
Chapter 84
The Improvement on R. G. Bland’s
Method

Yu-bo Liao

Abstract Cycling may occur when we use the simplex method to solve linear
programming problem and meet degeneration. Such cycling problem can be
avoided by the Bland method. In this paper, we will present an improved Bland
method with more iterative efficiency than the Bland method.
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84.1 Introduction

In plain English one can say that a linear optimization (LO) problem consists of
optimizing, i.e., minimizing or maximizing, a linear function over a certain
domain. The domain is given by a set of linear constraints. The constraints can be
either equalities or inequalities.

The simplex method for linear programming problems was first proposed by
Dantzig in 1947 (Dantzig 1948), which can be described as follow:

Supposing that the given standard linear programming problem is
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c ¼ k1 � � � knð Þ

The rank of A ¼ ðaijÞm�n is m, n�m� 1. The steps of the simplex method can
be summarized as follow:

• The first step: B ¼ ðpj1 ; pj2 ; . . .; pjmÞ is the known feasible basis, and the

canonical form and the basic feasible solution x
ð0Þ
B ¼ B�1b ¼ b10ð � � � bm0ÞTo

• The second step: Check the testing number. If all testing numbers satisfy
kj � 0; ðj ¼ 1; 2; � � � nÞ, the corresponding basic feasible solution xð0Þ is the
optimal solution. All the process is ended, otherwise go to next step;

• The third step: If some testing number kr [ 0 and B�1pr ¼ ðb1r; b2r;

� � � ; bmrÞT � 0, there is no optimal solution for this problem. All the process is
ended, otherwise go to next step;

• The forth step: If some testing number kr [ 0 and there is a positive number in

ðb1r; b2r; � � � ; bmrÞT , make xr be the entering-basis variable (if there are a few of
positive testing numbers, choose the largest one in order to improve the iterative
efficiency. This method is named as the largest testing number method), and the

minimum ratio is min bi0
bir

���n
bir [ 0

o
¼ bs0

bsr
Hence the leaving-basis variable xjs can

be determined (if there are a few same minimum ratios, choose the minimum-
subscript variable as the leaving- basis variable). Substitute pr for pjs, obtain the
new basis �B, and then go to next step;

• The fifth step: Obtain the canonical form and the basic feasible xð1Þ�B ¼ �B�1b,

corresponding to new basis �B (which can be realized directly by elementary row
transformation of the corresponding simplex tableau in manual calculation).

Afterwards, substitute �B for B, substitute xð1Þ�B for xð0Þ, and then return to the
second step.

For the non-degenerate linear programming problems, using the largest testing
number simplex method in iteration, after finite iterative steps, the optimal solution
must be obtained or not existed. But for degenerate linear programming problems,
this method may not be valid because basis cycling may appear. In 1951,
A. J. Hoffman first designed one example where appears cycling in iterations. In
1955, E. M. L. Beale designed a simpler example to show the possible cycling
problem (Beale 1955; Tang and Qin 2004; Zhang and Xu 1990).

To avoid infinite cycling, R. G. Bland proposed a new method in 1976 (Bland
1977). In the Bland method the cycling can be avoided in calculation if abiding by
two rules which are shown as following (Andersen et al. 1996; Nelder and Mead
1965; Lagarias et al. 1998; Bixby 1994; Herrera et al. 1993; Wright 1996; Han
et al. 1994; Hapke and lowinski 1996; Zhang 1999; Terlaky 1985; Terlaky 2000;
Terlaky and Zhang 1993; Wagner 1958; Ward and Wendell 1990; Wolfe 1963;
Wright 1998; Elsner et al. 1991; Han 2000):

• Rule 1: Once there are a few positive testing numbers, choose the corresponding
minimum-subscript basic variable as the entering-basis variable;
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• Rule 2: Once a few ratios bi0
bir

, in different rows reach the minimum at the same

time, choose the corresponding minimum-subscript basic variable as the leav-
ing-basis variable.

Rule 2 determines the leaving-basis variable, and it is same as the forth step of
the simplex method. However, the entering-basis variable is determined by Rule 1,
but the largest testing number method. The advantage of the Bland method is
simple. However because it only considers the minimum subscript, but the
decreasing speed of the target function, its iteration times are often much more
than those of the largest testing number method. In this paper, we will first prove a
theorem, and then use this theorem to propose an improved Bland method with
much more computation efficiency.

84.2 The Improvement of Bland’s Method

Theorem 1 If the linear programming problem has an optimal solution, there
appears degenerate basic feasible solution in some iterative step with the simplex
method, but it is not optimal, and only one basic variable is zero in the degenerate
basic feasible solution, the degenerate basic feasible solution will not appear again
after this iterative step (even if the entering-basis variable is determined by largest
testing number method).

Proof First suppose that the corresponding basis is B ¼ ðpj1 ; pj2 ; . . .; pjmÞ, the
corresponding basic feasible solution is xð0Þ, the corresponding simplex tableau is

TðBÞ ¼ cBB�1b cBB�1A� c
B�1b B�1A

��
o in this iterative step. The corresponding

canonical form is

min s ¼ sð0Þ �
X

j 6¼j1;j2���jm
kjxj

xji þ
P

j 6¼j1;j2���jm
bijxj ¼ bi0 ði ¼ 1; 2; � � �mÞ

xj� 0 ðj ¼ 1; 2; � � �mÞ

8<
:

There is only one zero in bi0ði ¼ 1; 2; � � �mÞ, and now assume that bs0 ¼ 0 and
bi0 [ 0. After this iterative step, according to the hypothesis, because only one
basic variable is zero, only if the row in which leaving-basis variable locates is not
s row, the value of target function will decrease and xð0Þ will be transferred;
Moreover, because the target value will not increase in iteration, xð0Þ will not
appear again. Therefore, if the conclusion is not valid, there is only one case: In the
iteration afterwards, The row in which the leaving-basis variable locates is s row,
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and hence the entering-basis variable will be the leaving-basis variable in each
iteration. This kind of variable is only in the set xj

��j ¼ j1; j2 � � � jm
� �

[ xjs

� �
.

Because the number of the set is finite, if there appears cycling, there must be
some variable xq which leaves the basis and then enters again. Supposing that the
corresponding simplex tableau is TðBtÞ when xq is the leaving-basis variable and

the entering-basis variable is xr in this tableau, bðtÞsq ¼ 1, kðtÞq ¼ 0, bðtÞsr [ 0, kðtÞr [ 0
Supposing that the corresponding simplex tableau is TðBtþkÞ. When xq is the

entering-basis variable, kðtþkÞ
q [ 0 (because it’s still not optimal). TðBtÞ becomes

TðBtþkÞ after iteration, and then

bðtþ1Þ
sq ¼ bðtÞsq

bðtÞsr

[ 0; kðtþ1Þ
q ¼ kðtÞq � kðtÞr bðtþ1Þ

sq \kðtÞq ¼ 0

The rest may be deduced by analogy, bðtþkÞ
sq [ 0, kðtþkÞ

q \0, which contradicts

kðtþkÞ
q [ 0, So the conclusion is valid. The proof is ended.

When there appears degenerate case, from Theorem 1 we can obtain: If only
one basic variable is zero in the degenerate basic feasible solution, we can still use
the largest testing number method and there will not appear cycling. Therefore, we
can modify Rule 1 of the Bland method in order to improve efficiency of iteration:

Improved rule 1: when there are a few of positive testing numbers, if only one
basic variable is zero in the corresponding basic feasible solution at most, the
entering-basis variable can be determined by the largest testing number; If more
than one basic variable is zero in the corresponding basic feasible solution, the
entering-basis variable can be determined by Rule 1 of the Bland method.

84.3 Conclusion

In summary, the large testing number method has high iteration efficiency, but it
has the cycling problem; the Bland method can avoid the cycling problem, but
results in low iteration efficiency. In order to eliminate those two disadvantages,
we proposed an improved method which can prevent the cycling theoretically with
higher computation efficiency.

Acknowledgments I would like to thank the support provided by East China Jiaotong Uni-
versity Research fund and Jiangxi province Research fund.

802 Y. Liao



References

Andersen ED, Gondzio J, Meszaros Cs, Xu X (1996) Implementation of interior point methods
for large scale linear programming. In: Terlaky T (ed) Interior point methods of mathematical
programming. Kluwer Academic Publishers, Dordrecht, pp 189–252

Beale EM (1955) Cycling in the dual simplex algorithm. Nav Res Logist Quart 2:269–276e
Bixby RE (1994) Progress in linear programming. ORSA J Comput 6(1):15–22
Bland RG (1977) New finite pivoting rules of simplex method. Math Oper Res 2:103–107
Dantzig GB (1948) Programming in a linear structure. Comptroller USAF, Washington, DC
Elsner L, Neumann M, Vemmer B (1991) The effect of the number of processors on the

convergence of the parallel block Jacobi method. Linear Algebra Appl 154–156:311–330
Han L (2000) Algorithms for unconstrained optimization. Ph.D. Thesis, University of Connecticut
Han S, Ishii H, Fuji S (1994) One machine scheduling problem with fuzzy duedates. Eur J Oper

Res 79:1–12
Hapke M, lowinski RS (1996) Fuzzy scheduling under resource constraints. Proceedings on

European workshop on fuzzy decision analysis for management, planning and optimization,
pp 121–126

Herrera F, Verdegay JL, Zimmermann H-J (1993) Boolean programming problems with fuzzy
constraints. Fuzzy Sets Syst 55:285–293

Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the
Nelder–Mead simplex algorithm in low dimensions. SIAM J Optim 9:112–147

Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313
Tang HW, Qin XZ (2004) Applied optimal method, Dalian Science and Technology University

Press, Dalian
Terlaky T (1985) A convergent criss-cross method, Mathematics of Operationsforschung und

Statistics. Ser. Optimization 16:683–690
Terlaky T (2000) An easy way to teach interior point methods. European Journal of Operations

Research 130(1):1–9
Terlaky T, Zhang S (1993) Pivot rules for linear programming: A survey on recent theoretical

developments. Ann Oper Res 46:203–233
Wagner HM (1958) The dual simplex algorithm for bounded variables. Nav Res Logist Quart

5:257–261
Ward JE, Wendell RE (1990) Approaches to sensitivity analysis in linear programming. Ann

Oper Res 27:3–38
Wolfe P (1963) A technique for resolving degeneracy in linear programming. J SIAM

11:205–211
Wright MH (1996) Direct search method: once scorned now respectable. In: Griffiths DF, Watson

GA (eds) Numerical analysis 1995: proceedings of the 1995 dundee biennial conference in
numerical analysis. Addison-Wesley, Harlow, pp 191–208

Wright MH (1998) The interior-point revolution in constrained optimization, Numerical analysis
manuscript 98–4-09. AT & T BellLab’s, Murray Hill

Zhang S (1999) A new variant of criss-cross pivot algorithm for linear programming. Eur J Oper
Res 116(3):607–614

Zhang JZ, Xu SJ (1990) Linear programming, Science Press, Beijing

84 The Improvement on R. G. Bland’s Method 803


	84 The Improvement on R. G. Bland’s Method
	Abstract
	84.1…Introduction
	84.2…The Improvement of Bland’s Method
	84.3…Conclusion
	Acknowledgments
	References


