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Preface

Contemporary signal processing technologies are frequently required to cope with
undersampled, rare, missing or even conflicting measurements. In some cases the
amount of available data can be below a threshold which seemingly inhibits
plausible inference. Often, in such cases, conventional inference methods fall short
of providing reliable solutions. As normally signals of interest can be discerned
into only a few fundamental components in some mathematical domain, dedicated
inference techniques seek to find solutions of the lowest complexity, a concept
which has proved to be extremely useful when dealing with limited data.

This book is aimed at presenting concepts, methods and algorithms able to cope
with undersampled and limited data. One such trend that recently gained popu-
larity and to some extent revolutionised signal processing is compressed sensing.
Compressed sensing builds upon the observation that many signals in nature are
nearly sparse (or compressible, as they are normally referred to) in some domain,
and consequently they can be reconstructed to within high accuracy from far fewer
observations than traditionally held to be necessary.

Apart from compressed sensing this book contains other related approaches.
Each methodology has its own formalities for dealing with such problems. As an
example, in the Bayesian approach, sparseness promoting priors such as Laplace
and Cauchy are normally used for penalising improbable model variables, thus
promoting low complexity solutions. Compressed sensing techniques and ho-
motopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining
sparse solutions using fewer observations than conventionally needed. The book
emphasizes on the role of sparsity as a machinery for promoting low complexity
representations and likewise, its connections to variable selection and dimen-
sionality reduction in various engineering problems.

This book is intended for researchers, academics and practitioners with interest
in various aspects and applications of sparse signal processing.

v



Book Outline

Each chapter in the present book forms a complete self-contained work that can
be read independently of others. The reader who is not acquainted with the
subject matter and in particular with compressed sensing is advised to read at
least the first half of Chap. 1. A brief description of the content of each chapter
is provided below.

• Chapter 1 is a concise exposition to the basic theory of compressed sensing. It
assumes no prior knowledge of the subject and gradually builds the theory while
elaborating on the basic results. The second half of this chapter is mostly
concerned with the application of compressed sensing ideas to dynamic systems
and sparse state estimation.

• Chapter 2 is concerned with the geometrical foundations of compressed sensing.
The geometric point of view adopted by the author not only underlies many of
the initial theoretical developments on which much of the theory of compressed
sensing is built, but has also allowed ideas to be extended to much more general
recovery problems and structures. A unifying framework is that of non-convex,
low-dimensional constraint sets in which the signal to be recovered is assumed
to reside. The sparse signal structure of traditional compressed sensing translates
into a union of low-dimensional subspaces, each subspace being spanned by a
small number of the coordinate axes. The union of subspaces interpretation is
readily generalised and many other recovery problems can be seen to fall into
this setting. For example, instead of vector data, in many problems, data are
more naturally expressed in matrix form (for example a video is often best
represented in a pixel by time matrix). A powerful constraint on matrices are
constraints on the matrix rank. For example, in low-rank matrix recovery, the
goal is to reconstruct a low-rank matrix given only a subset of its entries.
Importantly, low-rank matrices also lie in a union of subspaces structure,
although now, there are infinitely many subspaces (though each of these is finite
dimensional). Many other examples of union of subspaces signal models appear
in applications, including sparse wavelet-tree structures (which form a subset of
the general sparse model) and finite rate of innovations models, where we can
have infinitely many infinite dimensional subspaces. The chapter provides an
introduction to these and related geometrical concepts and shows how they can
be used to (a) develop algorithms to recover signals with given structures and (b)
allow theoretical results that characterise the performance of these algorithmic
approaches.

• Chapter 3 extends the basic theory of compressed sensing to the general case of
exponential-family noise that includes Gaussian noise as a particular case; the
underlying recovery problem is then formulated as l1-regularized generalized
linear model (GLM) regression. In this chapter it is further shown that, under
standard restricted isometry property assumptions on the design matrix,
l1-minimization can provide stable recovery of a sparse signal in presence of
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exponential-family noise. Sufficient conditions on the noise distribution are also
provided that guarantee stable recovery.

• Chapter 4 provides a brief review of some of the state of the art in nuclear norm
optimization algorithms. The nuclear norm of a matrix, as the tightest convex
surrogate of the matrix rank, has fueled much of the recent research and has
proved to be a powerful tool in many areas. In this chapter the authors propose a
novel application of the nuclear norm to the linear model recovery problem, as
well as a viable algorithm for solution of the recovery problem.

• Chapter 5 presents very recent developments in the area of non-negative tensor
factorization which admit sparse representations. Specifically, it considers the
approximate factorization of third and fourth order tensors into non-negative
sums of types of outer-products of objects with one dimension less using the so-
called t-product. A demonstration on an application in facial recognition shows
the potential promise of the overall approach. This chapter also discusses a
number of algorithmic options for solving the resulting optimization problems,
and modification of such algorithms for increasing the underlying sparsity.

• Chapter 6 describes the application of compressed sensing and sub-Nyquist
sampling to cognitive radio. Cognitive radio has become one of the most
promising solutions for addressing the spectral under-utilization problem in
wireless communication systems. This chapter pays a special attention to the use
of sub-Nyquist sampling and compressed sensing techniques for realizing
wideband spectrum sensing. In addition, an adaptive compressed sensing
approach is described for wideband spectrum sensing.

• Chapter 7 presents a few identification algorithms for sparse nonlinear multi
input multi output (MIMO) systems. The algorithms are potentially useful in a
variety of application areas including digital transmission systems incorporating
power amplifier(s) along with multiple antennas, cognitive processing, adaptive
control of nonlinear multivariable systems, and multivariable biological sys-
tems. Sparsity is a key constraint imposed on the model. The presence of
sparsity is often dictated by physical considerations as in wireless fading
channel estimation. In other cases it appears as a pragmatic modelling approach
that seeks to cope with the curse of dimensionality, particularly acute in non-
linear systems like Volterra type series. The authors discuss three identification
approaches: conventional identification based on both input and output samples,
semi-blind identification placing emphasis on minimal input resources and blind
identification whereby only output samples are available plus a priori infor-
mation on input characteristics. Based on this taxonomy a variety of algorithms,
existing and new, are studied and evaluated by simulations.

• Chapter 8 is concerned with the optimization formulation of the Kalman fil-
tering and smoothing problems. The authors use this perspective to develop a
variety of extensions and applications. They consider various extensions of
Kalman smoothing to systems with nonlinear process and measurement models,
systems with linear and nonlinear inequality constraints, systems with outliers in
the measurements or sudden changes in the state, and systems where the sparsity
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of the state sequence must be accounted for. All extensions preserve the com-
putational efficiency of the classic algorithms, and most of the extensions are
illustrated with numerical examples, which are part of an open source Kalman
smoothing Matlab/Octave package.

• Chapter 9 develops a novel Kalman filtering-based method for estimating the
coefficients of sparse, or more broadly, compressible autoregressive models
using fewer observations than normally required. The proposed algorithm
facilitates sequential processing of observations and is shown to attain a good
recovery performance, particularly under substantial deviations from ideal
conditions. In the second half of this chapter, a few information-theoretic
bounds are derived pertaining to the problem at hand. The obtained bounds
establish the relation between the complexity of the autoregressive process and
the attainable estimation accuracy through the use of a novel measure of
complexity. This measure is suggested as a substitute to the generally incom-
putable restricted isometric property.

• Chapter 10 introduces selective gossip which is an algorithm that applies the
idea of iterative information exchange to vectors of data. Instead of commu-
nicating the entire vector and wasting network resources, the derived approach
adaptively focuses communication on the most significant entries of the vector.
The authors prove that nodes running selective gossip asymptotically reach
consensus on these significant entries, and they simultaneously reach an
agreement on the indices of entries which are insignificant. The results dem-
onstrate that selective gossip provides significant communication savings in
terms of number of scalars transmitted. In the second part of this chapter, a
distributed particle filter is derived employing selective gossip. It is then shown
that distributed particle filters employing selective gossip provide comparable
results to the centralized bootstrap particle filter while decreasing the commu-
nication overhead compared to using randomized gossip to distribute the filter
computations.

• Chapter 11 describes a recent work on the design and analysis of recursive
algorithms for causally reconstructing a time sequence of (approximately)
sparse signals from a greatly reduced number of linear projection measurements.
The signals are sparse in some transform domain referred to as the sparsity basis
and their sparsity patterns (support set of the sparsity basis coefficients) can
change with time. The term ‘‘recursive’’ implies that only the previous signal’s
estimate and the current measurements are used to get the current signal’s
estimate. The authors briefly summarize their exact reconstruction results for the
noise-free case and likewise present error bounds and error stability results for
the noisy case. Connections with related work are also discussed. A key example
application where the underlying recovery problem occurs is dynamic magnetic
resonance imaging (MRI) for real-time medical applications such as interven-
tional radiology and MRI-guided surgery, or in functional MRI to track brain
activation changes. Cross-sectional images of the brain, heart, larynx or other
human organ images are piecewise smooth, and thus approximately sparse in the
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wavelet domain. In a time sequence, their sparsity pattern changes with time, but
quite slowly. The same is also often true for the nonzero signal values. This
simple fact, which was first observed by the authors, is the key reason that the
proposed recursive algorithms can achieve provably exact or accurate recon-
struction from very few measurements.

• Chapter 12 considers the problem of reconstructing time-varying sparse signals
in a sensor network with limited communication resources. In each time
interval, the fusion centre transmits the predicted signal estimate and its cor-
responding error covariance to a selected subset of sensors. The selected sensors
compute quantized innovations and transmit them to the fusion centre. The
authors consider the situation where the signal is sparse, i.e. a large fraction of
its components is zero-valued. Algorithms are presented for signal estimation in
the described scenario, and their complexity is analysed. It is shown that the
proposed algorithms maintain near-optimal performance even in the case where
sensors transmit a single bit (i.e., the sign of innovation) to the fusion centre.

• Chapter 13 is concerned with the application of sparsity and compressed sensing
ideas in imaging radars, also known as synthetic aperture radars (SARs). The
authors provide a brief overview of how sparsity-driven imaging has recently
been used in various radar imaging scenarios. They then focus on the problem of
imaging from undersampled data, and point to recent work on the exploitation of
compressed sensing theory in the context of radar imaging. This chapter con-
siders and describes in detail the geometry and measurement model for multi-
static radar imaging, where spatially distributed multiple transmitters and
receivers are involved in data collection from the scene to be imaged. The
mono-static case, where transmitters and receivers are collocated is treated as a
special case. For both the mono-static and the multi-static scenarios the authors
examine various ways and patterns of undersampling the data. These patterns
reflect spectral and spatial diversity trade-offs. Characterization of the expected
quality of the reconstructed images in these scenarios prior to actual data col-
lection is a problem of central interest in task planning for multi-mode radars.
Compressed sensing theory argues that the mutual coherence of the measure-
ment probes is related to the reconstruction performance in imaging sparse
scenes. With this motivation the authors propose a closely related, but more
effective parameter they termed the t %-average mutual coherence as a sensing
configuration quality measure and examine its ability to predict reconstruction
quality in various monostatic and ultra-narrow band multi-static configurations.

• Chapter 14 shows how a sparse solution can be obtained for a range of problems
in a Bayesian setting by using prior models on sparsity structure. As an example,
a model to remove impulse and background noise from audio signals via their
representation in time–frequency space using Gabor wavelets is presented. A
range of prior models for the sparse structure of the signal in this space is
introduced, including simple Bernoulli priors on each coefficient, Markov chains
linking neighbouring coefficients in time or frequency and Markov random
fields, imposing two-dimensional coherence on the coefficients. The effect of
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each of these priors on the reconstruction of a corrupted audio signal is shown.
Impulse removal is also covered, with similar sparsity priors being applied to the
location of impulse noise in the audio signal. Inference is performed by sam-
pling from the posterior distribution of the model variables using the Gibbs
sampler.

• Chapter 15 presents the methods that are currently exploited for sparse opti-
mization in speech. It also demonstrates how sparse representations can be
constructed for classification and recognition tasks, and gives an overview of
recent results that were obtained with sparse representations.

February 2013 Avishy Y. Carmi
Lyudmila S. Mihaylova

Simon J. Godsill
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Chapter 1
Introduction to Compressed Sensing
and Sparse Filtering

Avishy Y. Carmi, Lyudmila S. Mihaylova and Simon J. Godsill

Abstract Compressed sensing is a concept bearing far-reaching implications to
signal acquisition and recovery which yet continues to penetrate various engineering
and scientific domains. Presently, there is a wealth of theoretical results that extend the
basic ideas of compressed sensing essentially making analogies to notions from other
fields of mathematics. The objective of this chapter is to introduce the reader to the
basic theory of compressed sensing as emanated in the first few works on the subject.
The first part of this chapter is therefore a concise exposition to compressed sensing
which requires no prior background. The second half of this chapter slightly extends
the theory and discusses its applicability to filtering of dynamic sparse signals.

1.1 What is Compressed Sensing?

First and foremost, compressed sensing (CS) is a very useful concept when dealing
with limited and redundant data. The basic idea is as simple and sensible as one
might expect from a theory that has flourished exceptionally fast over the past six
years. Let us try to summarize it as follows. The conventional paradigm of data
processing normally involves acquisition and compression stages. The compression
phase is carried out either explicitly via a dedicated algorithm or implicitly as part
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2 A. Y. Carmi et al.

of the inference methodology. It essentially involves elimination of redundancies
and insignificant parts within the data for the mere purpose of producing a concise
representation of a mathematical object of interest (be it a continuous-time signal, a
vector in an Euclidean space, a set, a matrix or a tensor). Data acquisition and com-
pression are somewhat contradictory in their intentions: whereas in the acquisition
stage we are interested in collecting sufficiently enough data for making inference,
in the compression stage parts of it which are not useful for our purpose are being
thrown out. The conventional paradigm is therefore a wasteful process and a question
is raised whether we could acquire less data in the first place for obtaining a com-
pressed representation of the sought-after mathematical object. Compressed sensing
is an umbrella term for the methodologies and concepts involved in reconstructing
compressed representations of mathematical objects using limited amount of data,
typically much less than the objects’ ambient dimension (i.e., the object dimension
when it is uncompressed).

Organization of This Chapter

We begin with the study of a classical signal reconstruction problem. This example
illuminates some of the basic ideas underlying compressed sensing. An extensive
overview of the basic theory of compressed sensing is then given in Sect. 1.3. The
second part of this chapter, starting in Sect. 1.4, extends some of the basic notions from
the first part and is mainly concerned with the estimation of dynamic sparse signals. In
addition, some applications of compressed sensing are discussed in Sect. 1.5. Finally,
conclusions are offered in the last section.

1.2 Classical Example: Shannon-Nyquist Sampling

Perhaps the best way to demonstrate the concept of compressed sensing is to consider
a concrete example. The Shannon-Nyquist sampling paradigm is a classical archetype
for this purpose. Consider a signal y in the time domain. The Shannon-Nyquist theory
provides the conditions for perfectly reconstructing the signal y from a set of discrete
samples {Yk}Nk=1. For achieving this we need to acquire equally time-spaced samples
at a rate exceeding twice the bandwidth of y. Thus, the Shannon-Nyquist sampling
theory is valid assuming that: (1) we know the signal bandwidth in advance, (2)
sampling should be carried out in a fashion guaranteeing equally spaced samples
and at a sufficiently high sampling rate. In practice, these requirements allow us
to faithfully represent the signal in the Fourier domain. These two representations,
the signal in the time domain (y) and the obtained discrete representation (Yk) are
equivalent in the sense the we can perfectly recover one of them given the other.

Further we compute the discrete Fourier transform (DFT), Xk , of the signal Yk

(which is equivalent to y in the above mentioned sense). Thus,
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Xk = (1/
√

N )
N∑

j=1

Y j exp (−2π( j − 1)(k − 1)i/N ) (1.1)

Letting X = (Xk)
N
k=1 ∈ R

N and Y = (Yk)
N
k=1 ∈ R

N , the relation between the
discrete representation of y and its Fourier transform can be written compactly as
X = FY with F being the unitary DFT matrix. The converse procedure of recon-
structing the original signal from its Fourier representation can then be described
by

Y = F̄ X −→ y (1.2)

where F̄ = FT is the inverse DFT matrix (which in this case equals the conjugate
transpose of F).

At this point we note the following. Our original signal y may turn out to have only
a few significant entries in terms of magnitude when it is considered in the Fourier
domain. In other words, the vector X could possibly have only a few meaningful
entries while all others nearly vanish. We refer to such an X as compressible vector
or sparse vector if the insignificant entries exactly vanish. Such occasion indicates
that the signal energy does not spread uniformly over the spectrum and hence it can
be adequately approximated by a reduced representation. The reduced representation
of y could not be immediately obtained in the time domain and we had to turn to an
alternative domain in which it appears sparse or compressible.

If we could tell the locations of the most significant entries of X in terms of
magnitude then we could obtain an almost identical representation of y using less
samples in Y . This argument follows by considering a sparse version of X in which
all insignificant entries are set to zero. Lets denote this vector by Z and let us look at
the difference�Y = Y − Ȳ = F̄(X − Z). This difference cannot be large, meaning
that we can use Z to adequately approximate the original signal

Z −→ Ȳ ≈ Y −→ y (1.3)

But as we know the locations of non vanishing entries in Z we can use only a fraction
of the samples in Y to construct Z . Thus,

Y m = F̄m×m Zm = F̄m×N Z (1.4)

where m < N is the number of non-vanishing entries of Z , and Y m ∈ R
m , Zm ∈ R

m ,
Fm×m ∈ R

m×m , F̄m×N ∈ R
m×N are obtained by eliminating the columns/rows cor-

responding to vanishing entries in Z . To conclude, we note that at least theoretically
we could reconstruct y by sampling m < N points at specific locations, a premise
which translates into a sampling rate that may go far below the Nyquist rate.

Compressed sensing do exactly that but without knowing the specific locations
of the non-vanishing coefficients. Following our notation that means we are aimed
to solve an underdetermined system of linear equations



4 A. Y. Carmi et al.

t

X(t)

Magnitude

Freq

Uniform sampling: Use N
equally-spaced observations
with a sampling frequency above
the Nyquist rate for obtaining N
Fourier coefficients.

Perfect reconstruction of a
band-limited signal can
be obtained knowing that N is
the signal band-width

N dimensional vector (samples)

Projection onto the frequency domain

Fig. 1.1 Conventional (Shannon-Nyquist) sampling and reconstruction

Y m = F̄m×N Z (1.5)

where the number of entries in Y m is possibly much less than the dimension of the
sparse vector Z . Once Z is obtained we could adequately reconstruct Ȳ = F̄ Z from
which y can be obtained. The problem (1.5) is generally NP-hard. Yet the interesting
detail is that under certain conditions a unique and exact solution Z can be efficiently
computed. An illustration of our argument is provided in Figs. 1.1 and 1.2.

1.3 Basic Theory of Compressed Sensing

Consider a signal represented by a vector in the n-dimensional Euclidean space
χ ∈ R

n , which is sparse in some domain, i.e., it can be represented using a relatively
small number of projections in some known, possibly orthonormal, basis,ψ ∈ R

n×n .
Thus, we may write

χ = ψx =
n∑

i=1

xiψi =
∑

x j∈supp(x)

x jψ j , ‖x‖0 < n, (1.6)
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Nonlinear reconstruction of N
dimensional sparse vector from
M < N samples

t

X(t)

Random sampling: Use M
observations at a frequency
far below the Nyquist rate for
obtaining similar (sparse)
spectrum.

Magnitude

Freq

Perfect reconstruction of a
band-limited signal can
almost always be obtained
without knowing the
spectrum support or
band-width frequency

Fig. 1.2 Compressed sensing: random sub-sampling and efficient recovery

where supp(x) and ‖x‖0 (the zero norm) are the respective notations for the support
of x and its dimension (i.e., the number of non-zero components of x), and ψi is
the i-th column of the transpose ψT of the matrix ψ . The problem of compressed
sensing considers the recovery of x (and therefore of χ ) from a limited number,
m < n, of incoherent and possibly noisy measurements (or, in other words, sensing
a compressible signal from a limited number of incoherent measurement) [12]. The
R

m-valued measurements/observations vector y obeys a linear relation of the form

y = H ′χ = H x (1.7)

where H ∈ R
m×n , and H = H ′ψ is known as the sensing matrix or dictionary.

In many practical applications, the observation vector y may be either inaccurate or
contaminated by noise. In this case, which will be referred to as the stochastic CS
problem, an additional noise term is added to the right-hand side of (1.7).

In general, if the sparseness degree of x , denoted by

s := ‖x‖0, (1.8)

obeys 2s ≤ spark(H), where the spark of a matrix is as defined below, then (1.7)
has an exact solution.
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Definition 1 (The Spark of a Matrix). The spark of a matrix H , denoted as spark(H),
is the smallest number of columns in H that constitute a linearly dependent set.

If the solution of (1.7) is exact then it is also known to be the sparsest one, which
formally translates into the problem

(P0)

{
min

x
‖x‖0

subject to ‖y − H x‖22 ≤ ε
(1.9)

with ε = 0 (an estimate of x can be obtained in the stochastic case by letting ε be
of order of the noise variance). The problem (P0) is known to be NP-hard, which
implies that in practice, an optimizer cannot be computed efficiently.

1.3.1 A Convex Relaxation Approach

In the late 1990’s, the l1-norm was suggested as a sparseness-promoting term in
the seminal works that introduced the LASSO operator [39] and the Basis Pursuit
(BP) [18]. Recasting the sparse recovery problem (P0) using the l1-norm provides
a convex relaxation, making an efficient solution possible using a myriad of well-
established optimization techniques. Commonly, there are two convex formulations
that are proposed to replace (9.26): The quadratically-constrained linear program,
which takes the form

(P1)

{
min

x
‖x‖1

subject to ‖y − H x‖22 ≤ ε
(1.10)

or the quadratic program {
min

x
‖y − H x‖22

subject to ‖x‖1 ≤ ε′
(1.11)

The theoretical justification of replacing (P0) with a convex relaxation (P1) has
been central in several follow-up works. One of the insights due to [21] is given
below.

Theorem 1 ([21]). Assume that H = [H1, . . . , Hn] is composed of unit-length
columns, ‖Hi‖2 = 1, i = 1, . . . , n. Let also ε = 0 in both (P0) and (P1). If in
addition the sparsest solution xs of (P0) obeys

‖xs‖0 ≤
√

2− 1
2

M(H)
(1.12)

http://dx.doi.org/10.1007/978-3-642-38398-4_9
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where M(H) denotes the maximum coherence among the columns of H, i.e.,
M(H) = maxi, j |H T

i Hj |, then the solution of (P1) is exact (i.e., the solution of
(P1) is also that of (P0)).

In essence, Theorem 1 tells us that depending on the sparseness degree of the
solution xs and on the coherence of the matrix H , the exact solution of (P0) can be
efficiently computed via solving the convex relaxation (P1). This is a very strong
result which is in the heart of the basic theory of compressed sensing. A refinement
of this result appears in [10–12]. Here the maximal coherence M(H) is replaced
by the notion of restricted isometry property, or RIP in short. This property of the
sensing matrix is defined as follows.

Definition 2 (Restricted Isometry Property of Order k ). Let δk ∈ (0, 1) be the
smallest number such that

(1− δk)‖x‖22 ≤ ‖H x‖22 ≤ (1+ δk)‖x‖22 (1.13)

for all k-sparse vectors x ∈ R
n , i.e., vectors consisting of not more than k non-

vanishing entries.

Roughly, the RIP implies that the columns of a matrix nearly form an orthonormal
basis. More importantly, it is a necessary and sufficient condition guaranteeing effi-
cient computation of the solution to the sparse recovery problem (P0). This result is
summarized in the following theorems.

Theorem 2 ([11]). If δ2s <
√

2 − 1 then for all s-sparse vectors x, such that
y = H x, the solution of (P1) is exact, that is to say, the solution of (P1) is also the
solution of (P0) for ε = 0.

The reconstruction accuracy of the sparse solution in the stochastic case where ε > 0
is provided by the following complementary result.

Theorem 3 ([11]). Suppose y = H xs+e where e is a noise term obeying ‖e‖22 ≤ ε.
If in addition δ2s <

√
2 − 1 and xs (the sought-after vector) is s-sparse then the

solution x̂ of (P1) obeys

‖x̂ − xs‖2 ≤ C0s−1/2‖x̂ − x̂ s‖1 + C1ε
1/2 (1.14)

where x̂s is the best s-sparse approximation of x̂ , that is, a sparse vector comprising
of not more than s most significant entries of x̂ . The coefficients C0 and C1 are
independent of x̂ , xs and e and are explicitly given in [11].

Note that whenever ε = 0 then x̂ = x̂ s (i.e., the solution is sparse) and therefore
Theorems 2 and 3 coincide.
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Compressible Signals

In practice, the unknown signal x = (xi )
n
i=1 ∈ R

n may be nearly sparse, in the sense
of having many relatively small components, which are not identically zero. Such
representations, frequently encountered in real-world applications, are termed com-
pressible. Most of the results in the CS literature naturally extend to the compressible
case, assuming some behavior of the small nonzero components. Such a behavior
is suggested in [10], where the compressible components sequence is assumed to
decay according to the power law

|xi | ≤ κi (−1/r), |xi | ≥ |xi+1|, (1.15)

where κ > 0 and r > 0 are the radius of a weak lr -ball to which x is confined, and
a decay factor, respectively. In this case, a measure of the signal sparseness degree,
s, can be obtained as

ŝ = n − card{i | 1 ≤ i ≤ n, |xi | ≤ ε′′} (1.16)

for some sufficiently small ε′′ > 0, where ‘card’ denotes the cardinality of a set.

1.3.2 Methods of Solution

The previous results allow us to solve a problem which at first glance seems
intractable. This is made possible by resorting to alternative convex programs (1.10)
and (1.11). These programs and alike have been studied vastly and nowadays there
are myriad of existing optimization methods that are designed to efficiently solve
them. We take this opportunity to mention a few notable methods that have been
used for solving the CS problem.

The majority of CS methods can be broadly divided into three classes depending
on their solution approach. These refer to: convex relaxations, non-convex local
optimization techniques and greedy search algorithms. Convex relaxations are used in
various methods such as LASSO [39], the Dantzig selector [9], basis pursuit and basis
pursuit de-noising [18], and least angle regression [20]. Non-convex optimization
approaches include Bayesian methodologies such as the relevance vector machine
otherwise known as sparse Bayesian learning [40], Bayesian compressed sensing
(BCS) [25], as well as stochastic search algorithms [23, 32, 35]. Notable greedy
search algorithms are the matching pursuit (MP) [31], the orthogonal MP [36], and
the orthogonal least squares [17], iterative hard thresholding (IHT) [7], the gradient
projection [22] and gradient pursuit [6].
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1.3.3 Construction of Sensing Matrices

The results of the previous sections rely on the characterization of the sensing matrix.
Two properties of this matrix have been pointed out, namely, maximal coherence
and the RIP. Although these properties are closely related, the RIP has become the
standard notion when dealing with sensing matrices. As mentioned earlier, the RIP is
both necessary and sufficient condition for efficient and adequate reconstruction of
sparse and compressible signals. It is therefore of much interest to portray the kind
of matrices that normally satisfy this property. Such matrices are sometimes refer to
as good CS matrices, or simply RIP matrices.

One of the first results in CS considered an undersampled DFT matrix [12]. This
is merely the same matrix F̄m×N used in our example in Sect. 1.2. This matrix is
obtained in [12] by choosing rows uniformly at random from the square DFT matrix
F̄ . The resulting matrix F̄m×N can be shown to satisfy the RIP with a probability
approaching one assuming the number of rows (i.e., the number of observations)
is m ≥ cs log N where c > 1 is some constant and s is the underlying sparseness
degree of the sought-after signal. The basic result concerning undersampled Fourier
RIP matrices is summarized as follows.

Theorem 4 ([12]). Assume that x is s-sparse and that we are given m Fourier
coefficients (observations) with frequencies selected uniformly at random, i.e., we
have y = H x where H ∈ R

m×n is an undersampled DFT matrix. Suppose that the
number of observations obeys

m ≥ cs log n (1.17)

Then solving (P1) reconstructs x exactly with overwhelming probability.

One may have noticed that the undersampled DFT matrix is constructed in a
randomized fashion. Randomization is a key ingredient in the construction of most
types of RIP matrices. The reason why this is so has to do with a phenomenon known
as concentration of measure. Roughly, this property of a probability distribution
implies that a significant part of the probability mass is concentrated near the mean.
Concentration of measure is explained in more detail in the ensuing.

Apart from DFT matrices there are several other notable random constructions
which are detailed below.

• Gaussian ensembles. Suppose that the entries of the sensing matrix H ∈ R
m×n are

randomly sampled from a zero-mean Gaussian distribution with variance 1/
√

m.
If in addition the sparseness degree of the sought-after vector x obeys

s = O(m/ log(n/m)) (1.18)

then H obeys the RIP condition with probability 1 − O(exp(−γ n)) for some
γ > 0. In this case, the RIP constant δ2s = 0.5. This argument is based on known
concentration of measure results of Gaussian matrices (see for example [38, 41]
and references therein).
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• Bernoulli ensembles. Suppose that the entries of H are randomly sampled from a
Bernoulli distribution of the form

Pr(Hi, j ) =
{

1/2, if Hi, j = 1/
√

m
1/2, if Hi, j = −1/

√
m

(1.19)

Then under the condition (1.18) the matrix H is RIP with probability 1 − O
(exp(−γ n)) for some γ > 0.
• Incoherent ensembles. Consider a matrix H ∈ R

m×n which is obtained by choos-
ing m rows uniformly at random from a n × n orthogonal matrix. The columns
of H are then normalized such that ‖Hi‖2 = 1. If, additionally, the sparseness
degree of the sought-after vector x obeys

s = O
(

m

M(H)2n log4 n

)
(1.20)

where (as in Theorem 1) M(H) = maxi, j |H T
i Hj | is the maximal coherence, then

the matrix H is RIP with high probability.

The previous recovery statements can be recast taking into account the random
nature of H . Following this rationale in the case of Theorems 2 and 3 yields the
following complementary statements.

Theorem 5 If H is any one of the mentioned random constructions then for all
s-sparse vectors x, such that y = H x, the solution of (P1) is almost always exact.
In detail, if H is either Gaussian or Bernoulli ensembles then the solution of (P1) is
exact with probability 1−O(exp(−γ n)) for some γ > 0.

Theorem 6 Suppose y = H xs + e where e is a noise term obeying ‖e‖22 ≤ ε. If in
addition H is any one of the mentioned random constructions and xs (the sought-after
vector) is s-sparse then with high probability the solution x̂ of (P1) obeys

‖x̂ − xs‖2 ≤ C0s−1/2‖x̂ − x̂ s‖1 + C1ε
1/2

Concentration of Measure

Restrictions on the problem’s dimensionality such as those in (1.17) and (1.18)
are rather common in the theory of CS. In the case of random constructions these
restrictions are imposed so as to guarantee well-behaved tail bounds of the underlying
distribution. These tail bounds are collectively referred to as concentration of measure
inequalities. For example, a widely used Gaussian tail bound is (see [5] p. 118)

Pr
(∣∣∣‖H x‖22 − ‖x‖22

∣∣∣ > c‖x‖22
)
< s · exp

{
−c2m/2

}
(1.21)
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for some c > 0. The bound complementary to the above turns out to be a probabilistic
statement on the RIP of H . Further letting c2 = 2(c̄s)−1 log(s/α)

log n ∈ (0, 1) where
c̄ > 1, α ∈ (0, 1), it can be verified that

Pr
(∣∣∣‖H x‖22 − ‖x‖22

∣∣∣ ≤ c‖x‖22
)
≥ 1− s · exp

{
−c2m/2

}
≥ 1− α (1.22)

for some m ≥ c̄s log n. From the definition of c2 it can be immediately reocgnized
that for having c2 < 1 one must maintain a ratio s/n of the order of α. Having this in
mind and recalling (1.22), we conclude that in such constructions the RIP becomes
highly probable whenever

s/n 
 1 (1.23)

Deterministic RIP Constructions

Recently there have been a few notable attempts to construct RIP matrices in a deter-
ministic fashion. These compositions essentially do away from random sampling and
hence have been collectively termed deterministic RIP constructions. In the course
of this, a few known types of structured matrices have been used such as Toeplitz,
cyclic and generalized Vandermonde [8]. Other deterministic constructions utilize
expander graphs [24]. At the moment, the best attainable dimensionality bound asso-
ciated with deterministic RIP matrices is not comparable to the one achieved using
random ensembles [19] (e.g., (1.18)).

1.4 Sparse Filtering and Dynamic Compressed Sensing

The basic CS framework is mainly concerned with parameter estimation, or time-
invariant signals. An effort is yet being made for developing efficient CS techniques
that would be able to perform in high dimensional non dynamic settings. Only
recently, CS has been applied for the recovery of time-varying sparse signals (i.e.,
sparse random processes). There is no wonder why there is such unbalance between
the two realms of non-dynamic and dynamic CS. The fundamentals of CS build
upon convex optimization perspectives and as such it is conventionally assumed that
the measurements are available in a batch form. This obviously restricts the theory
to such signals for which the complexity does not considerably increase over time.
Furthermore, the treatment of process dynamics, which are normally governed by
probabilistic transition kernels, is not a straightforward task as far as optimization
approaches are concerned.

In light of the above, a much more practical approach for treating dynamic sparse
signals would be somehow based on state filtering methodologies. Followed by the
pioneering works in [13] and [42], which show how the Kalman filter (KF) can
be used in this respect, several dynamic CS schemes have been proposed over the
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past years. Thus, the work in [1] derives a l1-regularized recursive least squares
estimator. This type of estimator is capable of dealing with dynamic signals and
support variations via the use of a “forgetting factor”. In other works, the LASSO
is amended for performing in dynamic settings with possible abrupt changes in the
signal support [2, 4].

The KF algorithm constitutes a vital part in the works of [3, 16], and [29]. Indeed,
the KF is elegant and simple and above all is the linear optimal minimum mean square
error (MMSE) estimator irrespective of noise statistics. Despite its appealing features,
rarely it is used in its standard formulation which is primarily designed for linear
time-varying models. Modifying the KF structure and extending its capabilities have
already become a common practice in many engineering and scientific fields. The
resulting KF-based methods are vastly used for nonlinear filtering, constrained state
estimation, distributed estimation, learning in neural networks, and fault-tolerant
filtering.

The KF-based methodologies for dynamic CS can be divided into two broad
classes: hybrid, and self-reliant. Whereas the former class refers to KF-based
approaches involving the utilization of peripheral optimization schemes for handling
sparseness and support variations, the latter class refers to methods that are entirely
independent of any such scheme. Hybrid KF-based approaches refer to works such
as [3, 16, 29, 42]. The only self-reliant KF method available to that end is the one
of [13].

The self-reliant KF method in [13] benefits from ease of implementation. It avoids
intervening in the KF process which thereby maintains the filtering statistics as
adequate as possible. The key idea behind it is to apply the KF in constrained filtering
settings using the so-called pseudo-measurement technique [28]. It may, however,
exhibit an inferior performance when improperly tuned or when insufficient number
of iterations had been carried out.

1.4.1 A Note on Compressed Sensing and Nonlinear Filtering

Only a small number of works in the CS literature attempt to extend the capabilities
of the theory to nonlinear sensing problems (i.e., having nonlinear sensing func-
tions). The reasons why this endeavour has not generated much interest may be two.
Firstly, nonlinear sensing formulations seem to be much rare in such areas where CS
notions and techniques are vastly employed, and secondly, many results in the theory
cease being elegant and applicative in the nonlinear sensing realm, thus loosing their
attractiveness. It is more likely the latter reason is the dominant one, as otherwise
new application areas would naturally have been flourishing by now.

Nonlinear modeling of natural phenomena is common in many fields of engineer-
ing and science. This in turn renders nonlinear filtering one of the most challenging
undertaking in a wide range of applications. An invaluable benefit could be achieved
by carrying over the qualities of CS that would enable nonlinear filtering from under-
sampled and limited data.
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1.4.2 Discrete-Time Sparse State Estimation

As we are primarily concerned with sparse, or more broadly with compressible
dynamic systems, the following definitions are imperative.

Definition 3 (Compressible Random Process). An R
n-valued random process {xk}k≥0

is said to be compressible if its instantaneous realisation at every k ≥ 0 consists of
only sk 
 n prominent entries in terms of their magnitudes.

Definition 4 (Compressible System). Consider a generalised discrete-time system
of the form

xk+1 = f (xk, wk) (1.24a)

zk+1 = g(xk+1, vk+1) (1.24b)

where xk ∈ R
n , zk ∈ R denote, respectively, the state and observation random

processes. The smooth functions f and g are, respectively, the process and sensing
mappings. The corresponding noises wk and vk are assumed to be statistically inde-
pendent white sequences. The system governed by the equations (1.24) is said to
be compressible, or otherwise, having compressible states, if the process {xk}k≥0 is
compressible.

Consider the m-lifted observability mapping [34] associated with (1.24), where
m denotes the number of observations needed for uniquely determining the state of
the respective deterministic system. Thus,

D(x) :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(x)
g( f (x))
g( f ◦ f (x))
...

g( f (l)(x))
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
m (1.25)

where g( f (l)(x)) := g( f ◦ · · · ◦ f︸ ︷︷ ︸
l times

(x)). In our analysis throughout this chapter we

assume that D(x) is Lipschitz over the domain of interest, normally an open set
in R

n . This property which underlie differentiable structures essentially allows us
to scrutinize the interplay between local and global behaviors of a function. When
applied to the observability mapping D(x), the Lipschitz condition conveys the extent
to which a certain state is indistinguishable from its neighbors. Moreover, it portrays
the mapping highest rate of change in the underlying neighborhood which thereby
allows discerning the local isometric properties of the mapping. Both these features
may respectively be viewed as the interpretation of the left-hand and right-hand sides
of the Lipschitz inequality
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γ2 ≤ ‖D(x + h)− D(x)‖22
‖h‖22

≤ γ1, ∀x, ∀h = 0 (1.26)

where γ1, γ2 ≥ 0. Note that, if in addition, f (·) and g(·) are linear, the condition
(1.26) reduces to

γ2 ≤
∥∥∥∥
∂D(x)

∂x
h̄

∥∥∥∥
2

2
≤ γ1, ‖h̄‖2 = 1 (1.27)

which is merely the spectral range of the Gramian matrix G =
(
∂D(x)
∂x

)T
∂D(x)
∂x

independent of the value of x . The generally non-square matrix ∂D(x)/∂x takes the
role of conventional observability mapping for time-invariant systems.

Suppose for a moment that no process noise is present and that m ≥ n possibly
noisy observations are gathered, z1:m = [zT

1 , . . . , zT
m]T . We wish to obtain a mini-

mum squared error (MSE) estimate of x0 (and subsequently of any xk , k = 1, 2, . . .)
in the sense

min
x̂0

‖z1:m − D(x̂0)‖22 (1.28)

For linear systems, the solution of (1.28) is no other than the well known least squares
estimator. In this respect, the observability matrix, or alternatively the Gramian
(which is independent of x), indicate whether the obtained solution is unique. For
this to happen, both these matrices should not be rank deficient, i.e., they both should
be full rank, which entails γ2 > 0 in (1.26) and (1.27). Similarly, in the general case
(1.24), global observability is ensured if and only if γ2 > 0 for every x in the system’s
state space.

Definition 5 (Global Observability Condition). Let

O =
{

x

∣∣∣∣
‖D(x + h)− D(x)‖22

‖h‖22
= 0, ∀h = 0

}
(1.29)

then the system (1.24) is globally observable if and only if O = {∅}. In that case,

γ2 = inf
x

h =0

(
‖D(x + h)− D(x)‖22

‖h‖22

)
> 0 (1.30)

It can be readily verified that the smallest amount of observations that may allow
a unique recovery in (1.28) is m = n. Surprisingly enough, this prerequisite can
be relaxed, essentially allowing fewer observations than n, following the rationale
underlying CS. Thus, by assuming that the system (1.24) is sparse (i.e., the insignifi-
cant entries in x vanish), a formulation alternative to (1.28) is given by the following
program

(P0) min
x̂
‖x̂‖0 subject to ‖z1:m − D(x̂)‖2 ≤ ε (1.31)
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where, as before, ‖ · ‖0 denotes the number of non vanishing entries in x . The tuning
parameter ε normally has a magnitude comparable to the noise standard deviation.
The solution of the program (P0) may be unique for s ≤ m < n, where s is the actual
number of non vanishing entries in x .

The solution of (P0) is known to be NP-hard and therefore cannot, in general, be
computed in a finite time. As proposed by CS theory, a relaxation to (P0) is obtained
by substituting the l0 quasi-norm with the (convex) l1 norm, that is

(P1) min
x̂
‖x̂‖1 subject to ‖z1:m − D(x̂)‖2 ≤ ε (1.32)

The seminal result in the theory of CS asserts that for a linear system with ε = 0,
the solution of the problem (P1) coincides with the exact one (P0), assuming x is
s-sparse (i.e., having no more than s non vanishing entries), and ∂D(x)/∂x obeys

∣∣∣∣∣

∥∥∥∥
∂D(x)

∂x
h̄

∥∥∥∥
2

2
− 1

∣∣∣∣∣ ≤ δ2s, ‖h̄‖2 = 1 (1.33)

with δ2s ≤
√

2 − 1 for every s-sparse h̄. The above condition, which is otherwise
known as the RIP, guarantees a moderately distorted (in the sense of distance preserv-
ing) projection of the high dimensional state space R

n onto the lower dimensional
observation space R

m . Formally, the RIP restricts the spectral range of any sub-matrix
of ∂D(x)/∂x having m rows and not more than 2s columns. Hence,

1− δ2s ≤ σmin(DT ), σmax (DT ) ≤ 1+ δ2s (1.34)

for any DT ∈ R
m×|T |, where T denotes a set of column indices with cardinal-

ity |T | ≤ 2s, and σmin, σmax stand for the smallest and largest singular values,
respectively.

A complementary result to the above guarantees that in the presence of noise (i.e.,
ε > 0), and while assuming the RIP constant δ2s is bounded as before, the solution
obtained by solving the convex relaxation (P1) is accurate to within magnitudes of
the noise standard deviation.

1.4.3 Compressive Observability

Unsurprisingly, the effectiveness of compressible state filtering techniques depends
on the properties of the state dynamics and the sensing equation. The notions of
observability and estimability, which are common in standard systems, are applicable
in this case, albeit not necessarily conveying the benefits brought forth by CS, such
as the possible reduction in the required amount of observations. Our purpose in this
part is to extend these notions for providing conditions under which CS techniques
can be successfully applied. The following distinction is to be made: compressible
systems which are deemed unobservable may be compressively observable (and the
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same holds for estimability). This in turn, opens up a wide range of possibilities for
the design of effective sensing schemes guaranteeing compressive observability.

Assuming differentiability of the mapping D(x) allows us to examine the observ-
ability locally at any given point in the state space. The formal definition provided
below makes use of the notion of directional derivative.

Definition 6 (Local Observability). Let

dO(x0) =
{

h

∣∣∣∣ lim
τ→0

‖D(x0 + τh)− D(x0)‖22
‖τh‖22

= ‖∇h̄ D(x0)‖22 = 0, ∀h = 0

}

(1.35)
where ∇h̄ D(x0) denotes the directional derivative of D(x) along h̄ = h/‖h‖2, com-

puted at x0, that is ∂D(x)
∂x

∣∣∣∣
x=x0

h̄. Then the system (1.24) is locally observable at x0

if and only if dO(x0) = {∅}.
We note that alternatively Definition 6 can be expressed by means of the local

Gramian matrix, yielding an equivalent condition

Rank (G(x0)) = n, G(x0) =
(
∂D(x)

∂x

∣∣∣∣
x=x0

)T
∂D(x)

∂x

∣∣∣∣
x=x0

(1.36)

It can be easily verified that for the above condition to hold the mapping D(x)
should consist of at least n rows, or in other words, at least n observations are
needed for the system to be locally observable irrespective of the instantaneous
state. This requirement is radically changed, however, taking into consideration the
compressibility of the underlying system.

Compressible State Variations

The compressibility assumption implies that the directional derivative ∇h̄ D(x0) in
(1.35) involves only compressible variations h̄. In particular, if the state x0 is s0-sparse
(i.e., consists of not more than s0 non vanishing entries), then ‖h̄‖0 ≤ 2s0. This
readily follows upon noting that h = x − x0, where the state x , which is likewise
s0-sparse, is in the neighborhood of x0. A small dimensional illustration of this
property is provided in Fig. 1.3, where 1-sparse compressible states in R

3 (forming
the vertices [±1, 0, 0], [0,±1, 0], [0, 0,±1] of a polytope) are connected via the
variation vectors (the edges of the polytope). This subtle detail allows us to define a
compressible analogue of the local observability condition.

Proposition 1 (Local Observability for Compressible Systems). Let

dO(x0) =
{

h̄

∣∣∣∣
∣∣‖∇h̄ D(x0)‖22 − 1

∣∣ > δ4s0 , ∀h = 0, ‖h̄‖0 ≤ 2s0

}
(1.37)
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Fig. 1.3 Illustration of state
variations in a compressible
state space

[1, 0, 0]

[0, 0, 1]

[0, 1, 0]

h = [− 1, 0, 1]

x ∈ 3

Then the (compressible) system (1.24) is said to be compressively observable at x0
if and only if there exists such δ4s0 ∈ (0, 1) for which dO(x0) = {∅}.
Proposition 1 can guarantee adequate recovery of x0 using (considerably) less obser-
vations than conventionally needed (see Definition 6). This premise is directly related
to the underlying concept in CS where an l1 relaxation allows accurate and even exact
reconstruction under certain restrictions on the compressibility level s0, and on δ4s0 .

Local Isometries and the Johnson-Lindenstrauss Lemma

In consideration of the conventions above, a compressible system may both be unob-
servable and compressively observable locally at any admissible (and compressible)
state. This, however, would come into being for a certain class of systems for which
the underlying condition in Proposition 1 holds. When the problem at hand reduces
to the commonly studied example of linear parameter estimation, the conventional
theory of CS provides the instrumental sensing matrices which satisfy Proposition 1
for reasonable values of δ2s0 with overwhelming probability. In that case, the condi-
tion in Proposition 1 coincides with the acclaimed RIP, which is essentially a global
feature of the system as it holds irrespective of the parameters themselves. Notwith-
standing, Proposition 1 encompasses the broader class of time-varying and possibly
nonlinear systems.

Several random sensing matrices which satisfy the RIP have been extensively
studied in the theory of CS (see Sect. 1.3.3). These constructions rely on familiar
concentration of measure results which are mainly pronounced in high dimensions.
The prevalent compositions consist of Gaussian, Bernoulli, and Fourier matrices and
recently also a class of deterministic matrices. As conveyed by Proposition 1 having
an RIP Jacobian ∂D(x)

∂x

∣∣
x=x0

renders the system compressively observable at x0.
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Our notion of compressive observability becomes tangible by recalling the
Johnson-Lindenstrauss (JL) lemma which is a statement about the existence of gen-
eral Lipschitz low-distortion mappings [26].

Lemma 1 (Johnson-Lindenstrauss). Given some δ ∈ (0, 1), a set X of l points in
R

n and a number m0 = O(ln(l)/δ2), there is a Lipschitz function D : Rn → R
m

where m > m0 such that

(1− δ) ‖ x − x̂ ‖2≤‖ D(x)− D(x̂) ‖2≤ (1+ δ) ‖ x − x̂ ‖2 (1.38)

for all x, x̂ ∈ X .

If we further consider a case where x = x̂ + h with sufficiently small ‖ h ‖2,
then by taking the first-order Taylor expansion of D(x) around x̂ it can be easily
recognized that the JL Lemma reduces to approximately the RIP of the Jacobian
∂D(x)/∂x computed locally at x̂ , that is

(1− δ) ‖ h ‖2≤‖ ∇h D(x̂)+ o
(
‖ h ‖22

)
‖2≤ (1+ δ) ‖ h ‖2 (1.39)

In that sense the Lipschitz function that satisfies the JL relation (1.38) locally obeys
the RIP at x̂ for the perturbation vector h. The property (1.39) of the mapping D(x) is
termed Local RIP here. Similarly to the linear case, the level of the local RIP of D(x)
at x̂ is determined according to the maximal sparseness degree s of the perturbation
h for which (1.39) holds. Obviously, when considering the recovery of a sufficiently
small and sparse h, CS can be applied where the Jacobian ∂D(x)/∂x assumes the
role of the traditional sensing matrix. The general nonlinear program (1.32) would
then reduce to a linear CS problem

min ‖ h ‖1 subject to ‖ z1:k − D(x̂)−∇h D(x̂) ‖2≤ ε (1.40)

where the accuracy of recovery would be related to the local RIP constant δ4s .

1.4.4 MMSE Estimation of Sparse Linear Gaussian Processes

Consider an R
n-valued sparse random process {xk}k≥0 which evolves according to

xk+1 = Axk + wk (1.41)

where A ∈ R
n×n is the state transition matrix and {wk}k≥0 is a zero-mean white

Gaussian sequence with covariance Qk � 0. The initial distribution of x0 is Gaussian
with meanμ0 and covariance P0. The signal xk is measured by the R

m-valued random
process

zk = H xk + ζk (1.42)
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where {ζk}k≥1 is a zero-mean white Gaussian sequence with covariance Rk � 0, and
H ∈ R

m×n .
Letting z1:k := [z1, . . . , zk], our problem is defined as follows. We are inter-

ested in finding a z1:k-measurable estimator, x̂k , that is optimal in some sense.
Often, the sought-after estimator is the one that minimizes the mean square error
E

[‖ xk − x̂k ‖22
]
. It is well-known that if the linear system (1.41), (1.42) is observ-

able then the solution to this problem can be obtained using the KF. On the other
hand, if the system is unobservable, then the regular KF algorithm is useless; if, for
instance, A = In×n (the n by n unit matrix), then it may seem hopeless to reconstruct
xk from an under-determined system in which m < n and rank(H) < n.

As mentioned earlier, in the deterministic case (i. e., when x is a parameter vec-
tor with A = In×n), one may accurately recover x by solving the subset search
problem [12]

min ‖ x̂ ‖0

subject to
k∑

i=1

(zi − H x̂)T R−1
i (zi − H x̂) ≤ ε (1.43)

for a sufficiently small ε. Following a similar rationale, in the stochastic case the
sought-after optimal estimator satisfies

min ‖ x̂k ‖0 subject to Exk |z1:k
[
‖ xk − x̂k ‖22

]
≤ ε (1.44)

where Exk |z1:k [·] denotes the expectation of xk conditioned on the observation history
z1:k . As the above subset search problems are generally NP-hard we resort to a
closely-related convex relaxation of the form [13]

min
x̂k

Exk |z1:k
[
‖ xk − x̂k ‖22

]
subject to ‖x̂k‖1 ≤ ε′ (1.45)

for some ε′ > 0.
The problem (1.45) can be addressed in the framework of constrained state filter-

ing. In this respect, the l1 constraint is imposed on the state estimate x̂k at any given
time point. When the underlying system is linear and Gaussian then a sub-optimal
estimator can be obtained by modifying the standard Kalman filter algorithm (for fur-
ther details the reader is referred to the Chapter “Compressive System Identification”
and likewise to [3, 13, 16, 29, 42]).
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1.5 Applications of Compressed Sensing

Compressed sensing has been extensively studied and applied in the following
domains: medical image processing [37], compression [14], coding and machine
learning including face recognition, detection and tracking of objects in video [30,
33, 43], sensor networks [27] and cognitive radio.

Especially video based object tracking is widely investigated with CS methods.
The amount of data provided by video cameras in real time is enormous. In order
to cope with this increased data flow, CS techniques are employed for background
subtraction over a part of the video frame. Whereas traditional background subtrac-
tion techniques require that the full image is available, the CS-based background
subtraction utilizes a reduced image size. The first CS-based background subtrac-
tion algorithm [15] performs background subtraction on compressive measurements
of a scene, while retaining the ability to reconstruct the foreground. However, in
this algorithm the measurement matrix is fixed. In [44] a technique is proposed
that adaptively adjusts the number of compressive measurements. This leads to an
adaptive scheme which is shown [43] to outperform the basic CS-based background
subtraction algorithm [15].

In target tracking with video data the object template has a sparse representation.
For instance, in [33] the target is modeled as a sparse representation of multiple
predefined templates. The convex relaxation-based tracking algorithm needs to cope
with the underlying complexity and hence different l1 minimization techniques are
used, e.g. the Orthogonal Matching Pursuit (OMP) [30] or the l1-regularized least
squares [33].

Compressed Sensing Repository

There are several web sites that provide both code and key papers in the areas of CS.
These are listed below:

• A vast collection of paper and software can be found on the web site of Rice
University http://dsp.rice.edu/cs.
• Compressive sensing - the big picture

https://sites.google.com/site/igorcarron2/cs
• Sparse Optimization Toolbox containing optimization programs for sparse signal

recovery, including MP, Basis Pursuit and constrained total variation pursuit. It
can be downloaded from:
http://www.mathworks.com/matlabcentral/fileexchange/16204
• SPARSELAB: SparseLab is a Matlab software package designed to solve sparse

recovery problems. Available on: http://sparselab.stanford.edu/

http://dsp.rice.edu/cs
https://sites.google.com/site/igorcarron2/cs
http://www.mathworks.com/matlabcentral/fileexchange/16204
http://sparselab.stanford.edu/
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1.6 Conclusions

This chapter is a concise exposition to the basic theory of compressed sensing. We
assume no prior knowledge of the subject and gradually build the theory while elab-
orating on the basic results. The last part of this chapter is devoted to the application
of compressed sensing ideas to dynamic systems and sparse state estimation.
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Chapter 2
The Geometry of Compressed Sensing

Thomas Blumensath

Abstract Most developments in compressed sensing have revolved around the
exploitation of signal structures that can be expressed and understood most easily
using a geometrical interpretation. This geometric point of view not only under-
lies many of the initial theoretical developments on which much of the theory of
compressed sensing is built, but has also allowed ideas to be extended to much
more general recovery problems and structures. A unifying framework is that of
non-convex, low-dimensional constraint sets in which the signal to be recovered
is assumed to reside. The sparse signal structure of traditional compressed sensing
translates into a union of low dimensional subspaces, each subspace being spanned
by a small number of the coordinate axes. The union of subspaces interpretation is
readily generalised and many other recovery problems can be seen to fall into this
setting. For example, instead of vector data, in many problems, data is more naturally
expressed in matrix form (for example a video is often best represented in a pixel by
time matrix). A powerful constraint on matrices are constraints on the matrix rank.
For example, in low-rank matrix recovery, the goal is to reconstruct a low-rank matrix
given only a subset of its entries. Importantly, low-rank matrices also lie in a union of
subspaces structure, although now, there are infinitely many subspaces (though each
of these is finite dimensional). Many other examples of union of subspaces signal
models appear in applications, including sparse wavelet-tree structures (which form
a subset of the general sparse model) and finite rate of innovations models, where
we can have infinitely many infinite dimensional subspaces. In this chapter, I will
provide an introduction to these and related geometrical concepts and will show how
they can be used to (a) develop algorithms to recover signals with given structures and
(b) allow theoretical results that characterise the performance of these algorithmic
approaches.
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2.1 Introduction

How do we know something is there, if we haven’t seen it, or, to use the cliche,
how do we know that the falling tree still makes a sound even if there is no one to
listen? This is far more than a purely philosophical question. It is at the heart of all of
scientific discovery, indeed, one could say that all of science is ultimately a quest for
rules that allow us to predict the unobserved. In science, this is done by observing
certain aspects of nature which are then used to build models which in turn allow us
to make predictions about things we have not yet seen.

Similar questions also arise in engineering. We live in a digital world where
images, sounds and all kinds of other information are stored, transmitted and
processed as finite collections of numbers. Whether it is your favourite TV show
or the medical images acquired at your last hospital appointment, all are represented
using zeros and ones on a computer. But how is this possible? Sound pressure varies
continuously at your ear, so how can this continuously varying signal be described
by a finite number of bits? In fact, the digital information stored on your favourite
CD only describes the sound pressure measured at regular intervals. Similarly, a
movie typically consists of (only) tens of images each second, yet the light intensity,
originally measured by the camera, changes continuously with time. Digital movies
and sound recordings are thus mere approximations of the original physical signal.

The question thus arises, “How much of the information is preserved in these
approximations?” and “How do we infer what the signal was in the places we haven’t
seen?” that is, “How then do we interpret these approximations?” For example, our
movie is only represented with a relatively small number of different images each
second. Any changes that occur at a timescale that is faster than this, are not captured.
In effect, to interpret the movie, we assume that such changes do not occur. Whilst
this is not true in the movie example, our eyes are not able to resolve changes faster
than those captured in a normal film. However, we are also all aware that this can lead
to “errors”. We have all experienced the illusion of a propeller on a plain or the wheel
on a car that, when changing its speed appears to change direction. This “aliasing”
is due to the fact that we don’t interpret the data correctly, that is, our model (i.e.
the assumption that changes are slow) is incorrect. As we don’t know what happens
to the propeller or wheel between frames, our brain makes the assumption that the
propeller or wheel has moved the smaller of the two possible distances between the
two observations.

The moral of this story is that we constantly have to make judgements about
things that “happen where we have not looked” and that we do this using assump-
tions or models. Similar judgements have to be made by any algorithm that deals
with measured continuous signals and a detailed theoretical understanding of these
phenomena is thus fundamental to our ability to capture, process and reconstruct
continuous physical phenomena.

The Shannon Nyquist Whitaker sampling theorem [1, 2] is the classical example
of such a theoretical treatment of the problem. Consider a signal x(t) that changes
continuously with time t . This could be, for example, the sound pressure measured
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with a microphone. To represent x(t) digitally, we sample it by taking equally spaced
measurements x(ti ) at time points ti , where ti − ti−1 = Δt is the constant sampling
interval. Moving to bold face vector1 notation, our representation of the original
continuous signal x(t) is now the vector x (which has either a finite number of entries
if x(t) was sampled over a finite interval, or could in theory be infinitely long). x is
not yet a truly digital representation of x(t), as each entry in the vector x is a real
number, which also cannot be represented exactly in digital form. Nevertheless, for
the purpose of this chapter, we will ignore this additional complication and assume
that the effect of the additional errors introduced by the required quantisation of real
numbers are negligibly small. Instead, the leitmotif here will be the interpretation of x.
Which properties must x(t) possess so that it is fully described by the measurements
in the vector x?

We will see that there is an intimate interplay between (1) the way we measure
a signal (e.g. the sampling interval in our Shannon sampling example), (2) the class
of signals that we can describe exactly using the measurements x and (3) the way
in which we can reconstruct x(t) from the measurements x. For continuous signals
sampled at equally spaced intervals, the relationship between these three points is
precisely what is captured by the Shannon Nyquist Whitiker sampling theorem,
which states that:

Theorem 1 If a continuous signal is sampled at equally spaced intervals and if the
signal is band-limited with a bandwidth of less than half the sampling rate, then
the signal can be reconstructed exactly using a linear reconstruction. Furthermore,
the reconstruction filter only depends on the sampling rate and the frequency band
occupied by the signal.

The signal model here assumes x(t) to be band-limited and, in order to be able to
interpret or reconstruct x(t), the frequency support must be known. If we sample
at regular intervals and use a reconstruction that assumes the incorrect frequency
support, or if the signal is not band-limited, then we will not be interpreting or
reconstructing the signal correctly and aliasing will occur similar to the propeller or
wheel example.

In this chapter, the sampling problem will be addressed in a more general setting.
In particular, more general signal models will be considered. A more general theory
will bring many advantages. For example, a sampling theory that allows a more
general class of signal models allows us to design particular sampling schemes that
are tailored to a specific problem. This, in turn, can lead to sampling approaches
capable of, for example, sampling non-bandlimited signals or, sampling at a rate
well below that required by the Nyquist rate. However, this can only be achieved

1 In this chapter, we use two, somewhat different, meanings for the term vector. On the one hand, we
call any one dimensional array of real or complex numbers a vector, this is the meaning used here.
Below, we will introduce a more abstract definition of vectors as elements of some mathematical
space. Which of these two definitions is appropriate at any one point in this chapter should be clear
from the context.
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if the sampling theory provides us with the tools to model and account for known
signal structures.

There are several mathematical approaches to capture and model signal structure.
Our view here will be predominantly geometrical. Similar to a sphere of radius 6,371
km which is a good model to use to describe my location on the earth’s surface (up to
small errors that would account for the fact that the earth is not completely spherical or
that I might on occasion take a plain or visit an underground cave), similar geometrical
models can be used to describe constraints on signals. In general, most signals such
as sounds, images and movies can be thought of as living in some signal space, where
we can define the distance between two signals or can measure angles. But similar to
the assumption that I am not likely to be found anywhere in space but am restricted
to the earths surface (after all, I am unlikely to spend any of my upcoming holidays
on the moon), so are many types of signals only encountered in or close to a subset of
the space they inhabit. For example, the assumption in Shannon’s sampling theorem
that signals are band-limited, translates into the geometric assumption that signals
lie on a subspace (think of a subspace as the equivalent to an infinite piece of paper
in our three dimensional world).

Many traditional sampling results are based on convex sets, such as subspaces.
Whilst convex signal models lead to relatively simple sampling approaches, which
are easily studied with current mathematical tools, non-convex models are signif-
icantly more flexible. However, the utility gained through the increased flexibility
also leads to an escalation in the complexity of both the theoretical treatment of
the sampling problem as well as their successful implementation. Non-convex sig-
nal models typically require non-linear reconstruction techniques, so that, for these
models, an additional important aspect arises: the computational speed or complexity
of signal reconstruction. In particular, many advanced signal models lead to NP-hard
reconstruction problems. It thus becomes paramount to restrict sampling strategies
for these signal models to a subset of linear operators that allow fast reconstruction.

The archetypal example here is compressed sensing [3–6]. Compressed sensing
assumes signals to be sparse in some way. For finite dimensional signals that can
be expressed as vectors, sparsity means that most of the entries in the vector that
represent the signal are zero. It is important to note here that the sparse vector itself
does not have to be the signal of interest. Instead, the sparse vector can equally well
be a representation of a signal in some basis (wavelet and Fourier bases are popular
examples). For finite dimensional signals, Fourier domain sparsity assumes a signal
to be constructed from the mixture of a few sinusoids, where the frequencies of each
of the sinusoids has to be taken from a fixed, finite-dimensional regularly spaced
grid.

A related area that has gained more prominence recently is matrix completion
[7, 8]. In the matrix completion problem, the signal of interest is a data-matrix, but,
instead of measuring the data for each entry in the matrix, only a small subset of
the matrix entries is filled with measurements initially. The task is then to estimate
the missing entries using the measured entries only. This can again only be done
if we assume the data to follow some known model. A popular model for matrix
completion, which is related to the sparse model used in compressed sensing and
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which is found to describe many phenomena of interest, is a low rank matrix model.
In these models, the full data matrix is assumed to have a rank which is significantly
smaller than the maximum rank a matrix of the same dimensions could have. A
popular example is the movie recommender system, where a matrix is constructed
in which each entry contains a rating of a movie by a person. For each person in
the system there is thus a row in the matrix and each film has an associated column.
However, people are only able to watch and rate a small fraction of all movies, so that
the missing entries have to be inferred from the few ratings made. Once the missing
entries have been filled in, the system can then recommend movies to people on the
system that they are likely to rate highly. A common assumption in these systems is
that the full data matrix is of low rank, an assumption that is justified by an argument
that stipulates that a persons preference in movies is primarily driven by a small
number of underlying factors.

Compressed sensing and matrix factorisation can be seen as two particular
instances of a more general class of constrained inverse problems [9]. In this chapter,
the main ideas that define the class of problems we discuss will be that they (1) use
non-convex constraints to model the signals we will be able to reconstruct and (2)
pose computationally challenging reconstruction problems so that we will require
efficient reconstruction methods. As promised in the chapter title, we here take a
geometrical point of view, which will allow us to study important properties of
non-convex signal models and their interplay with different efficient reconstruction
methods.

2.2 Geometrical Signal Models

2.2.1 A Geometrical Primer

Before continuing our study of the geometry of data recovery problems, it makes
sense to define and fix several mathematical concepts and notation.

Throughout this chapter, we will talk about signals which will be mathemati-
cal descriptions of physical phenomena such as sounds, images or movies. From a
mathematical point of view, signals are functions and a function is a mapping that
assigns a unique real or complex number to each set of functional parameters. The
parameters of a function are taken from the reals or from a subset of the reals. For
example, sound pressure can be described as a function that assigns a unique pressure
to each point in time. Similarly, an image can be understood as a function that assigns
a real number (describing the image intensity) for each location in the image plain.
In contrast to the sound example, where the sound parameter ran over all possible
time instances, for images it is typical to restrict the domain of the image parameters
to intervals of real numbers. Another important class of functions are finite length
vectors. For example, a ten dimensional vector can be understood as a collection of
ten real or complex numbers. Such a vector is also a function, but here, the parameters
are restricted to an interval of integers (i.e. 1, 2, …, 10).
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2.2.1.1 Vector Space

The material in this section can be found in any good textbook on analysis and
functional analysis. Good, however rather technical, examples are [10] and [11].

A mathematical space is a collection of mathematical objects, such as numbers
or functions, together with a set of properties. Properties can include, for example,
additivity of elements (so that for any two elements, there is an element of the space
that is the sum of the two elements). Other properties of mathematical objects that
are important for a geometrical interpretation are length or size, distance between
objects and angle between objects.

In this chapters, signals will be formally described as mathematical objects that
live in a vector space. This means that they all have a certain set of universal properties
common to all vector spaces. Formally, a linear vector space V over a Field F (which
in this chapter will either be the real numbers (R) or the complex numbers (C))
is a selection of objects (called vectors) together with certain operations on these
elements, which have the following set of properties:

1. The space has an addition operator +, so that for any two elements x1, x2 ∈ V
the product x1 + x2 is also an element of the set V .

2. The addition is commutative (i.e. x1 + x2 = x2 + x1) and associative (i.e. (x1 +
x2)+ x3 = x1 + (x2 + x3)).

3. There is a zero element x0 ∈ V for which x+ x0 = x holds for all x ∈ V . We will
write the zero element as 0.

4. For all x ∈ V , there is an element −x, such that x + (−x) = 0.
5. The space has a scalar multiplication operator ·, so that for all elements α,β ∈ F

and any x ∈ V the element α · x is an element in V and, furthermore, α · (β · x) =
(αβ) · x, (α+ β) · x = α · x+ β · x, α · (x1+ x2) = α · x1+α · x2 and 1 · x = x.

Thus, vector spaces are collections of elements that can be added and subtracted and
which can be multiplied by real or complex numbers (or more general by elements
from its base field).

Banach Space

By equating real world signals with elements of a vector space, we can use vector
addition and scalar multiplication to describe signal addition and scaling. The next
useful concept we introduce is that of the size or length of a signal. Once we are
able to talk about the size of a signal, then we can also talk about the size of the
difference between two signals, which then enables us to formally define the distance
or difference between two signals. The ability to talk about length and distance of
signals is our first step in a geometrical interpretation of signal processing problems
and is thus one of the most fundamental concepts discussed here.

The length of an element of a vector space V will be measured by a norm. We
write ‖x‖ to denote the norm of the element x. A norm is a non-negative function
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that assigns a real number to an element of a vector space and has the following
properties:

1. The zero element 0 is the only element in the vector space that has a norm of
zero, that is ‖x‖ = 0 if and only if x = 0.

2. The norm satisfies the triangle inequality ‖x1 + x2‖ ≤ ‖x‖1 + ‖x2‖ for all
x1, x2 ∈ V .

3. The norm increases proportionally when scaling an element in the vector space,
that is, ‖αx‖ = |α|‖x‖ for all x ∈ V and α ∈ F .

The second of these properties is one of the fundamental properties that will allow
us to use some of our geometrical intuition when discussing signal properties as it
links the length of the sum of two vectors to the length of each vector individually.
The geometrical picture is that of a triangle, where the length of any one side of the
triangle (which is the same as the sum of the two other sides) is always shorter or at
most as long as the sum of the lengths of each of the other two sides. Or, using another
well known geometrical property, the length between two points is the straight line.

Thus, the concept of a norm not only tells us how ’large’ an element in a vector
space is, it also tells us how far apart different elements in the space are. From the
properties of vector spaces, we know that the element x = x1 − x2, that is the
difference between the elements x1 and x2 is itself a vector. Therefore, if we have
defined a norm on the vector space, then the norm ‖x1−x2‖will be defined and will
measures the distance between these two elements.

With the definition of distance comes another property, that of convergence of
sequences of elements. Assume we have a collection infinitely many elements {xi }
(which do not have to be all different). This sequence is said to be Cauchy convergent
if the distance ‖xm − xn‖ can be made arbitrary small for all n,m > N if we only
choose N itself large enough. In other words, if we restrict our consideration to
elements that are far enough from the beginning of the sequence, then any two
elements will be arbitrarily close to each other.

Cauchy convergence might seem a little bit odd at first and another form of con-
vergence might be more intuitive to the reader new to these idea. A sequence {xi }
is said to converge to a point xlim , if the distance ‖xi − xlim‖ converges to zero in
the limit. In this form of convergence, the sequence of elements will get arbitrarily
close to a certain point, which we will here call xlim . The difference to Cauchy con-
vergence is that, in the definition of Cauchy convergence, which is the more general
of the two properties, whilst elements in the sequence are guaranteed to stay close
to each other, there might not exist a single element within our vector space, which
is a limit point, that is, to which the sequence will get arbitrarily close. However,
rather than this being a property of the sequence itself, this is really a property of the
space from which the elements of the sequence have been picked. In a sense, spaces
in which there are sequences that are Cauchy convergent but which do not have a
limit point are “incomplete”. Thus a space where all Cauchy sequences converge are
actually called complete spaces. As convergence is such a fundamental property, it
is often useful to restrict discussions to complete spaces. Complete normed vector
spaces thus have their own name, they are called Banach Spaces. All the spaces
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encountered in this chapter will be Banach spaces so that the concepts of Cauchy
convergence and convergence will be identical.

Hilbert Space

A second geometrical concept which is as important as length, is that of the angle
between two elements. Angles between vectors can be measured using inner products,
which is a real or complex valued function of two elements of the vector space (written
as 〈·, ·〉) which satisfies the following two properties.

1. 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 if and only if x = 0.
2. 〈x1 + x2, x3〉 = 〈x1, x3〉 + 〈x2, x3〉.
3. 〈λx1, x2〉 = λ〈x1, x2〉, where λ ∈ C.
4. 〈x1, x2〉 = 〈x2, x1〉, where the bar · indicates the complex conjugate.

Inner products can be used to ‘induce’ a norm, that is, they can be used to define a
norm as follows

‖ · ‖ = √〈·, ·〉

Using the induced norm, inner products contain information on the angle between
two elements. In fact, inner products combine information on angles and vector
length, so that a quantity that has properties similar to the angle between to elements
can be found by normalising the inner product

〈x1, x2〉
‖x1‖‖x2‖ .

Thus, if x1 and x2 are the same vector, then their angle will be zero and the above
normalised inner product is 1. Similarly, we will say that two vectors are at right
angles or orthogonal if their inner product is 0.

With an induced norm there is an intimate link between norms and inner products.
For example, the Pythagorean theorem holds

‖x1 + x2‖2 = ‖x1‖2 + ‖x2‖2 if 〈x1, x2〉 = 0,

which is a special case of the more general result that

‖x1 + x2‖2 = ‖x1‖2 + ‖x2‖2 + 2〈x1, x2〉.

In addition, the following parallelogram law also holds

‖x1 + x2‖2 + ‖x1 − x2‖2 = 2‖x1‖2 + 2‖x2‖2

and so does the following inequality
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|〈x1, x2〉| ≤ ‖x1‖‖x2‖.

A vector space that has a norm that is induced by an inner product thus has very
appealing geometrical properties. Such a space is called a Hilbert space if it is fur-
thermore complete, that is, a Hilbert space is a complete inner product space with an
induced norm.

Finite and Infinite Dimensional Spaces

We live in a three dimensional world, or mathematically speaking, in a three dimen-
sional (thus finite dimensional) Hilbert space, yet many spaces of mathematical
functions are actually infinite dimensional. In infinite dimensional spaces, some of
our intuition still holds, yet, care has to be taken as there are also subtle differences.
In essence, an infinite dimensional space is a space in which there are infinitely many
vectors that are all orthogonal to each other. Orthogonality can be measured by the
inner product, in fact, the inner product of orthogonal vectors is zero. In an infinite
dimensional space, there are thus infinitely many vectors which all have a zero inner
product with each other.

But infinity is even more subtle than this. In fact, there are infinities of different
sizes. This might come as a surprise to some, yet the typical example are the sets
of integers and the sets of real numbers. There are infinitely many integers, for any
integer number I name, you will always be able to find a number that is larger. Real
numbers on the other hand, not only contain all integers. There are infinitely many
other real numbers that lie between any two distinct real numbers. It can indeed be
shown that there will be ‘more’ real numbers than there are integers. When talking
about infinities it is thus helpful to distinguish the infinity that is as large as the number
of integers and infinities that are larger. Sets of infinitely many elements, that have
as many elements as there are integers are said to be countable. The elements in a
countable set can thus be labeled using integers (that is we could count them at least in
theory). Sets that cannot be labeled with integers are called uncountably infinite. We
will restrict the discussion here to Hilbert spaces that are at most countably infinite.

Basis

In a similar way in which we describe locations on earth (for example, using north-
sout, east-west, and hight), it is useful to be able to find a way to describe the ‘location’
of vectors in a vector space. This will be done using a set of basis vectors (or basis
directions). An important concept here is that any such description should ideally not
contain replicated information; three parameters are enough to describe any location
on earth and four parameters would only replicate some of this information. A similar
concept holds in general vector spaces, even in infinitely large ones.

To capture the effect of replication of information, we use the concept of linear
dependancy of a set of vectors. A set of vectors {xi } is said to be linearly dependant
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if there are scalars λi (which are not all zero) such that
∑

i λi xi = 0 or
∑

i �= j λi xi =
−λ j x j . Thus, if we use the vectors xi to describe a vector x as x =∑

i αi xi , then we
can always replace one of the vectors (say x j with x j = −∑

i �= j λi/λ j xi so that the
vector x is equally well described using one less vector. On the other hand, if there
is no such set of scalars λi such that

∑
i λi xi = 0, then we say that the set of vectors

{xi } is linearly independent.
Any set of vectors {xi }, whether linearly dependant or not, can be used to describe

certain vectors x as a linear combination x = ∑
i αi xi . All those x which can be

writen in this form for any given set {xi } is called the linear span of the set {xi },
which is formally written as the set

{x =
∑

i

λi xi , with λi ∈ F}

where F is the field used in the definition of the vector space (e.g. F are the real or
complex numbers).

A set {xi } which is large enough to be able to describe all vectors in vector space
and which furthermore is not too large so that its elements are linear independent is
called a basis for the space.

We have already encountered the concept of orthogonality. A basis, in which
any two elements are orthogonal is called an orthogonal basis. Furthermore, an
orthogonal basis in which each element has unit length, is called an orthonormal
basis. An important result in mathematics is the fact that every Hilbert space has an
orthonormal basis. Furthermore, if the set of vectors in the basis is either finite or
countably infinite, we say that the Hilbert space is separable.

We will here restrict our discussion to separable Hilbert spaces so that we can
always find an at most countably infinite orthonormal basis set {xi } that allows us to
write any element of the Hilbert space as a linear combination

x =
∞∑

i

ai xi . (2.1)

2.2.1.2 Subspaces

A subset S of a vector space is called a linear subspace if any two elements x1, x2 ∈ S
have the property that their linear combination λ1x1+λ2x2 is also an element of the
set S. Here λ1 and λ2 are arbitrary scalars. The linear span of a set of vectors is a
linear subspace.
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2.2.1.3 Convex Sets

Closely related to linear subspaces are convex sets. A convex set is defined similarly
to a linear subspace. A subset S of a vector space is called a convex subset if any
two elements x1, x2 ∈ S have the property that their linear combination λ1x1+λ2x2
is also an element of the set S. However, the difference here is in the set of scalars
allowed in the definition. Whilst in the definition of a linear subspace, λ1 and λ2
were allowed to be arbitrary scalars, for a set to be convex, we have the additional
requirement that λ1,λ2 ≥ 0 and that λ1 + λ2 = 1. It should thus be clear that a
linear subspace is a convex set. A set that is not convex if there are x1, x2 ∈ S and
λ1,λ2 > 0 with λ1 + λ2 = 1 for which the element λ1x1 + λ2x2 is not an element
of the set S itself.

In a Hilbert space, in the same way in which we say that two vectors are orthogonal,
we can also say that a vector x is orthogonal to a subset S if x is orthogonal to every
element in S. Similarly, if we have two subsets, these can be said to be orthogonal
if every vector of one subset is orthogonal to every vector of the other subset. For
example, the orthogonal complement of a subset is the set of all vectors that are
orthogonal to the set. The orthogonal complement of any set is a closed2 convex
subspace.

For any closed convex subset S of a Hilbert space H, it is allways possible to find
a best approximation of any vector x ∈ H by an element of the closed convex subset
S. That is, for any x ∈ H there exists a x0 ∈ S such that

‖x − x0‖ = inf
x̃∈S
‖x − x̃‖.

We will call the element x0 the projection of x onto the closed convex subset S.
This leads us to the important orthogonal projection theorem which states that

for any closed linear subspace S ⊂ H and any x ∈ H, we can always find a unique
decomposition x = xS + xS , where xS ∈ S and where xS is orthogonal to S.
Furthermore, xS ∈ S is the closest point in S to x.

For any closed linear subspace S, let PS be the operator that maps and x ∈ H to
the element xS defined in the projection theorem. The operator P is self adjoint (that
is 〈Px1, x2〉 = 〈x1, Px2〉 for all x1, x2 ∈ H), P2 = P and has an operator norm
supx �=0 ‖Φx‖/‖x‖ = ‖P‖=1 whenever P �= 0.

2.2.1.4 Unions of Simpler Geometrical Models

Having defined some of the basic geometric properties of Hilbert spaces, let us
now return to the problem of signal modelling. Linear subspaces and closed convex
sets have very appealing properties and these sets have long been used to define
classes of signals which then allow us to find elements within these convex sets

2 A subset S ⊂ H is called closed if every sequence with elements in S that converges to an element
of H has a limit in the subset S itself.
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that can act as good representatives for a particular signal. Many classical signal
processing ideas have been restricted to closed convex sets, yet, recent advances in
our understanding of signal geometry have allowed us to extend similar ideas to more
complex signal models, models that are no longer convex. This work has primarily
looked at constraint sets that are the union over several (in many cases extremely large
collections of) closed convex sets. In such a signal model, we are given a number of
closed convex sets and assume that any signal lies within one of these sets, however,
we are not sure in which set exactly we are to look for the signal.

Let us define these unions formally. Any union of closed and convex sets is defined
as

S =
⋃

j

S j : where the S j are closed and convex subsets, (2.2)

Here each S j can be any closed and convex subset of a larger Hilbert space and the
union can be potentially over a countably infinite number of these sets. Of particular
interest to us will be union models in which the S j are closed subspaces.

An important example of a union of subspaces model is the sparse signal model
in finite dimensions. Consider the Euclidean Hilbert space of dimension N whose
elements we can represent using N element vectors. In a k-sparse model, the model
subset S is the set of all vectors x that has no more then k non-zero entries. This
model is in fact a union of subspace model. To see this, consider the support of a
k-sparse vector, that is, consider the pattern of the location of the non-zero elements
in this vector. If we add (or subtract) a k-sparse vector that has exactly the same
support (that is, whose non-zero elements are in exactly the same location), then the
sum (or difference) of these two vectors will again be k-sparse and will have the
same support. Thus, the set of all k-sparse vectors which have the same support is
a subspace. However, for any k < N , there will be many different support sets. In
fact there will be

(N
k

)
such sets

(N
k

)
, read N choose k, is the number of different

ways in which we can choose k elements from a set of N elements). Thus, the set of
all k-sparse vectors (irrespective of their support) is the union of

(N
k

)
subspaces. We

also see that this set is non-convex as the sum of two k-sparse vectors with different
support can potentially have up to 2k non-zero entries. In fact, the set of the sum of
two (or three) k sparse vectors will be of importance later on, and we introduce some
notation to specify these sets here.

In general, if x ∈ S for some union S, we will write

S + S = {x = x1 + x2 : x1, x2 ∈ S} (2.3)

and
S + S + S = {x = x1 + x2 + x3 : x1, x2, x3 ∈ S} (2.4)
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2.2.1.5 Operators on the Elements of a Space

One last fundamental notion that will be required throughout this chapter is that of
an operator. In principle, an operator takes an element of one space and transforms
it into the element of another space. We write y = Φ(x), where x is an element of
one space and y is the element of another space.

A linear operator has properties similar to a matrix. In particular it is linear, that
is, for any two elements x1 and x2 from one space, it does not matter if we apply
the operator to the sum of the two elements or if we apply the operator to each
individual element and then sum the transformed elements. That is, Φ(x1 + x2) =
Φ(x1) + Φ(x2). For linear operators, we generally write Φx instead of Φ(x). The
parenthesis will be used primarily to indicate non-linear operators.

For linear operators, we can define a norm on an operator as follows

‖Φ‖ = sup
x:‖x‖≤1

‖Φx‖, (2.5)

that is, informally speaking, the operator norm is the maximum amount by which any
vector can be lengthened when squeezed through the operator. Note that the operator
norm as defined here depends on two vector norms, the norm of ‖x‖ and the norm
of ‖Φx‖. In general, both of these norms can be arbitrary. In the case in which both
x and Φx live in Hilbert spaces, then we assume that ‖Φ‖ is the norm defined using
the Hilbert space norm.

An Operator is said to be invertible on a space H (or alternatively on a subset
S ⊂ H) , for all x ∈ H (or for all x ∈ S), if there exists an operator Φ† such that
x = Φ†(Φ(x)). If Φ† is linear, then we say that Φ is linearly invertible on H (or on
S). An operator that is not invertible is said to be non-invertible.

If a linear operator between finite dimensional spaces is invertible, then the norm
of ‖Φ†‖ is necessarily finite, however, in infinite dimensional spaces, it can happen
that there are invertible linear operators whose norm is infinite. These operators
are said to be ill-conditioned. Ill-conditioned operators would in theory allow us
to recover x from y = Φx uniquely, however, any small perturbation of y could
potentially lead to an arbitrarily large change in the estimate of x.

2.2.2 Examples and Sketch of Applications

So far, we have introduced an over-abundance of abstract mathematical ideas. Let
us therefore take a step back here and discuss several important examples where
geometrical ideas can help in the reconstruction of signals.
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2.2.2.1 The Geometry of Shannon Sampling

The seminal work by Nyquist [1] and Shannon [2] is at the heart of much of traditional
sampling theory. This theory deals with one instance of the signal recovery problem
addressed throughout this book, although, we hardly think about it in this way any
longer. The setting here is as follows, let x be a function over time with a domain
spanning over the real numbers. For example, this might be the sound pressure
produced by your favourite band. The aim is now to measure this sound pressure.
Let us do this measurement by measuring the sound pressure intensity at infinitely
many equally spaced intervals in time, so that our measurement y is an infinite
sequence of real numbers and we again ask, how and when can we recover x from
y. The Shannon sampling theorem answers exactly this question. In effect, if x is
band-limited, then there is a simple linear reconstruction method that can recover x
from y exactly. The band-width of the signal has to be less than half the inverse of
the time interval between consecutive samples for this to work. Without going into
too much detail (see for example [12] for a more detailed treatment), when we say
that x is band-limited we mean that the Fourier transform of x (call this transform
X) is a function whose support in restricted to a restricted frequency interval. This is
our model. In fact, this is a subspace model. To see this, assume that you have two
signals with the same frequency band-width. Adding these two signals (remember
that the Fourier transform is linear) is the same as adding the Fourier transforms of
the signals, so that the sum of any two band-limited signals is again band-limited.
This is exactly our definition of a subspace. Thus, Shannon sampling uses a convex
signal model and, as the model is convex, a simple reconstruction technique exists.

2.2.2.2 Sparse Signal Models in Euclidean Spaces

Instead of dealing with infinitely long sequences of numbers produced by ‘proper’
Shannon sampling, finite length approximations are the only practical approach to
real problems. It is thus normal to assume that we can represent infinite dimensional
signals using finite length vectors. In the same way, digitised images can be thought
of as a collection of a finite number of real numbers. Let us therefore assume that
our signal is well approximated using a vector in Euclidean space of dimension N .

If we were able to sample a signal using Shannon sampling ideas, then we would
directly measure the elements in x. However, in many situations, we are unable to
make enough measurements to use Shannon theory. For example, many measurement
procedures are slow (e.g. in Magnetic Resonance Imaging, a patient has to lie in
the scanner for several minutes to produce a single volumetric image), pose health
risks (e.g. in X-ray computed tomography, X-ray dosage has to be limited to reduce
exposure to ionising radiation) or are extremely expensive (certain hyperspectral
imaging devices can come at a cost of thousands of dollars for a single pixel, so
that traditional million pixel cameras with these elements would be prohibitively
expensive).
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Thus, we would want to reduce the number of measurements further and sample at
a rate significantly below that described by Shannon theory. To do this is only possible
if we use a much smaller signal set as our model. Single, very low-dimensional
subspaces are not versatile enough to capture the diverse information present in most
signals and images (if it were, we could just use Shannon theory), instead, more
complex, low-dimensional, but non-convex models have to be used. One of the most
powerful sets of models are sparse models. A sparse (Euclidean) vector x is a vector
whose elements are zero apart from a small number of elements, which can have
arbitrary magnitude. We say x is k-sparse if all but k of its elements are zero. Vectors
with a fixed subset of non-zero elements lie in a single subspace, but in a sparse
model, we allow all possible subsets of k elements to be non-zero, so that k-sparse
vectors lie in the union of

(N
k

)
different subspaces.

Instead of sparsity in the canonical basis (e.g. in an image, instead of assuming
that the image has many zero pixels), a great deal of flexibility is achieved if we
allow sparsity in a different basis. In our three dimensional world, the canonical
basis might be a description of locations in terms of north-south, east-west and up-
down, yet we are free to use a coordinate transform to represent locations in another
way. In my office, it might make more sense to specify locations in terms of their
distance from the window, the side walls and the floor. As my office is not exactly
aligned with the north-south axis (though luckily the floor is still level), the axis in the
world coordinate system are rotations of the axis in my office representation. Exactly
the same principle holds in the representation of signals. For example, we are not
restricted to represent an image by specifying values for each pixel (the canonical
space) but could instead specify two dimensional discrete wavelet coefficients to
specify spatial frequencies of the image or we might represent the image using a
2-dimensional wavelet transform. These transforms often are nothing else than a
rotation of the coordinate axis. In this case, they do not change the length of vectors,
just their representation. In other cases, the new coordinate system might actually
have axis that are not orthogonal in the original space or even have more coordinates
than the original space. In these cases, we still assume that we can find a representation
of any vector in our original space in the transformed space, but the length of elements
in the two spaces might now differ. The importance of these transforms from our
signal recovery perspective is that many signals have sparse or approximately sparse
representations in some transformed domain. For example, images are often found
to be sparse in a wavelet representation. Thus, using sparsity in transform domains
greatly enhances our ability to use sparse models to describe structure in real signals.

When talking about sparsity in a different domain, we assume that there is a linear
mapping that maps elements x of our signal space into the transformed domain. Call
this mappingΨ , so that z = Ψ x is the reprensentation of x in the transformed domain.
Importantly, we assume that there is a generalised inverse Ψ † of Ψ , such that for all
x ∈ H, x = Ψ †z = Ψ †Ψ x.
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2.2.2.3 Structured Sparse Models in Euclidean Space

Sparsity can be a powerful constraint and in many applications additional structure
can be brought into play, further increasing the utility of sparse models. Structured
sparse models are sparse models that only allow certain subsets of sparse support
sets to be present. For example, a block-sparse vector is a sparse vector in which the
non-zero coefficients are contained in pre-specified blocks. For example, if x ∈ C

N

and assume we have J blocks that partition x, that is, if B j ⊂ {1, . . . ,N }, j ∈
{1, . . . , J } is the set of indices in block j , then we assume that the blocks (1) do not
overlap (that is Bi

⋂
B j =) and (2) every index of x is in at elast one block (that is⋃

j∈J Bi = {1, 2, 3, . . . , N }). A signal that is k-block sparse is then defined as any
x whose support is contained in no more than k < J different sets B j , that is

supp(x) ⊂
⋃

J
B j : J ⊂ {1, 2, · · · , J }, |J | ≤ k. (2.6)

To define block-sparse signals here we imposed the restriction that the blocks do
not overlap and that their union includes all elements of x. In theory, we could drop
these two restrictions, however, theoretical treatment of these more general models
becomes much more difficult, and, in fact, this class of models would be so general
that it would include all possible structured sparse models.

Another set of useful structured sparse models are tree-sparse models. Instead
of partitioning the signal’s support set into disjoint blocks, tree-sparse signals have
non-zero coefficients that follow a tree structure in which all ancestors of a node are
allowed to be non-zero whenever the node itself is non-zero. A sparse tree model is
a model in which the tree is furthermore sparse, that is, the total number of non-zero
elements is small. The simplest example, a one sparse tree, would only have a non-
zero element at its root, whilst a two-sparse tree model would have as many possible
support sets as there are children of the root, as such a model would have to include
the root itself plus one of its children.

2.2.2.4 Low Rank Matrices

In many applications, data is best represented in matrix form. By specifying an
appropriate inner product and norm for matrices, the Hilbert space formalism can
also be applied to matrix problems so that geometrical ideas can be used to define
subsets of matrices that can act as signal models. A powerful constraint here is the
low-rank matrix model. The set of all M by N matrices of rank r that have the same
column and row space (the space spanned by the matrix’s row or column vectors)
form a linear subspace, that is, we can add any two of these matrices and end up
with another matrix of the same size and rank that has again the same column and
row space (or, more precisely, whose row and column spaces are subspaces of the
row and column spaces of the original matrices). However, a matrix with different
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column or row spaces does not lie in the same subspace and adding two matrices with
different column or row spaces will result in a matrix that is likely to have a different
rank from that of its two components. Thus, low-rank matrices lie in a non-convex
subset of the space of all matrices.

2.2.2.5 Sparsity in Continuous Signals

Our last set of examples are again taken from infinite dimensional spaces, where
continuous analogues to sparsity have been developed. In Shannon sampling, the
sampling rate is directly related to the bandwidth of the signal we would like to
sample. In several applications, this would lead to a prohibitive sampling rate so that
again, additional signal structure has to be exploited. A signal model that is in some
ways similar to the sparse model in Euclidean spaces is the analogue compressed
sensing model first studied in [13] for known support and in [14] for unknown support.
Here a continuous and band-limited3 real valued time series x(t) is assumed to have
a Fourier transform X ( f ) whose support S is the union of K intervals of ‘small’
bandwidth BK , i.e. S ⊂ ⋃K

k=1[dk, dk + BK ], where the dk are arbitrary scalars
from the interval [0, BN − BK ]. These signals can be understood as a continuous
version of a sparse signal, but instead of having few non-zero “elements,” only a
small part of the functions support (say in the Fourier domain) is non-zero. As the
support of the Fourier transform of a real valued function is symmetric, we here only
consider the support in the positive interval [0, BN ]. If K BK < BN then X ( f ) is
zero for some frequencies f in [0, BN ], mirroring sparsity in a vector. If we would
fix the support S, then X ( f ) and therefore x(t) would lie in a subspace of the space
of all square integrable functions with bandwidth BN . However, in a model where
S is not fixed and where K BK < BN , there will be infinitely many distinct sets S
satisfying this definition, so that x(t) will lie in the union of infinitely many infinite
dimensional subspaces. The set of all signals that have energy restricted to K bands
with K BK < BN thus is a non-convex set.

Another set of powerful models are so called Finite Rate of Innovations models.
Consider again a real valued function of one variable x(t). Such a function is said to
have a finite rate of innovation [15] if it can be written as

x(t) =
∑

n∈Z

R∑

r=0

cnrgr

(
t − tn

T

)
, (2.7)

where T, tn ∈ R and where the gr (·) are either functions (or generalised func-
tions/distributions such as the Dirac delta function). For such signals one can define
a rate of innovation as follows

3 That is, a signal whose Fourier transform X ( f ) is assumed to be zero apart from the set
S ⊂ [−BN , BN ].
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ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
, (2.8)

where the function Cx (ta, tb) is a counting function that counts the number of ‘degrees
of freedom’ in the interval [ta, tb], that is, Cx (ta, tb) counts that number of parameters
cnr for which the functions g are centred within the interval [ta, tb]. For a function x(t)
to have a finite rate of innovation, it is obviously necessary that ρ <∞. Extensions
of these ideas to complex valued functions of several variables are also possible and
make it possible to apply similar ideas to problems in image processing.

2.3 Linear Sampling Operators, Their Properties
and How They Interact with Signal Constraint Sets

Having discussed several concepts and ideas that allow us to think about signal
models using geometrical ideas, we now turn to the analysis of the sampling or
measurement process itself. We introduced a set of powerful constraint sets above to
allow us to deal with many problems in which we are unable to sample all relevant
information, either due to corruption of signals or due to constraints on resources or
fundamental physical properties of our measurement system. We will now try and
develop an understanding of how the measurement system itself acts on these signal
models.

Assume that our sampling system is linear, so that for any signal x we produce
measurements y = Φx, whereΦ is a linear sampling operator. There are two particu-
lar aspects of the sampling systemΦ we should be concerned about. If we assume the
signal follows a given model S, then we want our measurement system to measure
enough information to allows us to distinguish different signals from our model. It is
thus natural to require that for any two x1, x2 ∈ S with x1 �= x2 we haveΦx1 �= Φx2,
so that any two distinct signals give distinct observations. In this case we should (at
least in theory) be able to find the unique x ∈ S that gave rise to an observation
y = Sx.

The second fundamental requirement would be a certain robustness to noise. As
nearly all measurements are noisy to some extend, if the measurement we have of
a signal is slightly different from the measurement we would expect if there were
no noise, then we would require that the signal that in a noiseless setting would
give the actual measurement we observe is not too far from the true signal. More
concretely, assume that we want to measure a signal x, but observe the following
noisy measurement y = Φx+ e for some small noise term e. Assume that there is a
signal x̂ that also lies in our model and that satisfies y = Φx̂ = Φx+ e. As it seems
reasonable to assume that the true signal was x̂ given we observe y and don’t know
what e is, it would not be very useful that, for small e, the difference between x and x̂
is large as we would then make large errors in our signal reconstruction, even under
small noise perturbations.
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2.3.1 A Geometrical Approach to Signal Recovery

Let us recall the signal recovery problem we would like to solve. A signal is measured
and we would like to either ask specific questions about the signal or we would like
to reconstruct the signal from the measurements. With our mathematical framework,
both, the signal and the measurement will be represented as vectors which live in
some vector space. In general, we say the signal x lives in a vector space H and
the measurement y lives in a space L. For most of this chapter, H and L will be
Hilbert spaces, that is, it will make sense to talk about distance and angle between
signals (or measurements). Each measurement is a transformation of a signal x into an
observation y. This transformation is done (mathematically speaking) by an operator
Φ(x), which can either be linear or non-linear. For most of our discussion, we will
restrict ourselves to linear operators, as these are easier to understand. However, we
will also discuss how some of the ideas that hold for linear measurements can be
applied to the setting where the measurements are slightly non-linear.

Nature does not follow the idealistic precision of a mathematical operator and
any real measuring device will add at least some systematic or random noise to the
measurements. We will thus use the following fundamental measurement equation
that describes how any signal x is transformed into a particular measurement

y = Φ(x)+ e, (2.9)

where e is an unknown vector of measurement noise. This brings us to the funda-
mental problem of this book, given a measurement y and knowing enough about
the measurement process to be able to describe Φ, how can we recover the original
signal x and with what precision can we do this?

2.3.1.1 Lets Start Simple

In the simplest instance, if Φ is linear and invertible on the entire space, then we
could simply estimate x as

x̂ = Φ†y = Φ†Φx +Φ†e. (2.10)

How good this estimate is depends on how much the inverse Φ† amplifies the
error e. To see this, consider the difference between x̂ and x.

‖̂x − x‖ = ‖Φ†Φx +Φ†e − x‖ = ‖x +Φ†e − x‖ = ‖Φ†e‖. (2.11)

Relative to the size of e, this error is thus

‖̂x − x‖
‖e‖ = ‖Φ

†e‖
‖e‖ , (2.12)
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which, by the definition of the operator norm, cannot be larger than the operator
norm of Φ†. This is related to the condition number of Φ†, which is defined as the
ration of the relative change in the size of e (i.e. ‖Φ†e‖/‖e‖) to the relative change
in size of Φx (i.e. ‖Φ†Φx‖/‖Φx‖ = ‖x‖/‖‖Φx‖), which is easily seen to be the
same as the ratio of the operator norms ‖Φ‖/‖Φ†‖. Thus, if Φ is invertible and (in
an infinite dimensional setting) Φ is well-conditioned, all we need to do to recover
any signal from its measurement is to calculate the inverse of the operator and apply
it. To guarantee that the reconstruction error is small, we need to make sure that the
operator norm of the inverse is small. The inverse itself is linked to Φ itself, so that
in designing a measurement system, if we can insure that it is linearly invertible,
then all we need to do is ensure that the inverse operator has small norm or that the
operator has a condition number close to 1.

Before moving on to more challenging signal recovery problems, it is worth
thinking about the above recovery in terms of the geometry of the signal space. Any
signal that lies within a certain distance (say d) from a point c is said to lie in a ball
with centre c and radius d. Thus, the set of all error signals that have a length of
less than ε say, lie in an ε ball (with centre at zero). In the above example, where
Φ was linearly invertible on the entire signal space H, the norm of Φ† (i.e. ‖Φ†‖)
together with the size of the error e will then specify the radius around the point x
in which the estimate x̂ will lie. In the geometrical view of this chapter, we will not
specify an explicit probabilistic model for the error e. Instead, we assume that e is of
restricted size ‖e‖ ≤ ε. There is obviously a link between a probabilistic formulation
and our geometrical point of view. For example, for an independent and identically
distributed Gaussian noise term e, with high probability, we know that the error will
very likely be smaller than several (say 3) standard deviations. Similar probabilistic
arguments, where we can assume an error bound with high probability can be made
for other noise distributions as well.

2.3.1.2 More Complex, Yet Manageable

Now the case in which Φ is linear and invertible is trivial when compared to the
much more challenging task of the stable recovery of x when Φ is non-invertible or
ill-conditioned. If x is an element in some Hilbert space, but if there are at least two
x1 �= x2 such that y = Φx = Φx1 = Φx2, then there is no way in which we can
choose among the two offending x1 and x2, given only the measurement y. Typically,
if Φ is linear and non-invertible, then, for each y, there will be entire subspaces of
elements x that would give exactly the same measurement y. Non-invertible linear
operators have the property that there are elements x0 �= 0 such that Φx0 = 0. For
such an element, if we take any other x1 such that y = Φx1 and add x0 to x1 we
get the same observation y = Φx1 = Φ(x1 + x0) and we are in the above situation
where we can’t distinguish between x1 and x2 = x1 + x0. Furthermore, for linear
operators Φ, if Φx0 = 0, then Φλx0 = 0 for all scalars λ. Thus, the set of all x0 for
which Φx0 = 0 is a subspace. This subspace is called the null-space of the linear
operator Φ and will be denoted as N (Φ).
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In the case in which Φ is non-invertible, we can therefore only recover elements
from H if we can restrict the search to a subset S of H. For this restriction to work,
we require that the measurement operator Φ is invertible at least on the subset S.
To repeat; what we mean by this is that for any two x1, x2 ∈ S, with x1 �= x2, we
require that y1 = Φx1 �= Φx2 = y2. Thus, if we have a signal model that restricts
the class of signals we try to recover to a subset S of H and if Φ in invertible on the
subset, then we are again able to recover x ∈ S, even in situations in which Φ is not
invertible on all of H.

The simplest constraint sets S are convex sets of which subspaces are particularly
nice to deal with. For a subspace S it is easy to see that, if Φ is linear and invertible
on S, then the set ΦS = {y = Φx : x ∈ S} is also a subspace. That is, for any two
x1, x2 ∈ S the sum x1 + x2 is also in S and so Φ(x1 + x2) = Φx1 + Φx2 will be
in ΦS. To recover x from a noisy measurement y = Φx + ε we thus can project y
onto the subspace S (call this projected element yΦS say) and then find an estimate
x̂ such that yΦS = Φx̂. In practice, as ΦS is only defined implicitly, this might be a
bit more involved than just described, however, conceptually, the steps of projection
onto a subspace followed by the inversion on the subspace is appealing.

2.3.1.3 But Here Is the Problem

The same conceptual inversion can be carried out if S is any convex subset of H
on which Φ is invertible. Even if Φ is no longer linear, similar ideas could be used.
However, even if S is convex, if Φ is non-linear, then the set Φ(S) might no longer
be convex. Thus, finding the equivalent of a projection onto the non-conves setΦ(S)
is now far from trivial, even if we were able to invertΦ(·) on the subset S. A similar
situation arises when Φ is linear but the constraint set S is non-convex to start with.
In this caseΦS is also non-convex in general and finding the closest element onΦS
to an observation y is non-trivial. Furthermore, the search through the set S for the
element that corresponds to an element in ΦS is also tricky. These problems will be
at the heart of this chapter.

Let us repeat the thought experiment in which we measure a signal x using a
measurement operator Φ and where the observation is noisy. We have y = Φx + ε
and we want to recover x from y. Furthermore, the measurements are not conclusive
in general that is, we are not able to distinguish all elements from the space H from
their measurements. Thus, we use prior knowledge and devise a model that describes
a subset of elements of H we expect to find. In the spirit of this chapter, this model
comes in the form of a geometrical constraint set S in which we assume x to lie.
Now, if our measurements have been designed appropriately for our model, then Φ
will be invertible on S, and our theoretical approach to reconstruct x from Φx + ε
general would be

1. Find a point in ΦS that is closest to the observation y. Call this point yS .
2. As Φ is invertible on S, find the point x̂ ∈ S for which yS = Φx̂.
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For general sets S in general Hilbert spaces, there is no guarantee that there actually
is a unique point inΦS that is closer to y than all other points. In this case, we would
have to select arbitrarily from among the ‘closest’ points. For general sets S, another
problem that arises is that there might not even be a point that is closer to a given
y ∈ H than all the other points in S. For example, letΦS be the set {y = 1/n,where
n is a positive integer }. If we were to observe any non-positive number (including
zero), then there actually is no element inΦS that is the closest element. That is, for
which ever element we choose from S (say we choose element 1/N ) there is always
an infinite number of other elements which are closer to all non-positive numbers.
In this case, we would have to be contempt in step (1) of our recovery scheme with
the selection of a point in ΦS that is nearly as close to y as possible.

The closest we can get to any one point y with any element in S is given by the
infimum

inf
x∈S
‖y−Φx‖. (2.13)

We have to take the infimum here instead of the minimum, as there might actually
not be an element x that reaches this minimal distance. From the definition of the
infimum and baring in mind that infx∈S ‖y−Φx‖2 <∞, we can derive the following
lemma

Lemma 1 Let S be a nonempty closed subset of a Hilbert space H. Let Φ be an
operator from H into a Hilbert space L, then for all δ > 0 and y ∈ L, there exist an
element x̃ ∈ S for which

‖y−Φx̃‖ ≤ inf
x∈S
‖y−Φx‖ + δ. (2.14)

All this lemma is saying is that we can actually find an element in ΦS that is up to
an arbitrarily small distance as close to y as any other element in ΦS. Thus, we can
talk about a relaxed form of projection, where, instead of finding the closest point in
a set, we are contempt with a nearly closest point.

Thus consider the following mapping that for each y and a fixed and arbitrarily
small δ returns a set of elements

mδ
S(y) = {ỹ : ỹ ∈ S and ‖y− ỹ‖ ≤ inf

x∈S
‖y−Φx‖ + δ}. (2.15)

By the above lemma, the sets mδ
S(y) are non-empty for all δ > 0. An operator that for

each y returns a single element from the set mδ
S(y)will be said to be an δ-projection.

Thus, for each y, we can find the δ-best yS ∈ ΦS and then search through S to
find the unique x̂ such that yS = Φx̂.
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2.3.1.4 It Only Works If...

How far will x̂ be from x? To answer this question we need to introduce a further
property of the operatorΦ, namely a property that describes how muchΦ ‘stretches’
or ‘shrinks’ elements. For example, if we have a vector x of length ‖x‖, once we
have mapped this vector into the space L, how does the length change? IfΦ is linear,
then we say that Φ is bounded if ‖Φx‖ ≤ c‖x‖ holds for all x ∈ H and for some
fixed c, so that bounded linear operators can never ‘stretch’ vectors by more than
the operator norm (which is finite for bounded operators). But how much can x be
‘shrunk’? Remember that we are interested in problems in whichΦ is ill-conditioned
and non-invertible. For these problems, we have necessarily the tight lower bound
0 ≤ ‖Φx‖, that is, vectors in the null-space of Φ are mapped to zero vectors whilst
for ill-conditioned Φ, vectors are potentially shrunk to arbitrarily small length. But
this is exactly why we introduced the constraint set S. Thus, instead of asking what
happens to the length of all vectors in H, we instead would like to know what happens
to those vectors that live in our constraint set. Furthermore, as will become clear later,
we are actually mainly interested in the diffeence between vectors, thus, we ask, what
happens to the length of the difference of any two vectors x1 and x2 that lie in the
subset S. What is the maximum these differences are stretched and by how much
might they be shrunk? More formally, we want to find the largest real number α and
the smallest real number β such that

α‖x1 − x2‖ ≤ ‖Φ(x1 − x2)‖ ≤ β‖x1 − x2‖ (2.16)

holds for all x1, x2 ∈ S. We call the above inequality the bi-Lipschitz condition, with
α and β being the bi-Lipschitz constants.

For once, if Φ is linear and if α > 0, then Φ will actually be invertible on S, that
is, assume that x1, x2 ∈ S are different vectors, i.e. ‖x1− x2‖ > 0, so that the lower
bound in the bi-Lipschitz condition is non-zero. By the bi-Lipschitz condition this
then implies that ‖Φ(x1 − x2)‖ will also be non-zero, which in turn requires that
‖Φx1 �= Φx2‖ so thatΦ is one to one on S (that is,Φ maps distinct points in S into
distinct points in L.

However, a non-zero bound with α > 0 actually tells us more. If we use our theo-
retical reconstruction technique, that is, we project y ontoΦS (assuming for now that
this projection exists, though a similar argument can be made for ε-projections) and
then find the corresponding x ∈ S. Say yS is the projection and x̃ is the corresponding
element in S so that Φx̃ = yS . How far will x be from x̃? We have

‖x − x̃‖ ≤ 1

α
‖Φx −Φx̃‖ = 1

α
‖y− e − yS‖ ≤ 1

α
‖y− yS‖ + 1

α
‖e‖ ≤ 2

α
‖e‖,

where the second to last inequality is the triangle inequality (which is one of the
properties of a norm) and where the last inequality is due to the fact that yS is the
closest element in ΦS to y and is thus closer to y than Φx itself. Thus ‖Φx− y‖ =
‖e‖ ≥ ‖y− yS‖.
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We thus have the following Lemma.

Lemma 2 For any x ∈ S, let y = Φx + e, where Φ satisfies the bi-Lipschitz
condition with α > 0 and let yΦS be the closest element in ΦS to y, then the error
between x and x̃ ∈ S uniquely defined by yΦS = Φx̃ satisfies

‖x − x̃‖ ≤ 2

α
‖e‖. (2.17)

Therefore, if x ∈ S and ifΦ is linear and satisfies the bi-Lipschitz condition, then
our theoretical reconstruction technique will recover a signal x̃ that is no more than
2
α‖e‖ away from the true signal x. This is good news, we have just shown that, at
least in theory, we should be able to recover any x ∈ S as long as Φ is bi-Lipschitz
on S. The worst case accuracy of our recovered signal will then only depend on the
amount of measurement noise e and on the inverse of the lower bi-Lipschitz constant
α.

The same argument would hold for non-linear Φ if α‖x1 − x2‖ ≤ ‖Φ(x1) −
Φ(x2)‖, so that a non-linear operator Φ with this condition also guarantees that the
theoretical inverse is stable, that is, if we find that element yS in ΦS closest to y,
then the x̃ that satisfies yS = Φ(x̃) will be close to x.

2.3.1.5 All Models Are Wrong

S is a model for our signal and we assumed above that x ∈ S. However, as all models
are wrong (at least in general), any errors in the model have to be taken into account
in our discussion. Let us therefore consider what happens if x does not lie exactly in
S, but only ‘near by’. To deal with this case in our framework, we will consider the
projection of x onto S. Again, as S can be a general non-convex set, this ‘projection’
is not guaranteed to exist and is definitely not required to be unique. The first problem
can be dealt with in a similar way in which we dealt with the projection onto ΦS.
We can either find an δ optimal point or, restrict discussions to sets S that allow us
to find a closest point in S to all points x ∈ H. To simplify notation, we restrict
ourselves here to the second case and assume there is such a closest point. However,
this might not be unique. If there are more than one point that is closest to a point
x we will thus assume that we choose one of these. We call this point xS , so that
xS ∈ S and ‖x− xS‖ ≤ infx∈S ‖x− x‖. What about error ‖x− xS‖? To recover x
from y = Φ(x) + e we follow the same steps as before, we ‘project’ y onto Φ(S)
and then find the corresponding x ∈ S. How far is this estimate now from x? Again,
we require the stability condition α‖x1 − x2‖ ≤ ‖Φ(x1) − Φ(x2)‖ to hold, so that
(this time using the non-linear notation)

‖x − x̃‖ = ‖x − xS + xS − x̃‖
≤ ‖x − xS‖ + ‖xS − x̃‖
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≤ 1

α
‖Φ(xS)−Φ(x̃)‖ + ‖x − xS‖

= 1

α
‖y− ẽ − yS‖ + ‖x − xS‖

≤ 1

α
‖y− yS‖ + 1

α
‖ẽ‖ + ‖x − xS‖

≤ 1

α
‖e‖ + 1

α
‖ẽ‖ + ‖x − xS‖,

≤ 2

α
‖e‖ + 1

α
‖Φ(x)−Φ(xS)‖ + ‖x − xS‖.

where ẽ = e + Φ(x) − Φ(xS) and where the first inequality is again the triangle
inequality. Thus, if our model is wrong, then our recovery lemma reads (spot the two
small differences to the previous version, (1) x is no longer required to lie in S and
(2) the distances of x from xS and of Φ(x) from Φ(xS) now join the error bound)

Lemma 3 For any x, let y = Φx + e, where Φ satisfies the bi-Lipschitz condition
with α > 0 and let yΦS be the closest element in ΦS to y, then the error between x
and x̃ ∈′ S uniquely defined by yΦS = Φx̃ satisfies

‖x − x̃‖ ≤ 2

α
‖e‖ + 1

α
‖Φ(x)−Φ(xS)‖ + ‖x − xS‖. (2.18)

Thus, even if x is no longer within our model, we can still use the model S to recover
x. All we loose in the accuracy of our reconstruction is then the additional error terms
x − xS an Φ(x) − Φ(xS). Thus, if x is close to S, then we can still recover x with
high accuracy.

We have thus demonstrated that it is possible to recover elements from H which are
close to elements in S from noisey observations y = Φ(x)+e whenever α‖x1−x2‖ ≤
‖Φ(x1)−Φ(x2)‖ holds for all x1, x2 ∈ S. However, our approach to do this recovery
required two steps, (1) find an element yS in ΦS closest to y and (2) find that x̃ ∈ S
such that Φx̃ = yS . For many complex models S, both of these steps are far from
trivial. For several sets S that are of interest in many applications, we will thus
study more practical methods to recover x. Crucially, not only are these approaches
computationally much more efficient than the approach described above, they will
also be shown to have a similar worst case recovery error.

2.4 Geometry of Convex Relaxation

The first efficient approach we will discuss that can be used to recover data in certain
data-recovery problems under non-convex constraints uses convexification of the
constraint set. This is the traditional approach used in compressed sensing and its
operation relies on some beautiful geometrical reasoning. Convexification based



50 T. Blumensath

ideas have been developed predominantly for sparse problems, where there is a
natural and powerful convex version of the constraint. Consider a real vector x and
let ‖x‖0 be the number of non-zero entries in the vector x. If we want to optimise
with the constraint that ‖x‖0 is smaller than some specified integer, then we have a
non-convex constraint. Similarly, if we would like to optimise x so that ‖x‖0 is as
small as possible, subject to some other constraint (for example y = Φx), then we are
dealing with a non-convex cost function. To simplify these problems, we can replace
the non-convex function ‖x‖0 with the norm ‖x‖1, i.e. with the �1 vector norm, which
directly leads to convex problems that are much easier to solve numerically.

The question now is, under which conditions are the solutions to problems that use
‖x‖0 equivalent or similar to the solutions solved with their convex version based on
the norm ‖x‖1? To study this problem, we will look at the geometry of the constraint
set ‖x‖1 ≤ 1.

2.4.1 The Null-Space and Its Properties

Our treatment of the topic here is inspired by the work in [16, 18]. Consider the
compressed sensing problem: minimise ‖x‖0 such that y = Φx and its convex
counterpart: minimise ‖x‖1 such that y = Φx. Let x̂ be the solution to the second
one of these problems and let xk be the best k-term approximation of the vector x,
thats is xk satisfies ‖xk − x‖ = minx̃:‖x̃‖0 = k‖x̃ − x‖.

The null-space ofΦ will play a fundamental role in this section. Let h be a vector
in this null-space, that is, we have Φh = 0. We will also use the following measure
that characterises how well vectors in this null-space align with the co-ordinate axis.
The null-space property of Φ is defined as follows. Let Ck be the largest constant
such that

Ck

∑

i∈K
|hi | ≤

∑

i /∈K
|hi |, (2.19)

holds for all vectors h in the null-space ofΦ and for all index sets K of size k or less.
Importantly, if the above condition holds for all subsets of K elements of the vector
h, then it must also hold for the subset of the k largest elements. We can therefore
write the above condition as

Ck‖hk‖ ≤ ‖h− hk‖, (2.20)

where hk is again the vector with the largest (in magnitude) k elements of h and zeros
elsewhere. This condition is known as the null-space property of Φ and if it holds
for Ck ≤ 1, then we say that Φ satisfies the null-space property of order k.
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2.4.2 The Null-Space Property for Signal Recovery

The null-space property directly implies a bound on the quality of the solution x̂ to
the convex optimisation problem: minimise ‖x‖1 such that y = Φx.

To see this, let x be any vector such that y = Φx and let x̂ be the minimum of the
optimisation problem so that ‖x̂‖1 ≤ ‖x‖1 and y = Φx̂ = Φx. We want to bound
the length of the error x̂ − x. To do this, we first note that the vector h = x̂ − x
lies in the null-space of Φ. To see this we use the fact that y = Φx̂ = Φx, so that
0 = Φx̂ −Φx = Φ(x̂ − x).

Note that the �1 norm has the property that for any vector x, we have ‖x‖1 =
‖xk‖1 + ‖x − xk‖1. Furthermore, note that the null-space property implies that for
all h that lie in the null-space of Φ

(C − 1)(‖hk‖1 + ‖h− hk‖1) = C‖hk‖1 − ‖hk‖1 + C‖h− hk‖1 − ‖h− hk‖1
≤ ‖h− hk‖1 − ‖hk‖1 + C‖h− hk‖1 − C‖hk‖1
= C + 1 (‖h− hk‖1 − ‖hk‖1), (2.21)

which we will use in the following form

‖hk‖1 + ‖h− hk‖1 ≤ C + 1

C − 1
(‖h− hk‖1 − ‖hk‖1) (2.22)

Using these two inequalities, we can then decompose and bound the �1 norm of
the error x − x̂.

‖x − x̂‖1 = ‖h‖ = ‖hk‖1 + ‖h− hk‖1
≤ C + 1

C − 1
(‖h− hk‖1 − ‖hk‖1)

= C + 1

C − 1
(‖h− hk‖1 − ‖hk‖1 − ‖x − xk‖1 + ‖x − xk‖1)

≤ C + 1

C − 1
(‖(h− hk)+ (x − xk)‖1 − ‖hk‖1 + ‖x − xk‖1)

= C + 1

C − 1
(‖(h− hk)+ (x − xk)‖1 − ‖hk‖1 + ‖xk‖1 − ‖xk‖1 + ‖x − xk‖1)

≤ C + 1

C − 1
(‖(h− hk)+ (x − xk)‖1 + ‖hk + xk‖1 − ‖xk‖1 + ‖x − xk‖1)

= C + 1

C − 1
(‖x + h‖1 − ‖xk‖1 + ‖x − xk‖1)

= C + 1

C − 1

(‖x̂‖1 − ‖xk‖1 + ‖x − xk‖1
)

≤ C + 1

C − 1
(‖x‖1 − ‖xk‖1 + ‖x − xk‖1)



52 T. Blumensath

= C + 1

C − 1
(‖x − xk‖1 + ‖x − xk‖1)

= 2
C + 1

C − 1
‖x − xk‖1 (2.23)

Let us walk through this chain of equalities and inequalities at a more pedestrian
speed. The first equality just re-states that the error x− x̂ lies in the null-space of Φ.
The second equality is then the first property above, whilst the first inequality is the
second property in (2.22). The next equality simply adds and subtracts ‖x − xk‖1,
whilst in the following line we use the triangle inequality

‖(h− hk)+ (x − xk)‖1 = ‖(h− hk)+ (x − xk)+ (xk + hk)− (xk + hk)‖1
≤ ‖(h− hk)+ (x − xk)+ (xk + hk)‖1 + ‖(xk + hk)‖1.

We again add and subtract the same number, before making a second use of the
triangle inequality. We then use the fact that the two vectors (h − hk) + (x − xk)

and hk + xk have different support, so that we can again use property one. The next
equality just uses the definition of x̂ = x + h, whilst the last inequality uses the
fact that ‖x̂‖1 ≤ ‖x‖1 (remember, x̂ minimises the �1 norm among all x that satisfy
y = Φx). We finish the argument by a final application of property one.

Interestingly, the requirement that the null-space property holds is not only suf-
ficient for the above bound to hold (as we have just shown) but is also necessary in
the following sense. If the null-space property is violated, then there exists a mea-
surement matrix with this null-space so that the above bound is violated for some
k [16]. Note however that this does not imply that the bound is violated necessarily
for any particular measurement matrix Φ even if it has a null-space that violates the
condition.

Note also that the result here is slightly different from that of the “ideal” algorithm
of the previous section and is also different from the bounds we derive in the next
section. Firstly, the null-spaced based results are not able to account for measurement
errors. Secondly, the bound here is in terms of the �1 norm of the error x−xk , that is,
it tells us how well we can approximate vectors whose N − k smallest coefficients
have a small �1 norm. A theory based on ideas similar to the bi-Lipschitz condition
on Φ can also be derived. This is done for example in [5, 17]. For example, in [17]
we have the following result which is more similar to that in Lemma 3.

Theorem 2 For any x, assume Φ satisfies the bi-Lipschitz property

(1− γ)‖x1 + x2‖2 ≤ ‖Φ(x1 + x2)‖2 ≤ (1+ γ)‖x1 + x2‖2, (2.24)

where γ <
√

2 − 1. Given observations y = Φx + e, the minimiser of the problem
minx̃‖x̃‖1 subject to the constraint that ‖y−Φx̃‖ ≤ ‖e‖ recovers an estimate x̂ that
satisfies

‖x − x̂‖ ≤0 C ‖̃e‖ + C1‖xk − x‖, (2.25)
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where ẽ = Φ(x − xk)+ e and where Co and C1 are constants depending on γ.

Instead of proving this result here (the interested reader is redirected to [17]), we
instead return to the null-space property and study the geometrical implications this
property has for the recovery of sparse vectors in somewhat more detail.

2.4.3 Random Null-Spaces and the Grassman Angle

To build a measurement system that would allow us to use �1 recovery with the tight
error bounds derived in (2.23), we thus need to ensure that the measurement system
satisfies the null-space property. One particularly powerful approach to construct
measurement systems is through random construction methods and it can be shown
that these systems often satisfy the required null-space properties. As the null-space
property is fundamentally geometrical in nature, geometrical ideas can also be used
to study and understand these construction techniques.

Instead of the careful construction of a matrix whose null-space satisfies the null-
space property, it is significantly simpler to randomly choose a null-space and then
construct a matrix that has the same null-space. In fact, this random construction is
one of the only few known construction method that can build matrices that on the
one hand satisfy the null-space property and on the other hand, are optimal in terms
of the number of measurements. However, we must note that, if we use a random
construction, then our desired property will only hold with high probability and is
not absolutely guaranteed.

We will assume that the null-space is chosen randomly in such a way that its
distribution is rotation invariant. With this we mean that, if B is a basis for a null-
space of dimension N and if U is an orthonormal rotation matrix, then any rotation
invariant distribution p(B) must satisfy p(B) = p(UB). For example, if we choose
the entries of the matrix Φ ∈ R

M×N to be drawn independently from a zero-mean
unit variance normal distribution, and if M < N , then the distribution of the null-
space of Φ will have this property.

The null-space property of a matrix Φ is related to the following property (see
[16]).

Lemma 4 Let K be a subset of k of the indices of a vector in R
N . Then, the null-space

property
C‖h‖1 ≤ ‖h− hk‖1, (2.26)

for all h in the null-space is equivalent to the property that all vectors x supported
on K satisfy

‖x + hk‖1 + ‖h− hk

C
‖1 ≥ ‖x‖1 (2.27)

for all h in the null-space.
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We here use the notation hk to refer to a version of the vector h in which all entries
are set to 0 apart from those elements with indices in the set K.

To derive a lower bound on the probability under which a randomly sampled
subspace satisfies the null-space property, we can therefore derive an upper bound
on the probability with which the above condition fails. That is, what is the probability
that for any k-sparse vector x the condition in (2.27) will fail?

To answer this question, we first note that we can restrict our attention to vectors
x that satisfy ‖x‖1 = 1. This is because if (2.27) holds or fails for any x, then it will
also hold or fail for cx for any c.

Let us now look at the probability that a randomly chosen null-space violates
(2.27) for a particular x with a given support set K and a particular sign patters.
We will call this probability PK. To understand the geometric properties of PK let
us consider all vectors x which satisfy ‖x‖1 = 1 and which have a support K with
|K| = k.

As we assume ‖x‖1 = 1, the condition in (2.27) is related to the following
geometrical object.

W B = {x̂ ∈ R
N : ‖x̂k‖1 + ‖ x̂ − x̂k

C
‖1 ≤ 1}. (2.28)

We call this cross-polytope the weighted �1 ball. A sketch of W B, x and h is given
in Fig. 2.1. The probability PK is thus the probability that there exist a vector h �= 0
in the null-space of Φ so that for at least one k-sparse vector x with ‖x‖1 = 1 and
support K, where sign(xk) is fixed, we have

‖x + hk‖1 + ‖h− hk

C
‖1 < ‖x‖1 = 1. (2.29)

Note that all the k-sparse x we consider here (those with ‖x‖1 = 1) lie on the
surface of an �1 ball. Furthermore, because x is assumed to be k-sparse, x lies on a
k-dimensional face. To get a geometrical intuition for this, think of a diamond (build
by sticking two equal pyramids that have a square base and equal-lateral triangle
sides together at the square surface). Such a diamond is a cross-polytope in three
dimensions. Each of its eight triangular sides is a two dimensional face. Furthermore,
the diamond has eight ridges, which are, in high-dimensional geometry language,
one-dimensional faces. Finally, the six sharp corners are called zero-dimensional
faces or, alternatively, vertices. To further build our geometrical intuition, assume
that our co-ordinate axis are aligned with the diamond edges (or vertices). If these
vertices lie at exactly the points [100], [−100], [010], [0−10], [001] and [00−1], then
the diamond is the unit �1 ball in three dimensions. Importantly, note also that any
2-sparse vector with unit �1 norm will lie on one of the ridges (or two-dimensional
faces). Now, once we fix the support set K, then in our two dimensional example, xk

will lie in one of the three planes that align exactly with four of the eight ridges of
the diamond. Exactly which four ridges depends on the support set K. The weighted
�1 ball in this three dimensional example would then be a stretched diamond in
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Fig. 2.1 Low dimensional sketch of the vectors, subspaces and �1 ball involved in the discussion
of this section. For this simple two dimensional example, the null-spaces are chosen to be one-
dimensional. A 1-sparse vectors x can be recovered if the null-space is null-space 1, as there is no
null-space vector h1 such that x + h1 lies within the cross-polytope W B (see dotted line labeled
x + h1). If, on the other hand, the null-space is null-space 2, then there exist null-space vectors h2
such that x + h2 lies within W B (see the solid section of the dotted line labeled x + h2) and x is
not recoverable

which the two vertices that do not lie on the two dimensional subspace defined by
the support set K are further away from the coordinate centre. Furthermore, we only
consider one of the four possible sign patterns, which means that xk is assumed to
lie on only one of the four ridges.

The same principle holds in higher dimensions. Consider any particular k-sparse
x that lies in the interior of a k-face of the “stretched” �1 ball (the k-face itself lies
in the plane where no “stretching” has occurred). With interior of the face we here
mean that we assume that x lies exactly within the k-face but not in any one of the
k−1-faces, i.e. x has exactly k non-zero entries and not fewer. In our three dimensional
pyramid for k = 2 this would mean that x lies on a ridge, but not exactly at a corner.

Let us now consider the probability that a randomly drawn subspace has vectors
that satisfy

‖x + hk‖1 + ‖h− hk

C
‖1 < ‖x‖1 = 1 (2.30)

for at least one such x, which as stated above is exactly the probability with which
such a null-space would violate the null-space property for one of the possible sign
patterns.

In our three dimensional example, the stretched cross-polytope is a stretched
diamond and any 2-sparse vector x would be assumed to lie on one of the non-
stretched ridges. Now if we were to draw a direction d at random (our null-space)
and consider the affine subspace x+d, then what is the probability that this subspace
does not go through the stretched diamond? Whilst in this three dimensional example
with a two sparse vector, a one-dimensional subspace is really the only interesting
scenario, in high dimensions, there is substantially more space and there is actually
space to “attach” significantly higher dimensional subspaces onto low-dimensional
faces of our diamond without the subspace actually cutting into the diamond itself.
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Let us first try and think about the probability that a one-dimensional subspace
does not intersect our stretched diamond if we attach it to a particular ridge. This
probability is equivalent to a randomly drawn vector lying within a particular cone.
To see this, take your diamond and shift it so that the point x lies at the centre of our
coordinate system. In our three-dimensional example, all that we really care about
in terms of the intersection of our subspace and the diamond is the intersection with
the two two-faces that intersect at the ridge on which x lies. Now after shifting our
diamond, our condition is violated as soon as a randomly drawn vector intersect any
one of these two faces. And this happens with exactly the same probability with which
a randomly drawn vector would lie within the cone generated by these two faces. Our
problem is thus the same as one of specifying the probabilities with which randomly
drawn subspaces lie within a cone specified by the faces of our cross-polytope that
intersect with the face on which x lies.

Luckily, this is a problem that has been studied before. In fact, the probability that a
randomly chosen low-dimensional subspace intersects with a skewed cross-polytope
is equal to a geometric property known as the complementary Grassmann angle
[19]. There even is a ready made formula available to calculate the complementary
Grassman angle for any (k − 1) dimensional face [20].

P|K| = 2
∑

i

∑

F AC Ei

β(F AC Ek, F AC Ei )γ(F AC Ei ,W B). (2.31)

The first sum is over all non-negative integers i and the second sum is over all
(M+1+2i) dimensional faces F AC Ei of the skewed cross-polytope. Here F AC Ek

is the k dimensional face on which we assume that x lies whilst W B is the entire
cross-polytope itself. Both functions β(·, ·) and γ(·, ·) are functions of two faces of
the cross-polytope (note that the entire polytope also counts as a face).

β(F AC E1, F AC E2) is known as the internal angle. The internal angle is a geo-
metrical property of the two faces. The angle is calculated by considering the fol-
lowing cone C . For all x in F AC E1, shift the polytope so that x = 0 and let C(x)
be the cone of all vectors that leave x and intersect the face F AC E2. C is then the
intersection of all cones C = ⋃

x∈F AC E1
C(x). The internal angle is now the pro-

portion of the unit sphere of the same dimension as the cone, that is covered by the
cone. The internal angle is zero if the two faces do not intersect and is unity if the
faces are identical.

γ(F AC E1, F AC E2) on the other hand is known as the external angle. The exter-
nal angle is defined in a similar way, however, the cone is constructed differently by
considering all outward normals to the hyperplanes that support the two faces. The
external angle is again zero if the two faces do not intersect and is unity if the faces
are identical.

The main effort now is the derivation for expressions that quantify these angles
[16], but instead of going through this lengthy derivation here, or in fact, stating the
expressions themselves, let us instead consider how these can be used to bound the
probability we are interested in.



2 The Geometry of Compressed Sensing 57

Now the above probability was for a given support set and a given sparsity pattern.
However, we require the condition to hold for all support sets. To derive such a bound,
let us first count the number of different support sets. For each support set, there are
2|K| different sign patterns. Furthermore, there are

(n
k

)
different support sets with

k non-zero elements. We can therefore use a so called union bound to bound the
probability of failure. A union bound uses the following simple probabilistic fact. If
A and B are two events, then the probability that A or B holds (write P(A ∪ B)) is
always smaller or equal the probability that A holds (P(A)) added to the probability
that B holds (P(A)). Thus

P(A ∪ B) ≤ P(A)+ P(B). (2.32)

If we apply this principle to the probabilities that (2.27) is violated for one of the
support sets and one of the sign patterns, then we can bound this probability as

P(Failure) ≤
(

n

k

)
2k PK. (2.33)

We thus see that the probability is bounded as a function of k and PK. PK itself
depends on the dimensions of the problem M and N as well as k. It also depends
on C (as C specifies the amount of stretching in our weighted �1 ball). The main
message is that, if we require a level of robustness (as defined by C and k) and want to
observe a vector of length N , then we need to chose the number of observations large
enough, so that the probability

(n
k

)
2k PK is sufficiently small. In this case, a randomly

chosen N −M dimensional subspace will (with a probability bounded by
(n

k

)
2k PK)

allow us to reconstruct our vector within the required precision. Unfortunately, closed
form expressions are not available for the probabilistic bound derived here, however,
numerical methods can be used to evaluate the required Grassmann angles for any
required combination of C,M, N and k [16].

2.5 Geometry of Iterative Projection Algorithms

There are two main approaches to the solution of signal recovery problems under non-
convex constraints. The first approach, discussed in the previous section, replaced
the non-convex problem with a convex one, thus greatly simplifying it. In this section
we look at an alternative, greedy methods. Greedy methods are iterative schemes that
replace a non-convex optimisation problem with a sequence of simpler problems.
The moniker ‘greedy’ here indicates that these methods ‘greedily’ grab a signal
from the non-convex constraint set to satisfy these local optimisation constraints.
Whilst there are many greedy algorithms, we here discuss a conceptually simple, yet
extremely powerful approach that has similar performance guarantees to the convex
relaxation based approaches discussed above, yet can also be used with many non-
convex constraints for which there are no simple convex relaxations.
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2.5.1 The Iterative Hard Thresholding Algorithm

The Iterative Hard Thresholding algorithm [21, 22], also known as the Iterative
Projection or Projected Landweber Algorithm, is an iterative method that, as the
name suggests, thresholds or projects an estimate iteratively. To see how this method
works, let us consider again the optimisation problem we are trying to solve.

min
x
‖y−Φx‖2 : x ∈ S, (2.34)

where S is a possibly non-convex constraint set.
Without any constraint, the simplest approach to tackle the above problem would

be to use gradient optimisation (assuming that the gradient of ‖y−Φx‖2 exists). If g
is the negative gradient of ‖y−Φx‖2 (or the Gâteaux derivative if x is a more general
function), then this optimisation would update an estimate xn using the iteration

xn+1 = xn +Ωg, (2.35)

where Ω is either a scalar step size, or more generally, a linear map to precondition
and stabilise the problem. For example, Ω could be the inverse of ΦΦT [23, 24]
or the Hessian operator as in Newton’s method. However, if Φ is non-invertible or
ill-conditioned, then this optimisation will not lead to a unique and stable solution,
which was the reason why the constraint set S was introduced in the first place. Thus,
to utilise the constraint, we simply enforce the requirement that xn+1 lies in S. To
do this, the estimate a = xn + μg has to be mapped to an element in S and, to keep
the potential increase in our cost ‖y−Φx‖2 this mapping entails to a minimum, this
mapping should not take us too far away from a itself. Thus, we would ideally like
to find a point in S that is as close to a as possible. If we are able to calculate such a
projection for the non-convex set S, then we can use the Iterative Hard Thresholding
algorithm.

xn+1 = PS(xn +Ωg), (2.36)

where PS is this projection mapping.
This procedure might remind the reader of the approach we have discussed above,

in which the reconstruction was done via a projection of y onto the closest element
in ΦS. In principle, the projection PS is defined in a similar way to the projection
onto the setΦS. Thus, if we are able to efficiently calculate the projection ontoΦS,
then there would be no need to use the more complex Iterative Hard Thresholding
algorithm. The point however is that, for many constraint sets S used in practice,
calculating the projection PS is significantly more efficient than to try and project
onto the set ΦS. Several examples are given next.
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2.5.2 Projections onto Non-convex Sets

Let us start by formalising again what we will mean when talking about projections
onto the set S ⊂ H. A projection operator PS will be any map that, for a given x ∈ H
returns a unique element xS ∈ S such that

‖x − xS‖ = inf
˜x∈S
‖x − x̃‖. (2.37)

Again, in certain circumstances, there might not be any x ∈ S for which this prop-
erty holds with equality. In those cases, one can again relax the requirement on the
projection and talk of ε projections as those mappings PS that, for a given x ∈ H
returns a unique element xS ∈ S such that

‖x − xS‖ ≤ inf
˜x∈S
‖x − x̃‖ + ε. (2.38)

2.5.2.1 Sparsity

In Euclidean space, a sparse vector x is an element of R
N or C

N for which xi = 0
for “many” of the indices i ⊂ [1, 2, . . . , N ]. A popular constraint set is then the set
Sk of all vectors x in R

N (or in C
N ) that have no more than k < N non-zero entries.

As discussed above, this is a non-convex set and for generalΦ finding the projection
ontoΦSk is far from trivial, in fact this is a combinatorial search problem in general
and we would have to look at each of the k-sparse subspaces in Sk in turn. However,
projecting a vector x onto Sk itself is trivial, all one has to do is to identify the k
largest (in magnitude) components |xi | and setting all other components to zero.4

2.5.2.2 Block-Sparsity

Like many other structured sparsity constraints, block-sparsity is not easy to deal
with directly in the observation domain, that is, it is difficult to project ontoΦS. Yet
again, projection onto S itself is trivial and is done in a similar way to the sparse case.
The only difference now is that we have to calculate the length of x when restricted
to each of the blocks. For example, if the individual blocks are labeled with indices
j and if x j is the sub-vectors of x containing only those elements in block j , then we
calculate the length of each x j and set all blocks to zero apart from those elements
that are in the k largest blocks.

4 We assume here that we use the norm
√∑

x2
i , though other Euclidean norms are treated with

equal ease.
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2.5.2.3 Tree-Sparsity

Tree sparse models are the other main structured sparsity model of interest. For a given
Euclidean vector x and a pre-defined tree structure, finding the closest sparse vector
that respects the tree structure is somewhat more complicated than the projection
in the previous two examples. Luckily, there exist fast (yet in the worst case only
approximate) algorithms that can be used. In particular, the condensing sort and
select algorithm (CSSA) is relatively fast as it only requires a computational effort
that, in many instances, is of the order of O(N log N ) [25].

2.5.2.4 Sparsity in Other Bases

In the three examples above we have used constraint sets in which the signal model
assumed sparsity in the canonical basis, that is, we thought about vectors as collec-
tions of N numbers and sparsity simply meant we were only allowed a few non-zero
numbers. To do this, we have implicitly assumed that we write the vector as a col-
lection of N real or complex numbers, that is, we assumed that we write our vectors
in the traditional linear algebra notation as

x = [x1x2x3 · · · xN ]T . (2.39)

Such a notation only specifies a vector if it is made with respect to some basis.
Remember, it is best to think of a vector as a point in spaces, say the location of a
particular flat in an apartment block, whose location you could specify as 3 floors up,
corridor to the left and the third flat on the right, which could be written as [3 3 1].
However, other coordinate systems are possible and would lead to a different set of
three numbers. The same is, as said before, also possible for our signal representation.
If our signals x is a vector in Euclidean space, then we can write it as

x =
∑

i

ai xi , (2.40)

where the ai are the numbers that specify the location and where the xi are a particular
basis. For example, for a sampled time series, we typically use what is called the
canonical basis, where each basis vector is used to specify the signal intensity at
each of the sample time-points. But, if we think about signals as points in space, then
we are free to choose more convenient coordinate axis. This is particularly useful as
sparsity is a property of collections of numbers (which are often informally called
vectors, a sin we here freely commit too, but which, as we stressed above, are not
to be confused with the definition of a vector as a point in space) and not of a point
in space. A point in space can only be spares if we define the appropriate basis in
which its representation is sparse and different signals are sparse in different bases.
For example, many natural sounds are made up of a small number of harmonic
components so that sounds are often fairly sparse using Fourier or other sinusoidal
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bases. Images, on the other hand, are often found to be sparse in representations
based on wavelet bases.

It is easy to compute the projection of any signal onto any one of the basis vectors.
This is done simply as

〈x, xi 〉/‖xi‖, (2.41)

where xi is the basis vector we project onto. If all basis vectors are orthogonal,
then we can also use this approach to project onto the linear subspace spanned by
a subset of the basis vectors. Importantly, for orthogonal bases, the optimal choice
of the coefficient for one basis vectror does not depend on the choice of the other
basis vectors. This nice property does no longer hold if the basis is not orthogonal,
however. Thus, finding a sparse approximation in any orthogonal basis is simple and
can be computed by finding the representation of the signal in the basis, followed by a
simple thresholding where only the elements are kept that have the largest magnitude.
However, this simple approach is no longer possible in general when the basis is not
orthogonal and the non-orthogonality will have to be taken into account.

2.5.2.5 Low Rank Matrices

As discussed above, data that comes in matrix form also allows the specification of
powerful non-convex constraints. For matrices that are known to have a low rank
we require a projection onto low rank matrices.Again, these projections are easy to
calculate. The best approximation of a matrix with a matrix of rank k can be calculated
using the Singular Value Decomposition of the matrix followed by thresholding of
the singular values, such that only the largest k singular values are retained [26].

2.5.3 Convergence and Stable Recovery

The main question we should ask at this point is, “How good is the Iterative Hard
Thresholding algorithm?” that is, if we are given an observation y, where y = Φx+e
and if we run the algorithm for a number of iterations, how close will our estimate x̂
be to the true, unknown signal x?

An answer to this question is provided by the following theorem taken from [9].

Theorem 3 Assume an arbitrary signal x in some Hilbert space H. Assume you
are given an observation y and a measurement operator Φ and you assume that
y = Φx + e where e is an unknown error term. You furthermore know, from prior
experience, that x lies close to a non-convex constraint-set S. Then, if Φ satisfies
the bi-Lipschitz condition on S with constants β/α < 1.5, then the Iterative Hard
Thresholding algorithm run with a step size μ that satisfies β ≤ 1

μ < 1.5α and
run for
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n� =
⌈

2
log(δ ‖̃e‖

‖PS (x)‖ )
log(2/(μα)− 2)

⌉
(2.42)

iterations, will calculate a solution x̂ satisfying

‖x − x̂‖ ≤ (√
c + δ

) ‖̃e‖ + ‖PS(x)− x‖ (2.43)

where c ≤ 4
3α−2μ , ẽ = Φ(x − PS(x))+ e and δ > 0 is arbitrary.

There are several interesting observations to be made here. Let us start by looking
at the number of iterations required by the theorem.

n� =
⌈

2
log(δ ‖̃e‖

‖PS (x)‖ )
log(2/(μα)− 2)

⌉
, (2.44)

which depends on the ratio δ ‖̃e‖
‖PS (x)‖ , which is a form of signal to noise ratio, however,

the signal component here is PS(x), that is, the projection of the true signal onto
the closest element in S. Similarly, the error term ẽ = Φ(x − PS(x))+ e, does not
only account for the observation noise e, but also for the distance between the true
signal and the model x − PS(x)). The flexibility in the choice of δ in the theorem
allows us furthermore to trade the number of iterations with approximation accuracy.
Importantly, δ influences the error bound linearly (halving δ will decrease the error
bound dependance on ẽ with a constant proportion) but it feeds into the required
iteration count within the logarithm, so that a linear change in the approximation
error only requires a logarithmic increase in computation time.5

Let us also look closer at the approximation error itself. This is made up of two
error terms, ‖̃e‖ and ‖PS(x) − x‖. The second one of these terms ‖PS(x) − x‖, is
the distance between the true signal x and its best approximation with an element
from S. Clearly, all our estimates are from the set S, so we will be unable to get
an approximation that is better than ‖PS(x) − x‖. The second terms, ẽ = Φ(x −
PS(x))+e, is made up of two error contributions, the observation noise e and the error
(x− PS(x)) again, but this time, after being mapped into the observation space. The
fraction of this error we actually have to suffer depends on the number of iterations
we use (through δ) and the constant c ≤ 4

3α−2μ , which is bounded by μ and α. As μ
ultimately depends on β, the constant c thus depends on the bi-Lipschitz properties
of Φ on S.

5 Note that for δ <
‖PS (x)‖‖̃e‖ and for μ and α as in the theorem, both, the numerator and the

denominator in the iteration count are negative numbers, so that a decrease in delta leads to an
increase in the required number of iterations. If we were to choose δ such that the numerator
becomes positive, we would get a negative number of iterations. This has to be interpreted as
meaning that we actually don’t need to run the algorithm at all, as the associated estimate error is
already achieved by the estimate x̂ = x0 = 0.
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2.5.4 The Proof

Proof We now show how the above theorem can be derived using the geometrical
ideas developed throughout this chapter. The derivation here follows that in [9].
Our aim is to bound the distance between the true signal x and its estimate x̂n after
iteration n. To do this, we start with the trusted triangle inequality to split this vector
into two components, the error between x and xS = PS(x) and the error between
xS = PS(x) and x̂n . This gives the bound

‖x − x̂n‖2 ≤ ‖xS − x̂n‖2 + ‖xS − x‖2. (2.45)

We see that the term ‖xS − x‖2 is already the last term in our error bound in the
theorem and, as discussed before, we can’t expect to do better than this, so we are
done with this term and instead concentrate on the first term, the length of xS − x̂n

which we will bound further. Our aim here will be to bound ‖xS−x̂n‖2 in terms of the
length of the error in the previous iteration plus some extra error terms independent
of x̂.

Note that both xS and x̂n lie within the set S, so that we can use the bi-Lipschitz
condition for both of these vectors, in particular, we have

‖xS − x̂n‖22 ≤
1

α
‖Φ(xS − x̂n)‖22. (2.46)

If we now use the definition ẽ = Φ(x − xS) + e, we see that ΦxS − Φx̂n =
ΦxS − Φx̂n + Φx − ΦxS + e − Φ(x − xS) + e = (y − Φx̂n) − ẽ. We can thus
express the square of the length of Φ(x − xS) + e as the sum of the square of the
length of y−Φx̂n and ẽ.

‖Φ(xS − x̂n)‖22 = ‖y−Φx̂n‖22 + ‖̃e‖22 − 2〈̃e, (y−Φx̂n)〉
≤ ‖y−Φx̂n‖22 + ‖̃e‖22 + ‖̃e‖22 + ‖y−Φx̂n‖22
= 2‖y−Φx̂n‖22 + 2‖̃e‖22, (2.47)

with the last inequality derived through the inequalities

−2〈̃e, (y−Φx̂n)〉 = −‖̃e + (y−Φx̂n)‖22 + ‖̃e‖22 + ‖(y−Φx̂n)‖22
≤ ‖̃e‖22 + ‖(y−Φx̂n)‖22. (2.48)

We are now ready to bound the first term in (2.47). This is done using the abbre-
viation gn−1 = 2ΦT (y−Φx̂n−1) and the inequality

‖y−Φx̂n‖22 ≤ (μ−1−α)‖(xS− x̂n−1)‖22+‖̃e‖22+(β−μ−1)‖x̂n− x̂n−1‖22, (2.49)

which is due to the inequality
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‖y−Φx̂n‖22 − ‖y−Φx̂n−1‖22
≤ −〈(xS − x̂n−1), gn−1〉 + μ−1‖xS − x̂n−1‖22 + (β − μ−1)‖x̂n − x̂n−1‖22
≤ −〈(xS − x̂n−1), gn−1〉 + ‖Φ(xS − x̂n−1)‖22
+ (μ−1 − α)‖xS − x̂n−1‖22 + (β − μ−1)‖x̂n − x̂n−1‖22
= ‖̃e‖22 − ‖y−Φx̂n−1‖22 + (μ−1 − α)‖(xS − x̂n−1)‖22 + (β − μ−1)‖x̂n − x̂n−1‖22.

(2.50)

Here, the second inequality is due to the non-symmetric RIP whilst the first inequality
follows from the lemma [9]

Lemma 5 If x̂n = Hk(x̂n−1 + μΦT (y−Φx̂n−1)), then

‖y−Φx̂n‖22 − ‖y−Φx̂n−1‖22
≤− 〈(xS − x̂n−1), gn−1〉 + μ−1‖xS − x̂n−1‖22 + (β − μ−1)‖x̂n − x̂n−1‖22 (2.51)

We can now combine the inequalities (2.45), (2.46) and (2.49). If β ≤ μ−1, then
we have

‖xS − x̂n‖22 ≤ 2

(
1

μα
− 1

)
‖(xS − x̂n−1)‖22 +

4

α
‖̃e‖22. (2.52)

This is exactly the ound we were looking for as now the error between xS and
the current estimate is smaller than a fraction of the difference between xS and
the previous estimate (plus some additional noise term). Because we also have the
restriction that 2( 1

μα − 1) < 1, so that if we replace ‖(xS − x̂n−1)‖22 with the bound

in terms of ‖(xS − x̂m−2)‖22 and then ‖(xS − x̂n−2)‖22 with the bound in terms of
‖(xS − x̂m−3)‖22 and so on until we end up with a bound in terms of ‖(xS − x̂0)‖22,
where we assume that x̂0 = 0, then we have

‖xS − x̂n‖22 ≤
(

2

(
1

μα
− 1

))n

‖xS‖22 + c‖̃e‖22, (2.53)

with c ≤ 4
3α−2μ−1 . These arguments then lead to the claim in the theorem. To see

this, we first bound the distance of x from our estimate at iteration n

‖x − x̂n‖2 ≤
√(

2

μα
− 2

)n

‖xS‖22 + c‖̃e‖22 + ‖xS − x‖2

≤
(

2

μα
− 2

)n/2

‖xS‖2 + c0.5‖̃e‖2 + ‖xS − x‖2, (2.54)

which shows that after n� =
⌈

2 log(‖̃e‖2/‖xS‖2)
log(2/(μα)−2)

⌉
iterations we have
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‖x − xn�‖2 ≤ (c0.5 + 1)‖̃e‖2 + ‖xS − x‖2. (2.55)

2.6 Extensions to Non-linear Observation Models

We are here interested in the development of a better understanding of what happens
to the compressed sensing recovery problem when a signal is measured with some
non-linear system. In particular, the hope is that, if the system is not too non-linear,
then recovery should still be possible under similar assumptions to those made in
linear compressed sensing. Considering non-linear measurements is not only of aca-
demic interest but has important implications for many real-world sampling systems,
where measurement system can often not be designed to be perfectly linear. Assume
therefore that our measurements are described by a nonlinear mapping Φ(·) that
maps elements of the normed vector spaces H into the normed vector spaces B. The
observation model is therefore

y = Φ(x)+ e, (2.56)

where e ∈ B is an unknown but bounded error term.
In order to keep our development as general as possible, we will allow the error

between y andΦ(x) to be measured with some general norm, that is, whilst we assume
that x is an element from some Hilbert spaces H, y will be allowed to lie in a more
general Banach space B with norm ‖·‖B. Whilst we have not yet derived a full under-
standing of this recovery problem, some progress has been made. For example, we
could show that the Iterative Hard Thresholding algorithm can also solve quite general
non-convex optimisation problems under general Union of Subspaces non-convex
constraints, given that a condition similar to the bi-Lipschitz property holds [28].

2.6.1 The Iterative Hard Thresholding Algorithm for Nonlinear
Optimisation Under Non-convex Constraints

We start by treating the problem in a quite general framework where we want to
optimise a non-convex function f (x) under the constraint that x lies in a union of
subspaces S. This optimisation will be done using the Iterative Hard Thresholding
method and to do this, we will need to specify an update direction. For example, we
could assume that f (x) is Fréchet differentiable with respect to x. The Fréchet deriv-
ative is an extension of differentiation to function spaces and is defined as follows. A
function is Fréchet differentiable if for each x1 there exist a linear functional Dx1(·)
such that

lim
h→0

f (x1 + h)− f (x1)− Dx1(h)
‖h‖ = 0. (2.57)
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So not to have to deal with an abstract linear functional, we will use the Riesz rep-
resentation theorem [29] which tells us that for each linear functional, we can find
an equivalent inner product representation. Thus, we can always find a function ∇
so that we can write the functional Dx1(·) as an inner product

Dx1(·) = 〈∇(x1), ·〉. (2.58)

∇(x1) ∈ H is now an element of our function space.
In situations in which the space H is Euclidean, the Fréchet derivative is the

differential of f (x) at x1, in which case ∇(x1) is the gradient and 〈·, ·〉 the Euclidean
inner product. To simplify the discussion, we will therefore abuse terminology and
call ∇(x1) the gradient even in more general Hilbert space settings.

Once we have specified the update direction ∇(x), we are in a good position
to define an algorithmic strategy to optimise f (x). In particular, the Iterative Hard
Thresholding algorithm for non-linear optimisation problems can now be written as

xn+1 = PS(xn − (μ/2)∇(xn)), (2.59)

where x0 = 0 and μ is a step size parameter chosen to satisfy the condition in theorem
below.

2.6.2 Some Theoretic Considerations

Unfortunately, we can not expect the method to work for all constraint sets and for all
problems. To specify those problems that can be recovered, we use the following gen-
eralisation of the bi-Lipschitz property called the Restricted Strong Convexity Prop-
erty (RSGP) which, to our knowledge, was first introduced in [30]. The Restricted
Strong Convexity Constants α and β are the largest respectively smallest constants
for which

α ≤ f (x1)− f (x2)− Re〈∇(x2), (x1 − x2)〉
‖x1 − x2‖2 ≤ β, (2.60)

holds for all x1, x2 for which x1−x2 ∈ S+S, where the set S+S = {x = xa+xb :
xa, xb ∈ S}.

Note that the bi-Lipschitz property is recovered if f (x) = ‖y−Φx‖22, whereΦ is
linear. Also note that the main result in the next section requires the Restricted Strong
Convexity Property to hold for all vectors x1 and x2, such that x1− x2 ∈ S +S +S,
where the set S + S + S = {y = x1 + x2 + x3 : x1, x2, x3 ∈ S}.

The performance result now mirrors that derived for the linear compressed sens-
ing setting and states that for f (x) which satisfy the Restricted Strong Convexity
Property, the iterative hard thresholding algorithm can be used to find a vector x ∈ S
that is close to the true minimiser of f (x). The formal theorem reads as follows.
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Theorem 4 Let S be a union of subspaces. Given the optimisation problem f (x),
where f (x) is a positive function that satisfies the Restricted Strict Convexity Prop-
erty

α ≤ f (x1) f − f (x2)− Re〈∇(x2), (x1 − x2)〉
‖x1 − x2‖2 ≤ β, (2.61)

for all x1, x2 ∈ H for which x1−x2 ∈ S+S+S with constants β ≤ 1
μ ≤ 4

3α, then,
after

n� = 2
ln

(
δ f (xS )‖xS‖

)

ln 4(1− μα)
, (2.62)

iterations, the Iterative Hard Thresholding Algorithm calculates a solution xn� that
satisfies

‖xn� − x‖ ≤
(

2

√
μ

1− c
+ δ

)
f (xS)+ ‖x − xS‖ +

√
2

1− c
ε, (2.63)

where xS = argminx∈S f (x).

2.6.3 Proof of Theorem 4

Proof The proof, first presented in [28], is based around a subspace Γ , which is
defined as the sum of no more than three subspaces of S, such that xS , xn, xn+1 ∈ Γ .
We also define PΓ to be the orthogonal projection onto the subspace Γ and use the
short hand notation an

Γ = PΓ an and PΓ∇(xn) = ∇Γ (xn).
As in [28], we start by establishing a few basic equalities, which follow from the

fact that for all orthogonal projections P , we have 〈Px1, Px2〉 = 〈x1, Px2〉. As both
xS and xn lie in Γ we have

Re〈∇Γ (xn), (xS − xn)〉 = Re〈PΓ∇(xn), (xS − xn)〉
= Re〈∇(xn), PΓ (xS − xn)〉
= Re〈∇(xn), (xS − xn)〉 (2.64)

and

‖∇Γ (xn)‖2 = 〈∇Γ (xn),∇Γ (xn)〉 = 〈PΓ∇(xn), PΓ∇(xn)〉
= 〈∇(xn), P∗Γ PΓ∇(xn)〉
= 〈∇(xn),∇Γ (xn)〉, (2.65)

We will also make use of the following lemma.
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Lemma 6 Under the assumptions of the theorem,

‖μ
2
∇Γ (xn)‖2 − μ f (xn) ≤ 0. (2.66)

Proof The lemma can be established as follows. Using the Restricted Strict Con-
vexity Property we have

‖μ
2
∇Γ (xn)‖2 = −μ

2
Re〈∇(xn),−μ

2
∇Γ (xn)〉

≤ μ

2
β‖μ

2
∇Γ (xn)‖2 + μ

2
f (xn)− μ

2
f (xn − μ

2
∇Γ (xn)))

≤ μ

2
β‖μ

2
∇Γ (xn)‖2 + μ

2
f (xn). (2.67)

Thus
(2− μβ)‖μ

2
∇Γ (xn)‖2 ≤ μ f (xn), (2.68)

which is the desired result as μβ ≤ 1 by assumption.

The main point of the theorem is to bound the distance between the current
estimate xn+1 and the optimal estimate xS . To derive this bound, let us write an

Γ =
xn
Γ − μ/2∇Γ (xn). We then note that xn+1 is, up to ε the closest element in S to an

Γ ,
so that

‖xn+1 − xS‖2 ≤
(
‖xn+1 − an

Γ ‖ + ‖an
Γ − xS‖

)2

≤ 4‖(an
Γ − xS)‖2 + 2ε

= 4‖xn − (μ/2)∇Γ (xn)− xS‖2 + 2ε

= 4‖(μ/2)∇Γ (xn)+ (xS − xn)‖2 + 2ε

= μ2‖∇Γ (xn)‖2 + 4‖xS − xn‖2 + 4μRe〈∇Γ (xn), (xS − xn)〉 + 2ε

= μ2‖∇Γ (xn)‖2 + 4‖xS − xn‖2 + 4μRe〈∇(xn), (xS − xn)〉 + 2ε

≤ 4‖xS − xn‖2 + μ2‖∇Γ (xn)‖2
+ 4μ[−α‖xn − xS‖2 + f (xS)− f (xn)] + 2ε

= 4(1− μα)‖xS − xn‖2 + 4μ f (xS)+ 2ε

+ 4[‖(μ/2)∇Γ (xn)‖2 − μ(xn)]
≤ 4(1− μα)‖xS − xn‖2 + 4μ f (xS)+ 2ε. (2.69)

Here, the second to last inequality is the RSCP and the last inequality is due to
lemma 6.

We could thus bound the difference between the current estimate and xS in terms
of the previous estimate and xS plus some error term.
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‖xn+1 − xS‖2 ≤ 4(1− μα)‖xS − xn‖2 + 4μ f (xS)+ 2ε. (2.70)

If we define the constant c = 4(1 − μα) and iterate the above expression (i.e. use
the same bound to bound the last error with the one before that and so on), then we
see that

‖xn − xS‖2 ≤ cn‖xS‖2 + 4μ

1− c
f (xS)+ 2

1− c
ε, (2.71)

where the constant 1
1−c in front of the error term is a bound of the geometric series∑

n cn due to the iterative procedure. Importantly, if 1
μ < 4

3α we have c = 4(1 −
μα) < 1, so that cn decreases with n. Taking the square root on both sides and noting
that for positive a and b,

√
a2 + b2 ≤ a + b, we then have

‖xn − xS‖ ≤ cn/2‖xS‖ + 2

√
μ

1− c
f (xS)+

√
2

1− c
ε. (2.72)

The theorem now follows using the triangle inequality

‖xn − x‖ ≤‖xn − xS‖ + ‖x − xS‖

≤cn/2‖xS‖ + 2

√
μ

1− c
f (xS)+

√
2

1− c
ε

+ ‖x − xS‖ (2.73)

and the iteration count is determined by setting

cn/2‖xS‖ ≤ δ(xS). (2.74)

so that after

n = 2
ln

(
δ f (xS )‖xS‖

)

ln c
, (2.75)

iterations

‖xn − x‖ ≤
(

2

√
μ

1− c
+ δ

)
f (xS)+ ‖x − xS‖ +

√
2

1− c
ε. (2.76)

2.6.4 An Important Caveat

Whilst this is an important result that shows how the Iterative Hard Thresholding
algorithm can be used for many non-linear optimisation problems, it does not directly
translate into a simple application to Compressed Sensing under non-linear observa-
tions. It seems tempting to use f (x) = ‖y −Φ(x)‖2B , where ‖ · ‖B is some Banach
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space norm and where Φ(·) is some non-linear function. If this f (x) would satisfy
the Restricted Strict Convexity property, then we could clearly use the algorithm
to solve the non-linear compressed sensing problem in which we are given noisy
observations

y = Φ(x)+ e. (2.77)

Unfortunately, whilst properties such as the restricted strict convexity property
hold for certain non-linear functions such as those encountered in certain logistic
regression problems [31], it is far from clear under which conditions on f (x) =
‖y−Φ(x)‖2B similar properties would hold.

Indeed, the following lemma shows that such a condition cannot be fulfilled in
general for Hilbert spaces.

Lemma 7 Assume B is a Hilbert space and assume f (x) is convex on S + S for
all y (i.e. it Satisfies the Restricted Strict Convexity Property), thenΦ is affine on all
subspaces of S + S.

Proof The proof is by contradiction. Assume Φ is not affine on any subspace of
S+S. Thus, there is a subspace S = Si+S j , and xn ∈ S, such that for x =∑

n λnxn ,
where

∑
n λn = 1 and 0 ≤ λn , we have

∑
n Φ(xn)−Φ(x) �= 0. Now by assumption

of strong convexity on S, we have (using yn = Φ(xn) and −ȳ = x)

0 ≤
∑

n

λn‖y−Φ(xn)‖2 − ‖y−Φ(x)‖2 =
∑

n

λn‖y− yn‖2 − ‖y− ȳ‖2

= 2〈y, ȳ−
∑

n

λnyn〉 +
∑

n

λn‖yn‖2 − ‖ȳ‖2. (2.78)

where the inequality is due to the assumption of convexity. But the above inequality
cannot hold for all y (it fails for example for a multiple of −(ȳ −∑

n λnyn)). Thus
Φ needs to be affine on the linear subsets of S + S.

2.6.5 An Alternative Approach

Fortunately, the above result does not prevent the existence of Φ for which ‖y −
Φ(x)‖2B has the Restricted Strict Convexity Property for at least some y. Alternatively,
one could also envisage an approach where the linearisation error is dealt with by
considering a local linear approximation toΦ(x) of the formΦ(x) = Φx�x+gx� (x),
where Φx� is linear and satisfies a form of the linear bi-Lipschitz condition. In this
case, one would need to bound the error gx� (x). If this can indeed be done, then
similar recovery results to those available in the linear case would seem feasible also
for non-linear problems.

For example, we have [32]
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Theorem 5 Assume that y = Φ(x)+ e and thatΦx� is a linearisation ofΦ(·) at x�

(i.e. the Jacobian of Φ(x) evaluated at x�) so that the Iterative Hard Thresholding
algorithm uses the iteration xn+1 = PS(xn + Φ∗xn (y − Φ(xn)). Assume that Φx�

satisfies RIP
α‖x1 − x2‖22 ≤ α‖Φx� (x1 − x2)‖22 ≤ β‖x1 − x2‖22 (2.79)

for all x1, x2, x� ∈ S. Define εS = supx∈S‖y − ΦxxS‖2 and let en
S = y − Φxn xS ,

then after

k� =
⌈

2
ln(δ ‖eS‖‖xS‖ )

ln(2/(μα)− 2)

⌉
(2.80)

iterations we have

‖x − xk�‖ ≤ (c0.5 + δ)‖eS‖ + ‖xS − x‖ +
√

cε

2μ
, (2.81)

Proof The proof is similar to the linear case, with a few minor variations. In par-
ticular, we introduce the error term en

S = y − Φ(xn) − Φxn (xS − xn) to bound
‖xS − xn+1‖2 using the expression

‖xS − xn+1‖2

≤ 1

α
‖Φxn (xS − xn+1)‖2

= 1

α
‖y−Φ(xn)−Φxn (xn+1 − xn)− (y−Φ(xn)−Φxn (xS − xn))‖2

= 1

α

(
‖y−Φ(xn)−Φxn (xn+1 − xn)‖2 + ‖en

S‖2

−2〈en
S , (y−Φ(xn)−Φxn (xn+1 − xn))〉

)

≤ 2

α
‖y−Φ(xn)−Φxn (xn+1 − xn)‖2 + 2

α
‖en

S‖2. (2.82)

Again using similar ideas to those of the linear proof, we use g = 2Φ∗xn (y−Φ(xn))

and expand

‖y−Φ(xn)−Φxn (xn+1 − xn)‖2 − ‖y−Φ(xn)‖2
= −〈(xn+1 − xn), g〉 + ‖Φxn (xn+1 − xn)‖2

≤ − 2

μ
〈(xn+1 − xn),

μ

2
g〉 + 1

μ
‖(xn+1 − xn)‖2

= 1

μ

[
‖xn+1 − xn − μ

2
g‖2 − μ

2
‖g‖2

]

≤ 1

μ

[
inf
x∈S
‖x − xn − μ

2
g‖2 + ε− μ

2
‖g‖2

]
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= inf
x∈S

[
−〈(x − xn), g〉 + 1

μ
‖(x − xn)‖2 + ε

μ

]

≤ −〈(xS − xn), g〉 + 1

μ
‖(xS − xn)‖2 + ε

μ

= −2〈(xS − xn),Φ∗xn (y−Φ(xn))〉 + 1

μ
‖xS − xn‖2 + ε

μ

= −2〈(xS − xn),Φ∗xn (y−Φ(xn))〉 + α‖xS − xn‖2

+ ( 1

μ
− α)‖xS − xn‖2 + ε

μ

≤ −2〈(xS − xn),Φ∗xn (y−Φ(xn))〉 + ‖Φxn (xS − xn)‖2

+ ( 1

μ
− α)‖xS − xn‖2 + ε

μ

= ‖y−Φ(xn)−Φxn (xS − xn)‖2 − ‖y−Φ(xn)‖2

+ ( 1

μ
− α)‖xS − xn‖2 + ε

μ

= ‖en
S‖2 − ‖y−Φ(xn)‖2 + ( 1

μ
− α)‖(xS − xn)‖2 + ε

μ
, (2.83)

where the first inequality is due to the bi-Lipschitz property and the choice of β ≤
1
μ and the second inequality is the definition of xn+1 = Pε

S(x
n + μ

2 g). The third
inequality is due to the fact that xS ∈ S whilst the last inequality is the bi-Lipschitz
property again.

This gives the bound

‖y−Φ(xn)−Φxn (xn+1 − xn)‖2 ≤ ( 1

μ
− α)‖(xS − xn)‖2 + ‖en

S‖2 +
ε

μ
, (2.84)

so that

‖xS − xn+1‖2 ≤ 2

(
1

μα
− 1

)
‖(xS − xn)‖2 + 4

α
‖en

S‖2 +
2ε

μα
. (2.85)

This again expresses the distance of xn+1 from xS in terms of the distance of the
estimate xn calculated in the previous iteration.

The condition of the theorem (2( 1
μα − 1) < 1) again allows us to iterate this

expression so that

‖xS − xk‖2 ≤
(

2

(
1

μα
− 1

))k

‖xS‖2 + cεS + cε

2μ
, (2.86)

where c ≤ 4
3α−2 1

μ

.

In conclusion, using the square root of (2.86), we have thus shown that
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‖x − xk‖ ≤
√

ĉk‖xS‖2 + c‖eS‖2 + cε

2μ
+ ‖xS − x‖

≤ ĉk/2‖xS‖ + c0.5‖eS‖ +
√

cε

2μ
+ ‖xS − x‖,

where ĉ = 2
μα − 2. The theorem directly follows from this.

2.7 Conclusions

The use of geometrical ideas in signal processing can often lead to new insights and
solutions. This is particularly true in the field of sampling. Sampling, the transition
from the continuous world of physical phenomena to the discretised world of con-
crete computation, fundamentally relies on approximations and these, in turn, must
be based on prior assumptions that incorporate models of the physical world. Geo-
metric descriptions of these models have over the years proven exceedingly useful,
culminating in the recent ascend of compressed sensing. Here, geometric consider-
ations have led to significant advances in signal reconstruction and interpretation,
particularly in settings, where complex prior constraints are to be imposed.

In this chapter, we have provided an introductory tour of some of the underly-
ing mathematical concepts that make up modern geometry, focussing especially on
those aspects relevant to modern sampling theory. Building on this mathematical
framework, several aspects of sampling, and in particular compressed sensing, have
been explored. For example, we have shown how geometric ideas can be used to
extend the sparse signal models traditionally used in compressed sensing to much
more general union of subspaces models, which are much more widely applicable.
Geometric interpretations were further shown to be fundamental in the development
and understanding of algorithmic signal reconstruction strategies that try to solve
optimisation problems that are constraint by these models. But not only do these
ideas allow us to construct efficient algorithms, geometric insights are also likely to
play a major role in future developments, such as those discussed here in the context
of non-linear sampling.

Acknowledgments This work was supported in part by the UKs Engineering and Physical Science
Research Council grants EP/J005444/1 and D000246/1 and a Research Fellowship from the School
of Mathematics at the University of Southampton.

References

1. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644
2. Shannon CA, Weaver W (1949) The mathematical theory of communication. University of

Illinois Press, Urbana



74 T. Blumensath

3. Donoho DL (2006) For most large underdetermined systems of linear equations the minimal
1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829

4. Candès E, Romberg J (2006) Quantitative robust uncertainty principles and optimally sparse
decompositions. Found Comput Math 6(2):227–254

5. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509

6. Candès E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate
measurements. Commun Pure Appl Math 59(8):1207–1223

7. Abernethy J, Bach F, Evgeniou T, Vert J-P (2006) Low-rank matrix factorization with attributes.
arxiv:0611124v1

8. Recht B, Fazel M, Parrilo PA (2009) Guaranteed minimum-rank solution of linear matrix
equations via nuclear norm minimization. Found Comput Math 9:717–772

9. Blumensath T (2010) Sampling and reconstructing signals from a union of linear subspaces.
IEEE Trans Inf Theory 57(7):4660–4671

10. Rudin W (1976) Principles of mathematical analysis, 3rd edn. McGraw-Hill Higher Education,
New York

11. Conway JB (1990) A course in functional analysis. Graduate texts in mathematics, 2nd edn.
Springer, Berlin

12. Unser M (2000) Sampling-50 years after Shannon. Proc IEEE 88(4):569–587
13. Landau HJ (1967) Necessary density conditions for sampling and interpolation of certain entire

functions. Acta Math 117:37–52
14. Mishali M, Eldar YC (2009) Blind multi-band signal reconstruction: compressed sensing for

analog signals. IEEE Trans Signal Process 57(3):993–1009
15. Vetterli M, Marziliano P, Blu T (2002) Sampling signals with finite rate of innovation. IEEE

Trans Signal Process 50(6):1417–1428
16. Xu W, Hassibi B (to appear) Compressive sensing over the grassmann manifold: a unified

geometric framework. IEEE Trans Inf Theory
17. Cands EJ (2006) The restricted isometry property and its implications for compressed sensing.

Compte Rendus de l’Academie des Sciences, Serie I(346):589–592
18. Donoho DL (2006) High-dimensional centrally symmetric polytopes with neighborliness pro-

portional to dimension. Discrete Comput Geom 35(4):617–652
19. Gruenbaum B (1968) Grassmann angles of convex polytopes. Acta Math 121:293–302
20. Gruenbaum B (2003) Convex polytopes. Graduate texts in mathematics, vol 221, 2nd edn.

Springer-Verlag, New York
21. Blumensath T, Davies M (2008) Iterative thresholding for sparse approximations. J Fourier

Anal Appl 14(5):629–654
22. Blumensath T, Davies M (2009) Iterative hard thresholding for compressed sensing. Appl

Comput Harmon Anal 27(3):265–274
23. Qui K, Dogandzic A (2010) ECME thresholding methods for sparse signal reconstruction.

arXiv:1004.4880v3
24. Cevher V, (2011) On accelerated hard thresholding methods for sparse approximation. EPFL

Technical Report, February 17, 2011
25. Baraniuk RG (1999) Optimal tree approximation with wavelets. Wavelet Appl Sig Image

Process VII 3813:196–207
26. Goldfarb D, Ma S (2010) Convergence of fixed point continuation algorithms for matrix rank

minimization. arXiv:09063499v3
27. Needell D, Tropp JA (2008) CoSaMP: iterative signal recovery from incomplete and inaccurate

samples. Appl Comput Harmon Anal 26(3):301–321
28. Blumensath T (2010) Compressed sensing with nonlinear observations. Technical report. http://

eprints.soton.ac.uk/164753
29. Rudin W (1966) Real and complex analysis, McGraw-Hill, New York
30. Negahban S, Ravikumar P, Wainwright MJ, Yu B (2009) A unified framework for the analysis

of regularized M-estimators. Advances in neural information processing systems, Vancouver,
Canada

http://eprints.soton.ac.uk/164753
http://eprints.soton.ac.uk/164753


2 The Geometry of Compressed Sensing 75

31. Bahmani S, Raj B, Boufounos P (2012) Greedy sparsity-constrained optimization.
arXiv:1203.5483v1

32. Blumensath T (2012) Compressed sensing with nonlinear observations and related nonlinear
optimisation problems. arXiv:1205.1650v1



Chapter 3
Sparse Signal Recovery with
Exponential-Family Noise

Irina Rish and Genady Grabarnik

Abstract The problem of sparse signal recovery from a relatively small number of
noisy measurements has been studied extensively in the recent compressed sensing
literature. Typically, the signal reconstruction problem is formulated as l1-regularized
linear regression. From a statistical point of view, this problem is equivalent to
maximum a posteriori probability (MAP) parameter estimation with Laplace prior on
the vector of parameters (i.e., signal) and linear measurements disturbed by Gaussian
noise. Classical results in compressed sensing (e.g., [7]) state sufficient conditions for
accurate recovery of noisy signals in such linear-regression setting. A natural question
to ask is whether one can accurately recover sparse signals under different noise
assumptions. Herein, we extend the results of [7] to the general case of exponential-
family noise that includes Gaussian noise as a particular case; the recovery problem
is then formulated as l1-regularized Generalized Linear Model (GLM) regression.
We show that, under standard restricted isometry property (RIP) assumptions on
the design matrix, l1-minimization can provide stable recovery of a sparse signal
in presence of exponential-family noise, and state some sufficient conditions on the
noise distribution that guarantee such recovery.

3.1 Introduction

Accurate and computationally efficient recovery of sparse high-dimensional signals
from low-dimensional linear measurements is the focus of compressed sensing, a
rapidly developing area of signal processing [4–6, 8, 11, 13]. The ultimate goal
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of finding the sparsest solution satisfying a set of linear constraints is an NP-hard
combinatorial problem involving cardinality, or l0-norm, minimization. However, it
is often possible to find an exact solution in a computationally efficient manner by
approximating this combinatorial problem with its convex l1-relaxation.

Herein, we focus on sparse signal recovery from noisy linear measurements, which
is particularly important in real-life applications, such as image processing, sensor
networks, biology, and medical imaging, just to name a few. This problem is typi-
cally formulated as minimization of the l1-norm of an unobserved signal x subject to
the sum-squared loss constraint ||y− Ax||l2 < ε (see, for example, [7, 12]). From a
probabilistic point of view, this problem is equivalent to log-likelihood maximization
under the following assumptions: linear measurements disturbed by i.i.d Gaussian
noise with unit variance P(y) ∼ N (μ = Ax, � = I ), which results into the sum-
squared (negative) log-likelihood, and the sparsity-promoting Laplace prior on the
input signal, p(x) ∼ e−λ||x||l1 , which produces the l1-norm. However, in many prac-
tical applications, it might be more appropriate to use non-Gaussian models of noise:
for example, Bernoulli or multinomial distributions are better suited for describing
such measurements as (binary) failures or multilevel performance degradations of
end-to-end test transactions (“probes”) in a distributed computer systems [18, 21];
exponential distribution is better suited for describing nonnegative measurements
such as end-to-end response time in such systems [3, 10]. Non-Gaussian observa-
tions, including binary, discrete, non-negative, etc., variables, are common in various
other applications such as, for example, computational biology and medical imaging:
e.g., predicting the presence or absence of a certain disease given DNA microarrays,
or predicting various mental states (e.g., an emotional state of being angry, happy,
anxious, etc.) from fMRI images [9, 14]. In these applications, sparsity constraint
on the input promotes selection of most relevant variables, such as genes or brain
areas, and thus improves model interpretability. Moreover, since the dimensionality
of the input is often much higher than the number of samples (e.g., up to 100,000
variables corresponding to fMRI voxels, and a few hundred time points represent-
ing samples), sparsity constraint also serves as a regularizer that helps to avoid the
overfitting problem.

In this paper, we will consider the exponential family of noise distributions that
includes, besides Gaussian, many other commonly used distributions, such as expo-
nential, Bernoulli, multinomial, gamma, chi-square, beta, Weibull, Dirichlet, and
Poisson, just to name a few. The problem of recovering an unobserved vector x from
the vector y of linear measurements Ax contaminated by an exponential-family noise
is known as Generalized Linear Model (GLM) regression. Solution to this problem
maximizes the exponential-family loglikelhood of the observations (vector y) with
respect to the unobserved parameters (signal x). This, in turn, is equivalent to min-
imizing the corresponding Bregman divergence d(y, μ(Ax)), where μ is the mean
parameter of the exponential-family distribution, and θ = Ax is the corresponding
natural parameter (there is a one-to-one correspondence between those two parame-
ters). In the particular case of Gaussian likelihood we have μ = θ , and the corre-
sponding Bregman divergence is just the squared Euclidean distance ||y − Ax||2l2 ,
assuming unit variance, i.i.d. samples. Adding l1-norm constraint to GLM regression
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allows for an efficient method of sparse signal recovery, and is often used in statistical
literature [17]. A natural question to ask next is whether a sparse signal can be recov-
ered accurately when linear measurements are corrupted by an exponential-family
noise. Herein, we answer this question positively and provide some conditions for
stable sparse signal recovery from exponential-family observations. The results pre-
sented herein summarize our earlier work from [19]. Also, a more recent and closely
related work by [15] is discussed at the end of this chapter.

We show that accurate recovery of sparse signals is possible when, for each
measurement yi , the log-partition function uniquely determining the corresponding
exponential-family noise distribution (and thus its Legendre conjugate determin-
ing the corresponding Bregman divergence) has bounded second derivative. Also,
for several specific members of the exponential family that do not always satisfy
the bounded second derivative condition we provide separate proofs. Under proper
conditions on the noise distribution, we show that the solution to the sparse GLM
regression problem approximates the true signal x0 well in the l2-sense if: (1) the true
signal is sufficiently sparse, (2) the measurement noise is sufficiently small (where
the noise is expressed as Bregman divergence between the measurement y and the
mean μ0 of the distribution determined by the natural parameter θ0 = Ax0), and
(3) the matrix A obeys the restricted isometry property (RIP) with appropriate RIP
constant. Finally, we also extend to the case of exponential-family noise the results
of [7] for compressible (approximately sparse) signals.

3.2 Background

3.2.1 Sparse Signal Recovery from Noisy Observations

We assume that x0 ∈ Rm is an S-sparse signal, i.e. a signal with no more than S
nonzero entries, where S << m. Let A be an n by m matrix that produces a vector
of linear projections y0 = Ax0, where n << m, and let and y be a vector of n noisy
measurements that follow some noise distribution P(y|Ax0). It is often assumed that
A satisfies the so-called “restricted isometry property” (RIP) at the sparsity level S (or
S-restricted isometry property), that essentially says that every subset of columns of
A with cardinality less than S behaves like an almost orthonormal system. Formally,
following [8]:

Definition 1 (Restricted Isometry Property) Let AT , where T ⊂ {1, ...,m}, denote
an n × T submatrix of A that contains columns with indexes in T . The S-restricted
isometry constant δS of A is the smallest quantity such that

(1− δS)||c||2l2 ≤ ||AT c||2l2 ≤ (1+ δS)||c||2l2 (3.1)
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for any all subsets T with |T | ≤ S and for any vector (c j ) j∈T defined over coordinates
in T . The matrix A is said to satisfy the restricted isometry property if there exists
such constant δS that the Eq. 3.1 is satisfied.

As it was shown, for example, in [8], if the following conditions is satisfied

δS + δ2S + δ3S < 1,

then solving the l1-minimization problem in Eq. 3.2 below can recover any signal x
that is S-sparse (contains no more than S non-zero entries).

Our question is as follows: can one recover x0 from y, given that noise is “suffi-
ciently small” (to be defined precisely below)? This question has been answered in
the compressed sensing literature for the particular case when the noise distribution
is Gaussian. Indeed, as it was shown in [7], if (1) ||y − Ax0||l2 ≤ ε (small noise
assumption), (2) x0 is sufficiently sparse and the (3) matrix A obeys the restricted
isometry property (RIP) with appropriate RIP constants, then the solution to the
following l1-minimization problem

x∗ = arg min
x
||x||l1 subject to ||y− Ax||l2 ≤ ε (3.2)

approximates the true signal well. More formally, Theorem 1 in [7] states:

Theorem 1 [7] Let S be such that δ3S + 3δ4S < 2, where δS is the S-restricted
isometry constant of the matrix A, as defined above. Then for any signal x0 with the
support T 0 = {t : x0 �= 0}, where |T 0| ≤ S and any noise vector (perturbation)
e with ||e||l2 ≤ ε, the solution x∗ to the problem in Eq. 3.2 obeys

||x∗ − x0||l2 ≤ CS · ε, (3.3)

where the constant CS may only depend on δ4S. For reasonable values of δ4S, CS is
well-behaved; e.g. CS ≈ 8.82 for δ4S = 1/5 and CS ≈ 10.47 for δ4S = 1/4.

Moreover, [7] show that (1) no other recovery method “can perform fundamentally
better for arbitrary perturbations of size ε, i.e. even if an oracle would make the
actual support T 0 of x0 available to us, making the problem well-posed, the least-
squares solution x̂ (i.e., the maximum-likelihood solution which is optimal in the
absence of any other information) would approximate the true signal x0 with the
error proportional to ε”.

Finally, [7] extend their result from sparse to approximately sparse vectors in the
following

Theorem 2 [7] Let x0 ∈ Rm be an arbitrary vector, and let x0
S be the truncated

vector corresponding to the S largest values of x0 (in absolute value). Under the
assumptions of Theorem 1, the solution x∗ to the problem in Eq. 3.2 obeys
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||x∗ − x0||l2 ≤ C1,S · ε + C2,S · ||x
0 − x0

S||l1√
S

. (3.4)

For reasonable values of δ4S the constants above are well-behaved; e.g. C1,S ≈ 12.04
and C2,S ≈ 8.77 for δ4S = 1/5.

3.2.2 Exponential-Family Distributions and Bregman
Divergences

We will now extend the standard compressed-sensing results to the case of general
exponential-family noise distributions. Note that ||y − Ax||l2 ≤ ε constraint results
from the negative log-likelihood of a Gaussian variable y ∼ N (μ,�) with μ = Ax
and � = I (i.e., independent unit-variance noise):

− log P(y|Ax0) = f (y)+ 1

2
||y− Ax||2l2 . (3.5)

Gaussian distribution is a particular member of the exponential family of distrib-
utions.

Definition 2 An exponential family is a parametric family of probability distribu-
tions where the probability density has the form

log pψ,θ (y) = xθ − ψ(θ)+ log p0(y), (3.6)

where θ is called the natural parameter, ψ(θ) is the (strictly convex and differen-
tiable) cumulant function, or the log-partition function, that uniquely determines
the member distribution of the exponential family, and p0(y) is a non-negative func-
tion called base measure that does not depend on the parameter θ .

As shown by [2], there is a bijection between the exponential-family densities
pψ,θ (y) and Bregman divergences dφ(y, μ), so that each exponential-family density
can be also expressed as

pψ,θ (y) = exp(−dφ(y, μ)) fφ(y), (3.7)

where μ = μ(θ) = E pψ,θ (Y ) is the expectation parameter corresponding to θ , φ is
the (strictly convex and differentiable) Legendre conjugate of ψ , fφ(y) is a uniquely
determined function, and dφ(y, μ) is the corresponding Bregman divergence defined
as follows.

Definition 3 Given a strictly convex function φ : S → R defined on a convex set
S ⊆ R, and differentiable on the interior of S, int (S) [20], the Bregman divergence
dφ : S × int (S)→ [0,∞) is defined as
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Fig. 3.1 KL-divergence

φ (x) = x log x

dφ (x, y )

h (x)y

x

Fig. 3.2 Itakura-Saito dis-
tance

φ (x) = − log x

dφ (x, y )
h (x)

y x

dφ(x, y) = φ(x)− φ(y)− < (x − y),∇φ(y) >, (3.8)

where ∇φ(y) is the gradient of φ.

In other words, the Bregman divergence can be thought of as the difference
between the value of φ at point x and the value of the first-order Taylor expan-
sion of φ around point y evaluated at point x (see Figs. 3.1 and 3.2, where h(x)
= φ(y)+ < (x−y),∇φ(y) >).

Table 3.1 (derived from Tables 1 and 2 in [1]) shows particular examples of
commonly used exponential-family distributions and their corresponding Bregman
divergences. For example, the unit-variance Gaussian distribution leads to square
loss, multivariate spherical Gaussian (diagonal covariance/independent variables)
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gives rise to Euclidean distance, an multivariate Gaussian with the inverse-covariance
(concentration) matrix C leads to Mahalanobis distance, Bernoulli distribution corre-
sponds to logistic loss, exponential distribution leads to Itakura-Saito distance, while
a multinomial distribution corresponds to the KL-divergence (relative entropy).

3.3 Main Results

We now extend the result in Theorem 1 to the case of exponential-family noise. Let
us consider the following constrained l1-minimization problem that generalizes the
standard noisy compressed sensing problem of [7]:

min
x
||x||1 subject to

∑

i

d(yi , μ(Ai x)) ≤ ε, (3.9)

where d(yi , μ(Ai x)) is Bregman divergence between the noisy observation yi and
the mean parameter of the corresponding exponential-family distribution with the
natural parameter θi = Ai x. Note that using the Lagrangian form we can write the
above problem as

min
x
λ||x||1 +

∑

i

d(yi , μ(Ai x)), (3.10)

where the coefficient λ is the Lagrange multiplier uniquely determined by ε. This
problem is known as an l1-regularized Generalized Linear Model (GLM) regression,
and includes as a particular case standard l1-regularized linear regression, in which
case μ(Ai x) = Ai x and the Bregman divergence simply reduces to the Euclidian
distance.

We now show that, if: (1) the noise is small, (2) x0 is sufficiently sparse and
the (3) matrix A obeys the restricted isometry property (RIP) with appropriate RIP
constants, then the solution to the above problem approximates the true signal well:

Theorem 3 Let S be such that δ3S+3δ4S < 2, where δS is the S-restricted isometry
constant of the matrix A, as defined above. Then for any signal x0 with the support
T 0 = {t : x0 �= 0}, where |T 0| ≤ S, and for any vector y = (y1, ...., yn) of noisy
linear measurements where

1. the noise follows exponential-family distributions pθi (yi ), with the natural para-
meter θi = (Ai,:x0),

2. the noise is sufficiently small, i.e. ∀i, dφi (yi , μ(Ai,:x0)) ≤ ε, and
3. each function φi (·) (i.e., the Legendre conjugate of the corresponding log-

partition function, uniquely defining the Bregman divergence), satisfies the con-
ditions imposed by at least one of the Lemmas below,

the solution x∗ to the problem in Eq. 3.9 obeys
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||x∗ − x0||l2 ≤ CS · δ(ε), (3.11)

where CS is the constant from Theorem 1 of [7], and δ(ε) is a continuous monotone
increasing function of ε s.t. δ(0) = 0 (and thus δ(ε) is small when ε is small). A
particular form of this function depends on particular members of exponential family.

Proof Following the proof of Theorem 1 in [7], we will only have to show that the
“tube constraint” (condition 1) still holds (the rest of the proof remains unchanged),
i.e. that

||Ax∗ − Ax0||l2 ≤ δ(ε) (3.12)

where δ is some continuous monotone increasing function of ε, and δ(0) = 0, so
its small when ε is small. It was a trivial consequence of the triangle inequality
in case of Euclidean distance; however, triangle inequality does not hold, in gen-
eral, for Bregman divergences, and thus we must provide a different proof for the
tube constraint, possibly for each type of Bregman divergence (exponential-family
distribution). Since

||Ax∗ − Ax0||2l2 =
m∑

i=1

(Ai,:x∗ − Ai,:x0)2 =
m∑

i=1

(θ∗i − θ0
i )

2,

we will need to show that |θ∗i − θ0
i | < β(ε), where β(ε) is a continuous monotone

increasing function of ε s.t. β(0) = 0 (and thus β(ε) is small when ε is small), then in
Eq. 3.12 we get δ(ε) = √m · β(ε). Lemma 1 provides the proof of this fact for a class
of exponential-family distributions with bounded φ′′(y) (where φ(y) is the Legen-
dre conjugate of the log-partition function that uniquely determines the distribution).
However, for several members of the exponential family (e.g., Bernoulli distribu-
tion) this condition is not satisfied, and those cases must be handled individually.
Thus, we provide separate proofs for several different members of the exponential
family in Lemmas 1, 2 and 3, and obtain particular expressions for β(ε) in each case.
Note that for simplicity sake, we only consider univariate exponential-family distri-
butions, corresponding to the case of independent noise for each measurement yi ,
which was effectively assumed in standard problem formulation that used Euclidean
distance corresponding to a spherical Gaussian distribution, i.e. a vector of indepen-
dent Gaussian variables. However, Lemma 1 below can be extended from scalar to
vector case, i.e. to multivariate exponential-family distributions that do not necessar-
ily imply independent noise. Lemma 3 will provide a specific case of such distribution
— a multivariate Gaussian with concentration matrix C.

The “cone constraint” part of the proof in [7] remains intact; it is easy to see that
it does not depend on the particular constraint in the l1-minimization problem 3.10,
and only makes use of the sparsity of x0 and l1-optimality of x∗. Thus, we can simply
substitute ||Ah||l2 by δ(ε) in Eq. 13 on page 8 in the proof of Theorem 1 of [7], or,
equivalently, replace 2ε (that was shown to bound ||Ah||l2 ) by δ(ε) in the Eq. 14.
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Just like for the sparse signal case (Theorem 1 in [7]), the only change we have to
make in the proof of the Theorem 2 (general case of approximable, rather than sparse,
signals), when generalizing it from Euclidean distance to Bregman divergence in
Eq. 3.10, is the tube constraint. Thus, once we showed it for the Theorem 3 above,
the generalization to approximable signals follows automatically:

Theorem 4 Let x0 ∈ Rm be an arbitrary vector, and let x0
S be the truncated vector

corresponding to the S largest values of x0 (in absolute value). Under the assumptions
of Theorem 3, the solution x∗ to the problem in Eq. 3.10 obeys

||x∗ − x0||l2 ≤ C1,S · δ(ε)+ C2,S · ||x
0 − x0

S||l1√
S

. (3.13)

where C1,S and C2,S are the constants from Theorem 2 of [7], and δ(ε) is a contin-
uous monotone increasing function of ε s.t. δ(0) = 0 (and thus δ(ε) is small when
ε is small). A particular form of this function depends on particular members of
exponential family.

The following lemma states the sufficient conditions for the “tube constraint” in
Eq. 3.12 to hold in general case of arbitrary exponential-family noise, provided that
φ′′(y) exists and is bounded on the appropriate intervals.

Lemma 1 Let y denote a random variable following an exponential-family distrib-
ution pθ (y), with the natural parameter θ , and the corresponding mean parameters
μ(θ). Let dφ(y, μ(θ)) denote the Bregman divergence associated with this distribu-
tion. If

1. dφ(y, μ0(θ0)) ≤ ε (small noise),
2. dφ(y, μ∗(θ∗)) ≤ ε (constraint in GLM problem Eq. 3.10), and
3. φ′′(y) exists and is bounded on [ymin, ymax ], where ymin = min{y, μ0, μ∗} and

ymax = max{y, μ0, μ∗},
then

|θ∗ − θ0| ≤ β(ε) = √ε · 2
√

2 maxμ̂∈[μ∗;μ0] |φ′′(μ̂)|√
min ŷ∈[ymin;ymax ] φ′′(ŷ)

(3.14)

Proof We prove the lemma in two steps: first, we show that |μ∗(θ∗) − μ0(θ0)| is
small if ε is small, and then infer |θ∗ − θ0| is small.

1. By definition in Eq. 3.8, Bregman divergence is the non-linear tail of the Tay-
lor expansion of φ(y) at point μ, i.e., the Lagrange remainder of the linear
approximation:

dφ(y, μ) = φ′′(ŷ)(y − μ)2/2, ŷ ∈ [y1; y2],
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where y1 = min{y, μ}, y2 = max{y, μ}.

Let y0
1 = min{y, μ0}, y0

2 = max{y, μ0} and y∗1 = min{y, μ∗}, y∗2 =
max{y, μ∗}. Using the conditions 0 ≤ dφ(y, μ0) ≤ ε and 0 ≤ dφ(y, μ∗) ≤ ε,
and observing that

min
ŷ∈[ymin;ymax ]

φ′′(ŷ) ≤ min
ŷ∈[y0

1 ;y0
2 ]
φ′′(ŷ)

and min
ŷ∈[ymin;ymax ]

φ′′(ŷ) ≤ min
ŷ∈[y∗1 ;y∗2 ]

φ′′(ŷ),

we get

φ′′(ŷ)(y − μ0)2/2 ≤ ε ⇔ (y − μ0)2 ≤ 2ε

φ′′(ŷ)
⇔

⇔ |y − μ0| ≤
√

2ε√
min ŷ∈[y0

1 ;y0
2 ] φ
′′(ŷ)
≤

≤
√

2ε√
min ŷ∈[ymin;ymax ] φ′′(ŷ)

and, similarly, |y − μ∗| ≤
√

2ε√
min ŷ∈[y∗1 ;y∗2 ] φ

′′(ŷ)
≤

≤
√

2ε√
min ŷ∈[ymin;ymax ] φ′′(ŷ)

,

from which, using the triangle inequality, we conclude

|μ∗ − μ0| ≤ |y − μ∗| + |y − μ0| ≤

≤ 2
√

2ε√
min ŷ∈[ymin;ymax ] φ′′(ŷ)

(3.15)

Note thatφ′′(ŷ) under the square root is always positive sinceφ is strictly convex.
2. The mean and the natural parameters of an exponential-family distribution relate

to each other as follows: θ(μ) = φ′(μ) (respectively, θ(μ) = ∇φ(μ) for vector
μ), where φ′(μ) is called the link function. Therefore, we can write
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|θ∗ − θ0| = |φ′(μ∗)− φ′(μ0)| = |φ′′(μ̂)(μ∗ − μ0)|,
where μ̂ ∈ [μ∗;μ0],

and thus, using the above result in Eq. 3.15, we get

|θ∗ − θ0| ≤ β(ε) = √ε · 2
√

2 maxμ̂∈[μ∗;μ0] |φ′′(μ̂)|√
min ŷ∈[ymin;ymax ] φ′′(ŷ)

which concludes the proof.

The condition (3) in the above lemma requires that φ′′(y) exists and is bounded
on the intervals between y and bothμ0 andμ∗. However, even when this condition is
not satisfied, as it happens for the logistic loss, where φ′′(y) = 1

y(1−y) is unbounded
at 0 and 1, and for several other Bregman divergences shown in Table 3.1, we may
still be able to prove similar results using specific properties of each φ(y), as shown
by the following lemmas.

Lemma 2 (Bernoulli noise/Logistic loss)
Let the conditions (1) and (2) of Lemma 1 be satisfied, and let φ(y) = y log y +
(1− y) log(1− y), which corresponds to the logistic-loss Bregman divergence and
Bernoulli distribution p(y) = μy(1 − μ)1−y , where the mean parameter μ =
P(y = 1). We assume that 0 < μ∗ < 1, and 0 < μ0 < 1. Then

|θ0 − θ∗| ≤ β(ε) = 4ε.

Proof Using the definition of the logistic-loss Bregman divergence from Table 3.1,
and the conditions (1) and (2) of Lemma 1, we can write:

dφ(y, μ0) = y log(
y

μ0
)+ (1− y) log(

1− y

1− μ0 ) ≤ ε,

dφ(y, μ∗) = y log(
y

μ∗
)+ (1− y) log(

1− y

1− μ∗ ) ≤ ε,
(3.16)

which implies
|dφ(y, μ0)− dφ(y, μ

∗)| ≤ 2ε, (3.17)

and, after substituting the expressions 3.16 into Eq. 3.17, and simplifying, we get

|y log(
μ0

μ∗
)+ (1− y) log(

1− μ0

1− μ∗ )| ≤ 2ε. (3.18)

The above must be satisfied for each y ∈ {0, 1} (the domain of Bernoulli
distribution). Thus, we get:
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(1) | log(
1− μ0

1− μ∗ )| ≤ 2ε if y = 0, and

(2) | log(
μ0

μ∗
)| ≤ 2ε if y = 1, (3.19)

or, equivalently

(1) e−2ε ≤ 1− μ0

1− μ∗ ≤ e2ε if y = 0, and

(2) e−2ε ≤ μ0

μ∗
≤ e2ε if y = 1.

Let us first consider the case of y = 0; subtracting 1 from the corresponding inequal-
ities yields

e−2ε − 1 ≤ μ
∗ − μ0

1− μ∗ ≤ e2ε − 1⇔

⇔ (1− μ∗)(e−2ε − 1) ≤ μ∗ − μ0 ≤ (1− μ∗)(e2ε − 1).

By the mean value theorem, ex − 1 = ex − e0 = d(ex )
dx |x̂ · (x − 0) = ex̂ x , for some

x̂ ∈ [0, x] if x > 0, or for some x̂ ∈ [x, 0] if x < 0. Thus, e−2ε − 1 = −ex̂ · 2ε,
for some x̂ ∈ [−2ε, 0], and since ex is a continuous monotone increasing function,
ex̂ ≤ 1 and thus e−2ε − 1 ≥ −2ε. Similarly, e2ε − 1 = ex̂ · 2ε, for some x̂ ∈ [0, 2ε],
and since ex̂ ≤ e2ε , we get e2ε − 1 ≤ 2ε · e2ε . Thus,

−2ε(1− μ∗) ≤ μ∗ − μ0 ≤ 2εe2ε(1− μ∗)⇒
⇒ |μ∗ − μ0| ≤ 2ε · e2ε . (3.20)

Similarly, in case of y = 1, we get

e−2ε − 1 ≤ μ
0 − μ∗
μ∗

≤ e2ε − 1.

and can apply same derivation as above, and get same result for |μ∗ − μ0| as in Eq.
3.20. Finally, since θ(μ) = φ′(μ) = log( μ

1−μ), we get

|θ0 − θ∗| = |log(
μ0

1− μ0 )− log(
μ∗

1− μ∗ )| =

= |log(
μ0

μ∗
)− log(

1− μ0

1− μ∗ )|.

From the Eq. 3.19 we get |log(μ
0

μ∗ )| ≤ 2ε and |log( 1−μ0

1−μ∗ )| ≤ 2ε, which implies
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|θ0 − θ∗| = |log(
μ0

μ∗
)− log(

1− μ0

1− μ∗ )| ≤ 4ε.

Lemma 3 (Exponential noise/Itakura-Saito distance)
Let the conditions (1) and (2) of Lemma 1 be satisfied, and let φ(y) = − logμ− 1,
which corresponds to the Itakura-Saito distance dφ(y, μ) = y

μ
− log( y

μ
) − 1 and

exponential distribution p(y) = λeλy , where the mean parameter μ = 1/λ. We will
also assume that the mean parameter is always separated from zero, i.e. ∃cμ > 0
such that μ ≥ cμ. Then

|θ∗ − θ0| ≤ β(ε) =
√

6 ε

cμ
.

Proof To establish the result of the lemma we start with inequality |u−log u−1| ≤ ε,
where u is y

μ
. Replacing u by z = u − 1, z > −1 gives us |z − log(1 + z)| ≤ ε.

Without loss of generality, let us assume that ε ≤ 1
18 . Then the Taylor decomposition

of function z − log(1+ z) at the point z = 0

z − log(1+ z) = z2

2
− z3

3
+ θ

4

4
, for θ ∈ [0, z] or [z, 0]

implies that

ε ≥ z − log(1+ z) ≥ z2

2
− z3

3
( since

θ4

4
≥ 0 ).

This, in turns, implies that z ≤ 1
3 and z2

2 − z3

3 ≥ z2

6 for 0 ≤ z ≤ 1
3 . Hence

z − log(1+ z) ≥ z2

2
for − 1

3
≤ z ≤ 0, (3.21)

z − log(1+ z) ≥ z2

6
for 0 ≤ z ≤ 1

3
. (3.22)

Combining together both estimates we get |z| ≤ √6 ε, or

|y − μ| ≤ √6 ε · μ,

and
|μ0 − μ∗| ≤ √6 ε ·max {μ0, μ∗}.

Then

|θ∗ − θ0| = | 1

μ0 −
1

μ∗
| = |μ

∗ − μ0

μ∗ μ0 | ≤
√

6 ε

min {μ∗, μ0} ≤
√

6 ε

cμ
,

since by the assumption of the lemma min {μ∗, μ0} ≥ cμ.
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We now consider multivariate exponential-family distributions; the next lemma
handles the general case of a multivariate Gaussian distribution (not necessarily
spherical one that had a diagonal covariance matrix and corresponded to the standard
Euclidean distance (see Table 3.1).

Lemma 4 (Non-i.i.d. Multivariate Gaussian noise/Mahalanobis distance)
Let φ(y) = yT Cy, which corresponds to the general multivariate Gaussian with
concentration matrix C, and Mahalanobis distance dφ(y, μ) = 1

2 (y−μ)T C(y−μ).
If dφ(y, μ0) ≤ ε and dφ(y, μ∗) ≤ ε, then

||θ0 − θ∗|| ≤ √2ε||C−1||1/2 · ||C ||,

where ||C || is the operator norm.

Proof Since C is (symmetric) positive definite, it can be written as C = LT L where
L defines a linear operator on y space, and thus

ε/2 ≥ (y− μ)T C(y− μ) = (L(y− μ))T (L(y− μ)) =
= ||L(y− μ)||2.

Also, it is easy to show that ||C−1||I ≤ C ≤ ||C ||I (where ||B|| denote the operator
norm of B), and that

ε/2 ≥ ||L(y− μ)||2 ≥ ||L−1||−2||y− μ||2 ⇒

⇒ ||y− μ|| ≤
√
ε

2
||L−1||.

Then, using triangle inequality, we get

||μ∗ − μ0|| ≤ ||y− μ0|| + ||y− μ∗|| ≤ √2ε||L−1||.

Finally, since θ(μ) = ∇φ(μ) = Cμ, we get

||θ0 − θ∗|| = ||Cμ0 − Cμ∗|| ≤ ||C || · ||μ0 − μ∗|| =
= ||C || · ||μ0 − μ∗|| ≤ √2ε||L−1|| · ||C ||.

Note that ||L−1|| = ||C−1||1/2, which concludes the proof.

3.4 Discussion and Conclusions

In this paper, we extend the results of [7] to the more general case of exponential-
family noise that includes Gaussian noise as a particular case, and yields l1-regularized
Generalized Linear Model (GLM) regression problem. We show that, under standard
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restricted isometry property (RIP) assumptions on the design matrix, l1-minimization
can provide a stable recovery of a sparse signal under exponential-family noise
assumptions, provided that the noise is sufficiently small and the distribution satis-
fies certain (sufficient) conditions, such as bounded second derivative of the Legendre
conjugate φ(y) of the log-partition function that uniquely determines the distribu-
tion. We also provide distribution-specific proofs for several members of exponential
family that do not satisfy the above conditions. Moreover, we show that the results
of [7] for a more general case of compressible (rather than sparse) signals can be
extended to the exponential-family noise in a similar way.

As we mentioned before, the results presented here are based on our earlier work
in [19]. A more recent work by [15] (and its extended version [16]) is closely related
to ours as it presents a unifying framework for analysis of regularized maximum-
likelihood estimators (M-estimators), and states sufficient conditions that guarantee
asymptotic recovery (i.e. consistency) of sparse model’s parameters (i.e., sparse sig-
nals). These general conditions are: decomposability of the regularizer (which is
satisfied for l1-norm), and restricted strong convexity (RSC) of the loss function,
given a regularizer. Generalized linear models are considered as a special case, and
consistency results from GLMs are derived from the main result using the above two
sufficient conditions. Since the l1-regularizer is decomposable, the main challenge
is establishing RSC for the exponential-family negative log-likelihood loss, and this
is achieved by imposing two (sufficient) conditions, called GLM1 and GLM2, on
the design matrix and on the exponential-family distribution, respectively. Briefly,
GLM1 condition requires the rows of the design matrix to be i.i.d. samples with sub-
Gaussian behavior, and GLM2 condition includes as one of the alternative sufficient
conditions a uniformly bounded second derivative of the cumulant function, similar
to our Lemma 1 (which bounds its Legendre conjugate). Given GLM1 and GLM2
conditions, [16] derive a bound on l2-norm of the difference between the true signal
and the solution to l1-regularized GLM regression. The result is probabilistic, with
the probability approaching 1 as the number of samples increases. Our results are
different in several ways. First, the bounds are deterministic and the design matrix
must satisfy RIP rather than sub-Gaussianity. Second, our results are focused on the
constrained l1-norm minimization formulation rather than on its Lagrangian form;
in the constrained formulation, parameter ε bounding the divergence between the
linear projections of the signal and its noisy observations (e.g., ||y − Ax||l2 < ε)
has a clear intuitive meaning, characterizing the amount of noise in measurements,
while the particular values of the sparsity parameter λ in Lagrangian formulation are
somewhat harder to interpret. Our results provide a very intuitive and straightfor-
ward extension of the standard compressed sensing result presented in [7]. Finally,
we provide an additional treatment of some cases when the second derivative of
the cumulant function (or its Legendre conjugate) are not bounded, e.g., in case of
Bernoulli noise (logistic loss) or exponential noise (Itakura-Saito distance).

Another interesting topic to consider is alternative error criteria besides the
l2-norm, such as, for example, support recovery. Accurate support recovery is often
a more relevant measure of success, particularly when variable selection is the
main objective. However, deriving support recovery results for GLMs and other
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M-estimators appears to be more challenging then the problems considered herein
and in [15], and remains a direction for future work.
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Chapter 4
Nuclear Norm Optimization and Its
Application to Observation Model
Specification

Ning Hao, Lior Horesh and Misha Kilmer

Abstract Optimization problems involving the minimization of the rank of a matrix
subject to certain constraints are pervasive in a broad range of disciples, such
as control theory [6, 26, 31, 62], signal processing [25], and machine learning
[3, 77, 89]. However, solving such rank minimization problems is usually very
difficult as they are NP-hard in general [65, 75]. The nuclear norm of a matrix,
as the tightest convex surrogate of the matrix rank, has fueled much of the recent
research and has proved to be a powerful tool in many areas. In this chapter, we aim
to provide a brief review of some of the state-of-the-art in nuclear norm optimization
algorithms as they relate to applications. We then propose a novel application of the
nuclear norm to the linear model recovery problem, as well as a viable algorithm
for solution of the recovery problem. Preliminary numerical results presented here
motivates further investigation of the proposed idea.

4.1 Introduction

Identification, specification and exploitation of structure plays a central part in
simulation-based optimization of large-scale complex systems. To identify what
structure is exploitable requires a careful observation of the various layers
involved in the identification, specification and optimization processes. For example,
if the simulation and/or optimization process involves the need to solve a large-scale
linear system, then one interested in exploiting the matrix structure (e.g. sparsity,
block structure, Toeplitz, etc.) to derive fast linear system solvers [5, 33]. In opti-
mization, for example, exploitable structure may emerge in various forms such as
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disparity among sub-problems [54], specific structures of KKT systems, symbolic
re-parametrization in automatic differentiation [37], or partial group separability
[19, 36]. Other interesting examples for exploitation of structure would be model
reduction techniques [7, 13, 39, 64, 90], (nearly) decomposable systems [20, 21]
of stochastic processes, graph partitioning [42, 48, 74], multi-scale characteristics
in computation [12, 87], and algorithmic aspects related to sequential vs. parallel
processing [35].

As a general guideline, development of algorithms that account for the underlying
structure of a problem is advantageous with respect to computational feasibility,
stability, scalability and well-posedness. For a broad range of applications, several
aspects of the structure of the problem can be specified explicitly by means of first
principles [46, 72, 78, 83]. Yet, it is often the case that the inherent underlying
structure may be latent, requiring (some) operations/transformations to make it more
identifiable and exploitable (e.g. nodal reodering of a linear system [51, 73, 82, 94],
representation and re-parameterization [34, 59, 81, 93]). Implicit forms of structure
are often more complicated to specify and thereby exploit. Typically, a governing
principle would serve as good candidate for that purpose. One such generic rule
is Occam’s razor, also known as the principle of parsimony, which states that the
simplest among competing theories should be preferred [23, 30, 43, 47, 86]. This
principle has proved itself highly appropriate for abroad range of natural phenomena
and when describing the function of a complex system. Other naturally-inspired
or physics-inspired guiding principles might include causality, conservation rules,
minimal energy, the least action principle, uncertainty principle, or minimal entropy
[10, 11, 22, 24, 50, 66].

As a caveat, it is important to acknowledge that postulation and imposition of
inappropriate structure can equally introduce bias and deteriorate the quality of the
solutions. Lastly, it is critical to acknowledge that structure only exists in a context,
depending upon the intended purpose of the optimization process (inference, control,
design, decision, and so forth).

This chapter is devoted to the exploitation of low rank operator structure. Follow-
ing more specific background regarding low rank optimization and its tight convex
relaxation, the nuclear norm optimization problem, we shall review some of the more
popular applications in which these types of problems arise. We will then consider
various algorithmic strategies for solving the corresponding optimization problems
involving the nuclear norm. Lastly, we will describe the use of nuclear norm mini-
mization as a generic means for resolving model inadequacies.

4.2 Background

It is well-known [33] that for every matrix, there exists a Singular Value Decomposi-
tion (SVD). One way (amongest several) of expressing the SVD of an m × n matrix
X is to write it out as a sum of rank-one outer products
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X =
r∑

i=1

σi uiv
�
i , (4.1)

where the rank, r , satisfies r ≤ min(m, n), the scalar values σi are called the singular
values, and they are real and non-negative (even for complex X ) and ordered such
that σ1 ≥ σ2 ≥ · · · ≥ 0. The m-length vectors ui form an orthonormal set, U :=
{u1, . . . , un}, as do the n-length vectors vi , V := {v1, . . . , vn}. The Eckart-Young
theorem states that the matrix B := ∑k

i=1 σi uiv
�
i for k ≤ r is the optimal (in the

Frobenius and in the 2-norm sense) rank-k approximation to X . In particular, the error
is given by ‖X − B‖2F =

∑r
i=k+1 σ

2
i . So, if k is such that the remaining singular

values are relatively small compared to the largest one, B captures most of the energy
in X , and the sum of the squares of the remaining singular values correspond to the
energy not captured.

While the Frobenius norm of a matrix X is the square root of the sum of the
squares of the singular values, the nuclear norm of a matrix X is just the sum of the
singular values of the matrix,

‖X‖∗ =
r∑

i=1

σi , (4.2)

and since the nuclear ball {X : ‖X‖∗ ≤ 1} is the convex hull of the set of rank-
one matrices with spectral norm bounded by one, this norm can be regarded as the
tightest convex approximation of the rank function. For optimization purposes, it is
often recast in its semidefinite programming (SDP) representation

‖X‖∗ = min
1

2
(trace (W1)+ trace (W2)) (4.3)

s.t.

[
W1 X
X� W2

]
� 0,

where the trace operation on a matrix is the sum of the diagonal entries of the matrix.
The nuclear norm can be shown to be unitarily invariant. That is, if U is an m×m

unitary matrix and V is an n × n unitary matrix, then

‖U X V ‖∗ = ‖X‖∗. (4.4)

When the column dimension of the matrix collapses (i.e. n = 1), then X becomes
a vector, x , and we observe

‖x‖1 = ‖diag(x)‖∗. (4.5)

Therefore, the nuclear norm can also be regarded as the �1 norm in the spectral
domain, and the tightest convex approximation for the �0 norm.
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4.2.1 The Role of the Nuclear Norm in Affine Rank Minimization

The affine rank minimization problem is to find the matrix of smallest rank that
satisfies a linear system,

min rank(X)

s.t. A(X) = b, A : Rm×n → R
p (4.6)

for some given A and b. It was shown in [75] that this problem can be exactly solved
through the minimization of the nuclear norm over the given affine space if A is a
nearly isometric linear map and the number of linear constraints is within the range
(depending on the dimensions of the problem). Thus, instead of solving the above
problem, we may seek to solve its relaxation

min ‖X‖∗ =
min(m,n)∑

i=1

σi (X)

s.t. A(X) = b, A : Rm×n → R
p (4.7)

where σi (X), i = 1, 2, ...,min(m, n) are the singular values of the matrix X .

4.2.2 The Nuclear Norm in Matrix Completion and Low-Rank
Matrix Recovery

The matrix completion problem is to recover (implicitly or explicitly) a subset or the
entire set of the entries of a matrix from a limited number of sampled entries. A well-
known example of the matrix completion problem is the Netflix Prize problem [1].
The objective of the application (aka recommender system) is to provide recommen-
dations for customers based upon knowledge regarding the current users’ ratings. As
such, this problem can be reduced to the problem of predicting the unknown values
in a particular rating matrix based on the ratings that a given user has submitted
already on a subset of the database of movies.

Mathematically, the matrix completion problem can be formulated as follows.
Suppose M ∈ R

n1×n2 and let Ω be a subset of n1 × n2 revealed entries of M . We
want to find a solution of the following problem

min rank(X)

s.t. Xi j = Mi j for all (i, j) ∈ Ω (4.8)

Let MΩ be the m×n matrix containing all the revealed entries of M , and assume
it is filled with 0′s in unrevealed entries:
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MΩ =
{

Mi, j : (i, j) ∈ Ω
0 : otherwise.

(4.9)

Then the completion problem can be rewritten as

min rank(X)

s.t. XΩ = MΩ. (4.10)

The above is the ideal case, which is difficult to solve. If instead one employs the
convex relaxation for the rank minimization component, we derive the alternative
problem

min ‖X‖∗
s.t. XΩ = MΩ. (4.11)

Much of the recent literature on the matrix completion problem is devoted to efficient
methods for solving this relaxed version.

4.2.3 The Nuclear Norm in Matrix Separation

The matrix separation problem also known as robust principal component analysis
[16, 53], aims at separating a low-rank matrix and a sparse matrix from their sum.
This recently formulated problem gains increasing research interest due to the broad
range of potential applications it can tackle, such as image and model alignment
as well as system identification [27, 57, 71]. For a sparse matrix S and a low-rank
matrix X to which, Y = X + S, the problem can be defined as

argmin
S,X∈Rm×n

rank(X)+ μ‖S‖0 (4.12)

or in its convex relaxation form

argmin
S,X∈Rm×n

‖X‖∗ + μ‖S‖1 (4.13)

where the term ‖S‖1 simply stands for the sum of absolute values of all entries in
the matrix S.
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4.2.4 The Nuclear Norm in Other Applications

A large volume of literature is devoted to the use of the nuclear norm for various
applications in science and engineering. The scope of this chapter is to provide a
brief overview and then highlight some very recent on-going research work in the
context of model misspecification. However, in the interest of completeness, we shall
mention few other research, to give an idea of the breadth of the usefulness of the
approach. Specifically, the matrix nuclear norm has been used successfully in many
applications including low rank approximation [70], system identification [38, 40,
56, 63], localization of wireless sensors [28], network traffic behavior analysis [60],
low-dimensional Euclidean embedding problems [32, 75], image compression [58].

Furthermore, as the amount of data that is collected and stored in its naturally
occurring high-dimensional format increases, the need to investigate the generaliza-
tion of the nuclear norm to higher-order arrays (called tensors) has arisen. It turns out
that such generalization is highly non-trivial, in part because even the of “rank" of
a tensor is quite an subject. One must determine first which tensor rank formulation
should be considered for optimization and only consequently make any attempt to
define and relax to a tensor nuclear norm. For further applications and literature, the
interested reader is referred to [3, 6, 26, 31, 62, 77, 89].

4.3 Methods for Nuclear Norm Optimization

In the past few years, a remarkable number of algorithms have been developed for
nuclear norm minimization. The principal ideas behind a few are recent, whereas not
so few leverage old, somewhat forgotten approaches. Luckily the intrinsic mecha-
nism can be umbrellaed together under few central concepts. In this section we do
not intend to provide a comprehensive review regarding all approaches, but rather to
briefly introduce the most frequently used approaches and their underlying founda-
tions.

4.3.1 Methods Based on Semi Definite Programing

Semi-Definite Programming (SDP) consists of minimization of a linear functional
of a matrix subject to linear equality and inequality constraints. Most nuclear norm
optimization problems can be formulated as semidefinite programs (i.e. refer to
(4.3)), but the reformulation may require the utility of large number of auxiliary
matrix variables. The SDP problem is computationally expensive to solve by means
of general-purpose interior-point solvers, as the solution for extremely large systems
of linear equations is required in order to compute search directions. Nevertheless, it
is valuable to mention some background regarding SDPs, highlighting more recent
work on SDPs for optimization problems involving the nuclear norm.
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4.3.1.1 Interior Point Methods for SDP

Assuming a feasible initial guess,1 interior-point methods (as the name implies)
successively update the solution of the optimization problem while maintaining the
solution in the interior of the feasible region at each instance. Typically, an indica-
tor function or a logarithmic barrier associated with inequality constraints augments
the objective and forces solutions towards the interior feasible domain. In terms of
KKT conditions this implies that complementary slackness conditions are only satis-
fied approximately, where the exactness of the approximation is gradually tightened
throughout the optimization process. The approach was first used as a powerful tool
in linear programming. Later, it was extended to SDP in [2, 69]. For a comprehensive
review of interior-point methods, the reader is refereed to [29].

In [56], Liu and Vandenberghe showed that the structure of the problem in the
semidefinite programming formulation can be exploited to develop more efficient
implementations of interior-point methods. The cost per iteration can be reduced to
a quartic function of the problem dimensions, which makes it comparable to the cost
of solving the approximation problem in the Frobenius norm.

4.3.1.2 More Recent Work Based on SDP

Considering the formal definition of the nuclear norm in (4.2), it is expected that
SVD computation would play a chief computational role in the design of nuclear
norm optimization schemes. Complete singular value decomposition is obviously
non-tractable for a broad range of large-scale applications. An alternative approach
is proposed by Jaggi and Sulovsky [44]. Their idea is to recast the optimization
problem as a convex function over the set of positive semidefinite matrices with
unit trace. Following the use of a scaling transformation, Hazan’s [41] Sparse-SDP
solver can be readily applied to the recast version of the problem. The appeal of this
approach is that each iteration only involves the computation of the largest singular
triple of the gradient of the function at the current iterate. This entails relatively
cheap sparse-matrix operations followed by rank-one updates. The downside is that
this approach produces a so-called ε-accurate solution, whose rank could be as large
as O( 1

ε
). This in turn may render it infeasible for large problems in practice due to

the need to hold the factorization of the solution in memory. An alternative approach
is proposed in [76]. Their method directly deals with a low-rank parameterization.
A pitfall of that approach is its non-convex formulation, implying that solutions are
prone to fall into local minima and thereby are highly sensitive to initialization.

1 This assumption is not mandatory for primal-dual interior point methods.
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4.3.2 Projected Sub-Gradient

In optimization of differentiable objective functions, the gradient (or its estimate)
whenever computable, is usually employed in some manner to determine search
directions. When the objective function is non-differentiable, methods that utilize,
so-called, sub-gradients can be employed. Suppose f (X) denotes the (not necessarily
convex) objective function. Then g is a sub-gradient of f at X if

f (Y ) > f (X)− g�(Y − X), ∀Y.

When f is convex and differentiable at X , the sub-gradient coincides with the gra-
dient. Otherwise, there may exist more than a single sub-gradient: the set of all
sub-gradient vectors at X is called the sub-differential at X . For more details, see
[8]. A typical sub-gradient iterative update step looks like

Xk+1 = Xk + αkgk,

where gk denotes a particular sub-gradient at Xk and αk denotes step length.
Now consider the problem

min
X∈C

f (X)+ μ‖X‖∗, (4.14)

where C is a convex set, and f is convex but might be non-differentiable at some
points. Let F(X) denote the objective function in this case. The sub-gradient of
F(X) can be obtained from the sub-gradient of f (X) and an appropriately truncated
SVD of X . A stochastic projected (i.e. each iterate is projected onto C) sub-gradient
(SSGD) approach based on these ideas for solving the above problem is presented in
[4]. The key ingredient in their SSGD algorithm is derivation of an unbiased estimator
for a sub-gradient. The computational difficulty associated with this approach can be
somewhat relieved through the use of a matrix probing technique [17] in which the
sub-gradient matrix of F is probed through its multiplication by a random low-rank
matrix.

4.3.3 Singular Value Thresholding

Inspired by previous research work in the field of �1 minimization, and in particular
by studies associated with linearized Bregman iterations for compressed sensing
[15, 92], Cai, Candès and Shen [14] introduced a simple first-order iterative algorithm
to approximate a matrix with minimum nuclear norm among all matrices obeying
a set of convex constraints (i.e. can be formulated as in 4.7). The algorithm applies
a soft-thresholding operation S upon the singular values of a sparse matrix at each
step.
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For a given threshold level τ ≥ 0 the soft-thresholding operator Sτ is defined as
follows:

Sτ (X) := Udiag (max(0, σi − τ)) V� (4.15)

where U and V are usual left and right singular vector sets respectively as defined
in 4.1, and the diagonal matrix of thresholded singular values essentially holds zero
values for all entries smaller than τ or otherwise τ -shifted singular values. Often the
soft-thresholding operation is also referred by the name shrinkage, as the thresholded
values are shrunk to zero. Later, in Sect. 4.3.5 we shall see that the singular value
thresholding operator is in effect the proximity operator associated with the nuclear
norm.

Considering optimization problem given in Eq. (4.11)

min ‖X‖∗
s.t. XΩ = MΩ. (4.16)

then starting with Y0 = 0, the update rule has the following form

Xk+1 = Sτ (Yk, τ ) (4.17)

Yk+1 = Yk + αk (M − Xk+1)
Ω (4.18)

where αk are the step lengths, and the superscriptΩ indicates orthogonal projection
onto the span of matrices vanishing outside Ω (all but the sampled entries are set to
zero) as defined previously in Sect. 4.2.

The method is proved to be convergent. This algorithm is relatively efficient
and of low computational cost since in practice full computation of the SVD is
not required. Instead, estimation of the largest singular values and vectors can be
performed through Monte-Carlo sampling [57] or Lanczos bi-diagonalization [14].
Their numerical results demonstrated the utility of the algorithms for large-scale
problems. Other noted algorithms involving application of a soft-thresholding oper-
ator upon the singular values of an iterate are the Soft-Impute [61] and the accelerated
Proximal Gradient approach [45] that is further discussed in Sect. 4.3.5.

4.3.4 Fixed Point and Bregman Iterative Methods

The application of continuation methods for low rank approximation is a natural
choice. In [57], the authors proposed the fixed point and Bregman iterative algo-
rithms for solving the minimization problem (4.7). The basis for their algorithm is
a homotopy approach together with an approximate SVD. Numerical results on real
matrix completion problems are presented in [57] illustrating that their algorithm
can potentially outperform SDP solvers for large problems.
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Interestingly, the method has links to the Alternating Direction Method of Mul-
tipliers [9], which is based upon the classic augmented Lagrangian optimization
approach. Similarly to most alternating optimization strategies, some variables are
affixed at their latest values while others (such as the Lagrange multipliers) are being
optimized, and then the set of updated variables is left fixed while the ones that
were kept fixed previously are being updated. Yet, the main distinction is the use
of seemingly redundant, dummy variables with constraints that forces the dummy
variables to equate to the primary variables. By doing so, the original problem can
be artificially divided into a sequence of sub-problems, each of which is simpler to
handle than the original objective. This is particularly useful in situations where the
optimization problem involves distinct elements for which efficient algorithms exist.
For instance, consider the following objective

argmin
X

1

2
‖AX − B‖2F + μ‖X‖∗ (4.19)

which can be reformulated as

argmin
X,Y

1

2
‖AX − B‖2F + μ‖Y‖∗ +

ρ

2
‖X − Y‖2F (4.20)

s.t. X = Y. (4.21)

The Lagrangian of this objective takes the form:

L(X,Y, λ) = 1

2
‖AX − B‖2F + μ‖Y‖∗ +

ρ

2
‖X − Y‖2F + vec(λ)�vec((X − Y )).

(4.22)
The iteration would then be

Xk+1 = argmin
X

L(X,Yk, λk) (4.23)

Yk+1 = argmin
Y

L(Xk+1,Y, λk) (4.24)

λk+1 = λk + ρ(Xk+1 − Yk+1). (4.25)

Such framework has been implemented by Yuan and Yang [91] in a code called LRSD
(Low Rank and Sparse matrix Decomposition), and by Lin, Chen, Wu and Ma [52] in
a code called IALM (Inexact Augmented Lagrangian Method). In the latter study, an
exact augmented Lagrangian method (EALM) is also implemented in which multiple
rounds of alternating minimization are conducted before the Lagrangian multiplier
is updated.
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4.3.5 Proximal Gradient Algorithms

The proximity operator of a convex function is a natural extension of the notion of
a projection operator onto a convex set. This numerical tool is particularly essential
in the analysis and the numerical solution of convex optimization problems. Lately,
its utility in the context of inverse problems and especially in the fields of signal and
image processing has been considered.

The proximal mapping of a convex function h is defined as:

proxh(X) = argmin
Y∈Rn

(
h(Y )+ 1

2
‖Y − X‖22

)
. (4.26)

The proximal operator typically replaces a “problematic” component of the objec-
tive. For instance, let us consider an unconstrained optimization problem that can be
split out into two components

minimize f (X) = g(X)+ h(X) (4.27)

where g is convex, differentiable and h is closed, convex, possibly differentiable
function. Proximal operators are characterized by the following appealing properties:

• Inexpensiveness - proxh is firmly inexpensive. That is proxh is co-coercive

‖proxh(X)− proxh(Y )‖ ≤ ‖X − Y‖ (4.28)

• Separability - if h(X) =∑
j h(X j ), then, proxh =

[
proxh j

]
j

More information regarding proximal methods and their properties can be found
in [18].

The update step would then get the form

Xk+1 = proxαk h︸ ︷︷ ︸
backward step

(Xk − αk∇ f (Xk))︸ ︷︷ ︸
forward step

(4.29)

where α is a line search step length.
The authors of [84] considered the solution of

min
X

f (X)+ P(X)

which is similar to the problem given in (4.14) for appropriate definition of P and
other assumptions (e.g. f to be smooth convex). The algorithm is an accelerated
proximal gradient algorithm [67, 68, 88], that converges in O(1/√ε) iterations to
a so-called, ε − optimal solution. Results in that study demonstrated the potential
efficiency and robustness of such accelerated proximal methods in a large-scale
settings on random matrix completion problems.
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Several forms of inexact proximal point algorithms were studied and implemented
in [55]. In that study, the authors studied the viability of inexact proximal point
algorithms in the primal, dual and primal-dual forms for solving the nuclear norm
minimization with linear equality and second order cone constraints.

4.3.6 Atomic Decomposition

In [49], the authors develop an algorithm for solving a matrix form of the compressive
sensing problem

min
X
‖A(X)− b‖2 (4.30)

s.t. rank(X) ≤ r, A : Cm×n → C
p. (4.31)

Their algorithm is called “Atomic Decomposition for Minimum Rank Approxima-
tion”, or ADMiRA. The “atoms” in the context of this study are rank-one matrices;
the set of atoms is the set of all rank one matrices that are not collinear. Clearly,
a matrix must have an atomic decomposition (namely, the SVD). To summarize,
this algorithm primarily makes use of least squares problems/solvers and truncated
SVDs. Thus, the authors claim their algorithm can be efficient to the extent that
optimized versions of subroutines for those tasks can be utilized. The algorithm is
provably convergent for certain classes of operators A (which does not include the
matrix completion mapping).

4.4 The Problem of Misspecified Observation Models

4.4.1 Motivation

Numerical simulators are used extensively in industry and in academia. Their main
role is to imitate physical processes or systems in well-controlled and repeatable
settings. Numerical simulation (i.e. defining the state of a system given input para-
meters and governing relations) is instrumental for description, prediction, control
and design of complex systems. Fidelity of the simulation process plays a central
role in attainment of meaningful predictive capabilities. Frequently, the simulation
model is misspecified to a certain extent. Such misspecification may originate from
incomplete or approximated physical description of the problem (i.e. governing equa-
tions, geometry, boundary conditions, input model parameters, etc.), and may also
be attributed to the use of approximated numerics (i.e. floating point round-off error,
truncated expansions, discretization error, numerical approximation, etc.), due to lin-
earization of non-linear processes, or any other unknown sources of modeling error.
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Whenever any of these sources of error are prominent, these errors creep into the
simulation output. The ramifications of such model misspecification are vast, ranging
from inaccurate state descriptions to, unstable model recovery and predictions that
lead to erroneous control output or decisions.

A great body of research has been devoted to recovery/estimation of the underlying
true model parameters, however, few have been underway for improving the physical
model which may have further impact on estimation of the true model.

Traditionally, efforts for remediation of model misspecification have centered on
explicit means, requiring the modeler to have a deep understanding regarding the
most prominent model inadequacies errors, their propagation route from raw data,
through estimation and end-goal objectives and lately the modeller’s ability to better
specify a more accurate physical model.

Moreover, in many situations one may neither have access to the simulator code,
nor to sufficient documentation that elucidates the current formulation details. Fur-
thermore, even when such formulation is known, one may often be agnostic to the
relevant attributes of the simulation that exhibits the largest source of error and to
the extent they deteriorate simulation and simulation-derived output.

4.4.2 Design Correction

Let us assume that for a set of simulation model input parameters, a corresponding
set of high fidelity output data is attainable. For the sake of clarity and readability,
we shall hereafter use the term data for the latter set. Useable set of data can be
obtained in various ways, such as through experimentation with known input models,
analytic derivation, or alternatively through the use of a computationally intensive
high-fidelity simulation.

Given this information, along with non-intrusive2 access to the current (low
fidelity) simulator, we formulate the model correction problem as a stochastic
constrained optimization problem, where the objective function to be optimized
includes a measure of the discrepancy between the expected output of the current
(low-fidelity) model along with unknown correction against the data. The correction
to the operator can be represented in a number of different ways, yet, although the rep-
resentation of the correction may be assumed known, the operator itself is unknown.
Posing the optimization problem as one of recovering the operator’s correction given
only the data is often inadequate. This is because an unbounded number of potential
corrections may equally fit the data. Therefore, we further incorporate some pref-
erences regarding the structure of the correction operator through additional con-
straints or as a penalty on the objective function. The resulting optimization problem
of recovering the correction operator given the data and these additional constraints
is hereafter referred to as the design correction optimization problem.

2 Non-intrusive methods relies upon black-box interface, for which output is received per input.
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One such preference for an additive linear simulation model would be that the
rank of the correction is small. Such an assumption can be justified in a broad range of
applications in the field of ill-posed inverse problems, since the effective rank of the
most comprehensive simulation models is smaller than the number of observations.
The enforcement of a low-rank constraint on the objective function is computationally
infeasible. However, a close computationally tractable alternative can be obtained
by employing, instead of a hard rank constraint, the tightest convex relaxation to the
rank, which is the nuclear norm. In other words, the problem we want to solve is to
find the operator correction that satisfies a nuclear norm constraint. Other structural
preferences may be more appropriate given some intuition regarding the problem
under consideration. Following the solution of the design correction optimization
problem, a modeling operator correction is obtained. This operator can now be used
in practice to improve the fidelity of current simulation procedure.

In the next subsection, we give the details corresponding to the aforementioned
description.

4.4.3 Problem Definition

Let F : Rn → R
m be a comprehensive observation operator which transforms the

model x ∈ R
m into the observable space. Let d ∈ R

m be an observation obtained
through the following relation:

d = F(x)+ ε (4.32)

where ε stands for measurement noise. In reality, our ability to prescribe F fully is
limited. Numerical modeling is notoriously known to be a host of various sources of
error. Such inadequacies in the prescription of the observation model may arise due
to various factors. Some examples include:

• Formulation - the model may cover only part of the underlying governing equa-
tions (e.g. approximated physics), or alternatively account for limited range of
parameters (e.g. quasi-static approximation for problem in which the effect of of
high frequency components cannot be neglected). Other problems may arise due
to defective boundary conditions or any other input parameters, linearization of
non-linear phenomena, truncated expansions, etc.
• Discretization - numerical errors may emerge from inadequate discrete represen-

tation of an infinite dimensional problem. Issues such as inaccurate geometrical
representation of the domain, mesh quality issues, inappropriate spatio-temporal
discretization, unstable numerical schemes, etc.
• Numerical solution - often solutions are attained with a prescribed numerical tol-

erance accuracy. Such accuracies might not be communicated consistently, and
may be amplified or still be observed beyond the measurement noise level.
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For the sake of simplicity, let us first assume that the observation model can be
decomposed in the following additive form

F(x) = A(x)+ η(x) (4.33)

where A ∈ R
m×n is a discrete, incomplete observation operator that suffers from any

of the aforementioned modeling inadequacies or from other sources of error. η(x)
stands for modeling error, or model misspecification (under-modeling).

If A is assumed linear (i.e independent of x), we can define a correction for the
missing observation operator η(x) in numerous ways. For the sake of simplicity we
will limit this discussion to an additive model of the form

F(x) = A(x)+ B(x) (4.34)

where A is known, B needs to be estimated. Obviously, other forms of parametrization
can be considered, as long as they capture principle components of the model error
in an appropriate functional form.

The key point is that given some information regarding the model space and the
data, and in particular authentic paired samples from both spaces, one can design the
corrective part of the observation operator.

Let us focus on the the most fundamental situation, namely

B̂ = argmin
B

rank(B(x)) (4.35)

s.t. x̂ = argmin
x

D ((A + B)(x), d)+ R(x)

where D is a distance measure (noise model), R corresponds to a regularization oper-
ator, and B is a function of x . However, this formulation is NP-hard, and intractable
even for problems of moderate size. An alternative formulation is one in which con-
vex relaxation of the rank functional is utilized. The tightest convex relaxation for
the rank operator is the nuclear norm

B̂ = argmin
B
‖B(x)‖∗

s.t. x̂ = argmin
x

D ([A + B](x), d)+ R(x). (4.36)

This problem can be further relaxed in several ways. For instance, assuming B to
be linear, and that the measurement noise level (in some measure or metric) can be
bounded, we then have

B̂ = argmin
B
‖B‖∗

s.t. D ((A + B)x, d) ≤ τ. (4.37)
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This can alternatively be expressed as

B̂ = argmin
B

D ((A + B)x, d)

s.t. ‖B‖∗ ≤ δ

2
(4.38)

where δ and τ are linked through a Pareto curve.

4.4.4 Solution Method

We will consider a Sample Average Approximation approach (SAA) [80]. SAA
solves stochastic optimization problems by Monte Carlo simulation [79]. In this
framework, the expectation with respect to the model space as well as the mea-
surement noise shall be approximated by a sample average estimate of a random
sample.

We wish to solve the following:

B̂ = argmin
B

1

nx nε

nx ,nε∑

i=1, j=1

D (
(A + B)xi − di, j

)

s.t. ‖B‖∗ ≤ δ

2
(4.39)

where nx is the number of model realizations we draw and nε is the number of
data realizations for each model realizations. That is for each model realization xi ,
i = 1, 2, . . . , nx , we assume the availability of data realizations corresponds to nε
measurement random noise samples.

One can readily observe that when the objective is a quadratic, the problem can
be reformulated in matrix form as follows:

B̂ = argmin
B

1

nx nε
‖(A + B)X − D‖2F

s.t. ‖B‖∗ ≤ δ

2
(4.40)

where X ∈ R
n×nx nε and D ∈ R

m×nx nε .
As this problem is a convex problem, we shall follow Jaggi and Sulovskỳ’s [44]

convexification of Hazan’s algorithm [41] to pursue minimization of the nuclear
norm. Beyond its simplicity, the algorithm entails a convex optimization problem,
and hence convergence is guaranteed. In addition, it offers means for controlling the
rank.
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Observe that for any nonzero matrix B ∈ R
m×n and δ ∈ R: ||B||∗ ≤ δ

2 , if
and only if there exists symmetric matrices M ∈ R

m×m and N ∈ R
n×n such that(

M B
B� N

)
� 0 and trace

(
M B
B� N

)
= δ. Let Z =

(
M B
B� N

)
, then the problem (4.40)

can be recast in the following form

min
Z

f̂ (Z) (4.41)

s.t. Z ∈ S
(m+n)×(m+n)

Z � 0

trace (Z) = δ

where S ∈ R
m+n is a family of symmetric matrices and the function f̂ applies the

function f = D ((A + B)x, d) upon the upper right m× n sub-matrix of Z (i.e. B).
A description of the algorithm is given below in SAA flavor.

Algorithm 1 Low rank linear observation design correction by nuclear norm mini-
mization.
1: Input

(Scaled) convex function f
2: Initialization

Set ε, C f , tol, v0 ∈ R
(m+n)×1, ‖v0‖ = 1, Z1 = v0v

�
0

3: for k = 1 : [ 4C f
ε
] do

4: Extract Bk = Zk(1 : m,m + 1 : m + n)
5: Compute the gradient of f

∇ fk = 2 ((A + B) X − D) X�
6: Assemble the gradient of f̂

∇ f̂k =
(

0 ∇ fk

∇ f �k 0

)

7: Approximately (to accuracy ε) compute the largest (algebraic) eigen vector

vk = max
vk

eig
(
−∇ f̂k , tol

)

8: Determine step length αk by a line search
9: Update Zk+1 = Zk + αk(vkv

�
k − Zk)

10: end for
11: Return B̂ = Z(1 : m,m + 1 : m + n);

4.5 Numerical Examples

This example is intended to mimic the so-called blind-deconvolution problem, where
only an approximation to the actual blurring operator is known a-priori. To get our
data D, we use 100 MR images from the Auckland MRI Research group database.3

Of those 100 images, we randomly choose 80 to serve as the training set and the

3 http://atlas.scmr.org/download.html

http://atlas.scmr.org/download.html
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Fig. 4.1 A set of training models

remainder as the test set. In this example, we pre-process the images by cropping the
watermark and resizing the cropped images to the size of 65× 65. Our observation
operator (blurring operator) is generated from a decomposition of a symmetric, dou-
bly block Toeplitz matrix T that models blurring of an N × N image by a Gaussian
point spread function. That is, we find the SVD of T, and use the SVD to specify the
two components of our observation operator (T is not explicitly use thereafter). Our
true (fully specified), rank-deficient blurring operator consists of the sum of matrices
A and B, each of which is constructed as a spectral subset of the fully-specified
operator by virtue of singular value decomposition of T. In this experiment, A is
constructed from the first 10 singular triplets of T and is assumed to be known,
whereas B is constructed from the 31st to 80th singular triples of T, and assumed to
be unknown. It would then be our goal to recover B as an additive low-rank matrix
correction, for the mis-specified operator A.

Mathematically, we have T =∑n
i=1 σi uiv

�
i and then we define

A =
10∑

i=1

σi uiv
�
i , B =

80∑

i=31

σi uiv
�
i ,

so that clearly A has rank 10 and B has rank 50.
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Fig. 4.2 Data (blurred training images) obtained using the fully specified operator A + B

Blurred images corresponding to a fully specified Observation operator A + B
and a partially specified observation operator A are shown in Figs. 4.2 and 4.3.

We use B̂ to denote the correction for the blurring operator we obtain by the
proposed algorithm. As a preparation for the low rank recovery estimate algorithm,
several realizations of zero mean Gaussian noise are infused to each of data argu-
ments. The corresponding singular value spectra of A, A+ B and A+ B̂ are shown
in Fig. 4.4.

Figure 4.5 illustrates the convergence of the relative residual error for training
set (blue) and testing set (red) respectively. The proximity of the relative residuals
reassures that the recovery of the low-rank correction operator B was not over-fitted.

From Fig. 4.6, we can see that with the recovered operator correction, B̂, the
blurred test models with A + B̂ look much closer to the true blurred test models as
compared to using only operator A.

We use the (truncated) SVD algorithm to obtain the recovered model with the oper-
ators A, A+B and A+ B̂. The choice of this algorithm (as opposed to such that explic-
itly prescribe a regularizer) was made to allow for assessment of information content
arriving merely through the observation operator, as opposed to solutions reconciled
with structural information that is less quantifiable. For the operators A and A+ B,
the effective condition numbers and noise levels are relatively small, so the recov-
ered images can be obtained without truncation of any singular values, and therefore
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Fig. 4.3 Data (blurred training images) obtained using the misspecified operator A

Fig. 4.4 Singular value spec-
trum of the misspecified oper-
ator A (red), the supplemented
operator A+ B̂ (blue) and the
fully specified operator A+ B
(green)

0 50 100 150 200
10 −20

10 −15

10 −10

10 −5

10 0

svd (A )

svd (A + B̂ )

svd (A + B )

correspond to the pseudo-inverses of the respective operators applied to the images.
However, as is clear from Fig. 4.4, the effective condition number of A+ B̂ is large,
and so we truncate the SVD of A+ B̂ and apply the pseudo-inverse of the truncated
operator to D to recover the images. Some samples of the results are shown in Fig. 4.7.
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Fig. 4.5 Convergence of the
relative residual error of the
training set (blue) and the test
set (red) of the MRI example
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4.5.1 Discussion

It is evident from Fig. 4.6 that the range of the true observation operator (blurring
operator in this particular case) is indeed better approximated by the corrected oper-
ator rather than with the original misspecified one.

Note that the j th column of D is constructed from the j th column of X as
D(:, j) = ∑10

i=1 σi (v
�
i X (:, j))ui +∑80

i=31 σi (v
�
i X (:, j))ui , and since the first 80

singular vectors of this operator mainly correspond to smooth modes, the blurring
effect as displayed above is not surprising. Using this formulation, it is easy to show

X (:, j)A,recov =
10∑

i=1

vi (v
�
i X (:, j)),

X (:, j)A+B,recov =
10∑

i=1

vi (v
�
i X (:, j))+

80∑

i=31

vi (v
�
i X (:, j)).

(4.42)

Since, in this example, ui = ±vi , it is not surprising that recovered images also
appear blurry. On the other hand, in this example, we find that the left singular
vectors of A + B̂ are approximately represented by the union of the subspaces
span {v1, . . . , v10, v31, . . . , v31+p} for p ≥ 0, and the subspace spanned by addi-
tional v� vectors correspond to higher-frequency modes (although the influence of
these on the quality of the correction operator estimate B̂ is damped by the small
corresponding singular values as can be observed from Fig. 4.4). The range of the
corrected operator A + B̂ more closely resembles the range of A + B, as seen in
Fig. 4.6. However, when it comes to inversion, such a decline in the singular values of
the corrected operator corresponding to the high frequency components, manifests
itself through amplification of these frequency components. This behavior is evident
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Fig. 4.6 From left to right: original test models, models observed with the mis-specified operator
A, models observed with the fully specified operator A+B, models observed with the supplemented
operator A + B̂

from the fact that the truncated SVD filter is inversely proportional to the singular
values σ̃i . That is, the truncated SVD solution is

X (:, j)A+B̂,recov =
s∑

i=1

ũi
�D(:, j)

σ̃i
ṽi . (4.43)

where s represents the truncation level. In this example, the ṽi approximately span
the union of the two subspaces mentioned above.

The significance of this in deblurring is evident: information is contained in the
modes corresponding to mid-range singular values that A alone does not include.
Thus, it is impossible to recover all admittable information if we cannot reconstruct
the missing part of the spectrum. Note that if we had recovered B perfectly, we
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Fig. 4.7 From left to right: test set models, recovered models with the mis-specified operator A,
recovered models with the fully specified operator A+ B, recovered models with the supplemented
operator A + B̂

still could not have recovered the edge information exactly, as is obvious from the
expression in (4.42). However, if the truncation index is set such that one or more
higher frequency vectors ṽi gets included in the sum (4.43), edge information may be
visible. Indeed, in this example, edges appear in the restoration because basis vectors
with higher frequency information were able to creep into the process of recovering
B̂. This occured due to the limited number of samples and large number of degrees of
freedom, which were not all truncated when the truncated SVD solution was formed.

While spectral analysis in this blurring case was possible, for other observa-
tion operators, the contribution of the correction to the simulated data output and
the subsequent recovered models might require other analysis tools. Other possi-
ble assessment measures could be the expected value of the relative residual error
for the training and the test set, or even more importantly, the spread of the pos-
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terior. As the correction procedure effectively minimizes the null-space of the
observation operator, the spread of the posterior is expected to be far more con-
centrated. Frequently in the context of ill-posed inverse problems, point estimates
as maximum a posteriori or maximum likelihood do not suffice, since uncertainty
must be quantified. As can be observed from Fig. 4.4, model correction in the form
of rank correction/augmentation, essentially increases the range space of the obser-
vation operator, at the expense of reducing the dimension of the intrusive null space.
The implications of reducing the null-space dimensions are two-fold:

• The use of regularization in order to account for the ill-posed nature of the problem
introduces inevitable bias [85]. The amount of structure (and consequently bias)
imposed upon the inverse solutions is proportional to the null space dimension.
Extracting more measurable information using the a better specified observation
model minimizes our reliance upon what is often bogus and artificial a-priori
information.
• In terms of the resulting posterior distribution, the concept of low rank model cor-

rection is advantageous not merely in getting improvements in recovered estimates,
but also in mitigating unnecessary components of uncertainty.

We note that it is possible to improve the performance of the algorithm (with
respect to exact recovery of B) by inclusion of more images in the training set.
Indeed, the number of degrees of freedom in this problem are such that we would
have needed at least 60 training images to have expected a more accurate recovery
of B.

4.6 Summary

This chapter began by explaining the significance of the nuclear norm in certain
applications where low rank (i.e. implicitly sparse) matrix approximations are desir-
able. This background was followed by a brief glossary of algorithmic strategies for
solving the nuclear norm optimization problems. The remaining focus of the paper
was on motivating and describing a problem in model misspecification and outlining
the value of the nuclear norm in this context. A computationally efficient algorithm
for the corresponding convex optimization problem was presented. A small set of
numerical experiments showed the value in using this approach to better capture
the true operator. Specifically, the examples illustrated that the range of the oper-
ator augmented by the recovered correction is superior to the representation when
it is ignored. Research on the model misspecification problem is ongoing, but the
preliminary results are indeed promising.
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Chapter 5
Nonnegative Tensor Decomposition

N. Hao, L. Horesh and M. E. Kilmer

Abstract It is more and more common to encounter applications where the collected
data is most naturally stored or represented in a multi-dimensional array, known as
a tensor. The goal is often to approximate this tensor as a sum of some type of com-
bination of basic elements, where the notation of what is a basic element is specific
to the type of factorization employed. If the number of terms in the combination is
few, the tensor factorization gives (implicitly) a sparse (approximate) representation
of the data. The terms (e.g. vectors, matrices, tensors) in the combination themselves
may also be sparse. This chapter highlights recent developments in the area of non-
negative tensor factorization which admit such sparse representations. Specifically,
we consider the approximate factorization of third and fourth order tensors into non-
negative sums of types of outer-products of objects with one dimension less using the
so-called t-product. A demonstration on an application in facial recognition shows
the potential promise of the overall approach. We discuss a number of algorithmic
options for solving the resulting optimization problems, and modification of such
algorithms for increasing the sparsity.

5.1 Introduction and Aims

The non-negative matrix factorization (NMF) problem is a well-known, well-
researched problem, and it has been shown as a useful tool for describing or decom-
posing multi-variable data into its constitutive parts. As we highlight briefly below, it
is often desirable and indeed not uncommon for the individual non-negative factors
to be sparse. By sparse, we mean that the percentage of zero elements in the matrix is
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quite high relative to the total number of possible non-zero entries (e.g. nm possible
non-zero entries in an n × m matrix). The NMF problem first appears in [35], and
there has been considerable literature on the subject since that time: see [10] for
example, and the references therein. In the context of this paper, a tensor refers to a
multidimensional array. For example, a third order tensor refers to a 3-way array, a
fourth order tensor is a 4-way array, and so forth. Non-negative tensor factorization
(NTF), the natural generalization of NMF to higher dimensional arrays, is a field
that has been less well explored, but is ever evolving. Therefore, it is worthwhile to
provide a timely supplement to the existing literature (see, for instance, [9–12, 15,
16]) on the subject.

To set the stage for the discussion of the NTF problem, it behoves us to briefly high-
light the NMF problem. The basic non-negative matrix factorization model involves
decomposing a non-negative matrix A ∈ R

n×m into two non-negative matrices
G ∈ R

n×p and H ∈ R
m×p such that

A ≈ GH�. (5.1)

In practice, this approximate factorization is obtained by minimizing some distance
function D, between A and the product GH�:

min
G,H

D(A;G,H) || s. t. constraints on G and/or H. (5.2)

A typical choice for D is D(A;G,H) = ‖A−GH�‖F , although other metrics based
on different statistical assumptions of the model may be used. The constraints are
necessary to encourage additional conditions on the factors. In many applications,
additional constraints such as smoothness, sparsity, symmetry, and orthogonality are
applied to G and H [10]. These may be hard constraints, or the constraints may be
added as penalties to the objective function directly.

To understand why non-negativity and sparsity of factors tend to go hand in
hand with respect to the NMF problem, consider the following. In applications, the
matrix A often represents measured or sampled data. For instance, the j th column
of A might correspond to a particular pixel in an image (i.e. the non-negative image
intensity values), and the kth row would correspond to a particular spectral band.
In the following, we use Matlab notation to index into matrices and arrays. In
particular, A:, j means the j th column of the matrix A. Thus,

A ≈ GH� → A:, j ≈
p∑

i=1

G:,i h j,i ,

where h j,i are scalars corresponding to the j, i position in H. That is, the j th column
of A is a linear combination of the columns of G. The columns of G are usually
referred to as the feature vectors, and the scalars h j,i are the weights. Therefore, the
NMF problem is equivalent to finding a non-negatively weighted representation of
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the p non-negative feature vectors G:,i . The feature vectors are meant to represent
something distinctive, such as a chemical signature. Each pixel comes from some
different element in the real world (i.e. grass) and therefore would be a mixture of
some other base chemical compounds as described over the measured bands. Now,
since the model does not allow for subtraction, and presumably, not every sample
is comprised of every feature, some of the h j,i are zero. If the features themselves
are distinctive, they may also well be sparse vectors. For example, as noted in [10],
in the case of facial image data “the additive or part-based nature of NMF has been
shown to result in a basis of facial features, such as eyes, nose, and lips.”

When the data is already high dimensional by nature, however, it seems more
natural to represent that information in a high dimensional space, rather than in a
2D space by flattening (i.e. collapsing) all the information to a matrix form. High
dimensional representations offer consistent means for preserving inherent multi-
linear model structures. Multi-way analysis often provides unique insights into the
relations between the entities that span the various dimensions. This is especially
crucial when these dimensions can be interpreted in a meaningful way (e.g. corre-
spond to some physical entities). Consider, for example, the problem of 2D facial
recognition. A database of images itself could be considered at least as a 3rd order
data cube, with each 2D image making up a slice of that cube. Indeed, there are facial
recognition papers [1, 32–34] wherein the images are represented using a higher-
dimensional array, where the groupings in other dimensions are made according to
lighting and pose, for example. Intuitively, “flattening" the data into a matrix and
seeking an NMF of that data looses something in the translation. Certainly, recent
work on 2D facial recognition has shown that retaining the data as multi-way arrays
and seeking PCA-like decompositions of those arrays can lead to significant com-
pression over matrix-based PCA approaches [1, 18, 32–34]. Alternatively, one may
want to decompose 2D signals with a time component that accounts for a 3rd dimen-
sion. There are many other examples that illustrate that the modeler stands to gain
by keeping and factoring the multi-way model, and looking for features which are
themselves somehow multidimensional (see [8, 25] for example).

Indeed, a comprehensive overview, at the time of its publication, of non-negative
tensor factorizations and applications exists [10]. Rather than regurgitate all of the
existing NTF literature. Because of the prevalence of such applications, the goal in
the present chapter is to augment the existing literature on NTF with the latest NTF
factorizations based on a different tensor framework first elucidated in [23, 24] and
expanded in [21].

For the purposes of the present chapter, we focus the discussion on non-negative
factorization of third and fourth order tensors with the factorization being built around
the framework in [21, 23]. Yet, in moving from third to fourth order tensors, we will
be able to show how the approach can be generalized recursively to apply to higher-
order tensors. The beauty of building around the aforementioned framework is that
the algorithms look much like the familiar NMF approaches. We will show how
certain constraints tend to enforce additional sparsity in the factors. A few examples
will demonstrate the promise of the new approach.
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Fig. 5.1 An example of a
third order tensor in R

2×3×2

Fig. 5.2 Illustration of index-
ing schemes for a third order
tensor

Fig. 5.3 A 2×3×2×4, fourth
order tensor, represented
visually as a grouping of
4, third order tensors. The
2 × 3 × 2 box in the upper
left would be A:,:,:,1, while the
box in the lower right would
be A:,:,:,4

5.2 Notation and Motivation

We begin with a presentation of notation and basic definitions. A visual interpretation
of a third order tensor is given in Fig. 5.1 as a starting point.

Throughout this work, scalars, vector, matrices, and tensors are denoted as low-
ercase letters (a), boldface lowercase letters (a), boldface uppercase letters (A), and
boldface script letters (A ), respectively. The i th entry of a vector a is denoted ai , the
i, j th entry of a matrix B is Bi j , the i, j, kth entry of a third order tensor C is C i jk , etc.
We may also use Matlab colon notation to index into objects. For example, C :,3,4
would denote the column vector that corresponds to all entries of the 3rd column, 4th

frontal slice of a third order tensor C , while C :,1,: would be a matrix, oriented into
the page, corresponding to the first lateral slice of that tensor. The j th column of a
matrix A is denoted aj, or, when ambiguity arises, A:,j.

Suppose that g ∈ R
m,h ∈ R

�,w ∈ R
n . Then we can form a third order, m×�×n

tensor using the outer-product ◦ between the three vectors, as follows:
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Definition If A = g ◦ h ◦ w, then the i, j, kth scalar entry of A is given by
Ai, j,k = gi h jwk and we say that A is a rank-1 tensor. Here 1 ≤ i ≤ m, 1 ≤ j ≤
�, 1 ≤ k ≤ n. Similarly, a fourth order rank-1 tensor, C , would result from the 4-way
outer product g ◦ h ◦ w ◦ z.

5.2.1 Popular Existing Tensor Models

One of the most well-known decompositions is the CANDECOMP/PARAFAC1, or
CP, decomposition. An exact CP decomposition for a third order tensor A ∈ R

m×�×n

is given as

A =
r∑

i=1

gi ◦ hi ◦ wi , gi ∈ R
m,hi ∈ R

�,wi ∈ R
n .

If r is minimal in this expression for A , then r is called the tensor-rank. Unfor-
tunately, while rank-revealing factorizations of matrices exist (the best known of
these being the SVD), in general there is no closed form solution to determine the
rank of a tensor of order three or higher a priori, and there is no straightforward
algorithm to compute the tensor rank (it is an NP-hard problem) [25]. In practice,
one often guesses a value for r , and searches for the factor matrices G ∈ R

m×r ,
H ∈ R

�×r , W ∈ R
n×r , whose columns correspond to the vectors in the approximate

decomposition, that best fit A . The best fit measure is often the Frobenius norm.
The most obvious NTF analog (for the third order case) to the NMF problem uses

this CP model. The problem to solve in this case is

min
G,H,W

D(A −
r∑

i=1

gi ◦ hi ◦ wi ), ‖ s. t. non-negativity constraints

where D denotes some distance measure, often the Frobenius norm. Additional infor-
mation regarding studies that focuses on algorithms for solving the above problem,
with the possible addition of further constraints to encourage sparsity, can be found,
for example in [10]. More recently, there has been work for sparse non-negative ten-
sors, where the distance measure is replaced by optimization of the K-L divergence,
motivated by statistical considerations relative to the distribution of non-zeros [9].

There are many other types of tensor decompositions (see [25] for a partial list), for
each of these, non-negativity constraints can be imposed. Unfortunately, the notations
used to express these decompositions is not completely consistent throughout the
literature. We shall highlight only two additional decompositions here, and for the
sake of brevity we will express these using only outer-product notation and only

1 R. Harshman, ’70; J. Carroll and J. Chang, ’70.
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for third order tensors. We refer the interested reader to [10, 25] for additional
factorizations/expressions.

For A ∈ R
m×�×n , the Tucker-3 decomposition2 is

A =
r1∑

i=1

r2∑

j=1

r3∑

k=1

ci, j,kgi ◦ h j ◦ wk, (5.3)

where C ∈ R
r1×r2×r3 is called the core tensor. Note that if r1 = r2 = r3 and the

core tensor is super-diagonal (i.e. only the (i,i,i) components are potentially non-
zero), this reduces to a CP decomposition. A Tucker-3 decomposition can be found
in closed form in a straightforward manner, and the values ri are bounded by the
ranks of the various matrices resulting from the corresponding flattenings the tensor.
Because of the additional degrees of freedom in this model and the relationship
between the tensor flattenings, it is possible to find an exact decomposition where
the factor matrices G,H,W have orthogonal (even orthonormal) columns. One way
of obtaining such an exact orthogonal Tucker-3 is the HOSVD [26]. Note that unlike
the matrix SVD, entries in the core tensor are not guaranteed to be non-negative
(although they will be real), nor is the core necessarily diagonal. In practice, one
looks for an approximate factorization by fixing the ri to be relatively small and
minimizing the distance between A and the model on the right-hand side of 5.3,
with suitable constraints, such as non-negativity.

A related decomposition is the Tucker-2 factorization [3], given by the expression

A ≈
r1∑

i=1

r2∑

j=1

gi ◦ h j ◦ C i, j,:. (5.4)

The difference is that the sum over k has disappeared, and now the third term in the
expression depends both on i and j and the scaling that was attributable to the core
tensor has been wrapped into the last term, which is (under the correct orientation)
just a vector stored as a so-called tube fiber of the core tensor C . Clearly, if C is
“diagonal" in the sense that the tube fiber is zero if i 	= j , this representation also
collapses to a CP representation. Another way to visualize this decomposition is that
each of the n frontal slices can be written as GC(k)H�, where C(k) is a (possibly
dense) matrix that corresponds to the kth frontal slice of C . Compression is only
achieved if C is sparse, and/or r1, r2 are small relative to the tensor dimensions.

2 If A is a fourth order tensor, the core tensor will be fourth order and there will be an additional
summand and vector outer product.
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5.2.2 The Generic Optimization Model

The point is, no matter which tensor model we use to fit the data, the problem we
wish to solve can be framed generically as

min
B∈C

D(A −B)‖s.t. constraints on B, (5.5)

where C represents the specific tensor model of interest (e.g. CP, Tucker-3, Tucker-2),
and D denotes the distance measure (e.g. Frobenius norm).

Following this definition, two immediate questions arise:

1. What class C should we use ?
2. What type of constraints should be considered ?

To answer the 2nd question, we turn to the vast literature on NMF. In the context
of this book, the two types of constraints of interest to us are non-negativity and
sparsity. Indeed, we know that [10].

“matrix factorization methods that exploit non-negativity and sparsity constraints usually
lead to estimation of the hidden components with specific structures and physical interpre-
tations, in contrast to other blind source separation method.”

On the face of it, as discussed in the introduction, the non-negativity constraints
themselves often induce sparsity. However, we also know that [10]

... “solutions obtained by NMF algorithms may not be unique, and to this end it is often
necessary to impose additional constraints (which arise naturally from the data considered)
such as sparsity or smoothness. Therefore, special emphasis in this chapter is put on various
regularization and penalty terms together with local learning rules in which we update
sequentially one-by-one vectors of factor matrices. By incorporating the regularization and
penalty terms into the weighted Frobenius norm, we show that it is possible to achieve sparse,
orthogonal, or smooth representations, thus helping to obtain a desired global solution.”

The question of which class C should be used is more difficult to answer, and may
be driven by the application. In chemometrics, for example, the CP may arguably be
the correct decomposition to use [8]. For other applications, however, the choice is
less clear. If the end goal is simply compression, with non-negative and sparse factors,
it might be worth considering the Tucker factorizations. On the other hand, if a “parts
based" representation makes more sense from a physical perspective, what are those
parts/components/features? Need they be represented as rank-one outer products?

In the present research, we present a new, state-of-the-art model for parts based
representation in the third and fourth order tensor case, which extends naturally
to higher order tensors as well. The beauty of this approach is that in the uncon-
strained case, when the distance measure is the Frobenius norm, a unique solution is
guaranteed. When non-negativity constraints are added, the problem greatly resem-
bles the NMF problem (indeed, when n = 1, our NTF problem will collapse to the
NMF problem), and we can use our intuition in the NMF problem to inform what to
do in the tensor case.
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5.3 A Newer Tensor Framework

The definition of matrix-matrix product is such that if you multiply two n×n matrices
together, the result is an n× n matrix. Thus, matrix multiplication is closed over the
set of all n×n matrices. Furthermore, with respect to the set of n×n matrices, there
is a well defined notation of identity and inverse. Despite a burgeoning literature
on tensors in the past decade, until recently, there were no tensor multiplication
definitions in the literature that gave rise to similar properties.

In [24], the authors introduced a new definition of third order tensor multiplication,
called the t-product, along with a corresponding definition of tensor identity and
tensor inverse, such that the set of m×m×n tensors equipped with these definitions
forms a ring. In [23], the authors build on this formalism to derive a new type
of tensor SVD, called the t-SVD, that is reminiscent of matrix SVD, and offer an
optimality result similar to the Eckart-Young theorem. In [18], we derive PCA-like
algorithms based around the t-SVD for compression and facial recognition. Other
types of third order tensor factorizations (such as QR, PQR, [18]) can be defined a
similar manner. Tensor eigen-computation based around the t-product is the subject
of [7, 17]. The work in [20] carefully outlines the linear-algebraic implications of
the t-product framework, considering how to define range and nullspace, dimension
and multi-rank, and extending familiar numerical linear algebra algorithms within
this scope.

In the present work, we build on the t-product and aforementioned studies, using
the t-product to formulate a new type of third order NTF problem. As the t-product
was shown to generalize to higher-order tensors via a recursive definition [30], we
will discuss how our third order method will generalize to higher-order methods by
discussing the fourth order case in some detail.

5.3.1 Background Notation and Definitions

We begin this section with the definition of the t-product between two tensors that
was introduced in [22, 23], and its extension to fourth order tensors in [30]. In order
to do that, we will need to introduce a bit of notation first.

If A ∈ R
m×�×n with m × � frontal slices denoted A(i) then

circ(A ) =

⎡

⎢⎢⎢⎢⎣

A(1) A(n) A(n−1) . . . A(2)

A(2) A(1) A(n) . . . A(3)
...

. . .
. . .

. . .
...

A(n) A(n−1) . . . A(2) A(1)

⎤

⎥⎥⎥⎥⎦
,

is a block circulant matrix of size mn × �n.
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If A ∈ R
m×�×n×k , then A ( j) := A:,:,:, j is on of the third order m×�×n tensors

that comprise the fourth order tensor (see Fig. 5.3). Then we recursively represent
A using a doubly block-circulant matrix

circ2(A ) =

⎡

⎢⎢⎢⎢⎣

circ(A (1)) circ(A (k) circ(A (k−1)) . . . circ(A (2))

circ(A (2)) circ(A (1)) circ(A (k)) . . . circ(A (3)

...
. . .

. . .
. . .

...

circ(A (k)) circ(A (k−1))
. . . circ(A (2)) circ(A (1))

⎤

⎥⎥⎥⎥⎦
,

where each circ(A ( j) is an mn× �n block circulant matrix, circ2(A ) is thus mnk×
�nk block-circulant matrix with mn × �n block-circulant blocks.

Now if A ∈ R
m×�×n , then the operation Vec(A ) takes an m × �× n tensor and

returns a block mn × � matrix, whereas the Fold operation undoes this operation:

Vec(A ) =

⎡

⎢⎢⎢⎣

A(1)

A(2)
...

A(n)

⎤

⎥⎥⎥⎦ , Fold(Vec(A )) = A .

Similarly, for A ∈ R
m×�×n×k ,

Vec2(A ) =

⎡

⎢⎢⎢⎣

Vec(A (1))

Vec(A (2))
...

Vec(A (k))

⎤

⎥⎥⎥⎦

and Fold2 undoes this operator to return a fourth order tensor.
The definition of the ∗ multiplication in the third and fourth order cases [22, 30]

is as follows:

Definition Let A be m × p × n and B be p × �× n. Then the t-product A ∗B
is the m × �× n tensor

A ∗B = Fold (circ(A ) · Vec(B)) .

Similarly, if A is m × p × n × k and B is p × �× n × k then the t-product is the
m × �× n × k tensor given by

A ∗B = Fold2 (circ2(A ) · Vec2(B)) .

A few more definitions from [23, 30] are in order.
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Fig. 5.4 The t-SVD of an l × m × n tensor [20]

If A is m × � × n, then A � is the � × m × n tensor obtained by transposing
each of the frontal slices and then reversing the order of transposed frontal slices 2
through n. If A is m × � × n × k, then A � is obtained by reversing the order of
each third order (A ( j))� for j = 2, . . . , k.

The m ×m × n identity tensor Immn is the tensor whose first frontal slice is the
m × m identity matrix, and whose other frontal slices are all zeros. Similarly, the
m × m × n × k fourth order identity tensor is Immnk is such that I:,:,1,1 = Im×m ,
but all the other entries in Immnk are zero.

An m×m×n (m×m×n×k) tensor Q is orthogonal if Q�∗Q = Q∗Q� = I .

We conclude this section with the tensor SVD, or T-SVD from [24] (See Fig. 5.4).
In the case A ∈ R

m×�×n , there exists an m × m × n orthogonal U , an m × �× n
frontal face-wise diagonal S and �× �× n orthogonal V such that

A = U ∗S ∗ V �.

Note that this is an exact decomposition that can be computed in the time it takes
to do n, m × � matrix SVDs. In particular, if m = � = n, the compute time is
proportional to n4. In the fourth order case, there is also a decomposition of A as
a t-product of orthogonal U , diagonal S and orthogonal V , where the individual
factors are all now fourth order of the appropriate dimension, and by diagonal S ,
we mean that each 3rd order component of S that is obtained by holding the last
index fixed is a frontal face-wise diagonal third order tensor.

We have more to say about how the T-SVD can be used to give optimal compressed
factorizations in the next section, and we will use that discussion to segue into NTF
algorithms.



5 Nonnegative Tensor Decomposition 133

Fig. 5.5 A visual interpretation of a third order tensor approximated as a sum of t-outer-products.
Note that if the third dimension, n, is one, the t-product becomes regular matrix-multiplication, and
then this illustration collapses to an approximation of a matrix as a sum of outer products of vectors,
as represented using the blue

5.3.2 Defining Outer-products of Tensors

Now that we have defined the t-product of two tensors of third or fourth order and we
have defined tensor transpose, we are in a position to describe a tensor outer product
under these two operations.

Definition Let A ∈ R
m×1×n and B ∈ R

p×1×n . Note that these tensors are actually
m×n and p×n matrices, respectively, but oriented into the page (See Fig. 5.5) then
the t-outer-product, A ∗B� is a third order tensor of dimensions m × p × n.

The implication is that the t-SVD can be written as a sum of t-outer-products
of tensors (with one vanishing dimension). For example, for A ∈ R

m×�×n with
p := min(m, �),

A = U ∗S ∗ V � =
p∑

i=1

U:,i,: ∗Si,i,: ∗ V �:,i,:.

Notice that U:,i,: and V:,i,: are matrices, oriented as third order tensors. The respective
collections represent, in a sense formalized in [20] the multi-dimensional analogue
to basis elements for particular subspaces related to the operators A and A �. The
entries Si,i,: are called the singular-tuples, and are themselves 1× 1× n tensors (or,
rather, vectors in R

n , oriented into the page).
The analogy for a fourth order tensor would be to consider the outer product of

two, third order tensors of appropriate dimensions.

Definition Let A ∈ R
m×1×n×k and B ∈ R

p×1×n×k . Then the t-outer-product
A ∗B� is a fourth order tensor of dimensions m × p × n × k.

It follows that for the fourth order case,

A =
p∑

i=1

U:,i,:,: ∗Si,i,:,: ∗ V �:,i,:,:.
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Here, the singular tuples are 1× 1× n × k tensors.

Now, consider the following unconstrained problem for A ∈ R
m×�×n and integer

p < min(m, �):
min

G∈Rm×p×n ,H ∈R�×p×n
‖A − G ∗H �‖F .

This problem has been shown in [23] to have a solution; for example, one solution is
G = U:,1:p,: ∗S1:p,1:p,: and H = V:,1:p,:. This is equivalent to saying there exists
a solution to

min
B
‖A −B‖F , ‖ s.t. B is a sum of p, t-outer-products of tensors.

A similar analysis holds for the 4th order case.

5.3.3 A Parts-based Perspective

Consider the case of matrix-based PCA for the facial recognition problem. In the
literature, the basis vectors are typically displayed as images, so that one can con-
cieve how a single image is comprised of several basis images. On the other hand,
the t-outer-product representation above leaves something to be desired in terms of
visualizing the representation as a parts-based representation.

A similar perspective can be obtained by considering the representation of the
lateral slices of a third order tensor. If A = G ∗H �, where A ∈ R

m×�×n , then it
can be shown (see [18, 20]) that

squeeze(A:, j,:) =
p∑

i=1

squeeze(G:,i,:)circ(squeeze(H j,i,:)),

where the squeeze operation on the leftmost term twists the matrix clockwise into
an m × n matrix, and the squeeze act upon the tube in the rightmost term converts
the 1× 1× n tensor into a column vector.

If squeeze(H j,i,:) where a multiple of e1, then this expression would say that
the j th lateral slice of A is a linear combination of the columns of basis matrices given
by squeeze(G:,i,:). When this is not the case, the basis matrices are weighted from
the right by a circulant matrix. Since each n×n circulant matrix can be decomposed
as a sum of at most n powers of the down-shift matrix, it follows that our method
does, in fact give a type of parts-based decomposition, and it is evident why entries
in H might indeed be sparse.
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5.4 New Non-negative, Constrained, Tensor Factorizations

Piggybacking on the material from the previous section, we are in a position to
establish our newest non-negative tensor factorization. Let us deal with the third
order case first, where A ∈ R

m×�×n . From (5.5), if we take the class C now to
be the set of all m × � × n non-negative tensors that can be written as a sum of p,
for p ≤ min(m, �), t-outer-products of tensors of dimension one less, we get the
optimization problem

min
G∈Rm×p×n

+ ,H ∈R�×p×n
+
‖A − G ∗H �‖F (5.6)

where

G ∗H T =
p∑

i=1

G:,i,: ∗H �:,i,:.

As noted in [23], if the third dimension (n, in this example), is one, the t-product
reduce to the matrix product. Hence, when n = 1, the optimization problem would
reduce to the standard non-negative matrix factorization problem.

When n > 1, the Frobenius norm expression for (5.6) can be re-written in matrix
form, using the definitions from previous sections, as

‖Vec(A )− circ(G )Vec(H �)‖F , (5.7)

Thus, (5.6) is still a NMF problem, but with a certain additional structure imposed
on the first factor.

It is shown in [23] that the transpose operation satisfies (G ∗H �)� =H ∗G�.
Therefore, the optimization problem above is equal to

min
G∈Rm×p×n

+ ,H ∈R�×p×n
+
‖A � −H ∗ G�‖F .

Similar to above, the term this Frobenius norm can be expressed in matrix notation
as

‖Vec(A �)− circ(H )Vec(G�)‖F . (5.8)

Not surprisingly, when A ∈ R
m×�×n×k , the fourth order version of (5.6) becomes

min
G∈Rm×p×n×k

+ ,H ∈R�×p×n×k
+

‖A − G ∗H �‖F , (5.9)

where the last term on the right can be expressed in matrix form as

‖Vec2(A )− circ2(G )Vec2(H
�)‖F .
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Presently, we discuss the relatively inexpensive (but non-ideal) method of solving
(5.6) through the use of a sequential convex iteration (Sect. 5.4.1.1) and with the aid
of Anderson Acceleration (Sect. 5.4.1.5).

5.4.1 The Optimization Problem

The problem (5.6) (likewise, (5.9)) is a non-convex optimization problem. An insight
to the entailed non-uniqueness can be gained by observing that for any non-negative,
invertible tensor of appropriate dimensions, R, a solution of the form G ∗ R−1 ∗
R ∗ H � is equally valid. In more general settings, any non-negative monomial
(generalized permutation) tensor, would cause such rotational ambiguity. So far we
have considered the objective to be the Frobenius norm of the distance between the
tensor A and its factors G and H . Yet, other distance choices may be considered,
and justified by alternative assumptions regarding the noise model D. Some examples
would be the KL-divergence, α divergence, β divergence, Pearson distance, or the
Hellinger distance [10] see eqn. (5.10).

min
G∈Rm×p×n×k

+ ,H ∈R�×p×n×k
+

D
(
A ,G ∗H �)

, (5.10)

Other than the non-negativity constraints, various choices of constraints and reg-
ularization schemes can be incorporated into the definition of the tensor factorization
optimization problem. Incorporation of such preferences regarding the factors can
alleviate the inherent non-uniqueness up to permutational or scaling indeterminacies.
That is, we might consider

min
G∈Rm×p×n×k

+ ,H ∈R�×p×n×k
+

D
(
A ,G ∗H �)

+R(G ,H ), (5.11)

where R denotes a differentiable penalty or regularization operator that is applied to
one or both of the factors. Alternatively, we can consider directly adding constraints
to (5.10); for example, we might add a sparsity (relaxation of an �0 type norm) or
(tensor) rank constraint to one or both of the factors.

In the following sub-sections we shall briefly review some algorithmic strategies
for handling the resulting optimization problem.

5.4.1.1 ALS-based Algorithms

In this subsection, let us consider the case that D in (5.11) is the Frobenius norm.
Due to the symmetry noted in the opening discussion of Sect. 5.4, a very simple
Alternating Least Squares (ALS) approach is possible (see also [21] for another
representation of this problem). The ALS algorithm, provided below, can be regarded
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as an instance of sequential convex programming [6], in the sense that we iterate over
a sequence (two, in this case) of locally convex problems. This approach is not ideal
because it is not a global approach. In other words, this algorithm need not converge
to a global minimum, if one exists; and if it does converge to one, it is difficult if not
impossible to verify that it has done so. Furthermore, the starting guess can affect
the solution. Nevertheless, this heuristic approach is quite popular due to its relative
simplicity and it often produces reasonable results. As noted in the previous section,
when n = 1, (5.6) is exactly the non-negative matrix factorization problem. Thus,
when Algorithm ALS below is used for the n = 1 case, Algorithm ALS reduces
to the alternating non-negative LS algorithm for NMF which is well known in the
literature (see [6, 14]). As discussed in the introduction, NMF often admits sparse
factors. In the small illustration (see Sect. 5.4.1.5 on accelerating Algorithm ALS) in
Figs. 5.11 and 5.12, we see that this is also the case for Algorithm ALS; namely, the
tensor factors G ,H tend to be sparse.

Algorithm 5.1 Alternating Least Squares
1: Fix G to have non-negative entries
2: For i = 1 until convergence do
3: Solve min

H ∈R
�×p×n
+

‖A − G ∗H �‖F

4: Solve min
G∈R

m×p×n
+

‖A � −H ∗ G�‖F

The key to solving the intermediate non-negative least squares problems is rewrit-
ing them using their matrix equivalents (5.7),(5.8). Thus, we need only solve two,
non-negative least squares problems per iteration, and we can take advantage of the
fact that circ(G ) (circ(H )) is a structured matrix. Clearly, the algorithm can be
slightly modified to incorporate either a penalty term or hard constraint on each of
the subproblems. For example, it might be desirable to enforce sparsity on one of
the factors, say H , similar to what is often done in the NMF problem. Since the
subproblems are equivalent to non-negative least squares matrix problems, standard
techniques can be used.

Other variants of the algorithm exist. The most popular variants include weighted
ALS in which covariance is used; incorporation of line search rather than maintaining
a fixed point; fixed step iterations; acceleration through the incorporation of various
regularization schemes. One of these acceleration strategies is further detailed in the
next section.

Note that the ALS Algorithm is suitable for both the third order and fourth order
tensor cases.

To compare the performance of the new nonnegative tensor decomposition, and
traditional tensor decomposition as well as nonnegative matrix decomposition, we
test on a part of the CBCL database which contains 200 gray-level images of faces
represented by 19 × 19 pixels. The sample images are shown in Fig. 5.6. We took
the first 100 images and look for an approximation with p = 5.

The reconstructed images based on different decompositions are shown in Fig. 5.7:
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Fig. 5.6 CBCL database image samples

5.4.1.2 Multiplicative Algorithms

Rather than alternating minimization upon a single objective function, in this class
of algorithms the alternating minimization procedures are applied for each subset,
while assuming that the two problems share a joint global minimum.

min
H ∈R�×p×n×k

+
DG

(
A�c ,Hc ∗ G�c

)
+RH (5.12)

min
G∈Rm×p×n×k

+
DH

(
Ar ,Gr ∗H �)

+RG , (5.13)

where DG , DH , RG , RH are prescribed distance measures and regularization
operators, respectively, and the subscripts c and r imply that the minimization is
performed with respect to subsets of the columns or the rows of the complete tensors.

In the following, for simplicity, we assume that there is no regularization term. In
such settings the first order necessary conditions for stationarity of the above term
can be phrased as follows:

G ∈ R
m×p×n×k
+ (5.14)

∇G DG ≥ 0 (5.15)

G ∇G DG = 0 (5.16)

and

H ∈ R
�×p×n×k
+ (5.17)

∇H DH ≥ 0 (5.18)

H � ∇H DH = 0 (5.19)
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Fig. 5.7 From left to right
(repeatedly): Input images,
reconstructed images based
upon NMF, NTF (based on
CP), and upon the new NTF
(G ∗H �)
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where  denotes the Hadamard product.
Considering the Frobenius norm distance measure, Lee and Seung [28], had pro-

posed multiplicative update rules for minimization of the aforementioned objectives.
Under our current framework, the gradients of the factors in this context are given
by the expressions:

∇G DG =
(
G ∗H� −A

)
∗H� (5.20)

∇H DH = G� ∗
(
G ∗H� −A

)
(5.21)

Through substitution of these gradient components into the complementarity condi-
tions above we obtain

G 
(
G ∗H� −A

)
∗H� = 0 (5.22)

H �  G� ∗
(
G ∗H� −A

)
= 0 (5.23)

which leads to he following multiplicative update formulas

G ← G  A+ ∗H �
(
G ∗H � ∗H

)
(5.24)

H � ← H �  G� ∗ A+ �
(
G� ∗ G ∗H �)

(5.25)

where � denotes a point-wise division.
Despite the proven monotonicity property of these expressions in the matrix case,

an algorithm based upon alternated application of these rules is not guaranteed to
converge to a first-order stationary point [5], although with a slight modification [29],
such convergence can be guaranteed.

5.4.1.3 Quasi-Newton Algorithms

Considerable acceleration of the convergence rate can be obtained by incorporation
of curvature information in the optimization process. Due to the scale of the problem,
quasi-Newton approximation for the Hessian or its inverse can be considered. Non-
negativity constraints can be handled effectively through projections.

Vec(G )← P
(
Vec(G )− ∇−1

G G Vec(∇G )
)

(5.26)

Vec(H )← P
(
Vec(H )− ∇−1

H H Vec(∇H )
)

(5.27)

where P represents projection into a non-negative feasible set, and ∇G G and ∇H H
are approximated Hessians with respect to the tensor factors G and H respectively.
Computationally, this class of algorithms are effective as long as storage of the
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Hessian (or its inverse) components can be accommodated effectively. For most
practical large-scale applications, limited memory construction of the Hessian (or its
inverse) would be a tractable method of choice [31].

5.4.1.4 Provably Globally Convergent Algorithms

Surprisingly, many heuristic methods for matrix and tensor decomposition perform
well in practice. An insight into the actual effectiveness of such procedures can be
gained through the notion of separability [13]. The notion of separability was initially
introduced to determine when NMF is unique. As a reminder from the NMF case
5.1, the matrix to be factored, A, is associated with its non-negative factors G,H
through the relation A = GH�. Imagine that A represents words-by-documents.
Think of the columns of G as representing topics. The separability assumption means
that for each topic (i.e. column), there is some word (i.e. row element), that appears
only in that topic. For example, if the first topic has an anchor word appearing in the
2nd row, then the 2nd row of G is a multiple of eT

1 , where e1 is the first canonical
unit vector. Consequently, the 2nd row of A would have to be a multiple of the first
row of H�.

Alternatively, suppose A represents documents-by-words. Then separability cor-
responds to being able to factor A = AIH� where I denotes a subset of the columns
of A containing the r anchor terms, and now H� must have a corresponding r × r
diagonal matrix among its columns.

Suppose there are r anchor points. Then separability, in geometric terms, means
that data is contained in a cone generated by the r anchor rows (or columns, depending
on your view) of A. Removal of a row of A strictly changes the convex hull if and only
if it is an anchor word. Thus, anchor words can be identified via linear programming
as follows: one sets up a linear program to see if it is possible to express a given
row of A as a convex combination of the other rows. Any points for which the
linear program declares infeasibility must be points that cannot be expressible as a
convex combination of others, and therefore must represent anchor points. Several
algorithms that try to solve the separable NMF that follow this general argument
in their solution approach are found in the very recent literature (see [27] and the
references therein).

If one of the factors G or H� satisfies the separability condition, an algorithm for
exact decomposition can provably (in the context of NMF) run in polynomial-time
[4]. Interestingly, although the separability condition might seem rather restrictive
at first glance, in a broad range of settings these were observed to hold empirically.

In the context of NTF, using the t-product formulation, some implied questions
are:

1. How does one specify a separability condition ?
2. Do examples of such occur in settings of interest ?
3. Can the state-of-the-art algorithms for solving the separable NMF be generalized

to the present case ?
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In order to answer this question we should rely upon the analysis in [20]. The
benefit of that analysis is that it allows one to treat (in the third order case) tensors
as matrices, whose elements are tubal-scalars. We expect that t-linear combinations
replace linear combinations in the convex combinations, though care must be taken
because tubal-scalars do not form a field. Our work in this area is on-going.

5.4.1.5 Anderson Acceleration

In a fixed point method, one aims to find the solution x to x = g(x) for some given
g : Rn → R

n , using the fixed point iteration,

Algorithm 5.2 Fixed Point Iteration
1: Initialize x0
2: For k = 1, 2, ...
3: Set xk+1 = g(xk)

Anderson Acceleration is a fixed point acceleration technique due to D.G. Ander-
son [2]. Recently, Walker and Ni applied Anderson Acceleration to fixed point iter-
ation, and proved the equivalence of Anderson Acceleration without truncation and
the generalized minimal residual (GMRES) method on linear problems in [19]. In
terms of accelerating a fixed point iteration, the idea is simply that instead of taking
xk = g(xk−1), so that the kth step is a function only of the most previous iterate,
one should define the kth iterate as an “optimal" linear combination of this fixed
point step and some number of previous steps. This increases slightly the amount of
storage associated with the method, since some number of previous steps must be
stored, and there is some overhead associated with solving the optimization problem
associated with computing the optimal combination, but in terms of the overall sav-
ings, the method can be quite effective. Mathematically, Anderson Acceleration can
be formulated as follows.

Algorithm 5.3 Anderson Acceleration
1: Initialize x0 and m ≥ 1
2: For k = 1, 2, · · ·
3: Set mk = min{m, k}
4: Set Fk = (fk−mk , · · · , fk), where fi = g(xi )− xi

5: Determine α(k) = (α(k)0 , · · · , α(k)mk )
� for the problem

minα=(α0,··· ,αm+k )
� ||Fkα||2 s.t.

∑mk
i=0 αi = 1

6: Set xk+1 =∑mk
i=0 α

(k)
i g(xk−mk+i )

ALS algorithms for nonnegative matrix decomposition and nonnegative tensor
decomposition can both be viewed as fixed point problems. In the NMF case, deter-
mining the kth fixed point iterate is consistent with solving the kth step of an ALS
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algorithm for the pair (G,H). In the third order NTF case, if we use the decom-
position from Sect. 5.4.1.1, then determining the kth fixed point iterate is the same
as computing the kth ALS step to find the new (G ,H ) in Algorithm ALS above.
Therefore, the ALS schemes can be altered to include Anderson Acceleration.

In this example, we randomly generated a third order tensor A ∈ R
10×10×5 with

integer entries between 1 and 10 as:

A (:, :, 1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 2 10 5 10 1 10 8 8
1 5 2 9 1 4 2 8 9 4
9 4 9 8 1 10 4 7 4 9
4 9 5 10 2 10 8 6 5 1
5 7 10 6 3 1 6 4 1 7
8 10 9 9 4 5 3 2 8 5
6 8 8 10 9 7 4 8 2 5
5 10 1 7 8 9 6 5 8 4
4 10 3 9 3 5 9 3 10 6
8 5 8 8 5 2 6 8 1 9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A (:, :, 2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 7 3 7 7 1 5 9 1
2 1 6 4 3 10 5 6 7 1
10 7 3 9 6 3 9 6 3 2
10 4 6 2 9 7 3 2 1 2
1 9 7 7 8 7 9 5 6 8
5 2 1 1 2 3 8 2 2 3
3 9 3 3 4 7 9 3 2 10
1 10 4 2 10 4 10 1 5 1
1 3 8 8 8 5 9 2 4 7
2 1 10 7 1 9 9 10 8 10

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A (:, :, 3) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 3 2 6 10 8 9 5 6 4
8 9 1 7 8 2 9 8 7 4
3 4 2 1 8 1 1 2 3 2
8 4 7 5 9 1 10 7 4 2
8 1 8 1 2 1 6 4 2 6
7 9 4 10 4 8 1 1 8 2
6 10 8 6 4 6 1 10 3 7
4 2 7 6 3 4 10 2 2 1
9 8 7 9 6 8 5 7 5 3
4 5 5 7 7 2 7 5 7 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A (:, :, 4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 10 10 10 1 2 9 5 2 6
6 8 5 5 3 4 5 3 1 9
7 8 7 5 3 5 6 9 5 10
7 6 2 7 10 8 7 10 10 2
1 2 2 2 2 2 4 2 7 2
6 3 3 9 10 2 5 6 5 8
5 6 1 8 2 5 1 9 5 1
7 6 4 6 4 2 8 4 8 3
4 7 10 5 6 2 4 3 7 5
7 10 8 6 10 1 6 2 3 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A (:, :, 5) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 7 2 2 6 7 5 3 7 2
2 2 9 4 5 2 2 9 8 9
7 5 9 8 2 2 3 7 6 3
9 8 3 4 10 5 5 9 9 5
3 10 1 2 7 6 2 6 8 8
3 5 1 3 8 4 10 3 8 4
1 1 8 7 1 10 4 7 10 10
7 2 10 8 4 2 4 10 3 4
1 7 10 4 6 2 8 9 6 2
5 2 5 9 1 7 2 10 8 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We set p = 3, so G is of size 10 × 3 × 5 and H � is of size 3 × 10 × 5. In
determining the Anderson Acceleration step, we used a history of up to 3 previous
steps. We adopted the SVD-based initialization of the iterations. In each iteration,
we implemented alternating nonnegative least-squares (ANNLS) to update G and
H . The Figure 5.8 shows the convergence of the ANNLS iterates with and without
Anderson acceleration. Further, Figs. 5.9 and 5.10 and respectively Figs. 5.11 and
5.12 display the sparsity pattern of the tensor factors G and H with and without the
Anderson acceleration respectively.
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Fig. 5.8 Convergence of NTF with and without Anderson Acceleration

Fig. 5.9 Sparsity pattern of the tensor factor G , shown by frontal slice, with Anderson Acceleration

5.5 Summary

Representation of multi-dimensional data can be performed natively in tensor struc-
tures. Such representations lends themselves to powerful multi-way analysis. Unlike
its 2nd degree case, the matrix, the definition of tensor operations (e.g. product,
decomposition) for higher degrees has been so far been an active research topic. In
this chapter, various definitions of the tensor product were described, among which
the relatively new notion of t-product, given in [23]. We further discussed the prob-
lem of nonnegative tensor factorization an focused in formulaiton and solution in
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Fig. 5.10 Sparsity pattern of the tensor factor H , shown by frontal slice, with Anderson Acceler-
ation

Fig. 5.11 Sparsity pattern of G , shown by frontal slice, without Anderson Acceleration

the context of t-product tensor-tensor relations. As the test cases here illustrate, this
model has the potential for producing sparse representations of the data, whether
“sparse" is interpreted to mean a few non-zeros or “compact” representation, or
both. The beauty of the approach is in its similarity to the NMF problem. Further,
the intuition - as we have tried to develop here by moving between the third and
fourth order tensor cases - readily generalizes to higher order tensors. It is possible
to leverage the structure in the problems to obtain fast algorithms by exploiting the
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Fig. 5.12 Sparsity pattern of H , shown by frontal slice, without Anderson Acceleration

decoupling in Fourier space. Admittedly, decompositions based upon the t-product
are orientation dependent; thus, certain rotations of the tensor will result in different
factorizations. On the other hand, in many applications (data mining, image com-
pression), the orientation of the data prior to decomposition is pre-determined by the
nature of the data itself.

As outlined in the various subsections, there are many avenues that have yet to be
fully explored in the context of these types of NTFs, from investigations of suitable
regularization terms up to and including generalizing and utilizing novel concepts
such as separability.
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Chapter 6
Sub-Nyquist Sampling and Compressed
Sensing in Cognitive Radio Networks

Hongjian Sun, Arumugam Nallanathan and Jing Jiang

Abstract Cognitive radio has become one of the most promising solutions for
addressing the spectral under-utilization problem in wireless communication sys-
tems. As a key technology, spectrum sensing enables cognitive radios to find spectrum
holes and improve spectral utilization efficiency. To exploit more spectral opportuni-
ties, wideband spectrum sensing approaches should be adopted to search multiple fre-
quency bands at a time. However, wideband spectrum sensing systems are difficult to
design, due to either high implementation complexity or high financial/energy costs.
Sub-Nyquist sampling and compressed sensing play crucial roles in the efficient
implementation of wideband spectrum sensing in cognitive radios. In this chapter,
Sect. 6.1 presents the fundamentals of cognitive radios. A literature review of spec-
trum sensing algorithms is given in Sect. 6.2. Wideband spectrum sensing algorithms
are then discussed in Sect. 6.3. Special attention is paid to the use of Sub-Nyquist
sampling and compressed sensing techniques for realizing wideband spectrum sens-
ing. Finally, Sect. 6.4 shows an adaptive compressed sensing approach for wideband
spectrum sensing in cognitive radio networks.

6.1 Cognitive Radio Networks

Nowadays, radio frequency (RF) spectrum is a scarce and valuable natural resource
due to its unique character in wireless communications. Under the current policy, the
primary user of a frequency band has exclusive rights of using the licensed band. With
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the explosive growth of wireless communication applications, the demands for the
RF spectrum are constantly increasing. It becomes evident that such spectral demands
cannot be met under the exclusive spectral allocation policy. On the other hand, it
has been reported that the temporal and geographic spectral utilization efficiency is
very low. For example, the maximal occupancy of the frequency spectrum between
30 MHz and 3 GHz (in New York City) has been reported to be only 13.1 %, with
the average occupancy of 5.2 % [1]. As depicted by Fig. 6.1, the spectral under-
utilization problem can be addressed by allowing secondary users to dynamic access
the licensed band when its primary user is absent. Cognitive radio is one of the key
technologies that could improve the spectral utilization efficiency as suggested by
Prof. S. Haykin [2]:

Cognitive radio is viewed as a novel approach for improving the utilization of a precious
natural resource: the radio electromagnetic spectrum.

6.1.1 Cognitive Radio Definition and Components

The term cognitive radio, first coined by Dr. J. Mitola [4], has the following formal
definition [2]:

Cognitive radio is an intelligent wireless communication system that is aware of its sur-
rounding environment (i.e., outside world), and uses the methodology of understanding-by-
building to learn from the environment and adapt its internal states to statistical variations
in the incoming RF stimuli by making corresponding changes in certain operating parame-
ters (e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two
primary objectives in mind:

• highly reliable communications whenever and wherever needed;

• efficient utilisation of the radio spectrum.

Power

Time

Spectrum hole

Dynamic
spectrum access

Spectrum in useFrequency

Fig. 6.1 Dynamic spectrum access and spectrum holes [3]
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From the definition, the key characteristic of cognitive radio is cognitive capability.
It means that cognitive radio should interact with its environment, and intelligently
determine appropriate communication parameters based on quality of service (QoS)
requirements. These tasks can be implemented by a basic cognitive cycle as illustrated
in Fig. 6.2:

• Spectrum sensing: To improve the spectral utilization efficiency, cognitive radio
should regularly monitor the RF spectral environment. Cognitive radio should
not only find spectrum holes, which are not currently used by primary users, by
scanning the whole RF spectrum, but also needs to detect the status of primary
users for avoiding causing potential interference.
• Spectrum analysis: After spectrum sensing, the characteristics of spectrum holes

should be estimated. The following parameters need to be known, e.g., channel side
information, capacity, delay, and reliability, and will be delivered to the spectrum
decision step.
• Spectrum decision: Based on the characteristics of spectrum holes, an appropriate

spectral band will be chosen for a particular cognitive radio node according to
its QoS requirement while considering the whole network fairness. After that,
cognitive radio could determine new configuration parameters, e.g., data rate,
transmission mode, and bandwidth of the transmission, and then reconfigure itself
by using software defined radio techniques.

Radio Environment

Spectrum
Sensing

Spectrum
Analysis

Spectrum
Decision

Spectral bands 
Information 

Channel 
Capacity 

Spectral bands 
Information 

Transmitted 
Signal 

RF
Stimuli 

Fig. 6.2 The cognitive capability of cognitive radio enabled by a basic cognitive cycle [5]
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6.1.2 Applications of Cognitive Radio Networks

Because cognitive radio is aware of the RF spectral environment and is capable
of adapting its transmission parameters to the RF spectral environment, cognitive
radio and the concepts of cognitive radio can be applied to a variety of wireless
communication environments, especially in commercial and military applications.
A few of applications are listed below:

• Coexistence of wireless technologies: Cognitive radio techniques were primarily
considered for reusing the spectrum that is currently allocated to the TV service.
Wireless regional area network (WRAN) users can take advantage of broadband
data delivery by the opportunistic usage of the underutilized spectrum. Addi-
tionally, the dynamic spectrum access techniques will play an important role in
full interoperability and coexistence among diverse technologies for wireless net-
works. For example, cognitive radio concepts can be used to optimize and manage
the spectrum when the wireless local area network (WLAN) and the Bluetooth
devices coexist.
• Military networks: In military communications, bandwidth is often at a premium.

By using cognitive radio concepts, military radios can not only achieve substantial
spectral efficiency on a noninterfering basis, but also reduce implementation com-
plexity for defining the spectrum allocation for each user. Furthermore, military
radios can obtain benefits from the opportunistic spectrum access function sup-
ported by the cognitive radio [6]. For example, the military radios can adapt their
transmission parameters to use Global System for Mobile (GSM) bands, or other
commercial bands when their original frequencies are jammed. The mechanism of
spectrum management can help the military radios achieve information superiority
on the battlefield. Furthermore, from the soldiers’ perspective, cognitive radio can
help the soldiers to reach an objective through its situational awareness.
• Heterogeneous wireless networks: From a user’s point of view, a cognitive radio

device can dynamically discover information about access networks, e.g., WiFi
and GSM, and makes decisions on which access network is most suitable for its
requirements and preferences. Then the cognitive radio device will reconfigure
itself to connect to the best access network. When the environmental conditions
change, the cognitive radio device can adapt to these changes. The information
as seen by the cognitive radio user is as transparent as possible to changes in the
communication environment.

6.2 Traditional Spectrum Sensing Algorithms

As a key technology in cognitive radio, spectrum sensing should sense spectrum
holes and detect the presence/absence of primary users. The most efficient way to
sense spectrum holes is to detect active primary transceivers in the vicinity of cogni-
tive radios. However, as some primary receivers are passive, such as TVs, some are
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Table 6.1 Summary of advantages and disadvantages of traditional spectrum sensing algorithms

Spectrum sensing algorithm Advantages Disadvantages

Matched filter [7] Optimal performance Require prior information
Low computational cost of the primary user

Energy detection [8] Do not require prior information Poor performance for low SNR
Low computational cost Cannot differentiate users

Cyclostationary [9] Valid in slow SNR region Require partial prior information
Robust against interference High computational cost

Wavelet based detection [10] Valid for dynamic and wideband High sampling rate
spectrum sensing High computational cost

difficult to detect in practice. Tractional spectrum sensing techniques can be used
to detect the primary transmitters, i.e., matched filtering [7], energy detection [8],
cyclostationary detection [9], and wavelet based detection [10]. The implementation
of these algorithms requires different conditions, and their detection performance
are correspondingly distinguished. The advantages and disadvantages of these algo-
rithms are summarized in Table 6.1.

6.2.1 Matched Filter

A block diagram of a matched filter is shown in Fig. 6.3a.The matched filter method
is an optimal approach for spectrum sensing in the sense that it maximizes the signal-
to-noise ratio (SNR) in the presence of additive noise [11]. Another advantage of
the matched filter method is that it requires less observation time since the high
processing gain can be achieved by coherent detection. For example, to meet a given
probability of detection, only O(1/SNR) samples are required [7]. This advantage
is achieved by correlating the received signal with a template to detect the presence
of a known signal in the received signal. However, it relies on prior knowledge of
the primary user, such as modulation type, and packet format, and requires cognitive
radio to be equipped with carrier synchronization and timing devices. With more
types of primary users, the implementation complexity grows making the matched
filter impractical.

6.2.2 Energy Detection

If the information about the primary user is unknown in cognitive radio, a commonly
used method for detecting the primary users is energy detection [8]. Energy detection
is a non-coherent detection method that avoids the need for complicated receivers
required by a matched filter. An energy detector can be implemented in both the time
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Fig. 6.3 Block diagrams for traditional spectrum sensing algorithms: a Matched filter. b Time
domain energy detection. c Frequency domain energy detection. d Cyclostationary detection

and the frequency domain. For time domain energy detection as shown in Fig. 6.3b, a
bandpass filter (BPF) is applied to select a center frequency and bandwidth of interest.
Then the energy of the received signal is measured by a magnitude squaring device,
with an integrator to control the observation time. Finally, the energy of the received
signal will be compared with a predetermined threshold to decide whether the primary
user is present or not. However, to sense a wide spectrum span, sweeping the BPF
will result in a long measurement time. As shown in Fig. 6.3c, in the frequency
domain, the energy detector can be implemented similarly to a spectrum analyzer
with a fast Fourier transform (FFT). Specifically, the received signal is sampled at or
above the Nyquist rate over a time window. Then the power spectral density (PSD) is
computed using an FFT. The FFT is employed to analyze a wide frequency span in
a short observation time, rather than sweeping the BPF in Fig. 6.3b. Finally, the PSD
will be compared with a threshold, λ, to decide whether the corresponding frequency
is occupied or not.

The advantages of energy detection are that prior knowledge of the primary users is
not required, and both the implementation and the computational complexity are gen-
erally low. In addition, a short observation time is required, for example, O(1/SNR2)

samples are required to satisfy a given probability of detection [7]. Although energy
detection has a low implementation complexity, it has some drawbacks. A major
drawback is that it has poor detection performance under low SNR scenarios as it
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is a non-coherent detection scheme. Another drawback is that it cannot differentiate
between the signal from a primary user and the interference from other cognitive
radios, thus, it cannot take advantage of adaptive signal processing, such as inter-
ference cancelation. Furthermore, noise level uncertainty can lead to further per-
formance loss. These disadvantages can be overcome by using two-stage spectrum
sensing technique, i.e., coarse spectrum sensing and fine spectrum sensing. Coarse
spectrum sensing can be implemented by energy detection or wideband spectrum
analyzing techniques. The aim of coarse spectrum sensing is to quickly scan the
wideband spectrum and identify some possible spectrum holes in a short observa-
tion time. By contrast, fine spectrum sensing further investigates and analysis these
suspected frequencies. More sophisticated detection techniques can be used at this
stage, such as cyclostationary detection described below.

6.2.3 Cyclostationary Detection

A block diagram of cyclostationary detection is shown in Fig. 6.3d. Cyclostationary
detection is a method for detecting the primary users by exploiting the cyclostation-
ary features in the modulated signals. In most cases, the received signals in cognitive
radios are modulated signals, which in general exhibit built-in-periodicity within
the training sequence or cyclic prefixes. This periodicity is generated by the pri-
mary transmitter so that the primary receiver can use it for parameter estimation,
such as channel estimation, and pulse timing [12]. The cyclic correlation function,
also called cyclic spectrum function (CSF), is used for detecting signals with a par-
ticular modulation type in the presence of noise. This is because noise is usually
wide-sense stationary (WSS) without correlation, by contrast, modulated signals are
cyclostationary with spectral correlation. Furthermore, since different modulated sig-
nals will exhibit different characteristics, cyclostationary detection can be used for
distinguishing between different types of transmitted signals, noise, and interference
in low SNR environments. One of the drawbacks of cyclostationary detection is that
it still requires partial information of the primary user. Another drawback is that the
computational cost is high as the CSF is a two-dimensional function dependent on
frequency and cyclic frequency [9].

6.2.4 Wavelet Based Spectrum Sensing

In [10], Tian and Giannakis proposed a wavelet-based spectrum sensing approach.
It provides an advantage of flexibility in adapting to a dynamic spectrum. In this
approach, the PSD of the Fourier spectrum is modeled as a train of consecutive
frequency subbands, where the PSD is smooth within each subband but exhibits dis-
continuities and irregularities on the border of two neighboring subbands as shown in
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Fig. 6.4 Demonstration of the Fourier spectrum of interest. The PSD is smooth within each subband,
and exhibits discontinuities and irregularities with the adjacent subbands [10, 13]

Fig. 6.4. The wavelet transform of the wideband PSD is used to locate the singularities
of the PSD.

Let ϕ( f ) be a wavelet smoothing function, the dilation of ϕ( f ) is given by

ϕd( f ) = 1

d
ϕ

(
f

d

)
(6.1)

where d is a dyadic scale that can take values that are powers of 2, i.e., d = 2 j . The
continuous wavelet transform (CWT) of the PSD is given by [10]

CWT{S( f )} = S( f ) ∗ ϕd( f ) (6.2)

where “∗” denotes the convolution and S( f ) is the PSD of the received signal.
Then the first and second derivative of the CWT{S( f )} are used to locate the

irregularities and discontinuities in the PSD. Specifically, the boundaries of each
subbands are located by using the local maxima of the first derivative of CWT{S( f )},
and locations of the subbands are finally tracked by finding zero crossings in the
second derivative of CWT{S( f )}. By controlling the wavelet smoothing function, the
wavelet-based spectrum sensing approach has flexibility in adapting to the dynamic
spectrum.

6.3 Wideband Spectrum Sensing Algorithms

As the discussions in previous section, spectrum sensing is composed of data acquisi-
tion (sampling) process and decision-making process. For implementing wideband
data acquisition, cognitive radio needs some essential components, i.e., wideband
antenna, wideband RF front end, and high speed analog-to-digital converter (ADC).
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Considering the Nyquist sampling theory, the sampling rate of ADC is required to
exceed 2W samples per second (known as Nyquist rate), if W denotes the bandwidth
of the received signal (e.g., bandwidth W = 10 GHz). In [14], Yoon et al. have
shown that the −10 dB bandwidth of the newly designed antenna can be 14.2 GHz.
Hao and Hong [15] have designed a compact highly selective wideband bandpass
filter with a bandwidth of 13.2 GHz. By contrast, the development of ADC technol-
ogy is relatively behind. When we require an ADC to have a high resolution and a
reasonable power consumption, the achievable sampling rate of the state-of-the-art
ADC is 3.6 Gsps [16]. Thus, ADC becomes a bottleneck in such a wideband data
acquisition system. Even if there exists ADC with more than 20 Gsps sampling rate,
the real-time digital signal processing of 20 Gb/s of data could be very expensive.
This dilemma motivates researchers to look for technologies to reduce the sampling
rate while retaining W by using sub-Nyquist sampling techniques.

Sub-Nyquist sampling refers to the problem of recovering signals from partial
measurements that are obtained by using sampling rate lower than the Nyquist
rate [17]. Three important sub-Nyquist sampling techniques are: multi-coset sub-
Nyquist sampling, multi-rate sub-Nyquist sampling, and compressed sensing based
sub-Nyquist sampling.

6.3.1 Multi-Coset Sub-Nyquist Sampling

Multi-coset sampling is a selection of some samples from a uniform grid, which can
be obtained when uniformly sampling signal at a rate of fN greater than the Nyquist
rate. The uniform grid is then divided into blocks of L consecutive samples, and in
each block v(v < L) samples are retained while the rest of samples, i.e., L − v
samples, are skipped. A constant set C that describes the indexes of these v samples
in each block is called a sampling pattern as

C = {t i }vi=1, 0 ≤ t1 < t2 < · · · < tv ≤ L − 1. (6.3)

As shown in Fig. 6.5, the multi-coset sampling can be implemented by using v
sampling channels with sampling rate of fN

L , where the i-th sampling channel is

offset by t i

fN
from the origin as below

xi [n] =
{

x( n
fN
), n = mL + t i , m ∈ Z

0, otherwise
(6.4)

where x(t) denotes the received signal to be sampled.
The discrete-time Fourier transform (DTFT) of the samples can be linked to the

unknown Fourier transform of signal x(t) by
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Fig. 6.5 Block diagram
of multi-coset sub-Nyquist
sampling

Y( f ) = ΦX( f ) (6.5)

where Y( f ) denotes a vector of DTFT of these measurements from v channels,
X( f ) is a vector of the Fourier transform of x(t), and Φ is the measurement matrix
whose elements are determined by the sampling pattern C . The problem of wideband
spectrum sensing is thus equivalent to recovering X( f ) from Y( f ). In order to get a
unique solution from (6.5), every set of v columns of Φ should be linearly indepen-
dent. However, searching for this sampling pattern is a combinatorial problem.

In [18, 19], some sampling patterns are proved to be valid for reconstruction.
The advantage of multi-coset sampling is that the sampling rate in each channel is L
times lower than the Nyquist rate. Moreover, the number of measurements is v

L lower
than the Nyquist sampling case. One drawback of the multi-coset sampling is that
accurate time offsets between sampling channels are required to satisfy a specific
sampling pattern. Another one is that the number of sampling channels should be
sufficiently high [20].

6.3.2 Multi-Rate Sub-Nyquist Sampling

An alternative model for compressing the wideband spectrum in the analog domain is
a multirate sampling system as shown in Fig. 6.6. Asynchronous multirate sampling
(MRS) and synchronous multirate sampling (SMRS) were used for reconstructing
sparse multiband signals in [22] and [23], respectively. In addition, MRS has been
successfully implemented in experiments using an electro-optical system with three
sampling channels as described in [21]. Both systems employ three optical pulsed
sources that operate at different rates and at different wavelengths. The received
signal is modulated with optical pulses, which provided by an optical pulse generator
(OPG), in each channel. In order to reconstruct a wideband signal with an 18 GHz
bandwidth, the modulated pulses are amplified, and sampled by an ADC at a rate of
4 GHz in each channel.
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Fig. 6.6 Multirate sampling system implemented by electro-optical devices [21]. In each channel,
the received signal is modulated by a train of short optical pulses. The modulated signal is then
detected by an optical detector, amplified, and sampled by a low-rate ADC

In [22], the sampling channels of the MRS can be implemented separately with-
out synchronisation. However, reconstruction of the spectrum requires that each
frequency of the signal must be non-aliased in at least one of the sampling chan-
nels. In [23] SMRS reconstructs the spectrum from linear equations, which relate the
Fourier transform of the signal to the Fourier transform of its samples. Using com-
pressed sensing theory, sufficient conditions for perfectly reconstructing the spec-
trum are obtained; v ≥ 2k (the Fourier transform of the signal is k-sparse) sampling
channels are required. In order to reconstruct the spectrum using MRS with fewer
sampling channels, the spectrum to be recovered should possess certain properties,
e.g., minimal bands, and uniqueness. Nonetheless, the spectral components from pri-
mary users may not possess these properties. Obviously, even though the multirate
sampling system has broad application, there is a long way to go to implement it in a
cognitive radio network because of its stringent requirements on both optical devices
and the number of sampling channels.

6.3.3 Compressed Sensing Based Sub-Nyquist Sampling

In the classic work [13], Tian and Giannakis introduced compressed sensing theory
to realize wideband spectrum sensing by exploiting the sparsity of radio signals. The
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technique takes advantage of using fewer samples closer to the information rate,
rather than the inverse of the bandwidth, to perform wideband spectrum sensing.
After reconstruction of the wideband spectrum, wavelet-based edge detection was
used to detect the wideband spectrum as shown in Fig. 6.7.

Let x(t) represent a wideband signal received at cognitive radio. If x(t) is sampled
at the Nyquist sampling rate, the sequence vector, i.e., x (x ∈ C

N ), will be obtained.
The Fourier transform of the sequence, X = Fx, will therefore be alias-free, where
F denotes the Fourier matrix. When the spectrum, X, is k-sparse (k � N ), which
means k out of N values in X are not neglectable, x(t) can be sampled at a sub-
Nyquist rate while its spectrum can be reconstructed with a high probability. The
sub-sampled/compressed signal, y ∈ C

M (k < M � N ), is linked to the Nyquist
sequence x by [13],

y = Φx (6.6)

where Φ ∈ C
M×N is the measurement matrix, which is a selection matrix that

randomly chooses M columns of the size-N identity matrix. Namely, N−M samples
out of N samples are skipped. The relationship between the spectrum X and the
compressed sequence y is given by [13]

y = ΦF−1X (6.7)

where F−1 denotes the inverse Fourier matrix.
Approximating X from y in (6.7) is a linear inverse problem and is NP-hard. The

basis pursuit (BP) [24] algorithm can be used to solve X by linear programming [13]:

X̃ = arg min ‖X‖1, s. t. y = ΦF−1X. (6.8)

After reconstructing the full spectrum X, the PSD is calculated using X̃ . Then the
wavelet detection approach can be used to analyze the edges in the PSD. Although
less measurements are used for characterizing the wideband spectrum, the require-
ment of high sampling rate on ADC is not relaxed. By contrast, in [25], Polo
et al. suggested using an analog-to-information converter (AIC) model (also known
as random demodulator, [26]) for compressing the wideband signal in the analog
domain. The block diagram of AIC is given in Fig. 6.8.

A pseudorandom number generator is used to produce a discrete-time sequence
ε0, ε1, . . ., called a chipping sequence, the number of which takes values of±1 with
equal probability. The waveform should randomly alternate at or above the Nyquist
rate, i.e., � ≥ 2W , where W is the bandwidth of signal. The output of the pseu-
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Fig. 6.8 Block diagram for the analog-to-information converter [26]. The received signal, x(t), is
randomly demodulated by a pseudorandom chipping sequence, integrated by an accumulator, and
sampled at a sub-Nyquist rate

dorandom number generator, i.e., pc(t), is employed to demodulate a continuous-
time input x(t) by a mixer. Then an accumulator sums the demodulated signal for
1/w seconds, and the filtered signal is sampled at a sub-Nyquist rate of w. This
sampling approach is called integrate-and-dump sampling since the accumulator is
reset after each sample is taken. The samples acquired by the AIC, y ∈ C

w, can be
related to the received signal, x ∈ C

� , by

y = Φx (6.9)

where Φ ∈ C
w×� is the measurement matrix describing the overall action of the

AIC system on the input signal x. The signal x can be identified by solving the convex
optimization problem,

x̃ = arg min ‖x‖1, s. t. y = Φx, (6.10)

by BP or other greedy pursuit algorithms. The PSD of the wideband spectrum can
be estimated using the recovered signal x̃ , followed by a hypothesis test on the
PSD. Alternatively, the PSD can be directly recovered from the measurements using
compressed sensing algorithms [25]. Although the AIC bypasses the requirement for
a high sampling rate ADC, it leads to a high computational complexity as the huge-
scale of the measurement matrix. Furthermore, it has been identified that the AIC
model can easily be influenced by design imperfections or model mismatches [27].

In [27], Mishali and Eldar proposed a parallel implementation of the AIC model,
called modulated wideband converter (MWC), as shown in Fig. 6.9. The key dif-
ference is that in each channel the accumulator for integrate-and-dump sampling
is replaced by a general low-pass filter. One of the benefits of introducing paral-
lel structure is that the dimension of the measurement matrix is reduced making the
reconstruction easier. Another benefit is that it provides robustness to noise and model
mismatch. On the other hand, the implementation complexity increases as multiple
sampling channels are involved. An implementation issue of using MWC is that
the storage and transmission of the measurement matrix must be considered when
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it is used in a distributed cognitive radio network under a data fusion collaborative
scheme.

6.4 Adaptive Compressed Sensing Framework for Wideband
Spectrum Sensing

The compressed sensing technologies require that the signal to be sampled should
be sparse in a suitable basis. If it is sparse, the signal can be reconstructed from
partial measurements by using some recovery algorithms, e.g., orthogonal matching
pursuit (OMP) or compressive sampling matching pursuit (CoSaMP) [28]. Given
the low spectral occupancy, the wideband signal that is received by cognitive radios
can be assumed to be sparse in the frequency domain [13]. If this sparsity level
(denoted by k) is known, we can choose an appropriate number of measurements
M to secure the quality of spectral recovery, e.g., M = C0k log(N/k), where C0
denotes a constant and N denotes the number of measurements when using the
Nyquist rate [13]. However, in order to avoid incorrect spectral recovery in the cog-
nitive radio system, traditional compressed sensing approaches must pessimistically
choose the parameter C0, which results in excessive number of measurements. As
shown in Fig. 6.10, considering k = 10, traditional compressed sensing approaches
tend to choose M = 37 %N measurements for achieving a high successful recovery
rate. We note that, with 20 %N measurements, we can still achieve 50 % successful
recovery rate. If these 50 % successful recovery cases can be identified, we could save
the number of measurements. In addition, in a practical cognitive radio system, the



6 Sub-Nyquist Sampling and Compressed Sensing 163

Undersampling fraction  M/N

S
pa

rs
ity

 fr
ac

tio
n 

 k
/M

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Successful recovery rate
Sparsity level  k=10
Sparsity level  k=20

0

0.2

0.4

0.6

0.8

1

Fig. 6.10 An example of a traditional compressed sensing system, where the successful recovery
rate varies when the number of measurements and the sparsity level vary. In simulations, considering
N = 200, we varied the number of measurements M from 20 to 180 in eight equal-length steps. The
sparsity level k was set to between 1 and M . The measurement matrix was assumed to be Gaussian.
The figure was obtained with 5,000 trials of each parameter setting

sparsity level of the instantaneous spectrum is often unknown or difficult to estimate
because of either the dynamic activities of primary users or the time-varying fading
channels between the primary users and cognitive radios. Due to this sparsity level
uncertainty, traditional compressed sensing approaches should further increase the
number of measurements. For example, in Fig. 6.10, if k is known to be 10 ≤ k ≤ 20,
traditional compressed sensing approaches would select M = 50 %N , which does
not fully exploit the advantages of using compressed sensing technologies for wide-
band spectrum sensing. Further, the sparsity level uncertainty could also result in
early or late termination of greedy recovery algorithms. Due to the effects of under-
fitting or over-fitting caused by the early or late iteration termination, traditional
compressed sensing recovery algorithms will lead to unfavorable spectral recovery
quality.

To address these challenges, adaptive compressed sensing approach should be
adopted for reconstructing the wideband spectrum by using an appropriate number
of compressive measurements without prior knowledge of the instantaneous spec-
tral sparsity level. Specifically, the adaptive framework divides the spectrum sensing
interval into several equal-length time slots, and performs compressive measurements
in each time slot. The measurements are then partitioned into two complementary
subsets, performing the spectral recovery on the training subset, and validating the
recovery result on the testing subset. Both the signal acquisition and the spectral esti-
mation will be terminated if the designed �1 norm validation parameter meets certain
requirements. In the next section, we will introduce the adaptive compressed sens-
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ing approach in detail for addressing wideband spectrum sensing issues in cognitive
radios.

6.4.1 Problem Statement

Suppose that an analog primary signal x(t) is received at a cognitive radio, and the
frequency range of x(t) is 0 ∼ W (Hz). If the signal x(t)were sampled at the sampling
rate f (Hz) in the observation time τ (seconds), a signal vector x ∈ C

N×1 would be
obtained, where N denotes the number of samples and can be written as N = f τ .
Without loss of generality, we assume that N is an integer number. However, here we
consider that the signal is sampled at sub-Nyquist rate as enhanced by compressed
sensing.

The compressed sensing theory relies on the fact that we can represent many
signals using only a few non-zero coefficients in a suitable basis or dictionary. Such
signals may therefore be acquired by sub-Nyquist sampling, which leads to fewer
samples than predicted on the basis of Nyquist sampling theory. The sub-Nyquist
sampler, e.g., the random demodulator [26, 29, 30], will generate a vector of com-
pressive measurements y ∈ C

M×1 (M � N ) via random projections of the signal
vector x. Mathematically, the compressive measurement vector y can be written as

y = Φx (6.11)

where x denotes the signal vector obtained by using sampling rate higher than or
equal to the Nyquist rate (i.e., f ≥ 2W ), and Φ denotes an M × N measurement
matrix. Of course, there is no hope to reconstruct an arbitrary N -dimensional signal
x from partial measurements y. However, if the signal x is k-sparse (k < M � N )
in some basis, there do exist measurement matrices that allow us to recover x from
y using some recovery algorithms.

Based on the fact of spectral sparseness in a cognitive radio system [13], the
compressed sensing technologies can be applied for signal acquisition at cognitive
radios. A block diagram of a typical compressed sensing based spectrum sensing
infrastructure is shown in Fig. 6.11. The goal is to reconstruct the Fourier spectrum

Fig. 6.11 Diagram of compressed sensing based spectrum sensing approach when using the spectral
domain energy detection approach
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X = Fx from partial measurements y, and to perform spectrum sensing based on
the reconstructed spectrum X̂ . Due to the advantages of short running time and good
sampling efficiency, greedy recovery algorithms are often used in some practical
scenarios where the signal processing should be performed on a near real-time basis
in addition to computational capability constraints.

After the spectral recovery, spectrum sensing approaches can be performed by
using the reconstructed spectrum X̂ . A typical spectrum sensing approach is spectral
domain energy detection as the discussions in Sect. 6.2. As depicted in Fig. 6.11, this
approach extracts the reconstructed spectrum in the frequency range of interest, e.g.,
Δ f , and then calculates the signal energy in the spectral domain. The output energy
will be compared with a detection threshold (denoted by λ) to decide whether the
corresponding frequency band is occupied or not, i.e., choosing between hypotheses
H1 (presence of primary users) and H0 (absence of primary users).

It can be easily understood that the performance of such an infrastructure will
highly depend on the recovery quality of the Fourier spectrum X. From the com-
pressed sensing theory, we know that the recovery quality is determined by: the
sparsity level, the choice of measurement matrix, the recovery algorithm, and the
number of measurements. The spectral sparsity level in a cognitive radio system is
mainly determined by the activities of primary users within a specific frequency range
and the medium access control (MAC) of the cognitive radios. One elegant metric for
evaluating the suitability of a chosen measurement matrix is the restricted isometry
property (RIP) [31]. For a comprehensive understanding of RIP and measurement
matrix design, we refer the reader to [32] and references therein. In the following,
we will concentrate on addressing: the choice of the number of measurements and
the design of the recovery algorithm. We will discuss an adaptive sensing framework
enabling us to gradually acquire spectral measurements. Both the signal acquisition
and the spectral estimation will be terminated when certain halting criterions are met,
thereby avoiding the problems of excessive or insufficient numbers of compressive
measurements.

6.4.2 System Description

Consider a cognitive radio system using a periodic spectrum sensing infrastructure in
which each frame is comprised of a spectrum sensing time slot and a data transmission
time slot, as shown in Fig. 6.12. The length of each frame is A (seconds), and the
duration of spectrum sensing is T (0 < T < A). The remaining time A− T is used
for data transmission. Further, we assume that the spectrum sensing duration T is
carefully chosen so that the symbols from primary users, and the channels between
the primary users and cognitive radios are quasi-stationary. We propose to divide the
spectrum sensing duration T into P equal-length mini-time slots, each of which has
length τ = T

P , as depicted in Fig. 6.12. As enforced by protocols, e.g., at the MAC
layer [33], all cognitive radios can keep quiet during the spectrum sensing interval.
Therefore, the spectral components of the Fourier spectrum X = Fx arise only from
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Fig. 6.12 Frame of periodic spectrum sensing in cognitive radio networks

primary users and background noise. Due to the low spectral occupancy [13], the
Fourier spectrum X can be assumed to be k-sparse, which means it consists only of k
largest values that are not negligible. The spectral sparsity level k is unknown except
that k ≤ kmax, where kmax is a known parameter. This assumption is reasonable
because the maximal occupancy of the spectrum can be estimated by long-term
spectral usage measurements.

For simplicity, we name the adaptive compressed sensing-based wideband spec-
trum sensing approach as: compressed adaptive sensing (CASe). The aim of CASe is
to gradually acquire compressive measurements, reconstruct the wideband spectrum
X, and terminate the signal acquisition if and only if the current spectral recovery
performance is satisfactory. The work procedure of CASe is shown in Table 6.2.
We assume that cognitive radio performs compressive measurements using the same
sub-Nyquist sampling rate fs ( fs < 2W ) in all P mini time slots. In each time
slot, an m-length measurement vector would be obtained, where m = fsτ = fs T

P is
assumed to be an integer. Without loss of generality, the measurement matrices of
P time slots are assumed to follow the same distribution, e.g., the standard normal
distribution, or the Bernoulli distribution with equal probability of ±1. We partition
the measurement set of the first time slot into two complementary subsets, i.e., vali-
dating the spectral recovery result using the testing subset V (V ∈ C

r×1, 0 < r < m)
which is given by

V = Ψ F−1X (6.12)

and performing the spectral recovery using the training subset y1 (y1 ∈ C
(m−r)×1),

where Ψ ∈ C
r×N denotes the testing matrix. The measurements of other time slots,

i.e., yi , ∀i ∈ [2, P], are used only as the training subsets for spectral recovery. We
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Table 6.2 Compressed adaptive sensing (CASe) framework

Input: Sensing duration T , N , noise variance δ2, threshold �
accuracy ε in the noiseless case, accuracy ε in the noisy case.

1. Initialize:
Divide T into P time slots, each has length τ = T

P , index p = 0.
2. While the halting criterion is false and p < P , do

(a) Increment p by 1.
(b) Perform compressive sampling in the time slot p using rate fs .
(c) If p = 1, partition the measurement vector into:

the training set y1 and testing set V as in (6.12–6.13).
(d) Concatenate the training sets from the time slots 1, . . . , p

to form Yp as in (6.13).
(e) Estimate the spectrum from Yp using spectral recovery algorithm

resulting in the spectral estimate X̂ p .
(f) Calculate the validation parameter using V and Ψ :

ρp = ‖V−Ψ F−1 X̂ p‖1
r .

3. Check and make decision:
If the halting criterion is true

(a) Terminate the signal acquisition.
(b) Perform spectrum sensing using the reconstructed spectrum X̂ p .
(c) Choose un-occupied bands, and start the data transmission.

Else if p = P
(a) Terminate the signal acquisition.
(b) Report its reconstruction is not trustworthy.
(c) Increase fs and wait for next spectrum sensing frame.

end

Halting Criterion:

√
πN

2 ρp

1−ε ≤ � , in the noiseless measurement case.

|ρp −
√
π
2 δ| ≤ ε, in the noisy measurement case.

concatenate the training subsets of all p time slots as

Yp

=

⎛

⎜⎜⎜⎝

y1
y2
...

yp

⎞

⎟⎟⎟⎠ = Φ pF−1Xp (6.13)

where Yp ∈ C
(pm−r)×1 denotes the concatenated measurement vector, Φ p denotes

the measurement matrix after p time slots, and Xp denotes the signal spectrum. It
should be noted that Φ p and the testing matrix Ψ are chosen to be different but have
the same distribution, and the signal spectrum Xp is always noisy, e.g., due to the
receiver noise. We then gradually estimate the spectrum from Y1,Y2, . . . ,Yp using
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a certain compressed sensing recovery algorithm, leading to a sequence of spectral
estimates X̂1, X̂2, . . . , X̂ p.

6.4.3 Acquisition Termination Metric

We hope that the signal acquisition procedure can be terminated if we find a good
spectral approximation X̂ p that makes the spectral recovery error ‖X− X̂ p‖2 suffi-
ciently small. The remaining spectrum sensing time slots, i.e., p+ 1, . . . , P , can be
used for data transmission. If this target can be achieved, we could not only improve
the cognitive radio system throughput (due to the longer data transmission time), but
could also obtain measurement savings, leading to both energy and computational
savings. However, the spectral recovery error ‖X − X̂ p‖2 is typically not known as
X is unknown under the sub-Nyquist sampling rate. Hence, when using traditional
compressed sensing approaches, we do not know when we should terminate the sig-
nal acquisition procedure. In this chapter, we propose to use the following validation
parameter as a proxy for ‖X− X̂ p‖2:

ρp

= ‖V− Ψ F−1 X̂ p‖1

r
(6.14)

and terminate the signal acquisition if the validation parameter ρp is smaller than a
predetermined threshold. This is based on the following observation:

Theorem 1 Assume that Φ1, . . . ,Φ P and Ψ follow the same distribution, i.e., either
the standard normal distribution or the Bernoulli distribution with equal probability
of ±1. Let ε ∈ (0, 1

2 ), ξ ∈ (0, 1), and r = Cε−2 log 4
ξ

(C is a constant). Then using

V for testing the spectral estimate X̂ p, the validation parameter ρp satisfies:

Pr

[
(1− ε)‖X− X̂ p‖2 ≤

√
πN

2
ρp ≤ (1+ ε)‖X− X̂ p‖2

]
≥ 1− ξ (6.15)

where ξ can also be written as ξ = 4 exp(− rε2

C ).

The proof of Theorem 1 is given in Appendix A.

Remark 1 In Theorem 1, we can see that, with either higher ε or greater r , we
have higher confidence for estimating the actual spectral recovery error ‖X− X̂ p‖2.
Figure 6.13a shows the influence of using different number of measurements for
testing the spectral estimate when the number of time slots increases. The spectral
occupancy is assumed to be 6 %, which means the spectral sparsity level k = 6 %N =
120 where N = 2000. It can be seen that with more testing data, the validation result
is more trustworthy. Furthermore, we can find that even with r = 5 measurements
for testing, the validation result is still very close to the actual recovery error. The
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Fig. 6.13 Comparison of the
actual recovery error and the
proposed validation parameter
when the number of mini time
slots increases. a Different
number of measurements for
validation when the spectral
sparsity level k = 120. b
Different spectral sparsity
levels when r = 50. It was
assumed that there is no
measurement noise in the
compressive measurements.
The upper and lower bounds
on the actual recovery error
are given in (6.16)
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choice of parameter C in Theorem 1 depends on the concentration property of random
variables in the measurement matrix Ψ . For a good Ψ , e.g., the measurement matrix
with random variables following either the Gaussian or Bernoulli distribution, C
could be a small number.

Remark 2 Theorem 1 can be used to provide tight upper and lower bounds on the
unknown recovery error ‖X− X̂ p‖2 by using (6.15) such that

√
πN

2 ρp

1+ ε ≤ ‖X− X̂ p‖2 ≤
√
πN

2 ρp

1− ε . (6.16)

Figure 6.13b compares the actual recovery error ‖X − X̂ p‖2 and the validation

parameter
√
πN

2 ρp when the spectral sparsity level varies. It is evident that the
validation parameter can closely fit the unknown actual recovery error. The upper
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and lower bounds on the actual recovery error that we obtained in (6.16) can correctly
predict the trend of the actual recovery error even if either p or k vary. Figure 6.13b
also illustrates that the lower the sparsity level, the fewer time slots (thereby the fewer
compressive measurements) are required for reconstructing the spectrum. When the
spectral occupancy is 12 % (i.e., k = 12 %N = 240), the CASe framework requires
p = 7 mini-time slots, i.e., M = pm = 1400 measurements in total. On the other
hand, when k = 100, only p = 3 time slots and M = pm = 600 measurements
are required. The remaining time slots can be used for data transmission, which can
therefore lead to higher throughput than the cognitive radio system using traditional
compressed sensing approaches. If we require ‖X− X̂ p‖2 (unknown) to be less than
a tolerable recovery error threshold � , we can let the upper bound on (6.16) to be a
proxy for ‖X− X̂ p‖2. As shown in Table 6.2, we choose the upper bound on (6.16)
as the signal acquisition termination metric in the noiseless case. If it is less than or

equal to the threshold� , i.e., ‖X− X̂ p‖2 ≤
√
πN

2 ρp

1−ε ≤ � , the signal acquisition can
be terminated. This approach, to some extent, decreases the probabilities of excessive
or insufficient numbers of measurements.

6.4.4 Noisy Compressed Adaptive Sensing

Due to either the quantization error of ADC or the imperfect design of sub-Nyquist
sampler, the measurement noise may exist when performing compressive measure-
ments. In this section, the �1 norm validation approach is further studied to fit the
CASe framework in the noisy case. After that, we present a sparsity-aware recovery
algorithm that can correctly terminate greedy iterations when the spectral sparsity
level is unknown and the effects of measurement noise are not negligible.

In the noisy signal measurement case, the concatenated training set Yp and the
testing subset V can be written as

Yp = Φ pF−1Xp + n (6.17)

and
V = Ψ F−1X+ n (6.18)

respectively, where the measurement noise n is additive noise (added to the real
compressed signal after the random projection) generated by the signal measure-
ment procedure, i.e., signal quantization. The measurement noise can be modeled by
circular complex additive white Gaussian noise (AWGN). Without loss of generality,
we assume that n has an upper bound n̄, and has zero mean and known variance δ2,
i.e., n ∼ CN (0, δ2). For example, if the measurement noise n is generated by the
quantization noise of a uniform quantizer, the noise variance δ2 can be estimated by
Δ2/12 and n ≤ n̄ = Δ, where Δ denotes the cell width.
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If ρp is close enough to
√
π
2 δ, the signal acquisition procedure can be safely

terminated. This observation is due to the following theorem:

Theorem 2 Let ε > 0, δ > 0, � ∈ (0, 1), ν ≥
√

2/π
δ

n̄ − 1, and r = ln
(

2
�

)

3(4−π)δ2+√2πεδν
3ε2 . If the best spectral approximation exists within the sequence of

spectral estimates X̂1, · · · , X̂ P , then there exists a validation parameter ρp that
satisfies

Pr

[√
π

2
δ − ε ≤ ρp ≤

√
π

2
δ + ε

]
> 1− �, (6.19)

where � is given by � = 2 exp
(
− 3rε2

3(4−π)δ2+√2πεδν

)
.

The proof of Theorem 2 is given in Appendix B.

Remark 3 It is worthwhile to note that Theorem 2 addresses the problem of finding
the best spectral approximation, i.e., X̂ p = X�, that minimizes ‖X− X̂ p‖2 among all
possible spectral estimates in the noisy case. This is different from Theorem 1, which
focuses on finding a satisfactory spectral estimate X̂ p that makes ‖X − X̂ p‖2 ≤ �
in the noiseless case. Using Theorem 1, we should carefully choose the tolerable
recovery error threshold � in order to avoid excessive or insufficient numbers of
measurements. In addition, in Theorem 1, the relation between the tolerable recov-
ery error threshold � and the probability of finding the best spectral approximation
is unknown. By contrast, Theorem 2 shows that if there exists a best spectral approx-
imation, the corresponding validation parameter should be within a certain small
range with a probability greater than 1− �. Thus, if the result of Theorem 2 is used
as the signal acquisition termination metric, the issues of excessive or insufficient
numbers of measurements can be solved.

Remark 4 If the best spectral approximation exists, the probability of finding it
exponentially increases as the size of testing set (i.e., r ) increases. It means that if we
monitor ρp, we have a higher probability of finding the best spectral approximation
when using more measurements for validation. However, we should note that there
is a trade off between the size of the training set and the size of the testing set for a
fixed sub-Nyquist sampling rate. On the one hand, a smaller r (i.e., larger training
set for a fixed m) could result in better spectral recovery, while on the other hand, the
probability of finding the best spectral approximation decreases as r becomes small.
In addition, for a fixed degree of confidence 1 − �, we face a trade off between the
accuracy ε and the size of the testing set r , as shown in Theorem 2. At the expense
of the accuracy ε (i.e., larger ε), r can be small. We should also emphasize that, as
we can see in (6.32), linear increase of the standard deviation δ will lead to quadratic
growth in the size of the testing set. This is the reason why we should carefully
consider the effects of measurements noise in the validation approach.
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6.4.5 Sparsity-Aware Recovery Algorithm

As the above discussions indicated, Theorem 2 can be used for identifying the best
spectral approximation to X from the spectral estimate sequence X̂1, X̂2, . . . , X̂ p,
which is calculated by increasing the number of measurements in the proposed CASe
framework. We note that Theorem 2 can also be used for preventing over-fitting or
under-fitting in greedy recovery algorithms. Greedy recovery algorithms iteratively
generate a sequence of estimates X̂1

p, X̂2
p, . . . , X̂ t

p, where the best spectral estimate
may exist under certain system parameter choices. For example, the OMP algorithm
chooses one column from the measurement matrix at a time for reconstructing X
from y. After t = k iterations, the k-sparse vector X̂ k will be returned as an approx-
imation to X. Note that OMP requires the sparsity level k as an input, and such an
input is commonly needed by most greedy recovery algorithms. However, the sparsity
level k of the spectrum in the cognitive radio system is often unknown, and therefore
traditional greedy compressed sensing algorithms will result in either early or late
termination of greedy algorithms. Then the problems of under-fitting and over-fitting
arise, leading to inferior spectral recovery performance. In order to reconstruct the
full spectrum in the case of unknown k, we propose to use the testing set for validat-
ing the spectral estimate sequence X̂1

p, X̂2
p, . . . , X̂ t

p, and terminate the iterations if
the current validation parameter satisfies the conditions given in Theorem 2.

As shown in Table 6.3, we present a sparsity-aware OMP algorithm. One important
advantage of the proposed algorithm is that it does not require the instantaneous
spectral sparsity level k, but requires instead its upper bound kmax which can be
easily known. In each iteration, the column index λt ∈ [1, N ] that has the maximum
correlation between the residual and the measurement matrix will be found, and be
merged with the previously computed spectral support to form a new spectral support
�t . After that, the full spectrum is recovered by solving a least squares problem as

shown in the step 2-d) of Table 6.3. Note that Θ t
p

= Φ p(�

t ) is the sub-matrix
obtained by only selecting the columns whose indices are within �t in the matrix
Φ p, while other columns are set to all zeros. For a spectral estimate X̂ t

p, we validate
it by using the validation parameter ρt

p, which can be calculated by using the testing

set V and the spectral estimate X̂ t
p as shown in the step 2-e) of Table 6.3. The residual

is then updated. We emphasize that the proposed algorithm monitors the validation
parameter ρt

p, instead of the residual ‖Rt
p‖2 ≤ � as used in the traditional greedy

recovery algorithms. Based on Theorem 2, if the best spectral estimate is included
in the spectral estimate sequence X̂1

p, X̂2
p, . . . , X̂ t

p, the probability of finding it will

be greater than 1 − 2 exp
(
− 3rε2

3(4−π)δ2+√2πεδν

)
. In other words, the probability of

under-/over-fitting is less than or equal to 2 exp
(
− 3rε2

3(4−π)δ2+√2πεδν

)
, and becomes

smaller as r increases.
For the proposed spectral recovery algorithm, there is a key parameter we need

to know, i.e., ε. The following quadratic equation regarding ε holds by using (6.31):



6 Sub-Nyquist Sampling and Compressed Sensing 173

Table 6.3 Sparsity-Aware OMP Algorithm

Input: training set Yp , testing set V, measurement matrix Φ p ,
testing matrix Ψ , noise variance δ2, accuracy ε, kmax.

1. Initialize:
Index set �0 = ∅, residual R0

p = Yp , and iteration index t = 0.
Let ρt

p = C1 (∀t ∈ [0, kmax]), where C1 is a large constant.

2. While |ρt
p −

√
π
2 δ| > ε and t < kmax, do

(a) Increment t by 1.
(b) Find the index λt that solves the optimization problem:

λt = arg max j=1,··· ,N | < Rt−1
p ,Φ

j
p > |.

(c) Augment the index set �t = �t−1 ∪ {λt }, and revise
the matrix Θ t

p = Φ p(�
t ) by only selecting the column

index belongs to �t , other columns are all zeros.
(d) Solve a least squares problem:

X̂ t
p = arg minX ‖Yp −Θ t

pF−1X‖2.
(e) Calculate the validation parameter using V and Ψ :

ρt
p = ‖V−Ψ F−1 X̂ t

p‖1
r .

(f) Update residual:
Rt

p = Yp −Φ pF−1 X̂ t
p .

Output: X̂ p = arg min X̂ t
p
|ρt

p −
√
π
2 δ|, ∀ t ∈ [1, kmax]

r · ε2 −
√

2π

3
ln

(
2

�

)
δν · ε − (4− π) ln

(
2

�

)
δ2 = 0. (6.20)

It can be easily determined that the discriminant of the above quadratic equation is
positive, so there are two distinct real roots. The following positive root can be used
to determine ε:

ε =

⎡

⎢⎢⎣

√
2π ln

(
2
�

)
δν ± δ

√
2π ln2

(
2
�

)
ν2 + 36(4− π) ln

(
2
�

)
r

6r

⎤

⎥⎥⎦

+

(6.21)

where [x]+ denotes max(x, 0).

6.4.6 Numerical Results

In our simulations, we adopt the wideband analog signal model in [27] and let the
received signal x(t) at a cognitive radio to be of the form



174 H. Sun et al.

x(t) =
Nb∑

l=1

√
El Bl · sinc (Bl(t − α)) · cos (2π fl(t − α))+ z(t) (6.22)

where sinc(x) = sin(πx)
πx , α denotes a random time offset smaller than T/2, z(t)

is AWGN (i.e., z(t) ∼ N (0, 1)), and El is the received power for the subband l
at cognitive radio. The received signal x(t) consists of Nb = 8 non-overlapping
subbands. The l-th subband is in the frequency range of [ fl − Bl

2 , fl + Bl
2 ], where

the bandwidth Bl = 10 ∼ 30 MHz and fl denotes the center frequency. The center
frequency of the subband l is randomly located within [ Bl

2 ,W − Bl
2 ] (i.e., fl ∈

[ Bl
2 ,W − Bl

2 ]), where the overall signal bandwidth W = 2 GHz. Therefore, the

Nyquist rate is f = 2W = 4 GHz, and the spectral occupancy (i.e.,
∑8

l=1 Bl
W ) is a

random number between 4 % and 12 %. We emphasize that the spectral occupancy
of 4 % ∼ 12 % in our simulations is very close to the spectral measurements in
New York City as noted above. The received signal-to-noise ratios (SNRs) of these 8
active subbands are random natural numbers between 5 dB and 25 dB. The spectrum
sensing duration is chosen to be T = 5 μs, during which the symbols from primary
users and the channels between the primary users and cognitive radios are assumed
to be quasi-stationary. We then divide T into P = 10 mini time slots, each of which
has τ = T

P = 0.5 μs. If the received signal x(t) were sampled at the Nyquist rate,
the number of Nyquist samples in each time slot would be N = 2Wτ = 2, 000. It
can be calculated that the spectral sparsity level k is in the range of 4 %× N = 80 ≤
k ≤ 12 % × N = 240. In the proposed framework, rather than using the Nyquist
sampling rate, we adopt the sub-Nyquist sampling rate fs = 400 MHz; thus, the
number of measurements in each time slot is m = fsτ = 200. In other words,
the undersampling fraction in each time slot is m/N = 10 %. For the purpose of
testing/validation, r = 50 measurements in the first time slot are reserved, while the
remaining measurements are used for reconstructing the spectrum. The measurement
matrices, i.e., Φ p and Ψ , follow the standard normal distribution with zero mean
and unit variance. Due to the imperfect design of signal measurement devices, the
measurement noise may exist. In the noisy case, the measurement noise is assumed
to be circular complex AWGN, i.e., n ∼ CN (0, δ2). As the measurement noise in
this chapter is mainly due to the signal quantization in the ADCs, we set the signal-
to-measurement-noise ratios (SMNR) to be 50 dB and 100 dB. This is because the
SMNR of the uniform quantization increases 6 dB for each one-bit; thus, the SMNR
of 8-bit quantization is 48 dB and the SMNR of 16-bit quantization is 96 dB, which
are approximately 50 dB and 100 dB.

Firstly, we consider the effects of measurement noise to both the spectral recovery
quality and the validation parameter. In Fig. 6.14, the spectral sparsity level is set
to k = 120. We can see that, in either the noiseless measurement case or the noisy
measurement case, the proposed CASe framework can reconstruct the spectrum using
6 time slots. The spectral recovery quality becomes worse when the measurement
noise level increases. In the noiseless case, the proposed validation parameter can
closely fit the actual recovery error. By contrast, there is a gap between the actual
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Fig. 6.14 The effects of
measurement noise on both
the actual recovery error
and the proposed validation
parameter when the SMNR
varies. The spectral sparsity
level was set to k = 120
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recovery error and the validation result when the measurement noise exists. This is
because, on the one hand, the actual recovery error ‖X− X̂ p‖2 can be very small, e.g.,
10−14 in the case of best spectral approximation, on the other hand, the validation
parameter is mainly determined by the noise level as shown in Theorem 2. This
implies that the effects of measurement noise should be carefully considered even
if X̂ p is the best spectral approximation. In Fig. 6.15, it is seen that when the best
spectral approximation occurs (i.e., the actual recovery error is small enough), the

validation parameter is very close to the scaled noise standard deviation, i.e.,
√
π
2 δ.

This observation validates the results of Theorem 2. If the validation method is
used for designing the termination metric of the signal acquisition, such as in the
algorithm given in Table 6.2, the problems of insufficient or excessive numbers of
measurements can be solved.

Fig. 6.15 Comparison of the
validation parameter and the
actual recovery error when the
best spectral approximation
occurs. The dash linedenotes
the predicted validation value,

i.e.,
√
π
2 δ (scaled standard

deviation), as used in Theo-
rem 2
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Fig. 6.16 Performance analy-
sis of spectral recovery when
using different compressed
sensing approaches. a The
average number of measure-
ments required by CASe. b
The spectral recovery mean
square error. The SMNR was
set to 100 dB
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Secondly, Fig. 6.16 analyzes the spectral recovery performance when using
different compressed sensing approaches. In these simulations, in order to find the
best spectral approximation with high confidence, the accuracy parameter ε in (6.19)
is set to δ/2 and the number of testing measurements is r = 50. As depicted in
Fig. 6.16a, the proposed CASe framework can adaptively adapt its number of mea-
surements to the unknown spectral sparsity level k. The corresponding spectral recov-
ery performance is shown in Fig. 6.16b, where the spectral recovery mean square error
(MSE) of different compressed sensing approaches is given. We can see that, even
with the total number of measurements M = 1300, the performance of the traditional
compressed sensing system is inferior to that of the proposed CASe framework as
the traditional compressed sensing system cannot deal with the case of k ≥ 200.
Note that, if we assume that the spectral sparsity level k has a uniform distribution
between 80 and 240, the average number of measurements required by CASe is 900.
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Fig. 6.17 Examples of the reconstructed spectrum when using different recovery algorithms. The
spectral sparsity level was assumed to be k = 150, with the total number of measurements M = 800.
The received SNRs of these 8 active subbands were set to random natural numbers between 5 dB
and 25 dB. The SMNR was set to 50 dB

Compared to the traditional compressed sensing system with M = 900, it is obvious
that the CASe framework has much lower MSE for most of k ∈ [80, 240].

Thirdly, Fig. 6.17 shows examples of the original spectrum and the reconstructed
spectrum when using different spectral recovery algorithms, i.e., OMP and the pro-
posed algorithm. We can see that the recovery performance of the proposed algorithm
is superior to that of the traditional OMP algorithm. As the sparsity level is unknown
and has the range of 80 ≤ k ≤ 240, if the OMP algorithm is used, the problems
of either under-fitting (i.e., iteration is terminated earlier as k is under-estimated) or
over-fitting exist. As the problem of under-fitting could lead to the missed detection
of primary users which may cause harmful interference to primary users, the tradi-
tional OMP algorithm should prevent the under-fitting from occurring, and tends to
choose more number of iterations. In the case of over-fitting, the traditional OMP
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algorithm will result in a “noisy” reconstructed spectrum as depicted in Fig. 6.17c.
With the aid of the testing set, the proposed approach has an improved recovery per-
formance as shown in Fig. 6.17d. Compared with the OMP algorithm, the proposed
algorithm provides better spectral estimate, and is much more similar to the best
spectral approximation in Fig. 6.17b. It is worthwhile to emphasize that the proposed
algorithm will have more noticeable improvement over the OMP algorithm when
there is larger uncertainty in the spectral sparsity level k.

Finally, Fig. 6.18 further explores the performance of different recovery algo-
rithms. In order to illustrate the performance of CASe when using different recovery
algorithms, the MSE of the reconstructed spectrum is given in Fig. 6.18a. It can
be seen that the gain of using the proposed algorithm over OMP is approximately
one order of magnitude in MSE. This is because the proposed algorithm can ter-
minate the iteration at the right iteration index; by contrast, when using OMP, the

Fig. 6.18 Performance com-
parison of different recovery
algorithms. a The spectral
recovery mean square error
when the SMNR increases.
b The recovered error rate
Pr(M SE > M SET ) when
SMNR = 50 dB. The spectral
sparsity level was assumed to
be k = 120, with the aver-
age number of measurements
M = 800
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problems of either under-fitting or over-fitting exist, leading to either incomplete
spectral recovery or noisy spectral recovery. As a consequence, we can see from
Fig. 6.18b that, for a fixed SMNR=50 dB, the proposed algorithm has much lower
recovered error rate than the OMP algorithm. We note that the recovered error rate
is defined as the probability of simulated mean MSE larger than the target MSE.

6.4.7 Discussions and Conclusions

6.4.7.1 Discussions

The CASe framework shares its goals with some recent efforts that have looked at
testing the actual error directly from compressed data. The �2 norm cross validation
approach for compressed sensing has been studied by Ward [34], and Boufounos
et al. [35]. These results are very remarkable as they allow us to verify the actual
decoding error with almost no effort (i.e., a very few measurements are reserved
for testing). We note that the results here are different from those in these papers.
In particular, we have studied a different validation approach, i.e., the �1 norm is
used for validating the recovery result, rather than the �2 norm. In addition, the
effects of measurement noise were carefully considered in our analysis. By contrast,
Ward’s validation approach did not model the effects of measurement noise. When the
proposed �1 norm validation approach is used in compressed sensing technologies,
it could be a useful complement to the work in [34, 35]. It should also be emphasized
that, compared to the �2 norm validation approach, the proposed �1 norm validation
approach is less sensitive to outliers. As shown in Fig. 6.19a, when outliers exist in the
testing set, the validation parameter of using the �1 norm is one order in magnitude
lower than that of using the �2 norm. Moreover, we note that using compressed
sensing technologies for wideband spectrum sensing in a cognitive radio system,
we cannot avoid outliers. This is because the ADC is not a noise-free device, and
the non-linearity of ADC could be a source of generating outliers. Furthermore, in a
real-time compressed sensing device such as the random demodulator in [26, 29, 30],
imperfect synchronization of the pseudo-random sequence generator and the low-rate
ADC could result in outliers.

A natural technique for choosing the stopping time of the measurement would
be sequential detection [36], in which we collect one sample at a time until we
have enough observations to generate a final decision. However, we note that, in the
compressed sensing-based spectrum sensing system, the sequential measurements
cannot be directly used for performing sequential test. This is because, due to the
sub-Nyquist sampling, there exists spectral aliasing phenomenon, which makes fre-
quencies become indistinguishable. Thus, in order to apply sequential detection, the
wideband spectrum should be reconstructed before each sequential test for avoiding
spectral aliasing. In such a scenario, sequential detection could lead to high compu-
tational costs. Malioutov et al. [37] have studied a typical compressed sensing-based
sequential measurement system, where the decoder can receive compressed samples
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Fig. 6.19 Comparison
between the proposed sys-
tem and the existing systems.
a Sensitivity test of both the
�1 norm validation and the �2
norm validation approaches
against outliers. In simula-
tions, the measurement error
was added to a single sample
of the testing set, and the mag-
nitude of the measurement
error was set to 100 dB lower
than that of the sample. b Total
running time of reconstruct-
ing the spectrum for both the
sequential compressed sens-
ing measurement setup and
the proposed system when
using the CoSaMP algorithm.
In simulations, N = 200, and
M = Pm = 100 where m
denotes the number of mea-
surements in each mini-time
slot and P is the number of
mini-time slots
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sequentially. It has been shown that such a system can successfully estimate the
current decoding error by using some additional samples. Nevertheless, it is not
proper to apply the compressed sensing-based sequential measurement setup in cog-
nitive radio systems. Because, in this scheme, the wideband spectrum should be
repeatedly reconstructed for each additional measurement that could lead to high
computational costs and large spectrum sensing overhead in cognitive radios. For
example, using the CoSaMP algorithm [28], the running time in each reconstruction
is O(βN ), where β denotes the current number of measurements. Thus, the total run-
ning time for the sequential measurement setup is O(M(M+1)N

2 ), where M denotes
the number of measurements till the termination of measurement. By contrast, in
our proposed system, the spectrum sensing time slot is divided into P equal-length
mini-time slots, and the wideband spectrum is reconstructed after each mini-time
slot. The total running time of the proposed system is therefore O(M(P+1)N

2 ), where
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P � M . Figure 6.19b shows that the spectrum sensing overhead (due to the spectral
reconstruction) of the sequential compressed sensing system is several times higher
than that of the proposed system. Furthermore, another advantage of the proposed
system is that, by changing the length of mini-time slot (thus the value of P because
P = M

m ), we can control the trade-off between the cost of computation and the cost
of acquiring additional measurements.

6.4.7.2 Conclusions

We have presented a novel framework, i.e., CASe, for wideband spectrum sensing in
cognitive radio systems. It has been shown that CASe can considerably improve the
spectral recovery performance when the sparsity level of the spectrum is unknown,
thanks to the �1 norm validation approach. We have shown that the proposed val-
idation parameter can be a very good proxy for the actual spectral recovery error
in the noiseless measurement case even if the testing set is small. The proper use
of the validation approach could solve the problems of excessive or insufficient
numbers of measurements, thereby improving not only the energy-efficiency of cog-
nitive radio, but also the throughput of cognitive radio networks. In addition, we
have shown that, in the case of noisy compressive measurements, if the best spectral
approximation exists, then the corresponding validation parameter has a very large
probability of being within a certain small range. Based on this property, we have
proposed a sparsity-aware recovery algorithm for reconstructing the wideband spec-
trum without the knowledge of the spectral sparsity level. In the proposed algorithm,
if the best spectral approximation exists, then the correct iteration termination index
can be found with high probability; therefore, the issues of under-/over-fitting are
addressed.

Simulation results have shown that the proposed framework can correctly termi-
nate the signal acquisition that saves both spectrum sensing time slots and signal
acquisition energy, while providing better spectral recovery performance than tradi-
tional compressed sensing approaches. Compared with the existing greedy recovery
algorithm, the proposed sparsity-aware algorithm can achieve lower MSE for recon-
structing the spectrum and better spectrum sensing performance. As the RF spectrum
is the lifeblood of wireless communication systems and the wideband techniques
could potentially offer greater capacity, we expect that the proposed framework has a
broad range of applications, e.g., broadband spectral analyzers, signals-intelligence
receivers, and ultra wideband radars. Moreover, the proposed �1 norm validation
approach can be used in other compressed sensing applications, e.g., a compressed
sensing based communication system where we need to terminate the decoding algo-
rithm with high confidence and small predictable decoding error.

Acknowledgments H. Sun and A. Nallanathan acknowledge the support of the UK Engineering
and Physical Sciences Research Council (EPSRC) with Grant No. EP/I000054/1.
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Appendix

Proof of Theorem 1

Using a variant of the Johnson-Lindenstrauss lemma as shown in Theorem 5.1 of
[38], we have

Pr

[
(1− ε)‖x‖2 ≤ ‖Ψ x‖1√

2/π r
≤ (1+ ε)‖x‖2

]
≥ 1− ξ. (6.23)

Defining x

= F−1(X− X̂ p) in (6.23), we obtain

Pr

[
(1− ε)‖F−1(X− X̂ p)‖2 ≤ ‖Ψ F−1(X− X̂ p)‖1√

2/π r

≤ (1+ ε)‖F−1(X− X̂ p)‖2
]
≥ 1− ξ. (6.24)

The above inequality can be rewritten by using (6.12) and (6.14)

Pr

[
(1− ε)‖F−1(X− X̂ p)‖2 ≤

√
π

2
ρp ≤ (1+ ε)‖F−1(X− X̂ p)‖2

]
≥ 1− ξ. (6.25)

Applying Parseval’s relation to (6.25), we have

Pr

[
(1− ε)‖X− X̂ p‖2 ≤

√
πN

2
ρp ≤ (1+ ε)‖X− X̂ p‖2

]
≥ 1− ξ. (6.26)

Thus, Theorem 1 follows.

Proof of Theorem 2

The best spectral approximation X� means that ‖X� − X‖2 is sufficiently small.
Without loss of generality, we approximate X� by X. Thus, if X̂ p is the best spectral
approximation, the validation parameter can be rewritten by using (6.18)

ρp = ‖V− Ψ F−1 X̂ p‖1
r

= ‖n‖1
r
=

∑r
i=1 |ni |

r
. (6.27)

As the measurement noise ni ∼ CN (0, δ2), its absolute value |ni | follows the

Rayleigh distribution with mean
√
π
2 δ and variance 4−π

2 δ2. Using the cumulative

distribution function of the Rayleigh distribution, we have Pr(|ni | ≤ x) = 1 −
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exp(− x2

2δ2 ). Further, as the measurement noise level has an upper-bound n̄ in practice,

there exists a sufficiently large parameter ν that makes |ni | ≤ n̄ ≤ (ν + 1)
√
π
2 δ

almost surely. If we define a new variable Di = |ni | −
√
π
2 δ, we obtain E[Di ] = 0,

E[D2
i ] = 4−π

2 δ2, and |Di | ≤
√
π
2 δν. Based on the Bernstein’s inequality [39], the

following inequality holds

Pr

[∣∣∣∣∣

r∑

i=1

Di

∣∣∣∣∣ > ε

]
= Pr

[∣∣∣∣∣

r∑

i=1

|ni | − r

√
π

2
δ

∣∣∣∣∣ > ε

]

≤ 2 exp

(
− ε2/2

∑r
i=1 E[D2

i ] + Dε/3

)

≤ 2 exp

(
− 3ε2

3(4− π)rδ2 +√2πεδν

)
(6.28)

where D =
√
π
2 δν denotes the upper-bound on |Di |.

Simply replacing ε by rε in (6.28) while using (6.27), we can rewrite (6.28) as

Pr

[∣∣∣∣ρp −
√
π

2
δ

∣∣∣∣ > ε

]
≤ 2 exp

(
− 3rε2

3(4− π)δ2 +√2πεδν

)
. (6.29)

Using (6.29), we end up with

Pr

[∣∣∣∣ρp −
√
π

2
δ

∣∣∣∣ ≤ ε
]
> 1− 2 exp

(
− 3rε2

3(4− π)δ2 +√2πεδν

)
. (6.30)

To derive the required r , we set the lower probability bound in (6.30) as

1− 2 exp

(
− 3rε2

3(4− π)δ2 +√2πεδν

)
= 1− �. (6.31)

Solving the above equation, we obtain

r = ln

(
2

�

)
3(4− π)δ2 +√2πεδν

3ε2 . (6.32)

This completes the proof of Theorem 2.
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Chapter 7
Sparse Nonlinear MIMO Filtering
and Identification

G. Mileounis and N. Kalouptsidis

Abstract In this chapter system identification algorithms for sparse nonlinear multi
input multi output (MIMO) systems are developed. These algorithms are poten-
tially useful in a variety of application areas including digital transmission systems
incorporating power amplifier(s) along with multiple antennas, cognitive processing,
adaptive control of nonlinear multivariable systems, and multivariable biological sys-
tems. Sparsity is a key constraint imposed on the model. The presence of sparsity is
often dictated by physical considerations as in wireless fading channel–estimation.
In other cases it appears as a pragmatic modelling approach that seeks to cope with
the curse of dimensionality, particularly acute in nonlinear systems like Volterra
type series. Three identification approaches are discussed: conventional identification
based on both input and output samples, Semi-Blind identification placing emphasis
on minimal input resources and blind identification whereby only output samples are
available plus a–priori information on input characteristics. Based on this taxonomy
a variety of algorithms, existing and new, are studied and evaluated by simulations.

7.1 Introduction

System nonlinearities are present in many practical situations and remedies based
on linear approximations often degrade system performance. A popular model that
captures system nonlinearities is Volterra series [69, 71, 77]. This model is employed
in communications, digital magnetic recording, physiological systems, control of
multivariable systems, etc. Volterra series constitute a class of polynomial models
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that can be regarded as a Taylor series with memory. An attractive feature of this
model is that the unknown parameters enter linearly at the output. On the other hand,
the number of terms increases exponentially with the order and memory of the model.

Most of the work reported in the literature focuses on modelling and identifi-
cation of single input single output (SISO) Volterra systems. When the underlying
nonlinear system is a MIMO system, the resulting model is more complicated and
has received little attention. MIMO models are addressed in this chapter. Nonlin-
ear MIMO systems involve a large number of parameters to be estimated, which
increases exponentially with the order, the memory and the number of inputs. There-
fore, there is a strong need to reduce complexity by considering those terms that
strongly contribute to the outputs. This leads naturally to a sparse approximation of
the underlying nonlinear MIMO system. Identification of sparse nonlinear MIMO
systems is approached under three different settings: conventional, Semi-Blind and
blind. Blind methods identify the unknown system parameters merely based on the
output signals. On the other hand, conventional and Semi-Blind methods, require a
training or a pilot sequence.

The objective of this chapter is twofold. First, it extends existing algorithms for
adaptive filtering of SISO models to the MIMO case and demonstrates their applica-
bility to nonlinear MIMO systems. Secondly, it presents new algorithms for blind
and Semi-Blind identification of nonlinear MIMO systems excited by finite alphabet
inputs. The chapter is divided into four sections. The sparse nonlinear MIMO mod-
els under consideration are presented in Sect. 7.2. Adaptive filters for sparse MIMO
systems are discussed in Sect. 7.3. Then, algorithms for blind and Semi-Blind iden-
tification are addressed in Sect. 7.4. Finally, summary and future work are discussed
in Sect. 7.5.

7.2 System Model

MIMO polynomial systems form the basic class of models we shall be working
with. These finitely parametrizable recursive structures are defined next. First the
basic notation from SISO Volterra series is reviewed. Then MIMO extensions are
considered and some special cases of interest are introduced. Finally, various appli-
cations which employ MIMO Volterra models are briefly reviewed.

Volterra series constitute a popular model for the description of nonlinear behav-
iour [69, 71]. A SISO discrete–time Volterra model has the following form

y(n) =
∞∑

p=1

∞∑

τ1=−∞
· · ·

∞∑

τp=−∞
h p(τ1, . . . , τp)

[ p∏

i=1

x(n − τi )

]
. (7.1)

Each output is formed by weighting the input shifted samples x(n − τi ) and their
products. The weights h p(τ1, . . . , τp) constitute the Volterra kernels of order p. Well
possessedness conditions ensuring that inputs give rise to well defined outputs are



7 Sparse Nonlinear MIMO Filtering and Identification 189

given in [13, 51]. If only a finite number of nonlinearities enters Eq. (7.1), the resulting
expression defines a finite Volterra system. Suppose the kernels of a finite Volterra
system are causal and absolutely summable. Then Eq. (7.1) defines a bounded input
bounded output (BIBO) stable system and can be approximated by the polynomial
system

y(n) =
P∑

p=1

M∑

τ1=0

· · ·
M∑

τp=0

h p(τ1, . . . , τp)

[ p∏

i=1

x(n − τi )

]
. (7.2)

Equation (7.2) is parametrized by the finite Volterra kernels and has finite memory
M . A more general result established by Boyd and Chua [13, 14] states that any
shift invariant causal BIBO stable system with fading memory can be approximated
by Eq. (7.2). The fading memory is a continuity property with respect to a weighted
norm which penalizes the remote past in the formation of the current output. The
reader may consult [13, 14, 51] for more details.

A key feature of Eq. (7.2) is that it is linear in the parameters. For estimation
purposes it is useful to write Eq. (7.2) in matrix form using Kronecker products [15].
Indeed, let x(n) = [x(n), x(n− 1), · · · , x(n− M)]T (the superscript T denotes the
transpose operation) and the pth–order Kronecker power

xp(n) = x⊗ · · · ⊗ x︸ ︷︷ ︸
p times

, p = 2, . . . , P.

The Kronecker power contains all pth–order products of the input. Likewise
h = [

h1(·), · · · ,hp(·)
]T is obtained by treating the p–dimensional kernel as a

M p column vector. We rewrite Eq. (7.2) as follows

y(n) =
[
xT (n)xT

2 (n) · · · xT
p (n)

]

⎡

⎢⎢⎢⎣

h1
h2
...

hp

⎤

⎥⎥⎥⎦ = xT (n)h. (7.3)

Collecting n successive output samples from the above equation into the vector
y(n) = [y(1), . . . , y(n)] results in the following system of linear equations:

y(n) = X(n)h

when

X(n) =
[
xT (1), . . . , xT (n)

]T
.

From a practical viewpoint, Volterra models of order higher than three are rarely
considered. This is due to the fact that the number of parameters (

∑P
p=1 M p) involved

in the model of Eq. (7.2) grows exponentially as a function of the memory size and the
order of nonlinearity. To cope with this complexity several sub–families of Eq. (7.2)
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have been considered, most notable Wiener, Hammerstein and Wiener–Hammerstein
models. In all cases the universal approximation capability is lost. A Wiener system
is the cascade of a linear filter followed by a static nonlinearity. If we approximate
the static nonlinearity with its Taylor expansion up to a certain order, we obtain the
following expression for the output of the Wiener system

y(n) =
P∑

p=1

[
M∑

τ=0

h p(τ )x(n − τ)
]p

. (7.4)

The Hammerstein system (or memory polynomial) is composed of a memoryless
nonlinearity (a Taylor approximation of the static nonlinearity is employed) followed
by a linear filter, and has the following form

y(n) =
P∑

p=1

M∑

τ=0

h p(τ )x
p(n − τ). (7.5)

A Wiener–Hammerstein or sandwich model is composed of a memoryless nonlin-
earity sandwiched between two linear filters with impulse responses h(·) and g(·)
and is defined as

y(n) =
P∑

p=1

M∑

τ1=0

· · ·
M∑

τp=0

Mh p+Mgp∑

k=0

gp(k)
p∏

l=1

h p(τl − k)x(n − τl). (7.6)

The above models have been employed in a wide range of applications includ-
ing: satellite, telephone channels, mobile cellular communications, wireless LAN
devices, radio and TV stations, digital magnetic systems and others
[8, 32, 71, 77, 80].

7.2.1 Nonlinear MIMO Systems With Universal Approximation
Capability

The discussion of the previous subsection is next extended to MIMO nonlinear
systems. Attention is limited to MIMO polynomial systems. These are finitely para-
metrizable structures that naturally extend Eq. (7.2) and preserve a universal approxi-
mation capability over a broad class of multivariables systems. We start our discussion
by considering cases where either the MIMO system has a single input or a single
output. In the end, sparsity is imposed in order to reduce the number of unknown
parameters.

The input–output relationship of nonlinear single input multiple output (SIMO)
system is



7 Sparse Nonlinear MIMO Filtering and Identification 191
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y1(n)
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f (·)

x1(n)

y(n)

x2(n)

xni(n)

Fig. 7.1 SIMO and MISO polynomial systems (SR denotes a shift register)

yr (n) =
p∑

p=1

M∑

τ1=0

· · ·
M∑

τp=0

h(r)p (τ1, . . . , τp)

p∏

i=1

x(n − τi ) (7.7)

where yr (n) is the output associated with the r th output signal and h(r)p (τ1, . . . , τp) is
the pth–order Volterra kernel of the r th output. The difference between Eq. (7.2) and
Eq. (7.7) is that a distinct kernel h(r)p (τ1, . . . , τp) is associated with each output signal
yr (n). This is illustrated in Fig. 7.1. SIMO systems can be obtained by oversampling
the output signal of a SISO system at a sufficiently high rate and demultiplexing the
samples [44].

A multiple input single output (MISO) system comprises ni input signals and a
single output. The input–output of a MISO system has the form

y(n) =
P∑

p=1

ni∑

t=1

M∑

τ1=0

· · ·
M∑

τp=0

h p(τ1, . . . , τp)

p∏

i=1

xt (n − τi ) (7.8)

where xt (n) is the t th input signal (1 ≤ t ≤ ni ). A shift register (SR) is associated
with each input. The contents of all registers are then converted into the output by
means of a feed forward polynomial as shown in Fig. 7.1.

The general MIMO case is readily construed from the above special cases. A
MIMO finite support Volterra system with ni inputs and no outputs has the following
form:

yr (n) =
fr (x1(n), x1(n − 1), . . . , x1(n − M), · · · , xni (n), xni (n − 1), . . . , xni (n − M)),

r = 1, . . . , no. (7.9)
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Fig. 7.2 A nonlinear MIMO
Volterra
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Each output yr (n) is obtained by a polynomial combination of the ni inputs and their
shifts. The parameter M specifies the memory of the ni registers associated with
each input. The MIMO finite support Volterra architecture is depicted in Fig. 7.2.
This model is capable of capturing nonlinear effects resulting from any product
combinations of the ni inputs and their shifts. Expanding fr (·) as a polynomial of
degree P gives rise to the nonlinear MIMO Volterra model with ni inputs and no

outputs defined as

yr (n) =
P∑

p=1

ni∑

t1=1

· · ·
ni∑

tp=1

M∑

τ1=0

· · ·
M∑

τp=0

h
(r,t1···tp)
p (τ1, . . . , τp)

p∏

i=1

xti (n − τi ) (7.10)

where h
(r,t1···tp)
p (τ1, . . . , τp) is the pth order Volterra kernel associated with the r th

output and the (t1 · · · tp) inputs. In this case, the Volterra kernels have multidimen-
sional indices (r, t1 · · · tp).

The above expressions are made complicated by the presence of multiple sum-
mations. Kronecker products alleviate this problem. Let

x̄(n) = [x1(n), x1(n−1), . . . , x1(n−M), · · · , xni (n), xni (n−1), . . . , xni (n−M)]T

and hence the nonlinear input vector is given by

x(n) = [x̄(n), x̄2(n), · · · , x̄p(n)]T . (7.11)

Then Eq. (7.10) takes the form:

y(n) = Hx(n) (7.12)

where y(n) = [y1(n), . . . , yno(n)]T is the output vector, and the system matrix is
H = [h1:, . . . ,hno:]T , with hno: containing all the Volterra kernels associated with
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the r th output. In this case the parameter matrix contains

p∑

i=1

(ni × M)p

parameters. The MIMO polynomial family of Eq. (7.9) has a universal approximation
capability in the following sense: every nonlinear system with more than one inputs
and outputs that is causal, shift invariant, bounded input bounded output stable and
has fading memory can be approximated by a MIMO polynomial system of the form
given in Eq. (7.10). This assertion is established if the same statement is proved for
MISO systems. The latter follows with straightforward modifications of the proof
for the SISO case.

7.2.1.1 Sparsity Aware Volterra Kernels

A major obstacle in using Volterra series in practical applications is the exponential
growth of the model parameters (as a function of the order, the memory length of the
systems and the number of inputs). Thus models of order p > 3 and memory length
M > 5, translate into increased computational complexity cost and data requirements
for identification purposes. For this reason, parsimonious, reduced order alternatives
become relevant.

Sparse representations provide a viable alternative. The parameter matrix H in
Eq. (7.12) is s–sparse if the number of non–zero elements is less than s, i.e.

‖vec[H]‖�0 = {#(i, j) : Hi j �= 0} ≤ s.

7.2.2 Special Classes of MIMO Nonlinear Systems

In this section, some special classes of MIMO Volterra systems are studied. We start
with a simplified version of the MIMO Volterra model. Then structured nonlinear
models like Wiener, Hammerstein and Wiener–Hammerstein are extended to the
MIMO case. These models are formed by the cascade connection of linear MIMO
filters and MIMO static nonlinearities.

7.2.2.1 Parallel Cascade MIMO Volterra

In MIMO systems the signals from the ni inputs interact with each other and the
resulting mixture is received at each output. A special case of Eq. (7.10) results when
the MIMO system obtains from the parallel connection of SISO systems, where each
SISO system is often referred to as a path or parallel system. If the path between
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each input and each output is modelled as a Volterra system, then the r th output is
expressed as follows

yr (n) =
P∑

p=1

ni∑

t=1

M∑

τ1=0

· · ·
M∑

τp=0

h(r,t)p (τ1, . . . , τp)

p∏

i=1

xt (n − τi ) (7.13)

where h(r,t)p (τ1, . . . , τp) is the pth–order Volterra kernel between the t th input and
the r th output for all t = 1, . . . , ni and r = 1, . . . , no. The above model does not
allow product combinations along different inputs. Instead each input is nonlinearly
transformed and then all different inputs are linearly mixed. Such a model can be
considered as a parallel cascade of ni SIMO Volterra models.

Equation (7.13) can be written in a form identical to that of Eq. (7.12). Define the
t th input regressor vector as

x(t)(n) = [x (t)(n), x (t)(n − 1), . . . , x (t)(n − M)]T.

Then the linearly mixed input vector takes the form:

x(n) = [x(1)1 (n), x(1)2 (n), . . . , x(1)p (n), · · · , x(ni )
1 (n), x(ni )

2 (n), . . . , x(ni )
p (n)]T.

The total number of parameters of the above linearly mixed model is

ni

p∑

i=1

M p

and is considerably reduced when compared to the general case.
The linearly mixed model finds application in nonlinear communications. Com-

munication nonlinearities can be categorized into the following three types: trans-
mitter nonlinearity (due to nonlinearity in amplifiers), inherent physical channel
nonlinearity, and receiver nonlinearity (e.g., due to nonlinear filtering). The power
amplifier (PA) (which is located at the transmitter) constitutes the main source of
nonlinearity. In a system equipped with multiple transmit antennas, each transmit-
ter amplifies the signal. Amplifiers often operate near saturation to achieve power
efficiency. In those cases they introduce nolinearities which cause interference and
reduce spectral efficiency. At the receiver end, each antenna receives a linear super-
position of all transmitted signals, as illustrated in Fig. 7.3. It should be pointed out
that the nonlinear effects are applied to each input signal individually prior to mixing
the transmitted signals.
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Fig. 7.3 An example of a parallel cascade MIMO Volterra channel

7.2.2.2 Block–Structured Classes of Nonlinear MIMO Systems

The MIMO Wiener model is shown in Fig. 7.4. It consists of a linear MIMO system
in cascade with a polynomial nonlinearity for each output. The output is given by

yr (n) =
P∑

p=1

ni∑

t1=1

· · ·
ni∑

tp=1

M∑

τ1=0

· · ·
M∑

τp=0

p∏

i=1

h(r,ti )p (τi )xti (n − τi ). (7.14)

This model is a special subclass of the MIMO Volterra series model. The relationship
between the pth–order Volterra kernel and pth–order Wiener kernel is

h
(r t1···tp)
p (τ1, . . . , τp) =

p∏

i=1

h(r,ti )p (τi ).

Thus a MIMO Wiener model is equivalent to a MIMO Volterra system with separable
kernels. The MIMO Hammerstein model is one of the simplest and most popular
subclasses of MIMO Volterra models. As the diagram of Fig. 7.5 shows, the MIMO
Hammerstein is a cascade connection of a static polynomial nonlinearity for each
input connected in series by a linear MIMO system. It consists of the same building
blocks as the Wiener model, but connected in reverse order. It has the following form:

Fig. 7.4 A MIMO Wiener
system

Linear

MIMO System

H

(·)1

(·) p

x1(n)

xni(n)

y1(n)

yno(n)
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Fig. 7.5 A MIMO Hammerstein system

yr (n) =
P∑

p=1

ni∑

t=1

M∑

τ=0

h(r,t)p (τ )x p(n − τi ). (7.15)

The pth–order Volterra kernel of a Hammerstein model is given by

h
(r t1···tp)
p (τ1, . . . , τp) = h p(τ1)δ(τ2 − τ1) · · · δ(τp − τ1)δ(t2 − t1) · · · δ(tp − t1)

(7.16)
A Hammerstein system prohibits product interactions between different inputs and
hence corresponds to a diagonal MIMO Volterra model.

We finally consider the case where the MIMO Volterra kernels have factorable
form:

h
(r t1···tp)
p (τ1, . . . , τp) =

Mh+Mg∑

k=0

gr
p(k)

p∏

i=1

hti
p(τi − k)

Substituting the above form into Eq. (7.10), we obtain:

yr (n) =
P∑

p=1

ni∑

t1=1

· · ·
ni∑

tp=1

M∑

τ1=0

· · ·
M∑

τp=0

Mh+Mg∑

k=0

gr
p(k)

p∏

i=1

hti
p(τi−k)xti (n−τi ). (7.17)

The pth–order kernel corresponds to a cascade connection of a linear MIMO system
followed by a memoryless nonlinearity followed by another linear MIMO system and
is known as MIMO Wiener–Hammerstein or sandwich model. In its simplest form a
MIMO Wiener–Hammerstein system has a sandwiched structure with a single input
single output static nonlinearity placed between a MISO and a SIMO linear systems.
In the general case, illustrated in Fig. 7.6, the two linear filters can have arbitrary
input and output dimensions. Compatibility is secured by proper dimensioning of
the MIMO static nonlinearity. The Wiener–Hammerstein has been widely employed
in satellite transmission, where both the earth station and the satellite repeater employ
(nonlinear) power amplifiers. In such cases the signal bandwidth is very carefully
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Fig. 7.6 A MIMO Wiener–Hammerstein system

defined depending on the application so that the output signal contains only spectral
components near the carrier frequencyωc. This leads to the MIMO baseband Wiener–
Hammerstein system [8, Chap. 14], given by

yr (n) =
� P−1

2 �∑

p=1

ni∑

t1=1

· · ·
ni∑

t2p+1=1

M∑

τ1=0

· · ·
M∑

τ2p+1=0

Mh+Mg∑

k=0

gr
p(k)

p∏

i=1

(7.18)

×
p+1∏

i=1

hti
2p+1(τi − k)xti (n − τi )

2p+1∏

j=p+2

h
t j
2p+1(τ j − k)x∗t j

(n − τ j )

where �·� denote the floor operation. The above representation only considers odd–
order powers with one more unconjugated input than conjugated input. This way the
output does not create spectral components outside the frequency band of interest.

7.2.3 Practical Applications of MIMO Volterra Systems

Nonlinear MIMO systems are found in a range of communication and control appli-
cations. These are shortly reviewed next.

7.2.3.1 Nonlinear Communication Systems

Communication systems equipped with multiple transmit and/or receive antennas are
MIMO systems that help provide spatial diversity. Exploitation of spatial diversity
results in higher capacity and performance improvements in interference reduction,
fading mitigation and spectral efficiency. Most of existing MIMO schemes are lim-
ited to linear systems. However, in many cases, system nonlinearities are present
and possible remedies based on linear MIMO approximations degrade performance
significantly.

In a communication system, there are often limited resources (power, frequency,
and time slots) which have to be efficiently shared by many users. Quite often in
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practice we encounter a situation whereby the number of users exceeds the number
of available frequency or time slots. In infrastructure–based networks, a base station
or an access point is responsible for allocating resources among the users, thereby
reducing the access delays/transmission latency and improving quality–of–service
(QoS). This is established through a variety of multiple access schemes. Two key
multiple access technologies suitable for higher data rates are: orthogonal frequency–
division multiple access (OFDMA) and code–division multiple access (CDMA).

OFDMA dynamically allocates resources both in frequency (by dividing the avail-
able bandwidth into a number of subbands, called subcarriers) and in time (via OFDM
symbols). The transmission system assigns different users to groups of orthogonal
subcarriers and thus allows them to be spaced very close together with no overhead as
in frequency division multiple access. Furthermore it prevents interference between
adjacent subcarriers. OFDMA has been implemented in several wireless communi-
cation standards (IEEE 802.11a/g/n wireless local area networks (WLANs), IEEE
802.16e/m worldwide interoperability for microwave access (WiMAX), Hiperlan II),
high–bit–rate digital subscriber lines (HDSL), asymmetric digital subscriber lines
(ADSL), very high-speed digital subscriber lines (VHDSL), digital audio broadcast-
ing (DAB), digital television and high-definition television (HDTV).

OFDMA is capable of mitigating intersymbol interference (ISI), (due to multipath
propagation) using low–complexity/simple equalization structures. This is achieved
by transforming the available bandwidth into multiple orthogonal narrowband sub-
carriers, where each subcarrier is sufficiently narrow to experience relatively flat
fading. Nevertheless, OFDM is sensitive to synchronization issues and is character-
ized by high peak–to–average–power–ratio (PAPR), caused by the sum of several
symbols with large power fluctuations. Such variations are problematic because prac-
tical communication systems are peak powered limited. In addition, OFDM trans-
ceivers are intrinsically sensitive to power amplifier (PA) nonlinear distortion [38],
which dissipates the highest amount of power. One way to avoid nonlinear distor-
tion is to operate the PA at the so–called “back–off” regime which results in low
power efficiency. The trade–off between power efficiency and linearity motivated
the development of signal processing tools that cope with MIMO–OFDM nonlinear
distortion [38, 40, 45].

CDMA is based upon spread spectrum techniques. It plays an important role in
third generation mobile systems (3G) and has found application in IEEE 802.11b/g
(WLAN), Bluetooth, and cordless telephony. In CDMA multiple users share the same
bandwidth at the same time through the use of (nearly) orthogonal spreading codes.
The whole process effectively spreads the bandwidth over a wide frequency range
(using pseudo–random code spreading or frequency hopping) several magnitudes
higher than the original data rate. Two critical factors that limit the performance of
CDMA systems are interchip and intersymbol interference (ICI/ISI), due to multipath
propagation, mainly because they tend to destroy orthogonality between user codes
and thus prevent interference elimination. Suppression of the detrimental effects of
interference (ICI and ISI) get further complicated when nonlinear distortion is intro-
duced due to power amplifiers. The combined effects of ICI, ISI and nonlinearities
are comprehensively examined in [40, 67]. However, as recently illustrated in [22],
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the CDMA system model is sparse due to user inactivity/uncertainty, timing offsets
and multipath propagation. CDMA system performance can be expected to improve
further if nonlinearities along with sparse ICI/ISI are revisited.

7.2.3.2 MIMO Nonlinear Physiological Systems

In several physiological applications it is mandatory to gain as much insight infor-
mation is possible about the functioning of the system. It is well documented in the
biomedical literature that nonlinear systems can significantly enhance the quality of
modelling [57, 80]. Very often linear approximations discard significant information
about the nonlinearities. For this reason, several physiological systems like sensory
systems (cockroach tactile spine, auditory system, retina), reflex loops (in the control
of limb and eye position), organ systems (heart rate variability, renal auto–regulation)
and tissue mechanics (lung tissue, skeletal muscle) have been approached via nonlin-
ear system analysis using Volterra series [57, 80]. Many of the above physiological
systems receive excitation from more than one input, and hence leads naturally to
MIMO Volterra models.

7.2.3.3 Control Applications

Quite often control applications exhibit multivariable interactions and nonlinear
behaviour, which make the modelling task and design more challenging. Examples
of such control systems include: multivariable polymerization reactor [32], fluid
catalytic cracking units (FCCU) [83, 84], and rapid thermal chemical vapor decom-
position systems (RTCVD) [72].

Multivariable polymerization reactor aims to control the reactor temperature at
the unstable steady state by manipulating the cooling water and monomer flow rates.
MIMO Volterra models have been employed to capture/track the nonlinear plant out-
put [32]. The FCCU unit constitutes the workhorse of modern refinery and its pur-
pose is to convert gas oil into a range of hydrocarbon products. The major challenges
related to FCCU are its internal feedback loops (interactions) and its highly nonlinear
behaviour [84]. RTCVD is a process used to deposit thin films on a semiconductor
wafer via thermally activated chemical mechanisms. Process and equipment models
for RTCVD consist mainly of balance equations for conservation of energy, momen-
tum and mass, along with equations that describe the relevant chemical mechanisms.
An important characteristic of RTCVD systems is their wide region of operation,
which requires excitation of the system with as many modes as possible and hence a
nonlinear MIMO system becomes relevant. A major challenge in all the above con-
trol applications is the large number of parameters required by the nonlinear MIMO
models.
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7.3 Algorithms for Sparse Multivariable Filtering

Adaptive filters with a large number of coefficients are often encountered in multi-
media signal processing, MIMO communications, biomedical applications, robotics,
acoustic echo cancellation, and industrial control systems. Often, these applications
are subject to nonlinear effects which can be captured using the models of Sect 7.2.
The steady–state and tracking performance of conventional adaptive algorithms can
be improved by exploiting the sparsity of the unknown system. This is achieved
via two different strategies [82]. The first is based on proportionate adaptive filters,
which update each parameter of the filter independently of the others by adjusting
the step size in proportion to the magnitude of the estimated filter parameter. In
this manner, the adaptation gain is “proportionately” redistributed among all para-
meters, emphasizing the large coefficients in order to speed up convergence and
increase the overall convergence rate. The second strategy is motivated by the com-
pressed sensing framework [16, 36, 76]. Compressed sensing approaches follow
two main paths: (a) the �1 minimization (also referred to as basis pursuit) and (b)
greedy algorithms (matching pursuit). Basis pursuit penalizes the cost function by the
�1–norm of the unknown parameter vector (or a weighted �1–norm), as the �1–norm
(unlike the �2–norm) favours sparse solutions. These methods combine conventional
adaptive filtering algorithms such as LMS, RLS, etc with a sparsity promoting oper-
ation. Additional operations include the soft–thresholding (originally proposed for
denoising by D. L. Donoho in [30]) and the metric projection onto the �1–ball [25,
33]. Greedy algorithms, on the other hand, iteratively compute the support set of the
signal and construct an approximation of the parameters until convergence is reached.
Proportionate adaptive filtering was developed by Duttweiler in 2000 [34]. There-
after, a variety of improved versions has been proposed [64]. A connection between
proportionate adaptive filtering and compressed sensing is discussed in [64].

7.3.1 Sparse Multivariable Wiener Filter

The block diagram of Fig. 7.7 shows a discrete–time MIMO filter with ni inputs and
no outputs [7, 47]. The output y(n), the impulse response matrix H and the input
x(n) are related by:

y(n) = Hx(n)+ v(n) (7.19)

where x(n) is defined in Eq. (7.11) and v(n) = [v1(n), v2(n), · · · , vno ]T is a
Gaussian white noise vector. The following equation shows the r th output signal

yr (n) =
ni∑

τ=1

hT
rτxτ (n)+ vr (n) (7.20)

= hT
r :x(n)+ vr (n), r = 1, . . . , no. (7.21)
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Fig. 7.7 MIMO filtering
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An adaptive process is employed to cause the r th output to agree as closely as
possible with the desired response signal dr (n). This is accomplished by comparing
the outputs with the corresponding desired responses and by adjusting the parameters
to minimize the resulting estimation error. More specifically, given an estimate Ĥ(n)
of H the estimation error is:

er (n) = yr (n)− dr (n) = yr (n)−̂h
T
r :(n)x(n), r = 1, . . . , no (7.23)

and in vector form:
e(n) = y(n)− ̂H(n)x(n). (7.24)

The performance of a filter is assessed by a functional of the estimation error. LS
filters, minimize the total squared error:

JL S(n) =
n∑

i=1

eH1(i)e(i) =
n∑

i=1

‖e(i)‖2�2
(7.25)

=
no∑

r=1

Jhr :(n). (7.26)

The optimum MIMO filter is given by the system of linear equations

Ho(n)Rxx(n) = Pyx(n) (7.27)

where Rxx(n) is the input sample covariance matrix (which has block Toeplitz struc-
ture) with

Rxi x j (n) =
n∑

t=1

xi (t)xH
j (t),
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and

Pyx(n) =
n∑

i=1

y(i)xH (i) = [
pyx1(n) pyx2(n) · · · pyxni

(n)
]
. (7.28)

Under broad conditions the solutions of Eq. (7.27) tends to be the optimum mean
squared filter (occasionally referred to as Wiener filter) that minimizes the mean
squared error E{‖e(i)‖2�2

} and satisfies the system of linear equations given by

Eq. (7.27) (Pyx(n) = E{y(i)xH (i)} and Rxx(n) = E{x(i)xH (i)}). Equation (7.27)
can be decomposed in no independent MISO equations each corresponding to an
output signal [9, 47], as follows:

hr :,o(n)Rxx(n) = pyr x(n), r = 1, . . . , no. (7.29)

Consequently, minimizing JL S(n) or minimizing each Jhr :(n) independently gives
exactly the same results.

Two popular algorithms for adaptive filtering are the Least Mean Squares (LMS)
algorithm and the Recursive Least Squares (RLS) algorithm. The LMS follows a
stochastic gradient method and has a computationally simpler implementation. On
the other hand, the more complex RLS has better convergence rate.

The LMS seeks to minimize the instantaneous error

JL M S(n) = eH (n)e(n). (7.30)

The LMS estimate for the impulse response matrix H is based on the following
update equation:

H(n) = H(n − 1)+ μe(n)xH (n) (7.31)

where the step size μ determines the convergence rate of the algorithm. To achieve
convergence in the mean to the optimal Wiener solution, μ should be chosen so that:

0 < μ <
2

M
∑ni
τ σ

2
xτ

. (7.32)

The RLS algorithm attempts to minimize the exponentially weighted cost
function:

JRL S(n) =
n∑

t=1

λn−t eH (t)e(t) (7.33)

where λ denotes the forgetting factor. The RLS estimates are updated as follows:

H(n) = H(n − 1)+ e(n)kT (n) (7.34)
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where

k(n) = R−1
xx (n)x

∗(n)
λ+ xT (n)R−1

xx (n)x∗(n)

is known as the Kalman gain [46, 70]. The matrix inversion lemma [46, 70],
leads to:

R−1
xx (n) = λ−1R−1

xx (n − 1)− k(n)xT (n)R−1
xx (n − 1). (7.35)

7.3.2 L1 Constrained Adaptive Filters

These algorithms are based on the minimization of cost functions penalized by the
�1–norm (or a weighted �1–norm or an approximate �0–norm) and are inspired by
the fact that the �1–norm promotes sparse solutions and is the best convex relaxation
to the �0 quasi–norm.

7.3.2.1 LMS–Type Filters

The sparse cost function combines the instantaneous error with a sparseness inducing
penalty term

JZ A−L M S(n) = 1

2

(
eH (n)e(n)

)
+ τpen (H(n)) (7.36)

τ is a positive scalar regularization parameter which provides a trade–off between
penalization and signal reconstruction error. The most well–known sparsity inducing
penalty term is the �1–norm (pen (H(n)) = ‖vec [H(n)] ‖�1 ). Although a large por-
tion of the literature focuses on the �1–norm there are other functions which promote
sparsity [42, 48]. In fact, any penalization term, with pen (H(n)) being symmetric,
monotonically non–decreasing, and with decreasing derivative will serve the same
purpose [36].

Sparse LMS–type variants obey the following updating scheme

⎧
⎨

⎩

new
parameter
estimate

⎫
⎬

⎭ =
⎧
⎨

⎩

old
parameter
estimate

⎫
⎬

⎭+
{

stepsi ze
} { new

in f ormation

}
+
⎧
⎨

⎩

zero
attraction

term

⎫
⎬

⎭

where the new information term is the error vector between the outputs of the fil-
ter and the desired signal vector. The Zero–Attraction (ZA) term is a norm related
regularization function which exerts an attraction to zero on small parameters. Con-
vergence of the recursion may be slow because the two parts are hard to balance.
This issue is addressed in some detail later in the subsection.

The first of this type of algorithms (originally developed in [18, 19] for SISO
systems) minimizes Eq. (7.36). The filter parameter matrix is updated by
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Table 7.1 ZA–LMS algorithm

Algorithm description

H(0)=0
For n:=1,2,…do
1: e(n) = d(n)−H(n − 1)x(n)
2: H(n) = H(n − 1)+ μe(n)xH (n)− γ sgn (H(n − 1))
End For

H(n) = H(n − 1)− μ∇ JZ A−L M S(n)

= H(n − 1)+ μe(n)xH (n)− γ∇spen (H(n − 1)) (7.37)

where∇spen (H(n − 1)) is the sub–gradient of the convex function pen (H(n − 1)),
γ = μτ is the regularization parameter. In the adaptive filtering context γ is also
referred to as regularization step size. Usually the regularization step size is fine tuned
offline (via exhaustive simulations) or in an ad–hoc manner. A systematic approach
to choosing γ is developed in [19].

Under the standard compressive sensing setting, the penalty is given by the
�1–norm and the resulting algorithm is shown in Table 7.1. Note that sgn(·) is a
component–wise sign function defined as

sgn
(
Hi j

) =
{

Hi j/|Hi j | if Hi j �= 0,

0 if Hi j = 0.
(7.38)

It is well known that the LMS, in a stationary environment, achieves unbiased con-
vergence in the mean to the Wiener solution (using the independence assumption)
[46]. However, unlike the conventional LMS, ZA–LMS leads to a biased behaviour
[48], that is

E [H(n)] = Ho − γ
μ

E [H(n)] R−1
xx (n), as n→∞ (7.39)

Recall that a key difference between the �0 norm and the �1 norm penalty, is that
the �1 norm depends on the magnitudes of the non–zero components, whereas the
�0–norm penalty does not. As a result, the larger a component is, the heavier it is
penalized by the �1 penalty. To overcome this often unfair penalization two different
penalty terms are introduced in the conventional LMS cost function. Both form better
approximations to the �0 norm. The first is based on an approximation of the step
function [79]

pen (H(n)) =
∑

i

(
1− exp−a

′ |veci [H(n)]|) (7.40)

where a > 0 is a parameter that must be chosen. The authors in [49] reduce the
computational complexity of the resulting zero attraction term by considering the first
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order Taylor series expansion of exponential functions. The resulting filter update
iteration (named �0–LMS) becomes

H(n) = H(n−1)+μe(n)xH (n)−γ a (1− a|H(n − 1)|)+ sgn (H(n − 1)) (7.41)

where (x)+ = max{x, 0}. Motivated by the re–weighted �1 cost function in [17],
the authors in [18] follow this approach in order to reinforce the ZA–LMS by
re–weighting the sparse penalty term. The proposed penalty term is given by

pen (H(n)) =
∑

i

log
(

1+ ε′−1|veci [H(n)] |
)
. (7.42)

According to the stochastic gradient approach, the resulting filter update iteration is

H(n) = H(n − 1)+ μe(n)xH (n)− γ sgn (H(n − 1))

1+ ε|H(n − 1)| (7.43)

and the algorithm is named RZA–LMS. Small coordinates of the estimated matrix
are more heavily weighted (by 1/(1+ε|H(n−1)|)) towards zero, and small weights
encourage larger coordinates. As a result, the bias of the mean value of the converged
matrix for RZA–LMS is reduced.

So far we have examined how to solve the penalized LMS cost function of
Eq. (7.36) by embedding additional terms to the update formula. A different view-
point arises by considering proximity splitting methods [21]. The proximity operator
of a (possibly non–differentiable) convex function 
(H(n)) is defined as

proxτ,
 (H(n)) := argmin
H(n)

1

2τ
‖Y(n)−H(n)‖2�2

+
(H(n)) .

Proximity operators are the main ingredient of proximal methods [21] which arise
in many well–known algorithms (e.g., iterative thresholding, projected Landweber,
projected gradient, alternating projections, alternating-direction method of multi-
pliers, alternating split Bregman). In these algorithms, proximal methods can be
understood as generalizations of quasi–Newton methods to non–differentiable con-
vex problems. An important example is the Iterative Thresholding procedure [24]
which solves problems of the form:

min
H

J (H)+
(H), (7.44)

J (H) is differentiable with Lipschitz gradient. By iterating the fixed point equation

H(n) := proxμ,
︸ ︷︷ ︸
backward step

[H(n − 1)− μ∇ J (H(n − 1))]︸ ︷︷ ︸
forward step

(7.45)
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for values of the step–size parameter μ in a suitable bounded interval. This scheme
is known as a forward–backward splitting algorithm. In some cases, the proximity
operator proxμ,
 can be evaluated in closed form.

If we consider the minimization of the cost function JZ A−L M S (defined in
Eq. (7.36)) with pen (H(n)) = ‖ vec [H(n)] ‖�1 we obtain

min
H

1

2
|e(n)|2 + τ‖ vec [H(n)] ‖�1 .

We observe that the above problem is a special case of Eq. (7.44) with

{
J : H → 1

2 |e(n)|,

 : H → τ‖ vec [H(n)] ‖�1 .

Then it follows from [21, 61] that the proximity operator proxμ,
 leads to a non-
linear component–wise shrinkage operation known as soft–thresholding [30]. The
component-wise soft–thresholding operation is defined by

Sτ

[
Hi j

] =

⎧
⎪⎨

⎪⎩

Hi j − τ if Hi j ≥ τ,
0 if |Hi j | ≤ 0,

Hi j + τ if Hi j ≤ τ
(7.46)

or in compact notation Sτ

[
Hi j

] = sgn
(
Hi j

) (|Hi j | − τ
)
+ [30]. This operation

shrinks coefficients above the threshold in magnitude by an amount equal to τ .
An instantaneous proximity operation leads to the soft–thresholded LMS filter

H(n) = Sτ

[
H(n − 1)+ μe(n)xH (n)

]
. (7.47)

Detailed analysis of the dynamics of Eq. (7.47) in its batch format, has shown that
the algorithm converges initially relatively fast, then it overshoots the �1 penalty, and
it takes very long to re–correct back. To avoid such a behaviour in the adaptive case,
we force the successive iterates to remain within a particular �1 ball BR [25]. To
achieve this the thresholding operation is replaced by a projection PBR , where, for
any closed convex set C and any H, the projection PC(H) is defined as the unique
point in C for which the �2 distance to H is minimal. We thus obtain the projected
LMS on �1 ball

H(n) = PBR

[
H(n − 1)+ μe(n)xH (n)

]
. (7.48)

The projection operator PBR

[
Hi j (n)

]
is obtained by a suitable thresholding of

Hi j (n), given
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PBR

[
Hi j

] =

⎧
⎪⎨

⎪⎩

PBR

[
Hi j

] = Sμ

[
Hi j

]
if ‖ vec [H(n)] ‖�1 > R, and choose μ

such that ‖Sμ [vec [H(n)]] ‖�1 = R

PBR

[
Hi j

] = S0
[
Hi j

]
if ‖vec [H(n)] ‖�1 ≤ R.

(7.49)

Using proximal splitting methods other types of adaptive filters, such as NLMS/APA
and Adaptive Projection algorithms, can be modified to promote sparsity [54, 61].

7.3.2.2 RLS–Type Filters

Sparse RLS–type filters modify the RLS cost function (7.33) by the addition of a
sparsifying term:

JZ A−RL S(n) = 1

2
JRL S(n)+ τpen (H(n)). (7.50)

The regularization parameter τ controls sparsity and weighted squared error. The
sparse RLS filter can be seen as an adaptive version of Gauss–Newton or Newton–
Raphson search with sparse updates [55]. Alternatively, the RLS algorithm is a special
case of a Kalman filter [46, 70]. The main recursion takes the following form:

⎧
⎨

⎩

new
parameter
estimate

⎫
⎬

⎭ =
⎧
⎨

⎩

old
parameter
estimate

⎫
⎬

⎭+
{

K alman
gain

} {
innovation
vector

}
+
⎧
⎨

⎩

zero
attraction

term

⎫
⎬

⎭

The correction term is proportional to the innovation error vector between the pre-
dicted observations and the actual observations. The coefficients of this correction are
provided by the Kalman gain. For the regularized Recursive Least Square problem
of Eq. (7.50) the solution of the Wiener equation takes the form [35]:

H(n) = Pyx(n)C(n)− γ (1− λ)∇spen (H(n − 1))C(n) (7.51)

where C(n) = R−1
xx (n), λ ∈ (0, 1) is the forgetting factor and ∇spen (H(n − 1))

is a subgradient since JZ A−RL S(n) is non–differentiable at any point where Hi j (n)
= 0 [10, p. 227]. The exponentially weighted autocorrelation and cross–correlation
matrices are recursively updated as:

Rxx(n) =
n∑

t=1

λn−t x(t)xH (t) = λRxx(n − 1)+ x(n)xH (n) (7.52)

Pyx(n) =
n∑

t=1

λn−t y(t)xH (t) = λPyx(n − 1)+ y(n)xH (n). (7.53)
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The regularized RLS filter relies on the following recursion [35]:

H(n) = H(n − 1)+ e(n)kT (n)− γ (1− λ)∇s pen (H(n − 1))C(n) (7.54)

where the regularization parameter γ is usually fine tuned offline or using the selec-
tion rule proposed in [35] (for white inputs). In this case the corresponding subgra-
dient is ∇s‖Hi j (n − 1)‖�1 = sgn(Hi j (n − 1)). Instead we may utilize the penalty
functions, suggested in the LMS context, given by Eqs. (7.40) and (7.42).

RLS algorithms are developed based on the batch LASSO estimator in [3, 4].
This method modifies the LASSO cost function to include a forgetting factor:

argmin
H(n)

1

σ 2

n∑

i=1

λn−i‖y(i)−H(i)x(i)‖2�2
+ γ pen (H(n)) . (7.55)

The first order subgradient based optimality conditions for the exponentially weighted
LASSO cost imply:

{
∇i j JRL S(n)+ τ sgn

(
Hi j (n)

)
, if Hi j (n) �= 0

|∇i j JRL S(n)| ≤ τ if Hi j (n) = 0.

These conditions and the value of ∇i j JRL S(n) are used to define a pseudo–gradient
for each component of H [2]. The pseudo–gradient of JR−L ASSO(n) is the element
of the sub–differential of JR−L ASSO(n) at H(n) with minimum norm and is given
by:

∇i j JR−L ASSO(n)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇i j JRL S(n)+ τ sgn
(
Hi j (n)

)
, if Hi j (n) �= 0

∇i j JRL S(n)+ τ if Hi j (n) = 0,∇i j JRL S(n) < −τ
∇i j JRL S(n)− τ if Hi j (n) = 0,∇i j JRL S(n) > τ

0 if Hi j (n) = 0,−τ ≤ ∇i j JRL S(n) ≤ τ.

In the first case the function is differentiable, so the pseudo–gradient is simply the
gradient with respect to i j (the only element of the sub–gradient). In the remaining
three cases we obtain the minimum–norm solution by the soft–thresholding operation
to ∇i j JRL S(n). The global solution to the smooth part of the LASSO cost function
is the Wiener equation, where the autocorrelation and the cross–correlation matrices
are recursively updated from Eqs. (7.52) and (7.53).

Using the subgradient, an instantaneous subgradient descent strategy is employed
for online updating as follows

H(n) = H(n − 1)+ μ∇ JR−L ASSO(n). (7.56)
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Table 7.2 R-LASSO algorithm

Algorithm description

Rxx(0) = 0,Pyx(0) = 0,H(0) = 0
For n := 1, 2, . . . do
1: Rxx(n) = λRyx(n − 1)+ x(n)xH (n)
2: Pyx(n) = λPyx(n − 1)+ y(n)xH (n)

3: ∇ JR−L ASSO (n) =
{

H(n − 1)Rxx(n)− Pyx(n)+ τ sgn(H(n − 1)) if Hi j �= 0,

Sτ

[
H(n − 1)Rxx(n)− Pyx(n)

]
if Hi j = 0.

4: H(n) = H(n − 1)+ μn∇ JR−L ASSO (n)
End For

The Recursive LASSO (R–LASSO) filter outlined here is summarized in Table 7.2.
As with the batch LASSO estimator, the R–LASSO does not necessarily converge
to the true parameter H since it fails to recover the correct support and at the same
time estimate the non–zero entries of H consistently [4].

In order to improve the performance of the R–LASSO filter, one could use a
different penalty term which is signal dependent and weights differently the entries

in the �1 norm, that is pen (H(n)) = ∑
i wτ (| veci

[
̂H

RL S
(n)

]
|)‖ veci [H(n)] ‖�1 .

By generalizing the Smoothly Clipped Absolute Deviation (SCAD) regularizer intro-
duced for the batch weighted LASSO estimator to its adaptive case, the following
weight function is obtained

wτ (| veci [H(n)] |) =
[
ατ − | veci [H(n)] |]+

τ(α − 1)
u(| veci [H(n)] | − τ)+ u(τ − | veci [H(n)] |)

u(·) stands for the step function and α is usually set to 3.7. The reweighted LASSO
estimator (RW–LASSO) places higher weight to small entries, and lower weight to
entries with large amplitudes. In fact, the estimates of size less than τ are penalized as
in R–LASSO, while estimates between τ andατ are penalized in a linearly decreasing
manner. Estimates larger than ατ are not penalized at all. The implementation of
RW–LASSO is established using an instantaneous pseudo–gradient descent strategy,
similar to R–LASSO. The downside of this estimator is its high complexity because
it requires running in parallel an RLS algorithm to supply the needed weights.

A different viewpoint to sparse RLS algorithms is provided in [5] (and its MIMO
extension in [53]). This approach makes use of the Expectation Maximization (EM)
method [27] to derive an adaptive filter that solve a penalized Maximum Likeli-
hood problem. The penalized Recursive Least Squares problem may be posed as
a penalized Maximum Likelihood problem [41]. This penalized ML problem can
be efficiently solved by an EM algorithm following the noise decomposition idea
(proposed in [41]) in order to divide the optimization problem into a denoising and
a filtering problem. Consider the following decomposition for V(n)

V(n) = αV1(n)X(n)+ V2(n). (7.57)



210 G. Mileounis and N. Kalouptsidis

The noise matrices are ensembles of Gaussian–distributed random matrices

V1(n) =
(
0, Ini ⊗ Ino

)

V2(n) =
(

0,
(
σ 2Λ−1 − α2X(n)XH (n)

)T ⊗ Ino

)

where  := diag
[
λn−1 · · · λ0

]
and α is a constant which must fulfil α ≤ σ 2/λmax

[X(n)XH (n)]with λmax [·] being the maximum eigenvalue. Since λmax [X(n)XH (n)]
≈ ni for large n and for independent input, α2 = σ 2/5ni satisfies this condition with
high probability. Therefore the model is rewritten as follows:

{
Y(n) = G(n)X(n)+ V2(n)

G(n) = H(n)+ αV1
. (7.58)

The EM algorithm is used to solve the following penalized ML problem

H(n) = argmax
H(n)

log P(Y(n),V(n), |H(n))− γ pen (H(n))) (7.59)

which is easier to solve, by employing V(n) as the auxiliary variable. Theλth iteration
of the EM algorithm is defined as [5]:

⎧
⎨

⎩
E–Step Q (H,H(n)) = − 1

2α2 ‖G(λ)(n)−H‖2�2
− γ ‖ vec [H] ‖�1

M–Step H(λ+1)(n) = argmax
H(n)

Q (H,H(n)) = Sγα2
(
G(λ)(n)

) (7.60)

where

G(λ)(n) = H(λ)(n)

(
I− α

2

σ 2 X(n)XH (n)

)
+ α

2

σ 2 Y(n)XH (n)

The above algorithm is an iterated shrinkage method. The soft thresholding function
tends to decrease the support of H(n), since it shrinks the support to those elements
whose absolute value is greater than γα2. The algorithm described above can be
further simplified by considering only the corresponding positions of the non–zero
entries within the thresholding step [5]. The autocorrelation and cross–corellation
matrices, which appear in the E–step of the algorithm, can be obtained recursively
and the resulting algorithm (known as spaRLS) is summarized in Table 7.3.

Another algorithm related to the EM approach is presented in [52]. Unlike the
noise decomposition idea which is followed in [5], their approach uses normal priors
on the unknown parameter matrix. In the EM approach the individual parameters are
treated as missing variables, and the E–step computes the conditional expectation of
the missing variables given past observations. Subsequently, the M–Step maximizes
this expectation minus a sparsity inducing penalty (like the �1 norm). To apply the
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Table 7.3 spaRLS algorithm Algorithm description

Rxx (0) = 0,Pyx(0) = 0,H(0) = 0
For n := 1, 2, . . . do

1: Rxx (n) = λRxx (n − 1)+ a2

σ 2 x(n)xH (n)

2: Pyx (n) = λPyx (n − 1)+ a2

σ 2 y(n)xH (n)
3: Repeat

4: ̂G
(λ)
(n) = ̂H

(λ)
(n) (I− Rxx (n))+ Pyx (n)

5: ̂H
(λ)
(n) = Sγ a2

[
̂G
(λ)
(n)

]

6: Until λ = k
End For

EM approach the complete and incomplete data must be specified. The matrix H(n)
at time n is taken to represent the complete data vector, whereas Y(n − 1) accounts
for the incomplete data [39, pp. 31–33]. The resulting EM approach is summarized
by the following equation:

G(n) = arg max
G

{
Ep(H(n)|Y(n−1);G(n−1))

[
log p(H(n);G)]− γ ‖ vec [G] ‖�1

}
.

(7.61)
The EM algorithm aims to maximize the log–likelihood of the complete data,
log p(H(n);G). However, because H(n) is an unknown parameter, it maximizes
instead its expectation given the incomplete data Y(n − 1) and a current estimate of
the parameters G(n − 1). The E–step, computes the conditional expectation of the
log–likelihood, given observations Y(n − 1) and parameter estimate G(n − 1) from
the previous iteration

E-step : Q
(
G,G(n − 1)

) = Ep(H(n)|Y(n−1);G(n−1))
[
log p(H(n);G)] (7.62)

= constant+GH S−1(n)E[H(n)|Y(n−1);G(n − 1)] − 1

2
GH S−1(n)G

where S(n) is a diagonal covariance matrix, and the constant incorporates all terms
that do not involve G and hence do not affect maximization. The M–step, described
below, calculates the maximum of the penalized Q–function

M-step : G(n) = arg max
G

{
Q
(
G,G(n − 1)

)− γ ‖ vec [G] ‖�1

}
(7.63)

= SγSi i (n) (E [H(n)|Y(n − 1);G(n − 1)])

which in turn leads to the soft thresholding function. In order to carry out the condi-
tional expectation of Eq. (7.62) (essentially the E–step), one needs to assume a prior
on H(n) given the past observations Y(n− 1) and G(n− 1). Consider the Gaussian
prior of the form
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Table 7.4 EM–RLS algorithm

Algorithm description

H(0) = 0, C0 = δ−1 I with δ =const.
For n:=1,2,…do

1: k(n) = C(n − 1)x∗(n)
λ+ xT (n)C(n − 1)xH (n)

2: G(n) = H(n − 1)+ (y(n)−H(n − 1)x(n))kT (n)
3: C(n) = λ−1C(n − 1)− λ−1k(n)xT (n)C(n − 1)
4: H(n) = Sγ λ−1C(n−1) [G(n)]
End For

Prior = p(H(n)|Y(n − 1);G(n − 1)) � N (G(n − 1),S(n)) .

It is well known that this conditional expectation may be obtained recursively using
the Kalman filter, if a Gaussian prior is assumed on H(n) given the past observation.
The Kalman filter then determines the posterior probability density function for H(n)
recursively over time. In a Bayesian context if H(n) is assumed to be Gaussian, the
RLS filter can be regarded as a Kalman filter [55]. Therefore, the main recursion
takes the form [55, 70]

H(n) = H(n − 1)+ e(n)kT (n)

C(n) = λ−1C(n − 1)− λ−1k(n)xT (n)C(n − 1)

where k(n) is the Kalman gain and e(n) denotes the prediction error given by
e(n) = y(n) − H(n − 1)x(n). Hence H(n) depends linearly on G. The Riccati
equation that updates C(n) = Rxx

−1(n) indicates that C(n) does not depend on G.
Moreover, E[e(n)Y(n − 1)] = 0 because the prediction error e(n) is uncorrelated
to measurements. The i th diagonal component of the prior covariance Si (n) can be
computed as follows

Si (n) = λ−1Ci (n − 1).

The method outlined above is named EM–RLS filter and is summarized in Table 7.4.

7.3.3 Greedy Adaptive Filters

Greedy algorithms provide an alternative approach to �1 penalization methods. For
the recovery of a sparse parameter matrix in the presence of noise, greedy algorithms
iteratively improve the current estimate by modifying one or more elements until a
halting condition is met. The basic principle behind greedy algorithms is to iteratively
find the support set of the sparse matrix and reconstruct it using the restricted support
Least Squares (LS) estimate. The computational complexity depends on the number
of iterations required to find the correct support set. One of the earliest algorithms
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proposed for sparse signal recovery is the Orthogonal Matching Pursuit (OMP) [26,
65, 75]. At each iteration, OMP finds the entry of the proxy matrix P(n) = (Y(n)−
HX(n))XH (n) with the largest magnitude, and adds it to the support set. Then, it
solves the following least squares problem:

Ĥ = arg min
H
‖Y(n)−HX(n)‖2�2

and updates the residual. By repeating these steps a total of s times, the support of
H is recovered.

Several improvements have been proposed for greedy reconstruction. The Stage-
wise OMP (StOMP), proposed in [31], selects all proxy components whose values
are above a certain threshold. Due to the multiple selection step, StOMP achieves
better runtime than OMP. On the other hand, parameter tuning in StOMP might be
difficult and there are rigorous asymptotic results available. A more sophisticated
algorithm was developed by Needell and Vershynin, and is known as Regularized
OMP (ROMP) [63]. ROMP chooses the s largest components of the proxy, and
applies a regularization step to ensure that not too many incorrect components are
selected. The recovery bounds obtained in [63] are optimal up to a logarithmic fac-
tor. Tighter recovery bounds which avoid the presence of the logarithmic factor
are obtained by Needell and Tropp via the Compressed Sampling Matching Pursuit
algorithm (CoSaMP) [62]. CoSaMP provides tighter recovery bounds than ROMP
that are optimal up to a constant factor. An algorithm similar to the CoSaMP, was
presented by Dai and Milenkovic and is known as Subspace Pursuit (SP) [23].

As with most greedy algorithms, CoSaMP takes advantage of the measurement
matrix X(n) which is assumed to be approximately orthonormal (X(n)XH (n) is
close to the identity matrix). Hence, the largest components of the signal proxy
P(n) = HX(n)XH (n) most likely correspond to the non–zero rows of H. Next, the
algorithm adds the largest components of the signal proxy to the running support
set and performs least squares to get an estimate for the signal. Finally, it prunes the
least square estimation and updates the error residual. The main ingredients of the
CoSaMP algorithm are outlined below:

Identification of the largest 2s components of the proxy signal
Support Merger: forms the union of the set of newly identified components with
the set of indices corresponding to the s largest components of the least squares
estimate obtained in the previous iteration
Estimation via least squares on the merged set of components
Pruning: restricts the LS estimate to its s largest components
Sample update: updates the error residual.

The above steps are repeated until a halting criterion is met. The main difference
between CoSaMP and SP is in the identification step where the SP algorithm chooses
the s largest components.

It was established in [58] that greedy algorithms can be converted into an adaptive
mode, while maintaining their superior performance gains. We demonstrate below
that this conversion is applicable in the multichannel set up. We focus our analysis
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on CoSaMP/SP due to their superior performance, but similar ideas are applicable to
other greedy algorithms as well. Multichannel greedy algorithms can be approached
via two strategies. The first approach assumes that the subsystems share the same
sparsity pattern. Hence the greedy algorithm simultaneously recovers the support
set (also known as joint sparsity or group sparsity) [12, 75] by choosing an element
which reaches the maximum value of the multichannel energy. Under the second
strategy adopted here, the subsystems exhibit different sparsity patterns [56]. Next
greedy versions of the main adaptive multichannel algorithms are presented based
on the CoSaMP/SP platform.

7.3.3.1 Greedy LMS Filter

The multichannel adaptive greedy LMS algorithm modifies the proxy identification,
estimation and error residual update. The error residual is evaluated by

v(n) = y(n)−H(n)x(n). (7.64)

The above formula involves the current sample only, in contrast to the CoSaMP/SP
scheme which requires all previous samples. A new proxy signal that is more suitable
for the adaptive mode, is defined as:

P(n) =
n−1∑

i=1

λn−1−i v(i)xH (i)

and is updated by
P(n) = λP(n − 1)+ v(n − 1)xH (n)

This way the algorithm is capable of capturing variations on the support of H. The
estimate H(n) is updated by the LMS recursion [46, 70]. At each iteration the current
regressor x(n) and the previous estimate H(n− 1) are restricted to the instantaneous
support originated from the support merging step. However, because the row support
corresponding to each output is different, some extra care is required. Recall that
any MIMO filter with no outputs is simplified to no MISO adaptive filters (all of
which have different row support). Let  denote the estimated set of indices and
(r) (r = 1, 2, . . . , no) the set of indices associated with the r th row of H(n). The
update equation for the r th output is given by

hr :|(r) (n) = hr :|(r) (n − 1)+ μer (n)xH
|(r) (n), ∀r = 1, . . . , no (7.65)

where x|(r) (n) denotes the sub–vector corresponding to the index set(r). If all rows
of H share the same row support then the update step can be performed jointly for all
outputs and the selection of the largest proxy signal components is simplified [75].
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Table 7.5 SpAdOMP algorithm

Algorithm description

H(0) = 0,W(0) = 0,P(0) = 0 {Initiliazation}
v(0) = y(0) {Initial residual}
0 < λ ≤ 1 {Forgetting factor}
0 < μ < 2λ−1

max {Step size}
For n := 1, 2, . . . do
1: P(n) = λP(n − 1)+ v(n − 1)xH (n − 1) {Form signal proxy}
2: 
 = supp(P2s(n)) {Identify large components}
3:  = 
 ∪ supp(H(n − 1)) {Merge supports}
4: er (n) = yr (n)− wr :|(r) (n − 1)x|(r) (n) {Prediction error}
5: wr :|(r) (n) = wr :|(r) (n − 1)+ μer (n)xH

|(r) (n) {LMS iteration}

6: s = max(|H|(n)|, s) {Obtain the pruned support}
7: H|s (n) =W|s (n), H|c

s
(n) = 0 {Prune the LMS estimates}

8: v(n) = y(n)−H(n)x(n) {Update error residual}
end For

The multichannel Sparse Adaptive Orthogonal Matching Pursuit (SpAdOMP)
algorithm, is presented in Table 7.5. The operator max(|a|, s) returns s indices of
the largest elements of a and c represents the complement of . An important
point to note about step 5 of Table 7.5 is that the choice of a proper step–size μ that
ensures convergence is difficult. The Normalized LMS (NLMS) addresses this issue
by scaling with the input power

hr :|(r) (n) = hr :|(r) (n − 1)+ μ

ε + ‖x|(r) (n)‖2
er (n)xH

|(r) (n), ∀r = 1, . . . , no

where 0 < μ < 2 and ε is a small positive constant (inserted to avoid division by
small numbers). NLMS may be viewed as an LMS with time–varying step–size.
This partially explains the superior tracking performance as compared to LMS in
non–stationary environments.

7.3.3.2 Greedy RLS Filter

In this subsection we develop greedy adaptive schemes whose estimation part is
based on rank one updates for the autocorrelation and cross–correlation matrices.
A straightforward forward attempt towards this direction, would be to re–use the
framework adapted by the SpAdOMP algorithm [58] (Table 7.5) and replace the
estimation step with the RLS algorithm. However in doing so, we will have to update
the entries of the inverse covariance matrix as well as the Kalman gain entries which
are required to perform an RLS update for the currently estimated support set. A
more efficient technique avoids the last action of the CoSaMP/SP framework (Sample
Update) and is described next.



216 G. Mileounis and N. Kalouptsidis

Consider the normal equations

HX(n)XH (n) = Y(n)XH (n). (7.66)

An iterative method known as Landweber–Fridman or Van Cittert iteration [29, 78]
is incorporated in order to express Eq. (7.66) into an equivalent fixed point equation
of the form

H = H+ (Y(n)−HX(n))XH (n).

The Landweber iteration starts from an initial guess H0 and solves y(n) = Hx(n)
iteratively by

H(t) = H(t−1) +
(

Y(n)−H(t−1)X(n)
)

XH (n) t = 1, 2, . . .

The above iteration requires the norm of X(n) to be less than or equal to one, otherwise
it diverges or converges too slowly. To avoid divergence and accelerate the speed of
convergence a step size term μ is introduced

H(t) = H(t−1) + μ
(

Y(n)−H(t−1)X(n)
)

XH (n) t = 1, 2, . . . (7.67)

whereμ ∈ (0, 2/‖X(n)XH (n)‖). The above iterations is similar to Steepest Descent
except that the step size term is fixed. To derive an adaptive Landweber filter we
rewrite Eq. (7.67) as

H(t) = H(t−1)
(

I− μX(n)XH (n)
)
+ μY(n)XH (n) t = 1, 2, . . . (7.68)

The above iteration requires the autocorrelation matrix Rxx(n) = X(n)XH (n) and the
cross–correlation matrix Pyx(n) = Y(n)X(n)H . In practice, the data arrive sequen-
tially and might vary with time. For this reason we approximate Rxx(n) and Pyx(n)
via exponentially weighted sample averages [46, 70]. Therefore the Landweber iter-
ation takes the form

H(n) = H(n − 1) (I− μRxx(n))+ μPyx(n) n = 1, 2, . . . (7.69)

The resulting expression is identical to the one derived in [5] (Step 4 in Table 7.3)
via the EM formulation and the decomposition of the noise vector.

Finally let us take a second look at the proxy signal and the sample update, which
are described in Sect. 7.3.3. The authors in [58] proposed an adaptive mechanism to
estimate the signal proxy and the sample update. Examination of

P(n) = (Y(n)−HX(n))XH (n) (7.70)
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Table 7.6 SpAdOMP (RLS) algorithm

Algorithm description

H(0) = 0,W(0) = 0,P(0) = 0,Rxx(0) = 0,Pyx(0) = 0 {Initiliazation}
For n := 1, 2, . . . do
1: Rxx(n) = λRxx(n − 1)+ x(n)xH (n) {Update autocorrelation}
2: Pyx(n) = λPyx(n − 1)+ y(n)xH (n) {Update cross–correlation}
3: P(n) = Pyx(n)−H(n)Rxx(n) {Form signal proxy}
4: 
 = supp(P2s(n)) {Identify large components}
5:  = 
 ∪ supp(H(n − 1)) {Merge supports}
6: W(n) =W(n − 1) (I− μRxx(n))+ μPyx(n) {Recursive Landweber iteration}
7: s = max(|W|(n)|, s) {Obtain the pruned support}
8: H|s (n) =W|s (n), H|c

s
(n) = 0 {Prune the Landweber estimates}

end For

shows that the sample update constitutes an ingredient of the signal proxy. Addition-
ally, the above equation can be re–expressed as follows

P(n) = Y(n)XH (n)−HX(n)XH (n) � Pyx(n)−HRxx(n) (7.71)

and hence there is no need for the sample update, since all the required information
is obtained from the correlation and cross–correlation matrices. The algorithm is
summarized in Table 7.6. The key difference between spaRLS and this version of
SpAdOMP algorithm is that the latter has two mechanisms for support estimation
(the proxy signal followed by pruning which is a special form of hard thresholding)
and hence can achieve better support estimation.

7.3.4 Computer Simulations of Sparse Adaptive MIMO Filters

In this subsection we demonstrate and compare the performance of the algorithms
outlined in this section. Computer simulations are conducted under different scenar-
ios in order to evaluate performance over a wide range of conditions. The Normalized
Mean Square Error (NMSE, in dB scale)

NMSEi j := MC−1
MC∑

t=1

∑N
n=1 |Ĥ (t)

i j (n)− Hi j (n)|2
∑N

n=1 |Hi j (n)|2

is used as performance measure, where Ĥ (t)
i j (n) denotes the estimate of the i j subsys-

tem for the t th Monte Carlo (MC) run. The overall NMSE is obtained by averaging
over all subsystems
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NMSE := 1

no × ni × M

no∑

i=1

ni×M∑

j=1

NMSEi j . (7.72)

All NMSE results were obtained for 50 different system realizations (every non–
zero parameter at each realization is assigned to random locations and their values
are generated randomly from a complex normal distribution). The experiments are
conducted in a moderate noise environment with Signal to Noise Ratio (SNR :=
10 log ‖H‖2�2

/‖v‖2�2
) of 15 dB.

To compare the performance of different adaptive filters we use their correspond-
ing learning curves which are plots of the NMSE versus the number of iterations.
Learning curves help us visualize the convergence and tracking behaviour of adap-
tive filters. Note that although the LMS and RLS type filters are examined under the
same scenarios, we have chosen to plot them separately due to different convergence
speeds and computational complexity requirements.

Adaptive Identification of Linear MIMO Systems

First we consider a linear (3, 3)–MIMO system with a memory length M = 5 and 5
non–zero elements. The system is excited by a complex Gaussian input signal with
zero mean and variance 1/5. For a fair comparison between all competing LMS–type
filters the step size is common and equal to

μn = 1

‖x(n)‖2�2

.

The regularization step size γ for the ZA–LMS (or �1–LMS) and the RZA–LMS (or
log–LMS) are adjusted adaptively following the systematic approach introduced in
[19]. For the �0–LMS filter the regularization parameters required offline fine tuning
and the best performance is obtained whenα = 5 and γ = 0.01. The SpAdOMP filter
required a–priori knowledge of the sparsity level in order to perform the adaptive
greedy selection procedure. Figure 7.8a shows that SpAdOMP obtains the faster
convergence and better steady state accuracy, followed by the �0–LMS and log–
LMS whose performance is nearly identical.

The RLS–type filters share a common forgetting factor λ = 0.98. The
R–LASSO, spaRLS and SpAdOMP follow an instantaneous steepest descent pattern
(that involves the autocorrelation and cross–correlation matrices) and employ a step
size to accelerate convergence. The step size is set to

μn = 0.3

‖x(n)‖2�2

(7.73)

for all schemes. The EM–RLS, R–LASSO and SpaRLS required offline processing
to find the optimum regularization parameter for each filter (γE M−RL S = 6× 10−4,
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Fig. 7.8 Learning curves of adaptive MIMO filters. a LMS-type filters. b RLS-type filters

τR−L ASSO = 0.3 and α2γspa RL S = 0.03). The adaptive greedy filter (SpAdOMP) is
fine tuned using a–priori knowledge of the sparsity level (s = 5). Figure 7.8b presents
the learning curves of RLS–type of filters. We observe that the adaptive greedy filter
gives the best performance. It is followed by spaRLS, R–LASSO and EM–RLS. The
convergence rate of spaRLS, R–LASSO and EM–RLS can be significantly improved
if a more sparsity aware regularization function is employed (like those discussed in
Sect. 7.3.2.1).

Adaptive Identification of Nolinear MIMO Systems

Next, we evaluate the filtering performance of sparse nonlinearly mixed MIMO
systems. The MIMO system consists of 3 inputs, 3 outputs, has memory length
M = 2 and poses a quadratic nonlinearity where all different product combinations of
the inputs are allowable. The combination of sparsity with nonlinearity significantly
increases the parameter space of the unknown system matrix and may give rise to
degeneracy in the parameters. Note that degeneracy causes all important parameters
to be close to zero and as a result some outputs may also be zero. To avoid this
situation we consider 9 non–zero parameters, 6 of which belong to the linear part of
the system (spread among different inputs) and 3 correspond to the nonlinear part.
The input sequence is drawn from a complex Gaussian distribution of zero mean and
variance 1/9.

Initially we compare the learning curves of LMS–type filters. The step size is com-
mon to all filters and given by Eq. (7.73). Unlike the linear case, it was experimentally
found that the systematic approach (developed in [19]) for choosing the best regu-
larization parameter for ZA–LMS and RZA–LMS (or �1–LMS and log–LMS as we
will refer to respectively) does not perform that well in the case of nonlinearly mixed
MIMO. Therefore, �1–LMS, log–LMS and �0–LMS are required to optimize their
parameters via exhaustive simulations and the corresponding values are summarized
in the following table.
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Fig. 7.9 Learning curves of adaptive nonlinear MIMO filters. a LMS-type filters. b RLS-type filters

�1–LMS (γ ) log–LMS (γ, ε) �0–LMS (γ, α) EM–RLS (γ ) R–LASSO (γ ) spaRLS (α2γ )
5× 10−3 1× 10−2,10 1× 10−3,5 2× 10−3 9× 10−2 2× 10−3

The conclusions drawn from inspection of Fig. 7.9a, are almost identical to those
in the linear case. However, this time the convergence speed of the greedy filter is
slightly worse than the one obtained by �0–LMS and log–LMS filter.

Next, we study the performance of RLS–type of filters in nonlinearly mixed
MIMO systems. As in the linear case, some filters require offline processing to fine
tune their regularization parameters and the optimum values are summarized in the
above table. Figure 7.9b shows that almost all RLS–type of filters achieve relatively
similar steady–state accuracy, and spaRLS has the fastest convergence speed.

One common conclusion for LMS and RLS type of filters, operating in nonlinear
MIMO systems, is that the extraordinary good performance of adaptive greedy filters
is slightly degraded. This is because greedy filters require strongly incoherent dic-
tionaries (this has been studied for the linear case in [58]). The problem of designing
input sequences with incoherent dictionary for nonlinear MIMO systems requires
further work.

Tracking Performance of Sparse Adaptive Filters

The time–varying nonlinear MIMO system is initialized using the same parameters
as used to generate Fig. 7.9. At the 400th iteration the system experiences a sudden
change, where all active parameters of the nonlinear part randomly change locations.
We note from Fig. 7.10 that spaRLS, �0–LMS and log–LMS have the fastest sup-
port tracking behaviour and that adaptive greedy filters achieve better steady state
accuracy.
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Fig. 7.10 Comparison of tracking performances on nonlinear MIMO systems. a LMS-type filters.
b RLS-type filters

7.4 Blind and Semi-Blind Identification of Sparse MIMO
Systems Excited by Finite-Alphabet Inputs

This section is concerned with the sparse MIMO parameter estimation problem
encountered in blind system identification whereby the unknown sparse MIMO sys-
tem is estimated using output information as well as some a priori knowledge of the
system. This problem arises in digital communications, seismic data, image deblur-
ring and speech coding.

The sparse blind MIMO identification problem has been approached by two differ-
ent methodologies, namely: (1) dictionary learning [36, Chap. 12] and (2) maximum
penalized likelihood estimator (via the Expectation Maximization algorithm) [60].
The first approach solves an optimization problem by iteratively applying two convex
steps: the parameter update step on a fixed measurement matrix and the measurement
matrix update step on a fixed parameter. The second approach, employs Expectation–
Maximization for finding maximum penalized likelihood estimates. Both algorithms
do not converge to global minima, whereas for the case of dictionary learning even
a local minimum can not be guaranteed.

In this section we discuss joint state estimation and sparse parameter estima-
tion techniques under the Finite-Alphabet property. Two different techniques are
described. The first algorithm maximizes the likelihood of the received sequence
over all possible input sequences and system parameters. It does so by converting
the joint maximization into a two stage maximization problem. For a given para-
meter value at the end of the �–th iteration, the most likely state (equivalently input
sequence) is estimated by carrying out the inner maximization. This maximization
can be performed by the Viterbi algorithm since the polynomial MIMO system is
represented by a Hidden Markov Model (HMM). Once the inner maximization is
completed and the most likely state sequence is determined, the outer maximiza-
tion takes over. Given the state sequence at step �, maximization of the penalized
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likelihood with respect to system parameters is effected by sparsity aware schemes.
The two main stages (state estimation, parameter estimation) iterate until a stopping
criterion is satisfied.

The second blind estimation method considered in this section is based on Expec-
tation Maximization (EM). Instead of working with likelihood, EM employs the
augmented likelihood formed by the so called complete data which consist of the
state sequence and the output sequence. It turns out that maximization of the aug-
mented likelihood is easier to perform. Then the EM procedure alternates between
the E–step during which the log–likelihood function of the complete data is esti-
mated, and the M–step which maximizes the augmented likelihood to generate an
updated parameter matrix. Parameter sparsity is naturally embedded in the M–step
by the insertion of a penalty term (typically the �1 norm of the parameters).

7.4.1 An Alternating Maximum Likelihood Procedure for State
Estimation and Sparse System Estimation

Let us consider the basic set up defined in Sect. 7.2. The input–output relationship is
given by

y(n) =
f (x1(n), x1(n − 1), . . . , x1(n − M), · · · , xni (n), xni (n − 1), . . . , xni (n − M))+ v(n).

(7.74)

The noise vector v(n) is a multivariate Gaussian i.i.d. with mean and covariance
matrix N (0,Q). Following the analysis of Sect. 7.2.1 let

x̄(n) = [x1(n), x1(n−1), . . . , x1(n−M), · · · , xni (n), xni (n−1), . . . , xni (n−M)]T .

Hence the nonlinear input vector is given by

x(n) = [x̄(n), x̄2(n), · · · , x̄p(n)]T .

We shall refer to x(n) as the augmented state or simply the state. Equation (7.74) is
compactly written as

y(n) = Hx(n)+ v(n).

In a blind (or Semi-Blind) environment, information on the input sequence that
generated a given output is not available. Suppose Y(n) = [y(1), y(2), · · · , y(n)]
denotes the known ni×n observation sequence. The task of joint state estimation and
system parameter estimation is based solely on a small number of measurements n.
The probability density function (PDF) of the observation matrix Y(n) conditioned
on (X(n),H) is given by
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Fig. 7.11 Alternating MIMO detector–estimator

p(Y(n)|H,X(n)) = 1

(2πσ 2)no×n
exp

(
− 1

2σ 2

n∑

t=1

‖y(t)−Hx(t)‖2�2

)
(7.75)

The joint Maximum Likelihood (ML) estimator of X(n) and H is obtained by jointly
maximizing p(Y(n)|H,X(n)) over X(n) and H, as follows:

(X̂(n), Ĥ) = arg max
X(n),H

log p(Y(n)|H,X(n)).

The above optimization problem is intractable. We thus convert it into a two stage
maximization problem that is iteratively performed over X(n) and H (see Fig. 7.11)
as

(X̂(n), Ĥ) = arg max
H

max
X(n)

log p(Y(n)|H,X(n)). (7.76)

The iterative procedure alternates information between a state estimation scheme
and a system parameter estimation scheme. In several applications, including com-
munications, the input signals take values in a Finite-Alphabet. Then the state vector
evolves as a Markov chain and the input–output relationship becomes a Hidden
Markov Process (HMP) [37]. Therefore the inner maximization at step (�) can be
accomplished by dynamic programming and the Viterbi Algorithm (VA). Given X(�)

the iterative process updates the system parameters. The outer level maximization is
equivalent to a quadratic minimization problem. Hence, the optimum solution leads
to a set of normal equations:

H(�)X(�)(n) X(�)
H
(n) = Y(n) X(�)

H
(n).

The algorithm is repeated until a fixed point is reached or until a stopping criterion is
met. Local convergence of the algorithm can be established [37]. The above procedure
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is known in the literature under several different names: Baum–Viterbi [37], ML
Alternating Least Squares [1, 68] and bootstrap equalization [73].

Remark: Although the above procedure can operate in a pure blind fashion, it
converges very slowly and suffers from an inherent permutation and scaling ambi-
guity problem [74]. This ambiguity is resolved if very few training input samples are
used to provide an initial parameter matrix H(0) estimate. The initial estimate does
not need to be accurate enough since it is improved through successive iterations.
The minimum number of training data, namely, T = ni M , is equal to the rank of the
MIMO system. The training symbol matrix X(0) can be designed to yield the optimal
estimation performance.

In the MIMO models discussed in Sect. 7.2 the parameter space increases expo-
nentially and often the number of parameters exceeds the number of available mea-
surements and the resulting system becomes underdetermined. Additionally, the
unknown system may exhibit slow time–variations, so that during the time period of
n data the entries of H may be considered constant. Therefore, even if X(n) is known,
estimating Ĥ remains an underdetermined problem. The key observation here is to
consider the parameters of H that actually contribute to the output (see Sect. 7.2.1.1).
This motivates the addition of a regularization term into the cost function for joint
state estimation and sparse parameter estimation. Following the Compressed Sensing
paradigm, the �1 penalty term is added and the cost function takes the form:

(X̂(n), Ĥ) = arg

{
max

H

[
max

X(n)∈S
log p(Y(n)|H,X(n))− τ‖vec[H]‖�1

]}
. (7.77)

The maximization of the likelihood with respect to H resembles the basis pursuit
or LASSO criterion and hence any compressed sensing algorithm can be used to
perform this maximization [36, 76].

A two stage maximization algorithm of this type is summarized in Table 7.7. The
first step involves an approximation to X̂(n) which is obtained using a Maximum A
Posteriori (MAP) criterion:

arg max
X(n)

p(X(n)|Y(n);H(�−1)). (7.78)

Table 7.7 Baum–Viterbi algorithm

Algorithm description

� = 0 : H(0) = arg max
H

log p(Y(T )|H,X(T ))− τ‖vec[H]‖�1 {Initiliazation}

Repeat
� = �+ 1
1: X(�)(n) = arg max

X(n)∈S
log p(Y(n)|H(�−1)) {Viterbi Algorithm}

2: H(�) = arg max
H

log p(Y(n)|X(�)(n))− τ‖vec[H]‖�1 {System Parameter Re–estimation}

Until (X(�)(n),H(�)(n)) ≈ (X(�−1)(n),H(�−1)(n))
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Table 7.8 Viterbi algorithm

Algorithm description

δ1(i) = log p(y(1)|x(i)(1);H(�−1)(1)), i = 1, . . . , Ani M {Initiliazation}
For t := 2, . . . , n do
For j := 1, 2, . . . , Ani M do
1: δt ( j) = log p(y(t)|x( j)(t);H(�−1)(t))+max

i

[
δt−1(i)

]
{Recursion}

2: ψt ( j) = arg max
i

[
δt−1(i)

]

End
End
3: in = arg max

i
δn(i), x̂(n) = x(in )(n) {Termination}

4: it = ψt+1(it+1), x̂(t) = x(it ), t = n − 1, . . . , 1 {Backtracking}

The above is solved using the Viterbi algorithm. The Viterbi algorithm searches
among all possible paths through the state trellis in order to efficiently find the most
probable path. A pseudo–code is provided in Table 7.8.

Maximization of the penalized likelihood over H is equivalent to maximizing the
auxiliary function [37, 50]:

n∑

t=1

Ani M∑

i

δ(x̂(�)(n)− xi ) log p (y(t)|H)− τ‖vec[H]‖�1 (7.79)

where δ(·) is the delta function that is equal to one when x(�)(n) = xi and zero
otherwise. Since the noise is Gaussian, expression (7.79) is equivalent to penalized
least squares estimation. The linearity in the parameters leads to the following closed
form expression

H(�) = Sτ

[(
X(�)(n) X(�)

H
(n)

)−1
Y(n) X(�)

H
(n)

]
. (7.80)

ML Detection via sphere decoding. The state estimator based on the Viterbi algo-
rithm requires searching over AM×ni possible trellis state. This is affordable when A
and M × ni are small but it is not realistic when M is large. An alternative decoder
structure, employs a sphere decoder [11, 20]. The underlying principle of sphere
decoding is to search the closest lattice point (or vector) to the output signal within a
sphere of radius r centered at the output signal. Sphere decoding techniques increase
the radius when there exists no vector within a sphere, and decrease the radius when
there exist multiple vectors within the sphere. The main idea is to limit the search
among the possible states to those located within a sphere having radius r . We write
with some abuse of notation the following:

X̂(n) = arg min
X(n)

‖Y(n)−HX(n)‖2�2
≤ r2 (7.81)
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= arg min
X(n)

‖H(X(n)− X̄)‖2�2
≤ r2 (7.82)

where (the MMSE estimate) X̄ = (HH H)−1HH Y(n) is the center of the sphere
of radius r . The ML solution is contained in this sphere and can be found via
low–complexity tree based search algorithm [43]. This way an exhaustive search
procedure is avoided and the complexity is independent of alphabet size.

7.4.2 An Expectation Maximization and Smoothing Approach
to MIMO Parameter Recovery

The alternating ML detector and parameter estimation procedure outlined in
Sect. 7.4.1 can also be performed by employing the Expectation Maximization (EM)
framework [27]. Instead of maximizing the likelihood p(Y(n)|H) =∑

X(n) p(Y(n),
X(n)|H) EM works with the complete likelihood p(Y(n),X(n)|H). Of course, the
complete likelihood can not be evaluated, since the data X(n) are unknown. Instead
the expected value is used. The conditional log likelihood

log p(Y(n)|H) = log p(Y(n),X(n)|H)− log p(X(n)|Y(n),H)

is employed to evaluate the estimated complete log–likelihood

Q
(

H,H(�−1)
)
= Ep(X(n)|Y(n),H(�−1))

[
log p (Y(n),X(n)|H) ]

=
∑

X(n)

p(X(n)|Y(n),H(�−1)) log p(Y(n),X(n)|H). (7.83)

The EM algorithm iterates between the E–step and the M–step until convergence
(see Table 7.9). The expectation step (E–Step), where the conditional density of the
unknown data, given the actual observations is estimated based on the current values
of the unknown parameters is used to evaluate the expected value of the complete
log–likelihood function. The maximization step (M–Step) finds the maximum of
the estimated complete log–likelihood function with respect to the unknown system
parameters.

Quite often in practice the number of available observations, n, is significantly
smaller than ni M , and the resulting system of equations is severely underdetermined.
Furthermore, the effective rank of H is often significantly less than n. Such problems
are often reduced by use of a Bayesian prior to favour some solutions over others. The
prior is incorporated as a penalty term in the maximization step which is maximized
to estimate the unknown system parameter matrix. Therefore the M–step seeks to
solve the following problem:
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Table 7.9 EM algorithm

Algorithm description

� = 0 : H(0) {Initiliazation}
Repeat

� = �+ 1
1: Q

(
H,H(�−1)

) = Ep(X(n)|Y(n),H(�−1))

[
log p (Y(n),X(n)|H) ] {E–Step}

2: H(�) = arg max
H

Q
(
H,H(�−1)

)
{M–Step}

Until ‖vec[H(�)] − vec[H(�−1)]‖2�2
< ε {Termination Condition}

H(�) = arg max
H

Q
(

H,H(�−1)
)
+ log p (H) .

A widely used prior which promotes sparsity and avoids underdetermined problems
is the Laplacian prior

p (H) ∝ exp
(−τ‖vec[H]‖�1

)
.

The introduction of such prior, allows the algorithm to choose only the non–zero
components of H.

The log–likelihood function increases monotonically at successive iterates H(�)

of the parameter vector [27], i.e.

p(Y(n)|H(�)) ≥ p(Y(n)|H(�−1)).

Consequently the sequence {p(Y(n)|H(�)), � > 0} converges as �→∞. For prac-
tical purposes, we truncate the number of iterations to a finite number L . Although
the convergence of the likelihood values does not by itself ensure the convergence of
the iterates H(�), under relatively mild smoothness conditions for the log–likelihood
function p(Y(n)|H) the sequence converges to a local maximum of p(Y(n)|H(�))

[81]. However, its monotonic convergence behaviour is dependent on initialization
[81]. To avoid it from being trapped to a stationary point which is not a local (global)
maximum we may have to use several different initializations and also incorporate
prior information about the distribution of H(0). For Gaussian noise the corresponding
log–likelihood function is log–concave. The log–concavity of the likelihood ensures
convergence of the EM iteration to a stationary point, regardless of initialization.

Since X(n) is independent of H in Eq. (7.83), we can keep only the terms that
depend on H. Thus

Q
(

H,H(�−1)
)
= Ep(X(n)|Y(n),H(�−1))

[
log p (Y(n)|H) ]

with

p(Y(n)|H) = 1

(2πσ 2)no×n
exp

(
− 1

2σ 2

n∑

t=1

‖y(t)−Hx(t)‖2�2

)
.



228 G. Mileounis and N. Kalouptsidis

Let us next take a closer look at the E–step. The resulting function, still denoted by
Q takes the form

Q
(

H,H(�−1)
)
= − 1

2σ 2

n∑

t=1

E

{
‖y(t)−Hx(t)‖2�2

|y(t),H(�−1)
}
.

The E–step depends on first and second order statistics of the hidden variable X(n),
which are not available since it is unknown. Therefore the complete log likelihood
is given by

Q
(

H,H(�−1)
)
= − 1

2σ 2

n∑

t=1

Ani M∑

i

‖y(t)−Hx(t)‖2�2
γ
(�)
ti

where
γ
(�)
ti = p

(
x(t) = si |Y(n);H(�−1)

)

and thus a primary goal of the E–step is to compute the a posteriori probabilities
(APPs), γ (�)ti . These in turn are computed by the forward–backward recursions pre-
sented next.

Maximization of the regularized Q–function with respect to H at the M–step, has
a closed form expression and is given by the soft–thresholding function

H(�) = Sτ

⎡

⎢⎣

⎛

⎝
Ani M∑

i=1

Xi (n)XH
i (n)γ

(�)
ni

⎞

⎠
−1 ⎛

⎝Y(n)

⎡

⎣
Ani M∑

i=1

XH
i (n)γ

(�)
ni

⎤

⎦

⎞

⎠

⎤

⎥⎦ (7.84)

The above is a convex problem and can be solved using linear programming methods,
interior-point methods, and iterative thresholding [36, 76]. Note that the M–step can
also be executed by Greedy algorithms.

Computation of smoothing probabilities. To implement the EM iteration, the
APP’s γ (�)ti = p

(
x(t) = si |Y(n);H(�−1)

)
are needed. They correspond to the E–step

of the EM algorithm, and they can be computed by soft decoders if the underlying
structure of the MIMO system enables us to follow a Hidden Markov Model (HMM)
formulation, where the APP’s are expressed as functions of the transition probabili-
ties. In such case the a posteriori distribution of the hidden variables is obtained using
a two–stage message passing algorithm. In the context of HMM models, it is known
as forward–backward algorithm [66], or Baum–Welch, or the BCJR algorithm [6].

A complete description by a HMM model requires a trellis diagram with state
set S = {s1, s2, . . . , sAM×ni } , where A is the alphabet size. The algorithm is
split up into two stages. The first stage calculates the filtering probabilities p(x(t)
= · · · |Y(t);H(�−1)), while the second stage calculates the future probabilities
p(x(t) = · · · |Y(t + 1 : n);H(�−1)) (where Y(t + 1 : n) = [y(t + 1), . . . , y(n)].
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Assume that the two stages are already computed for all t ∈ {1, . . . , n}. Then
using the Markov chain rule we obtain the smoothing probabilities p(x(t) =
si |Y(n);H(�−1)) for each si ∈ S

p(x(n) = si |Y(n);H(�−1)) = (7.85)

p(x(t) = si |Y(t − 1);H(�−1))︸ ︷︷ ︸
αt (x(t))

p(x(t) = si )︸ ︷︷ ︸
bt (x(t),x(t+1))

p(x(t) = si |Y(t + 1 : n);H(�−1))︸ ︷︷ ︸
βt+1(x(t))

Next forward/backward recursions are derived that allow the probabilities of
Eq. (7.85) efficiently. The filtering or forward probability αt (x(t)) is obtained by
summing all the lookahead probabilities as

αt (x(t)) =
∑

∀x(t−1)∈S

αt−1(x(t − 1))bt−1(x(t − 1), x(t)). (7.86)

The derivation of the backward filtering is similar to the filtering probability

βt (x(t)) =
∑

∀x(t+1)∈S

βt+1(x(t + 1))bt (x(t), x(t + 1)) (7.87)

b is determined from the received signal and a–priori information

bt (x(t), x(t + 1)) = exp

{
− 1

2σ 2 ‖y(t)−Hx(t)‖2�2

}
Pr(x(t + 1) = s|x(t) = s

′
).

(7.88)

7.4.3 Computer Simulations of Blind Identification Algorithms

In this subsection we compare the performance of the methods outlined here under
two different operating modes: Semi-Blind and blind. Performance is measured in
terms of Normalized Mean Square Error (NMSE, defined in Sect. 7.3.4) and Vector
Symbol Error Rate (SER, that is the probability of at least one of the transmitted
symbols is in error) for a frame of 100 vector symbols from BPSK constellations
averaged over 100 different system realizations. The non–zero coefficients are i.i.d.
(independent, identically distributed) complex Gaussian random variables with zero
mean and variance 1. The positions of the non–zero parameters are randomly selected
in each realization, ensuring each output in non–zero. We consider a 2 × 2 linear
MIMO system of memory length 4 and sparsity level 4.

We start by considering a Semi-Blind operation in which a short training sequence
(consisting of five symbols) is available at the receiver side; the short training
sequence is sent over the unknown system by the transmitter prior to the actual data
transmission session. This training sequence, is used to initialize the algorithms.
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Fig. 7.12 Symbol error rate (SER) for sparse MIMO systems
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Fig. 7.13 NMSE performance comparison under different noise conditions

We note from inspection of Figs. 7.12, 7.13 that the performance of Baum–Viterbi’s
(sparse and non–sparse) is identical to Baum–Welch’s (sparse and non–sparse) for
an SNR range of 2−10 dB; whereas in less noisy conditions Baum–Welch performs
better. The conventional algorithms (Baum–Viterbi and Baum–Welch) la behind their
sparse counterpart by approximately 5dB. We then inspect the vector SER for a max-
imum sequence detector Fig. 7.12a and a maximum a posteriori detector Fig. 7.12b
where the sparse algorithms achieve better SER performance since they provide more
accurate system estimates.

Next, we consider a blind operational mode where a key issue is how to acquire
a reliable initial estimate for the parameter matrix. To avoid using different initial
conditions we employ the single–spike strategy [28] in which all the parameters are
set to zero except the dominant parameter which is set to±1, depending on its sign.
By using this initialization, both algorithms converge in approximately 5 iterations.
The algorithms are tested under a fixed noise condition (SNR 10dB). As it can be
seen from Fig. 7.14, Baum–Viterbi fails to converge whereas Baum–Welch is more
robust to initial conditions. For both algorithms (Baum–Viterbi and Baum–Welch)
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Fig. 7.14 Comparison of the two methods for fixed SNR of 10dB

the sparse versions are better than the conventional counterparts and achieve faster
convergence, see Fig. 7.14b.

7.5 Summary and Future Directions

In this chapter adaptive filtering and identification for multi input multi output non-
linear polynomial systems was considered. The exponential growth of complexity
was addressed by sparsity aware schemes. Sparse LMS, RLS and greedy adaptive
algorithms were described and their performance was demonstrated by simulations
under a wide range of operating conditions. The above methods were combined with
state estimation techniques such as the Viterbi family, in a Semi-Blind context. Alter-
native algorithms based on expectation maximization and smoothing methods were
also discussed.

A number of other methods have been developed for linear systems. These include
subspace methods, second order statistics and higher order statistics [59]. Adaptation
of these methods to the nonlinear case and assessment of their performance is worth
to pursue.
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Chapter 8
Optimization Viewpoint on Kalman Smoothing
with Applications to Robust and Sparse
Estimation

Aleksandr Y. Aravkin, James V. Burke and Gianluigi Pillonetto

Abstract In this chapter, we present the optimization formulation of the Kalman
filtering and smoothing problems, and use this perspective to develop a variety of
extensions and applications. We first formulate classic Kalman smoothing as a least
squares problem, highlight special structure, and show that the classic filtering and
smoothing algorithms are equivalent to a particular algorithm for solving this prob-
lem. Once this equivalence is established, we present extensions of Kalman smooth-
ing to systems with nonlinear process and measurement models, systems with linear
and nonlinear inequality constraints, systems with outliers in the measurements or
sudden changes in the state, and systems where the sparsity of the state sequence must
be accounted for. All extensions preserve the computational efficiency of the clas-
sic algorithms, and most of the extensions are illustrated with numerical examples,
which are part of an open source Kalman smoothing Matlab/Octave package.

8.1 Introduction

Kalman filtering and smoothing methods form a broad category of computational
algorithms used for inference on noisy dynamical systems. Over the last 50 years,
these algorithms have become a gold standard in a range of applications, including
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space exploration, missile guidance systems, general tracking and navigation, and
weather prediction. In 2009, Rudolf Kalman received the National Medal of Science
from President Obama for the invention of the Kalman filter. Numerous books and
papers have been written on these methods and their extensions, addressing modifi-
cations for use in nonlinear systems, smoothing data over time intervals, improving
algorithm robustness to bad measurements, and many other topics.

The classic Kalman filter [29] is almost always presented as a set of recursive
equations, and the classic Rauch-Tung-Striebel (RTS) fixed-interval smoother [42]
is typically formulated as two coupled Kalman filters. An elegant derivation based
on projections onto spaces spanned by random variables can be found in [2]. In
this chapter, we use the terms ‘Kalman filter’ and ‘Kalman smoother’ much more
broadly, including any method of inference on any dynamical system fitting the
graphical representation of Fig. 8.1. Specific mathematical extensions we consider
include

• Nonlinear process and measurement models.
• Inequality state space constraints.
• Different statistical models for process and measurement errors.
• Sparsity constraints.

We also show numerous applications of these extensions.
The key to designing tractable inference methods for the above applications is

an optimization viewpoint, which we develop in the classic Kalman smoothing case
and then use to formulate and solve all of the above extensions. Though it has been
known for many years that the Kalman filter provides the maximum a posteriori
estimate for linear systems subject to Gaussian noise, the optimization perspective
underlying this idea has not been fully deployed across engineering applications.
Notably, several groups (starting in 1977) have discovered and used variants of this
perspective to implement extensions to Kalman filtering and smoothing, including
singular filtering [33, 39, 40], robust smoothing [7, 22], nonlinear smoothing with
inequality state space constraints [9, 11], and sparse Kalman smoothing [1].

We focus exclusively on smoothing here, leaving online applications of these ideas
to future work (see [41] for an example of using a smoother for an online application).
We start by presenting the classic RTS smoothing algorithm in Sect. 8.2, and show that
the well-known recursive equations are really an algorithm to solve a least squares
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system with special structure. Once this is clear, it becomes much easier to discuss
novel extensions, since as long as special structure is preserved, their computational
cost is on par with the classic smoother (or, put another way, the classic smoothing
equations are viewed as a particular way to solve key subproblems in the extended
approaches).

In the subsequent sections, we build novel extensions, briefly review theory, dis-
cuss the special structure, and present numerical examples for a variety of applica-
tions. In Sect. 8.3, we formulate the problem for smoothing with nonlinear process
and measurement models, and show how to solve it. In Sect. 8.4, we show how state
space constraints can be incorporated, and the resulting problem solved using interior
point techniques. In Sect. 8.5, we review two recent Kalman smoothing formulations
that are highly robust to measurement errors. Finally, in Sect. 8.6, we review recent
work in sparse Kalman smoothing, and show how sparsity can be incorporated into
the other extensions. We end the chapter with discussion in Sect. 8.7.

8.2 Optimization Formulation and RTS Smoother

8.2.1 Probabilistic Model

The model corresponding to Fig. 8.1 is specified as follows:

x1 = g1(x0)+ w1,

xk = gk(xk−1)+ wk k = 2, . . . , N ,

zk = hk(xk)+ vk k = 1, . . . , N , (8.1)

where wk, vk are mutually independent random variables with known positive def-
inite covariance matrices Qk and Rk , respectively. We have xk,wk ∈ R

n , and
zk, vk ∈ R

m(k), so measurement dimensions can vary between time points. The
classic case is obtained by making the following assumptions:

1. x0 is known, and gk , hk are known linear functions, which we denote by

gk(xk−1) = Gk xk−1 hk(xk) = Hk xk (8.2)

where Gk ∈ R
n×n and Hk ∈ R

m(k)×n ,
2. wk, vk are mutually independent Gaussian random variables.

In later sections, we will show how to relax these classic assumptions, and what gains
can be achieved once they are relaxed. In this section, we will formulate estimation
of the entire state sequence, x1, x2, . . . , xN , as an optimization problem, and show
how the RTS smoother solves it.
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8.2.2 Maximum a Posteriori Formulation

To begin, we formulate the maximum a posteriori (MAP) problem under linear and
Gaussian assumptions. Using Bayes’ theorem, we have

P
({xk}

∣∣{zk}
) ∝ P

({zk}
∣∣{xk}

)
P ({xk})

=
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp
(
− 1

2
(zk − Hk xk)

�R−1
k (zk − Hk xk)

− 1

2
(xk − Gk xk−1)

�Q−1
k (xk − Gk xk−1)

)
.

(8.3)

A better (equivalent) formulation to (8.3) is minimizing its negative log posterior:

min{xk }
f ({xk}) :=

N∑

k=1

1

2
(zk − Hk xk)

�R−1
k (zk − Hk xk)+ 1

2
(xk − Gk xk−1)

�Q−1
k (xk − Gk xk−1).

(8.4)
To simplify the problem, we now introduce data structures that capture the entire

state sequence, measurement sequence, covariance matrices, and initial conditions.
Given a sequence of column vectors {uk} and matrices {Tk} we use the notation

vec({uk}) =

⎡

⎢⎢⎢⎣

u1
u2
...

uN

⎤

⎥⎥⎥⎦ , diag({Tk}) =

⎡

⎢⎢⎢⎢⎣

T1 0 · · · 0

0 T2
. . .

...
...
. . .

. . . 0
0 · · · 0 TN

⎤

⎥⎥⎥⎥⎦
.

We now make the following definitions:

R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN })

G =

⎡

⎢⎢⎢⎢⎣

I 0

−G2 I
. . .

. . .
. . . 0
−G N I

⎤

⎥⎥⎥⎥⎦
,

(8.5)
where g0 := g1(x0) = G1x0.

With definitions in (8.5), problem (8.4) can be written
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min
x

f (x) = 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 , (8.6)

where ‖a‖2M = a�Ma. We knew the MAP was a least squares problem already, but
now the structure is fully transparent. In fact, we can write down the closed form
solution by taking the gradient of (8.6) and setting it equal to 0:

0 = H�R−1(H x − z)+ G�Q−1(Gx − w)

= (H�R−1 H + G�Q−1G)x − H�R−1z − G�Q−1w.

The smoothing estimate is therefore given by solving the linear system

(H�R−1 H + G�Q−1G)x = H�R−1z + G�Q−1w. (8.7)

8.2.3 Special Subproblem Structure

The linear system in (8.7) has a very special structure: it is a symmetric positive
definite block tridiagonal matrix. This can be immediately observed from the fact
that both G and Q are positive definite. To be specific, it is given by

C = (H�R−1 H + G�Q−1G) =

⎡

⎢⎢⎢⎣

C1 AT
2 0

A2 C2 AT
3 0

0
. . .

. . .
. . .

0 AN CN

⎤

⎥⎥⎥⎦ , (8.8)

with Ak ∈ R
n×n and Ck ∈ R

n×n defined as follows:

Ak = −Q−1
k Gk,

Ck = Q−1
k + G�k+1 Q−1

k+1Gk+1 + H�k R−1
k Hk . (8.9)

The special structure of the matrix C in (8.8) can be exploited to solve the linear
system equivalent to the Kalman smoother. While a structure-agnostic matrix inver-
sion scheme has complexity O(n3 N 3), exploiting the block tridiagonal structure
reduces this complexity to O(n3 N ).

A straightforward algorithm for solving any symmetric positive definite block
tridiagonal linear system is given in [10]. We review it here, since it is essential to
build the connection to the standard viewpoint of the RTS smoother.
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8.2.4 Block Tridiagonal (BT) Algorithm

Suppose for k = 1, . . . , N , ck ∈ Rn×n , ek ∈ Rn×�, rk ∈ Bn×�, and for k = 2, . . . , N ,
ak ∈ Rn×n . We define the corresponding block tridiagonal system of equations

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c1 aT
2 0 · · · 0

a2 c2

.

.

.

.

.

.
. . . 0

0 aN−1 cN−1 aT
N

0 · · · 0 aN cN

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

e1
e2
.
.
.

eN−1
eN

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

r1
r2
.
.
.

rN−1
rN

⎞

⎟⎟⎟⎟⎟⎠
(8.10)

The following algorithm for (8.10) is given in [10, Algorithm 4].
Algorithm 1 The inputs to this algorithm are {ak}, {ck}, and {rk}. The output is a
sequence {ek} that solves Eq. (8.10).

1. Set d1 = c1 and s1 = r1.
2. For k = 2, . . . , N , set dk = ck − aT

k d−1
k−1ak , sk = rk − aT

k d−1
k−1sk−1.

3. Set eN = d−1
N sN .

4. For k = N − 1, . . . , 1, set ek = d−1
k (sk − ak+1ek+1).

Note that after the first two steps of Algorithm 1, we have arrived at a linear system
equivalent to (8.10) but upper triangular:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

d1 aT
2 0 · · · 0

0 d2

.

.

.

.

.

.
. . . 0

0 0 dN−1 aT
N

0 · · · 0 0 dN

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

e1
e2
.
.
.

eN−1
eN

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

s1
s2
.
.
.

sN−1
sN

⎞

⎟⎟⎟⎟⎟⎠
(8.11)

The last two steps of the algorithm then simply back-solve for the ek .

8.2.5 Equivalence of Algorithm (1) to Kalman Filter
and RTS Smoother

Looking at the very first block, we now substitute in the Kalman data structures (8.9)
into step 2 of Algorithm 1:

d2 = c2 − aT
2 d−1

1 a2

= Q−1
2 −

(
Q−1

2 G2

)�

⎛

⎜⎜⎜⎝Q−1
1 + H�1 R−1

1 H1︸ ︷︷ ︸
P−1

1|1

+G�2 Q−1
2 G2

⎞

⎟⎟⎟⎠

−1

(
Q−1

2 G2

)

︸ ︷︷ ︸
P−1

2|1

+H�2 R−1
2 H2

︸ ︷︷ ︸
P−1

2|2

+G�3 Q−1
3 G3

(8.12)
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These relationships can be seen quickly from [5, Theorem 2.2.7]. The matrices Pk|k ,
Pk|k−1 are common to the Kalman filter framework: they represent covariances of
the state at time k given the the measurements {z1, . . . , zk}, and the covariance of
the a priori state estimate at time k given measurements {z1, . . . , zk−1}, respectively.

From the above computation, we see that

d2 = P−1
2|2 + G�3 Q−1

3 G3.

By induction, it is easy to see that in fact

dk = P−1
k|k + G�k+1 Q−1

k+1Gk+1.

We can play the same game with sk . Keeping in mind that r = H�R−1z+G�Q−1w,
we have

s2 = r2 − aT
2 d−1

1 r1

= H�2 R−1
2 z2 +

(
Q−1

2 G2

)�

⎛

⎜⎜⎜⎜⎝
Q−1

1 + H�1 R−1
1 H1︸ ︷︷ ︸

P−1
1|1

+G�2 Q−1
2 G2

⎞

⎟⎟⎟⎟⎠

−1

(
H�1 R−1

1 z1 + G�1 P−1
0|0 x0

)

︸ ︷︷ ︸
a2|1

︸ ︷︷ ︸
a2|2

(8.13)

These relationships also follow from [5, Theorem 2.2.7]. The quantities a2|1 and a2|2
are from the information filtering literature, and are less commonly known: they are
preconditioned estimates

ak|k = P−1
k|k xk, ak|k−1 = P−1

k|k−1xk|k−1. (8.14)

Again, by induction we have precisely that sk = ak|k .
When you put all of this together, you see that step 3 of Algorithm 1 is given by

eN = d−1
N sN =

(
P−1

N |N + 0
)−1

P−1
N |N xk|k = xk|k, (8.15)

so in fact eN is the Kalman filter estimate (and the RTS smoother estimate) for time
point N .

Step 4 of Algorithm 1 then implements the backward Kalman filter, computing
the smoothed estimates xk|N by back-substitution. Therefore the RTS smoother is
Algorithm 1 applied to (8.7).

The consequences are profound—instead of working with the kinds expressions
seen in (8.13) and (8.12), we can think at a high level, focusing on (8.6), and simply
using Algorithm 1 (or variants) as a subroutine. As will become apparent, the key
to all extensions is preserving the block tridiagonal structure in the subproblems, so
that Algorithm 1 can be used.
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8.2.6 Numerical Example: Tracking a Smooth Signal

In this example, we focus on a very useful and simple model: the process model
for a smooth signal. Smooth signals arise in a range of applications: physics-based
models, biological data, and financial data all have some inherent smoothness.

A surprisingly versatile technique for modeling any such process is to treat it as
integrated Brownian motion. We illustrate on a scalar time series x . We introduce
a new derivative state ẋ , with process model ẋk+1 = ẋk + ẇk, and then model the
signal x or interest as xk+1 = xk + ẋkΔt + wk . Thus we obtain an augmented (2D)
state with process model

[
ẋk+1
xk+1

]
=
[

I 0
Δt I

] [
ẋk

xk

]
+
[

ẇk

wk

]
. (8.16)

Using a well-known connection to stochastic differential equations (see [11, 26,
38]) we use covariance matrix

Qk = σ 2
[
Δt Δt2/2

Δt2/2 Δt3/3

]
. (8.17)

Model equations (8.16) and (8.17) can be applied as a process model for any
smooth process. For our numerical example, we take direct measurements of the sin
function, which is very smooth. Our measurement model therefore is

zk = Hk xk + vk, Hk =
[
0 1
]
. (8.18)

The resulting fit is shown in Fig. 8.2. The measurements guide the estimate to
the true smooth time series, giving very nice results. The figure was generated using
the ckbs package [6], specifically using the example file affine_ok.m. Mea-
surement errors were generated using Rk = 0.352, and this value was given to the
smoother. The σ 2 in (8.17) was taken to be 1. The program and example are available
for download from COIN-OR.

8.3 Nonlinear Process and Measurement Models

In the previous section, we have shown that when gk and hk in model (8.1) are linear,
and vk,wk are Gaussian, then the smoother is equivalent to solving a least squares
problem (8.6). We have also shown that the filter estimates appear as intermediate
results when one uses Algorithm 1 to solve the problem.

In this section, we turn to the case where gk and hk are nonlinear. We first formulate
the smoothing problem as a maximum a posteriori (MAP) problem, and show that
it is a nonlinear least squares (NLLS) problem. To set up for later sections, we also
introduce the broader class of convex composite problems.
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Fig. 8.2 Tracking a smooth
signal (sine wave) using
a generic linear process
model (8.16) and direct
(noisy) measurements (8.18).
Red solid line is true signal,
blue dashed line is Kalman
(RTS) smoother estimate.
Measurements are displayed
as circles

We then review the standard Gauss-Newton method in the broader context of
convex composite models, and show that when applied to the NLLS problem, each
iteration is equivalent to solving (8.6), and therefore to a full execution of the RTS
smoother. We also show how to use a simple line search to guarantee convergence
of the method to a local optimum of the MAP problem.

This powerful approach, known for at least 20 years [9, 12, 21], is rarely used in
practice; instead practitioners favor the EKF or the UKF [18, 28], neither of which
converge to a (local) MAP solution. MAP approaches work very well for a broad
range of applications, and it is not clear why one would throw away an efficient
MAP solver in favor of another scheme. To our knowledge, the optimization (MAP)
approach has never been included in a performance comparison of ‘cutting edge’
methods, such as [34]. While such a comparison is not in the scope of this work,
we lay the foundation by providing a straightforward exposition of the optimization
approach and a reproducible numerical illustration (with publicly available code)
for smoothing the Van Der Pol oscillator, a well known problem where the process
model is a nonlinear ODE.

8.3.1 Nonlinear Smoother Formulation and Structure

In order to develop a notation analogous to (8.6), we define functions g : RnN →
R

n(N+1) and h : R
nN → R

M , with M = ∑
k mk , from components gk and hk as

follows.

g(x) =

⎡

⎢⎢⎢⎣

x1
x2 − g2(x1)

...

xN − gN (xN−1)

⎤

⎥⎥⎥⎦, h(x) =

⎡

⎢⎢⎢⎣

h1(x1)

h2(x2)
...

hN (xN )

⎤

⎥⎥⎥⎦. (8.19)
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With this notation, the MAP problem, obtained exactly as in Sect. 8.2.2, is given
by

min
x

f (x) = 1

2
‖g(x)− w‖2Q−1 + 1

2
‖h(x)− z‖2R−1, (8.20)

where z and w are exactly as in (8.5), so that z is the entire vector of measurements,
and w contains the initial estimate g1(x0) in the first n entries, and zeros in the
remaining n(N − 1)entries.

We have formulated the nonlinear smoothing problem as a nonlinear least-squares
(NLLS) problem—compare (8.20) with (8.6). We take this opportunity to note that
NLLS problems are a special example of a more general structure. Objective (8.20)
may be written as a composition of a convex function ρ with a smooth function F :

f (x) = ρ(F(x)), (8.21)

where

ρ

(
y1
y2

)
= 1

2
‖y1‖2Q−1 + 1

2
‖y2‖2R−1 , F(x) =

[
g(x)− w
h(x)− z

]
. (8.22)

As we show in the next sub-section, problems of general form (8.21) can be
solved using the Gauss-Newton method, which is typically associated specifically
with NLLS problems. Presenting the Gauss-Newton right away in the more general
setting will make it easier to understand extensions in the following sections of the
chapter.

8.3.2 Gauss-Newton Method for Convex Composite Models

The Gauss-Newton method can be used to solve problems of the form (8.21), and
it uses a very simple strategy: iteratively linearizing the smooth function F [15].
More specifically, the Gauss-Newton method is an iterative method of the form

xν+1 = xν + γ νdν, (8.23)

where dν is the Gauss-Newton search direction, and γ ν is a scalar that guarantees

f (xν+1) < f (xν). (8.24)

The direction dν is obtained by solving the subproblem

dν = arg min
d

f̃ (d) := ρ
(

F(xν)+ ∇F(xν)�d
)
. (8.25)

We then set
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Δ̃ f (xν) = f̃ (dν)− f (xν).

By [15, Lemma 2.3, Theorem 3.6],

f ′(xν; dν) ≤ Δ̃ f (xν) ≤ 0, (8.26)

with equality if and only if xν is a first-order stationary point for f . This implies that
a suitable stopping criteria for the algorithm is the conditionΔ f (xν) ∼ 0. Moreover,
xν is not a first-order stationary point for f , then the direction dν is a direction of
strict descent for f at xν .

Once the direction dν is obtained with Δ̃ f (xν) < 0, a step-size γ ν is obtained by a
standard backtracking line-search procedure: pick a values 0 < λ < 1 and 0 < κ < 1
(e.g., λ = 0.5 and κ = 0.001) and evaluate f (xν + λsdν), s = 0, 1, 2, . . . , until

f (xν + λsdν) ≤ f (xν)+ κλsΔ̃ f (xν) (8.27)

is satisfied for some s̄, then set γ ν = λs̄ and make the GN update (8.23). The fact
that there is a finite value of s for which (8.27) is satisfied follows from inequality
f ′(xν; dν) ≤ Δ̃ f (xν) < 0. The inequality (8.27) is called the Armijo inequality.
A general convergence theory for this algorithm as well as a wide range of others
is found in [15]. For the NLLS case, the situation is simple, since ρ is a quadratic,
and standard convergence theory is given for example in [27]. However, the more
general theory is essential in the later sections.

8.3.3 Details for Kalman Smoothing

To implement the Gauss-Newton method described above, one must compute the
solution dν to the Gauss-Newton subproblem (8.25) for (8.20). That is, one must
compute

dν = arg min
d

f̃ (d) = 1

2
‖Gνd − w− g(xν)︸ ︷︷ ︸

wν

‖2Q−1 + 1

2
‖H νd − z − h(xν)︸ ︷︷ ︸

zν

‖2R−1,

(8.28)
where

Gν =

⎡

⎢⎢⎢⎢⎣

I 0

−g(1)2 (xν1 ) I
. . .

. . .
. . . 0

−g
(1)
N (xνN−1) I

⎤

⎥⎥⎥⎥⎦
, H ν = diag{h(1)1 (x1), . . . , h(1)N (xN )}.

(8.29)



248 A. Y. Aravkin et al.

However, the problem (8.28) has exactly the same structure as (8.6); a fact that
we have emphasized by defining

wν := w− g(xν), zν = z − h(xν). (8.30)

Therefore, we can solve it efficiently by using Algorithm 1.
The linearization step in (8.28) should remind the reader of the EKF. Note, how-

ever, that the Gauss-Newton method is iterative, and we iterate until convergence to
a local minimum of (8.20). We also linearize along the entire state space sequence
xν at once in (8.28), rather than re-linearizing as we make our way through the xνk ’s.

8.3.4 Numerical Example: Van Der Pol Oscillator

The Van der Pol oscillator is a popular nonlinear process for comparing Kalman
filters, see [24] and [30, Sect. 4.1]. The oscillator is governed by a nonlinear ODE
model

Ẋ1(t) = X2(t) and Ẋ2(t) = μ[1− X1(t)
2]X2(t)− X1(t). (8.31)

In contrast to the linear model (8.16), which was a generic process for a smooth
signal, we now take the Euler discretization of (8.31) to be the specific process
model for this situation.

Given X (tk−1) = xk−1 the Euler approximation for X (tk−1 +Δt) is

gk(xk−1) =
(

x1,k−1 + x2,k−1Δt
x2,k−1 + {μ[1− x2

1,k]x2,k − x1,k}Δt

)
. (8.32)

For the simulation, the ‘ground truth’ is obtained from a stochastic Euler approxima-
tion of the Van der Pol oscillator. To be specific, withμ = 2, N = 80 andΔt = 30/N ,
the ground truth state vector xk at time tk = kΔt is given by x0 = (0,−0.5)T and
for k = 1, . . . , N ,

xk = gk(xk−1)+ wk, (8.33)

where {wk} is a realization of independent Gaussian noise with variance 0.01 and gk

is given in (8.32). Our process model for state transitions is also (8.33), with Qk =
0.01 I for k > 1, and so is identical to the model used to simulate the ground truth {xk}.
Thus, we have precise knowledge of the process that generated the ground truth {xk}.
The initial state x0 is imprecisely specified by setting g1(x0) = (0.1,−0.4)T �= x0
with corresponding variance Q1 = 0.1 I . For k = 1, . . . , N noisy measurements zk

direct measurements of the first component only were used

zk = x1,k + vk, (8.34)

with vk ∼ N (0, 1).
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Fig. 8.3 Tracking the Van Der Pol Osciallator using a nonlinear process model (8.32) and direct
(noisy) measurements (8.34) of X1-component only. Black solid line is true signal, blue dashed
line is nonlinear Kalman smoother estimate. Measurements are displayed as circles

The resulting fit is shown in Fig. 8.3. Despite the noisy measurements of only X1,
we are able to get a good fit for both components. The figure was generated using
the ckbs package [6], see the file vanderpol_experiment_simple.m. The
program and example are available for download from COIN-OR.

8.4 State Space Constraints

In almost every real-world problem, additional prior information is known about the
state. In many cases, this information can be represented using state space constraints.
For example, in tracking physical bodies, we often know (roughly or approximately)
the topography of the terrain; this information can be encoded as a simple box
constraint on the state. We may also know physical limitations (e.g., maximum
acceleration or velocity) of objects being tracked, or hard bounds set by biological
or financial systems. These and many other examples can be formulated using state
space constraints. The ability to incorporate this information is particularly useful
when measurements are inaccurate or far between.

In this section, we first show how to add affine inequality constraints to the affine
smoother formulation in Sect. 8.2. This requires a novel methodology: interior point
(IP) methods, an important topic in optimization [32, 37, 49]. IP methods work
directly with optimality conditions, so we derive these conditions for the smoothing
problem. Rather than review theoretical results about IP methods, we give a general
overview and show how they specialize to the linear constrained smoother. The
constrained Kalman smoother was originally proposed in [11], but we improve on
that work here, and present a simplified algorithm, which is also faster and more
numerically stable. We illustrate the algorithm using a numerical example, building
on the example in Sect. 8.2.
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Once the linear smoother with linear inequality constraints is understood, we
review the constrained nonlinear smoother (which can have nonlinear process, mea-
surement, and constraint functions). Using [11] and references therein, we show
that the constrained nonlinear smoother is iteratively solved using linear constrained
smoothing subproblems, analogously to how the nonlinear smoother in Sect. 8.3 is
iteratively solved using linear smoothing subproblems from Sect. 8.2. Because of
this hierarchy, the improvements to the affine algorithm immediately carry over to
the nonlinear case. We end with a nonlinear constrained numerical example.

8.4.1 Linear Constrained Formulation

We start with the linear smoothing problem (8.6), and impose linear inequality con-
straints on the state space x :

Bk xk ≤ bk . (8.35)

By choosing the matrix Bk and bk appropriately, one can ensure xk lies in any
polyhedral set, since such a set is defined by a finite intersection of hyperplanes. Box
constraints, one of the simplest and useful tools for modeling (lk ≤ xk ≤ uk) can be
imposed via [

I
−I

]
xk ≤

[
uk

−lk

]
.

In order to formulate the problem for the entire state space sequence, we define

B = diag({Bk}), b = vec({bk}), (8.36)

and all of the constraints can be written simultaneously as Bx ≤ b. The constrained
optimization problem is now given by

min
x

f (x) = 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1

subject to Bx + s = b, s ≥ 0.
(8.37)

Note that we have rewritten the inequality constraint as an equality constraint by
introducing a new ‘slack’ variable s.

We derive the Karush-Kuhn-Tucker (KKT) conditions using the Lagrangian for-
mulation. The Lagrangian corresponding to (8.36) is given by

L(x, u, s) = 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 + u�(Bx + s − b). (8.38)

The KKT conditions are now obtained by differentiating L with respect to its argu-
ments. Recall that the gradient of (8.6) is given by
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(H�R−1 H + G�Q−1G)x − H�R−1z − G�Q−1w.

As in (8.8) set C = H�R−1 H + G�Q−1G, and for convenience set

c = H�R−1z + G�Q−1w (8.39)

The KKT necessary and sufficient conditions for optimality are given by

∇xL = Cx + c + B�u = 0

∇qL = Bx + s − b = 0

ui si = 0 ∀i ; ui , si ≥ 0.

(8.40)

The last set of nonlinear equations is known as complementarity conditions. In
primal-dual interior point methods, the key idea for solving (8.37) is to succes-
sively solve relaxations of the system (8.40) that converge to a triplet (x̄, ū, s̄)which
satisfy (8.40).

8.4.2 Interior Point Approach

IP methods work directly to find solutions of (8.40). They do so by iteratively relaxing
the complementarity conditions ui si = 0 to ui si = μ as they drive the relaxation
parameter μ to 0. The relaxed KKT system is defined by

Fμ(s, u, x) =
⎡

⎣
s + Bx − b
SU1− μ1

Cx + BT u − c

⎤

⎦. (8.41)

where S and U are diagonal matrices with s and u on the diagonal, and so the second
equation in Fμ implements the relaxation ui si = μ of (8.40). Note that the relaxation
requires that μi , si > 0 for all i . Since the solution to (8.37) is found by driving the
KKT system to 0, at every iteration IP methods attempt to drive Fμ to 0 by Newton’s
method for root finding.

Newton’s root finding method solves the linear system

F (1)μ (s, u, x)

⎡

⎣
Δs
Δu
Δx

⎤

⎦ = −Fμ(s, u, x). (8.42)

It is important to see the full details of solving (8.42) in order to see why it is so
effective for constrained Kalman smoothing. The full system is given by
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⎡

⎣
I 0 B
U S 0
0 BT C

⎤

⎦

⎡

⎣
Δs
Δu
Δx

⎤

⎦ = −
⎡

⎣
s + Bx − b
SU1− μ1

Cx + BT u − c

⎤

⎦ . (8.43)

Applying the row operations

row2 ← row2 −U row1

row3 ← row3 − BT S−1row2
,

we obtain the equivalent system

⎡

⎣
I 0 B
0 S −U B
0 0 C + BT S−1U B

⎤

⎦

⎡

⎣
Δs
Δu
Δx

⎤

⎦ =

−
⎡

⎣
s + Bx − b

−U (Bx − b)− μ1
Cx + BT u − c + BT S−1 (U (Bx − b)+ μ1)

⎤

⎦ . (8.44)

In order to find the update for Δx , we have to solve the system

(
C + BT S−1U B

)
Δx = Cx + BT u − c + BT S−1 (U (Bx − b)+ μ1) (8.45)

Note the structure of the matrix in the LHS of (8.45). The matrix C is the same as
in (8.6), so it is positive definite symmetric block tridiagonal. The matrices S−1 and
U are diagonal, and we always ensure they have only positive elements. The matrices
B and B� are both block diagonal. Therefore, C+BT S−1U B has the same structure
as C , and we can solve (8.45) using Algorithm 1.

Once we have Δx , the remaining two updates are obtained by back-solving:

Δu = U S−1(B(x +Δx)− b)+ μ
s

(8.46)

and
Δs = −s + b − B(x +Δx). (8.47)

This approach improves the algorithm presented in [11] solely by changing the
order of variables and equations in (8.41). This approach simplifies the derivation
while also improving speed and numerical stability.

It remains to explain how μ is taken to 0. There are several strategies, see
[32, 37, 49]. For the Kalman smoothing application, we use one of the simplest:
for two out of every three iterations μ is aggressively taken to 0 by the update
μ = μ/10; while in the remaining iterations, μ is unchanged. In practice, one sel-
dom needs more than 10 interior point iterations; therefore the constrained linear
smoother performs at a constant multiple of work of the linear smoother.
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8.4.3 Two Linear Numerical Examples

In this section, we present to simple examples, both with linear constraints.

8.4.3.1 Constant Box Constraints

In the first example, we impose box constraints in the example of Sect. 8.2.6. Specif-
ically, we take advantage of the fact the state is bounded:

[−1
] ≤ [x] [1] (8.48)

We can encode this information in form (8.35) with

Bk =
[

1 0
0 −1

]
, bk =

[
1
1

]
. (8.49)

We contrast the performance of the constrained linear smoother with that of the
linear smoother without constraints. To show the advantages of modeling with con-
straints, we increase the measurement noise in both situations to σ 2 = 1. The results
are show in Fig. 8.4. The constrained smoother avoids some of the problems encoun-
tered by the unconstrained smoother. Of particular interest are the middle and end
parts of the track, where the unconstrained smoother goes far afield because of bad
measurement. The constrained smoother is able track portions of the track extremely
well, having avoided the bad measurements with the aid of the bound constraints.
The figure was generated using the ckbs package [6], specifically using the example
file affine_ok_boxC.m.

8.4.3.2 Variable Box Constraints

In the second example, we impose time-varying constraints on the state. Specifically,
we track an exponentially bounded signal with a linear trend:

exp(−αt) sin(βt)+ 0.1t

using the ‘smooth signal’ process model and direct measurements, as in Sect. 8.2.6.
The challenge here is that as the oscillations start to die down because of the exponen-
tial damping, the variance of the measurements remains the same. We can improve the
performance by giving the smoother the exponential damping terms as constraints.

We included the second example to emphasize that ‘linearity’ of constraints means
‘with respect to the state’; in fact, the constraints in the second example are simply box
constraints which are time dependent. The second example is no more complicated
than the first one for the constrained smoother.
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Fig. 8.4 Two examples of linear constraints. Black solid line is true signal, magenta dash-dot
lines is unconstrained Kalman smoother, and blue dashed line is the constrained Kalman smoother.
Measurements are displayed as circles, and bounds are shown as green horizontal lines. In the left
panel, note that performance of the bounded smoother is significantly better around time 4–10—the
unconstrained is fooled by the measurements at times 4 and 8. In the right panel, as the oscillations
die down due to damping, the measurement variance remains unchanged, so it becomes much more
difficult to track the signal without the bound constraints

8.4.4 Nonlinear Constrained Smoother

We now consider the nonlinear constrained smoother, where we allow process func-
tions gk , measurement functions hk to be nonlinear, and also allow nonlinear smooth
constraints ξk(xk) ≤ bk . To be consistent with the notation we use throughout the
paper, we define a new function

ξ(x) =

⎡

⎢⎢⎢⎣

ξ1(x1)

ξ2(x2)
...

ξN (xN )

⎤

⎥⎥⎥⎦ , (8.50)

so that all the constraints can be written simultaneously as ξ(x) ≤ b.
The problem we would like to solve now is a constrained reformulation of (8.20)

min
x

f (x) = 1

2
‖g(x)− w‖2Q−1 + 1

2
‖h(x)− z‖2R−1

subject to ξ(x)− b ≤ 0.
(8.51)

At this point, we come back to the convex-composite representation described in
Sect. 8.3.1. The constraint ξ(x)−b ≤ 0 may be represented using an additional term
in the objective function:

δ (ξ(x)− b | R−) , (8.52)

where δ (x | C) is the convex indicator function:



8 Applications to Robust and Sparse Estimation 255

δ (x | C) =
{

0 x ∈ C

∞ x �∈ C
. (8.53)

Therefore, the objective (8.51) can be represented as follows:

f (x) = ρ(F(x))

ρ

⎛

⎝
y1
y2
y3

⎞

⎠ = 1

2
‖y1‖2Q−1 + 1

2
‖y2‖2R−1 + δ (y3 | R−)

F(x) =
⎡

⎣
g(x)− w
h(x)− z
ξ(x)− b

⎤

⎦ .

(8.54)

The approach to nonlinear smoothing in [11] is essentially the Gauss-Newton
method described in Sect. 8.3.2, applied to (8.54). In other words, at each iteration
ν, the function F is linearized, and the direction finding subproblem is obtained by
solving

min
d

1

2
‖Gνd − w− g(xν)︸ ︷︷ ︸

wν

‖2Q−1 + 1

2
‖H νd − z − h(xν)︸ ︷︷ ︸

zν

‖2R−1 ,

subject to Bνd ≤ b − ξ(xν)︸ ︷︷ ︸
bν

,
(8.55)

where Gν and H ν are exactly as in (8.28), Bν = ∇xξ(xν) is a block diagonal matrix
because of the structure of ξ (8.50), and we have written the indicator function
in (8.54) as an explicit constraint to emphasize the structure of the subproblem.

Note that (8.55) has exactly the same structure as the linear constrained smoothing
problem (8.37), and therefore can be solved using the interior point approach in
the previous section. Because the convex-composite objective (8.54) is not finite
valued (due to the indicator function of the feasible set), to prove convergence of the
nonlinear smoother, [11] uses results from [14]. We refer the interested reader to [11,
Lemma 8, Theorem 9] for theoretical convergence results, and to [11, Algorithm 6]
for the full algorithm, including line search details.

Because of the hierarchical dependence of the nonlinear constrained smoother on
the linear constrained smoother, the simplified improved approach we presented in
Sect. 8.4.2 pays off even more in the nonlinear case, where it is used repeatedly as a
subroutine.
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8.4.5 Nonlinear Constrained Example

The example in this section is reproduced from [11]. Consider the problem of tracking
a ship traveling close to shore where we are given distance measurements from two
fixed stations to the ship as well as the location of the shoreline. Distance to fixed
stations is a nonlinear function, so the measurement model here is nonlinear.

In addition, the corresponding constraint functions { fk} are not affine because the
shoreline is not a straight line. For the purpose of simulating the measurements {zk},
the ship velocity [X1(t), X3(t)] and the ship position [X2(t), X4(t)] are given by

X (t) = [ 1, t, − cos(t), 1.3− sin(t) ]�

Both components of the ship’s position are modeled using the smooth signal model
in Sect. 8.2.6. Therefore we introduce two velocity components, and the process
model is given by

Gk =

⎡

⎢⎢⎣

1 0 0 0
Δt 1 0 0
0 0 1 0
0 0 Δt 0

⎤

⎥⎥⎦ , Qk =

⎡

⎢⎢⎣

Δt Δt2/2 0 0
Δt2/2 Δt3/3 0 0

0 0 Δt Δt2/2
0 0 Δt2/2 Δt3/3

⎤

⎥⎥⎦ .

The initial state estimate is given by g1(x0) = X (t1) and Q1 = 100I4 where I4 is the
four by four identity matrix. The measurement variance is constant for this example
and is denoted by σ 2. The distance measurements are made from two stationary
locations on shore. One is located at (0, 0) and the other is located at (2π, 0). The
measurement model is given by

hk(xk) =
⎛

⎝

√
x2

2,k + x2
4,k√

(x2,k − 2π)2 + x2
4,k

⎞

⎠ , Rk =
(
σ 2 0
0 σ 2

)
.

We know that the ship does not cross land, so X4(t) ≥ 1.25 − sin[X2(t)]. This
information is encoded by the constraints

ξk(xk) = 1.25− sin(x2,k)− x4,k ≤ 0.

The initial point for the smoother is [0, 0, 0, 1]�, which is not feasible. The results
are plotted in Fig. 8.5. The constrained smoother performs significantly better than
the unconstrained smoother in this example. The experiment was done using the
ckbs program, specifically see sine_wave_example.m.
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Fig. 8.5 Smoother results for ship tracking example with linear process model, nonlinear mea-
surement model, and nonlinear constraints (with respect to the state). Black solid line is true state,
red triangles denote the constraint, magenta dash-dot line is the unconstrained estimate, and blue
dashed line gives the constrained nonlinear smoothed estimate

8.5 Robust Kalman Smoothing

In many applications, the probalistic model for the dynamics and/or the observations
(8.1) is not well described by a Gaussian distribution. This occurs in the model for
the observations when they are contaminated by outliers, or more generally, when the
measurement noise vk is heavy tailed [44], and it occurs in the model for the dynamics
when tracking systems with rapidly changing dynamics, or jumps in the state values
[31]. A robust Kalman filter or smoother is one that can obtain an acceptable estimate
of the state when Gaussian assumptions are violated, and which continues to perform
well when they are not violated.

We show how to accommodate non-Gaussian densities by starting with a simple
case of non-Gaussian heavy tailed measurement noise vk [7]. However, this general
approach can be extended to wk as well. Heavy tailed measurement noise occurs in
applications related to glint noise [25], turbulence, asset returns, and sensor failure
or machine malfunction. It can also occur in the presence of secondary noise sources
or other kinds of data anomalies. Although it is possible to estimate a minimum
variance estimate of the state using stochastic simulation methods such as Markov
chain Monte-Carlo (MCMC) or particle filters [24, 35], these methods are very
computationally intensive, and convergence often relies on heuristic techniques and
is highly variable. The approach taken here is very different. It is based on the
optimization perspective presented in the previous sections. We develop a method
for computing the MAP estimate of the state sequence under the assumption that the
observation noise comes from the �1-Laplace density often used in robust estimation,
e.g., see [23, Eq. 2.3]. As we will see, the resulting optimization problem will again
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be one of convex composite type allowing us to apply a Gauss-Newton strategy for
computing the MAP estimate. Again, the key to a successful computational strategy
is the preservation of the underlying tri-diagonal structure.

8.5.1 An �1-Laplace Smoother

For u ∈ R
m we use the notation ‖u‖1 for the �1 norm of u; i.e., ‖u‖1 = |u1| + . . .+

|um |. The multivariate �1-Laplace distribution with mean μ and covariance R has
the following density:

p(vk) = det (2R)−1/2 exp
[
−√2

∥∥∥R−1/2(vk − μ)
∥∥∥

1

]
, (8.56)

where R1/2 denotes a Cholesky factor of the positive definite matrix R; i.e.,
R1/2(R1/2)T = R. One can verify that this is a probability distribution with covari-
ance R using the change of variables u = R−1/2(vk − μ). A comparison of the
Gaussian and Laplace distributions is displayed in Fig. 8.6. This comparison includes
the densities, negative log densities, and influence functions, for both distributions.

Fig. 8.6 Gaussian and laplace densities, negative log densities, and influence functions (for
scalar vk )
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8.5.1.1 Maximum a Posteriori Formulation

Assume that the model for the dynamics and the observations is given by (8.1), where
wk is assumed to be Gaussian and vk is modeled by the �1-Laplace density (8.56).
Under these assumptions, the MAP objective function is given by

P
({xk}

∣∣{zk}
) ∝ P

({zk}
∣∣{xk}

)
P ({xk})

=
N∏

k=1

P({vk})P({wk})

∝
N∏

k=1

exp

(
−√2

∥∥∥R−1/2(zk − hk(xk))

∥∥∥
1

− 1

2
(xk − gk(xk−1))

�Q−1
k (xk − gk(xk−1))

)
.

(8.57)

Dropping terms that do not depend on {xk}, minimizing this MAP objective with
respect to {xk} is equivalent to minimizing

f ({xk}) :=
√

2
N∑

k=1

∥∥∥R−1/2
k [zk − hk(xk)]

∥∥∥
1
+ 1

2

N∑

k=1

[xk − gk(xk−1)]T Q−1
k [xk − gk(xk−1)],

where, as in (8.1), x0 is known and g0 = g1(x0). Setting

R = diag({Rk})
Q = diag({Qk})
x = vec({xk})
w = vec({g0, 0, . . . , 0})
z = vec({z1, z2, . . . , zN })

, g(x) =

⎡

⎢⎢⎢⎣

x1
x2 − g2(x1)

...

xN − gN (xN−1)

⎤

⎥⎥⎥⎦ , h(x) =

⎡

⎢⎢⎢⎣

h1(x1)

h2(x2)
...

hN (xN )

⎤

⎥⎥⎥⎦ ,

(8.58)
as in (8.5) and (8.19), the MAP estimation problem is equivalent to

minimize
x ∈ RNn f (x) = 1

2
‖g(x)− w‖Q−1 +√2

∥∥∥R−1/2(h(x)− z)
∥∥∥

1
. (8.59)

8.5.1.2 The Convex Composite Structure

The objective in (8.59) can again be written as a the composition of a convex function
ρ with a smooth function F :

f (x) = ρ(F(x)), (8.60)
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where

ρ

(
y1
y2

)
= 1

2
‖y1‖2Q−1 +

√
2‖R−1/2 y2‖1, F(x) =

[
g(x)− w
h(x)− z

]
. (8.61)

Consequently, the generalized Gauss-Newton methodology described in Sect. 8.3.2
again applies. That is, given an approximate solution xν to (8.59), we compute a new
approximate solution of the form

xν+1 = xν + γ νdν,

where dν solves the subproblem

minimize
d∈Rn

ρ(F(xν)+ F ′(xν)d), (8.62)

and γ ν is computed using the backtracking line-search procedure described in
Sect. 8.3.2. Following the pattern described in (8.28), the subproblem (8.62), where
ρ and F are given in (8.61), has the form

dν = arg min
d

f̃ (d) = 1

2
‖Gνd−w − g(xν)︸ ︷︷ ︸

wν

‖2Q−1+
√

2‖R−1/2(H νd−z − h(xν)︸ ︷︷ ︸
zν

)‖1,

(8.63)
where

Gν =

⎡

⎢⎢⎢⎢⎣

I 0

−g(1)2 (xν1 ) I
. . .

. . .
. . . 0

−g
(1)
N (xνN−1) I

⎤

⎥⎥⎥⎥⎦
, H ν = diag{h(1)1 (x1), . . . , h(1)N (xN )}.

(8.64)

8.5.1.3 Solving the Subproblem by Interior Point Methods

By (8.63), the basic subproblem that must be solved takes the form

min
d

1

2
‖Gd − w‖2Q−1 +

√
2‖R−1/2(Hd − z)‖1, (8.65)

where, as in (8.5),
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R = diag({Rk})
Q = diag({Qk})
H = diag({Hk})

x = vec({xk})
w = vec({w1,w2, . . . ,wN })
z = vec({z1, z2, . . . , zN })

G =

⎡

⎢⎢⎢⎢⎣

I 0

−G2 I
. . .

. . .
. . . 0
−G N I

⎤

⎥⎥⎥⎥⎦
.

(8.66)
Using standard optimization techniques, one can introduce a pair of auxiliary non-
negative variables p+, p− ∈ R

M (M = ∑N
k=1 m(k)) so that this problem can be

rewritten as
minimize 1

2 d�Cd + c�d +√2
�
(p+ + p−)

w.r.t. d ∈ R
nN , p+, p− ∈ R

M

subject to Bd + b = p+ − p−,
(8.67)

where

C = G�Q−1G =

⎡

⎢⎢⎢⎣

C1 A�2 0
A2 C2 A�3 0

0
. . .

. . .
. . .

0 AN CN

⎤

⎥⎥⎥⎦,

Ak = −Q−1
k Gk

Ck = Q−1
k + G�k+1 Q−1

k+1Gk+1

c = G�w

B = R−1/2 H

b = −R−1/2z

.

The problem (8.67) is a convex quadratic program. If we define

Fμ(p
+, p−, s+, s−, d) =

⎡

⎢⎢⎢⎢⎣

p+ − p− − b − Bd
diag(p−)diag(s−)1− μ1

s+ + s− − 2
√

2
diag(p+)diag(s+)1− μ1
Cd + c + BT(s− − s+)/2

⎤

⎥⎥⎥⎥⎦
, (8.68)

for μ ≥ 0, then the KKT conditions for (8.67) can be written as

F0(p
+, p−, s+, s−, d) = 0.

The set of solutions to Fμ(p+, p−, s+, s−, d) = 0 for μ > 0 is called the central
path. We solve the system forμ = 0 by an interior point strategy which, as described
earlier, is a Newton based predictor-corrector method for following the central path
as μ ↓ 0. At each iteration of the interior point method we need to solve a system of
the form

Fμ(p
+, p−, s+, s−, d)+ F ′μ(p+, p−, s+, s−, d)

⎡

⎢⎢⎢⎢⎣

Δp+
Δp−
Δs+
Δs−
Δy

⎤

⎥⎥⎥⎥⎦
= 0,
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where the vectors p+, p−, s+, and s− are componentwise strictly positive. Using
standard methods of Gaussian elimination (as in Sect. 8.4.2), we obtain the solution

Δy = [C + BTT−1 B]−1(ē + BTT−1 f̄ )

Δs− = T−1 BΔy − T−1 f̄

Δs+ = −Δs− + 2
√

2− s+ − s−

Δp− = diag(s−)−1[τ1− diag(p−)Δs−] − p−

Δp+ = Δp− + BΔy + b + By − p+ + p−,

where

d̄ = τ1/s+ − τ1/s− − b − By + p+

ē = BT(
√

2− s−)− Cy − c

f̄ = d̄ − diag(s+)−1diag(p+)(2
√

2− s−)
T = diag(s+)−1diag(p+)+ diag(s−)−1diag(p−).

Since the matrices T and B are block diagonal, the matrix B�T B is also block
diagonal. Consequently, the key matrix C + BTT−1 B has exactly the same form as
the block tri-diagonal matrix in (8.10) with

ck = Q−1
k + G�k+1 Q−1

k+1Gk+1 + H�k T−1
k Hk k = 1, . . . , N ,

ak = −Q−1
k Gk k = 2, . . . , N ,

where Tk = diag(s+k )−1diag(p+k )+diag(s−k )−1diag(p−k ). Algorithm 1 can be applied
to solve this system accurately and stably with O(n3 N ) floating point operations
which preserves the efficiency of the classical Kalman Filter algorithm.

Further discussion on how to incorporate approximate solutions to the quadratic
programming subproblems can be found in [7, Sect. V].

8.5.1.4 A Linear Example

In the linear case, the functions gk and hk is (8.1) are affine so that they equal their
linearizations. In this case, the problems (8.59) and (8.62) are equivalent and only
one subproblem of the form (8.65), or equivalently (8.67), needs to be solved. We
illustrate the �1-Laplace smoother described in Sect. 8.5.1.1 by applying it to the
example studied in Sect. 8.2.6, except now the noise term vk is modeled using the �1-
Laplace density. The numerical experiment described below is take from [7, Sect. VI].

The numerical experiment uses two full periods of X (t) generated with N = 100
and Δt = 4π/N ; i.e., discrete time points equally spaced over the interval [0, 4π ].
For k = 1, . . . , N the measurements zk were simulated by zk = X2(tk) + vk . In
order to test the robustness of the �1 model to measurement noise containing outlier
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data, we generate vk as a mixture of two normals with p denoting the fraction of
outlier contamination; i.e.,

vk ∼ (1− p)N(0, 0.25)+ pN(0, φ). (8.69)

This was done for p ∈ {0, 0.1} and φ ∈ {1, 4, 10, 100}. The model for the mean of
zk given xk is hk(xk) = (0, 1)xk = x2,k . Here x2,k denotes the second component
of xk . The model for the variance of zk given xk is Rk = 0.25. This simulates a
lack of knowledge of the distribution for the outliers; i.e., pN(0, φ). Note that we
are recovering estimates for the smooth function− sin(t) and its derivative− cos(t)
using noisy measurements (with outliers) of the function values.

We simulated 1000 realizations of the sequence {zk} keeping the ground truth
fixed, and for each realization, and each estimation method, we computed the corre-
sponding state sequence estimate {x̂k}. The Mean Square Error (MSE) corresponding
to such an estimate is defined by

MSE = 1

N

N∑

k=1

[x1,k − x̂1,k]2 + [x2,k − x̂2,k]2, (8.70)

where xk = X (tk). In Table 8.1, the Gaussian Kalman Filter is denoted by (GKF),
the Iterated Gaussian Smoother (IGS), and the Iterated �1-Laplace Smoother (ILS).
For each of these estimation techniques, each value of p, and each value of φ,
the corresponding table entry is the median MSE followed by the centralized 95 %
confidence interval for the MSE. For this problem, the model functions {gk(xk−1)}
and {hk(xk)} are linear so the iterated smoothers IGS and ILS only require one
iteration to estimate the sequence {x̂k}.

Note the �1-Laplace smoother performs nearly as well as the Gaussian smoother
at the nominal conditions (p = 0). The �1-Laplace smoother performs better and
more consistently in cases with data contamination ( p ≥ 0.1 and φ ≥ 1 ). It is also
apparent that the smoothers perform better than the filters.

Outlier detection and removal followed by refitting is a simple approach to robust
estimation and can be applied to the smoothing problem. An inherent weakness of
this approach is that the outlier detection is done using an initial fit which assumes
outliers are not present. This can lead to good data being classified as outliers and

Table 8.1 Median MSE and 95 % confidence intervals for the different estimation methods

p φ GKF IGS ILS

0 − 0.34 (0.24, 0.47) 0.04(0.02, 0.1) 0.04(0.01, 0.1)
0.1 1 0.41(0.26, 0.60) 0.06(0.02, 0.12) 0.04(0.02, 0.10)
0.1 4 0.59(0.32, 1.1) 0.09(0.04, 0.29) 0.05(0.02, 0.12)
0.1 10 1.0(0.42, 2.3) 0.17(0.05, 0.55) 0.05(0.02, 0.13)
0.1 100 6.8(1.7, 17.9) 1.3(0.30, 5.0) 0.05(0.02, 0.14)



264 A. Y. Aravkin et al.

Fig. 8.7 Simulation: measurements (+), outliers (o) (absolute residuals more than three standard
deviations), true function (thick line), �1-Laplace estimate (thin line), Gaussian estimate (dashed
line), Gaussian outlier removal estimate (dotted line)

result in over fitting the remaining data. An example of this is illustrated in Fig. 8.7
which plots the estimation results for a realization of {zk} where p = 0.1 and
φ = 100. Outlier removal also makes critical review of the model more difficult. A
robust smoothing method with a consistent model, such as the �1-Laplace smoother,
does not suffer from these difficulties.

8.5.1.5 Stochastic Nonlinear Process Example

We now illustrate the behavior of the �1-Laplace smoother on the Van Der Pol
Oscillator described in Sect. 8.3.4. The numerical experiment we describe is taken
from [7, Sect. VI]. The corresponding nonlinear differential equation is

Ẋ1(t) = X2(t) and Ẋ2(t) = μ[1− X1(t)
2]X2(t)− X1(t).

Given X (tk−1) = xk−1 the Euler approximation for X (tk−1 +Δt) is

gk(xk−1) =
(

x1,k−1 + x2,k−1Δt
x2,k−1 + {μ[1− x2

1,k]x2,k − x1,k}Δt

)
.

For this simulation, the ‘ground truth’ is obtained from a stochastic Euler approx-
imation of the Van der Pol oscillator. To be specific, with μ = 2, N = 164
and Δt = 16/N , the ground truth state vector xk at time tk = kΔt is given by
x0 = (0,−0.5)T and for k = 1, . . . , N ,
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xk = gk(xk−1)+ wk, (8.71)

where {wk} is a realization of independent Gaussian noise with variance 0.01. Our
model for state transitions (8.1) uses Qk = 0.01 I for k > 1, and so is identical to the
model used to simulate the ground truth {xk}. Thus, we have precise knowledge of the
process that generated the ground truth {xk}. The initial state x0 is imprecisely speci-
fied by setting g1(x0) = (0.1,−0.4)T �= x0 with corresponding variance Q1 = 0.1 I .

For k = 1, . . . , N the measurements zk were simulated by zk = x1,k + vk . The
measurement noise vk was generated as follows:

vk ∼ (1− p)N(0, 1.0)+ pN(0, φ). (8.72)

This was done for p ∈ {0, 0.1, 0.2, 0.3} and φ ∈ {10, 100, 1000}. The model for the
mean of zk given xk is hk(xk) = (1, 0)xk = x1,k . As in the previous simulation, we
simulated a lack of knowledge of the distribution for the outliers; i.e., pN(0, φ). In
(8.1), the model for the variance of zk given xk is Rk = 1.0.

We simulated 1,000 realizations of the ground truth state sequence {xk} and the
corresponding measurement sequence {zk}. For each realization, we computed the
corresponding state sequence estimate {x̂k} using both the IGS and IKS procedures.
The Mean Square Error (MSE) corresponding to such an estimate is defined by
equation (8.70), where xk is given by equation (8.71). The results of the simulation
appear in Table 8.2. As the proportion and variance of the outliers increase, the
Gaussian smoother degrades, but the �1-Laplace smoother is not affected.

Figure 8.8 provides a visual illustration of one realization {xk} and its correspond-
ing estimates {x̂k}. The left two panels demonstrate that, when no outliers are present,
both the IGS and ILS generate accurate estimates. Note that we only observe the first
component of the state and that the variance of the observation is relatively large
(see top two panels). The right two panels show what can go wrong when outliers
are present. The Van der Pol oscillator can have sharp peaks as a result of the nonlin-
earity in its process model, and outliers in the measurements can ‘trick’ the IGS into

Table 8.2 Median MSE over 1,000 runs and confidence intervals containing 95 % of MSE results

p φ IGS ILS

0 − 0.07 (0.06, 0.08) 0.07 (0.06, 0.09)
0.1 10 0.07 (0.06, 0.10) 0.07 (0.06, 0.09)
0.2 10 0.08 (0.06, 0.11) 0.08 (0.06, 0.11)
0.3 10 0.08 (0.06, 0.11) 0.08 (0.06, 0.11)
0.1 100 0.10 (0.07, 0.14) 0.07 (0.06, 0.10)
0.2 100 0.12 (0.07, 0.40) 0.08 (0.06, 0.11)
0.3 100 0.13 (0.09, 0.64) 0.08 (0.07, 0.10)
0.1 1000 0.17 (0.11, 1.50) 0.08 (0.06, 0.11)
0.2 1000 0.21 (0.14, 2.03) 0.08 (0.06, 0.11)
0.3 1000 0.25 (0.17, 2.66) 0.09 (0.07, 0.12)
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Fig. 8.8 The left two panels show estimation of x1, (top) and x2 (bottom) with errors from the
nominal model. The stochastic realization is represented by a thick black line; the Gaussian smoother
is the blue dashed line, and the �1-smoother is the magenta dash-dotted line. Right two panels show
the same stochastic realization but with measurement errors now from (p, φ) = (0.2, 100). Outliers
appear on the top and bottom boundary in the top right panel

these modes when they are not really present. In contrast, the Iterated �1-Laplace
Smoother avoids this problem.

8.5.2 Further Extensions with Log-Concave Densities

Let us step back for a moment and examine a theme common to all of the variations
on the Kalman smoother that we have examined thus far and compare the objective
functions in (8.6, 8.20, 8.37, 8.51, 8.59). In all cases, the objective function takes the
form

N∑

k=1

Vk (h(xk)− zk; Rk)+ Jk (xk − g(xk−1); Qk) , (8.73)

where the mappings Vk and Jk are associated with log-concave densities of the form

pv,k(z) ∝ exp (−Vk(z : Rk))) and pw,k(x) ∝ exp (−Jk(x; Qk))
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with pv,k and pw,k having covariance matrices Rk and Qk , respectively. The choice
of the penalty functions Vk and Jk reflect the underlying model for distribution of
the observations and the state, respectively. In many applications, the functions Vk

and Jk are a members of the class of extended piecewise linear-quadratic penalty
functions.

8.5.2.1 Extended Linear-Quadratic Penalties

Definition 1 For a nonempty polyhedral set U ⊂ R
m and a symmetric positive-

semidefinite matrix M ∈ R
m×m (possibly M = 0), define the function θU,M :

R
m → {R ∪∞} := R by

θU,M (w) := sup
u∈U

{
〈u,w〉 − 1

2
〈u,Mu〉

}
. (8.74)

Given and injective matrix B ∈ R
m×n and a vector b ∈ R

m , define ρ : Rn → R as
θU,M (b + By):

ρU,M,b,B(y) := supu∈U

{〈u, b + By〉 − 1
2 〈u,Mu〉}. (8.75)

All functions of the type specified in (8.74) are called piecewise linear-quadratic
(PLQ) penalty functions, and those of the form (8.75) are called extended piecewise
linear-quadratic (EPLQ) penalty functions.

Remarks 1 PLQ penalty functions are extensively studied by Rockafellar and Wets
in [43]. In particular, they present a full duality theory for optimizations problems
based on these functions.

It is easily seen that the penalty functions arising from both the Gaussian and �1-
Laplace distributions come from this EPLQ class. But so do other important densities
such as the Huber and Vapnik densities.

Example 1 : The �2, �1, Huber, and Vapnik penalties are representable in the notation
of Definition 1.

1. L2: Take U = R, M = 1, b = 0, and B = 1. We obtain ρ(y) =
supu∈R

〈
uy − 1

2
u2
〉
. The function inside the sup is maximized at u = y, whence

ρ(y) = 1
2 y2.

2. �1: Take U = [−1, 1], M = 0, b = 0, and B = 1. We obtain ρ(y) =
sup

u∈[−1,1]
〈uy〉 . The function inside the sup is maximized by taking u = sign(y),

whence ρ(y) = |y|.
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3. Huber: Take U = [−K , K ], M = 1, b = 0, and B = 1. We obtain ρ(y) =
sup

u∈[−K ,K ]

〈
uy − 1

2
u2
〉
. Take the derivative with respect to u and consider the

following cases:

a. If y < −K , take u = −K to obtain −K y − 1
2 K 2.

b. If −K ≤ y ≤ K , take u = y to obtain 1
2 y2.

c. If y > K , take u = K to obtain a contribution of K y − 1
2 K 2.

This is the Huber penalty with parameter K , shown in the upper panel of Fig. 8.9.

4. Vapnik: take U = [0, 1] × [0, 1], M =
[

0 0
0 0

]
, B =

[
1
−1

]
, and b =

[−ε
−ε

]
,

for some ε > 0. We obtain ρ(y) = supu1,u2∈[0,1]
〈[

y − ε
−y − ε

]
,

[
u1
u2

]〉
. We can

obtain an explicit representation by considering three cases:

a. If |y| < ε, take u1 = u2 = 0. Then ρ(y) = 0.
b. If y > ε, take u1 = 1 and u2 = 0. Then ρ(y) = y − ε.
c. If y < −ε, take u1 = 0 and u2 = 1. Then ρ(y) = −y − ε.

This is the Vapnik penalty with parameter ε, shown in the lower panel of Fig. 8.9.

8.5.2.2 PLQ Densities

We caution that not every EPLQ function is the negative log of a density function.
For an ELQP function ρ to be associated with a density, the function exp(−ρ(x))
must be integrable on R

n . The integrability of exp(−ρ(x)) can be established under
a coercivity hypothesis.

Definition 2 A function ρ : R
n → R ∪ {+∞} = R is said to be coercive (or

0-coercive) if lim‖x‖→∞ ρ(x) = +∞.

Since the functions ρU,M,b,B defined in (8.75) are not necessarily finite-valued,
their calculus must be treated with care. An important tool in this regard is the
essential dominion. The essential domain of ρ : Rn → R is the set

dom(ρ) := {x : ρ(x) < +∞}.

The affine hull of dom(ρ) is the smallest affine set containing dom(ρ), where a set
is affine if it is the translate of a subspace.

Theorem 1 [4, Theorem 6] (PLQ Integrability). Let ρ := ρU,M,b,B be defined as in
(8.75). Suppose ρ(y) is coercive, and let naff denote the dimension of aff(dom ρ).
Then the function f (y) = exp(−ρ(y)) is integrable on aff(dom ρ) with the naff -
dimensional Lebesgue measure. �
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Theorem 2 [4, Theorem 7] (Coercivity of ρ). The function ρU,M,b,B defined in
(8.75) is coercive if and only if [BTcone(U )]◦ = {0}. �

If ρ := ρU,M,b,B is coercive, then, by Theorem 1, then the function f (y) =
exp(−ρ(y)) is integrable on aff(dom ρ) with the naff -dimensional Lebesgue mea-
sure. If we define

p(y) =
{

c−1
1 exp(−ρ(y)) y ∈ dom ρ

0 else,
(8.76)

where

c1 =
(∫

y∈dom ρ

exp(−ρ(y))dy

)
,

and the integral is with respect to the Lebesgue measure with dimension naff , then p
is a probability density on dom(ρ). We call these PLQ densities.

8.5.2.3 PLQ Densities and Kalman Smoothing

We now show how to build up the penalty functions Vk and Jk in (8.73) using
PLQ densities. We will do this for the linear model (8.1–8.2) for simplicity. The
nonlinear case can be handled as before by applying the Gauss-Newton strategy to
the underlying convex composite function.

Using the notion given in 8.5, the linear model (8.1–8.2) can be written as

w = Gx + w
z = H x + v.

(8.77)

A general Kalman smoothing problem can be specified by assuming that the
noises w and v in the model (8.77) have PLQ densities with means 0, variances Q
and R (8.5). Then, for suitable {U w

k ,Mw
k , bw

k , Bw
k } and {U v

k ,Mv
k , bvk , Bvk }, we have

p(w) ∝ exp(−θU w,Mw(bw + Bw Q−1/2w))

p(v) ∝ exp(−θUv,Mv (bv + BvR−1/2v)),
(8.78)

where

U w =
N∏

k=1

U w
k ⊂ R

nN

U v =
N∏

k=1

U v
k ⊂ R

M

,
Mw = diag({Mw

k })
Mv = diag({Mv

k })
,

Bw = diag({Bw
k })

Bv = diag({Bvk })
bw = vec({bw

k })
bv = vec({bvk })

.

Then the MAP estimator for x in the model (8.77) is
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arg min
x∈RnN

{
θU w,Mw(bw + Bw Q−1/2(Gx − w))

+ θUv,Mv (bv + BvR−1/2(H x − z))

}
. (8.79)

Note that since wk and vk are independent, problem (8.79) is decomposable into
a sum of terms analogous to (8.73). This special structure follows from the block
diagonal structure of H, Q, R, Bv, Bw, the bidiagonal structure of G, and the product
structure of sets U w and U v , and is key in proving the linear complexity of the solution
method we propose.

8.5.2.4 Solving the Kalman Smoother Problem with PLQ Densities

Recall that, when the sets U w and U v are polyhedral, (8.79) is an Extended Linear
Quadratic program (ELQP), described in [43, Example 11.43]. We solve (8.79) by
working directly with its associated Karush-Kuhn-Tucker (KKT) system.

Lemma 1 [4, Lemma 3.1] Suppose that the sets U w
k and U v

k are polyhedral, that is,
they can be given the representation

U w
k = {u|(Aw

k )
T u ≤ aw

k }, U v
k = {u|(Avk )T u ≤ avk }.

Then the first-order necessary and sufficient conditions for optimality in (8.79) are
given by

0 = (Aw)Tuw + sw − aw ; 0 = (Av)Tuv + sv − av

0 = (sw)Tqw ; 0 = (sv)Tqv

0 = b̃w + Bw Q−1/2Gx − Mwuw − Awqw

0 = b̃v − BvR−1/2 H x − Mvuv − Avqv

0 = GT Q−T/2(Bw)Tuw − HT R−T/2(Bv)Tuv

0 ≤ sw, sv, qw, qv.

, (8.80)

where b̃w = bw − Bw Q−1/2w and b̃v = bv − BvR−1/2z. �

We propose solving the KKT conditions (8.80) by an Interior Point (IP) method.
IP methods work by applying a damped Newton iteration to a relaxed version of
(8.80) where the relaxation is to the complementarity conditions. Specifically, we
replace the complementarity conditions by

(sw)Tqw = 0→ QwSw1− μ1 = 0
(sv)Tqv = 0 → QvSv1− μ1 = 0,

where Qw, Sw, Qv, Sv are diagonal matrices with diagonals qw, sw, qv, sv respec-
tively. The parameter μ is aggressively decreased to 0 as the IP iterations proceed.
Typically, no more than 10 or 20 iterations of the relaxed system are required to
obtain a solution of (8.80), and hence an optimal solution to (8.79). The following
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theorem shows that the computational effort required (per IP iteration) is linear in
the number of time steps whatever PLQ density enters the state space model.

Theorem 3 [4, Theorem 3.2] (PLQ Kalman Smoother Theorem) Suppose that all
wk and vk in the Kalman smoothing model (8.1–8.2) come from PLQ densities that
satisfy Null(M)∩U∞ = {0}. Then an IP method can be applied to solve (8.79) with
a per iteration computational complexity of O(Nn3 + Nm). �

The proof, which can be found in [4], shows that IP methods for solving (8.79) pre-
serve the key block tridiagonal structure of the standard smoother. General smoothing
estimates can therefore be computed in O(Nn3) time, as long as the number of IP
iterations is fixed (as it usually is in practice, to 10 or 20).

It is important to observe that the motivating examples all satisfy the conditions
of Theorem 3.

Corollary 1 [4, Corollary 3.3] The densities corresponding to L1, L2, Huber, and
Vapnik penalties all satisfy the hypotheses of Theorem 3.

Proof We verify that Null(M) ∩ Null(AT) = 0 for each of the four penalties. In
the L2 case, M has full rank. For the L1, Huber, and Vapnik penalties, the respective
sets U are bounded, so U∞ = {0}.

8.5.2.5 Numerical Example: Vapnik Penalty and Functional Recovery

In this section we present a numerical example to illustrate the use of the Vapnik
penalty (see Fig. 8.9) in the Kalman smoothing context, for a functional recovery
application.

We consider the following function

f (t) = exp [sin(8t)]

taken from [19]. Our aim is to reconstruct f starting from 2000 noisy samples
collected uniformly over the unit interval. The measurement noise vk was generated
using a mixture of two normals with p = 0.1 denoting the fraction from each normal;
i.e.,

vk ∼ (1− p)N(0, 0.25)+ pN(0, 25),

where N refers to the Normal distribution. Data are displayed as dots in Fig. 8.10.
Note that the purpose of the second component of the normal mixture is to simulate
outliers in the output data and that all the measurements exceeding vertical axis limits
are plotted on upper and lower axis limits (4 and -2) to improve readability.

The initial condition f (0) = 1 is assumed to be known, while the difference
of the unknown function from the initial condition (i.e., f (·) − 1) is modeled as a
Gaussian process given by an integrated Wiener process. This model captures the
Bayesian interpretation of cubic smoothing splines [48], and admits a 2-dimensional
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Fig. 8.9 Huber (upper) and
Vapnik (lower) penalties
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state space representation where the first component of x(t), which models f (·)−1,
corresponds to the integral of the second state component, modelled as Brownian
motion. To be more specific, lettingΔt = 1/2, 000, the sampled version of the state
space model (see [26, 38] for details) is defined by

Gk =
[

1 0
Δt 1

]
, k = 2, 3, . . . , 2, 000

Hk =
[
0 1
]
, k = 1, 2, . . . , 2, 000

with the autocovariance of wk given by

Qk = λ2

[
Δt Δt2

2
Δt2

2
Δt3

3

]
, k = 1, 2, . . . , 2, 000,

where λ2 is an unknown scale factor to be estimated from the data.
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Fig. 8.10 Simulation: measurements (·) with outliers plotted on axis limits (4 and−2), true function
(continuous line), smoothed estimate using either the quadratic loss (dashed line, left panel) or the
Vapnik’s ε-insensitive loss (dashed line, right panel)

The performance of two different Kalman smoothers are compared. The first
(classical) estimator uses a quadratic loss function to describe the negative log of
the measurement noise density and contains only λ2 as unknown parameter. The
second estimator is a Vapnik smoother relying on the ε-insensitive loss, and so
depends on two unknown parameters λ2 and ε. In both of the cases, the unknown
parameters are estimated by means of a cross validation strategy where the 2,000
measurements are randomly split into a training and a validation set of 1,300 and
700 data points, respectively. The Vapnik smoother was implemented by exploiting
the efficient computational strategy described in the previous section, see [8] for
specific implementation details. In this way, for each value of λ2 and ε contained
in a 10 × 20 grid on [0.01, 10, 000] × [0, 1], with λ2 logarithmically spaced, the
function estimate was rapidly obtained by the new smoother applied to the training
set. Then, the relative average prediction error on the validation set was computed,
see Fig. 8.11. The parameters leading to the best prediction were λ2 = 2.15×103 and
ε = 0.45, which give a sparse solution defined by fewer than 400 support vectors.
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The value of λ2 for the classical Kalman smoother was then estimated following
the same strategy described above. In contrast to the Vapnik penalty, the quadratic
loss does not induce any sparsity, so that, in this case, the number of support vectors
equals the size of the training set.

The left and right panels of Fig. 8.10 display the function estimate obtained using
the quadratic and the Vapnik losses, respectively. It is clear that the Gaussian estimate
is heavily affected by the outliers. In contrast, as expected, the estimate coming from
the Vapnik based smoother performs well over the entire time period, and is virtually
unaffected by the presence of large outliers.

8.6 Sparse Kalman Smoothing

In recent years, sparsity promoting formulations and algorithms have made a tremen-
dous impact in signal processing, reconstruction algorithms, statistics, and inverse
problems (see e.g., [13] and the references therein). In some contexts, rigorous math-
ematical theory is available that can guarantee recovery from under-sampled sparse
signals [20]. In addition, for many inverse problems, sparsity promoting optimization
provides a way to exploit prior knowledge of the signal class as a way to improve
the solution to an ill-posed problem, but conditions for recoverability have not yet
been derived [36].

Fig. 8.11 Estimation of the smoothing filter parameters using the Vapnik loss. Average prediction
error on the validation data set as a function of the variance process λ2 and ε
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In the context of dynamic models, several sparse Kalman filters have been recently
proposed [1, 16, 17, 47]. In the applications considered, in addition to process and
measurement models, the state space is also known to be sparse. The aim is to
improve recovery by incorporating sparse optimization techniques. Reference [1]
is very close to the work presented in this section, since they formulate a sparsity
promoting optimization problem over the whole measurement sequence and solve it
with an optimization technique shown to preserve computational efficiency.

In this section, we formulate the sparse Kalman smoothing problem as an
optimization problem over the entire state space sequence, and suggest two new
approaches for the solution of such problems. The first approach is based on the
interior point methodology, and is a natural extension of the mathematics presented
in earlier sections.

The second approach is geared towards problems where the dimension n (state at
a single time point) is large. For this case, we propose a matrix free approach, using
a different (constrained) Kalman smoothing formulation, together with the projected
gradient method. In both methods, the structure of the Kalman smoothing problem
is exploited to achieve computational efficiency.

We present theoretical development for the two approaches, leaving applications
and numerical results to future work.

8.6.1 Penalized Formulation and Interior Point Approach

We consider only the linear smoother (8.6). A straight forward way to impose sparsity
on the state is to augment this formulation with a 1-norm penalty:

min
x

f (x) := 1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 + λ‖W x‖1, (8.81)

where W is a diagonal weighting matrix included for modeling convenience. For
example, the elements of W can be set to 0 to exclude certain parts of the state dimen-
sion from the sparse penalty. A straightforward constrained reformulation of (8.81) is

min
x

1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1 + λ1T y

s.t. − y ≤ W x ≤ y.
(8.82)

Note that this is different from the constrained problem (8.37), because we have intro-
duced a new variable y, with constraints in x and y. Nonetheless, an interior point
approach may still be used to solve the resulting problem. We rewrite the constraint
in (8.88) using non-negative slack variables s, r :

W x − y + s = 0

−W x − y + r = 0,
(8.83)
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and form the Lagrangian for the corresponding system:

L(s, r, q, p, y, x) = xT Cx+ cT x+λ1T y+qT (W x− y+ s)+ pT (−W x− y+r),
(8.84)

with C as in (8.8) and c as in (8.39)., and where q and p are the dual variables
corresponding to the inequality constraints W x ≤ y and −W x ≤ −y, respectively.
The (relaxed) KKT system is therefore given by

Fμ(s, r, q, p, y, x) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

s − y +W x

r − y −W x

D(s)D(q)1− μ1

D(r)D(p)1− μ1

λ1− q − p

Wq −W p + Cx + c

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (8.85)

The derivative matrix F (1)μ is given by

F (1)μ =

⎡

⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 −I W
0 I 0 0 −I −W

D(q) 0 D(s) 0 0 0
0 D(p) 0 D(r) 0 0
0 0 −I −I 0 0
0 0 W −W 0 C

⎤

⎥⎥⎥⎥⎥⎥⎦
, (8.86)

and it is row equivalent to the system

⎡

⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 −I W
0 I 0 0 −I −W
0 0 D(s) 0 D(q) −D(q)W
0 0 0 D(r) D(p) D(p)W
0 0 0 0 Φ −ΨW
0 0 0 0 0 C +WΦ−1

(
Φ2 − Ψ 2

)
W

⎤

⎥⎥⎥⎥⎥⎥⎦

where
Φ = D(s)−1 D(q)+ D(r)−1 D(p)

Ψ = D(s)−1 D(q)− D(r)−1 D(p),
(8.87)

and the matrix Φ2 − Ψ 2 is diagonal, with the i i th entry given by 4qiri . Therefore,
the modified system preserves the structure of C ; specifically it is symmetric, block
tridiagonal, and positive definite. The Newton iterations required by the interior point
method can therefore be carried out, with each iteration having complexity O(n3 N ).
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8.6.2 Constrained Formulation and Projected Gradient Approach

Consider again the linear smoother (8.6), but now impose a 1-norm constraint rather
than a penalty:

min
x

f (x) :=1

2
‖H x − z‖2R−1 + 1

2
‖Gx − w‖2Q−1

s.t. ‖W x‖1 ≤ τ.
(8.88)

This problem, which equivalent to (8.81) for certain values of λ and τ , is precisely
the LASSO problem [45], and can be written

min
1

2
xT Cx + cT x s.t. ‖W x‖1 ≤ τ. (8.89)

with C ∈ R
nN×nN as in (8.8) and c ∈ R

nN as in (8.39). When n is large, the interior
point method proposed in the previous section may not be feasible, since it requires
exact solutions of the system

(C +WΦ−1
(
Φ2 − Ψ 2

)
W )x = r,

and the block-tridiagonal Algorithm 1 requires the inversion of n × n systems.
The problem (8.89) can be solved without inverting such systems, using the spec-

tral projected gradient method, see e.g., [46, Algorithm 1]. Specifically, the gradient
Cx + c must be repeatedly computed, and then xν − (Cxν + c) is projected onto the
set ‖W x‖1 ≤ τ . (the word ‘spectral’ refers to the fact that the Barzilai-Borwein line
search is used to get the step length).

In the case of the Kalman smoother, the gradient Cx + c can be computed in
O(n2 N ) time, because of the special structure of C . Thus for large systems, the
projected gradient method that exploits the structure of C affords significant savings
per iteration relative to the interior point approach, O(n2 N ) vs. O(n3 N ), and relative
to a method agnostic to the structure of C , O(n2 N ) vs. O(n2 N 2). The projection
onto the feasible set ‖W x‖1 ≤ τ can be done in O(nN log(nN )) time.

8.7 Conclusions

In this chapter, we have presented an optimization approach to Kalman smoothing,
together with a survey of applications and extensions. In Sect. 8.2.5, we showed that
the recursive Kalman filtering and smoothing algorithm is equivalent to Algorithm 1,
an efficient method to solve block tridiagonal positive definite systems. In the fol-
lowing sections, we used this algorithm as a subroutine, allowing us to present new
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ideas on a high level, without needing to explicitly write down modified Kalman
filtering and smoothing equations.

We have presented extensions to nonlinear process and measurement models in
Sect. 8.3, described constrained Kalman smoothing (both the linear and nonlinear
cases) in Sect. 8.4, and presented an entire class of robust Kalman smoothers (derived
by considering log-linear-quadratic densities) in Sect. 8.5. For all of these applica-
tions, nonlinearity in the process, measurements, and constraints can be handled by a
generalized Gauss-Newton method that exploits the convex composite structure dis-
cussed in Sects. 8.3.1 and 8.4.4. The GN subproblem can be solved either in closed
form or via an interior point approach; in both cases Algorithm 1 was used. For all
of these extensions, numerical illustrations have also been presented, and most are
available for public release through the ckbs package [6].

In the case of the robust smoothers, it is possible to extend the density modeling
approach by considering densities outside the log-concave class [3], but we do not
discuss this work here.

We ended the survey of extensions by considering two novel approaches to Kalman
smoothing of sparse systems, for applications where modeling the sparsity of the state
space sequence improves recovery. The first method built on the readers’ familiarity
with the interior point approach as a tool for the constrained extension in Sect. 8.4.
The second method is suitable for large systems, where exact solution of the linear
systems is not possible. Numerical illustrations of the methods have been left to
future work.
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Chapter 9
Compressive System Identification

Avishy Y. Carmi

Abstract The first part of this chapter presents a novel Kalman filtering-based
method for estimating the coefficients of sparse, or more broadly, compressible
autoregressive models using fewer observations than normally required. By virtue of
its (unscented) Kalman filter mechanism, the derived method essentially addresses
the main difficulties attributed to the underlying estimation problem. In particular,
it facilitates sequential processing of observations and is shown to attain a good
recovery performance, particularly under substantial deviations from ideal condi-
tions, those which are assumed to hold true by the theory of compressive sensing. In
the remaining part of this chapter we derive a few information-theoretic bounds per-
taining to the problem at hand. The obtained bounds establish the relation between
the complexity of the autoregressive process and the attainable estimation accuracy
through the use of a novel measure of complexity. This measure is suggested herein
as a substitute to the generally incomputable restricted isometric property.

9.1 Introduction

The common practice in engineering and science is to describe systems and processes
by means of parametric models. In many cases the values of the parameters cannot
be directly measured but rather they should be estimated by merely observing the
system behaviour. The art and science of doing so is sometimes referred to as system
identification. Within this discipline, autoregressive (AR) models/processes are per-
haps one of the most valuable tools for time-series analysis. These models are widely
used for change detection [7], dynamical system modeling [37], forecasting (e.g.,
the Box-Jenkins framework [1]) and causal reasoning (e.g., Granger causality [30]).
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The underlying formalism has to do with non Markovian dynamics (e.g., future
outcomes depend on the process lagged values) and is best known for its ability to
adequately capture complex behaviours and nonlinearities such as those underlying
natural phenomena [1].

By virtue of their linear formulation, AR models allow simple inference meth-
ods to be employed. The archetypical procedure is aimed at learning the process
coefficients which best explain the available time-series data by means of maximum
likelihood (ML) or least squares (LS) techniques. If the time-series data was indeed
produced using an AR model then, under mild conditions, this procedure is guar-
anteed to yield the actual coefficients to within accuracy which primarily depends
on the amount of observations. Notwithstanding, the causal generating mechanism
underlying the observed data is inaccessible in virtually many real-world applica-
tions and in that case fitting an AR model would be considered as an approximation
at most. In this respect, a fitted AR model is deemed plausible if it facilitates the
prediction of future patterns and behaviours exhibited by the actual process.

9.1.1 Sparse and Compressible AR Models

Sparse and, more broadly, compressible AR models are those which consist of only a
few elementary components with the rest being negligible in terms of their contribu-
tion to the observed phenomena. As we are essentially dealing with linear expressions
this characterisation translates into having a significant number of nearly vanishing
parameters. This configuration may be conceptualised by portraying the AR model as
a graph for which the nodes and edges are, respectively, the underlying random vari-
ables and their statistical dependency. In this view, a sparse AR model corresponds
to a graph with only a few connected nodes, which is otherwise known as a sparse
graphical model (see Fig. 9.1). This kind of model, which is a well-studied concept
in machine learning and statistics, is known to promote reduced-order descriptions
and plausible inference [29]. Over the past years, sparse AR models have been used
for fMRI analysis and causal discovery [9, 31], and more recently also for system
identification [45].

One of the tasks in fitting an AR model is to determine its order, that is, the
number of parameters necessary for describing the generating mechanism underlying
the time-series data [10]. Conventional methods for doing so mostly rely on the
Akaike information criterion (AIC) [32], or its counterpart, the Bayesian information

Fig. 9.1 Fully connected and
sparsely connected graphical
models

(a) (b)
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criterion (BIC) [46], both which penalise the underlying likelihood function with
respect to the number of parameters. There are at least two reasons why this is vital for
obtaining interpretable models. The first reason is that normally we are limited by the
amount of available data which necessarily restricts the number of parameters that can
be used in practice. The other, equally important, reason has to do with the principle
of Occam’s Razor which essentially attests in favor of simplified descriptions. In
that sense, expendable parameters would increase the chance of departure from the
factual generating mechanism underlying the data. As an example, the undesired
effect referred to as overfitting is one of the best known manifestations of using extra
parameters.

An autoregressive model may be considered sparse if it involves much more para-
meters than what is necessary for adequately describing the observed phenomenon.
In this setting we would normally be interested in recovering only the few significant
(non-vanishing) parameters that underly the time-series data. This is exactly what
compressive sensing techniques are made for (see below). Furthermore, since not all
parameters are of the same importance it turns out that fewer observations would be
required to estimate only those which are truly necessary. This approach, which can
be viewed as simultaneous parameter estimation and variable selection, completely
does away with peripheral procedures for model determination such as AIC and BIC.

Complex systems are yet another example in which compressive AR models may
be useful. Occasionally, in such cases there are multiple time-series each pertaining to
an individual component or a group of components within the system. The standard
AR formalism would naturally embody the interrelations among various system
components, and in this respect the vector of parameters would be deemed sparse
whenever only a small subset of entities affects the majority of constituents. This sort
of hierarchical mechanism underlies a wide range of emergent behaviours in group
dynamics and social networks.

In this work we suggest estimating the parameters of sparse and compressible AR
models by means of compressive sensing techniques. We provide a brief overview of
this paradigm in which we highlight a few implementation issues in the context of
this problem. This part is rather crucial for understanding the aims and scope of this
work.

9.1.2 Compressive Sensing

In recent years compressive sensing (CS) has drawn enormous amount of atten-
tion in the signal processing community. The key concept of reconstructing sig-
nals from fewer observations than what is normally considered to be sufficient,
is the primary reason popularising CS in a wide variety of scientific domains
where large-scale problems naturally arise. Compressive sensing has its origins in
group testing paradigms and computational harmonic analysis [51]. Similar con-
cepts have been around for more than two decades. The prevalent formalism is that
of recovering sparse signals, i.e., those which are constituted by a relatively small
number of non-vanishing components, using as few as possible linear measurements.
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In computational harmonics this concept has come into being largely due to the
pervasiveness of orthonormal basis functions underlying the Fourier and wavelet
transforms. Here, the incoherence among the basis functions facilitates highly accu-
rate recovery of sparse signals using an amount of measurements which may be
drastically smaller than the one predicted by the Nyquist-Shannon sampling the-
orem. The signal (unknown) support and the corresponding spike magnitudes can
be obtained by means of convex programming [11, 15, 16, 22, 23], and greedy
algorithms [8, 24, 40, 42] (see also [50]).

The recovery of sparse signals is in general NP-hard [22]. State-of-the-art methods
for addressing this problem commonly utilise convex relaxations, non-convex local
optimisation steps and greedy search mechanisms. Convex relaxations are used in
various methods such as the infamous homotopy-based LASSO and LARS [11, 28],
as well as in the Dantzig selector [11], basis pursuit and basis pursuit de-noising [23].
Non-convex optimization approaches include Bayesian methodologies such as the
relevance vector machine, otherwise known as sparse Bayesian learning [49] and
the Bayesian compressive sensing (BCS) [32]. Notable greedy search algorithms
are the matching pursuit (MP) [40], the orthogonal MP (OMP) [42], iterative hard
thresholding [8], and the orthogonal least squares [22].

The extent to which we are able to materialise the concepts of CS has been progres-
sively refined over the past years [15, 16, 44, 51] until the appearance of [12, 22, 26]
in which it assumes a definite form. Roughly, there are two major influencing factors:
the number of prominent basis components composing the underlying signal (i.e., its
support size), and the incoherence between the columns of the sensing matrix. The
latter factor has to do with the condition widely known as the restricted isometric
property, or RIP, in short [12, 22]. Possibly the best way to understand this is by
considering a typical CS problem. Thus,

x = Hα

where x ∈ R
N and α ∈ R

n denote, respectively, a vector of measurements and a
vector of unknowns. For being consistent with the standard terminology, the matrix
H , which has been given different names in various disciplines (e.g., design matrix,
measurement matrix, dictionary), would be referred to as simply a sensing matrix.
In this formulation, N is considerably smaller than n, and hence the linear system is
underdetermined. Nevertheless, a unique solution can yet be guaranteed assuming
α is sufficiently sparse. In particular, the number of non-zero entries in α should be
less than 1

2 spark(H) [12], where the spark of H is defined as follows.

Definition 1 (The spark of a matrix). The spark of a matrix H ∈ R
N×n , denoted

as spark(H), is the smallest number of columns that constitute a linearly dependent
set.

A solution to the CS problem can be efficiently computed (using any one of the
methods mentioned above) provided that H obeys the RIP [22, 26]. To be more
precise, the necessary and sufficient conditions for exact recovery are provided in
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terms of the RIP [12]. Essentially, it is required that the Gramian H T H would be
nearly equal to the identity matrix.

9.1.3 Challenges

In spite of its popularity, the ideas brought forth by CS cannot be easily implemented
in virtually many real-world applications. Exceptions are to be made in the fields
of image and video processing where incoherent basis transforms are abundant and
obey most of the necessary conditions for ensuring a significant gain in recovery
performance [17]. In the context of our problem one concern is that the underlying
sensing matrix does not obey the RIP to the extent maintained by the theory of CS.
This fact is explained in detail in the next section. To get the gist of it, illustrations
of two Gramian matrices are provided in Fig. 9.2. The first one is associated with
an ideal RIP sensing matrix (random with Gaussian entries [22]) whereas the other
is typical to the problem at hand. This depiction doubtlessly indicates a departure
from the ideal RIP settings in our case as manifested by the prominent off-diagonal
patterns in the Gramian matrix. This essentially reflects relatively high coherence
among the columns of the sensing matrix.

The success of CS as a new emerging paradigm in signal processing has convinced
many that sensing devices should be redesigned for fully exploiting the potential
benefits. It turns out that the RIP property of a sensing matrix cannot be guaranteed
or assessed in virtually many practical scenarios and hence most of the elegant theory
of CS do not apply in such cases. This caveat has paved the way to new hardware
design practices that inherently produce ideal RIP matrices which thereby enhance
the performance of CS algorithms, sometimes even to the extent of meeting the
theoretical bounds [27]. In general, however, we are not privileged to redesign the
system nor can we guarantee its RIP properties. The question is whether something
can be done in such cases.

Another difficulty is related to the nature of existing CS methods. The fundamentals
of CS build upon convex optimisation and greedy search perspectives and as such it

Fig. 9.2 Gramians of an ideal RIP sensing matrix (left) and of a sensing matrix typical to our
problem (right). Ordinate axis and abscissa refer to the row and column indices of the Gramian
matrix, respectively
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is conventionally assumed that the measurements are available in a batch form. As far
as dynamical systems and time-series data are concerned this premise brings about
serious limitations. In many applications observations are required to be sequentially
processed which renders most of the existing CS approaches inadequate.

9.2 Contributions

In the first part of this chapter, a novel Kalman filtering-based method is introduced
for estimating the coefficients of sparse, or more broadly, compressible AR models
using fewer observations than normally required. By virtue of its Kalman filter (KF)
mechanism, the derived method essentially addresses both of the previously men-
tioned difficulties. In particular, it facilitates sequential processing of observations
and is shown to attain a good recovery performance, particularly under substantial
deviations from ideal RIP conditions. In the remaining part of this chapter we derive
a few information-theoretic bounds pertaining to the estimation problem at hand. The
obtained bounds establish the relation between the complexity of the AR process and
the attainable estimation accuracy through the use of a novel measure of complex-
ity. This measure is used in this work as a substitute to the generally incomputable
RIP. For the sake of readability we shall take the time to further elucidate the main
concepts introduced in this work (not necessarily in their order of appearance).

9.2.1 Compressive Identification in Non-RIP Settings

The standard AR formulation poses a major challenge when adopting the prevalent
views brought forth by CS. In order to better understand the underlying difficulty let
us consider a typical compressive identification problem. Suppose that a vector of
unknown coefficients,

αi := [αi,1(1), . . . , αi,n(1), . . . , αi,1(p), . . . , αi,n(p)]T ∈ R
np

(this notation is made clear below), consists of only a few dominant entries while all
others are comparably small. These coefficients underly linear relationships among
multiple R-valued random processes, {x j

k , k > p, j = 1, . . . , n}, that is

xi
k =

p∑

t=1

n∑

j=1

αi, j (t)x j
k−t + ωi

k =
[
x1

k−1, . . . , xn
k−1, . . . , x1

k−p, . . . , xn
k−p

]

︸ ︷︷ ︸
x̄ T

k

αi + ωi
k

for i ∈ [1, n], where {ωi
k, k > p} is a white sequence. From that point onwards we

shall assume, without loss of generality, that {x j
k , j = 1, . . . , n} are zero-mean.
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Usually, we are provided with N realisations of x̄k and xi
k which, respectively,

constitute a sensing matrix and an observation vector. Based on these we seek to
reconstruct αi to within a satisfactory accuracy using fewer observations than its
ambient dimension, np. In general the underlying sensing matrix cannot be expected
to obey the RIP to the extent required by CS. This immediately follows upon noting
that the columns of such a sensing matrix are not likely to be sufficiently incoherent.
As this is a key detail in our developments throughout this work, we shall take the
time to further explain it.

The rows of our sensing matrix are, in fact, independent samples from the (multi-
variate) distribution of x̄ T

k . The covariance associated with this distribution naturally
conveys the statistical coherence, or the correlation, between the underlying random
variables (the samples of which constitute the columns of the sensing matrix). The
entries of the corresponding (np)× (np) correlation matrix are given by

Cl, j =
E
{

x̄ j
k x̄ l

k

}

√
E{‖x̄ j

k ‖22}E{‖x̄ l
k‖22}

, l, j ∈ [1, np] (9.1)

where E {·} and and ‖ · ‖2 denote, respectively, the expectation operator and the
Euclidean norm. If, in addition, we let H ∈ R

N×(np) be a normalised version of
our sensing matrix, i.e., with all its columns having a unit magnitude, then a Monte
Carlo estimate of the correlation matrix C is simply Ĉ := H T H , which is otherwise
known as the Gramian matrix. Note that, in the context of CS, Ĉ is necessarily
rank-deficient as N < np. Notwithstanding, the entries of Ĉ approaches those of the
actual correlation matrix with an increasing N , and in that sense they may adequately
represent the statistical coherence. Hence, an approximation associated with (9.1) is
the inner product between two columns in H , namely

Ĉl, j = 〈Hl , H j 〉, l, j ∈ [1, np] (9.2)

Having said that, it is rather clear that we can associate ideal RIP settings with nearly
diagonal Ĉ and C. This can immediately be recognised by explicitly writing the
RIP [12]

∣∣∣‖Hαi‖22 − ‖αi‖22
∣∣∣ =

∣∣∣(αi )T
(
Ĉ − I((np)×(np)

)
αi
∣∣∣ ≤ δ2s‖αi‖22 (9.3)

where the inequality holds for a fixed δ2s ∈ (0, 1) and any sparse vector αi having no
more than s non vanishing entries, which would henceforth be referred to as s-sparse.
The restriction on δ2s to be fixed irrespective of αi is known in the literature as a
uniform recovery condition. Classical and contemporary results in the theory of CS
guarantee perfect and highly accurate recovery of sparse parameter vectors when
this property is satisfied for small values of δ2s (see for example [6, 12, 14]). A set
of concomitant results, known largely as concentration of measure, provide further
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evidence that random sensing matrices are most likely to obey this property with
overwhelming probability under some restrictions on their dimensions [44, 51].

Further letting x̃k := [x1
k , . . . , xn

k ], it can be recognised that C is merely composed
of the autocorrelations

E
{

x̃k−r x̃ T
k−t

}
√

E{‖x̃k−r‖22}E{‖x̃k−t‖22}
, r, t ∈ [1, p]

and hence the overall structure of both C and its empirical approximation Ĉ has
to do with the mixing properties of the underlying process {x̃k}k>p. As mentioned
earlier, ideal RIP settings are associated with a nearly diagonal C which would only
be the case when {x̃k}k>p is strongly mixing. It is well known that this trait entails
ergodicity and that some convergent processes become strongly mixing after reaching
stationarity (e.g., stable linear stochastic systems). Generally, however, this cannot
be expected to hold true and hence ideal RIP conditions are not guaranteed.

A notable attempt to alleviate this problem is made in [13] where the basic theory
of CS is extended for accommodating highly coherent sensing matrices. This gives
rise to an adapted and much stringent version of the RIP which is referred to in [13]
as D-RIP. The D-RIP applies to not necessarily sparse vectors which are obtained
as linear combination of no more than s columns in some coherent overcomplete
dictionary (i.e., a matrix with more columns than rows). Accurate recovery of such
signals is likely, assuming the D-RIP coefficient δ2s is an extremely small number.
This premise obviously restricts the viability of the proposed recovery scheme in [13]
to those applications where the sensing matrix satisfies this generally imperceptible
condition. As demonstrated in [13], this difficulty may be alleviated by employing
conventional random matrices which are known to obey the RIP to the desired extent.

Definition 2 (Non-RIP Settings). From this point onwards we shall refer to sub-
stantial departure from ideal RIP settings as simply non-RIP. In essence, this term
indicates that the underlying sensing matrix is coherent to the extent where any of
the following occurs:

• The RIP itself is not sufficiently strict (i.e., δ2s approaches 1)
• The RIP is not satisfied with high probability [12, 22]
• Uniform recovery is not guaranteed (i.e., δs in (9.3) depends on the vector of

unknowns αi ) and hence the RIP becomes an inadequate measure of recovery
performance

Being a measure of uniform recovery, the RIP is possibly too strict for most real-
world applications. The inability to assess its strictness (i.e., the RIP constant δ2s [12])
for some sensing matrix which has not been specifically designed or selected from a
pool of known RIP-preserving constructions is another major limitation. On the other
hand, CS methods can be successfully applied in non-RIP settings. This discrepancy
between theory and practice can be somewhat resolved by directly scrutinizing the
correlation matrix C or the covariance of x̄k .
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9.2.2 Measure of Sensing Complexity

The above concept is further materialised in this work, giving rise to an upper bound
on the worst attainable estimation accuracy in compressive settings (i.e., where
N < np). As distinct from conventional results in CS, our proposed bound, which
is expressed in terms of (differential) information entropy, relaxes the requirement
to specify the underlying RIP constant. This is achieved by introducing a novel com-
plexity metric which is termed here measure of sensing complexity, or in an abbre-
viated form, MSC (see Sect. 9.7). The MSC relies on the correlation matrix C for
quantifying the complexity underlying any sensing matrix H that may be composed
from independent samples of x̄k . It indicates the amount of information required for
encoding np statistically dependent random variables, the samples of which consti-
tute the columns of the underlying sensing matrix. The measure itself is normalised
with respect to the maximal complexity attained only when the random variables are
statistically independent, or, in other words, when C is the identity matrix. As already
noted, this case corresponds to an ideal RIP sensing matrix H . Designated as ρ, the
MSC assumes values between 0 and 1 where the upper limit is reserved for ideal
RIP matrices. On the opposite extreme ρ → 0 is associated with highly coherent
(non-RIP) sensing matrices, those which do not promote compressive reconstruction
(see Fig. 9.3).

Getting a bit ahead of us, the MSC suggests a new perspective on the sparse
recovery problem. This is evinced by the upper bounds in Sect. 9.7 and is further
explained therein. In short, our bounds consist of two components, the first of which
is rather familiar and concurs with the estimation error statistics of ML estimators.

0 1

Fig. 9.3 Measure of sensing complexity (MSC) in non-RIP (upper row, ρ = 0.02) and ideal RIP
(lower row, ρ = 1) settings. Showing the corresponding correlation matrix (second column from
the left), the Gramian matrix (third column from the left), and a sample sensing matrix (rightmost
column)
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The second component relies on the MSC and essentially represents an additional
uncertainty associated with the signal unknown support.

Estimation error entropy ≤
Observation uncertainty︸ ︷︷ ︸

Due to observation noise

+Combinatorial uncertainty (MSC)︸ ︷︷ ︸
Due to unknown support

The rightmost term in the above expression stems from the combinatorial nature of
the recovery problem. This suggests that the MSC merely quantifies the information
needed to encode all possible subsets of columns from H .

9.2.3 Unscented Kalman Filtering for Sequential Compressive
Identification

The proposed CS algorithm in this work exclusively relies on the unscented Kalman
filter (UKF) [36]. A preliminary version of this algorithm has been recently presented
by the author and his colleagues in [20]. As demonstrated in the numerical study
section, the newly derived method tends to exhibit a recovery performance which is
comparable to that of the classical BCS and LASSO in standard settings. Apart from
its other benefits which are detailed in the ensuing, our approach shows to possess the
following properties: (1) it attains the best recovery accuracy among the examined
CS algorithms under large deviations from ideal RIP settings, and (2) it manages to
sustain a reasonable performance when the amount of observations is less than the
threshold set by the theory of CS. The latter advantage is especially evident when
estimating the coefficients of compressible rather than sparse AR models. Lastly, by
virtue of its KF mechanism, the new method is one of the few existing techniques
allowing sequential processing of observations in dynamic CS scenarios, i.e., where
time-varying compressible signals are of interest.

9.2.4 Organization of this Chapter

Section 9.3 briefly introduces the essentials of (vector) autoregressive processes
together with some of the commonly used techniques for estimating their parameters
from time-series data. The problem of compressive identification is then discussed
in Sect. 9.4. The Kalman filtering approach to compressed sensing is introduced and
discussed in Sect. 9.5. The novel UKF-based compressed sensing method is derived
in Sect. 9.6. Section 9.7 provides a detailed derivation of entropy bounds and other
measures of recovery performance (i.e., MSC) pertaining to the compressive iden-
tification problem. The concepts introduced throughout this work are numerically
demonstrated in Sect. 9.8. Finally, conclusions are offered in Sect. 9.9.
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9.3 Preliminaries

9.3.1 Vector Autoregressive Processes

We shall begin our discussion with a standard AR model. Denote k ∈ N a discrete-
time index and let {xk, k ≥ 0} be a random process assuming values on the real line
and obeying

xk =
p∑

t=1

α(t)xk−t + ωk (9.4)

where the scalars α(t), t = 1, . . . , p are known as the AR coefficients, and
{ωk, k ≥ 0} is a zero-mean white sequence. The formulation (9.4) can gener-
ally be viewed as a non-stationary output of a dynamic system driven by a white
noise. In this respect, a convenient way of representing (9.4) is obtained by letting
x̄k := [xk, . . . , xk−p+1]T and recasting

x̄k = Ax̄k−1 + Bωk (9.5)

where the matrices A ∈ R
p×p and B ∈ R

p are given by

A =
[

α(1), . . . , α(p)
I(p−1)×(p−1), 0(p−1)×1

]
, B =

[
1

0(p−1)×1

]
(9.6)

with I and 0 being the identity matrix of an appropriate dimension and a null vector,
respectively. The practice underlying (9.5) can, to some extent, be interpreted as the
trading of temporal and spatial complexities, both which are indicated by the model
order parameter p. Hence, what signifies the process memory in (9.4) translates into
the dimension of the Markovian system (9.5).

A natural extension of the basic Eq. (9.4) is the vector AR model which encom-
passes several possibly interacting processes. Denote {xi

k, k ≥ 0} the i-th process
and write

xi
k =

n∑

j=1

p∑

t=1

αi, j (t)x j
k−t + ωi

k, i = 1, . . . , n (9.7)

Hence, the entire system can be described in a fashion similar to (9.5) with

A =
[

A(1), . . . , A(p)
I[n(p−1)]×[n(p−1)], 0[n(p−1)]×n

]
, B =

[
In×n

0[n(p−1)]×n

]
(9.8)

where this time

x̄k = [zT
k , . . . , zT

k−p+1]T , ω̄k = [ω1
k , . . . , ω

n
k ]T (9.9)
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with
zk := [x1

k , . . . , xn
k ]T (9.10)

The n × n sub-matrices A(t), t = 1, . . . , p comprise of the processes coefficients,
that is A(t) = [αi, j (t)]. An analogous representation of (9.4) in the multivariate case
is accordingly

zk =
p∑

t=1

A(t)zk−t + ω̄k (9.11)

It is worthwhile noting that by setting p = 1, the model (9.11) reduces to a simple
linear time invariant (Markov) system.

9.3.2 The Yule-Walker Equations

The Yule-Walker (YW) equations resolve the relations among the process autocor-
relation functions. It is a system of linear equations in which the AR coefficients
constitute the vector of unknowns. These equations are readily obtained by multi-
plying both sides of (9.11) with zk−l and taking the expectation with respect to the
underlying variables. Repeating this procedure for l = 0, . . . , p yields the following

C(k, k − l) =
p∑

t=1

A(t)C(k − t, k − l)+ Qkδ(l), l = 0, . . . , p (9.12)

where C(k − t, k − l) = E
{
zk−t zT

k−l

}
, Qk = E

{
ω̄kω̄

T
k

}
and δ(·) denotes the

Kronecker delta. It can be recognized that (9.12) is in fact a set of n2 p+ n equations
that essentially allow solving for the unknown matrix coefficients A(1), . . . , A(p)
and n diagonal entries of the noise covariance matrix Qk , which are, for the sake
of simplicity, assumed fixed and denoted henceforth qi , i = 1, . . . , n. This can be
more easily verified by decomposing (9.12) into n independent subsets of np + 1
equations

Ci (k − l, k) =
p∑

t=1

C(k − l, k − t)Ai (t)
T , l = 1, . . . , p (9.13)

Ci,i (k, k) =
p∑

t=1

(Ci (k − t, k))T Ai (t)
T + qi (9.14)

where Ci (k− t, k−l) = E
{
zk−t x i

k−l

}
and Ci, j (k− t, k−l) denote, respectively, the

i th column and the (i, j) entry of C(k−t, k−l). The designation Ai (t) represents the
i row of A(t), namely, [αi,1(t), . . . , αi,n(t)]. We note that the last Eq. (9.14) is used
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for resolving the noise variance in a rather standalone manner (i.e., independently of
(9.13), albeit based on its solution).

The above argument considers an ideal situation where the autocorrelation
matrices, C(k − t, k − l), are perfectly known, which is rarely the case. In prac-
tice, these quantities are substituted with appropriate empirical approximations, i.e.,
sample autocorrelations. This would generally require having multiple realisations of
zk which would substantially complicate things. One of the prevalent approaches for
alleviating this issue assumes that the underlying process is both ergodic and station-
ary. These restrictions, respectively, ensure that the underlying statistical quantities
can be derived from merely computing time averages and that the samples are iden-
tically distributed. This in turn renders the autocorrelations independent of k, i.e.,
C(k − t, k − l) = C(0, t − l), and hence an empirical estimate α̂i of

αi := [Ai (1), . . . , Ai (p)]T =
[
αi,1(1), . . . , αi,n(1), . . . , αi,1(p), . . . , αi,n(p)

]T

(9.15)
can be obtained based on the sample autocorrelations Ĉ(0, t − l). Let X̄k and Xi

k
denote, respectively, the realisations of x̄k and xi

k . Then, for every i ∈ [1, n]

α̂i =
⎡

⎣
N+p∑

k=p+1

X̄k−1 X̄ T
k−1

⎤

⎦
−1 ⎡

⎣
N+p∑

k=p+1

Xi
k X̄k−1

⎤

⎦ (9.16)

assuming the ensemble matrix within the brackets is not rank-deficient. It is worth
noting that, at least theoretically, the estimate (9.16) almost surely approaches the
actual value with an increasing N , where its standard deviation is roughly O(1/√N ).
It is also rather obvious that (9.16) is unique only when there are at least np linearly
independent samples X̄k , which necessarily entails N ≥ np.

9.3.3 Relaxing the Requirements: LS and ML Estimation

A closer look at (9.16) unfolds its identity as a LS solution subject to the following
observation model

xi
k = x̄ T

k−1α
i + ωi

k, k > p, i ∈ [1, n] (9.17)

where, as before,ωi
k represents a zero-mean white noise. Consequently, we conclude

that both requirements of stationarity and ergodicity are superfluous when approx-
imating the autoregressive coefficients in (9.16). This readily follows from the fact
that the LS approach does not impose any of these restrictions and yet yields a solu-
tion which is identical to (9.16). We point out that these assumptions were made
in the first place for the mere reason of substituting intractable statistical moments
with time averages. The LS approach asserts that time averages can yet be used,
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however, without the need to interpret them as ergodic estimates of the underlying
autocorrelations.

Recalling the Gauss-Markov theorem, the LS solution (9.16) coincides with the
best linear unbiased estimator (BLUE) assuming the observation noise ωi

k in (9.17)
is zero-mean and white, i.e., whenever E

{
ωi

k

} = 0 and E
{
ωi

kω
i
k+t

} = 0, ∀t �= 0
(see [41]). It also coincides with the ML solution under the additional restriction of
normally distributed noise.

9.3.4 Ill-Posed Problems, Regularisation and Priors

The LS solution (9.16) is unique only when there are at least np linearly independent
realisations X̄k−1, which necessarily entails N ≥ np. Yet, there are many intriguing
cases that either violate this assumption or end up with an ill-conditioned informa-
tion matrix in (9.16). This limitation can be addressed by means of a well-known
technique known as regularisation. The idea is fairly simple and consists of adding
a positive definite term to the information matrix in (9.16). Hence,

α̂i =
⎡

⎣P−1
0 +

N+p∑

k=p+1

X̄k−1 X̄ T
k−1

⎤

⎦
−1 ⎡

⎣
N+p∑

k=p+1

Xi
k X̄k−1

⎤

⎦ (9.18)

where P−1
0 ∈ R

(np)×(np) is a positive definite matrix. In the statistical literature,
(9.18) is normally referred to as Tikhonov regularisation or ridge regression. This
expression is merely the solution of the l2-penalised LS problem

min
α̂i

∥∥∥P−1/2
0 α̂i

∥∥∥
2

2
+

N+p∑

k=p+1

∥∥∥Xi
k − X̄ T

k−1α̂
i
∥∥∥

2

2
(9.19)

where P−1/2
0 denotes the matrix square root of P−1

0 .
The regularised LS solution (9.18) can be shown to coincide with the maximum

a-posteriori (MAP) estimator of a random parameter vector αi for which the prior
is a zero-mean Gaussian with covariance qi P0. At least conceptually both these
approaches are substantially different as the LS is applicable for deterministic para-
meters whereas the MAP assumes a random αi .

9.3.5 Estimation Error Statistics

To some extent, the observation Eq. (9.17) is a departure from the classical linear
model appearing in many text books [41]. This follows from the fact that the sensing



9 Compressive System Identification 295

matrix, which is composed of {x̄ T
k−1, k > p}, is essentially random. Consequently,

any statistics computed based on this observation model is conditioned upon

XN := {x̄ p, . . . , x̄N+p−1} (9.20)

This obviously applies to the estimation error covariance of an unbiased estimator
of αi , denoted here as α̂i . Hence,

PN (α̂
i ) := E

{
(αi − α̂i )(αi − α̂i )T | XN

}
(9.21)

which is, by itself, a random quantity.

9.4 Problem Statement

The compressive identification problem can be summarised as follows. Given the
time-series data XN we wish to estimate the presumably compressible vector of AR
coefficients αi using fewer observations than its ambient dimension, that is N < np.
We require that the sought-after estimator α̂i would be optimal in the sense

min
α̂i

Tr
{

PN (α̂
i )
}

(9.22)

subject to the observation model (9.17), where Tr(·) denotes the trace operator.
Conventionally, a solution to (9.22) in the non compressive settings may be given

by the Tikhonov regularisation (9.18), which essentially coincides with the LS solu-
tion for P−1

0 = 0. As already mentioned, this solution also coincides with the MAP
estimate assuming αi and ωi

k in (9.17) are normally distributed. It is worth noting
that in this approach αi is considered as random rather than deterministic. The key
concept which allows solving (9.22) for the compressive case is explained next.

9.4.1 Compressive Identification

Let us decompose the set XN (9.20) into a N × (np) sensing matrix H . Hence

H =
⎡

⎢⎣
x̄ T

p
...

x̄ T
N+p−1

⎤

⎥⎦ (9.23)

Using this notation, the observation model (9.17) yields
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yi = Hαi + ξ i (9.24)

where yi := [xi
p+1, . . . , xi

N+p]T and ξ i := [ωi
p+1, . . . , ω

i
N+p]T . In what follows

the sensing matrix does not appear explicitly, yet the conditions pertaining to H
applies indirectly. Having this in mind, we mention the following identity which is
used in the ensuing

‖yi − Hαi‖22 =
N+p∑

k=p+1

(
xi

k − x̄ T
k−1α̂

i
)2

(9.25)

It is also worth noting that XN and H are two random entities that can be inter-
changeably used in conditional expectations, e.g., PN (α̂

i ).
Suppose that αi is s-sparse (i.e., it consists of no more than s non-vanishing

entries) and that spark(H) > 2s. It has been shown that under these conditions, αi

can be accurately recovered by solving the following problem [22, 26]

min ‖ α̂i ‖0 s.t.
N+p∑

k=p+1

(
xi

k − x̄ T
k−1α̂

i
)2 ≤ ε (9.26)

for a sufficiently small ε, where ‖αi‖0 denotes the support size of αi (i.e., the number
of its non-vanishing entries). Following a similar rationale, for a random αi we may
write

min ‖ α̂i ‖0 s.t. Tr
{

PN (α̂
i )
}
≤ ε (9.27)

where we have implicitly used the fact that E
{‖α̂i‖0 | XN

} = ‖α̂i‖0 (because α̂i

is a function of the observation set XN ). Unfortunately, both (9.26) and (9.27) are
generally NP-hard and cannot be solved efficiently. The remarkable result of CS
asserts that both these problems can be solved by means of a simple convex program
assuming the sensing matrix H obeys the RIP (9.3) to within a certain tolerance. In
particular, accurate recovery ofαi is guaranteed for δ2s <

√
2−1 via solving [12, 22]

min ‖ α̂i ‖1 s.t.
N+p∑

k=p+1

(
xi

k − x̄ T
k−1α̂

i
)2 ≤ ε (9.28)

or
min ‖ α̂i ‖1 s.t. Tr

{
PN (α̂

i )
}
≤ ε (9.29)

Under this additional assumption, the solutions of (9.28) and (9.29) coincide, respec-
tively, with those of the original problems (9.26) and (9.27). The key idea is that as
opposed to the generally intractable problems (9.26) and (9.27), the convex relax-
ations can be efficiently solved using a myriad of existing methods. In this work we
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employ a novel Kalman filtering technique for solving a dual problem of (9.29). This
approach is explained next.

9.5 Kalman Filtering Approach to Compressive Sensing

Followed by the pioneering works [18, 19, 52], in which the KF has shown a
remarkable success in estimating sparse and compressible signals, several dynamic
CS schemes have been proposed over the last two years [2, 5, 3]. The KF algorithm
constitutes a vital part also in the works of [4, 21, 38]. Indeed, the KF is elegant and
simple and above all is the linear optimal minimum mean square error (MMSE) esti-
mator irrespective of noise statistics. Despite its appealing features, rarely it is used
in its standard formulation which is primarily designed for linear time-varying mod-
els. Modifying the KF structure and extending its capabilities have already become a
common practice in many engineering and scientific fields. The resulting KF-based
methods are vastly used for nonlinear filtering, constrained state estimation, distrib-
uted estimation, learning in neural networks, and fault-tolerant filtering.

The KF-based methodologies for dynamic CS can be divided into two broad
classes: hybrid, and self-reliant. Whereas the former class refers to KF-based
approaches involving the utilisation of peripheral optimisation schemes for handling
sparseness and support variations, the latter class refers to methods that are entirely
independent of any such scheme. Hybrid KF-based approaches refer to works such
as [4, 21, 38, 52]. The only self-reliant KF method available to that end is the one
of [18, 19].

The self-reliant KF method in [19] benefits from ease of implementation. It avoids
intervening in the KF process which thereby maintains the filtering statistics as
adequate as possible. The key idea behind it is to apply the KF in constrained filtering
settings using the so-called pseudo-measurement technique. It may, however, exhibit
an inferior performance when improperly tuned or when insufficient number of
iterations had been carried out. In this work, we improve over [19] by employing the
UKF [36] for the pseudo-measurement update stage.

The resulting UKF-based CS algorithm has the following benefits: (1) Self-reliant
and easy to implement, (2) Recursively updates the mean and covariance of the
filtering probability density function (pdf), (3) Facilitates sequential processing of
measurements, (4) Non iterative—as opposed to [19] no reiterations are needed at
any stage, (5) Its computational complexity is nearly equal to that of a standard UKF.

9.5.1 The Pseudo-Measurement Technique

The derivation of the UKF-based CS algorithm in this work is based on the notion
of pseudo-measurement (PM) from [19]. The key idea is fairly simple and has been
vastly employed for constrained state estimation [25, 35]. Thus, instead of solving
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the l1-relaxation (9.29), the unconstrained minimisation (9.22 ) is considered with the
observation setXN augmented by an additional fictitious measurement satisfying [19]

0 = ‖αi‖1 − vk (9.30)

where vk is a Gaussian random variable with some predetermined mean and variance,
μk and rk , respectively. The above PM is in essence the stochastic analogous of the
l1 constraint in the dual problem [33]

min
α̂i

Tr
{

PN (α̂
i )
}

s.t. ‖α̂i‖1 ≤ ε′ (9.31)

The role of (9.30) can be better apprehended by noting that vk is aimed to capture
the first two statistical moments of the random variable regulating the sparseness
degree, ‖αi‖1. The distribution of ‖αi‖1 is, in general, analytically intractable and
consequently either approximations or tuning procedures should be utilised for deter-
mining appropriate values forμk and rk . We note, however, that the resulting method
is rather robust to the underlying parameters as demonstrated in [19].

9.5.2 Adaptive Pseudo-Measurement Approximation

Equation (9.30) cannot be straightforwardly processed in the framework of Kalman
filtering as it is nonlinear. In practice, this equation is substituted with the following
approximation [19]

0 = sign(α̂i
k)

Tαi − v̄k (9.32)

Here, α̂i
k and sign(α̂i

k) denote, respectively, the estimator of αi based on k measure-
ments, and a vector composed of either 1 or −1 corresponding to the entries of α̂i

k .
The second moment r̄k of the effective measurement noise, v̄k , obeys

r̄k = O
(
‖α̂i

k‖22 + gT Pkg
)
+ rk (9.33)

where g ∈ R
np is some (tunable) constant vector, and Pk is the estimation error

covariance of the supposedly unbiased estimator α̂i
k . For improved readability, the

proof of (9.33) is deferred to the last section of this work.
The practical implementation of the approximate PM technique in the context of

our problem is demonstrated by the pseudo-code in Algorithm 1. This scheme is in
fact the standard CS-embedded KF of [19] (CSKF in short).



9 Compressive System Identification 299

Algorithm 1 The CSKF for estimating the coefficients of compressible AR models
1. Initialisation

α̂i
0 = E

{
αi
}

(9.34a)

P0 = E
{
(αi − α̂i

0)(α
i − α̂i

0)
T
}

(9.34b)

2. Measurement Update

Kk−1 = Pk−1 X̄k−1

X̄ T
k−1 Pk−1 X̄k−1 + qi

(9.35a)

α̂i
k = α̂i

k + Kk−1

(
Xi

k − X̄ T
k−1α̂

i
k−1

)
(9.35b)

Pk = (I − Kk−1 X̄ T
k−1)Pk−1 (9.35c)

3. CS Pseudo Measurement: Let P1 = Pk and γ 1 = α̂i
k .

4. for m = 1, 2, . . . , Nm − 1 iterations

γm+1 = γm − Pmsign(γm)‖γm‖1
sign(γm)T Pmsign(γm)+ rk

(9.36a)

Pm+1 = Pm − Pmsign(γm)sign(γm)T Pm

sign(γm)T Pmsign(γm)+ rk
(9.36b)

5. end for
6. Set Pk = P Nm and α̂i

k = γ Nm .

9.6 Sigma Point Filtering for Compressive Sensing

The UKF and its variants, which are broadly referred to as Sigma point filters, para-
meterise the filtering pdf via the first two statistical moments, namely the mean
and covariance, thus providing an approximation to the optimiser of (9.22) (i.e., the
conditional mean). These methods amend the KF algorithm for handling generalised
nonlinear process and measurement models. As distinct from the extended KF (EKF)
which employs infamous linearisation techniques, the UKF relies on the unscented
transformation (UT), which is otherwise known as statistical linearisation. This
approach is acclaimed for its ease of implementation and its improved estimation
performance owing to a rather adequate computation of the underlying covariance
matrix. By virtue of its mechanism, the UKF alleviates filtering inconsistencies which
in most cases results in improved robustness to model nonlinearities and initial con-
ditions.

The UT can be readily understood by considering a simple example. Let z ∼
N (μ,	) be a random vector of dimension n, and let also f (·) : Rn → R

m be some
function. Suppose that we are interested in computing the mean and covariance of
f (z) to within a certain accuracy. It turns out that a fairly reasonable approximation
of these quantities can be made by carefully choosing a finite set of L instrumental
vectors Z j ∈ R

n , j = 0, . . . , L − 1, and corresponding weights w j . The UT
essentially provides a convenient deterministic mechanism for generating 2n + 1
such points which are known by the name Sigma points. As	 is a symmetric matrix
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it can be decomposed as 	 = DDT (e.g., Cholesky decomposition). The Sigma
points are then given as

Z j = μ+√L D j

Z j+n = μ−√L D j , j = 1, . . . , n
(9.37)

where D j denotes the j th column of D, and Z0 = μ. Note that the sample mean
and sample covariance of Z j , j = 0, . . . , 2n, are μ and	, respectively (i.e., this set
of points captures the statistics of z). Now, the mean and covariance of f (z) can be
approximated by

μ̂ f =
2n∑

j=0

w j f (Z j ) (9.38a)

	̂ f =
2n∑

j=0

w j f (Z j ) f (Z j )T − μ̂ f μ̂
T
f . (9.38b)

9.6.1 CS-UKF: A Compressive Sigma Point Filter

In this work, we amend the UKF for handling sparse and compressible signals. The
resulting algorithm, the CS-UKF as we termed it, is a Bayesian CS algorithm that
is capable of estimating compressible signals sequentially in time. The sparseness
constraint is imposed in a manner similar to [19] via the use of the PM approximation
(9.32), nevertheless, without the need for reiterating the PM update. This in turn
maintains a computational overhead similar to that of a standard UKF.

The CS-UKF consists of the two traditional UKF stages, the prediction and update,
along with an additional refinement stage during which the sigma points gradually
become compressible. In particular, after a single standard UKF cycle the sigma
points are individually updated in a manner similar to the PM update stage in [19].

Let Pk and Z j
k be the updated covariance and the j th sigma point at time k,

respectively (i.e., after the measurement update). A set of compressible Sigma points
at time k is thus given by

β
j

k = Z j
k −

Pksign(Z j
k )‖Z j

k ‖1
sign(Z j

k )
T Pksign(Z j

k )+ r̄ j
k

(9.39)

with
r̄ j

k := c(‖Z j
k ‖22 + gT Pkg)+ rk (9.40)

for j = 0, . . . , 2n, where c is some positive tuning parameter. Once the set {β j
k }2n

j=0 is
obtained, its sample mean and sample covariance (see (9.38)) substitutes the updated



9 Compressive System Identification 301

mean and covariance of the UKF at time k. Note that if the process and measurement
models are linear then the prediction and update stages of the UKF can be substituted
with those of the standard KF. In this case, the resulting CS-UKF algorithm would
consist of the KF prediction and update stages together with a Sigma point-based
PM refinement phase.

In the context of our problem the CS-UKF is employed for estimating the
compressible vector of AR coefficients, αi , based on the observation model (9.17).
This scheme is summarised in Algorithm 2.

Algorithm 2 The CS-UKF for estimating the coefficients of compressible AR models
1. Initialisation

α̂i
0 = E

{
αi
}

(9.41a)

P0 = E
{
(αi − α̂i

0)(α
i − α̂i

0)
T
}

(9.41b)

2. Measurement Update

Kk−1 = Pk−1 X̄k−1

X̄ T
k−1 Pk−1 X̄k−1 + qi

(9.42a)

α̂i
k = α̂i

k + Kk−1

(
Xi

k − X̄ T
k−1α̂

i
k−1

)
(9.42b)

Pk = (I − Kk−1 X̄ T
k−1)Pk−1 (9.42c)

3. CS Pseudo Measurement: Generate 2np + 1 Sigma points

Z0
k = α̂i

k

Z j
k = α̂i

k +
√

L D j
k

Z j+np
k = α̂i

k −
√

L D j
k , j = 1, . . . , np

(9.43)

where Pk = Dk DT
k .

Compute the compressive Sigma points

β
j

k = Z j
k −

Pksign(Z j
k )‖Z j

k ‖1
sign(Z j

k )
T Pksign(Z j

k )+ r̄ j
k

, r̄ j
k = c(‖Z j

k ‖22 + gT Pkg)+ rk (9.44)

for j = 0, . . . , 2np
4. Set

α̂i
k =

2np∑

j=0

w jβ
j

k , Pk =
2np∑

j=0

w jβ
j

k

(
β

j
k

)T − α̂i
k

(
α̂i

k

)T
(9.45)

9.7 Information Entropy Bounds

This section provides tools for assessing the performance of compressive identi-
fication schemes in diverse, possibly non-RIP, settings. This is substantiated by
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introducing a few upper bounds on the estimation error entropy. In contrast with the
classical theoretical guarantees in the literature, which essentially rely on the RIP,
our bounds involve an alternative and generally perceptible information-theoretic
measure, the MSC. Let hN be the (differential) entropy of a multivariate Gaussian
distribution associated with the estimation error, that is

hN = 1

2
log

{
(2πe)np det

(
PN (α̂

i )
)}

(9.46)

where PN (α̂
i ) is the underlying estimation error covariance based on the N measure-

ments, XN (see (9.20)). In what follows, hN is sometimes referred to as simply the
estimation error entropy. This, in general, should not be interpreted as if the actual
estimation error is normally distributed. The two entropies, the one corresponding
to the distribution of αi − α̂i , and hN , do coincide whenever the AR driving noise,
ωi

k , is normally distributed.
As far as compressive identification is considered, PN (α̂

i )may be ill-conditioned
or undefined due to the fact that the number of observations N is smaller than the
dimension of αi , namely N < np. Obviously, this could have been resolved had the
support of αi was given to us in advance. Suppose for a moment that this is indeed
the case which in turn renders the entropy (9.46) feasible. Here, the estimation error
covariance is no longer a (np)× (np)matrix but rather is s× s sub-matrix composed
out of columns and rows from PN (α̂

i ). In particular,

hs
N =

1

2
log

{
(2πe)s det (PN [ j1, . . . , js])

}
(9.47)

where PN [ j1, . . . , js] denotes a sub-matrix composed of the entries from PN (α̂
i )

for which the indices are given by the set {[ j1, . . . , js] × [ j1, . . . , js]}. Having said
that we are now ready to state our theorem.

Theorem 1 (Upper Bound for Compressive Identification). Suppose that the sub-
set of N successive random variables, x̄k0+1, . . . , x̄k0+N , constitute an ergodic wide-
sense stationary process where, without any loss of generality, E

{
x̄k0+ j

} = 0,
j = 1, . . . , N. Assume also that αi is a deterministic s-sparse vector and that the
number N is smaller than dim(αi ), i.e., N < np. Define Ck := E

{
x̄k x̄ T

k

}
and let

C = Ck0+1 = . . . = Ck0+N be the covariance matrix corresponding to the underlying
stationary distribution. Decompose the process outcome into a N × (np) sensing
matrix, namely

H =
⎡

⎢⎣
x̄ T

k0+1
...

x̄ T
k0+N

⎤

⎥⎦ (9.48)

and assume that spark(H) > 2s almost surely. If, in addition,
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s = O
(

c̄(ε)2 N/ log(np)
)

(9.49)

for some positive constant ε < 1, then any estimation error entropy, computed based
on a support consisting of not more than s entries, is bounded above by

hs
N ≤

1

2
s log

(
2πeqi

(1− ε)N
)
+ np

2
(1− ρ) log

(
1+max

j
C j, j

)
(9.50)

with probability exceeding 1 − δ(ε). In particular, the probability approaches 1 as
the problem dimensions, np and N, increase while yet maintaining

N ≥ c̄(ε)2‖C‖2s log(np) (9.51)

The exact expressions for c̄(ε) and δ(ε) are provided in Lemma 2 as part of the proof.
Finally, ρ in (9.50) denotes a unique measure of complexity taking values between
0 and 1. This quantity, which is referred to as the measure of sensing complexity, or
MSC in short, is defined in the next theorem.

Corollary 1 If the covariance matrix C in Theorem 1 is a correlation matrix, then
the upper bound (9.50) assumes the form

hs
N ≤

1

2
s log

(
2πeqi

(1− ε)N
)
+ np

2
(1− ρ) log 2 (9.52)

Theorem 2 (Measure of Sensing Complexity). The measure of sensing complexity,
which is defined as

ρ = log det
(C + I(np)×(np)

)

np log
(
1+max j C j, j

) (9.53)

satisfies the following conditions:

1. ρ ∈ (0, 1]
2. ρ = 1 if C = cI(np)×(np) for some positive constant c
3. limnp→∞ ρ = 0 for C = E

{[x, . . . , x]T [x, . . . , x]}, i.e., multiple copies of the
same random variable

4. If the condition number of C approaches 1 then so is ρ.

9.7.1 Discussion

The proposed entropy bounds (9.50) and (9.52) consist of two (right-hand-side)
ingredients. The first one can readily be identified as the information entropy associ-
ated with the estimation error covariance of a ML or LS estimator working in ideal
settings. It yet accounts for a correction term λmin(C) regulating the signal to noise
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ratio due to the observation model (9.17). By saying “ideal settings” we essentially
refer to an hypothetical situation in which the support of the sparse parameter vector
αi is perfectly known. As this is not truly the case, there comes the second term
which represents the information loss due to the indefinite support. Whereas the first
term may be negative the second one is always non-negative

np

2
(1− ρ) log

(
1+max

j
C j, j

)
≥ 0 (9.54)

reflecting the underlying information loss. Notwithstanding, as ρ approaches its
upper limit of 1, this undesired effect is reduced, which is the case in ideal RIP
settings.

9.7.2 Democracy and Dictatorship

It has been previously pointed out that RIP matrices are democratic in some
sense [39]. Our measure of complexity, the MSC, suggests a nice interpretation
in this respect. According to Theorem 2, ρ attains its upper limit of 1 whenever the
covariance C equals cI(np)×(np), i.e., when the underlying random variables are sta-
tistically independent. As much as it is the case with democratic ballots, the balanced
nature of this configuration, in which every random variable has its own “mindset”
and is by no means affected by its counterparts, entails the least prognostic situation.
This may, alternatively, be viewed as the problem of selecting an arbitrary set of indi-
viduals from np candidates with no preference whatsoever. A fast calculation shows
that the information required to encode this setting attains the maximum value of

− 1

2np

2np∑

j=1

log

(
1

2np

)
= np log 2 [nats]

Unsurprisingly, this is exactly the number we would get in the denominator in (9.53)
assuming C is a correlation matrix (i.e., c = 1) (see also the rightmost term in
(9.52). As ideal RIP matrices are associated with ρ → 1 we may regard them as
“democratic” in the above sense.

On the other extreme, a dictatorship is the situation where we have an indecisive
preference for only one individual from the pool of candidates. Following a rationale
similar to the one above yields an entropy of 0. This essentially concurs with the case
where multiple copy of the same random variable are present (i.e., the third item in
Theorem 2). Having this in mind and recalling some of the points in Sect. 9.7.1, we
conclude the following.

Corollary 2 The dependency upon the problem dimension, np, relaxes in (9.50) and
(9.52) as the MSC approaches the democratic limit of 1. In that case the bound (9.52)
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attains an ideal limit

lim
ρ→1

hs
N ≤

1

2
s log

(
2πeqi

(1− ε)N
)
. (9.55)

9.7.3 Practical Considerations and Extensions

Our derivations above assume the knowledge of the covariance matrix C. In the
conventional settings of CS, where sensing matrices are designed or chosen from a
prescribed pool of random constructions, the computation of C may be straightfor-
ward. In general, however, this might not be the case. It turns out that for the problem
at hand, the covariance matrix depends on the unknown parameters αi , i = 1, . . . , n
as evinced by the observation model (9.17). If αi is deterministic then the MSC and
likewise the probabilistic bounds (9.50) and (9.52) can be computed in practice via
solving the following discrete Lyapunov equation for C

AC AT − C + B Q BT = 0 (9.56)

where Q = E
{
ω̄kω̄

T
k

}
is the driving noise covariance, and the matrices A and B are

defined in (9.8). A solution to (9.56) exists only if A is a stable matrix which also
implies that the process x̄k becomes stationary in the wide-sense with an increasing k.

Extending the upper bounds for accommodating random parameters αi requires
that the solution of (9.56) almost surely exists. Here, both the obtained covariance C
and the MSC are random quantities, essentially depending on αi .

CA = C(α1, . . . , αn), ρA = ρ(α1, . . . , αn) (9.57)

An amended version of the bound (9.50) for the random case is hence suggested by
the following theorem.

Theorem 3 (Upper Bound Assuming Random Parameters). Suppose that the
subset of N successive random variables, x̄k0+1, . . . , x̄k0+N , constitute an ergodic
wide-sense stationary process where, without any loss of generality, E

{
x̄k0+ j

} = 0,
j = 1, . . . , N. Assume also that αi is an s-sparse random vector and that the
number N is smaller than dim(αi ), i.e., N < np. Define Ck := E

{
x̄k x̄ T

k

}
and

let CA = Ck0+1 = . . . = Ck0+N be the covariance matrix corresponding to the
underlying stationary distribution. Decompose the process outcomes into a N×(np)
sensing matrix H, as in Theorem 1, and assume that spark(H) > 2s almost surely.
If, in addition,

s = O
(

c̄(ε)2 N/ log(np)
)

(9.58)

almost surely holds for some positive ε < 1, then
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E
{
hs

N | XN
} ≤ E

{
1

2
s log

(
2πeqi

(1− ε)N
)
+ np

2
(1− ρA) log

(
1+max

j
C j, j

A

) ∣∣∣∣XN

}

(9.59)
with probability exceeding 1− δ(ε), and where the expectation is with respect to the
random variables (α1, . . . , αn | XN ), namely

E
{

f (α1, . . . , αn) | XN

}
=

∫

a1
· · ·

∫

an
f (a1, . . . , an)pα1,...,αn |XN

(a1, . . . , an | XN )da1 · · · dan . (9.60)

9.8 Numerical Study

The concepts introduced throughout this chapter are numerically demonstrated in
this section. We compare the estimation performance of the newly derived scheme
from Sect. 9.6.1, the CS-UKF, with that of the CSKF [19], BCS [32], OMP [42] and
LARS [28]. As the latter methods, the BCS, OMP and LARS, are non sequential, in
our experiments they are fed at any given time with the whole batch of measurements
available up to the specific instance. In contrast, both KF variants process a single
measurement at a time. The CS methods are employed for estimating the coefficients
of a vector AR process for which the time evolution is

x̄k = Ax̄k−1 + Bω̄k (9.61)

where the matrices A ∈ R
(np)×(np) and B ∈ R

(np)×n are given in (9.8). At the
beginning of each run the non-trivial coefficients of A, namely, {αi, j (t), i, j =
1, . . . , n, t = 1, . . . , p}, are randomly sampled from a uniform distribution [−d, d],
where d is selected such that the resulting A is stable. That is, we maintain

‖λm(A)‖ < 1, m = 1, . . . , np

We consider two types of parameter vectors, αi ∈ R
np, i = 1, . . . , n, which are

either sparse or compressible. In our examples, compressible vectors consist of many
relatively small entries which are uniformly sampled over the interval [−0.03, 0.03].
On the other hand, the significant entries of αi are uniformly sampled over [−1, 1].
The initial distribution of x̄k is chosen as zero-mean Gaussian with covariance matrix
I(np)×(np). The driving noise ω̄k is also assumed zero-mean Gaussian with covariance
matrix Q = q In×n , where q = 10−4. At every run, the underlying algorithms are
seeded by the set of realisations {X̄1, . . . , X̄ N }, where N < np.
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Fig. 9.4 Recovery performance of the various methods for a system dimension of np = 70 with
s = 14 non-vanishing/significant parameters. Batch methods: BCS (blue dashed line), OMP (red
dashed line), and LARS (black dashed line). Sequential methods: CSKF (red line), CS-UKF (black
line), and KF/ridge regression (blue line). a Normalised RMSE (Sparse Parameters). b Normalised
RMSE (Compressible Parameters)

9.8.1 Sequential Processing of AR Measurements

The recovery performance based on 100 Monte Carlo (MC) runs of all methods
with respect to an increasing number of observations is depicted in Fig. 9.4. In this
figures and the ones that follow we use the mean normalised RMSE as a measure of
estimation performance. This metric, which is given by

√√√√
n∑

i=1

‖αi − α̂i‖22
‖αi‖22

(9.62)

is averaged over all MC runs.
As seen from Fig. 9.4, in this example, the mean performance of the CS-UKF

approaches that of the LARS and the BCS as the number of observations, N ,
increases, particularly in the compressible case. The KF-based CS methods ,however,
process a single measurement at a time and thereby maintain around the same com-
putational overhead irrespective of N . The rest of the methods, on the other hand,
deal with an increased complexity as N grows. As opposed to the CSKF which
employs 40 PM iterations and covariance updates per measurement, the CS-UKF
uses only one iteration per sigma point and two covariance updates per measurement
(which accounts for measurement update and PM refinement). Moreover, in contrast
with the OMP and BCS algorithms, it seems that both KF-based CS methods main-
tain a reasonable accuracy over the entire range of N , and even when the number
of observations is considerably small. Finally, the performance of a standard KF is
also provided which clearly demonstrates the advantage of using the PM stage in
compressive settings.
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9.8.2 Large Deviations from Ideal RIP Conditions

We further examine the performance of the CS methods in different settings. In
this example the state dimension np varies between 40 and 70 while the number of
observations remains fixed with N = 30. The sparseness degree (i.e., the number of
significant entries in αi ) is set as s = int[c · (np)] where int[·] denotes the integer
part, and c, which is referred to as the sparseness index, may be between 0.1 and 0.5.
As c approaches its upper limit of 0.5 the associated sensing matrix may severely
deviate from ideal RIP conditions. This follows from the fact that as s increases there
are more statistically dependent entries in x̄k which would ultimately be reflected by
a less “democratic” ρ, i.e., the MSC would become smaller.

The normalised RMSE for all possible problem dimensions is shown for the
underlying methods in Fig. 9.5. The advantage of using the KF-based CS approaches
is rather decisive in this figure. This observation is further evinced in Fig. 9.6 where
the normalised RMSE is averaged along one of the dimensions, either the state
dimension or the sparseness degree. In both these figures the CS-UKF exhibits the
best recovery performance over almost the entire range of values.

The MSC corresponding to the various settings in this example is illustrated via
a level plot in Fig. 9.7. This figure was obtained following the approach described in
Sect. 9.7.3. Thus, our conjecture from above can immediately be validated. Indeed,
as shown in this figure the MSC tends to decrease with a growing sparseness index.
This is further manifested in Fig. 9.7b where the MSC is averaged over the entire
range of state dimensions. Finally, as the average MSC drops the attained recovery
performance of all methods conclusively deteriorates as seen from Fig. 9.6b.

Fig. 9.5 a CS-UKF. b BCS. c OMP. d LARS Normalised RMSE with respect to state dimension
and sparseness index
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Fig. 9.6 a Varying State Dimension. b Varying Sparseness Index Normalised RMSE with respect
to state dimension np (averaged over the entire range of sparseness indices), and the normalised
RMSE with respect to sparseness index (averaged over the entire range of state dimensions). Batch
methods: BCS (blue dashed line), OMP (red dashed line), and LARS (black dashed line). Sequential
methods: CSKF (red line), CS-UKF (black line), and KF/ridge regression (blue line)
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Fig. 9.8 Normalised RMSE and the corresponding MSC. Batch methods: BCS (blue dashed line),
OMP (red dashed line). Sequential methods: CSKF (red line), CS-UKF (black line), and KF/ridge
regression (blue line). LARS is out of scale. a Normalised RMSE. b MSC
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Fig. 9.9 An approximation of the probabilistic upper bound (9.50) for sparseness degrees of s = 4
(crosses), s = 6 (circles), and s = 8 (diamonds). a CS-UKF. b BCS

9.8.3 MSC and Upper Bounds

The relation between the MSC and the attainable estimation accuracy is illustrated
in Fig. 9.8. The left panel in this figure shows the normalised RMSE for 90 different
cases in which a new set of parameters αi was produced. Every point in this figure
represents the performance of the corresponding method averaged over 100 MC runs
in which the underlying parameters remain fixed. The MSC corresponding to any
set of parameters is shown in the right panel in Fig. 9.8.

Based on Fig. 9.8 we conclude the following. As the MSC approaches its upper
limit the recovery performance almost monotonically improves. The CS-UKF and
the BCS exhibit almost identical recovery performance in this example. Yet, the
CS-UKF recursively updates its estimates by processing a single observation at a
time.

The upper bound in Theorem 1 is numerically assessed in Fig. 9.9. Thus, the
probability of (9.50) to hold true is approximated based on 100 MC runs assuming
various sparseness degrees and values of ε. In this experiment only two methods, the
CS-UKF and the BCS, admit the bound which may indicate that, in this case, both
CS schemes attain an optimal recovery performance.

9.8.4 Detecting Interactions in a Multi-Agent System

The following example demonstrates how compressible AR models can be used
for efficiently detecting interactions among agents in a dynamic complex system.
Consider a multi-agent system where each individual agent is free to move in the
2-dimensional plane. Denoting (x1

k )i , (x
2
k )i and (x3

k )i , (x
4
k )i as, respectively, the posi-

tion and velocity of the i th agent, the motion is generally governed by the following
discrete-time Markovian evolution
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⎡

⎢⎢⎣

(x1
k )i

(x2
k )i

(x3
k )i

(x4
k )i

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

(x1
k−1)i

(x2
k−1)i

(x3
k−1)i

(x4
k−1)i

⎤

⎥⎥⎦+
⎡

⎣
0
0

(ζk)i

⎤

⎦ (9.63)

where {(ζk)i }k≥0 is a zero-mean white Gaussian sequence with covariance
E
{
(ζk)i (ζk)

T
i

} = 0.12 I2×2, andΔt is a sampling time interval. Nevertheless, within
this system there are some agents which interact with their counterparts by way of
attraction, that is, they aware of the other agents’ position and they moderate their
velocity for approaching an arbitrarily chosen individual. The resulting motion of
these agents essentially consists of adding nonlinear terms to (9.63). Hence, assuming
the i th agent is attracted to the j th one, yields

⎡

⎢⎢⎣

(x1
k )i

(x2
k )i

(x3
k )i

(x4
k )i

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

(x1
k−1)i

(x2
k−1)i

(x3
k−1)i

(x4
k−1)i

⎤

⎥⎥⎦+
ν

d j,i
k−1

⎡

⎢⎢⎣

0
0

(x1
k−1) j − (x1

k−1)i
(x2

k−1) j − (x2
k−1)i

⎤

⎥⎥⎦+
⎡

⎣
0
0

(ζk)i

⎤

⎦

(9.64)
where ν and d j,i

k−1 denote, respectively, a positive scalar and the distance between the
i th and j th agents at time k − 1, that is

d j,i
k−1 =

√[
(x1

k−1) j − (x1
k−1)i

]2 + [
(x2

k−1) j − (x2
k−1)i

]2
(9.65)

The objective here is to reconstruct the interaction pattern among agents based on
their positions and velocities without being aware of the actual state dynamics, i.e.,
the actual models (9.63) and (9.64) are not provided to the detection algorithm. Our
approach relies on the AR formulation (9.17) where this time the augmented state
vector x̄k is defined as

x̄k =
[
zT

k , . . . , zT
k−p+1

]T
, zk =

[
(x1

k )1, . . . , (x
4
k )1, . . . , (x

1
k )Na , . . . , (x

4
k )Na

]T

(9.66)
with Na being the total number of agents.

The rationale underlying this formulation is the following. Let Gi and G j be the
set of indices pertaining to the i th and j th agents. If agent i is indeed affected by
agent j then this is expected to be reflected by the estimated AR coefficients, and
particularly,

∑

l∈G j

p∑

t=1

|α̂m,l(t)| �
∑

l /∈{G j∪Gi }

p∑

t=1

|α̂m,l(t)|, m ∈ Gi (9.67)

In other words, the coefficients associated with the influence of the j th agent on the
behaviour of the i th agent are conjectured to be considerably larger in magnitude
compared with the rest of the coefficients, excluding those which correspond to
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Fig. 9.10 Autoregressive coefficients representing interactions in a multi-agent system

the i th agent own states (i.e., for which the indices are in Gi ). Consequently, the
vectors of AR coefficients, αl , l = 1, . . . , 4Na , are assumed to be compressible.
Figure 9.10 further illustrates how AR coefficients are used to represent interactions
among agents.

We simulate a system with Na = 4 agents for which the initial state is
independently sampled from a uniform distribution, (x1

0)i ∼ U [50, 50], (x2
0 )i ∼

U [50, 50], (x3
0)i ∼ U [5, 5], (x4

0)i ∼ U [5, 5]. All agents travel freely in the 2D
plane except of the second agent, which is attracted to the first one. Following the
aforementioned rationale, we expect that in this case the most dominant entries in
the AR vectors of the first agent would belong to both G1 and G2. On the other hand,
the most dominant entries in the AR vectors of any other agent, i �= 1 , would belong
exclusively to Gi .

The AR model is applied with a time-lag parameter p = 10, which consequently
yields 160 coefficients in each AR vector. For each agent, only two coefficient vectors
are considered which correspond to its coordinates (x1

k )i , (x
2
k )i . Any one of these

coefficient vectors is independently estimated using either a regular KF or the pro-
posed CS-UKF, both which employ the observation model (9.17). The total number
of observations used in this example is N = 80.

The estimated coefficients in this experiment are shown for all agents in Fig. 9.11.
For brevity, the two coefficient vectors associated with each agent are summed up
and shown as a single line in any one of the panels in this figure. The blue and
red lines correspond to the coefficients obtained using, respectively, a regular KF
(i.e., non compressive estimation) and the CS-UKF (i.e., compressive estimation).
There are four panels in Fig. 9.11, one for each agent. Each panel is further divided
into four segments which put together coefficients representing the influence of the
same agent, i.e., the first segment in the upper left panel (agent 1) consists of the
coefficients αm,l(1), . . . , αm,l(p), m ∈ G1, l ∈ G1, the second segment in the
same panel consists of αm,l(1), . . . , αm,l(p), m ∈ G1, l ∈ G2, the third segment
consists of αm,l(1), . . . , αm,l(p), m ∈ G1, l ∈ G3, and so forth.

Figure 9.11 clearly shows that both the KF and the CS-UKF correctly identify the
dominant entries influencing the dynamics of each agent, and also the (nonlinear)
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Fig. 9.11 Compressive (red line) and non compressive (blue line) estimation of the interaction
coefficients, αi, j (t), in a multi-agent system. a Agent 1. b Agent 2. c Agent 3. d Agent 4

influence of G1 on G2. Nevertheless, the CS-UKF exhibits a decisive superiority
in this respect, as its estimates are far more adequate. In particular, the CS-UKF
manages to accurately recover the agents’ own dynamic coefficients whereas the
unrelated entries almost completely vanish.

9.9 Concluding Remarks

We consider the problem of estimating the coefficients of sparse and compressible
AR models using less observations than conventionally needed. This setting consti-
tutes a challenge to standard compressive sensing schemes as it generally entails a
substantial deviation from ideal RIP conditions (which is referred to here as non-
RIP). The derived unscented KF-based compressive sensing method, the CS-UKF,
exploits the KF machinery for processing the underlying observations sequentially
in time, which is also one of its distinctive features. Other benefits of this algorithm
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account for its ability to maintain a good recovery performance even under substan-
tial deviations from ideal RIP conditions, which thereby renders this method the most
successful compared with the other compressive sensing algorithms considered here
(i.e., OMP, LARS, BCS, and CSKF). This is evinced by its recovery performance,
which is on the average, more accurate than that of the other methods (see for example
Fig. 9.6). In other cases, its performance is comparable to that of classical methods
such as the LARS and BCS. Notwithstanding, its recursive nature facilitates a nearly
fixed computational overhead at every iteration when a new observation becomes
available. This is a desired aspect especially when dealing with dynamic systems.

A feature of the CS-UKF which has not been explored in this work refers to its
ability to estimate dynamic compressible signals, i.e., signals with varying support
and/or entries. Thus, the CS-UKF and likewise its counterpart, the CSKF, have the
potential of detecting structural changes in compressible AR models, where one
or more parameters may vary with time. In this respect, the CS-UKF falls within
the category of dynamic CS schemes, and hence shares common objectives with
methods such as the dynamic LASSO and l1-regularised recursive least squares (see
discussion in Sect. 9.5).

9.9.1 Entropy Bounds and Sensing Complexity

The information bounds derived in Sect. 9.7 completely avoid RIP constants. This
is achieved by introducing a novel complexity metric, which is referred to as MSC.
The MSC relies on the AR process correlation matrix for quantifying the complexity
underlying the sensing matrix, H . In essence, it indicates the amount of information
required for encoding the set of statistically dependent random variables forming
the columns of H . The measure itself is normalised with respect to the maximal
complexity attained only when these random variables are statistically independent.
As already noted, this case corresponds to an ideal RIP sensing matrix H . Designated
as ρ, the MSC assumes values between 0 and 1 where the upper limit is reserved for
ideal RIP matrices. On the opposite extremeρ → 0 is associated with highly coherent
(non-RIP) sensing matrices, those which do not promote compressive reconstruction.

The MSC suggests a new perspective on the sparse recovery problem which is
substantiated by the information upper bounds in Sect. 9.7. Theese bounds consist of
two components, the first of which is rather familiar and concurs with the estimation
error statistics of ML estimators. The second component relies on the MSC and
essentially represents an additional uncertainty associated with the signal unknown
support.

Estimation error entropy ≤
Observation uncertainty︸ ︷︷ ︸

Due to observation noise

+Combinatorial uncertainty (MSC)︸ ︷︷ ︸
Due to unknown support
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The rightmost term in the above expression stems from the combinatorial nature of
the recovery problem. This suggests that the MSC merely quantifies the information
needed to encode all possible subsets of columns from H .

9.10 Proofs of Theorems

9.10.1 Proof of Equation (9.33)

Consider the PM observation

0 = ‖αi‖1 − vk = sign(αi )Tαi − vk (9.68)

Because αi is unknown we make use of the relation αi = α̂i
k + α̃i

k to get

0 = sign
(
α̂i

k + α̃i
k

)T
αi − vk (9.69)

where α̃i
k is the estimation error after processing k observations. As sign(·) is a

bounded function, we may write

0 =
[
sign(α̂i

k)+ g
]T
αi − vk = sign(α̂i

k)
Tαi + gTαi − vk︸ ︷︷ ︸

v̄k

(9.70)

where g is Xk-measurable, and ‖g‖ ≤ c almost surely. The expression (9.70) is the
approximate PM with an effective observation noise v̄k . A the mean of v̄k cannot be
easily obtained we approximate the non centralised second moment

E
{
v̄2

k | Xk

}
= E

{
gT

(
α̂i

k + α̃i
k

) (
α̂i

k + α̃i
k

)T
g
∣∣Xk

}
+ rk (9.71)

which follows from the fact that α̂i
k and vk are statistically independent, where

E{vk} = 0 and E{v2
k } = rk . Substituting the estimation error covariance with the

KF-computed one, Pk , in (9.71), yields

r̄k = E
{
v̄2

k | Xk

}
= gT α̂i

k(α̂
i
k)

T g + gT E

{
α̃i

k

(
α̃i

k

)T ∣∣Xk

}
g + rk

≈ O(‖α̂i
k‖2)+ gT Pkg + rk (9.72)

where it was implicitly assumed that E{α̃i
k | Xk} = 0, i.e., α̂i

k is unbiased. QED.
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9.10.2 Proof of Theorem 1

The proof of this theorem consists of two subsequent parts. The first part establishes a
relation between the estimation error entropy (9.47) and the corresponding covariance
sub-matrix of the stationary process, C[ j1, . . . , js]. The second part extends the result
of the first part to account for the (np)× (np) covariance matrix, C.

Part one: We begin with the main result in [43], where it is proved that

E

{∥∥∥∥∥
1

N

N∑

i=1

x̄k0+i x̄ T
k0+i − I(np)×(np)

∥∥∥∥∥

}
≤ c

√
log np

N
E
{
‖x̄k0‖log N

}1/ log N
(9.73)

holds for independent and identically distributed (iid) vectors x̄k0+i , i = 0, . . . , N ,

having an identity covariance matrix, namely E
{

x̄k0 x̄ T
k0

}
= I(np)×(np).

Two distinctions are made here. Firstly, in our case the vectors x̄k0+i are not
truly independent, as they are generated by a Markovian system (see Sect. 9.3.1).
Nevertheless, under the ergodicity and stationarity assumptions, from a certain time
point onwards, these vectors become identically distributed and may be considered,
to some extent, as statistically independent. By saying this, we mean that any two
distinct vectors, x̄k0+i and x̄k0+ j , are nearly independent providing that |i − j | ≥ τ ,
where the positive integer τ has to do with the mixing properties of the process.
Using statistically dependent vectors for computing the ensemble average in (9.73)
introduces a Monte Carlo error which diminishes with the number of samples N . It
is shown in [47] that for a small number of samples the following holds

1

N

N∑

i=1

x̄k0+i x̄ T
k0+i = cτ

1

N

N∑

i=1

ȳi ȳT
i (9.74)

where cτ > 0, and ȳi , i = 0, . . . , N are iid with covariance E
{

ȳ0 ȳT
0

} = E
{

x̄k0 x̄ T
k0

}
.

Furthermore, as N increases then cτ → 1. Equation (9.74) allows us to substitute
the statistically dependent vectors in (9.73) with statistically independent ones. Thus,
combining both (9.74) and (9.73) yields

E

{∥∥∥∥∥
1

N

N∑

i=1

x̄k0+i x̄ T
k0+i − I(np)×(np)

∥∥∥∥∥

}
≤ c′

√
log np

N
E
{
‖x̄k0‖log N

}1/ log N

(9.75)
where c′ = c1/2

τ c.
The second distinction is the following: we note that with only a slight modifica-

tion, (9.75) applies to vectors x̄k0+i with arbitrary covariance, C.

Lemma 1 Let C = E
{

x̄k0+i x̄ T
k0+i

}
, i = 0, . . . , N. Then,
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E

{∥∥∥∥∥
1

N

N∑

i=1

x̄k0+i x̄ T
k0+i − C

∥∥∥∥∥

}
≤ c′‖C‖

√
log np

N
E
{
‖ȳ0‖log N

}1/ log N
(9.76)

where ȳ0 is a zero-mean random vector with a unit covariance.

Proof Decompose C = U�U T , where U and � denote, respectively, an
orthogonal matrix and a non-negative diagonal matrix. Hence, (9.75) yields

E

{∥∥∥∥∥
1

N

N∑

i=1

x̄k0+i x̄ T
k0+i − C

∥∥∥∥∥

}
= E

{∥∥∥∥∥U�1/2

(
1

N

N∑

i=1

ȳi ȳT
i − I

)
�1/2U T

∥∥∥∥∥

}
=

E

{∥∥∥∥∥�
1/2

(
1

N

N∑

i=1

ȳi ȳT
i − I

)
�1/2

∥∥∥∥∥

}
≤ ‖�‖E

{∥∥∥∥∥
1

N

N∑

i=1

ȳi ȳT
i − I

∥∥∥∥∥

}
≤

c′‖�‖
√

log np

N
E
{
‖ȳ0‖log N

}1/ log N
(9.77)

where ȳi = �−1/2U T x̄k0+i , i = 0, . . . , N . Finally, recognising that ‖�‖ = ‖C‖,
and E

{
ȳi ȳT

i

} = �−1/2U T CU�−1/2 = I(np)×(np), yields the lemma. QED.

In what follows, we make use of (9.76) in the context of the information entropy
(9.47), where the estimation error covariance sub-matrix, PN [ j1, . . . , js], appears.
For that reason, we slightly rephrase (9.76) for encompassing this case. Let x̄ s

k0+i ,
i ∈ [0, N ] be a vector comprised of s entries from x̄k0+i , for which the indices are
{ j1, . . . , js}. Then, (9.76) implies

E

{∥∥∥∥∥
1

N

N∑

i=1

x̄ s
k0+i (x̄

s
k0+i )

T − C[ j1, . . . , js]
∥∥∥∥∥

}

≤ c′‖C‖
√

log np

N
E
{
‖ȳs

0‖log N
}1/ log N

(9.78)

where E
{

ȳs
0(ȳ

s
0)

T
} = Is×s . Before proceeding any further we note that the right

hand side in (9.78) satisfies

c′‖C‖
√

log np

N
E
{
‖ȳs

0‖log N
}1/ log N ≥ c′‖C‖

√
log np

N
E
{
‖ȳs

0‖2
}1/2

(9.79)

for log N > 2. As, E
{‖ȳs

0‖2
} = s, this further implies

c′‖C‖
√

log np

N
E
{
‖ȳs

0‖log N
}1/ log N ≥ c′‖C‖

√
s log np

N
(9.80)
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Therefore, a necessary condition for the right hand side in (9.78) to be smaller than
1, is

N > (c′‖C‖)2s log(np) or s = O (N/ log(np)) (9.81)

Equation (9.78) is related to the estimation error entropy (9.47) in the following
way. The ensemble average on the left hand side in (9.78) is, in fact, a scaled version
of the optimal estimation error covariance (in the MSE sense) assuming the support
of αi is provided. In other words, we have

PN [ j1, . . . , js] = qi

(
N∑

i=1

x̄ s
k0+i (x̄

s
k0+i )

T

)−1

(9.82)

which is no other than the estimation error covariance of a least squares estimator
(which almost surely exists owing to the condition spark(H) > 2s). The above
expression has to do with the process covariance sub-matrix C[ j1, . . . , js] as man-
ifested by (9.78). Unfortunately, this premise cannot be directly used in the infor-
mation entropy (9.47). Getting around with this requires an intermediate stage in
which the formulation assumes a probabilistic twist. In detail, we invoke the Markov
inequality for relating the determinants of PN [ j1, . . . , js] and C[ j1, . . . , js]. The
argument proceeds as follows.

Equations (9.78) and (9.82) together with the Markov inequality, yield

Pr

(∥∥∥∥
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

∥∥∥∥ > ε′
)
≤

1

ε′
E

{∥∥∥∥
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

∥∥∥∥

}
≤

c′

ε′
‖C‖

√
log np

N
E
{
‖ȳs

0‖log N
}1/ log N

(9.83)

for which the complementary inequality is

Pr

(∥∥∥∥
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

∥∥∥∥ ≤ ε′
)
≥

1− c′

ε′
‖C‖

√
log np

N
E
{
‖ȳs

0‖log N
}1/ log N

(9.84)

Recalling Weyl inequalities, (9.84) further implies the following relations among the
eigenvalues

λ1(PN [ j1, . . . , js]−1) ≥ · · · ≥ λs(PN [ j1, . . . , js]−1)

and
λ1(C[ j1, . . . , js]) ≥ · · · ≥ λs(C[ j1, . . . , js])
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of the two symmetric matrices PN [ j1, . . . , js]−1 and C[ j1, . . . , js]. Thus,

Pr

(
λm

(
qi

N
PN [ j1, . . . , js]−1

)
− λl−m+1 (C[ j1, . . . , js]) ≥ −ε′

)
≥

Pr

(
λm

(
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

)
≥ −ε′

)
≥

Pr

({
λm

(
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

)
≥ −ε′

}⋂

{
λm

(
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

)
≤ ε′

})
=

Pr

(∣∣∣∣λm

(
qi

N
PN [ j1, . . . , js]−1 − C[ j1, . . . , js]

)∣∣∣∣ ≤ ε′
)
≥

1− c′

ε′
‖C‖

√
log np

N
E
{
‖ȳs

0‖log N
}1/ log N

(9.85)

for any 1 ≤ l − m + 1 ≤ s.
Let ε′ = (1 − d)λl−m+1(C[ j1, . . . , js]) − d and assume that d/(1 − d) <

λl−m+1(C[ j1, . . . , js]) so as to ensure ε′ > 0. Substituting ε′ into (9.85) and slightly
rearranging, yields

Pr

(
λm

(
qi

N
PN [ j1, . . . , js]−1

)
≥ d[λl−m+1(C[ j1, . . . , js])+ 1]

)
≥

1− c(d)‖C‖
√

log np

N
E
{
‖ȳs

0‖log N
}1/ log N

︸ ︷︷ ︸
δ(d)

(9.86)

from which it is clear that d is necessarily positive. The positive constant c(d) in
(9.86) is obtained as

c(d) = c′/[(1− d)λmin(C)− d] (9.87)

owing to Cauchy interlacing theorem which essentially implies λmin(C) ≤ λmin
(C[ j1, . . . , js]) ≤ λl−m+1(C[ j1, . . . , js]). The inequality (9.86) gives rise to the
following lemma.

Lemma 2 Let ε be a positive constant satisfying

min

{
0,

1− λmin(C)max j C j, j

1+ λmin(C)

}
< ε < 1 (9.88)

Suppose that
N > c̄(ε)2‖C‖2s log(np)
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or equivalently

s = O
(

c̄(ε)2 N/ log(np)
)

Then the following holds with probability exceeding 1− δ(ε)

det (PN [ j1, . . . , js]) ≤
(

qi

N

1+max j C j, j

1− ε

)s

det (I + C[ j1, . . . , js])−1 (9.89)

Proof From (9.86) it follows that

det (PN [ j1, . . . , js]) =
(

qi

N

)s s∏

m=1

1

λm

(
qi

N PN [ j1, . . . , js]−1
) ≤

(
qi

d · N
)s ∏

1≤l−m+1≤s

λl−m+1(C[ j1, . . . , js] + Is×s)
−1 =

(
qi

d · N
)s

det(C[ j1, . . . , js] + Is×s)
−1 (9.90)

with probability of at least 1− δ(d). Set d = (1− ε)/(1+max j C j, j ), and assume
that ε obeys (9.88), which in turn fulfills the conditions underlying (9.86), i.e., d > 0,
and d/(1 − d) < λl−m+1(C[ j1, . . . , js]). Finally, substituting d into (9.90) yields
the lemma with the constants c̄(ε) and δ(ε) given by

c̄(ε) = c

(
(1− ε)/(1+max

j
C j, j )

)
= c′

1+max j C j, j

λmin(C)(max j C j, j )− 1+ ε(1+ λmin(C))
(9.91a)

δ(ε) = c̄(ε)‖C‖
√

log np

N
E
{
‖ȳs

0‖log N
}1/ log N

(9.91b)

where, under the conditions of the lemma, δ(ε) < 1. It is worthwhile noting that as
ε → 1 then c̄(ε)→ c′/λmin(C), and hence

lim
ε→1

δ(ε) = c′cond(C)
√

log np

N
E
{
‖ȳs

0‖log N
}1/ log N

(9.92)

where cond(C) denotes the condition number of C. QED.
Lemma 2 entails

hs
N =

1

2
log

{
(2πe)s det (PN [ j1, . . . , js])

} ≤
1

2
log

{(
2πeqi (1+max j C j, j )

(1− ε)N

)s

det (I + C[ j1, . . . , js])−1

}
(9.93)
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which concludes the first part of the proof.
Part two: Bearing in mind that the underlying support { j1, . . . , js} is normally

unknown, the second part of the proof is concerned with finding a suitable replace-
ment for the covariance sub-matrix, C[ j1, . . . , js], in (9.93). This is carried out by
first permuting the covariance matrix C such that the sub-matrix C[ j1, . . . , js] appears
as the uppermost block in the resulting permuted matrix C′. Because permutations
preserve the eigenvalues of the original matrix, it follows that det(C) = det(C′).
Using a well-known property of determinants of non-negative matrices gives

det(C) = det(C′) ≤ det(C[ j1, . . . , js]) det(C[ js+1, . . . , jnp]) (9.94)

where js+1, . . . , jnp are the remaining indices which do not belong to the support
{ j1, . . . , js}. Therefore,

det(I(np)×(np) + C) ≤
det(Is×s + C[ j1, . . . , js]) det(I(np−s)×(np−s) + C[ js+1, . . . , jnp]) ≤

det(Is×s + C[ j1, . . . , js])
np∏

m=s+1

(1+ C jm , jm ) ≤

det(Is×s + C[ j1, . . . , js])
(

1+max
j

C j, j
)np−s

(9.95)

which thereby yields

det(Is×s + C[ j1, . . . , js])−1 ≤
(

1+max
j

C j, j
)np−s

det(I(np)×(np)+ C)−1 (9.96)

Further, substituting (9.96) into (9.93), reads

hs
N ≤

s

2
log

(
2πeqi

(1− ε)N
)
+ np

2
log

(
1+max

j
C j, j

)
− 1

2
log det(I + C) (9.97)

which essentially coincides with (9.50) assuming ρ is as defined in (9.53). QED.

9.10.3 Proof of Theorem 2

We prove the following properties of ρ:

1. ρ ∈ (0, 1]
2. ρ = 1 if C = cI(np)×(np) for some positive constant c
3. limnp→∞ ρ = 0 for C = E

{[x, . . . , x]T [x, . . . , x]}, i.e., multiple copies of the
same random variable

4. If the condition number of C approaches 1 then so is ρ
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Proof

1. The first property follows straightforwardly from the fact that C is neither negative-
definite nor is it a null matrix. Thus,

log det(I + C) =
np∑

i=1

log(1+ λi (C)) > 0 (9.98)

as all eigenvalues of C are non negative and at least one eigenvalue λi (C) is strictly
larger than 0. Similarly,

np log(1+max
j

C j, j ) ≥ np log
(

1+ (np)−1tr(C)
)
≥

np log

(
1+ (np)−1

∑

i

λi (C)
)
> 0 (9.99)

from which we conclude that ρ > 0. Finally, because C is nonnegative-definite
and symmetric, it follows that

log det(I + C) ≤ log
∏

j

(1+ C j, j ) ≤ np log(1+max
j

C j, j ) (9.100)

which implies ρ ≤ 1.
2. Assuming C = cI , c > 0,

ρ = log det((1+ c)I(np)×(np))

np log(1+ c)
= log ((1+ c)np)

np log(1+ c)
= 1 (9.101)

3. It readily follows that C in this case is rank-deficient with only a single non-
vanishing eigenvalue equals to λmax(C) = tr(C). Therefore,

ρ = log det(I + C)
np log(1+max j C j, j )

= log(1+ tr(C))
np log(1+ C1,1)

= log(1+ npC1,1)

np log(1+ C1,1)
(9.102)

which implies limnp→∞ ρ = 0.
4. This immediately follows upon recognising that

log(1+ λmin(C))
log(1+ λmax(C)) ≤ ρ ≤

log(1+ λmax(C))
log(1+ λmin(C)) (9.103)
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Chapter 10
Distributed Approximation and Tracking
Using Selective Gossip

Deniz Üstebay, Rui Castro, Mark Coates and Michael Rabbat

Abstract This chapter presents selective gossip which is an algorithm that applies
the idea of iterative information exchange to vectors of data. Instead of communicat-
ing the entire vector and wasting network resources, our method adaptively focuses
communication on the most significant entries of the vector. We prove that nodes
running selective gossip asymptotically reach consensus on these significant entries,
and they simultaneously reach an agreement on the indices of entries which are
insignificant. The results demonstrate that selective gossip provides significant com-
munication savings in terms of the number of scalars transmitted. In the second part
of the chapter we propose a distributed particle filter employing selective gossip. We
show that distributed particle filters employing selective gossip provide comparable
results to the centralized bootstrap particle filter while decreasing the communication
overhead compared to using randomized gossip to distribute the filter computations.

10.1 Introduction

Many applications of wireless sensor networks require collection and processing
of large amounts of data. The main challenge in fulfilling these tasks is preserv-
ing network resources such as lifetime and bandwidth. One approach to fuse and
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process large amounts of data without draining network resources is to reduce the
data dimensionality. We present an algorithm called selective gossip to approximate
high dimensional vectors of network data in an efficient manner. Our method is based
on gossip algorithms which are decentralized methods studied extensively for scalar
network data. In essence, gossip algorithms utilize iterative information exchange
between pairs of nodes, and asymptotically all nodes reach consensus on a network
aggregate. Selective gossip applies the idea of iterative information exchange to
vectors of data. Instead of communicating the entire vector and wasting network
resources, our method adaptively focuses communication on the most significant
entries of the vector. We prove that nodes running selective gossip asymptotically
reach consensus on these significant entries, and they simultaneously reach an agree-
ment on the indices of entries which are insignificant.

Selective gossip can be taken as a building block and used in various distributed
signal processing algorithms. Here we study the distributed target tracking problem
where the nodes of a sensor network collaboratively track a moving object. For
problems involving nonlinear dynamics, nonlinear measurements, and non-Gaussian
noise, particle filtering is the current state-of-the-art-estimation method. We propose a
distributed particle filter implementation using selective gossip. In this setting, nodes
maintain a shared particle filter to sequentially estimate the state of the target. The
measurements taken by sensors are fused by reaching a consensus on the likelihood
associated with the each particle. Selective gossip efficiently identifies particles with
large weights and focuses communication resources on computing these important
weights. Through a simulation study we demonstrate that selective gossip requires
lower communication overhead while achieving similar accuracy as compared to
the state-of-the-art distributed particle filtering approaches on a scenario involving
bearings-only measurements of a maneuvering target.

This chapter is organized as follows. Section 10.2 reviews gossip algorithms.
Section 10.3 discusses the distributed averaging problem for vectors. Section 10.4
proposes the selective gossip algorithm in its three versions and also provides the
convergence results. Section 10.5 introduces distributed tracking problem and pro-
poses the distributed particle filter using selective gossip. A distributed target track-
ing scenario is presented to illustrate the performance of this algorithm. Section 10.6
concludes the chapter with a discussion of the results.

10.2 Gossip Algorithms

Operating under energy and bandwidth constraints, wireless sensor networks require
efficient and reliable methods for processing. The traditional approach of central-
ized processing has several drawbacks. It introduces a single point of failure to the
network. Furthermore, in dense networks, the links close to the central authority can
become bottlenecks. To avoid congestion and, also, to exploit processing capabilities
of sensor nodes, in-network processing algorithms are proposed. In-network process-
ing can be performed using spanning trees or Hamiltonian cycles. These are effective
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methods when the network topology does not change over time. However, since they
require forming and maintaining routes, these methods also have significant com-
munication overhead when nodes are mobile or wireless networking conditions are
not reliable. Gossip algorithms, on the other hand, are decentralized methods which
do not require specialized routes. They are known to provide robust and scalable
solutions for in-network processing.

Gossip algorithms have been widely studied as solutions to distributed consensus,
a problem which dates back to early work of Tsitsiklis et al. [32, 33]. This problem
requires nodes to reach an agreement by using only local exchanges. It is acknowl-
edged as a canonical problem in distributed control and signal processing (see, e.g.,
the surveys [7, 23]). Some example applications are cooperative control of multiple
autonomous vehicles [18], parameter estimation [30], distributed optimization [22],
and source localization [26].

The standard example of distributed consensus is the average consensus problem,
where in a network of n nodes, each node v has a scalar value xv ∈ R, and the goal
is to compute the average

x = 1

n

n∑

v=1

xv, (10.1)

at every node. Although averaging of scalars is a basic problem, it can be generalized
to computation of any linear function of the node values and to averaging of vectors.
Due to this capacity for generalization, algorithms that solve average consensus are
attractive for a wide range of wireless sensor network applications.

Gossip algorithms can be synchronous or asynchronous. The synchronous version
requires that at each iteration all nodes broadcast their values [37]. Having received
the values of its neighbors, each node then updates its value with a weighted average
of its value and the values it received. The asynchronous version, on the other hand,
does not require synchronization and only one pair of nodes update at each iteration.
In the remainder of this chapter when we refer to gossip algorithms, we refer to
asynchronous gossip.

Randomized gossip algorithm describes a randomized and asynchronous version
of gossip [3]. This algorithm restricts information exchange at each iteration to only
a pair of neighboring nodes. Below we summarize the randomized gossip algorithm.

For a network of n nodes, let the undirected graph G = (V, E) represent the
network connectivity where V = {1, . . . , n} is the set of nodes, and E ⊆ V × V
is the set of edges such that (u, v) ∈ E if and only if nodes u and v can perform
bidirectional wireless communication. The set of neighbors of node u (not including
u itself) is denoted by Nu = {v : (u, v) ∈ E}. The gossip iterations are indexed
using k = 1, 2, . . . , where k = 0 corresponds to the initial state. Each node v ∈ V
maintains a gossip value xv(k) which is initialized with xv(0) = xv .

Asynchronous time model [2]. A clock ticks at each node according to an inde-
pendent rate-1 Poisson process. Since there are |V | = n nodes, this is equivalent to
there being a network coordinator running a Poisson clock with rate n, and when the
coordinator’s clock ticks, it assigns the tick to a node drawn uniformly from V . Each
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tick of the coordinator’s clock corresponds to one iteration and we assume that the
communication and update steps involved in each iteration occur instantaneously so
that no two iterations overlap.

In a practical setting, the updates take some non-trivial amount of time. One could
either tune the rate of the Poisson clocks at each node so that two updates overlap (e.g.,
leading to interference) with probability zero, or one could adopt a more complex
scheduling mechanism to avoid interference. These issues are beyond the scope of
this work.

Communication model. There is a pre-defined communication matrix P with
entries Pu,v ≥ 0 and

∑
v∈V Pu,v = 1. In addition, Pu,v > 0 if and only if (u, v) ∈ E .

Suppose the kth clock tick occurs at node u. Then u contacts a random neighbor v
which is drawn according to the distribution {Pu,v}v∈V , and nodes u and v perform
an update.

Update rule. When nodes u and v gossip, they update their values with the
average,

xu(k + 1) = xv(k + 1) = 1

2

(
xu(k)+ xv(k)

)
. (10.2)

All other nodes v′ ∈ V \ {u, v} remain unchanged; i.e., xv
′
(k + 1) = xv

′
(k).

Intuitively, the convergence of randomized gossip is guaranteed if there exists
a path between each pair of nodes so that information can flow between each pair
infinitely often. Hence, one can show that, for a connected graph G, under mild
conditions on the way a random neighbor, v, is chosen, the values xu(k) converge
to x at every node u as k → ∞ [37]. The number of randomized gossip iterations
required to achieve consensus scales with the number of nodes in the network; the
rate of scaling depends on the network topology. For topologies that are generally
used to model wireless sensor networks such as grids and random geometric graphs,
randomized gossip converges slowly [3]. Motivated by this fact, there has been a
body of work studying faster versions of gossip, e.g., [1, 6, 19, 24, 35].

Another research direction involves using gossip algorithms as a building box in
complex signal processing applications (see [7] and references therein). Motivated
by applications in distributed estimation, we study gossiping on vectors of data.
Below we state this problem and propose selective gossip for efficient distributed
approximation of vectors.

10.3 Gossiping on Vectors

The scalar average consensus problem described in the previous section can be imme-
diately generalized to distributed averaging of vectors where, initially, each node
v ∈ V has a vector xv ∈ R

M and the aim is to compute the average

x̄ = 1

n

n∑

v=1

xv, (10.3)
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at each node v.
The basic solution to this problem is to run one scalar gossip algorithm for each

dimension of the vector in parallel such that the entire average vector is computed
at all nodes. Parallel gossip sessions can be implemented using the standard gossip
setup with a modified update rule which involves exchanging and averaging vectors
instead of scalars. Note that in practical sensor network scenarios, each wireless
packet can carry only a certain amount of data and, consequently, exchanging long
vectors may require several packets to be transmitted. Since energy consumption is
proportional to the number of packets transmitted, exchange of long vectors instead
of scalars increases the energy consumption of wireless communication. Increased
number of packet transmissions also increases the bandwidth consumption of gossip
updates.

However, often we only care about computing the largest entries of the average
vector and not the entire vector. One example is decentralized field estimation where
sensor nodes are deployed in an area to take scalar measurements [34]. Starting with
local measurements, the goal is to reach a network state where each node has an
approximation of the field. Transform coding is based on the idea that many natural
signals are sparse (or nearly sparse) when they are transformed into a suitable domain.
Hence, the signal representing the field can be well-approximated using only a few
transform coefficients (those with the large magnitude). Assuming that a suitable
transformation is available, one can use gossip algorithms to reach a consensus on
the transform coefficients in a decentralized manner. Since only a few of the transform
coefficients have large magnitudes, reaching a consensus only on these coefficients
is satisfactory. The problem is that we do not know which coefficients have large
magnitudes before actually computing them. Thus, any gossip algorithm that aims
to decrease the communication cost by computing only these coefficients needs to
also identify their locations.

Another example is the scenario where nodes must collectively decide among
one of a large number of hypotheses. Initially, each node has its own data. Under
the assumption that the likelihood of the data at different nodes is conditionally
independent given the hypothesis, the network-wide log-likelihood of any hypothesis
is simply the sum of the log-likelihoods at each node. However, if the number of
hypotheses is very large, then it is more efficient for the nodes to focus their resources
on computing the log-likelihood of only the most likely hypothesis or hypotheses,
rather than all of them. In Sect. 10.5, we will consider the related setting of distributed
particle filtering, where nodes gossip on the weights of particles which can be viewed
as hypotheses.

Motivated by these applications in distributed signal processing and decision
making, we study a method which adaptively identifies the largest elements of a
vector while computing their values. The next section describes this method and
provides results related to its performance.
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10.4 Selective Gossip

To address the average consensus problem in multi-dimensional setting, we propose
an efficient distributed averaging algorithm called selective gossip [34, 36]. Selective
gossip conceptually builds on the randomized gossip algorithm described in [3]. In
particular, we adopt the asynchronous time model and the communication model,
explained in Sect. 10.2. The update rule, on the other hand, is where selective gossip
differs from randomized gossip.

Each node v ∈ V maintains a gossip vector xv(k) ∈ R
M at iteration k and this

vector is initialized with xv(0) = xv . Let xvj (k) represent the j th entry of xv(k). The
gossip vectors in the entire network at iteration k are denoted by X (k) = {xv(k)}v∈V .
Let x̄(i) denote the i th highest entry of x̄, so that x̄(1) ≥ x̄(2) ≥ · · · ≥ x̄(M).

We aim to reach a consensus on the locations and values of the largest entries of
x̄. Depending on how the concept of largest entries is defined, the problem statement
and the solution changes. Here we consider two possibilities:

1. Threshold. Given a non-negative threshold τ , let Hτ be the set of entries larger
than the threshold, i.e.,

Hτ = { j : x̄ j ≥ τ }. (10.4)

The goal is to have the iterates X (k) approach X ∗τ as efficiently as possible, where

X ∗τ =
{
{xv} : for all v ∈ V,

xvj = x̄ j if j ∈ Hτ
xvj < τ if j /∈ Hτ

}
. (10.5)

If X (k) ∈ X ∗τ then we say that the network has reached consensus on x̄ for entries
larger than the threshold τ .

2. Top-m. Given a non-negative integer m < M , let Htop-m be the set of entries of
the highest m entries of x̄, i.e.,

Htop-m = { j : x̄ j ≥ x̄(m)}. (10.6)

Note that the cardinality of Htop-m , denoted |Htop-m |, may in fact be larger than
m, e.g., if x̄(m+1) = x̄(m). Similar to above, the goal is to have the iterates X (k)
approach X ∗top-m as efficiently as possible, where

X ∗top-m =
{
{xv} : for all v ∈ V,

xvj = x̄ j if j ∈ Htop-m

xvj < x̄(m) if j /∈ Htop-m

}
. (10.7)

If X (k) ∈ X ∗top-m then we say that the network has reached consensus on x̄ for
the largest m entries.

Our goal is to efficiently reach a state X (k) ∈ X ∗τ or X (k) ∈ X ∗top-m . Our measure
of efficiency aims to capture the amount of data communicated between nodes over
the network. Specifically, we count the total number of scalar values transmitted. Of
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course, in order to obtain X (k) ∈ X ∗τ or X (k) ∈ X ∗top-m , one could run a standard
distributed averaging algorithm [2, 3, 23] on each dimension, in which case standard
results guarantee that xv(k) → x̄ as k → ∞ for all v ∈ V . Since x̄ ∈ X ∗τ and
x̄ ∈ X ∗top-m , this achieves our objective in both cases. However, if |Hτ | 	 M or
m 	 M , then this is wasteful since the nodes expend communication resources
calculating entries which are not relevant. Selective gossip aims to achieve a network
state in X ∗τ or X ∗top-m , but not necessarily one where any node computes the entire
vector x̄. The main challenge is that the nodes do not know, a priori, the index
set (Hτ or Htop-m) as it depends on the initial values, X (0), and so it must also be
estimated.

Below we present three versions of selective gossip; the first version addresses
the threshold-based problem and the next two versions address the top-m problem.

10.4.1 Threshold Selective Gossip

Threshold selective gossip algorithm employs a threshold τ , which is fixed and
known by all nodes, to determine which entries to communicate and update at each
iteration. For a node v ∈ V , let Hv

τ (k) represent the entries with values higher than
τ , i.e.,

Hv
τ (k) = { j : xvj (k) ≥ τ }. (10.8)

When nodes u and v wake up according to the asynchronous time model and
communication model described in Sect. 10.2, they update entries that at least one
of them believes to be one of the largest. Namely, they update only the entries
j ∈ Hu

τ (k − 1) ∪ Hv
τ (k − 1) by setting

xu
j (k) = xvj (k) =

1

2

(
xu

j (k − 1)+ xvj (k − 1)
)
. (10.9)

No change is made to entries j /∈ Hu
τ (k − 1) ∪ Hv

τ (k − 1), and these values are not
transmitted in order to save energy. Also, all other nodes v′ ∈ V \ {u, v} keep their
gossip vectors unchanged.

Threshold selective gossip asymptotically converges to the correct values for
entries j ∈ Hτ . Since there is no coupling between the different entries of the
vector x̄, we treat each entry individually and focus on analyzing the behavior of
the algorithm for a single scalar entry. Without loss of generality, let xv(0) denote
the initial value for this entry at node v, let x̄ denote the average, and let τ > 0
be the given threshold. It is well known that, under the assumptions stated above,
randomized gossip converges asymptotically to the average consensus [3]. Selective
gossip differs from randomized gossip in that, at some iterations, two nodes may
not update a particular entry. Thus, intuitively, to show convergence when x̄ ≥ τ we
just need to show that nodes gossip sufficiently often so that eventually they all have
xv(k) ≥ τ ; at that point selective gossip is identical to randomized gossip.
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Theorem 1 [34]. Let S(k) =∑n
v=1(x

v(k)− x̄)2 and suppose x̄ ≥ τ . Then

E[S(k)|S(0)] ≤
(

1− 1

n4 diam(G)2Δmax

)k

S(0), (10.10)

where diam(G) is the diameter of the network G and Δmax = maxv |Nv| is the
maximum degree.

Sketch of proof When a pair of neighboring nodes (u, v) decide to gossip at the
kth iteration, S(k) decreases such that S(k+1) = S(k)− 1

2

(
xu(k)− xt (k)

)2. Taking
the expectation over all pairs of neighboring nodes with non-zero probability of
gossiping at iteration k, we get

E[S(k + 1)|S(k)] ≤ S(k)− 1

nΔmax

(
xu(k)− xv(k)

)2
. (10.11)

Since consensus is not reached yet, there exists at least one node a with xa(k) ≥
x̄+ 1

n

√
S(k)

n . Constructing a path from node a to any node b with xb(k) < x̄ , we find

that there exists a pair of neighboring nodes (a′, b′) on this path for which

(xa′(k)− xb′(k))2 >
S(k)

n3 diam(G)2 ,

and with (10.11) the statement of the theorem follows. �
Theorem 1 shows that for entries j ∈ Hτ , selective gossip always computes

the correct value in expectation. Furthermore, since E[S(k + 1)|S(k)] ≤ S(k) and
S(k) ≥ 0 for all k, the sequence {S(k) : k ≥ 0} is a non-negative supermartingale
with respect to itself. Using the Martingale convergence theorem, one can show
that the limit S∞ = limk→∞ S(k) exists almost surely [12]. Moreover, standard
arguments [3] based on Markov’s inequality can be applied to this result to show
convergence in probability. Next we give the result for entries j /∈ Hτ .

Theorem 2 [34]. Let G = Kn be the complete graph. Suppose that x̄ < τ and
τ − x̄ = c > 0. If S(0) > 0 and there exists at least one node with non-zero
probability of gossiping, then there exists a finite constant K < ∞ such that after
k ≥ K iterations, xv(k) < τ for all nodes v with probability 1.

Sketch of proof In this case, one can find two nodes (u, v) such that (xu(k)
− xv(k))2 ≥ c2. Since Δmax = n − 1 for the complete graph and using the
bound (10.11), we get E[S(k)|S(0)] ≤ S(0)− kc2

n(n−1) . Applying Markov’s inequality
yields

Pr
(
S(k) ≥ c2|S(0)) ≤ S(0)

c2 −
k

n(n − 1)
.

Therefore, if k ≥ K = n(n−1)
c2 S(0), then xv(k) < τ , for all v with probability 1. �
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Theorem 2 addresses the case where x̄ < τ only for the complete graph. This
approach does not directly extend to general connected topologies. In particular, in
the proof of Theorem 2, one cannot guarantee that the nodes u and vwill be neighbors
in a general topology. However, the convergence can be shown using an approach
similar to that presented below for the proof of Theorem 3.

It is also worth noting that the bounds given in Theorems 1 and 2 are extremely
loose since we only consider the gossiping of one pair of nodes instead of all pairs,
and hence these bounds should not be taken as an indicator of the rate of convergence.
In fact, it is easy to see that once all nodes agree that an entry j is in Hτ , threshold
selective gossip behaves identically to randomized gossip, and so asymptotically
the rates of convergence are the same as reported in [3] for randomized gossip.
As illustrated in the simulations presented below, the error decay rate of threshold
selective gossip, as a function of the number of scalar values transmitted, is in fact
substantially faster than running randomized gossip in parallel for all entries.

10.4.2 Adaptive Threshold Selective Gossip

Threshold selective gossip requires a fixed preset threshold, τ , to determine the
entries to be computed. However, having a fixed threshold is typically not practical
since we may not have accurate prior knowledge of the distribution of values in
the average vector. To address this problem, we describe a heuristic called adaptive
threshold selective gossip which aims to find the appropriate threshold at each node
in a decentralized way. By appropriate threshold, we mean τ ∈ (x̄(m), x̄(m+1)), where
m is given as input to the algorithm. In other words, our heuristic deals with the top-m
problem and tries to reach the index set Htop-m by adaptively changing the threshold
at every node. For this, each node keeps an estimate of the threshold as well as the
gossip vectors xv(k).

Let the threshold estimate of each node v be denoted by τv(k) at time k. The
threshold estimate of each node is initialized with the mth largest entry of its gossip
vector, i.e., τv(0) = xv(m)(0). When two nodes u and v perform a gossip update, they
modify the entries j ∈ Hu

τ u(k−1)(k − 1) ∪ Hv
τv(k−1)(k − 1) by setting

xu
j (k) = xvj (k) =

1

2

(
xu

j (k − 1)+ xvj (k − 1)
)
. (10.12)

All other entries remain unchanged and all other nodes keep their gossip vectors
unchanged. After the update, nodes u and v reassess their approximation quality.
If the current threshold of node v provides fewer than m entries in Hv

τ (k), then the
node decreases its threshold. If the node has more than m entries in Hv

τ (k), then the
threshold value is increased. Specifically, node v updates its threshold according to
the following rule
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τv(k + 1) =

⎧
⎪⎨

⎪⎩

(1+ c1)τ
v(k) |Hv

τ (k)| > m

(1− c2)τ
v(k) |Hv

τ (k)| < m

τv(k) |Hv
τ (k)| = m

(10.13)

where c1, c2 > 0 are predefined constants. Note that we choose c1 �= c2 as having
c1 = c2 may cause undesirable oscillations in the threshold estimates.

The adaptive threshold heuristic does not have any convergence guarantees but
intuitively should be more efficient than randomized gossip since it aims to compute
only the largest entries of the average vector. We present simulation results in the
upcoming sections to illustrate the performance of this method.

10.4.3 Top-m Selective Gossip

Since the adaptive threshold version of selective gossip is a heuristic without con-
vergence guarantees, we propose another variation of gossip that solves the top-m
problem and also has provable guarantees. Top-m selective gossip takes a positive
integer m as an input and adaptively focuses communication on the largest m entries
of the gossip vectors.

Let xv(m)(k) denote the mth largest value in the gossip vector xv(k) at node v, and
let Hv

top-m(k) denote the set of largest m indices of node v, i.e.,

Hv
top-m(k) = { j : xvj (k) ≥ xv(m)(k)}. (10.14)

When nodes u and v perform an update, they first exchange those entries of their
gossip vectors which at least one of them believes to be among the m largest; i.e.,
they exchange values for entries j ∈ Hu

top-m(k − 1) ∪ Hv
top-m(k − 1). Then, they

update

xu
j (k) = xvj (k) =

1

2

(
xu

j (k − 1)+ xvj (k)(k − 1)
)
, (10.15)

for entries j ∈ Hu
top-m(k − 1) ∪ Hv

top-m(k − 1), and they set xu
j (k) = xu

j (k − 1)
and xvj (k) = xvj (k − 1) for entries j /∈ Hu

top-m(k − 1) ∪ Hv
top-m(k − 1). Likewise,

the gossip vectors of all nodes v′ ∈ V \ {u, v} who do not participate in the update
remain unchanged; i.e., xv

′
(k) = xv

′
(k − 1).

Although the threshold and top-m approaches appear similar at first glance, there
are subtle differences which make top-m selective gossip considerably more chal-
lenging to analyze. When the aim is to compute all entries which exceed a threshold,
the updates applied to each entry of the vector can be decoupled, since the final
result only depends on whether the average for that entry does or does not exceed
the threshold. On the other hand, when the aim is to compute the largest m entries
of the average vector, all entries are coupled since the final result depends on the
rank ordering. Subsequently, a different approach is required to show convergence.
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The following theorem shows that this algorithm converges asymptotically on any
connected graph to a state where all nodes agree on the indices and values of the m
largest entries, where m is a given parameter.

Theorem 3 [36]. The gossip vectors generated by top-m selective gossip converge
to a limit {xv(k)}v∈V → {x̃v}v∈V as k →∞, where

x̃vj = x̄ j , for j ∈ Htop-m, v ∈ V,

x̃vj < x̄(m), for j /∈ Htop-m, v ∈ V .

Sketch of proof Let x j (k) ∈ R
n denote the j th entry at each node, xvj (k), stacked

into a vector. Observe that the update Eqs. (10.14) and (10.15) for top-m selective
gossip, can be written as a collection of linear updates,

x j (k) =W j (k)x j (k − 1), for j = 1, 2, . . . ,M (10.16)

where W j (k) is time-varying and depends on the entire state X (k) through the sets
Hv

top-m as described next. Let [W]u,v the (u, v)th entry of the matrix W. Suppose that
nodes u and v perform the kth gossip update. If j ∈ Hu

top-m(k−1)∪Hv
top-m(k−1), then

[W j (k)]u,u = [W j (k)]u,v = [W j (k)]v,u = [W j (k)]v,v = 1

2
, (10.17)

and
[W j (k)]u′,u′ = 1, [W j (k)]u′,v′ = 0, (10.18)

for all u′, v′ /∈ {u, v}, since only nodes u and v update their gossip vector, and all
other nodes make no changes. If j /∈ Hu

top-m(k − 1) ∪ Hv
top-m(k − 1), then no node

updates this entry of the gossip vector, and W j (k) = I . In particular, note that every
matrix W j (k) is symmetric and doubly stochastic with non-zero entries at least 1/2.

Recent theory [16, 31] for time-varying linear systems of the form (10.16) makes
it possible to characterize the behavior of the limit limk→∞ x j (k). Specifically,
for matrices such as W j (k) satisfying the properties mentioned above, the limit
x̃ j = limk→∞ x j (k) exists. In addition, consider the graph G j = (V, E j ) with
(u, v) ∈ E j if [W j (k)]u,v infinitely often. If G j is connected (i.e., if there is a path
in G j connecting every pair of nodes), then x̃u

j = x̃vj for all u, v; i.e., all nodes
asymptotically reach a consensus on the j th entry of the gossip vector. Moreover,
since every W j (k) is doubly stochastic, x̃vj = x̄ j = 1

n

∑
u xu

j (0), and the nodes reach
a consensus on the average. Thus, to determine which entries of the gossip vectors
converge to the average (if any), we need to characterize which entries are updated
infinitely often as k →∞.

From the definition of the asynchronous time model, since all nodes initiate
updates according to a rate-1 Poisson process, it follows that as k →∞, every node
will participate in an infinite number of updates. Each time an update is performed,
the nodes u and v update those entries in the set Hu

top-m(k − 1) ∪ Hv
top-m(k − 1),
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which contains at least m elements (more if the two sets are not identical). Thus,
there exists a set of indices J which are updated infinitely often, and thus for j ∈ J ,
the limit x̃ j is the consensus vector with all elements equal to x̄ j . Moreover, those
indices i /∈ J are only updated a finite number of times. It remains to be shown that
J ≡ Htop-m .

Suppose that j ∈ Htop-m . It follows that at every iteration k there exists a node
uk such that xuk

j (k) ≥ x̄ j ≥ x̄(m), and so j ∈ Huk
top-m(k). Thus there is a non-zero

probability of element j being updated at every iteration (since there is a non-zero
probability that node uk will participate in the update), and it follows that j ∈ J and
x̃vj = x̄ j for all v ∈ V and j ∈ Htop-m .

Next, suppose that j /∈ Htop-m and j ∈ J . Since j /∈ Htop-m , we have
x̄ j < x̄(m). As more updates are performed on entry j , the entries xvj (k) for all
nodes v approach x̄ j . At some time k′, it is necessarily true that maxv xvj (k

′) <
minv mini∈Htop-m xvi (k

′) ≤ x̄(m). But then j /∈ Hu
top-m(k

′) for any node u, and so
entry j will no longer be updated. Thus, the values of entries j /∈ Htop-m converge
to a limit x̃vj < x̄(m) which may be different at every node. �

Note that the goals stated above can also be generalized to cases where one aims to
reach a consensus on the largest entries in absolute value; i.e., entries with |x̄ j | ≥ τ ,
or sorting the entries according to magnitude, |x̄(1)| ≥ |x̄(2)| ≥ . . . , when defining
which are the m most significant. For example, in the decentralized field estimation
application where transform coefficients can be computed via selective gossip, it
may be more meaningful to compute the m entries (transform coefficients) with
largest magnitude, rather than simply the largest m coefficients. All three versions of
selective gossip can be modified to address this formulation, at the expense of more
cumbersome notation. This extension has been performed for threshold selective
gossip and the results, along with a comparison to the corresponding version of
adaptive threshold selective gossip, are reported in [34]. We expect that a similar
extension for top-m selective gossip should be possible using similar techniques.

10.4.4 Simulation Results

In this section we demonstrate the performance of selective gossip through numerical
experiments. The simulation setup consists of a network of n = 50 nodes which are
distributed uniformly at random in the unit square. The communication topology is
a random geometric graph, i.e., there is an edge between two nodes that are within
a distance r from each other. This distance is set to r = √2 log n/n so that the
graph is connected with high probability [14]. The dimension of the gossip vectors
is M = 25.

To generate an initial network state, X (0), we first determine the average vector,
x̄. The top panels of Figs. 10.1 and 10.2 show two different vectors x̄ used in our
experiments. The first one has a clear separation between the averages of the first 5
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Fig. 10.1 Top: The average vector x̄ in descending order for initialization 1. Bottom: The initial
state of the network with indices in the same order as x̄ above. Diamonds represent xvj (0) and those
that belong to the same node are connected with a solid line
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Fig. 10.2 Top: The average vector x̄ in descending order for initialization 2. Bottom: The initial
state of the network with indices in the same order as x̄ above. Diamonds represent xvj (0) and those
that belong to the same node are connected with a solid line

indices and the rest, making m = 5 a natural choice. The second average vector is
more smoothly distributed across its dimensions.

Motivated by applications in sensor networks, we assume that the node values
represent measurements of natural phenomena. For each index j , we select a pointμ j

uniformly at random in the unit square. Then for each node v we generate xvj (0) such
that the nodes geographically closer to μ j will have higher values and the average
over all nodes is equal to x̄ j . The initial values are distributed such that the highest
m indices at each node are not necessarily the same as Htop-m . The bottom panels
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of Figs. 10.1 and 10.2 illustrate the vectors {xvj (0)}v∈V and how they are distributed
over the network.

We compare the performance of adaptive threshold selective gossip and top-m
selective gossip with the performance of randomized gossip [3]. Randomized gossip
is guaranteed to converge to x̄, but it is wasteful since the nodes gossip on every entry
of the gossip vector at every iteration. Since randomized gossip computes every entry
of x̄ it is equivalent to running top-m selective gossip with m = M .

The performance is measured with the mean squared error which is defined as

M SE(k) = 1

n

∑

v∈V

∑

j∈Htop-m

(
xvj (k)− x̄ j

)2
.

Since we are interested in the amount of data that is communicated during the
course of gossip, we plot the error against the number of scalars that are transmitted
instead of the iterations k. Figures 10.3 and 10.4 compare the M SE of the three
algorithms for different values of m. The results show the average performance over
500 different realizations of gossip.

Since randomized gossip updates all entries of gossip vectors at every iteration,
its performance is the same as the performance of selective gossip for m = 25. In
fact, for m = 25 all three methods perform the same, and hence their MSE curves
overlap. For other values, we can see that the performance of top-m selective gossip
is always better than that of adaptive threshold selective gossip.
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Fig. 10.3 A comparison of error performances for initialization given in Fig. 10.1. The algorithms
that are compared are top-m selective gossip (solid) and adaptive threshold selective gossip (dashed)
for varying m values and randomized gossip (corresponds to m = 25 in the plot as it updates all
entries at each iteration). The plot illustrates the performance averaged over 500 realizations of
gossip



10 Distributed Approximation and Tracking Using Selective Gossip 339

0 0.5 1 1.5 2
x 10

4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
S

E

number of scalars transmitted

m = 3
m = 5
m = 7
m = 15
m = 25

Fig. 10.4 A comparison of error performances for initialization given in Fig. 10.2. The algorithms
that are compared are top-m selective gossip (solid) and adaptive threshold selective gossip (dashed)
for varying m values and randomized gossip (corresponds to m = 25 in the plot as it updates all
entries at each iteration). The plot illustrates the performance averaged over 500 realizations of
gossip

The effects of varying m can be seen in Fig. 10.4 for the initialization shown
in Fig. 10.1. The difference between the top-m and adaptive threshold versions of
selective gossip is minimal when m is equal to the number of entries of x̄ that are
significantly higher than the rest. For the initialization of Fig. 10.2, the adaptive
threshold version performs worse for every m. In particular, for low values of m,
top-m selective gossip computes more entries of the average vector with the same
number of transmitted scalars compared to the adaptive threshold version.

To investigate how well one could hope to do using top-m selective gossip, we
also implement a version of top-m selective gossip where every node clairvoyantly
knows Htop-m from the start and only updates entries j ∈ Htop-m at each iteration.
The corresponding results are shown in Figs. 10.5 and 10.6.

10.5 Distributed Tracking Using Selective Gossip

In this section we propose a distributed tracking algorithm that utilizes selective
gossip. Before explaining the details of the algorithm, we provide some background
on the problem.

Tracking is an important task in wireless sensor networks. The goal of tracking is
to estimate the state of a dynamical system sequentially in time using measurements
recorded by the sensors. For example, the state can be the position and the velocity
of a moving target or, in the case of monitoring environmental conditions, it can
represent the soil moisture and temperature. In these scenarios, we do not have direct
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Fig. 10.5 A comparison of performances of randomized gossip, top-m selective gossip, adaptive
threshold selective gossip for the initialization given in Fig. 10.1 and m = 5. The plot also includes
clairvoyant top-m selective gossip which updates only the entries in Htop-m at each iteration
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Fig. 10.6 A comparison of performances of randomized gossip, top-m selective gossip, adaptive
threshold selective gossip for the initialization given in Fig. 10.2 and m = 5. The plot also includes
clairvoyant top-m selective gossip which updates only the entries in Htop-m at each iteration

access to the state of the dynamical system. Instead, the state can only be observed
via the noise-corrupted measurements of the sensors.

The sequential estimation problem arises in many areas including robotics, track-
ing, financial econometrics and computer vision (see [4, 8, 28] and the references
therein). The optimal estimator for this problem when the dynamics and observation
models are linear and the noise distributions are Gaussian is the well-known Kalman
filter. However, many practical scenarios (e.g., the tracking of a maneuvering target)



10 Distributed Approximation and Tracking Using Selective Gossip 341

involve nonlinearities and/or non-Gaussian noise, in which case the Kalman filter
does not apply. Some popular approaches for more general settings are the extended
Kalman filter, the Gaussian sum filter, the unscented Kalman filter, and particle filter
methods (also known as sequential Monte Carlo methods) [28]. Due to their flexi-
bility, ease of implementation, and performance, particle filter methods are widely
accepted as the state-of-the-art approach to sequential estimation for the case of
nonlinear dynamic models and non-Gaussian noise distributions [8, 9].

10.5.1 Sequential Estimation

In this section we review the sequential estimation problem, adopting definitions and
terminology from [4, 5, 9, 28].

The state-space modeling framework describes the state of the system as an unob-
served Markov process denoted by {yt }t∈N. The state evolution is determined by the
initial distribution p(y0) and the transition distribution p(yt |yt−1). The observations
{zt }t∈N+ are assumed to be conditionally independent given the state yt , and they are
of marginal distribution p(zt |yt ). Such state-space models are also known as hidden
Markov models.

The goal is to characterize the distribution of the state at the present time using
the information provided by all observations received up to the present time. Let the
sequence of states up to time t be denoted by y0:t and let the sequence of observations
up to time t be denoted by z1:t . We are interested in sequential estimation of the
posterior distribution p(y0:t |z1:t ) and the filtering distribution p(yt |z1:t ).

The analytical solution is available as a two-stage recursion for both the posterior
and filtering distributions. The stages of the recursion for the filtering distribution
are termed prediction and update steps, and are presented in the following format:

Prediction: p(yt |z1:t−1) =
∫

p(yt |yt−1)p(yt−1|z1:t−1)dyt−1 (10.19)

Update: p(yt |z1:t ) = p(zt |yt )p(yt |z1:t−1)

p(zt |z1:t−1)
(10.20)

where, assuming p(yt−1|z1:t−1) is available, the system model is used to predict the
prior distribution at time t and the observation zt is used in the second stage to update
the prior via Bayes’ rule.

10.5.2 Particle Filtering

Particle filters approximate the distributions p(y0:t |z1:t ) and p(yt |z1:t ) by a set of
random samples termed particles. These particles are candidates for the state and
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their associated weights represent the accuracy of the estimate. Particle filters, also
known as sequential Monte Carlo methods, have been around since the 1960s [15],
but due to their computational complexity they were not widely used. The early
implementations also suffered from particle degeneracy which is due to the increase
in variance of weights over time. After some iterations, many particles have negligible
weights and thus do not contribute to the estimation. This problem was solved in 1993
by Gordon et al. with the introduction of resampling [11].

The sequential importance resampling (SIR) particle filter maintains a weighted
particle approximation {y(i)1:t , w

(i)
t }Mi=1 to estimate a posterior of interest p(y1:t |z1:t ).

The posterior is estimated by the distribution

p̂M (y1:t |z1:t ) = 1

M

M∑

i=1

w
(i)
t δ(y1:t − y(i)1:t ), (10.21)

where δ(·) is the Dirac delta function.
Assuming it has a weighted particle approximation at time t − 1, SIR propagates

the particles to time t by sampling from an importance function q, evaluates the
likelihoods of the extended particles, and updates the weights accordingly. A common
approach is to use the prior as the importance function, i.e., q = p(xt |z(i)t−1). Then
there is an optional resampling step to construct a set of particles with more evenly
distributed weights. Resampling replicates particles with high weights and discards
particles with low weights. In [11] the prior is used as the importance function and
resampling is done at every step. The authors call this implementation the bootstrap
particle filter. Algorithm 1 provides the pseudo-code for the bootstrap particle filter
algorithm.

10.5.3 Particle Filters in Wireless Sensor Networks

One approach to implement particle filters in networks is the leader node frame-
work [38]. One node is selected as leader and all nodes send their measurements to
this node. The leader node runs a centralized particle filter using all the information
from the network. This leader node may change over time to distribute the responsi-
bility of processing among the nodes. Being centralized, the leader node framework
allows only the leader node to be queried and introduces a single point of failure. In
addition, to be able to process the raw measurements of the sensors, the leader node
needs to know the observation models, sensor locations, and calibration parameters
of the sensors. Since only the leader node has access to the output of the particle
filter, it must also make sensor management decisions such as which nodes take
measurements next and with which modality.

Another approach is to distribute the computation. Each node calculates its local
likelihood and the information is fused to form a global posterior. Virtually all such
distributed filters rely on an assumption of conditional independence of the measure-
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Algorithm 1 Bootstrap particle filter

// Initialization at time t = 1
1. For each particle i = 1, . . . ,M do

• Sample y(i)1 ∼ q1(·)
• Set w(i)1 = p(z1|y(i)1 )p(y(i)1 )

q1(y
(i)
1 )

2. end

3. Normalize weights w(i)1 so that
M∑

i=1
w
(i)
1 = 1

4. Resample
{

y(i)1 , w
(i)
1

}M

i=1
to obtain

{
y′(i)1 , 1

M

}M

i=1

5. For times t > 1:
// For each particle i = 1, . . . ,M do

• Set y(i)1:t−1 = y′(i)1:t−1

• Sample y(i)t ∼ q(yt |y(i)t−1)

• Set w(i)t = p(zt |y(i)t )p(y(i)t |y(i)t−1)

q(yt |y(i)t−1)

6. end

7. Normalize weights w(i)t so that
M∑

i=1
w
(i)
t = 1

8. Resample
{

y(i)1:t , w
(i)
t

}M

i=1
to obtain

{
y′(i)1:t ,

1
M

}M

i=1

ments made at each node given the target state. Several of these distributed particle
filters require a spanning tree or Hamiltonian cycle for communication [5, 29]. Con-
struction and maintenance of such routes can be very challenging when nodes are
mobile or wireless conditions are adverse. Hence the algorithms are highly vulnerable
to link and node failures.

Alternatively, gossip algorithms can be used for distributing the computation
[10, 13, 17, 20, 21, 25]. The algorithm in [13] uses the expectation-maximization
(EM) algorithm based on gossip to estimate the parameters of a mixture approxima-
tion to the global posterior, but it imposes significant constraints on the structure of
the likelihood function. In the procedure in [25], each node forms a Gaussian approx-
imation to a local posterior and then a gossip algorithm is used to fuse the means and
covariance matrices to construct a Gaussian approximation of the global posterior.
This algorithm has a much lower communication overhead, but its accuracy dimin-
ishes when posteriors cannot be adequately approximated by a Gaussian. The method
presented in [17] constructs a polynomial approximation of the joint likelihood at
each node using distributed averaging. Hence this algorithm also involves reduced
communication overhead and is restricted to certain types of likelihood functions.

The algorithms in [10, 20] do not form parametric approximations to the poste-
rior; instead they share particles among different nodes. In [20], particles undergo a
random walk through the sensor network, and their weights are successively multi-
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plied by a function of the local likelihood. The function is carefully chosen so that the
particle weights converge to the same values that a centralized particle filter would
calculate. This algorithm has attractive properties, but it only supports importance-
sampling from the prior, which can lead to poor performance of a particle filtering
algorithm [9]. The algorithm in [20] also has no mechanism for eliminating particles
with small weights, leading to wasteful communication.

The algorithm in [10] was designed to allow sampling from a better importance
distribution (one that better matches the posterior). It estimates regions of concen-
trated mass in the global posterior by calculating the intersection of the regions
of concentration in the local posteriors. The importance sampling function is then
constructed to focus on the calculated region, and the gossip procedure is used to cal-
culate the global likelihoods and hence the particle weights. This procedure achieves
high accuracy, but the communication cost (in terms of number of values exchanged)
is high because the weights of all particles must be calculated, even if many are very
small. Also, the computation of regions of concentration requires oversampling of
particles at each node, increasing the local computation complexity.

To improve upon currently available algorithms, we propose using selective gos-
sip in a distributed implementation of the bootstrap particle filter. The next section
describes our problem statement.

10.5.4 Distributed Tracking Problem Statement

We consider a wireless sensor network consisting of n nodes and represent network
connectivity as a graph, G = (V, E). We assume that the graph is connected, and
that although nodes are unaware of the global topology, they do have the knowledge
of their neighbors. The goal is to sequentially estimate a state, denoted by yt at
time index t . The state may represent a target’s kinematics, typically position and
velocity, or a set of environmental conditions, such as temperature, wind speed, or
soil moisture. Let d be the dimension of the state, i.e., yt ∈ R

d . At time t , node v
makes a noisy measurement zvt . The set of all measurements made by the network at
time t is then zV

t = {zvt : v ∈ V } and the joint likelihood of these measurements is
given by the function p(zV

t |yt ).
Nodes do not have access to the measurement modalities, noise models, or cal-

ibration parameters of other nodes in the network. Hence they cannot process raw
measurements from other nodes. However we assume that the noise distributions
at different nodes are conditionally independent given the state. Therefore the joint
likelihood can be factorized into

p(zV
t |yt ) =

∏

v∈V

p(zvt |yt ), (10.22)

where p(zvt |yt ) is the likelihood of the observation made by node v.
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Since the global likelihood is factorisable, its computation can be reduced to a
set of local tasks at nodes followed by a final networked aggregation step. We are
interested in a particle filter implementation that takes advantage of this factorization
and achieves decentralized sequential estimation. Because wireless sensor networks
have battery and bandwidth constraints, the distributed implementation needs to be
efficient in terms of the number of values exchanged.

10.5.5 Distributed Particle Filter Using Selective Gossip

We now present our distributed particle filter algorithm which is based on the boot-
strap particle filter. In this algorithm, every node in the network runs a copy of the
same particle filter provided that the following two conditions hold. First, the mea-
surements at nodes are synchronized so that measurements made at the same time
index reflect the same state at all nodes. Second, the random number generators of
the nodes are synchronized (e.g., the nodes use pseudo random generators initialized
with the same seed). This ensures that nodes sample the same values when they
are given the same set of weighted particles as input. These two conditions can be
achieved via a decentralized routine that is executed before the sequential estimation.

The challenge in implementing distributed particle filters lies in the fact that the
global weights depend on the measurements zV

t , but each node v only has access to
its own measurement zvt . We address this challenge by exploiting the factorization of
the global likelihood and the fact that the computation of global weights is reduced
to local computation tasks which need to be followed by a multiplication procedure.
The local tasks can be performed independently at each node and do not require
knowledge of the modality, noise, or calibration details of other nodes. Instead of
multiplication, we use summation in the logarithm domain, which is suitable for
distributed averaging.

We start by introducing local pre-weights {φv,(i)t }Mi=1 where φ
v,(i)
t =

n log p(zvt |y(i)t ). Then the weight of particle i can be expressed using local pre-
weights as

w
(i)
t =

exp( 1
n

∑
v∈V φ

v,(i)
t )p(y(i)t |y(i)t−1)

q(yt |y(i)t−1)
. (10.23)

Hence the weights can be calculated via averaging of an M−dimensional vector
equation. Once the weights are computed, the bootstrap filter requires a normaliza-
tion and resampling step so that particles are more evenly distributed. In particular,
resampling discards particles with low weights and replicates the particles that have
high weights. Figure 10.7 illustrates the distribution of particle weights for an exam-
ple filter running with M = 2000 particles. Most of the particles have low weights
and since particles with low weights are not to be kept, computing their values via
distributed averaging wastes scarce network resources. Hence we are interested in
computing only the weights that are high instead of computing all weights {w(i)t }Mi=1.
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Fig. 10.7 The distribution of particle weights, sorted in descending order

Of course the challenge is that nodes do not know which weights are higher from
only the local information that they have.

We propose to use selective gossip to focus communication on only the highest
m weights. With the input of local pre-weights, {φv}nv=1, at n nodes, and the given
integer m, selective gossip identifies the set Htop-m of the particles with the highest
m weights and provides each node with the pre-weight estimates of these particles,
{φ̃v,(Htop-m )}nv=1.

We then run a max gossip procedure to ensure that all nodes have exactly the same
values, i.e., the same pre-weight vector φ̂(Htop-m ). Similar to selective gossip, max gos-
sip is based on the asynchronous time model and the communication model given in
Sect. 10.2. When two nodes u and v perform a max gossip iteration, they identify the
entries to update in the same way as selective gossip does. However, max gossip dif-
fers from selective gossip in that, instead of averaging, the nodes take the maximum
of their previous values; i.e., nodes u and v update entries j ∈ Hu

τ (k−1)∪Hv
τ (k−1)

by setting
xu

j (k) = xvj (k) = max
(
xu

j (k − 1), xvj (k − 1)
)
. (10.24)

When all nodes have the exact same pre-weight values for particles in the set
Htop-m , then they can compute the weights for these particles and proceed with the
normalization and resampling. Since they have synchronized seeds, they will sample
the same particles and reach the same set of weighted particles at the end of each
step of the algorithm. The complete algorithm is described in Algorithm 2.

10.5.6 Numerical Example: Bearings Only Distributed
Tracking of a Maneuvering Target

To evaluate the performance of our method, we study a distributed tracking scenario
where a maneuvering target is monitored by a network of bearings sensors. Such a
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Algorithm 2 Distributed Bootstrap Particle Filter with Selective Gossip
// Initialization at time t = 1
1. For each node v = 1, . . . , n do

• For each particle i = 1, . . . ,M do
– Sample y(i)1 ∼ q1(·)
– Set φv,(i) = n log p(zv1|y(i)1 )• end

2. end
3. {φ̃v,(Htop-m )}nv=1 = SelectiveGossip({φv}nv=1, m)
4. {φ̂(Htop-m )}nv=1 =MaxGossip({φ̃v,(Htop-m )}nv=1)
5. For each node v = 1, . . . , n do

• For each particle i ∈ Htop-m do

– Set w(i)1 = exp(φ̂(i))p(y(i)1 )

q1(y
(i)
1 )

• end
• Normalize weights w(i)1 so that

∑
i∈Htop-m

w
(i)
1 = 1

• Resample
{

y(i)1 , w
(i)
1

}

i∈Htop-m
to obtain

{
y′(i)1 , 1

M

}M

i=1

6. end

// For times t > 1:
7. For each node v = 1, . . . , n do

• For each particle i = 1, . . . ,M do
– Set y(i)1:t−1 = y′(i)1:t−1

– Sample y(i)t ∼ q(yt |y(i)t−1)

– Set φv,(i) = n log p(zvt |y(i)t )

• end

8. end
9. {φ̃v,(Htop-m )}nv=1 = SelectiveGossip({φv}nv=1,m)

10. {φ̂v,(Htop-m )}nv=1 =MaxGossip({φ̃v,(Htop-m )}nv=1)
11. For each node v = 1, . . . , n do

• For each particle i ∈ Htop-m do

– Set w(i)t = exp(φ̂(i))p(y(i)t |y(i)t−1)

q(yt |y(i)t−1)• end
• Normalize weights w(i)t so that

∑M
i=1 w

(i)
t = 1

• Resample
{

y(i)1:t , w
(i)
t

}M

i=1
to obtain

{
y′(i)1:t ,

1
M

}M

i=1

12. end

scenario of tracking based on only angle measurements is generally termed bearings-
only tracking (sometimes also appearing in the literature under the names passive
ranging and target motion analysis [27]).
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We consider a two-dimensional setup where the bearing is defined as the angle
from the vertical axis of Cartesian plane to the line of sight between the observer and
the target. The bearing angle is measured positive in the clockwise direction. The
state of the target at time t is

yt =
[

yt,1 yt,2 ẏt,1 ẏt,2
]T
, (10.25)

where yt,1 and yt,2 correspond to the position in the X and Y coordinates in the
Cartesian plane and ẏt,1 and ẏt,2 are the velocity values in these coordinates. The

state of the observing sensor node v ∈ V is similarly defined as yvt =
[

yv1 yv2 0 0
]T .

Note that the velocity values are equal to zero because the sensor nodes are static.
We assume that each node is aware of its state. The measurement made by node v at
time t is denoted by zvt .

The dynamics of the maneuvering target are modeled using three different motion
models [28]. We assume that at any time the target makes one of the following
motions: (1) constant velocity (CV), (2) clockwise coordinated turn (CT), or (3)
counter-clockwise coordinated turn (CCT). The target moves according to these
three motion models with probabilities of pCV, pCT and, pCCT, respectively. We also
assume that the probability of both coordinated turns are equal, i.e., pCT = pCCT,
and there are no other motions available, that is pCV + pCT + pCCT = 1.

The state at time t + 1 can be expressed as a function of the previous state yt and
process noise vt

yt+1 = F j
t yt +Gvt , (10.26)

where F j
t is the transition matrix corresponding to the motion model j ∈ {1, 2, 3} and

G =

⎡

⎢⎢⎣

T 2/2 0
0 T 2/2
T 0
0 T

⎤

⎥⎥⎦. (10.27)

Here T is the sampling interval and vt ∼ N (0, σa I2×2)with scalar σa . The transition
matrix corresponding to the constant velocity model is

F1
t =

⎡

⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦, (10.28)

whereas the coordinated turn models are governed by
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F j
t =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 sin(Ω( j)
t T )

Ω
( j)
t

− 1−cos(Ω( j)
t T )

Ω
( j)
t

0 1 1−cos(Ω( j)
t T )

Ω
( j)
t

sin(Ω( j)
t T )

Ω
( j)
t

0 0 cos(Ω( j)
t T ) − sin(Ω( j)

t T )

0 0 sin(Ω( j)
t T ) cos(Ω( j)

t T )

⎤

⎥⎥⎥⎥⎥⎥⎦
, j = 2, 3. (10.29)

The turning rates for clockwise and counter clockwise coordinated turn models are

Ω2
t =

a√
(ẏt,1)2 + (ẏt,2)2

, Ω3
t = −

a√
(ẏt,1)2 + (ẏt,2)2

, (10.30)

where a > 0 is the maneuver acceleration parameter. Note that the turning rates
are nonlinear functions of the state.

The angle measurements are also a nonlinear function of the state. The measure-
ment taken by node v at time t is modeled as

zvt = arctan
( yt,1 − yvt,1

yt,2 − yvt,2

)
+ wt , (10.31)

where wt ∼ N (0, σ 2
θ ) is the measurement noise.

We consider a network of n = 49 sensor nodes, forming a grid topology. The
network spans an area of 1 km2. The initial state of the target is

y1 =
[

702 m 621 m 10 m/min 80 m/min
]T
. (10.32)

The target follows a trajectory for a duration of tmax = 20 min. The sensor locations
and the trajectory of the target are shown in Fig. 10.8.

The particle filter at each node is initialized with the same distribution centered
at the initial state of the target [28]. In particular, we assume prior knowledge of
the target’s initial range, speed, and course (i.e., the angle with the vertical axis of
the Cartesian plane). The position components of the state are initialized using the
bearing measurement recorded by the closest sensor at time t = 1 and the initial
range r̂1. We assume that r̂1 ∼ N (r1, σ

2
r ) where r1 is the initial true target range

and σ 2
r = r1/8. Similarly, the velocity components of the state are initialized using

the initial speed, ŝ1, and initial course, ĉ1. We assume that ŝ1 ∼ N (s1, σ
2
s ) where

s1 is the target’s true initial speed and σ 2
s = s1/8. Likewise, ĉ1 ∼ N (c1, σ

2
c ) where

c1 is the true initial course and σ 2
c = π/

√
6. Note that this initialization is suitable

for many problems, but there may be cases where target acquisition also needs to be
performed. This is beyond the scope of the current chapter.

We model the target motion using the following parameters: the process noise is
σa = 0.1, the acceleration parameter is a = 30, the probability of constant velocity
model is pCV = 0.6 and the probabilities of turning clockwise or counter-clockwise
are pCT = pCCT = 0.2.
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Fig. 10.8 Sensor network and the trajectory of the target. Dashed lines represent wireless commu-
nication links between sensors. The target makes a movement for 20 min and the markers show its
location at the beginning of each minute. The start and end points of the trajectory are also marked

The nodes take measurements corrupted with additive Gaussian noise of standard
deviation σθ = 3◦. We assume that nodes have a limited sensing range, i.e., they
can only provide bearing measurements for targets within their sensing range. The
sensing range of each node is set to 200 m which is slightly longer than the distance
between two horizontally or vertically adjacent nodes. Measurements are made only
by the nodes that have the current estimate of target location within their sensing
range. For the trajectory given in Fig. 10.8, up to 4 sensors take measurements at
each time step. The sampling interval is T = 1min.

The experiment for each algorithm is repeated for 1,000 Monte Carlo trials. Let
l denote the trial index. The position error for each trial l is calculated according to

Et (l) =
√
(ŷt,1 − yt,1)2 + (ŷt,2 − yt,2)2, (10.33)

where ŷt,1 and ŷt,2 are the estimated position of the target. Note that the error Et (l)
is same at each node as the distributed particle filters are synchronized. The trials
that exceed the error value of 250 m at any time t are considered as lost tracks. Then
for the tracks that are not lost, we calculate the root-mean-squared (RMS) position
error

RM SE(l) =
√√√√ 1

tmax

tmax∑

t=1

Et (l)2. (10.34)
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Table 10.1 A comparison of the performances of the centralized bootstrap particle filter and the
distributed particle filters for M = 2000 and m = 500

Algorithm Average RMSE Track loss Scalars

Centralized bootstrap 10.28 ± 6.4 0.1 –
Adaptive threshold selective gossip 11.05 ± 9.0 6.3 3.90e + 06
Clairvoyant threshold selective gossip 11.09 ± 7.9 0.5 4.41e + 06
Top-m selective gossip 11.01 ± 7.2 0.8 2.85e + 06
Clairvoyant top-m selective gossip 10.92 ± 8.2 1.0 2.40e + 06
Randomized gossip 11.17 ± 8.8 0.3 9.60e + 06

For each filter the average RMS position error ± standard deviation, percentage of track loss, and
the number of transmitted scalars are presented

Similarly, the communication overhead, which is represented with the number of
scalars transmitted, does not include the trials that resulted in lost tracks.

We compare the performance of the distributed particle filter using the two ver-
sions of selective gossip: adaptive threshold and top-m selective gossip. To illustrate
the decrease in communication cost compared to randomized gossip, we run the
same algorithm with m = N which corresponds to updating each entry at each gos-
sip iteration, that is randomized gossip run in parallel for each particle weight. We
also run a centralized bootstrap particle filter as a performance benchmark.

In addition, we simulate two clairvoyant versions of selective gossip. The first
version, clairvoyant threshold selective gossip, represents the case where all nodes
clairvoyantly know the threshold value corresponding to the largest mth entry of the
average consensus vector. This is obtained by setting τ = x̄(m) during the initializa-
tion of the algorithm. The second version, called clairvoyant top-m selective gossip,
represents the case where each node clairvoyantly knows the indices of the set Htop-m
and only updates these entries. This is obtained by setting Hv

top-m(k) = Htop-m at all
nodes v ∈ V and all iterations k. The distributed filter computations are performed
with n2 selective gossip iterations and 10n max gossip iterations.

For M = 2, 000 particles and m = 500, Table 10.1 shows the average RMS posi-
tion error, the track loss percentage and the number of scalars transmitted for each
particle filter. The top-m version of selective gossip performs very close to the clair-
voyant algorithms and better than the adaptive threshold selective gossip. Adaptive
threshold selective gossip loses a high percentage of tracks while transmitting more
scalars. Top-m selective gossip also provides performance similar to randomized
gossip in terms of both error and track loss while decreasing the communication
overhead more than three times. Figure 10.9 demonstrates sample tracks of the cen-
tralized and distributed particle filters, in particular the tracks with the median RMS
performance for each filter.

Next, we investigate the effect of m on the performance of distributed particle filter
with adaptive threshold and top-m selective gossip. Note that increasing m results
in increased communication overhead. Figure 10.10 shows the percentage of lost
tracks as a function of m. Figure 10.11 shows the RMS position error averaged over
tracks that are not loss. We see that the distributed particle filter with top-m selective
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Fig. 10.9 Target trajectory and sample tracks corresponding to the median RMS position error for
each filter. The unit of distance values on the axes is meter
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Fig. 10.10 Percentage of track loss as a function of m

gossip achieves good performance for m values 500 and more. Taken together, these
results illustrate that the distributed particle filter with top-m selective gossip provides
significantly better performance in terms of track loss and RMS error performance
for non-divergent tracks compared to the adaptive threshold selective gossip.
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Fig. 10.11 Average RMS position error as a function of m. 95 % confidence bars are also depicted
(the end points of these bars correspond to the 5 and 95 % percentiles)

10.6 Conclusions

Many complex signal processing tasks of wireless sensor networks can be formulated
using distributed averaging of vector-valued network data where the vectors are pos-
sibly high-dimensional. Standard gossip algorithms, which are typically described
for averaging scalar quantities, can easily be extended to the vector case by commu-
nicating all entries of the vectors. However, this is inefficient in applications where
only a small percentage of the entries of the average vector is significant. This chapter
presented selective gossip, an algorithm that reduces the dimension of the exchanged
data by adaptively focusing communication resources on the entries which are sig-
nificant for the nodes that are performing the exchange. We proved that focusing on
locally significant data, nodes can asymptotically identify the locations of the signif-
icant entries of the average vector and also reach a consensus on the values of these
entries. To investigate the communication overhead compared to randomized gossip,
we presented a simulation study. The results demonstrate that selective gossip pro-
vides significant communication savings in terms of number of scalars transmitted. In
the second part of the chapter, we proposed a distributed particle filter using selective
gossip. In a target tracking scenario with bearings sensors, we showed that distributed
particle filters implemented using our algorithm provide comparable results to the
centralized bootstrap particle filter while decreasing the communication overhead
compared to using randomized gossip to distribute the filter computations.

Our results demonstrate that selective gossip provides a decentralized and effi-
cient building block for wireless sensor network applications. In particular, the top-m
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version of selective gossip is potentially more interesting as it has convergence guar-
antees. This version also provides better tracking performance in the simulation setup
we considered. Note that we presented selective gossip based on randomized gossip
but it can be implemented with other gossip algorithms such as the synchronous
gossip algorithm and faster pairwise gossip algorithms available in the literature.

The future work involves the investigation of the rates of convergence for selective
gossip. Since the entries updated at each iteration depends on the vectors in the
network at that iteration, the standard methods used for quantifying the convergence
rate of randomized gossip do not apply.
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Chapter 11
Recursive Reconstruction of Sparse
Signal Sequences

Namrata Vaswani and Wei Lu

Abstract In this chapter we describe our recent work on the design and analysis of
recursive algorithms for causally reconstructing a time sequence of (approximately)
sparse signals from a greatly reduced number of linear projection measurements. The
signals are sparse in some transform domain referred to as the sparsity basis and their
sparsity patterns (support set of the sparsity basis coefficients) can change with time.
By “recursive", we mean using only the previous signal’s estimate and the current
measurements to get the current signal’s estimate. We also briefly summarize our
exact reconstruction results for the noise-free case and our error bounds and error
stability results (conditions under which a time-invariant and small bound on the
reconstruction error holds at all times) for the noisy case. Connections with related
work are also discussed. A key example application where the above problem occurs
is dynamic magnetic resonance imaging (MRI) for real-time medical applications
such as interventional radiology and MRI-guided surgery, or in functional MRI to
track brain activation changes. Cross-sectional images of the brain, heart, larynx or
other human organ images are piecewise smooth, and thus approximately sparse in
the wavelet domain. In a time sequence, their sparsity pattern changes with time,
but quite slowly. The same is also often true for the nonzero signal values. This
simple fact, which was first observed in our work, is the key reason that our proposed
recursive algorithms can achieve provably exact or accurate reconstruction from very
few measurements.
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11.1 Introduction

In this chapter, we describe our recent work on the design and analysis of recursive
algorithms for causally reconstructing a time sequence of (approximately) sparse
signals from a greatly reduced number of linear projection measurements. The signals
are sparse in some transform domain referred to as the sparsity basis and their sparsity
patterns (support set of the sparsity basis coefficients) can change with time. The most
important example of the above problem occurs in dynamic magnetic resonance
imaging (MRI) for real-time medical applications such as interventional radiology,
MR image guided surgery, or functional MRI to track brain activation changes. MRI
is a technique for cross-sectional imaging that sequentially captures the 2D Fourier
projections of the cross-section to be reconstructed. Cross-sectional images of the
brain, heart, larynx or other human organ images are usually piecewise smooth,
e.g. see Fig. 11.1, and thus approximately sparse in the wavelet domain. In a time
sequence, the sparsity pattern changes with time, but slowly. Often, the signal values
also change gradually over time. We demonstrate this for a larynx and a cardiac MRI
sequence in Fig. 11.1.

Since MR data acquisition is sequential, the ability to accurately reconstruct with
fewer measurements directly translates to reduced scan times. Shorter scan times
along with online (causal) and fast (recursive) reconstruction allow the possibil-
ity of real-time imaging of fast changing physiological phenomena. Other example
applications where real-time imaging is needed include real-time single-pixel video
imaging [1], real-time video compression/decompression, real-time sensor network
based sensing of time-varying fields [2], or real-time extraction of the foreground
image sequence (sparse image) from a slow changing background image sequence
(well modeled as lying in a low-dimensional space [3]) using recursive projected
compressive sensing (CS) [4, 5]. For other potential applications, see [6, 7].

Since the recent introduction of compressive sensing (CS) [8–10], the static sparse
reconstruction problem has been thoroughly studied. But most existing algorithms
for the dynamic problem just use CS to jointly reconstruct the entire time sequence
in one go [11–13]. This is an offline and batch solution with very high complexity.
The alternative — doing CS at each time separately (simple CS) — is online and fast
but requires many more measurements. The question then is: for a time sequence of
sparse signals, how can we obtain a recursive solution that improves the accuracy
of simple CS by using past observations, and does this will keep the computational
complexity only as much as that of simple CS (and thus much lower than that of the
batch methods)? In particular, how can we use slow or correlated sparsity pattern
change, and in certain cases also slow signal value change, to do this? By “recur-
sive”, we mean a solution that uses only the previous signal estimate and the current
observation vector at the current time.

This problem was first studied in [14] which proposed a solution called Kalman
Filtered Compressed Sensing (KF-CS). In later work, a simpler special case of KF-
CS, called Least Squares CS-residual (LS-CS) was analyzed in detail [15]; and more
powerful approaches such as Modified-CS [16, 17], Modified-CS-residual [18, 19]



11 Recursive Reconstruction of Sparse Signal Sequences 359

and regularized modified-CS [20, 21] were introduced. Performance guarantees —
exact recovery conditions in the noise-free case [16, 17, 21] and time-invariant error
bounds (stability) in the noisy case [15, 22] — were also obtained. We describe all of
these ideas in the next few sections. We first begin by providing a short background
on sparse recovery and compressed sensing, followed by giving a formal problem
definition for our problem and discussing related work.

11.2 Notation and Sparse Recovery Background

11.2.1 Notation

We use T c to denote the complement of T w.r.t. [1,m] := [1, 2, . . .m], i.e. T c :=
{i ∈ [1,m] : i /∈ T }. The notation |T | denotes the size (cardinality) of the set T . The
set operations ∪, ∩, and \ have the usual meanings.

For a vector, v, and a set, T , vT denotes the |T | length sub-vector containing the
elements of v corresponding to the indices in the set T . Also, ‖v‖k denotes the �k

norm of a vector v. When k = 0, ‖v‖0 counts the number of nonzero elements in the
vector v. If just ‖v‖ is used, it refers to ‖v‖2.

For a matrix M , ‖M‖k denotes its induced k-norm, while just ‖M‖ refers to
‖M‖2. M ′ denotes the transpose of M and M† denotes its Moore-Penrose pseudo-
inverse. For a tall matrix, M , M† := (M ′M)−1 M ′. For a fat matrix A, AT denotes
the sub-matrix obtained by extracting the columns of A corresponding to the indices
in T .

The restricted isometry constant (RIC) [10], δS , for a matrix A, is the smallest
real number satisfying

(1− δS)‖c‖2 ≤ ‖AT c‖2 ≤ (1+ δS)‖c‖2 (11.1)

for all subsets T ⊆ [1,m] of cardinality |T | ≤ S and all real vectors c of length
|T |. It is easy to see that ‖AT

′AT ‖ ≤ (1 + δS), ‖(AT
′AT )

−1‖ ≤ 1/(1 − δS) and
‖AT

†‖ ≤ 1/
√
(1− δS).

The restricted orthogonality constant (ROC) [10], θS,S′ , for a matrix A, is the
smallest real number satisfying

|c1
′AT1

′AT2 c2| ≤ θS,S′ ‖c1‖ ‖c2‖ (11.2)

for all disjoint sets T1, T2 ⊆ [1,m] with |T1| ≤ S, |T2| ≤ S′, S+ S′ ≤ m, and for all
vectors c1, c2 of length |T1|, |T2|.
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Fig. 11.1 In a, b we show two MRI image sequences: cardiac and a larynx sequence). In c–e, xt
is the two-level Daubechies-4 2D discrete wavelet transform (DWT) of the cardiac or the larynx
image at time t and the set Nt is its 99 % energy support (the smallest set containing 99 % of the
vector’s energy). The support size was between 6–7 % of the image size. In c we plot signal value
change.As can be seen from the plots, all support changes (both additions and removals) are less
than 2 % of the support size. Also, almost all signal value changes are are less than 4 % of ‖(xt )Nt ‖2
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11.2.2 Background on Sparse Recovery

The sparse recovery problem has been studied for a very long time, e.g. see
[23–25]. The goal in sparse recovery, or what is now interchangeably referred to
as compressive sensing (CS), is to recover a sparse signal from a reduced number
of its linear projection measurements. To be precise, we would like to recover an m
length sparse vector, x , with support size, s, from y := Ax , or, in the noisy case,
from y := Ax +w, when A is a fat matrix (a matrix with more columns than rows).
Consider the noise-free case. The sparse recovery problem is solved if we can find
the sparsest vector b among all vectors satisfying y = Ab, i.e. if we can solve

min
b
‖b‖0 s.t. y = Ab

and if A is such that every set of 2s columns of A are linearly independent [10, 24].
Finding the sparsest vector requires a combinatorial search and thus has complexity
of the order of ms [10]. The exponential complexity in s makes it impractical to
directly solve this for any reasonable sized problem. Practical (polynomial complex-
ity) approaches to this problem include (i) �1 minimization methods (replace the
�0 norm by the �1 norm which is the closest norm to �0 that makes the problem
convex) such as basis pursuit [24] and its noisy relaxations – basis pursuit denoising
(BPDN) [24, 26, 27], Dantzig selector [28] and others; (ii) greedy methods such as
matching pursuit [23], orthogonal matching pursuit [29] and many other recent works
[30, 31]; and (iii) various other more recent approaches. While these approaches have
been proposed and used since the 1990s, the recent work on compressed sensing pro-
vided strong performance guarantees for them: exact recovery conditions [8–10] and
bounds on reconstruction error when exact recovery is not possible [26–28].

11.3 Problem Definition and Related Work

The recursive reconstruction problem explained here was first introduced in
the ICIP 2008 paper on Kalman filtered compressed sensing (KF-CS) [14]. Let
(zt )m×1 denote the spatial signal at time t and (yt )n×1, with n < m, denote its noise-
corrupted measurements’ vector at t , i.e. yt = H zt + wt where wt is measurement
noise and H is the measurement matrix. The signal, zt , is sparse in a given sparsity
basis (e.g. wavelet) with orthonormal basis matrix,�m×m , i.e. xt := �′zt is a sparse
vector. Thus the observation model can be written as

yt = Axt + wt , A := H� (11.3)

We assume that A has unit norm columns. We study both the noise-free case, i.e.
wt = 0, and the bounded noise case, i.e. ‖wt‖2 ≤ ε. We use Nt to denote the support
of xt , i.e.
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Nt := supp(xt ) = {i : (xt )i 
= 0}.

The goal is to recursively estimate xt (or equivalently the signal, zt = �xt ) using
y1, . . . yt . By recursively, we mean, use only yt and the estimate from t − 1, x̂t−1,
to compute the estimate at t . This is done under one or both of the following two
assumptions.

1. Slow Support Change. The support additions, |Nt \ Nt−1| ≤ Sa � |Nt | and the
removals, |Nt−1 \ Nt | ≤ Sa � |Nt | at all times t . This assumption is verified for
MRI sequences in Fig. 11.1.

2. Slow Signal Value Change. The magnitude of the nonzero signal values also
changes slowly with time, i.e. ‖(xt − xt−1)Nt ‖2 � ‖(xt )Nt ‖2. This assumption
is also verified in Fig. 11.1.

Consider first the class of problems for which only the first assumption holds.
Under this assumption, the above problem can be reformulated as one of sparse
recovery in the presence of partial support knowledge. We can use the support esti-
mate obtained from the previous time instant, N̂t−1, as the “partial support knowl-
edge”. We describe this problem and the proposed solutions for it in Sect. 11.4. If both
assumptions hold, the above problem can be reformulated as one of sparse recovery
with partial support and signal value knowledge. This is discussed in Sect. 11.5. Per-
formance guarantees (exact reconstruction results, error bounds, and conditions for
time-invariant error bounds) are briefly discussed in Sect. 11.6 and some interesting
experimental results are shown in Sect. 11.7. Conclusions are given in Sect. 11.8.

11.3.1 Related Work

The recursive reconstruction problem was first studied in [14]. Before this, the only
works that dealt with time sequences of sparse signals were either batch methods
[11–13] or the work of Reddy et al [67] which applied CS on difference measurements
to reconstruct only the difference signal (we refer to this as CS-diff). To reconstruct
the original signal sequence, this will be unstable over time, except if the difference
signal is much more sparse compared to the original signal. This assumption usually
does not hold in practice [17].

A modification of KF-CS was studied in [32]. Recent work on Bayesian or other
model-based approaches to sequential sparse estimation with time-varying supports
includes [33–36, 50]. The work of [13] gives an approximate batch solution for
dynamic MRI that is quite fast, but is offline. Related work on model-based and
Bayesian approaches for a single signal includes [37–43].

The problem of sparse reconstruction with partial knowledge of the support was
simultaneously addressed in [16, 17] and in [45, 46]. The work of [45] obtains exact
recovery thresholds for weighted �1, similar to those in [47], for the case when a
probabilistic prior on the signal support is available. Some later work motivated by
modified-CS includes modified OMP [48], modified CoSaMP [49], modified block
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CS [51], error bounds on modified BPDN [20, 22, 52, 53], better conditions for
modified-CS based exact recovery [54], and exact support recovery conditions for
multiple measurement vectors (MMV) based recursive recovery [50].

There is other recent work that may also be referred to as recursive sparse recon-
struction, but whose goals are quite different from the problem that we discuss in
this chapter. This includes (i) homotopy methods, e.g. [55, 56], whose goal is to only
speed up the optimization algorithm using homotopy or warm starts and the previous
reconstructed signal, but not to reduce the number of measurements required; (ii)
[55, 57–59] which reconstruct a single signal from sequentially arriving measure-
ments; and (iii) [60–62], which iteratively improve support estimation for a single
sparse signal. Another recent work [63] proposes causal but batch methods, and does
this only for signal sequences with the same support. This can be interpreted as a
causal approach to solve the MMV problem.

We should note that none of the above works obtain conditions under which a
time-invariant bound on the reconstruction error (i.e. stability) holds. Except [45]
and [62], none of these obtain exact reconstruction conditions either.

11.4 Sparse Recovery with Partial Support Knowledge

This problem was first formulated in [16, 17]. The goal is to recover a sparse vector,
x , with support set N , either from noise-free undersampled measurements, y := Ax ,
or from noisy measurements, y := Ax + w, when partial and possibly erroneous
support knowledge, T , is available. The true support N can be rewritten as

N = T ∪� \�e where � := N \ T, �e := T \ N

It is easy to see that
|N | = |T | + |�| − |�e|

Here we refer to the set� as the misses in the support knowledge and the set�e is the
extras in it. We say the support knowledge is accurate if |�| � |N | and |�e| � |N |.

Least Squares CS-residual (LS-CS) introduced in [15, 64] can be interpreted as
the first solution to the above problem. We describe this next. The first solution
that gives exact recovery under weaker conditions (using fewer measurements) than
what simple CS needs was Modified-CS [16, 17]. We explain this in Sect. 11.4.2. For
using either LS-CS or modified-CS for recursive reconstruction, we use the support
estimate from the previous time instant as the partial knowledge set T . Support
estimation approaches are discussed in Sect. 11.4.3 and LS-CS or modified-CS for
recursive reconstruction is given in Sect. 11.4.4.
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Algorithm 1 Dynamic LS-CS: LS-CS for recursive reconstruction

Simple CS. At t = 0, set T = ∅ and compute x̂0 as the solution of minb ‖b‖1 s.t. ‖y − Ab‖2 ≤ ε
For t > 0, do

1. Set T = N̂t−1.
2. Initial LS.

a. Compute the initial LS estimate (x̂t,init)T = (AT
′AT )

−1 AT
′yt , (x̂t,init)T c = 0

3. CS-residual.

a. Compute the observation residual, ỹt = yt − Ax̂t,init

b. Solve the �1 problem for the residual, i.e. compute β̂t as the solution of
minb ‖b‖1 s.t. ‖ỹt − Ab‖2 ≤ ε

c. Compute x̂t = x̂t,init + β̂t

4. Support Estimation via Add-LS-Del.

Tadd = T ∪ {i ∈ T c : |(x̂t )i | > αadd}
(x̂add)Tadd = ATadd

† yt , (x̂add)T c
add
= 0

N̂t = Tadd \ {i ∈ T : |(x̂add)i | ≤ αdel} (11.4)

5. Final LS Estimate.

(x̂t,final)N̂t
= AN̂t

† yt , (x̂t,final)N̂ c
t
= 0 (11.5)

11.4.1 Least Squares CS-residual (LS-CS)

The key idea of LS-CS is as follows [15, 64]. Using T as the support set, compute an
initial estimate of x by computing an LS estimate on T and setting all other elements
to zero, i.e. compute

(x̂init)T = (AT
′AT )

−1 AT
′yt , (x̂init)T c = 0 (11.6)

Compute the observation residual, ỹ,

ỹ = y − Ax̂init (11.7)

followed by solving the �1 minimization problem for this residual, i.e. compute β̂ as
the solution of

arg min
b
‖b‖1 s.t. ‖ỹ − Ab‖2 ≤ ε (11.8)

Then, the estimate of x is computed as

x̂ = x̂init + β̂. (11.9)
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This is followed by support estimation and computing a final LS estimate on the
estimated support as described in Sect. 11.4.3.

Notice that, the signal residual, β := x− x̂init, is supported on T ∪� and satisfies

βT = (AT
′AT )

−1 AT
′(A�x� + w), ‖βT ‖2 ≤ θ|T |,|�|

1− δ|T | ‖x�‖2 +
1√

1− δ|T |
ε

βT c = x�

If |�| is small enough, θ is small. If |�e| is small enough, |T | ≤ |N | + |�e| is not
too large and so 1/(1− δ|T |) is only a little more than one. Finally if the noise is also
small, the above implies that ‖βT ‖2 � ‖x�‖2. Thus, if T is a good estimate of the
true support, N ; the measurement matrix A is incoherent enough; and the noise is
small enough; then β is small on the set T . Or, in other words, β is approximately
supported only on�. Since T is a good estimate of the true support, |�| � |N | and so
the �1 problem that we need to solve in this case is much easier than in case of simple
CS. As a result, it is possible to show that LS-CS results in small reconstruction error
using much fewer measurements than what simple CS needs [15, Theorem 1]. We
summarize LS-CS for recursive reconstruction in Algorithm 1.

However, notice that the exact sparsity size (total number of nonzero components)
of the signal residual, β, is |T | + |�| and this is equal to or larger than that of the
signal, |N |. Since the number of measurements required for exact reconstruction is
governed by the exact sparsity size, LS-CS is not able to achieve exact reconstruction
using fewer noiseless measurements than those needed by simple CS. The search for
such a solution led us to our next and more powerful idea called Modified-CS.

11.4.2 Modified-CS

The key idea of Modified-CS is as follows [16, 17]. Suppose first that �e is empty,
i.e. N = T ∪ �. Thus, the sparse recovery problem now becomes one of trying to
find the sparsest vector whose support contains T among all vectors that satisfy the
data constraint. Or in other words, we would like to find the vector that is sparsest
outside the set T among all vectors that satisfy the data constraint. In the noise-free
case, this can be written as

min
b
‖bT c‖0 s.t. y = Ab

The above also works if�e is not empty. It is easy to show that it can exactly recover x
ifw = 0 (noise-free case) and if every set of |T |+2|�| = |N |+|�|+|�e| columns
of A are linearly independent [17, Proposition 1]. In comparison, the original �0
problem given in Sect. 11.2.2 requires every set of 2|N | columns of A to be linearly
independent [10]. This is much stronger when |�| ≈ |�e| � |N |.



366 N. Vaswani and W. Lu

Algorithm 2 Dynamic Modified-CS: Modified-CS for recursive reconstruction

1. In Algorithm 1, replace steps 2 and 11.8 by the following Modified-CS step.

a. Compute x̂t as the solution of minb ‖bT c‖1 s.t. ‖yt − Ab‖2 ≤ ε.

The above �0 problem also has exponential complexity, and hence as in case of
CS, we replace it by the �1 problem (�1 norm is the closest norm to �0 that makes
the optimization problem convex). Thus, modified-CS solves

min
b
‖bT c‖1 s.t. y = Ab (11.10)

and we denote its solution by x̂ . Once again, this works, and can provably achieve
exact recovery, even when�e is not empty. We give the exact recovery conditions in
Sect. 11.6.1. For noisy measurements, one can relax the data constraint as follows.

min
b
‖bT c‖1 s.t. ‖y − Ab‖2 ≤ ε (11.11)

We summarize modified-CS for recursive reconstruction in Algorithm 2.
In practice, for large scale problems, one always adds the data term as a soft

constraint and solves the following unconstrained problem (which is less expensive
to solve and does not require knowledge of the noise bound). We refer to this as
modified-BPDN [20, 53].

min
b
γ ‖bT c‖1 + 0.5‖y − Ab‖22. (11.12)

11.4.3 Support Estimation: Thresholding and add-LS-del

In order to use either LS-CS or modified-CS for recursive reconstruction, we use the
support estimate from the previous time as the set T . Thus, we need to estimate the
support of the signal at each time. The simplest way to do this is by thresholding,
i.e. we compute

N̂ = {i : |(x̂)i | > α}

where α ≥ 0 is the zeroing threshold. In cases of exact reconstruction, i.e. if x̂ = x ,
we can use α = 0. In other situations, we need a nonzero value. In cases of very
accurate reconstruction, we can set α to be slightly smaller than the magnitude of the
smallest nonzero element of x (assuming its rough estimate is available) [17]. This
will ensure close to zero misses and few false additions. In general, α should depend
on both the noise level and the magnitude of the smallest nonzero element of x .
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For compressible signals, one should do the above but with “support” replaced
by the b %-energy support. For a given number of measurements, b can be chosen
to be the largest value so that all elements of the b %-energy support can be exactly
reconstructed [17].

Single step thresholding as above means that the threshold, α, needs to be large
enough to ensure that most missed elements from T are correctly deleted while
ensuring that there are few false detections. However, notice that, in both modified-
CS and LS-CS, x̂ is a biased estimate of x . Consider modified-CS. Along � ⊂ T c,
the values of x̂ are biased towards zero (because we minimize ‖(β)T c‖1), while,
along �e ⊂ T , they may be biased away from zero (since there is no constraint on
(β)T ). The same also happens for LS-CS although the reasoning is a bit different
[15, Sec II-A]. Since the estimates along � are biased towards zero, one needs a
smaller threshold to detect them, whereas, since those along�e may be biased away
from zero, one may need a higher threshold to delete them. One partial solution to
this problem is to use the following three step Add-LS-Del approach:

Tadd = T ∪ {i : |(x̂)i | > αadd} (11.13)

(x̂add)Tadd = ATadd
† y, (x̂add)T c

add
= 0 (11.14)

N̂ = Tadd \ {i : |(x̂add)i | ≤ αdel} (11.15)

The above add-LS-del procedure involves a support addition step, that uses a smaller
threshold, αadd, as in (11.13); followed by LS estimation on the new support estimate,
Tadd, as in (11.14); and then a deletion step that thresholds the LS estimate, as in
(11.15). The addition step threshold, αadd, needs to be just large enough to ensure
that the matrix used for LS estimation, ATadd is well-conditioned. If αadd is chosen
properly and if the number of measurements, n, is large enough, the LS estimate on
Tadd will have smaller error, and will be less biased, than x̂ (modified-CS or LS-CS
output). As a result, deletion will be more accurate when done using this estimate.
This also means that one can use a larger deletion threshold, αdel, which will ensure
deletion of more extras.

A similar issue for noisy CS, and a possible solution (Gauss-Dantzig selector),
was first discussed in [28]. The add-LS-del idea was first introduced in the KF-CS
and LS-CS papers [14, 15, 22] for recursive reconstruction and simultaneously also
in [30, 31] for greedy algorithms for static sparse reconstruction.

Support estimation is usually followed by LS estimation on the final support
estimate, in order to get a solution with reduced bias (Gauss-Dantzig selector idea),
i.e. one computes

(x̂final)N̂ = AN̂
† y, (x̂final)N̂ c = 0 (11.16)



368 N. Vaswani and W. Lu

11.4.4 Recursive Recovery

For recursive recovery, in case of slow support change, one can use T = N̂t−1. We
summarize the complete algorithm for LS-CS in Algorithm 1 and that for Modified-
CS in Algorithm 2. Recent work [4] has introduced solutions for the more general
case where the support change may not be slow, but is still highly correlated over
time.

11.5 Sparse Recovery with Partial Support
and Signal Value Knowledge

So far we only talked about the case where prior support information is available. In
certain applications, one may also have partial signal value knowledge. In recursive
recovery problems, it often happens that signal values also change slowly over time.
In this case the problem can be formulated as follows. The goal is to recover a sparse
vector x , with support set N , either from noise-free undersampled measurements,
y := Ax , or from noisy measurements, y := Ax+w, when partial erroneous support
knowledge, T , is available and partial erroneous signal value knowledge on T , μ̂T ,
is available. The true support N can be written as

N = T ∪� \�e where � := N \ T, �e := T \ N

and the true signal x can be written as

(x)N∪T = (μ̂)N∪T + e (11.17)

(x)N c = 0, (μ̂)T c = 0

The error e in the prior signal estimate is assumed to be small, i.e. ‖e‖ � ‖x‖.

11.5.1 Regularized Modified-CS

Regularized modified-CS adds the slow signal value change constraint to modified-
CS and solves the following [20, 21].

min
b
‖bT c‖1 s.t. ‖y − Ab‖2 ≤ ε, and ‖bT − μ̂T ‖∞ ≤ ρ (11.18)

As before, the following Lagrangian version (constraints added as weighted costs to
get an unconstrained problem) is more useful in practice
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min
b
γ ‖bT c‖1 + 0.5‖y − Ab‖22 + 0.5λ‖bT − μ̂T ‖22 (11.19)

Regularized modified-CS is analyzed in detail in [20] and [21].

11.5.2 Modified-CS-residual

The idea of modified-CS-residual is to combine the modified-CS idea with the
CS-residual idea. One solves modified-CS on the observation residual computed
using x̂init = μ̂. Once again the following unconstrained version is most useful:

min
b
‖bT c‖1 + 0.5α‖(y − Aμ̂− Ab)‖22 (11.20)

For recursive reconstruction, one again uses T = N̂t−1. For μ̂, one can either use
μ̂ = x̂t−1, or, in certain situations where the signal values do not change much
w.r.t. the first frame, using μ̂ = x̂0 is a better idea. For practical problems, e.g. real
functional MRI sequences [19], modified-CS-residual with μ̂ = x̂0 turns out to be
the most promising approach to use.

As we explain next, in recursive reconstruction problems, if a model on signal
value change is available, one can also obtain μ̂ by using a Kalman filter.

11.5.3 Kalman Filtered CS-residual (KF-CS)
and Kalman Filtered Modified-CS-residual (KalMoCS)

Kalman Filtered CS (KF-CS) was introduced in the context of recursive reconstruc-
tion in [14]. The key idea is to replace the initial LS step of LS-CS by a regularized
LS step. One then computes the observation residual, followed by solving the �1
problem on this residual, exactly as in LS-CS. In KalMoCS, one replaces the �1
problem on this residual by the modified-�1.

Regularized LS becomes the KF in case of recursive recovery. The extra piece of
information needed for KF-CS or KalMoCS is a model on signal value change. Typi-
cally, in most cases, one can assume a simple random walk model with equal change
variance in all directions [14]. We summarize KF-CS and KalMoCS in Algorithm 3.
This will outperform LS-CS and modified-CS when support changes occur every so
often (allows the KF to stabilize to a small error before the next support change).
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Algorithm 3 Kalman Filtered Modified-CS-residual (KalMoCS) and KF-CS
For t > 0 do,

1. Set T = N̂t−1.
2. Initial KF.

Pt |t−1 = Pt−1 + Q̂t , where Q̂t := σ 2
sys IT

(Pt−1 + Q̂t )Kt = Pt |t−1 A′(APt |t−1 A′ + σ 2 I )−1

Pt = (I − Kt A)Pt |t−1

x̂t,init = (I − Kt A)x̂t−1 + Kt yt s (11.21)

3. CS-residual or Modified-CS-residual.

a. Compute the KF residual, ỹt , using ỹt = yt − Ax̂t,init

b. KalMoCS: Solve modified-�1 on the residual: compute β̂t as the solution of

min
b
‖bT c‖1 s.t. ‖ỹt − Ab‖2 ≤ ε

• In case of KF-CS: replace ‖bT c‖1 by ‖b‖1.
c. Compute x̂t = x̂t,init + β̂t

4. Support Estimation via Add-LS-Del.

Tadd = T ∪ {i ∈ T c : |(x̂t )i | > αadd}
(x̂add)Tadd = ATadd

† y, (x̂add)T c
add
= 0

N̂t = Tadd \ {i ∈ T : |(x̂add)i | ≤ αdel} (11.22)

5. Final Estimate: If N̂t is equal to T , set

x̂t,final = x̂t,init

else, compute an LS estimate using N̂t and update Pt as follows.

(x̂t,final)N̂t
= AN̂t

† yt , (x̂t,final)N̂ c
t
= 0

(Pt )N̂t ,N̂t
= (AN̂t

′AN̂t
)−1σ 2, (Pt )N̂ c

t ,[1,m] = 0, (Pt )[1,m],N̂ c
t
= 0 (11.23)

11.6 Theoretical Results

We first summarize the exact reconstruction results for modified-CS and regularized
modified-CS and their implications. Next, we briefly discuss the error bounds for the
noisy case. Finally, we address the most important question for recursive recovery:
when is the algorithm “stable” over time, i.e. when can we get time-invariant bounds
on its error over time?
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11.6.1 Exact Reconstruction in Noise-free Case

As explained earlier, LS-CS and KF-CS cannot achieve exact recovery under weaker
conditions than what is needed for simple CS. However, modified-CS [17] and regu-
larized modified-CS can [21]. We give below the RIC based exact recovery conditions
for modified-CS [17]:

Theorem 1 (Exact Recovery Conditions – Modified-CS). [17, Theorem 1] Given
a sparse vector, x, whose support, N = T∪�\�e, where� = N\T and�e = T \N,
consider reconstructing it from y := Ax by solving (11.10). Let k := |T |, u := |�|,
e := |�e| and s := |N |. Then, x is the unique minimizer of (11.10) if

1. δk+u < 1 and δ2u + δk + θ2
k,2u < 1 and

2. ak(2u, u)+ ak(u, u) < 1 where ak(S, Š) := θŠ,S+
θ
Š,k

θS,k
1−δk

1−δS−
θ2
S,k

1−δk
The above conditions can also be rewritten in terms of s, e, u by substituting
k = s + e − u.

A simpler sufficient condition for modified-CS that uses only the RIC is
[17, Corollary 1]:

2δ2u + δ3u + δs+e−u + δ2
s+e + 2δ2

s+e+u < 1.

Compare this with simple CS which requires [27, 28, 65]

δ2s <
√

2− 1 or δ2s + δ3s < 1.

To compare these conditions numerically, we can use u = e = 0.02s which is typical
for time series applications (see Fig. 11.1). Using δcr ≤ cδ2r [31, Corollary 3.4], it
can be show that modified-CS only requires δ2u < 0.004. On the other hand, simple
CS requires δ2u < 0.008 which is clearly stronger.

Exact recovery conditions for regularized modified-CS in the noise-free case, i.e.
for (11.18) with ε = 0 are obtained in [21, Theorem 1]. These are weaker than
those for modified-CS if xi − μ̂i = ±ρ for some i ∈ T (some of the constraints
‖bT − μ̂T ‖∞ ≤ ρ are active for the true signal, x) and some elements of this active
set satisfy the condition given in [21, Theorem 1]. One set of practical applications
where xi−μ̂i = ±ρ with nonzero probability is when dealing with quantized signals
and quantized signal estimates.

11.6.2 Error Bounds for the Noisy Case

When measurements are noisy, one cannot get exact recovery, but can only bound
the reconstruction error. We give here the error bounds for both LS-CS [15] and
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modified-CS [22]. The LS-CS-residual step error can be bounded as follows. The
proof follows in exactly the same way as that given in [15] where CS is done using
the Dantzig selector instead of constrained BPDN as in (11.8).

Theorem 2 (LS-CS-residual error bound). [15, Lemma 1] Let x be a sparse vector
with support N and let y := Ax + w with ‖w‖ ≤ ε. Also, let � := N \ T and
�e := T \ N. Let x̂ be computed as in (11.9). If δ2|�| < (

√
2−1)/2 and δ|T | < 1/2,

‖x − x̂‖ ≤ C ′(|T |, |�|)ε + θ|T |,|�|C ′′(|T |, |�|)‖x�‖ (11.24)

where C ′(|T |, |�|) := C1(2|�|) +
√

2C2(2|�|)
√ |T |
|�| , C ′′(|T |, |�|) := 2C2(2|�|)

√|T |, C1(S) := 4
√

1+δS

1−(√2+1)δS
, and C2(S) := 2 1+(√2−1)δS

1−(√2+1)δS
.

By adapting the approach of [27], the error of modified-CS can be bounded as a
function of |T | = |N | + |�e| − |�| and |�|. This was done by Jacques in [66] and
by us in [22].

Theorem 3 (modified-CS error bound). [22, Lemma 1] Let x be a sparse vector
with support N and let y := Ax + w with ‖w‖ ≤ ε. Also, let � := N \ T and
�e := T \ N. Let x̂ denote the solution of (11.11). If δ|T |+3|�| < (

√
2− 1)/2, then

‖x − x̂‖C1(|T | + 3|�|)ε ≤ 9.8ε, where C1(S) := 4
√

1+ δS

1− (√2+ 1)δS
(11.25)

For both LS-CS and modified-CS, the error after the final LS step can be bounded
in terms of T̃ := N̂ and �̃ := N̂ \ N as follows.

‖x − x̂final‖ ≤ (1+
θ|T̃ |,|�̃|
1− δ|T̃ |

)‖x�̃‖2 +
1√

1− δ|T̃ |
ε (11.26)

11.6.3 Recursive Reconstruction: Time-Invariant
Error Bounds (Stability)

Let T̃ := N̂ , �̃ := N̂ \ N and �̃e := N \ N̂ . So far we bounded the LS-CS-residual
error or the modified-CS error as a function of |T |, |�|. The bound is small as long as
|�e| and |�| are small. Similarly the bound on the error of the final LS estimate, given
in (11.26), is small if |�̃| and |�̃e| are small. However for recursive reconstruction,
what we need is conditions under which we can get a time invariant bound on |�e|
and |�| as well as on |�̃| and |�̃e|. Otherwise, it can happen that the support errors
keep adding up and become large and the same will happen to the reconstruction
errors.
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The study of error stability over time requires a signal change model. We assume
the following simple deterministic model [15, Signal Model 1]. (a) There is nonzero
delay, d, between new coefficient addition and removal times; (b) at most Sa additions
and removals occur at every change time; (c) new coefficients’ magnitudes increase
gradually from zero for sometime and finally reach a constant value; and (d) coeffi-
cients’ magnitudes decrease gradually before becoming zero (getting removed from
support). Under this model, one can show the following. The actual conditions in
the final result are somewhat messy and so we skip them. We only state a qualitative
version here.

Theorem 4 (Time-invariant error bounds). [15, Theorem 2] Assume the above
signal change model. If

1. the initial simple CS step is accurate enough,
2. the noise is bounded and the number of measurements, n, is large enough so that

certain conditions on the RIC and ROC hold,
3. the addition and deletion thresholds are appropriately set,
4. for a given n and noise bound, a) the smallest constant coefficient magnitude

is large enough, b) the rates of coefficient magnitude increase and decrease are
large enough, and c) the delay between addition times, d, is larger than the “worst
case detection delay” plus coefficient decrease time,

then,

1. the number of final misses |�̃t | and extras |�̃e,t | as well as the initial misses |�t |
and extras |�e,t | are bounded by Sa or by a quantity slightly larger than Sa,

2. within a finite delay, all new additions get detected and not falsely deleted, i.e.
|�̃t | = 0, and all the extras get deleted, i.e. |�̃e,t | = 0,

3. and the reconstruction error is bounded by a time-invariant and small values at
all times.

As long as the number of new additions or removals, Sa � |Nt | (slow support
change), the above result shows that the worst case number of misses or extras is also
small compared to the support size. This makes it a meaningful result. Similarly, we
can argue that the reconstruction error bound is small compared to the signal energy.

The above result was proved for LS-CS in [15, Theorem 2]. It is possible to prove
an exactly analogous result for modified-CS as well. The key ideas in obtaining this
result are as follows. (i) One needs to ensure that within a finite delay of a new addition
time, all new additions definitely get detected and not false deleted (this delay is the
“worst case detection delay”). (ii) This needs to be done while ensuring that there are
no false deletions of the constant coefficients. (iii) Also, the deletion threshold needs
to be high enough to definitely delete all the extras every-so-often (ensure |T̃t | is
bounded). (iv) Finally, the “worst case detection delay” plus the coefficient decrease
time need to be smaller than the delay between two addition times.

The above result assumes support change every d frames. One can also show
stability under a more general signal model that allows support changes at every
time. This has been done for both modified-CS and LS-CS in [22].
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11.7 Experiments

We briefly describe three sets of experiments here. The first set consists of simula-
tion experiments that demonstrate that modified-CS achieves exact reconstruction
using significantly fewer measurements than what simple CS needs. The second set
consists of simulation experiments that compare the reconstruction errors of LS-CS,
KF-CS, modified-CS (actually modified-BPDN) and regularized modified-BPDN
with each other and with other existing work in literature (CS-diff and weighted �1).
The third set of experiments studies recursive recovery for a simulated dynamic MRI
experiment. Here we took actual (not sparsified) larynx or cardiac image sequences
and simulated MRI by taking a randomly selected set of their partial Fourier mea-
surements. In this case, we did not add measurement noise, however since the signal
sequence is not exact sparse, one could think of the compressible coefficients as
“noise” (this noise is correlated with the signal, but none of our analysis uses any
probability model, so the correlation does not matter). We demonstrate error stability
over time of modified-CS and LS-CS and we also show that modified-CS has lower
error than LS-CS.

11.7.1 Exact Reconstruction Probability Computation
via Monte Carlo

In Sect. 11.6.1, we only compared sufficient conditions for CS and modified-CS.
However, this does not mean that the required number of measurements, n, for CS is
definitely smaller than what modified-CS needs. To actually compare this, we need
to use Monte Carlo. We obtained a Monte Carlo estimate of the probability of exact
reconstruction for CS and for modified-CS, for a given A (i.e. we averaged over the
joint distribution of x and y given A) as follows [17]. Fix signal length, m = 256 and
its support size, s = 0.1m = 26. In the experiment we describe here we also fixed
u = e = 0.08m. We varied n. For each n, we generated a n × m random-Gaussian
matrix, A once. We then repeated the following 500 times. (i) Generate the support,
N , of size s, uniformly at random from [1,m] and generate (x)N ∼ N (0, 100I ). Set
(x)N c = 0. (ii) Set y := Ax . (iii) Generate� of size u uniformly at random from the
elements of N . (iv) Generate �e of size e, uniformly at random from the elements
of [1,m] \ N . (v) Set T = N ∪�e \�. (vi) Solve modified-CS, i.e. solve (11.10).
Call the solution x̂modC S . (vii) Solve simple CS, i.e. solve (11.10) with T being the
empty set. Call the solution x̂C S .

At the end, estimate the probability of exact reconstruction using modified-CS
by counting the number of times x̂modC S was equal to x (“equal” was defined as
‖x̂modC S − x‖2/‖x‖2 < 10−5) and dividing by 500. Do the same for CS using x̂C S .
In this experiment, we observed the following.

1. With 19 % measurements, modified-CS gives exact recovery with probability
(w.p.) 99.8 %, while CS does this w.p. zero.
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Fig. 11.2 The N-RMSE for reg-mod-BPDN, mod-BPDN, BPDN, LS-CS, KF-CS, weighted �1,
CS-residual, CS-mod-residual and modified-CS-residual are plotted against |�|/|N |. a n = 0.2m,
σ 2

p = 10−1, σ 2
w = 10−5, b n = 0.13m, σ 2

p = 10−3, σ 2
w = 10−5, c n = 0.13m, σ 2

p = 10−1,

σ 2
w = 10−5

2. With 25 % measurements, modified-CS gives exact recovery with probability
(w.p.) 100 %, while CS does this w.p. 0.2 %.

3. CS requires 40 % measurements to work “reliably”, i.e. to give exact recovery
w.p. at least 98 %.

More detailed simulation results for various choices of u and e are summarized in
[17, Table 1].

11.7.2 Reconstruction Error Comparisons

In Fig. 11.2, we compare the Monte Carlo average of the reconstruction error of
reg-mod-BPDN given in (11.19) with that of modified-BPDN given in (11.12),
modified-CS-residual given in (11.20), BPDN [24], weighted �1 [45], CS-residual
[67] and CS-mod-residual. Weighted �1 solves minb γ ‖bT c‖1 + γ ′‖bT ‖1 + 1

2‖y −
Ab‖22. CS-residual is an improved version of CS-diff [67]. It computes x̂ = μ̂ + b̂

where b̂ solves minb γ ‖b‖1 + 1
2‖y − Aμ̂− Ab‖22
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Fig. 11.3 Reconstructing a 256 × 256 actual (compressible) vocal tract (larynx) image sequence
from simulated MRI measurements. Both figures used n = 0.19m for t > 0 but used different
values of n0. Image size, m = 2562 = 65536. 99 % energy support size, |Nt | ≈ 0.07m; support
change size |Nt \ Nt−1| ≈ 0.001m, a n0 = 0.2m, n = 0.19m, b n0 = 0.19m, n = 0.19m

The simulation model used is as specified in [20]. The measurements were
random-Gaussian projections corrupted by zero mean i.i.d. Gaussian noise with vari-
ance σ 2

w. We used m = 256, support size |N | = 0.1m = 26 and support extras size,
|�e| = 0.1|N | = 3. We plot the errors against |�|/|N |. The parameters, e.g. γ , λ,
γ ′, used in each of the minimizations were selected as explained in [20]. Notice that
with n = 30 % measurements and a bad signal prior (large σ 2

p), reg-mod-BPDN,
mod-BPDN and weighted �1 have similar performance. LS-CS is worse than either
of these, but better than simple CS and CS-residual. With n = 13 % in (b) and
(c), reg-mod-BPDN significantly outperforms all the others. In (b), the signal prior
is good (small σ 2

p) and so CS-residual is better than modified-CS or weighted �1
(which do not use signal value knowledge at all) whereas all three of them have
similar performance in (c) when the signal prior is bad.

11.7.3 Recursive Reconstruction: Simulated Dynamic MRI

We now show comparisons for recursively reconstructing an actual (compressible)
vocal tract image sequence from simulated dynamic MRI measurements [17]. The
original image sequence is shown in Fig. 11.1. In Fig. 11.3, we show normalized
root mean squared error (N-RMSE) comparisons of modified-CS and LS-CS with
simple CS [10, 24] and CS-diff [67]. In the plot shown, the LS-CS error is close to
that of modified-CS because we implemented LS estimation using conjugate gradient
and did not allow the solution to converge (forcibly ran it with a reduced number of
iterations). Without this, LS-CS error was much higher, since the computed initial LS
estimate itself was inaccurate. Notice from the figure that modified-CS and LS-CS
significantly outperform CS and CS-diff. Also, modified-CS has smaller error than
LS-CS. In Fig. 11.3b, CS-diff performs so poorly, because the initial error at t = 0
is itself very large (since we use only n0 = 0.19m). As a result the difference signal
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at t = 1 is not compressible enough, making its error large and so on. But even when
n0 is larger and the initial error is small, as in Fig. 11.3a, the CS-diff error is still
unstable, i.e. it increases over time.

11.8 Conclusions

In this chapter, we summarized our recent work on algorithms for recursive recon-
struction of sparse signal sequences. The key ideas we used are that in many such
sequences, the sparsity pattern changes slowly over time, and, in certain cases,
the same is true also for signal value change. Using just the first assumption, the
recursive recovery problem can be reformulated as one of sparse recovery in the
presence of partial support knowledge. We discussed two solutions to this prob-
lem, the first is called least squares CS-residual (LS-CS), and the second and
more powerful one is called Modified-CS. Modified-CS achieves provably exact
recovery under weaker conditions (using fewer measurements) than what simple
CS needs whenever the support knowledge is accurate enough. When measure-
ments are noisy, the errors are provably bounded. For recursive recovery with noisy
measurements, the most important question is, when can we obtain time-invariant
bounds on the reconstruction errors, i.e. when can we show error stability over
time? We showed that this can be done under fairly mild assumptions for both
LS-CS and modified-CS. For problems where both slow support and signal value
change hold, we introduced Kalman filtered CS-residual (KF-CS) or its improved ver-
sions, Kalman filtered Modified-CS-residual (KalMoCS). Their performance analy-
sis is still mostly a part of ongoing work. Among all the ideas introduced in this
chapter, we think Modified-CS, explained in Sect. ,11.4.2, and Modified-CS-residual,
explained in Sect. 11.5.2, are the most promising approaches.

Ongoing work is looking at how to utilize correlated, but not necessarily slow, sup-
port change to design recursive reconstruction algorithms [4]. Another line of work
is exploring the problem of recursive reconstruction in the presence of (potentially)
very large but correlated noise [5, 68].

References

1. Wakin M, Laska J, Duarte M, Baron D, Sarvotham S, Takhar D, Kelly K, Baraniuk R (2006)
An architecture for compressive imaging. In: IEEE Intl Conf Image Proc (ICIP)

2. Haupt J, Nowak R (2006) Signal reconstruction from noisy random projections. IEEE Trans
Inf Theory 52(9):4036–4048

3. Candès EJ, Li X, Ma Y, Wright J (2009) Robust principal component analysis? J ACM 58(1):
1–37

4. Qiu C, Vaswani N (2011) Support predicted modified-cs for recursive robust principal compo-
nents’ pursuit. In: IEEE Intl Symp Info Th (ISIT)

5. Qiu C, Vaswani N (2011) Recursive sparse recovery in large but correlated noise. Allerton
Conf on Communication, Control, and, Computing



378 N. Vaswani and W. Lu

6. Carron I “Nuit blanche”, in http://nuit-blanche.blogspot.com/
7. “Rice compressive sensing resources”, in http://www-dsp.rice.edu/cs
8. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction

from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509
9. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

10. Candes E, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–
4215

11. Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic mri. Magn Reson
Med 59(2):365–373

12. Wakin M, Laska J, Duarte M, Baron D, Sarvotham S, Takhar D, Kelly K, Baraniuk R (2006)
Compressive imaging for video representation and coding. In: Proc April, Picture Coding
Symposium (PCS), Beijing, China

13. Jung H, Sung KH, Nayak KS, Kim EY, Ye JC (2009) k-t focuss: a general compressed sensing
framework for high resolution dynamic mri. Magn Reson Med 61:103–116

14. Vaswani N (2008) Kalman filtered compressed sensing. In: IEEE Intl Conf Image Proc (ICIP)
15. Vaswani N (2010) LS-CS-residual (LS-CS): Compressive Sensing on Least Squares residual.

IEEE Trans Signal Process 58(8):4108–4120
16. Vaswani N, Lu W (2009) Modified-cs: Modifying compressive sensing for problems with

partially known support. In: IEEE Intl Symp Info Th (ISIT)
17. Vaswani N, Lu W (2010) Modified-cs: Modifying compressive sensing for problems with

partially known support. IEEE Trans Signal Process 58(9):4595–4607
18. Lu W, Vaswani N (2009) Modified Compressive Sensing for Real-time Dynamic MR Imaging.

In IEEE Intl Conf Image Proc (ICIP)
19. Lu W, Li T, Atkinson I, Vaswani N (2011) Modified-cs-residual for recursive reconstruction

of highly undersampled functional mri sequences. In, IEEE Intl Conf Image Proc (ICIP)
20. Lu W, Vaswani N (2012) Regularized modified bpdn for noisy sparse reconstruction with partial

erroneous support and signal value knowledge. IEEE Trans Signal process 60(1):182–196
21. Lu W, Vaswani N (2012) Exact reconstruction conditions for regularized modified basis pursuit.

IEEE Trans Signal Process 60(5):2634–2640
22. Vaswani N (2010) Stability (over time) of Modified-CS for Recursive Causal Sparse Recon-

struction. In Allerton Conf Communication, Control, and, Computing
23. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans

Signal Process 41(12):3397–3415
24. Chen S, Donoho D, Saunders M (1998) Atomic decomposition by basis pursuit. SIAM J Sci

Comput 20:33–61
25. Wipf DP, Rao BD (2004) Sparse bayesian learning for basis selection. IEEE Trans Signal

Process 52:2153–2164
26. Tropp JA (2006) Just relax: Convex programming methods for identifying sparse signals. IEEE

Trans Inf Theory 1030–1051
27. Candes E (2008) The restricted isometry property and its implications for compressed sensing.

Compte Rendus de l’Academie des Sciences, Paris, Serie I:589–592
28. Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than

n. Ann Stat 35(6):2313–2351
29. Tropp J, Gilbert A (2007) Signal recovery from random measurements via orthogonal matching

pursuit. IEEE Trans Inf Theory 53(12):4655–4666
30. Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal reconstruction.

IEEE Trans Inf Theory 55(5):2230–2249
31. Needell D, Tropp JA (May 2009) Cosamp: Iterative signal recovery from incomplete and

inaccurate samples. Appl Comp Harmonic Anal 26(3):301–321
32. Carmi A, Gurfil P, Kanevsky D (2010) Methods for sparse signal recovery using kalman

filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Trans Signal
Process 2405–2409

33. Sejdinovic D, Andrieu C, Piechocki R (2010) Bayesian sequential compressed sensing in sparse
dynamical systems. In Allerton Conf Communication, Control, and, Computing

http://nuit-blanche.blogspot.com/
http://www-dsp.rice.edu/cs


11 Recursive Reconstruction of Sparse Signal Sequences 379

34. Ziniel J, Potter LC, Schniter P (2010) Tracking and smoothing of time-varying sparse signals
via approximate belief propagation. Asilomar Conf Sig Sys Comp

35. Zhang Z, Rao BD (2011) Sparse signal recovery with temporally correlated source vectors
using sparse bayesian learning. IEEE J Sel Topics Sig Proc (Special Issue on Adaptive Sparse
Representation of Data and Applications in Signal and Image Processing) 5(5):912–926

36. Charles A, Asif MS, Romberg J, Rozell C (2011) Sparsity penalties in dynamical system
estimation. In Conf Info, Sciences and Systems

37. Garcia-Frias J, Esnaola I (2007) Exploiting prior knowledge in the recovery of signals from
noisy random projections. In Data Comp Conf

38. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process
56(6):2346–2356

39. Schniter P, Potter L, Ziniel J (2008) Fast bayesian matching pursuit: Model uncertainty and
parameter estimation for sparse linear models. In: Information Theory and Applications (ITA)

40. La C, Do M (2005) “Signal reconstruction using sparse tree representations”, in SPIE Wavelets
XI. San Diego, California

41. Baraniuk R, Cevher V, Duarte M, Hegde C (2010) Model-based compressive sensing. IEEE
Trans Inf Theory 56(4):1982–2001

42. Eldar Yonina C, Moshe Mishali (2009) Robust recovery of signals from a structured union of
subspaces. IEEE Trans Inf Theory 55(11):5302–5316

43. Som S, Potter LC, Schniter P (2010) Compressive imaging using approximate message passing
and a markov-tree prior. In Asilomar Conf Sig Sys Comp

44. Khajehnejad A, Xu W, Avestimehr A, Hassibi B (2009) Weighted l1 minimization for sparse
recovery with prior information. In: IEEE Intl Symp Info Th (ISIT)

45. Khajehnejad A, Xu W, Avestimehr A, Hassibi B (2011) Weighted �1 minimization for sparse
recovery with Nonuniform Sparse Models. IEEE Trans Signal Process 59(5):1985–2001

46. Miosso CJ, von Borries R, Argez M, Valazquez L, Quintero C, Potes C (2009) Compressive
sensing reconstruction with prior information by iteratively reweighted least-squares. IEEE
Trans Signal Process 57(6):2424–2431

47. Donoho D (2006) For most large underdetermined systems of linear equations, the minimal
ell-1 norm solution is also the sparsest solution. Comm Pure App Math 59(6):797–829

48. Stankovic V, Stankovic L, Cheng S (2009) Compressive image sampling with side information.
In: ICIP

49. Carrillo R, Polania LF, Barner K (2010) Iterative algorithms for compressed sensing with
patially known support. In: ICASSP

50. Jongmin K, Ok Kyun L, Jong Chul Y (2012) Dynamic sparse support tracking with multiple
measurement vectors using compressive MUSIC. In: ICASSP

51. Stojnic M (2010) Block-length dependent thresholds for �2/�1-optimization in block-sparse
compressed sensing. In: ICASSP

52. Jacques L (2010) A short note on compressed sensing with partially known signal support,
Signal Processing 90(12):3308–3312

53. Lu W, Vaswani N (2010) Modified bpdn for noisy compressive sensing with partially known
support. In: IEEE Intl Conf Acoustics, Speech, Sig Proc (ICASSP)

54. Friedlander MP, Mansour H, Saab R, Yilmaz O (2012) Recovering compressively sampled
signals using partial support information. IEEE Trans Inf Theory 58(2):1122–1134

55. Asif MS, Romberg J (2009) Dynamic updating for sparse time varying signals In: Conf. Info,
Sciences and Systems

56. Yin W, Osher S, Goldfarb D, Darbon J (2008) Bregman iterative algorithms for l1-minimization
with applications to compressed sensing. SIAM J Imaging Sci 1(1):143–168

57. Malioutov DM, Sanghavi S, Willsky AS (2008) Compressed sensing with sequential observa-
tions. In: IEEE Intl Conf Acoustics, Speech, Sig Proc (ICASSP)

58. Angelosante D, Giannakis GB (2009) Rls-weighted lasso for adaptive estimation of sparse
signals. In: IEEE Intl Conf Acoustics, Speech, Sig Proc (ICASSP)

59. Pierre J. Garrigues and Laurent El Ghaoui (2008) An homotopy algorithm for the lasso with
online observations. In: Adv Neural Info Proc Sys (NIPS)



380 N. Vaswani and W. Lu

60. Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted l(1) minimization.
J Fourier Anal Appl 14(5–6):877–905

61. Chartrand R, Yin W (2008) Iteratively reweighted algorithms for compressive sensing. In:
IEEE Intl Conf Acoustics, Speech, Sig Proc (ICASSP)

62. Wang Y, Yin W (2010) Sparse signal reconstruction via iterative support detection. SIAM J
Imaging Sci 3(3):462–491

63. Angelosante D, Giannakis GB, Grossi E (2009) Compressed sensing of time-varying signals.
Dig Sig Proc Workshop, In

64. Vaswani N (2009) Analyzing least squares and kalman filtered compressed sensing. In: IEEE
Intl Conf Acoustics, Speech, Sig Proc (ICASSP)

65. Foucart S, Lai MJ (2009) Sparsest solutions of underdetermined linear systems via ell-q-
minimization for 0 <= q <= 1. Appl Comput Harmonic Anal 26:395–407

66. Jacques L (2009) A short note on compressed sensing with partially known signal support.
ArXiv, preprint 0908.0660

67. Cevher V, Sankaranarayanan A, Duarte M, Reddy D, Baraniuk R, Chellappa R (2008) Com-
pressive sensing for background subtraction. In: Eur Conf Comp Vis (ECCV)

68. Qiu C, Vaswani N (2010) Real-time robust principal components’ pursuit. Allerton Conf on
Communications, Control and, Computing



Chapter 12
Estimation of Time-Varying Sparse Signals
in Sensor Networks

Manohar Shamaiah and Haris Vikalo

Abstract In this chapter, we consider the problem of reconstructing time-varying
sparse signals in a sensor network with limited communication resources. In each
time interval, the fusion center transmits the predicted signal estimate and its cor-
responding error covariance to a selected subset of sensors. The selected sensors
compute quantized innovations and transmit them to the fusion center. We consider
the situation where the signal is sparse, i.e., a large fraction of its components is
zero-valued. We discuss algorithms for signal estimation in the described scenario,
analyze their complexity, and demonstrate their near-optimal performance even in
the case where sensors transmit a single bit (i.e., the sign of innovation) to the fusion
center.

12.1 Introduction

In recent years, reconstruction of time-varying signals in sensor networks with lim-
ited communication resources received a lot of attention (see, e.g., [1–3] and the
references therein). Due to limited bandwidth and power resources, sensors are often
allowed to transmit only partial (e.g., quantized) information to a fusion center. Quan-
tizing and transmitting sensor measurements is often prohibitive since a large number
of quantization levels may be needed to ensure a satisfactory performance of signal
reconstruction algorithms. However, as demonstrated in [1–3], schemes relying on
quantized innovations provide performance which is comparable to that of the full
information filtering schemes.
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On another note, in many applications signals exhibit sparseness and hence may
allow for an economic use of sensing resources. Recently developed compressed
sensing techniques enable reconstruction of sparse signals from potentially far fewer
measurements than unknowns [4, 5]. Hence, exploiting sparseness of signals in
sensor networks may lessen the demands for communication between sensors and
the fusion center, saving both bandwidth and power [6, 7]. Reconstruction of time-
varying sparse signals in sensor networks was recently studied in [8] using group
lasso and fused lasso techniques. The group-fused lasso assumes the time-invariant
support but allows the non-zero components of the signal to vary over time. This is
a batch algorithm which relies on quadratic programming to recover the unknown
signal. A computationally efficient recursive lasso algorithm (R-lasso), introduced
in [9], estimates the sparse signal at each point in time recursively. In [10], the
SPARLS algorithm relies on the expectation-maximization technique to find esti-
mates of the tap-weight vector output stream from its noisy observations. The lasso-
Kalman smoother of [11] relies on the known dynamic model of the sparse signal to
track it by regularizing the Kalman smoother cost function with the sparsity promot-
ing l1-norm of the signal vector. In [12], the time-varying sparse signal is estimated
recursively in the scenario where the support changes very slowly. In particular, sig-
nal support at previous time instant is used as a known partial information for solving
the problem at a given time instant. The optimization attempts to minimize the change
in support which is expected to be much more sparse than the original signal. Under
certain conditions, it was shown that much fewer measurements are needed than in
the case when the optimization neglects the slowly changing support information.
Another approach by the same author [13], referred to as LSCS-residual, imposes
sparsity on the least squares residual computed using the support from the previous
time instant. In [14], another Kalman filtering based method wherein the sparsity
constraint is enforced via so-called pseudo-measurements was proposed. Two stages
of Kalman filtering are employed—one for tracking the temporal changes and the
other for enforcing the sparsity constraint at each stage. In [15], an unscented Kalman
filter for the pseudo-measurement update stage was proposed.

None of these recursive compressed sensing techniques, however, consider quan-
tization as a mean of further reduction of the required bandwidth and power resources.
On the other hand, recently there has been considerable interest in developing algo-
rithms for estimating sparse signals using quantized observations [16]. In [17], two
methods for estimating sparse signals from quantized observations were proposed.
The first one is a simple technique based on optimizing weighted least squares cost
that relies on virtual measurements constructed from the centroids of the quantiza-
tion bins. The other is a more sophisticated method which exploits the fact that when
the noise is Gaussian (or has log-concave distribution), the negative log-likelihood
function for x , given the measurements, is convex. The resulting convex optimization
is solved after adding l1-regularization to impose sparsity of the solutions. In [18],
a generalized expectation-maximization algorithm for sparse signal reconstruction
from quantized noisy measurements was proposed. Unlike [17], this work does not
assume knowledge of the noise variance. In [19], matched sign pursuit for estimation
of sparse signals on unit sphere from the signs of noiseless signal measurements was
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developed. Another work [20] proposes restricted step shrinkage to recover sparse
signals from 1-bit measurements. This algorithm is similar in spirit to the trust region
methods for non-convex optimization on the unit sphere. Moreover, [21, 22] propose
message passing algorithms for estimating sparse signals from quantized measure-
ments.

In this chapter, we study reconstruction of time-varying sparse signals in a sensor
network with communication constraints. The network has a state-space representa-
tion, where the sparse state vector comprises many more zeros than non-zero compo-
nents. In each time interval, the fusion center transmits the predicted signal estimate
and its corresponding error covariance to a selected subset of sensors. The selected
sensors compute quantized innovations and transmit them to the fusion center. We
consider a general nonlinear dynamical system with linear observations. The fusion
center employs a recursive signal estimation scheme based on the so-called Kalman-
like particle filter [3], which we extend to nonlinear dynamical systems employing a
bank of extended Kalman filter (EKF) [23] to track their dynamics. In the multiple
measurement case, the scheme is implemented in a computationally efficient sequen-
tial form [23]. The proposed scheme imposes sparsity constraints on the estimates
of the state vector at both particle and fused estimate levels, using either projection
or pseudo measurement technique [14, 24]. We analyze the computational complex-
ity of the proposed algorithms, demonstrating their practical feasibility. Simulation
results show that the performance of the proposed algorithms is close to that of the
filtering schemes with full (non-quantized) innovations, even in the extreme case
where selected sensors transmit a single bit (i.e., the sign of innovation) to the fusion
center. Moreover, the proposed algorithm is demonstrated to work well in the case
of slowly varying sparsity pattern.

The chapter is organized as follows. In Sect. 12.2, we describe the system model.
Recursive algorithms for tracking sparse signals with quantized innovations, and
the analysis of their complexity, are presented in Sect. 12.3. Section 12.4 contains
simulation results, and the chapter is concluded in Sect. 12.5.

12.1.1 Notation

Upper-case symbols are used to denote matrices, lower-case boldface symbols denote
vectors. N (μ, σ 2) denotes Gaussian distribution with mean μ and variance σ 2,
Nt (s1, s2, μ, σ

2) denotes truncated (to the interval [s1 s2]) Gaussian distribution
with mean μ and variance σ 2, and φ(s1, s2, μ, σ

2) denotes the probability that a
random variable with distribution N (μ, σ 2) belongs to [s1 s2].

12.2 System Model and Problem Statement

Consider a network employing sensors which observe linear combinations of sparse
time-varying signals. In each time interval, M sensors communicate their information
to the fusion center. For a general non-linear dynamical system, the signals and
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measurement satisfy the following dynamical model

x(n + 1) = f (x(n))+ w(n) (12.1)

y(n) = H(n)x(n)+ v(n) (12.2)

In the case of linear dynamics f (x(n)) = A(n)x(n), in which case the dynamics and
measurements are given by

x(n + 1) = A(n)x(n)+ w(n) (12.3)

y(n) = H(n)x(n)+ v(n). (12.4)

Here x(n) ∈ RN denotes the time-varying vector which is sparse in some transform
domain, i.e., we can write x(n) = Ψ (n)x0(n), where the majority of components
of x0(n) are zero and where Ψ (n) denotes an appropriate basis. Without a loss of
generality, we assume that x(n) itself is sparse, having at most K non-zero com-
ponents whose locations are unknown (K � N ). The sensors, whose observations
y1(n), . . . , yM (n) are collected in the M-dimensional real-valued vector y(n), are
oblivious to this sparsity. Moreover, w(n) ∈ RN and v(n) ∈ RM denote uncorrelated
Gaussian noise with zero mean and covariances Q(n) and R(n), respectively, and
n ≥ 0 is the time index. The initial state of the system, x(0), is uncorrelated with
both w(n) and v(n). Furthermore, in (12.3)–(12.4) we introduced A(n) ∈ RN×N ,
and H(n) = [h1(n)T h2(n)T . . . hM (n)T ]T ∈ RM×N . The elements of H(n) are
drawn from a Gaussian distribution with zero mean and variance 1/M . Note that
this construction of H(n) satisfies the so-called restricted isometry property (RIP)
imposed in the design of compressed sensing schemes [4].

At each time step n− 1, the fusion center uses past measurements collected from
sensors to form a predicted estimate of x(n), x̂(n|n−1), and computes the predicted
observation for the lth sensor, ŷl(n). We assume that the FC has sufficient power
to transmit the predicted measurements and its corresponding error covariances to
the sensors. However, sensors are limited in both power and allotted bandwidth,
and hence transmit quantized innovations (i.e., the quantized difference between the
sensor measurement and the estimate) to the FC. Quantizing innovations implies
that, at the FC, there is an interval of uncertainty for the corresponding sensor mea-
surements. Increasing the number of quantization levels reduces the uncertainty, but
leads to higher bandwidth requirements and energy consumption.

12.3 The Algorithm

The proposed scheme is based on Kalman-like particle filter (KLPF) [3], which
we generalize and apply to nonlinear systems. In particular, we employ an extended
Kalman filter (EKF) in place of KF (first modifying the scheme so it can process multi-
ple observations) and implement the resulting EKLPF algorithm in a computationally
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efficient sequential processing form [23]. To recover sparse signals, we impose
sparseness constraints on either particle level, estimate level, or both. Details of
the algorithm are described next.

At time n, the fusion center transmits predicted observation

ŷl(n) = hl(n)x̂(n|n − 1), l = 1, 2, . . . ,M, (12.5)

and its corresponding error covariance σl(n) to the lth sensor, where σl(n) denotes
the (l, l) entry of the matrix

Rŷ(n) = H(n)P(n|n − 1)H(n)T + Q(n). (12.6)

The lth sensor computes the quantized innovation,

el(n) = Q
[

yl(n)− ŷl(n)

σl(n)

]
σl(n), (12.7)

and transmits it to the fusion center (Q [·] denotes the quantization operator).
The EKLPF employs a bank of Np parallel extended Kalman filters (in time-
and-measurement-update form), where each extended Kalman filter performs the
measurement update using an observation particle generated based on the received
quantized innovation. In particular, the nth measurement update step of the i th
extended Kalman filter uses an observation particle yi (n) = [yi

1(n) . . . yi
M (n)]T ,

where yi
l (n) (1 ≤ l ≤ M) is generated from the truncated Gaussian distribution [3],

yi
l (n) ∼ Nt (s

L
l (n), sU

l (n),hl(n)x̂i (n|n − 1), σl(n)). (12.8)

In (12.8), x̂i (n|n − 1) denotes the state prediction computed by the i th extended
Kalman filter in the previous time update step. The i th observation particle is assigned
the weight wi (n) =∏M

l=1w
i
l (n), where

wi
l (n) = φ(sL

l (n), sU
l (n),hl(n)x̂i (n|n − 1), σl(n)). (12.9)

In (12.8)–(12.9), sL
l (n) = ŷl(n|n − 1) + L(n) and sU

l (n) = ŷl(n|n − 1) + U (n),
where L(n) and U (n) denote the lower and upper limits of the quantization inter-
val containing el(n), respectively (i.e., L(n) < el(n) ≤ U (n)). The measurement
updates x̂i (n|n) (1 ≤ i ≤ Np) computed by the individual extended Kalman filters
are then fused to obtain the overall filtered estimate,

x̂(n|n) =
Np∑

i=1

wi (n)x̂i (n|n). (12.10)

This is followed by the time update step, where the predicted estimate
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x̂(n + 1|n) = f
(
x(n|n)) (12.11)

and its error covariance matrix

P(n + 1|n) = F(n + 1)P(n|n)F(n + 1)T + R(n + 1) (12.12)

are computed. Here F(n) is the Jacobian matrix of f (x) evaluated at x(n|n). Note
that when the dynamics are linear (i.e., f (x(n)) = A(n)x(n)) F(n) = A(n).

The KLPF in [3] is derived under the assumption that the system has access to
only one measurement source at each time step. The extension to a multiple mea-
surements scenario (e.g., multiple sensors) is straightforward but, in general, may
lead to a computationally involved scheme. Note that the observations in our prob-
lem are mutually independent, which directly allows for a computationally efficient
sequential processing implementation of the extended Kalman filters. In particular,
we implement the measurement update step for each extended Kalman filter as

K l
f =

P(n|n)hl(n)T

hl(n)P(n|n)hl(n)T + Rl,l(n)

P(n|n) = P(n|n)− K l
f hl(n)P(n|n)

x̂i (n|n) = x̂i (n|n)+ K l
f (y

i
l (n)− hl(n)x̂i (n|n)) (12.13)

where l runs from 1 to M . Note that the sequential processing avoids any matrix
inversion and hence provides a computationally efficient implementation of the mea-
surement update step.

To ensure that the proposed estimation scheme recovers sparsity pattern of the state
vector, we impose sparsity constraints on either particle level (i.e., x̂i (n|n)), fused
estimate level (i.e., x̂(n|n)), or both. The sparseness is imposed either by introducing
the so-called pseudo measurements, or via projections onto sparse domain.

Pseudo-measurements: The sparsity constraint can be imposed at each time step
by bounding the l1 norm of the estimate of the state vector, ‖x̂(n|n)‖1 ≤ ε. This
constraint is readily expressed as a fictitious measurement 0 = ‖x̂(n|n)‖1−ε, where
ε can be interpreted as a measurement noise [2, 14]. Now we construct an auxiliary
state-space model of the form

z(k + 1) = z(k)

0 = hpm(k)z(k)− ε, (12.14)

where z(0) = x̂(n|n), hpm(k + 1) = [sign(ẑ1(k|k)) . . . sign(ẑN (k|k))],
k = 1, 2, . . . , L , ẑ j (k|k) denotes the j th component of the least-mean-square esti-
mate of z(k) (obtained via Kalman filter), and sign(·) denotes the sign function.
Finally, we reassign x̂(n|n) = ẑ(L|L), where the time-horizon of the auxiliary state-
space model (12.14) L , is chosen such that ‖ẑ(L|L)−ẑ(L−1|L−1)‖2 is below some
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predetermined threshold. This iterative procedure is formalized below as Algorithm 1
(see [14] for more details).

The l1-norm based pseudo-measurement which enforces sparsity leads to intro-
ducing a linear equation, allowing application of the Kalman filter directly. Since in
general quasi-norms ||.||p with 0 < p < 1 are more accurate in approximating ||.||0
than the l1-norm, [14] also proposes the use of pseudo-measurements technique with
the quasi norms. In this case, the pseudo-measurement equation is given by

0 =
( n∑

i=1

|zk(i)|p
) 1

p − ε ′ (12.15)

For implementation purposes, [14] linearizes the above equation around a nominal
value, and then enforce the resulting constraint by employing an extended Kalman
filter. Another alternative discussed in [14] is to replace the l0 norm ||.||0 directly by

||zk ||0 ≈ n −
n∑

i=1

exp(−α|zk(i)|) (12.16)

and using this as a pseudo-measurement for imposing the sparsity constraint.

Algorithm 1 [x̂(n|n),P(n|n)]=PMKF(x̂(n|n),P(n|n))
Run Kalman filter updates for the system (Eq.12.14) ||x̂(n|n)|| − ε = 0
Ppm(1|1) = P(n|n), ẑ(1|1) = x̂(n|n)
for k = 1 to L do

hpm(k) = [sign(ẑ1(k|k)), . . . , sign(ẑN (k|k)))]

K pm = Ppm(k|k)hpm(k)

hpm(k)Ppm(k|k)(hpm(k))
′ + Rε

ẑ(k + 1|k + 1) = (I − K pmhpm(k))ẑ(k|k)
Ppm(k + 1|k + 1) = (I − K pmhpm(k))Ppm(k|k)

end for
x̂(n|n) = ẑ(L|L), P(n|n) = Ppm(L + 1|L + 1)

Projections onto sparse domain: This transformation finds the best K -sparse
MMSE estimate of the signal by simply setting all but K largest magnitude compo-
nents to zero. We formalize it as Algorithm 2.

Having introduced the two types of sparsity constraints, we define the following
two algorithms:

Algorithm 1: The filtered particles are projected onto the constraint domain by
retaining K components with largest magnitudes (i.e., we employ Algorithm 2). The
constrained filtered particles are combined using the particle weights to obtain the
filtered estimate. In general, this fused filtered estimate is not guaranteed to satisfy
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Algorithm 2 [x̂(n|n),P(n|n)]=SPARSE(x̂(n|n),S,P(n|n))
Zero out all but S components with largest magnitudes:
ẑ = sort (abs(x̂(n|n))) (in descending order), ẑS+1:N = 0

P(n|n) = P(n|n)+ (x̂(n|n)− ẑ)(x̂(n|n)− ẑ)′, x̂(n|n) = ẑ

Fig. 12.1 Illustration of the proposed recursive signal processing scheme for time-varying sparse
signals. Fn 1 and Fn 2 refer to Algorithms 1 and 2, respectively

the sparsity constraint and hence needs to be projected onto the constraint domain
using Algorithm 2.

Algorithm 2: The unconstrained filtered particles are combined using the particle
weights to obtain the filtered estimate. This fused filtered estimate is not guaranteed
to satisfy the sparsity constraint and the pseudo measurement method is applied to
impose the l1 constraint (i.e., we employ Algorithm 1).

The general algorithm (illustrated in Fig. 12.1), of which Algorithm 1 and Algo-
rithm 2 are special cases, is formalized below.

1. Initialization: n = 0,
{x̂i (0| − 1), x̂(0| − 1), P(0| − 1)}.

2. Fusion center transmits σl(n) (Eq. 12.6) and ŷl(n) (Eq. 12.5) to the lth sensor.

3. The lth sensor transmits the quantized innovation Q
[

yl (n)−ŷl (n)
σl (n)

]
to the fusion

center.
4. Using Eq. (12.7), the fusion center generates observation particles (Eq. 12.8)

and determines corresponding weights (Eq. 12.9).
5. Run measurement updates in the sequential form (Eq. 12.13) using observations

generated in step (4) above.
6. Specific to Algorithm 1: Use Algorithm 2 to project x̂i (n|n) onto sparse domain.
7. Resample the particles using the normalized weights.
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8. Compute the fused filtered estimate x̂(n|n) (Eq. 12.10).
9. a. Specific to Algorithm 1: Project the estimate x̂(n|n) onto sparse domain

using Algorithm 2.
b. Specific to Algorithm 2: Project the estimate x̂(n|n) onto sparse domain

using Algorithm 1.
10. Determine time updates x̂i (n+1|n), x̂(n+1|n), P(n+1|n), ŷl(n+1), Rŷ(n+1)

for the next time interval.
x̂i (n + 1|n) = f (x̂i (n|n))
x̂(n + 1|n) = f (x̂(n|n)),
P(n + 1|n) = A(n + 1)P(n|n)A(n + 1)T + R(n + 1)
ŷl(n + 1) = hl(n + 1)x̂(n + 1|n)
Rŷ(n + 1) = H(n + 1)P(n + 1|n)H(n + 1)T + Q(n + 1).

Note that in the absence of steps (6) and (9), the above algorithm reduces to KLPF
[3] as we extended it to the multiple measurements case.

12.3.1 Computational Complexity

The complexity of the sampling step (4) in the general algorithm is O(Np). The
sequential processing step (5) is of the order O(N 2 M) + O(N Np); the first term
is the complexity of the first two steps in Eq. (12.13) which are common to all the
particles, while the complexity of the last step in Eq. (12.13) is given by the second
term. The step (6) which projects the filtered particles onto the sparse domain has a
complexity O(Np NlogN ). The resampling step (7) has a complexity O(Np). The
step (9) has complexity either O(NlogN ) (Algorithm 1) or O(N 2 L) (Algorithm 2).
The complexity of the time update step (10) is O(N 2 Np) + O(N 2 M). It depends
on the specific problem which one of these terms dominate. We give an example of
the complexity analysis in the next section.

12.4 Simulation Results

The system is simulated with the parameters set to N = 200,M = 35, K = 4,
Np = 150, Rε = 2002, L = 100. Initially, there are 3 nonzero components, but we
allow for slow change in the sparseness pattern. In particular, another component
becomes nonzero at time index n = 51. The initial value of the nonzero components
is distributed as N (0, 25). The nonzero components xi (n) then follow a Gaussian
random walk independent of other components determined by Q(i,i)(n). In the sim-
ulations, we used Q(i,i)(n) = 42 and R(i,i)(n) = 0.252. We assume severely limited
bandwidth resources, and transmit 1 bit quantized innovations. We compare the per-
formance of the proposed algorithms with the scheme considered in [14], which
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Fig. 12.2 Performance of tracking non-zero components of the sparse signal. N = 200, M = 35,
K = 4, Np = 150, Rε = 2002, L = 100

investigates the scenario where the fusion center has full innovation (unquantized).
For convenience, we refer to the scheme in [14] as FIKFCS.

Figure 12.2 shows how various algorithms track the non-zero components of the
signal. The FIKFCS algorithm performs the best since it uses full innovations. Algo-
rithm 1 performs almost as well as the FIKFCS algorithm. The KLPF clearly per-
forms poorly, while Algorithm 2 does not fare much better. However, if the bandwidth
constraint is relaxed (i.e., we allow more than 2 quantization levels), Algorithm 2
performs close to FIKFCS.

Figure 12.3 gives a comparison of the instantaneous values of the estimates at
time index n = 100. Both Algorithm 1 and FIKFCS correctly identify the nonzero
components, while Algorithm 2 erroneously implies signal content in the zero-signal
region.

Finally, Fig. 12.4 shows the l2 error performance of the algorithms. The top figure
shows the error in the support set alone (nonzero components), while the bottom
figure shows the error performance in the estimation of the zero components. From
the figure, it is reaffirmed that Algorithm 1 performs very close to FIKFCS. Algo-
rithm 2 and KLPF perform poorly in both the support set and zero-signal component.
Hence, incorporating sparsity constraint at both the particle level and overall estimate
level (as done by Algorithm 1) is preferable compared to imposing it only at the over-
all estimate level (as done by Algorithm 2). If only an approximate knowledge of K
is known, then we can employ Algorithm 2 at step (6) using this approximate knowl-
edge, and Algorithm 1 at step (9). This algorithm (Algorithm 3, omitted for brevity)
results in a slightly inferior performance to Algorithm 1 but provides much better
performance than Algorithm 2. The complexity of this algorithm is of the same order
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as Algorithm 2. Hence, under bandwidth constraint, if the knowledge of the support
is perfectly known, it is preferable to employ Algorithm 1; otherwise, Algorithm 3
is preferred. Algorithm 2 can be chosen in the case of relaxed bandwidth constraints
(i.e., if more quantized levels are allowed). It is to be noted that these performances
are achieved with significantly fewer measurements than unknowns (< 25 %). In
this example, the complexity of Algorithm 1 is dominated by O(N 2 M) = 14× 105,
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which is of the same order as that of KLPF, while the complexity of Algorithm 2 is
dominated by step (9), O(N 2L) = 4× 106.

Figure 12.5 shows the RMSE performance comparison of the proposed schemes
as a function of non-zero components K (here N = 140,M = 40). For a fairness of
the comparison, the error is normalized, i.e., we are plotting ‖x−x̂‖2‖x‖2 . While the error
increases with the sparsity for all the estimators, Algorithm 1 and FIKFCS are more
robust than the other two techniques.

12.5 Conclusions

We presented algorithms for estimating time-varying sparse signals under commu-
nication constraints. These algorithms incorporate the sparsity constraint at different
levels (at the particle level, estimate level or both). For heavily bandwidth constrained
(1 bit) scenarios, incorporating sparsity at both the particle level and fused estimate
level is preferable. Effective tracking of the time variations is achieved with signifi-
cantly smaller number of measurements than size of the state vector. These algorithms
are demonstrated to work well in the case of slowly varying sparsity pattern.
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Chapter 13
Sparsity and Compressed Sensing in
Mono-Static and Multi-Static Radar Imaging

Ivana Stojanović, Müjdat Çetin and W. Clem Karl

Abstract This chapter is concerned with the application of sparsity and compressed
sensing ideas in imaging radars, also known as synthetic aperture radars (SARs). We
provide a brief overview of how sparsity-driven imaging has recently been used in
various radar imaging scenarios. We then focus on the problem of imaging from
undersampled data, and point to recent work on the exploitation of compressed
sensing theory in the context of radar imaging. We consider and describe in detail
the geometry and measurement model for multi-static radar imaging, where spatially
distributed multiple transmitters and receivers are involved in data collection from
the scene to be imaged. The mono-static case, where transmitters and receivers
are collocated is treated as a special case. For both the mono-static and the multi-
static scenarios we examine various ways and patterns of undersampling the data.
These patterns reflect spectral and spatial diversity trade-offs. Characterization of the
expected quality of the reconstructed images in these scenarios prior to actual data
collection is a problem of central interest in task planning for multi-mode radars.
Compressed sensing theory argues that the mutual coherence of the measurement
probes is related to the reconstruction performance in imaging sparse scenes. With
this motivation we propose a closely related, but more effective parameter we call the
t%-average mutual coherence as a sensing configuration quality measure and examine
its ability to predict reconstruction quality in various mono-static and ultra-narrow
band multi-static configurations.
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13.1 Introduction

Synthetic aperture radar (SAR) is a microwave remote sensing system capable of pro-
ducing high-resolution imagery of target scenes independent of time of day, distance,
and weather. SAR constructs a large synthetic antenna by collecting data from mul-
tiple observation points and focusing the received information coherently to obtain
a high-resolution description of the scene. Conventional SARs are mono-static, with
collocated transmit and receive antenna elements. These SAR sensors coherently
process multiple, sequential observations of a scene under the assumption that the
scene is static. Imaging resolution is determined by the bandwidth of the transmitted
signals and the size of the synthesized antenna. Greater resolution requires wider
bandwidths and larger aspect angles obtained from a longer baseline observation
interval. An alternative approach is based on multi-static configurations, wherein
spatially dispersed transmitters and receivers sense the scene. Such configurations
provide the opportunity for spatial as well as frequency diversity and offer poten-
tial advantages in flexible sensor planning, sensing time reduction, and jamming
robustness.

Sparsity has been of interest for SAR imaging implicitly over many years, and
more explicitly in the last decade or so [1]. Ideas based on sparse signal represen-
tation have recently led to advanced image formation methods offering a number
of benefits for SAR, including increased resolvability of point scatterers, reduced
speckle, and robustness to limitations in data quality and quantity [2, 3]. We provide
an overview of how sparsity has been exploited in recently developed advanced SAR
image formation methods in Sect. 13.4. Our primary focus in this chapter however
is the use of sparsity in the context of SAR imaging from undersampled data, lead-
ing to consideration of ideas and analysis tools from compressed (or compressive)
sensing (CS) [4, 5]. Compressed sensing seeks to acquire as few measurements as
possible about an unknown signal, and given these measurements, reconstruct the
signal either exactly or with provably small probability of error [6]. Reconstruction
methods used in CS are related to sparsity-constrained, non-quadratic regularization.
The compressed sensing literature has demonstrated accurate signal reconstructions
from measurements involving extremely few, but randomly chosen Fourier samples
of a signal [4, 7]. Since both mono-static and multi-static SAR sensing can be viewed
as obtaining samples of the spatial Fourier transform of the scattering field [8], these
results suggest interesting opportunities for SAR sensing. Compressed sensing is
described in more detail in other chapters of this book, however for the sake of
completeness, we provide a brief overview of pieces of compressed sensing that are
particularly relevant for this chapter in Sect. 13.2. In the context of radar imaging,
compressed sensing is primarily motivated by the fact that current radar sensing
missions involve timeline constraints on data collection due to radar operation in
multiple modes including searching, tracking, and imaging. Furthermore, the ability
to use multi-platform sensor geometries and the possibility of passive sensing from
transmitters of opportunity and quiet receivers such as unmanned aerial vehicles
is increasingly important. These new mission requirements impose non-dense and
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irregular sampling patterns in the SAR measurement space, motivating the develop-
ment of signal processing algorithms for such irregular and undersampled data sce-
narios. In Sect. 13.4 we mention how ideas from compressed sensing have recently
been considered for radar imaging in such scenarios.

In the work presented in this chapter, we focus on radar imaging in undersam-
pled data scenarios and on the development of tools to understand and evaluate the
performance of various sensor operation and configuration choices in such scenarios
in a straightforward, tractable manner. We consider both mono-static and multi-
static sensing configurations. We describe the geometry and measurement model for
general multi-static sensing in Sect. 13.3, which contains mono-static sensing as a
special case. We examine various mono-static and ultra-narrowband multi-static con-
figurations in Sect. 13.5. Different configurations lead to different Fourier sampling
patterns, which trade off frequency and geometric diversity. In an effort to identify
a tool for evaluating the imaging performance under various undersampled sensing
configurations, we first observe that CS theory relates the accurate reconstruction
of a signal to the mutual coherence of the corresponding measurement operator. We
also note that mutual coherence can be a pessimistic measure of average perfor-
mance. Accordingly, in Sect. 13.6, we propose a variant of mutual coherence, which
we call the t%-mutual coherence as a more effective measure of expected sensing
configuration quality. We then provide an experimental study of the impact of under-
sampled data collection in radar on the reconstruction quality of a scene of interest
in Sect. 13.7. In particular, we consider various wide-band mono-static and narrow-
band multi-static configurations, which trade off frequency and geometric diversity.
We examine how the t%-mutual coherence of the corresponding measurement oper-
ator is affected by these distinct SAR sensing configurations and investigate how this
easily computed metric is related to reconstruction quality. Portions of the analysis
we present in this chapter can be found in a preliminary form in [9].

13.2 Compressed Sensing Overview

Compressed sensing enables reconstruction of sparse or compressible signals from
a small set of linear, non-adaptive measurements, much smaller in size than that
required by the Nyquist-Shannon theorem [4, 5]. A family of signals s ∈ S ⊂ RN×1

has a sparse representation in a dictionary D ∈ RN×K , if s = Dα and α ∈ RK×1

is a sparse vector. A vector α is considered sparse if the number of its non-zero
components satisfies ‖α‖0 ≤ T � K , where the l0 norm ‖ · ‖0 counts the number of
non-zero elements of the argument. Compressed sensing measures M projections of
such a signal (where T < M � K ), and then exploits its sparsity to obtain a reliable
reconstruction. To represent this problem mathematically, let r ∈ RM×1 represent
the measured signal, P ∈ RM×N the sensing (projection) matrix such that M � K
and

r = Ps = PDα = Φα. (13.1)
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Since M � K this set of equations is extremely under-determined, and many solu-
tions are possible. To overcome this, a sparse solution with only a few non-zero
elements is sought.

Optimal design of P and D is a topic of interest in compressed sensing. For now,
let us assume that Φ = PD is given. For a given Φ, the problem is to find an optimally
sparse solution. A direct formulation of this problem can be stated as:

min
α
‖α‖0 s.t. r = Φα. (13.2)

Unfortunately, this formulation is computationally difficult to solve, as it involves
NP-hard enumerative search. The convex relaxation approach relies on the fact that
besides the l0 norm, the l1 norm also promotes sparsity in a solution. The l1 norm
is defined as ‖α‖1 = ∑K

i=1 |αi |, where αi is the i-th element of α. This norm is a
convex function of its arguments. The relaxed version of the problem then takes the
form:

min
α
‖α‖1 s.t. r = Φα, (13.3)

which is essentially a linear optimization problem. The use of this formulation has
recently been particularly motivated by the fact that under certain conditions on the
matrix Φ, the original problem and the relaxed version can be shown to have the
same solution [10–13].

When the signal r is noisy, the signal representation problem becomes a sig-
nal approximation problem. The convex relaxation formulation of the noisy signal
approximation problem is given by:

min
α
‖α‖1 s.t. ‖r −Φα‖22 ≤ σ, (13.4)

where σ represents a small noise allowance. Instead of enforcing perfect fidelity to
the data, now the solution coefficient vector α is allowed to satisfy the relationship
approximately. This problem is known in the literature as noisy basis pursuit [14].
Note that the problem (13.4) can also be cast in Lagrangian form as the following
regularization problem for an appropriately chosen parameter λ:

min
α
‖r −Φα‖22 + λ‖α‖1. (13.5)

Computationally efficient algorithms for solution of the optimization problems
given in (13.3), (13.4) and (13.5) have been developed [15–20].

Rather than relaxing the optimization problem in (13.2), an alternative approach
has been to attempt to solve it using greedy algorithms, belonging to the family of
matching pursuit algorithms [21]. Interestingly, such greedy algorithms have also
been shown to solve (13.2) exactly under certain conditions [22].

Recent work in compressed sensing established that accurate reconstructions can
be obtained with high probability even when only O(T ) measurements are avail-
able [4, 5]. In particular it was shown that the number of measurements should satisfy
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M ≥ Cσ T log(K ), (13.6)

with an appropriate coefficient Cσ , that depends on the desired accuracy of the
reconstruction. These results require that the matrix Φ satisfy the so-called restricted
isometry property [4]. The restricted isometry property requires that all sub-matrices
containing up to T columns of the matrix Φ are near-isometries. Direct design of
Φ (and thus P and D) based on this property is challenging, as it is combinatorial
in nature. Thus, most of the work in CS simply assumes that the projections P are
drawn at random, as such random projections can be shown to satisfy the required
property with high probability.

An alternative approach is to focus on the so-called mutual coherence of the
elements of the matrix Φ, seeking configurations with low mutual coherence. This
measure is simple to compute, though less directly connected to performance. The
mutual coherence μ(Φ) of the matrix Φ is formally defined as [23, 24]:

μ(Φ) = max
i �= j

|φT
i φ j |

‖φi‖2‖φ j‖2 , (13.7)

where φi is the i-th column of the matrix Φ. Equivalently, the mutual coherence is
the largest non-diagonal entry of the column normalized Gram matrix G = ΦT Φ,
representing the worst case (i.e., the largest) similarity between the sensing columns.
Orthonormal bases have zero mutual coherence and an overcomplete dictionary with
a small mutual coherence is taken to be incoherent. Large mutual coherence indi-
cates the presence of two closely related columns that may confuse reconstruction
algorithms.

The mutual coherence provides a guarantee, although pessimistic, that the basis
pursuit reconstruction algorithm solution employing l1 relaxation of the l0 norm
yields the optimal solution of the original problem [10, 24]. It essentially provides
a sufficient condition on the equivalence of the use of l0 and l1 norms, indicating
that the NP hard l0 problem in (13.2) can be solved by the tractable l1 relaxation
in (13.3). Namely, the signal s is perfectly recovered by both methods provided that
the representation α satisfies the requirement [10, 24]:

‖α‖0 < 1

2

(
1+ 1

μ(Φ)

)
.

This condition is pessimistic as it provides a worst-case guarantee, i.e., it guarantees
zero-error recovery of any signal satisfying the above requirement. In general, suc-
cessful compressed sensing recovery is possible for a significantly larger class of sig-
nals by introducing a small probability of error. However, one can still aim to optimize
the projection probes such that mutual coherence is minimized in order to enlarge
the class of signals with guaranteed successful compressed sensing recovery [25].

Finally, we note that it is known that Fourier measurements represent good pro-
jections for compressed sensing of sparse point-like signals [4], when Φ represents
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random undersampling of the spatial frequency data. This suggests a natural applica-
tion to the SAR sensing problem. In particular, we examine several mono-static and
multi-static SAR sensing configurations with a number of undersampling schemes
and study the relationship between their coherence (based on a variation of (13.7)
introduced in Sect. 13.6) and reconstruction quality.

13.3 Multi-Static SAR Measurement Model

Most imaging radars use a transmitting and receiving antenna carried on a plat-
form (aircraft or satellite) which travels along a path transmitting microwave pulses
towards the ground. Through the motion of the antenna platform, the scene is
observed from a diverse set of angles effectively creating a larger aperture than
the real antenna aperture, leading to the concept of SAR. Having a moving sen-
sor collect data at a certain number of observation points along its flight path is
equivalent to collecting data from the same number of stationary sensors at those
locations for a static scene. Some of the transmitted microwave energy is reflected
back towards the sensor where it is received as a signal. This signal first undergoes
some pre-processing, involving demodulation. The radar image formation problem
is the problem of reconstruction of a spatial reflectivity distribution of the scene from
the pre-processed radar returns. Under a single bounce (Born) scattering approxima-
tion, the observation model used in many practical radar imaging scenarios is linear.
What we have described so far in this section assumes mono-static operation, i.e.,
collocation of the transmitter and the receiver on the same platform. Radar imag-
ing can more generally be performed in a multi-static mode, where transmitters and
receivers are on different, spatially dispersed platforms. In this section, we describe
this general multi-static observation scenario.

We consider a general multi-static system with spatially distributed transmit and
receive antenna elements within a cone positioned at the center of a scene of interest.
The scene of interest is modeled by a set of point scatterers reflecting impinging
electromagnetic waves isotropically to all receivers within the cone. We introduce
a coordinate system with the origin in the center of the area of interest and, for
simplicity, model the scene as two dimensional. Figure 13.1 illustrates this set up.
The relative size of the scene is assumed to be small compared to distances from the
origin of the coordinate system to all transmitters and receivers, such that transmit
and receive angles would change negligibly if the coordinate origin moved to any
point in the scene. Furthermore, we neglect signal propagation attenuation.

Let us present the received signal model for a pair of spatially separated transmit
and receive antenna elements. The complex signal received by the l-th receiver,
located at xl = [xl , yl ]T , for the narrow-band excitation from the k-th transmitter,
located at xk = [xk, yk]T , reflected from a point scatterer at the spatial location
x = [x, y]T is given by

gkl(t) = s(x) γk (t − τkl(x)),
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Fig. 13.1 Geometry of the
kl-th transmit-receive pair
with respect to the scene
of interest. All transmit and
receive pairs are restricted to
lie within a cone of angular
extent Δθ

k−th transmitter

l−th receiver 

x

x

y

ek
el

where s(x) is the reflectivity of the scatterer, γk(t) is the transmitted waveform from
the k-th transmitter, and τkl(x) is the propagation delay from the transmitter to the
scatterer and back from the scatterer to the receiver. The overall received signal from
the entire ground patch of radius L is then modeled as a superposition of the returns
from all the scattering centers and is given by:

gkl(t) =
∫

‖x‖≤L
s(x)γk (t − τkl(x)) dx.

For narrow-band waveforms, defined by γk(t) = γ̃k(t)e jωk t , where γ̃k(t) is a
low-pass, slowly varying signal and ωk is the carrier frequency, we can write:

gkl(t) =
∫

‖x‖≤L
s(x)e jωk (t−τkl (x)) γ̃k (t − τkl(x)) dx. (13.8)

In the far-field case, when ‖x‖ � ‖xk‖, ‖x‖ � ‖xl‖, and ωk/c‖x‖2 � ‖xk‖,
ωk/c‖x‖2 � ‖xl‖, we can use the first order Taylor series expansion to approximate
the propagation delay τkl(x) as:

τkl(x) = 1

c
(‖xk − x‖ + ‖xl − x‖)

≈ τkl(0)− 1

c
xT ekl ,

where τkl(0)
.= (‖xk‖+‖xl‖)/c is the known transmitter-origin-receiver propagation

delay, and ekl
.= ek + el is the kl-th transmit-receiver pair’s bistatic range vector.

The vectors ek
.= [cos θk, sin θk]T and el

.= [cos θl , sin θl ]T are unit vectors in the
direction of the k-th transmitter and l-th receiver respectively.

The chirp signal is one of the most commonly used pulses in SAR imaging [8],
and is given by
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γk(t) =
{

e jβk t2 · e jωk t , − τc
2 ≤ t ≤ τc

2
0 otherwise

(13.9)

where ωk is the center frequency and 2βk is the so-called chirp rate of the k-th
transmit element. The frequencies encoded by the chirp signal extend fromωk−βkτc

to ωk + βkτc, such that the bandwidth of this signal is given by Bk = βkτc
π

. The
narrow-band assumption is satisfied by choosing the chirp signal parameters such
that 2πBk/ωk � 1. Ultra-narrow band waveforms are special cases of the chirp
signal obtained by setting βk = 0.

We use a general transmitted chirp signal in (13.8), along with the far-field delay
approximation, and apply typical demodulation and baseband processing. In partic-
ular, the received signal gkl(t) is mixed with the transmitted signal referenced to
the origin of the scene e− j

[
ωk (t−τkl (0)+βk (t−τkl (0))2

]
, and then low-pass filtered. After

such preprocessing, and ignoring a quadratic phase term [8], we obtain the following
observed signal model:

rkl(t) ≈
∫

‖x‖<L
s(x)e jkl (t)xT ekl dx, (13.10)

where kl(t) = 1
c [ωk − 2βk(t − τkl(0))], depends on the frequency content of the

transmitted waveform.
The observations of all receivers across all snapshots, i.e., pulses, are coherently

processed. A discrete model can be obtained by discretizing the spatial variable
x, approximating the integral in (15) with a Riemann sum, and sampling in time.
We stack the sampled data for all the receivers into a column vector. Likewise the
reflectivity field is stacked into a column vector s. Considering receiver noise n as
well, we obtain the following noisy discrete observation model:

r =
N∑

i=1

Pi si + n = Ps+ n. (13.11)

In this equation, r ∈ CM×1 represents the observed, thus known, set of return signals
at all receivers across time. Its elements are indexed by the tuple (k, l, ts), with ts
being the sampling times associated with the kl-th transmit-receive pair. Thus, the
discrete model implicitly assumes that the probes from different transmitters are
separable at each receiver. This can be achieved by orthogonal waveform design or
by ensuring sequential transmission. The reflectivity of the i-th spatial cell or pixel
is denoted by si ∈ C1×1 and Pi is the column vector capturing the contribution to
the received signal of a reflector that is located in the i-th pixel.

In a particular undersampled data collection scenario, the specific matrix P to
be used is derived from (13.10) with the spatial frequency kl(t) and aspect-vector
samples ekl determined by the specific sampling configuration. The received signal
model for the mono-static configuration involves collocated transmit-receiver pairs,
and is thus a special case of the multi-static model obtained by setting xk = xl .
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13.4 Recent Use of Sparsity and Compressed Sensing
in Radar Imaging

Radar reflectivity images can usually be approximated well through sparse repre-
sentations either by using parametric models of physical scattering behaviors (see,
e.g., [1] for a brief discussion) or by expressing the entire reflectivity field through
appropriate spatial dictionaries. We focus on this latter perspective here. Ideas based
on �1 formulations (see Sect. 13.2) and their variants have been successfully used
in radar imaging in recent years. Here we first provide a brief overview of a subset
of these developments in image formation. Our coverage is not comprehensive, but
rather mostly highlights several lines of work in which the authors of this chapter
were involved. We then mention how ideas from compressed sensing have recently
been explored for analysis and design of radar imaging tasks with data limitations.

Using the same notation as in Sects. 13.2 and 13.3, let us start with the following
noisy observation model for radar imaging:

r = Ps+ n, (13.12)

where r denotes the observed radar data, P is the radar sensing matrix, s is the spatial
reflectivity field to be imaged, and n denotes additive noise. All of these variables
are complex-valued. The details of the sensing matrix P for general multi-static
radar data collection can be found in Sect. 13.3. Given this observation model, let
us first consider image formation of target scenes consisting of a sparse set of point
reflectors. This is similar in nature to a special case of the sparse representation
problem considered in Sect. 13.2, where the signal representation dictionary D is
taken to be an identity matrix.1 In this case, we can formulate the SAR reconstruction
problem as the following optimization problem:

ŝ = arg min
s

‖s‖1
s.t. ‖r − Ps‖2 ≤ σ, (13.13)

where σ represents a parameter for noise allowance, ‖s‖1 = ∑
i

√
(Rsi )2 + (
si )2

and ‖x‖2 =
√∑

i

(
(Rxi )2 + (
xi )2

)
, where si and xi are the i-th elements of s and

x, respectively.
As discussed in Sect. 13.2, such problems can also be expressed in Lagrangian

form. Doing that, and considering more general �p quasi-norms (0 < p ≤ 1), we
reach an alternate formulation:

ŝ = arg min
s
‖r − Ps‖22 + λ‖s‖p

p, (13.14)

1 Any desired spatial oversampling of the reflectivity field can be handled by appropriate modifi-
cation of P.
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where ‖s‖p
p = ∑

i

[
(Rsi )

2 + (
si )
2
]p/2

. This is a special case of the feature-
enhanced SAR imaging approach proposed in [2].

Next, let us consider more general signal representation dictionaries. In the
complex-valued SAR imaging problem, what admits sparse representation is the
magnitudes of the reflectivities, rather than the real and imaginary components.
Phases of the complex-valued reflectivities are usually highly random and spatially
uncorrelated. The scene should thus be encoded through the sparse representation of
the reflectivity magnitudes. Hence it makes sense to use the representation |s| = Dα,
where D denotes the representation dictionary and α denotes the representation coef-
ficients as in Sect. 13.2. Now, introducing the notation s = Ψ |s|, whereΨ is a diagonal
matrix containing the reflectivity phases,2 the sparsity-driven SAR imaging problem
becomes [26]:

α̂, Ψ̂ = arg min
α,Ψ
‖r − PΨ Dα‖22 + λ‖α‖p

p. (13.15)

Note that due to the complex-valued nature of SAR, coupled with the observation that
reflectivity magnitudes admit sparse representation, the optimization problem set up
in (13.15) has a more complicated structure than that encountered in common real-
valued sparse representation problems (cf. (13.5)). In particular, here one has to solve
not only for the sparse representation coefficients α but also for the reflectivity phases
in Ψ . Given the freedom in choosing the overcomplete dictionary D in (13.15), [26]
demonstrates the use of a number of dictionaries in radar imaging including wavelets,
combination of spikes and edges, as well as dictionaries of various geometric shapes
matched to the expected scene structure. Note that after finding α̂ and Ψ̂ , one can
compute the estimated complex-valued reflectivity field through ŝ = Ψ̂ Dα̂.

The formulation in (13.15) is based on representing the signal of interest in terms
of a dictionary and imposing sparsity on the dictionary coefficients. This is usually
called a synthesis model. In contrast, in an analysis model, sparsity is imposed on
some features of the signal of interest. In the context of SAR imaging, such an
analysis-based formulation was proposed in [2]:

ŝ = arg min
s
‖r − Ps‖22 + λ‖(L|s|)‖p

p, (13.16)

where p ≤ 1. Here, the operator L is used to compute some features of the reflectivity
magnitudes |s|. This allows imposing sparsity on such features. For example, [2] con-
siders the use of a discretized gradient operator for L, leading to a sparsity constraint
on the spatial derivatives of the reflectivities, and as a result indicating a preference for
piecewise smooth fields. Such piecewise smoothness constraints have a long history
in real-valued image restoration and reconstruction, under various names including
edge-preserving regularization and total variation restoration.

The nonlinearity involved in the operation L|s| makes the optimization problem
for radar imaging more challenging than commonly used linear sparse representation

2 In particular, Ψ is a diagonal matrix, the i-th diagonal element of which is e jϕi , with ϕi indicating
the unknown phase of the i-th scene element si .
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problems. Efficient algorithms matched to this problem structure have been devel-
oped [2, 3]. These algorithms are based on half-quadratic regularization [27], and can
be viewed as quasi-Newton methods with a specific Hessian update scheme. Another
interpretation is that the overall non-quadratic problem is turned into a series of itera-
tively reweighted quadratic problems, each of which is efficiently solved using conju-
gate gradients. These algorithms have initially been used on conventional mono-static
SAR sensing scenarios involving narrow angular apertures, and observations over
a contiguous band of frequencies. Existing experimental results of sparsity-driven
radar imaging have demonstrated improvements in resolvability of dominant scat-
terers, as well as in terms of the potential for suppressing artifacts such as speckle.
Furthermore, it has been shown that sparsity-driven radar imaging is capable of
accurate reconstruction of point-like scatterers from data with significantly reduced
spatial frequency coverage. Such improvements have partially been quantified in
terms of feature extraction accuracy and object classification performance [28].

The benefits provided by sparsity-driven imaging extend to non-conventional
sensing scenarios in which the sensing aperture or the data are sparse or limited in
some sense. Examples include scenarios involving wide-angular apertures, multi-
static active and passive sensing, data with frequency-band omissions, and circular
apertures. Sparsity-driven imaging based on �p-norms has been extended to and
applied in such scenarios [29–32]. When wide-angular apertures are considered,
idealized isotropic point scattering assumptions need to be questioned, because the
scattering response could exhibit angular dependence. Through multiple lines of
work, sparse representation ideas have been used for joint wide-angle radar imaging
and anisotropy characterization [30, 31, 33, 34]. Recently sparsity-driven imaging
has also been applied to multiple-input multiple-output (MIMO) radar [35].

Two potential practical issues in the context of sparsity-driven radar imaging are
worth mentioning. First, how do we choose the regularization parameter λ? While
this is not a completely solved problem yet, preliminary results (see, e.g., [36]) offer
some promise. Second, what if our sensing model P involves some uncertainties?
For SAR imaging one of the most important model uncertainties is due to errors in
the measurement of the time required for the transmitted signal to propagate from
the SAR platform to the field and back. Such errors appear as phase errors in the
SAR (spatial frequency domain) data. If uncompensated, such errors lead to various
artifacts, including blurring, in the reconstructed imagery. Techniques to fix this
problem are usually called autofocus methods. There exists some recent sparsity-
driven work [37], that aims to address this problem by adding such phase errors as
nuisance parameters to the optimization problem in (13.16), and performing joint
imaging and model error correction. Results in [37] suggest that sparsity can be a
valuable asset in the context of autofocusing as well.

Given all the prior work on �p-norm-based radar imaging, exploring the implica-
tions of existing compressed sensing theory on radar sensing design has recently been
an emerging topic of interest [38–44]. A stylized compressed sensing radar was pro-
posed in [38] in which the time-Doppler frequency plane was discretized into a grid
and a small number of targets with unknown range-velocity are estimated via sparse
recovery algorithms. The authors show that transmission of an Alltop sequence as the
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probing signal results in a sufficiently incoherent observation matrix P allowing for an
accurate reconstruction of the sparse target scene. The authors in [40] propose the use
of chirp pulses and pseudo-random sequences for compressed sensing with imaging
radars. A compressed sensing technique for SAR is also discussed in [39], where the
authors obtain measurements by random subsampling of a regular aspect-frequency
grid in the k-space. Compressed sensing for multi-static SAR with reduced number
of probes was first discussed in [45]. Mono-static compressed SAR sensing with a
significantly reduced number of transmitted waveforms was also presented in [46].
Additionally, the application of compressed sensing to MIMO radar was studied
with uniform linear array configurations for the transmit and receive antennas [47,
48] and for a network of randomly distributed antennas over a small area [49, 50].
Waveform design for distributed radar (a special case of which would be the MIMO
radar) based on compressed sensing considerations has been considered in [43].

In the experimental work we describe in Sect. 13.7, we use sparsity-enforcing
reconstruction for mono-static and multi-static SAR and investigate how different
compressed sensing/sampling configurations affect (a variant of) the coherence of
the SAR measurement operator as well as the implications of each sensing config-
uration choice on reconstruction quality. To provide the basis for that analysis, the
following two sections describe the sensing/sampling configurations we consider,
and the coherence-based measure we use.

13.5 Sampling Configurations for Compressed Sensing SAR

Based on (13.10), SAR data represent Fourier k-space measurements of the underly-
ing spatial reflectivity field. Different mono-static and multi-static SAR measurement
configurations produce different Fourier sampling patterns. These patterns reflect
different spectral and spatial trade-offs that must be made during task planning.
Compressed sensing theory argues that random Fourier measurements represent good
projections for compressive sampling of point-like signals [4]. This suggests a nat-
ural application to the sparse aperture SAR sensing problem and opens a question
of how different mono-static and multi-static SAR sensing configuration constraints
influence reconstruction quality for a fixed number of measurements. In the fol-
lowing subsections, we describe various reduced data collection configurations with
non-conventional SAR k-space sampling patterns.

13.5.1 Random Subsampling of the Conventional
Mono-Static Grid

Using a chirp pulse in mono-static sensing, each radar return from the scene lies on a
radial line at a particular angle in the spatial frequency domain [8]. With a linear flight
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path, the complete sampled data from a pre-specified diversity of angles (i.e., full-
aperture) lie on a polar grid in an annular region in the spatial frequency domain. A
simple way to achieve reduced data collection for mono-static SAR could be through
random subsampling of this regular SAR polar grid. Such subsampling reduces the
required on-board storage and data transmission to the fusion/processing center.
However, the number of transmitted probes before and after subsampling remains
the same with high probability. Random subsampling discards a random subset of
frequencies at each synthetic aperture point and thus, it requires the transmission of all
pulses used in the full-aperture case with high probability. Such random subsampling
of the conventional SAR polar grid is illustrated in Fig. 13.2a.

13.5.2 Interrupted Aperture Mono-Static Data Collection

Another approach to reduced data collection is to directly reduce the number of
transmitted probes with regular or random interrupts in the synthetic aperture. For
the interrupted aperture collection scenarios, we directly reduce the number of trans-
mitted probes without first collecting the data and then discarding a subset. We
consider several cases of regular and random observation sampling patterns within a
fixed aspect observation extentΔ�, coupled with regular or random frequency sam-
pling within a desired chirp-signal bandwidth B. Here, we do not constrain random
aspect/frequency samples to fall on the regular SAR polar grid points, corresponding
to the full aperture case described in the previous subsection. Figure 13.2b illustrates
the k-space sampling pattern when both aspect and frequency are sampled regularly,
which we denote by (RegCS(θ),RegCS( f )). Figure 13.2c illustrates a realization
of a k-space sampling pattern when aspect is sampled regularly, while frequency is
sampled randomly, which we denote by (RegCS(θ),RandCS( f )). Finally, Fig. 13.2d
illustrates a realization of a k-space sampling pattern when aspect is sampled ran-
domly, and then frequency is sampled randomly at each of these aspects, denoted by
(RandCS(θ),RandCS( f )).

13.5.3 Multistatic Data Collection

Multistatic SAR offers the possibility of different k-space sampling patterns with
different trade-offs in temporal frequency and spatial transmit/receiver location
diversity. In the mono-static case, the chirp signal bandwidth allowed for extended
coverage of the k-space in the range direction. However, in the multi-static case,
extended k-space coverage can also be achieved in theory using ultra-narrowband
signals, provided that we exploit the spatial diversity of the transmitter and receiver
locations. In this section, we consider circular multi-static SAR sensing based on
transmission of a continuous wave, ultra-narrowband signal. For general multi-static
SAR, the total number of measurements is calculated as M = Ntx Nr x N f , where
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Fig. 13.2 Mono-static SAR k-space sampling patterns for a fixed k-space extent ( f0 = 10GHz,
B = 600MHz, Δθ = 3.5 deg). Each pattern is achieved with M = 600 measurements. The
number of transmitted probes for patterns (b–c) is Ntx = 20. a Random subsampling of the
conventional, SAR polar grid with (40, 40) aspect-frequency points, (NqGridRandCS). b Regular
aspect-frequency sampling, (RegCS(θ), RegCS( f )). c Regular aspect, random frequency sampling,
(RegCS(θ ), RandCS( f )). d Random aspect, random frequency sampling, (RandCS(θ), RandCS( f ))

Ntx is the number of transmitters/transmitted probes, Nr x is the number of receivers,
and N f is the number of frequency samples. In the case of ultra-narrowband trans-
mission, we have N f = 1 and different sampling patterns are achieved by varying
transmitter and receiver angular locations. Figure 13.3a illustrates a k-space sampling
pattern when both transmitter and receiver angular locations are sampled regularly,
(RegCS(θt x ),RegCS(θr x )). Figure 13.3b illustrates a realization of a k-space sam-
pling pattern when transmitters are positioned regularly, but receivers are dispersed
randomly around the scene of interest, (RegCS(θt x ),RandCS(θr x )). Figure 13.3c
illustrates a realization of a k-space sampling when both transmitter and receiver



13 Sparsity and Compressed Sensing in Mono-Static and Multi-Static Radar Imaging 409

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

k
x

k y
(a)

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

k
x

k y

(b)

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

k
x

k y

(c)

−20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

k
x

k y
(d)

Fig. 13.3 Multi-static k-space sampling patterns for circular, ultra-narrowband SAR operator,
with N f = 1 and Ntx = 20 transmitters. For figures (a, b, c) the same set of Nr x =
30 receivers is used for each transmitted probe. a Regular transmitter-receiver aspect posi-
tioning, (RegCS(θt x ), RegCS(θr x )). b Regular transmitter, random receiver aspect position-
ing, (RegCS(θt x ), RandCS(θr x )). c Random transmitter, random receiver aspect positioning,
(RandCS(θt x ), RandCS(θr x )). d Random transmitter, random receiver aspect positioning when
a different set of Nr x = 30 receivers is used for each transmitted probe, (RandMulti)

locations are sampled randomly, (RandCS(θt x ),RandCS(θr x )). Finally, Fig. 13.3d
illustrates a scenario in which each randomly located transmitter is associated with
a different set of randomly located receivers, (RandMulti). This sampling pattern
requires a prohibitively large number of transmitters and receivers, and is considered
for theoretical comparison purposes only.
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13.6 A Quality Measure: The t%-Average Mutual Coherence

We are interested in a simple quantitative measure that can predict reconstruction
quality given a particular sensing configuration such as those above, even before
sensing takes place. Such a quality predictor would allow a sensor management
process to perform better task planning and resource utilization. From compressed
sensing we know that the mutual coherence of the measurement probes is related to
the reconstruction performance in sparse domains. With this motivation we examine
the relationship of a closely related sensing geometry parameter to the reconstruction
behavior of various mono-static and multi-static sensing geometries. In particular, in
this section, we define a simple quantitative measure, which we call the t%-average
mutual coherence, for a priori evaluation of sensing configurations, such as those
described in Sect. 13.5.

The mutual coherence of a set of signals, described in Sect. 13.2, was proposed as
a simple, but conservative measure of the quality of sparsity-enforcing reconstruc-
tion. The version of mutual coherence defined in Sect. 13.2 is based on the matrix Φ.
In Sect. 13.4, we have discussed a variety of sparsity-driven SAR imaging methods.
For the simplicity of exposition here, we will only consider image formation of tar-
get scenes consisting of a sparse set of point reflectors, i.e., sparsity will be directly
imposed on the reflectivity field. In this case, image reconstruction can be achieved
through the solution of (13.13) or (13.14). As discussed in Sect. 13.4, in this case we
can take Φ = P. Hence this is the matrix that will be involved in coherence computa-
tions in our study. The sparse reconstruction guarantees discussed in Sect. 13.2 were
developed for real-valued signals. In the case of complex Φ, the mutual coherence
of a sensing geometry can be similarly defined as:

μ(Φ) = max
i �= j

gi j , gi j = | < φi , φ j > |
‖φi‖2‖φ j‖2 , i �= j (13.17)

where φi is the i-th column of the matrix Φ, and the inner product is defined as
< φi , φ j >= φH

i φ j . The i-th column vector φi can be viewed as a range-aspect
“steering vector” of a SAR sensing geometry or the contribution of a scatterer at a
specific spatial location to the received phase history signal. The mutual coherence
measures the worst case correlation between responses of two distinct spatially dis-
tributed reflectors, and as such it is likely to be too conservatively connected to the
average reconstruction quality of images reconstructed using (13.13) or (13.14).

A less conservative measure connected to the sparsity-enforcing reconstruction
performance was proposed in [25] for compressed sensing projection optimization.
In particular, the t-average mutual coherence was defined as the average value of
the set {gi j | gi j > t}. Inspired by the t-average mutual coherence, we define and
propose to use the t%-average mutual coherence as a measure that has the potential
to be closely related to the average reconstruction performance of (13.13) or (13.14).
We define the t%-average mutual coherence, μt% , as follows. Let Et% be the set con-
taining the largest t percent column cross-correlations gi j . The t%-average mutual
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coherence is defined as:

μt%(Φ) =
∑

i �= j gi jIi j (t%)∑
i �= j Ii j (t%)

, Ii j (t%) =
{

1, gi j ∈ Et%

0, otherwise.

In other words, μt%(Φ) measures the average cross-correlation value in the set of
the t% most similar column pairs. One should pick and use a small value for the
parameter t% in order to accurately represent the tail of the column cross-correlation
distribution. This measure is more robust to outliers, which can unfairly dominate
the mutual coherence. A large value of μt%(Φ) indicates that there are many similar
pairs of columns of Φ that can potentially confuse the reconstruction algorithm.

13.7 Experimental Analysis

In this section we consider the problem of imaging random synthetic sparse scenes.
From such scenes, we generate simulated radar returns under various reduced data
scenarios within the mono-static and multi-static sensing configurations described
in Sect. 13.5. From such data, we perform sparsity-driven image reconstruction. For
each sensing configuration, we vary the number of transmitted probes and the number
of measurements. For each such case, we compute the t%-average mutual coherence,
and compute two metrics directly measuring image reconstruction quality. We then
analyze the behavior of the t%-average mutual coherence and the two reconstruc-
tion metrics as we vary the configuration and various parameters. Such an analysis
enables us to evaluate the power of t%-average mutual coherence as a predictor of
reconstruction quality, as well as compare various sensing configurations.

The results we present are obtained by averaging over 100 Monte Carlo runs. For
the regular aspect-frequency sampling of mono-static SAR, and the regular sampling
of transmitter-receiver aspects of multi-static ultra-narrowband SAR, we average
over different ground truth scene realizations. In cases involving random measure-
ment sampling, we average over different SAR operators and different ground scene
realizations. For each realization of Φ we measure the t%-average mutual coherence
μt%(Φ), for t% = 0.5%, and display its average over all Monte Carlo runs. To impose
the sparsity constraints, we use l1 norms. We solve the optimization problem (13.13)
using the software described in [18, 51] and display reconstruction performance
of different SAR sensing configurations by using two performance metrics directly
measuring image quality. In particular, we compute and use the relative mean square
error (RMSE), and the percentage of identified support, both of which we define
next. The RMSE is defined as: RMSE= E[‖ŝ− s0‖2/‖s0‖2], where s0 is the ground
truth signal, ŝ is its estimate from a reduced set of measurements, and E[·] stands for
an empirical average over different Monte Carlo runs. The percentage of identified
support measures the percentage of the correctly identified support of the T largest
components of the estimated signal, where T is the number of point reflectors in the
ground truth scene.
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Fig. 13.4 The magnitude image of a random ground truth scene realization

13.7.1 Simulation Results for Mono-Static CS SAR

First, we consider mono-static SAR imaging of a small ground patch of size
(Dx , Dy) = (10, 10)m, when observed over a narrow-angle aspect cone of Δθ =
3.5 deg. The transmitted waveforms are chirp signals with fo = 10GHz and
B = 600MHz. The nominal range resolution is ρx = c

2B = 0.25m and the nominal
cross-range resolution is ρy = λ

4 sin(Δθ/2) = 0.25m. Assuming that the pixel spac-
ing matches the nominal sensing resolution, we seek to reconstruct a 40 × 40 pixel
reflectivity image. The ground truth scene consists of T randomly dispersed scatter-
ers each with unit magnitude and random phase uniformly distributed in [0, 2π ]. The
magnitude image of a random ground truth scene realization is shown in Fig. 13.4.
The nominal polar grid in the phase-history domain contains 40 × 40 elements. In
the image reconstruction algorithm, we use the noise allowance parameter value of
σ = 0.1, and set the maximum number of iterations to 1000 in all simulations.

Figure 13.5 shows the scatter plots of RMSE vs μt% when random scenes
with T = 140 scatters are sensed with M = 600 measurements using the
(RandCS(θ),RandCS( f )) configuration. In order to obtain variability in μt% over a
wide range of values, we vary the number of aspect angles (i.e. the number of trans-
mitted probes) such that Ntx ∈ {10, 20, 30, 40, 50, 60}. These scatter plots show
that, in general, μt% is indeed indicative of RMSE reconstruction quality. However,
comparing Fig. 13.5a–c, we see that a desired level of RMSE reconstruction quality
is better predicted with μ0.5% than the classical mutual coherence μ and μ0.1%. In
fact, RMSE vs μ and RMSE vs μ0.1% scatter plots are very close indicating that we
do not properly capture full tails of the column cross-correlation distributions with
μ0.1%. On the other hand, if we pick μt% too large the scatter plot behaves more like
a step function. This is indicated with Fig. 13.5d when μt% = μ5%. In the following,
we present results for μ0.5%.

In Fig. 13.6 we show the results for various mono-static sensing configurations
as a function of the number of transmitted probes Ntx when the total number of
measurements is fixed to M = 600 and the total number of randomly dispersed
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(a) (b) (c) (d)

Fig. 13.5 Scatter plots of RMSE vs μt% when scenes with T = 140 scatters are sensed with
M = 600 measurements through the (RandCS(θ),RandCS( f )) configuration. a Mutual coherence
μ. b μ0.1 %. c μ0.5 %. d μ5 %
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Fig. 13.6 Mono-static SAR performance versus the number of transmitted probes Ntx for various
sensing configurations. In this experiment, the number of measurements, M = 600, and the signal
support size, T = 140, are held fixed. a The t%-average mutual coherence, μ0.5 %. b RMSE. c
Percentage of correctly identified support of T largest estimated signal peaks
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scatterers in the scene is set to T = 140. In the mono-static case the number of
transmitted probes Ntx corresponds to the number of aspect angles. The associated
sampling patterns are illustrated in Fig. 13.2 when the number of transmitted probes
is Ntx = 20. The number of aspect angles Ntx and the number of chirp frequency
samples N f are varied such that M = Ntx N f = 600. As indicated earlier, regular
sampling means that the aspect step and/or the frequency step are fixed. In random
sampling, aspect angles and/or sampling frequencies are chosen independently and
uniformly at random within their allowable ranges. In the NqGridRandCS case,
the conventional SAR polar grid of (Ntx , N f ) = (40, 40) points is down-sampled
uniformly at random to 600 points.

In addition to the configurations discussed in Sect. 13.5, our plots also contain
results for a scenario we call pure random sampling (PureRand). For PureRand,
sampling frequencies in each direction are chosen uniformly at random. Such sam-
pling is essentially impractical for SAR, as it requires a prohibitively large number
of sampling probes and sensor locations. In other words, pure random sampling does
not impose any structure on the sensing geometry and thus, a point sampled in the
k-space may require a unique combination of the temporal frequency (pulse) and
synthetic aperture point (sensor location). However, we consider this case for com-
parison purposes as it provides essentially maximal randomness in sampling and is
expected to provide a lower bound on the coherence of the sensing operator.

The results in Fig. 13.6 indicate that the t%-average mutual coherence is the lowest
when k-space sampling points cover the available k-space extent most uniformly.
The most uniform coverage in the regular subsampling case with M = Ntx N f

measurements is achieved when the ratio of the number of aspect angles to the
number of frequency samples is approximately Ntx/N f = ΔKx/ΔKy , whereΔKx

(ΔKy) is the k-space extent in the cross-range (range) direction. On the other hand,
when randomness is present in the aspect and/or frequency sampling and the number
of transmitted probes increases, the uniformity of the k-space coverage approaches
the SAR polar grid subsampling cases. This is reflected in the lower values of theμt%
curve as the number of transmitted probes increases. We expect that increasing the
number of transmitted probes further after a certain critical value of μt% is reached
would have only a small impact on the reconstruction performance.

Comparing the μt% curves to the corresponding reconstruction performance met-
rics shown in Fig. 13.6b–c, we see that as the mutual coherence is lowered, the
reconstruction quality improves. Hence, μt% can serve as a reasonable predictor of
reconstruction quality. Regular aperture interrupts coupled with regular frequency
sampling, the (RegCS(θ),RegCS( f )) case, introduces signal aliasing manifested as
periodic and large column cross-correlation peaks that confuse the reconstruction
algorithm. This case has consistently the worst reconstruction performance. How-
ever, if regular aperture interrupts are coupled with random frequency sampling,
the (RegCS(θ),RandCS( f )) case, the reconstruction performance improves signifi-
cantly. Similar observations hold for random sampling of both aspect and frequency,
i.e., the (RandCS(θ),RandCS( f )) case. Overall, for the randomly interrupted aper-
ture collection scenarios, the correct signal support is identified with a negligible error
with Ntx = 20 probes, while the reconstruction error is negligible with Ntx = 30
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Fig. 13.7 Mono-static SAR performance versus the number of measurements M for various sensing
configurations. In this experiment, the number of transmitted probes Ntx = N f and the signal
support size T = 140 are held fixed. a The t%-average mutual coherence, μ0.5 %. b RMSE. c
Percentage of correctly identified support of T largest estimated signal peaks

probes instead of the nominal Ntx = 40 probes. These results suggest that sparsity-
driven imaging based on randomly interrupted aperture compressed sampling can
produce very high-quality reconstructions with significantly lower number of trans-
mitted probes than what would be used by conventional sensing and imaging. As
expected, the impractical random SAR polar grid subsampling (NqGridRandCS)
case offers high-quality reconstruction in terms of all reconstruction quality metrics.

In Fig. 13.7 we evaluate μt% and the reconstruction quality as a function of the
number of measurements. Signal sparsity is held fixed at T = 140. The number
of measurements M = Ntx N f is varied such that Ntx = N f < 40. We observe
that (RegCS(θ),RegCS( f )) leads to the highest μt% among all configurations, and
as we add randomization μt% decreases. As expected, increasing the number of
measurements lowers the t%-average mutual coherence. It also reduces signal support
estimate error and RMSE up to a point where a reconstruction with negligible error is
achieved. Hence one can say that a lower value of μt% implies better reconstruction
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quality in this experiment. The number of measurements needed for very accurate
reconstruction in the random sampling configurations appears to be around 600 in
this experiment, which is on the order of 4−5 times the number of point reflectors in
the scene, and which is significantly lower than the nominal number of measurements
(i.e., 1600) that would be used by conventional sensing in this scenario.

13.7.2 Simulation Results for Multi-Static CS SAR

The primary benefit provided by compressed sensing in the mono-static, single-
platform scenario is the reduction of data storage requirements and the reduction in
the number of transmitted probes. Overall data collection time cannot be reduced, as
the mono-static SAR platform covers the whole aspect range sequentially in time,
although the time spent at the aperture positions where radar data collection is not
performed could be used for a different task. On the other hand, multi-static SAR
has the potential to further reduce the data acquisition time by using a multitude
of spatially dispersed transmitters and receivers. Theoretically, there exist many
multi-static geometries with similar k-space coverage as in the mono-static case,
and thus, similar reconstruction results. As an extreme case, we consider a multi-
static configuration with transmitters and receivers placed around the scene in a full
circle [52]. In Fig. 13.3 we have illustrated several ultra-narrowband circular SAR
k-space sampling patterns achievable with various regular and random transmitter-
receiver angular location sampling strategies when N f = 1, Ntx = 20, and the total
number measurements is M = Ntx Nr x N f = 600.

In order to carry out simulations comparable to the mono-static case presented
earlier, the carrier wavelength is reduced, such that spatial resolutions of the two
configurations are approximately the same. In our simulations, each transmitter
sends out an ultra-narrow-band waveform with a frequency that satisfies ρx = ρy

= 0.25m = √2/4 · c/ fo. The scene size is the same as in the mono-static exper-
iments. Similar to the mono-static case, we use a scene with isotropic scatterers.
For a wide-angular observation scenario, a more realistic simulation could consider
angular anisotropy of the scatterers, however we do not consider that additional
complication here.

In Fig. 13.8, we show the t%-average mutual coherence as a function of the num-
ber of transmitted probes when the total number of measurements is held fixed
to M = 600 = Ntx Nr x N f . All sampling configurations result in k-space pat-
terns that deviate significantly from a regular k-space grid. This translates into sig-
nificantly reduced coherence of configurations with a few transmitted probes and
higher-reconstruction quality as compared to the mono-static case with the same
number of transmitted probes. While random sampling was the key to improved
performance in the mono-static case, the circular multi-static configuration is robust
to transmit/receive sensor aspects. Hence regular undersampling performs almost as
well as random undersampling in the multi-static sensing scenario considered here.
In the multi-static case with multiple transmitters and receivers, reduction in the
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Fig. 13.8 Multi-static ultra-narrowband SAR performance versus the number of transmitted probes
Ntx for various sensing configurations. In this experiment, the total number of measurements,
M = 600, and the signal support size, T = 140, are held fixed. a The t%-average mutual coherence,
μ0.5 %. b RMSE. c Percentage of correctly identified support of T largest estimated signal peaks

number of transmitted probes directly reduces the data acquisition time unlike the
single-platform mono-static case, we do not have to wait for the SAR platform to
fly through the eliminated aperture positions. Furthermore, when ultra-narrowband
pulses used by different transmitters are non-overlapping in frequency, all transmit-
ters can transmit simultaneously and the data can be acquired within the duration of
data collection through a single transmitter receiver pair.

In Fig. 13.9, we show the t%-average mutual coherence and the image quality
metrics as a function of the total number of measurements, when we set Ntx = Nr x

and use T = 140 point scatterers in the scene. We observe that different multi-static
sampling patterns achieve similar performance. Similar to the mono-static case, the
number of measurements required for very high-quality reconstructions is 4–5 times
the number of scatterers in the scene, which in this case is around 600. This implies
that sparsity-driven imaging can produce high-quality reconstructions with much
smaller number of measurements than that would be used by conventional sensing
and imaging.



418 I. Stojanović et al.
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Fig. 13.9 Multistatic ultra-narrowband SAR performance versus number of measurements M for
various sensing configurations. In this experiment, the number of transmitted probes Ntx = N f
and the signal support size T = 140 are held fixed. a The t%-average mutual coherence, μ0.5 %. b
RMSE. c Percentage of correctly identified support of T largest estimated signal peaks

13.8 Conclusion

In this chapter we have first provided a brief overview of a subset of the recent
work applying sparsity and compressed sensing ideas in radar imaging. We have
then focused on imaging from undersampled data, considering various mono-static
and multi-static SAR measurement configurations for compressed sensing. Different
regular and random data reduction approaches in each measurement configuration
lead to different sampling patterns in the spatial frequency domain. In this context,
we have presented the results of an experimental study analyzing the impact of
such sampling patterns on the quality of reconstructed images of sparse scenes.
We have shown that reconstructions of similar quality can be obtained using either
wide-band mono-static or ultra-narrow-band multi-static configurations, effectively
trading off frequency for geometric diversity. In the search for a quantitative measure
that can potentially predict the expected reconstruction quality for a given sensing
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configuration prior to SAR data collection, we have proposed the t%-average mutual
coherence. The t%-average mutual coherence is an easily computed parameter that
can be used in real time design and evaluation of sensing configurations for, e.g.,
task planning of multi-mode radars. In both mono-static and multi-static cases, we
have observed that configurations with sufficiently small values of the t%-average
mutual coherence exhibit high-quality reconstruction performance. In the multi-
static case, it is straightforward to obtain low coherence either by regular or random
transmit/receive aspect sampling, whereas in the mono-static case randomness in the
sampling pattern leads to lower coherence.

Our analysis shows that compressed sensing techniques when applied to SAR
allow for reliable sparsity-driven imaging with dramatically reduced number of
transmitted probes. In the mono-static case, compressed sensing and sparsity-driven
reconstruction can enable reduced on-board data storage and sensing with a reduced
number of transmitted probes relative to what is conventionally required. In the
multi-static case, compressed sensing and sparsity-driven reconstruction can enable
sensing not only with fewer transmitted probes, but also with reduced acquisition
time as compared to conventional sensing and imaging.
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Chapter 14
Structured Sparse Bayesian Modelling
for Audio Restoration

James Murphy and Simon Godsill

Abstract This chapter shows how sparse solutions can be obtained for a range
of problems in a Bayesian setting by using prior models on sparsity structure. As
an example, a model to remove impulse and background noise from audio signals
via their representation in time-frequency space using Gabor wavelets is presented.
A number of prior models for the sparse structure of the signal in this space are
introduced, including simple Bernoulli priors on each coefficient, Markov chains
linking neighbouring coefficients in time or frequency, and Markov random fields,
imposing two dimensional coherence on the coefficients. The effect of each of these
priors on the reconstruction of a corrupted audio signal is shown. Impulse removal
is also covered, with similar sparsity priors being applied to the location of impulse
noise in the audio signal. Inference is performed by sampling from the posterior
distribution of the model variables using a Gibbs sampler.

14.1 Introduction

In many applications it is useful to represent a signal in terms of some set of basis
functions. These might be useful to reveal certain structure in the signal or simply
make the signal easier to store or process. In audio processing, for example, it is
common to represent signals in terms of (local) frequency components. The trans-
formation of the signal to the desired basis can be thought of as a regression problem,
with the aim of determining the basis coefficients that best reconstruct the signal, for
some meaning of ‘best’. Some sets of basis functions will permit a range of different
decompositions and in this case the problem can be thought of as an underdetermined
regression problem with a range of possible solutions. The problem then becomes
one of choosing a reconstruction that has desirable properties, for example sparsity
of the decomposition, in which many basis coefficients are zero.
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Sparsity is a useful property for a number of reasons. Most simply, a sparse repre-
sentation of a signal is efficient in terms of storage, which might allow more efficient
signal processing. Some signals might be suspected of arising in a way that natu-
rally leads to a sparse representation, with non-sparsity caused by the presence of
corrupting noise. For example, the sound of a bell is likely to concentrate energy
in relatively few frequency bands and only be present at certain times. In this case,
if the sparse structure of the original source signal can be reconstructed, the signal
can be accurately reconstructed without the corrupting noise. In other cases, having
a signal represented by relatively few basis functions can be more revealing about
the structure or source of that signal than having a representation composed of a
wide spread of basis functions with small coefficients. In sparse representations,
most basis coefficients will be zero, but the pattern of non-zero coefficients might
be expected to have certain stucture, which, if incorporated into a model, can lead
to more useful sparse representations. For example, in a signal arising from some
occasional activity, non-zero coefficients might be expected to cluster together in
times of activity and be zero at other times. By concentrating non-zero basis coeffi-
cients in these areas, a representation might be found that made activity clear and did
not reconstruct random fluctuations in non-active periods. The idea of incorporating
models of sparsity structure into signal representations (structured sparsity) will be
the focus of this chapter.

The approach taken here focuses on explicitly modelling sparsity through the use
of indicator variables (∈ {0, 1}) that determine whether or not a particular regres-
sion component (basis function) is included in the signal representation. For the
audio restoration example considered the aim is to reconstruct the true signal from
a received input signal corrupted by noise. Signal reconstruction is tackled in prob-
abilistic terms using a Bayesian approach, which requires a probabilistic model of
the composition of the received signal in terms of the true signal to be reconstructed
and the corrupting noise. This model allows the posterior probability distributions
of the true signal and model parameters to be calculated and samples drawn from
them, given the received signal and prior distributions for the model variables. If the
model is a reasonably accurate reflection of reality this will yield a good estimate of
the true signal. Such model based approaches make explicit any assumptions made
about the structure of the signal and allow a prior structure to be imposed; whether
or not this is an advantage depends largely on whether a model of the signal can
sensibly be devised. In the methods described here, it is the prior structure on the
indicator variables corresponding to the basis functions that express expectations of
sparse structure in the signal representation.

This model-based approach is conceptually distinct from approaches that deter-
mine coefficients in such a way as to target sparsity directly, almost all of which
attempt to limit or penalize the L1 norm of the regression coefficients (i.e. the sum
of the coefficient magnitudes). These include the basis-pursuit idea of [5] and the
approximate greedy matching-pursuit algorithm of [15], which target a minimal L1
representation, and the LASSO method of [22] which constrains the L1 norm of the
solution to be no greater than a certain value. A common mechanism to achieve these
results is to treat the problem as one of optimization, introducing a regularization
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term consisting of a weighted penalty on the magnitude of the L1 norm into the
objective function. The minimal L1 reconstruction of a signal has been shown to
provide, with high probability, an exact reconstruction of a sparse signal under cer-
tain conditions; this is a key idea in compressed sensing, see, e.g. [3, 4, 6], amongst
others. In a Bayesian setting, the targeting of sparsity in this way can be reproduced
through the use of certain priors on regression coefficients, such as the Laplacian
prior. Here, the use of indicator variables allows a different Bayesian approach to
be taken, which, as Sect. 14.5 illustrates, allow further assumptions about the sparse
structure of the coefficients to be explicitly modelled in a straightforward way.

The illustrative example used here is that of audio noise reduction accounting for
two types of noise: background noise, which is assumed to be present at all times and
have a Gaussian distribution, and impulse noise, caused, for example, by pops and
clicks on a vinyl recording, and which is assumed to be present only occasionally
and have a non-Gaussian distribution, with a wide range of scales. To cope with
impulses, an indicator variable is associated with each audio sample and indicates
whether or not an impulse is present during that sample. The reconstruction of the
underlying signal uses an overcomplete set of Gabor basis functions, localized in the
time and frequency, as the basis of a regression; structured sparsity is imposed on the
coefficients of these through the use of a range of priors. Unlike previous techniques,
the method here, based on that in [17], allows impulse and background noise to be
removed jointly using a Bayesian, model-based approach.

In Sect. 14.2 the problem of audio restoration is introduced. Section 14.3 describes
Gabor signal decomposition. Section 14.4 describes the Bayesian signal model used
for restoration including many of the priors used in the model. In Sect. 14.5 priors
are described for the modelling of sparse structure within the regression coefficients.
Section 14.6 describes how the distributions of the variables in the model can be
sampled via Gibbs sampling and derives the necessary conditional distributions for
this. Section 14.7 presents some results from the model, particularly focussing on the
sparsity structures obtained with various priors.

14.2 Audio Restoration

Noise reduction is an important component of audio restoration that aims to improve
the perceived quality of corrupted audio signals. Early work in noise reduction can
be found in [2], but the area continues to be active, e.g. [7, 12]. An overview of
a range of methods can be found in [11] and the references therein, but alterna-
tive psychoacoustically-based approaches such as [13] are also popular. A technique
common to many methods is the representation of the signal as a weighted sum of
basis functions, with the aim being to reconstruct the true signal without reconstruct-
ing the noise. The basis functions used typically represent frequency components
of the signal, localized in time. Such localized functions of varying frequencies are
often called wavelets and a collection of such wavelets covering the full time span
of the signal forms a dictionary of basis functions into which the original signal can
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be decomposed. There are many possible choices of wavelet dictionaries with vari-
ous properties; the choice of one is likely to depend on the application in question.
Such decompositions are useful for a range of audio processing tasks including noise
reduction [21] and missing data interpolation [24]. In the audio application outlined
here Gabor wavelets are used, though the method used to enforce sparsity can be
used with any dictionary of basis functions.

Since the composition of audio signals varies with time, decomposition is per-
formed in blocks on short sub-samples of the whole signal and, in order to reduce
blocking effects, these sub-samples generally overlap. This lapped transform maps
the signal from the time domain into a time-frequency plane, where time blocks
overlap (see Fig. 14.2). This, combined with the fact that Gabor wavelets are not
orthogonal, leads to multiple possible decompositions of the signal into the basis
functions, a property known as overcompleteness. Which of these representations is
best depends on the application. Sparse representations are frequently preferred as
they give a parsimonious representation of the original signal, but even amongst these
trade-offs can be made. For example, a representation that minimizes the number
of non-zero coefficients might be best for compression, whilst one that has stronger
temporal structure between components is likely to be better for missing data recon-
struction. The method presented below allows a wide range of different modelling
assumptions to be applied to the sparsity structure and is thus very flexible. It is based
on the work of [17, 23, 24], in which the sparse reconstruction problem is formu-
lated in a Bayesian setting, with the presence or absence of a particular basis function
being treated as a model variable. The presence or absence of impulse noise in the
signal is treated similarly. This formulation allows the straightforward incorporation
of prior models of signal structure, meaning that expectations about likely sparsity
structure can be embedded within the prior.

Observations of the data, combined with the model and the prior, allow a posterior
density to be calculated for each of the model variables. In complicated Bayesian
models involving many variables, the high dimensionality of the posterior and the fact
that it can very often only be calculated up to proportionality means that its direct
evaluation is usually infeasible. Sampling methods such as Markov chain Monte
Carlo (MCMC) that allow samples to be drawn from the posterior distribution are
thus commonly applied. MCMC methods set up a Markov chain with the target
posterior distribution as its invariant distribution; by simulating from the chain for a
sufficient number of samples, the invariant distribution can be reached (under very
mild conditions) and a set of samples drawn from it that can be used to approximate
the required posterior density. More details about MCMC methods can be found in,
for example, [10].

The method described here allows the removal of both homogeneous background
noise and impulse noise from an audio signal. Background noise is a common fea-
ture of many audio tracks and can arise from a number of sources, such as thermal
noise in recording or processing equipment and is present, usually at the same scale,
throughout the track. Here, following the work of [23] and [24], Gabor signal decom-
position is used to remove homogeneous background noise. The idea behind this is
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that the Gabor coefficients can be found in such a way that they reconstruct the true
signal features without reconstructing the noise.

Impulse noise, on the other hand, takes the form of large but brief deviations
between the recorded value and the true signal. Such noise is often associated with
old vinyl recordings and is usually perceived as audible pops or clicks, often caused
by wear, dirt or scratches in vinyl tracks. Because it can derive from multiple sources
and, in the case of vinyl recordings, involves uncontrolled deviation of the playback
needle, impulse noise can vary across a very wide range of scales. Much previous
impulse removal work has been carried out using autoregressive methods, described
in [11], for example, though these can have a smoothing effect on the signal, acting
as a form of low-pass filter and causing the loss of some high-frequency detail. Here,
the work of [17] is followed in order to extend the noise removal method of [23] to
allow the simultaneous removal of impulse and background noise.

14.3 Gabor Signal Decomposition

Gabor signal decomposition is the process of taking a signal and representing it as
a weighted sum of Gabor synthesis atoms localized in time and frequency. A signal
of length L can be decomposed into M × N Gabor synthesis atoms, representing
M discrete frequency levels and N discrete time points, arranged as a grid. Such
a transform maps a signal x(t) onto an M × N time-frequency plane as shown in
Fig. 14.2.

The Gabor synthesis atoms are defined in general by

g̃m,n(t) = g
(

t − n

N
L
)

exp
(

2π i
m

M
t
)
, (14.1)

where m ∈ {0, 1, ...,M − 1}, n ∈ {0, 1, ..., N − 1} and t ∈ {0, 1, ..., L − 1}. The
function g is the Gabor window function, typically a smooth bell-shaped window
function with compact support that defines the temporal envelope of the correspond-
ing Gabor atoms. Note that the Gabor synthesis atom in Eq. (14.1) has both real and
imaginary components, allowing complex input signals to be reconstructed from
these atoms. The method shown here uses a Hann window, defined as

g(t) =
{

0.5+ 0.5 cos (2π t/λ) |t | ≤ λ/2
0 |t | > λ/2

(14.2)

where λ defines the window width, but many other choices are possible, including the
Bartlett, Blackman, (truncated) Gaussian, Hamming, Kaiser, and Tukey windows,
each centred at the parameter value. The width of the chosen window function must be
such that it provides sufficient overlap between synthesis atoms (i.e. somewhat larger
than L/N ). The choice of window functions is discussed further in [8]. Figure 14.1
shows some examples of Gabor synthesis atoms.
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Fig. 14.1 A selection of Gabor synthesis atoms (real and complex parts) generated using a Hann
window of width 256 (modified to generate basis functions forming a tight frame) with frequenciesω

Fig. 14.2 A lapped transform, formed of overlapping atoms gm,n arranged in a regular grid in time-
frequency space. These atoms form the basis for the representation of the signal in time-frequency
space
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Fig. 14.3 Signal decomposition using a set of synthesis atoms can be thought of as regression
aiming to reconstruct the signal x from the synthesis atoms. In matrix-vector form, each synthesis
atom forms one column of the G̃ matrix. In the Gabor case, each atom has compact support and is
a shifted version of the corresponding atom at the previous time location

Given a set of synthesis atoms g̃m,n(t), a given (complex) input signal x(t) can
be written as their weighted sum:

x(t) =
M−1∑

m=0

N−1∑

n=0

γm,ncm,n g̃m,n(t), (14.3)

where cm,n ∈ C is the weighting coefficient for each atom and γm,n ∈ {0, 1} are
indicator variables that determine whether a particular atom is present in the decom-
position. These are key to imposing sparse structure within the model and are dis-
cussed in detail in Sect. 14.5. Ignoring the γm,n coefficients, this representation can
be written in matrix-vector form as x = G̃c, where the input signal is represented as
a column vector x = [x(0) x(1) ... x(L − 1)]T , G̃ is the L × M N Gabor synthesis
matrix, consisting of the (m, n)th Gabor synthesis atom at each signal observation
time as its (m + nM)th column, and the coefficient vector c is formed by stacking
the individual coefficients cm,n in the appropriate order (see Fig. 14.3).

For decompositions in which the number of Gabor synthesis atoms is greater than
the number of observations (M N > L), the system x = G̃c is underdetermined
with respect to the coefficients c. This will be the case in almost all real applications
since redundancy in the Gabor dictionary is necessary in order to achieve good time-
frequency localization. This is a consequence of the Balian-Low theorem [1, 14],
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which states that there is no well-concentrated Gabor basis in the critically sampled
case where M N = L , discussed in more detail in [8] and [23]. The underdetermined
system x = G̃c can be solved via the Gabor transform, in which the coefficient of
each atom is found by taking the inner product of that atom with the signal. Because
atoms have compact support this can be performed efficiently using only the part of
the signal that corresponds to the atom’s region of support; [20] gives an algorithm
for the discrete Gabor transform. Though this has the property that it recovers the
coefficients that are minimal in an L2 sense (i.e. they have minimal sum-of-squares),
there is no guarantee of sparsity of coefficients. Indeed, this is unlikely in general as
the L2 norm will penalize the use of a few large coefficients as opposed to a larger
number of smaller ones.

14.3.1 Real Input Signals

If the input signal is entirely real, as is the case with the audio signals considered
here, the expansion on the right hand side of Eq. (14.3) must also be real. This can be
arranged by setting cm,n = c∗M−m,n and γM−m,n = γm,n for all m ∈ {1, 2, ...,M/2}
(this relies on the assumption that M is even and that g̃m,n = g̃∗M−m,n , which can
readily be shown from the definition of the Gabor synthesis atoms in Eq. (14.1)). In
this case the decomposition in Eq. (14.3) can be written as

x(t) =
M/2∑

m=0

N−1∑

n=0

γm,nαm(cm,n g̃m,n(t)+ c∗m,n g̃∗m,n(t))

=
M/2∑

m=0

N−1∑

n=0

γm,n
(�(αmcm,n)�(g̃m,n(t))− �(αmcm,n)�(g̃m,n(t))

)
, (14.4)

where αm is 1 for all m except for m = 0 and m = M/2, when it is 1/2. This allows
the decomposition to be reformulated in matrix-vector form using only real numbers
by redefining G̃ and c as

G̃ =

⎡

⎢⎢⎢⎢⎢⎣

�(g̃0,0(0)) �(g̃0,0(0)) . . . �(g̃ M
2 ,N−1(0)) �(g̃ M

2 ,N−1(0))

�(g̃0,0(1)) �(g̃0,0(1)) . . . �(g̃ M
2 ,N−1(1)) �(g̃ M

2 ,N−1(1))

...
...

. . .
...

...

�(g̃0,0(L − 1)) �(g̃0,0(L − 1)) . . . �(g̃ M
2 ,N−1(L − 1)) �(g̃ M

2 ,N−1(L − 1))

⎤

⎥⎥⎥⎥⎥⎦

(14.5)

c =
[
�(c′0,0)− �(c′0,0)�(c′1,0)− �(c′1,0). . .�(c′M

2 ,N−1
)− �(c′M

2 ,N−1
)

]T
(14.6)
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where c′m,n = αmcm,n . Given these definitions, G̃c will be the signal reconstruction in
Eq. (14.4) ignoring the γm,n indicators. The reconstruction including those indicators
(as in Eqs. (14.3) and (14.4)) will be denoted R.

For practical purposes in what follows, the c′m,n coefficients will be treated as a
two element vector of real numbers, representing the real and imaginary components
of c′m,n . This will be denoted ck ∈ R

2, with k ∈ {0, 1, ..., (M/2 + 1)N − 1} so that
ck = c′m+nM corresponds to c′m,n . In the complex signal case, ck will correspond to
cm,n in the same way.

14.4 Bayesian Signal Model

The model of audio signals used for background noise reduction is as follows: at
each sample time t = 0, ..., L − 1 the received signal yt is composed of the true
signal x(t) distorted by additive Gaussian noise vt of scale σvt , so that

yt = x(t)+ vt , (14.7)

with
vt ∼ N (0, σ 2

vt
) (14.8)

Homogenous background noise is modelled by having a constant noise scale across
all samples, so that σvt = σ throughout, where σ is a parameter of the model that can
be estimated. The noise model can also incorporate the presence of impulse noise
in the received signal by allowing the scale of the noise process to increase in the
presence of impulse noise. The noise scale is then given by

σ 2
vt
= (1+ itλt )σ

2. (14.9)

where it ∈ {0, 1} is an indicator variable determining whether impulse noise is
present at a particular sample time t and λt gives a scale for the impulse at that time
if it exists. Thus the noise variance is σ 2 when no impulse is present and (1+ λt )σ

2

when it is.
A simple choice for λt is to set it to be constant, say λ. However, since impulsive

noise can originate from a number of different physical sources, a single scale factor λ
might not lead to a noise distribution sufficiently heavy-tailed to capture all impulses.
Therefore the scale factor λt can be allowed to vary with time, giving an impulse
scale at each sample time which can be estimated.

Although in principle many prior structures p(λt ) are possible for λt , a convenient
one, as used in [12] in a different context, is a shifted inverse gamma model, the shape
of which is shown in Fig. 14.4. This is a truncated and shifted version of the inverse
gamma distribution and takes the following form:
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Fig. 14.4 Probability density functions for a number of priors used in the model with a selection
of parameter values

p(λt ) = β
αλ
λ (1+ λt )

−(αλ+1) exp(−βλ/(1+ λt ))

γ (αλ, βλ)
, λ ≥ 0,

∝ IG (1+ λt ;αλ, βλ) (14.10)

where IG (1+ λt ;αλ, βλ) is the inverse gamma pdf with parameters αλ and βλ,
evaluated at 1 + λt and γ (αλ, βλ) is the lower incomplete gamma function defined
as

γ (αλ, βλ) =
∫ β

0
tα−1e−t dt. (14.11)

The Gabor-based inference mechanism described in [23] for noise removal is
based on the model of homogenous background noise, but the introduction of impulse
noise at different scales for some samples invalidates this assumption. In [17] this is
dealt with by introducing an artificial latent process zt with the required homogenous
noise distribution such that

zt = x(t)+ wt . (14.12)

with wt ∼ N (0, σ 2). The original Gabor decomposition algorithm can then be used
as a sampling step to sample the xt variables corresponding to the true signal, condi-
tioned on the zt variables in Eq. (14.12) (rather than conditioning on the observations
as in [23]). The observed process yt is then given by
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Fig. 14.5 Logical structure of model variables with the artificial latent z process introduced along
with impulse indicators i and scale factors λ. This process is the true signal distorted by homogenous
Gaussian noise (whereas y observations may be subject to noise at multiple scales)

yt = zt + it ut , (14.13)

with
ut ∼ N (0, λtσ

2). (14.14)

This structure is shown in Fig. 14.5 and has the property that the underlying true
signal x(t) is conditionally independent of the observations y and impulse indicators
i , given the z process, so that

p(x | y, z, i, λ) ∝ p(x | z), (14.15)

where here un-subscripted variables have been used to indicate the full set of such
variables (e.g. i = {it | t ∈ 0, ..., L−1}). This means that samples from the posterior
distribution p(x | z) can be drawn in the same way as in [23] (given by the weighted
sum of synthesis atoms) but applying the model in [23] to the latent process z rather
than directly to the input samples y. In the modified algorithm a sampling iteration
consists of sampling both the z and x processes along with the other model variables
and parameters. In fact, as shown in [18] it is possible to derive distributions for
many of the model variables, including the x process without directly inferring the
z process (i.e. by marginalizing it out of the inference). This marginalized approach
can lead to faster convergence of the MCMC method used for sampling.

The Gabor synthesis coefficients ck ∈ R
2 can be expected to take a wide range

of values, with very large values being comparatively common. The prior chosen
for these variables is, therefore, a heavy-tailed Student t distribution, which can be
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realized as a scale mixture of normals with an inverse gamma mixing distribution,
so that

p(ck | σck , γk) = (1− γk)δ0(ck)+ γkN
(

ck; 0, σ 2
ck

I2

)
, (14.16)

where ε0 is a Dirac delta function centered at 0, which ensures that ck is set to 0
when γk is 0, I2 is the 2 × 2 identity matrix (for the case when ck ∈ R

2) and σ 2
ck

is
distributed according to the inverse gamma mixing distribution

p(σ 2
ck
| γk = 1) = IG(σ 2

ck
; κ, νk). (14.17)

Here κ is a shape parameter that determines the heaviness of the tails of the prior
distribution. νk is a scale parameter that is itself assigned a gamma prior (see Fig. 14.4)
so that

νk = f (k)ν, (14.18)

with
ν ∼ G(αν, βν), (14.19)

where f (k) is a fixed weighting function that can be used to express a prior belief
about the expected degree of smoothness in the reconstructed signal. The choice
of f (k) is discussed in more detail in [23], where the authors suggest using the
reciprocal of the frequency modulation number m corresponding to the coefficient k.

The effect of the heavy-tailed prior on the coefficients ck is to allow them to range
very widely compared to a Gaussian prior with constant scale and means that the prior
does not induce excessive smoothing across these coefficients. This is particularly
important when the coefficients are sparse because then the signal will be represented
by a relatively small number of coefficients and consequently it can be necessary for
these to take large values.

14.5 Structured Sparsity

Prior distributions for the indicator variables (for both impulses and Gabor coeffi-
cients) are important components of the model. It is through these priors that a pref-
erence for sparsity can be incorporated, since they can encode a belief that sparse
solutions are more likely than dense ones. Unlike methods that specifically seek a
minimal solution in some norm, Bayesian inference does not inherently favour any
particular solution unless that solution is more probable according to the modelling
and prior assumptions and in light of the observations. The overcompleteness of the
Gabor dictionary and the flexibility that this introduces means that without some
sort of regularization there is a strong risk of overfitting the Gabor coefficients to the
noisy signal; the modelling and prior assumptions are what prevent this.
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The priors on the sets of indicator variables γ = {γm,n | ∀m, n} and i = {it |
t = 0, ..., L − 1} can be used to encode a prior belief that solutions will be sparse in
terms of Gabor coefficients or impulses. However, in many cases further prior infor-
mation about the structure of the non-zero indicators is available and it is desirable to
incorporate this in the model via the indicator priors, leading to the idea of structured
sparsity.

Consider the impulse process represented by the i variables, indicating the pres-
ence or absence of an impulse at a particular sample time. It is likely that impulses
will be present in relatively few samples (i will be sparse) and this simple expectation
can be incorporated into the prior in a straightforward way, through a prior belief that
an indicator value of 0 (no impulse) is more likely than 1. A more sophisticated prior
model could incorporate the belief that impulses will be relatively rare but, when they
do occur, are likely to last for a number of samples, since the time taken to traverse
a damaged section of record surface is likely to be longer than a single sample. In
this case, the prior encodes a belief about the likely structure of the i process.

The simplest prior for i is to treat each it as a Bernoulli random variable with some
prior probability p of a sample being subject to an impulse. This alone is sufficient to
favour sparse solutions, since if p is small, a sparse solution is, all other things being
equal, more likely than a dense one. Under these assumptions, the prior probability p
indicates the proportion of samples that might be expected to be affected by impulse
noise. The prior on the full set of indicators i in this case is given by

p(i | φi ) =
L−1∏

t=0

p(it | φi ), (14.20)

where φi is the set of parameters for the prior on i . In the Bernoulli case this set
contains only the prior probability p ∈ [0, 1] of an indicator being 1, so that

p(it = 1) = p, (14.21)

p(it = 0) = 1− p. (14.22)

Here a link can be made to penalized likelihood estimation, a common alternative
method for finding sparse solutions. In such methods the sparse estimator is one
that maximizes a version of the (log) likelihood function penalized according to the
number of non-zero coefficients, with the strength of the penalty being determined
by a penalty coefficient λ, chosen by the user. For the impulse indicator variable this
can be expressed as

îPLE = arg max
i

log p(y | i)− λ‖i‖0. (14.23)

where ‖i‖0 is the number of non-zero elements of i .
The Bayesian posterior distribution of the indicator variables i given the obser-

vations is
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Fig. 14.6 Sample draws of length 500 from the Markov chain prior with p00 = 0.95, p11 = 0.5
for the left group of five draws and p00 = 0.9, p11 = 0.9 for the right group (black indicates a
value of 1)

log p(i | y) = log p(y|i)+ log p(i)+ C, (14.24)

where C is constant with respect to i . For the Bernoulli prior above, this becomes

log p(i | y) = log p(y|i)+ log

(
p

1− p

)
‖i‖0 + C ′, (14.25)

and thus the penalized likelihood estimate in Eq. (14.23) is equivalent to a maximum
a posteriori (MAP) estimate from the Bayesian model (that is, the estimate that
maximizes the posterior density) with the Bernoulli prior, where λ = log (p/1− p).
When p < 0.5 this is negative, resulting in a penalty term for additional non-zero
coefficients. This gives an intuitive way of interpreting the penalty coefficient λ in
the penalized likelihood estimator in terms of a Bayesian prior probability p that an
impulse is present in any given sample.

The Bayesian formulation also allows further complexity to be built into the prior
assumption in a simple and explicit way. In order to incorporate a belief that impulses,
when they do occur, are likely to last for several samples, the prior for the impulse
indicator can be modelled as a two-state Markov chain. The idea behind this is that
in the ‘no impulse’ state the next state of the indicator process is very likely to also
be ‘no impulse’, with only a small probability of a transition to the ‘impulse’ state.
However, in the ‘impulse’ state, the next state is reasonably likely to also be ‘impulse’,
with some probability of a transition back to ‘no impulse’. Figure 14.6 shows some
draws from such a Markov chain prior with different transition probabilities. In this
case,

p(i | φi ) = p(i0 | φi )

L−1∏

t=1

p(it | it−1, φi ), (14.26)

and the conditional distribution of a particular indicator it given the rest of the
indicator process is given by
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p(it | i−t , φi ) ∝ p(it+1 | it , φi )p(it | it−1, φi ), (14.27)

where p(it+1 | it , φi ) is determined by the transition probabilities of the Markov
chain (the notation i−t refers to the set of all i indicators, excluding that at sample
time t , i.e. i−t = i\it ). The transition probabilities can be parameters of the model or
can themselves be learnt. Two parameters are necessary to define the Markov chain
transition matrix, the probability of remaining in state 0, and that of remaining in
state 1 (the other entries in the transition matrix being calculable from these). By
treating these as the probabilities of independent Bernoulli variables, they can be
learnt from the data; further details are given in Sect. 14.6.

In general the inference methods given in Sect. 14.6 can use any conditional prior
p(it | i−t , φ) for the indicator variables. This is a very flexible class of possible
prior functions and means that very many different forms of prior knowledge can be
incorporated in this framework. Incorporating more structure in the prior can lead
to less sparse results, since structural priors impose additional restrictions on the
solution compared to simple Bernoulli priors. However, the ability to incorporate a
more realistic prior model of the process is likely to lead to better results in many
cases.

Similar prior structures can also be used for the Gabor coefficient indicators γ .
A simple Bernoulli prior giving a prior probability for each atom being zero will
lead to sparse solutions in time-frequency space though possibly with little structure
between atoms, especially if the prior on the probability of a non-zero coefficient is
small. This might be most suitable for compression, where minimizing the number
of non-zero coefficients is paramount.

As with the impulse process i , Markov chain priors can be imposed in time,
implying that frequency components have some tendency to remain consistent from
one sample block to the next. Such a prior structure might be appropriate for signals
expected to consist of slowly time-varying oscillations. In this case, a Markov chain
prior is applied to the indicators γm for each frequency scale m. As with the impulse
indicator prior, the transition probabilities can be estimated from the data as shown
in Sect. 14.6. Similarly, a Markov chain structure can be imposed in the frequency
direction, implying a prior expectation of local frequency clustering in each of the
N sample blocks.

Another easy to implement prior for the Gabor coefficients is a Markov random
field (MRF) prior. This can be used to impose two dimensional structure on the
coefficients and such priors will tend to favour signals in which activity occurs in
patches on the time-frequency plane. For the lattice of time-frequency indicator
variables the MRF is arranged so that each indicator is connected to its four nearest
neighbours corresponding to previous and subsequent times at the same frequency
level and immediately lower and higher frequencies in the same time period (for γm,n

these are γm,n−1, γm,n+1, γm−1,n and γm+1,n , respectively). Noting that (2γk − 1) is
1 if γk = 1 and −1 if γk = 0, the conditional prior for the indicators is
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Fig. 14.7 Draws from the Ising model prior on a 200×200 grid with different values of the J
parameter leading to structure at different scales. K = 0 for all these examples, since otherwise the
favoured value predominates

p(γk | γ−k, φγ ) ∝ exp

⎛

⎝J
∑

j∈N (k)

(2γk − 1)(2γ j − 1)+ K (2γk − 1)

⎞

⎠ , (14.28)

where N (k) is the neighbourhood of γk . With K = 0, this prior is the Ising model
and reflects the belief that two neighbouring indicators are more likely to be the
same than they are to be different. This model was originally proposed in the physics
literature as a model of ferromagnetism [19], but later (and then commonly) applied
in statistics [9]. The J parameter can be thought of as an ‘inverse temperature’,
which, at low values leads to disordered ‘random’-looking states and at high values
leads to more emphasis being placed on consistency between neighbours and hence
favours stronger patterns with clearer ‘patches’. The K parameter can be used to
favour patterns in which one value (0 or 1) is expected to be more likely for γk than
the other. Negative values of K act as a penalty on non-zero indicators and so help
to induce sparsity in the solutions. Some draws from this prior model with various
parameter values are shown in Fig. 14.7.

That the prior is only known to proportionality does not matter, since it will be
the ratio of this prior for γk = 1 and γk = 0 that is of interest. This can be calculated
as

p(γk = 0 | γ−k, φγ )

p(γk = 1 | γ−k, φγ )
= exp

⎛

⎝2J

⎛

⎝|N (k)| − 2
∑

i∈N (k)

γi

⎞

⎠− 2K

⎞

⎠, (14.29)

where |N (k)| is the size of the neighbourhood of γk (which will be 4, except at
the edges of the lattice). More complicated MRF models, for example with more or
different connectivity between lattice elements, can also be used.

Each of the priors proposed in this section has a conditionally Markovian structure
so that

p(γk | γ−k, φγ ) = p(γk | γN (k), φγ ). (14.30)

These models are easy to use and flexible, although, as with the impulse indicators,
the inference method can make use of any other conditional structure prior p(γk |
γ−k, φγ ).
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14.6 Inference

The joint posterior distribution of the Gabor reconstruction variables (c, σc, ν, γ and
φγ ), latent process variables (z), impulse process variables (i , φi and λ) and noise
scale parameter (σ) can be sampled using a Markov chain Monte Carlo sampling
procedure. In particular, a Gibbs sampler [9, 10] is used so that blocks of variables
can be sampled from their conditional distributions given all other model variables.
By iterating over all variables in the system, samples can be drawn from a Markov
chain having the posterior distribution of the variables given the observations as
its invariant distribution. As with all MCMC methods, convergence to the invariant
distribution from the initial values will take a number of steps (which is, in general,
difficult to determine), so an initial burn-in period during which samples are discarded
is necessary. The flexibility of Gibbs sampling means that these variables can be
sampled from the conditional distributions given below in any order.

In general, the conditional distributions given in this section are derived by noting
that the variable under consideration v is only conditionally dependent on a subset
of the other variables V ⊂ Ω , where Ω is the set of all variables in the model.
Conditioned on these, an application of Bayes’ rule leads to a formulation such as

p(v | Ω−v) = p(v | V ) ∝ p(V1 | v, V2)p(v | V2), (14.31)

where V = V1 ∪ V2. In this formulation, p(V1 | v, V2) can be thought of as a like-
lihood of V1 given v (under parameters V2) and p(v | V2) can be thought of as a
(conditional) prior on v (also under V2). In the noise reduction model, most cases
permit the use of priors on v that are conjugate with the corresponding ‘likelihood’,
meaning that the conditional posterior has the same form as the prior with parame-
ters that can be found in closed form. This is advantageous because the resulting
conditional distributions can be efficiently sampled.

14.6.1 Background Noise Reduction

The variables involved in estimating the Gabor reconstruction of the signal, σc, c, γ ,
ν, σ and φγ , can each be sampled as steps in a Gibbs sampler using the conditional
distributions given in this section.

Sampling σ 2
c : Conditioned on the other model variables, the distribution of σ 2

ck
is

given by

p(σ 2
ck
| c, σ−c, σ, ν, γ, i, z, λ, y, φ) ∝ p(ck | σck , γk)p(σck | νk)

= IG
(
γk + κ, γk

‖ck‖2
2
+ νk

)
(14.32)

This can be seen by considering the prior for ck from Eq. (14.16) and the prior for
σ 2

ck
from Eq. (14.17) and noting that if γk = 0, the ck prior is a delta function centred
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on the current value of ck . This means that when γk = 0, σ 2
ck

can be drawn from its
prior distribution, IG(κ, νk). If γk = 1 then the prior for σ 2

ck
is the conjugate prior

for the distribution p(ck | σck , γk = 1) = N (
ck; 0, σ 2

ck
I2

)
from Eq. (14.16) and the

resulting distribution is therefore also inverse gamma with the parameters shown in
Eq. (14.32), owing to the fact that ck consists of two elements.

Sampling ck and γk : The conditional distribution of the Gabor coefficients c is
a multivariate Gaussian, due to the assumption of Gaussian noise with variance σ 2

in the z process. For a single ck coefficient a sample can be drawn jointly with
the corresponding indicator variable γk . The joint conditional distribution can be
decomposed as

p(ck, γk | c−k, γ−k, z) = p(ck | γ, c−k, z)p(γk | γ−k, c−k, z), (14.33)

where here (and throughout this section) dependence of all terms on σ and σc has
been dropped from the notation for brevity. In the case when γk = 0, the first term
on the right hand side is simply a delta function at ck , owing to the prior on ck in
Eq. (14.16) and therefore

p(ck, γk = 0 | c−k, γ−k, z) = p(γk = 0 | γ−k, c−k, z). (14.34)

On the other hand, when γk = 1,

p(ck | γk = 1, γ−k, c−k, z) ∝ p(z | c, γk = 1, γ−k)p(ck | γk = 1)

∝ N
(

z; R, σ 2 IL

)
N

(
ck; 0, σ 2

ck
I2

)
, (14.35)

with the first term on the right coming from the fact that z is the reconstructed signal R
(given by the reconstruction in Eq. (14.3)) corrupted at every sample by independent
additive Gaussian noise with zero mean and variance σ 2, as described in Eq. (14.12).
Through algebraic manipulation of the expression for the density of a multivariate
Gaussian distribution, this first normal distribution can be expressed instead as a
bivariate Gaussian in terms of ck , which can similarly be combined with the second
Gaussian distribution to give a Gaussian distribution in terms of ck , giving

p(ck | γk = 1, γ−k, c−k, z) = N
(

ck;μk, σ
2Σk

)
(14.36)

with

Σk =
(

G̃T
k G̃k + σ 2

σ 2
ck

I2

)−1

, (14.37)

μk = Σk G̃T
k (z − R−k), (14.38)
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where R−k is the reconstruction of the true signal given in Eq. (14.3) with the kth
atom excluded. The proportionality in Eq. (14.35) can be replaced with an equality
in Eq. (14.36) because both sides in that equation are probability distributions with
respect to ck , so must be normalized. The expression for p(γk | γ−k, c−k, z) in
Eq. (14.33) cannot be directly evaluated, since the dependency between z and γk

depends on the value of ck , and so it is necessary to consider the joint distribution of
γk and ck , integrated over all ck , i.e.

p(γk | γ−k, c−k, z) =
∫

p(γk, ck | γ−k, c−k, z)dck

∝ p(γk | γ−k)

∫
p(z | c, γ )p(ck | γk)dck . (14.39)

The constant of proportionality here is p(z | γ−k, c−k) and, as this does not depend
on γk is the same for both its possible values. Therefore, it suffices to determine the
ratio τk between these terms when γk = 0 and γk = 1, i.e.

τk = p(γk = 1 | γ−k, c−k, z)

p(γk = 0 | γ−k, c−k, z)
, (14.40)

and use the fact that the numerator and denominator in Eq. (14.44) sum to 1 to give

p(γk = 0 | γ−k, c−k, z) = 1

1+ τk
, (14.41)

p(γk = 1 | γ−k, c−k, z) = τk

1+ τk
. (14.42)

The ratio τk is given by

τk = p(γk=1 | γ−k)
∫

p(z | c, γk=1, γ−k)p(ck | γk=1)dck

p(γk=0 | γ−k)
∫

p(z | c, γk=0, γ−k)p(ck | γk=0)dck
. (14.43)

The expressions inside the integrals are given in the same way as Eqs. (14.36) and
(14.34) above, but here attention must be paid to the normalizing constants of these
distributions since the numerator and denominator of this ratio are not probability
distributions for ck and so do not normalize to 1 with respect to ck . Further algebraic
manipulation of these probability distributions leads to the expression for τk

τk = p(γk = 1 | γ−k)

p(γk = 0 | γ−k)

σ 2

σ 2
ck

|Σk | 12 exp

(
μT

k Σ
−1
k μk

2σ 2

)
, (14.44)

which allows the γk and ck to be sampled by first sampling γk as a Bernoulli sample
with probabilities given by Eqs. (14.41) and (14.42) and then, if this sample for γk is
1, sampling ck from the Gaussian distribution in Eq. (14.36), but otherwise setting it
to zero. Note that these distributions apply to the case where the signal is constrained
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to be real valued and hence Σk ∈ R
2×2, μk, ck ∈ R

2, and G̃k ∈ R
L×2 (given by the

corresponding columns of the G̃ matrix in Eq. (14.5)).
It is also possible to sample from the complete joint conditional distribution for

all c at once. This is derived in Appendix A.2 of [23], although sampling from the
resulting multivariate Gaussian distribution can be computationally prohibitive in
the case of long time series.

Sampling ν: The parameter ν that controls the scale of the prior for the σk can be
updated by noting the conditional distribution of σ 2

k / f (k) given ν and the parameter
κ (which is taken to be a fixed model parameter) can be obtained from the distribution
of σ 2

ck
in Eq. (14.17) as

p

(
σ 2

k

f (k)
| κ, ν

)
= IG

(
σ 2

k

f (k)
; κ, ν

)
. (14.45)

Since the gamma distributed prior for ν in Eq. (14.19) is a conjugate prior for this
inverse gamma distribution with unknown scale parameter ν, the conditional distrib-
ution of ν given the other model variables can be expressed as a gamma distribution,
given by standard results. However, sampler convergence is improved for sparse
signals (where many γk are 0) if only σ 2

ck
where the corresponding γk are non-zero

are considered (since otherwise the scale of the ck prior conveys little informa-
tion from the data). This can be arranged in the Gibbs sampler by drawing a block
sample from the joint distribution of ν and the σ 2

ck
such that γk = 0 (written as

σ
(r)
ck = {σck : γk = r}, with r ∈ 0, 1), i.e.

p(ν, σ (0)k | σ (1)ck
, κ) = p(σ (0)ck

| ν, κ)p(ν | σ (1)ck
, κ), (14.46)

with p(ν | σ (1)ck , κ) being a gamma distribution due to prior conjugacy as described
above, so that

p(ν | σ (1)k , κ) = G
⎛

⎝κ|γ | + αν,
∑

k:γk=1

f (k)

σ 2
ck

+ βv
⎞

⎠, (14.47)

where |γ | is the number of non-zero γk . The joint distribution can be sampled by
drawing a sample of ν from the distribution in Eq. (14.47), followed by drawing the
σck ∈ σ (0)ck from their prior in Eq. (14.18), given this new value of ν.

Sampling σ 2: The conditional distribution of the noise variance σ 2 can be found
by observing that, conditional on the signal reconstruction given by the Gabor coeffi-
cients, the z process (with homogenous Gaussian noise of variance σ 2) can be treated
as a series of observations of a Gaussian distributed random variable with unknown
variance. In this situation, the prior on σ 2 can be chosen to be the inverse-Gamma
conjugate prior with distribution IG(α2 , β2 ). Considering the L samples in the z series,
the conditional distribution for σ 2 is
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p(σ 2|z, c, γ ) = IG
(
σ 2; L + α

2
,
‖z − R‖2 + β

2

)
. (14.48)

where R is the reconstruction of the true signal given in Eq. (14.3). Unless something
is known about the scale of the noise in advance, the parameters α and β should be
chosen to give a vague prior on σ 2 (see Fig. 14.4).

Sampling φγ : The parameters of the indicator prior φγ depend on the prior struc-
ture chosen for γ . In Sect. 14.5, three possible prior structures were discussed:
Bernoulli priors, Markov chain priors and Markov random field priors. The para-
meters for these priors are, respectively, the prior probability of a non-zero indicator
p; two transition probabilities for the Markov chain, p00 and p11; and the distribution
temperature, J and value preference K from Eq. (14.28). In each of these Markovian
cases, the distribution of the parameter(s) is given by

p(φγ | γ ) ∝ p(γ | φγ )p(φγ ) = p(φγ )
∏

k

p(γk | γN (k), φγ ). (14.49)

• Bernoulli: In the Bernoulli case, the neighbourhood of each γk is empty (N (k) =
∅) for all k and the ‘likelihood’ term inside the product is given simply by p|γ |(1−
p)L−|γ |, where |γ | is the number of non-zero elements of γ . The conjugate prior
for this Bernoulli likelihood is the beta distribution B(αγ , βγ ), which, for αγ =
βγ = 1, gives a uniform prior (see Fig. 14.4). Using this prior it is possible to

marginalize out the Bernoulli parameter p when calculating the ratio p(γk=1|γ−k )
p(γk=0|γ−k )

in the expression for τk in Eq. (14.44) (see [23], Appendix A.3). In this case, that
ratio is given by

p(γk = 1 | γ−k)

p(γk = 0 | γ−k)
= |γ−k | + αγ

K − |γ−k | − 1+ βγ , (14.50)

where |γ−k | is the number of non-zero indicators, excluding γk and K is the total
number of indicator variables in γ .
• Markov chain: For the Markov chain prior, the transition matrix for any particular

chain can be fully determined by the probability of remaining in state 0, p00, and
the probability of remaining in state 1, p11 (since p01 = 1 − p00 and similarly
for p10). For a given chain (e.g. linking indicators in the time direction at a partic-
ular frequency scale m), these can be estimated by treating them as independent
Bernoulli variables with beta prior distributions. The initial distribution of the
chain p(γm,0 | pm

00) is taken to be the chain’s stationary distribution. Then, for
example for pm

00,
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p(pm
00 | γm,·) ∝ p(γm,· | pm

00)p(p
m
00)

∝ p(pm
00)p(γm,0 | pm

00)
∏

t :γm,t−1=0

p(γm,t | γm,t−1, pm
00), (14.51)

where γm,· is the set of indicators for all time blocks at frequency scale m. Note that
since the transition probabilities from state 0 are being considered as independent
of those from state 1, only indicators whose predecessor is 0 need be considered.
A similar expression can be derived for pm

11.
Sampling can be performed using a Metropolis-within-Gibbs step. This is par-

ticularly convenient if a beta prior B(αpm
00
, βpm

00
) is applied to pm

00 and proposals
pm∗

00 are drawn from the full conditional distribution in Eq. (14.51) where the initial
state instead has a fixed, uniform distribution (i.e. p(γm,0 | pm

00) = p), leading to
a tractable proposal distribution defined as

q(pm∗
00 | pm(i)

00 ) = p(pm∗
00 )

∏

t :γm,t−1=0

p(γm,t | γm,t−1, pm∗
00 )

= B
(
|Am

00| + αpm∗
00
, |Am

01| + βpm∗
00

)
, (14.52)

where pm(i)
00 is the current value of pm

00, and Am
00 is the set of times of transitions

from 0 to 0, i.e.

Am
00 = {t | γm,t−1 = 0, γm,t = 0}, (14.53)

Am
01 = {t | γm,t−1 = 0, γm,t = 1}. (14.54)

Thus |Am
00| is the number of transitions from 0 to 0 and similarly |Am

01| is the number
of transitions from 0 to 1. The acceptance ratio for the Metropolis-Hastings step
is given by

paccept = min

(
p(pm∗

00 | γm,·)q(pm(i)
00 | pm∗

00 )

p(pm(i)
00 | γm,·)q(pm∗

00 | pm(i)
00 )

, 1

)

= min

(
p(γm,0 | pm∗

00 )

p(γm,0 | pm(i)
00 )

, 1

)
(14.55)

where the simplification here is due to the specific form of the proposal in
Eq. (14.52). Finally, the initial state is assumed to be distributed according to the
stationary distribution of the chain, which is given using the standard result from
the theory of Markov chains,

p(γm,0 | pm
00) =

1− γm,0 pm
00 − (1− γm,0)pm

11

2− pm
00 − pm

11
. (14.56)

This allows the parameters of each Markov chain to be sampled efficiently.
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• Markov random field: Estimation of the parameters J and K in Eq. (14.28) is
greatly complicated by the fact that the constant of proportionality in that equation
depends on their values and so cannot be ignored when sampling them. This means
that straightforward Metropolis-within-Gibbs sampling cannot be performed with-
out evaluating this proportionality constant for the current and proposed value,
which is difficult. In this work fixed value have been used for these parameters (as
in e.g. [9]), although some approximate Bayesian estimation methods for them are
available, for example [16].

14.6.2 Impulse Noise Removal

In addition the removal of background noise as in [23], the method presented in this
chapter allows the removal of impulse noise from a signal, following the method set
out in [17]. The variables corresponding to the impulse process, it , zt and λt , can be
sampled within the Gibbs sampler as a block from their joint conditional distribution

p(it , zt , λt | x, y, i−t , z−t , λ−t , σ
2, φi ) =

p(zt | it , λt , xt , yt , σ
2)p(λt | it , xt , yt , σ

2)p(it | i−t , xt , yt , σ
2, φi ), (14.57)

where x denotes the signal reconstruction from the Gabor synthesis atoms, with xt

denoting its value at the time of input sample t . A joint sample can be drawn by by
sampling it , λt and zt sequentially (in that order) from the distributions on the right
of Eq. (14.57).

The distribution from which to sample it is given by

p(it | i−t , xt , yt , σ
2, φi ) ∝ p(it | i−t , φi )p(yt | xt , it , σ

2), (14.58)

In the simple case where λt = λfixed for all t , the observation likelihood is given by

p(yt | xt , it , σ
2) = N

(
yt ; xt , (1+ itλfixed)σ

2
)
. (14.59)

As the impulse indicator can only take one of two values, the distribution in
Eq. (14.58) can be sampled directly by evaluating the expression for both it = 0
and it = 1 and normalizing to give the probabilities for a sample from a Bernoulli
distribution as with the Gabor component indicators γk in Eqs. (14.39) and (14.40).

For non-constant impulse noise scale, the likelihood is given by

p(yt | xt , it , σ
2) =

{N (
yt | xt , σ

2
)
, it = 0

p(yt | xt , it = 1, σ 2), it = 1.
(14.60)

Using the inverse gamma prior p(λt ) given in Eq. (14.10), it is possible to find
p(yt | xt , it = 1, σ 2) in closed form, as described in [12]:
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p(yt | xt , it = 1, σ 2) =
∫ ∞

0
p(yt | λt , xt , it = 1, σ 2)p(λt )dλt

= 1√
2πσ 2

γ (αp, βp)

γ (αλ, βλ)

β
αλ
λ

β
αp
p
, (14.61)

where

αp = αλ + 1/2 (14.62)

βp = βλ + (yt − xt )
2

2σ 2 . (14.63)

Again, it can be sampled by evaluating the the distribution in Eq. (14.58) for the cases
it = 0 and it = 1 and normalizing to get the probability for a Bernoulli sample.

With a sample drawn for it , λt can be drawn from the conditional distribution

p(λt | it , xt , yt , σ
2) ∝ p(yt | xt , λt , it , σ

2)p(λt )

= N
(

yt | xt , (1+ itλt )σ
2
)

p(λt )

∝
{

p(λt ), it = 0
IG (

1+ λt ;αp, βp
)
, it = 1.

(14.64)

For the inverse gamma prior p(λt ) given in Eq. (14.10), both distributions in the last
line of Eq. (14.64) are shifted inverse gamma distributions (see Fig. 14.4) and can be
sampled using a rejection sampling trick. First, a variable lt = 1+λt is defined. This
is then sampled from the inverse gamma distribution with the appropriate parameters.
If the sampled value is less than 1, it is rejected and the variable resampled, otherwise
it is accepted and 1 is subtracted from it to give a sample for λt . This can be shown
to result in a sample from the required distribution.

Finally, once it and λt have been sampled, zt can be sampled from the conditional
distribution

p(zt | it , λt , x, y) ∝ p(yt | zt , it )p(zt | xt )

= N (yt | zt , itλtσ
2)N (zt | xt , σ

2)

∝ N
(

zt | yt + itλt xt

1+ itλt
,

itλtσ
2

1+ itλt

)
. (14.65)

Note that if it = 0 then zt = yt . A scheme that avoids sampling of the z variables
can also be developed, as described in [18]. Since all the distributions of interest can
be sampled directly, the Gibbs sampling scheme here is computationally efficient.
The indicator variable prior parameters φi can be sampled in a similar way as those
for the γk indicators described above (with Bernoulli or Markov chain priors).
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Fig. 14.8 The Gabor transform of the clean audio sample, showing log of coefficient magnitudes
in time-frequency space (dark areas indicate high coefficient values)

14.7 Results

In this section the effects of the various priors are shown on the reconstruction of
the signal, paying particular attention to the structure of the Gabor coefficients in
each case. All results are shown for the same piece of audio data, an approximately
3s sample of music (from the song Kalimba by Mr. Scruff) sampled at 44.1 kHz,
corrupted with artificially generated noise, generated using the noise model described
in Sect. 14.4. This allows the reconstruction to be assessed against a clean ‘ground
truth’ signal. To start the algorithm, both the final and noisy signal reconstruction (xt

and zt , respectively) were initialized to the observed signal yt .
Figure 14.8 shows the Gabor transform of the clean signal. Note that in this

representation, every coefficient has a non-zero value, giving a completely dense
representation of the signal in time-frequency space. Figures 14.10, 14.11, 14.12,
14.13 and 14.14 show sparse reconstructions of the signal derived using the range of
priors described in Sect. 14.5. All other parameters and hyperparameters were kept
the same between runs. The figures show the mean reconstruction of the signal over
the MCMC samples drawn after the burn in period, alongside a single representative
draw of the γ indicator variables. The intensity of the shading indicates the logarithm
of the magnitude of the average signal reconstruction in terms of Gabor coefficients
over that period. The burn in period was taken to be 100 samples, and a further 100
samples were used for reconstruction; the convergence results shown in Fig. 14.9
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Fig. 14.9 Convergence of the log of a selection of variables with the iteration number for a typical
run of the sampler (here run using Ising prior)

Fig. 14.10 Sparse reconstruction of the signal using a Bernoulli prior on γ with fixed p(γk = 1)
= 0.01, showing the log mean reconstruction (left) and a single sample of the γ indicators (right)

indicate that this is a reasonable choice. Table 14.1 gives some statistics for each
reconstruction.

Figures 14.10, 14.11, 14.12, 14.13 and 14.14 illustrate the key properties of the
reconstructions derived using each of the priors. In Figs. 14.10 and 14.11, based on
Bernoulli priors applied to each individual indicator variable without reference to
their neighbours, the reconstruction is sparse (although less so in the case where
the Bernoulli parameter is estimated), but with fairly randomly distributed non-zero
coefficients in the reconstruction. The Markov chain priors used in the reconstructions
in Figs. 14.12 and 14.13 look very different, with each showing strong patterns in
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Fig. 14.11 Sparse reconstruction of the signal using a Bernoulli prior on γ with estimated prior
probability of non-zero indicators (with beta prior, parameters α = 1, β = 40, favouring low
probabilities), showing the log mean reconstruction (left) and a single sample of the γ indicators
(right)

Fig. 14.12 Sparse reconstruction of the signal using a Markov chain prior in time on γ , with tran-
sition probabilities estimated from data (with uniform prior), showing the log mean reconstruction
(left) and a single sample of the γ indicators (right)

Fig. 14.13 Sparse reconstruction of the signal using a Markov chain prior in frequency on γ , with
transition probabilities estimated from data (with uniform prior), showing the log mean reconstruc-
tion (left) and a single sample of the γ indicators (right)
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Fig. 14.14 Sparse reconstruction of the signal using an Ising model prior on γ , with J = 0.5 and
K = −0.1, encouraging sparse, spatially cohesive solutions, showing the log mean reconstruction
(left) and a single sample of the γ indicators (right)

Table 14.1 Statistics for the restorations produced by each prior type

Method SNR(dB) Non-zero γ L1 norm L2 norm

Gabor transform (true signal) – 100% 3,061 39.5
Gabor transform (noisy signal) – 100% 7,983 43.5
Bernoulli prior (fixed p) 15.3 4 % 1,765 60.7
Bernoulli prior (estimated p) 17.7 30 % 2,711 63.0
Markov chain (in time) 15.7 5 % 1,826 59.3
Markov chain (in frequency) 16.6 8 % 2,176 63.4
Ising prior 17.9 8 % 2,137 61.1

The signal to noise ratio (SNR) of the corrupted signal was 6.7 dB. The L1 and L2 norms quoted
here refer to the mean norms of the reconstruction over all non-burn in samples

the expected direction (horizontal with the prior applied to time and vertical with
it applied to frequency) and much less structure in the other direction. Finally, the
Ising prior used to generate the reconstruction in Fig. 14.14 gives a reconstruction in
which non-zero coefficients tend to cluster together, although without a directional
bias, and with relatively few non-zero elements outside those clusters. These results
are typical of the structures imposed by the respective priors and show how structure
embedded in the prior has a substantial effect on the final reconstruction and its
sparsity structure. Table 14.1 shows the expected relationship between the norms of
the calculated Gabor transform and the sparse reconstructions: the transform has a
smaller L2 norm but larger L1 norm that the sparse reconstructions. It also suggests
that reconstruction using a structured prior such as a Markov chain or Ising model,
can improve reconstruction performance as measured by the signal to noise ratio,
whilst keeping the proportion of non-zero coefficients used in the reconstruction low.
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Table 14.2 Signal to noise ratios of noisy and restored signals (in dB) before and after restoration
using different impulse models

Impulse model Impulse type Noisy SNR Final SNR

No impulse Fixed λ 6.97 12.32
No impulse Variable λ 6.96 9.65
No impulse Real 6.61 8.83
Fixed λ Fixed λ 6.97 13.83
Fixed λ Variable λ 6.96 13.36
Fixed λ = 15 Real 6.61 11.54
Fixed λ = 100 Real 6.61 12.79
Variable λ Fixed λ 6.97 13.36
Variable λ Variable λ 6.96 13.47
Variable λ Real 6.61 12.81

14.7.1 Impulse Removal

For signals containing impulses, their removal is crucial to good signal reconstrution.
This can be seen from the results in Table 14.2, in which the results of restoration
using different impulse models with a range of different types of impulse present are
compared. For this evaluation, the same clean audio signal was taken and again cor-
rupted with various types of additive noise at a signal to noise ratio (SNR) of around
7 dB. The tests shown used a selection of artificially generated and real impulse
noise. For the artifical impulses, homogenous Gaussian noise was first added to a
SNR of 15 dB followed by impulse noise with either a constant (‘Fixed λ’) or variable
(‘Variable λ’) impulse variance. The former used a scale factor of λ = 100, while the
latter had a scale factor with an inverse gamma distribution with parameters α = 1
and β = 20, giving roughly the same SNR. For the ‘Real’ impulse noise, a suitable
multiple of noise from the run-in track of an old vinyl recording was added to the
signal, high-pass filtered to remove low-frequency distortions.

For each impulse model the SNR shown is that of the restored signal to the
original signal, taken as the mean signal over the last 100 MCMC samples, after a
100 sample burn-in. Parameter and impulse estimates were generally observed to
converge within this time (see Fig. 14.9). When using the fixed variance algorithm
with variable variance impulses, the fixed impulse variance parameter λ was set to
the mean impulse variance. Figure 14.15 shows the impulse detection and removal
results for a small section of audio using the variable impulse size algorithm.

The results in Table 14.2 show that without an impulse model, the restoration
performs poorly in the presence of impulses. For variable size and real impulses the
variable impulse model performs well, with no need for tuning the value of λ, which
has a considerable impact on performance of the fixed size impulse model.
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Fig. 14.15 A short excerpt showing the removal of impulses from a track using the variable impulse
size algorithm. The top chart shows the noisy waveform (grey) superimposed on the clean signal
(heavy black). The second chart shows the reconstructed waveform superimposed on the clean
signal. The final chart shows the estimated posterior probability of an impulse being present at each
location. (Reproduced from [17])

14.8 Conclusion

This chapter has shown how the idea of structured sparsity can be used in a Bayesian
modelling context. The technique has been demonstrated with a number of different
prior structures and, as an example of its use, has been applied to the problem of
audio signal restoration. The effect on signal reconstruction of different prior models
for the sparse signal structure has been demonstrated in this setting and seen to make
a considerable difference to the results obtained.

Sparsity is often a useful property of a signal reconstruction, whether for compres-
sion or because the signal is thought to derive from some source that naturally leads
to a sparse representation. Particularly in this latter case, prior knowledge about the
expected structure of the sparsity pattern in the signal can aid in efficient representa-
tion of the signal and so it is desirable to incorporate this into any algorithm aiming
to find such a sparse representation. Bayesian modelling of the type described in this
chapter offers a principled way to do this and so can provide a powerful tool when
designing methods that incorporate sparsity.
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Chapter 15
Sparse Representations for Speech Recognition

Tara N. Sainath, Dimitri Kanevsky, David Nahamoo,
Bhuvana Ramabhadran and Stephen Wright

Abstract This chapter presents the methods that are currently exploited for sparse
optimization in speech. It also demonstrates how sparse representations can be con-
structed for classification and recognition tasks, and gives an overview of recent
results that were obtained with sparse representations.

15.1 Introduction

Sparse representation techniques for machine learning applications have become
increasing popular in recent years [1, 2]. Since it is not obvious how to represent
speech as a sparse signal, sparse representations have received attention only recently
from the speech community [3], where they were proposed originally as a way
to enforce exemplar-based representations. Exemplar-based approaches have also
found a place in modern speech recognition [4] as an alternative way of modeling
observed data. Recent advances in computing power and improvements in machine
learning algorithms have made such techniques successful on increasingly complex
speech tasks. The goal of exemplar-based modeling is to establish a generalization
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from the set of observed data such that accurate inference (classification, decision,
recognition) can be made about the data yet to be observed the “ unseen” data. This
approach selects a subset of exemplars from the training data to build a local model
for every test sample, in contrast with the standard approach, which uses all available
training data to build a model before the test sample is seen.

Exemplar-based methods, including k-nearest neighbors (kNN) [1], support vec-
tor machines (SVMs) and sparse representations (SRs) [3], utilize the details of
actual training examples when making a classification decision. Since the number
of training examples in speech tasks can be very large, such methods commonly use
a small number of training examples to characterize a test vector, that is, a sparse
representation. This approach stands in contrast to such standard regression methods
as ridge regression [5], nearest subspace [6], and nearest line [6] techniques, which
utilize information about all training examples when characterizing a test vector.

An SR classifier can be defined as follows. A dictionary H = [h1; h2 . . . ; hN ]
is constructed using individual examples of training data, where each hi ∈ Rem is
a feature vector belonging to a specific class. H is an over-complete dictionary, in
that the number of examples n is much greater than the dimension of each hi (that is,
m � N ). To reconstruct a signal y from H , SR requires that equation y ≈ Hβ, but
imposes a sparseness condition on β, meaning that it requires only small number of
examples from H to describe y. A classification decision can be made by looking at
the values of β coefficients for columns in H belonging to the same class.

The goal of this chapter is to explain how sparse optimization methods can be
exploited in speech, how sparse representation can be constructed for classification
and recognition tasks, and to give an overview of results obtained using sparse rep-
resentation.

15.1.1 Chapter Organization

The remainder of the chapter is organized as follows. The second section deals
with mathematical aspects of sparse optimization. We describe two SR methods:
approximate Bayesian compressive sensing (ABCS) [7] and convex hull extended
Baum-Welch (CHEBW) [8]. We discuss too their relation with the Extended Baum-
Welch (EBW) optimization framework [9].

The third section is concerned with a variety of different sparseness techniques
employing different types of regularization [2, 3]. Following [10] we explore what
type of sparseness regularization should be employed. Typically sparseness meth-
ods such as LASSO [11] and Bayesian compressive sensing (BCS) [12] use an l1
sparseness constraint. Other possibilities include the Elastic Net [13], which uses a
combination of an l1 and l2 (Gaussian prior) constraint, and ABCS [3], which uses
an l2

1 constraint, known as a Semi-Gaussian prior. We analyze the difference in the
spareness objectives for the above methods and we compare the performance of these
methods for phonetic classification in TIMIT.



15 Sparse Representations for Speech Recognition 457

In the fourth section, we explore the application of ABCS to phoneme classifi-
cation task in TIMIT. The benefit of this Bayesian approach is that it allows us to
build compressive sensing (CS) on top of other Bayesian classifiers, for example a
Gaussian mixture model (GMM). It was shown, following [3], that the CS technique
allows attaining an accuracy of 80.01 %, outperforming the GMM, kNN, and SVM
methods.

In the fifth section, we describe a novel exemplar-based technique for classi-
fication problems, in which for every new test sample the classification model is
re-estimated from a subset of relevant samples of the training data. We formulate
the exemplar-based classification paradigm as a SR problem and explore the use
of convex hull constraints to enforce both regularization and sparsity. Finally, we
utilize the EBW optimization technique to solve the SR problem, and apply our pro-
posed methodology for the TIMIT phonetic classification task, showing statistically
significant improvements over common classification methods.

In the sixth section, following [14], we explore the use of exemplar-based SR
to map test features into the linear span of training examples. Given these new
SR features, we train a Hidden Markov Model (HMM) and perform recognition.
On the TIMIT corpus, we show that applying the SR features on top of our best
discriminatively trained system yields a reduction in phonetic error rate (PER) from
19.9 % to 19.2 %. In fact, after applying model adaptation we reduce the PER further
to 19.0 %, which was the best result on TIMIT reported in 2011. Furthermore, on a
large vocabulary 50-h broadcast news task, we achieve a reduction in word error rate
(WER) of 0.3 %.

In the seventh section, following [15], we discuss using SRs to create a new
set of sparse representation phone identification features (Spi f ). We describe the
Spi f features for both small and large vocabulary tasks. On the TIMIT corpus [16],
we show that the use of SR in conjunction with our best context-dependent (CD)
HMM system allows for a 0.7 % absolute reduction in phonetic error rate (PER), to
23.8 %. Furthermore, on a 50-h Broadcast News task [17], we achieve a reduction
in word error rate (WER) of 0.9− 17.8 %, using the SR features on top of our best
discriminatively trained HMM system.

In the eighth section we describe how one can improve sparse exemplar modeling
for speech tasks via enhancing exemplar-based posteriors.

15.2 Sparse Optimization

Recent studies have shown that sparse signals can be recovered accurately using
fewer observations than the Nyquist/Shannon sampling principle would imply. The
emergent theory that brought this insight to light is known as compressive sensing
(CS) [22, 23]. Problems of reconstructing signals from compressive sensing data
can be represented in several equivalent ways. One such formulation is the following
optimization problem:
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min
β
‖ y − Hβ ‖2 subject to ‖ β ‖1≤ ε, (15.1)

where y is an m-dimensional vector, x is an N -dimensional vector, H is an m × N
matrix. The parameter ε controls the sparsity of the recovered solution. Provided H
satisfies certain properties, the signal β can be reconstructed even when the number
of observations m is much less than the dimension N of the ambient space in which
β resides. In fact, the required number of observations m is related more strongly to
the number of nonzeros in β.

This formulation can be generalized to handle other types of sparse and regularized
optimization. We can write

min
β

f (β) subject to φ(β) ≤ ε, (15.2)

where f and φ are typically convex functions mapping R
n to R. Typically, f is a

loss function or maximum likelihood function, while the regularization function φ
is typically nonsmooth, and chosen so as to induce the desired type of structure in
β. As noted above, the popular choice φ(β) = ‖β‖1 induces sparsity into β. An
alternative to (15.2) is the following weighted formulation:

min
β

f (β)+ λφ(β), (15.3)

for some parameter λ ≥ 0. It can be shown that (15.2) and (15.3) are equivalent:
Under certain assumptions on f and φ, the solution of (15.2) for some value of ε > 0
is identical to the solution of (15.3) for some value of λ ≥ 0, and vice versa.

We can generalize the formulations (15.2) and (15.3) further by considering non-
convex loss functions f and regularization functions φ, and adding an explicit con-
straint on the values of β. Nonconvex f arise in, for example, deep belief networks,
in which the outputs are highly nonconvex functions of the parameters in the net-
work. Nonconvex regularizers φ such as SCAP and MCP are sometimes used to
avoid biasing effects associated with the use of convex penalties. Explicit constraints
such as nonnegativity (β ≥ 0) and simplex (β ≥ 0 and

∑n
i=1 βi = 1) are common

in many settings.
Many algorithms have been proposed to solve (15.2) and (15.3), many of which

exploit the particular structure of f and φ in various applications. One general
approach that has been applied successfully in several settings is the prox-linear
approach in which f in (15.3) is replaced by a linear approximation and a prox-term
that discourages the new iterate βk+1 from being moved too far from the current
iterate βk . The subproblem to be solved at each iteration is:

βk+1 = arg min
β
∇ f (βk)T (β − βk)+ 1

2αk
‖β − βk‖22 + λφ(β), (15.4)
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where αk is a positive parameter that plays the role of a line-search parameter. If
the new iterate does not give satisfactory descent in the objective function of (15.3),
we can decrease αk and recompute a more conservative alternative value of βk+1,
repeating as necessary.

The approach based on (15.4) is potentially useful when (a) the gradient ∇ f (·)
can be computed at reasonable cost and (b) the subproblem (15.4) can be solved effi-
ciently. Both situations typically hold in compressed sensing, under the formulation
(15.3) with f (β) = ‖Hβ − y‖22 and φ(·) = ‖ · ‖1. In this situation, the solution of
(15.4) can be computed in O(n) operations.

In the remainder of this chapter, we consider two fundamental methods for sparse
optimization: an extended Baum-Welch (EBW) method (which can be expressed via a
line-search A-function (LSAF)) and an Approximate Bayesian Compressive Sensing
(ABCS) algorithm, which is also closely related to EBW. The LSAF derivation is
closely related to the prox-linear approach described above; in fact, the A-function
can be thought of as a generalization of the simple quadratic approximation to f that
is used in (15.4).

Both EBW and ABCS have been applied to speech classification and recognition
problems, as we discuss in subsequent sections.

15.2.1 An EBW Compressed Sensing Algorithm

The Extended Baum-Welch (EBW) technique was introduced initially for estimating
the discrete probability parameters of multinomial distribution functions of HMM
speech recognition problems under the Maximum Mutual Information discriminative
objective function [24]. Later, in [25], EBW was extended to estimating parameters of
Gaussian Mixture Models (GMMs) of HMMs under the MMI discriminative function
for speech recognition problems. In [9] the EBW technique was generalized to the
novel Line Search A-functions (LSAF) optimization technique. A simple geometric
proof was provided to show that LSAF recursions result in a growth transformation
(that is, the value of the original function increases for the new parameters values). In
[26] it was shown that a discrete version of EBW invented in more than 24 years ago
can be also represented using A-functions. This connection allowed a convergence
proof for a discrete EBW to be developed [26].

15.2.2 Line Search A-Functions

Let f (x) : U ⊂ R
n → R be a real valued differentiable function in an open subset

U . Let A f = A f (x, y) : Rn × R
n → R be twice differentiable in x ∈ U for each

y ∈ U . We define A f as an A-function for f if the following properties hold.
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1. A f (x, y) is a strictly convex or strictly concave function of x for any y ∈ U .
(Recall that twice differentiable function is strictly concave or convex over some
domain if its Hessian function is positive or negative definite in the domain,
respectively.)

2. Hyperplanes tangent to manifolds defined by z = gy(x) = A f (x, y) and z =
f (x) at any x = y ∈ U are parallel to each other, that is,

∇x A f (x, y)|x=y = ∇x f (x) (15.5)

It was shown in [9] that a general optimization technique can be constructed based
on A-function. We formulated a growth transformation such that the next step in
the parameter update that increases f (x) is obtained as a linear combination of
the current parameter values and the value x̃ that optimizes the A-function, for
which ∇x A f (x, y)|x=x̃ = 0. More precisely, we stated that A-function gives a set
of iterative update rules with the following “growth” property: let x0 be some point
in U and U � x̃0 �= x0 be a solution of ∇x A(x, x0)|x=x̃0 = 0. Defining

x1 = x(α) = α x̃0 + (1− α)x0, (15.6)

we have for sufficiently small |α| �= 0 that f (x(α)) > f (x0), where α > 0 if
A(x, x0) concave and α < 0 if A(x, x0) convex. The technique of generating x̃ in
this way and performing the line search is termed “Line Search A-Function” (LSAF).

15.2.3 Discrete EBW

Here we show that discrete EBW can be described using the LSAF framework.
Our descriptiong ins limited to the case of a single distribution, but the technique
generalizes readily to several distributions.

Let the simplex S be defined as

S := {β : β ∈ R
n, βi ≥ 0, i = 1, . . .n,

∑
βi = 1},

and suppose that f : Rn → R is a differentiable function on some subset X ⊂ S.
We wish to solve the following maximization problem for a function f (β):

max f (β) subject to β ∈ S. (15.7)

Let β ∈ X and define ak
i := ∂ f (βk )

∂βk
i
, i = 1, . . .n. For any D ∈ R and βk ∈ R

n such

that
∑n

j=1 ak
jβ

k
j + D �= 0, we define a recursion TD : Rn → R

n as follows:
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βk+1
i = TD(β

k) = ak
i β

k
i + Dβk

i∑n
j=1 ak

jβ
k
j + D

. (15.8)

It was shown in [27] that for sufficiently large D, we have f (βk+1) > f (βk), unless
βk+1 = βk .

An A-function A f for the function f in (15.7) that is differentiable in some
compact neighborhood U ⊂ X of a point β0 ∈ S is given as:

A f (β0, β) =
∑

(ci + β0i D) logβi , (15.9)

where ci = ci (β0) = β0i
∂ f (β)
∂βi
|β=β0 = β0i ai (β0) and D is any number such that

ai (β)+D > 0 for all i and any β ∈ U . (Existence of D is guaranteed by differentia-
bility of f in U and compactness of U .) To show that the function A f (β0, β) in (15.9)
is an A-function, one needs to check (15.5) as follows. Replace βn = 1 −∑

βi in
(15.7), (15.9), that is, consider the functions g(β ′) = f (β1, ..., βn−1, 1−∑n−1

1 βi ),
Ag(β0;β ′) = A f (β0, {β1, ..., βn−1}, 1 −∑n−1

1 β j ) where β ′ = {β1, ...βn−1}. We
have

∂Ag(β0, β
′)

∂βi
|βi=β0i = ai (β0)

∂ f (β)

∂βi
|βi=β0i + Dβ0i

∂ logβi

∂βi
|βi=β0i+

D(1−
n−1∑

1

β0i )
∂ log(1−∑n−1

1 βi )

∂βi
|β=β0 =

∂g(β ′)
∂β ′
|β ′i=β ′0i

.

It can be shown that adding a quadratic penalty CβTβ to the objective function f (β)
is equivalent to substituting the term D with D + 2C in the discrete EBW recursion
(15.8). Moreover, for sufficiently large C , the function f (β)+CβTβ is concave in a
simplex S. Therefore, it achieves its maximum on the boundary of the of the simplex
S. This fact implies that for sufficiently large D, the EBW recursion enforces a sparse
solution.

Discrete EBW methods can be applied to optimization of objective functions with
fractional norm constraints, as suggested in [28]. We have

max f ({βi }) subejct to ‖β‖q = 1 and βi ≥ 0, i = 1, 2, . . . , n, (15.10)

where ‖ β ‖q := (∑β
q
i )

1/q . Setting

γi = β1/q
i , g({γi }) = f ({βi }), (15.11)

transforms the problem (15.10) into a discrete EBW problem for which the recur-
sion (15.8) could be applied. In [26], this optimization method with fractional norm
constraints was applied to TIMIT classification tasks.
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15.2.4 An ABCS Compressed Sensing Algorithm

Following [29], we describe the approximate Bayesian CS (ABCS) method. The key
idea behind this algorithm is based on an approximate sparseness promoting prior
which is a sort of mixture of Gaussian and Laplace distributions. ABCS is a variant of
the algorithm in [30] and [31]. In what follows we gradually develop this underlying
concept and a few others which form the core of the new method.

15.2.4.1 Bayesian Estimation

The Bayesian estimation methodology provides a convenient representation for deal-
ing with complex observation models. In this work, however, we restrict ourselves
to the conventional linear model used in CS theory

yk = Hβ + nk (15.12)

where yk , H ∈ R
m×N , and nk denote the kth R

m-valued observation, a fixed sensing
matrix, and the observation noise of which the pdf p(nk) is known, respectively.
The sought-after random parameter (the signal) β is a R

N -valued vector for which
the prior pdf p(β) is given. Following this, the complete statistics of β conditioned
on the entire observation set consisting of k elements, Yk = [y1, . . . , yk] can be
sequentially computed via the Bayesian recursion

p(β | Yk) = p(yk | β)p(β | Yk−1)∫
p(yk | β)p(β | Yk−1)dβ

(15.13)

where the likelihood p(yk | β) = pnk (yk − Hβ). One can rarely obtain a closed-
form analytic expression of the posterior pdf (15.13), so approximation techniques
are often used. One well-known example in which (15.13) does admit a closed-form
solution is given by the following theorem, which plays a fundamental role in this
work. (This is a well known result in estimation theory which is revisited here for
completeness.)

Theorem 1 (Gaussian pdf Update). Assume that p(β | Yk−1) is a Gaussian pdf of
which the first two statistical moments are given by β̂k−1 ∈ R

n and Pk−1 ∈ R
n×n,

that is p(β | Yk−1) = N (β | β̂k−1, Pk−1). Assume also that the observation yk

satisfies the linear model (15.12) where nk is a R
m-valued zero-mean Gaussian

random variable nk ∼ N (0, R) that is statistically independent of β. Then the
Bayesian recursion (15.13) yields p(β | Yk) = N (β | β̂k, Pk) where

β̂k = β̂k−1 + Pk−1 H T
(

H Pk−1 H T + R
)−1 [

yk − H β̂k−1

]
(15.14a)
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Pk =
[

I − Pk−1 H T
(

H Pk−1 H T + R
)−1

H

]
Pk−1 (15.14b)

The initial values of the above quantities are set according to the Gaussian prior
p(β) = N (β | β̂0, P0).

The proof of this statement can be found in [29]. Note that the quantity Pk in Theo-
rem 1 is the estimation error covariance, i.e.,

Pk := E
[
(β − β̂k)(β − β̂k)

T | Yk

]

where β − β̂k is the estimation error of the unbiased estimator β̂k .

15.2.5 Sparseness-Promoting Semi-Gaussian Priors

Compressed sensing was embedded in the framework of Bayesian estimation by
utilizing sparseness promoting priors such as Laplace and Cauchy [32]. Here we
consider a different type of prior that facilitates the application of the closed-form
recursion of Theorem 1. The sparseness-promoting prior used here is termed “semi-
Gaussian” (SG) owing to its form

p(β) = c exp

(
−1

2

‖ β ‖21
σ 2

)
. (15.15)

The motivation for using a SG prior can be motivated by analyzing the charac-
teristics of the SG constraint ‖ β ‖21= (

∑
i |βi |)2 and the Laplacian constraint

‖ β ‖1= (
∑

i |βi |). We can denote the SG density function as proportional to
psemi−gauss ∝ exp(− ‖ β ‖21) and the Laplacian density function proportional
to plaplace ∝ exp(− ‖ β ‖1). When ‖ β ‖1< 1, it is straightforward to see that
psemi−gauss > plaplace. When ‖ β ‖1= 1, the density functions are the same, and
when ‖ β ‖1> 1 then psemi−gauss < plaplace. Therefore the semi-Gaussian density
is more concentrated than the Laplacian density in the convex area inside ‖ β ‖1< 1.
Given the sparseness constraint ‖ β ‖q , as the fractional norm q goes to 0, the
density becomes concentrated at the coordinate axes and the problem of solving for
β becomes a non-convex optimization problem where the reconstructed signal has
the least mean-squared-error (MSE). Intuitively, we expect the solution using the
semi-Gaussian prior to behave closer to the non-convex solution.

This observation is further illustrated in Fig. 15.1, in which the level maps are
shown for Laplace, semi-Gaussian, and Gaussian pdfs in the 2-dimensional case.
The embedding of the prior (15.15) within the Gaussian variant of the Bayesian
recursion in Theorem 1 is not straightforward. This follows from the fact that the
restrictions under which Theorem 1 is derived involve a purely Gaussian prior and a



464 T. N. Sainath et al.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Fig. 15.1 Laplace, semi-Gaussian, and Gaussian pdfs in R
2

likelihood pdf that is based on a deterministic sensing matrix H ,

p(yk | β) ∝ exp

(
−1

2
(yk − Hβ)T R−1(yk − Hβ)

)
. (15.16)

Theorem 1 provides an exact recursion for computing the Gaussian posterior based
exclusively on the factors composing the above likelihood: the observation yk , the
sensing matrix H and the observation noise covariance R. This fact has motivated
the following approach which allows enforcing an approximate semi-Gaussian prior
without changing the fundamental structure of the underlying update equations as
obtained in Theorem 1.

15.2.6 Approximate Semi-Gaussian Prior

We introduce a state-dependent matrix Ĥ ∈ R
1×N whose entries are Ĥ i = sign(β i ),

i = 1, 2, . . . , N (that is, Ĥ i = +1 and Ĥ i = −1 for β i > 0 and β i < 0, respec-
tively). The semi-Gaussian prior can be expressed based on (15.16) while replacing
H and R with Ĥ and σ , respectively, and assuming a fictitious observation y = 0,
that is

p(β) = p(y = 0 | β, Ĥ , σ ) ∝ exp

(
−1

2

(0− Ĥβ)2

σ 2

)
(15.17)

The only difficulty in using (15.14a) for enforcing the semi-Gaussian prior (15.17)
is the dependency of Ĥ on β. We recall that Theorem 1 relies on possibly varying
a deterministic H as opposed to the formulation in (15.17). This problem can be
alleviated by letting

Ĥ i = sign(β̂ i
k), i = 1, 2, . . . , N , (15.18)

that is, by substituting the conditional mean instead of the actual β. This modifi-
cation renders Ĥ a Yk-measurable quantity, as it depends on β̂k which is a func-
tion of the entire observation set. This fact clearly does not affect the expressions
in Theorem 1 as the derivations are conditioned on Yk (see [29]). Applying this



15 Sparse Representations for Speech Recognition 465

approximation facilitates the implementation of Theorem 1 based on the likelihood
(15.17). Hence, an additional processing stage is needed to apply the approximate
sparseness-promoting prior:

β̂k+1 =
[

I − Pk Ĥ T Ĥ

Ĥ Pk Ĥ T + σ 2

]
β̂k (15.19a)

Pk+1 =
[

I − Pk Ĥ T Ĥ

Ĥ Pk Ĥ T + σ 2

]
Pk . (15.19b)

This stage is implemented after the usual processing of the observations set Yk (see
(15.14)), where the initial covariance is taken as P0 →∞.

At this point, a natural question is raised concerning the validity of the approxi-
mation suggested above. The following theorem, proved in [29], bounds the discrep-
ancy between the exact posterior which uses the semi-Gaussian prior (15.15) and the
approximate posterior in terms of the estimation error covariance P̂k .

Theorem 2 Denote p̂(β | Yk) the Gaussian posterior pdf obtained by using the
approximate semi-Gaussian prior technique, and let p(β | Yk) be the posterior pdf
obtained by using the exact semi-Gaussian prior (15.15). Then

KL
(

p̂(β | Yk) ‖ p(β | Yk)
) = O

(
σ−2 max

{
Tr(P̂k),Tr(P̂k)

1/2
})
, (15.20)

where KL and Tr denote the Kullback-Leibler divergence and the matrix trace oper-
ator, respectively.

In practical applications for speech classification and recognition tasks, it was
observed that the classification and recognition accuracy is not affected if ones com-
putes a term Pk in (15.19b) only once, then fixes this term for all subsequent iterations.
This trick provides a significant speed up without significant degradation of accuracy.

15.2.7 ABCS Representations via LSAF

We recall the 
1-constrained problem (15.1), modified slightly by the use of a
weighted data-fitting term

min ‖ y − Hβ ‖2R subject to ‖ β ‖1≤ ε.

In many practical application it is useful to add an l2 regularization term to this
formulation, to yield

min ‖ y − Hβ ‖2R + ‖ β − β0 ‖2P0
subject to ‖ β ‖1≤ ε.
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Using ‖ y − Hβ ‖2R + ‖ β − β0 ‖2P0
=‖ β − β1 ‖2P1

we can represent this problem
as

min ‖ β − β1 ‖2P1
subject to ‖ β ‖1≤ ε,

where P1 is assumed to be positive-definite. We can now represent (15.1) by

min F(β) := ‖ β − β1 ‖2P1
+ ‖ β ‖i1 /σ 2, (15.21)

and define the A-function as:

A(β, β∗) =‖ β − β∗ ‖2P1
+{sign(β∗)β}i/σ 2, (15.22)

where i = 1 (Laplacian) or i = 2 (squared l1 norm). In [26] we show that A(β, β∗)
is A-function of F(β). According to the definition of the A-function, we consider
A(β, β∗) and F(β) in an open domain where they are both differentiable and con-
struct an update of parameters when the extremum of A(β, β∗) belongs to this
domain. Our open domain excludes the origin β = 0. If some coordinates of β
approach 0 we can remove them by reducing the dimension of the problem. Using
LSAF, we have the recursion:

βk = αβ̃k−1 + (1− α)βk−1.

The ABCS algorithm corresponds to a squared l1-norm. Analysis of various regular-
ization penalties for speech classification problems is given in Sect. 15.3. The ABCS
method gives a solution of (15.21) via the recursion:β̃k−1 = arg maxβ A(β, βk−1).
Numerical experiments show that for a suitable choice of α, the parameter βk con-
verges to a solution of (15.21) more rapidly than the one obtained through the ABCS
recursion. One can expect that LSAF with appropriate choices of α is more efficient
than the ABCS.

15.3 An Analysis of Sparseness and Regularization in
Exemplar-Based Methods for Speech Classification

Following [10] we describe and compare a variety of different sparseness tech-
niques, which employ different types of regularization, and that have been explored
for speech tasks [2, 3]. Firstly, we describe the main framework behind exemplar-
based classification. Then we give a brief description of the TIMIT corpus. Next we
discuss how sparseness can be useful in classification tasks. Finally, we compare the
performance of different sparseness methods for classification.
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15.3.1 Classification Based on Exemplars

The goal of classification is to use training data from k different classes to determine
the best class to assign to test vector y. First, let us consider taking all training
examples ni from class i and concatenate them into a matrix Hi as columns, in other
words Hi = [xi,1, xi,2, . . . , xi,ni ] ∈ R

m×ni , where x ∈ R
m represents a feature

vector from the training set of class i with dimension m. Given sufficient training
examples from class i , [6] shows that a test sample y from the same class can be
represented as a linear combination of the entries in Hi weighted by β, that is:

y = βi,1xi,1 + βi,2xi,2 + . . .+ βi,ni xi,ni (15.23)

However, since the class membership of y is unknown, we define a matrix H to
include training examples from all k classes in the training set, in other words the
columns of H are defined as H = [H1, H2, . . . , Hk] = [x1,1, x1,2, . . . , xk,nk ] ∈
R

m×N . Here N is the total number of all training examples from all classes. We can
then write test vector y as a linear combination of all training examples, in other
words y = Hβ. We can solve this linear system for β and use information about β to
make a classification decision. Specifically, large entries of β should correspond to
the entries in H with the same class as y. Thus, one proposed classification decision
approach [3] is to compute the l2 norm for all β entries within a specific class, and
choose the class with the largest l2 norm support.

15.3.2 Exemplar-Based Methods

Various types of exemplar-based classifiers can be cast in the framework of repre-
senting the test vector y as a linear combination of training examples H , subject to
a constraint on β. Below, we review a few popular techniques that are based on the
following optimization problem for various values of q and α

min
β
‖ y − Hβ ‖2 s.t. ‖ β ‖αq≤ ε (15.24)

1. Ridge regression (RR) methods [5] use information about all training examples
in H to make a classification decision about y, in contrast to a nearest-neighbor
(NN) approach to exemplar-based classification, which uses information about
just 1 training example. Specifically, the RR method looks to project y into
the linear space of all training examples and solves for the β which minimizes
(15.24) for q = 2, α = 2. The term ‖ β ‖22≤ ε is an l2 norm on β (i.e. a Gaussian
constraint) but does not enforce any sparseness.

2. Sparse representations: like RR methods, sparse representation (SR) techniques
(i.e., [3, 6], project y into the linear span of examples in H , but constrain β to
be sparse. Specifically, SR methods solve for β by minimizing (15.24), given
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various settings for α and q. For example, in a probabilistic setting q = 1, α = 1
leads to a Laplacian constraint, whereas q = 1, α = 2 leads to a Semi-Gaussian
constraint. The remainder of this section is focused on comparing the RR method
to various SR methods with different types of regularizations.

15.3.3 Description of TIMIT

We analyze the behavior of various exemplar-based methods on the TIMIT [16]
corpus. The corpus contains over 6,300 phonetically rich utterances divided into
three sets, namely the training, development, and core test set. For testing purposes,
the standard practice is to collapse the 48 trained labels into a smaller set of 39 labels.
All methods are tuned on the development set and all experiments are reported on
the core test set.

The complete experimental setup, as well as the features used for classification,
are similar to [3]. First, we represent each frame in our signal by a 40 dimensional
discriminatively trained Space Boosted Maximum Mutual Information (fBMMI)
feature. We split each phonetic segment into thirds, taking the average of these frame-
level features around 3rds, and splice them together to form a 120 dimensional vector.
This allows us to capture time dynamics into each segment. Then, at each segment,
segmental feature vectors to the left and right of this segment are joined together
and a Linear Discriminative Analysis (LDA) transform is applied to project 200
dimensional feature vector down to 40 dimensions.

Similar to [3], we find a neighborhood of closest points to y in the training set
using a kd-tree. These k neighbors become the entries of H . We explore classification
performance for different sizes of H . In what follows, we explore the following two
questions, using TIMIT to provide experimental results to support our framework.

• Why and when is sparseness important for exemplar-based methods?
• If sparseness is used, what type of regularization constraint should be utilized?

15.3.4 Why Sparse Representations?

We will motivate the difference between the RR and SR methods further with the
following example. Let us consider a 2× 7 matrix

H = [h1, h2, h3, h4, h5, h6, h7] =
[

0.2 0.1 0.4 0.3 −0.6 0.6 −0.6
0.2 0.3 0.35 0.3 0.1 0.3 0.4

]
,

where first three columns h1, h2, h3 are “training” utterances that belong to a class
C1 and last four columns are “training” utterances that belong C2. Assume also
that a vector y = [0.29; 0.29] is “test” data that belong to a class C1. thus will
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Fig. 15.2 Error for RR and
SR methods for varied H
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include the outlier points of C2. Solving (15.24) with q = 2, α = 2 (i.e., the RR
method) produces the vector β ≈ [0.12; 0.15; 0.21; 0.18;−0.05; 0.1220.08] and
the best class is C2. However using the SR method in (15.24) (for example, using
ABCS method with a SG constraint as explained in Sect. 15.2) produces a vector
β ≈ [0.00; 0.01; 0.77; 0.00; 0.00; 0.00; 0.03] with the support located at the third
entry in H . In this case, the C1 is identified as the correct class. Thus, by using a
subset of examples in H , the classification decision for SR and RR can be vastly
different, particularly in the case of outliers.

To analyze the behavior of the SR and RR methods in a practical speech example,
we explore phonetic classification on TIMIT as the size of H is varied from 1 to
10,000. A plot of the error rate for the two methods for varied H is shown Fig. 15.2.
For this figure, we again used the ABCS SR method. First notice that as the size
of H increases up to 1,000 the error rates of the RR and SR both decrease, show-
ing the benefit of including multiple training examples when making a classification
decision. Also notice that there is no difference in error between the RR and SR tech-
niques, suggesting that regularization does not provide any extra benefit. However,
as the size of H increases past 1,000 and there are more number of training examples
for each class, the SR method performs better than the RR method, demonstrating
the advantage of using sparseness to select only a few examples in H to explain y
rather than all examples in H .

15.3.5 What Type of Regularization?

Now that we have motivated the use of regularization, in this section we analyze
different forms of regularization. As illustrated by (15.24), with q = 1, a sparse
representation solution can be formulated by finding the β which minimizes the
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residual error ‖ y − Hβ ‖2, subject to a regularization ‖ β ‖q≤ ε on β. There are
four common types of regularizations on β.

1. If q = 2 and α = 2, then the regularization becomes ‖ β ‖2≤ ε. This constraint
can be modeled as a Gaussian prior. Common techniques which impose an
l2 constraint on β include Ridge Regression [5]. The effect of the l2 norm is to
spread values of entries in β equally. Therefore the optimization problem (15.24)
for q = 2 tries to find a balance between keeping the residual ‖ y − β ‖2 small
and trying to keep all the entries in the vector β to be non-zero.

2. If q = 1 and α = 1, then the regularization becomes ‖ β ‖1≤ ε. This constraint
can be modeled as a Laplacian prior. Common techniques which impose an l1
constraint on β include LASSO [11] and Bayesian Compressive Sensing (BCS)
[12]. The Lasso problem can be formulated as follows:

min
β
‖ y − Hβ ‖2 +λ ‖ β ‖1, (15.25)

as in (15.3), where λ controls the weight of the l1 norm. The Least Angle Regres-
sion (LARS) ([33]) solves LASSO through a forward stepwise regression, com-
puting point estimates of β at each step. The effect of the l2 norm is to spread
values of entries in β equally. Therefore the optimization problem (15.24) for
q = 2 tries to find a balance between keeping the residual ‖ y − β ‖2 small
while at the same time preventing all the entries in β from vanish. In contrast,
the norm l1 tries to enforce sparsity in β while keeping the residual ‖ y−Hβ ‖2
small.
Bayesian Compressive sensing [12] can be formulated in a fashion similar to
(15.25). BCS introduces a probabilistic framework to estimate the spareness
parameters required for signal recovery. This technique limits the effort required
to tune the sparseness constraint and also provides complete statistics for the
estimate of β.

3. Many techniques also impose a combination of an l1 and l2 constraint on β.
These methods include the popular Elastic Net [13]. The Elastic Net [13] method
imposes a mixture of an l1 and l2 constraints, i.e.,

min
β
‖ y − Hβ ‖2 +λ1 ‖ β ‖1 +λ2 ‖ β ‖22 . (15.26)

Here λ1 and λ2 are weights controlling the l1 and l2 constraint. In the elastic net
formulation the l1 term enforces the sparsity of solution, whereas the l2 penalty
ensures democracy among groups of correlated variables. The second term has
also a smoothing effect that stabilizes the obtained solution.

4. The previously described ABCS explores the use of a semi-Gaussian prior and
solves for β in a Bayesian framework. The ABCS essentially solves

min
β
‖ y − Hβ ‖2 +λ1(β − β0)

T P−1
0 (β − β0)+ λ2 ‖ β ‖21 . (15.27)
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Fig. 15.3 Plot of β for differ-
ent regularization constraints
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Visualization of Sparsity

We analyze the difference in β coefficients for different sparseness methods. For
a randomly selected classification frame y in TIMIT and an H of size 200, we
solve (15.24) for β. Figure 15.3 plots the sorted 200 β coefficients for four different
techniques employing different reguliarizations, namely Ridge Regression, Lasso,
Elastic Net and ABCS. The plot shows that the β coefficients for the RR method
are the least sparse, as we would expect. In addition, the LASSO technique has the
sparsest β values. The sparsity of the Elastic Net and ABCS techniques methods are
in between RR and LASSO, with ABCS being more sparse than Elastic Net due to
the Semi-Gaussian constraint in ABCS, which is more sparse than the l1 constraint
in the Elastic Net.

TIMIT Results

Table 15.1 shows the results comparing various sparseness methods on TIMIT for a
size of H = 200. As one can see from the table, the three methods which combine
a sparseness constraint with and l2 norm, namely ABCS, Elastic Net and CSP, all
achieve statistically the same accuracy. The two methods which use the l1 norm,
namely BCS and LASSO, have slightly lower accuracy, showing the decrease in
accuracy when a high degree of sparseness is enforced. Thus, it appears that using a
combination of a sparsity constraint on β, coupled with an l2 norm, does not force
unnecessary sparseness and offers the best performance.
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Table 15.1 Accuracies for
different sparseness methods

Method PER

LASSO 74.40
BCS 73.58
Elastic net 77.89
ABCS 77.80
CSP 77.55

15.4 ABCS for Classification

In this section we follow [3] and describe application of ABCS for Timit classification
tasks. We perform classification as described in Sect. 15.3.1 solving (15.23) forα = 2
and q = 1 via (15.14a), (15.14b), (15.19a), and (15.19b). We compute the l2 norm
for all β entries within a specific class and choose the class with the largest l2 norm
support. Pooling together all training data from all classes into H will make the
columns of H large (i.e., can be greater than 100,000 for TIMIT), and will make
solving for β intractable. Therefore, to reduce the size of N and make ABCS problem
more solvable, for each y, we find a neighborhood of closest points to y in the training
set using a kd-tree [35]. These k neighbors become the entries of H . k is chosen to
be in the large to ensure that β is sparse and all training examples are not chosen
from the same class.

Constants P0 and β0 must be chosen to initialize the ABCS algorithm. Recall that
β0 and the diagonal elements of P0 all correspond to a specific class. We choose
β0 to be 0 since we do not have a very confident estimate of β and we assume its
sparse around 0 anyways. We choose to initialize a diagonal P0 where the entries
corresponding to a particular class are proportional to the GMM posterior for that
class. The intuition behind this is that the larger the initial P0, the more weight is given
to examples in H belonging to this class in ABCS. Therefore, the GMM posterior
picks out the most likely supports, and ABCS provies an addition step by using the
actual training data to refine these supports.

15.4.1 Nonlinear Compressive Sensing

The traditional CS implementation represents y as a linear combination of samples
in H . Many pattern recognition algorithms, such as SVMs [36] have shown better
performance can be achieved by a nonlinear mapping of the feature set to a higher
dimensional space. After this mapping, a weight vectorw is found which projects all
dimensions within a particular feature vector to a single dimension where different
classes are linearly separable. We can think of this weight vector w as selecting
some linear combination of dimensions within a feature vector to make it linearly
separable. The goal of CS is to find a linear combination of actual features, not
dimensions within a feature vector. Therefore, we introduce nonlinearity into CS, by
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constructing H such that the entries of H themselves are nonlinear. For example,
one such nonlinearity is to square all the elements within H . That is if we define
Hlin = [x1,1, x1,2, . . . , xk,nk ], then H2 is defined as H2 = [x2

1,1, x2
1,2, . . . , x2

k,nk
]

and similarly H3 would take cubed products of each of the x entries. We could also
take products between different xi as Hinner = [x1,1x1,2, x1,1x1,3 . . . , xk,8xk,nk ]. We
then take a specific nonlinear Hnonlin and combine it with the linear Hlin to form a
new Htot = [Hlin, Hnonlin] and use ABCS to solve for β. In Sect. 5.1 , we discuss
the performance of the ABCS algorithm for different choices of nonlinear H .

15.4.2 Experiments

Classification experiments are conducted on TIMIT [16] acoustic phonetic corpus
as described in Sect. 15.3.3. First, we analyze the performance of the CS classifier
for different choices of linear and nonlinear H as described in Sect. 3.4. Next, we
compare the performance of CS with three other standard classifiers used on this
task, namely a Gaussian Mixture Model (GMM), Support Vector Machine (SVM)
[36] and k-nearest Neighbors (kNN) classifier [35]. The parameters of each classifier
were optimized for each feature set on the development set. Specifically, we found
that modeling each phone as a 16-component GMM was appropriate. The kernel
type and parameters within this kernel were optimized for the SVM. In addition,
the number of k closest neighbors for kNN was also learned. And finally, for CS
the size of Hlin was optimized to be 200 examples from the kd-tree. In addition to
compute Hnonlin , 100 columns were randomly chosen from Hlin to compute each
type of nonlinear H .

Performance for Different H

Table 15.2 shows the accuracy on the development set for different choices of H
using Mel-frequency cepstral coefficients (MFCC) features. Notice that the nonlin-
ear CS-Hlin H2 method offers improvements over the linear CS-Hlin method. Taking
Hlin H2 H3 offers addition improvements, though overtraining occurs when higher
order features past H3 are used. Furthermore, there is very little difference between
squaring individual entries of H (i.e. Hlin H2) or taking products between differ-

Table 15.2 Accuracy for
different H using MFCC
features

Method Dev-MFCC

CS-Hlin 76.64
CS-Hlin H2 76.84
CS-Hlin H2 Hinner 76.53
CS-Hlin H2 H3 76.89
CS-Hlin H2 H3 H4 76.86

http://dx.doi.org/10.1007/978-3-642-38398-4_5
http://dx.doi.org/10.1007/978-3-642-38398-4_3
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Table 15.3 Accuracy for
different classifiers on TIMIT
testcore set

Method MFCC fBMMI

GMM 74.19 78.31
kNN 73.69 79.58 (=)
SVM 76.20 (=) 78.38
CS-Hlin H2 H3 76.44 80.01

ent entries of H (i.e., Hlin Hinner ). While not shown here, similar trends were also
observed for fBMMI features. Since the CS-Hlin H2 H3 method offers the best per-
formance of the CS methods, we will report the results for this classifier in subsequent
sections.

Comparing Different Classifiers

Table 15.3 compares the performance of the CS classifier with the GMM, kNN and
SVM methods for both MFCC and fBMMI features. Classifiers which are not statis-
tically significant from the CS classifier, as confirmed by McNemar’s Test, are also
indicated by ‘=’. First, notice that when MFCC features are used, CS outpeforms
both then kNN and GMM methods, and offers similar performance to the SVM.
When discriminative features are used, the GMM technique is closely matched to
the SVM though CS is able provide further gains over these two methods. This is
one of the benefits of CS—a discriminative non-parametric classifier built on top of
the GMM.

Analysis of Results

To better understand the gains achieved by the CS classifier compared to the other
three techniques, Fig. 15.4 plots the relative difference in error rates within 6 broad
phonetic classes (BPCs) for CS compared to the three other methods. First, notice
that CS offers improvements over the GMM in all BPCs, again confirming its benefit
of a non-parametric discriminative classifier on top of the GMM. Secondly, while
the SVM technique offers improvements over the CS method in the vowel/semi-
vowel class, the CS method significantly outperforms the SVM in the weak fricative,
stop and closure classes. Finally, the CS method offers slight improvements over the
kNN method in the nasal, strong fricative and stop classes, while kNN offers slight
improvements in the vowel, weak fricative and closure classes. Thus, we can see that
with the exception of the GMM, the gains from CS do not come from it outperforming
the kNN and SVM techniques within all BPCs, but only within certain BPCs.
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Fig. 15.4 Relative difference
in error rates between CS and
other methods

15.5 A Convex Hull Approach to Sparse Representations

A typical SR formulation in (15.24) does not constrain β to be positive and normal-
ized, which can result in the projected training points hiβi ∈ Hβ being reflected
and scaled. While this can be desirable when data variability exists, allowing for too
much flexibility when data variability is minimized can reduce the discrimination
between classes. Driven by this intuition, below we present two examples where data
variability is minimized, and demonstrate how SRs manipulate the feature space, thus
leading to classification errors.

First, consider two clusters in a 2-dim space as shown in Fig. 15.5a with sample
points {a1, a2, . . . , a6}belonging to Class 1 and {b1, b2, . . . , b6}belonging to Class 2.
Assume that points ai and bi are concatenated into a matrix H = [h1, h2, . . . , h12] =
[a1, . . . , a6, b1, . . . b6], with a specific entry being denoted by hi ∈ H . In a typical
SR problem, given a new point y indicted in Fig. 15.5b, we project y into the linear
span of training examples in H by trying to solve:

arg min ‖ β ‖0 s.t. y = Hβ =
12∑

i=1

hiβi (15.28)

As shown in Fig. 15.5a, the best solution will be obtained by setting all βi = 0
except for β8 = −1, corresponding to the weight on point b2. At this point |β|0 takes
the lowest value of 1 and y = −b2, meaning it is assigned to Class 2. The SR method
misclassifies point y, as it is clearly in Class 1, because it puts no constraints on the
β values. Specifically, in this case, the issue arises from the possibility of β entries
taking negative values.

Second, consider two clusters in a 2-dimensional space as shown in Fig. 15.5b with
sample points belonging to Class 1 and 2. Again, we try to find the best representation
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Fig. 15.5 a Reflective issue with negative β, b Scaling issue with unnormalized β

for test point y by solving (15.28). The best solution will be obtained by setting all
βi = 0 except for β5 = 0.5. At this value, |β|0 will take the lowest possible value
of 1 and y = 0.5 × a5. This leads to a wrong classification decision as y clearly
is a point in Class 2. The misclassification is due to having no constraint on the β
elements. Specifically, in this case, the issue arises from total independence between
the β values and no normalization criteria as a way to enforce dependency between
the β elements. If we enforce β to be positive and normalized, then training points
hi ∈ H form a convex hull. Mathematically speaking, a convex hull of training
points H is defined by the set of all convex combinations of finite subsets of points
from H , in other words a set of points that satisfy the following:

∑n
i=1 hiβi . Here n

is any arbitrary number and the βi components are positive and sum to 1.
Since many classification techniques can be sensitive to outliers, we examine the

sensitivity of our convex hull SR method. Consider two clusters shown in Fig. 15.6
with sample points in Classes 1 and 2. Again, given point y, we try to find the
best representation for y by solving (15.28), where now we will use a convex hull
approach to solve, putting extra positivity and normalization constraints on β.

As shown in Fig. 15.6, if we project y onto the convex hulls of Class 1 and Class
2, the distance from y to the convex hull of Class 1 (indicated by r1) is less than
the distance from y to the convex hull of Class 2 (i.e. r2). This leads to a wrong
classification decision as y clearly is a point in Class 2. The misclassification is due
to the effect of outliers a1 and a4, which create an inappropriate convex hull for
Class 1.

However, all-data methods, such as GMMs, are much less susceptible to outliers,
as a model for a class is built by estimating the mean and variance of training examples
belonging to this class. Thus, if we include the the distance between the projection
of y onto the two convex hulls of Class 1 and Class 2, as well as the distance between
this projection and the means mi of Class 1 and 2 (distance indicated by q1 and q2)
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Fig. 15.6 Outliers effect
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respectively, then test point y is classified correctly. Thus combining purely exemplar-
based distances (ri ) with GMM-based distances (qi ), which are less susceptible to
outliers, provides a more robust measure.

15.5.1 Convex Hull Formulation

In our sparse representations convex hull (SR-CH) formulation, first we seek to
project test point y into the convex hull of H . After y is projected into the convex
hull of H , we compute how far this projection (which we call Hβ) is from the
Gaussian means1 of all classes in H . The full convex hull formulation, which tries
to find the optimal β to minimize both the exemplar and GMM-based distances [8].
Here Nclasses represents the number of unique classes in H , and ‖ Hβ − μt ‖22 is
the distance from Hβ to the mean μt of class t ,

arg min
β
‖ y− Hβ ‖22 +

Nclasses∑

t=1

‖ Hβ −μt ‖22 s.t.
∑

i

βi = 1 and βi ≥ 0

(15.29)
In our work, we associate these distance measures with probabilities. Specifically,

we assume that y satisfies a linear model as y = Hβ + ζ with observation noise
ζ ∼ N (0, R). This allows us to represent the distance between y and Hβ using the
term p(y|β)

p(y|β) ∝ exp(−1/2(y − Hβ)T R−1(y − Hβ)) (15.30)

1 Note that the Gaussian means we refer to in this work are built from the original training data, not
the projected Hβ features.
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which we will refer to as the exemplar-based term.
We also explore a probabilistic representation for the

∑Nclasses
t=1 ‖ Hβ − μt ‖22

term. Specifically, we define the GMM-based term pM (β), by seeing how well our
projection of y onto the convex hull of H , as represented by Hβ, is explained by
each of the Nclasses GMM models. We score Hβ against the GMM from each of
the classes and sum the scores (in log-space) from all classes. This is given more
formally as (log-space)

log pM (β) =
Nclasses∑

t=1

log p(Hβ|G M Mt ) (15.31)

where p(Hβ|G M Mt ) indicates the score from GMM t . Given the exemplar-based
term p(y|β) and GMM-based term pM (β), the total objective function we would
like to maximize is given in the log-space by

max
β

F(β) = {log p(y|β)+ log pM (β)} s.t.
∑

i

βi = 1 and βi ≥ 0

(15.32)
Equation (15.32) can be solved using a variety of optimization methods. We use

a technique widely employed in speech recognition, namely the Extended Baum-
Welch transformations (EBW) [24], to solve this problem. In [37], it is shown that
EBW optimization technique can be used to maximize objective functions which
are differentiable and satisfy constraints given in (15.32) (see also Sect. 15.2.3 and
the recursion (15.8)). In [8], we provide a closed-form solution for β i

k given the
exemplar-based term (15.30) and a GMM-based term (15.31).

The parameter D in (15.8) controls the growth of the objective function. We
explore setting D to a small value to ensure a large jump in the objective function.
However, for a specific choice of D if we see that the objective function value has
decreased when estimating βk , i.e. F(βk) < F(βk−1), or one of the βk

i components
is negative, then we double the value of D and use this to estimate a new value of βk

in (15.8). We continue to increase the value of D until we guarantee a growth in the
objective function, and all βi components are positive. This strategy of setting D is
similar to other applications in speech where the EBW transformations are used [38].
The process of iteratively estimating β continues until there is very little change in
the objective function value.

15.5.2 Convex Hull Classification Rule

Because we are trying to solve for β which maximizes the objective function (15.32),
it seems natural to also explore a classification rule which defines the best class as
that which maximizes this objective function. Using (15.32) with the exemplar-
based term (15.30) and the GMM-based term (15.31), the objective-function linked
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classification rule for the best class t∗ is given by

t∗ = max
t
{log p(y|δt (β))+ log p(Hδt (β)|G M Mt )} (15.33)

where δt (β) is a vector which is only non-zero for entries of β corresponding
to class t .

15.5.3 Experiments

We compare the performance of our SR-CH method to other standard classifiers used
on the TIMIT task, including the GMM, SVM, kNN and ABCS sparse representation
methods. For the GMM, we explored training it via a maximum likelihood objective
function, and a discriminative BMMI objective function [38]. The parameters of each
classifier were optimized for each feature set on the development set. We compare
SR-CH to this method. Note that for the ABCS classification rule, the best class is
defined as that which has the maximum l2 norm of β entries.

Algorithmic Behavior

As discussed in Sect. 15.5.1, for an appropriate choice of D, the objective function
of the SR-CH method is guaranteed to increase on each iteration. To observe this
behavior experimentally on TIMIT, we chose a random test phone segment y, and
solve y = Hβ using the SR-CH algorithm. Figure 15.7 plots the value of the objective
function at each iteration. Notice that the objective function increases rapidly until
about iteration 30 and then increases slower, experimentally confirming growth.

We also analyze the sparsity behavior for the SR-CH method. For a randomly
chosen test segment y, Fig. 15.7 plots the sparsity level (defined as the number of
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Table 15.4 Accuracy of
sparse representation methods

Method Accuracy

SR-CH (exemplar-only) 83.86
ABCS (exemplar-only) 78.16

non-zero β coefficients), for each iteration of the SR-CH algorithm. Notice that as the
number of iterations increases, the sparsity level continues to decrease and eventually
approaches 20. Our intuitive feeling is that the normalization and positive constraints
on β in the convex hull formulation allow for this sparse solution. Recall that all β
coefficients are positive and the sum of the β coefficients is small (i.e.,

∑
i βi = 1).

Given that the initial β values are chosen to be uniform, and the fact we seek to find
a β to maximize (15.32), then naturally only a few β elements will dominate and
most β values would evolve to be close to zero.

Comparison with ABCS

To explore the constraints on β in the CH framework, we compare SR-CH to ABCS,
an SR method which puts no positive and normalization constraints on β. To fairly
analyze the different β constraints in the SR-CH and ABCS methods, we compare
both methods only using the exemplar terms, since the GMM-based terms for the
two are different. Table 15.4 shows that SR-CH method offers improvements over
ABCS on the fBMMI feature set, experimentally demonstrating that constraining β
values to be positive and normalized, and not allowing data in H to be reflected and
shifted, allows for improved classification accuracy.

GMM-Based Term

In this section we analyze the behavior of SR-CH when using the exemplar-term only
versus including the additional model-based term given in (15.31). Table 15.5 shows
the classification accuracy on the development set with the fBMMI features. Notice
that including the additional Hβ GMM modeling term over the exemplar-based term
offers a slight improvement in classification accuracy, demonstrating that including
the GMM term allows for a slightly better classifier.

Table 15.5 SR-CH accuracy,
TIMIT development set

SR-CH GMM-based term Accuracy

Exemplar term only 83.86
Exemplar term+ Hβ GMM term 84.00
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Table 15.6 Classification
accuracy, TIMIT core test set

Method Accuracy Accuracy
fBMMI SA+fBMMI

SR-CH (Ex. + GMM) 82.87 85.14
ABCS (Ex. + GMM) 81.37 83.22

kNN 81.30 83.56
GMM—BMMI trained 80.82 82.84

SVM 80.79 82.62
GMM—ML trained 79.75 82.02

Comparison with Other Techniques

Table 15.6 compares the classification accuracy of the SR-CH method on the TIMIT
core test set to other common classification methods. Note that for ABCS, the best
numbers for this method, which include the exemplar and GMM-based terms, are
reported. Results are provided for the fBMMI and SA+fBMMI feature sets. Notice
that SR-CH outperforms the GMM, kNN and SVM classifiers. In addition, enforcing
β to be positive allows for improvements over ABCS. A McNemar’s Significance
Test indicates that the SR-CH result is statistically significant from other classifiers
with a 95 % confidence level. The classification accuracy of 82.87 % achieved in [8]
was in 2011 the best number on the TIMIT phone classification task reported when
discriminative features are used, beating the previous best single-classifier number
of 82.3 % reported in [39]. Finally, when using SA + fBMMI features, the SR-CH
method achieves an accuracy of over 85 %.

Accuracy Versus Size of Dictionary

One disadvantage of many exemplar-based methods is that as the number of training
exemplars used to make a classification decision increases, the accuracy deteriorates
significantly. For example, in the kNN method, this implies that the number of training
examples from each class used during voting increases. Similarly, for SR methods,
this is equivalent to the size of H growing. Parametric-based classification approaches
such as GMMs do not suffer from a degradation in performance for increased training
data size.

Figure 15.8 shows the classification error versus number of training-exemplars
(i.e. size of H ) for different classification methods. Note that the GMM method is
trained with all of the training data, and is just shown here as a reference. In addition,
since the feature vectors in H have dimension 120, and for our SR methods we
assume H is over-complete, we only report results on SR methods when the number
of examples in H is larger than 120.

First, observe that the error rates for the two purely exemplar-based methods,
namely kNN and ABCS with no model term, increase exponentially as the size of
H grows. However, the SR-CH exemplar-only methodology is much more robust
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Fig. 15.8 Classification error
vs. size of H
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with respect to increased size of H , demonstrating the value of the convex hull
regularization constraints. Including the extra GMM term into the SR-CH method
improves the accuracy slightly. However, the SR-CH method still performs poorly
compared to the ABCS technique which uses the GMM-based term. One explanation
for this behavior is that GMM term for ABCS is capturing the probability of the data
y given the GMM model, and thus the accuracy of the ABCS method eventually
approaches the GMM accuracy. However, in SR-CH we capture the probability of
Hβ given the GMM. This is one drawback of SR-CH compared to ABCS for large
H that we hope to address in the future.

15.6 Sparse Representation Features

In this section, we explore the use of a sparse representation exemplar-based tech-
nique [14] to create a new set of features while utilizing the benefits of HMMs to
efficiently compare scores across frames. This is in contrast to previous exemplar-
based methods which try to utilize the decision scores from the exemplar-based
classifiers themselves to generate probabilities ([1, 2]). In our SR approach, given
a test vector y and a set of exemplars hi from the training set, which we put into a
dictionary H = [h1; h2 . . . ; hn], we represent y as a linear combination of training
examples by solving y = Hβ subject to a spareness constraint on β. The feature
Hβ can be thought of as mapping test sample y back into the linear span of training
examples in H . We will show that the frame classification accuracy is higher for the
SR method2 compared to a GMM, showing that not only does the Hβ representa-
tion move test features closer to training, but also moves these features closer to the

2 Using SRs to compute accuracy is described in [14].
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correct class. Given these new set of Hβ features, we train up an HMM on these
features and perform recognition.

A speech signal is defined by a series of feature vectors, Y = {y1, y2 . . . yn},
for example Mel-Scale Frequency Cepstral Coefficients (MFCCs). For every test
sample yt ∈ Y , we choose an appropriate Ht and then solve yt = Htβ t to compute
a β t via ABCS. Then given this β t , a corresponding Htβ t vector is formed. Thus a
series of Hβ vectors is created at each frame as {H1β1, H2β2 . . . Hnβn}. The sparse
representation features are created for both training and test. An HMM is then trained
given this new set of features and recognition is performed in this new feature space.

15.6.1 Measure of Quality

We can measure how well y assigns itself to different classes in H by looking at the
residual error between y and the Hβ entries corresponding to a specific class [6].
Ideally, all nonzero entries of β should correspond to the entries in H with the same
class as y and the residual error will be smallest within this class. More specifically,
let us define a selector δi (β) ∈ R

N as a vector whose entries are non-zero except for
entries in β corresponding to class i . We then compute the residual error for class i
as ‖ y − Hδi (β) ‖2. The best class for y will be the class with the smallest residual
error. Mathematically, the best class i∗ is defined as

i∗ = min
i
‖ y − Hδi (β) ‖2 . (15.34)

15.6.2 Choices of Dictionary H

Success on the sparse representation features depends heavily on a good choice of
H . Pooling together all training data from all classes into H will make the columns
of H large (typically millions of frames), and will make solving for β intractable.
Therefore, in this section we discussion various methodologies to select H from a
large sample set. Recall that H is selected for each frame y, and then β is found
using ABCS, in order to create an Hβ feature for each frame.

• Seeding H from Nearest Neighbors: For each y, we find a neighborhood of closest
points to y in the training set. These k neighbors become the entries of H . We refer
the reader to [3] for a discussion on choosing the number of k neighbors for SRs. A
set of Hβ features is created for both training and test, but H is always seeded with
data from training data. To avoid overtraining of Hβ features on the training set,
we require that only when creating Hβ features on training, samples be selected
from training that are of a different speaker than the speaker corresponding to
frame y. While this kNN approach is computationally feasible on small-vocabulary
tasks, using a kNN for large vocabulary tasks can be computationally expensive.
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To address this, we discuss other choices for seeding H below, tailored to large
vocabulary applications.
• Using a Trigram Language Model: Ideally only a small subset of Gaussians are

typically evaluated at a given frame, and thus training data belonging to this small
subset can be used to seed H . To determine these Gaussians at each frame, we
decode the data using a trigram language model (LM), and find the best aligned
Gaussian at each frame. For each Gaussian, we compute the 4 other closest Gaus-
sians to this Gaussian. Here closeness is defined by finding Gaussian pairs which
have the smallest Euclidean distance between their means. After we find the top
five Gaussians at a specific frame, we seed H with the training data aligning to
these top five Gaussians. Since this still typically amounts to thousands of training
samples in H , we must sample this further. Our method for sampling is discussed
in Sect. 15.6.3. We also compare seeding H using the top 10 Gaussians rather
than top five.
• Using a Unigram Language Model: One problem with using a trigram LM is

that this decode is actually the baseline system we are trying to improve upon.
Therefore, seeding H with frames related to the top aligned Gaussian is essentially
projecting y back down to the same Gaussian which initially identified it. Thus
to increase variability between the Gaussians used to seed H and the best aligned
Gaussian from the trigram LM decode, we explore using a unigram LM to find
the best aligned Gaussian at each frame. Again, given the best aligned Gaussian,
the four closest Gaussians to this are found and data from these five Gaussians is
used to seed H .
• Using no Language Model Information: To further weaken the effect of the LM,

we explore seeding H using only acoustic information. Namely, at each frame we
find the top five scoring Gaussians. H is seeded with training data aligning to these
Gaussians.
• Enforcing Unique Phonemes: Another problem with seeding H by finding the

five closest Gaussians relative to the best aligned Gaussian is that all of these
Gaussians could come from the same phoneme (i.e. phoneme “AA"). Therefore,
we explore finding the five closest Gaussians relative to the best aligned such that
the phoneme identities of these Gaussians are unique (i.e. “AA", “AE", “AW",
etc.). H is then seeded by from frames aligning to these five Gaussians.
• Using Gaussian Means: The above approaches of seeding H use actual exam-

ples from the training set, which is computationally expensive. To address this,
we investigate seeding H from Gaussian means. Namely, at each frame we use
a trigram LM to find the best aligned Gaussian. Then we find the 499 closest
Gaussians to this top Gaussian, and use the means from these 500 Gaussians
to seed H .
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15.6.3 Choice of Sampling

As discussed above, if we seed H using all training data belonging to specific Gaus-
sians, this amounts to thousands of training examples in H . We explore two different
approaches to sampling a subset of this data for seeding H .

• Random Sampling: For each gausssian we want to select training data from, we
explore randomly sampling N training examples from the total set of training
frames that aligned to this Gaussian. This process is repeated for each of the
closest five Gaussians. We reduce the size of N as the “closeness” decreases. For
example, for the closest 5 Gaussians, the number of data points N chosen from
each Gaussian is 200, 100, 100, 50 and 50 respectively.
• Sampling Based on Cosine Similarity: While random sampling offers a relatively

quick approach to select a subset of training examples, it does not guarantee that
we select “good examples” from this Gaussian which actually are close to frame y.
Alternatively, we explore splitting training points aligning to a Gaussian as being
1σ , 2σ , etc. away from the mean of the Gaussian. Here σ is chosen to be the total
number of training points aligned to this Gaussian, divided by number of samples
N we want to sample from this Gaussian. Then within each σ set, we find the
training point which has the closest cosine similarity to the test point y. This is
repeated for all 1σ , 2σ , etc. values. Again the number of samples taken from each
Gaussian reduces as “closeness” decreases.

15.6.4 Experiments

The small vocabulary recognition experiments in this paper are conducted on the
TIMIT phonetic corpus [16]. Similar to [40], acoustic models are trained on the
training set, and results are reported on the core test set. The initial acoustic features
are 13-dimensional MFCC features. The large vocabulary experiments are conducted
on an English broadcast news transcription task [17]. The acoustic model is trained
on 50 h of data from the 1996 and 1997 English Broadcast News Speech Corpora.
Results are reported on 3 h of the EARS Dev-04f set. The initial acoustic features
are 19-dimensional PLP features.

Both small and large vocabulary experiments utilize the following recipe for
training acoustic models [40]. First, a set of CI HMMs are trained, either using
information from the phonetic transcription (TIMIT) or from flat-start (broadcast
news). The CI models are then used to bootstrap the training of a set of CD triphone
models. In this step, at each frame, a series of consecutive frames surrounding this
frame are joined together and a Linear Discriminative Analysis (LDA) transform is
applied to project the feature vector down to 40 dimensions. Next, vocal tract length
normalization (VTLN) and feature space Maximum Likelihood Linear Regression
(fMLLR) are used to map the features into a canonical speaker space. Then, a set of
discriminatively trained features and models are created using the boosted Maximum
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Mutual Information (BMMI) criterion. Finally, the set of models is adapted using
MLLR.

We create a set of Hβ features from a set of fBMMI features. We choose this
level as these features offer the highest frame accuracy relative to LDA, VTLN, or
fMLLR features, allowing us to further improve on the accuracy with with the Hβ
features. A set of Hβ features are created at each frame from the fBMMI features
for both training and test. A new ML HMM is trained up from these new features
and used for both training and test. Since Hβ features create a linear combination of
the discriminatively trained fBMMI features, we argue that some discrimination can
be lost. Therefore, we explore applying another fBMMI transformation to the Hβ
features before applying model space discriminative training and MLLR.

In what follows we present results using Hβ features on both small and large
vocabulary tasks.

15.6.5 Sparsity Analysis

We first analyze the β coefficients obtained by solving y = Hβ using ABCS [3]. For
two randomly selected frames y, Fig. 15.9 shows the β coefficients corresponding
to 200 entries in H for TIMIT and 500 entries for Broadcast News. Notice that for
both datasets, the β entries are quite sparse, illustrating that only a few samples in
H are used to characterize y. As [6] discusses, this sparsity can be thought of as
a form of discrimination, as certain examples are selected as “good” in H while
jointly assigning zero weights “bad” examples in H . We have seen advantages of the
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Table 15.7 Frame accuracy
on TIMIT testcore set

Classifier frame Accuracy

GMM 70.4
Sparse representations 71.7

SR approach for classification, even on top of discriminatively trained y features,
compared to a GMM [3]. We will also re-confirm this behavior in Sect. 15.6.6. The
extra benefit of SRs on top of discriminatively trained fBMMI features, coupled
with an exemplar-based nature of SRs, motivates us to further explore its behavior
for recognition tasks.

15.6.6 TIMIT Results

Frame Accuracy

The success of Hβ first relies on the fact that the β vectors give large support to
correct classes and small support to incorrect classes (as demonstrated by Fig. 15.9)
when computing y = Hβ at each frame. Thus, the classification accuracy per frame,
computed using (15.34), should ideally be high. Table 15.7 shows the frame accuracy
for the GMM and SR methods.

Notice that the SR technique offers significant improvements over the GMM
method, again confirming the benefit of exemplar-based classifiers.

Error Rate for Hβ Features

Table 15.8 shows the recognition performance of Hβ features on TIMIT. Due to
the small vocabulary nature of TIMIT, we only explore seeding H from nearest
neighbors. Notice that creating a set of Hβ features in the fBMMI space offers a
0.7 % absolute improvement in PER. Given the small vocabulary nature of TIMIT,
no gain was found applying another fBMMI transform to the baseline or Hβ features.
After applying BMMI and MLLR to both feature sets, the Hβ features offer a 0.5 %
improvement in PER over the baseline system. This shows that using exemplar-based
SRs to produce Hβ features not only moves test features closer to training, but also
moves the feature vectors closer to the correct class, resulting in a decrease in PER.

Table 15.8 WER on TIMIT Baseline system PER Hβ System PER

fBMMI 19.9 Hβ 19.2
+BMMI +MLLR 19.5 +BMMI +MLLR 19.0
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15.6.7 Broadcast News Results

Selection of H

Table 15.9 shows the WER for the Hβ features for different H choices discussed in
Sect. 15.6.2. Note that the baseline fMMI system as a WER of 21.1 %. The following
can be observed:

• There is little difference in WER when sampling is done randomly or using cosine
similarity. For speed efficiencies, we use random sampling for H selection methods.
• There is little difference between using 5 and 10 Gaussians.
• Seeding H using nearest neighbors is worse than using the trigram LM. On broad-

cast news, we find that a kNN has lower frame-accuracy than a GMM, a result
similarly observed in the literature for large vocabulary corpora [1]. This lower
frame accuracy translates into a higher WER when H is seeded with nearest neigh-
bors.
• Seeding H from unique Gaussians provides too much variability of phoneme

classes into the Hβ feature, also leading to a higher WER.
• Using a unigram LM to reduce the link between the Gaussians used to seed H and

the best aligned Gaussian from the trigram LM decode offers a slight improvement
in WER over the trigram LM.
• Utilizing no LM information results in a very high WER.
• Using Gaussian means to seed H reduces the computation to create Hβ without

a large increase in WER.

WER for Hβ Features

Table 15.10 shows the performance of Hβ features on the Broadcast News task.
Creating a set of Hβ features at the fBMMI space offers a WER of 21.1 % which
is comparable to the baseline system. However, after applying an fBMMI transform
to the Hβ features we achieve a WER of 20.2 %, a 0.2 % absolute improvement
when another fBMMI transform is applied to the original fBMMI features. Finally,

Table 15.9 WER of Hβ
features for different H

H selection method WER

Trigram LM, random sampling, top 5 Gaussians 21.2
Trigram LM, cosine similarity sampling, top 5 Gaussians 21.3
Trigram LM, top 10 Gaussians 21.3
Nearest neighbor, 500 21.4
Trigram LM, 5 unique Gaussians 21.6
Unigram LM, top 5 Gaussians 21.1
No LM information, top 5 Gaussians 22.7
Gaussian means, top 500 Gaussians 21.4
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Table 15.10 WER on
broadcast news

Baseline system WER Hβ system WER

fBMMI 21.1 Hβ 21.1
+fBMMI 20.4 +fBMMI 20.2
+BMMI +MLLR 19.0 +BMMI +MLLR 18.7

after applying BMMI and MLLR to both feature sets, the Hβ features offer a WER
of 18.7 %, a 0.3 % absolute improvement in WER over the baseline system. This
demonstrates again that using information about actual training examples to produce
a set of features which are mapped closer to training and have a higher frame accuracy
than GMMs improves accuracy for large vocabulary as well.

15.7 SR Phone Identification Features (Spi f )

In this section, we review the use of SR for classification and use this framework to
create our Spi f features. Let us, first, describe how we can use β to create a set of
Spi f vectors. First, define matrix Hphnid = [p1,1, p1,2, . . . , pw,nw ] ∈ R

r×N , which
has the same number of columns N as the original H , but a different number of
rows r . Recall that each xi, j ∈ H has a corresponding class label i . We define each
pi, j ∈ Hphnid corresponding to feature vector xi, j ∈ H to be a vector with zeros
everywhere except at the index i corresponding to class of xi, j . Figure 15.10 shows
the Hphnid corresponding to H , where each pi, j becomes a phone identification
vector with a value of 1 corresponding to the class of xi. j . Here r , the dimension of
each pi, j , is equivalent to the total number of classes.

Onceβ is found by solving y = Hβ, we use this sameβ to select important classes
within the new dictionary Hphnid . Specifically, let us define a new feature vector Spi f ,
as Spi f = Hphnidβ

2, where each element of β is squared, i.e., β2 = {β2
i }. Notice

that we are using β2, as this is similar to the ‖ δi (β) ‖2 classification rule given by
(15.34). Each row i of the Spi f vector roughly represents the l2 norm of β entries for
class i .

A speech signal is defined by a series of feature vectors, Y = {y1, y2 . . . yn}, for
example Mel-Scale Frequency Cepstral Coefficients (MFCCs). For every test sample
yt ∈ Y , we solve yt = Htβ t to compute a β t . Then given this β t , a corresponding
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St
pi f vector is formed. Since β t at each sample represents a weighting of entries in

Ht that best represent test vector yt , this makes it difficult to compare β t values and
the St

pi f vectors across frames. Therefore, to ensure that the values can be compared

across samples, the St
pi f vectors are normalized at each sample. Thus, the new S̄t

pi f

at sample t is computed as S̄t
pi f =

St
pi f

‖St
pi f ‖1 . A series of Spi f vectors is created as

{S̄1
pi f , S̄2

pi f . . . S̄n
pi f }, and are used for recognition.

15.7.1 Construction of Dictionary H

Success of SRs depends on a good choice of H . In [14], various methods for seeding
H from a large sample set were explored. Below we summarize the main techniques
used in this work to select H .

Seeding H from Nearest Neighbors

For each y, we find a neighborhood of closest points to y from all examples in the
training set. These k neighbors become the entries of H . While this approach works
well on small-vocabulary tasks, it is computationally expensive for large data sets.

Using a Language Model

In speech recognition, when an utterance is scored using a set of HMMs (which have
output distributions given by Gaussians), typically evaluating only a small subset of
these Gaussians at a given frame allows for a large improvement in speed without
a reduction in accuracy [41]. Using this fact, we use training data belonging to a
small subset of Gaussians to seed H . To determine these Gaussians at each frame,
we decode the data using a language model (LM), and find the best aligned Gaussian
at each frame. For each Gaussian, we compute the four other closest Gaussians to
this Gaussian. After we find the top five Gaussians at a specific frame, we seed H
with the training data aligning to these top five Gaussians. We explore using both a
trigram and unigram LMs to obtain the top Gaussians.

Using a Lattice

Seeding H as suggested above is similar to finding the best H at the frame level. How-
ever, the goal of speech recognition is to recognize words, and therefore we explore
seeding H using information related to competing word hypotheses. Specifically, we
create a lattice of competing word hypotheses and obtain the top Gaussians at each
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frame from the Gaussian alignments of the lattice. Gaussians to the best Gaussian
are found and data from these five Gaussians is used to seed H .

15.7.2 Reducing Sharpness Estimation Error

As described in Sect. 15.7.1, for computational efficiency, Spi f features are created
by first pre-selecting a small amount of data for dictionary H . This implies that only
a few classes are present in H and only a few Spi f posteriors are non-zero, something
we will define as feature sharpness. Feature sharpness by itself is advantageous—for
example if we were able to correctly predict the right class at each frame and capture
this in Spi f the WER would be close to zero. However, because we are limited by
the amount of data that can be used to seed H , incorrect classes may have their
probabilities boosted over correct classes, something we will refer to as sharpness
estimation error. In this section, we explore various techniques to smooth out the
sharp Spi f features and reduce estimation error.

Choice of Class Identification

The Spi f vectors are defined based on the class labels in H . We explore two choice
of class labels in this paper. First, we explore using monophone class labels. Second,
we investigate labeling classes in H by a set of context independent (CI) triphones.
While using triphones increases the dimension of the Spi f vector, the elements in the
vector are less sharp now since β values for a specific monophone are more likely to
be distributed within the three different triphones of this monophone.

Posterior Combination

Another technique to reduce feature sharpness is to combine Spi f posteriors with
posteriors coming from an HMM system, a technique which is often explored when
posteriors are created using Neural Nets [17]. Specifically, let us define h j (yt ) as the
output distribution for observation yt and state j of an HMM system. In addition,
define S j

pi f (yt ) as the Spi f posterior corresponding to state j . Note that the number
of Spi f posteriors could be less than the number of HMM states, so the same Spi f

posterior could map to multiple HMM states. For example, the Spi f posterior corre-
sponding to phone “aa” could map to HMM states “aa-b-0”, “aa-m-0”, etc. Given the
HMM and Spi f posteriors, the final output distribution b j (yt ) is given by Eq. 15.35,
where λ is a weight on the Spi f posterior stream, selected on a held-out set.

b j (yt ) = h j (yt )+ λS j
pi f (yt ) (15.35)
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Spi f Feature Combination

As we will show in Sect. 15.7.5, Spi f features created using different methodologies
to select H offer complementary information. For example, Spi f features created
when H is seeded with a lattice have higher frame accuracy and incorporate more
sequence information than when H is seeded using a unigram or trigram LM. How-
ever, Spi f features created from lattice information are much sharper compared to
features created with a uni/trigram LM. Thus, we explore combining different Spi f

features. If we denote Stri
pi f , Suni

pi f and Slat
pi f as being created from the three different

H selection methodologies, we combine these features to produce a new Scomb
pi f fea-

ture as given by Eq. 15.36. Weights {α, β, γ } are chosen on a held-out set with the
constraint that α + β + γ = 1.

Scomb
pi f = αStri

pi f + βSuni
pi f + γ Slat

pi f (15.36)

15.7.3 Experiments

The small vocabulary recognition experiments are conducted on TIMIT [16]. Similar
to [14], acoustic models are trained on the training set, and results are reported on
the core test set. The initial acoustic features are 13-dimensional MFCC features.
The large vocabulary experiments are conducted on an English broadcast news tran-
scription task [17]. The acoustic model is trained on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora. Results are reported on 3 h of the
EARS Dev-04f set. The initial acoustic features are 19-dimensional PLP features.

Both corpora utilize the following recipe for training. First, a set of CI HMMs are
trained, either using information from the phonetic transcription (TIMIT) or from
flat-start (Broadcast News). The CI models are then used to bootstrap the training
of a set of CD triphone models. In this step, given an initial set of MFCC or PLP
features, a set of LDA features are created. After the features are speaker adapted,
a set of discriminatively trained features and models are created using the boosted
Maximum Mutual Information (BMMI) criterion. Finally, models are adapted via
MLLR.

On TIMIT, we explore creating Spi f features from both LDA and fBMMI features,
while for Broadcast news, we only create Spi f features after the fBMMI stage. The
initial LDA/fBMMI features are used for both y and H to solve y = Hβ and crate
Spi f features at each frame. In this work, we explore the ABCS method. Once series
of Spi f vectors are created, an HMM is built on the training features.
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15.7.4 TIMIT Results

Frame Accuracy

The success of Spi f first relies on the fact that the classification accuracy per frame,
computed using Eq. 15.34, should ideally be high. Table 15.11 shows the classifi-
cation accuracy for the GMM and SR methods,3 for both LDA and fBMMI feature
spaces. Notice that the SR technique offers significant improvements over the GMM
method.

Recognition Results: Class Identification

Table 15.12 shows the phonetic error rate (PER) at the CD level for different class
identification choices. Since only a kNN is used to seed H on TIMIT, we will call the
feature Sknn

pi f . We have also listed results for other CD-ML trained systems reported
in the literature on TIMIT. Notice that smoothing out sharpness error of the Spi f

features by using triphones rather than monophones results in a decrease in error
rate. The Spi f -triphone features outperform the LDA features and also offer the best
result of all methods on TIMIT at the CD level for ML trained systems.

We further explore Spi f features created after the fBMMI stage. Table 15.13 shows
that the performance is now worse than the fBMMI system. Because the fBMMI
features are already discriminative in nature and offer good class separability, Spi f

features created in this space are too sharp, explaining the increase in PER.

Recognition Results: Posterior Combination

We explore reducing feature sharpness by combining Spi f posteriors with HMM
posteriors, as shown in Table 15.14. We observe that on TIMIT, combining posteri-
ors from two different feature streams has virtually no impact in recognition accuracy
compared to the baseline fBMMI system, indicating there is little complementarity
between the two systems. Because gains were not observed with posterior combina-
tion, further Spi f feature combination was not explored.

Table 15.11 Frame accuracy
on TIMIT testcore set

Classifier Frame Acc. (LDA) Frame Acc. (fBMMI)

GMM 61.5 70.4
SR 64.0 71.7

3 We have not included the accuracy of the HMM since this takes into account sequence information
which both the GMM and SR methods do not.
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Table 15.12 PER on TIMIT
core test set—CD ML trained
systems

System PER (%)

Sknn
pi f monophones, IBM CD HMM (this paper) 25.1

Monophone HTMs [42] 24.8
Baseline LDA features, IBM CD HMM 24.5
Heterogeneous measurements [43] 24.4
Sknn

pi f triphones, IBM CD HMM (this paper) 23.8

Table 15.13 PER on TIMIT
core test set—fMMI level

Features PER

Baseline fBMMI features 19.4
Sknn

pi f triphones 20.7

Table 15.14 PER on TIMIT
core test set—posterior
combination

Features PER

Baseline fBMMI Features 19.4
Sknn

pi f , Posterior Combination 19.4

15.7.5 Broadcast News

In this section we explore the Spi f features on Broadcast News.

Recognition Results: Choice of H and Class Identity

Table 15.15 shows the frame accuracy and WER on Broadcast news for different
choice of H and class identity. We also quantify the sharpness estimation error
between the different Spi f methods. We define “sharpness” of a Spi f vector by
calculating the entropy from the non-zero probabilities of the feature. The sharper
the Spi f feature, the lower the entropy. A very sharp Spi f feature that emphasizes the
incorrect class for a frame will lead to a classification error. Therefore, we measure
sharpness error by the average entropy of all misclassified Spi f frames. Please note
that sharpness is only measured for monophone Spi f features. Using triphone Spi f

smooths out class probabilities since the feature dimension is increased. However, it
is difficult to quantifiably compare feature sharpness for the monophone and triphone
Spi f features since the correct phone labels and dimensions are of the two features
are different.

First, notice the trend between frame accuracy and entropy in Table 15.15. Suni
pi f

features have a low frame accuracy and hence a low WER. While Slat
pi f features

have a very high frame accuracy, they have a higher entropy on misclassified frames
compared to Stri

pi f and Suni
pi f , and hence have a high WER. Stri

pi f features created from
a trigram LM offer the best tradeoff between feature sharpness and accuracy, and
achieve a WER close to the baseline. However, if feature sharpness is reduced by
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Table 15.15 WER on
broadcast news, class
identification

Features Frame Acc. Spi f Entropy WER
Error Frames

Baseline fBMMI, – – 19.4
ML training

Stri
pi f monophones 70.3 2.27 19.5

Suni
pi f monophones 68.3 2.23 29.0

Slat
pi f monophones 77.2 0.86 21.6

Stri
pi f triphones – – 19.8

using triphone Stri
pi f features, we see now on a word recognition task that the WER

increases slightly.

Oracle Results of Reducing Estimation Error

We motivate the need for reducing sharpness error, with the following oracle experi-
ment. Given the Stri

pi f -monophone features, x % of the frames which are misclassified
are corrected to have a probability of 1 at the correct phone index and 0 elsewhere.
Table 15.16 shows the results when 1 %, 3 %, and 5 % of the misclassified Spi f fea-
tures are corrected. Notice that just by correcting a small % of misclassified features,
the WER reduces significantly. This motivates us to explore different techniques to
reduce Spi f sharpness in the next section.

Recognition Results: Posterior and Spi f Combination

In this section, we explore reducing sharpness through posterior and Spi f combi-
nation. Table 15.17 shows the baseline results for the fBMMI and Spi f -monphone
features at 18.7 % and 19.5 % respectively. The frame accuracies and entropies of
misclassified frames for various Spi f combination features are also listed. Note that
the frame accuracy is only reported on the Spi f feature and does not include frame
accuracy after posterior combination.

First, notice that through posterior combination, we reduce the WER by 0.5 %
absolute from 18.7 % to 18.2 %, showing the complementarity between the fBMMI
and Spi f feature spaces. Second, by doing additional Spi f feature combination, we

Table 15.16 WER on
broadcast news, oracle results

Features Frame accuracy WER

Stri
pi f 0 % cheating 70.3 19.5

Stri
pi f 1 % cheating 71.4 19.4

Stri
pi f 3 % cheating 73.7 18.8

Stri
pi f 5 % cheating 76.1 17.6
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Table 15.17 WER on
broadcast news, posterior and
Spi f combination

Features Frame Acc. Spi f Ent. WER

Baseline fBMMI features, – – 18.7
BMMI training + MLLR
Stri

pi f monophones 70.3 2.27 19.5
Stri

pi f , posterior combination 70.3 2.27 18.2
αStri

pi f + βSuni
pi f + γ Slat

pi f , 76.3 2.29 17.8
posterior combination

are able to increase the frame accuracy from 70.3 % to 76.3 %, without a reduction
in Spi f entropy as it increases slightly from 2.27 to 2.29. This results in a further
decrease in WER of 0.4 % absolute from 18.2 % to 17.8 %, indicating the importance
of reducing feature sharpness, particularly for misclassified Spi f frames.

15.8 Enhancing Exemplar-Based Posteriors for Speech
Recognition Tasks

When errors occur in exemplar modeling, this results in wrong classes having their
probabilities over-emphasized, something we will refer to as feature or posterior
sharpness. In general, it can be argued that a more desired methodology for enhancing
the posteriors is the one that simultaneously improves the frame accuracy and reduces
the erratic sharpness across the frames. Given that through a NN transformation we
have enhanced the posteriors by improving the frame error rate, we explore a new
technique to smooth the posteriors. Specifically, we explore a technique similar to
the tied mixture approach [20] where new posteriors are modeled as a tied mixture
of the NN posteriors. Specifically, given feature ot and a set of NN posterior scores
p(si |ot ) for all classes i ∈ L , we can estimate the posterior for state s j as given by

p(s j |ot ) =
L∑

i=1

p(si |ot )p(s j |ot , si ) (15.37)

As in the tied mixture approach [20], a tying is invoked such that the term p(s j |ot , si )

for a given i is independent of ot , which reduces (15.37) to

p(s j |ot ) =
L∑

i=1

p(si |ot )p(s j |si ) (15.38)

where p(s j |si ) is a set of mixing coefficients. Mixing NN posteriors from different
classes helps to smooth over sharp posterior distributions [20].
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In this section we look to learn a set of mixing coefficients p(s j |si ) to mix state
based posteriors from different states. More formally, we will refer to the N N− Spi f

posteriors p(si |ot ) as a. If we assume there are L states, then the posterior probability
at (l) at time t for state l satisfies the following properties:

at (l) ≥ 0 and
L∑

l=1

at (l) = 1 (15.39)

Given state l and a set of k = {1, . . . , L} NN posteriors for this state l, we define a
mixing coefficient p(s j |si ) as b(l, k), which satisfies the following properties:

b(l, k) ≥ 0 and
L∑

k=1

b(l, k) = 1 (15.40)

Our objective is to learn a set of mixing coefficients b(l, k) via maximum likelihood.
In this paper, we explore maximizing an objective function which linearly interpolates
the original posteriors a, similar to the tied mixture approach [20]. Specifically,
consider all frames aligned to a state l from t = 1 to Tl . We can define the mixed
posterior for a specific frame t as

ct (l) =
L∑

k=1

b(l, k)at (k) (15.41)

It is easy to see that ct (l) satisfies (15.40) and is a posterior. The objective function
of this posterior across all frames in the training data aligned to state l is given by

fl(b) =
Tl∏

t=1

ct (l) =
Tl∏

t=1

(

L∑

k=1

b(l, k)at (k)) (15.42)

Because (15.42) is a polynomial with positive coefficients, the Baum-Welch update
equation can be used to iteratively solve for b(l, k) which maximizes the above
objective function. The recursive update equation for b(l, k) is given by

b(l, k) := b(l, k)∇b(l,k) fl(b)∑L
j=1 b(l, j)∇b(l, j) fl(b)

(15.43)

Here the gradient of the objective function fl(b) is

∇b(l,k) fl(b) =
Tl∑

t=1

fl(b)
at (k)∑L

i=1 b(l, i)at (i)
(15.44)
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Fig. 15.11 Mixing coefficient examples

Substituting the gradient (15.44) into the update formula (15.43) yields the following
update for b(l, k)

b(l, k) := 1

Tl

Tl∑

t=1

b(l, k)at (k)∑L
i=1 b(l, i)at (i)

(15.45)

This equation shows that the mixing coefficients b(l, k) learned for state l effectively
take a linearly weighted average of posterior coefficients a over all training frames
aligned to state l.

Note that (15.45) assumes an initial value of b(l, k). We assume that the initial
b(l, k) is uniformly distributed as 1/L where L is the number of states. b(l, k) is
iteratively updated using (15.45) until the change in the objective function value
between iterations is below a specified threshold.

Once b(l, k) is learned, given state l, and the N N − Spi f posteriors (denoted by
a), a new posterior for state l is computed by taking a weighted average of the NN
posteriors and mixing coefficients. This new posterior, denoted by N N − Spi f −
Post (l) for state l is given by

N N − Spi f − Post (l) =
L∑

k=1

b(l, k)at (k) (15.46)

Figure 15.11 plots the mixing coefficients b(l, k) for states l = 100, 500, 1, 000,
and 1, 500. We can observe that for all states, the non-zero mixing coefficients are
clustered together, and thus come from context-dependent states which are similar
to each other, for example states which map to the same monophone.
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15.8.1 Results

The following experiments were conducted as described in Sect. 15.7.3.

Using Spi f Features As Output Probabilities

First, we explore the performance of Spi f posteriors when used as output probabilities
directly in an HMM system. Table 15.18 shows that the performance of the Spi f

posteriors is worse than the baseline GMM/HMM system trained on fBMMI features,
illustrating the problem with deriving exemplar-based posterior features which are
not learned through a discriminative process linked to WER. Furthermore, combining
Spi f and GMM posteriors in tandem does not offer improvements over the baseline
GMM/HMM system.

Enhancing Using Neural Networks

Second, we explore the performance of training a NN with Spi f features as input,
and then again using the N N − Spi f probabilities as output probabilities in an HMM
system. Table 15.19 shows that the N N − Spi f features offers a 1.3 % absolute
reduction in WER over using Spi f features alone. This illustrates the importance
of enhancing Spi f posteriors with a NN to create a set of posteriors better aligned
the PER objective in speech. Furthermore, the PER of 19.0 % is better than the
GMM/HMM system trained with fBMMI features [21], as well as a NN trained with
fBMMI features [44]. This demonstrates the benefit of exemplar-based features over
standard speech features (i.e. fBMMI).

Table 15.18 PER on TIMIT
core test set, Spi f features

Features PER

GMM/HMM fBMMI 19.5
Spi f posteriors 20.3
Tandem: Spi f + GMM 19.5

Table 15.19 PER on TIMIT
core test set, NN
enhancement

Features PER

Spi f 20.3
N N − Spi f 19.0
GMM/HMM—fBMMI + 19.4
BMMI + MLLR [21]
NN—fBMMI [44] 19.4
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Table 15.20 PER on TIMIT
Core Test set, posterior
smoothing

Features PER

N N − Spi f 19.0
N N − Spi f − Post 18.7

Smoothing with Posterior Modeling

Finally, we explore smoothing out N N − Spi f posteriors through tied mixtures as
discussed in this section. Again, mixed posteriors N N − Spi f − Post are used
as output probabilities in an HMM system. Table 15.20 shows that using posterior
modeling, we can obtain a small improvement of 0.3 % absolute over the N N − Spi f

posteriors. illustrating the value of reducing posterior sharpness through tied mixture
smoothing.

Error Analysis

Figure 15.12 shows the breakdown of error rates for the GMM/HMM, N N − Spi f

and N N − Spi f − Post methods within six BPCs, namely vowels/semivowels,
nasals, strong fricatives, weak fricatives, stops and closures/silence. Here the error
rate was calculated by counting the number of insertions, deletions and substitutions
that occur for all phonemes within a particular BPC. The N N − Spi f method offers
improvements over the GMM/HMM system in all classes except nasals and closures.
Furthermore, we can see the gains with the N N − Spi f − Post method are coming
due to better modeling in the vowel, weak fricative and closure classes.
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