
H.C. Mayr et al. (Eds.): UNISCON 2012, LNBIP 137, pp. 178–184, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Template-Based Method
to Create Efficient and Customizable

Object-Relational Transformation Components

Igor Lihatsky, Anatoliy Doroshenko, and Kostiantyn Zhereb

Institute of Software Systems of National Academy of Sciences of Ukraine,
Glushkov prosp. 40, 03187 Kyiv, Ukraine

igor_md@ukr.net, {doroshenkoanatoliy2,zhereb}@gmail.com

Abstract. We describe a method to create object-relational transformation
components by using the code generation system to automatically generate a
persistence layer based on the database structure. A text template engine is used
to generate SQL queries, business classes and APIs to access data from the
application code. Provided default implementations are sufficient to quickly
obtain a working persistence layer. However the real power of proposed
solution lies in extensive customization capabilities. Therefore the developed
system provides a high developer productivity because of automation, as well
as high performance and flexibility due to the possibility of customization.
Performance measurements demonstrate the high efficiency of the generated
code, both in terms of execution speed and code size.

Keywords: object-relational paradigm mismatch, persistence layer, code
generation, text template engine, object-relational mapping.

1 Introduction

Currently most business applications are created using object-oriented languages such
as Java, C#, C++, and store persistent data in relational databases such as Oracle,
Microsoft SQL Server or MySQL. Both object-oriented and relational paradigms
provide a well-established, reliable foundation for solving applied problems. They are
supported by numerous tools and methodologies that simplify the development
process and improve the product quality.

However, the underlying data models for object-oriented and relational systems
differ significantly. Therefore applied developers face the need to implement a
conversion between object-oriented and relational representation of the same data.
Sometimes such conversion is implemented manually, in which case obtained code is
more efficient, but developers need to perform quite significant routine work of
manually transforming each database object. In other cases automated tools (such as
ORM systems [9]) are used, improving the developer productivity, but often
sacrificing runtime performance and flexibility. There is a need of solution that can
combine the flexibility and performance of manual implementations with automation
achieved by using ORM systems.

 A Template-Based Method 179

In this paper we describe our approach to object-relational transformation by using
the code generation system to automatically generate a persistence layer based on the
database structure. A text template engine is used to generate SQL queries, business
classes and APIs to access data from the application code. Provided default
implementations are sufficient to quickly obtain a working persistence layer. However
the real power of proposed solution lies in extensive customization capabilities.
Therefore the developed system provides a high developer productivity because of
automation, as well as high performance and flexibility due to the possibility of
customization. Performance measurements demonstrate the high efficiency of the
generated code, both in terms of execution speed and code size.

The contribution of this paper is not some absolutely new technique or method, but
rather a new combination of existing methods, such as using code generation and text
templates, in order to improve the runtime efficiency of object-relational
transformation, as well as increase the developer’s productivity.

The rest of the paper is organized as follows: first we briefly analyze the current
state of object-relational mismatch problem and describe existing solutions. Then we
discuss our approach in detail, describe our implementation of this approach, illustrate
capabilities of the developed system on simple examples and evaluate the
performance of our system. Finally we provide the conclusions and directions of
future research.

2 Object-Relational Mismatch: Problems and Approaches

Currently most business applications are created using two mainstream programming
paradigms: object-oriented programming (OOP) [3] and relational database management
systems (RDBMS) [2]. However these two paradigms use different and incompatible
data representations: an object graph in OOP and tables in RDBMS, and the data access
approaches also differ significantly. Because of such differences between OOP and
RDBMS (often referred to as a paradigm mismatch, or an impedance mismatch [9]) there
is a need of components that perform transformation between these representations.
While developing such components, two main goals are reducing runtime overhead for
each transformation and reducing development effort.

One approach to connect OOP and RDBMS representations is hand-coding the
persistence layer. In this case the developer has to manually implement saving and
loading data using SQL queries and low-level database access APIs (e.g. ADO .NET
for Microsoft .NET framework or JDBC for Java). Advantages of this approach
include maximum performance, complete control over the process of saving and
loading data and a possibility to use advanced features of particular database systems.
The main drawback is a large amount of routine and error-prone work, during both
implementation and maintenance of the persistence layer.

Another approach is to use object-relational mapping (ORM) systems that
automatically save and restore the object graph into RDBMS using a formal
description of a mapping [1]. Popular ORM solutions include Hibernate for Java [1],
NHibernate and Entity Framework for .NET [8]. The advantages of ORM solutions

180 I. Lihatsky, A. Doroshenko, and K. Zhereb

include significantly reduced development efforts, increased maintainability and
independence from the database provider. Their main drawback is the runtime
overhead: automatically generated SQL queries can be less efficient compared to
those created and optimized by hand. Also ORM systems can generate unused
features, such as queries for updating a table that should be read-only. Some ORM
solutions may impose restrictions on the domain classes, such as inheriting from the
base class provided by ORM or restrictions on the types of collections and
associations.

Yet another approach to avoid a paradigm mismatch is to use object-oriented or
object-relational databases [11]. Such solutions include a direct support for object-
oriented features such as the object composition, link navigation, encapsulation,
inheritance and polymorphism. Popular object databases include Caché [6] and
Google App Engine Datastore [10]. Also object-oriented features are included in
traditional relational databases, such as Oracle and Microsoft SQL Server [11]. By
using object databases the transformation overhead can be avoided entirely, thus
increasing both the developer productivity and the runtime performance. Another
advantage is a simpler data model that is common for the data storage and data
manipulation. Major drawback of this approach is reliance on less popular, and
therefore less optimized and standardized database engines. Therefore currently
object databases are used in some specific applications [11], but they cannot replace
RDBMS as a mainstream data storage technology.

The analysis shows that current solutions of the object-relational paradigm
mismatch force the application developer to make a choice between the automation
and flexibility. Therefore our goal is to find effective ways to store the object graph
aimed at achieving maximum performance and flexibility, as well as the sufficient
degree of automation.

In this paper we use the following approach. We create the custom persistence
layer, similar to the manual approach, by using code generation tools to automate its
creation and reduce amount of routine coding. RDBMS are used as the data storage
(instead of object databases) because of their high reliability and performance. The
generated persistence layer consists of business objects (classes) that interact with the
database and are generated from the database structure. The persistence layer provides
safe interaction with the database by default, to prevent attacks such as SQL
injections. Persistence layer operates with strongly typed objects that allow catching
many errors and typos during compilation and not during query execution. All aspects
of generated code can be customized without changing the structure of the
application.

There are existing systems that use the similar approach, such as a NetTiers
Application Framework [7]. However it is based on a commercial CodeSmith
template engine [5] which increases the cost of the system. Also the NetTiers system
does not generate strongly typed objects for all stored procedures, and supports only
C# language – there is no possibility to generate the code in different programming
languages.

 A Template-Based Method 181

3 The C-Gen System

In this section we describe the C-Gen – our code generation system that can be used
as a solution of the object-relational paradigm mismatch.

The C-Gen system generates a persistence layer of the application using a database
structure as an input. The database describes the entities in a subject domain and
therefore can be used to create business objects. Currently the system is
unidirectional: we can generate business objects from the database structure, but not
vice versa.

The C-Gen uses a code generation approach, i.e. the automatic generation of source
code from the given input data. As a code generation tool we use a Text Template
Transformation Toolkit (T4 [4]). Templates are used to generate a program source
code based on the model (database structure). The generated file can use an arbitrary
text format, in particular, it can be a program source code in any language.

The generation process starts from existing database that is designed manually. A
domain model is represented as a set of tables and views with relations. The database
developer takes all responsibility for creating database. This approach supports
maximum performance and flexibility of the created application. The developer has a
full control over the process of designing and creating the database. As a result the
developer can create a high-quality and efficient SQL code.

When the domain model is implemented in the database, we use the C-Gen system
to generate a persistence layer. It consists of stored procedures inside the database, as
well as business objects and access methods in a source code. The C-Gen supports
two types of stored procedures: simple stored procedures support CRUD (create,
retrieve, update, delete) operations and are generated automatically; custom stored
procedures are specific to a concrete situation, and their design is fully controlled by
the developer. Thus, by generating simple stored procedures automatically the
developer is relieved from writing them by hand. On the other hand we reserve the
possibility of implementing performance-critical stored procedures for the developer.

Custom stored procedures are also used to represent the relations between the
tables. The tables can be related in one of three different ways: one-to-to one, one-to-
many, many-to-many. Therefore one object in OOP can be represented as several
connected RDBMS tables. There are other differences between RDBMS and OOP
data model: tables in RDBMS don’t support encapsulation, inheritance and
polymorphism which are basic properties of OOP paradigm; tables have explicit
identity provided by primary keys while objects can rely on implicit identity of
memory location; objects support link navigation while tables rely on joins to access
related properties.

Custom stored procedures that represent the relationships between the tables and
views contain logic of joining the tables and views between each other. As the result
we have a new object that represent such relation. This object presented in souse code
as strongly new class, and custom procedure as the method. In this way we can map
database relations on objects.

The next step after generating stored procedures is creating business objects. For
each entity in the database, the C-Gen system generates a corresponding class. Each

182 I. Lihatsky, A. Doroshenko, and K. Zhereb

database field is represented as a strongly-typed property. For each custom stored
procedure the C-Gen system also generates a corresponding class based on the
procedure name and return fields. The final step is the generation of access methods
for simple and custom stored procedures; their parameters and return type depend on
stored procedure signature.

After the C-Gen system completed its work, the application developer can work
with business classes as required in application. Working with database is completely
hidden behind generated methods. If some changes are made to the database structure,
the persistence layer can be regenerated. Therefore the C-Gen combines the
automation of ORM systems with flexibility and performance of hand-coded
persistent layer.

Notice that the C-Gen system encapsulates many features common to the database
access code. The generated code retrieves connection strings from application
configuration files, establishes connection to the database, sends and retrieves data,
manages transactions, etc. Of particular importance is built-in validation that prevents
SQL injections and similar types of attacks, making the generated code more secure
by default. All these features are provided without any efforts from application
developers. However, if the requirements of particular applications conflict with the
default implementation, it can be easily changed by editing templates. This is another
advantage of the C-Gen system compared to ORM solutions.

In some cases there is a need to customize the generation process. The C-Gen
system provides a variety of options aimed at customization. The system provides
capabilities to choose which code is generated (partial generation) and customize
business objects. Using partial generation prevents the system from generating an
unused code. It allows the developer to customize the generation process by
specifying which features should be generated.

Another customization option affects generated classes representing entities from
the domain model. In some cases there is a need to extend generated classes, e.g. add
some properties that are not saved to database, provide additional methods or override
generated methods. In order to support such scenarios, the C-Gen generates two
classes per entity: abstract and final sealed class. The abstract class contains
automatically generated implementation of all the methods. Final sealed class inherits
from an abstract class. Therefore it is possible to override some method in final sealed
class, implement some interface, define custom logic etc. Final sealed class will not
be overwritten during the next code generation.

4 Performance Evaluation

To evaluate advantages of our approach, we have compared the performance of the
persistence layer generated by the C-Gen system with a code generated by NetTiers
[7]. For an 18Mb sample database (representing an Internet shop) we have generated
all relevant code using both systems. Then we measured the performance of Select
and Insert operations for different query loads. Measurements were performed on a
server with Core i5-2500k 3.3 GHz CPU and 8Gb RAM, running Windows 7 x64
SP1 and Microsoft SQL Server 2008 R2 x64 Express. The results of performance
measurements are shown on Fig. 1.

Fig. 1. Perform

As can be seen from m
efficient code: for Select o
and for Insert operations –
is much smaller size of the
compared to 13.3Mb for Ne

5 Conclusion

In this paper we have de
connect object-oriented and
performance and flexible so
a text template system to
methods. We have implem
to use and efficient persiste
mechanisms based on T4
programming language. As
complex logic in custom
application is improved. T
prevent SQL injections an
with the database through
system is easily extensible
stored procedures, removi
Performance evaluation dem
Gen system compared to th
times smaller) and executio

Further research directio
routine development tasks,
editing. Another possible d
simplify the automation of d

A Template-Based Method

mance comparison of C-Gen and NetTiers systems

measurement results, the C-Gen system generates m
perations it is about 3 times faster compared to NetTi
1.5-2 times faster. Another advantage of the C-Gen syst
e generated code: all generated code for C-Gen is 1.2M
etTiers.

escribed our approach to creating a persistence layer
d relational data. Our approach focuses on providing hi
olution with high degree of automation. To this end we
generate SQL queries, business classes and data acc

mented the C-Gen code generation system that creates e
ence layer based on the database structure. Code generat
text templates allow to generate the source code in

s a result the developer can focus on implementing m
m stored procedures. Also the overall performance
The system has built-in data validation mechanisms t
nd similar attacks. The application developer can inter
h strongly-typed objects that avoid runtime errors. T
and customizable by modifying templates, writing cust

ing unneeded features and extending generated clas
monstrates high efficiency of the code generated by the

he similar system (NetTiers), both in terms of code size
on speed (1.5 – 3 times faster).
ons include the development of templates to automate ot

such as the creation of user interface components for d
direction is extraction of templates from existing code
development process and capture domain knowledge.

183

more
iers,
tem
Mb,

r to
igh-
use

cess
easy
tion
any

more
of

that
ract
The
tom
ses.

e C-
(10

ther
data
e to

184 I. Lihatsky, A. Doroshenko, and K. Zhereb

References

1. Bauer, C., King, G.: Java Persistence with Hibernate. Manning, New York (2007)
2. Booch, G., Maksimchuk, R.A., Engle, M.W.: Object-Oriented Analysis and Design with

Applications. Addison-Wesley (2007)
3. Coad, P., Nicola, J.: Object-Oriented Programming. Prentice Hall, Upper Sadder River

(1993)
4. Code generation and T4 Text Template, http://msdn.microsoft.com/

en-en/library/bb126445.aspx
5. CodeSmith tools, http://www.codesmithtools.com/
6. Kirsten, W., Ihringer, M., Rudd, A.: Object-Oriented Application Development Using the

Cache Postrelational Database, 2nd edn. Springer (2003)
7. .netTiers Application Framework, http://nettiers.com/
8. O’Neil, E.J.: 2008. Object/relational mapping 2008: hibernate and the entity data model

(edm). In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2008), pp. 1351–1356 (2008)

9. Russell, C.: Bridging the Object-Relational Divide. Queue 6(3), 18–28 (2008)
10. Sanderson, D.: Programming Google App Engine: Build and Run Scalable Web Apps on

Google’s Infrastructure, 1st edn. O’Reilly (2009)
11. Tamer A-zsu, M., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.

Springer (2011)

	A Template-Based Method to Create Efficient and Customizable Object-Relational Transformation Components
	1 Introduction
	2 Object-Relational Mismatch: Problems and Approaches
	3 The C-Gen System
	4 Performance Evaluation
	5 Conclusion
	References

