
Chapter 15
Sparse Representations for Speech Recognition

Tara N. Sainath, Dimitri Kanevsky, David Nahamoo,
Bhuvana Ramabhadran and Stephen Wright

Abstract This chapter presents the methods that are currently exploited for sparse
optimization in speech. It also demonstrates how sparse representations can be con-
structed for classification and recognition tasks, and gives an overview of recent
results that were obtained with sparse representations.

15.1 Introduction

Sparse representation techniques for machine learning applications have become
increasing popular in recent years [1, 2]. Since it is not obvious how to represent
speech as a sparse signal, sparse representations have received attention only recently
from the speech community [3], where they were proposed originally as a way
to enforce exemplar-based representations. Exemplar-based approaches have also
found a place in modern speech recognition [4] as an alternative way of modeling
observed data. Recent advances in computing power and improvements in machine
learning algorithms have made such techniques successful on increasingly complex
speech tasks. The goal of exemplar-based modeling is to establish a generalization

T. N. Sainath (B) · D. Kanevsky · D. Nahamoo · B. Ramabhadran
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: tsainath@us.lbm.com

D. Kanevsky
e-mail: kanevsky@us.lbm.com

D. Nahamoo
e-mail: nahamoo@us.lbm.com

B. Ramabhadran
e-mail: bhuvana@us.lbm.com

S. Wright
University of Wisconsin, Madison, WI, USA
e-mail: swright@us.lbm.com

A. Y. Carmi et al. (eds.), Compressed Sensing & Sparse Filtering, 455
Signals and Communication Technology, DOI: 10.1007/978-3-642-38398-4_15,
© Springer-Verlag Berlin Heidelberg 2014

456 T. N. Sainath et al.

from the set of observed data such that accurate inference (classification, decision,
recognition) can be made about the data yet to be observed the “ unseen” data. This
approach selects a subset of exemplars from the training data to build a local model
for every test sample, in contrast with the standard approach, which uses all available
training data to build a model before the test sample is seen.

Exemplar-based methods, including k-nearest neighbors (kNN) [1], support vec-
tor machines (SVMs) and sparse representations (SRs) [3], utilize the details of
actual training examples when making a classification decision. Since the number
of training examples in speech tasks can be very large, such methods commonly use
a small number of training examples to characterize a test vector, that is, a sparse
representation. This approach stands in contrast to such standard regression methods
as ridge regression [5], nearest subspace [6], and nearest line [6] techniques, which
utilize information about all training examples when characterizing a test vector.

An SR classifier can be defined as follows. A dictionary H = [h1; h2 . . . ; hN]
is constructed using individual examples of training data, where each hi ∈ Rem is
a feature vector belonging to a specific class. H is an over-complete dictionary, in
that the number of examples n is much greater than the dimension of each hi (that is,
m � N). To reconstruct a signal y from H , SR requires that equation y ≈ Hβ, but
imposes a sparseness condition on β, meaning that it requires only small number of
examples from H to describe y. A classification decision can be made by looking at
the values of β coefficients for columns in H belonging to the same class.

The goal of this chapter is to explain how sparse optimization methods can be
exploited in speech, how sparse representation can be constructed for classification
and recognition tasks, and to give an overview of results obtained using sparse rep-
resentation.

15.1.1 Chapter Organization

The remainder of the chapter is organized as follows. The second section deals
with mathematical aspects of sparse optimization. We describe two SR methods:
approximate Bayesian compressive sensing (ABCS) [7] and convex hull extended
Baum-Welch (CHEBW) [8]. We discuss too their relation with the Extended Baum-
Welch (EBW) optimization framework [9].

The third section is concerned with a variety of different sparseness techniques
employing different types of regularization [2, 3]. Following [10] we explore what
type of sparseness regularization should be employed. Typically sparseness meth-
ods such as LASSO [11] and Bayesian compressive sensing (BCS) [12] use an l1
sparseness constraint. Other possibilities include the Elastic Net [13], which uses a
combination of an l1 and l2 (Gaussian prior) constraint, and ABCS [3], which uses
an l2

1 constraint, known as a Semi-Gaussian prior. We analyze the difference in the
spareness objectives for the above methods and we compare the performance of these
methods for phonetic classification in TIMIT.

15 Sparse Representations for Speech Recognition 457

In the fourth section, we explore the application of ABCS to phoneme classifi-
cation task in TIMIT. The benefit of this Bayesian approach is that it allows us to
build compressive sensing (CS) on top of other Bayesian classifiers, for example a
Gaussian mixture model (GMM). It was shown, following [3], that the CS technique
allows attaining an accuracy of 80.01 %, outperforming the GMM, kNN, and SVM
methods.

In the fifth section, we describe a novel exemplar-based technique for classi-
fication problems, in which for every new test sample the classification model is
re-estimated from a subset of relevant samples of the training data. We formulate
the exemplar-based classification paradigm as a SR problem and explore the use
of convex hull constraints to enforce both regularization and sparsity. Finally, we
utilize the EBW optimization technique to solve the SR problem, and apply our pro-
posed methodology for the TIMIT phonetic classification task, showing statistically
significant improvements over common classification methods.

In the sixth section, following [14], we explore the use of exemplar-based SR
to map test features into the linear span of training examples. Given these new
SR features, we train a Hidden Markov Model (HMM) and perform recognition.
On the TIMIT corpus, we show that applying the SR features on top of our best
discriminatively trained system yields a reduction in phonetic error rate (PER) from
19.9 % to 19.2 %. In fact, after applying model adaptation we reduce the PER further
to 19.0 %, which was the best result on TIMIT reported in 2011. Furthermore, on a
large vocabulary 50-h broadcast news task, we achieve a reduction in word error rate
(WER) of 0.3 %.

In the seventh section, following [15], we discuss using SRs to create a new
set of sparse representation phone identification features (Spi f). We describe the
Spi f features for both small and large vocabulary tasks. On the TIMIT corpus [16],
we show that the use of SR in conjunction with our best context-dependent (CD)
HMM system allows for a 0.7 % absolute reduction in phonetic error rate (PER), to
23.8 %. Furthermore, on a 50-h Broadcast News task [17], we achieve a reduction
in word error rate (WER) of 0.9 − 17.8 %, using the SR features on top of our best
discriminatively trained HMM system.

In the eighth section we describe how one can improve sparse exemplar modeling
for speech tasks via enhancing exemplar-based posteriors.

15.2 Sparse Optimization

Recent studies have shown that sparse signals can be recovered accurately using
fewer observations than the Nyquist/Shannon sampling principle would imply. The
emergent theory that brought this insight to light is known as compressive sensing
(CS) [22, 23]. Problems of reconstructing signals from compressive sensing data
can be represented in several equivalent ways. One such formulation is the following
optimization problem:

458 T. N. Sainath et al.

min
β

‖ y − Hβ ‖2 subject to ‖ β ‖1≤ ε, (15.1)

where y is an m-dimensional vector, x is an N -dimensional vector, H is an m × N
matrix. The parameter ε controls the sparsity of the recovered solution. Provided H
satisfies certain properties, the signal β can be reconstructed even when the number
of observations m is much less than the dimension N of the ambient space in which
β resides. In fact, the required number of observations m is related more strongly to
the number of nonzeros in β.

This formulation can be generalized to handle other types of sparse and regularized
optimization. We can write

min
β

f (β) subject to φ(β) ≤ ε, (15.2)

where f and φ are typically convex functions mapping R
n to R. Typically, f is a

loss function or maximum likelihood function, while the regularization function φ

is typically nonsmooth, and chosen so as to induce the desired type of structure in
β. As noted above, the popular choice φ(β) = ‖β‖1 induces sparsity into β. An
alternative to (15.2) is the following weighted formulation:

min
β

f (β) + λφ(β), (15.3)

for some parameter λ ≥ 0. It can be shown that (15.2) and (15.3) are equivalent:
Under certain assumptions on f and φ, the solution of (15.2) for some value of ε > 0
is identical to the solution of (15.3) for some value of λ ≥ 0, and vice versa.

We can generalize the formulations (15.2) and (15.3) further by considering non-
convex loss functions f and regularization functions φ, and adding an explicit con-
straint on the values of β. Nonconvex f arise in, for example, deep belief networks,
in which the outputs are highly nonconvex functions of the parameters in the net-
work. Nonconvex regularizers φ such as SCAP and MCP are sometimes used to
avoid biasing effects associated with the use of convex penalties. Explicit constraints
such as nonnegativity (β ≥ 0) and simplex (β ≥ 0 and

∑n
i=1 βi = 1) are common

in many settings.
Many algorithms have been proposed to solve (15.2) and (15.3), many of which

exploit the particular structure of f and φ in various applications. One general
approach that has been applied successfully in several settings is the prox-linear
approach in which f in (15.3) is replaced by a linear approximation and a prox-term
that discourages the new iterate βk+1 from being moved too far from the current
iterate βk . The subproblem to be solved at each iteration is:

βk+1 = arg min
β

∇ f (βk)T (β − βk) + 1

2αk
‖β − βk‖2

2 + λφ(β), (15.4)

15 Sparse Representations for Speech Recognition 459

where αk is a positive parameter that plays the role of a line-search parameter. If
the new iterate does not give satisfactory descent in the objective function of (15.3),
we can decrease αk and recompute a more conservative alternative value of βk+1,
repeating as necessary.

The approach based on (15.4) is potentially useful when (a) the gradient ∇ f (·)
can be computed at reasonable cost and (b) the subproblem (15.4) can be solved effi-
ciently. Both situations typically hold in compressed sensing, under the formulation
(15.3) with f (β) = ‖Hβ − y‖2

2 and φ(·) = ‖ · ‖1. In this situation, the solution of
(15.4) can be computed in O(n) operations.

In the remainder of this chapter, we consider two fundamental methods for sparse
optimization: an extended Baum-Welch (EBW) method (which can be expressed via a
line-search A-function (LSAF)) and an Approximate Bayesian Compressive Sensing
(ABCS) algorithm, which is also closely related to EBW. The LSAF derivation is
closely related to the prox-linear approach described above; in fact, the A-function
can be thought of as a generalization of the simple quadratic approximation to f that
is used in (15.4).

Both EBW and ABCS have been applied to speech classification and recognition
problems, as we discuss in subsequent sections.

15.2.1 An EBW Compressed Sensing Algorithm

The Extended Baum-Welch (EBW) technique was introduced initially for estimating
the discrete probability parameters of multinomial distribution functions of HMM
speech recognition problems under the Maximum Mutual Information discriminative
objective function [24]. Later, in [25], EBW was extended to estimating parameters of
Gaussian Mixture Models (GMMs) of HMMs under the MMI discriminative function
for speech recognition problems. In [9] the EBW technique was generalized to the
novel Line Search A-functions (LSAF) optimization technique. A simple geometric
proof was provided to show that LSAF recursions result in a growth transformation
(that is, the value of the original function increases for the new parameters values). In
[26] it was shown that a discrete version of EBW invented in more than 24 years ago
can be also represented using A-functions. This connection allowed a convergence
proof for a discrete EBW to be developed [26].

15.2.2 Line Search A-Functions

Let f (x) : U ⊂ R
n → R be a real valued differentiable function in an open subset

U . Let A f = A f (x, y) : R
n × R

n → R be twice differentiable in x ∈ U for each
y ∈ U . We define A f as an A-function for f if the following properties hold.

460 T. N. Sainath et al.

1. A f (x, y) is a strictly convex or strictly concave function of x for any y ∈ U .
(Recall that twice differentiable function is strictly concave or convex over some
domain if its Hessian function is positive or negative definite in the domain,
respectively.)

2. Hyperplanes tangent to manifolds defined by z = gy(x) = A f (x, y) and z =
f (x) at any x = y ∈ U are parallel to each other, that is,

∇x A f (x, y)|x=y = ∇x f (x) (15.5)

It was shown in [9] that a general optimization technique can be constructed based
on A-function. We formulated a growth transformation such that the next step in
the parameter update that increases f (x) is obtained as a linear combination of
the current parameter values and the value x̃ that optimizes the A-function, for
which ∇x A f (x, y)|x=x̃ = 0. More precisely, we stated that A-function gives a set
of iterative update rules with the following “growth” property: let x0 be some point
in U and U � x̃0 �= x0 be a solution of ∇x A(x, x0)|x=x̃0 = 0. Defining

x1 = x(α) = α x̃0 + (1 − α)x0, (15.6)

we have for sufficiently small |α| �= 0 that f (x(α)) > f (x0), where α > 0 if
A(x, x0) concave and α < 0 if A(x, x0) convex. The technique of generating x̃ in
this way and performing the line search is termed “Line Search A-Function” (LSAF).

15.2.3 Discrete EBW

Here we show that discrete EBW can be described using the LSAF framework.
Our descriptiong ins limited to the case of a single distribution, but the technique
generalizes readily to several distributions.

Let the simplex S be defined as

S := {β : β ∈ R
n, βi ≥ 0, i = 1, . . .n,

∑
βi = 1},

and suppose that f : R
n → R is a differentiable function on some subset X ⊂ S.

We wish to solve the following maximization problem for a function f (β):

max f (β) subject to β ∈ S. (15.7)

Let β ∈ X and define ak
i := ∂ f (βk)

∂βk
i

, i = 1, . . .n. For any D ∈ R and βk ∈ R
n such

that
∑n

j=1 ak
j β

k
j + D �= 0, we define a recursion TD : R

n → R
n as follows:

15 Sparse Representations for Speech Recognition 461

βk+1
i = TD(βk) = ak

i βk
i + Dβk

i∑n
j=1 ak

j β
k
j + D

. (15.8)

It was shown in [27] that for sufficiently large D, we have f (βk+1) > f (βk), unless
βk+1 = βk .

An A-function A f for the function f in (15.7) that is differentiable in some
compact neighborhood U ⊂ X of a point β0 ∈ S is given as:

A f (β0, β) =
∑

(ci + β0i D) log βi , (15.9)

where ci = ci (β0) = β0i
∂ f (β)
∂βi

|β=β0 = β0i ai (β0) and D is any number such that
ai (β)+ D > 0 for all i and any β ∈ U . (Existence of D is guaranteed by differentia-
bility of f in U and compactness of U .) To show that the function A f (β0, β) in (15.9)
is an A-function, one needs to check (15.5) as follows. Replace βn = 1 − ∑

βi in
(15.7), (15.9), that is, consider the functions g(β ′) = f (β1, ..., βn−1, 1 −∑n−1

1 βi),
Ag(β0;β ′) = A f (β0, {β1, ..., βn−1}, 1 − ∑n−1

1 β j) where β ′ = {β1, ...βn−1}. We
have

∂Ag(β0, β
′)

∂βi
|βi =β0i = ai (β0)

∂ f (β)

∂βi
|βi =β0i + Dβ0i

∂ log βi

∂βi
|βi =β0i +

D(1 −
n−1∑

1

β0i)
∂ log(1 − ∑n−1

1 βi)

∂βi
|β=β0 = ∂g(β ′)

∂β ′ |β ′
i =β ′

0i
.

It can be shown that adding a quadratic penalty CβT β to the objective function f (β)

is equivalent to substituting the term D with D + 2C in the discrete EBW recursion
(15.8). Moreover, for sufficiently large C , the function f (β)+CβT β is concave in a
simplex S. Therefore, it achieves its maximum on the boundary of the of the simplex
S. This fact implies that for sufficiently large D, the EBW recursion enforces a sparse
solution.

Discrete EBW methods can be applied to optimization of objective functions with
fractional norm constraints, as suggested in [28]. We have

max f ({βi }) subejct to ‖β‖q = 1 and βi ≥ 0, i = 1, 2, . . . , n, (15.10)

where ‖ β ‖q := (
∑

β
q
i)1/q . Setting

γi = β
1/q
i , g({γi }) = f ({βi }), (15.11)

transforms the problem (15.10) into a discrete EBW problem for which the recur-
sion (15.8) could be applied. In [26], this optimization method with fractional norm
constraints was applied to TIMIT classification tasks.

462 T. N. Sainath et al.

15.2.4 An ABCS Compressed Sensing Algorithm

Following [29], we describe the approximate Bayesian CS (ABCS) method. The key
idea behind this algorithm is based on an approximate sparseness promoting prior
which is a sort of mixture of Gaussian and Laplace distributions. ABCS is a variant of
the algorithm in [30] and [31]. In what follows we gradually develop this underlying
concept and a few others which form the core of the new method.

15.2.4.1 Bayesian Estimation

The Bayesian estimation methodology provides a convenient representation for deal-
ing with complex observation models. In this work, however, we restrict ourselves
to the conventional linear model used in CS theory

yk = Hβ + nk (15.12)

where yk , H ∈ R
m×N , and nk denote the kth R

m-valued observation, a fixed sensing
matrix, and the observation noise of which the pdf p(nk) is known, respectively.
The sought-after random parameter (the signal) β is a R

N -valued vector for which
the prior pdf p(β) is given. Following this, the complete statistics of β conditioned
on the entire observation set consisting of k elements, Yk = [y1, . . . , yk] can be
sequentially computed via the Bayesian recursion

p(β | Yk) = p(yk | β)p(β | Yk−1)∫
p(yk | β)p(β | Yk−1)dβ

(15.13)

where the likelihood p(yk | β) = pnk (yk − Hβ). One can rarely obtain a closed-
form analytic expression of the posterior pdf (15.13), so approximation techniques
are often used. One well-known example in which (15.13) does admit a closed-form
solution is given by the following theorem, which plays a fundamental role in this
work. (This is a well known result in estimation theory which is revisited here for
completeness.)

Theorem 1 (Gaussian pdf Update). Assume that p(β | Yk−1) is a Gaussian pdf of
which the first two statistical moments are given by β̂k−1 ∈ R

n and Pk−1 ∈ R
n×n,

that is p(β | Yk−1) = N (β | β̂k−1, Pk−1). Assume also that the observation yk

satisfies the linear model (15.12) where nk is a R
m-valued zero-mean Gaussian

random variable nk ∼ N (0, R) that is statistically independent of β. Then the
Bayesian recursion (15.13) yields p(β | Yk) = N (β | β̂k, Pk) where

β̂k = β̂k−1 + Pk−1 H T
(

H Pk−1 H T + R
)−1 [

yk − H β̂k−1

]
(15.14a)

15 Sparse Representations for Speech Recognition 463

Pk =
[

I − Pk−1 H T
(

H Pk−1 H T + R
)−1

H

]

Pk−1 (15.14b)

The initial values of the above quantities are set according to the Gaussian prior
p(β) = N (β | β̂0, P0).

The proof of this statement can be found in [29]. Note that the quantity Pk in Theo-
rem 1 is the estimation error covariance, i.e.,

Pk := E
[
(β − β̂k)(β − β̂k)

T | Yk

]

where β − β̂k is the estimation error of the unbiased estimator β̂k .

15.2.5 Sparseness-Promoting Semi-Gaussian Priors

Compressed sensing was embedded in the framework of Bayesian estimation by
utilizing sparseness promoting priors such as Laplace and Cauchy [32]. Here we
consider a different type of prior that facilitates the application of the closed-form
recursion of Theorem 1. The sparseness-promoting prior used here is termed “semi-
Gaussian” (SG) owing to its form

p(β) = c exp

(

−1

2

‖ β ‖2
1

σ 2

)

. (15.15)

The motivation for using a SG prior can be motivated by analyzing the charac-
teristics of the SG constraint ‖ β ‖2

1= (
∑

i |βi |)2 and the Laplacian constraint
‖ β ‖1= (

∑
i |βi |). We can denote the SG density function as proportional to

psemi−gauss ∝ exp(− ‖ β ‖2
1) and the Laplacian density function proportional

to plaplace ∝ exp(− ‖ β ‖1). When ‖ β ‖1< 1, it is straightforward to see that
psemi−gauss > plaplace. When ‖ β ‖1= 1, the density functions are the same, and
when ‖ β ‖1> 1 then psemi−gauss < plaplace. Therefore the semi-Gaussian density
is more concentrated than the Laplacian density in the convex area inside ‖ β ‖1< 1.
Given the sparseness constraint ‖ β ‖q , as the fractional norm q goes to 0, the
density becomes concentrated at the coordinate axes and the problem of solving for
β becomes a non-convex optimization problem where the reconstructed signal has
the least mean-squared-error (MSE). Intuitively, we expect the solution using the
semi-Gaussian prior to behave closer to the non-convex solution.

This observation is further illustrated in Fig. 15.1, in which the level maps are
shown for Laplace, semi-Gaussian, and Gaussian pdfs in the 2-dimensional case.
The embedding of the prior (15.15) within the Gaussian variant of the Bayesian
recursion in Theorem 1 is not straightforward. This follows from the fact that the
restrictions under which Theorem 1 is derived involve a purely Gaussian prior and a

464 T. N. Sainath et al.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fig. 15.1 Laplace, semi-Gaussian, and Gaussian pdfs in R
2

likelihood pdf that is based on a deterministic sensing matrix H ,

p(yk | β) ∝ exp

(

−1

2
(yk − Hβ)T R−1(yk − Hβ)

)

. (15.16)

Theorem 1 provides an exact recursion for computing the Gaussian posterior based
exclusively on the factors composing the above likelihood: the observation yk , the
sensing matrix H and the observation noise covariance R. This fact has motivated
the following approach which allows enforcing an approximate semi-Gaussian prior
without changing the fundamental structure of the underlying update equations as
obtained in Theorem 1.

15.2.6 Approximate Semi-Gaussian Prior

We introduce a state-dependent matrix Ĥ ∈ R
1×N whose entries are Ĥ i = sign(β i),

i = 1, 2, . . . , N (that is, Ĥ i = +1 and Ĥ i = −1 for β i > 0 and β i < 0, respec-
tively). The semi-Gaussian prior can be expressed based on (15.16) while replacing
H and R with Ĥ and σ , respectively, and assuming a fictitious observation y = 0,
that is

p(β) = p(y = 0 | β, Ĥ , σ) ∝ exp

(

−1

2

(0 − Ĥβ)2

σ 2

)

(15.17)

The only difficulty in using (15.14a) for enforcing the semi-Gaussian prior (15.17)
is the dependency of Ĥ on β. We recall that Theorem 1 relies on possibly varying
a deterministic H as opposed to the formulation in (15.17). This problem can be
alleviated by letting

Ĥ i = sign(β̂ i
k), i = 1, 2, . . . , N , (15.18)

that is, by substituting the conditional mean instead of the actual β. This modifi-
cation renders Ĥ a Yk-measurable quantity, as it depends on β̂k which is a func-
tion of the entire observation set. This fact clearly does not affect the expressions
in Theorem 1 as the derivations are conditioned on Yk (see [29]). Applying this

15 Sparse Representations for Speech Recognition 465

approximation facilitates the implementation of Theorem 1 based on the likelihood
(15.17). Hence, an additional processing stage is needed to apply the approximate
sparseness-promoting prior:

β̂k+1 =
[

I − Pk Ĥ T Ĥ

Ĥ Pk Ĥ T + σ 2

]

β̂k (15.19a)

Pk+1 =
[

I − Pk Ĥ T Ĥ

Ĥ Pk Ĥ T + σ 2

]

Pk . (15.19b)

This stage is implemented after the usual processing of the observations set Yk (see
(15.14)), where the initial covariance is taken as P0 → ∞.

At this point, a natural question is raised concerning the validity of the approxi-
mation suggested above. The following theorem, proved in [29], bounds the discrep-
ancy between the exact posterior which uses the semi-Gaussian prior (15.15) and the
approximate posterior in terms of the estimation error covariance P̂k .

Theorem 2 Denote p̂(β | Yk) the Gaussian posterior pdf obtained by using the
approximate semi-Gaussian prior technique, and let p(β | Yk) be the posterior pdf
obtained by using the exact semi-Gaussian prior (15.15). Then

KL
(

p̂(β | Yk) ‖ p(β | Yk)
) = O

(
σ−2 max

{
Tr(P̂k), Tr(P̂k)

1/2
})

, (15.20)

where KL and Tr denote the Kullback-Leibler divergence and the matrix trace oper-
ator, respectively.

In practical applications for speech classification and recognition tasks, it was
observed that the classification and recognition accuracy is not affected if ones com-
putes a term Pk in (15.19b) only once, then fixes this term for all subsequent iterations.
This trick provides a significant speed up without significant degradation of accuracy.

15.2.7 ABCS Representations via LSAF

We recall the
1-constrained problem (15.1), modified slightly by the use of a
weighted data-fitting term

min ‖ y − Hβ ‖2
R subject to ‖ β ‖1≤ ε.

In many practical application it is useful to add an l2 regularization term to this
formulation, to yield

min ‖ y − Hβ ‖2
R + ‖ β − β0 ‖2

P0
subject to ‖ β ‖1≤ ε.

466 T. N. Sainath et al.

Using ‖ y − Hβ ‖2
R + ‖ β − β0 ‖2

P0
=‖ β − β1 ‖2

P1
we can represent this problem

as
min ‖ β − β1 ‖2

P1
subject to ‖ β ‖1≤ ε,

where P1 is assumed to be positive-definite. We can now represent (15.1) by

min F(β) := ‖ β − β1 ‖2
P1

+ ‖ β ‖i
1 /σ 2, (15.21)

and define the A-function as:

A(β, β∗) =‖ β − β∗ ‖2
P1

+{sign(β∗)β}i/σ 2, (15.22)

where i = 1 (Laplacian) or i = 2 (squared l1 norm). In [26] we show that A(β, β∗)
is A-function of F(β). According to the definition of the A-function, we consider
A(β, β∗) and F(β) in an open domain where they are both differentiable and con-
struct an update of parameters when the extremum of A(β, β∗) belongs to this
domain. Our open domain excludes the origin β = 0. If some coordinates of β

approach 0 we can remove them by reducing the dimension of the problem. Using
LSAF, we have the recursion:

βk = αβ̃k−1 + (1 − α)βk−1.

The ABCS algorithm corresponds to a squared l1-norm. Analysis of various regular-
ization penalties for speech classification problems is given in Sect. 15.3. The ABCS
method gives a solution of (15.21) via the recursion:β̃k−1 = arg maxβ A(β, βk−1).
Numerical experiments show that for a suitable choice of α, the parameter βk con-
verges to a solution of (15.21) more rapidly than the one obtained through the ABCS
recursion. One can expect that LSAF with appropriate choices of α is more efficient
than the ABCS.

15.3 An Analysis of Sparseness and Regularization in
Exemplar-Based Methods for Speech Classification

Following [10] we describe and compare a variety of different sparseness tech-
niques, which employ different types of regularization, and that have been explored
for speech tasks [2, 3]. Firstly, we describe the main framework behind exemplar-
based classification. Then we give a brief description of the TIMIT corpus. Next we
discuss how sparseness can be useful in classification tasks. Finally, we compare the
performance of different sparseness methods for classification.

15 Sparse Representations for Speech Recognition 467

15.3.1 Classification Based on Exemplars

The goal of classification is to use training data from k different classes to determine
the best class to assign to test vector y. First, let us consider taking all training
examples ni from class i and concatenate them into a matrix Hi as columns, in other
words Hi = [xi,1, xi,2, . . . , xi,ni] ∈ R

m×ni , where x ∈ R
m represents a feature

vector from the training set of class i with dimension m. Given sufficient training
examples from class i , [6] shows that a test sample y from the same class can be
represented as a linear combination of the entries in Hi weighted by β, that is:

y = βi,1xi,1 + βi,2xi,2 + . . . + βi,ni xi,ni (15.23)

However, since the class membership of y is unknown, we define a matrix H to
include training examples from all k classes in the training set, in other words the
columns of H are defined as H = [H1, H2, . . . , Hk] = [x1,1, x1,2, . . . , xk,nk] ∈
R

m×N . Here N is the total number of all training examples from all classes. We can
then write test vector y as a linear combination of all training examples, in other
words y = Hβ. We can solve this linear system for β and use information about β to
make a classification decision. Specifically, large entries of β should correspond to
the entries in H with the same class as y. Thus, one proposed classification decision
approach [3] is to compute the l2 norm for all β entries within a specific class, and
choose the class with the largest l2 norm support.

15.3.2 Exemplar-Based Methods

Various types of exemplar-based classifiers can be cast in the framework of repre-
senting the test vector y as a linear combination of training examples H , subject to
a constraint on β. Below, we review a few popular techniques that are based on the
following optimization problem for various values of q and α

min
β

‖ y − Hβ ‖2 s.t. ‖ β ‖α
q ≤ ε (15.24)

1. Ridge regression (RR) methods [5] use information about all training examples
in H to make a classification decision about y, in contrast to a nearest-neighbor
(NN) approach to exemplar-based classification, which uses information about
just 1 training example. Specifically, the RR method looks to project y into
the linear space of all training examples and solves for the β which minimizes
(15.24) for q = 2, α = 2. The term ‖ β ‖2

2≤ ε is an l2 norm on β (i.e. a Gaussian
constraint) but does not enforce any sparseness.

2. Sparse representations: like RR methods, sparse representation (SR) techniques
(i.e., [3, 6], project y into the linear span of examples in H , but constrain β to
be sparse. Specifically, SR methods solve for β by minimizing (15.24), given

468 T. N. Sainath et al.

various settings for α and q. For example, in a probabilistic setting q = 1, α = 1
leads to a Laplacian constraint, whereas q = 1, α = 2 leads to a Semi-Gaussian
constraint. The remainder of this section is focused on comparing the RR method
to various SR methods with different types of regularizations.

15.3.3 Description of TIMIT

We analyze the behavior of various exemplar-based methods on the TIMIT [16]
corpus. The corpus contains over 6,300 phonetically rich utterances divided into
three sets, namely the training, development, and core test set. For testing purposes,
the standard practice is to collapse the 48 trained labels into a smaller set of 39 labels.
All methods are tuned on the development set and all experiments are reported on
the core test set.

The complete experimental setup, as well as the features used for classification,
are similar to [3]. First, we represent each frame in our signal by a 40 dimensional
discriminatively trained Space Boosted Maximum Mutual Information (fBMMI)
feature. We split each phonetic segment into thirds, taking the average of these frame-
level features around 3rds, and splice them together to form a 120 dimensional vector.
This allows us to capture time dynamics into each segment. Then, at each segment,
segmental feature vectors to the left and right of this segment are joined together
and a Linear Discriminative Analysis (LDA) transform is applied to project 200
dimensional feature vector down to 40 dimensions.

Similar to [3], we find a neighborhood of closest points to y in the training set
using a kd-tree. These k neighbors become the entries of H . We explore classification
performance for different sizes of H . In what follows, we explore the following two
questions, using TIMIT to provide experimental results to support our framework.

• Why and when is sparseness important for exemplar-based methods?
• If sparseness is used, what type of regularization constraint should be utilized?

15.3.4 Why Sparse Representations?

We will motivate the difference between the RR and SR methods further with the
following example. Let us consider a 2 × 7 matrix

H = [h1, h2, h3, h4, h5, h6, h7] =
[

0.2 0.1 0.4 0.3 −0.6 0.6 −0.6
0.2 0.3 0.35 0.3 0.1 0.3 0.4

]

,

where first three columns h1, h2, h3 are “training” utterances that belong to a class
C1 and last four columns are “training” utterances that belong C2. Assume also
that a vector y = [0.29; 0.29] is “test” data that belong to a class C1. thus will

15 Sparse Representations for Speech Recognition 469

Fig. 15.2 Error for RR and
SR methods for varied H

10
0

10
1

10
2

10
3

10
4

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Size of H (log)

E
rr

or

Ridge Regression
Sparse Representation

include the outlier points of C2. Solving (15.24) with q = 2, α = 2 (i.e., the RR
method) produces the vector β ≈ [0.12; 0.15; 0.21; 0.18;−0.05; 0.1220.08] and
the best class is C2. However using the SR method in (15.24) (for example, using
ABCS method with a SG constraint as explained in Sect. 15.2) produces a vector
β ≈ [0.00; 0.01; 0.77; 0.00; 0.00; 0.00; 0.03] with the support located at the third
entry in H . In this case, the C1 is identified as the correct class. Thus, by using a
subset of examples in H , the classification decision for SR and RR can be vastly
different, particularly in the case of outliers.

To analyze the behavior of the SR and RR methods in a practical speech example,
we explore phonetic classification on TIMIT as the size of H is varied from 1 to
10,000. A plot of the error rate for the two methods for varied H is shown Fig. 15.2.
For this figure, we again used the ABCS SR method. First notice that as the size
of H increases up to 1,000 the error rates of the RR and SR both decrease, show-
ing the benefit of including multiple training examples when making a classification
decision. Also notice that there is no difference in error between the RR and SR tech-
niques, suggesting that regularization does not provide any extra benefit. However,
as the size of H increases past 1,000 and there are more number of training examples
for each class, the SR method performs better than the RR method, demonstrating
the advantage of using sparseness to select only a few examples in H to explain y
rather than all examples in H .

15.3.5 What Type of Regularization?

Now that we have motivated the use of regularization, in this section we analyze
different forms of regularization. As illustrated by (15.24), with q = 1, a sparse
representation solution can be formulated by finding the β which minimizes the

470 T. N. Sainath et al.

residual error ‖ y − Hβ ‖2, subject to a regularization ‖ β ‖q≤ ε on β. There are
four common types of regularizations on β.

1. If q = 2 and α = 2, then the regularization becomes ‖ β ‖2≤ ε. This constraint
can be modeled as a Gaussian prior. Common techniques which impose an
l2 constraint on β include Ridge Regression [5]. The effect of the l2 norm is to
spread values of entries in β equally. Therefore the optimization problem (15.24)
for q = 2 tries to find a balance between keeping the residual ‖ y − β ‖2 small
and trying to keep all the entries in the vector β to be non-zero.

2. If q = 1 and α = 1, then the regularization becomes ‖ β ‖1≤ ε. This constraint
can be modeled as a Laplacian prior. Common techniques which impose an l1
constraint on β include LASSO [11] and Bayesian Compressive Sensing (BCS)
[12]. The Lasso problem can be formulated as follows:

min
β

‖ y − Hβ ‖2 +λ ‖ β ‖1, (15.25)

as in (15.3), where λ controls the weight of the l1 norm. The Least Angle Regres-
sion (LARS) ([33]) solves LASSO through a forward stepwise regression, com-
puting point estimates of β at each step. The effect of the l2 norm is to spread
values of entries in β equally. Therefore the optimization problem (15.24) for
q = 2 tries to find a balance between keeping the residual ‖ y − β ‖2 small
while at the same time preventing all the entries in β from vanish. In contrast,
the norm l1 tries to enforce sparsity in β while keeping the residual ‖ y − Hβ ‖2
small.
Bayesian Compressive sensing [12] can be formulated in a fashion similar to
(15.25). BCS introduces a probabilistic framework to estimate the spareness
parameters required for signal recovery. This technique limits the effort required
to tune the sparseness constraint and also provides complete statistics for the
estimate of β.

3. Many techniques also impose a combination of an l1 and l2 constraint on β.
These methods include the popular Elastic Net [13]. The Elastic Net [13] method
imposes a mixture of an l1 and l2 constraints, i.e.,

min
β

‖ y − Hβ ‖2 +λ1 ‖ β ‖1 +λ2 ‖ β ‖2
2 . (15.26)

Here λ1 and λ2 are weights controlling the l1 and l2 constraint. In the elastic net
formulation the l1 term enforces the sparsity of solution, whereas the l2 penalty
ensures democracy among groups of correlated variables. The second term has
also a smoothing effect that stabilizes the obtained solution.

4. The previously described ABCS explores the use of a semi-Gaussian prior and
solves for β in a Bayesian framework. The ABCS essentially solves

min
β

‖ y − Hβ ‖2 +λ1(β − β0)
T P−1

0 (β − β0) + λ2 ‖ β ‖2
1 . (15.27)

15 Sparse Representations for Speech Recognition 471

Fig. 15.3 Plot of β for differ-
ent regularization constraints

0 50 100 150 200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Beta Size

Be
ta

 v
al

ue
s

Lasso
ABCS
Ridge Regression
Elastic Net

Visualization of Sparsity

We analyze the difference in β coefficients for different sparseness methods. For
a randomly selected classification frame y in TIMIT and an H of size 200, we
solve (15.24) for β. Figure 15.3 plots the sorted 200 β coefficients for four different
techniques employing different reguliarizations, namely Ridge Regression, Lasso,
Elastic Net and ABCS. The plot shows that the β coefficients for the RR method
are the least sparse, as we would expect. In addition, the LASSO technique has the
sparsest β values. The sparsity of the Elastic Net and ABCS techniques methods are
in between RR and LASSO, with ABCS being more sparse than Elastic Net due to
the Semi-Gaussian constraint in ABCS, which is more sparse than the l1 constraint
in the Elastic Net.

TIMIT Results

Table 15.1 shows the results comparing various sparseness methods on TIMIT for a
size of H = 200. As one can see from the table, the three methods which combine
a sparseness constraint with and l2 norm, namely ABCS, Elastic Net and CSP, all
achieve statistically the same accuracy. The two methods which use the l1 norm,
namely BCS and LASSO, have slightly lower accuracy, showing the decrease in
accuracy when a high degree of sparseness is enforced. Thus, it appears that using a
combination of a sparsity constraint on β, coupled with an l2 norm, does not force
unnecessary sparseness and offers the best performance.

472 T. N. Sainath et al.

Table 15.1 Accuracies for
different sparseness methods

Method PER

LASSO 74.40
BCS 73.58
Elastic net 77.89
ABCS 77.80
CSP 77.55

15.4 ABCS for Classification

In this section we follow [3] and describe application of ABCS for Timit classification
tasks. We perform classification as described in Sect. 15.3.1 solving (15.23) for α = 2
and q = 1 via (15.14a), (15.14b), (15.19a), and (15.19b). We compute the l2 norm
for all β entries within a specific class and choose the class with the largest l2 norm
support. Pooling together all training data from all classes into H will make the
columns of H large (i.e., can be greater than 100,000 for TIMIT), and will make
solving for β intractable. Therefore, to reduce the size of N and make ABCS problem
more solvable, for each y, we find a neighborhood of closest points to y in the training
set using a kd-tree [35]. These k neighbors become the entries of H . k is chosen to
be in the large to ensure that β is sparse and all training examples are not chosen
from the same class.

Constants P0 and β0 must be chosen to initialize the ABCS algorithm. Recall that
β0 and the diagonal elements of P0 all correspond to a specific class. We choose
β0 to be 0 since we do not have a very confident estimate of β and we assume its
sparse around 0 anyways. We choose to initialize a diagonal P0 where the entries
corresponding to a particular class are proportional to the GMM posterior for that
class. The intuition behind this is that the larger the initial P0, the more weight is given
to examples in H belonging to this class in ABCS. Therefore, the GMM posterior
picks out the most likely supports, and ABCS provies an addition step by using the
actual training data to refine these supports.

15.4.1 Nonlinear Compressive Sensing

The traditional CS implementation represents y as a linear combination of samples
in H . Many pattern recognition algorithms, such as SVMs [36] have shown better
performance can be achieved by a nonlinear mapping of the feature set to a higher
dimensional space. After this mapping, a weight vector w is found which projects all
dimensions within a particular feature vector to a single dimension where different
classes are linearly separable. We can think of this weight vector w as selecting
some linear combination of dimensions within a feature vector to make it linearly
separable. The goal of CS is to find a linear combination of actual features, not
dimensions within a feature vector. Therefore, we introduce nonlinearity into CS, by

15 Sparse Representations for Speech Recognition 473

constructing H such that the entries of H themselves are nonlinear. For example,
one such nonlinearity is to square all the elements within H . That is if we define
Hlin = [x1,1, x1,2, . . . , xk,nk], then H2 is defined as H2 = [x2

1,1, x2
1,2, . . . , x2

k,nk
]

and similarly H3 would take cubed products of each of the x entries. We could also
take products between different xi as Hinner = [x1,1x1,2, x1,1x1,3 . . . , xk,8xk,nk]. We
then take a specific nonlinear Hnonlin and combine it with the linear Hlin to form a
new Htot = [Hlin, Hnonlin] and use ABCS to solve for β. In Sect. 5.1 , we discuss
the performance of the ABCS algorithm for different choices of nonlinear H .

15.4.2 Experiments

Classification experiments are conducted on TIMIT [16] acoustic phonetic corpus
as described in Sect. 15.3.3. First, we analyze the performance of the CS classifier
for different choices of linear and nonlinear H as described in Sect. 3.4. Next, we
compare the performance of CS with three other standard classifiers used on this
task, namely a Gaussian Mixture Model (GMM), Support Vector Machine (SVM)
[36] and k-nearest Neighbors (kNN) classifier [35]. The parameters of each classifier
were optimized for each feature set on the development set. Specifically, we found
that modeling each phone as a 16-component GMM was appropriate. The kernel
type and parameters within this kernel were optimized for the SVM. In addition,
the number of k closest neighbors for kNN was also learned. And finally, for CS
the size of Hlin was optimized to be 200 examples from the kd-tree. In addition to
compute Hnonlin , 100 columns were randomly chosen from Hlin to compute each
type of nonlinear H .

Performance for Different H

Table 15.2 shows the accuracy on the development set for different choices of H
using Mel-frequency cepstral coefficients (MFCC) features. Notice that the nonlin-
ear CS-Hlin H2 method offers improvements over the linear CS-Hlin method. Taking
Hlin H2 H3 offers addition improvements, though overtraining occurs when higher
order features past H3 are used. Furthermore, there is very little difference between
squaring individual entries of H (i.e. Hlin H2) or taking products between differ-

Table 15.2 Accuracy for
different H using MFCC
features

Method Dev-MFCC

CS-Hlin 76.64
CS-Hlin H2 76.84
CS-Hlin H2 Hinner 76.53
CS-Hlin H2 H3 76.89
CS-Hlin H2 H3 H4 76.86

http://dx.doi.org/10.1007/978-3-642-38398-4_5
http://dx.doi.org/10.1007/978-3-642-38398-4_3

474 T. N. Sainath et al.

Table 15.3 Accuracy for
different classifiers on TIMIT
testcore set

Method MFCC fBMMI

GMM 74.19 78.31
kNN 73.69 79.58 (=)
SVM 76.20 (=) 78.38
CS-Hlin H2 H3 76.44 80.01

ent entries of H (i.e., Hlin Hinner). While not shown here, similar trends were also
observed for fBMMI features. Since the CS-Hlin H2 H3 method offers the best per-
formance of the CS methods, we will report the results for this classifier in subsequent
sections.

Comparing Different Classifiers

Table 15.3 compares the performance of the CS classifier with the GMM, kNN and
SVM methods for both MFCC and fBMMI features. Classifiers which are not statis-
tically significant from the CS classifier, as confirmed by McNemar’s Test, are also
indicated by ‘=’. First, notice that when MFCC features are used, CS outpeforms
both then kNN and GMM methods, and offers similar performance to the SVM.
When discriminative features are used, the GMM technique is closely matched to
the SVM though CS is able provide further gains over these two methods. This is
one of the benefits of CS—a discriminative non-parametric classifier built on top of
the GMM.

Analysis of Results

To better understand the gains achieved by the CS classifier compared to the other
three techniques, Fig. 15.4 plots the relative difference in error rates within 6 broad
phonetic classes (BPCs) for CS compared to the three other methods. First, notice
that CS offers improvements over the GMM in all BPCs, again confirming its benefit
of a non-parametric discriminative classifier on top of the GMM. Secondly, while
the SVM technique offers improvements over the CS method in the vowel/semi-
vowel class, the CS method significantly outperforms the SVM in the weak fricative,
stop and closure classes. Finally, the CS method offers slight improvements over the
kNN method in the nasal, strong fricative and stop classes, while kNN offers slight
improvements in the vowel, weak fricative and closure classes. Thus, we can see that
with the exception of the GMM, the gains from CS do not come from it outperforming
the kNN and SVM techniques within all BPCs, but only within certain BPCs.

15 Sparse Representations for Speech Recognition 475

Fig. 15.4 Relative difference
in error rates between CS and
other methods

15.5 A Convex Hull Approach to Sparse Representations

A typical SR formulation in (15.24) does not constrain β to be positive and normal-
ized, which can result in the projected training points hiβi ∈ Hβ being reflected
and scaled. While this can be desirable when data variability exists, allowing for too
much flexibility when data variability is minimized can reduce the discrimination
between classes. Driven by this intuition, below we present two examples where data
variability is minimized, and demonstrate how SRs manipulate the feature space, thus
leading to classification errors.

First, consider two clusters in a 2-dim space as shown in Fig. 15.5a with sample
points {a1, a2, . . . , a6}belonging to Class 1 and {b1, b2, . . . , b6}belonging to Class 2.
Assume that points ai and bi are concatenated into a matrix H = [h1, h2, . . . , h12] =
[a1, . . . , a6, b1, . . . b6], with a specific entry being denoted by hi ∈ H . In a typical
SR problem, given a new point y indicted in Fig. 15.5b, we project y into the linear
span of training examples in H by trying to solve:

arg min ‖ β ‖0 s.t. y = Hβ =
12∑

i=1

hiβi (15.28)

As shown in Fig. 15.5a, the best solution will be obtained by setting all βi = 0
except for β8 = −1, corresponding to the weight on point b2. At this point |β|0 takes
the lowest value of 1 and y = −b2, meaning it is assigned to Class 2. The SR method
misclassifies point y, as it is clearly in Class 1, because it puts no constraints on the
β values. Specifically, in this case, the issue arises from the possibility of β entries
taking negative values.

Second, consider two clusters in a 2-dimensional space as shown in Fig. 15.5b with
sample points belonging to Class 1 and 2. Again, we try to find the best representation

476 T. N. Sainath et al.

..

.

.

.. b1

b2

b3b4
b5

b6

*
*

*

*

*
*a1

a2

a3

a4
a5

a6

@
y

d1

d2

Class 2

Class 1

(a)

.

.
.

.

b1

b2

b3

b4b5

b6

Class 2

.

.

d2

d1

* *
*

* *
*a1

a2

a3

a4

a5

a6

@
y

Class 1

(b)

Fig. 15.5 a Reflective issue with negative β, b Scaling issue with unnormalized β

for test point y by solving (15.28). The best solution will be obtained by setting all
βi = 0 except for β5 = 0.5. At this value, |β|0 will take the lowest possible value
of 1 and y = 0.5 × a5. This leads to a wrong classification decision as y clearly
is a point in Class 2. The misclassification is due to having no constraint on the β

elements. Specifically, in this case, the issue arises from total independence between
the β values and no normalization criteria as a way to enforce dependency between
the β elements. If we enforce β to be positive and normalized, then training points
hi ∈ H form a convex hull. Mathematically speaking, a convex hull of training
points H is defined by the set of all convex combinations of finite subsets of points
from H , in other words a set of points that satisfy the following:

∑n
i=1 hiβi . Here n

is any arbitrary number and the βi components are positive and sum to 1.
Since many classification techniques can be sensitive to outliers, we examine the

sensitivity of our convex hull SR method. Consider two clusters shown in Fig. 15.6
with sample points in Classes 1 and 2. Again, given point y, we try to find the
best representation for y by solving (15.28), where now we will use a convex hull
approach to solve, putting extra positivity and normalization constraints on β.

As shown in Fig. 15.6, if we project y onto the convex hulls of Class 1 and Class
2, the distance from y to the convex hull of Class 1 (indicated by r1) is less than
the distance from y to the convex hull of Class 2 (i.e. r2). This leads to a wrong
classification decision as y clearly is a point in Class 2. The misclassification is due
to the effect of outliers a1 and a4, which create an inappropriate convex hull for
Class 1.

However, all-data methods, such as GMMs, are much less susceptible to outliers,
as a model for a class is built by estimating the mean and variance of training examples
belonging to this class. Thus, if we include the the distance between the projection
of y onto the two convex hulls of Class 1 and Class 2, as well as the distance between
this projection and the means mi of Class 1 and 2 (distance indicated by q1 and q2)

15 Sparse Representations for Speech Recognition 477

Fig. 15.6 Outliers effect

Class 2

d2

d1

Class 1

b4

.
b5

b6 .
.b3

.
b2

b1

.

a4

*

*
a1

*

a5

*
a3

*
a2*a6

r1
r2

q2

q1

m1

m2

@y

.

respectively, then test point y is classified correctly. Thus combining purely exemplar-
based distances (ri) with GMM-based distances (qi), which are less susceptible to
outliers, provides a more robust measure.

15.5.1 Convex Hull Formulation

In our sparse representations convex hull (SR-CH) formulation, first we seek to
project test point y into the convex hull of H . After y is projected into the convex
hull of H , we compute how far this projection (which we call Hβ) is from the
Gaussian means1 of all classes in H . The full convex hull formulation, which tries
to find the optimal β to minimize both the exemplar and GMM-based distances [8].
Here Nclasses represents the number of unique classes in H , and ‖ Hβ − μt ‖2

2 is
the distance from Hβ to the mean μt of class t ,

arg min
β

‖ y − Hβ ‖2
2 +

Nclasses∑

t=1

‖ Hβ − μt ‖2
2 s.t.

∑

i

βi = 1 and βi ≥ 0

(15.29)
In our work, we associate these distance measures with probabilities. Specifically,

we assume that y satisfies a linear model as y = Hβ + ζ with observation noise
ζ ∼ N (0, R). This allows us to represent the distance between y and Hβ using the
term p(y|β)

p(y|β) ∝ exp(−1/2(y − Hβ)T R−1(y − Hβ)) (15.30)

1 Note that the Gaussian means we refer to in this work are built from the original training data, not
the projected Hβ features.

478 T. N. Sainath et al.

which we will refer to as the exemplar-based term.
We also explore a probabilistic representation for the

∑Nclasses
t=1 ‖ Hβ − μt ‖2

2
term. Specifically, we define the GMM-based term pM (β), by seeing how well our
projection of y onto the convex hull of H , as represented by Hβ, is explained by
each of the Nclasses GMM models. We score Hβ against the GMM from each of
the classes and sum the scores (in log-space) from all classes. This is given more
formally as (log-space)

log pM (β) =
Nclasses∑

t=1

log p(Hβ|G M Mt) (15.31)

where p(Hβ|G M Mt) indicates the score from GMM t . Given the exemplar-based
term p(y|β) and GMM-based term pM (β), the total objective function we would
like to maximize is given in the log-space by

max
β

F(β) = {log p(y|β) + log pM (β)} s.t.
∑

i

βi = 1 and βi ≥ 0

(15.32)
Equation (15.32) can be solved using a variety of optimization methods. We use

a technique widely employed in speech recognition, namely the Extended Baum-
Welch transformations (EBW) [24], to solve this problem. In [37], it is shown that
EBW optimization technique can be used to maximize objective functions which
are differentiable and satisfy constraints given in (15.32) (see also Sect. 15.2.3 and
the recursion (15.8)). In [8], we provide a closed-form solution for β i

k given the
exemplar-based term (15.30) and a GMM-based term (15.31).

The parameter D in (15.8) controls the growth of the objective function. We
explore setting D to a small value to ensure a large jump in the objective function.
However, for a specific choice of D if we see that the objective function value has
decreased when estimating βk , i.e. F(βk) < F(βk−1), or one of the βk

i components
is negative, then we double the value of D and use this to estimate a new value of βk

in (15.8). We continue to increase the value of D until we guarantee a growth in the
objective function, and all βi components are positive. This strategy of setting D is
similar to other applications in speech where the EBW transformations are used [38].
The process of iteratively estimating β continues until there is very little change in
the objective function value.

15.5.2 Convex Hull Classification Rule

Because we are trying to solve for β which maximizes the objective function (15.32),
it seems natural to also explore a classification rule which defines the best class as
that which maximizes this objective function. Using (15.32) with the exemplar-
based term (15.30) and the GMM-based term (15.31), the objective-function linked

15 Sparse Representations for Speech Recognition 479

classification rule for the best class t∗ is given by

t∗ = max
t

{log p(y|δt (β)) + log p(Hδt (β)|G M Mt)} (15.33)

where δt (β) is a vector which is only non-zero for entries of β corresponding
to class t .

15.5.3 Experiments

We compare the performance of our SR-CH method to other standard classifiers used
on the TIMIT task, including the GMM, SVM, kNN and ABCS sparse representation
methods. For the GMM, we explored training it via a maximum likelihood objective
function, and a discriminative BMMI objective function [38]. The parameters of each
classifier were optimized for each feature set on the development set. We compare
SR-CH to this method. Note that for the ABCS classification rule, the best class is
defined as that which has the maximum l2 norm of β entries.

Algorithmic Behavior

As discussed in Sect. 15.5.1, for an appropriate choice of D, the objective function
of the SR-CH method is guaranteed to increase on each iteration. To observe this
behavior experimentally on TIMIT, we chose a random test phone segment y, and
solve y = Hβ using the SR-CH algorithm. Figure 15.7 plots the value of the objective
function at each iteration. Notice that the objective function increases rapidly until
about iteration 30 and then increases slower, experimentally confirming growth.

We also analyze the sparsity behavior for the SR-CH method. For a randomly
chosen test segment y, Fig. 15.7 plots the sparsity level (defined as the number of

10 20 30 40 50 60 70 80 90 100
−11

−10.5

−10

−9.5

−9

−8.5

−8

Iterations

O
bj

ec
tiv

e
Fu

nc
tio

n

10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

180

200

Iterations

Sp
ar

si
ty

 L
ev

el

Fig. 15.7 Left Iterations versus objective function. Right Iterations versus sparsity

480 T. N. Sainath et al.

Table 15.4 Accuracy of
sparse representation methods

Method Accuracy

SR-CH (exemplar-only) 83.86
ABCS (exemplar-only) 78.16

non-zero β coefficients), for each iteration of the SR-CH algorithm. Notice that as the
number of iterations increases, the sparsity level continues to decrease and eventually
approaches 20. Our intuitive feeling is that the normalization and positive constraints
on β in the convex hull formulation allow for this sparse solution. Recall that all β

coefficients are positive and the sum of the β coefficients is small (i.e.,
∑

i βi = 1).
Given that the initial β values are chosen to be uniform, and the fact we seek to find
a β to maximize (15.32), then naturally only a few β elements will dominate and
most β values would evolve to be close to zero.

Comparison with ABCS

To explore the constraints on β in the CH framework, we compare SR-CH to ABCS,
an SR method which puts no positive and normalization constraints on β. To fairly
analyze the different β constraints in the SR-CH and ABCS methods, we compare
both methods only using the exemplar terms, since the GMM-based terms for the
two are different. Table 15.4 shows that SR-CH method offers improvements over
ABCS on the fBMMI feature set, experimentally demonstrating that constraining β

values to be positive and normalized, and not allowing data in H to be reflected and
shifted, allows for improved classification accuracy.

GMM-Based Term

In this section we analyze the behavior of SR-CH when using the exemplar-term only
versus including the additional model-based term given in (15.31). Table 15.5 shows
the classification accuracy on the development set with the fBMMI features. Notice
that including the additional Hβ GMM modeling term over the exemplar-based term
offers a slight improvement in classification accuracy, demonstrating that including
the GMM term allows for a slightly better classifier.

Table 15.5 SR-CH accuracy,
TIMIT development set

SR-CH GMM-based term Accuracy

Exemplar term only 83.86
Exemplar term+ Hβ GMM term 84.00

15 Sparse Representations for Speech Recognition 481

Table 15.6 Classification
accuracy, TIMIT core test set

Method Accuracy Accuracy
fBMMI SA+fBMMI

SR-CH (Ex. + GMM) 82.87 85.14
ABCS (Ex. + GMM) 81.37 83.22

kNN 81.30 83.56
GMM—BMMI trained 80.82 82.84

SVM 80.79 82.62
GMM—ML trained 79.75 82.02

Comparison with Other Techniques

Table 15.6 compares the classification accuracy of the SR-CH method on the TIMIT
core test set to other common classification methods. Note that for ABCS, the best
numbers for this method, which include the exemplar and GMM-based terms, are
reported. Results are provided for the fBMMI and SA+fBMMI feature sets. Notice
that SR-CH outperforms the GMM, kNN and SVM classifiers. In addition, enforcing
β to be positive allows for improvements over ABCS. A McNemar’s Significance
Test indicates that the SR-CH result is statistically significant from other classifiers
with a 95 % confidence level. The classification accuracy of 82.87 % achieved in [8]
was in 2011 the best number on the TIMIT phone classification task reported when
discriminative features are used, beating the previous best single-classifier number
of 82.3 % reported in [39]. Finally, when using SA + fBMMI features, the SR-CH
method achieves an accuracy of over 85 %.

Accuracy Versus Size of Dictionary

One disadvantage of many exemplar-based methods is that as the number of training
exemplars used to make a classification decision increases, the accuracy deteriorates
significantly. For example, in the kNN method, this implies that the number of training
examples from each class used during voting increases. Similarly, for SR methods,
this is equivalent to the size of H growing. Parametric-based classification approaches
such as GMMs do not suffer from a degradation in performance for increased training
data size.

Figure 15.8 shows the classification error versus number of training-exemplars
(i.e. size of H) for different classification methods. Note that the GMM method is
trained with all of the training data, and is just shown here as a reference. In addition,
since the feature vectors in H have dimension 120, and for our SR methods we
assume H is over-complete, we only report results on SR methods when the number
of examples in H is larger than 120.

First, observe that the error rates for the two purely exemplar-based methods,
namely kNN and ABCS with no model term, increase exponentially as the size of
H grows. However, the SR-CH exemplar-only methodology is much more robust

482 T. N. Sainath et al.

Fig. 15.8 Classification error
vs. size of H

100 101 102 103

0.2

0.25

0.3

0.35

0.4

0.45

Size of H (log)

C
la

ss
ifi

ca
tio

n
Er

ro
r

kNN
ABCS−Exemplar Term
ABCS−Exemplar+Model Term
SR−CH, Exemplar Term
SR−CH, Exemplar+Hβ GMM Terms
GMM

with respect to increased size of H , demonstrating the value of the convex hull
regularization constraints. Including the extra GMM term into the SR-CH method
improves the accuracy slightly. However, the SR-CH method still performs poorly
compared to the ABCS technique which uses the GMM-based term. One explanation
for this behavior is that GMM term for ABCS is capturing the probability of the data
y given the GMM model, and thus the accuracy of the ABCS method eventually
approaches the GMM accuracy. However, in SR-CH we capture the probability of
Hβ given the GMM. This is one drawback of SR-CH compared to ABCS for large
H that we hope to address in the future.

15.6 Sparse Representation Features

In this section, we explore the use of a sparse representation exemplar-based tech-
nique [14] to create a new set of features while utilizing the benefits of HMMs to
efficiently compare scores across frames. This is in contrast to previous exemplar-
based methods which try to utilize the decision scores from the exemplar-based
classifiers themselves to generate probabilities ([1, 2]). In our SR approach, given
a test vector y and a set of exemplars hi from the training set, which we put into a
dictionary H = [h1; h2 . . . ; hn], we represent y as a linear combination of training
examples by solving y = Hβ subject to a spareness constraint on β. The feature
Hβ can be thought of as mapping test sample y back into the linear span of training
examples in H . We will show that the frame classification accuracy is higher for the
SR method2 compared to a GMM, showing that not only does the Hβ representa-
tion move test features closer to training, but also moves these features closer to the

2 Using SRs to compute accuracy is described in [14].

15 Sparse Representations for Speech Recognition 483

correct class. Given these new set of Hβ features, we train up an HMM on these
features and perform recognition.

A speech signal is defined by a series of feature vectors, Y = {y1, y2 . . . yn},
for example Mel-Scale Frequency Cepstral Coefficients (MFCCs). For every test
sample yt ∈ Y , we choose an appropriate Ht and then solve yt = Htβ t to compute
a β t via ABCS. Then given this β t , a corresponding Htβ t vector is formed. Thus a
series of Hβ vectors is created at each frame as {H1β1, H2β2 . . . Hnβn}. The sparse
representation features are created for both training and test. An HMM is then trained
given this new set of features and recognition is performed in this new feature space.

15.6.1 Measure of Quality

We can measure how well y assigns itself to different classes in H by looking at the
residual error between y and the Hβ entries corresponding to a specific class [6].
Ideally, all nonzero entries of β should correspond to the entries in H with the same
class as y and the residual error will be smallest within this class. More specifically,
let us define a selector δi (β) ∈ R

N as a vector whose entries are non-zero except for
entries in β corresponding to class i . We then compute the residual error for class i
as ‖ y − Hδi (β) ‖2. The best class for y will be the class with the smallest residual
error. Mathematically, the best class i∗ is defined as

i∗ = min
i

‖ y − Hδi (β) ‖2 . (15.34)

15.6.2 Choices of Dictionary H

Success on the sparse representation features depends heavily on a good choice of
H . Pooling together all training data from all classes into H will make the columns
of H large (typically millions of frames), and will make solving for β intractable.
Therefore, in this section we discussion various methodologies to select H from a
large sample set. Recall that H is selected for each frame y, and then β is found
using ABCS, in order to create an Hβ feature for each frame.

• Seeding H from Nearest Neighbors: For each y, we find a neighborhood of closest
points to y in the training set. These k neighbors become the entries of H . We refer
the reader to [3] for a discussion on choosing the number of k neighbors for SRs. A
set of Hβ features is created for both training and test, but H is always seeded with
data from training data. To avoid overtraining of Hβ features on the training set,
we require that only when creating Hβ features on training, samples be selected
from training that are of a different speaker than the speaker corresponding to
frame y. While this kNN approach is computationally feasible on small-vocabulary
tasks, using a kNN for large vocabulary tasks can be computationally expensive.

484 T. N. Sainath et al.

To address this, we discuss other choices for seeding H below, tailored to large
vocabulary applications.

• Using a Trigram Language Model: Ideally only a small subset of Gaussians are
typically evaluated at a given frame, and thus training data belonging to this small
subset can be used to seed H . To determine these Gaussians at each frame, we
decode the data using a trigram language model (LM), and find the best aligned
Gaussian at each frame. For each Gaussian, we compute the 4 other closest Gaus-
sians to this Gaussian. Here closeness is defined by finding Gaussian pairs which
have the smallest Euclidean distance between their means. After we find the top
five Gaussians at a specific frame, we seed H with the training data aligning to
these top five Gaussians. Since this still typically amounts to thousands of training
samples in H , we must sample this further. Our method for sampling is discussed
in Sect. 15.6.3. We also compare seeding H using the top 10 Gaussians rather
than top five.

• Using a Unigram Language Model: One problem with using a trigram LM is
that this decode is actually the baseline system we are trying to improve upon.
Therefore, seeding H with frames related to the top aligned Gaussian is essentially
projecting y back down to the same Gaussian which initially identified it. Thus
to increase variability between the Gaussians used to seed H and the best aligned
Gaussian from the trigram LM decode, we explore using a unigram LM to find
the best aligned Gaussian at each frame. Again, given the best aligned Gaussian,
the four closest Gaussians to this are found and data from these five Gaussians is
used to seed H .

• Using no Language Model Information: To further weaken the effect of the LM,
we explore seeding H using only acoustic information. Namely, at each frame we
find the top five scoring Gaussians. H is seeded with training data aligning to these
Gaussians.

• Enforcing Unique Phonemes: Another problem with seeding H by finding the
five closest Gaussians relative to the best aligned Gaussian is that all of these
Gaussians could come from the same phoneme (i.e. phoneme “AA"). Therefore,
we explore finding the five closest Gaussians relative to the best aligned such that
the phoneme identities of these Gaussians are unique (i.e. “AA", “AE", “AW",
etc.). H is then seeded by from frames aligning to these five Gaussians.

• Using Gaussian Means: The above approaches of seeding H use actual exam-
ples from the training set, which is computationally expensive. To address this,
we investigate seeding H from Gaussian means. Namely, at each frame we use
a trigram LM to find the best aligned Gaussian. Then we find the 499 closest
Gaussians to this top Gaussian, and use the means from these 500 Gaussians
to seed H .

15 Sparse Representations for Speech Recognition 485

15.6.3 Choice of Sampling

As discussed above, if we seed H using all training data belonging to specific Gaus-
sians, this amounts to thousands of training examples in H . We explore two different
approaches to sampling a subset of this data for seeding H .

• Random Sampling: For each gausssian we want to select training data from, we
explore randomly sampling N training examples from the total set of training
frames that aligned to this Gaussian. This process is repeated for each of the
closest five Gaussians. We reduce the size of N as the “closeness” decreases. For
example, for the closest 5 Gaussians, the number of data points N chosen from
each Gaussian is 200, 100, 100, 50 and 50 respectively.

• Sampling Based on Cosine Similarity: While random sampling offers a relatively
quick approach to select a subset of training examples, it does not guarantee that
we select “good examples” from this Gaussian which actually are close to frame y.
Alternatively, we explore splitting training points aligning to a Gaussian as being
1σ , 2σ , etc. away from the mean of the Gaussian. Here σ is chosen to be the total
number of training points aligned to this Gaussian, divided by number of samples
N we want to sample from this Gaussian. Then within each σ set, we find the
training point which has the closest cosine similarity to the test point y. This is
repeated for all 1σ , 2σ , etc. values. Again the number of samples taken from each
Gaussian reduces as “closeness” decreases.

15.6.4 Experiments

The small vocabulary recognition experiments in this paper are conducted on the
TIMIT phonetic corpus [16]. Similar to [40], acoustic models are trained on the
training set, and results are reported on the core test set. The initial acoustic features
are 13-dimensional MFCC features. The large vocabulary experiments are conducted
on an English broadcast news transcription task [17]. The acoustic model is trained
on 50 h of data from the 1996 and 1997 English Broadcast News Speech Corpora.
Results are reported on 3 h of the EARS Dev-04f set. The initial acoustic features
are 19-dimensional PLP features.

Both small and large vocabulary experiments utilize the following recipe for
training acoustic models [40]. First, a set of CI HMMs are trained, either using
information from the phonetic transcription (TIMIT) or from flat-start (broadcast
news). The CI models are then used to bootstrap the training of a set of CD triphone
models. In this step, at each frame, a series of consecutive frames surrounding this
frame are joined together and a Linear Discriminative Analysis (LDA) transform is
applied to project the feature vector down to 40 dimensions. Next, vocal tract length
normalization (VTLN) and feature space Maximum Likelihood Linear Regression
(fMLLR) are used to map the features into a canonical speaker space. Then, a set of
discriminatively trained features and models are created using the boosted Maximum

486 T. N. Sainath et al.

Mutual Information (BMMI) criterion. Finally, the set of models is adapted using
MLLR.

We create a set of Hβ features from a set of fBMMI features. We choose this
level as these features offer the highest frame accuracy relative to LDA, VTLN, or
fMLLR features, allowing us to further improve on the accuracy with with the Hβ

features. A set of Hβ features are created at each frame from the fBMMI features
for both training and test. A new ML HMM is trained up from these new features
and used for both training and test. Since Hβ features create a linear combination of
the discriminatively trained fBMMI features, we argue that some discrimination can
be lost. Therefore, we explore applying another fBMMI transformation to the Hβ

features before applying model space discriminative training and MLLR.
In what follows we present results using Hβ features on both small and large

vocabulary tasks.

15.6.5 Sparsity Analysis

We first analyze the β coefficients obtained by solving y = Hβ using ABCS [3]. For
two randomly selected frames y, Fig. 15.9 shows the β coefficients corresponding
to 200 entries in H for TIMIT and 500 entries for Broadcast News. Notice that for
both datasets, the β entries are quite sparse, illustrating that only a few samples in
H are used to characterize y. As [6] discusses, this sparsity can be thought of as
a form of discrimination, as certain examples are selected as “good” in H while
jointly assigning zero weights “bad” examples in H . We have seen advantages of the

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4
Beta Values, TIMIT

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.2

0

0.2

0.4

Entries in H

β
V

al
ue

s

Beta Values, Broadcast News

Fig. 15.9 β coefficients on TIMIT and broadcast news

15 Sparse Representations for Speech Recognition 487

Table 15.7 Frame accuracy
on TIMIT testcore set

Classifier frame Accuracy

GMM 70.4
Sparse representations 71.7

SR approach for classification, even on top of discriminatively trained y features,
compared to a GMM [3]. We will also re-confirm this behavior in Sect. 15.6.6. The
extra benefit of SRs on top of discriminatively trained fBMMI features, coupled
with an exemplar-based nature of SRs, motivates us to further explore its behavior
for recognition tasks.

15.6.6 TIMIT Results

Frame Accuracy

The success of Hβ first relies on the fact that the β vectors give large support to
correct classes and small support to incorrect classes (as demonstrated by Fig. 15.9)
when computing y = Hβ at each frame. Thus, the classification accuracy per frame,
computed using (15.34), should ideally be high. Table 15.7 shows the frame accuracy
for the GMM and SR methods.

Notice that the SR technique offers significant improvements over the GMM
method, again confirming the benefit of exemplar-based classifiers.

Error Rate for Hβ Features

Table 15.8 shows the recognition performance of Hβ features on TIMIT. Due to
the small vocabulary nature of TIMIT, we only explore seeding H from nearest
neighbors. Notice that creating a set of Hβ features in the fBMMI space offers a
0.7 % absolute improvement in PER. Given the small vocabulary nature of TIMIT,
no gain was found applying another fBMMI transform to the baseline or Hβ features.
After applying BMMI and MLLR to both feature sets, the Hβ features offer a 0.5 %
improvement in PER over the baseline system. This shows that using exemplar-based
SRs to produce Hβ features not only moves test features closer to training, but also
moves the feature vectors closer to the correct class, resulting in a decrease in PER.

Table 15.8 WER on TIMIT Baseline system PER Hβ System PER

fBMMI 19.9 Hβ 19.2
+BMMI +MLLR 19.5 +BMMI +MLLR 19.0

488 T. N. Sainath et al.

15.6.7 Broadcast News Results

Selection of H

Table 15.9 shows the WER for the Hβ features for different H choices discussed in
Sect. 15.6.2. Note that the baseline fMMI system as a WER of 21.1 %. The following
can be observed:

• There is little difference in WER when sampling is done randomly or using cosine
similarity. For speed efficiencies, we use random sampling for H selection methods.

• There is little difference between using 5 and 10 Gaussians.
• Seeding H using nearest neighbors is worse than using the trigram LM. On broad-

cast news, we find that a kNN has lower frame-accuracy than a GMM, a result
similarly observed in the literature for large vocabulary corpora [1]. This lower
frame accuracy translates into a higher WER when H is seeded with nearest neigh-
bors.

• Seeding H from unique Gaussians provides too much variability of phoneme
classes into the Hβ feature, also leading to a higher WER.

• Using a unigram LM to reduce the link between the Gaussians used to seed H and
the best aligned Gaussian from the trigram LM decode offers a slight improvement
in WER over the trigram LM.

• Utilizing no LM information results in a very high WER.
• Using Gaussian means to seed H reduces the computation to create Hβ without

a large increase in WER.

WER for Hβ Features

Table 15.10 shows the performance of Hβ features on the Broadcast News task.
Creating a set of Hβ features at the fBMMI space offers a WER of 21.1 % which
is comparable to the baseline system. However, after applying an fBMMI transform
to the Hβ features we achieve a WER of 20.2 %, a 0.2 % absolute improvement
when another fBMMI transform is applied to the original fBMMI features. Finally,

Table 15.9 WER of Hβ

features for different H
H selection method WER

Trigram LM, random sampling, top 5 Gaussians 21.2
Trigram LM, cosine similarity sampling, top 5 Gaussians 21.3
Trigram LM, top 10 Gaussians 21.3
Nearest neighbor, 500 21.4
Trigram LM, 5 unique Gaussians 21.6
Unigram LM, top 5 Gaussians 21.1
No LM information, top 5 Gaussians 22.7
Gaussian means, top 500 Gaussians 21.4

15 Sparse Representations for Speech Recognition 489

Table 15.10 WER on
broadcast news

Baseline system WER Hβ system WER

fBMMI 21.1 Hβ 21.1
+fBMMI 20.4 +fBMMI 20.2
+BMMI +MLLR 19.0 +BMMI +MLLR 18.7

after applying BMMI and MLLR to both feature sets, the Hβ features offer a WER
of 18.7 %, a 0.3 % absolute improvement in WER over the baseline system. This
demonstrates again that using information about actual training examples to produce
a set of features which are mapped closer to training and have a higher frame accuracy
than GMMs improves accuracy for large vocabulary as well.

15.7 SR Phone Identification Features (Spi f)

In this section, we review the use of SR for classification and use this framework to
create our Spi f features. Let us, first, describe how we can use β to create a set of
Spi f vectors. First, define matrix Hphnid = [p1,1, p1,2, . . . , pw,nw] ∈ R

r×N , which
has the same number of columns N as the original H , but a different number of
rows r . Recall that each xi, j ∈ H has a corresponding class label i . We define each
pi, j ∈ Hphnid corresponding to feature vector xi, j ∈ H to be a vector with zeros
everywhere except at the index i corresponding to class of xi, j . Figure 15.10 shows
the Hphnid corresponding to H , where each pi, j becomes a phone identification
vector with a value of 1 corresponding to the class of xi. j . Here r , the dimension of
each pi, j , is equivalent to the total number of classes.

Once β is found by solving y = Hβ, we use this same β to select important classes
within the new dictionary Hphnid . Specifically, let us define a new feature vector Spi f ,
as Spi f = Hphnidβ2, where each element of β is squared, i.e., β2 = {β2

i }. Notice
that we are using β2, as this is similar to the ‖ δi (β) ‖2 classification rule given by
(15.34). Each row i of the Spi f vector roughly represents the l2 norm of β entries for
class i .

A speech signal is defined by a series of feature vectors, Y = {y1, y2 . . . yn}, for
example Mel-Scale Frequency Cepstral Coefficients (MFCCs). For every test sample
yt ∈ Y , we solve yt = Htβ t to compute a β t . Then given this β t , a corresponding

0.2

0.5

0.3

0.6 0.1

0.7
0

0

01 1

1H= Hphnid =

x x x
p p p

c=1c=0 c=2

0.1

0.1

0,1 0,2 1,1
x

2,1

c=0

0,1 0,2 1,1

p
2,1

0

0

0 1

0

0

Fig. 15.10 Hphnid corresponding to H

490 T. N. Sainath et al.

St
pi f vector is formed. Since β t at each sample represents a weighting of entries in

Ht that best represent test vector yt , this makes it difficult to compare β t values and
the St

pi f vectors across frames. Therefore, to ensure that the values can be compared

across samples, the St
pi f vectors are normalized at each sample. Thus, the new S̄t

pi f

at sample t is computed as S̄t
pi f = St

pi f

‖St
pi f ‖1

. A series of Spi f vectors is created as

{S̄1
pi f , S̄2

pi f . . . S̄n
pi f }, and are used for recognition.

15.7.1 Construction of Dictionary H

Success of SRs depends on a good choice of H . In [14], various methods for seeding
H from a large sample set were explored. Below we summarize the main techniques
used in this work to select H .

Seeding H from Nearest Neighbors

For each y, we find a neighborhood of closest points to y from all examples in the
training set. These k neighbors become the entries of H . While this approach works
well on small-vocabulary tasks, it is computationally expensive for large data sets.

Using a Language Model

In speech recognition, when an utterance is scored using a set of HMMs (which have
output distributions given by Gaussians), typically evaluating only a small subset of
these Gaussians at a given frame allows for a large improvement in speed without
a reduction in accuracy [41]. Using this fact, we use training data belonging to a
small subset of Gaussians to seed H . To determine these Gaussians at each frame,
we decode the data using a language model (LM), and find the best aligned Gaussian
at each frame. For each Gaussian, we compute the four other closest Gaussians to
this Gaussian. After we find the top five Gaussians at a specific frame, we seed H
with the training data aligning to these top five Gaussians. We explore using both a
trigram and unigram LMs to obtain the top Gaussians.

Using a Lattice

Seeding H as suggested above is similar to finding the best H at the frame level. How-
ever, the goal of speech recognition is to recognize words, and therefore we explore
seeding H using information related to competing word hypotheses. Specifically, we
create a lattice of competing word hypotheses and obtain the top Gaussians at each

15 Sparse Representations for Speech Recognition 491

frame from the Gaussian alignments of the lattice. Gaussians to the best Gaussian
are found and data from these five Gaussians is used to seed H .

15.7.2 Reducing Sharpness Estimation Error

As described in Sect. 15.7.1, for computational efficiency, Spi f features are created
by first pre-selecting a small amount of data for dictionary H . This implies that only
a few classes are present in H and only a few Spi f posteriors are non-zero, something
we will define as feature sharpness. Feature sharpness by itself is advantageous—for
example if we were able to correctly predict the right class at each frame and capture
this in Spi f the WER would be close to zero. However, because we are limited by
the amount of data that can be used to seed H , incorrect classes may have their
probabilities boosted over correct classes, something we will refer to as sharpness
estimation error. In this section, we explore various techniques to smooth out the
sharp Spi f features and reduce estimation error.

Choice of Class Identification

The Spi f vectors are defined based on the class labels in H . We explore two choice
of class labels in this paper. First, we explore using monophone class labels. Second,
we investigate labeling classes in H by a set of context independent (CI) triphones.
While using triphones increases the dimension of the Spi f vector, the elements in the
vector are less sharp now since β values for a specific monophone are more likely to
be distributed within the three different triphones of this monophone.

Posterior Combination

Another technique to reduce feature sharpness is to combine Spi f posteriors with
posteriors coming from an HMM system, a technique which is often explored when
posteriors are created using Neural Nets [17]. Specifically, let us define h j (yt) as the
output distribution for observation yt and state j of an HMM system. In addition,
define S j

pi f (yt) as the Spi f posterior corresponding to state j . Note that the number
of Spi f posteriors could be less than the number of HMM states, so the same Spi f

posterior could map to multiple HMM states. For example, the Spi f posterior corre-
sponding to phone “aa” could map to HMM states “aa-b-0”, “aa-m-0”, etc. Given the
HMM and Spi f posteriors, the final output distribution b j (yt) is given by Eq. 15.35,
where λ is a weight on the Spi f posterior stream, selected on a held-out set.

b j (yt) = h j (yt) + λS j
pi f (yt) (15.35)

492 T. N. Sainath et al.

Spi f Feature Combination

As we will show in Sect. 15.7.5, Spi f features created using different methodologies
to select H offer complementary information. For example, Spi f features created
when H is seeded with a lattice have higher frame accuracy and incorporate more
sequence information than when H is seeded using a unigram or trigram LM. How-
ever, Spi f features created from lattice information are much sharper compared to
features created with a uni/trigram LM. Thus, we explore combining different Spi f

features. If we denote Stri
pi f , Suni

pi f and Slat
pi f as being created from the three different

H selection methodologies, we combine these features to produce a new Scomb
pi f fea-

ture as given by Eq. 15.36. Weights {α, β, γ } are chosen on a held-out set with the
constraint that α + β + γ = 1.

Scomb
pi f = αStri

pi f + βSuni
pi f + γ Slat

pi f (15.36)

15.7.3 Experiments

The small vocabulary recognition experiments are conducted on TIMIT [16]. Similar
to [14], acoustic models are trained on the training set, and results are reported on
the core test set. The initial acoustic features are 13-dimensional MFCC features.
The large vocabulary experiments are conducted on an English broadcast news tran-
scription task [17]. The acoustic model is trained on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora. Results are reported on 3 h of the
EARS Dev-04f set. The initial acoustic features are 19-dimensional PLP features.

Both corpora utilize the following recipe for training. First, a set of CI HMMs are
trained, either using information from the phonetic transcription (TIMIT) or from
flat-start (Broadcast News). The CI models are then used to bootstrap the training
of a set of CD triphone models. In this step, given an initial set of MFCC or PLP
features, a set of LDA features are created. After the features are speaker adapted,
a set of discriminatively trained features and models are created using the boosted
Maximum Mutual Information (BMMI) criterion. Finally, models are adapted via
MLLR.

On TIMIT, we explore creating Spi f features from both LDA and fBMMI features,
while for Broadcast news, we only create Spi f features after the fBMMI stage. The
initial LDA/fBMMI features are used for both y and H to solve y = Hβ and crate
Spi f features at each frame. In this work, we explore the ABCS method. Once series
of Spi f vectors are created, an HMM is built on the training features.

15 Sparse Representations for Speech Recognition 493

15.7.4 TIMIT Results

Frame Accuracy

The success of Spi f first relies on the fact that the classification accuracy per frame,
computed using Eq. 15.34, should ideally be high. Table 15.11 shows the classifi-
cation accuracy for the GMM and SR methods,3 for both LDA and fBMMI feature
spaces. Notice that the SR technique offers significant improvements over the GMM
method.

Recognition Results: Class Identification

Table 15.12 shows the phonetic error rate (PER) at the CD level for different class
identification choices. Since only a kNN is used to seed H on TIMIT, we will call the
feature Sknn

pi f . We have also listed results for other CD-ML trained systems reported
in the literature on TIMIT. Notice that smoothing out sharpness error of the Spi f

features by using triphones rather than monophones results in a decrease in error
rate. The Spi f -triphone features outperform the LDA features and also offer the best
result of all methods on TIMIT at the CD level for ML trained systems.

We further explore Spi f features created after the fBMMI stage. Table 15.13 shows
that the performance is now worse than the fBMMI system. Because the fBMMI
features are already discriminative in nature and offer good class separability, Spi f

features created in this space are too sharp, explaining the increase in PER.

Recognition Results: Posterior Combination

We explore reducing feature sharpness by combining Spi f posteriors with HMM
posteriors, as shown in Table 15.14. We observe that on TIMIT, combining posteri-
ors from two different feature streams has virtually no impact in recognition accuracy
compared to the baseline fBMMI system, indicating there is little complementarity
between the two systems. Because gains were not observed with posterior combina-
tion, further Spi f feature combination was not explored.

Table 15.11 Frame accuracy
on TIMIT testcore set

Classifier Frame Acc. (LDA) Frame Acc. (fBMMI)

GMM 61.5 70.4
SR 64.0 71.7

3 We have not included the accuracy of the HMM since this takes into account sequence information
which both the GMM and SR methods do not.

494 T. N. Sainath et al.

Table 15.12 PER on TIMIT
core test set—CD ML trained
systems

System PER (%)

Sknn
pi f monophones, IBM CD HMM (this paper) 25.1

Monophone HTMs [42] 24.8
Baseline LDA features, IBM CD HMM 24.5
Heterogeneous measurements [43] 24.4
Sknn

pi f triphones, IBM CD HMM (this paper) 23.8

Table 15.13 PER on TIMIT
core test set—fMMI level

Features PER

Baseline fBMMI features 19.4
Sknn

pi f triphones 20.7

Table 15.14 PER on TIMIT
core test set—posterior
combination

Features PER

Baseline fBMMI Features 19.4
Sknn

pi f , Posterior Combination 19.4

15.7.5 Broadcast News

In this section we explore the Spi f features on Broadcast News.

Recognition Results: Choice of H and Class Identity

Table 15.15 shows the frame accuracy and WER on Broadcast news for different
choice of H and class identity. We also quantify the sharpness estimation error
between the different Spi f methods. We define “sharpness” of a Spi f vector by
calculating the entropy from the non-zero probabilities of the feature. The sharper
the Spi f feature, the lower the entropy. A very sharp Spi f feature that emphasizes the
incorrect class for a frame will lead to a classification error. Therefore, we measure
sharpness error by the average entropy of all misclassified Spi f frames. Please note
that sharpness is only measured for monophone Spi f features. Using triphone Spi f

smooths out class probabilities since the feature dimension is increased. However, it
is difficult to quantifiably compare feature sharpness for the monophone and triphone
Spi f features since the correct phone labels and dimensions are of the two features
are different.

First, notice the trend between frame accuracy and entropy in Table 15.15. Suni
pi f

features have a low frame accuracy and hence a low WER. While Slat
pi f features

have a very high frame accuracy, they have a higher entropy on misclassified frames
compared to Stri

pi f and Suni
pi f , and hence have a high WER. Stri

pi f features created from
a trigram LM offer the best tradeoff between feature sharpness and accuracy, and
achieve a WER close to the baseline. However, if feature sharpness is reduced by

15 Sparse Representations for Speech Recognition 495

Table 15.15 WER on
broadcast news, class
identification

Features Frame Acc. Spi f Entropy WER
Error Frames

Baseline fBMMI, – – 19.4
ML training

Stri
pi f monophones 70.3 2.27 19.5

Suni
pi f monophones 68.3 2.23 29.0

Slat
pi f monophones 77.2 0.86 21.6

Stri
pi f triphones – – 19.8

using triphone Stri
pi f features, we see now on a word recognition task that the WER

increases slightly.

Oracle Results of Reducing Estimation Error

We motivate the need for reducing sharpness error, with the following oracle experi-
ment. Given the Stri

pi f -monophone features, x % of the frames which are misclassified
are corrected to have a probability of 1 at the correct phone index and 0 elsewhere.
Table 15.16 shows the results when 1 %, 3 %, and 5 % of the misclassified Spi f fea-
tures are corrected. Notice that just by correcting a small % of misclassified features,
the WER reduces significantly. This motivates us to explore different techniques to
reduce Spi f sharpness in the next section.

Recognition Results: Posterior and Spi f Combination

In this section, we explore reducing sharpness through posterior and Spi f combi-
nation. Table 15.17 shows the baseline results for the fBMMI and Spi f -monphone
features at 18.7 % and 19.5 % respectively. The frame accuracies and entropies of
misclassified frames for various Spi f combination features are also listed. Note that
the frame accuracy is only reported on the Spi f feature and does not include frame
accuracy after posterior combination.

First, notice that through posterior combination, we reduce the WER by 0.5 %
absolute from 18.7 % to 18.2 %, showing the complementarity between the fBMMI
and Spi f feature spaces. Second, by doing additional Spi f feature combination, we

Table 15.16 WER on
broadcast news, oracle results

Features Frame accuracy WER

Stri
pi f 0 % cheating 70.3 19.5

Stri
pi f 1 % cheating 71.4 19.4

Stri
pi f 3 % cheating 73.7 18.8

Stri
pi f 5 % cheating 76.1 17.6

496 T. N. Sainath et al.

Table 15.17 WER on
broadcast news, posterior and
Spi f combination

Features Frame Acc. Spi f Ent. WER

Baseline fBMMI features, – – 18.7
BMMI training + MLLR
Stri

pi f monophones 70.3 2.27 19.5
Stri

pi f , posterior combination 70.3 2.27 18.2
αStri

pi f + βSuni
pi f + γ Slat

pi f , 76.3 2.29 17.8
posterior combination

are able to increase the frame accuracy from 70.3 % to 76.3 %, without a reduction
in Spi f entropy as it increases slightly from 2.27 to 2.29. This results in a further
decrease in WER of 0.4 % absolute from 18.2 % to 17.8 %, indicating the importance
of reducing feature sharpness, particularly for misclassified Spi f frames.

15.8 Enhancing Exemplar-Based Posteriors for Speech
Recognition Tasks

When errors occur in exemplar modeling, this results in wrong classes having their
probabilities over-emphasized, something we will refer to as feature or posterior
sharpness. In general, it can be argued that a more desired methodology for enhancing
the posteriors is the one that simultaneously improves the frame accuracy and reduces
the erratic sharpness across the frames. Given that through a NN transformation we
have enhanced the posteriors by improving the frame error rate, we explore a new
technique to smooth the posteriors. Specifically, we explore a technique similar to
the tied mixture approach [20] where new posteriors are modeled as a tied mixture
of the NN posteriors. Specifically, given feature ot and a set of NN posterior scores
p(si |ot) for all classes i ∈ L , we can estimate the posterior for state s j as given by

p(s j |ot) =
L∑

i=1

p(si |ot)p(s j |ot , si) (15.37)

As in the tied mixture approach [20], a tying is invoked such that the term p(s j |ot , si)

for a given i is independent of ot , which reduces (15.37) to

p(s j |ot) =
L∑

i=1

p(si |ot)p(s j |si) (15.38)

where p(s j |si) is a set of mixing coefficients. Mixing NN posteriors from different
classes helps to smooth over sharp posterior distributions [20].

15 Sparse Representations for Speech Recognition 497

In this section we look to learn a set of mixing coefficients p(s j |si) to mix state
based posteriors from different states. More formally, we will refer to the N N − Spi f

posteriors p(si |ot) as a. If we assume there are L states, then the posterior probability
at (l) at time t for state l satisfies the following properties:

at (l) ≥ 0 and
L∑

l=1

at (l) = 1 (15.39)

Given state l and a set of k = {1, . . . , L} NN posteriors for this state l, we define a
mixing coefficient p(s j |si) as b(l, k), which satisfies the following properties:

b(l, k) ≥ 0 and
L∑

k=1

b(l, k) = 1 (15.40)

Our objective is to learn a set of mixing coefficients b(l, k) via maximum likelihood.
In this paper, we explore maximizing an objective function which linearly interpolates
the original posteriors a, similar to the tied mixture approach [20]. Specifically,
consider all frames aligned to a state l from t = 1 to Tl . We can define the mixed
posterior for a specific frame t as

ct (l) =
L∑

k=1

b(l, k)at (k) (15.41)

It is easy to see that ct (l) satisfies (15.40) and is a posterior. The objective function
of this posterior across all frames in the training data aligned to state l is given by

fl(b) =
Tl∏

t=1

ct (l) =
Tl∏

t=1

(

L∑

k=1

b(l, k)at (k)) (15.42)

Because (15.42) is a polynomial with positive coefficients, the Baum-Welch update
equation can be used to iteratively solve for b(l, k) which maximizes the above
objective function. The recursive update equation for b(l, k) is given by

b(l, k) := b(l, k)∇b(l,k) fl(b)
∑L

j=1 b(l, j)∇b(l, j) fl(b)
(15.43)

Here the gradient of the objective function fl(b) is

∇b(l,k) fl(b) =
Tl∑

t=1

fl(b)
at (k)

∑L
i=1 b(l, i)at (i)

(15.44)

498 T. N. Sainath et al.

0 1000 2000 3000
0

0.2

0.4

0.6

0.8
l=100

0 1000 2000 3000
0

0.2

0.4

0.6

0.8
l=500

0 1000 2000 3000
0

0.1

0.2

0.3

0.4
l=1000

0 1000 2000 3000
0

0.05

0.1

0.15

0.2
l=1500

k=states

b(
l,k

)

Fig. 15.11 Mixing coefficient examples

Substituting the gradient (15.44) into the update formula (15.43) yields the following
update for b(l, k)

b(l, k) := 1

Tl

Tl∑

t=1

b(l, k)at (k)
∑L

i=1 b(l, i)at (i)
(15.45)

This equation shows that the mixing coefficients b(l, k) learned for state l effectively
take a linearly weighted average of posterior coefficients a over all training frames
aligned to state l.

Note that (15.45) assumes an initial value of b(l, k). We assume that the initial
b(l, k) is uniformly distributed as 1/L where L is the number of states. b(l, k) is
iteratively updated using (15.45) until the change in the objective function value
between iterations is below a specified threshold.

Once b(l, k) is learned, given state l, and the N N − Spi f posteriors (denoted by
a), a new posterior for state l is computed by taking a weighted average of the NN
posteriors and mixing coefficients. This new posterior, denoted by N N − Spi f −
Post (l) for state l is given by

N N − Spi f − Post (l) =
L∑

k=1

b(l, k)at (k) (15.46)

Figure 15.11 plots the mixing coefficients b(l, k) for states l = 100, 500, 1, 000,
and 1, 500. We can observe that for all states, the non-zero mixing coefficients are
clustered together, and thus come from context-dependent states which are similar
to each other, for example states which map to the same monophone.

15 Sparse Representations for Speech Recognition 499

15.8.1 Results

The following experiments were conducted as described in Sect. 15.7.3.

Using Spi f Features As Output Probabilities

First, we explore the performance of Spi f posteriors when used as output probabilities
directly in an HMM system. Table 15.18 shows that the performance of the Spi f

posteriors is worse than the baseline GMM/HMM system trained on fBMMI features,
illustrating the problem with deriving exemplar-based posterior features which are
not learned through a discriminative process linked to WER. Furthermore, combining
Spi f and GMM posteriors in tandem does not offer improvements over the baseline
GMM/HMM system.

Enhancing Using Neural Networks

Second, we explore the performance of training a NN with Spi f features as input,
and then again using the N N − Spi f probabilities as output probabilities in an HMM
system. Table 15.19 shows that the N N − Spi f features offers a 1.3 % absolute
reduction in WER over using Spi f features alone. This illustrates the importance
of enhancing Spi f posteriors with a NN to create a set of posteriors better aligned
the PER objective in speech. Furthermore, the PER of 19.0 % is better than the
GMM/HMM system trained with fBMMI features [21], as well as a NN trained with
fBMMI features [44]. This demonstrates the benefit of exemplar-based features over
standard speech features (i.e. fBMMI).

Table 15.18 PER on TIMIT
core test set, Spi f features

Features PER

GMM/HMM fBMMI 19.5
Spi f posteriors 20.3
Tandem: Spi f + GMM 19.5

Table 15.19 PER on TIMIT
core test set, NN
enhancement

Features PER

Spi f 20.3
N N − Spi f 19.0
GMM/HMM—fBMMI + 19.4
BMMI + MLLR [21]
NN—fBMMI [44] 19.4

500 T. N. Sainath et al.

Table 15.20 PER on TIMIT
Core Test set, posterior
smoothing

Features PER

N N − Spi f 19.0
N N − Spi f − Post 18.7

Smoothing with Posterior Modeling

Finally, we explore smoothing out N N − Spi f posteriors through tied mixtures as
discussed in this section. Again, mixed posteriors N N − Spi f − Post are used
as output probabilities in an HMM system. Table 15.20 shows that using posterior
modeling, we can obtain a small improvement of 0.3 % absolute over the N N − Spi f

posteriors. illustrating the value of reducing posterior sharpness through tied mixture
smoothing.

Error Analysis

Figure 15.12 shows the breakdown of error rates for the GMM/HMM, N N − Spi f

and N N − Spi f − Post methods within six BPCs, namely vowels/semivowels,
nasals, strong fricatives, weak fricatives, stops and closures/silence. Here the error
rate was calculated by counting the number of insertions, deletions and substitutions
that occur for all phonemes within a particular BPC. The N N − Spi f method offers
improvements over the GMM/HMM system in all classes except nasals and closures.
Furthermore, we can see the gains with the N N − Spi f − Post method are coming
due to better modeling in the vowel, weak fricative and closure classes.

0.1

0.105

0.11
vow/sv

P
E

R

0.017

0.018

0.019
nas

P
E

R

0.01

0.012

0.014
sf

P
E

R

0.0148

0.015

0.0152
wf

P
E

R

0.022

0.0225

0.023
st

GMM/H
MM

NN−S
PIF

NN−S
PIF

 P
ost

P
E

R

0.022

0.024

0.026
clt

GMM/H
MM

NN−S
PIF

NN−S
PIF

 P
ostP

E
R

Fig. 15.12 Error rates within 6 BPCs for various methods

15 Sparse Representations for Speech Recognition 501

References

1. Deselaers T, Heigold G, Ney H (2007) Speech recognition with state-based nearest neighbour
classifiers. In: Proceedings of the interspeech.

2. Gemmeke JF, Virtanen T (2010) Noise robust exemplar-based connected digit recognition. In:
Proceedings of the ICASSP.

3. Sainath TN, Carmi A, Kanevsky D, Ramabhadran B (2010) Bayesian compressive sensing for
phonetic classification. In: Proceedings of the ICASSP.

4. De Wachter M, Demuynck K, Van Compernolle D, Wambacq P (2003) Data driven example
based continuous speech recognition. In: Proceedings of the european conference on speech
communication and technology.

5. Tychonoff A, Arseny V (1977) Solution of ill-posed problems. Winston and Sons, Washington
6. Wright J, Yang A, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse

representation. IEEE Trans Pattern Anal Mach Intell 31: 210–227
7. Carmi A, Gurfil P, Kanevsky D, Ramabhadran B (2009) ABCS: approximate bayesian com-

pressive sensing. Technical Report Human Language Technologies, IBM
8. Sainath TN, Nahamoo D, Kanevsky D, Ramabhadrans B, Shah PM (2011) A convex hull

approach to sparse representations for exemplar-based speech recognition. In: Proceedings of
the ASRU.

9. Sainath T, Ramabhadran B, Olsen P, Kanevsky D, Nahamoo D (2011) A-Functions: a gener-
alization of extended baum-welch transformations to convex optimization. In: Proceedings of
the ICASSP.

10. Kanevsky D, Sainath TN, Ramabhadran B, Nahamoo D (2010) An analysis of sparseness
and regularization in exemplar-based methods for speech classification. In: Proceedings of the
interspeech.

11. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B
(Methodol.) 58(1):267–288

12. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56:2346–
2356

13. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Statist Soc
B 67:301–320

14. Sainath TN, Ramabhadran B, Nahamoo D, Kanevsky D, Sethy A (2010) Exemplar-based sparse
representation features for speech recognition. In: Proceedings of the interspeech.

15. Sainath TN, Nahamoo D, Ramabhadran B, Kanevsky D, Goel V, Shah PM (2011) Exemplar-
based sparse representation phone identification features. In: Proceedings of the ICASSP.

16. Lamel L, Kassel R, Seneff S (1986) Speech database development: design and analysis of the
acoustic-phonetic corpus. In: Proceedings of the DARPA speech recognition, workshop.

17. Kingsbury B (2009) Lattice-based optimization of sequence classification criteria for neural-
network acoustic modeling In: Proceedings of the ICASSP.

18. De Wachter M, Matton M, Demuynck K, Wambacq P, Cools R, Van Compernolle D (2007)
Template based continuous speech recognition. IEEE Trans Audio Speech Lang Process
15(4):1377–1390

19. Sainath TN, Ramabhadran B, Nahamoo D, Kanevsky D, Sethy A (2012) Enhancing exemplar-
based posteriors for speech recognition tasks. In: Proceedings of the interspeech.

20. Bellegarda J, Nahamoo D (1990) Tied mixture continuous parameter modeling for speech
recognition. IEEE Trans Acous Speech Signal Process 38(12):2033–2045

21. Sainath TN, Ramabhadran B, Picheny M, Nahamoo D, Kanevsky D (2011) Exemplar-based
sparse representation features: From TIMIT to LVCSR. IEEE Trans Acous Speech and Signal
Process 19(8):2598–2613

22. Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509

23. Candes EJ (2006) Compressive sampling. Proceedings of the international congress of math-
ematicians, European Mathematical Society, Madrid, Spain

502 T. N. Sainath et al.

24. Gopalakrishnan PS, Kanevsky D, Nahamoo D, Nadas A (1991) An inequality for rational
functions with applications to some statistical estimation problems. IEEE Trans. Information
Theory 37(1): 107–113

25. Povey D (2003) Discriminative training for large vocabulary speech recognition. Ph.D. thesis,
Cambridge University.

26. Sainath T, Ramabhadran B, Olsen P, Kanevsky D, Nahamoo D (2011) Convergence of line
search a-function methods. In: Proceedings of the interspeech.

27. Kanevsky D (2005) Extended baum transformations for general functions, II”, Technical
Report, RC23645(W0506–120). Human Language Technologies, IBM

28. Carmi A, Gurfil P, Kanevsky D Ramabhadran B (2009) Extended compressed sensing: filtering
inspired methods for sparse signal recovery and their nonlinear variants. Technical Report,
RC24785, Human Language Technologies, IBM.

29. Carmi A, Gurfil P, Kanevsky D, Ramabhadran B (2009) ABCS: Approximate bayesian com-
pressed sensing. Technical Report, RC24816, Human Language Technologies, IBM.

30. Carmi A, Gurfil P, Kanevsky D (April 2010) Methods for signal recovering using kalman
filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Trans Signal
Process 58(4):2405–2409

31. Horesh L, Gurfil P, Ramabhadran B, Kanevsky D, Carmi A, Sainath TN (2010) Kalman filtering
for compressed sensing. In: Proceedings of the information fusion, Edinburgh.

32. Ji S, Xue Y, Carin L (June 2008) Bayesian compressive sensing. IEEE Trans Signal Process
56:2346–2356

33. Efron B, Hassie B, Johnstone T, Tibshirani R (2004) Least angle regression. Ann Stat
32(2):407–451

34. Carmi A, Gurfil P (2009) Convex feasibility programming for compressed sensing. Technical
Report, Technion

35. Mount D, Arya S (2006) ANN: A library for approximate nearest neighbor searching. Software
available at http://www.cs.umd.edu/ mount/ANN/

36. Chang C, Lin C (2001) LIBSVM: A library for support vector machines. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

37. Kanevsky D (2004) Extended baum transformations for general functions. In: Proceedings of
the ICASSP.

38. Povey D, Kanevsky D, Kingsbury B, Ramabhadran B, Saon G, Visweswariah K (2008) Boosted
MMI for model and feature space discriminative training. In: Proceedings of the ICASSP.

39. Chang H, Glass J (2007) Hierarchical large-marging gaussian mixture models for phonetic
classification. In: Proceedings of the ASRU.

40. Sainath TN, Ramabhadran B, Picheny M (2009) An exploration of large vocabulary tools for
small vocabulary phonetic recognition. In: Proceedings of the ASRU.

41. Saon G, Zweig G, Kingsbury B, Mangu L, Chaudhari U (2003) An architecture for rapid
decoding of large vocabulary conversational speech. In: Proceedings of the eurospeech.

42. Deng L, Yu D (2007) Use of differential cepstra as acoustic features in hidden trajectory
modeling for phonetic recognition. In: Proceedings of the ICASSP.

43. Halberstat A, Glass J (1998) Heterogeneous measurements and multiple classifiers for speech
recognition. In: Proceedings of the ICSLP.

44. Mohamad A, Sainath TN, Dahl G, Ramabhadrans B, Hinton GE, Picheny M (2011) Deep belief
networks using discriminative features for phone recognition. In: Proceedings of the ICASSP.

http://www.cs.umd.edu/
http://www.csie.ntu.edu.tw/

	15 Sparse Representations for Speech Recognition
	15.1 Introduction
	15.1.1 Chapter Organization

	15.2 Sparse Optimization
	15.2.1 An EBW Compressed Sensing Algorithm
	15.2.2 Line Search A-Functions
	15.2.3 Discrete EBW
	15.2.4 An ABCS Compressed Sensing Algorithm
	15.2.5 Sparseness-Promoting Semi-Gaussian Priors
	15.2.6 Approximate Semi-Gaussian Prior
	15.2.7 ABCS Representations via LSAF

	15.3 An Analysis of Sparseness and Regularization in Exemplar-Based Methods for Speech Classification
	15.3.1 Classification Based on Exemplars
	15.3.2 Exemplar-Based Methods
	15.3.3 Description of TIMIT
	15.3.4 Why Sparse Representations?
	15.3.5 What Type of Regularization?

	15.4 ABCS for Classification
	15.4.1 Nonlinear Compressive Sensing
	15.4.2 Experiments

	15.5 A Convex Hull Approach to Sparse Representations
	15.5.1 Convex Hull Formulation
	15.5.2 Convex Hull Classification Rule
	15.5.3 Experiments

	15.6 Sparse Representation Features
	15.6.1 Measure of Quality
	15.6.2 Choices of Dictionary H
	15.6.3 Choice of Sampling
	15.6.4 Experiments
	15.6.5 Sparsity Analysis
	15.6.6 TIMIT Results
	15.6.7 Broadcast News Results

	15.7 SR Phone Identification Features (Spif)
	15.7.1 Construction of Dictionary H
	15.7.2 Reducing Sharpness Estimation Error
	15.7.3 Experiments
	15.7.4 TIMIT Results
	15.7.5 Broadcast News

	15.8 Enhancing Exemplar-Based Posteriors for Speech Recognition Tasks
	15.8.1 Results

	References

