the random demodulator [26, 29, 30], will generate a vector of com-
pressive measurements y ∈ C

M×1 (M � N ) via random projections of the signal
vector x. Mathematically, the compressive measurement vector y can be written as

y = Φx (6.11)

where x denotes the signal vector obtained by using sampling rate higher than or
equal to the Nyquist rate (i.e., f ≥ 2W ), and Φ denotes an M × N measurement
matrix. Of course, there is no hope to reconstruct an arbitrary N -dimensional signal
x from partial measurements y. However, if the signal x is k-sparse (k < M � N )
in some basis, there do exist measurement matrices that allow us to recover x from
y using some recovery algorithms.

Based on the fact of spectral sparseness in a cognitive radio system [13], the
compressed sensing technologies can be applied for signal acquisition at cognitive
radios. A block diagram of a typical compressed sensing based spectrum sensing
infrastructure is shown in Fig. 6.11. The goal is to reconstruct the Fourier spectrum

Fig. 6.11 Diagram of compressed sensing based spectrum sensing approach when using the spectral
domain energy detection approach
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X = Fx from partial measurements y, and to perform spectrum sensing based on
the reconstructed spectrum X̂ . Due to the advantages of short running time and good
sampling efficiency, greedy recovery algorithms are often used in some practical
scenarios where the signal processing should be performed on a near real-time basis
in addition to computational capability constraints.

After the spectral recovery, spectrum sensing approaches can be performed by
using the reconstructed spectrum X̂ . A typical spectrum sensing approach is spectral
domain energy detection as the discussions in Sect. 6.2. As depicted in Fig. 6.11, this
approach extracts the reconstructed spectrum in the frequency range of interest, e.g.,
Δ f , and then calculates the signal energy in the spectral domain. The output energy
will be compared with a detection threshold (denoted by λ) to decide whether the
corresponding frequency band is occupied or not, i.e., choosing between hypotheses
H1 (presence of primary users) and H0 (absence of primary users).

It can be easily understood that the performance of such an infrastructure will
highly depend on the recovery quality of the Fourier spectrum X. From the com-
pressed sensing theory, we know that the recovery quality is determined by: the
sparsity level, the choice of measurement matrix, the recovery algorithm, and the
number of measurements. The spectral sparsity level in a cognitive radio system is
mainly determined by the activities of primary users within a specific frequency range
and the medium access control (MAC) of the cognitive radios. One elegant metric for
evaluating the suitability of a chosen measurement matrix is the restricted isometry
property (RIP) [31]. For a comprehensive understanding of RIP and measurement
matrix design, we refer the reader to [32] and references therein. In the following,
we will concentrate on addressing: the choice of the number of measurements and
the design of the recovery algorithm. We will discuss an adaptive sensing framework
enabling us to gradually acquire spectral measurements. Both the signal acquisition
and the spectral estimation will be terminated when certain halting criterions are met,
thereby avoiding the problems of excessive or insufficient numbers of compressive
measurements.

6.4.2 System Description

Consider a cognitive radio system using a periodic spectrum sensing infrastructure in
which each frame is comprised of a spectrum sensing time slot and a data transmission
time slot, as shown in Fig. 6.12. The length of each frame is A (seconds), and the
duration of spectrum sensing is T (0 < T < A). The remaining time A − T is used
for data transmission. Further, we assume that the spectrum sensing duration T is
carefully chosen so that the symbols from primary users, and the channels between
the primary users and cognitive radios are quasi-stationary. We propose to divide the
spectrum sensing duration T into P equal-length mini-time slots, each of which has
length τ = T

P , as depicted in Fig. 6.12. As enforced by protocols, e.g., at the MAC
layer [33], all cognitive radios can keep quiet during the spectrum sensing interval.
Therefore, the spectral components of the Fourier spectrum X = Fx arise only from
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Fig. 6.12 Frame of periodic spectrum sensing in cognitive radio networks

primary users and background noise. Due to the low spectral occupancy [13], the
Fourier spectrum X can be assumed to be k-sparse, which means it consists only of k
largest values that are not negligible. The spectral sparsity level k is unknown except
that k ≤ kmax, where kmax is a known parameter. This assumption is reasonable
because the maximal occupancy of the spectrum can be estimated by long-term
spectral usage measurements.

For simplicity, we name the adaptive compressed sensing-based wideband spec-
trum sensing approach as: compressed adaptive sensing (CASe). The aim of CASe is
to gradually acquire compressive measurements, reconstruct the wideband spectrum
X, and terminate the signal acquisition if and only if the current spectral recovery
performance is satisfactory. The work procedure of CASe is shown in Table 6.2.
We assume that cognitive radio performs compressive measurements using the same
sub-Nyquist sampling rate fs ( fs < 2W ) in all P mini time slots. In each time
slot, an m-length measurement vector would be obtained, where m = fsτ = fs T

P is
assumed to be an integer. Without loss of generality, the measurement matrices of
P time slots are assumed to follow the same distribution, e.g., the standard normal
distribution, or the Bernoulli distribution with equal probability of ±1. We partition
the measurement set of the first time slot into two complementary subsets, i.e., vali-
dating the spectral recovery result using the testing subset V (V ∈ C

r×1, 0 < r < m)
which is given by

V = Ψ F−1X (6.12)

and performing the spectral recovery using the training subset y1 (y1 ∈ C
(m−r)×1),

where Ψ ∈ C
r×N denotes the testing matrix. The measurements of other time slots,

i.e., yi , ∀i ∈ [2, P], are used only as the training subsets for spectral recovery. We
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Table 6.2 Compressed adaptive sensing (CASe) framework

Input: Sensing duration T , N , noise variance δ2, threshold �

accuracy ε in the noiseless case, accuracy ε in the noisy case.

1. Initialize:
Divide T into P time slots, each has length τ = T

P , index p = 0.
2. While the halting criterion is false and p < P , do

(a) Increment p by 1.
(b) Perform compressive sampling in the time slot p using rate fs .
(c) If p = 1, partition the measurement vector into:

the training set y1 and testing set V as in (6.12–6.13).
(d) Concatenate the training sets from the time slots 1, . . . , p

to form Yp as in (6.13).
(e) Estimate the spectrum from Yp using spectral recovery algorithm

resulting in the spectral estimate X̂ p .
(f) Calculate the validation parameter using V and Ψ :

ρp = ‖V−Ψ F−1 X̂ p‖1
r .

3. Check and make decision:
If the halting criterion is true

(a) Terminate the signal acquisition.
(b) Perform spectrum sensing using the reconstructed spectrum X̂ p .
(c) Choose un-occupied bands, and start the data transmission.

Else if p = P
(a) Terminate the signal acquisition.
(b) Report its reconstruction is not trustworthy.
(c) Increase fs and wait for next spectrum sensing frame.

end

Halting Criterion:

√
π N

2 ρp

1−ε
≤ � , in the noiseless measurement case.

|ρp −
√

π
2 δ| ≤ ε, in the noisy measurement case.

concatenate the training subsets of all p time slots as

Yp

=

⎛
⎜⎜⎜⎝

y1
y2
...

yp

⎞
⎟⎟⎟⎠ = Φ pF−1Xp (6.13)

where Yp ∈ C
(pm−r)×1 denotes the concatenated measurement vector, Φ p denotes

the measurement matrix after p time slots, and Xp denotes the signal spectrum. It
should be noted that Φ p and the testing matrix Ψ are chosen to be different but have
the same distribution, and the signal spectrum Xp is always noisy, e.g., due to the
receiver noise. We then gradually estimate the spectrum from Y1, Y2, . . . , Yp using
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a certain compressed sensing recovery algorithm, leading to a sequence of spectral
estimates X̂1, X̂2, . . . , X̂ p.

6.4.3 Acquisition Termination Metric

We hope that the signal acquisition procedure can be terminated if we find a good
spectral approximation X̂ p that makes the spectral recovery error ‖X − X̂ p‖2 suffi-
ciently small. The remaining spectrum sensing time slots, i.e., p + 1, . . . , P , can be
used for data transmission. If this target can be achieved, we could not only improve
the cognitive radio system throughput (due to the longer data transmission time), but
could also obtain measurement savings, leading to both energy and computational
savings. However, the spectral recovery error ‖X − X̂ p‖2 is typically not known as
X is unknown under the sub-Nyquist sampling rate. Hence, when using traditional
compressed sensing approaches, we do not know when we should terminate the sig-
nal acquisition procedure. In this chapter, we propose to use the following validation
parameter as a proxy for ‖X − X̂ p‖2:

ρp

= ‖V − Ψ F−1 X̂ p‖1

r
(6.14)

and terminate the signal acquisition if the validation parameter ρp is smaller than a
predetermined threshold. This is based on the following observation:

Theorem 1 Assume that Φ1, . . . ,Φ P and Ψ follow the same distribution, i.e., either
the standard normal distribution or the Bernoulli distribution with equal probability
of ±1. Let ε ∈ (0, 1

2 ), ξ ∈ (0, 1), and r = Cε−2 log 4
ξ

(C is a constant). Then using

V for testing the spectral estimate X̂ p, the validation parameter ρp satisfies:

Pr

[
(1 − ε)‖X − X̂ p‖2 ≤

√
π N

2
ρp ≤ (1 + ε)‖X − X̂ p‖2

]
≥ 1 − ξ (6.15)

where ξ can also be written as ξ = 4 exp(− rε2

C ).

The proof of Theorem 1 is given in Appendix A.

Remark 1 In Theorem 1, we can see that, with either higher ε or greater r , we
have higher confidence for estimating the actual spectral recovery error ‖X − X̂ p‖2.
Figure 6.13a shows the influence of using different number of measurements for
testing the spectral estimate when the number of time slots increases. The spectral
occupancy is assumed to be 6 %, which means the spectral sparsity level k = 6 %N =
120 where N = 2000. It can be seen that with more testing data, the validation result
is more trustworthy. Furthermore, we can find that even with r = 5 measurements
for testing, the validation result is still very close to the actual recovery error. The
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Fig. 6.13 Comparison of the
actual recovery error and the
proposed validation parameter
when the number of mini time
slots increases. a Different
number of measurements for
validation when the spectral
sparsity level k = 120. b
Different spectral sparsity
levels when r = 50. It was
assumed that there is no
measurement noise in the
compressive measurements.
The upper and lower bounds
on the actual recovery error
are given in (6.16)
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choice of parameter C in Theorem 1 depends on the concentration property of random
variables in the measurement matrix Ψ . For a good Ψ , e.g., the measurement matrix
with random variables following either the Gaussian or Bernoulli distribution, C
could be a small number.

Remark 2 Theorem 1 can be used to provide tight upper and lower bounds on the
unknown recovery error ‖X − X̂ p‖2 by using (6.15) such that

√
π N

2 ρp

1 + ε
≤ ‖X − X̂ p‖2 ≤

√
π N

2 ρp

1 − ε
. (6.16)

Figure 6.13b compares the actual recovery error ‖X − X̂ p‖2 and the validation

parameter
√

π N
2 ρp when the spectral sparsity level varies. It is evident that the

validation parameter can closely fit the unknown actual recovery error. The upper
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and lower bounds on the actual recovery error that we obtained in (6.16) can correctly
predict the trend of the actual recovery error even if either p or k vary. Figure 6.13b
also illustrates that the lower the sparsity level, the fewer time slots (thereby the fewer
compressive measurements) are required for reconstructing the spectrum. When the
spectral occupancy is 12 % (i.e., k = 12 %N = 240), the CASe framework requires
p = 7 mini-time slots, i.e., M = pm = 1400 measurements in total. On the other
hand, when k = 100, only p = 3 time slots and M = pm = 600 measurements
are required. The remaining time slots can be used for data transmission, which can
therefore lead to higher throughput than the cognitive radio system using traditional
compressed sensing approaches. If we require ‖X − X̂ p‖2 (unknown) to be less than
a tolerable recovery error threshold � , we can let the upper bound on (6.16) to be a
proxy for ‖X − X̂ p‖2. As shown in Table 6.2, we choose the upper bound on (6.16)
as the signal acquisition termination metric in the noiseless case. If it is less than or

equal to the threshold � , i.e., ‖X− X̂ p‖2 ≤
√

π N
2 ρp

1−ε
≤ � , the signal acquisition can

be terminated. This approach, to some extent, decreases the probabilities of excessive
or insufficient numbers of measurements.

6.4.4 Noisy Compressed Adaptive Sensing

Due to either the quantization error of ADC or the imperfect design of sub-Nyquist
sampler, the measurement noise may exist when performing compressive measure-
ments. In this section, the �1 norm validation approach is further studied to fit the
CASe framework in the noisy case. After that, we present a sparsity-aware recovery
algorithm that can correctly terminate greedy iterations when the spectral sparsity
level is unknown and the effects of measurement noise are not negligible.

In the noisy signal measurement case, the concatenated training set Yp and the
testing subset V can be written as

Yp = Φ pF−1Xp + n (6.17)

and
V = Ψ F−1X + n (6.18)

respectively, where the measurement noise n is additive noise (added to the real
compressed signal after the random projection) generated by the signal measure-
ment procedure, i.e., signal quantization. The measurement noise can be modeled by
circular complex additive white Gaussian noise (AWGN). Without loss of generality,
we assume that n has an upper bound n̄, and has zero mean and known variance δ2,
i.e., n ∼ CN (0, δ2). For example, if the measurement noise n is generated by the
quantization noise of a uniform quantizer, the noise variance δ2 can be estimated by
Δ2/12 and n ≤ n̄ = Δ, where Δ denotes the cell width.
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If ρp is close enough to
√

π
2 δ, the signal acquisition procedure can be safely

terminated. This observation is due to the following theorem:

Theorem 2 Let ε > 0, δ > 0, � ∈ (0, 1), ν ≥
√

2/π
δ

n̄ − 1, and r = ln
(

2
�

)
3(4−π)δ2+√

2πεδν

3ε2 . If the best spectral approximation exists within the sequence of

spectral estimates X̂1, · · · , X̂ P , then there exists a validation parameter ρp that
satisfies

Pr

[√
π

2
δ − ε ≤ ρp ≤

√
π

2
δ + ε

]
> 1 − �, (6.19)

where � is given by � = 2 exp
(
− 3rε2

3(4−π)δ2+√
2πεδν

)
.

The proof of Theorem 2 is given in Appendix B.

Remark 3 It is worthwhile to note that Theorem 2 addresses the problem of finding
the best spectral approximation, i.e., X̂ p = X�, that minimizes ‖X− X̂ p‖2 among all
possible spectral estimates in the noisy case. This is different from Theorem 1, which
focuses on finding a satisfactory spectral estimate X̂ p that makes ‖X − X̂ p‖2 ≤ �

in the noiseless case. Using Theorem 1, we should carefully choose the tolerable
recovery error threshold � in order to avoid excessive or insufficient numbers of
measurements. In addition, in Theorem 1, the relation between the tolerable recov-
ery error threshold � and the probability of finding the best spectral approximation
is unknown. By contrast, Theorem 2 shows that if there exists a best spectral approx-
imation, the corresponding validation parameter should be within a certain small
range with a probability greater than 1 − �. Thus, if the result of Theorem 2 is used
as the signal acquisition termination metric, the issues of excessive or insufficient
numbers of measurements can be solved.

Remark 4 If the best spectral approximation exists, the probability of finding it
exponentially increases as the size of testing set (i.e., r ) increases. It means that if we
monitor ρp, we have a higher probability of finding the best spectral approximation
when using more measurements for validation. However, we should note that there
is a trade off between the size of the training set and the size of the testing set for a
fixed sub-Nyquist sampling rate. On the one hand, a smaller r (i.e., larger training
set for a fixed m) could result in better spectral recovery, while on the other hand, the
probability of finding the best spectral approximation decreases as r becomes small.
In addition, for a fixed degree of confidence 1 − �, we face a trade off between the
accuracy ε and the size of the testing set r , as shown in Theorem 2. At the expense
of the accuracy ε (i.e., larger ε), r can be small. We should also emphasize that, as
we can see in (6.32), linear increase of the standard deviation δ will lead to quadratic
growth in the size of the testing set. This is the reason why we should carefully
consider the effects of measurements noise in the validation approach.
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6.4.5 Sparsity-Aware Recovery Algorithm

As the above discussions indicated, Theorem 2 can be used for identifying the best
spectral approximation to X from the spectral estimate sequence X̂1, X̂2, . . . , X̂ p,
which is calculated by increasing the number of measurements in the proposed CASe
framework. We note that Theorem 2 can also be used for preventing over-fitting or
under-fitting in greedy recovery algorithms. Greedy recovery algorithms iteratively
generate a sequence of estimates X̂1

p, X̂2
p, . . . , X̂ t

p, where the best spectral estimate
may exist under certain system parameter choices. For example, the OMP algorithm
chooses one column from the measurement matrix at a time for reconstructing X
from y. After t = k iterations, the k-sparse vector X̂ k will be returned as an approx-
imation to X. Note that OMP requires the sparsity level k as an input, and such an
input is commonly needed by most greedy recovery algorithms. However, the sparsity
level k of the spectrum in the cognitive radio system is often unknown, and therefore
traditional greedy compressed sensing algorithms will result in either early or late
termination of greedy algorithms. Then the problems of under-fitting and over-fitting
arise, leading to inferior spectral recovery performance. In order to reconstruct the
full spectrum in the case of unknown k, we propose to use the testing set for validat-
ing the spectral estimate sequence X̂1

p, X̂2
p, . . . , X̂ t

p, and terminate the iterations if
the current validation parameter satisfies the conditions given in Theorem 2.

As shown in Table 6.3, we present a sparsity-aware OMP algorithm. One important
advantage of the proposed algorithm is that it does not require the instantaneous
spectral sparsity level k, but requires instead its upper bound kmax which can be
easily known. In each iteration, the column index λt ∈ [1, N ] that has the maximum
correlation between the residual and the measurement matrix will be found, and be
merged with the previously computed spectral support to form a new spectral support
�t . After that, the full spectrum is recovered by solving a least squares problem as

shown in the step 2-d) of Table 6.3. Note that Θ t
p


= Φ p(�
t ) is the sub-matrix

obtained by only selecting the columns whose indices are within �t in the matrix
Φ p, while other columns are set to all zeros. For a spectral estimate X̂ t

p, we validate
it by using the validation parameter ρt

p, which can be calculated by using the testing

set V and the spectral estimate X̂ t
p as shown in the step 2-e) of Table 6.3. The residual

is then updated. We emphasize that the proposed algorithm monitors the validation
parameter ρt

p, instead of the residual ‖Rt
p‖2 ≤ � as used in the traditional greedy

recovery algorithms. Based on Theorem 2, if the best spectral estimate is included
in the spectral estimate sequence X̂1

p, X̂2
p, . . . , X̂ t

p, the probability of finding it will

be greater than 1 − 2 exp
(
− 3rε2

3(4−π)δ2+√
2πεδν

)
. In other words, the probability of

under-/over-fitting is less than or equal to 2 exp
(
− 3rε2

3(4−π)δ2+√
2πεδν

)
, and becomes

smaller as r increases.
For the proposed spectral recovery algorithm, there is a key parameter we need

to know, i.e., ε. The following quadratic equation regarding ε holds by using (6.31):
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Table 6.3 Sparsity-Aware OMP Algorithm

Input: training set Yp , testing set V, measurement matrix Φ p ,
testing matrix Ψ , noise variance δ2, accuracy ε, kmax.

1. Initialize:
Index set �0 = ∅, residual R0

p = Yp , and iteration index t = 0.
Let ρt

p = C1 (∀t ∈ [0, kmax]), where C1 is a large constant.

2. While |ρt
p −

√
π
2 δ| > ε and t < kmax, do

(a) Increment t by 1.
(b) Find the index λt that solves the optimization problem:

λt = arg max j=1,··· ,N | < Rt−1
p ,Φ

j
p > |.

(c) Augment the index set �t = �t−1 ∪ {λt }, and revise
the matrix Θ t

p = Φ p(�
t ) by only selecting the column

index belongs to �t , other columns are all zeros.
(d) Solve a least squares problem:

X̂ t
p = arg minX ‖Yp − Θ t

pF−1X‖2.
(e) Calculate the validation parameter using V and Ψ :

ρt
p = ‖V−Ψ F−1 X̂ t

p‖1

r .
(f) Update residual:

Rt
p = Yp − Φ pF−1 X̂ t

p .

Output: X̂ p = arg min X̂ t
p
|ρt

p −
√

π
2 δ|, ∀ t ∈ [1, kmax]

r · ε2 −
√

2π

3
ln

(
2

�

)
δν · ε − (4 − π) ln

(
2

�

)
δ2 = 0. (6.20)

It can be easily determined that the discriminant of the above quadratic equation is
positive, so there are two distinct real roots. The following positive root can be used
to determine ε:

ε =

⎡
⎢⎢⎣

√
2π ln

(
2
�

)
δν ± δ

√
2π ln2

(
2
�

)
ν2 + 36(4 − π) ln

(
2
�

)
r

6r

⎤
⎥⎥⎦

+

(6.21)

where [x]+ denotes max(x, 0).

6.4.6 Numerical Results

In our simulations, we adopt the wideband analog signal model in [27] and let the
received signal x(t) at a cognitive radio to be of the form



174 H. Sun et al.

x(t) =
Nb∑

l=1

√
El Bl · sinc (Bl(t − α)) · cos (2π fl(t − α)) + z(t) (6.22)

where sinc(x) = sin(πx)
πx , α denotes a random time offset smaller than T/2, z(t)

is AWGN (i.e., z(t) ∼ N (0, 1)), and El is the received power for the subband l
at cognitive radio. The received signal x(t) consists of Nb = 8 non-overlapping
subbands. The l-th subband is in the frequency range of [ fl − Bl

2 , fl + Bl
2 ], where

the bandwidth Bl = 10 ∼ 30 MHz and fl denotes the center frequency. The center
frequency of the subband l is randomly located within [ Bl

2 , W − Bl
2 ] (i.e., fl ∈

[ Bl
2 , W − Bl

2 ]), where the overall signal bandwidth W = 2 GHz. Therefore, the

Nyquist rate is f = 2W = 4 GHz, and the spectral occupancy (i.e.,
∑8

l=1 Bl
W ) is a

random number between 4 % and 12 %. We emphasize that the spectral occupancy
of 4 % ∼ 12 % in our simulations is very close to the spectral measurements in
New York City as noted above. The received signal-to-noise ratios (SNRs) of these 8
active subbands are random natural numbers between 5 dB and 25 dB. The spectrum
sensing duration is chosen to be T = 5 μs, during which the symbols from primary
users and the channels between the primary users and cognitive radios are assumed
to be quasi-stationary. We then divide T into P = 10 mini time slots, each of which
has τ = T

P = 0.5 μs. If the received signal x(t) were sampled at the Nyquist rate,
the number of Nyquist samples in each time slot would be N = 2Wτ = 2, 000. It
can be calculated that the spectral sparsity level k is in the range of 4 % × N = 80 ≤
k ≤ 12 % × N = 240. In the proposed framework, rather than using the Nyquist
sampling rate, we adopt the sub-Nyquist sampling rate fs = 400 MHz; thus, the
number of measurements in each time slot is m = fsτ = 200. In other words,
the undersampling fraction in each time slot is m/N = 10 %. For the purpose of
testing/validation, r = 50 measurements in the first time slot are reserved, while the
remaining measurements are used for reconstructing the spectrum. The measurement
matrices, i.e., Φ p and Ψ , follow the standard normal distribution with zero mean
and unit variance. Due to the imperfect design of signal measurement devices, the
measurement noise may exist. In the noisy case, the measurement noise is assumed
to be circular complex AWGN, i.e., n ∼ CN (0, δ2). As the measurement noise in
this chapter is mainly due to the signal quantization in the ADCs, we set the signal-
to-measurement-noise ratios (SMNR) to be 50 dB and 100 dB. This is because the
SMNR of the uniform quantization increases 6 dB for each one-bit; thus, the SMNR
of 8-bit quantization is 48 dB and the SMNR of 16-bit quantization is 96 dB, which
are approximately 50 dB and 100 dB.

Firstly, we consider the effects of measurement noise to both the spectral recovery
quality and the validation parameter. In Fig. 6.14, the spectral sparsity level is set
to k = 120. We can see that, in either the noiseless measurement case or the noisy
measurement case, the proposed CASe framework can reconstruct the spectrum using
6 time slots. The spectral recovery quality becomes worse when the measurement
noise level increases. In the noiseless case, the proposed validation parameter can
closely fit the actual recovery error. By contrast, there is a gap between the actual
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Fig. 6.14 The effects of
measurement noise on both
the actual recovery error
and the proposed validation
parameter when the SMNR
varies. The spectral sparsity
level was set to k = 120
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recovery error and the validation result when the measurement noise exists. This is
because, on the one hand, the actual recovery error ‖X− X̂ p‖2 can be very small, e.g.,
10−14 in the case of best spectral approximation, on the other hand, the validation
parameter is mainly determined by the noise level as shown in Theorem 2. This
implies that the effects of measurement noise should be carefully considered even
if X̂ p is the best spectral approximation. In Fig. 6.15, it is seen that when the best
spectral approximation occurs (i.e., the actual recovery error is small enough), the

validation parameter is very close to the scaled noise standard deviation, i.e.,
√

π
2 δ.

This observation validates the results of Theorem 2. If the validation method is
used for designing the termination metric of the signal acquisition, such as in the
algorithm given in Table 6.2, the problems of insufficient or excessive numbers of
measurements can be solved.

Fig. 6.15 Comparison of the
validation parameter and the
actual recovery error when the
best spectral approximation
occurs. The dash linedenotes
the predicted validation value,

i.e.,
√

π
2 δ (scaled standard

deviation), as used in Theo-
rem 2
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Fig. 6.16 Performance analy-
sis of spectral recovery when
using different compressed
sensing approaches. a The
average number of measure-
ments required by CASe. b
The spectral recovery mean
square error. The SMNR was
set to 100 dB
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Secondly, Fig. 6.16 analyzes the spectral recovery performance when using
different compressed sensing approaches. In these simulations, in order to find the
best spectral approximation with high confidence, the accuracy parameter ε in (6.19)
is set to δ/2 and the number of testing measurements is r = 50. As depicted in
Fig. 6.16a, the proposed CASe framework can adaptively adapt its number of mea-
surements to the unknown spectral sparsity level k. The corresponding spectral recov-
ery performance is shown in Fig. 6.16b, where the spectral recovery mean square error
(MSE) of different compressed sensing approaches is given. We can see that, even
with the total number of measurements M = 1300, the performance of the traditional
compressed sensing system is inferior to that of the proposed CASe framework as
the traditional compressed sensing system cannot deal with the case of k ≥ 200.
Note that, if we assume that the spectral sparsity level k has a uniform distribution
between 80 and 240, the average number of measurements required by CASe is 900.
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Fig. 6.17 Examples of the reconstructed spectrum when using different recovery algorithms. The
spectral sparsity level was assumed to be k = 150, with the total number of measurements M = 800.
The received SNRs of these 8 active subbands were set to random natural numbers between 5 dB
and 25 dB. The SMNR was set to 50 dB

Compared to the traditional compressed sensing system with M = 900, it is obvious
that the CASe framework has much lower MSE for most of k ∈ [80, 240].

Thirdly, Fig. 6.17 shows examples of the original spectrum and the reconstructed
spectrum when using different spectral recovery algorithms, i.e., OMP and the pro-
posed algorithm. We can see that the recovery performance of the proposed algorithm
is superior to that of the traditional OMP algorithm. As the sparsity level is unknown
and has the range of 80 ≤ k ≤ 240, if the OMP algorithm is used, the problems
of either under-fitting (i.e., iteration is terminated earlier as k is under-estimated) or
over-fitting exist. As the problem of under-fitting could lead to the missed detection
of primary users which may cause harmful interference to primary users, the tradi-
tional OMP algorithm should prevent the under-fitting from occurring, and tends to
choose more number of iterations. In the case of over-fitting, the traditional OMP
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algorithm will result in a “noisy” reconstructed spectrum as depicted in Fig. 6.17c.
With the aid of the testing set, the proposed approach has an improved recovery per-
formance as shown in Fig. 6.17d. Compared with the OMP algorithm, the proposed
algorithm provides better spectral estimate, and is much more similar to the best
spectral approximation in Fig. 6.17b. It is worthwhile to emphasize that the proposed
algorithm will have more noticeable improvement over the OMP algorithm when
there is larger uncertainty in the spectral sparsity level k.

Finally, Fig. 6.18 further explores the performance of different recovery algo-
rithms. In order to illustrate the performance of CASe when using different recovery
algorithms, the MSE of the reconstructed spectrum is given in Fig. 6.18a. It can
be seen that the gain of using the proposed algorithm over OMP is approximately
one order of magnitude in MSE. This is because the proposed algorithm can ter-
minate the iteration at the right iteration index; by contrast, when using OMP, the

Fig. 6.18 Performance com-
parison of different recovery
algorithms. a The spectral
recovery mean square error
when the SMNR increases.
b The recovered error rate
Pr(M SE > M SET ) when
SMNR = 50 dB. The spectral
sparsity level was assumed to
be k = 120, with the aver-
age number of measurements
M = 800
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problems of either under-fitting or over-fitting exist, leading to either incomplete
spectral recovery or noisy spectral recovery. As a consequence, we can see from
Fig. 6.18b that, for a fixed SMNR=50 dB, the proposed algorithm has much lower
recovered error rate than the OMP algorithm. We note that the recovered error rate
is defined as the probability of simulated mean MSE larger than the target MSE.

6.4.7 Discussions and Conclusions

6.4.7.1 Discussions

The CASe framework shares its goals with some recent efforts that have looked at
testing the actual error directly from compressed data. The �2 norm cross validation
approach for compressed sensing has been studied by Ward [34], and Boufounos
et al. [35]. These results are very remarkable as they allow us to verify the actual
decoding error with almost no effort (i.e., a very few measurements are reserved
for testing). We note that the results here are different from those in these papers.
In particular, we have studied a different validation approach, i.e., the �1 norm is
used for validating the recovery result, rather than the �2 norm. In addition, the
effects of measurement noise were carefully considered in our analysis. By contrast,
Ward’s validation approach did not model the effects of measurement noise. When the
proposed �1 norm validation approach is used in compressed sensing technologies,
it could be a useful complement to the work in [34, 35]. It should also be emphasized
that, compared to the �2 norm validation approach, the proposed �1 norm validation
approach is less sensitive to outliers. As shown in Fig. 6.19a, when outliers exist in the
testing set, the validation parameter of using the �1 norm is one order in magnitude
lower than that of using the �2 norm. Moreover, we note that using compressed
sensing technologies for wideband spectrum sensing in a cognitive radio system,
we cannot avoid outliers. This is because the ADC is not a noise-free device, and
the non-linearity of ADC could be a source of generating outliers. Furthermore, in a
real-time compressed sensing device such as the random demodulator in [26, 29, 30],
imperfect synchronization of the pseudo-random sequence generator and the low-rate
ADC could result in outliers.

A natural technique for choosing the stopping time of the measurement would
be sequential detection [36], in which we collect one sample at a time until we
have enough observations to generate a final decision. However, we note that, in the
compressed sensing-based spectrum sensing system, the sequential measurements
cannot be directly used for performing sequential test. This is because, due to the
sub-Nyquist sampling, there exists spectral aliasing phenomenon, which makes fre-
quencies become indistinguishable. Thus, in order to apply sequential detection, the
wideband spectrum should be reconstructed before each sequential test for avoiding
spectral aliasing. In such a scenario, sequential detection could lead to high compu-
tational costs. Malioutov et al. [37] have studied a typical compressed sensing-based
sequential measurement system, where the decoder can receive compressed samples
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Fig. 6.19 Comparison
between the proposed sys-
tem and the existing systems.
a Sensitivity test of both the
�1 norm validation and the �2
norm validation approaches
against outliers. In simula-
tions, the measurement error
was added to a single sample
of the testing set, and the mag-
nitude of the measurement
error was set to 100 dB lower
than that of the sample. b Total
running time of reconstruct-
ing the spectrum for both the
sequential compressed sens-
ing measurement setup and
the proposed system when
using the CoSaMP algorithm.
In simulations, N = 200, and
M = Pm = 100 where m
denotes the number of mea-
surements in each mini-time
slot and P is the number of
mini-time slots
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sequentially. It has been shown that such a system can successfully estimate the
current decoding error by using some additional samples. Nevertheless, it is not
proper to apply the compressed sensing-based sequential measurement setup in cog-
nitive radio systems. Because, in this scheme, the wideband spectrum should be
repeatedly reconstructed for each additional measurement that could lead to high
computational costs and large spectrum sensing overhead in cognitive radios. For
example, using the CoSaMP algorithm [28], the running time in each reconstruction
is O(βN ), where β denotes the current number of measurements. Thus, the total run-
ning time for the sequential measurement setup is O(

M(M+1)N
2 ), where M denotes

the number of measurements till the termination of measurement. By contrast, in
our proposed system, the spectrum sensing time slot is divided into P equal-length
mini-time slots, and the wideband spectrum is reconstructed after each mini-time
slot. The total running time of the proposed system is therefore O(

M(P+1)N
2 ), where
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P � M . Figure 6.19b shows that the spectrum sensing overhead (due to the spectral
reconstruction) of the sequential compressed sensing system is several times higher
than that of the proposed system. Furthermore, another advantage of the proposed
system is that, by changing the length of mini-time slot (thus the value of P because
P = M

m ), we can control the trade-off between the cost of computation and the cost
of acquiring additional measurements.

6.4.7.2 Conclusions

We have presented a novel framework, i.e., CASe, for wideband spectrum sensing in
cognitive radio systems. It has been shown that CASe can considerably improve the
spectral recovery performance when the sparsity level of the spectrum is unknown,
thanks to the �1 norm validation approach. We have shown that the proposed val-
idation parameter can be a very good proxy for the actual spectral recovery error
in the noiseless measurement case even if the testing set is small. The proper use
of the validation approach could solve the problems of excessive or insufficient
numbers of measurements, thereby improving not only the energy-efficiency of cog-
nitive radio, but also the throughput of cognitive radio networks. In addition, we
have shown that, in the case of noisy compressive measurements, if the best spectral
approximation exists, then the corresponding validation parameter has a very large
probability of being within a certain small range. Based on this property, we have
proposed a sparsity-aware recovery algorithm for reconstructing the wideband spec-
trum without the knowledge of the spectral sparsity level. In the proposed algorithm,
if the best spectral approximation exists, then the correct iteration termination index
can be found with high probability; therefore, the issues of under-/over-fitting are
addressed.

Simulation results have shown that the proposed framework can correctly termi-
nate the signal acquisition that saves both spectrum sensing time slots and signal
acquisition energy, while providing better spectral recovery performance than tradi-
tional compressed sensing approaches. Compared with the existing greedy recovery
algorithm, the proposed sparsity-aware algorithm can achieve lower MSE for recon-
structing the spectrum and better spectrum sensing performance. As the RF spectrum
is the lifeblood of wireless communication systems and the wideband techniques
could potentially offer greater capacity, we expect that the proposed framework has a
broad range of applications, e.g., broadband spectral analyzers, signals-intelligence
receivers, and ultra wideband radars. Moreover, the proposed �1 norm validation
approach can be used in other compressed sensing applications, e.g., a compressed
sensing based communication system where we need to terminate the decoding algo-
rithm with high confidence and small predictable decoding error.
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and Physical Sciences Research Council (EPSRC) with Grant No. EP/I000054/1.



182 H. Sun et al.

Appendix

Proof of Theorem 1

Using a variant of the Johnson-Lindenstrauss lemma as shown in Theorem 5.1 of
[38], we have

Pr

[
(1 − ε)‖x‖2 ≤ ‖Ψ x‖1√

2/π r
≤ (1 + ε)‖x‖2

]
≥ 1 − ξ. (6.23)

Defining x

= F−1(X − X̂ p) in (6.23), we obtain

Pr

[
(1 − ε)‖F−1(X − X̂ p)‖2 ≤ ‖Ψ F−1(X − X̂ p)‖1√

2/π r

≤ (1 + ε)‖F−1(X − X̂ p)‖2

]
≥ 1 − ξ. (6.24)

The above inequality can be rewritten by using (6.12) and (6.14)

Pr

[
(1 − ε)‖F−1(X − X̂ p)‖2 ≤

√
π

2
ρp ≤ (1 + ε)‖F−1(X − X̂ p)‖2

]
≥ 1 − ξ. (6.25)

Applying Parseval’s relation to (6.25), we have

Pr

[
(1 − ε)‖X − X̂ p‖2 ≤

√
π N

2
ρp ≤ (1 + ε)‖X − X̂ p‖2

]
≥ 1 − ξ. (6.26)

Thus, Theorem 1 follows.

Proof of Theorem 2

The best spectral approximation X� means that ‖X� − X‖2 is sufficiently small.
Without loss of generality, we approximate X� by X. Thus, if X̂ p is the best spectral
approximation, the validation parameter can be rewritten by using (6.18)

ρp = ‖V − Ψ F−1 X̂ p‖1

r
= ‖n‖1

r
=

∑r
i=1 |ni |

r
. (6.27)

As the measurement noise ni ∼ CN (0, δ2), its absolute value |ni | follows the

Rayleigh distribution with mean
√

π
2 δ and variance 4−π

2 δ2. Using the cumulative

distribution function of the Rayleigh distribution, we have Pr(|ni | ≤ x) = 1 −
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exp(− x2

2δ2 ). Further, as the measurement noise level has an upper-bound n̄ in practice,

there exists a sufficiently large parameter ν that makes |ni | ≤ n̄ ≤ (ν + 1)
√

π
2 δ

almost surely. If we define a new variable Di = |ni | −
√

π
2 δ, we obtain E[Di ] = 0,

E[D2
i ] = 4−π

2 δ2, and |Di | ≤
√

π
2 δν. Based on the Bernstein’s inequality [39], the

following inequality holds

Pr

[∣∣∣∣∣
r∑

i=1

Di

∣∣∣∣∣ > ε

]
= Pr

[∣∣∣∣∣
r∑

i=1

|ni | − r

√
π

2
δ

∣∣∣∣∣ > ε

]

≤ 2 exp

(
− ε2/2∑r

i=1 E[D2
i ] + Dε/3

)

≤ 2 exp

(
− 3ε2

3(4 − π)rδ2 + √
2πεδν

)
(6.28)

where D =
√

π
2 δν denotes the upper-bound on |Di |.

Simply replacing ε by rε in (6.28) while using (6.27), we can rewrite (6.28) as

Pr

[∣∣∣∣ρp −
√

π

2
δ

∣∣∣∣ > ε

]
≤ 2 exp

(
− 3rε2

3(4 − π)δ2 + √
2πεδν

)
. (6.29)

Using (6.29), we end up with

Pr

[∣∣∣∣ρp −
√

π

2
δ

∣∣∣∣ ≤ ε

]
> 1 − 2 exp

(
− 3rε2

3(4 − π)δ2 + √
2πεδν

)
. (6.30)

To derive the required r , we set the lower probability bound in (6.30) as

1 − 2 exp

(
− 3rε2

3(4 − π)δ2 + √
2πεδν

)
= 1 − �. (6.31)

Solving the above equation, we obtain

r = ln

(
2

�

)
3(4 − π)δ2 + √

2πεδν

3ε2 . (6.32)

This completes the proof of Theorem 2.
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