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Abstract. Homomorphic message authenticators allow the holder of a
(public) evaluation key to perform computations over previously authen-
ticated data, in such a way that the produced tag σ can be used to certify
the authenticity of the computation. More precisely, a user knowing the
secret key sk used to authenticate the original data, can verify that σ
authenticates the correct output of the computation. This primitive has
been recently formalized by Gennaro and Wichs, who also showed how
to realize it from fully homomorphic encryption. In this paper, we show
new constructions of this primitive that, while supporting a smaller set
of functionalities (i.e., polynomially-bounded arithmetic circuits as op-
posite to boolean ones), are much more efficient and easy to implement.
Moreover, our schemes can tolerate any number of (malicious) verifica-
tion queries. Our first construction relies on the sole assumption that
one way functions exist, allows for arbitrary composition (i.e., outputs
of previously authenticated computations can be used as inputs for new
ones) but has the drawback that the size of the produced tags grows with
the degree of the circuit. Our second solution, relying on the D-Diffie-
Hellman Inversion assumption, offers somewhat orthogonal features as
it allows for very short tags (one single group element!) but poses some
restrictions on the composition side.

1 Introduction

Cloud Computing allows a user to outsource his data to remote service providers
in such a way that he can later access the data from multiple platforms (e.g.,
his desktop at work, his laptop, his smartphone, etc.), and virtually from ev-
erywhere. Moreover, using this paradigm, even clients with very limited storage
capacity (e.g., smart phones) can have access “on demand” to very large amounts
of data. Having access to the outsourced data does not necessarily mean only
to retrieve such data. Indeed, a user may wish to perform a computation on
(a subset of) the outsourced data, and this too can be delegated to the service
provider. These and other benefits are the key success of Cloud Computing. The
paradigm, however, raises security concerns essentially because cloud providers
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cannot always be trusted. One problem is related to preserving the privacy of
the outsourced data. This question has been successfully addressed by the recent
work on fully homomorphic encryption [24]. The second question deals with en-
forcing the authenticity of the computations performed on the outsourced data,
and is the focus of this work. In a nutshell, this problem can be described as
follows. Assume that a client outsources a collection of data m1, . . . ,mn to a
server, and later asks the server to run a program P over (m1, . . . ,mn). The
server computes m←P(m1, . . . ,mn) and sends m to the client. The problem
here is that the client wants to be sure that m is the value obtained by running
P on its own data. A trivial solution would be to have the server sendm1, . . . ,mn

to the client, who can then compute/check m = P(m1, . . . ,mn) by itself. This
however vanishes the advantages of the outsourcing and is too costly in terms
of bandwidth. Therefore, the main goal here is to find solutions in which the
server can authenticate the output of the computation by sending some value
whose size is much shorter than m1, . . . ,mn. Such property is also motivated by
the fact that, in spite of the continuous progress in increasing the computational
power of small devices, bandwidth (especially in mobile data connections) seems
to remain the most serious and expensive bottleneck.

The research community has recently put a notable effort in developing new
cryptographic tools that can help in solving this and related problems. It is
the case, for instance, for works on verifiable computation [28,29,26,21,17,3] and
memory delegation [18].

Another line of research has explored the idea of enabling computation on
authenticated data [2] by means of homomorphic authentication primitives.

In the public key setting Boneh and Freeman introduced the notion of (fully)
homomorphic signatures [11]. Roughly speaking, a homomorphic signature al-
lows a user to generate signatures σ1, . . . , σn on messages m1, . . . ,mn so that
later anyone (without knowledge of the signing key) can compute a signature σ
that is valid for the value m = f(m1, . . . ,mn). Boneh and Freeman also showed
a realization of homomorphic signatures for bounded (constant) degree polyno-
mials, from ideal lattices.

Very recently, Gennaro and Wichs proposed, formally defined and constructed
the secret-key analogue of homomorphic signatures, that is homomorphic mes-
sage authenticators (homomorphic MACs, for short) [23]. Their construction
makes use of fully homomorphic encryption and allows to evaluate every circuit.

In this work, we continue the study of homomorphic MACs and propose new
constructions which, while less general than that given in [23], are much more
efficient.

Homomorphic Message Authenticators. Informally, a homomorphic MAC
scheme enables a user to use his secret key for generating a tag σ which authen-
ticates a message m so that later, given a set of tags σ1, . . . , σn authenticating
messages m1, . . . ,mn respectively, anyone can homomorphically execute a pro-
gram P over (σ1, . . . , σn) to generate a short tag σ that authenticates m as the
output of P(m1, . . . ,mn). Given such a primitive, it is not hard to imagine how
it can be employed to solve the problem of verifying computations on outsourced
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data. However, the above description needs some refinements, in particular to
explain what means to authenticate a message as the output of a program. To
do this Gennaro and Wichs introduce the notion of labeled data and programs.
The label τ of a data m is some binary string τ chosen by the user to authenti-
cate m, i.e., σ←Auth(sk, τ,m). One can think of labels as some indexing of the
data. For example, assume that a company outsources a database with infor-
mations on its customers, in which each column contains a different attribute
(e.g., age, expended amount, etc.). Then, to authenticate the “age” column of
the database the user can define a label “(age, i)” for the age value in record
i. On the other hand, a labeled program P is defined by a circuit f and a set
of labels τ1, . . . , τn, one for each input wire of f . This can be seen as a way to
specify on which inputs the circuit should be evaluated upon, without knowing
the input values themselves. So, given a labeled program P = (f, τ1, . . . , τn) and
a set of tags σ1, . . . , σn that authenticate messages mi under label τi, anyone can
run the homomorphic evaluation algorithm σ←Eval(P , σ1, . . . , σn) whose output
σ will authenticate m = P(m1, . . . ,mn). Precisely, the secret-key verification al-
gorithm takes as input a triple (m,P , σ) and verifies that m is the output of the
program P run on some previously authenticated and labeled messages, without
knowing such messages themselves.

Informally, homomorphic MACs are secure if any adversary who can adap-
tively query tags for messages of its choice cannot produce a valid tag σ that
authenticates m as the output of P unless σ can be honestly computed by
applying Eval on the queried tags.

Homomorphic MACs are also required to be succinct. Informally, succinctness
requires that the output of P run over (previously) authenticated data can be cer-
tified with significantly less communication than that of sending the original in-
puts. Another property one might want from homomorphic MACs is composabil-
ity, which allows to combine tags authenticating previous computations to cre-
ate a tag that authenticates a composition of such computations. More precisely,
given tags σ1, . . . , σt that authenticatem1, . . . ,mt as the outputs of P1, . . . ,Pt re-
spectively, composability allows to further compute σ←Eval(P , σ1, . . . , σt) which
authenticates m = P(m1, . . . ,mt) as the output of P∗, the composed program
obtained by running P on the outputs of P1, . . . ,Pt.

1.1 Our Contribution

In this paper we propose the first practically efficient constructions of homomor-
phic MACs. The most attractive feature of our schemes is that they are efficient,
simple to implement and rely on well studied assumptions. Moreover, they are
secure against PPT adversaries that can make an unbounded number of ver-
ification queries, as opposite to the construction in [23] that supports only an
a-priori bounded number of verification queries (see next section for more details
about this). On the negative side our solution works only for functionalities that
can be expressed as arithmetic circuits with certain additional restrictions that
we describe below.
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Our first construction is surprisingly simple and relies only on the existence
of pseudorandom functions. While it offers arbitrary composition, it does not
achieve full succinctness. More precisely, the size of the authentication tags grows
with the degree d of the circuit1, and thus we are able to guarantee succinct
authenticators only when d is smaller than the input size n.

Our second construction enjoys succinct, constant-size tags (just one group
element!) but only supports a limited form of composition . More precisely, for
a fixed bound D (polynomial in the security parameter) the scheme allows to
evaluate any arithmetic circuit of degree d ≤ D. In general, the evaluation has
to be done in a “single shot”, that is the authentication tags obtained from the
Eval algorithm cannot be used again to be composed with other tags. However,
we interestingly show that the scheme achieves what we call local composition.
The idea is that one can keep locally a non-succinct version of the tag that
allows for arbitrary composition. Next, when it comes to send an authentication
tag to the verifier, one can securely compress such large tag in a very compact
one of constant-size. We prove the security of our second construction under the
D-Diffie Hellman Inversion assumption [13,30] (where D is the bound on the
maximal circuit’s degree supported by the scheme).

Succinct Tags and Composition. Even though our solutions do not achieve
succinctness and composition at the same time, we argue that these limitations
might not be too relevant in many real life scenarios. First, we notice that several
interesting functions and statistics (e.g., the standard deviation function) can be
represented by constant-degree polynomials. In such a case, our first construction
perfectly fits the bill as it is efficient, simple to implement and produces constant-
size tags (and, of course, it only requires the existence of a PRF to be proved
secure). For the case of polynomials of large degree d (i.e., d polynomial in the
security parameter), our scheme fits well in those applications where composition
is not needed. Think for example of the application described at the beginning of
this section. There, if the server just runsm←P(m1, . . . ,mn) on the client’s data,
using our second construction it can produce a succinct tag that authenticates
m as P ’s output, and this tag is only one group element.

Finally, in applications where composition is needed but does not involve dif-
ferent parties, the notion of local composition achieved by our second scheme
still allows to save in bandwidth and to (locally) compose tags of partial
computations.

Overview of Our Techniques. The main idea behind our construction is a
“re-interpretation” of some classical techniques for information-theoretic MACs.
The authentication tag of a messagem ∈ Zp with label τ is a degree-1 polynomial
y(z) ∈ Zp[z] that evaluates to m on the point 0, and to rτ on a random point x
(i.e., y(0) = m and y(x) = rτ ). Here rτ = FK(τ) is a pseudorandom value, unique
per each label, defined by the PRF, while x is the secret key. If we do not care
about the homomorphic property and we assume that each rτ is truly random,

1 Informally, the degree of an arithmetic circuit is related to the degree of the poly-
nomial computed by the circuit (see next section for more details).
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then this is a secure information-theoretic MAC. Now, the basic observation
that allows to show the homomorphic property is the following. Let f be an
arithmetic circuit and assume to evaluate the circuit over the tags (i.e., over these
polynomials y(z)) as follows: for every additive gate we compute the addition
of the two input polynomials, and for every multiplicative gate we compute
the multiplication of them (i.e., the convolution of their coefficients). Now, we
observe that these operations are naturally homomorphic with respect to the
evaluation of the polynomial in every point. In particular, if we have two tags
y(1) and y(2) (i.e., we are given only the coefficients of these polynomials) such
that y(1)(0) = m1 and y(2)(0) = m2, then for y = y(1)+y(2) (resp. y = y(1)∗y(2))
we clearly obtain y(0) = m1 +m2 (resp. y(0) = m1 ·m2). The same holds for its
evaluation at the random point x, i.e., y(x) = rτ1 + rτ2 (resp. y(x) = rτ1 · rτ2).
By extending this argument to the evaluation of the entire circuit f , this allows
to verify a tag y for a labeled program P = (f, τ1, . . . , τn) and a message m, by
simply checking that m = y(0) and f(rτ1 , . . . , rτn) = y(x), where rτi = FK(τi).

A drawback of this construction is that the tag’s size grows linearly with
the degree of the evaluated circuit f . The reason is that the above homomorphic
evaluation increases the degree of the “tag polynomial” y at every multiplication
gate. This is why this MAC fails in achieving the succinctness property when
the degree d becomes greater than the input size n of the circuit.

Our second construction overcomes this drawback as follows. First, the eval-
uation algorithm computes a tag y = (y0, . . . , yd) as before, and then it “accu-

mulates” these coefficients in a single group element Λ =
∏d

i=1(g
xi

)yi . Verifi-
cation will check that gf(rτ1 ,...,rτn ) = gm · Λ. If Λ is computed correctly, then
Λ = gy(x)−y(0), and thus one can easily see why correctness holds. The need
to resort to the (D − 1)-Diffie Hellman Inversion assumption2, comes from the
fact that, in order to perform the evaluation procedure correctly, the values

gx, gx
2

, . . . , gx
D

need to be published as part of the evaluation key ek. Once a
tag of the Λ form is created, it can be composed with other tags of the same
form only for additions but not for multiplications. To satisfy partial composi-
tion, the idea is that one can keep locally the large version of the tag consisting
of the coefficients y0, . . . , yd, and always send to the verifier its compact version
Λ =

∏d
i=1(g

xi

)yi . In the full version of this paper we also show an extension
of this scheme that, by using bilinear pairings, allows to further compute an
additional level of multiplications and unbounded additions on tags of the Λ
form.

1.2 Related Work

Homomorphic Message Authenticators and Signatures. Recently, many
papers considered the problem of realizing homomorphic (mostly linear) authen-
ticators either in the symmetric setting (MAC) or in the asymmetric one (signa-
tures). This line of research has been initiated by the work of Johnson et al. [27]

2 Very briefly, this assumption states that it is computationally infeasible to compute

g1/x, given g, gx, gx
2

, . . . , gx
D−1
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and became very popular in recent years because of the important application
to linear network coding. Efficient solutions for this latter application have been
proposed both in the random oracle [10,22,12,14] and in the standard model
[1,4,15,16,20,5,6]. Linearly-homomorphic message authenticators have been con-
sidered also for proofs of retrievability for outsourced storage [32]. Only two
works, however, consider the problem of realizing solutions for more complex
functionalities (i.e., beyond linear).

Boneh and Freeman defined the notion of (fully) homomorphic signatures
and showed a realization for bounded (constant) degree polynomials, from ideal
lattices [11]. With respect to our work this solution has the obvious advantage of
allowing for public verifiability. On the negative side it is not truly practical and
the bound on the degree of the supported polynomials is more stringent than in
our case (as they can support only polynomials of constant degree).

Closer to our setting is the recent work of Gennaro and Wichs [23] where
fully homomorphic MACs are introduced, formally defined and constructed. The
solution given there supports a wider class of functionalities with respect to
ours, and it allows to achieve succinct tags and composability at the same time.
Their tags have size μ(λ) = poly(λ) where λ is the security parameter, and
thus they are asymptotically succinct as long as the circuit’s input size n is
greater than μ(λ). Despite its nice properties, the proposed construction seems
unfortunately far from being truly practical as it relies on fully homomorphic
encryption. Moreover, it is proven secure only for a bounded and a-priori fixed
number of verification queries3, meaning with this that the scheme becomes
insecure if the verifier leaks information on whether it accepts/rejects tags.

Succinct Non-interactive Arguments of Knowledge. The problem of
realizing homomorphic signatures can be solved in theory using Succinct Non-
interactive Arguments of Knowledge (SNARKs) [8]. In a nutshell, given any NP
statement a SNARK allows to construct a succinct argument that can be used
to prove knowledge of the corresponding witness. The nice feature of SNARKs
is that the size of the argument is independent of the size of both the statement
and the witness. A drawback of SNARKs is that they are not very efficient (or at
least not nearly as practical as we require) and require either the random oracle
model [29] or non-standard, non-falsifiable assumptions [25]. Moreover, SNARK-
based solutions seem to allow for only very limited composability [34,9].

Other Related Work. Thenotion of homomorphic authenticators is also (some-
what) related to the notion of verifiable computation [28,29,26,21,17,3,7,31,19].
There, onewants to delegate a computationally heavy task to a remote serverwhile
keeping the ability to verify the result in a very efficient way. While the two primi-
tives might seem quite different at first, one can reinterpret some of the results on
verifiable computation in our setting. The resulting solutions however present sev-
eral limitations that make them of limited practical interest compared to

3 More precisely, their basic construction cannot support verification queries at all.
This can be extended to allow for some fixed a-priori number of queries q at the cost
of increasing by O(q) the size of the tag.
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homomorphic authenticators. We refer the reader to [23] for a nice discussion
about this.

Homomorphic authenticators are also related to memory delegation [18]. This
primitive allows a client to outsource large amounts of data to a server so that he
can later verify computations on the data. The advantage of this approach over
ours is that it offers an efficient verification procedure, and it supports a dynamic
memory in which the client can update the outsourced data. However, current
(non-interactive) realizations of memory delegation, in the standard model, are
rather inefficient and require the user to keep a state. Moreover, in known con-
structions, efficient verification comes at the price of an offline phase where the
runtime of both the delegator and the server depends polynomially on the size
of the memory.

Organization. The paper is organized as follows. In Section 2 we provide
a background and relevant definitions of arithmetic circuits and homomorphic
authenticators. Section 3 describes our first construction from PRFs while our
second compact construction is given in Section 4. For lack of space, all proofs
will appear in the full version of this paper.

2 Background and Definitions

Arithmetic Circuits. Here we provide a very brief overview of arithmetic
circuits. The interested reader is referred to [33] for a more detailed treatment
of the subject.

An arithmetic circuit over a field F and a set of variables X = {τ1 . . . τn}, is
a directed acyclic graph with the following properties. Each node in the graph
is called gate. Gates with in-degree 0 are called input gates (or input nodes)
while gates with out-degree 0 are called output gates. Each input gate is labeled
by either a variable or a constant. Variable input nodes are labeled with binary
strings τ1, . . . , τn, and can take arbitrary values in F. A constant input node
instead is labeled with some constant c and it can take only some fixed value
c ∈ F. Gates with in-degree and out-degree greater than 0 are called internal
gates. Each internal gate is labeled with an arithmetic operation symbol. Gates
labeled with × are called product gates, while gates labeled with + are called
sum gates. In this paper, we consider circuits with a single output node and
where the in-degree of each internal gate is 2. The size of the circuit is the
number of its gates. The depth of the circuit is the length of the longest path
from input to output.

Arithmetic circuits evaluate polynomials in the following way. Input gates
compute the polynomial defined by their labels. Sum gates compute the poly-
nomial obtained by the sum of the (two) polynomials on their incoming wires.
Product gates compute the product of the two polynomials on their incoming
wires. The output of the circuit is the value contained on the outgoing wire of the
output gate. The degree of a gate is defined as the total degree of the polynomial
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computed by that gate. The degree of a circuit is defined as the maximal degree
of the gates in the circuit.

We stress that arithmetic circuits should be seen as computing specific poly-
nomials in F[X ] rather than functions from F

|X| to F. In other words, when
studying arithmetic circuits one is interested in the formal computation of poly-
nomials rather than the functions that these polynomials define4.

In this paper we restrict our interest to families of polynomials {fn} over
F which have polynomially bounded degree, meaning with this that both the
number of variables and the degree of fn are bounded by some polynomial p(n).
The class VP (also known as AlgP/poly) contains all such polynomials. More
precisely it contains all polynomially bounded degree families of polynomials
that are computable by arithmetic circuits of polynomial size and degree.

2.1 Homomorphic Message Authenticators

Labeled Programs. First, we recall the notion of labeled programs intro-
duced by Gennaro and Wichs in [23]. A labeled program P consists of a tuple
(f, τ1, . . . , τn) where f : Fn → F is a circuit, and the binary strings τ1, . . . , τn ∈
{0, 1}∗ are the labels of the input nodes of f . Given some labeled programs
P1, . . . ,Pt and a function g : Ft → F it is possible to define the composed pro-
gram P∗ = g(P1, . . . ,Pt) which consists in evaluating a circuit g on the outputs
of P1, . . . ,Pt respectively. The labeled inputs of P∗ are all distinct labeled inputs
of P1, . . . ,Pt, i.e., all inputs with the same label are put together in a single in-
put of the new program. We denote with Iτ = (gid, τ) the identity program with
label τ where gid is the canonical identity function and τ ∈ {0, 1}∗ is some input
label. Finally, we notice that any program P = (f, τ1, . . . , τn) can be expressed
as the composition of n identity programs P = f(Iτ1 , . . . , Iτn).

While Gennaro and Wichs [23] defined labeled programs for Boolean circuits
(i.e., f : {0, 1}n → {0, 1}), here we consider its extension to the case of arithmetic
circuits f : Fn → F where F is some finite field, e.g., Zp for a prime p.

Homomorphic Authenticator Scheme. A homomorphic message authenti-
cator scheme HomMAC is a 4-tuple of algorithms working as follows:

KeyGen(1λ): on input the security parameter λ, the key generation algorithm
outputs a secret key sk and a public evaluation key ek.

Auth(sk, τ,m): given the secret key sk, an input-label τ and a message m ∈M,
it outputs a tag σ.

Ver(sk,m,P , σ): given the secret key sk, a message m ∈ M, a program P =
(f, τ1, . . . , τn) and a tag σ, the verification algorithm outputs 0 (reject) or 1
(accept).

Eval(ek, f,σ): on input the evaluation key ek, a circuit f : Mn → M and a
vector of tags σ = (σ1, . . . , σn), the evaluation algorithm outputs a new
tag σ.

4 While, in general, every polynomial defines a unique function the converse is not
true as a function may be expressed as a polynomial in several ways.
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Authentication Correctness. Intuitively, a homomorphic MAC satisfies
this property if any tag σ generated by the algorithm Auth(sk, τ,m) authenti-
cates with respect to the identity program Iτ . Formally, we require that for any

message m ∈M, all keys (sk, ek)
$← KeyGen(1λ), any label τ ∈ {0, 1}∗, and any

tag σ
$← Auth(sk, τ,m), it holds: Pr[Ver(sk,m, Iτ , σ) = 1] = 1.

Evaluation Correctness. Informally, this property states that if the eval-
uation algorithm is given a vector of tags σ = (σ1, . . . , σn) such that each σi

authenticates some message mi as the output of a labeled program Pi, then the
tag σ produced by Eval must authenticate f(m1, . . . ,mn) as the output of the
composed program f(P1, . . . ,Pn).

More formally, let us fix a pair of keys (sk, ek)
$← KeyGen(1λ), a function

g :Mt →M and any set of message/program/tag triples {(mi,Pi, σi)}ti=1 such
that Ver(sk,mi,Pi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(ek, g, (σ1, . . . , σt)), then it must hold: Ver(sk,m∗,P∗, σ∗) = 1.

Succinctness. The size of a tag is bounded by some fixed polynomial in the
security parameter, that is independent of the number of inputs taken by the
evaluated circuit.

Security. Let HomMAC be a homomorphic MAC scheme as defined above.
Consider the following experiment HomUF−CMAA,HomMAC(λ) between a chal-
lenger and an adversary A against HomMAC:

Setup. The challenger generates (sk, ek)
$← KeyGen(1λ) and gives ek to A. It

also initializes a list T = ∅.
Authentication queries. The adversary can adaptively ask for tags on label-

message pairs of its choice. Given a query (τ,m), if there is some (τ, ·) ∈ T
(i.e., the label was already queried), then the challenger ignores the query.

Otherwise, it computes σ
$← Auth(sk, τ,m), returns σ to A and updates the

list T = T ∪ (τ,m). If (τ,m) ∈ T (i.e., the query was previously made), then
the challenger replies with the same tag generated before.

Verification queries. The adversary is also given access to a verification ora-
cle. Namely, A can submit a query (m,P , σ) and the challenger replies with
the output of Ver(sk,m,P , σ).

Forgery. At some point the adversary is supposed to output a forgery (m∗,P∗ =
(f∗, τ∗1 , . . . , τ∗n), σ∗). Notice that such tuple can be returned by A also as a
verification query (m∗,P∗, σ∗).

Before describing the outcome of this experiment, we define the notion of well
defined program with respect to a list T . Informally, there are two ways for a
program P∗ = (f∗, τ∗1 , . . . , τ

∗
n) to be well defined. Either all the τ∗i s are in T or,

if there are labels τ∗i not in T , then the inputs associated with such labels are
somewhat “ignored” by f∗ when computing the output. In other words input
corresponding to labels not in T do not affect the behavior of f∗ in any way.

More formally, we say that a labeled program P∗ = (f∗, τ∗1 , . . . , τ∗n) is well
defined on T if either one of the following two cases occurs:
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1. there exists i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T (i.e., A never asked an
authentication query with label τ∗i ), and f∗({mj}(τj,mj)∈T ∪ {m̃j}(τj,·)/∈T )
outputs the same value for all possible choices of m̃j ∈M;

2. T contains tuples (τ∗1 ,m1), . . . , (τ
∗
n ,mn), for some messages m1, . . . ,mn.

The experiment HomUF−CMA outputs 1 if and only if Ver(sk,m∗,P∗, σ∗) = 1
and one of the following conditions holds:

– Type 1 Forgery: P∗ is not well-defined on T .
– Type 2 Forgery: P∗ is well defined on T and m∗ 	= f∗({mj}(τj,mj)∈T ), i.e.,

m∗ is not the correct output of the labeled program P∗ when executed on
previously authenticated messages (m1, . . . ,mn).

We say that a homomorphic MAC scheme HomMAC is secure if for every PPT
adversary A we have that Pr[HomUF−CMAA,HomMAC(λ) = 1] is negligible.

Remark 1 (Comments on our definition). First, we observe that our definition
explicitly disallow the possibility of re-using a label to authenticate more than
one value. Essentially, this is a way to uniquely keep track of the authenticated
inputs. We notice that such restriction is implicitly present in the Gennaro-Wichs
construction as well as in all previous works on homomorphic signatures.

Second, the notion of well defined programs aims at capturing, in a formal way,
which tuples generated by the adversary should be considered as forgeries. The
catch here is that, since we are dealing with a homomorphic primitive, we should
be able to differentiate MACs produced by Eval from MACs generated in some
other, possibly malicious, way. Notice, however, that even maliciously generated
MACs should not necessarily be considered as forgeries. This is because, in our
setting, the adversary can trivially modify a circuit C she is allowed to evaluate
by adding dummy gates and inputs that are simply ignored in the evaluation of
the modified circuit (i.e., the new circuit is semantically equivalent to C). This
last case does not constitute an infringement of our security requirements. Our
notion of well defined program P captures exactly this: either P is run on legal
(i.e. in T ) inputs only, or, if this is not the case, those inputs not in T do not
affect the computation in any way.

Finally, we observe that for arbitrary computations checking whether a pro-
gram is well defined may not be efficiently computable. In particular, the difficult
task is to check the first condition, i.e., whether a program always outputs the
same value for all possible choices of the inputs that are not in T . However, for
the case of arithmetic circuits in (exponentially) large fields and of polynomial
degree this check can be efficiently performed as follows: by fixing all inputs in
T one writes the computation as a new multivariate polynomial whose variables
are only the inputs not in T . Then, one checks whether this polynomial is a
constant function.

Remark 2 (Relations with previous definitions). Our definition is very similar to
that proposed by Gennaro and Wichs in [23] except for two modifications. First,
we explicitly allow the adversary to query the verification oracle. Second, we
adopt a definition of forgery slightly weaker than that in [23]. More precisely,
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Gennaro and Wichs define Type 1 forgeries as ones where at least one new label
is present. Type 2 forgeries, on the other hand, contain only labels that have
been already queried, but m∗ is not the correct output of the program when
executed on the previously queried inputs.

Notice that our notion becomes equivalent to that given in [23] by simply
changing the definition of “well defined program” so that P∗ = (f∗, τ∗1 , . . . , τ

∗
n)

is said well defined on T if (τi,mi) ∈ T ∀i = 1, . . . n. The difference between the
two definitions is that, as we explained above, we do not consider forgeries all
those tuples where ”fresh” labels (i.e. labels not in T ) do not contribute to the
output of the program.

Even though our security definition is weaker than the one in [23], we stress
that it is perfectly meaningful for the notion of homomorphic MAC. Indeed, we
are still excluding from forgeries all those MACs that can be trivially computed
by the adversary from what it queried during the game.

On a technical level, our definition of forgery is inspired by the security def-
inition recently proposed by Freeman for homomorphic signatures [20], except
that in our case we do not consider the notion of data set.

3 Our Homomorphic MAC from OWFs

In this section we propose our first construction of homomorphic MACs whose se-
curity relies only on a pseudo-random function (and thus on one-way functions).
The scheme is simple and efficient and allows to homomorphically evaluate arith-
metic circuits f : Zn

p → Zp for a prime p of roughly λ bits, where λ is the security
parameter.

Our Scheme. In our construction we restrict to circuits whose additive gates do
not get inputs labeled by constants. This can be done without loss of generality
as, when needed, one can use an equivalent circuit in which there is a special
variable/label for the value 1, and can publish the MAC of 1. The description of
our scheme follows.

KeyGen(1λ). Let p be a prime of roughly λ bits. Choose a seed K of a pseudo-

random function FK : {0, 1}∗ → Zp and a random value x
$← Zp. Output

sk = (K,x), ek = p and let the message spaceM be Zp.
Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,

compute rτ = FK(τ), set y0 = m, y1 = (rτ − m)/x mod p and output
σ = (y0, y1). Basically, y0, y1 are the coefficients of a degree-1 polynomial y(z)
with the special property that it evaluates to m on the point 0 (y(0) = m),
and it evaluates to rτ on a hidden random point x (y(x) = rτ ).
In our construction we will interpret tags σ as polynomials y ∈ Zp[z] of
degree d ≥ 1 in some (unknown) variable z, i.e., y(z) =

∑
i yiz

i.
Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evalu-

ation key ek = p, an arithmetic circuit f : Zn
p → Zp, and a vector σ of tags

(σ1, . . . , σn).



Practical Homomorphic MACs for Arithmetic Circuits 347

Intuitively, Eval consists in evaluating the circuit f on the tags σ1, . . . , σn

instead of evaluating it on messages. However, since the values σi’s are not
messages in Zp, but rather are polynomials y(i) ∈ Zp[z], we need to specify
how this evaluation is carried through.
Eval proceeds gate-by-gate as follows. At each gate g, given two tags σ1, σ2 (or
a tag σ1 and a constant c ∈ Zp), it runs the algorithm σ←GateEval(ek, g, σ1,
σ2) described below that returns a new tag σ, which is in turn passed on as
input to the next gate in the circuit.
When the computation reaches the last gate of the circuit f , Eval outputs
the tag vector σ obtained by running GateEval on such last gate.
To complete the description of Eval we describe the subroutine GateEval.

– GateEval(ek, g, σ1, σ2). Let σi = y(i) = (y
(i)
0 , . . . , y

(i)
di
) for i = 1, 2 and

di ≥ 1 (see below for the special case when one of the two inputs is a
constant c ∈ Zp).
If g = +, then:
• let d = max(d1, d2). Here we assume without loss of generality that
d1 ≥ d2 (i.e., d = d1).
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) =
y(1)(z)+ y(2)(z). This can be efficiently done by adding the two vec-
tors of coefficients, y = y(1) + y(2) (y(2) is eventually padded with
zeroes in positions d1...d2).

If g = ×, then:
• let d = d1 + d2.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) =
y(1)(z) ∗ y(2)(z) using the convolution operator ∗, i.e., ∀k = 0, . . . , d,

define yk =
∑k

i=0 y
(1)
i · y(2)k−i.

If g = × and one of the two inputs, say σ2, is a constant c ∈ Zp, then:
• let d = d1.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = c ·
y(1)(z).

Return σ = (y0, . . . , yd).
As one can notice, the size of a tag grows only after the evaluation of a
multiplication gate (where both inputs are not constants). It is not hard to
see that after the homomorphic evaluation of a circuit f , it holds |σ| = d+1,
where d is the degree of f .

Ver(sk,m,P , σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and
σ = (y0, . . . , yd) be a tag for some d ≥ 1. Verification proceeds as follows:
– If y0 	= m, then output 0 (reject). Otherwise continue as follows.
– For every input wire of f with label τ compute rτ = FK(τ).
– Next, evaluate the circuit on rτ1 , . . . , rτn , i.e., compute ρ←f(rτ1 , . . . , rτn),

and use x to check whether the following equation holds:

ρ =

d∑

k=0

ykx
k (1)

If this is true, then output 1. Otherwise output 0.
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Observe that the above applies also to identity programs Iτ , in which case
the algorithm just checks that rτ = y0 + y1 · x and y0 = m.

Efficiency. Our scheme is extremely efficient in generating a tag using the Auth
algorithm: just one PRF evaluation (e.g., one AES evaluation, in practice).

If we analyze the Eval algorithm, its complexity is dominated by the cost of
evaluating the circuit f with an additional overhead due to the modified gate
evaluation and to that the tag’s size grows with the degree of the circuit. If the
circuit has degree d, in the worst case, this overhead is going to be O(d) for
addition gates, and O(d log d) for multiplication gates5.

The cost of verification is basically the cost of computing ρ = f(rτ1 , . . . , rτn),

that is O(|f |), plus the cost of computing
∑d

i=0 yix
i, that is O(d).

Correctness. Very roughly, correctness follows from the special property of
the polynomials y generated by Auth, i.e., that y(0) = m and y(x) = rτ . In
particular, this property is preserved when evaluating the circuit f over tags
y(1), . . . , y(n). We give a formal proof of correctness in the full version of this
paper.

Security. The security of our scheme is established by the following theorem
(again the proof is deferred to the full version of this paper).

Theorem 1. If F is a PRF, then the homomorphic MAC scheme described in
Section 3 is secure.

4 A Compact Homomorphic MAC for Circuits of
Bounded Polynomial Degree

As we mentioned earlier, the homomorphic MAC of Section 3 has the drawback
that the tags’ size grows linearly with the degree of the evaluated circuit. While
this may be acceptable in some cases, e.g., circuits evaluating constant-degree
polynomials, it may become impractical in other situations, e.g., when the degree
is greater than the input size of the circuit. In this section, we propose a second
scheme that solves this issue and enjoys tags of constant size. The scheme keeps
almost the same efficiency of the previous one, even though constant-size tags
come at the price of a couple of restrictions. First, we have to fix an a-priori
bound D on the degree of the circuits that can be evaluated. Second, the homo-
morphic evaluation has to be done in a “single shot”, that is the authentication
tags obtained from the Eval algorithm cannot be used again to be composed
with other tags. Nevertheless, we show that the scheme achieves an interesting
property that we call local composition. The idea is that one can keep locally
a non-succinct version of the tag that allows for arbitrary composition. Later,
when it comes to send an authentication tag to the verifier, one can securely
compress such large tag in a very compact one of constant-size.

5 This bound follows from that one can use optimized algorithms based on FFT to
compute the convolution.
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For security, in addition to a PRF we need to rely on a computational as-

sumption that says that one cannot compute g given values gx, . . . , gx
D

. This
problem is basically a re-writing of a problem already considered in the past:
the �-Diffie-Hellman Inversion. We recall its definition below.

Definition 1 (�-DHI [13,30]). Let λ ∈ N be the security parameter, and G

be a group of order p > 2λ. For a generator g ∈ G and a randomly chosen

x
$← Zp we define the advantage of an adversary A in solving the �-DHI prob-

lem as AdvDHI
A (λ) = Pr[A(g, gx, . . . , gx�

) = g1/x] and we say that the �-DHI
assumption holds in G if for every PPT A and for � = poly(λ), the advantage
AdvDHI

A (λ) is at most negligible in λ.

Our Construction. The description of our scheme follows.

KeyGen(1λ, D). Let λ be the security parameter and D = poly(λ) be an up-
per bound so that the scheme can support the homomorphic evaluation of
circuits of degree at most D. The key generation works as follows.
Generate a group G of order p where p is a prime of roughly λ bits, and

choose a random generator g
$← G. Choose a seed K of a pseudorandom

function FK : {0, 1}∗ → Zp and a random value x
$← Zp. For i = 1 to

D compute hi = gx
i

. Output sk = (K, g, x), ek = (h1, . . . , hD) and let the
message spaceM be Zp.

Auth(sk, τ,m). The tagging algorithm is the same as the one of the construction
in Section 3. To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,
compute rτ = FK(τ), set y0 = m , y1 = (rτ − m)/x mod p, and output
σ = (y0, y1).

Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the eval-
uation key ek, an arithmetic circuit f : Zn

p → Zp, and a vector σ of tags
(σ1, . . . , σn) so that σi ∈ Z

2
p (i.e., it is a tag for a degree-1 polynomial).

First, proceed exactly as in the construction of Section 3 to compute the
coefficients (y0, . . . , yd). If d = 1 (i.e., the circuit f computes a degree-1

polynomial), then return σ = (y0, y1). Otherwise, compute Λ =
∏d

i=1 h
yi

i

and return σ = Λ.
Ver(sk,m,P , σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ

be a tag of either the form (y0, y1) ∈ Z
2
p or Λ ∈ G. First, proceed as in the

construction of Section 3 to compute ρ = f(rτ1 , . . . , rτn). If the program P
computes a polynomial of degree 1, then proceed exactly as in the construc-
tion of Section 3 and check that ρ = y0 + y1 · x and y0 = m. Otherwise, use
g to check whether the following equation holds:

gρ = gm · Λ (2)

If the checks are satisfied, then output 1. Otherwise output 0.

Correctness. The correctness easily follows from the correctness of the scheme
described in Section 3 and by observing that equation (2) is essentially equivalent



350 D. Catalano and D. Fiore

to checking that ρ =
∑d

i=0 yix
i, which is the verification equation (1) in the

scheme of Section 3.

Local Composition. The above scheme satisfies an interesting property that
we call local composition. The idea is that one can keep locally the large version of
the tag, i.e., the polynomial y with its d+1 coefficients y0, . . . , yd, but still send its
compact version Λ =

∏d
i=1(g

xi

)yi to the verifier. Keeping y allows for arbitrary
composition as in the scheme of Section 3. In applications where composition
does not involve many parties, this property allows to achieve succinct tags and
local composition of partial computations at the same time.

Extension. In the full version of this paper we show an extension of this
scheme that, by using pairings, allows to further compute an additional level of
multiplications and unbounded additions on tags of the Λ form.

Security. Security follows from the following theorem (whose proof is postponed
to the full version of this paper).

Theorem 2. If F is a PRF and the (D− 1)-Diffie Hellman Inversion Assump-
tion holds in G, then the homomorphic MAC scheme described in Section 4 is
secure.
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