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Preface

These are the proceedings of Eurocrypt 2013, the 32nd annual IACR Eurocrypt
conference on the theory and applications of cryptographic techniques. The con-
ference was held May 26–30, 2013, in Athens, Greece, and sponsored by the
International Association for Cryptologic Research (IACR). The General Chair
was Aggelos Kiayias, from the University of Athens. The Eurocrypt 2013 Pro-
gram Committee (PC) consisted of 33 members. There were 202 papers submit-
ted to the conference, of which one was eventually withdrawn. Each paper was
assigned to at least three PC members, while submissions co-authored by PC
members were reviewed by at least five other PC members. Papers were refer-
eed anonymously. There were indeed a large number of high-quality submissions
and the review process was a challenge. The PC was helped by reports from
more than 250 external reviewers, producing a total of more than 670 reviews
in all. After the reviews were submitted, the PC discussed the reviews for many
weeks, before making a final decision. All of our deliberations were aided by the
Web Submission and Review Software written by Shai Halevi and the server was
hosted by IACR. We would like to thank Shai for setting up the service on the
server and helping us whenever needed.

The PC eventually selected 41 submissions for presentation during the con-
ference and these are the articles that are included in this volume. Two of the
accepted papers came from merging two pairs of submitted papers. Note that
these proceedings contain the revised versions of the selected papers. Since the
revisions were not checked again before publication, the authors (and not the
committee) bear full responsibility for the contents of their papers. The PC de-
cided to give the Best Paper Award to Sanjam Garg, Craig Gentry, and Shai
Halevi for their paper “Candidate Multilinear Maps from Ideal Lattices.” We
were greatly honored that the conference program included the 2013 IACR Dis-
tinguished Lecture talk by Eli Biham, entitled “How to Make a Difference: 25
Years of Differential Cryptanalysis,” as well as an invited lecture by the design-
ers of Keccak (Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche). We would like to thank them all for accepting our invitation and for
their contribution to the program of Eurocrypt 2013.

We wish to thank all the authors who submitted their papers. The hard
task of reading, commenting, debating, and eventually selecting the papers to
be accepted for the conference fell on the PC members. We are very grateful
to all the committee members and all external reviewers for their hard and
conscientious work. It has been a great honor to chair the PC for Eurocrypt
2013.

May 2013 Thomas Johansson
Phong Q. Nguyen



Eurocrypt 2013

General Chair

Aggelos Kiayias University of Athens, Greece

Program Chairs

Thomas Johansson Lund University, Sweden
Phong Nguyen INRIA, France and Tsinghua University,

China

Program Committee

Frederik Armknecht Universität Mannheim, Germany
Andrey Bogdanov KU Leuven, Belgium
Melissa Chase Microsoft Research, USA
Jung Hee Cheon Seoul National University, Korea
Steven Galbraith University of Auckland, New Zealand
Rosario Gennaro City College of New York, USA
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Candidate Multilinear Maps from Ideal Lattices

Sanjam Garg1,�, Craig Gentry2,��, and Shai Halevi2,��

1 UCLA
2 IBM Research

Abstract. We describe plausible lattice-based constructions with prop-
erties that approximate the sought-after multilinear maps in hard-
discrete-logarithm groups, and show an example application of such
multi-linear maps that can be realized using our approximation. The
security of our constructions relies on seemingly hard problems in ideal
lattices, which can be viewed as extensions of the assumed hardness of
the NTRU function.

1 Introduction

Bilinear maps are extremely useful tools in cryptography. After being used
to construct non-interactive key agreement [SOK00], tripartite Diffie-Hellman
[Jou00], and identity-based encryption [BF01], the applications of bilinear maps
have become too numerous to name. Boneh and Silverberg [BS03] argued that
multilinear maps would have even more interesting applications, including multi-
partite Diffie-Hellman and very efficient broadcast encryption. They attempted
to construct multilinear maps from abelian varieties (extending known tech-
niques for constructing bilinear maps), but they identified serious obstacles, and
concluded that “such maps might have to either come from outside the realm
of algebraic geometry, or occur as ‘unnatural’ computable maps arising from
geometry”.

Since then, the persistent absence of cryptographically useful multilinear maps
as not stopped researchers from proposing applications of them. For example,
Rückert and Schröder [RS09] use multilinear maps to construct efficient aggre-
gate and verifiably encrypted signatures without random oracles. Papamanthou
et al. [PTT10] show that compact multilinear maps give very efficient authen-
ticated data structures. Rothblum [Rot13] uses multilinear maps to construct

� Research conducted while at the IBM Research, T.J. Watson funded by NSF Grant
No.1017660.

�� This work was supported by the Intelligence Advanced Research Projects Activity
(IARPA) via Department of Interior National Business Center (DoI/NBC) contract
number D11PC20202. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright annota-
tion thereon. Disclaimer: The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the
U.S. Government.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 1–17, 2013.
c© International Association for Cryptologic Research 2013
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a counterexample to the conjecture that all bit-encryption schemes are KDM-
secure (secure when given bit-encryptions of the secret key).

Here, we construct multilinear maps from ideal lattices. Our multilinear maps
are “noisy” and bounded to polynomial degree. For very high degree, the “nois-
iness” overwhelms the signal, somewhat like for ciphertexts in somewhat homo-
morphic encryption schemes. In light of their noisiness, one could say that our
multilinear maps are indeed “unnatural” computable maps arising from geome-
try. Our candidate multilinear maps differ quite substantially from the “ideal”
multilinear maps envisioned by Boneh and Silverberg, in particular some prob-
lems that are hard relative to contemporary bilinear maps are easy with our
construction (see Section 4.2). Nonetheless, the multilinear analog of the de-
cision Diffie-Hellman problem appears hard in our construction, which gives
cause for optimism about its applications in cryptography. In this paper we
only demonstrate the applicability of our candidate to the “obvious” application
of multipartite Diffie-Hellman key exchange, but other applications are surly
possible.

The boundedness of our encodings has interesting consequences, both posi-
tive and negative. On the positive side, it hinders an attack based on Boneh and
Lipton’s subexponential algorithm for solving the discrete logarithm in black
box fields [BL96]. This attack cannot be used to solve the “discrete log” prob-
lem in our setting, since their algorithm requires exponentiations with expo-
nential degree. On the negative size, the dependence between the degree and
parameter-size prevents us from realizing applications such that Papamanthou
et al. [PTT10] that needs “compact” maps. Similarly, so far we were not able
to use our maps to realize Rothblum’s counterexample to the KDM-security
of bit encryption conjecture [Rot13]: That counterexample requires degree that
is polynomial, but a polynomial that is always just out of our reach of our
parameters.

The security of the multilinear-DDH problem in our constructions relies on
new hardness assumptions, and we provide an extensive cryptanalysis to validate
these assumptions. To make sure that our constructions are not “trivially” inse-
cure, we prove that our constructions are secure against adversaries that merely
run a straight-line program. We also analyze our constructions with respect to
the best known averaging, algebraic and lattice attacks. Many of these attacks
have been published before [CS97, HKL+00, Gen01, GS02, Szy03, HGS04, NR06]
in cryptanalysis of the NTRU [HPS01, HHGP+03] and GGH [GGH97] signature
schemes. We also present new attacks on principal ideal lattices, which arise
in our constructions, that are more efficient than (known) attacks on general
ideal lattices. Our constructions remain secure against all of the attacks that we
present, both old and new. However, we feel that more cryptanalysis needs to
be done, and this is partly why we have tried to write our cryptanalysis sections
as a thorough survey that will serve as a useful starting point for cryptanalysts.

A Brief Overview. Our constructions work in polynomial rings and use principal
ideals in these rings (and their associated lattices). In a nutshell, an instance of
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our construction has a secret short ring element g ∈ R, generating a principal
ideal I = 〈g〉 ⊂ R. In addition, it has an integer parameter q and another secret
z ∈ R/qR, which is chosen at random (and hence is not small).

We think of a term like gx in a discrete-log system as an “encoding” of the
“plaintext exponent” x. In our case the role of the “plaintext exponents” is played
by the elements in R/I (i.e. cosets of I), and we “encode” it via division by z in
Rq. In a few more details, our system provides many levels of encoding, where
a level-i encoding of the coset eI = e+ I is an element of the form c/zi mod q
where c ∈ eI is short. It is easy to see that such encodings can be both added
and multiplied, so long as the numerators remain short. More importantly, we
show that it is possible to publish a “zero testing parameter” that enables to
test if two elements encode the same coset at a given level, without violating
security (e.g., it should still be hard to compute x from an encoding of x at
higher levels). Namely, we add to the public parameters an element of the form
pzt = h·zκ/g mod q for a not-too-large h, and show that multiplying an encoding
of 0 by pzt (mod q) yields a small element, while multiplying an encoding of a
non-zero by pzt (mod q) yields a large element. Hence we can distinguish zero
from non-zero, and by subtraction we can distinguish two encodings of the same
element from encodings of two different elements.

Our schemes are somewhat analogous to graded algebras, hence we some-
times call them graded encoding schemes. Our schemes are quite flexible, and for
example can be modified to support the analog of asymmetric maps by using
several different z’s. On the other hand, other variants such as composite-order
groups turn out to be insecure with our encodings (at least when implemented
in a straightforward manner).

Organization. We define the general notion of encoding that we use in Section 2,
as well an abstract notion of our main hardness assumption (which is a multi-
linear analog of DDH). Then in Section 3 we provide some background on ideal
lattices, and in Section 4 we describe our construction.

Applications. In the full version [GGH12]we describe the application to multi-
partite key agreement. Using our multilinear maps [GGH+13] have provided a
construction of an attribute based encryption (ABE) scheme for general circuits.
Concurrently and independently Gorbunov, Vaikuntanathan, and Wee [GVW13]
also achieve ABE for circuits. One nice feature of their result is that they reduce
security to the Learning with Errors (LWE) problem. Goldwasser, Kalai, Popa,
Vaikuntanathan, and Zeldovich [GKP+13] show how one can use such an ABE
scheme along with fully homomorphic encryption to construct a succinct single
use functional encryption scheme. This in turn implies results for reusable Yao
garbled circuits and other applications. Subsequent to our work, using our multi-
linear maps, Garg, Gentry, Sahai, and Waters [GGSW13] constructed a witness
encryption scheme where a user’s decryption key need not be an actual “key” at
all, but rather can be a witness for some arbitrary NP relation specified by the
encrypter (the encrypter itself may not know a witness).
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2 Multilinear Maps and Graded Encoding Systems

Below we define formally our notion of a “approximate” multilinear maps, which
we call graded encoding schemes (termed after the notion of graded algebra).
Before presenting our notion, we briefly recall cryptographic multilinear maps as
defined by Boneh and Silverberg [BS03].

For κ+1 cyclic groupsG1, . . . , Gκ, GT (written additively) of the same order p,
a κ-multilinear map e : G1×· · ·×Gκ → GT is non-degenerate (in the sense that if
{gi ∈ Gi}i=1,...,κ are all generators of their respective groups, then e(g1, . . . , gκ)
is a generator of GT ), and it satisfies

e(g1, . . . , α · gi, . . . , gκ) = α · e(g1, . . . , gκ),

for any elements {gi ∈ Gi}i=1,...,κ, index i ∈ [κ] and integer α ∈ Zp. (Boneh
and Silverberg considered in [BS03] only the symmetric case G1 = · · · = Gκ,
the asymmetric case with different Gi’s was considered, e.g., by Rothblum in
[Rot13].)

Cryptographic multilinear maps come with efficient procedures for generating
parameters of such κ-multilinear map and for computing the group operation
in each group and the map itself. They also come with some hardness prop-
erties, at least the discrete logarithm must be hard in the respective groups.
Other hardness assumptions include the multilinear-DDH (MDDH) assumption
(among others), asserting that given κ+1 random elements in the source group,
it is hard to compute (or even recognize) the target-group element whose discrete
logarithm is the product of the logarithms of all these κ+ 1 elements.

2.1 Graded Encoding Schemes

The starting point for our new notion is viewing group elements in multilinear-
map schemes as just a convenient mechanism of encoding the exponent: Typ-
ical applications of bilinear (or multilinear) maps use α · gi as an “obfuscated
encoding” of the “plaintext integer” α ∈ Zp. This encoding supports limited
homomorphism (i.e., linear operations and a limited number of multiplications)
but no more. In our setting we retain this concept of a somewhat homomorphic
encoding, and have an algebraic ring (or field) R playing the role of the exponent
space Zp. However we dispose of the multitude of algebraic groups, replacing
them with “unstructured” sets of encodings of ring elements.

Perhaps the biggest difference between our setting and the setting of cryp-
tographic multilinear maps, is that our encoding is randomized, which means
that the same ring-element can be encoded in many different ways. (We do not
even insist that the “plaintext version” of a ring element has a unique represen-
tation.) This means that checking if two strings encode the same element may
not be trivial, indeed our constructions rely heavily on this check being feasible
for some encodings and not feasible for others.

Another important difference is that our system lets us multiply not only
batches of κ encodings at the time, but in fact any subset of encodings.
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This stands in stark contrast to the sharp threshold in multi-linear maps, where
you can multiply exactly κ encodings, no more and no less.

A consequence of the ability to multiply any number of encodings is that
we no longer have a single target group, instead we have a different “target
group” for any number of multiplicands. This yields a richer structure, roughly
analogous to graded algebra. In its simplest form (analogous to symmetric maps
with a single source group), we have levels of encodings: At level zero we have
the “plaintext” ring elements α ∈ R themselves, level one corresponds to α · g
in the source group, and level-i corresponds to a product of i level-1 encodings
(so level-κ corresponds to the target group from multilinear maps).

Definition 1 (κ-Graded Encoding System). A κ-Graded Encoding System

consists of a ring R and a system of sets S = {S(α)
i ⊂ {0, 1}∗ : α ∈ R, 0 ≤ i ≤

κ, }, with the following properties:

1. For every fixed index i, the sets {S(α)
i : α ∈ R} are disjoint (hence they form

a partition of Si
def
=
⋃

α S
(α)
v ).

2. There is an associative binary operation ‘+’ and a self-inverse unary opera-
tion ‘−’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every index i ≤ κ, and

every u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
i , it holds that

u1 + u2 ∈ S
(α1+α2)
i and − u1 ∈ S

(−α1)
i

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every

α1, α2 ∈ R, every i1, i2 with i1+i2 ≤ κ, and every u1 ∈ S
(α1)
i1

and u2 ∈ S
(α2)
i2

,

it holds that u1×u2 ∈ S
(α1·α2)
i1+i2

. Here α1 ·α2 is multiplication in R, and i1+i2
is integer addition.

Clearly, Definition 1 implies that if we have a collection of n encodings uj ∈ S
(αj)
ij

,

j = 1, 2 . . . , n, then as long as
∑

j ij ≤ κ we get u1 × · · · × un ∈ S
(
∏

j αj)

i1+···+in
.

Efficient Procedures, the Dream Version. To be useful, we need efficient
procedures for manipulating encodings well as as hard computational tasks. To
ease the exposition, we first describe a “dream version” of the efficient procedures
(which we do not know how to realize), and then explain how to modify them
to deal with technicalities that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the pa-
rameters λ, κ, and outputs (params,pzt), where params is a description of a
κ-Graded Encoding System as above, and pzt is a zero-test parameter for
level κ (see below).

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”

a ∈ S
(α)
0 for a nearly uniform element α ∈R R. (Note that we require that

the “plaintext” α ∈ R is nearly uniform, but not that the encoding a is

uniform in S
(α)
0 .)
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Encoding. The (possibly randomized) enc(params, i, a) takes a “level-zero” en-

coding a ∈ S
(α)
0 for some α ∈ R and index i ≤ κ, and outputs the “level-i”

encoding u ∈ S
(α)
i for the same α.

Addition and negation. Given params and two encodings relative to the same

index, u1 ∈ S
(α1)
i and u2 ∈ S

(α2)
i , we have add(params, i, u1, u2) = u1 + u2 ∈

S
(α1+α2)
i , and neg(params, i, u1) = −u1 ∈ S

(−α1)
i .

Multiplication. For u1 ∈ S
(α1)
i1

, u2 ∈ S
(α2)
i2

such that i1 + i2 ≤ κ, we have

mul(params, i1, u1, i2, u2) = u1 × u2 ∈ S
(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params, u) output 1 if u ∈ S
(0)
κ and 0 other-

wise. Note that in conjunction with the subtraction procedure, this lets us
test if u1, u2 ∈ Sκ encode the same element α ∈ R.

Extraction. This procedure extracts a “canonical” and “random” representa-
tion of ring elements from their level-κ encoding. Namely ext(params,pzt, u)
outputs (say) s ∈ {0, 1}λ, such that:

(a) For any α ∈ R and two u1, u2 ∈ S
(α)
κ , ext(params,pzt, u1) =

ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈R R, u ∈ S
(α)
κ } is nearly

uniform over {0, 1}λ.
Efficient Procedures, the Real-Life Version. Our realization of the proce-
dures above over ideal lattices uses noisy encodings, where the noise increases
with every operation and correctness is only ensured as long as it does not in-
crease too much. We therefore modify the procedures above, letting them take
as input (and produce as output) also a bound on the noise magnitude of the
encoding in question. The procedures are allowed to abort if the bound is too
high (relative to some maximum value which is part of the instance descrip-
tion params). Also, they provide no correctness guarantees if the bound on their
input is “invalid.” (When B is a noise-bound for some encoding u, we say that
it is “valid” if it is at least as large as the bound produced by the procedure that
produced u itself, and moreover any encoding that was used by that procedure
(if any) also came with a valid noise bound.) Of course we also require that these
procedure do not always abort, i.e. they should support whatever set of opera-
tions that the application calls for, before the noise becomes too large. Finally,
we also relax the requirements on the zero-test and the extraction routines. Some
more details are described next:

Zero-test. We sometime allow false positives for this procedure, but not false

negatives. Namely, isZero(params,pzt, u) = 1 for every u ∈ S
(0)
κ , but we

may have isZero(params,pzt, u) = 1 also for some u /∈ S
(0)
κ . The weakest

functionality requirement that we make is that for a uniform random choice
of α ∈R R, we have

Pr
α∈RR

[
∃ u ∈ S(α)

κ s.t isZero(params,pzt, u) = 1
]
= negligible(λ). (1)

Additional requirements are considered security features (that a scheme may
or may not possess), and are discussed later in this section.
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Extraction. Our construction from Section 4 does not support full canoni-
calization. Instead, we settle for ext(Λ,pzt, u) that has a good chance of
producing the same output when applied to different encoding of the same
elements. Specifically, we replace properties (a)-(b) from above by the weaker
requirements:
(a′) For a randomly chosen a← samp(params), if we run the encoding algo-
rithm twice to encode a at level κ and then extract from both copies then
we get:

Pr

⎡⎣ ext(params,pzt, u1)
= ext(params,pzt, u2)

:
a← samp(params)
u1 ← enc(params, κ, a)
u2 ← enc(params, κ, a)

⎤⎦ ≥ 1−negligible(λ).

(b′) The distribution {ext(params,pzt, u) : a ← samp(params), u ←
enc(params, κ, a)} is nearly uniform over {0, 1}λ.
We typically need these two conditions to hold even if the noise bound that
the encoding routine takes as input is larger than the one output by samp
(upto some maximum value).

Hardness Assumptions. Our hardness assumptions are modeled after the
discrete-logarithm and DDH assumptions in multilinear groups. For example,
the most direct analog of the discrete-logarithm problem is trying to obtain a

level-zero encoding a ∈ S
(α)
0 for α ∈ R from an encoding relative to some other

index i > 0.
The analog of DDH in our case roughly says that it is hard to recognize

encoding of products, except relative to indexes upto κ. In other words, given
κ+ 1 level-one encoding of random elements it should be infeasible to generate
a level-κ encoding of their product, or even to distinguish it from random. One
way to formalize it is by the following process. (Below we suppress the noise
bounds for readability):

1. (params,pzt)← InstGen(1λ, 1κ)
2. For i = 1, . . . , κ+ 1:
3. Choose ai ← samp(params) // level-0 encoding of random αi ∈R R
4. Set ui ← enc(params, 1, ai) // level-1 encoding of the αi’s

5. Set ã =
∏κ+1

i=1 ai // level-0 encoding of the product
6. Choose â← samp(params) // level-0 encoding of a random element
7. Set ũ← enc(params, κ, ã) // level-κ encoding of the product
8. Set û← enc(params, κ, â) // level-κ encoding of random

(We note that with the noise bound, it may be important that the encoding
routines for both ã and â get as input the same bound, i.e., the largest of the
bounds for ã and â.) The GDDH distinguisher gets all the level-one ui’s and
either ũ (encoding the right product) or û (encoding a random element), and it
needs to decide which is the case. In other words, the GDDH assumption says
that for any setting of the parameters, the following two distributions, defined
over the experiment above, are computationally indistinguishable:

DGDDH = {(params,pzt, {ui}i, ũ)} and DRAND = {(params,pzt, {ui}i, û)}.
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3 Preliminaries

Lattices. A lattice L ⊂ Rn is an additive discrete sub-group of Rn. Every
(nontrivial) lattice has bases: a basis for a full-rank lattice is a set of n linearly
independent points b1, . . . , bn ∈ L such that L = {

∑n
i=1 zibi : zi ∈ Z ∀i}. If

we arrange the vectors bi as the columns of a matrix B ∈ Rn×n then we can
write L = {Bz : z ∈ Zn}. If B is a basis for L then we say that B spans L. For
a lattice L ⊂ Rn, its dual lattice consists of all the points in span(L) that are
orthogonal to L modulo one, namely L∗ = {y ∈ span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}

Gaussians. For a real σ > 0, define the (spherical) Gaussian function on Rn

with parameter σ as ρσ(x) = exp(−π‖x‖2/σ2) for all x ∈ Rn. This generalizes
to ellipsoid Gaussians, where the different coordinates are jointly Gaussian but
not independent, where we replace the parameter σ ∈ R by the (square root
of the) covariance matrix Σ ∈ Rn×n. For a rank-n matrix S ∈ Rm×n, the
ellipsoid Gaussian function on Rn with parameter S is defined by ρS(x) = exp

(
−

πxT (STS)−1x
)
∀x ∈ Rn. Obviously this function only depends on Σ = STS

and not on the particular choice of S. It is also clear that the spherical case can
be obtained by setting S = σIn, with In the n-by-n identity matrix.

The ellipsoid discrete Gaussian distribution over lattice L with parameter S
is ∀ x ∈ L,DL,S(x) = ρS(x)/ρS(L), where ρS(L) denotes

∑
x∈L ρS(x). In other

words, the probabilityDL,S(x) is simply proportional to ρS(x), the denominator
being a normalization factor. The same definitions apply to the spherical case,
DL,σ(·).

Smoothing parameter. Micciancio and Regev defined in [MR07] the smooth-
ing parameter for a lattice L and real ε > 0, denoted ηε(L), as the smallest s
such that ρ1/s(L

∗ \ {0}) ≤ ε. Intuitively, for a small enough ε, the number ηε(L)
is sufficiently larger than L’s fundamental parallelepiped so that sampling from
the corresponding Gaussian “wipes out the internal structure” of L. It is easy to
show that the size of vectors drawn from DL,S is roughly bounded by the largest
singular value of S. (Recall that the largest and least singular values of a full
rank matrix X ∈ Rm×n are defined as σ1(X) = sup(UX) and σn(X) = inf(UX),
respectively, where UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1}.)

Lemma 1. For a rank-n lattice L, constant 0 < ε < 1 and matrix S s.t. σn(S) ≥
ηε(L), we have Pr

v←DL,S

(
‖v‖ ≥ σ1(S)

√
n
)
≤ 1+ε

1−ε · 2−n.

Sum of Discrete Gaussians. A recent work [AGHS12] considered the pro-
cess that begins by choosing “once and for all” m points in a lattice L, drawn
independently from a “wide discrete Gaussian” xi ← DL,S. Once the xi’s are
fixed, they are arranged as the rows of an m-by-n matrix X = (x1|x2| . . . |xm)T ,
and we consider the distribution DX,σ, induced by choosing an integer vector v
from a discrete spherical Gaussian over Zm with parameter σ and outputting
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y = XTv, EX,σ
def
= {XTv : v ← DZm,σ}. [AGHS12] proved that with high

probability over the choice of X , the distribution DX,σ is statistically close to
the ellipsoid Gaussian DL,σX , and moreover the singular values of X are of size
roughly σ

√
m:

Theorem 1 ([AGHS12]). Let L be a full-rank lattice L ⊂ Rn and B a ma-
trix whose rows form a basis of L, and denote χ = σ1(B)/σn(B). Also let ε
be negligible in n, and let m, s, s′ be parameters such that s ≥ ηε(Z

n), m ≥
10n log(8(mn)1.5sχ) and s′ ≥ 4mnχ ln(1/ε).

Then, when choosing the rows of an m-by-n matrix X from the spherical
Gaussian over L, X ← (DL,s)

m, we have with all but probability 2−O(m) over the
choice of X, that the statistical distance between EX,s′ and the ellipsoid Gaussian
DL,s′X is bounded by 2ε.

Lemma 2 ([AGHS12]). There exists a universal constant K > 1 such that for
all m ≥ 2n, ε > 0 and every n-dimensional real lattice L ⊂ Rn, the following
holds: Choosing the rows of an m-by-n matrix X independently at random from
a spherical discrete Gaussian on L with parameter ρ > 2Kηε(L), X ← (DL,ρ)

m,
we have

Pr
[
s
√
2πm/K < σn(X) ≤ σ1(X) < ρK

√
2πm
]
> 1− (4mε+O(exp(−m/K))).

Ideal Lattices. For n a power of two, we consider the 2n’th cyclotomic polyno-
mial ring R = Z[X ]/(Xn+1), and identify an element u ∈ R with the coefficient
vector1 of the degree-(n−1) integer polynomial that represents u. In this way, R
is identified with the integer lattice Zn. Additionally we sometimes consider also
the ring Rq = R/qR = Zq[X ]/(Xn+1) for a (large enough) integer q. Obviously,
addition in these rings is done component-wise in their coefficients, and multi-
plication is polynomial multiplication modulo the ring polynomial Xn + 1. In
some cases we also consider the corresponding number field K = Q[X ]/(Xn+1),
which is likewise associated with the linear space Qn.

For an element g ∈ R, let 〈g〉 be the principal ideal in R generated by g
(alternatively, the sub-lattice of Zn corresponding to this ideal), namely 〈g〉 =
{g · u : u ∈ R}. We call 〈g〉 an ideal lattice to stress its dual interpretation as
both an ideal and a lattice. Let B(g) denote the basis of the lattice 〈g〉 consisting
of the vectors {g, Xg, X2g, . . . , Xn−1g}.

For an arbitrary element u ∈ R, denote by [u]g the reduction of u modulo
the fundamental cell of B(g), which is symmetric around the origin. To wit, [u]g
is the unique element u′ ∈ R such that u − u′ ∈ 〈g〉 and u′ =

∑n−1
i=0 αiX

ig
where all the αi’s are in the interval [− 1

2 ,
1
2 ). We use the similar notation [t]p for

integers t, p to denote the reduction of t modulo p into the interval [−p/2, p/2).

1 Other representations of polynomials are also possible, for example representing a
polynomial by its canonical embedding is sometimes preferable to the coefficient
representation. Here we stick to coefficient representation for simplicity.
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4 The New Encoding Schemes

An instance of our basic construction is parametrized by the security parameter
λ and the required multi-linearity level κ ≤poly(λ). Based on these parameters,
we choose a cyclotomic ring R = Z[X ]/(Xn + 1) (where n is large enough to
ensure security), a modulus q that defines Rq = R/qR (with q large enough to
support functionality), and another parameter m (chosen so that we can apply
Theorem 1). The specific constraints that these parameters must satisfy are
discussed at the end of this section, an approximate setting to keep in mind is
n = Õ(κλ2), q = 2n/λ and m = O(n2).

4.1 The Basic Graded Encoding Scheme

An instance of our scheme relative to the parameters above encodes elements of
a quotient ring QR = R/I, where I is a principal ideal I = 〈g〉 ⊂ R, generated
by a short vector g. Namely, the “ring elements” that are encoded in our scheme
are cosets of the form e + I for some vector e. The short generator g itself is
kept secret, and no “good” description of I is made public in our scheme. In
addition, our system depends on another secret element z, which is chosen at
random in Rq (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e+I ∈ R/I is just a short vector
in that coset (which must exist, since the generator g is short and therefore the
basic cell of I is quite small). For higher-level encodings, a level-i encoding of the
same coset is a vector of the form c/zi ∈ Rq with c ∈ e+I short. Specifically, for
i ∈ {0, 1, . . . , κ} the set of all level-i encodings is Si = {c/zi ∈ Rq : ‖c‖ < q1/8},
and the set of levle-i encodings of the “plaintext element” e + I is S

(e+I)
i =

{c/zi ∈ Rq : c ∈ e+ I, ‖c‖ < q1/8 }. Throughout the construction we use the
size of the numerator as the “noise level” in the encoding. Namely, with each
level-i encoding c/zi we produce also an upper bound on ‖c‖.

Instance generation: (params,pzt)← InstGen(1λ, 1κ).Our instance-generation
procedure chooses at random the ideal-generator g and denominator z, as well as
several other vectors that are used in the other procedures and are described later
in the section. The denominator z is chosen uniformly at random in Rq. For tech-
nical reasons, the generator g ∈ R should be chosen so that both g and g−1 ∈ K
are short. (Recall that we denote K = Q[X ]/(Xn + 1). The reason that we need
g−1 ∈ K to be short is explained when we describe the zero-testing procedure.)We
simply draw g from a discrete Gaussian over Zn, say g← DZn,σ with σ = Õ(

√
n).

Clearly g itself is short (of size less than σ
√
n), and we claim that with good prob-

ability its inverse in the field of fractions is also rather short. To see this, notice
that with probability 1 − o(1/n), evaluating g at any complex n’th root of unity
ζ ∈ C yields g(ζ) which is not too tiny, say larger than 1/n. Hence with proba-
bility 1 − o(1) we have g−1(ζ) = 1/g(ζ) < n for all the primitive 2n’th roots of
unity ζ, which means that g−1 itself is not too large, say ‖1/g‖ < n2. We can draw
repeatedly until we get this condition to hold.
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Once we have g, z, we choose and publish some other elements in Rq that will
be used for the various procedures below. Specifically we have m + 1 elements
rand1, . . . ,xm,y that are used for encoding, and an element pzt that is used as a
zero-testing parameter. These elements are described later. finally we also choose
a random seed s for a strong randomness extractor. The instance-generation
procedure outputs params = (n, q,y, {xi}i, s) and pzt.

Sampling level-zero encodings: d← samp(params). To sample a level-zero
encoding of a random coset, we just draw a random short element in R, d ←
DZn,σ′ , where σ′ = σn (for σ that was used to sample g). Since whp σ′ ≥ η2−λ(I),
then the induced distribution over the cosets of I is close to uniform, upto a
negligible distance. Also the size of this level-zero encoding is bounded by σ′

√
n

(and we use this as our noise-bound for this encoding).

Encodings at higher levels: ui ← enc(params, i,d). To allow encoding of
cosets at higher levels, we publish as part of our instance-generation a level-
one encoding of 1 + I, namely an element y = [a/z]q where a ∈ 1 + I is short.
A simplistic method of doing that is drawing a ← D1+I,σ′ , then computing y
from a. (Later we describe a somewhat more involved procedure, which we be-
lieve is more secure.) Given a level-zero encoding d as above, we can multiply it
by y over Rq to get u1 := [yd]q. Note that u1 = [da/z]q, where da ∈ d + I as
needed, and the size of the numerator is bounded by ‖d‖ · ‖a‖ ·

√
n = poly(n).

More generally we can generate a level-i encoding as ui := [dyi]q = [dai/zi]q.
The numerator dai is obviously in d+ I, and its size is at most ‖d‖ · ‖a‖i · ni/2.

The above encoding is insufficient, however, since from u1 and y it is easy to
get back d by simple division inRq. We therefore include in the public parameters
also the “randomizers” xi, these are just random encodings of zero, namely xi =
[bi/z]q where the bi’s are short elements in I. A simplistic procedure for choosing
these randomizers would be to draw short these elements as bi ← DI,σ′ and
publish xi = [bi/z]q. As we note in the full version [GGH12], we have reasons to
suspect that this simplistic method is insecure so instead we use a somewhat more
involved sampling procedure, see details in the full version [GGH12]. Below we
denote by X the matrix with the vectors xi as rows, namely X = (x1| . . . |xm)T .
We also use B to denote the matrix with the numerators bi as rows, i.e., B =
(b1| . . . |bm)T .

We use the xi’s to randomize level-one encodings: Given u′ = [c′/z]q with
noise-bound ‖c′‖ < γ, we draw an m-vector of integer coefficients r ← DZm,σ∗

for large enough σ∗ (e.g. σ∗ = 2λγ), and output

u := [u′ +Xr]q = [u′ +
m∑
i=1

rixi]q (= [
c′ +

∑
i ribi

z
]q).

We write Br as a shorthand for
∑

i ribi and similarly Xr as a shorthand for∑
i rixi.
Since all the bi’s are in the ideal I, then obviously c′+

∑
i ribi is in the same

coset of I as c′ itself. Moreover since ‖bi‖ < poly(n) then ‖Br‖ < σ∗poly(m,n).
If indeed ‖c′‖ < γ, then ‖c′ + Br‖ < γ + σ∗poly(m,n). We also claim that
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the distribution of u is nearly independent of original u′ (except of course its
coset). To see why, note that if the bi’s are chosen from a wide enough spherical
distribution then we can use Theorem 1 to conclude that Br is close to a wide
ellipsoid Gaussian. With our choice of σ∗ the “width” of that distribution is
much larger than the original c′, hence the distribution of c′ + Br is nearly
independent of c′, except in the coset that it belongs to.

A different approach is to re-randomize y, setting y′ := y + Xr and then
encode via u1 := [y′d]q. This does not have the information-theoretic same-
distribution guarantee as above (since the distributions [y′d]q and [y′d′]q may
differ, even if d,d′ are both short and in the same coset). But on the plus
side, it is more convenient to use this re-randomization method for encoding at
high levels i > 1: After computing the randomized y′, we can use it by setting
ui := [d(y′)i]q.

Remark 1. Note that in the above description we used the matrix X to random-
ize level-one encodings. Using similar pubic parameter Xi we can generalize the
re-randomization procedure to work at any level i ≤ κ. In particular we abstract
this procedure as reRand(y, i,u′): Given u′ = [c′/zi]q with noise-bound ‖c′‖ < γ,
we draw an m-vector of integer coefficients r ← DZm,σ∗ for large enough σ∗ (e.g.
σ∗ = 2λγ), and output u := [u′+Xir]q as a re-randomized version of u. Using
the same argument as above we can conclude that the distribution generated in
this way will be independent of c′, except in the coset that it belongs to.

Note that for some applications it might be useful to use the re-randomization
operation multiple times. We consider the case in which a constant number of
re-randomizations is needed. In this case, with the �th re-randomization (for
any constant �) we can generate an encoding by choosing r from DZm,σ∗ where

σ∗ = 2λ
�

and re-randomizing as above. Since the addition and multiplication of
constant number of terms increases noise by a small factor we can claim that
each re-randomization wipes the structure that was present previously (even
with multiple additions and multiplications).

We define a canonicalizing encoding algorithm cenc	(params, i,u′) which takes
as input an encoding of u′ and generates another encoding according with a noise

factor of 2λ
�

.

Adding and multiplying encodings. It is easy to see that the encoding as
above is additively homomorphic, in the sense that adding encodings yields an
encoding of the sum. This follows since if we have many short cj ’s then their sum
is still short, ‖

∑
j cj‖ � q, and therefore the sum c =

∑
j cj = [

∑
j cj ]q ∈ Rq

belong to the coset
∑

j(cj + I). Hence, if we denote uj = cj/z ∈ Rq then each
uj is an encoding of the coset cj + I, and the sum [

∑
j uj ]q is of the form c/z

where c is still a short element in the sum of the cosets.
Moreover, since I is an ideal then multiplying upto κ encodings can be in-

terpreted as an encoding of the product, by raising the denominator to the
appropriate power. Namely, for uj = cj/z ∈ Rq as above, we have
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u =

κ∏
j=1

uj =

∏
j cj

zκ
(all the operations in Rq).

As long as the cj ’s are small enough to begin with, we still have ‖
∏

j cj‖ � q,
which means that [

∏
j cj ]q =

∏
j cj (operations in R), hence [

∏
j cj ]q belongs to

the product coset
∏

j(cj + I).
Thus, if each uj is a level-1 encoding of the coset cj + I with short-enough

numerator, then their product is a level-κ encoding of the product coset. We
note that just like level-1 encoding, level-κ encoding still offers additive
homomorphism.

Zero testing: isZero(params,pzt,uκ)
?
= 0/1. Since the encoding is additively

homomorphic, we can test equality between encodings by subtracting them and
comparing to zero. To enable zero-testing, we generate the zero-testing param-
eter as follows: We draw a “somewhat small” ring element h ← DZn,

√
q, and

the zero-testing parameter is set as pzt = [hzκ/g]q. To test if a level-κ encoding
u = [c/zκ]q is an encoding of zero, we just multiply it in Rq by pzt and check
whether the resulting element w = [pzt · u]q is short (e.g., shorter than q3/4).
Namely, we use the test

isZero(params,pzt,u) =

{
1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(2)

To see why this works, note that

w = pzt · u =
hzκ

g
· c

zκ
= h · c/g (all the operations in Rq).

If u is an encoding of zero then c is a short vector in I, which means that it
is divisible by g in R. Hence the element c/g ∈ Rq is the same as the element
c ·g−1 ∈ K, which means that it has size at most ‖c‖·‖g−1‖·

√
n = ‖c‖·poly(n).

This, in turn, implies that ‖w‖ ≤ ‖h‖ · ‖c‖ · poly(n), which for our choice of
parameter is q1/2 · q1/8 · poly(n) < q3/4.

If u is an encoding of a different coset, then c is a short vector in some
coset of I. In this case we have w = [c · h/g]q, where c,g are small (and h
is “somewhat small”). Intuitively, since h/g is large whp then for a “random
enough” c we expect the size of w to be large. More formally, we argue below
that when choosing a uniformly random coset of I = 〈g〉, there are no short
elements c in that coset such that [c · h/g]q is small.

Lemma 3. Let w = [c ·h/g]q and suppose ‖g ·w‖ and ‖c ·h‖ are each at most
q/2. Suppose 〈g〉 is a prime ideal. Then, either c or h is in the ideal 〈g〉.

Proof. Since g · w = c · h mod q, and since ‖g · w‖ and ‖c · h‖ are each at
most q/2, we have g · w = c · h exactly. We also have an equality of ideals
〈g〉 · 〈w〉 = 〈c〉 · 〈h〉, and, since 〈g〉 is a prime ideal and our cyclotomic ring is
a unique factorization domain, we have that 〈g〉 divides either 〈c〉 or 〈h〉 (or
both). The result follows.
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Lemma 4. Let n, q, σ be as in our parameter setting, suppose q = nω(1), and
consider drawing g ← DZn,σ′ subject to 〈g〉 being prime and h ← DZn,

√
q not

being in 〈g〉. Then, there is no ε > 0 and c in a nonzero coset of I such that
‖c‖ < q1/8 and ‖[c · h/g]q‖ < q1−ε.

Proof. This follows directly from Lemma 3, our parameter setting (with ‖g‖ =
poly(n)) and the fact that in the coefficient embedding ‖a · b‖ ≤ n · ‖a‖ · ‖b‖.

Extraction: s← ext(params,pzt, uκ). To extract a “canonical” and “random”
representation of a coset from an encoding u = [c/zκ]q, we just multiply by the
zero-testing parameter pzt, collect the (log q)/4−λ most-significant bits of each
of the n coefficients of the result, and apply a strong randomness extractor to
the collected bits (using the seed from the public parameters). Namely

ext(params,pzt,u) = Extracts(msbs([u · pzt]q)) (msbs of coefficient representation).

This works because for any two encodings u,u′ of the same coset we have

‖pztu− pztu
′‖ = ‖pzt(u− u′)‖ < q3/4,

so we expect pztu, pztu
′ to agree on their (log q)/4 − λ most significant bits.

(There is a negligible (in λ) chance that u and u′ are such that pztu and pztu
′

are on opposite sides of a boundary, such that they have different MSBs.) On
the other hand, by Lemma 4, we know that we cannot have ‖pzt(u−u′)‖ < q1−ε

when u − u′ encodes something nonzero, and therefore (since λ � log q/4) the
values pztu and pztu

′ cannot agree on their (log q)/4− λ MSBs.
This means, however, that no two points in the basic cell of I agree on their

collected bits when multiplied by pzt, so the collected bits from an encoding
of a random coset have min-entropy at least log |R/I|. We can therefore use
a strong randomness extractor to extract a nearly uniform bit-string of length
(say) �log |R/I|� − λ.

4.2 Security of Our Constructions

The security of our graded encoding systems relies on new, perhaps unconven-
tional assumptions, and at present it seems unlikely that they can be reduced
to more established assumptions, such as learning-with-errors (LWE) [Reg05],
or even the NTRU hardness assumption [HPS98]. Given that the construction
of multilinear maps has been a central open problem now for over a decade, we
feel that exploring unconventional assumptions for this purpose is well worth the
effort, as long as this exploration is informed by extensive cryptanalysis.

We attempted an extensive cryptanalysis of our scheme, including some new
extensions of tools from the literature that we devised in the course of this work.
These attempts are described at length in the full version [GGH12].
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Easiness of other Problems. In light of the apparent hardness of our CDH/DDH
analog, we could optimistically hope to get also the analog of other hardness
assumptions in bilinear maps, such as decision-linear, subgroup membership,
etc. Unfortunately, these problems turn out to be easy in our setting, at least
with the simple encoding methods from above.

To see why, observe that publishing level-1 encodings of 0 and 1 enables some
“weak discrete log” computation at any level strictly smaller than κ. Specifically,
consider one particular encoding of zero xj = [bj/z]q (where bj = cjg for
some cj), which is given in the public parameters together with an encoding of
one y = [a/z]q and the zero-testing parameter pzt = [hzκ/g]q. Given a level-i
encoding with 1 ≤ i � κ, u = [d/zi]q, we can multiply it by xj , pzt, and some
power of y to get

f = [u · xj · pzt · yκ−i−1]q =

[
d

zi
· cj · g

z
· hz

κ

g
· a

κ−i−1

zκ−i−1

]
q

= d · cj · h · aκ−i−1︸ ︷︷ ︸
	q

= d · cj · h︸ ︷︷ ︸
Δj

(mod I).

We stress that the right-hand-side of the equality above is not reduced modulo q.
This means that from a level-i encoding u of an element d + I, we can get a
“plaintext version” of d·Δj from some fixed Δj (that depends only on the public
parameters but not on u). This “plaintext version” is not small enough to be a
valid level-zero encoding (because Δj is roughly the size of h, so in particular
Δj >

√
q). Nonetheless, we can still use it in attacks.

For starters, we can apply the above procedure to many of the level-one en-
codings of zero from the public parameters, thereby getting many elements in
the ideal I itself. This by itself still does not yield a basis of I (since all these
elements have the extra factor of h), but in the full version [GGH12] we show
how to remove this extra factor and nonetheless compute a basis for I. This
is not a small basis of course, but it tells us that we cannot hope to hide the
plaintext space R/I itself.

Next, consider the subgroup membership setting, where we have g = g1 · g2,
we are given a level-1 encoding u = [d/z]q and need to decide if d ∈ 〈g1〉. Using
the procedure above we can get f = d ·Δj , which belongs to the ideal 〈g1〉 if d
does. Taking the GCD of the ideals 〈f〉 and I will then give us the factor 〈g1〉
with high probability. It follows that the subgroup membership problem is easy
for the encoding method above.

Finally, consider getting a matrix of elements A = (ai,j)i,j , all encoded at
some level i � κ. Using the method above we can get a “plaintext version” of
Δj · M , which has the same rank as A. Since the decision linear problem is
essentially a matrix rank problem, this means that this problem too is easy for
this encoding method.

At this point it is worth stressing again that these attacks do not seem to ap-
ply to the GDDH problem, specifically because in that problem we need to make
a decision about a level-κ encoding, and the “weak discrete log” procedure from
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above only applies to encoding at levels strictly below κ. The attacks above make
it clear that providing encodings of zero in the public parameters (in conjunction
with the zero-testing parameter) gives significant power to the adversary. One
interesting direction to counter these attacks is to find different randomization
tools that can be applied even when we do not have these encodings of zero in
the public parameters.
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Abstract. The hardness of the Learning-With-Errors (LWE) Problem
has become one of the most useful assumptions in cryptography. It ex-
hibits a worst-to-average-case reduction making the LWE assumption
very plausible. This worst-to-average-case reduction is based on a Fourier
argument and the errors for current applications of LWE must be chosen
from a gaussian distribution. However, sampling from gaussian distribu-
tions is cumbersome.

In this work we present the first worst-to-average case reduction for
LWE with uniformly distributed errors, which can be sampled very ef-
ficiently. This new worst-to-average-case connection comes with a slight
drawback and we need to use a bounded variant of the LWE problem,
where the number of samples is fixed in advance. Most applications of
LWE can be based on the bounded variant. The proof is based on a new
tool called lossy codes, which might be of interest in the context other
lattice/coding-based hardness assumptions.

Keywords: Learning-With-Errors, Worst-Case Reduction, Uniform In-
terval Error-Distribution.

1 Introduction

The Learning-with-Errors (LWE) Problem asks to recover an unknown vector
x ∈ Zn

q , given a random matrix A ∈ Zm×n
q and a noisy-codeword y = Ax + e,

where e ∈ Zm
q is chosen from an error-distribution χm. This problem has had a

significant impact in cryptography since its conception in 2005 [Reg05]. Maybe
the most intriguing feature of this problem is its worst-to-average case connec-
tion [Reg05, Pei09]. This basically allows to transform an efficient adversary
solving LWE on average, into an efficient (quantum) algorithm solving lattice
problems in the worst case. Beyond this very strong hardness-guarantee, the
problem has unmatched cryptographic versatility. It allows for IND-CPA and
IND-CCA secure encryption [Reg05, GPV08, Pei09], lossy-trapdoor functions
[PW08], (hierarchical) identity-based encryption [CHKP10, ABB10], fully ho-
momorphic encryption [BV11, BGV12, Bra12] and many more. The worst-to-
average-case reductions [Reg05, Pei09] crucially rely on the Fourier-properties of
gaussian error-distributions. This has the consequence that the cryptographic ap-
plications also need to use a gaussian error-distribution. For the above-mentioned
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encryption-schemes, sampling from a gaussian error-distribution is usually the
computationally heaviest step (which occurs mostly during key-generation). It
would thus be desirable to have a variant of the LWE problem enjoying the
same worst-to-average-case connection, but that comes with an easier-to-sample
error-distribution. Micciancio and Mol [MM11a] write:

”Can lattice-based hardness results for search LWE be extended to
noise distributions other than Gaussian? Can we show similar lattice-
based hardness results if the noise is distributed uniformly at random
modulo 2i? The latter case is very attractive from a practical viewpoint
since arithmetic modulo 2 and sampling from uniform distributions can
be implemented very efficiently.”

1.1 Our Contribution

In this work we present the first instantiation of the LWE problem with worst-to-
average case connection where the error-distribution is the uniform distribution
on a small interval [−r, r] (call this distribution U([−r, r])). In particular, set-
ting r = 2i, this answers the question of [MM11a]. Rather than proving a new
worst-to-average case reduction, we will build ours on top of existing ones. More
precisely, the gaussian error-distributions will appear in the hardness-reduction,
but not in the LWE instantiation itself. Our main-lever to achieve this is a tech-
nique which we call lossy codes. Roughly speaking, lossy codes are pseudorandom
codes that seem to be good codes. However, encoding messages with a lossy code
and adding certain errors provably annihilates the message (on average). On the
other hand, encoding the same message using a truly random code and adding
the same type of error preserves the message, i.e. the message can be recovered
information theoretically (yet not efficiently). Using a proof-strategy pioneered
by Peikert and Waters [PW08], we conclude that recovering the message when
encoding with a random code and adding noise must be computationally hard. If
this was not the case, lossy codes could be efficiently distinguished from random
codes, contradicting the pseudorandomness-property of lossy codes. The main-
part of this work is devoted to proving that a very simple construction of lossy
codes for LWE actually is lossy for the error-distribution U([−r, r]). The key-
insight for this construction is that the standard LWE problem with gaussian
error-distribution allows us to implant many very short vectors into a random
looking lattice. Our resulting worst-to-average case connection-factor for LWE
with error-distribution U([−r, r]) depends on the number of samples provided by
LWE (while those for standard LWE [Reg05, Pei09] do not). We will therefore
consider an m-bounded LWE problem LWE(n,m, q,U([−r, r])), where the num-
ber of samples m has a fixed poly(n) upper bound (rather than being arbitrary
poly(n) depending on the adversary, like in the standard LWE problem). As lossy
codes are basically an information-theoretical technique, this seems unavoidable.
However, this drawback is still quite mild compared to the super-polynomial in-
approximability assumptions made in other works [GKPV10, BV11, Bra12]. We
now state our main-theorem.
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Theorem 1 (Main Theorem). Let n be a security parameter and let σ ∈ (0, 1)
be an arbitrarily small constant. Let q = q(n) be a modulus and m = m(n) =
poly(n) be a integer with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥
2n0.5+σm. If there exists a PPT-algorithm that solves LWE(n,m, q,U([−ρq, ρq]))
with non-negligible probability, then there exists an efficient quantum-algorithm
that approximates the decision-version of the shortest vector problem (GAPSVP)
and the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in
the worst case.

Applying the search-to-decision reduction of [MM11b], we can conclude as a
corollary that the decisional variant DLWE(n,m, q,U([−ρq, ρq])) is also hard.
Finally, we believe that the notion of lossy codes might also be useful to transform
other lattice/coding-based hardness-assumptions.

1.2 Outline of the Techniques

We will briefly outline the construction and the proof of our main results. The
Learning-With-Errors Problem is basically the decoding-problem for q-ary lat-
tices: Given a randomly chosen generator-matrix A and a vector y, find the
nearest lattice point (or codeword) Ax, under the promise that y was generated
by drawing a random point from the lattice and adding an error by some spec-
ified distribution. We want to show that this decoding-problem is hard if the
error is component-wise chosen by U([−r, r]), i.e. from the uniform distribution
on some interval [−r, r]. Assume that we knew that there exists a distribution of
lossy matrices A′ such that that the decoding-problem has no unique solution
if the errors come from U([−r, r]), i.e., adding noise to a lattice-point A′x loses
information about x. If distinguishing such matrices from truly random matri-
ces is hard, we can conclude that the decoding-problem must be hard for truly
random matrices. Otherwise, given a decoder for random matrices we can distin-
guish random matrices from lossy matrices. The distinguisher samples random
challenges for the decoder. If the decoder succeeds significantly often, i.e. if it
outputs the same x that was used to sample the instance, then the given matrix
must come from the random distribution, as this behavior is impossible for the
lossy distribution. Thus, our task is to construct a distribution of lossy codes for
the error-distribution U([−r, r]). Our starting-point to find such a distribution
is the observation that the standard LWE-problem allows us to construct pseu-
dorandom matrices that generate lattices which contain many vectors that are
significantly shorter than one would expect for lattices generated by truly ran-
dom matrices. Let G ∈ Zm×n

q be component-wise chosen according to a (short)

discretized gaussian distribution Ψ̄α. We want to set the parameters α and r
such that the lattice generated by G is ”bad” on average against errors from
U([−r, r]). Put differently, if y = Gx+e, where x is chosen uniformly at random
and e is chosen from U([−r, r])m, we want that, with overwhelming probability,
there exist at least one more ”admissible” x′ �= x and e′ ∈ [−r, r]m such that
y = Gx′ + c′. As e is distributed uniformly on the volume [−r, r]m, each x′ will
have the same posterior-probability given G and y. If there is at least one such
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x′, then y statistically hides at least one bit of information about x and we can
implement the distinguisher sketched above. To make this lossy code pseudo-
random, we hide the matrix G in a bigger matrix A. This can be achieved in
a pretty standard way. Let A′ ∈ Zm×n

q be chosen uniformly at random. Define
B = (A′‖G) as the concatenation of A′ and G. B now contains the G as a sub-
matrix. Thus, B has a lossy sub-code. As having a lossy sub-code is sufficient to
be lossy, A is also lossy. We can randomize the generator-matrix B = (A′‖G)
by applying the transformation

T =

(
I T′

0 I

)
,

for a T′ ∈ Zn×n
q chosen uniformly at random. This yields the randomized gen-

erator A = BT = (A′‖A′T′ +G) for the same code. By the LWE-assumption
(for specific parameters), the matrix A is pseudorandom.

Assume that Ψ̄α is B-bounded, where B � r. We still need to show that
a matrix G chosen from Ψ̄m×n

α is (with high probability) lossy for the error-
distribution U([−r, r]). By linearity, it is sufficient to show that for an e chosen
from U([−r, r])m there exist x′ �= 0 and e′ ∈ [−r, r]m such that e = G · x′ + e′,
with high probability. Then e can be reached from either x1 = 0 or x2 = x′ �= 0
and we have established 1-bit loss (which is sufficient for the above construction).

Consider a slightly simpler problem, namely when G only consists of a single
column g. We first observe that errors e drawn from U([−r, r])m show the follow-
ing typical behavior: If we draw g according to Ψ̄m

α , then there is a substantial
chance (over the choice of g) that it holds e − g ∈ [−r, r]m. An e drawn from
U([−r, r])m has this property with high probability. To see this, note that there
are not too many components ei of e that have distance less than B from the
boundaries of the interval [−r, r]. Call a component ei with this property (i.e.
ei /∈ [−r + B, r − B]) bad. For each component ei, the probability ei is bad is
B/r. Thus, the expected number of components ei too close to the boundaries
is m · B/r, which is < 1 for an appropriate choice of m, B and r. We can use a
tail-bound for this type of Bernoulli-distribution to show that with overwhelm-
ing probability, the number of bad components ei of e is less than log(n)/2. Now
fix an e with less than log(n)/2 bad components. For each good component ei of
e, it holds that ei+ gi ∈ [−r, r] as gi is B− bounded. For all bad components ei,
the probability that ei− gi ∈ [−r, r] is at least 1/2, as Ψ̄α is symmetric and thus
there is only a 1/2 chance that gi goes the wrong way. All together, it holds that

e+g ∈ [−r, r]m with probability at least
(
1
2

)log(n)/2
= 1√

n
, which is substantial.

Now, return to the original problem. Fix an e that is typical in the above sense.
As G has n columns g1, . . . ,gn independently chosen from Ψ̄m

α , the probability
that there is at least one gi such that e−gi ∈ [−r, r]m is at least 1−e−

√
n, which

is overwhelming. Thus there exists an x′ �= 0 (which is the i-th unit-vector) such
that e = Gx′ + e′ and we are done.
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1.3 Related Work

Recently, there has been a growing interest to instantiate new LWE variants. In
[GKPV10] an LWE variant was introduced where the secret x is chosen by a
distribution with a sufficient amount of min-entropy, rather than uniformly at
random. Lyubashevsky et. al [LPR10] introduced the Ring-LWE problem and
provided a worst-to-average-case reduction from the GAPSVP problem in ideal
lattices to Ring-LWE. Applebaum et al. [AIK11] noticed, that if the LWE-
modulus q is super-polynomial, then the gaussian error-distribution can be
”overridden” by a sufficiently (super-polynomially) wider rectangular uniform
distribution. This however requires the underlying worst-case lattice-problems
to be hard to approximate to within a super-polynomial factor. In [BPR12]
an LWE-variant called Learning-With-Rounding (LWR) was introduced. LWR-
samples are of the form (a, �〈a,x〉 · p/q�) (for two moduli p and q). Remarkably,
the problem inherits the worst-to-average case connection from the correspond-
ing standard LWE problem modulo q, without making use of a gaussian error-
distribution by itself. To establish worst-case hardness of LWR, [BPR12] need to
assume that the underlying worst-case lattice-problems are hard to approximate
to within a super-polynomial factor. Bellare et al. [BKPW12] construct identity-
based lossy trapdoor functions based on the hardness of the decisional-linear
problem and LWE. The LWE-based construction of lossy trapdoor functions in
[BKPW12] has some similarities with the lossy-codes construction in this work,
though the technical details and analysis are incomparable. Finally, Pietrzak
[Pie12] gave an adaptively secure instantiation of LWE called Subspace-LWE,
where the adversary is allowed to learn inner products of the secret x after it
has been projected on an adversarially chosen subspace.

1.4 Concurrent Independent Work

Concurrently and independently of our work, Micciancio and Peikert [MP13]
established a worst-case connection for LWE with short uniform errors. Specif-
ically, [MP13] shows that a family of instantiations of LWE with short uniform
errors, at most linear number of samples and polynomial modulus are as hard
as approximating standard worst-case lattice problems to withing a factor of
Õ(
√
nq). For instance, their result can be instantiated with binary errors and

n · (1 +Ω(1/ log(n))) samples or polynomial errors (nε for some small ε) and a
linear number of samples (m = (1 + ε/3)n).

The main similarity of [MP13] and our work is on a conceptual level. In both
[MP13] and our work a lossiness-argument is essential to establish the main re-
sult. To prove their result, Micciancio and Peikert restate the LWE problem in
terms of SIS (Short Integer Solution) functions. This formulation states that,

given a randomly drawn SIS-function H ∈ Z
(m−n)×m
q and y = Hx, where x is

drawn from an input-distribution χn, it is hard to find x. They establish lossiness
of a pseudorandom SIS function-family by counting the number of elements in
the image of functions H chosen from that family (on average). For appropriate
parameter-choices, they can conclude that the image H(X) contains noticeably
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fewer elements than the domain X , thus H must be lossy for the uniform distri-
bution on its domain X .

For comparison, in the language of [MP13] our results might be restated as
follows. We first construct pseudorandom SIS-functions H with domain [−r, r]m
that have short vectors g1, . . . ,gk (drawn from a gaussian distribution) in their
kernel. Next, we show that elements e randomly chosen from [−r, r]m are well
behaved in the sense that (with overwhelming probability) there exists a gi such
that e+gi ∈ [−r, r]m. Thus, e and e+gi form a collision for H (as H(e+gi) =
He+Hgi = He) and we conclude that H loses at least 1-bit of information on
the uniform distribution on [−r, r]m.

2 Preliminaries

We will use the notation (A‖B) for the horizontal concatenation of two matrices
A and B and (x,y) for the vertical concatenation of two vectors x and y. Let
sgn(x) be the signum-function, i.e. sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0
and sgn(x) = 0 if x = 0. We denote computational indistinguishability of two
distributions X and Y by X ≈c Y.

2.1 Norms

We will use the ‖ · ‖2- and the ‖ · ‖∞-norm in this work. The ‖ · ‖2-norm on Rn

is defined by ‖x‖2 =
√∑n

i=1 x
2
i , the ‖ · ‖∞-norm on Rn is defined by ‖x‖∞ =

maxi=1,...,n |xi|. Norms ‖ · ‖ are multiplicative and obey the triangle-inequality,
i.e. for all x,y ∈ Rn and α ∈ R it holds that ‖αx‖ = |α|‖x‖ and ‖x + y‖ ≤
‖x‖+ ‖y‖. The set C = {x ∈ Rn|‖x‖∞ ≤ r} forms a hypercube of dimension n,
i.e. C = [−r, r]n.

2.2 Min-Entropy

Let χ be a probability distribution with finite support and let X be distributed
according to χ. Define the min-entropy as H∞(X) = − log(maxξ(Pr[X = ξ])).
Let Y be random-variable (possibly correlated with X) and let ỹ be a measure-
ment or outcome of Y . The conditional min-entropy H∞(X |Y = ỹ) is defined
as H∞(X |Y = ỹ) = − log(maxξ(Pr[X = ξ|Y = ỹ])). Instead of using the condi-
tional average min-entropy [DORS08], we will directly derive laws of the form
Prỹ[H∞(X |Y = ỹ) ≥ δ] ≥ 1 − ε, i.e. H∞(X |Y = ỹ) is at least δ, except with
probability ε over the choice of the measurement ỹ. This will enable a more fine-
grained analysis of the lossiness of our constructions (the average conditional
min-entropy H̃∞(X |Y ) would be lower-bounded by H̃∞(X |Y ) ≥ − log(2−δ + ε),
i.e. it compresses δ and ε into one scalar).

2.3 Binomial Distributions

Let Xi ∈ {0, 1} for i = 1, . . . , n be iid. random variables with Pr[Xi = 1] = p.
Then X =

∑n
i=1Xi is binomially distributed with Pr[X = k] =

(
n
k

)
pk(1−p)n−k.
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The binomial-distribution assumes its maximum at an index kmax = �p(n+1)�.
The tails of a binomial-distribution can be bounded by the Chernoff-bound,
which states that Pr[X ≤ (1 − δ)E[X ]] ≤ e−δ

2E[X]/2, where the expectation is
E[X ] = p · n

2.4 Gaussian Distributions

We denote Φs the normal-distribution with variance s2/(2π), i.e. if X is dis-
tributed according to Φs, then X has the probability-density function pX(x) =

e−πx
2/s2/s. A standard tail-bound for Gaussians is Pr[|X | > t · s] < e−πt

2

. Fol-
lowing [Reg05], we denote by Ψ̄α the discretized gaussian distribution over Z (or
Zq) with variance (αq)2/(2π), where q is given by the context. More precisely,
Ψ̄α is sampled by taking a sample from Φαq and rounding it to the nearest inte-
ger. Let Y be distributed according to Ψ̄α, i.e. let Y = �X� with X distributed
by Φαq . If tαq ≥ 2, we can derive the tail-bound Pr[|Y | > tαq] ≤ Pr[|X | >
tαq − 1] ≤ Pr[|X | > tαq/2] ≤ e−πt

2/4.

2.5 Lattices

Let B ∈ Zm×n be a full rank-matrix. The lattice Λ(B) is defined as Λ(B) =
{Bx ∈ Zm : x ∈ Zn}, i.e. the lattice Λ(B) is the set of all integer-linear com-
bination of columns of B. Let q ≥ 2 be an integer. The q-ary lattice Λq(B) is
defined as Λq(B) = {y ∈ Zm : ∃x ∈ Zn : y ≡ Bx mod q}. Observe that the
lattice Λq(B) contains qZm as a sublattice, therefore Λq(B) is always full-rank.
Moreover, it holds that Λ(B) ⊆ Λq(B), as x ∈ Λq(B), for each x ∈ columns(B).

We will generally assume that elements of Zq are given in the central residue-
class representation, i.e. if x′ ∈ Zq, we will identify x′ = x mod q with an
integer x in {−�q/2�, . . . , �q/2� − 1}. We can thus generically lift x′ from Zq

to Z. Moreover, with this we can define a meaningful ”norm” on Zq by ‖x
mod q‖∞ = ‖x‖∞.

2.6 Learning-With-Errors

As mentioned above, we will consider an m-bounded LWE-problem, where the
adversary is given m(n) = poly(n) samples (which we can write conveniently in
matrix-form).

Problem 1. m-bounded LWE Search-Problem, Average-Case Version. Let
n be a security parameter, let m = m(n) = poly(n) and q = q(n) ≥ 2 be integers
and χ be a distribution on Zq. Let x ∈ Zn

q be chosen uniformly at random, let
A ∈ Zm×n

q be chosen uniformly at random an let e be chosen according to χm.
The goal of the LWE(n,m, q, χ) problem is, given (A,Ax + e), to find x.

We remark that most cryptographic applications of the LWE problem require
only an a-priori fixed number of samples. For those applications, the formu-
lation of Problem 1 poses no restriction. The notable exception to this are the
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KDM-secure encryption scheme in [ACPS09] and the pseudorandom functions in
[BPR12]. For both schemes the number of LWE-samples required is determined
adversarially. Regev [Reg05] and Peikert [Pei09] established worst-to-average-
case connections between worst-case lattice problems and Problem 1 for suitable
parameter-choices. For our construction, we will rely on the theorem of Regev
[Reg05].

Theorem 2 (Worst-to-Average Case Reduction [Reg05]). Let n be a se-
curity parameter and q = q(n) be a modulus, let α = α(n) ∈ (0, 1) be such
that αq > 2

√
n. If there exists a PPT-algorithm solving LWE(n,m, q, Ψ̄α) with

non-negligible probability, then there exists an efficient quantum-algorithm that
approximates the decision-version of the shortest vector problem (GAPSVP) and
the shortest independent vectors problem (SIVP) to within Õ(n/α) in the worst
case.

The LWE distinguishing-problem DLWE asks to distinguish the distribution of
Problem 1 from uniform random. Thus, the hardness of the DLWE problem states
that the LWE-distribution is pseudorandom.

Problem 2. m-bounded LWE Distinguishing-Problem Let n be a security
parameter, let m = m(n) = poly(n) and q = q(n) ≥ 2 be integers and χ be a
distribution on Zq. Let x ∈ Zn

q be chosen uniformly at random, let A ∈ Zm×n
q

be chosen uniformly at random an let e be chosen according to χm. The goal of
the DLWE(n,m, q, χ) problem is, given (A,y), to decide whether y is distributed
by Ax+ e or chosen uniformly at random from Zm

q .

There are several search-to-decision reductions basing the hardness of Problem 2
on the hardness of Problem 1 [Reg05, Pei09, MP12, MM11b]. The one most suit-
able for our instantiation is due to Micciancio and Mol [MM11a, MM11b]. Their
search-to-decision reduction works for any error-distribution χ and is sample-
preserving (i.e. the distinguisher requires the same amount of samples as the
search-adversary).

Theorem 3 (Search-to-Decision [MM11b]). Let q = q(n) = poly(n) be
a prime modulus and let χ be any distribution over Zq. Assume there exists
a PPT-distinguisher D that distinguishes DLWE(n,m, q, χ) with non-negligible
advantage, then there exists a PPT-adversary A that inverts LWE(n,m, q, χ)
with non-negligible success-probability.

Finally, we need a matrix-version of Problem 2. The hardness of the matrix-
version can be easily established using a hybrid-argument (see e.g. [ACPS09]).

Lemma 1. Let m(n), k(n) = poly(n). Assume that DLWE(n,m, q, χ) is pseu-
dorandom. Then the distribution (A,AX + E) is also pseudorandom, where
A ∈ Zm×n

q and X ∈ Zn×k
q are chosen uniformly at random and E is chosen

according to Ψ̄m×k
α .
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3 Lossy Codes

In this section, we introduce the main technical tool of this work, lossy codes,
and show that the existence of lossy codes implies that the associated decoding
problems for random codes are hard.

Definition 1 (Families of Lossy Codes). Let n be a security parameter, let
q = q(n) be a modulus, let m = m(n) = poly(n) and γ = γ(n). Let {Cn,m,q}
be a family of distributions where Cn,m,q is defined on Zm×n

q and let χ be a
distribution on Zq. Finally, let U(Zm×n

q ) be the uniform distribution on Zm×n
q .

We say that {Cn,m,q} is γ-lossy for the error-distribution χ, if the following 3
properties hold.

1. Cn,m,q is pseudorandom: It holds that Cn,m,q ≈c U(Zm×n
q ).

2. Cn,m,q is lossy: Let A be distributed according to Cn,m,q, y = A · x̃ + ẽ
(where x̃ is chosen uniformly from Zn

q and ẽ is distributed according to χm),
let x be chosen uniformly from Zn

q and let e be chosen according to χm. Then
it holds that Pr(A,y)[H∞(x|Ax + e = y) ≥ γ] ≥ 1− negl(n).

3. U(Zm×n
q ) is non-lossy: Let A be distributed according to U(Zm×n

q ), y =
A · x̃+ ẽ (where x̃ is chosen uniformly from Zn

q and ẽ is distributed according
to χm), let x be chosen uniformly from Zn

q and let e be chosen according to
χm. Then it holds that Pr(A,y)[H∞(x|Ax + e = y) = 0] ≥ 1− negl(n).

Remark. Notice that while we require the error-distribution χ to be efficiently
samplable, we do not require the distribution Cn,m,q of lossy codes to be effi-
ciently samplable. In our construction in the next section however, Cn,m,q will
be efficiently samplable.

Our main motivation for defining lossy codes is proving that the decoding-
problem of recovering x given a matrix A and a noisy codeword Ax+ e, where
A and x are chosen uniformly and e is chosen from χm, is computationally
hard, even though x is information-theoretically (with overwhelming probability)
uniquely defined.

Theorem 4. Let n be a security-parameter, let m = m(n) = poly(n) and let
q = q(n) be a modulus. Let the distribution χ on Zq be efficiently samplable.

1. Let χ be a uniform distribution with efficiently decidable support. Then the
problem LWE(n,m, q, χ) is hard, given that there exists a family of 1-lossy
codes Cn,m,q ∈ Zm×n

q for the error-distribution χ.
2. Let γ = γ(n) = ω(log(n)). Then LWE(n,m, q, χ) is hard, given that there

exists a family of γ-lossy codes Cn,m,q ∈ Zm×n
q for the error-distribution χ.

Proof. First notice that due to the non-lossiness property of U(Zm×n
q ), instances

of LWE(n,m, q, χ) have a unique solution, except with negligible probability. For
contradiction, let A be a PPT-adversary that solves LWE(n,m, q, χ) with non-
negligible probability ε.

We will begin with the first statement of the theorem. Using A, we will
construct a PPT-distinguisher D that distinguishes Cn,m,q and U(Zm×n

q ) with
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non-negligible advantage. Say that a solution x for an instance (A,y) is valid,
if y −A · x is in the support of the error-distribution χ.

There are two different behaviors that algorithm A could exhibit when receiv-
ing inputs of the form (A,y), where A is chosen from Cn,m,q and y = Ax + e.
In the first case, the probability that A outputs a valid solution x is negligible.
In the second case, there exists a non-negligible ε′ such that the probability that
A outputs a valid solution x with probability at least ε′.

In the first case we can construct D as follows. Let A ∈ Zm×n
q be D’s input.

It first samples x uniformly at random, samples e according to χm and sets
y = Ax + e. It then runs A on input (A,y). If A outputs x, D outputs 1,
otherwise D outputs 0. Clearly, if A is chosen according to U(Zm×n

q ), then A
recovers x with probability at least ε. On the other hand, ifA is chosen according
to Cn,m,q, then A recovers x only with negligible probability. Thus it holds that
Adv(D) = |Pr[D(U(Zm×n

q )) = 1]−Pr[D(Cn,m,q) = 1]| = ε(n)− negl(n), which is
non-negligible.

In the second case, we construct D differently. Let A ∈ Zm×n
q be D’s input.

D samples x uniformly at random, e according to χm and sets y = Ax + e. It
then runs A on input (A,y). If A outputs an x′ �= x such that e′ = y−Ax′ is in
the support of χm, it outputs 1, otherwise 0. First, observe that such a collision
x′ �= x cannot exist (except with negligible probability) if A is chosen according
to the uniform distribution U(Zm×n

q ). This is due to the non-lossiness property
of U(Zm×n

q ). On the other hand, consider that A is chosen according to Cn,m,q.
Then it holds (with overwhelming probability) that H∞(x|Ax + e = y) ≥ 1.
Thus it holds (even for an unbounded A) that A outputs the same x that was
chosen by D with probability at most 1/2, conditioned that A outputs a valid
x. Thus, conditioned that A gives a valid output, there is a chance of 1/2 that
A outputs a valid x′ �= x. As A gives a valid output with probability at least
ε′, A outputs a collision x′ with probability at least ε′/2. Thus D distinguishes
U(Zm×n

q ) from Cn,m,q with advantage at least ε′/2, which is non-negligible.
We now turn to the second statement of the theorem. In this case the con-

struction of the distinguisher D is straightforward. Let A ∈ Zm×n
q be D’s input.

As before, D samples x uniformly at random, e according to χm, sets y = Ax+e
and runs A on input (A,y). If A outputs x it outputs 1, otherwise 0. Again, if
A was chosen from U(Zm×n

q ), then A outputs x (which is in this case unique)
with probability at least ε. On the other hand, if A comes from the distribution
Cn,m,q, then A finds x with probability at most 2−H∞(x|Ax+e=y) ≤ 2−γ(n) (this
holds with overwhelming probability in the choice of A and y), which is negli-
gible (as γ(n) = ω(log(n))). All together, D distinguishes U(Zm×n

q ) from Cn,m,q

with advantage at least ε− 2−γ , which is non-negligible.

4 Construction of Lossy Codes for Uniform Errors from
Standard-LWE

We will now provide the details of the construction outlined in Section 1.2.
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Construction 1. Let n be a security parameter, let q = q(n) be a modulus,
m = m(n) = poly(n) and k = k(n) ≤ n. The distribution Cn,m,q,k,α defined

on Zm×n
q is specified as follows. Choose A′ ∈ Z

m×(n−k)
q uniformly at random,

choose T′ ∈ Z
(n−k)×(n−k)
q uniformly at random and sample G ∈ Zm×k

q from

Ψ̄m×k
α . Output A = (A′‖A′T′ +G).

We will show that, for certain parameter choices, Construction 1 yields a lossy
code for the error-distribution U([−r, r]). The pseudorandomness of the distribu-
tion Cn,m,q,k,α can be established directly from Lemma 1, assuming the hardness
of LWE(n,m, q, Ψ̄α).

Lemma 2. Let n be a security-parameter, let q = q(n) be a modulus, let m =
m(n) = poly(n), let k = �βn� for some constant β ∈ (0, 1) and let α = α(n) ∈
(0, 1) with αq ≥ 2

√
n. Assuming that LWE(n,m, q, Ψ̄α) is hard, it holds that

Cn,m,q,k,α ≈c U(Zm×n
q ).

The non-lossiness of the truly random distribution U(Zm×n
q ) can be established

by a simple Gilbert-Varshamov-type argument.

Lemma 3. Let n be a security parameter, let τ > 0 be a constant, r = poly(n),
q > (4r+1)1+τ and m > (1 + 2/τ)n. Let A be chosen from U(Zm×n

q ). Then the
shortest vector of the lattice Λq(A) has length (in the ‖ · ‖∞-norm) greater than
2r, except with negligible probability. Thus it holds that Pr(A,y)[H∞(x|Ax+ e =
y) = 0] ≥ 1− negl(n).

Proof. Let A ∈ Zm×n
q be chosen uniformly at random. Clearly, it holds that

H∞(x|Ax + e = y) = 0 if the length of the shortest vector in Λq(A) (in the
‖·‖∞-norm) is greater than 2r. Now fix a vector x �= 0 ∈ Zn

q . Then the vectorA·x
is distributed uniformly at random in Zm

q . Thus it holds that PrA[‖A · x‖∞ ≤
2r] ≤

(
4r+1
q

)m
. Thus, a union-bound yields that Pr[∃x �= 0 ∈ Zn

q : ‖Ax‖∞ ≤
r] ≤ (4r+1)m

qm−n . This expression is negligible whenever (m−n) log(q)−m log(4r+

1) > ω(log(n)). This is certainly the case if r = poly(n), q > (4r + 1)1+τ and
m > (1 + 2/τ))n for some constant τ > 0.

We now turn to showing that Cn,m,q,k,α fulfills the lossiness-requirement.

Definition 2. We say that a vector y ∈ Zm
q is N -ambiguous for a matrix A

and a distance r, if |{x ∈ Zn
q |‖y −A · x‖∞ ≤ r}| ≥ N . If A and r are clear by

context, we just say that y is N -ambiguous.

Notice that if y is N -ambiguous, then for every z ∈ Zn
q by linearity it holds that

y+Az is also N -ambiguous. Since we want to establish lossiness for the uniform
distribution U([−r, r]), counting the number of possible preimages is sufficient,
as each preimage is equally likely. This is formalized in the following lemma.
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Lemma 4. Let n be a security parameter, let q = q(n) be a modulus and let
r = r(n) and N = N(n). Fix a matrix A ∈ Zm×n

q . Let y ∈ Zm
q be N -ambiguous

for the matrix A and distance r. Let x ∈ Zn
q be chosen uniformly at random and

e be distributed according to U([−r, r])m. Then it holds that H∞(x|Ax + e =
y) ≥ log(N).

Proof. Since x and e are drawn from uniform distributions, p := Pr[x = x̃, e = ẽ]
is the same for all x̃ ∈ Zn

q and ẽ ∈ [−r, r]m. Let X := {z ∈ Zn
q |‖y −Az‖ ≤ r}.

As y is N -ambiguous it holds that |X | ≥ N , thus

Pr[Ax+e = y] =
∑
z∈Zn

q

Pr[Ax+e = y,x = z] =
∑
z∈X

Pr[e = y−Az,x = z] ≥ p·N.

Thus it holds for all z ∈ Zn
q that

Pr[x = z|Ax + e = y] =
Pr[x = z,Ax+ e = y]

Pr[Ax+ e = y]
≤ 1

N
.

This immediately implies H∞(x|Ax + e = y) ≥ log(N), which concludes the
proof.

The following lemma shows that if we sample e from U([−r, r])m, then with
overwhelming probability e is such that if we add a sample g from an appropri-
ately bounded distribution χm, e − g is, with substantial probability over the
choice of g, also in [−r, r]m. Say that a distribution χ is strictly B-bounded if
the support of χ is contained in [−B,B].

Lemma 5. Let n,m,B > 0 be integers, let r > (m+1)B and let ε < 1/2. Let χ
be a strictly B-bounded symmetrical distribution on Z. Let e be chosen uniformly
at random from [−r, r]m and let g be distributed according to χm. Then it holds
that

Pr
e

[
Pr
g
[‖e− g‖∞ ≤ r] ≥ ε

]
≥ 1−m · εlog(r/(m·B)).

Proof. We will first bound the probability that it holds for more than k =
�− log(ε)� components ei of e that |ei| > r−B, i.e. that ei is not in the interval
[−r + B, r − B]. For i = 1, . . . ,m let Zi be a random-variable that is 1 if |ei| >
r − B and 0 otherwise. As e1, . . . , em are iid., Z1, . . . , Zm are also iid. Thus let
p = Pr[Z1 = 1] = · · · = Pr[Zm = 1]. As e1 is distributed by U([−r, r]) and
p = Pr[Z1 = 1] = Pr[|e1| > r − B] it holds that (B − 1)/r ≤ p ≤ B/r. Set
Z =

∑m
i=1 Zi. Clearly, Z is the number of components of e that are not in the

interval [−r + B, r − B] and it is binomially distributed. We can bound the
probability Pr[Z > k] by

Pr[Z > k] =

m∑
i=k+1

(
m

i

)
pi(1− p)m−i

(1)

≤ m

(
m

k + 1

)
︸ ︷︷ ︸
≤mk+1

pk+1︸︷︷︸
≤(B/r)k+1

(1− p)m−k−1︸ ︷︷ ︸
≤1

≤ m ·
(
m · B
r

)k+1
(2)
< m ·

(
m · B
r

)− log(ε)

= m · εlog(r/(m·B)).
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Inequality (1) holds, as
(
m
i

)
pi(1 − p)m−i is monotonically decreasing for i ≥

�(m+ 1)p� ≥ �(m + 1)(B − 1)/r� = 0. Inequality (2) holds as m · B/r < 1 and
k + 1 > − log(ε).

Now, fix an e and assume that it holds that it holds for at most k components
ei1 , . . . , eik of e that |eij | > r−B. Let i ∈ {i1, . . . , ik}. If sgn(gi) = sgn(ei), then
it holds that |ei − gi| = |ei| − |gi| ≤ |ei| ≤ r. As χ is a symmetrical distribution,
it holds that Pr[sgn(gi) = sgn(ei)] ≥ 1

2 . Therefore, it holds that Pr[|ei − gi| ≤
r] ≥ 1

2 . For all other indexes j /∈ {i1, . . . , ik} it holds that |ej | ≤ r − B. The
triangle-inequality yields |ej − gj | ≤ |ej |+ |gj | ≤ r − B + B = r. Therefore, we
have that Pr[|ej − gj | ≤ r] = 1. Putting this together, we get that

Pr[‖e− g‖∞ ≤ r] =

m∏
i=1

Pr[|ei − gi| ≤ r] ≥ 2−k ≥ ε.

All together, it holds that

Pr
e
[Pr
g
[‖e− g‖∞ ≤ r] ≥ ε] ≥ 1−m · εlog(r/(m·B)),

which concludes the proof.

We can now show that Construction 1 also suffices the lossiness-condition, for
appropriate parameters.

Lemma 6. Let n be a security-parameter, let m = m(n) = poly(n), let k =
k(n) = �βn� for some constant β ∈ (0, 1) and let c ∈ (0, 1) be a constant. Let
q = q(n) be a modulus, α = α(n) ∈ (0, 1), let B = B(n) and assume that
the distribution Ψ̄α is B-bounded, except with negligible probability. Finally let
r = r(n) > 0 be such that r ≥ m ·Bnc.

Let G be chosen according to Ψ̄m×k
α , let the matrix A′ be distributed according

to U(Zm×(n−k)
q ), T′ be distributed according to U(Z(n−k)×(n−k)

q ) and let A =
(A′‖A′T′ + G). Let y = Ax′ + e′, with x′ chosen uniformly from Zn

q and
e′ chosen from U([−r, r])m. Also let x be chosen uniformly from Zn

q and e be
chosen from U([−r, r])m. Then it holds that Pr(A,y)[H∞(x|Ax + e = y) ≥ 1] ≥
1− negl(n).

Proof. Assume first that G was chosen from χm×k, where χ is a symmetrical
strictly B-bounded distribution. Fix an e′ with Prg[‖e′−g‖∞ ≤ r] ≥ n−c, where
g is distributed according to χm. Let g1, . . . ,gk be the columns of G, thus each
gi is distributed according to χm. We first show that e′ is 2-ambiguous for the
matrix G and distance r with high probability over the choice of G. If there is
at least one column gi of G such that ‖e′ − gi‖∞ ≤ r, then ‖e′ −Gx(i)‖∞ ≤ r
(where x(i) is the i-th unit vector) and we have that e′ is 2-ambiguous. Here
x1 = 0 and x2 = x(i) are two different points satisfying ‖e′ −G · x‖∞ ≤ r.

The probability of the event that it holds for all i = 1, . . . , k that ‖e′ −
gi‖∞ > r is at most (1 − n−c)k ≤ e−k·n

−c ≤ e−β·n
1−c

. Thus we have that

Pr[e′ 2-ambiguous for G] ≥ 1 − e−βn
1−c

. The same holds for the matrix
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A = (A′‖A′T′ +G), as we can obtain A from G by appending extra columns
and applying a basis-change. Both operations straightforwardly do not decrease
the ambiguity. Therefore it holds Pr[e′ 2-ambiguous for A] ≥ 1− e−βn

1−c

Now let e′ be distributed by U([−r, r])m. It holds that r ≥ m·B ·nc > (m+1)B
and ε := n−c < 1/2 for sufficiently large n. Thus the above and Lemma 5 imply

that Pre′ [PrA[e′ 2-ambiguous for A] ≥ 1− e−βn
1−c

] ≥ 1−m · n−c·log(r/(m·B)) =

1 −m · n−c2 log(n). This immediately yields PrA,e′ [e′ 2-ambiguous for A] ≥ 1 −
e−βn

1−c −m · n−c2 log(n) = 1 − negl(n). By linearity, this holds also if we shift
e′ by Ax′ for any x′ ∈ Zn

q . Thus we get PrA,y[y 2-ambiguous for A] ≥ 1 −
negl(n). Now, since Ψ̄α is statistically close to symmetrical strictly B-bounded
distribution χ (which can be sampled by rejecting samples of Ψ̄α greater than
B), this probability drops at most by a negligible amount if we sample G from
Ψ̄m×k
α . Applying Lemma 4 yields Pr(A,y)[H∞(x|Ax+ e = y) ≥ 1] ≥ 1− negl(n),

which concludes the proof.

We will summarize the statements of Lemmas 2, 3 and 6 in the following theorem.

Theorem 5. Let n be a security-parameter and let σ ∈ (0, 1), β ∈ (0, 1) and
τ ≥ 1 be constants. Let q = q(n), m = m(n) = poly(n), k = �βn�, α = α(n) ∈
(0, 1) and r = r(n) be such that the following holds

– m ≥ (1 + 2/τ)n
– r ≥ 2mn0.5+σ

– q > (4r + 1)τ

– 2
√
n ≤ αq ≤ r

mnσ

Then the distribution Cn,m,q,k,α given in Construction 1 is 1-lossy for the error-
distribution U [−r, r], provided that LWE(n,m, q, Ψ̄α) is hard.

Proof. It is straightforward that this parameter-set satisfies the requirements of
Lemmas 2 and 3, thus both lemmas holds. A gaussian tail-bound yields that Ψ̄α
is B = αqnσ/2-bounded, except with probability e−πn

σ/4, which is negligible.
Item 4 above implies that r ≥ mnσαq = mBnσ/2, thus setting c = σ/2 we can
apply Lemma 6 and the claim follows.

4.1 LWE with Uniform Errors

Using Theorems 4 and 5 we can translate the worst-case connection for standard-
LWE (Theorem 2) to LWE with uniform errors. For simplicity, we will set τ = 1,
β = 1/2 and r = ρ · q, for a parameter ρ = ρ(n) ∈ (0, 1/10).

Theorem 6 (Main Theorem). Let n be a security parameter and let σ ∈ (0, 1)
be an arbitrarily small constant. Let q = q(n) be a modulus and m = m(n) =
poly(n) be a integer with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥
2n0.5+σm. If there exists a PPT-algorithm that solves LWE(n,m, q,U([−ρq, ρq]))
with non-negligible probability, then there exists an efficient quantum-algorithm
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that approximates the decision-version of the shortest vector problem (GAPSVP)
and the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in
the worst case.

Proof. Set α = α(n) = ρ
mnσ . Then the requirements of Theorem 5 are fulfilled:

– For τ = 1 it holds that m ≥ 3n
– r = ρq ≥ 2mn0.5+σ

– q > 4r+1 is equivalent to r < (q− 1)/4, which holds for r = ρq < q/10 and
q ≥ 2.

– αq = ρq
mnσ ≥ 2

√
n and αq = ρq

mnσ = r
mnσ .

Thus by Theorem 5 there exists a 1-lossy code C for the error-distribution
U([−ρq, ρq]), provided that LWE(n,m, q, Ψ̄α) is hard. The uniform distribution
U([−ρq, ρq])m clearly has efficiently decidable support, and so the first state-
ment of Theorem 4 yields that LWE(n,m, q,U [−ρq, ρq]) is at least as hard as
LWE(n,m, q, Ψ̄α). Thus, setting α = ρ

mnσ the claim follows by Theorem 2.

Using the search-to-decision reduction of Theorem 3, we can establish the hard-
ness of the decisional LWE problem with error-distribution U([−ρq, ρq]). We
therefore need to restrict q to be a polynomially small prime integer.

Corollary 1. Let n be a security parameter and let σ ∈ (0, 1) be an arbitrarily
small constant. Let q = q(n) be a modulus and m = m(n) = poly(n) be a integer
with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥ 2n0.5+σm. If there
exists a PPT-distinguisher that distinguishes DLWE(n,m, q,U([−ρq, ρq])) with
non-negligible advantage, then there exists an efficient quantum-algorithm that
approximates the decision-version of the shortest vector problem (GAPSVP) and
the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in the
worst case.

5 Conclusion

This work presented the first worst-to-average-case reduction for an LWE vari-
ant with polynomial modulus and uniformly distributed errors, thereby answer-
ing a question from Micciancio and Mol from Crypto 2011. The factor of this
worst-to-average-case connection depends on the number of samples given to the
adversary and we have to use a bounded LWE assumption where this number is
fixed in advance. Overcoming this limitation poses an interesting open problem.
The main ingredient in our proof is a new tool called lossy codes, i.e., codes which
lose information when decoding noisy code words. Another interesting question
is, if these techniques carry over to hardness assumptions for binary codes.
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on this work. The authors are especially grateful to one particular reviewer who
suggested the first statement of Theorem 4, thereby allowing a major simplifi-
cation in the proof of Lemma 6. Nico Döttling was supported by IBM Research
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Abstract. Recent advances in lattice cryptography, mainly stemming
from the development of ring-based primitives such as ring-LWE, have
made it possible to design cryptographic schemes whose efficiency is com-
petitive with that of more traditional number-theoretic ones, along with
entirely new applications like fully homomorphic encryption. Unfortu-
nately, realizing the full potential of ring-based cryptography has so far
been hindered by a lack of practical algorithms and analytical tools for
working in this context. As a result, most previous works have focused
on very special classes of rings such as power-of-two cyclotomics, which
significantly restricts the possible applications.

We bridge this gap by introducing a toolkit of fast, modular algo-
rithms and analytical techniques that can be used in a wide variety of
ring-based cryptographic applications, particularly those built around
ring-LWE. Our techniques yield applications that work in arbitrary cy-
clotomic rings, with no loss in their underlying worst-case hardness guar-
antees, and very little loss in computational efficiency, relative to power-
of-two cyclotomics. To demonstrate the toolkit’s applicability, we develop
two illustrative applications: a public-key cryptosystem and a “somewhat
homomorphic” symmetric encryption scheme. Both apply to arbitrary
cyclotomics, have tight parameters, and very efficient implementations.

1 Introduction

The past few years have seen many exciting developments in lattice-based cryp-
tography. Two such trends are the development of schemes whose efficiency is
competitive with traditional number-theoretic ones (e.g., [27] and follow-ups),
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and the breakthrough work of Gentry [14, 13] (followed by others) on fully ho-
momorphic encryption. While these two research threads currently occupy oppo-
site ends of the efficiency spectrum, they are united by their use of algebraically
structured ideal lattices arising from polynomial rings. The most efficient and ad-
vanced systems in both categories rely on the ring-LWE problem [26], an analogue
of the standard learning with errors problem [31]. Informally (and a bit inaccu-
rately), in a ring R = Z[X ]/(f(X)) for monic irreducible f(X) of degree n, and
for an integer modulus q defining the quotient ring Rq := R/qR = Zq[X ]/(f(X)),
the ring-LWE problem is to distinguish pairs (ai, bi = ai · s+ ei) ∈ Rq ×Rq from
uniformly random pairs, where s ∈ Rq is a random secret (which stays fixed over
all pairs), the ai ∈ Rq are uniformly random and independent, and the error (or
“noise”) terms ei ∈ R are independent and “short.”

In all applications of ring-LWE, and particularly those related to homomor-
phic encryption, a main technical challenge is to control the sizes of the noise
terms when manipulating ring-LWE samples under addition, multiplication, and
other operations. For correct decryption, q must be chosen large enough so that
the final accumulated error terms do not “wrap around” modulo q and cause
decryption error. On the other hand, the error rate (roughly, the ratio of the
noise magnitude to the modulus q) of the original published ring-LWE samples
and the dimension n trade off to determine the theoretical and concrete hardness
of the ring-LWE problem. Tighter control of the noise growth therefore allows
for a larger initial error rate, which permits a smaller modulus q and dimension
n, which leads to smaller keys and ciphertexts, and faster operations for a given
level of security.

Regarding the choice of ring, the class of cyclotomic rings R ∼= Z[X ]/Φm(X),
where Φm(X) is the mth cyclotomic polynomial (which has degree n = ϕ(m)
and is monic and irreducible over the rationals), has many attractive features
that have proved very useful in cryptography. For example, the search/decision
equivalence for ring-LWE in arbitrary cyclotomics [26] relies on their special al-
gebraic properties, as do many recent works that aim for more efficient fully
homomorphic encryption schemes (e.g., [32, 8, 17, 18, 16]). In particular, power-
of-two cyclotomics, i.e., where the index m = 2k for some k ≥ 1, are especially
nice to work with, because (among other reasons) n = m/2 is also a power of two,
Φm(X) = Xn+1 is maximally sparse, and polynomial arithmetic modulo Φm(X)
can be performed very efficiently using just a slight tweak of the classical n-
dimensional FFT (see, e.g., [25]). Indeed, power-of-two cyclotomics have become
the dominant and preferred class of rings in almost all recent ring-based crypto-
graphic schemes (e.g., [25, 24, 21, 14, 15, 26, 33, 9, 8, 17, 18, 22, 5, 28, 20, 16]),
often to the exclusion of all other rings.

While power-of-two cyclotomic rings are very convenient to use, there are
several reasons why it is essential to consider other cyclotomics as well. The
most obvious, practical reason is that powers of two are sparsely distributed,
and the desired concrete security level for an application may call for a ring
dimension much smaller than the next-largest power of two. So restricting to
powers of two could lead to key sizes and runtimes that are at least twice as
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large as necessary. A more fundamental reason is that certain applications, such
as the above-mentioned works that aim for more efficient (fully) homomorphic
encryption, require the use of non-power-of-two cyclotomic rings. This is because
power-of-two cyclotomics lack the requisite algebraic properties needed to imple-
ment features like SIMD operations on “packed” ciphertexts, or plaintext spaces
isomorphic to finite fields of characteristic two (other than F2 itself). A final im-
portant reason is diversification of security assumptions. While some results are
known [16] that relate ring-LWE in cyclotomic rings when one index m divides
the other, no other connections appear to be known. So while we might conjec-
ture that ring-LWE and ideal lattice problems are hard in every cyclotomic ring
(of sufficiently high dimension), some rings might turn out to be significantly
easier than others.

Unfortunately, working in non-power-of-two cyclotomics is rather delicate, and
the current state of affairs is unsatisfactory in several ways. Unlike the special
case where m is a power of two, in general the cyclotomic polynomial Φm(X) can
be quite “irregular” and dense, with large coefficients. While in principle, polyno-
mial arithmetic modulo Φm(X) can still be done in O(n logn) scalar operations
(on high-precision complex numbers), the generic algorithms for achieving this
are rather complex and hard to implement, with large constants hidden by the
O(·) notation.

Geometrically, the non-power-of-two case is even more problematic. If one
views Z[X ]/(Φm(X)) as the set of polynomial residues of the form a0 + a1X +
· · ·+ an−1X

n−1, and uses the naïve “coefficient embedding” that views them as
vectors (a0, a1, . . . , an−1) ∈ Zn to define geometric quantities like the �2 norm,
then both the concrete and theoretical security of cryptographic schemes depend
heavily on the form of Φm(X). This stems directly from the fact that multiplying
two polynomials with small norms can result in a polynomial residue having a
much larger norm. The growth can be quantified by the “expansion factor” [23]
of Φm(X), which unfortunately can be very large, up to nΩ(logn) in the case of
highly composite m [12]. Later works [17] circumvented such large expansion by
using tricks like lifting to the larger-dimensional ring Z[X ]/(Xm − 1), but this
still involves a significant loss in the tolerable noise rates as compared with the
power-of-two case.

In [30, 26] a different geometric approach was used, which avoided any depen-
dence on the form of the polynomial modulus Φm(X). In these works, the norm
of a ring element is instead defined according to its canonical embedding into Cn,
a classical concept from algebraic number theory. This gives a much better way
of analyzing expansion, since both addition and multiplication in the canonical
embedding are simply coordinate-wise. Working with the canonical embedding,
however, introduces a variety of practical issues, such as how to efficiently gen-
erate short noise terms having appropriate distributions over the ring. More
generally, the focus of [26] was on giving an abstract mathematical definition of
ring-LWE and proving its hardness under worst-case ideal lattice assumptions;
in particular, it did not deal with issues related to practical efficiency, bounding
noise growth, or designing applications in non-power-of-two cyclotomics.
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1.1 Contributions

Our main contribution is a toolkit of modular algorithms and analytical tech-
niques that can be used in a wide variety of ring-based cryptographic applica-
tions, particularly those built around ring-LWE. The high-level summary is that
using our techniques, one can design applications to work in arbitrary cyclotomic
rings, with no loss in their underlying worst-case hardness guarantees, and very
little loss in computational efficiency, relative to the best known techniques in
power-of-two cyclotomics. In fact, our analytical techniques even improve the
state of the art for the power-of-two case.

In more detail, our toolkit includes fast, specialized algorithms for all the main
cryptographic operations in arbitrary cyclotomic rings. Among others, these in-
clude: addition, multiplication, and conversions among various useful representa-
tions of rings elements; generation of noise terms under probability distributions
that guarantee both worst-case and concrete hardness; and decoding of noise
terms as needed in decryption and related operations. Our algorithms’ efficiency
and quality guarantees stem primarily from our use of simple but non-obvious
representations of ring elements, which differ from their naïve representations as
polynomial residues modulo Φm(X). (See the second part of Section 1.2 for more
details.) On the analytical side, we give tools for tightly bounding noise growth
under operations like addition, multiplication, and round-off/discretization. (Re-
call that noise growth is the main factor determining an application’s parameters
and noise rates, and hence its key sizes, efficiency, and concrete security.)
Some attractive features of the toolkit include:

– All the algorithms for arbitrary cyclotomics are simple, modular, and highly
parallel, and work by elementary reductions to the (very simple) prime-
index case. In particular, they do not require any polynomial reductions
modulo Φm(X) – in fact, they never need to compute Φm(X) at all! The
algorithms work entirely on vectors of dimension n = ϕ(m), and run in
O(n log n) or even O(nd) scalar operations (with small hidden constants),
where d is the number of distinct primes dividing m. With the exception
of continuous noise generation, all scalar operations are low precision, i.e.,
they involve small integers. In summary, the algorithms are very amenable to
practical implementation. (Indeed, we have implemented all the algorithms
from scratch, which will be described in a separate work.)

– Our algorithm for decoding noise, used primarily in decryption, is fast (re-
quiring O(n logn) or fewer small-integer operations) and correctly recovers
from optimally large noise rates. (See the last part of Section 1.2 for details.)
This improves upon prior techniques, which in general have worse noise tol-
erance by anywhere between an m/2 and super-polynomial nω(1) factor, and
are computationally slower and more complex due to polynomial reduction
modulo Φm(X), among other operations.

– Our bounds on noise growth under ring addition and multiplication are ex-
actly the same in all cyclotomic rings; no ring-dependent “expansion factor”
is incurred. (For discretizing continuous noise distributions, our bounds are
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the same up to very small 1 + o(1) factors, depending on the primes di-
viding m.) This allows applications to use essentially the same underlying
noise rate as a function of the ring dimension n, and hence be based on the
same worst-case approximation factors, for all cyclotomics. Moreover, our
bounds improve upon the state of the art even for power-of-two cyclotomics:
e.g., our (average-case, high probability) expansion bound for ring multipli-
cation improves upon the (worst-case) expansion-factor bound by almost a√
n factor.

To illustrate the toolkit’s applicability, in Section 5 we construct an efficient
and compact public-key cryptosystem, which is essentially the “two element”
system outlined in [26], but generalized to arbitrary cyclotomics, and with tight
parameters. Further applications are given in the full version of the paper.

A final contribution of independent interest is a new “regularity lemma” for
arbitrary cyclotomics, i.e., a bound on the smoothing parameter of random q-
ary lattices over the ring. Such a lemma is needed for porting many applica-
tions of standard SIS and LWE to the ring setting, including SIS-based signa-
ture schemes [19, 10, 7, 28], the “primal” [31] and “dual” [19] LWE cryptosys-
tems, chosen ciphertext-secure encryption schemes [29, 28], and (hierarchical)
identity-based encryption schemes [19, 10, 1]. In terms of generality and param-
eters, our lemma essentially subsumes a prior one of Micciancio [27] for the ring
Z[X ]/(Xn − 1), and an independent one of Stehlé et al. [34] for power-of-two
cyclotomics. (See Section 4 for further discussion.)

1.2 Techniques

The tools we develop in this work involve several novel applications of classical
notions from algebraic number theory. In summary, our results make central use
of: (1) the canonical embedding of a number field, which endows the field (and
its subrings) with a nice and easy-to-analyze geometry; (2) the decomposition of
arbitrary cyclotomics into the tensor product of prime-power cyclotomics, which
yields both simpler and faster algorithms for computing in the field, as well as
geometrically nicer bases; and (3) the “dual ” ideal R∨ and its “decoding” basis d,
for fast noise generation and optimal noise tolerance in decryption and related
operations. We elaborate on each of these next.
The Canonical Embedding. As in the previous works [30, 26], our analysis relies
heavily on using the canonical embedding σ : K → Cn (rather than, say, the naïve
coefficient embedding) for defining all geometric quantities, such as Euclidean
norms and inner products. For example, under the canonical embedding, the
“expansion” incurred when multiplying by an element a ∈ K is characterized
exactly by ‖σ(a)‖∞, its �∞ norm under the canonical embedding; no (worst-
case) ring-dependent “expansion factor” is needed. So in the average-case setting,
where the multiplicands are random elements from natural noise distributions,
for each multiplication we get at least a Ω̃(

√
n) factor improvement over using the

expansion factor in all cyclotomics (including those with power-of-two index),
and up to a super-polynomial nω(1) factor improvement in cyclotomics having
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highly composite indices. In our analysis of the noise tolerance of decryption,
we also get an additional Ω̃(

√
n) factor savings over more simplistic analyses

that only use norm information, by using the notion of subgaussian random
variables. These behave under linear transformations in essentially the same
way as Gaussians, and have Gaussian tails. (This builds upon prior works that
use subgaussianity in lattice cryptography, e.g., [2, 28].)

Tensorial Decomposition. An important fact at the heart of this work is that
the mth cyclotomic number field K = Q(ζm) ∼= Q[X ]/(Φm(X)) may instead be
viewed as (i.e., is isomorphic to) the tensor product of prime-power cyclotomics:

K ∼=
⊗

	
K	 = Q(ζm1 , ζm2 , . . .),

where m =
∏

	m	 is the prime-power factorization of m and K	 = Q(ζm�
).

Equivalently, in terms of polynomials we may view K as the multivariate field

K ∼= Q[X1, X2, . . .]/(Φm1(X1), Φm2(X2), . . .), (1)

where there is one indeterminant X	 and modulus Φm�
(X	) per prime-power di-

visor of m. Similar decompositions hold for the ring of integers R ∼= Z[X ]/Φm(X)
and other important objects in K, such as the dual ideal R∨ (described below).

Adopting the polynomial interpretation of K from Equation (1) for concrete-
ness, notice that a natural Q-basis is the set of multinomials

∏
	X

j�
	 for each

choice of 0 ≤ j	 < ϕ(m	). We call this set the “powerful” basis of K (and of R).
For non-prime-power m, under the field isomorphism with Q[X ]/(Φm(X)) that
maps each X	 → Xm/m� , the powerful basis does not coincide with the standard
“power” basis 1, X,X2, . . . , Xϕ(m)−1 usually used to represent the univariate
field. It turns out that in general, the powerful basis has much nicer computa-
tional and geometric properties than the power basis, as we outline next.

Computationally, the tensorial decomposition of K (with the powerful ba-
sis) allows us to modularly reduce essentially all operations in K (or R, or
powers of R∨) to their counterparts in much simpler prime-power cyclotomics
(which themselves easily reduce to the prime-index case). We can therefore com-
pletely avoid all the many algorithmic complications associated with working
with polynomials modulo Φm(X). In particular, we obtain novel, simple and fast
algorithms, similar to the FFT, for converting between the multivariate “polyno-
mial” representation (i.e., the powerful basis) and the “evaluation” or “Chinese
remainder” representation, in which addition and multiplication are essentially
linear time. Similarly, we obtain linear-time (or nearly so) algorithms for switch-
ing between the polynomial representation and “decoding” representation used
in decryption (described below), and for generating noise terms in the decoding
representation. A final advantage of the tensorial representation is that it yields
trivial linear-time algorithms for computing the trace function to subfields of K,
which is at the heart of the “ring-switching” technique from [16].

The tensorial representation also comes with important geometrical advan-
tages. In particular, under the canonical embedding the powerful basis is better-
conditioned than the power basis, i.e., the ratio of its maximal and minimal
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singular values can be much smaller. This turns out to be important when
bounding the additional error introduced when discretizing (rounding off) field
elements in noise-generation and modulus-reduction algorithms, among others.

The Dual Ideal R∨ and Its Decoding Basis. Under the canonical embedding, the
cyclotomic ring R of index m embeds as a lattice which, unlike Zn, is in general
not self-dual. Instead, its dual lattice corresponds to a fractional ideal R∨ ⊂ K
satisfying R ⊆ R∨ ⊆ m−1R, where the latter inclusion is nearly an equality.
(In fact, R∨ is a scaling of R exactly when m is a power of two, in which
case R = (m/2)R∨.) In [26] it is shown that the “right” definition of the ring-
LWE distribution, which arises naturally from the worst-case to average-case
reduction, involves the dual ideal R∨: the secret belongs to the quotient R∨q =
R∨/qR∨, and ring-LWE samples are of the form (a, b = a · s + e mod qR∨)
for uniformly random a ∈ Rq and error e which is essentially spherical in the
canonical embedding.

While it is possible [11] to simplify the ring-LWE definition by replacing every
instance of R∨ with R, while retaining essentially spherical error (but scaled up
by about m, corresponding to the approximate ratio of R to R∨), in this work
we show that it is actually advantageous to retain R∨ and expose it in appli-
cations.1 The reason is that in general, R∨ supports correct bounded-distance
decoding—which is the main operation performed in decryption—under a larger
error rate than R does.2 In fact, R∨’s error tolerance is optimal for the sim-
ple, fast lattice decoding algorithm used implicitly in essentially all decryption
procedures, namely Babai’s “round-off” algorithm [4]. The reason is that when
decoding a lattice Λ using some basis {bi}, the error tolerance depends inversely
on the Euclidean lengths of the vectors dual to {bi}. For R∨, there is a particular
“decoding” basis whose dual basis is optimally short (relative to the determinant
of R), whereas for R no such basis exists in general.3 In fact, the decoding basis
of R∨ is simply the dual of the powerful basis described above!

In addition to its optimal error tolerance, we also show that the decoding basis
has good computational properties. In particular, there are linear-time (or nearly
so) algorithms for converting to the decoding basis from the other bases of R∨
or R∨q that are more appropriate for other computational tasks. And Gaussian
errors (especially spherical ones) can be sampled in (near-)linear time in the
decoding basis.

1 This is unless m is a power of two, in which case nothing is lost by simply scaling
up by exactly m/2 to replace R∨ with R.

2 By “error rate” here we mean the ratio of the error (in, say, �2 norm) to the dimension-
normalized determinant det(Λ)1/n of the lattice Λ, so exact scaling has no effect on
the error rate.

3 We note that decoding by “lifting” R to the larger-dimensional ring Z[X]/(Xm−1),
as done in [17], still leads to an m or m/2 factor loss in error tolerance overall,
because some inherent loss is already incurred when replacing R∨ with R, and a bit
more is lost in the lifting procedure.
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2 Preliminaries

For a positive integer k, we denote by [k] the set {0, . . . , k−1}. For a real a ∈ R,
define �a� = �a + 1

2� ∈ Z. For any ā ∈ R/Z, we let �ā� ∈ R denote the unique
representative a ∈ (ā + Z) ∩ [−1/2, 1/2). Similarly, for ā ∈ Zq = Z/qZ we let
�ā� denote the unique representative a ∈ (ā + qZ) ∩ [−q/2, q/2). We extend �·�
and �·� entrywise to vectors and matrices. The radical of a positive integer m,
denoted rad(m), is the product of all primes dividing m. We also define m̂ = m/2
whenever m is even, and m̂ = m otherwise. For a vector x over R or C, we define
the �2 norm as ‖x‖2 = (

∑
i|xi|

2
)1/2, and the �∞ norm as ‖x‖∞ = maxi|xi|. When

the subscript is omitted, we mean the �2 norm.
Throughout this paper, the entries of a vector over a domain D are always

indexed (in no particular order) by some finite set S, and we write DS to denote
the set of all such vectors. Similarly, the rows and columns of an “R-by-C matrix”
over D are indexed by some finite sets R and C, respectively. All the standard
matrix and vector operations, including the Kronecker (or tensor) product, are
defined in the natural way.

2.1 The Space H

When working with cyclotomic number fields and ideal lattices, it is convenient
to work with the subspace H ⊆ CZ∗

m for integer m ≥ 2, defined as

H = {x ∈ CZ∗
m : xi = xm−i, ∀ i ∈ Z∗m}.

Letting n = ϕ(m), it is not difficult to verify that H (with the inner product
induced on it by CZ∗

m) is isomorphic to R[n] as an inner product space. For
m = 2 this is trivial, and for m > 2 this can seen via the Z∗m-by-[n] unitary basis
matrix 1√

2

(
I
√
−1J

J −
√
−1I

)
of H , where here the Z∗m-indexed rows are in increasing

order according to their canonical representatives in {1, . . . ,m − 1}, the [n]-
indexed columns are in increasing order by index, I is the identity matrix, and
J is the reversal matrix (obtained by reversing the rows of I).

We equip H with the �2 and �∞ norms induced on it from CZ∗
m . Namely, for

x ∈ H we have ‖x‖2 =
∑

i(|xi|
2
)1/2 =

√
〈x,x〉, and ‖x‖∞ = maxi|xi|.

2.2 Gaussians and Subgaussian Random Variables

For s > 0, define the Gaussian function ρs : H → (0, 1] as ρs(x) =

exp(−π‖x‖2/s2). By normalizing this function we obtain the continuous Gaus-
sian probability distribution Ds of parameter s, whose density is given by
s−n · ρs(x).

For much of our analysis it is convenient to use the standard notion of sub-
gaussian random variables, relaxed slightly as in [28]. For any δ ≥ 0, we say that
a random variable X (or its distribution) over R is δ-subgaussian with parameter
s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2).
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Notice that the exp(πs2t2) term on the right is exactly the (scaled) moment-
generating function of the one-dimensional Gaussian distribution of parameter
s over R.

Decoding. In many applications we need to perform the following algorithmic
task, which is essentially that of bounded-distance decoding. Let Λ be a known
fixed lattice, and let x ∈ H be an unknown short vector. The goal is to recover x,
given x mod Λ. Although there are several possible algorithms for this task, here
we focus on a slight extension of the so-called “round-off” algorithm, originally
due to Babai [4]. This is due to its high efficiency and because for our lattices
it performs optimally (or nearly so). The algorithm is very simple: let {vi} be a
fixed set of n short, linearly independent vectors in the dual lattice Λ∨. Denote
the dual vectors of {vi} by {bi}, and let Λ′ ⊇ Λ be the (super)lattice generated
by {bi}. Given an input t = x mod Λ, we express t mod Λ′ in the basis {bi} as∑

i āibi where āi ∈ R/Z (so āi = 〈x,vi〉 mod 1), and output
∑

i�āi�bi ∈ H .

Lemma 2.1. Let Λ ⊂ H be a lattice, let {vi} be a set of n linearly independent
vectors in its dual, and let dmax = maxi‖vi‖. For any x of length less than
1/(2dmax), the above round-off algorithm succeeds in recovering x from x mod
Λ. Moreover, for any δ > 0, if x is a random vector such that 〈x,vi〉 is δ-
subgaussian with parameter s for every i (in particular, if x itself is δ-subgaussian
with parameter s/dmax), then the round-off algorithm succeeds with probability
at least 1 − 2n exp(δ − π/(2s)2), which is 1 − negl(n) when δ = O(1) and s =
1/ω(

√
logn).

Discretization. We now consider another algorithmic task related to the one
in the previous subsection. This task shows up in applications, such as when con-
verting a continuous Gaussian into a discrete Gaussian-like distribution. Given
a lattice Λ = L(B) represented by a “good” basis B = {bi}, a point x ∈ H ,
and a point c ∈ H representing a lattice coset Λ + c, the goal is to discretize x
to a point y ∈ Λ + c, written y ← �x�Λ+c, so that the length (or subgaussian
parameter) of y − x is not too large. To do this, we sample a relatively short
offset vector f from the coset Λ + c′ = Λ + (c − x) , and output y = x + f .
We require that the method used to choose f be efficient and depend only on
the desired coset Λ + c′, not on the particular representative used to specify it.
In the full version of the paper, we describe several valid ways of sampling f ,
offering tradeoffs between efficiency and output guarantees.

2.3 Algebraic Number Theory Background

Cyclotomic Number Fields and Polynomials. For a positive integer m, the mth
cyclotomic number field is a field extension K = Q(ζm) obtained by adjoining an
element ζm of order m (i.e., a primitive mth root of unity) to the rationals. (Note
that we view ζm as an abstract element, and not, for example, as any particular
value in C.) The minimal polynomial of ζm is the mth cyclotomic polynomial

Φm(X) =
∏
i∈Z∗

m

(X − ωi
m) ∈ Z[X ], (2)
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where ωm ∈ C is any primitivemth root of unity in C, e.g., ωm = exp(2π
√
−1/m).

Therefore, there is a natural isomorphism between K and Q[X ]/(Φm(X)), given
by ζm �→ X . Since Φm(X) has degree n = |Z∗m| = ϕ(m), we can view K as a
vector space of degree n over Q, which has {1, ζm, . . . , ζn−1m } as a basis. This is
called the power basis of K.

For the mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m), the
ring of integers is R = Z[ζm] ∼= Z[X ]/Φm(X), and hence has the power basis
{ζjm}j∈[n] as a Z-basis.

Non-Prime-Power Cyclotomics. Let m have prime-power factorization m =∏
	m	, i.e., the m	 are powers of distinct primes. Then K = Q(ζm) may be seen

as the tensor product
⊗

	K	 of the fields K	 = Q(ζm�
), in the following way.

First, view each K	 as a subfield of K, via the ring embedding ζm�
�→ ζ

m/m�
m .

Then viewing K and K	 as vector spaces over Q, the tensor product
⊗

	K	

is isomorphic to K, under the map (⊗	 a	) �→
∏

	 a	.
4 In particular, if B	

are Q-bases of K	 respectively (e.g., the power bases), then their tensor prod-
uct
⊗

	B	 = {
∏

	 b	 ∈ K : b	 ∈ B	} is a Q-basis of K. Moreover, endowing⊗
	K	 with the multiplication operation induced by the mixed-product property

(⊗	 a	) · (⊗	 b	) = ⊗	 (a	 · b	) also makes the above mapping from
⊗

	K	 to K
a field isomorphism, as desired.

Equivalently, in terms of polynomial rings we may view K ∼= Q[X ]/(Φm(X))
instead as

K ∼= Q[X1, X2, . . .]/(Φm1(X1), Φm2(X2), . . .), (3)

where there is one indeterminant X	 and modulus Φm�
(X	) per prime divisor of

m, and where X	 �→ Xm/m� defines an isomorphism with Q[X ]/(Φm(X)). Notice
that by tensoring the power bases {Xj

	 }j∈[ϕ(m�)]
of each K	, we get the basis

{Xj1
1 Xj2

2 · · ·}j�∈[ϕ(m�)]
. Mapping this basis to Q[X ]/(Φm(X)) yields the basis

{X
∑

�(m/m�)j�}j�∈[ϕ(m�)]
, which is not necessarily the power basis {Xj}j∈[ϕ(m)],

since the powers of X appearing in each basis can be different modulo m. (For
example, take m = 3 · 5.)

Embeddings and Geometry. Here we describe the embeddings of a cyclotomic
number field, which induce a ‘canonical’ geometry on it.

The mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m) has exactly
n ring homomorphisms (embeddings) σi : K → C that fix every element of Q.
Concretely, for each i ∈ Z∗m there is an embedding σi defined by σi(ζm) = ωi

m,
where ωm ∈ C is some fixed primitive mth root of unity. Clearly, the embeddings
come in pairs of complex conjugates, i.e., σi = σm−i. The canonical embedding
σ : K → CZ∗

m is defined as

σ(a) = (σi(a))i∈Z∗
m
.

4 The tensor product of two vector spaces K,L over a common base field can be
defined as the set of all finite sums of pure tensors a⊗ b for a ∈ K, b ∈ L, where ⊗
is bilinear. The tensor product of multiple vector spaces is defined similarly.
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When K is viewed as the tensor product of subfields K	, σ =
⊗

	 σ
(	) is the

tensor product of the canonical embeddings σ(	) of K	. In this case, the index
set of σ is

∏
	 Z
∗
m�

, which corresponds to Z∗m via the Chinese remainder theorem.
The trace Tr = TrK/Q : K → Q can be defined as the sum of the embeddings:

Tr(a) =
∑

i σi(a). Clearly, Tr(a+ b) = Tr(a) + Tr(b) and Tr(c · a) = c ·Tr(a) for
all a, b ∈ K and c ∈ Q. Moreover,

Tr(a · b) =
∑
i

σi(a)σi(b) = 〈σ(a), σ(b)〉.

Duality. For any fractional ideal I in K, its dual is defined as

I∨ = {a ∈ K : Tr(aI) ⊆ Z}.

It is easy to verify that I∨ is a fractional ideal, and that (I∨)∨ = I.
For any Q-basis B = {bj} of K, we denote its dual basis by B∨ = {b∨j }, which

is characterized by Tr(bi · b∨j ) = 1 if i = j, and 0 otherwise. It is immediate that
(B∨)∨ = B, and if B is a Z-basis of some fractional ideal I, then B∨ is a Z-basis
of its dual ideal I∨. An important fact is that if a =

∑
j aj · bj (where aj ∈ R)

is the unique representation of some a ∈ KR in basis B, then aj = Tr(a · b∨j ) by
linearity of Tr.

Except in the trivial number field K = Q, the ring of integers R is not self-
dual, nor are an ideal and its inverse dual to each other. However, an ideal and
its inverse are related by multiplication with the dual ideal R∨ of the ring: for
any fractional ideal I, its dual is I∨ = I−1 · R∨. (Notice that for I = R this
holds trivially, since R−1 = R.) A standard fact is that R∨ = 〈t−1〉 is a principal
ideal generated by t−1 for some (non-unique) t ∈ R. When R ∼=

⊗
	R	 is viewed

as the tensor product of rings of integers R	 ⊂ K	 (where K ∼=
⊗

	K	), its dual
ideal has an analogous tensorial form, as R∨ =

⊗
	R
∨
	 .

2.4 Ring-LWE

We now provide the formal definition of the ring-LWE problem and recall the
worst-case hardness result shown in [26]. We remark that our definition here
differs very slightly from the one used in [26]: we scale the b component by a
factor of q, so that it is an element of KR/qR

∨ and not KR/R
∨ as in [26]. This

is done for convenience when later discretizing the b component, and the two
definitions are easily seen to be equivalent.

Definition 2.2 (Ring-LWE Distribution). For a “secret” s ∈ R∨q (or just
R∨) and a distribution ψ over KR, a sample from the ring-LWE distribution
As,ψ over Rq×(KR/qR

∨) is generated by choosing a← Rq uniformly at random,
choosing e← ψ, and outputting (a, b = a · s+ e mod qR∨).

Definition 2.3 (Ring-LWE, Average-Case Decision). The average-case de-
cision version of the ring-LWE problem, denoted R-DLWEq,ψ, is to distinguish
with non-negligible advantage between independent samples from As,ψ, where
s ← R∨q is uniformly random, and the same number of uniformly random and
independent samples from Rq × (KR/qR

∨).
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Theorem 2.4. Let K be the mth cyclotomic number field having dimension n =
ϕ(m) and R = OK be its ring of integers. Let α = α(n) > 0, and let q = q(n) ≥
2, q = 1 mod m be a poly(n)-bounded prime such that αq ≥ ω(

√
logn). Then

there is a polynomial-time quantum reduction from Õ(
√
n/α)-approximate SIVP

(or SVP) on ideal lattices in K to the problem of solving R-DLWEq,ψ given only
� samples, where ψ is the Gaussian distribution Dξq for ξ = α · (n�/ log(n�))1/4.

In cryptographic applications it is often useful to work with a version of ring-
LWE whose error distribution is discrete. In the full version of the paper, we
show that for a wide family of discrete error distributions, it is easy to deduce
the hardness of the discrete version from that of the continuous one. Another
important variant of ring-LWE, known as the “normal form,” is the one in which
the secret, instead of being uniformly distributed, is chosen from the error dis-
tribution (discretized to R∨). Showing that this variant of ring-LWE is as hard
as the original one follows from the techniques of [3].

3 The Powerful, CRT, and Decoding Bases

In this section we study certain Z-bases of certain (fractional) ideals I in K =
Q(ζm), which are also Zq-bases of the quotients Iq = I/qI for any positive
integer q. Fixing such a basis b and viewing it as a (column) vector over K, we
can represent any a ∈ I uniquely as a = 〈b, a〉 = bT ·a for some coefficient vector
a over Z. Similarly, any ā ∈ Iq is represented uniquely as ā = 〈b, ā〉 for some ā
over Zq. Our algorithms that work with field elements simply store and operate
on these coefficient vectors, while also keeping track of the corresponding basis,
which will be among the few we consider below. Notice that by linearity, if we
have some a ∈ I represented by coefficient vector a in basis b, then a is also
the representation of ra ∈ rI in the basis rb, so we can switch between the two
values at essentially no cost.

3.1 The Powerful Basis

Here we define a certain useful Q-basis of K, and Z-basis of R. We call it the
“powerful” basis, due to its decomposition in terms of the power bases of K	, and
the fast algorithms associated with it. (We are aware of only one occurrence in
the literature of this basis; it coincides with what Bosma [6] calls the “canonical”
basis of R.)

Definition 3.1. The powerful basis p of K = Q(ζm) and R = Z[ζm] is defined
as follows:

– For a prime power m, define p to be the power basis (ζjm)j∈[ϕ(m)], treated as
a vector over R ⊂ K.

– For m having prime-power factorization m =
∏

	m	, define p =
⊗

	 p	, the
tensor product of the power(ful) bases p	 of each K	 = Q(ζm�

).
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For any power I = (R∨)k of R∨ = 〈t−1〉, the powerful basis of I is t−k · p.

By definition of the tensor product, p is a vector with index set
∏

	[ϕ(m	)]. So
to specify an entry of p we need one index j	 ∈ [ϕ(m	)] per prime divisor of m,
and the specified entry is p(j�) =

∏
	 ζ

j�
m�

. Note that because ζm�
= ζ

m/m�
m ∈ K,

it is possible to “flatten” the index set to a size-ϕ(m) subset of [m], where index
(j	) maps to j =

∑
	(m/m	) · j	 mod m, and pj = ζjm. We note that unless m is

a prime power, the flattened index set is not [ϕ(m)], so the powerful basis differs
from the power basis, although it still consists of powers of ζm. For instance,
for m = 15 and ζ = ζ15, the powerful basis consists of ζ0, ζ3, ζ5, ζ6, ζ8, ζ9, ζ11,
and ζ14. For our purposes, it is preferable to maintain the structured index set.

In the full version we prove the following lemma describing the good geometric
properties of the powerful basis.

Lemma 3.2. The length of each element pj of p in �2 norm is ‖pj‖ =
√
ϕ(m) =√

n, and in �∞ norm is ‖pj‖∞ = 1. The largest singular value of σ(pT ) is
s1(p) =

√
m̂, and the smallest singular value is sn(p) =

√
m/ rad(m), where

m̂ = m/2 if m is even, and m̂ = m otherwise.

We point out while the power basis elements also all have �2 and �∞ norms√
n and 1 (respectively), the power basis can be poorly conditioned. E.g., for

m = 1155 = 3 ·5 ·7 ·11 its ratio of largest to smallest singular value is ≈ 21.4
√
m,

whereas for the powerful basis it is exactly
√
m.

3.2 The CRT Basis and Fast Operations

In ring-LWE and its applications, we work in Rq and R∨q , and sometimes in Iq
for I = (R∨)k, where q = 1 mod m is a prime integer. Here we define Chinese
remainder (CRT) bases for these quotients, and describe how they yield fast
addition and multiplication.

Recalling that R ∼=
⊗

	R	 where m =
∏

	m	 is the prime-power factorization
of m and R	 is the m	th cyclotomic ring, it is easy to verify that the quotient
ring Rq

∼=
⊗

	(R	/qR	). Therefore we may focus on the case of prime-power m.
A standard fact is that the ideal 〈q〉 ⊂ R factors into the product of n distinct
prime ideals qi, for i ∈ Z∗m.

Definition 3.3. For a positive integer m, the Chinese remainder (or CRT) Zq-
basis c of Rq is as follows:

– For a prime power m, c = (ci)i∈Z∗
m

is characterized by ci = 1 mod qi and ci =
0 mod qj for i �= j. (Its existence is guaranteed by the Chinese Remainder
Theorem.)

– For m having prime-power factorization m =
∏

	m	, define c =
⊗

i c	, the
tensor product of the CRT bases c	 of each R	/qR	.

For any power I = (R∨)k of R∨ = 〈t−1〉, the CRT Zq-basis of Iq is t−k · c.
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Similarly to the powerful basis, c is a vector over Rq having the Cartesian prod-
uct
∏

	 Z
∗
m�

as its index set, which may be flattened to the set Z∗m using the
bijective correspondence (j	)↔ j =

∑
	(m/m	) · j	 ∈ Z∗m. But it is usually more

convenient to retain the structured index set.
In the full version of the paper we give a novel, fast “CRT transformation”

algorithm for converting between the powerful and CRT bases of Rq, or more
generally Iq for I = (R∨)kq . The algorithm is analogous to a combination of the
Cooley-Tukey and Good-Thomas (mixed radix) FFT algorithms, but specialized
to evaluate at only the primitive mth roots of unity in a ring. The algorithm is
simpler and more efficient than converting between the power and CRT bases,
which involves reducing modulo the cyclotomic polynomial Φm(X).

Working in the CRT basis yields very fast arithmetic operations. Suppose that
m is a prime power. Since c2i = ci ∈ Rq and ci ·ci′ = 0 ∈ Rq for distinct i, i′ ∈ Z∗m,
the CRT basis has the property that if a, b ∈ Rq have coefficient vectors a,b
(respectively) over Zq in the CRT basis—i.e., a = 〈c, a〉 and b = 〈c,b〉—then
the coefficient vector of a · b ∈ Rq is the componentwise product a� b over Zq.
(Addition is componentwise as well, simply by linearity.) Moreover, this extends
immediately to powers of R∨: if a,b are the respective coefficient vectors of
a ∈ (R∨)k1

q , b ∈ (R∨)k2
q in the respective CRT bases t−k1 · c and t−k2 · c, then

a � b is the coefficient vector of a · b ∈ (R∨)kq in the CRT basis t−k · c, where
k = k1 + k2.

3.3 The Decoding Basis of R∨

When working with ring-LWE we need to perform a variety of operations over
R∨ = 〈t−1〉 or R∨q . For certain operations it is best to use the following important
Z-basis of R∨ (and Zq-basis of R∨q ).

Definition 3.4. The decoding basis of R∨ is d = p∨, the dual of the powerful
basis p of R.5

The decoding basis therefore has the same index set as p. When m is a prime
power, d is simply the dual of the power basis p = (ζjm)j∈[ϕ(m)] of R. In general,
because p is the tensor product of the power bases for prime-power cyclotomics
R	, and (a ⊗ b)∨ = (a∨ ⊗ b∨), it follows that d is the tensor product of the
decoding bases for each R∨	 .

In the full version of the paper, we prove several important and useful prop-
erties of the decoding basis, summarized as follows:

– There are very fast linear transformations (requiring fewer than nd scalar
additions, where d is the number of prime divisors of m) for converting
between the decoding basis d and the powerful basis t−1p of R∨.

5 Note that unlike the powerful and CRT bases, we do not define a decoding basis for
any other power of R∨; see Section 3.4 for discussion.
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– Short elements (as always, in the sense of the canonical embedding) of K
have optimally small coefficients with respect to d, making it a best choice
for decoding R∨. Moreover, d also yields (nearly) optimal decoding in higher
powers of R∨.

– Continuous Gaussians (especially spherical ones) as represented in the de-
coding basis can be sampled very simply and efficiently.

The first fact, combined with the fast CRT transformation, means that we can
efficiently convert among the decoding, power, and CRT bases of R∨ (or R∨q ) as
needed. The latter two facts mean that the decoding basis is an excellent choice
for generating and decoding error terms (e.g., in encryption and decryption,
respectively). By contrast, the power(ful) basis and other natural bases of R
or R∨ do not typically enjoy the above properties (except when m is a power
of 2), and while they can in principle be used for all the same tasks, it would
come at a potentially large loss in tightness and/or computational efficiency.

3.4 Decoding R∨ and Its Powers

Recall from Section 2.2 the “round-off” decoding procedure, which uses short
linearly independent vectors in a dual lattice Λ∨ to recover a sufficiently short
x given x mod Λ. To decode from K/R∨ to K, we apply the procedure using
the decoding basis d of R∨; i.e., the linearly independent dual elements (in
(R∨)∨ = R) are those of the powerful basis p. Recall from Lemma 2.1 that the
tolerable decoding distance (or subgaussian parameter) depends inversely on the
maximum length of the dual elements, and that by Lemma 3.2, every pj in the
powerful basis has length ‖pj‖ =

√
n. From this we get corresponding bounds

on the decoding operation, as summarized below in Lemma 3.6. We remark that
the decoding basis is an optimal choice here.

In some applications (e.g., homomorphic encryption), we need to solve the
more general problem of decoding K/I to K, where I = (R∨)k = 〈t−k〉 for
some (usually small) k ≥ 1. The naïve way to do this would be to apply the
round-off procedure with the Z-basis t1−kd of I. This, however, turns out to be
highly suboptimal for many values of m, because the elements of the dual basis
tk−1p might be much longer than the shortest nonzero elements of I∨ = 〈tk−1〉.

Instead, in the round-off algorithm we use the scaled decoding basis m̂1−kd,
which generates the superideal J = m̂1−kR∨ = t−kg1−k ⊇ I, and whose dual
elements are m̂k−1p ⊆ I∨. (Recall that m̂ = m/2 if m is even, and m̂ = m
otherwise. It is easy to show that m̂ = t · g for some g ∈ R; see the full version.)
The lengths of the dual elements are therefore m̂k−1√n, from which one gets
the bounds summarized in Lemma 3.6 below.

We summarize the above discussion in the following definition and lemma. As
it will be more convenient for applications, here we consider a “scaled up and
discretized” version of the decoding procedure, where we decode from Iq to I
for some q ≥ 1. So the unknown short element is guaranteed to be in I, and the
output is also expected to be in I. The only difference this makes in the above
procedure (apart from the obvious scaling by q) is that for k ≥ 2, since the
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scaled decoding basis may generate a strict superideal of I, when the round-off
procedure fails to decode correctly it might produce an element that is not in I.
In such a case we just consider the output to be undefined.

Definition 3.5 (Decoding Iq to I). For ā ∈ Iq where I = (R∨)k for some
k ≥ 1, let ā = 〈m̂1−kd, ā〉 mod qJ for some ā over Zq, where J = m̂1−kR∨.
Define �ā� to be 〈m̂1−kd, �ā�〉 if it is in I, otherwise �ā� is undefined (where �ā�
is a vector over Z, as defined in the beginning of Section 2).

Lemma 3.6. For any k ≥ 1 let I = (R∨)k and let q ≥ 1 be arbitrary. Then for
any a ∈ I of length less than q/(2m̂k−1√n), we have �a mod qI� = a. Moreover,
if a is δ-subgaussian with parameter s, then for any b ∈ (R∨)	 where � ≥ 0, we
have �a · b mod q(R∨)k+	� = a · b except with probability at most

2n exp(δ − πq2/(2s · m̂k+	−1‖b‖2)2).

4 Regularity

In this section we state a certain “regularity theorem” (whose proof appears
in the full version) that is useful in cryptographic applications of ring-LWE,
such as when adapting the ‘dual’ cryptosystem and IBEs of Gentry et al. [19]
and others. Independently, a closely related statement (specialized to power-of-2
cyclotomics) was recently shown in [33] with a different proof.

The theorem says the following. Assume we are working with the mth cyclo-
tomic of degree n = ϕ(m), and let q ≥ 1 be a prime integer. Let a1, . . . , a	−1
be chosen uniformly and independently from Rq. Then, with high probability
over the choice of the ai’s, the distribution of b0 +

∑	−1
i=1 biai is within statisti-

cal distance 2−Ω(n) of uniform, where the bi are chosen from a discrete Gaus-
sian distribution on R of width essentially nq1/	 (in the canonical embedding).
Equivalently, the lemma says that if a0 is any fixed invertible element of Rq and
a1, . . . , a	−1 are uniformly and independently chosen from Rq, then

∑	−1
i=0 biai

is within 2−Ω(n) of uniform, where the bi are chosen as before. The equivalence
follows by simply dividing by a0. (The lemma we prove is actually more general,
and applies to the joint distribution of k ≥ 1 sums as above; see Theorem 4.1
and Corollary 4.2 for the exact statement.)

This regularity statement is already interesting and non-trivial when � is as
small as 2, and is close to being tight: for instance, in case m is a power of 2, a
width of at least

√
nq1/	 is required just for entropy reasons. To see this, recall

that R is a rotation of
√
nZn, so roughly speaking, a discrete Gaussian of width

t covers (t/
√
n)n points.

One might wonder about the significance of the b0 term, and why we do not
analyze the regularity of

∑	−1
i=0 biai when all the ai are chosen uniformly from R.

In fact, a regularity lemma for exactly such sums was shown by Micciancio [27].
(His work is specialized to the ring R = Z[x]/〈xn − 1〉, but can be extended to
other rings, as observed in [34].) Unfortunately, such sums have a much worse
regularity property, and in particular require super-constant � to get negligible



A Toolkit for Ring-LWE Cryptography 51

distance to uniformity. To see why this is the case, assume q is a prime satisfying
q = 1 mod m, so that 〈q〉 splits completely into n ideals of norm q each. Letting
q denote one of these prime factors, notice that with probability q−	, all the ai
are in q. In this case,

∑m
i=1 biai is in q with certainty, and its distribution is

therefore very far from uniform. By adding the b0 term we avoid this “common
divisor” problem and get much better regularity, providing exponentially small
distance to uniformity already for � as small as 2.

The following is the regularity theorem. Here, for a matrix A ∈ R
[k]×[	]
q we

define Λ⊥(A) = {z ∈ R[	] : Az = 0 mod qR}, which we identify with a lattice in
H	. Its dual lattice (which is again a lattice in H	) is denoted by Λ⊥(A)∨.

Theorem 4.1. Let R be the ring of integers in the mth cyclotomic number field
K of degree n, and q ≥ 2 an integer. For positive integers k ≤ � ≤ poly(n), let
A = [I[k] | Ā] ∈ (Rq)

[k]×[	], where I[k] ∈ (Rq)
[k]×[k] is the identity matrix and

Ā ∈ (Rq)
[k]×[	−k] is uniformly random. Then for all r > 2n,

EĀ

[
ρ1/r(Λ

⊥(A)∨)
]
≤ 1 + 2(r/n)−n	qkn+2 + 2−Ω(n).

In particular, if r > 2n·qk/	+2/(n	) thenEĀ[ρ1/r(Λ
⊥(A)∨)] ≤ 1+2−Ω(n), and so by

Markov’s inequality, η2−Ω(n)(Λ⊥(A)) ≤ r except with probability at most 2−Ω(n).

Using [31, Claim 3.8], we obtain the following corollary, which is often more
useful in applications.

Corollary 4.2. Let R, n, q, k, and � be as in Theorem 4.1. Assume that
A = [I[k] | Ā] ∈ (Rq)

[k]×[	] is chosen as in Theorem 4.1. Then, with proba-
bility 1− 2−Ω(n) over the choice of Ā, the distribution of Ax ∈ R

[k]
q where each

coordinate of x ∈ R
[	]
q is chosen from a discrete Gaussian distribution of radius

r > 2n · qk/	+2/(n	) over R, satisfies that the probability of each of the qnk pos-
sible outcomes is in the interval (1 ± 2−Ω(n))q−nk (and in particular is within
statistical distance 2−Ω(n) of the uniform distribution over R[k]

q ).

5 Example Cryptosystem

Here we give an example application of our toolkit which works in arbitrary cy-
clotomic rings. In particular, we give a public-key cryptosystem whose public key
and ciphertext each consists of only two ring elements. In the full version, we also
give a simple adaptation of the “dual-style” LWE-based public-key cryptosystem
of [19], which uses our regularity theorem of Section 4, and which can serve as
a foundation for (hierarchical) identity-based encryption. Additionally, in the
full version we provide another (much more involved) example of a symmetric-
key “somewhat homomorphic” cryptosystem and all the associated “modulus
reduction” and “key switching” algorithms.

Let q be a positive integer that is coprime with every odd prime dividing m,
and let p be a positive integer coprime with q. The message space is Rp. Let
ψ be a continuous LWE error distribution over KR, and let �·� denote a valid
discretization to (cosets of) R∨ or pR∨. The cryptosystem is defined as follows.
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– Gen: choose a uniformly random a ← Rq. Choose s ← �ψ�R∨ and e ←
�p ·ψ�pR∨ . Output (a, b = m̂(a · s+ e) mod qR) ∈ Rq ×Rq as the public key,
and s as the secret key.

– Enc(a,b)(μ ∈ Rp): choose z ← �ψ�R∨ , e′ ← �p · ψ�pR∨ , and e′′ ← �p ·
ψ�t−1μ+pR∨ .
Let u = m̂(a·z+e′) mod qR and v = b·z+e′′ ∈ R∨q . Output (u, v) ∈ Rq×R∨q .

– Decs(u, v): compute v− u · s = m̂(e · z − e′ · s) + e′′ mod qR∨, and decode it
to d = �v − u · s� ∈ R∨ (see Definition 3.5). Output μ = t · d mod pR.

Lemma 5.1. The above cryptosystem is IND-CPA secure assuming the hard-
ness of R-DLWEq,ψ.

Lemma 5.2. Suppose that �ψ�c+R∨ is δ-subgaussian with parameter r ≥ 1 and
δ = O(1), for any coset c + R∨. Then assuming q > m̂pr2 · ω(

√
n logn), the

decryption procedure is correct with probability negligibly close to one (over all
the random choices of Gen and Enc).

Acknowledgments. We thank Markus Püschel for his help with the sparse
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useful discussions.
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Abstract. We build on an approach of Kiltz et al. (CRYPTO ’10) and
bring new techniques to bear on the study of how “lossiness” of the RSA
trapdoor permutation under the Φ-Hiding Assumption (ΦA) can be used
to understand the security of classical RSA-based cryptographic systems.
In particular, we show that, under ΦA, several questions or conjectures
about the security of such systems can be reduced to bounds on the
regularity (the distribution of the primitive e-th roots of unity mod N)
of the “lossy” RSA map (where e divides φ(N)). Specifically, this is
the case for: (i) showing that large consecutive runs of the RSA input
bits are simultaneously hardcore, (ii) showing the widely-deployed PKCS
#1 v1.5 encryption is semantically secure, (iii) improving the security
bounds of Kiltz et al. for RSA-OAEP. We prove several results on the
regularity of the lossy RSA map using both classical techniques and
recent estimates on Gauss sums over finite subgroups, thereby obtaining
new results in the above applications. Our results deepen the connection
between “combinatorial” properties of exponentiation in ZN and the
security of RSA-based constructions.

Keywords: RSA encryption, PKCS #1 v1.5, Lossy trapdoor functions,
Φ-Hiding Assumption, Gauss sums.

1 Introduction

Cryptographic systems built from the RSA trapdoor permutation [34] are ubiq-
uitous in practice. Though these schemes are simple and highly efficient, they
are typically only proven secure in the random oracle model [3], if at all.1 An
important research direction is to prove their security under better-understood
assumptions. For example, consider the “simple embedding” RSA-based encryp-
tion scheme specified by RSA PKCS #1 v1.5, which is still in widespread use:
roughly, the encryption of a plaintext x is fN,e(x, r) = (x‖r)e mod N , where r

1 There are more recent constructions without random oracles, e.g., [19,20], but they
are less efficient and seem unlikely to be used in practice in the near future.
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is a random string of appropriate length and ‘‖′ denotes string concatenation.2

There was until now no proof of security of this scheme under a standard and
well-studied assumption on RSA.3 In this paper, we show that the security of this
and related constructions can be analyzed under natural assumptions without
the need for the random oracle model. Our analysis relies on new connections
between the security of RSA and “combinatorial” properties of arithmetic in ZN

(namely, the regularity of exponentation on arithmetic sequences and bounds on
the magnitude of Gauss sums).

Key tool: Lossiness. A keyed trapdoor function family fpk on k-bits is L-
lossy [32] if there are two algorithms, or “modes”, for generating public keys: one
which generates key pairs (pk, sk) such that fpk is injective and can be inverted
efficiently given sk, and one which generates keys pk for which fpk is “L-lossy”,
meaning the image of fpk has at most 2k−L points. The security requirement
is that the two modes be computationally indistinguishable. The concept has
found applications in many areas of cryptography, for example in [32,6,1,2,31].

Lossiness is a powerful tool, since it allows one to prove security with re-
spect to the lossy mode, where information-theoretic techniques often apply. As
concrete example, one can show that a lossy function family admits many si-
multaneously hard-core bits: in the lossy mode, the (average) min-entropy of a
uniformly random input X given fpk(X) is at least L, and hence one can use
an appropriate randomness extractor Ext, such as a 2-wise-independent hash
family, to obtain a L− 2 log(1/ε)-bit string that is ε-close to uniform even given
fpk(X) and the seed. In the injective mode, this string will be pseudorandom
given fpk(X) and the seed, since a distinguisher for the extracted string would
imply a distinguisher that tells apart lossy/injective keys. The existence of many
simultaneously hardcore bits allows for the design of efficient, semantically-secure
encryption schemes (say, by using these bits as a one-time pad).

Using Lossiness to Analyze Classical RSA-based Constructions.

Lossiness has mostly been used in the literature as a tool for designing new cryp-
tographic systems. Recently, however, Kiltz et al. [25] showed that the concept
also sheds light on existing, widely-used constructions. Specifically, they showed
that RSA-OAEP [4] is semantically secure under the φ-Hiding Assumption. The
φ-Hiding Assumption, abbreviated ΦA, states (roughly) that given an RSA mod-
ulus N = pq, it is hard to distinguish primes that divide φ(N) = (p− 1)(q − 1)
from those that do not. ΦA has been used as the basis for a number of efficient
protocols [10,9,14,18]. It has also attracted attention of cryptanalysis: the cur-
rent best attack uses Coppersmith’s techniques [12] and applies when e ≤ p1/2−ε;
other attacks [35] are for moduli of a special form that does not include RSA.
Kiltz et al. [25] observed that the RSA map x �→ xe in Z∗N is log(e)-lossy under

2 In practice x and r are typically switched and some bits of r are a fixed constant;
however, this won’t affect our results.

3 We clarify that the parameters (i.e., the RSA modulus and exponent length) sup-
ported by our security proof are not practical (see the discussion at the end of
the Intro for more details). However, prior work does not provide a proof for any
parameter settings.
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ΦA: Valid RSA keys (N, e), for which gcd(e, φ(N)) = 1, are computationally
indistinguishable from “lossy” pairs (N, e) for which e divides p − 1, and the
map x �→ xe in Z∗N is e-to-one when e divides (p− 1).

Thus, ΦA implies that the RSA map hides log(e) bits of information (on aver-
age) about x. But without additional information about which bits are hidden,
it seems we can only analyze constructions which have extractor-like objects
(such as keyed hash functions), explicitly built in. For example, Kiltz et al. [25]
analyzed the OAEP padding scheme by modeling the random oracles as keyed,
t-wise independent functions. One can similarly exploit the observation above
about simultaneous hardcore bits to replace the random oracle in the “Simple
RSA” or “RSA-KEM” scheme proposed by Shoup [36]. However, this method-
ology does not apply to schemes that do not use keyed hash functions or do not
use hash functions at all.

1.1 Our Contributions

We show specific, natural functions that are hidden by RSA in the lossy case,
and use these results to obtain proofs of several natural conjectured security
properties of RSA-based constructions, assuming ΦA. Roughly, the three main
applications are: (i) Any run of log(e) = Ω(logN) consecutive physical bits are
simultaneously hardcore for RSA. (The assumption that RSA is hard to invert
implies only that log logN physical bits are simultaneously hardcore.) (ii) PKCS
#1 v1.5 (described above) is semantically secure against chosen plaintext attacks
(CPA). (iii) Improved parameters for the CPA security of RSA-OAEP (improv-
ing on the reduction in [25]).

These results emanate from our core technical contribution: showing that, in
the lossy setting (when e divides φ(N)), exponentiation by e is nearly regular
on certain subdomains K ⊆ ZN . Regularity means that all (or most) points
in the image of x �→ xe have approximately the same number of preimages in
K. This implies in turn that Xe is approximately uniform on its image when
X is uniform on K. Consider, for example, the natural conjecture that the t
most significant bits of the input are hardcore for exponentiation. To prove this
conjecture under ΦA, it suffices to show that, for every fixed string z ∈ {0, 1}t,
the value (z‖R)e is nearly uniform, where R← {0, 1}logN�−t (this implies that
any two settings z, z′ of the hardcore bits are statistically indistinguishable in
the lossy mode, and computationally indistinguishable in the usual injective
mode). This question corresponds to the regularity of exponentiation by e on
the arithmetic progression K = {z2logN�−t + r : r = 0, ..., 2logN�−t − 1}.

Below, we explain our results in more detail.

Results on Regularity of Exponentiation. We prove several results on
the regularity of lossy exponentiation on subdomains of ZN when N = pq. The
subdomains we consider have some additive structure, which somehow breaks up
the multiplicative structure of exponentiation. Consider a subdomain K ⊆ ZN .
Let X be uniform on K and U be uniform on ZN . Note that for Xe to be close
to Ue, the set K must have size at least φ(N)/e ≈ N/e.
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Regularity for Random Translations of a Set: Our first result considers
random translations of an arbitrary subdomain K. Specifically, we show that the
pair (C, (C + X)e) is statistically close to (C,Ue) when C is uniform on Zn,
as long as K has size larger than N/e. The proof relies on a careful collision
probability argument. One key piece of that argument is the observation that the
random offset and exponentiation together behave like a universal hash function:

for any two values a, b ∈ ZN , the ratio
(
a+C
b+C

)e
is nearly uniformly distributed

over e-th residues, conditioned on the denominator being invertible. The other
main piece is a careful accounting of the probability of noninvertible elements;
this is delicate because the conversion from collision probability to L1-distance
can amplify very small irregularities.

This first result achieves optimal parameters but it takes advantage of “aver-
aging” in two senses: first, it averages over translations of the initial set K and
second, it only implies regularity on average over points in the pre-image (since
we show that the L1-distance between the resulting distributions is small). This
turns out to be insufficient for some applications, motivating our second result.

Regularity for Arithmetic Progressions and the Relation to Gauss

Sums: Our second result is more specific: we show that if K is a sufficiently long
arithmetic progression (with period relatively prime to N), then exponentiation
is regular on K in a strong sense: the number of preimages of every point in the
image is approximately the same.

The main tool in our analysis is a reduction from the question of regularity
to bounds on Gauss sums. Given a prime p, and integers a, d, consider the sum

Gp(a, d) :=
∑p

x=1 ω
axd

, where ω = exp(2πi/p) is a primitive p-th root of unity
and the arithmetic is in C. We show that if e divides p− 1 and N = pq, then∣∣∣Pr(Xe = a)− e

N

∣∣∣ ≤ max
b�=0

∣∣Gp(b, p−1e )
∣∣ · O(e logK

pK

)
where K is the length of K. One can think of the Gauss sums Gp(·, d) as the
Fourier coefficients of the function x �→ xd over Zp. The proof of our main lemma
uses Fourier analysis over ZN = Zp×Zq to connect regularity to the magnitude
of the sum.

Leveraging the rich literature on bounds on Gauss sums, we obtain regularity
results for different ranges of e (relative to p). These results show that expo-
nentiation (when e divides φ(N)) is a deterministic extractor for sources whose
support is a sufficiently long arithmetic progression. Moreover, the output distri-
butions are close to uniform not only in L1-distance but also in the stronger L∞
sense. Given the state of our knowledge of bounds for Gauss sums, this second
class of results yields weaker (but still useful) bounds on uniformity than our
first result. (For a comparison of the bounds, see the end of Section 4.)

Applications to RSA-Based Cryptosystems. Our regularity bounds im-
ply the following new security results for RSA-based constructions under the
φ-Hiding Assumption (ΦA):
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Natural hardcore bits for RSA: Any run of about log(e) consecutive phys-
ical bits of x are simultaneously hardcore for RSA. Specifically, let f(x) denote a
run of log(e)−4 log(1/ε) physical bits of the input x. Our result on random trans-
lations implies (with some additional work) that the pair (f(C), Ce) is ε-close to
(f(C), Ue) when e divides p−1 and C,U are uniform in Zn. If we consider either
the most significant bits or least significant bits of x, then one can improve the
run length to log(e) − 3 log(1/ε) (that is, we get log(1/ε) additional hardcore
bits).

Semantic security of PKCS #1 v1.5: Our bounds on regularity on
arithmetic progressions imply that PKCS #1 v1.5, which encrypts m as
(000216‖m‖0016‖R)e where R is uniform, is semantically secure (aka. chosen-
plaintext secure or IND-CPA) [16] for certain parameters. Indeed, note that the
space of pre-images for a given message m forms an arithmetic progression with
period 1 (variants of this scheme mentioned in Footnote 2 give progression with
period 2t for t > 1, which is still relatively prime to N). Under ΦA, with appro-
priately long R, the ciphertext is thus indistinguishable from uniform, for every
fixed message m.

Improved Security for RSA-OAEP: Finally, our regularity bounds for
arithmetic sequences also give tighter standard-model security proofs for the
IND-CPA security of RSA-OAEP, improving on the results of [25]. The RSA-
OAEP scheme as per PKCS #1 v2.1 encrypts m as (000216‖OAEP(m))e where
OAEP is some randomized, invertible transformation. Recall [25] were able to
obtain their best security bound in the case that the lossy RSA map is (close
to) regular on the subdomain {000216‖x | x ∈ {0, 1}k−16} and left it as an open
problem to prove this. As this subdomain forms an arithmetic progression, we
resolve this positively.

Discussion and concrete parameters. As mentioned above, our result on
regularity for random translations averages in two senses. The first sense is suf-
ficient to obtain results on hardcore bits, but not security of PKCS # 1 v1.5
encryption or RSA-OAEP. Roughly, this is because the elements in the subdo-
mains contain fixed messages and constants as substrings. Getting better reg-
ularity bounds without additional randomness (i.e., eliminating the first sense)
remains an interesting open problem. This is primarily a concern for the PKCS
#1 v1.5 application, since we need regularity on arithmetic progressions of length
2ρ = 2Ω(k) where ρ is the length of the random padding. In the RSA-OAEP ap-
plication we use length 2k−16 = 2k+O(1), for which our regularity bounds on
arithmetic progressions give much better parameters.

To give an idea of the concrete parameters we obtain, for modulus length k =
2048 we get about 190 natural hardcore bits. In our security bound for PKCS #1
v1.5, for modulus length k = 8192 we support about 128-bit messages. Finally,
in the RSA-OAEP application we get significant savings: e.g., secure encryption
of about 100-bit longer messages than supported by [25] for modulus length
k = 2048 (274-bit messages for 80-bit security rather than 160-bits). In terms
of practice, we view our results mainly as providing a qualitative, theoretical



60 M. Lewko, A. O’Neill, and A. Smith

backing for in-use schemes at some parameter settings. We hope our techniques
will prove useful in future work and the bounds will be improved.

1.2 Related Work

Following [25], Kakvi and Kiltz [23] showed that lossiness of RSA under ΦA
is also useful to understand security of a classical RSA-based signature, giving
improved security bounds for the RSA Full-Domain Hash signature scheme [3].
Jager et al. [21] recently provided a standard-model analysis of TLS-DHE, an-
other widely used protocol. Gauss sums also have applications to elliptic-curve
cryptography, see e.g. [37,26,38].

Bleichenbacher [5] (see also [22]) gave a well-known chosen-ciphertext attack
against PKCS #1 v1.5 encryption, which has since been patched and the scheme
is still in widespread use for legacy reasons. Coron et al. [13] gave chosen-plaintext
attacks on PKCS #1 v1.5 encryption. These do not contradict our results be-
cause the attacks of [13] are for different parameter settings. Specifically, they
rely on the length of the random padding being quite small. Our results require
sufficiently large random padding– at least 3

4 logN bits – as well as large e. In-
terestingly, our analysis implies a plausible setting in which PKCS #1 v1.5 is
provably immune to the attacks of [13] under ΦA.

The “large hardcore bit conjecture” for RSA and the security of the sim-
ple embedding scheme are mentioned as important open problems by Goldre-
ich [15]. Prior progress was made by Steinfeld et al. [39], who showed that the
1/2 − 1/e − ε − o(1) least significant bits of RSA are simultaneously hardcore
under a computational problem related to the work of Coppersmith [12]. This
result does not apply as such to PKCS #1 v1.5 because the latter does not use
the full RSA domain (some bits are fixed constants). Moreover, we show chosen-
plaintext security, i.e., security for arbitrary messages, rather than only for ran-
dom ones (which, disregarding some of the other bits being fixed constants, is
equivalent to the message bits being hardcore). The fact that PKCS #1 v1.5 is
believed to be CPA-secure but no proof is known is also discussed by Katz and
Lindell [24, pg. 363].

2 Preliminaries

Notation. For a probabilistic algorithm A, by y←$A(x) we mean that A is exe-
cuted on input x and the output is assigned to y, whereas if S is a finite set then by
s←$S we mean that s is assigned a uniformly random element of S. Unless oth-
erwise specified, an algorithm may be probabilistic and its running-time includes
that of any overlying experiment. We denote by 1k the unary encoding of the se-
curity parameter k. We sometimes surpress dependence on k for readability. For
i ∈ N we denote by {0, 1}i the set of all (binary) strings of length i. If s is a string
then |s| denotes its length in bits, whereas if S is a set then |S| denotes its cardinal-
ity. By ‘‖’ we denote string concatenation. If s is a string then for all 1 ≤ i ≤ j ≤ |s|
we denote by s[i . . . j] its substring of bits i through j.
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We will occasionally use the usual asymptotic notation X = O(Y ) or X � Y
to indicate that |X | ≤ C|Y | for some unspecified constant C. We will also
make use of the exact asymptotic notation X = O(Y ) to indicate that |X | ≤
|Y | without any unspecified constant. We will use log(·) to denote the natural
logarithm and C to denote an absolute constant, which may change at unrelated
occurrences. In addition, we use Cε to denote an absolute constant that depends
only on its subscript, ε. If X and Y are random variables on common domain,
then their statistical distance is Δ(X,Y ) = 1/2

∑
x |Pr [X = x ]− Pr [Y = x ]|

= 1/2 · ||X − Y ||1.
We borrow the following notation from [25]. For i ∈ N we denote by Pi the

set of all i-bit primes. By RSAk we denote the set of tuples (N, p, q) where p, q
are distinct k/2-bit primes and N = pq. Let R be a relation on p and q. By
RSAk[R] we denote the subset of RSAk for which the relation R holds on p and
q. For example, let e be a prime. Then RSAk[p = 1 mod e] is the set of all
(N, p, q), where where N = pq is the product of two distinct k/2-bit primes p, q
and p = 1 mod e. That is, the relation R(p, q) is true if p = 1 mod e and q is
arbitrary. By (N, p, q)←$RSAk[R] we mean that (N, p, q) is sampled according
to the uniform distribution on RSAk[R].

RSA, Lossy RSA, and Phi-hiding. Recall that the RSA function for modulus
N and encryption exponent e is defined as

RSAN,e(x) = xe mod N .

To specify the RSA trapdoor permutation family we need to give a parameter-
generation algorithm that specifies how parameters N, e are generated. (We ig-
nore the decryption exponent d for now.) Letting 0 < c < 1 be a public constant,
we define two of them (“Injective RSA” and “Lossy RSA”):

Algorithm RSAinj(1
k) :

e←$Pck

(N, p, q)←$RSAk

Return (N, e)

Algorithm RSAloss(1
k) :

e′←$Pck

(N ′, p′, q′)←$RSAk[p
′ = 1 mod e′]

Return (N ′, e′)

The Phi-Hiding Assumption (ΦA) for c [10] states that (N, e) is computationally
indistinguishable from (N ′, e′) where (N, e) is generated via RSAinj(1

k) and
(N ′, e′) is generated via RSAloss(1

k). More precisely, to a distinguisher D we
associate its ΦA-advantage defined as

AdvΦA
D,c(k) = Pr [D(N, e) outputs 1 ]− Pr [D(N ′, e′) outputs 1 ]

with inputs generated as above.
As shown by [25], RSA constitutes a lossy trapdoor permutation in the sense

of [32] under ΦA by using the above two parameter generation algorithms. (We
avoid giving a formal definition of lossy TDPs in the paper, since our results
are specifically tied to ΦA.) We recall that we need e ≤ p1/2−ε to avoid Cop-
persmith’s attack [12,29] on ΦA. More specifically, N can be factored efficiently
if e ≥ p1/2 and in time O(Nε) if c = 1/4 − ε (i.e., log e ≥ logN(1/4 − ε)). For
example, with modulus size k = 2048 we can set ε = .04 for 80-bit security (to
enforce kε ≥ 80) and obtain 2048 · (1/4− 0.04) = 430 bits of lossiness.
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3 Approximate Regularity on Subdomains

We start by defining variants of regularity we consider.

Notions of regularity on subdomains. Let f : D → R be a function from
domain D to range R. We say that f is regular on D if |f−1(y)| = |D|/|R| for
every y ∈ R. Suppose f is regular. Let D′ ⊆ D be a subdomain.

Definition 1 (L1-regularity). We say that f is λ-L1-regular on D′ if for all
y ∈ R,

Δ(f(X), f(X ′)) ≤ λ ,

where X←$D and X ′←$D′.

Above “λ” is the approximation factor and “L1” indicates that we measure the
regularity via the L1-norm.

We also consider the following “worst-case” regularity notion. For y ∈ R we
denote by f−1(y)[D′] the preimage set of y restricted to D′, that is

f−1(y)[D′] := {x ∈ D′ | x ∈ f−1(y)} .

Definition 2 (L∞-regularity). We say that f is ν-L∞-regular on D′ if for all
y ∈ R, ∣∣∣∣∣

∣∣f−1(y)[D′]∣∣
|D′| − 1

|R|

∣∣∣∣∣ ≤ ν .

Equivalently, f is ν-L∞-regular on D′ if for all y ∈ R

|Pr[f(X ′) = y : X ′←$D′]− Pr[f(X) = y : X←$D]| ≤ ν .

In other words, L1-regularity is a bound on the L1-distance of a random image
point from the subdomain from uniform, and L∞-regularity is a bound on the
L∞-distance from uniform. The following proposition (which immediately follows
from the definitions) will be useful:

Proposition 3. Suppose f is ν-L∞-regular on D′. Then f is ν|R|-L1-regular
on D′.

Thus, if f is ν-L∞-regular on D′ for ν � 1/|R|, then f is o(1)-L1-regular on D
′.

Main technical question. We can now state the main (informal) technical
question of this work. Consider the “lossy RSA” function RSAN ′,e′ where (N

′, e′)
is output by RSAloss(1

k).

What is the approximate regularity of RSAN ′,e′ on subdomains of ZN of
sufficient size?

In Section 4 we answer this question for a variety of parameter setting and
regularity notions in the case that the subdomain of certain forms, in particular
those described by arithmetic progressions. In Section 5 we give applications of
these results to hardcore bits of RSA, RSA PKCS v1.5 encryption, and RSA-
OAEP encryption.
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4 Bounds on Approximate Regularity of Lossy RSA

We give bounds on the approximate regularity of lossy of RSA for a variety of
parameter settings as notions of regularity.

4.1 L1-Regularity for Random Translations

We consider expected L1-regularity of lossy RSA over random translation of a
fixed subset. The following lemma says for any subset of sufficient size, we have
good expected L1-regularity over a random translation of the subset. It can also
be viewed as saying that exponentiation with a random offset modulo N is a
strong seeded extractor. (However, this interpretation is just for understanding;
we do not use the lemma this way.)

Lemma 4. Let N = pq and e be such that e | p− 1 and gcd(e, q − 1) = 1. Let

K ⊆ ZN such that |K| ≥ 4N/(eα2) for some α ≥ 4(p+q−1)
N . Then

(C, (C +X)e mod N) ≈α (U ′, Ue mod N)

where C,U ′, U←$ZN and X←$K.

The proof relies on a careful collision probability argument. One key piece of that
argument is the observation that the random offset and exponentiation together
behave like a universal hash function: for any two values a, b ∈ ZN , the ratio(
a+C
b+C

)e
is nearly uniformly distributed over e-th residues, conditioned on the

denominator being invertible.

Proof. For ease of notation let P denote the distribution of (C, (C+X)e) and U
denote the distribution of (C,Ue) (we omit the “mod N” here and below when
it is clear from context). Let K = |K|. Write

P = P1 + P0 and U = U1 + U0

where P1 denotes the distribution of P ∧ (C + X)e ∈ Z∗N , P0 denotes the
distribution of P ∧ (C+X)e /∈ Z∗N , U1 denotes the distribution of U ∧ Ue ∈ Z∗N ,
and U0 denotes the distribution of U ∧ Ue /∈ Z∗N . Note that

Δ(P ,U) = ||P − U||1 = ||P1 − U1||1 + ||P0 − U0||1 .

We bound each term with the following claims.

Claim.
||P1 − U1||1 ≤

α

2
.

Proof. We have

||P1 − U1||1 ≤
√
supp(P1 − U1) · ||P1 − U1||2

≤
√
supp(P1 − U1) · (||P1||2)2 − 1 . (1)
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The first line above is by the Cauchy-Schwarz inequality, and the second is due
to the fact that (P1 − U1) ⊥ 1, which follows from the observation that

〈1,P1〉 =
p+ q − 1

N
= 〈1,U1〉

where the first equality is because the marginal distribution of (C +X)e is that
of Ue. To bound Equation (1), note that supp(P1 − U1) = Nφ(N)/e. Also,

(||P1||2)2=Pr
[
(C, (C +X)e) = (C′, (C′ + Y )e∧z ∈ Z

∗
N

]
=

1

N
·Pr

[
(C +X)e=(C + Y )e ∧z ∈ Z

∗
N

]

where X,Y ←$K and z denotes the common value of (C +X)e and (C + Y )e.
We have

Pr [ (C +X)e = (C + Y )e ∧ z ∈ Z∗
N ] =

∑
ω

Pr [ (C +X)/(C + Y ) = ω ∧ z ∈ Z∗
N ]

≤ Pr [X = Y ] +
∑
ω �=1

Pr [ (C +X)/(C + Y ) = ω ∧ z ∈ Z∗
N | X �= Y ] · Pr [X �= Y ]

≤ Pr [X = Y ] +
∑
ω �=1

Pr [ C = (ωY −X)/(ω − 1) ∧ z ∈ Z∗
N | X �= Y ] · Pr [X �= Y ]

≤ 1

K
+

e− 1

N

(
1− 1

K

)
.

where ω is an e-th root of unity modulo N (for which there are e possibilities);
for the second-to-last line above we use the fact that X = Y iff ω = 1. Plugging
the above into Equation (1) yields

||P1 − U1||1 ≤

√
φ(N)

e

(
1

K
+
e− 1

N

(
1− 1

K

))
− 1

=

√
φ(N)/e

K
+

(
e− 1

e
· φ(N)

N
· K − 1

K
− 1

)
≤ α

2

as desired, where for the last inequality we use the assumption K ≥ 4N/(eα2).

Claim.
||P0 − U0||1 ≤

α

2
.

Proof. We have

||P0 − U0||1 ≤ 〈1,P0〉+ 〈1,U0〉 =
2(p+ q − 1)

N
≤ α

2

where the last inequality uses the assumption that α ≥ 4(p+q−1)
N .
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4.2 L∞-Regularity for Arithmetic Progressions

We next consider the L∞-regularity of lossy RSA on subdomains described by
arithmetic progressions. We start with some definitions.

Arithmetic progressions. Recall that a subset P ⊆ [1, N ] is an arithmetic
progression if it can be expressed as P = {σ�+ τ : 1 ≤ � ≤ K} for some τ, σ �= 0.
Here σ is called the period of the arithmetic progression.

Gauss sums. We define a Gauss sum as

Gp(a, d) :=
p∑

x=1

ep(ax
d) (2)

where a, d ∈ N, e(x) = e2πix and ep(x) := e(x/p). Trivially one has |Gp(a, d)| ≤ p.
There are a variety of tighter bounds available for various choices of parameters
which will be discussed later.

Connecting Gauss sums to Lossy RSA. First we show how estimates on
Gauss sums imply results about approximate regularity of lossy RSA.

Lemma 5. Let N = pq and e be such that e | p − 1 and gcd(e, q − 1) = 1.
Assume that

max
a �=0

∣∣∣∣Gp(a, p− 1

e

)∣∣∣∣ ≤ Cpθ

for some 0 < θ < 1. Let P = {σ�+ τ : 1 ≤ � ≤ K} (σ, τ ∈ N), P ⊆ [1, N ] denote
an arithmetic progression with (σ,N) = 1, and let K = {(x,N) = 1 : x ∈ P}.
We then have that (assuming p, q > 2 and |K| ≥ max(p, q))∣∣∣∣ Prx←K

[xe = a]− Pr
x←Z∗

N

[xe = a]

∣∣∣∣ ≤ 7|K|−1 + 10Ce|K|−1pθ−1 log (|K|) . (3)

Proof. If a is not in the range of x �→ xe then Prx←K [xe = a] = Prx←Z∗
N
[xe = a]

= 0, so we assume that a is in the range. Next we recall some elementary
number theory. We will identify an element x ∈ Z∗m (m = p, q or N) with its
smallest positive integer representative which we will denote x. The Chinese
remainder theorem gives the isomorphism Z∗N

∼= Z∗p ⊕ Z∗q . This isomorphism is
explicitly given from Z∗N to Z∗p ⊕ Z∗q by the map a �→ (a mod p, a mod q). Let
S := {x ∈ Z∗N : xe = a}, ap = a mod p, and aq = a mod q. Denote by Sp := {x
mod p : x ∈ S} = {ue = ap : u ∈ Z∗p} and Sq := {x mod q : x ∈ S} = {ve =
aq : v ∈ Z∗q}. Since (e, q− 1) = 1 we have that that map v �→ ve is a bijection on
Z∗q and hence |Sq| = 1. We will denote this element as sq. The map u �→ ue on
Z∗p is e-to-1, so |Sp| = e = |S|. Moreover, Sp is a coset of a subgroup and can be

represented as Sp = {x p−1
e b : x ∈ Z∗p}, for any b ∈ Sp. Our goal is to estimate

|K ∩ S|. Given a set S ⊆ Z∗m (for m = p, q or N), we will denote the associated
indicator function as 1S(x) �→ {0, 1}. Thus,

|K ∩ S| =
∑
x∈K

1S(x) =
∑
x∈K

1sq (x)1Sp(x) =
∑
x∈K

x≡sq mod q

1Sp(x).
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We can expand 1Sp(x) =
∑

ξ∈Z∗
p
1̂Sp(ξ)ep(xξ) where the Fourier coefficients

1̂Sp(ξ) are given by

1̂Sp(ξ) = p−1
∑
x∈Zp

1Sp(x)ep(−xξ).

We have that

Ŝp(ξ) = p−1
e

p− 1
G(bξ, p− 1

e
).

Thus 1̂Sp(0) =
e

p−1 and |Ŝp(ξ)| ≤ C e
p−1p

θ−1 for ξ �= 0.

Let K′ := {x ≡ sq mod q : x ∈ K}. We wish to estimate |K′| in terms of |K|.
In what follows we make use of the assumption that (σ,N) = 1 which prevents
P from degenerating to a point when reduced mod p or mod q. Noting that K
is obtained from P by sieving out elements congruent to 0 mod p and 0 mod q,
we have that |P |(1 − p−1 − q−1) + O(3) = |K|. Now if we define I := {x ≡ sq
mod q : x ∈ P} and E := {x ≡ 0 mod p : x ∈ I}, then K′ = I \ E. Moreover,
|E| ≤ 1 since if b ∈ E ⊆ Z∗N then b ≡ sq mod q and b ≡ 0 mod p which uniquely
specifies b by the Chinese remainder theorem. Thus |K′| = |P |q−1 +O(2) where
|P | = (|K|+O(3)) qp

qp−p−q , which gives

|K′| = (|K| +O(3)) p

qp− p− q
+O(2) = 1

q − 1
|K|+O(7)

where we have used that p
qp−p−q ≤ 1 (using that p, q > 2) and p

qp−p−q =

1
q−1−qp−1 = 1

q−1 + q−1+qp−1

(q−1)(q−1−qp−1 = 1
q−1 +O(2).

We now may express

1Sp(x) =
e

p− 1
+
∑
ξ∈Z∗

p

1̂Sp(ξ)ep(xξ).

Thus

|K ∩ S| =
∑

x∈I\E
1Sp(x) =

e|K′|
(p− 1)

+
∑
ξ∈Z∗

p

1̂Sp(ξ)
∑

x∈I\E
ep(xξ)

Using that |Ŝp(ξ)| ≤ Cepθ−2 we have

∣∣∣∣|K ∩ S| − e|K|
φ(N)

∣∣∣∣ ≤ 7 + C
e

p− 1
pθ−1

∑
ξ∈Z∗

p

∣∣∣∣∣∣
∑

x∈I\E
ep(xξ)

∣∣∣∣∣∣
Now I can be expressed as an arithmetic progression, I = {xq + b : x =
1, 2, . . . |I|} so

|
∑
x∈I

ep(xξ)| = |
|I|∑
x=1

ep(−bξ)ep(qxξ)| = |
|I|∑
x=1

ep(qxξ)| =
∣∣∣∣ sin(πξq|I |/p)sin(πξq/p)

∣∣∣∣ ≤
∣∣∣∣ 1

sin(πqξ/p)

∣∣∣∣ .
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Using the inequality sin(πx) ≥ 2x for −1/2 ≤ x ≤ 1/2 and denoting the dis-
tance of a real number to the nearest integer by || · || the quantity above is
≤ 2−1||ξqp−1||−1. Thus,

∑
ξ∈Z∗

p

∣∣∣∣∣∣
∑

x∈I\E

ep(xξ)

∣∣∣∣∣∣ ≤ 1+2−1
∑
ξ∈Z∗

p

||ξqp−1||−1 ≤ 1+2−1p

|I|∑
n=1

n−1 ≤ 1+2−1p(1+log(|I |))

where we have used the inequality
∑|I|

n=1 n
−1 ≤ 1+log(|I|). Since Prx←Z∗

N
[xe = a]

= e
φ(N) and Prx←K [xe = a] = |K∩S|

|K| , putting this all together we have that

∣∣∣∣∣ Pr
x←K

[
xe = a

]
− Pr

x←Z∗
N

[
xe = a

]∣∣∣∣∣ ≤ 7|K|−1+C
e

p− 1
|K|−1pθ−1

(
1 + 2−1p

(
log

( |K|
q

+ 1

)
+ 1

))
.

From our assumptions we have log
(
|K|
q + 1

)
≤ log(|K|), and log

(
|K|
q + 1

)
+1 ≤

2 log(|K|). Now 1 + 2−1p× 2 log(|K|) ≤ 5 log(|K|). Using 1
p−1 ≤

2
p , we have∣∣∣∣ Prx←K

[xe = a]− Pr
x←Z∗

N

[xe = a]

∣∣∣∣ ≤ 7|K|−1 + 10Ce|K|−1pθ−1 log (|K|) .

This completes the proof.

Known estimates on Gauss sums.We now summarize some known estimates
on Gp(a, e). Throughout, we assume 1 ≤ a < p.

|Gp(a, d)| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(d− 1)p1/2 , 1 ≤ d ≤ p1/3

2 · 3−1/4d5/8p5/8 , p1/3 < d ≤ p1/2

2 · 3−1/4d3/8p3/4 , p1/2 < d ≤ p2/3

Cδp
1−ε(δ) , p2/3 < d < pδ.

The first estimate is classical, the second and third are due to Heath-Brown
and Konyagin [17] (with the explicit constants given by Cochrane and Pinner
[11]), and the fourth is due to Bourgain, Glibichuk, and Konyagin [8]. To the
best of our knowledge explicit values of Cδ have not been worked out. Also, see
[27] and [7] for some additional refinements. Much more is believed to be true,
in particular Montgomery, Vaughan, and Wooley [30] have made the following
conjecture

|Gp(a, d)| ≤ min{(d− 1)p1/2, (1 + η)(2dp log(dp))1/2} (4)

where η → 0 as d and p/d tend to infinity.

Bounds on regularity of Lossy RSA. Combining the known estimates
with Lemma 5 gives the following corollary.
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Corollary 6. With the notation and assumptions of Lemma 5 we have

The map x �→ xe is ν-L∞-regular on K for

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν = Cδep
−ε(δ) log(|K|)

|K| , pδ ≤ e ≤ p1/3

ν = 23e5/8p1/8 log(|K|)
|K| , p1/3 < e ≤ p1/2

ν = 23e3/8p1/4 log(|K|)
|K| , p1/2 < e ≤ p2/3

ν = 17p1/2 log(|K|)
|K| . , p2/3 < e < p.

Recall from Section 2 that we take e ≤ p1/2−ε in our applications, and thus only
the first two cases above are applicable. We include bounds for other parameter
ranges in case they are useful for future work. (Indeed, we consider finding a
relaxation of lossiness that avoids Coppersmith’s attack but still allows our proof
techniques to go through to be an interesting open problem.) We are also able
to obtain improvements for some values of e and K by appealing to estimates
for incomplete character sums, see the full version [28] for details.

Consequences of the MVW conjecture and comparison to colli-

sion probability bound. One may check that the Montgomery-Vaughan-
Wooley (MVW) conjecture mentioned above would give ν-L∞-regularity for

ν = O
(
e1/2 log1/2(p) log(|K|)|K|

)
.4 Thus, disregarding logarithmic factors the MWV

conjecture implies λ-L1-regularity for λ = O(
√
N/eK ·

√
N/K), whereas the col-

lision probability bound in Section 4.1 gives λ = O(
√
N/eK), which is which

is always better since K ≤ N . However, when K ∼ N these bounds essentially
agree and are both asymptotically around 1/

√
e.

5 Applications

We describe several applications of our results.

5.1 Large Consecutive Runs of Hardcore Bits for RSA

We can use our result on expected L1-regularity of lossy RSA over random
translations given in Section 4.1 to derive new results on substrings of the RSA
input that are hardcore.

Hardcore substrings. We begin by defining what it means for a substring
of the input to be hardcore. For 1 ≤ i < j ≤ k, we say that the (i, j)-th
substring of RSA is simultaneously hardcore (we omit “simultaneously” below,
with it being understood) if the following two distributions are computationally
indistinguishable:

DistReal := {(N, e, xe mod N,x[i . . . j])) : (N, e)←$RSAinj(1
k) ; x←$Z∗

N}

DistRand := {(N, e, xe mod N, r) : (N, e)←$RSAinj(1
k) ; x←$Z∗

N ; r←$ {0, 1}j−i} .

4 Note that Parseval’s identity gives us that
∑

a∈{x(p−1)/d:x∈Zp} |Gp(a, d)|2 
 d2p (see

section 4 of [30]). Thus, for some a we must have |G(p, a)| 
 (dp)1/2. So (disregarding
logarithmic factors) nothing beyond the MWV conjecture is possible.
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To a distinguisher D we associate its hardcore-bits advantage defined as

Advhcb
i,j,D(k) = Pr [D(DistReal) outputs 1 ]− Pr [D(DistRand) outputs 1 ] .

Our result. We are now ready to state our result: Roughly, under ΦA, (1)
the log e − 3 log(1/ε) most significant bits of RSA are hardcore, (2) the log e −
3 log(1/ε) least significant bits of RSA are hardcore, and (3) an arbitrary sub-
string of log e − 4 log(1/ε) bits of RSA are hardcore. Typically, in practice the
least significant bits are used, see e.g. [39].

Theorem 7. Assume that ΦA holds for c and let ε > 0. Let 1 ≤ i < j ≤ n such
that |j − i| ≤ log e − 4 log(1/ε)− 2. Then for any hardcore-bits distinguisher D
against RSA there is a ΦA distinguisher D′ such that for all k ∈ N

Advhcb
i,j,D(k) ≤ AdvΦA

c,D′(k) + 2ε .

The running-time of D is that of D′. In the special cases i = 1 or j = n
(i.e., for the least significant or most significant bits), we only require |j − i| ≤
log e− 3 log(1/α)− 2.

The proof is in the full version [28]. The main idea is to note that, in Lemma 4,
if we choose X appropriately, the (i, j)-th substrings of X and X + C in the
lemma will be the same. To ensure this we need to choose X so that, with
high probability, we avoid “overflow” modulo N , or a carry into the the i-th bit
position in the addition. Ensuring this is why we pay an extra 2 log(1/ε) bits
(versus Lemma 4) in the theorem in general.

Concrete parameters. Recall from Section 2 that with modulus size k = 2048
we can take log e to be roughly 430 bits for 80-bit security. Then, taking ε = 2−80

in Theorem 7, we get 190 natural hardcore bits of RSA (either the 190 most
significant bits or the 190 least significant bits). Similarly, with k = 3072 we get
688 bits of lossiness and 448 natural hardcore bits.

5.2 IND-CPA Security of PKCS #1 v1.5

We can use our results on L∞-regularity of lossy RSA on arithmetic progressions
given in Section 4.2 to prove security of PKCS #1 v1.5 encryption.

PKCS #1 v1.5 encryption. Namely, define the “simple embedding” RSA-
based encryption scheme defined as follows. Let μ, ρ such that μ+ ρ+32 = k be
integer parameters. Define the randomized encoding function PKCS that takes
plaintext x ∈ {0, 1}μ and coins r ∈ {0, 1}ρ and outputs

PKCS(x; r) = x‖0016‖r .
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Define the encryption scheme ΠPKCS = (Kg,Enc,Dec) by

Alg Kg(1k)
(N, e, d)←$RSAinj(1

k)
Return ((N, e), (N, d))

Alg Enc((N, e), x)
x′←$PKCS(x)
x′′ ← 000216‖x′
y ← (x′′)e mod N
Return y

Alg Dec((N, d), y)
x′ ← yd mod N
000216‖x‖0016‖r ← x′

Return x

Essentially such a scheme was adopted by PKCS#1 v1.5 and is still in widespread
use. (In practice, as opposed to in the academic literature, r and x are switched;
however, this doesn’t affect our results.)

Our result. We show the first positive result about the security of this scheme;
namely, for certain parameters it is IND-CPA secure. (The standard definition
of IND-CPA security is recalled in Appendix A.)

Theorem 8. Suppose ΦA holds for c and lossy RSA is ν-L∞-regular on arith-
metic progressions of length 2ρ. Then for any IND-CPA adversary A against
ΠPKCS, there is a distinguisher D against ΦA such that for every k ∈ N

Advind-cpa
ΠPKCS,A

(k) ≤ AdvΦA
c,D(k) +

ν · φ(N)

e
.

The running-time of D is that of A.

Proof. (Sketch.) The first step of the proof is to replace (N, e) generated via
RSAinj(1

k) in the IND-CPA game with (N ′, e′) generated via RSAloss(1
k). Now

consider the distribution of a ciphertext C = (000216‖x‖0016‖R)e
′
mod N ′ for

any fixed but arbitrary plaintext x ∈ {0, 1}μ, where R ∈ {0, 1}ρ is uniformly
random. (Note that xmay depend onN ′, e′ here, which are fixed in the argument
below.) Notice subdomain {000216‖x‖0016‖r | r ∈ {0, 1}ρ} is described by the
arithmetic progression of length 2ρ, namely {2ρ+16+μ·2+2ρ+16·x+i | 1 ≤ i ≤ 2ρ}.
(Variants of the scheme, e.g. where R and x are switched, are described by an
arithmetic progression with a different period.) Proposition 3 tells us that lossy
RSA is ν(φ(N)/e)-L1-regular on arithmetic progressions of length 2ρ, and thus
Δ(C,Ue) ≤ ν(φ(N)/e). Noting that Ue is independent of x concludes the proof.

Concrete parameters. We can calculate concrete security bounds for the
scheme according to our results on the L∞-regularity of lossy RSA on arithmetic
progressions given in Section 4.2. As per Section 2 assume e = p1/2−ε. Then
according to part 2 of Corollary 6 we have that lossy RSA is ν-L∞-regular on
arithmetic progressions of length K for

ν = 23e5/8p1/8
log(K)

K
.

Now p = N1/2 so e = N1/4−ε/2 and thus

ν =
23 ·N7/32−(5/16)ε logK

K
=

e

φ(N)

(
N

e
· 23 ·N

7/32−(5/16)ε logK

K

)
=

e

φ(N)

(
23 ·N31/32+(3/16)ε logK

K

)
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Imposing

ν ≤ e

φ(N)
N−ε =⇒ K ≥ 23 ·N31/32+11/8ε · logN .

Unfortunately, we must use a very long modulus length to get any meaningful
concrete bound. For example, consider modulus length k = 8192. By taking
ε = .01 we get 80-bit security and approximately 128-bit messages. Hence, we
view our result as a qualitative one (in the same vein, we note, for example,
that the current concrete security reduction for RSA-OAEP requires modulus
length 4096 [33] for a meaningful bound) and hope further work will improve
the parameters.

5.3 Improved Security Reduction for RSA-OAEP

Finally, we can use our bounds on L∞-regularity of lossy RSA on arithmetic
progressions given in Section 4.2 to improve the bounds given in [25] on CPA
security of RSA-OAEP encryption scheme [4], as adopted by PKCS #1 v2.1 as
a replacement for the “simple embedding” scheme described above.

RSA-OAEP encryption. Let μ, ρ such that μ + ρ + 16 = k be integer pa-
rameters. Define the randomized encoding function OAEP that takes plaintext
x ∈ {0, 1}μ and coins r ∈ {0, 1}ρ and outputs

OAEP(x; r) = G(r)⊕x‖H(s)⊕r
where s = G(r)⊕x and G,H are hash functions. Define scheme ΠOAEP =
(Kg,Enc,Dec) by

Alg Kg(1k)
(N, e, d)←$RSAinj(1

k)
Return ((N, e), (N, d))

Alg Enc((N, e), x)
x′←$ 000216‖OAEP(x)
y ← (x′)e mod N
Return y

Alg Dec((N, d), y)
x′ ← yd mod N
000216‖s‖t
r ← t⊕H(s) ; x← s⊕G(r)
Return x

Our result. Recall that Theorem 4.2 of [25] provides several bounds on the
CPA security of RSA-OAEP. The best bound, namely Part 2 of Theorem 4.2,
requires that RSA is (close to) regular on the subdomain where the most signifi-
cant two bytes of the input are zero. However, they left this as an open problem
and resorted to a worse bound for general functions, namely Part 3 of Theorem
4.2. Here we adapt Part 2 to prove our result:

Theorem 9. Suppose ΦA holds and RSAN ′,e′ as defined above is λ(e/φ(N))-
L∞-regular on arithmetic progressions of length 2k−16, and G is t-wise indepen-
dent. Then for every IND-CPA adversary A against ΠOAEP there is a distin-
guisher D against ΦA such that

Advind-cpa
ΠOAEP,A

(k) ≤ AdvΦA
c,D(k) + 2−u

where

u =
t

2t+ 2
(logλ+ ρ− s− log t+ 2)− μ+ s+ 2

t+ 1
− 1

The running-time of D′ is that of D.
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Specifically, “logλ” term in the above theorem was absent in Part 2 of Theorem
4.2 [25], but its presence here follows from their analysis (see “Proof of Part 1”,
pg. 14, of [25]).

Concrete parameters. Notice that, in this application, as opposed to Sec-
tion 5.2, we only need regularity on very large arithmetic progressions of length
2k−16 (independent of μ, ρ) versus length 2ρ in Section 5.2. More precisely, we
need ν-L∞-regularity for say ν ≤ e/φ(N) ·1/2 (rather than ν ≤ e/φ(N) ·negl(k))
to essentially lose nothing in the bound as compared to the bound of Part 2 of
Theorem 4.1 in [25] (we lose just log 2 = 1 additional bit). Following our calcu-
lations in Section 5.2 we impose

ν ≤ e

φ(N)
N−δ =⇒ K ≥ 23 ·N31/32+3/8ε+δ · logN .

For modulus length k = 2048 we take take ε = .04 and δ = .001 for 80-bit
security, and obtain logK ≥ 2032, meaning we can indeed fix 16 bits of the
domain to zeros for ν-regularity. The concrete value of these of this savings is
significant. For example, with k = 2048 we can support 274-bit messages for
80-bit security rather than 160-bits as obtained by the general bound of [25,
Part 1, Theorem 4.2].
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A Public-key Encryption and Its Security

A public-key encryption scheme with message-space MsgSp is a triple of algo-
rithms Π = (Kg,Enc,Dec). The key-generation algorithm Kg returns a public
key pk and matching secret key sk. The encryption algorithm Enc takes pk and
a plaintext m to return a ciphertext. The deterministic decryption algorithm
Dec takes sk and a ciphertext c to return a plaintext. We require that for all
messages m ∈MsgSp

Pr[Dec(sk,Enc(pk,m)) �= m : (pk, sk)←$Kg]

is negligible.
To an encryption scheme Π = (Kg,Enc,Dec) and an adversary A = (A1, A2)

we associate a chosen-plaintext attack experiment,

Experiment Expind-cpa
Π,A (k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)
(m0,m1, St)←$A1(pk)
c←$Enc(pk,mb)
d←$A2(pk, c, St)
If d = b then return 1 else return 0

where we require A’s output to satisfy |m0| = |m1|. Define the ind-cpa advantage
of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[
Expind-cpa

Π,A (k) outputs 1
]
− 1 .
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Abstract. Goldwasser and Micali (1984) highlighted the importance of
randomizing the plaintext for public-key encryption and introduced the
notion of semantic security. They also realized a cryptosystem meeting
this security notion under the standard complexity assumption of decid-
ing quadratic residuosity modulo a composite number. The Goldwasser-
Micali cryptosystem is simple and elegant but is quite wasteful in band-
width when encrypting large messages. A number of works followed to
address this issue and proposed various modifications.

This paper revisits the original Goldwasser-Micali cryptosystem using
2k-th power residue symbols. The so-obtained cryptosystems appear as
a very natural generalization for k ≥ 2 (the case k = 1 corresponds ex-
actly to the Goldwasser-Micali cryptosystem). Advantageously, they are
efficient in both bandwidth and speed; in particular, they allow for fast
decryption. Further, the cryptosystems described in this paper inherit
the useful features of the original cryptosystem (like its homomorphic
property) and are shown to be secure under a similar complexity as-
sumption. As a prominent application, this paper describes the most
efficient lossy trapdoor function based on quadratic residuosity.
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1 Introduction

Encryption is arguably one of the most fundamental cryptographic primitives.
Although it seems an easy task to identify properties that a good encryption
scheme must fulfill, it turns out that rigorously defining the right security no-
tion is not trivial at all. Security is context sensitive. Merely requiring that the
plaintext cannot be recovered from the ciphertext is not enough in most appli-
cations. One may require that the knowledge of some a priori information on
the plaintext does not help the adversary to obtain any new information, that
is, beyond what can be obtained from the a priori information. This intuition is
formally captured by the notion of semantic security, introduced by Goldwasser
and Micali in their seminal paper [20]. They also introduced the equivalent no-
tion of indistinguishability of encryptions, which is usually easier to work with.
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Given the encryption of any two equal-length (distinct) plaintexts, an adversary
should not be able to distinguish the corresponding ciphertexts.

Clearly, the latter notion is only achievable by probabilistic public-key en-
cryption schemes. One such cryptosystem was also presented in [20]. It achieves
ciphertext indistinguishability under the Quadratic Residuosity (QR) assump-
tion. Informally, this assumption says that it is infeasible to distinguish squares
from non-squares in JN (i.e., the set of elements in Z∗N whose Jacobi symbol
is 1) where N = pq is an RSA-type modulus of unknown factorization.

The Goldwasser-Micali cryptosystem is simple and elegant. The public key
comprises an RSA modulus N = pq and a non-square y ∈ JN while the private
key is the secret factor p. The encryption of a bit m ∈ {0, 1} is given by c =
ym x2 mod N for a random x ∈ Z∗N . The message m is recovered using p, by
checking whether c is a square: m = 0 if so, and m = 1 otherwise —observe that
a non-square y ∈ JN is also a non-square modulo p. The encryption of a string
m = (mk−1, . . . ,m0)2, with mi ∈ {0, 1}, proceeds by forming the ciphertexts
ci = ymi x2 mod N , for 0 ≤ i ≤ k − 1. The scheme is computationally efficient
but somewhat wasteful in bandwidth as k · log2N bits are needed to encrypt a
k-bit message. Several proposals were made to address this issue.

A first attempt is due to Blum and Goldwasser [8]. They achieve a better ci-
phertext expansion: the ciphertext has the same length as the plaintext plus an
integer of the size of modulus. The scheme is proved semantically secure assum-
ing the unpredictability of the output of the Blum-Blum-Shub’s pseudorandom
generator [6,7] which resides on the factorisation hardness assumption. Details
about this scheme can be found in [21].

Another direction, put forward by Benaloh and Fischer [12,5], is to use a
k-bit prime r such that r | p − 1, r2 � p − 1 and r � q − 1. The scheme also
requires y ∈ Z∗N such that yφ(N)/r �≡ 1 (mod N), where φ(N) = (p − 1)(q − 1)
denotes Euler’s totient function. A k-bit message m (with m < r) is encrypted
as c = ym xr mod N , where x ∈R Z∗N . It is recovered by searching over the
entire message space, [0, r) ⊆ {0, 1}k, for the element m satisfying (yφ(N)/r)m ≡
cφ(N)/r (mod N). The scheme is shown to be secure under the prime-residuosity
assumption (which generalizes the quadratic residuosity assumption). With the
Benaloh-Fischer cryptosystem, the ciphertext corresponding to a k-bit message
is short but the decryption process is now demanding. In practice, the scheme
is therefore limited to small values of k, say k < 40.

The Benaloh-Fischer cryptosystem was subsequently extended by Naccache
and Stern [39]. They observe that the decryption can be sped up by rather
considering a product of small (odd) primes R =

∏
i ri such that ri | φ(N) but

ri
2 � φ(N) for each prime ri. Given a ciphertext, the plaintextm is reconstructed

frommi := m mod ri through Chinese remaindering. The advantage is that each
mi is searched in the subspace [0, ri) instead of the entire message space. A
variant of this technique was used by Groth [22].

Other generalizations and extensions of the Goldwasser-Micali cryptosystem
but without formal security analysis can be found in [53,32,44]. More recently,
Monnerat and Vaudenay developed applications using the more general theory
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of characters [38,37], specifically with characters of order ≤ 4. Related cryptosys-
tems are described in [49,48]. Yet another, different approach was proposed by
Okamoto and Uchiyama [42], who suggested to use moduli of the form N = p2q.
This allows encrypting messages of size up to log2 p bits. This was later extended
by Paillier [43] to the setting N = p2q2. In 2005, Boneh, Goh and Nissim [10]
showed an additively homomorphic system also supporting one multiplication.

A useful application of additive homomorphic encryption schemes resides in
the construction of lossy trapdoor functions (or LTDFs in short). These func-
tions, as introduced by Peikert and Waters [45], are function families wherein
injective functions are computationally indistinguishable from lossy functions,
which lose many bits of information about their input. LTDFs have proved to
be very powerful and versatile in the cryptographer’s toolbox. They notably im-
ply chosen-ciphertext-secure public-key encryption [45], deterministic encryption
[2,9] as well as cryptosystems that retain some security in the absence of reliable
randomness [3] or in the presence of selective-opening adversaries [4].

Our Contributions

New Homomorphic Cryptosystem. We suggest an improvement of the orig-
inal Goldwasser-Micali cryptosystem. It can be seen as a follow-up of the earlier
works due to Benaloh and Fischer [12] and Naccache and Stern [39]. Before
discussing it, we quote from [39]:

“Although the question of devising new public-key cryptosystems ap-
pears much more difficult [. . . ] we feel that research in this direction
is still in order: simple yet efficient constructions may have been over-
looked.”

It is striking that the generalized cryptosystem in this paper was not already
proposed because, as will become apparent (cf. Section 3), it turns out to be
a very natural generalization. Our approach consists in considering nth-power
residues modulo N with n = 2k (the Goldwasser-Micali system corresponds to
the case k = 1). This presents certain advantages. First, the resulting cryptosys-
tem is bandwidth-efficient. Only log2N bits are needed for encrypting a k-bit
message in typical applications (e.g., using the KEM/DEM paradigm). Second,
the decryption process is very fast, even faster than in the Naccache-Stern cryp-
tosystem. Searches are no longer needed (not even in smaller subspaces) in the
decryption algorithm as plaintext messages can be recovered bit by bit. Third,
the underlying complexity assumption is similar. The proposed cryptosystem is
shown to be secure under the quadratic residuosity assumption for RSA moduli
N = pq such that p, q ≡ 1 (mod 2k).

We also note that, similarly to the Goldwasser-Micali cryptosystem, our gen-
eralized cryptosystem enjoys an additive property known as homomorphic en-
cryption. If c1 and c2 denote two ciphertexts corresponding to k-bit plaintexts
m1 and m2, respectively, then c1 · c2 (mod N) is an encryption of the mes-
sage m1 +m2 (mod 2k). This reveals useful in several applications like voting
schemes. An interesting extension would be to thresholdize it as was done in [29].
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As another useful property, the new scheme also inherits the selective opening
security1 [16,4] of the Goldwasser-Micali system (in the sense of a simulation-
based definition given in [4]). We actually prove its semantic security by show-
ing that its public key is indistinguishable from a so-called lossy key for which
encryptions reveal nothing about the encrypted message.

We thus believe our system to provide an interesting competitor to Paillier’s
cryptosystem for certain applications. As a salient example, we show that it
provides a dramatically improved lossy trapdoor function based on a quadratic
residuosity assumption.

New Efficient Lossy Trapdoor Functions. The initial LTDF realiza-
tions [45] were based on the Decision Diffie-Hellman and Learning-with-Error [47]
assumptions. More efficient examples based on the Composite Residuosity as-
sumption were given in [9,17,18] while Kiltz et al. [30] showed that the RSA per-
mutation provides a lossy function. Under the quadratic residuosity assumption,
three distinct constructions were put forth in [23,17,18,51]. Those of Freeman
et al. [17,18] and of Wee [51] must be used in combination with the results of
Mol and Yilek [36] as they only lose single bits of information about the input.
Hemenway and Ostrovsky [23] suggested a more efficient realization, of which
Wee’s framework [51] is a generalization. While their QR-based LTDF has found
applications in the design of deterministic encryption schemes [11], it is concep-
tually very similar to the Peikert-Waters matrix-based schemes and suffers from
similarly large outputs and descriptions.

We show that our variant of the Goldwasser-Micali cryptosystem drastically
improves the efficiency of the Hemenway-Ostrovsky LTDF. Specifically, it re-
duces the length of the output (resp. the description of the function) by a factor of
O(κ) (resp. O(κ2)), where κ is the security parameter. By appropriately selecting
the parameters, we obtain evaluation keys and outputs consisting of a constant
number of Z∗N elements (and thus O(κ) bits, instead of O(κ2) or O(κ3) as in the
previous constructions). We thus obtain a QR-based LTDF, whose efficiency is
competitive with Paillier-based realizations [9,17,18]. These improvements carry
over to the deterministic encryption setting, when the Hemenway-Ostrovsky
LTDF is used as a building block of the Brakerski-Segev system [11].

2 Background

We review some useful background and fix the notation. In particular, we define
the n-th power residue symbol. We refer the reader to [25,50,52] for further
details on (quadratic) residuosity. More information about encryption schemes
can be found in textbooks in cryptography; e.g. [21,28].

1 This notion refers to an attack scenario where the adversary is given t encryptions
of possibly correlated messages, opens t/2 out of these (and thereby obtains the
messages and encryption coins) before attempting to harm the security of remaining
ciphertexts.
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2.1 nth-Power Residues

Let N ∈ N. For each integer n ≥ 2, we define (Z∗N )n = {xn | x ∈ Z∗N} the set of
nth-power residues modulo N . If the relation a = xn has no solution in Z∗N then
a is called a nth-power non-residue modulo N . Suppose that p is an odd prime.
For any integer a with gcd(a, p) = 1, it is easily verified that a is a nth-power
residue modulo p if and only if

a
p−1

gcd(n,p−1) ≡ 1 (mod p) .

When n = 2 (and so gcd(n, p − 1) = 2), this is known as Euler’s criterion. It
allows one to distinguish quadratic residues from quadratic non-residues. This
defines the Legendre symbol. There are several ways to generalize the Legendre
symbol (see [33]). In this paper, we consider the n-th power residue symbol for
a divisor n of (p− 1), as presented in [52, Definition 1.6.21].

Definition 1. Let p be an odd prime and let n ≥ 2 such that n | p − 1. Then
the symbol (

a

p

)
n

= a
p−1
n mods p

is called the n-th power residue symbol modulo p, where a
p−1
n mods p represents

the absolute smallest residue of a
p−1
n modulo p (namely, the complete set of

absolute smallest residues are: −(p− 1)/2, . . . ,−1, 0, 1, . . . , (p− 1)/2).

2.2 Quadratic Residuosity

LetN = pq be the product of two (odd) primes p and q. For an integer a co-prime
to N , the Jacobi symbol is the product of the corresponding Legendre symbols,
namely

(
a
N

)
=
(
a
p

)(
a
q

)
. This gives rise to the multiplicative group JN of integers

whose Jacobi symbol is 1, JN = {a ∈ Z∗N |
(
a
N

)
2
= 1}. A relevant subset of JN is

the set of quadratic residues modulo N , QRN = {a ∈ Z∗N |
(
a
p

)
=
(
a
q

)
2
= 1}.

The Quadratic Residuosity (QR) assumption says that, given a random ele-
ment a ∈ JN , it is hard to decide whether a ∈ QRN if the prime factors of N are
unknown. To emphasize that this should hold for moduli N = pq with p, q ≡ 1
(mod 2k), we will refer to it as the k-QR assumption. Formally, we have:

Definition 2 (Quadratic Residuosity Assumption). Let RSAGen be a prob-
abilistic algorithm which, given a security parameter κ, outputs primes p, q such
that p ≡ q ≡ 1 (mod 2k), and their product N = pq. The Quadratic Residuosity
(QR) assumption asserts that the function AdvQR

D (1κ), defined as the distance∣∣∣Pr[D(x,N) = 1 | x R← QRN ]− Pr[D(x,N) = 1 | x R← JN \QRN ]
∣∣∣

is negligible for any probabilistic polynomial-time distinguisher D; the proba-
bilities are taken over the experiment of running (N, p, q) ← RSAGen(1κ) and
choosing at random x ∈ QRN and x ∈ JN \QRN .



Efficient Cryptosystems from 2k-th Power Residue Symbols 81

3 A New Public-Key Encryption Scheme

We generalize the Goldwasser-Micali cryptosystem so that it can efficiently sup-
port the encryption of larger messages while remaining additively homomorphic.

3.1 Description

The setting is basically the same as for the Goldwasser-Micali cryptosystem.
The only additional requirement is that primes p and q are chosen congruent to
1 modulo 2k where k denotes the bit-size of the messages being encrypted.

In more detail, our encryption scheme is the tuple (KeyGen,Encrypt,Decrypt)
defined as follows.

KeyGen(1κ) Given a security parameter κ, KeyGen defines an integer k ≥ 1,
randomly generates primes p, q ≡ 1 (mod 2k), and sets N = pq. It also picks
y ∈ JN \QRN . The public and private keys are pk = {N, y, k} and sk = {p}.

Encrypt(pk ,m) Let M = {0, 1}k. To encrypt a message m ∈ M (seen as an
integer in {0, . . . , 2k − 1}), Encrypt picks a random x ∈ Z∗N and returns the

ciphertext c = ym x2
k

mod N .
Decrypt(sk , c) Given c ∈ Z∗N and the private key sk = {p}, the algorithm first

computes z =
(
c
p

)
2k

and then finds m ∈ {0, . . . , 2k−1} such that the relation[(
y

p

)
2k

]m
= z (mods p)

holds. An efficient method to recover message m in a bit-by-bit fashion is
detailed in the next section (§ 3.2).

The correctness is easily verified by observing that α :=
(
y
p

)
2k

has order 2k as an

element in Z∗p. Indeed, letting n = ordp(α) the order of α, we have n | 2k since,

by definition, α ≡ y
p−1

2k (mod p). But n cannot be equal to 2k
′
for some k′ < k

because α2k
′
≡ 1 (mod p) would imply y

p−1
2 ≡ 1 (mod p), which contradicts

the assumption that y ∈ JN \ QRN ⇐⇒
(
y
p

)
=
(
y
q

)
= −1. The decryption

algorithm recovers the unique m ∈ {0, . . . , 2k − 1} such that αm ≡ z (mod p).

Remark 1. We notice that the case k = 1 corresponds to the Goldwasser-Micali
cryptosystem. Indeed, the 2k-th power residue symbol is then the classical Leg-
endre symbol and the assumption p, q ≡ 1 (mod 2k) is trivially verified.

3.2 Fast Decryption

At first glance, from the above description, it seems that the decryption process
amounts to a search through the entire message space {0, 1}k, similarly to some
earlier cryptosystems. But we can do better. One of the main advantages of the
proposed cryptosystem is that it provides an efficient way to recover the message.
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Hence, it remains practical, even for large values of k. The decryption algorithm
proceeds similarly to the Pohlig-Hellman algorithm [46] and is detailed below.

Algorithm 1. Decryption algorithm

Input: Ciphertext c, private key p (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; B ← 1
2: for i = 1 to k do
3: z ←

(
c
p

)
2i
; t←

(
y
p

)m
2i

mods p

4: if (t �= z) then m← m+B

5: B ← 2B
6: end for
7: return m

The message m ∈ {0, 1}k is viewed as a k-bit integer given by its binary

expansion m =
∑k−1

i=0 mi 2
i, with mi ∈ {0, 1}. Given c = ymx2

k

mod N , we have(
c

p

)
2i

=

(
ymx2

k

p

)
2i

=

(
y
∑i−1

j=0 mj 2j

p

)
2i

=

(
y

p

)∑i−1
j=0 mj 2j

2i
(mods p)

since ymx2
k

= y
∑i−1

j=0 mj 2j ·
(
y
∑k−1

j=i mj 2j−i

x2
k−i)2i

, for 1 ≤ i ≤ k. As a result,
m can be recovered bit by bit using p, starting from the rightmost bit. The
algorithm uses an accumulator B which contains the successive powers of 2.

3.3 Security Analysis

We prove that the scheme provides indistinguishable encryptions under the k-QR
assumption. The case k = 1 corresponds to the Goldwasser-Micali cryptosystem
and the standard Quadratic Residuosity assumption. So, we henceforth assume
k ≥ 2. In this case, since p, q ≡ 1 (mod 2k), we know that p, q ≡ 1 (mod 4) and(−1
p

)
=
(−1
q

)
= 1. This implies that the square roots of an element in QRN all

have the same Jacobi symbol.
The k-QR assumption states that, without knowing the factorization of N ,

random elements of QRN are computationally indistinguishable from random
elements of JN \ QRN . Here, it will be convenient to consider a gap variant
of the k-QR assumption. We chose the terminology “gap” (not to be confused
with computational problems which have an easy decisional counterpart [41]) by
analogy with certain lattice problems, where not every instance is a yes or no
instance since a gap exists between these.
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Definition 3 (Gap 2k-Residuosity Assumption). Let N = pq be the prod-
uct of two large primes p and q with p, q ≡ 1 (mod 2k). The Gap 2k-Residuosity
(Gap-2k-Res) problem in Z∗N is to distinguish the distribution of the following
two sets given only N = pq:

V0 = {x ∈ JN \QRN} and V1 = {y2k mod N | y ∈ Z∗N} .

The Gap 2k-Residuosity assumption posits that the advantage AdvGap-2k-Res
D (1κ)

of any PPT distinguisher D, defined as the distance∣∣∣Pr[D(x, k,N) = 1 | x R← V0] − Pr[D(x, k,N) = 1 | x R← V1]
∣∣∣

where probabilities are taken over all coin tosses, is negligible.

The latter assumption was independently considered by Abdalla, Ben Hamouda
and Pointcheval [1] who used it to provide tighter security proofs for forward-
secure signatures. Our result thus implies that their tighter reduction holds under
the more standard k-QR assumption.

In the above definition, we explicitly give k to the distinguisher and remark
that this information should be of little help considering that it can always
be guessed with non-negligible probability. Also observe that from p, q ≡ 1
(mod 2k), it follows that 2k | N − 1.

Theorem 1 (k-QR =⇒ Gap-2k-Res). The Quadratic Residuosity assumption
implies the Gap 2k-Residuosity assumption. More precisely, for any PPT distin-
guisher B0 against the former, there exists a QR distinguisher B1 with comparable

running time and for which AdvGap-2k-Res
B0

(1κ) ≤ 4 · k ·Advk-QR
B1

(1κ).

Proof. The proof is given in the full version of the paper. #$
It is not hard to see that the semantic security of the scheme is equivalent to the
Gap-2k-Res assumption. We thus obtain the following theorem as a corollary.

Theorem 2. The scheme is semantically secure under the k-QR assumption.
More precisely, for any IND-CPA adversary A, we have a k-QR distinguisher B
such that Advind-cpa

A (1κ) ≤ 4 · k ·Advk-QR(B).
Proof. The proof proceeds by simply changing the distribution of the public key.
Under the Gap-2k-Res assumption, instead of picking y uniformly in JN \QRN ,
we can choose it in the subgroup of 2k-th residue without the adversary noticing.
However, in this case, the ciphertext carries no information about the message
and the IND-CPA adversary has no advantage. #$
Interestingly, the proof of Theorem 2 implicitly shows that, like the original
Goldwasser-Micali system, our scheme is a lossy encryption scheme [4] (i.e., it ad-
mits an alternative distribution of public keys for which encryptions statistically
hide the plaintext), which provides security guarantees against selective-opening
attacks [16]. Moreover, for a lossy key (y,N), there exists an efficient algorithm
that opens a given ciphertext c to any arbitrary plaintext m (by finding random
coins that explain c as an encryption of m). It implies that our scheme satisfies
the simulation-based definition [4] of selective-opening security.
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4 Implementation and Performance

We detail here some implementation aspects. We explain how to select the pa-
rameters involved in the system set-up and key generation. Finally, we discuss
the ciphertext expansion and give a comparison with previous schemes.

4.1 Parameter Selection

The key generation (cf. § 3.1) requires two primes p and q such that p, q ≡ 1
(mod 2k) and an element y ∈ JN \ QRN , where N = pq. The condition y ∈
JN \QRN is equivalent to

(
y
p

)
=
(
y
q

)
= −1. So, we need to generate an element

y ∈ Z∗N such that (i) y mod p is primitive in Z∗p, and (ii) y mod q is primitive in
Z∗q . Finding a primitive element modulo a prime number p is not difficult when
the factorization of p− 1 is known. Therefore, we suggest to select prime p as a
k-quasi-safe prime, that is, p = 2k p′+1 for some prime p′ (likewise for prime q,
we take q = 2k q′ + 1 for some prime q′). An efficient algorithm for generating
k-quasi-safe primes is discussed in [27, Section 4.2].

Consider now the primitive 2k-th root of unity ζ2k = e2iπ/2
k

with i =
√
−1.

It generates a cyclic group of order 2k under multiplication. In our case, the key
observation is that, when p is 2k-quasi-safe prime, if y is a square modulo p then
ζ2k y is not. Indeed, we have(

ζ2k y

p

)
=

(
ζ2k

p

)(
y

p

)
≡ ζ2k

p−1
2

(
y

p

)
≡ (eiπ)p

′
(
y

p

)
= −
(
y

p

)
(mod p)

since p′ is odd. This leads to the following algorithm.

Algorithm 2. Generation of y

Input: Modulus N = pq (with p = 2k p′ +1 and q = 2k q′ +1), primes p, q, p′, q′, and
integer k ≥ 1

Output: y ∈ JN \QRN

1: Pick at random yp ∈ Z∗
p and yq ∈ Z∗

q

2: if
(yp

p

)
= 1 then yp ← ζ2k yp mod p

3: if
(yq

q

)
= 1 then yq ← ζ2k yq mod q

4: Set y ← yp + p
(
p−1(yq − yp) mod q

)
5: return y

The primes p and q are chosen so that p, q ≡ 1 (mod 2k). Sharing common
factors for (p − 1) and (q − 1) was used already in several other systems; see
e.g. [19,34]. Letting r denote a common factor of (p−1) and (q−1), a baby-step
giant-step approach developed by McKee and Pinch [35] can factor RSA modulus
N = pq in essentially O(N1/4/r) operations. In our case, we have r = 2k. For
security it is therefore necessary that 1

4 log2N − k > κ, or equivalently,

k < 1
4 log2N − κ

where κ is the security parameter.
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A powerful LLL-based technique due to Coppersmith [13,14] also bounds the
size of k to at most 1

2 min(log2 p, log2 q) bits as, otherwise, the factors of N
would be revealed. Going beyond polynomial-time attacks, one should add an
extra security margin to take into account exhaustive searches [40]. RSA moduli
being balanced (i.e., 1

2 min(log2 p, log2 q) = 1
4 log2N), we so end up with the

same upper bound as for the McKee-Pinch’s approach: k < 1
4 log2N − κ.

In practice, this restriction on k is not a limitation because, as described in the
next section, long messages can be encrypted using the KEM/DEM paradigm.
For example, a specific parameter choice is k = 128 and log2N = 2048.

4.2 Ciphertext Expansion

Hybrid encryption allows designing efficient asymmetric schemes, as suggested
by Shoup in the ISO 18033-2 standard for public-key encryption [26]. An asym-
metric cryptosystem is used to encrypt a secret key that is then used to encrypt
the actual message. This is the so-called KEM/DEM paradigm.

The next table compares the ciphertext expansion in the encryption of k-bit
messages for different generalized Goldwasser-Micali cryptosystems. Only cryp-
tosystems with a formal security analysis are considered. Further, the value of
k is assumed to be relatively small (e.g., 128 or 256) as the “message” being
encrypted is typically a symmetric key (for example a 128- or 256-bit AES key)
in a KEM/DEM construction.

Table 1. Ciphertext expansion in a typical encryption

Encryption scheme Assumption Ciphertext size

Goldwasser-Micali [20] Quadratic Residuosity (QR) k · log2 N
Benaloh-Fisher [12] Prime residuosity (PR)

⌈
k

log2 r

⌉
· log2 N

Naccache-Stern [39] Prime residuosity (PR) log2 N
Okamoto-Uchiyama [42] p-subgroup log2 N
Paillier [43] N-th residuosity 2 log2 N

This paper Quadratic residuosity (k-QR) log2 N

It appears that the Goldwasser-Micali cryptosystem has the higher ciphertext
expansion but its semantic security relies on the standard quadratic residuosity
assumption. The ciphertext expansion of Benaloh-Fischer cryptosystem is similar
to that of Naccache-Stern cryptosystem for small messages; i.e., when k ≤ log2 r.
For larger messages, the Naccache-Stern cryptosystem should be preferred. It
also offers the further advantage of providing a faster decryption procedure. The
same is true for the Okamoto-Uchiyama cryptosystem. The Paillier cryptosystem
produces twice larger ciphertexts.

The encryption scheme proposed in this paper has the same ciphertext expan-
sion as in the Naccache-Stern cryptosystem. Moreover, its decryption algorithm
is fast (it is even faster than in the Naccache-Stern cryptosystem), requires less
memory, and the security relies on a quadratic residuosity assumption.
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5 More Efficient Lossy Trapdoor Functions from the
k-Quadratic Residuosity Assumption

In this section, we show that our homomorphic cryptosystem allows constructing
a lossy trapdoor function based on the k-QR assumption with much shorter
outputs and keys than in previous QR-based examples.

In comparison with the function of Hemenway and Ostrovsky [23], it com-
presses function values by a factor of k when we work with a modulus N = pq
such that p ≡ q ≡ 1 (mod 2k). Moreover, the size of the evaluation key is de-
creased by a factor of O(k2) while increasing the lossiness by 2k more bits.
Finally, our inversion trapdoor has constant size, whereas [23] uses a trapdoor
of size O(n) to recover n-bit inputs. Our function also compares favorably with
the QR-based function of Freeman et al. [17,18], which only loses a single bit.

In fact, by appropriately tuning our construction, we obtain the first QR-based
lossy trapdoor function with short outputs and keys that loses many input bits.
Among known lossy trapdoor functions based on traditional number-theoretic
assumptions [45,9,17,18,30,23,36], this appears as a rare efficiency tradeoff. To
the best of our knowledge, it has only been achieved under the Composite Resid-
uosity assumption [9,17,18] so far.

Interestingly, our LTDF provides similar efficiency improvements to the QR-
based deterministic encryption scheme of Brakerski and Segev [11], which also
builds on the Hemenway-Ostrovsky LTDF. Note that the scheme of [11] is impor-
tant in the deterministic encryption literature since it is one of the only known
schemes providing security in the auxiliary input setting in the standard model.

5.1 Description and Security Analysis

We start by recalling the following definition.

Definition 4 ([45]). Let κ ∈ N be a security parameter and n : N→ N, � : N→
R be non-negative functions of κ. A collection of (n, �)-lossy trapdoor functions
(LTDF) is a tuple of efficient algorithms (InjGen, LossyGen,Eval, Invert) with the
following specifications.

– Sampling an injective function: Given a security parameter κ, the randomized
algorithm InjGen(1κ) outputs the index ek of an injective function of the
family and an inversion trapdoor t.

– Sampling a lossy function: Given a security parameter κ, the probabilistic
algorithm LossyGen(1κ) outputs the index ek of a lossy function.

– Evaluation: Given the index of a function ek —produced by either InjGen or
LossyGen— and an input x ∈ {0, 1}n, the evaluation algorithm Eval outputs
Fek (x) such that:

• If ek is an output of InjGen, then Fek (·) is an injective function.
• If ek was produced by LossyGen, then Fek (·) has image size 2n−	. In this
case, the value n− � is called residual leakage.
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– Inversion: For any pair (ek , t) produced by InjGen and any input x ∈ {0, 1}n,
the inversion algorithm Invert returns F−1ek (t, Fek (x)) = x.

– Security: The two ensembles {ek | (ek , t)← InjGen(1κ)}κ∈N and {ek | ek ←
LossyGen(1κ)}κ∈N are computationally indistinguishable.

Our construction goes as follows.

Sampling an injective function. Given a security parameter κ, let �N(κ)
and k(κ) be security parameters determined by κ. Let also n(κ) be the
desired input length. Algorithm InjGen defines m = n/k (we assume that k
divides n for simplicity) and conducts the following steps.

1. Generate a modulusN = pq > 2	N such that p = 2kp′+1 and q = 2kq′+1

for primes p, q and odd co-prime integers p′, q′. Choose y
R← JN \QRN .

2. For each i ∈ {1, . . . ,m}, pick hi in the subgroup of order p′q′, by setting

hi = gi
2k mod N for a randomly chosen gi

R← Z∗N .

3. Choose r1, . . . , rm
R← Zp′q′ and compute a matrix Z =

(
Zi,j

)
i,j∈{1,...,m}

given by

Z =

⎛⎜⎝ yz1,1 · h1r1 mod N . . . . . . yz1,m · hmr1 mod N
...

...
yzm,1 · h1rm mod N . . . . . . yzm,m · hmrm mod N

⎞⎟⎠ ,

where (zi,j)i,j∈{1,...,m} denotes the identity matrix.

The evaluation key is ek :=
(
N, (Zi,j)i,j∈{1,...,m}

)
and the trapdoor is t := p.

Sampling a lossy function. The process followed by LossyGen is identical
to the above one but the matrix (zi,j)i,j∈{1,...,m} is replaced by the all-zeroes
m×m matrix.

Evaluation. Given ek =
(
N, (Zi,j)i,j∈{1,...,m}

)
, algorithm Eval parses the input

x ∈ {0, 1}n as a vector of k-bit blocks x̃ = (x1, . . . , xm), with xi ∈ Z2k for
each i. Then, it computes and returns ỹ = (y1, . . . , ym), with yj ∈ Z∗N , where

ỹ =
( m∏
i=1

Zi,1
xi mod N, . . . ,

m∏
i=1

Zi,m
xi mod N

)
=
(
y
∑m

i=1 zi,1xi · h1
∑m

i=1 rixi mod N, . . . , y
∑m

i=1 zi,mxi · hm
∑m

i=1 rixi mod N
)
.

Inversion. Given t = p and ỹ = (y1, . . . , ym) ∈ Zm
N , Invert applies the de-

cryption algorithm of § 3.2 to each yj , for j = 1 to m. Observe that when

(zij)i,j∈{1,...,m} is the identity matrix,
(yj
p

)
2k
≡
[(

y
p

)
2k

]xj

(mod p). From the

resulting vector of plaintexts x̃ = (x1, . . . , xm) ∈ Z2k
m, it recovers the input

x ∈ {0, 1}n.

The Hemenway-Ostrovsky construction of [23] is slightly different in that, as
in the DDH-based construction of Peikert and Waters [45], the evaluation key
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includes a vector of the form G = (gr1 , . . . , grm)T , where g ∈ QRN , and the
trapdoor is t = (logg(h1), . . . , logg(hm)). In their scheme, the evaluation algo-
rithm additionally computes

∏m
i=1 (g

ri)
xi while the inversion algorithm does not

use the factorization of N but rather performs a coordinate-wise ElGamal de-
cryption. Here, explicitly using the factorization of N in the inversion algorithm
makes it possible to process k-bit blocks at once.

Theorem 3. The above construction is a (n(κ), n(κ)− log2(p
′q′))-LTDF if the

k-QR assumption holds.

Proof. The proof is given in the full version of the paper. #$
It is worth noting that, with N = pq such that p ≡ q ≡ 1 (mod 2k), a side effect
of working in the subgroup of odd order is an improved lossiness. Indeed, we lose
n− log2(p

′q′) bits in comparison with n− log2 φ(N) in [23].
Using the techniques of Peikert and Waters [45], it is easy to construct an

equally efficient all-but-one trapdoor function providing the same amount of
lossiness under the QR assumption. A difference is that, in order to enable in-
version, the resulting all-but-one function handles k/2 bits (instead of k) in each
chunk. The details are given in the full version of the paper.

More importantly, the dimension m of the matrix and the output vector can
be reduced to a fairly small constant, as illustrated below.

5.2 Efficiency

Here, we consider chosen-ciphertext security as the targeted application.
By combining the lossy and all-but-one trapdoor function, a CCA-secure en-

cryption scheme can be obtained using the construction of [45]. We argue that
m = O(1) suffices for this purpose. Recall that the scheme of [45] combines a pair-
wise independent hash function H : {0, 1}n → {0, 1}τ , an (n, �)-lossy function
and an (n, �′)-all-but-one function such that �+�′ ≥ n+ν and τ ≥ ν−2 log2(1/ε),
for some ν ∈ ω(logn) and where ε is the statistical distance in the modified
Leftover Hash Lemma used in [15]. If we choose ε ≈ 2−κ and τ = k in order to
encrypt k-bit messages, we can set ν = k + 2κ. Setting � = �′ = n − log2(p

′q′),
the constraint � + �′ ≥ n + ν translates into n − 2 log2(p

′q′) ≥ ν. If we set
k = 1

4 log2N−κ, we have log2(p′q′) = log2 φ(N)−2k ≈ 4(k+κ)−2k = 2k+4κ,
which yields n ≥ 3k + 6κ. If k > κ, it is sufficient to set n ≥ 9k. If we take into
account the fact that our all-but-one function processes blocks of k/2 bits, we
find that m = 2n/k = 18 suffices here.

As it turns out, when the Peikert-Waters construction [45, § 4.3] of CCA-secure
encryption is instantiated with our lossy and all-but-one trapdoor functions, it
only requires a constant number of exponentiations while retaining constant-size
public keys and ciphertexts.

With the exception of [24] (which relies on a weaker assumption), to the best
of our knowledge, it yields the only known CCA-secure QR-based cryptosystem
combining the aforementioned efficiency properties. Up to now, the most effi-
cient chosen-ciphertext-secure cryptosystem strictly based on the QR assump-
tion was the one of Kiltz et al.[31], where O(κ) exponentiations are needed to
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encrypt and the public key contains O(κ) group elements. On the other hand, our
construction requires more specific moduli than [31].

6 Conclusion

This paper introduced a new generalization of the Goldwasser-Micali cryptosys-
tem. The so-obtained cryptosystems are shown to be secure under the quadratic
residuosity assumption. Further, they enjoy a number of useful features includ-
ing fast decryption, optimal ciphertext expansion, and homomorphic property.
We believe that our proposal is the most natural yet efficient generalization of
the Goldwasser-Micali cryptosystem. It keeps the nice attributes and properties
of the original scheme while improving the overall performance.

When applied to the Peikert-Waters framework for building lossy trapdoor
functions, it yields a practical construction based on quadratic residuosity, with
companion deterministic encryption scheme and CCA-secure cryptosystem.

Acknowledgments. We are grateful to the anonymous reviewers for
EUROCRYPT 2013 for their useful comments.
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study of deterministic public-key encryption as an alternative in scenarios
where randomized encryption has inherent drawbacks. The resulting line
of research has so far guaranteed security only for adversarially-chosen
plaintext distributions that are independent of the public key used by the
scheme. In most scenarios, however, it is typically not realistic to assume
that adversaries do not take the public key into account when attacking
a scheme.

We show that it is possible to guarantee meaningful security even for
plaintext distributions that depend on the public key. We extend the
previously proposed notions of security, allowing adversaries to adap-
tively choose plaintext distributions after seeing the public key, in an
interactive manner. The only restrictions we make are that: (1) plaintext
distributions are unpredictable (as is essential in deterministic public-key
encryption), and (2) the number of plaintext distributions from which
each adversary is allowed to adaptively choose is upper bounded by 2p,
where p can be any predetermined polynomial in the security parame-
ter. For example, with p = 0 we capture plaintext distributions that are
independent of the public key, and with p = O(s log s) we capture, in
particular, all plaintext distributions that are samplable by circuits of
size s.

Within our framework we present both constructions in the random-
oracle model based on any public-key encryption scheme, and construc-
tions in the standard model based on lossy trapdoor functions (thus,
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distributions and the public key for the purposes of randomness extrac-
tion. In our setting, however, randomness extraction becomes signifi-
cantly more challenging once the plaintext distributions and the public
key are no longer independent. Our approach is inspired by research on
randomness extraction from seed-dependent distributions. Underlying
our approach is a new generalization of a method for such randomness
extraction, originally introduced by Trevisan and Vadhan (FOCS ’00)
and Dodis (PhD Thesis, MIT, ’00).

1 Introduction

Deterministic public-key encryption was introduced by Bellare, Boldyreva, and
O’Neill [1] as an alternative in scenarios where randomized encryption has in-
herent drawbacks. For example, ciphertexts that are produced by a randomized
encryption algorithm are not length preserving (i.e., may be longer than their
corresponding plaintexts), and are in general not efficient searchable – two prop-
erties that are problematic in many applications involving massive amounts of
data. In addition, the security guarantees provided by randomized public-key
encryption schemes are typically highly dependent on the assumption that fresh
and essentially uniform random bits are available – which may not always be a
valid assumption.

When using a deterministic encryption algorithm, however, the full-fledged
notion of semantic security [14] is out of reach. In this light, Bellare et al. ini-
tiated the study of formalizing other strong and meaningful notions of security
for deterministic public-key encryption, and quite a significant amount of work
has been devoted to proposing various such notions and constructing schemes
satisfying them [1,3,4,2,7,13,17,23]. Aiming to obtain as-strong-as-possible no-
tions of security, this recent line of research has successfully shown that a natural
variant of the notion of semantic security can be guaranteed even when using
a deterministic encryption algorithm, as long as plaintexts are: (1) somewhat
unpredictable, and (2) independent of the public key used by the scheme.

Plaintext Unpredictability. When using a deterministic encryption algo-
rithm, essentially no meaningful notion of security can be satisfied when plain-
texts are distributed over a small (e.g. polynomial-sized) set. In such a case, an
adversary who is given a public key pk and an encryption c of some plaintext m
under the public key pk can simply encrypt all possible plaintexts,1 compare each
of them to the given ciphertext c, and thus recover the plaintext m. Therefore,
when formalizing a notion of security for deterministic public-key encryption, it
is indeed essential to focus on security for unpredictable plaintext distributions.2

1 More generally, an adversary can encrypt all plaintexts that occurs with at least
some non-negligible probability.

2 Unpredictable plaintext distributions do occur in some natural roles. A prime exam-
ple is when using a public-key encryption scheme as a key-encapsulation mechanism
that encrypts a uniformly distributed key k for a symmetric-key primitive.
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Key-independent Plaintext Distributions. Even when dealing with highly
unpredictable plaintext distributions, some restrictions should be made on their
relation to the public key. Consider, for example, the uniform distribution over
plaintexts m subject to the restriction that the first bit of m and the first bit of
c = Encpk(m) are equal.3 More generally, by constructing plaintext distributions
that depends on the public key, adversaries can use any deterministic encryption
algorithm as a subliminal channel that leaks much more information on the
plaintexts than what any meaningful notion of security should allow.

This Paper. For preventing adversaries from exploiting deterministic encryp-
tion algorithms as subliminal channels, research on deterministic public-key en-
cryption has so far guaranteed security only for plaintexts distributions that are
independent of the public key used by the scheme (which is not realistic, as an
adversary can often influence the plaintext distribution after seeing the public
key). In this paper, we ask whether or not this is essential. Namely, is it possible
to formalize a meaningful notion of security that allows dependencies between
plaintext distributions and keys?

1.1 Our Contributions

In this paper, we show that it is not essential to focus only on plaintexts distri-
butions that are independent of the keys used by the scheme. We formalize and
realize a new notion of security for deterministic public-key encryption, allowing
adversaries to adaptively choose plaintext distributions after seeing the public
key of the scheme, in an interactive manner. The only restriction we make is
that the number of plaintext distributions from which each adversary is allowed
to adaptively choose is upper bounded by 2p(λ), where p(λ) can be any prede-
termined polynomial in the security parameter λ. We stress that the set of 2p(λ)

plaintext distributions can be different for each adversary. Intuitively, this bound
says that the entire plaintext distribution (not just a single sample) contains at
most p(λ) bits of information about the public key. We view this as a natural
first model for adaptively chosen plaintext distributions, particularly in light of
the impossibility of handling arbitrary dependencies (as sketched earlier), and
hope that it will pave the way for more realistic models.

Our approach is a generalization of the security notions that have been pro-
posed so far. For example, with p(λ) ≡ 0 we obtain the notion of security in-
troduced by Bellare, Boldyreva, and O’Neill [1], where the plaintext distribu-
tion chosen by the adversary is independent of the public key. As an additional
example, with p(λ) = O(s(λ) log s(λ)) we capture, in particular, all plaintext
distributions that are samplable by boolean circuits of size at most s(λ).

Within our framework we present both generic constructions in the random-
oracle model based on any public-key encryption scheme, and generic construc-
tions in the standard model based on lossy trapdoor functions. Our construc-
tions are inspired by the constructions of Bellare, Boldyreva, and O’Neill [1]

3 Note that the support of this distribution will contain nearly half of all plaintexts
with high probability.
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and of Boldyreva, Fehr, and O’Neill [4]. These constructions rely on the inde-
pendence between the plaintext distributions and the keys for the purposes of
extracting randomness from the plaintext distributions. Randomness extraction
becomes significantly more difficult once the plaintexts distributions and the
public keys are no longer independent. Challenges along somewhat similar lines
arise in the context of deterministic randomness extraction, where one would
like to construct seedless randomness extractors, or seeded randomness extrac-
tors for seed-dependent distributions. Indeed, underlying our approach is a new
generalization of a method for deterministic extraction, originally introduced by
Trevisan and Vadhan [21] and Dodis [9].

Finally, our approach naturally extends to the setting of “hedged” public-
key encryption schemes, introduced by Bellare et al. [2]. In this setting, one
would like to construct randomized schemes that are semantically secure in the
standard sense, and maintain a meaningful and realistic notion of security even
when “corrupt” randomness is used by the encryption algorithm. Our notions
of adaptive security for deterministic public-key encryption give rise to anal-
ogous notions for hedged public-key encryption, and our constructions (when
used within the framework of Bellare et al. [2]4) yield the first adaptively-secure
hedged public-key encryption schemes.

1.2 Related Work

The formal study of deterministic public-key encryption was initiated by Bel-
lare, Boldyreva, and O’Neill [1], following research on symmetric-key encryption
of high-entropy messages by Russell and Wang [20] and Dodis and Smith [11].
Bellare et al. formalized several notions of security, which were later refined and
extended by Bellare, Fischlin, O’Neill, and Ristenpart [3], and by Boldyreva,
Fehr, and O’Neill [4]. Bellare, Boldyreva, and O’Neill presented constructions in
the random oracle model, and constructions in the standard model were first pre-
sented by Bellare, Boldyreva, and O’Neill, and additionally by Boldyreva, Fehr,
and O’Neill. Brakerski and Segev [7] showed that the min-entropy requirement
considered in all previous works on deterministic public-key encryption can be
relaxed to consider hard-to-invert auxiliary inputs. Based on specific number-
theoretic assumptions, they designed schemes that are secure in the more general
auxiliary-input model, and their constructions were later unified by Wee [23].
Progress along similar lines was made by Fuller, O’Neill and Reyzin [13], who
presented a scheme that can securely encrypt a small predetermined number
of plaintexts with arbitrary dependencies as long as each has high min-entropy.
Additional progress in studying deterministic public-key encryption schemes was
recently made by Mironov, Pandey, Reingold, and Segev [17] who constructed
such schemes with optimal incrementality.

4 For example, as part of their generic “pad-then-deterministic” scheme, which deter-
ministically encrypts the concatenation of the plaintext and the randomness.
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A step towards obtaining adaptive security for deterministic public-key en-
cryption was made by Bellare et al. [2] who defined and constructed “hedged”
public-key encryption schemes (discussed in Section 1.1). Whereas the notions
of security considered in [1,3,4,7,23,13,17] capture only “single-shot” adversaries
(i.e., adversaries that challenge the given scheme with only one plaintext distri-
bution), Bellare et al. [2] showed that it is possible to guarantee security even
against “multi-shot” adversaries (i.e., adversaries that interactively challenge the
scheme with plaintext distributions depending on previous ciphertexts that they
received). In their notion of security, however, adversaries are not given access to
the public key that is being attacked. In our work we consider the more general,
and more typical, scenario where adversaries are given direct access to the pub-
lic key being attacked (and are allowed to adaptively and interactively choose
plaintext distributions depending on previous ciphertexts that they received).5

As discussed in Section 1.1, our constructions yield the first adaptively-secure
hedged public-key encryption schemes.

1.3 Overview of Our Approach

In this section we provide a high-level overview of our notions of security and
of the main ideas underlying our constructions. We focus here on our construc-
tions in the standard model (i.e., without random oracles), as these emphasize
more clearly the main challenges in designing encryption schemes satisfying our
notions of security.

Our Notions of Security. As discussed above, our notions of security for
deterministic public-key encryption differ from the previously proposed ones by
providing adversaries with direct access to the public key. Specifically, we formal-
ize security via a game between an adversary and a “real-or-random” encryption
oracle. First, a pair containing a public key and a secret key is produced using
the key-generation algorithm of the scheme under consideration, and the ad-
versary is given the public key. Then, the adversary adaptively interacts with
the encryption oracle, where each query consists of a description of a plaintext
distribution M . For simplicity, here we consider distributions over plaintexts,
but in fact our notion allows distributions over blocks of plaintexts. The en-
cryption oracle operates in one of two modes, “real” or “random”, which is
chosen uniformly at random at the beginning of the game. In the “real” mode,
the encryption oracle samples a plaintext according to M , and the adversary is
given its encryption under the public key. In the “random” mode, the encryption

5 In fact, the approach of Bellare et al. [2] relies on encryption schemes in which cipher-
texts reveal essentially no information on the corresponding public key. Therefore,
even multi-shot adversaries learn essentially no information on the public key being
attacked, and thus their “adaptive” choices of plaintext distributions are still inde-
pendent of the public key. This approach does not seem to extend to our setting,
where adversaries are given direct access to the public key.
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oracle samples a plaintext from the uniform distribution over the plaintext space,
and the adversary is again given its encryption under the public key.6

The goal of the adversary in this game is to distinguish between the “real”
mode and “random” mode with a non-negligible probability, subject only to the
requirement that for any such adversary there exists a set X = Xλ of plaintext
distributions such that:

1. |X | ≤ 2p, where p = p(λ) is any predetermined polynomial in the security
parameter (the construction of the scheme can depend on the polynomial p).

2. The adversary queries the encryption oracle only with plaintext distributions
in X .

3. Each plaintext distribution in X has min-entropy at least k, where k = k(λ)
is a predetermined function of the security parameter.

In addition, we naturally extend the above game to capture chosen-ciphertext
attacks, by allowing adversaries adaptive access to a decryption oracle (subject
to the standard requirement of not querying the decryption oracle with any
ciphertext that was produced by the encryption oracle).

We note that our security game is in fact almost identical to the standard
“real-or-random” one for randomized public-key encryption. Specifically, unlike
the previously proposed notions of security for deterministic public-key encryp-
tion, we provide the adversary with direct access to the public key, and allow
the adversary to adaptively interact with the encryption and decryption oracles
in any order.7

Chosen-plaintext Security in the Standard Model. The starting point for
our construction is the one of Boldyreva, Fehr, and O’Neill, which we now briefly
describe. In their construction, the public key consists of a function f that is
sampled from the injective mode of a collection of lossy trapdoor functions, and
a permutation π sampled from a pairwise-independent collection of permuta-
tions. (We refer the reader to Section 2 for the relevant definitions.) The secret
key consists of the trapdoor for inverting f . (We require that π is efficiently
invertible.) The encryption of a message m is defined as Encpk(m) = f(π(m)),
and decryption is naturally defined.

The proof of security consists of two steps. First, the security of the collec-
tion of lossy trapdoor functions allows one to replace the injective function f
with a lossy function f̃ (where lossy means that the size of f̃ ’s image is signif-
icantly smaller than the size of its domain). Then, the Crooked Leftover Hash
Lemma of Dodis and Smith [10] states that for any plaintext distributionM that
has a certain amount of min-entropy, for a uniformly and independently chosen

6 We note that the resulting notion of security is polynomially equivalent (via a stan-
dard hybrid argument) to an analogous “left” or “right” formulation in which the
adversary specifies two plaintext distributions, and the encryption oracle uses either
the left one of the right one.

7 In contrast, due to requiring key-independent plaintext distributions, Bellare et
al. [1] and Boldyreva et al. [4] allow chosen-ciphertext adversaries to query the
decryption oracle only after they have queried the encryption oracle.
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pairwise-independent permutation π it holds that the distributions f̃(π(M)) and

f̃(U) are statistically close (even given f̃ and π), where U is the uniform dis-
tribution over plaintexts. That is, essentially no information on the plaintext is
revealed.

This construction, however, becomes insecure when adversaries can choose
the plaintext distribution M after receiving the description of π. Specifically,
the Crooked Leftover Hash Lemma no longer holds when M may depend on π,
and adversaries may easily use the encryption algorithm as a subliminal channel
for leaking information about the plaintext, as discussed above.

The main idea underlying our basic construction is to sample the permuta-
tion π from a collection of highly-independent permutations. We prove that this
modification results in a scheme that is secure according to our new notion of
security by proving a High-Moment Crooked Leftover Hash Lemma.8 Informally,
we prove that for any lossy function f̃ , and for any set X of sources with a cer-
tain amount of min-entropy, with an overwhelming probability over the choice
of a permutation π from a t-wise almost-independent collection of permutations
(where t depends only logarithmically on the size of X ), for everyM ∈ X it holds

that f̃(π(M)) and f̃(U) are statistically close. In particular, in such a setting
the specific choice of M ∈ X can adaptively depend on the permutation π, and
still the statistical distance is negligible.

Chosen-ciphertext Security in the Standard Model. While in the setting
of chosen-plaintext security our construction is a natural generalization of that
of Boldyreva et al. [4] (given our high-moment generalization of the crooked
leftover hash), this is not the case in the setting of chosen-ciphertext security.
In this setting, the CCA-secure scheme of Boldyreva et al. relies more strongly
on the assumption that the challenge plaintext distribution is independent of
the public key of the scheme (not just in the context of the Crooked Leftover
Hash Lemma as above) – an assumption that we do not make. Nevertheless, we
show that some of the ideas underlying their approach can still be utilized to
construct a scheme that is secure according to our notion of security.

The scheme of Boldyreva et al. follows the “all-but-one” simulation paradigm
of Peikert and Waters [18] using all-but-one lossy trapdoor functions. These are
tag-based functions, where one of the tags corresponds to a lossy function, and
all other tags correspond to injective functions. As in the work of Peikert and
Waters [18], the approach of Boldyreva et al. makes sure that the challenge

8 As already noted, a high-moment generalization of the (standard) Leftover Hash
Lemma was given by Trevisan and Vadhan [21] and Dodis [9]. In addition, an analo-
gous generalization of the Crooked Leftover Hash Lemma for collections of functions
was implicitly given in the work of Kiltz, O’Neill and Smith [16, Proof of Theorem
2]. Their generalization, however, does not seem to admit a direct translation to
collections of permutations. A different high-moment generalization of the Crooked
Leftover Hash Lemma was proved by Fuller et al. [13] for the purpose of extracting
randomness from a small number of possibly correlated sources. This generaliza-
tion does not allow seed-dependent sources, and therefore allows only non-adaptive
adversaries.
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plaintext corresponds to a lossy tag (and thus the challenge ciphertext reveals
no information), while all other plaintexts corresponds to injective tags (and
a suitable simulator is able to properly simulate the decryption oracle). When
dealing with a deterministic encryption algorithm, note that tags must be de-
rived deterministically from the plaintext and the public key. The approach of
Boldyreva et al. is based on first sampling the challenge plaintext m∗, and only
then generating a public key for which m∗ corresponds to a lossy tag, but all
other plaintexts correspond to injective tags.

This approach fails in our setting, where adversaries specify the distribution
of the challenge plaintext in an adaptive manner as a function of the public
key. Thus, in our setting we must be able to generate a public key before the
challenge plaintext is known. We note that a somewhat similar issue arises in
the setting of identity-based encryption (IBE): “selective security” considers ad-
versaries that specify the challenge identity in advance, whereas “full security”
considers adversaries that can adaptively choose the challenge identity. One sim-
ple solution that was proposed in the IBE setting is to a-priori guess the challenge
identity, and this solution naturally extends to our setting by guessing the tag
corresponds to the challenge plaintext. This, however, requires sub-exponential
hardness assumptions, which we aim to avoid.

Our approach is based on the one of Boneh and Boyen [5] (and on its re-
finement by Cash, Hofheinz, Kiltz, and Peikert [8] for converting a large class
of selectively-secure IBE schemes to fully-secure ones,9 combined with the idea
of R-lossiness due to Boyle, Segev, and Wichs [6]. Specifically, we derive tags
from plaintexts using an admissible hash functions [5,8], and instead of using all-
but-one lossy trapdoor functions, we introduce the notion of R-lossy trapdoor
functions (which we generically construct based on lossy trapdoor functions).10

This is a generalization of the notion of all-but-one lossy trapdoor functions,
where the set of tags is partitioned into lossy tags and injective tags accord-
ing to the relation R. (In particular, there may be more than one lossy tag.)
Combined with an admissible hash function, we are able to ensure that even
with an adaptive adversary, with some non-negligible probability, the challenge
plaintext corresponds to a lossy tag (and thus the challenge ciphertext reveals
no information), while all other plaintexts corresponds to injective tags (and a
suitable simulator is able to properly simulate the decryption oracle). We show
that such a guarantee enables us to prove the security of our scheme with respect
to adaptive adversaries.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}, and by Un the uniform
distribution over the set {0, 1}n. For a random variable X we denote by x← X

9 We note that the work of Cash et al. [8] is based on ideas introduced by Boneh and
Boyen [5] and Waters [22].

10 Boyle, Segev and Wichs [6] introduced the notion of R-lossy public-key encryption,
which can be viewed as a randomized variant of our notion of R-lossy trapdoor
functions.
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the process of sampling a value x according to the distribution of X and by
E[X ] the expectation of the random variable X . Similarly, for a finite set S we
denote by x ← S the process of sampling a value x according to the uniform
distribution over S. We denote by X = (X1, . . . , XT ) a joint distribution of T
random variables, and by x = (x1, . . . , xT ) a sample drawn from X. For two bit-
strings x and y we denote by x‖y their concatenation. A non-negative function
f : N→ R is negligible if it vanishes faster than any inverse polynomial.

In this paper we consider the uniform adversarial model (i.e. consider uni-
form probabilistic polynomial-time adversaries). We note that all of our results
also apply to the nonuniform adversarial model (under nonuniform complexity
assumptions).

Themin-entropy of a random variableX isH∞(X) = − log(maxx Pr[X = x]).
A k-source is a random variableX with H∞(X) ≥ k. A (T, k)-source is a random
variable X = (X1, . . . , XT ) where each Xi is a k-source for every i ∈ [T ]. A
(T, k)-block source is a random variable X = (X1, . . . , XT ) where for every
i ∈ [T ] and x1, . . . , xi−1 it holds that H∞(Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k.

The statistical distance between two random variables X and Y over a finite
domain Ω is SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]−Pr[Y = ω] |. Two random vari-

ablesX and Y are δ-close if SD(X,Y ) ≤ δ. Two distribution ensembles {Xλ}λ∈N
and {Yλ}λ∈N are statistically indistinguishable if it holds that SD(Xλ, Yλ) is neg-
ligible in λ. They are computationally indistinguishable if for every probabilistic
polynomial-time algorithmA it holds that

∣∣Pr[A(1λ, x) = 1
]
− Pr

[
A(1λ, y) = 1

]∣∣
is negligible in λ, where x← Xλ and y ← Yλ.

2.1 t-Wise δ-Dependent Permutations

A collection Π of permutations over {0, 1}n is t-wise δ-dependent if for any dis-
tinct x1, . . . , xt ∈ {0, 1}n the distribution (π(x1), . . . , π(xt)) where π is sampled
from Π is δ-close in statistical distance to the distribution (π∗(x1), . . . , π

∗(xt))
where π∗ is a truly random permutation. For our construction in the standard
model we rely on an explicit construction of such a collection due to Kaplan,
Naor, and Reingold [15] that enjoys an asymptotically optimal description length
(although we note that in fact any other construction can be used):

Theorem 2.1 ([15]). For any integers n and t ≤ 2n, and for any 0 < δ < 1,
there exists an explicit t-wise δ-dependent collection Π of permutations over
{0, 1}n where each permutation π ∈ Π can be described using O(nt + log(1/δ))
bits, and is computable and invertible in time polynomial in n, t and log(1/δ).

2.2 Admissible Hash Functions

The concept of an admissible hash function was first defined by Boneh and Boyen
[5] to convert a large class of selectively-secure identity-based encryption scheme
into a fully-secure ones.11 In this paper we use such hash functions in a somewhat

11 The work of Boneh and Boyen [5] shows how to construct admissible hash functions
from collision-resistant hash functions.
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similar way as part of our construction of a CCA-secure deterministic public-key
encryption scheme. The main idea of an admissible hash function is that it allows
the reduction in the proof of security to secretly partition the message space
into two subsets, which we will label as “lossy tags” and “injective tags,” such
that there is a noticeable probability that all of the messages in the adversary’s
decryption queries will correspond to injective tags, but the challenge ciphertext
will correspond to a lossy tag. This is useful if the simulator can efficiently answer
decryption queries with injective tags, while a challenge ciphertext with a lossy
tag reveals essentially no information on the encrypted message. Our exposition
and definition of admissible hash function follows that of Cash, Hofheinz, Kiltz,
and Peikert [8].

For K ∈ {0, 1,⊥}v(λ), we define the “partitioning” function PK : {0, 1}v(λ) →
{Lossy, Inj} which partitions the space {0, 1}v(λ) of tags in the following way:

PK(y) :=

{
Lossy if ∀ i ∈ {1, . . . , v(λ)} : Ki = yi or Ki = ⊥
Inj otherwise

For any u = u(λ) < v(λ), we let Ku,λ denote the uniform distribution over
{0, 1,⊥}v(λ) conditioned on exactly u positions having ⊥ values. (Note, if K is
chosen from Ku,λ, then the map PK(·) defines exactly 2u values as Lossy.) We
would like to pick a distribution Ku,λ for choosingK so that, there is a noticeable
probability for every set of tags y0, . . . , yq, of y0 being classified as “lossy” and
all other tags “injective.” Unfortunately, this cannot happen if we allow all tags.
Instead, we will need to rely on a special hash function the maps messages x to
tags y.

Definition 2.2 (Admissible hash functions [5,8]). Let H = {Hλ}λ∈N be
a hash-function ensemble, where each h ∈ Hλ is a polynomial-time computable
function h : {0, 1}n(λ) → {0, 1}v(λ). We say that H is an admissible hash-
function ensemble if for every h ∈ H there exists a efficiently recognizable set
Unlikelyh ⊆

⋃
q∈N
(
{0, 1}n(λ)

)q
of string-tuples such that the following two prop-

erties hold:

– For every probabilistic polynomial-time algorithm A there exists a negligible
function ν(λ) satisfying Pr[(x0, . . . , xq) ∈ Unlikelyh] ≤ ν(λ), where h ← Hλ

and (x0, . . . , xq)← A(1λ, h).
– For every polynomial q = q(λ) there is a polynomial Δ = Δ(λ) and an effi-

ciently computable u = u(λ) such that, for every h ∈ Hλ and (x0, . . . , xq) �∈
Unlikelyh with x0 �∈ {x1, . . . , xq} we have:

Pr
K←Ku,λ

[PK(h(x0)) = Lossy ∧ PK(h(x1)) = · · · = PK(h(xq)) = Inj] ≥ 1

Δ(λ)
.

2.3 Lossy Trapdoor Functions

A collection of lossy trapdoor functions [18] consists of two families of functions.
Functions in one family are injective and can be efficiently inverted using a trap-
door. Functions in the other family are “lossy,” which means that the size of their
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image is significantly smaller than the size of their domain. The only security
requirement is that a description of a randomly chosen function from the family
of injective functions is computationally indistinguishable from a description of
a randomly chosen function from the family of lossy functions.

Definition 2.3 (Lossy trapdoor functions [18,12]). Let n : N → N and
� : N → N be non-negative functions, and for any λ ∈ N let n = n(λ) and � =
�(λ). A collection of (n, �)-lossy trapdoor functions is a 4-tuple of probabilistic
polynomial-time algorithms (Gen0,Gen1,F,F

−1) such that:

1. Sampling a lossy function: Gen0(1
λ) outputs a function index σ ∈ {0, 1}∗.

2. Sampling an injective function: Gen1(1
λ) outputs a pair (σ, τ) ∈ {0, 1}∗×

{0, 1}∗, where σ is a function index and τ is a trapdoor.
3. Evaluation: Let n = n(λ) and � = �(λ). Then, for every function index σ

produced by either Gen0 or Gen1, the algorithm F(σ, ·) computes a function
fσ : {0, 1}n → {0, 1}∗ with one of the two following properties:
– Lossy: If σ is produced by Gen0, then the image of fσ has size at most

2n−	.
– Injective: If σ is produced by Gen1, then the function fσ is injective.

4. Inversion of injective functions: For every pair (σ, τ) produced by Gen1
and every x ∈ {0, 1}n, we have F−1(τ,F(σ, x)) = x.

5. Indistinguishability of indices: The ensembles
{
σ : σ ← Gen0(1

λ)
}
λ∈N

and {σ : (σ, τ)← Gen1(1
λ)
}
λ∈N are computationally indistinguishable.

Constructions of lossy trapdoor functions were proposed based on a wide variety
of number-theoretic assumptions and for a large range of parameters (see, for
example, [12,18] and the references therein). In particular, in terms of parame-
ters, several constructions are known to offer � = n− nε for any fixed constant
0 < ε < 1 with n = poly(λ).

2.4 Deterministic Public-Key Encryption

A deterministic public-key encryption scheme is a tripletΠ = (KeyGen,Enc,Dec)
of polynomial-time algorithms with the following properties:

– The key-generation algorithm KeyGen is a randomized algorithm that takes
as input the security parameter 1λ and outputs a key pair (sk, pk) consisting
of a secret key sk and a public key pk.

– The encryption algorithm Enc is a deterministic algorithm that takes as
input a public key pk and a messagem ∈ {0, 1}n(λ), and outputs a ciphertext
c = Encpk(m).

– The decryption algorithm is a possibly randomized algorithm that takes as
input a secret key sk and a ciphertext c and outputs a messagem← Decsk(c)
such that m ∈ {0, 1}n(λ) ∪ {⊥}.
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3 Formalizing Adaptive Security for Deterministic
Public-Key Encryption

In this section we present a framework for modeling the security of deterministic
public-key encryption schemes in an adaptive setting. As discussed in Section
1.3, we consider adversaries that adaptively choose plaintext distributions after
seeing the public key of the scheme, in an interactivemanner. The only restriction
we make is that the number of plaintext distributions from which each adversary
is allowed to choose is upper bounded by 2p(λ), where p(λ) can be any a-priori
given polynomial in the security parameter λ. The security definitions that follow
are parameterized by three parameters:

– p = p(λ) denoting the 2p bound on the number of allowed plaintext distri-
butions.

– T = T (λ) denoting the number of blocks in each plaintext distribution.
– k = k(λ) denoting the min-entropy requirement.

Additionally, they are implicitly parameterized by bit-length n = n(λ) of plain-
texts. We begin by defining the “real-or-random” encryption oracle which we
use formalize security.

Definition 3.1 (Real-or-random encryption oracle). The real-or-random
oracle RoR takes as input triplets of the form (mode, pk,M), where mode ∈
{real, rand}, pk is a public key, and M = (M1, . . . ,MT ) is a circuit repre-
senting a joint distribution over T messages. If mode = real then the oracle
samples (m1, . . . ,mT ) ← M , and if mode = rand then the oracle samples
(m1, . . . ,mT ) ← UT where U is the uniform distribution over the appropriate
message space. It then outputs (Encpk(m1), . . . ,Encpk(mT )).

Following [1,4] we consider two classes of adversarially-chosen message distribu-
tions M = (M1, . . . ,MT ): The class of (T, k)-sources, where eachMi is assumed
to be a k-source, and the more restrictive class of (T, k)-block-sources, where
each Mi is assumed to be a k-source even given M1, . . . ,Mi−1. (See Section 2
for formal definitions.) Our constructions in the random oracle model are se-
cure with respect to (T, k)-sources, and our constructions in the standard model
are secure with respect to (T, k)-block-sources. This gap was recently shown by
Wichs [24] to be inherent to our techniques, and in fact to all the techniques
that were so far used for designing deterministic public-key encryption schemes
without random oracles [3,4,2,7,13,17,23]. Specifically, Wichs showed that no
deterministic public-key encryption scheme can be proven secure for all (T, k)-
sources using a black-box reduction to a “falsifiable” hardness assumption. (We
refer the reader to [24] for more details on his notion of falsifiability.)

The following two definitions capture the class of chosen-plaintext adversaries
and security game that we consider in this paper. We refer the reader to the full
version [19] for their natural generalization to chosen-ciphertext attacks.

Definition 3.2 (2p-bounded (T, k)-source adversary). Let A be a prob-
abilistic polynomial-time algorithm that is given as input a pair (1λ, pk) and
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oracle access to RoR(mode, pk, ·) for some mode ∈ {real, rand}. Then, A is a
2p-bounded (T, k)-source adversary if for every λ ∈ N there exists a set X = Xλ

of polynomial-time samplable (T, k)-sources such that:

1. |X | ≤ 2p.
2. For each of A’s RoR queries M it holds that:

– M ∈ X .
– For all (m1, . . . ,mT ) in the support of M and for all distinct i, j ∈ [T ]

it holds that mi �= mj.

In addition, A is a block-source adversary if X is a set of (T, k)-block-sources.

Definition 3.3 (Adaptive chosen-distribution attacks (ACD-CPA)). A
deterministic public-key encryption scheme Π = (KeyGen,Enc,Dec) is (p, T, k)-
ACD-CPA-secure (resp. block-wise (p, T, k)-ACD-CPA-secure) if for any proba-
bilistic polynomial-time 2p-bounded (T, k)-source (resp. block-source) adversary
A, there exists a negligible function ν(k) such that

AdvACD-CPA
Π,A (λ)

def
=
∣∣∣Pr[ExptrealΠ,A(λ) = 1

]
− Pr

[
ExptrandΠ,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each mode ∈ {real, rand} and λ ∈ N the experiment Exptmode
Π,A (λ) is

defined as follows:

1. (sk, pk)← KeyGen(1λ).
2. b← ARoR(mode,pk,·)(1λ, pk).
3. Output b.

In addition, such a scheme is (p, T, k)-ACD1-CPA-secure (resp. block-wise (p, T,
k)-ACD1-CPA-secure) if the above holds for any probabilistic polynomial-time
2p-bounded (T, k)-source (resp. block-source) adversary A that queries the RoR
oracle at most once.

Our adaptive notion of security enables an immediate reduction of “multi-shot”
adversaries to “single-shot” ones, as in the case of randomized public-key en-
cryption. The following theorem follows via a standard hybrid argument.

Theorem 3.4. For any polynomials p, T , and k, a deterministic public-key
encryption scheme Π is (p, T, k)-ACD-CPA-secure (resp. block-wise (p, T, k)-
ACD-CPA-secure) if and only if it is (p, T, k)-ACD1-CPA-secure (resp. block-
wise (p, T, k)-ACD1-CPA-secure).

4 Chosen-Plaintext Security Based on Lossy Trapdoor
Functions

In this section we present our basic construction of a public-key deterministic
encryption scheme that is secure according to our notion of adaptive security.
We refer the reader to Section 1.3 for a high-level description of the scheme, and
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of the main challenges and ideas underlying our approach. In what follows we
formally describe the scheme and discuss the parameters that we obtain using
known instantiations of its building blocks.

Let n = n(λ), � = �(λ), t = t(λ) and δ = δ(λ) be functions of the security
parameter λ ∈ N. Let (Gen0,Gen1,F,F

−1) be a collection of (n, �)-lossy trapdoor
functions, and for every λ ∈ N letΠλ be a t-wise δ-dependent collection of permu-
tations over {0, 1}n. Our scheme DE = (KeyGen,Enc,Dec) is defined as follows:

– Key generation. The key-generation algorithm KeyGen on input 1λ sam-
ples (σ, τ)← Gen1(1

λ) and π ← Πλ. It then outputs pk = (σ, π) and sk = τ .
– Encryption. The encryption algorithm Enc on input a public key pk =

(σ, π) and a message m ∈ {0, 1}n outputs c = F(σ, π(m)).
– Decryption. The decryption algorithm Dec on input a secret key sk = τ

and a ciphertext c outputs m = π−1
(
F−1(τ, c)

)
.

Theorem 4.1. The scheme DE is block-wise (p, T, k)-ACD-CPA-secure for any
n = n(λ), � = �(λ), p = p(λ), and T = T (λ) by setting t = p+ n− � + log T +
ω(logλ), k = n− �+ 2 logT + 2 log t+ ω(logλ), and δ = 2−nt.

Parameters. Using existing constructions of lossy trapdoor functions (see Sec-
tion 2.3), for any n = n(λ) and for any constant 0 < ε < 1 we can instantiate our
scheme with � = n − nε. Therefore, for any n = n(λ), p = p(λ), and T = T (λ),
we obtain schemes with t = p+ nε + ω(logλ), k = nε + ω(logλ), and δ = 2−nt.

5 R-Lossy Trapdoor Functions

The notion of R-lossy public-key encryption schemes was put forward by Boyle,
Segev, and Wichs [6], and here we define an analogous notion for trapdoor func-
tions. Informally, an R-lossy trapdoor function family is a collection of tagged
functions where the set of possible tags is partitioned into two subsets: injective
tags, and lossy tags. Functions evaluated with an injective tag can be efficiently
inverted with a trapdoor (where all injective tags share the same trapdoor infor-
mation). On the other hand, functions evaluated with a lossy tag lose information
– the size of their image is significantly smaller than the size of their domain.
The partitioning of the tags is defined by a binary relation R ⊆ K × T : the
key-generation algorithm receives as input an initialization value K ∈ K and
this partitions the set tags T so that t ∈ T is lossy if and only if (K, t) ∈ R.
More, formally, we require that the relation R ⊆ K×T consists of a sequence of
efficiently (in λ) recognizable sub-relations Rλ ⊆ Kλ × Tλ. The only computa-
tional requirement of an R-lossy trapdoor function family is that its description
hides the initialization value K.

Definition 5.1 (R-lossy trapdoor functions). Let n : N→ R and � : N→ R
be non-negative functions, and for any λ ∈ N let n = n(λ) and � = �(λ). Also,
let R ⊆ K × T be an efficiently computable binary relation. An R-(n, �)-lossy
trapdoor function family is a triplet of probabilistic polynomial-time algorithms
Π = (GenR,G,G

−1) such that:
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1. Key generation: For any initialization value K ∈ Kλ, the key-generation
algorithm GenR(1

λ,K) outputs a public index σ and a trapdoor τ .
2. Evaluation: For any K ∈ K, (σ, τ) ← GenR(1

λ,K), and any t ∈ T , the
algorithm G(σ, t, ·) computes a function fσ,t : {0, 1}n → {0, 1}∗ with one of
the two following properties:
– Lossy tags: If (K, t) ∈ R, then the image of fσ,t has size at most 2n−	.
– Injective tags: If (K, t) /∈ R, then the function fσ,t is injective.

3. Inversion under injective tags: For any K ∈ K and t ∈ T such that
(K, t) /∈ R, and for any input x ∈ {0, 1}n, we have G−1(τ, t,G(σ, t, x)) = x.

4. Indistinguishability of initialization values: For every probabilistic poly-
nomial-time adversary A, there exists a negligible function ν(λ) such that

AdvR-lossy
Π,A (λ)

def
=
∣∣∣Pr[Expt(0)Π,A(λ) = 1

]
− Pr

[
Expt

(1)
Π,A(λ) = 1

]∣∣∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment Expt
(b)
Π,A(λ) is defined as

follows:
(a) (K0,K1, state)← A(1λ).
(b) (σ, τ)← GenR(1

λ,Kb).
(c) b′ ← A(1λ, σ, state).
(d) Output b′.

We are interested mainly in the bit-matching relation RBM, as defined by Boyle,
Segev, and Wichs [6]. For every λ ∈ N let Kλ = {0, 1,⊥}v(λ) and Tλ = {0, 1}v(λ),
and define (K, t) ∈ RBM

λ ⊆ Kλ × Tλ if for every i ∈ {1, . . . , v(λ)} it holds that
Ki = ti or Ki = ⊥. That is, given some fixed initialization value K, the set of
lossy tags t are exactly those whose bits match K in all positions i for which
Ki �= ⊥. In our construction of CCA-secure deterministic encryption schemes,
the RBM-lossy trapdoor functions will be used in combination with an admissible
hash function (discussed in Section 2.2). An admissible hash function enables
us to map messages to encryption tags such that, with high probability over
an appropriate distribution of K, all decryption queries map to injective tags
while the challenge query maps to a lossy tag which loses information about the
plaintext. We refer the reader to the full version for a generic construction of
RBM-lossy trapdoor functions based on any collection of lossy trapdoor functions.
In turn, this implies that RBM-lossy trapdoor functions can be based on a variety
of number-theoretic assumptions.

6 Chosen-Ciphertext Security Based on R-Lossy
Trapdoor Functions

In this section we present a construction of a public-key deterministic encryp-
tion scheme that is secure according to our notion of adaptive security even when
adversaries can access a decryption oracle. As discussed in Section 1.3, our con-
struction is inspired by that of Boldyreva et al. [4] combined with the approach
of Boneh and Boyen [5] (and its refinement by Cash, Hofheinz, Kiltz, and Peikert
[8]) for converting a large class of selectively-secure IBE schemes to fully-secure
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ones, and the notion of R-lossy trapdoor functions that we introduced in Section
5 following Boyle, Segev, and Wichs [6]. In what follows we formally describe the
scheme and discuss the parameters that we obtain using known instantiations
of its building blocks.

Let n = n(λ), � = �(λ), v = v(λ), t1 = t1(λ), t2 = t2(λ), δ1 = δ1(λ), and δ2 =
δ2(λ) be functions of the security parameter λ ∈ N. Our construction relies on
the following building blocks: a collection {Hλ}λ∈N of admissible hash functions
h : {0, 1}n → {0, 1}v; a collection (Gen0,Gen1,F,F

−1) of (n, �)-lossy trapdoor
functions; acollection (GenBM,G,G

−1) of RBM-(n, �)-lossy trapdoor functions; a t1-

wise δ1-dependent collection {Π(1)
λ }λ∈N of permutations over {0, 1}n; a t2-wise

δ2-dependent collection {Π(2)
λ }λ∈N of permutations over {0, 1}n. Our scheme

DECCA = (KeyGen,Enc,Dec) is defined as follows:

– Key generation. The key-generation algorithm KeyGen on input 1λ sam-
ples h ← Hλ, (σf , τf ) ← Gen1(1

λ), K ← Kλ, (σg , τg) ← GenBM(1
λ,K),

π1 ← Π
(1)
λ , and π2 ← Π

(2)
λ . Then, it outputs pk = (h, σf , σg, π1, π2) and

sk = (τf , τg).
– Encryption. The encryption algorithm Enc on input a public key pk =

(h, σf , σg, π1, π2) and a message m ∈ {0, 1}n outputs

c =
(
h(π1(m)), F

(
σf , π2(m)

)
, G
(
σg, h(π1(m)), π2(m)

))
.

– Decryption. The decryption algorithm Dec on input a secret key sk =
(τf , τg) and a ciphertext (ch, cf , cg) first computes m = π−12

(
F−1(τf , cf )

)
.

Then, if Encpk(m) = (ch, cf , cg) it outputs m, and otherwise it outputs ⊥.
In other words, the decryption algorithm inverts cf using the trapdoor τf ,
and outputs m if the ciphertext is well-formed.

Theorem 6.1. The scheme DECCA is block-wise (p, T, k)-ACD-CCA-secure for
any n = n(λ), � = �(λ), v = v(λ), p = p(λ), and T = T (λ) by setting

t1 = p+ v + logT + ω(logλ), δ1 = 2−nt1 ,

t2 = p+ v + logT + n− (2�− n) + ω(logλ), δ2 = 2−nt2 ,

k = max
(
n− (2�− n), v

)
+ 2 log t2 + ω(logλ).

Parameters. Using existing constructions of admissible hash functions and lossy
trapdoor functions (see Sections 2.2 and 2.3, respectively), and using our con-
struction of RBM-lossy trapdoor functions (see Section 5), for any n = n(λ) and
for any constant 0 < ε < 1 we can instantiate our scheme with v = nε and
� = n − nε. Therefore, for any n = n(λ), p = p(λ), and T = T (λ), we obtain
schemes with t1 = p + nε + ω(logλ), δ1 = 2−nt1 , t2 = p + 2n2ε + ω(logλ),
δ2 = 2−nt2 , and k = 2n2ε + ω(logλ).
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Abstract. We propose a scheme for watermarking cryptographic functions. In-
formally speaking, a digital watermarking scheme for cryptographic functions
embeds information, called a mark, into functions such as (trapdoor) one-way
functions and decryption functions of public-key encryption. It is required that a
mark-embedded function is functionally equivalent to the original function and
it is difficult for adversaries to remove the embedded mark without damaging
the function. In spite of its importance and usefulness, there have only been a
few theoretical studies on watermarking for functions (or program), and we do
not have rigorous and meaningful definitions of watermarking for cryptographic
functions and concrete constructions.

To solve the above problem, we introduce a notion of watermarking for cryp-
tographic functions and define its security. We present a lossy trapdoor function
(LTF) based on the decisional linear (DLIN) problem and a watermarking scheme
for the LTF. Our watermarking scheme is secure under the DLIN assumption in
the standard model. We use the techniques of dual system encryption and dual
pairing vector spaces (DPVS) to construct our watermarking scheme. This is a
new application of DPVS.

Keywords: digital watermarking, dual pairing vector space, dual system encryp-
tion, vector decomposition problem.

1 Introduction

1.1 Background

Digital watermarking is a method of embedding information, called a “mark”, in digital
objects such as images, movies, and audio files. Marked objects look similar to the orig-
inal objects and it is difficult to remove embedded marks without destroying the object.
One of the applications of watermarking is protecting copyright, i.e., we can prevent
unauthorized copying of digital content by detecting watermarks. Another application
is tracing and identifying owners of digital content, that is, if we find illegally copied
digital content, we can detect a watermark and identify the owner who distributed the il-
legal copy. Most watermarking methods have been designed for perceptual objects, such
as images, and only a few studies have focused on watermarking for non-perceptual ob-
jects (e.g., software, program). Software is digital content, so it can be easily copied.
Software piracy is a serious problem today. Watermarking for programs is one of tools
to solve the problem and has very useful, attractive, and practical applications, but they
are little understood.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 111–125, 2013.
c© International Association for Cryptologic Research 2013
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We briefly explain related studies on program watermarking below. Naccache,
Shamir, and Stern introduced the notion of copyrighted functions and proposed a method
for tracking different copies of functionally equivalent algorithms containing “marks”
[14]. This is related to watermarking schemes for program (functions), but their se-
curity definition is a bit weak and not sufficient for program watermarking. Barak,
Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang considered the notion of
software watermarking (program watermarking) from a cryptographic point of view in
their seminal work [1]. They proposed a formalization of software watermarking and its
security definition, but the definition is simulation based and too strong. They gave an
impossibility result for general-purpose program watermarking by using impossibility
results of general-purpose program obfuscation [1]. “General-purpose” means that pro-
gram watermarking/obfuscation can be applied to any program. Their security require-
ments cannot be achieved, so they leave positive theoretical results about watermarking
(achieving concrete constructions for specific function families by using a game-based
security definition) as an open problem. Yoshida and Fujiwara introduced the notion of
watermarking for cryptographic data and a concrete scheme for signatures [23]. Their
idea is very exciting, but they did not propose a formal security definition of watermark-
ing for cryptographic data and their scheme is not provably secure. They claim that the
security of their scheme is based on the vector decomposition (VD) problem, which
was introduced by Yoshida, Mitsunari, and Fujiwara [24], but their proof is heuristic
and they showed no reduction.

Hopper, Molnar, and Wagner proposed a rigorous complexity-theoretic (game-based)
definition of security for watermarking schemes, but they focused on watermarking for
only perceptual objects [8]. They gave no concrete construction that satisfies their se-
curity definition.

1.2 Motivations and Applications

As explained in the previous section, there is no watermarking scheme for (crypto-
graphic) functions that is provably secure in a complexity-theoretic definition of secu-
rity. We consider functions as a kind of program. Copyrighted functions by Naccache et
al. are provably secure based on the factoring assumption, but their definition of secu-
rity is weaker than that of watermarking, and their construction can embed a bounded
number of marks [14].

Traceable Cryptographic Primitives. One application of watermarking for cryptographic
functions (we sometimes call it cryptographic watermarking) is constructing various
traceable cryptographic primitives. If we have a watermarking scheme for crypto-
graphic functions, for example, trapdoor one-way functions, collision-resistant hash
functions (CRHF), and decryption functions, we can construct a variety of traceable
primitives or copyrighted cryptographic primitives since private-key encryption, public-
key encryption (PKE), digital signatures, and so on are constructed from trapdoor one-
way functions and often use CRHFs in their algorithms.

As pointed out by Naccache et al., watermarked functions have the following appli-
cations [14]:
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– If we consider software or program that generates ciphertexts of the Feistel cipher
based on a one-way function [13], signatures of Rompel’s signature scheme [21],
or decrypted values of ciphertexts under PKE schemes based on a trapdoor one-
way function, and a malicious user illegally makes copies of such software and
distributes them, then a company that sold the software can trace them and identify
the guilty users.

– If a company sells MAC-functions based on watermarked one-way functions to
users and records user IDs and marked functions in a database and the users use
them to log-in a member web site, then they do not need to disclose their identity
since all marked functions are functionally equivalent. However, if a malicious user
distributes an illegal copy and it is discovered, then the company can identify the
guilty identity by detecting an embedded mark.

Black-box Traitor Tracing. Kiayias and Yung proposed a method of constructing black-
box traitors tracing schemes from copyrighted PKE functions [10]. When we want to
broadcast digital content to a set of legitimate subscribers, we can use broadcast encryp-
tion schemes. If some of the subscribers leak partial information about their decryption
keys to a pirate, who is a malicious user in broadcast encryption systems, then the pi-
rate may be able to construct a pirate-decoder. Traitor tracing enables us to identify such
malicious subscribers called traitor [3]. Our cryptographic watermarking scheme can be
seen as a generalized notion of copyrighted functions and our construction is based on
identity-based encryption (IBE) schemes whose private keys for identities are marked
(these are copyrighted decryption functions of PKE), so our construction technique
can be used to construct black-box traitor tracing schemes and it has a quite powerful
application.

Theoretical Treatment of Watermarking. There are many heuristic methods for software
watermarking [4], but there have only been a few studies that theoretically and rigor-
ously treat the problem in spite of its importance. Functions can be seen as a kind of
software (and program) and a large amount of software uses cryptographic functions,
especially in a broadcast system, users must use software with decryption functions
to view content. We believe that our scheme is an important step toward constructing
practical software watermarking.

1.3 Our Contributions and Construction Ideas

We introduce the notion of watermarking for cryptographic functions, a game-based
security definition of them, and a concrete construction. Our watermarking scheme
is provably secure under the decisional linear (DLIN) assumption. To the best of our
knowledge, this is the first provably secure watermarking scheme for functions (pro-
gram) in terms of theoretical cryptography.

Our security notion is based on the notion of strong watermarking introduced by
Hopper et al. [8]. Their definition takes into account only perceptual objects and they
modeled the notion of similarity by a perceptual metric space on objects that mea-
sures the distance between objects. Therefore, to construct watermarking schemes for
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cryptographic functions, we should modify their definition. We define the similarity
by preserving functionality, that is, if a marked function is functionally equivalent to
an original function, then we assume the marked function is similar to the original
function. Watermarking schemes should guarantee that no adversary can generate a
function which is functionally equivalent to a marked function but unmarked, that is,
no adversary can remove embedded marks without destroying functions.

We propose a watermarking scheme for lossy trapdoor functions (LTFs) [20]. LTFs
are quite powerful cryptographic functions. They imply standard trapdoor one-way
functions, oblivious transfers, CRHFs, and secure PKE schemes against adaptive cho-
sen ciphertext attacks (CCA) [20]. The watermarking scheme consists of four algo-
rithms, key generation, mark, detect, and remove algorithms. Marked function indices
are functionally equivalent to the original ones, that is, for any input, outputs of marked
functions are the same as those of the original function. The construction can be used
to construct an IBE scheme that can generate marked private keys for identities and
marked signatures since our LTFs are based on IBE schemes, as explained in the next
paragraph. That is, we can construct decryption algorithms in which watermarks can be
embedded.

Key Techniques and Ideas Behind Our Construction. Our construction is based on the
dual pairing vector space (DPVS) proposed by Okamoto and Takashima [16,17,19]. We
use the IBE scheme of Okamoto and Takashima [19] (which is a special case of their
inner-product predicate encryption (IPE) scheme) and that of Lewko [11] to construct
LTFs. Loosely speaking, LTFs are constructed from homomorphic encryption schemes,
and the IBE schemes of Okamoto-Takashima and Lewko are homomorphic. There are
many other homomorphic encryption schemes but we selected Okamoto-Takashima
and Lewko IBE schemes because they are constructed by DPVS and the dual system
encryption methodology introduced by Waters [22]. The methodology is a key tech-
nique to achieve a watermarking scheme.

We apply the dual system encryption technique to not only security proofs but
also constructions of cryptographic primitives. In the dual system encryption, we can
use semi-functional ciphertexts and semi-functional keys. Semi-functional ciphertexts
can be decrypted using normal keys and normal ciphertext can be decrypted using
semi-functional keys, but semi-functional ciphertexts cannot be decrypted using semi-
functional keys. Normal ciphertexts/keys are computationally indistinguishable from
semi-functional ciphertexts/keys. In most cases, function indices of LTFs consist of ci-
phertexts of homomorphic encryption [5, 7, 20], so, intuitively speaking, if we can con-
struct a function index by using not only (normal) ciphertexts but also semi-functional
keys, then the function index is functionally equivalent to a function index generated
by (normal ciphertexts and) normal keys as long as normal ciphertexts are used. More-
over, if we use semi-functional ciphertexts, we can determine whether a function index
is generated by semi-functional keys or not since semi-functional ciphertexts cannot
be decrypted using semi-functional key. Thus, a function index that consists of semi-
functional keys can be seen as a marked index and semi-functional ciphertexts can be
used in a detection algorithm of a watermarking scheme. This is the main idea. Note
that our construction technique can be used to construct an IBE scheme whose private
keys can be marked because our LTFs are based on such an IBE scheme.
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Our watermarking scheme is based on DPVS. We can set a hidden linear subspace
by concealing the basis of a subspace from public parameters due to a nice property
of DPVS. A pair of dual orthonormal bases, B and B∗, are generated using a random
linear transformation matrix. We use a hidden linear subspace spanned by a subset of
B/B∗ for semi-functional ciphertexts/keys (We denote the subset by B̂ ⊂ B, B̂∗ ⊂ B∗,
respectively). A hidden linear subspace for semi-functional ciphertexts and keys can be
used as a detect key and a mark key of our watermarking scheme, respectively. Thus, we
can embed “marks” into the hidden linear subspace and they are indistinguishable from
non-marked objects because the decisional subspace problem is believed to be hard
[15, 17]. Informally speaking, the decisional subspace problem is determining whether
a given vector is spanned by B (resp, B∗) or B \ B̂ (resp, B∗ \ B̂∗).

Okamoto and Takashima introduced complexity problems based on the DLIN prob-
lem to prove the security of their scheme [17,19] and these problems are deeply related
to the VD problem [24] and the decisional subspace problem. The VD problem says
that it is difficult to decompose a vector in DPVS into a vector spanned by bases of a
subspace. Lewko also introduced the subspace assumption [11], which is implied by the
DLIN assumption and highly related to the decisional subspace assumption introduced
by Okamoto and Takashima [15] and the VD problem. All assumptions introduced
by Okamoto-Takashima [17, 19] and Lewko [11] are implied by the standard DLIN
assumption.

If we can decompose a vector in DPVS into each linearly independent vector, then
we can convert semi-functional ciphertexts/keys into normal ciphertexts/keys by elimi-
nating elements in hidden linear subspaces, that is, we can remove an embedded mark
from a marked function index. Galbraith and Verheul and Yoshida, Mitsunari, and Fu-
jiwara argued that the VD problem is related to computational Diffie-Hellman prob-
lem [6, 24]. It is believed that the VD problem is hard. Therefore, no adversary can
remove marks of our watermarking scheme (this is a just intuition). However, we do
not directly use the VD problem but the DLIN problem to prove the security of our
scheme. On the other hand, if we have a linear transformation matrix behind dual or-
thonormal bases of DPVS, then we can easily solve the VD problem [15,17], that is, we
can remove a mark if we have the matrix. Such an algorithm was proposed by Okamoto
and Takashima [15].

Our construction is a new application of DPVS. DPVS has been used to con-
struct fully secure functional encryption, IPE, IBE and attribute-based signatures
[11, 12, 16–19], but to the best of our knowledge, a linear transformation matrix for
dual orthonormal bases in DPVS has never been explicitly used for algorithms of cryp-
tographic schemes. This is of independent interest.

Remark. In this extended abstract, we do not have enough space to give complete proofs
and all definitions, so we omitted some of them.

2 Preliminaries

Notations. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When D is a random
variable or distribution, y

R← D means that y is randomly selected from D according to
its distribution. If S is a set, then x

U← S means that x is uniformly selected from S. We
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denote y is set, defined or substituted by z by y := z. When b is a fixed value,A(x)→ b
(e.g., A(x) → 1) denotes the event that probabilistic polynomial-time (PPT) machine
(or algorithm) A outputs a on input x. We say that function f : N→ R is negligible in
λ ∈ N if f(λ) = λ−ω(1) (We write f < negl(λ)). We denote the finite field of order
q by Fq, and Fq \ {0} by F×q . A bold face small letter denotes an element of vector
space V, e.g., x ∈ V. Set GL(n,Fq) denotes the general linear group of degree n over
Fq. Let Gbm be a parameter generation algorithm that takes as input security parameter
λ and outputs (q,G,GT , e, g). If we use g/G to denote a generator in G, then we use
multiplicative/additive notation, respectively.

2.1 Function Family of Lossy Trapdoor Functions

Definition 1 (Lossy Trapdoor Functions [20]). A lossy trapdoor function LTF with
domain D consists of four efficient algorithms satisfying three properties

Injective Key Generation: LTF.IGen outputs (ek , ik) where ek /ik is an
evaluation/inversion key.

Evaluation: LTF.Evalek (X) (X ∈ D) outputs an image Y = fek(X).
Inversion: LTF.Invertik (Y ) outputs a pre-image X = f−1ik (Y ).
Lossy Key Generation: LTF.LGen outputs (ek ′,⊥).
Correctness: ∀(ek , ik ) R← LTF.IGen(1λ) and ∀X ∈ D, f−1ik (fek (X)) = X .
Indistinguishability: Let λ be a security parameter. For all PPT A, AdvIND

LTF,A(λ) :=∣∣Pr[A(1λ, [LTF.IGen(1λ)]1)]− Pr[A(1λ, [LTF.LGen(1λ)]1)]
∣∣ < negl(λ).

Lossiness: We say that LTF is �-lossy if for all ek ′ generated by using LTF.LGen(1λ),
the image set fek′(D) is of size at most |D| /2	.

We define a function family of LTF, LTFλ := {LTF.Evalek (, ·)|(ek , ik ) R←
LTF.Gen(1λ, b), b ∈ {0, 1}} where LTF.Gen(1λ, 0) := LTF.IGen(1λ) and
LTF.Gen(1λ, 1) := LTF.LGen(1λ).

2.2 Dual Pairing Vector Space [12, 16, 17]

Definition 2. “Dual pairing vector space (DPVS)” (q,V,GT ,A, e) by a direct product
of symmetric pairing groups (q,G,GT , e, G) are a tuple of prime q, N -dimensional
vector space V := GN over Fq , cyclic group GT of order q, canonical basis A :=
(a1, . . . ,aN ) of V, where ai := (0, . . . , 0, G, 0, . . . , 0) (only the i-th coordinate is G),
and pairing e : V× V→ GT . The pairing is defined as e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈

GT where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is non-
degenerate bilinear, i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V,
then x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and
0 otherwise, and e(G,G) �= 1. DPVS also has linear transformations φi,j on V s.t.
φi,j(aj) = ai and φi,j(ak) = 0 if k �= j, which can be easily achieved by φi,j(x) :=
(0, . . . , 0, Gj , 0, . . . , 0) (only the i-th coordinate is G) where x := (G1, . . . , GN ). We
call φi,j canonical maps. DPVS generation algorithm Gdpvs takes input 1λ and N ∈ N
and outputs a description of pp′V := (q,V,GT ,A, e) with security parameter λ and
N -dimensional V. It can be constructed using Gbm.
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Canonical basis A is changed to dual orthonormal bases B := (b1, . . . , bN ) and B∗ :=
(b∗1, . . . , b

∗
N ) of V. We describe random dual orthonormal bases generator Gob(1λ, N):

Generate pp′V := (q,V,GT ,A, e)
R← Gdpvs(1λ, N), X := (χi,j)

U← GL(N,Fq), ψ
U←

F×q , (ϑi,j) := ψ(X�)−1, gT := e(G,G)ψ , ppV := (pp′V, gT ), bi :=
∑N

j=1 χi,jaj ,B:=

(b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,jaj ,B
∗ := (b∗1, . . . , b

∗
N ), return (ppV,B,B

∗). It holds
that e(bi, b

∗
j ) = (gT )

δi,j .

Vector Decomposition Problem. The VD problem was originally introduced by Yoshida,
Mitsunari, and Fujiwara [24]. We present the definition of a higher dimensional version
by Okamoto and Takashima [15] to fit the VD problem into DPVS. Note that a specific
class of the CVDP instances that are specified over canonical basis A are tractable.

Definition 3 (CVDP: (�1, �2)-Computational Vector Decomposition Problem [15]).
For �1 > �2 and all λ ∈ N, we define the advantage

AdvCVDP
A,(	1,	2)(λ) := Pr

⎡⎢⎣ω =

	2∑
i=1

xibi

∣∣∣∣∣∣∣
(ppV,B,B

∗)
R← Gob(1λ, �1),

(x1, . . . , x	1)
U← (Fq)

	1 ,

v :=
∑	1

i=1 xibi, ω
R← A(1λ, ppV,B,v)

⎤⎥⎦ .
The CVDP(	1,	2) assumption : For any PPTA, AdvCVDP

A,(	1,	2)(λ) < negl(λ).

Trapdoor. If we have a trapdoor, matrix X behind B, then we can efficiently de-
compose vectors in DPVS, i.e., solve CVDP(	1,	2) by using the efficient algorithm
Decomp given by Okamoto and Takashima [15]. The input is (v, (b1, . . . , b	2),X,B)

such that v :=
∑	1

i=1 yibi is a target vector for decomposition, (b1, . . . , b	2) is a
subspace to be decomposed into, X is a trapdoor, and B := (b1, . . . , b	1) is a ba-
sis generated by using X . Algorithm Decomp(v, (b1, . . . , b	2),X,B): computes u :=∑	1

i=1

∑	2
j=1

∑	1
κ=1 τi,jχj,κφκ,i(v) where φ is the canonical map in Definition 2,

(χi,j) = X and (τi,j) := (X)−1.

Lemma 1 (Okamoto-Takashima [15]). Algorithm Decomp efficiently solves
CVDP(	1,	2) by using X := (χi,j) such that bi :=

∑	1
j=1 χi,jaj .

Multiplicative Notation of DPVS by Lewko [11]. We introduce a multiplicative no-
tation by Lewko [11]. For !v, !w ∈ Fnq , a ∈ Fq, and g ∈ G, we define g�v :=

(gv1 , . . . , gvn), ga�v := (gav1 , . . . , gavn), g�v+�w := (gv1+wn , . . . , gvn+wn), and
e(g�v, g �w) :=

∏n
i=1 e(g

vi , gwi). Lewko defined algorithm Dual(Fnq ) as follows: It

chooses!bi,!b∗j ∈ Fnq andψ
U← Fq such that!bi·!b∗j = 0 mod q for i �= j,!bi·!b∗i = ψ mod q

for all i ∈ [n] and outputs (B,B∗) where B := (!b1, . . . ,!bn) and B∗ := (!b∗1, . . . ,
!b∗n).

We use the notation (B,B∗) to express dual orthonormal bases in Fq to distinguish

from bases (B,B∗) in V. We can consider bi = g
�bi , b∗j = g

�b∗j , !bi = (χi,1, . . . , χi,n),
!b∗i = (ϑi,1, . . . , ϑi,n) where X = (χi,j) and ψ(X−1)

�
= (ϑi,j).

2.3 Complexity Assumptions

Definition 4 (DLIN Assumption). Let Gdlin
b (1λ) be an algorithm that generates Γ :=

(q,G,GT , e, g)
R← Gbm(1λ), chooses ξ, κ, δ, σ, ζ

U← Fq, lets Q0 := gδ+σ , Q1 := gζ ,
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and outputs I := (Γ, f, h, f δ, hσ, Qb). The advantage is AdvdlinA (λ) := |Pr[A(I) →
1|I R← Gdlin

0 (1λ)] − Pr[A(I) → 1|I R← Gdlin
1 (1λ)]|. We say that the DLIN assumption

holds if for all PPT A, AdvdlinA (λ) < negl(λ).

Definition 5 (Subspace Assumption). Let Gdss
b (1λ) be an algorithm that generates

Γ
R← Gbm(1λ), chooses η, β, τ1, τ2, τ3, μ1, μ2, μ3

U← Fq, (B,B∗)
R← Dual(Fnq ), for

i ∈ [k] where 3k ≤ n lets Ui := gμ1
�bi+μ2

�bk+i+μ3
�b2k+i , Vi := gτ1η

�b∗i +τ2β�b
∗
k+i , Wi :=

gτ1η
�b∗i +τ2β�b

∗
k+i+τ3�b

∗
2k+i , D := (g

�b1 , . . . , g
�b2k , g

�b3k+1 , . . . , g
�bn , gη

�b∗1 , . . . , gη
�b∗k , gβ

�b∗k+1 ,

. . . , gβ
�b∗2k , g

�b∗2k+1 , . . . , g
�b∗n , U1, . . . , Uk, μ3),Q0 := (V1, . . . , Vk),Q1 :=(W1, . . . ,Wk),

and outputs I := (Γ,D,Qb). The advantage is AdvdssA (λ) := |Pr[A(I) → 1|I R←
Gdss
0 (1λ)]− Pr[A(I)→ 1|I R← Gdss

1 (1λ)]|. We say that the subspace assumption holds
if for all PPT A, AdvdssA (λ) < negl(λ).

Theorem 1 (Lewko [11]). The DLIN assumption implies the subspace assumption.

3 Definitions of Cryptographic Watermarking

We define watermarking schemes for cryptographic functions (one-way functions, hash
functions, etc.). Our definition of watermarking schemes can be extended to treat cryp-
tographic data introduced by Yoshida and Fujiwara [23]. We consider a family of func-
tions F := {Fλ}λ. For example, LTFs are cryptographic functions and function F is

sampled from family LTFλ := {fek(·)|(ek , ik)
R← LTF.IGen(1λ)}. A watermarking

key generation algorithm takes as inputs security parameter λ and familyF and outputs
public parameter pk, secret key sk, mark key mk, detect key dk, and remove key rk.
That is, our watermarking schemes is an asymmetric key watermarking scheme. Public
parameter pk includes sampling algorithm SampF , which outputs a function F

R← Fλ

(note that we include the case in which the sampling algorithm takes sk as an input).
Note that the description of SampF does not include sk. Our cryptographic watermark-
ing scheme for cryptographic functions F uses public parameter pk and secret key sk
to choose a function F

R← Fλ from the function family. A mark key allows us to embed
a mark in function F . A marked function F ′ should be similar to original function F .
A detect/remove key allows us to detect/remove a mark in marked function F ′.

Definition 6. A watermarking scheme for family F is a tuple of algorithms CWMF :=
{WMGen,Mark,Detect,Remove} as follows:

WMGen: The key generation algorithm takes as input security parameter λ and
function family F , outputs public parameter pk (including sampling algorithm
SampF ), secret key sk, mark key mk, detect key dk, and remove key rk, that is,
(pk, sk,mk, dk, rk)

R←WMGen(1λ,F).
Mark: The mark algorithm takes as inputs mk and unmarked function F and outputs

marked function F̃ , that is, F̃
R← Mark(pk,mk, F ) (hereafter, we often omit pk

from inputs).
Detect: The detect algorithm takes as inputs dk and function F ′ and outputs

marked (detect a mark) or unmarked (no mark), that is, Detect(pk, dk, F ′) →
marked/unmarked.
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Remove: The remove algorithm takes as inputs rk and marked function F̃ and outputs
unmarked function F := Remove(pk, rk, F̃ ), that is functionally equivalent to the
original one.

As Hopper et al. noted [8], we do not allow any online communication between the
Detect and Mark procedures. We sometimes use notation WM(F ) to denote a marked
function of F .

We define the security of cryptographic watermarking based on the definition of
strong watermarking with respect to the metric space proposed by Hopper et al. [8] and
software watermarking proposed by Barak et al. [1]. We borrow some terms from these
studies. Hopper et al. defined a metric space equipped with distance function d and say
that object O1 and O2 are similar if d(O1, O2) ≤ δ for some δ, but we do not use it
since we do not consider perceptual objects.

Basically, the following properties should be satisfied: Most objects F ∈ Fλ must
be unmarked. We define similarity by a functional preserving property, that is, for all
input x, output distributions F (x) and F ′(x) are identical. Given marked function F ′,
an adversary should not be able to construct a new function F̃ , which is functionally
equivalent to F ′ but unmarked without remove key rk.

Our definitions of the non-removability and unforgeability are game-based defini-
tions and based on the notion of strong watermarking by Hopper et al. [8]. Our def-
initions are specialized to focus on cryptographic functions (do not consider metric
spaces). The non-removability states that even if the adversary is given marked func-
tions, it cannot find a function that is similar to a marked function but does not contain
any mark. This is based on the security against removal introduced by Hopper et al. [8].
The unforgeability states that the adversary cannot find a new marked function. This is
based on the security against insertion introduced by Hopper et al. [8].

Experiment WMarkF,A(λ)

keys
R←WMGen(1λ,F);

kesy = (pk, sk,mk, dk, rk);
MList := ∅; CList := ∅;
(β, F )

R← AMO,CO,DO(1λ, pk);
If β = 0, then Detect(dk, F )→ b;
IdealDtc(F )→ B′;
if b = unmarked and B′ = {marked};
then return (0,win) else return lose
If β = 1, then Detect(dk, F )→ b;
IdealDtc(F )→ B′;
if b = marked, and B′ = {unmarked};
then return (1,win) else return lose

Oracle MO(F )

F ′ R← Mark(mk,F );
MList := MList ∪ {F ′};
return F ′;

Oracle COFλ()

F
R← Fλ;

F ′ R← Mark(mk,F );
CList := CList ∪ {F ′};
MList := MList ∪ {F ′};
return F ′

Oracle DO(F )

Detect(dk, F )→ b;
return b

Procedure IdealDtc(F )

if
(∃F ′ ∈ CList : F ≡ F ′);
then return {marked}
else if
(∃F ′ ∈ MList : F ≡ F ′)
then return
{marked, unmarked}
else return {unmarked}

Fig. 1. Experiment for non-removability and unforgeability
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Definition 7 (Secure Watermarking for Functions). A watermarking scheme for func-
tion family F is secure if it satisfies the following properties.

Meaningfulness: It holds that for any F ∈ Fλ, Detect(dk, F )→ unmarked.
Correctness: For any F ∈ Fλ, (pk, sk,mk, dk, rk)

R← WMGen(1λ,F) and
WM(F )

R← Mark(mk,F ), it holds that Detect(dk,WM(F )) → marked and
Detect(dk,Remove(rk,WM(F )))→ unmarked.

Preserving Functionality: For any input x ∈ {0, 1}n and F ∈ Fλ, it holds that
WM(F )(x) = F (x). If function F ′ preserves the functionality of function F , then
we write F ≡ F ′.

Polynomial Slowdown: There exists a polynomial p such that for any F ∈ Fλ,
|WM(F )| ≤ p(|F |+ |mk|).

Non-Removability: We say that a watermarking scheme is non-removable if it holds
that AdvRemove

F ,A (1λ) := Pr[WMarkF ,A(λ) → (0,win)] < negl(λ). Experiment
WMarkF ,A(λ) is shown in Figure 1.

Unforgeability: We say that a watermarking scheme is unforgeable if it holds that
AdvForgeF ,A (1λ) := Pr[WMarkF ,A(λ)→ (1,win)] < negl(λ).

The adversary tries to find a function such that the outputs of the actual detection al-
gorithm and the ideal detection procedure are different. The ideal detection procedure
searches a database and outputs a decision by using online communication to the mark-
ing algorithm. The adversary has access to oracles, i.e., the mark, detect, and challenge
oracles. The mark oracle returns a marked function for a queried non-marked function.
The detect oracle determines whether a queried function is marked or not. The challenge
oracle generates a new (non-marked) function, embeds a mark in the new function, and
returns the marked function (the original non-marked function is hidden). Eventually,
the adversary outputs function F and bit β. When β = 0, it means that the adversary
claim that it succeeded in removing a mark from some marked function F ′ without the
remove key. This case is for security against removal. When β = 1, it means that the
adversary claim that it succeeded in embedding a mark in some original function F ′

without the mark key. This case is for security against forgery.
As Hopper et al. explained [8], we must introduce the challenge oracle because if it

does not exist, then a trivial attack exists. If the adversary samples an unmarked function
F ∈ Fλ, queries it to the mark oracle, and finally outputs them as solutions for β = 0.
The actual detect algorithm returns unmarked but the ideal detect procedure returns
{marked, unmarked} since an equivalent function is recorded in MList.

4 Proposed Watermarking Scheme

We present LTFs and a watermarking scheme for LTFs that are secure under the DLIN
assumption. Generally speaking, LTFs can be constructed from homomorphic encryp-
tion schemes as discussed in many papers [5, 20]. Lewko/Okamoto-Takashima pro-
posed an IBE/IPE scheme based on DPVS, which is homomorphic and secure under
the DLIN assumption. We can easily construct an LTF from the IBE scheme by ap-
plying the matrix encryption technique introduced by Peikert and Waters [20]. In this
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extended abstract, we present a scheme based on only the Lewko IBE scheme due to
page limitations (since cryptographers are used to multiplicative notation). See a full
version of this paper for a scheme based on the Okamoto-Takashima IPE scheme.

Basically, we use homomorphic PKE schemes to construct LTFs, but we use homo-
morphic IBE schemes to achieve watermarking scheme since we want to use identities
as tags for function indices and dual system encryption. To construct LTFs based on
IBE schemes, we use not only ciphertexts under some identity but also a private key for
the identity. If there is no private key (we call it conversion key in the scheme), then we
cannot obtain valid outputs that can be inverted by an inversion key of the LTF. Note
that the conversion key is not a trapdoor inversion key for the LTF. Our LTF LTFmult

based on the Lewko IBE is as follows:

LTF.IGen(1λ) : It generates (D,D∗)
U← Dual(F8

q), chooses α, θ, σ
U← Fq, ψ :=

(ψ1, . . . , ψ	)
U← F	q, and sets gT := e(g, g)αθ

�d1·�d∗
1 and gTj := g

ψj

T for all j ∈ [�].

It chooses si,1, si,2
U← Fq for all i ∈ [�] and generates ui,j := g

si,1
Tj

· gmi,j

T and

vi := gsi,1
�d1+si,1ID�d2+si,2 �d3+si,2ID�d4 for all i, j ∈ [�] where mi,i = 1 and

mi,j = 0 (if i �= j). For a conversion key, it chooses r1, r2
U← Fq and generates

kID := g(α+r1ID)θ�d∗
1−r1θ�d

∗
2+r2IDσ�d∗

3−r2σ�d
∗
4 . It returns ek := (U ,V ,kID) :=

({ui,j}i,j , {vi}i ,kID) (i, j ∈ [�]), ik := ψ. Note ek includes ID, but we omit it
for simplicity.

LTF.LGen(1λ) : This is the same as LTF.IGen except that for all i, j ∈ [�], mi,j = 0
and ik := ⊥.

LTF.Eval(ek , !x): For input !x ∈ {0, 1}	, it computes yj :=
∏

i u
xi

i,j = g�x·�s1Tj
g
xj

T ,

y	+1 :=
∏

i v
xi

i = g�x·�s1
�d1+�x·�s1ID�d2+�x·�s2 �d3+�x·�s2ID�d4 where !s1 := (s1,1, . . . , s1,	),

!s2 := (s2,1, . . . , s2,	), and y′	+1 := e(y	+1,k0) = e(g, g)αθ
�d1·�d∗

1�x·�s1 and returns
output y := (y1, . . . , y	, y

′
	+1).

LTF.Invert(ik ,y): For input y, it computes x′j := yj/(y
′
	+1)

ψj = g�x·�s1Tj
g
xj

T /g
�x·�s1·ψj

T

and let xj ∈ {0, 1} be such that x′j = g
xj

T . It returns !x = (x1, . . . , x	).

Theorem 2. LTFmult is a lossy trapdoor function if the DBDH assumption holds.

We omit the proof and the definition of the DBDH assumption (this assumption is im-
plied by the DLIN assumption).

Next, we present our watermarking scheme. We added extra two dimensions of
DPVS to the original Lewko IBE scheme since we use the extra dimensions to embed
watermarks. Even if we add a vector spanned by !d∗7 and !d∗8 to kID, which is spanned
by !d∗1, . . . ,

!d∗4, it is indistinguishable from the original since vectors !d7, !d8, !d∗7, !d
∗
8 are

hidden. Moreover, the marked index works as the original non-marked index since V
is spanned by !d1, . . . , !d4 and components !d∗7, !d

∗
8 are canceled. However, if we have a

vector which is spanned by !d7, !d8, then we can detect the mark generated by !d∗7,
!d∗8. If

we have complete dual orthonormal bases (D,D∗), then we can use the decomposition
algorithm introduced in Section 2.2 and eliminate the vector spanned by !d∗7,

!d∗8, i.e.,
watermarks. Our watermarking scheme CWMmult for LTFmult is as follows:
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WMGen(LTFmult): It generates (D,D∗)
U← Dual(F8

q), chooses α, θ, σ
U← Fq,

gT := e(g, g)αθ
�d1·�d∗

1 , and sets D̂ := (gT , g
�d1 , . . . , g

�d4) pk := (D̂, Samp),

sk := (gαθ
�d∗
1 , gθ

�d∗
1 , gσ

�d∗
2 , gσ

�d∗
3 , g

�d∗
4 ), mk := (g

�d∗
7 , g

�d∗
8), dk := (g

�d7 , g
�d8), and

rk := (D,D∗). The sampling algorithm Samp(ppV, D̂, sk) chooses ψ
U← F	q,

!s1, !s2
U← F	q, and generates (ek, ik) := ((U ,V ,kID),ψ) as LTF.IGen. It com-

putes kID := g(α+r1ID)θ�d∗
1−r1θ�d

∗
2+r2IDσ�d∗

3−r2σ�d
∗
4 . Note that sk is not included in

the description of Samp. Keys sk, mk, and rk are secret. Key dk can be disclosed.
Mark(mk, ek): It parses ek = (U ,V ,kID), chooses t1, t2

U← Fq, and computes

k̃ID := kID · gt1 �d
∗
7+t2 �d

∗
8 by using g �d

∗
7 and g �d

∗
8 . It outputs marked function index

WM(ek ) = (U ,V , k̃ID).
Detect(dk, ẽk ): It parses ẽk = (U ,V , k̃ID), chooses z1, z2

U← F×q , and com-

putes c := gz1
�d7+z2 �d8 . Next, it computes Δ := e(c, k̃ID). If it holds that

Δ = e(c, k̃ID) �= 1, then it outputs marked. Else if, it holds that Δ = 1, then
it outputs unmarked.

Remove(rk, ẽk): It parses ẽk = (U ,V , k̃ID), runs algorithm Decomp(ṽi, (g
�d∗
1 ,

. . . , g
�d∗
m),D∗, (g

�d∗
1 , . . . , g

�d∗
8 )) for all m < 8, and obtains gzj

�d∗
j for all j =

1, . . . , 8 where zj ∈ Fq . It holds k̃ID = gz1
�d∗
1+···+z8�d

∗
8 . It computes k′ID :=

k̃ID/g
z7�d

∗
7+z8 �d

∗
8 and outputs (U ,V ,k′ID) as an unmarked index.

Correctness, preserving functionality, and polynomial slowdown are easily followed.
Meaningfulness follows since (g

�d∗
1 , . . . , g

�d∗
8 ) are hidden. Note that if we do not have

secret key (g
�d∗
1 , . . . , g

�d∗
4 ), then we cannot compute a complete function index, that is,

we cannot compute conversion key kID. This seems to be a restriction, but in the sce-
nario of watermarking schemes, this is acceptable. We use watermarking schemes to
authorize objects, and such objects are privately generated by authors. For example,
movies, music files, and software are generated by some companies and they do not
distribute unauthorized (unmarked) objects. Moreover, in the experiment on security,
the adversary is given a oracle which gives marked function indices. Thus, it is reason-
able that unauthorized parties cannot efficiently sample functions by themselves.

4.1 Security Proofs for CWMmult

Our watermarking scheme CWMmult is secure under the DLIN assumption. We prove
this by proving Theorems 3 and 4.

Theorem 3. CWMmult is non-removable under the subspace assumption.

Proof. If A outputs (0, ek∗), where Detect(dk, ek) → unmarked and IdealDtc
(ek∗) → marked, then we construct algorithm B, which solves the subspace prob-

lem with k = 1 and n = 8. B is given Γ , D = (g
�b1 , g

�b2 , g
�b4 , . . . , g

�b8 , gη
�b∗1 ,

gβ
�b∗2 , g

�b∗3 , . . . , g
�b∗8 , U1), and Qb for b ∈ {0, 1}. We set Q0 := V1 = gτ1η

�b∗1+τ2β�b
∗
2

and Q1 := W1 = gτ1η
�b∗1+τ2β�b

∗
2+τ3�b

∗
3 . B sets

!d1 := !b∗3
!d2 := !b∗4

!d3 := !b∗5
!d4 := !b∗6

!d5 := !b∗7
!d6 := !b∗8

!d7 := !b∗1
!d8 := !b∗2

!d∗1 := !b3 !d∗2 := !b4 !d∗3 := !b5 !d∗4 := !b6 !d∗5 := !b7 !d∗6 := !b8 !d∗7 := !b1 !d∗8 := !b2
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B chooses θ, α′, σ
U← Zp and can generate public key pk = (e(g, g)αθ

�d1·�d∗
1 , g

�d1 ,

. . . , g
�d4) := (e(g

�b∗2 , g
�b2)α

′μ3θ, g
�b∗3 , g

�b∗4 , g
�b∗5 , g

�b∗6 ) and mark key mk = (g
�d∗
7 , g

�d∗
8)

:= (g
�b1 , g

�b2). B has a detect key, which is essentially the same as g �d7 and g
�d8 since

gη
�b∗1 , gβ

�b∗2 are given. Coefficients β and η do not affect the detect algorithm. B can have
(g

�d∗
2 , . . . , g

�d∗
8 ) but does not have g �d

∗
1 since g�b3 is not given. That is, B has the mark

key and perfectly simulates the mark oracle but the secret key is incomplete as follows:
sk = (⊥,⊥, gθ�d∗

2 , gσ
�d∗
3 , gσ

�d∗
4 ) := (⊥,⊥, gθ�b4, gσ�b5 , gσ�b6).

It implicitly holds α = α′μ3. To simulate the challenge oracle without the complete
sk, for ID, B chooses r′1, r2, t7, t8

U← Zp and computes

k̃ID := (U1)
(α′+r′1ID)θg−r

′
1μ3θ�d

∗
2+r2IDσ�d∗

3−r2σ�d
∗
4+t7 �d

∗
7+t8 �d

∗
8

= g(α+r1ID)θ�d∗
1−r1θ�d∗

2+r2IDσ�d∗
3−r2σ�d∗

4+t′7
�d∗
7+t′8

�d∗
8

where t′7 = t7 − θ(α′ + r′1ID)μ1 and t′8 = t8 − θ(α′ + r′1ID)μ2 We set r1 :=
μ3r
′
1. This is a valid marked index. If A outputs valid unmarked index ek∗ =

(U∗,V ∗,k∗ID∗) where k∗ID∗ = g(α+r∗1ID
∗)θ�d∗

1−r∗1θ�d∗
2+r∗2ID

∗σ�d∗
3−r∗2σ�d∗

4 , then B com-
putes Δ := e(Qb,k

∗
ID∗). If Δ = 1, then B outputs 0 (b = 0), otherwise, it outputs 1.

If Qb = gτ1η
�b∗1+τ2β�b

∗
2 = gτ1η

�d7+τ2β�d8 , then Δ = 1. If Qb = gτ1η
�b∗1+τ2β�b

∗
2+τ3�b

∗
3 =

gτ1η
�d7+τ2β�d8+τ3 �d1 , then Δ = e(g, g)(α+r1ID)θτ3�d1·�d∗

1 �= 1. That is, B breaks the
problem. �

Next, we prove unforgeability. Note that the adversary is not allowed to output a func-
tion index whose identity is equal to those of indices generated by the challenge oracle
or are queried to the mark oracle. This is justified by the following fact. If it is al-
lowed, then it means the adversary has already had a (functionally equivalent) marked
index for the given or queried identity, that is, an IBE private key for the same iden-
tity. This is unavoidable and in the experiment on unforgeability, IdealDtc always re-
turns marked for identities that oracles used. For simplicity, we prove the unforgeabil-
ity explained above, but we can extend it to stronger ones by using known techniques
that convert standard unforgeable signature schemes into strongly unforgeable signa-
ture schemes. We now define algorithm Xtr(pk, sk, ID). It chooses r1, r2

U← Fq and

outputs kID := g(α+r1ID)θ�d∗
1−r1θ�d

∗
2+r2IDσ�d∗

3−r2σ�d
∗
4 . We can consider kID be a signa-

ture for ID. In fact, Naor pointed out that signature schemes can be derived from IBE
schemes [2]. Thus, we can prove the unforgeability of our watermarking scheme by
using the unforgeability of signature schemes derived from IBE schemes of Okamoto-
Takashima and Lewko.

Huang, Wong, and Zhao proposed a generic transformation technique for convert-
ing unforgeable signature schemes into strongly unforgeable ones [9]. We can achieve
strong unforgeability of watermarking schemes by using their technique and the strongly
unforgeably property.

Theorem 4. CWMmult is unforgeable under the subspace assumption.

Proof. Let qM and qC be the number of queries to the mark oracle and the challenge
oracle, respectively. There are two types of conversion keys kID.
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Normal: g(α+r1ID)θ�d∗
1−r1θ�d∗

2+r2IDσ�d∗
3−r2σ�d∗

4+t7 �d
∗
7+t8 �d

∗
8

Semi-functional: g(α+r1ID)θ�d∗
1−r1θ�d

∗
2+r2IDσ�d∗

3−r2σ�d
∗
4+t5 �d

∗
5+t6 �d

∗
6+t7 �d

∗
7+t8 �d

∗
8 .

We can generate them if we have the secret key, mark key, and (g
�d∗
5 , g

�d∗
6 ).

Both types of conversion keys give a correct output (we can check this by simple cal-
culation). To show that our scheme satisfies unforgeability, we introduce the following
games: We consider gameGame-iwhere the challenge oracle generates semi-functional
conversion keys for the first i ∈ [qC] queries and semi-functional conversion keys for the
remaining qC − i queries. Note that the mark oracle does not generate function indices.
It only embeds marks for queried indices. Let Advforge-Ni (resp. Advforge-Si ) denote the
advantage of the adversary in Game-(i) for outputting a normal (resp. semi-functional)
conversion key for a non-given or non-queried ID.

Lemma 2. If A outputs a semi-functional marked index in Game-(0), then we can
break the subspace assumption with k = 2 and n = 8.

Lemma 3. If there exists A, that distinguishes Game-(i− 1) from Game-(i), then we
can break the subspace assumption with k = 2 and n = 8.

Lemma 4. If A outputs a normal marked index in Game-(qC), then we can break the
subspace assumption with k = 1 and n = 8.

By Lemmas 2, 3, and 4, we can show the following:

AdvForgeA (λ) = Advforge-N0 + Advforge-S0 < (qC + 2)AdvdssB .

The theorem follows from the lemmas and Theorem 1. �
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Abstract. Current key sizes for symmetric cryptography are usually re-
quired to be at least 80-bit long for short-term protection, and 128-bit
long for long-term protection. However, current tools for security evalu-
ations against side-channel attacks do not provide a precise estimation
of the remaining key strength after some leakage has been observed, e.g.
in terms of number of candidates to test. This leads to an uncomfortable
situation, where the security of an implementation can be anywhere be-
tween enumerable values (i.e. 210−250 key candidates to test) and the full
key size (i.e. 260−2128 key candidates to test). In this paper, we propose
a solution to this issue, and describe a key rank estimation algorithm
that provides tight bounds for the security level of leaking cryptographic
devices. As a result and for the first time, we are able to analyze the full
complexity of “standard” (i.e. divide-and-conquer) side-channel attacks,
in terms of their tradeoff between time, data and memory complexity.

1 Introduction

Concrete security evaluations are at the core of cryptographic research. Taking
the example of symmetric cryptography, they are at the same time central in
formal definitions of security (e.g. as introduced by Bellare et al. [2]) and in the
evaluation of attacks such as linear and differential cryptanalysis [4,22]. Their
goal is to provide bounds on the success probability of an adversary as a function
of the resources she expends, typically measured in time, data and memory. But
somewhat surprisingly, while such concrete (and complete) evaluations are usual
in the context of mathematical cryptanalysis (e.g. [3], Table 5), they appear much
harder to obtain in the context of physical cryptanalysis, even for “classical”
attacks such as Kocher et al.’s Differential Power Analysis (DPA) [20].

The challenging nature of physical security evaluations mainly relates to the
difficulty of capturing the “device-specificity” of the attacks. For example, statis-
tical models used to evaluate the complexity of linear and differential cryptanal-
ysis have been intensively studied for more than 20 years. They generally reflect
the peculiarities of actual block ciphers to a good extent [10,19,30]. Under rea-
sonable assumptions and using design tools such as the wide-trail strategy, one
can even guarantee security against large classes of statistical attacks [9]. By con-
trast, there is no general theory explaining how to build secure implementations,

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 126–141, 2013.
c© International Association for Cryptologic Research 2013
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and most countermeasures used by device manufacturers highly depend on the
chosen technology. Therefore, present security evaluations against side-channel
attacks need to rely on experimental validation. For example, certification reports
emitted by national authorities such as the ANSSI in France [1], or the BSI in
Germany [6], are based on extensive analysis from evaluation laboratories.

From a cryptographic point of view, a purely empirical approach is hardly sat-
isfying, as it only determines whether a given laboratory (with given equipment,
time, data and memory) is able to recover some secret information contained in
a leaking device. Hence, a fundamental question is to determine which parts of
the physical security evaluations actually need experiments. Since the leakage
in cryptographic implementations is technology-dependent, it is clear that some
characterization through measurements is unavoidable, in order to determine its
informativeness. Yet, given a certain amount of information leakage, it remains
to analyze the impact of the time and memory complexities on the success prob-
ability of actual side-channel attacks. Answering these two questions (i.e. infor-
mation extraction and exploitation) is the main goal of evaluation frameworks
such as [31]. In the context of block ciphers (that will be our running example),
most distinguishers published in the literature are based on a divide-and-conquer
strategy1. As a result, the usual solution to exploit computational power is to
perform enumeration [25,32]. But this implies that present security evaluations
are limited to the computational power of the evaluator. That is, the only leaking
devices for which we can evaluate the security are the ones that are “practically
insecure” (i.e. for which the leakage allows key enumeration). It leaves the (most
interesting) evaluation of “practically secure” devices as an open problem. For
example, an evaluation laboratory could claim that he could consistently not
recover an AES key within time complexity 240 (i.e. after repeated experiments
and with good statistical confidence). But this does not give clear hints whether
the security level of the corresponding target leaking device is 241 or 2100.

Main Result. We show that in the (realistic) scenario where the evaluator of a
leaking device knows its secret key, it is possible to estimate the probability of
success of “standard” side-channel attacks (e.g. the ones listed in footnote 1) that
he is unable to perform (e.g. attacks of time complexities beyond 280). For this
purpose, we provide a rank estimation algorithm solving the following problem:
“given a set of discrete probability distributions for independent parts of a key
and a correct key k∗ with posterior likelihood p∗, provide tight bounds for the
rank of this key among the set of all possible ones” (i.e. for the order statistic
of p∗ in the set of all key probabilities). The set of distributions is typically
the outcome of a template attack [8], but can also be derived from most non-
profiled side-channel attacks such as listed in Footnote 1. In fact, rank estimation
requires essentially the same inputs as key enumeration, excepted the correct key
and its likelihood (unknown during enumeration). Based on several experiments,
we further show that our algorithm features small ratios between the lower and

1 Including Kocher et al.’s DPA, Brier et al.’s Correlation Power Analysis (CPA) [5],
Chari et al.’s Template Attacks (TA) [8], Gierlichs et al.’s Mutual Information Anal-
ysis (MIA) [14], Schindler et al.’s stochastic approach [28], and many variations.
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higher bounds on the key rank, and small running times (e.g. ratios between 22

and 210 for a 128-bit key are obtained in a couple of seconds on a PC).

Consequences. Besides being a tool of choice for side-channel evaluation labo-
ratories, our algorithm has a number of important consequences for the theory
and practice of side-channel attacks. First, and for the first time, it allows the
estimation of all the metrics put forward in [31] (namely, the success rates of
all orders and guessing entropy). For example, the estimation of the guessing
entropy for large master keys was previously impossible, as illustrated by the
reports of the DPA contests v1 and v2 [26]. Our rank estimation algorithm
could be directly used in further versions of such contests. Second, it provides a
method to connect actual side-channel attacks with the need of “limited informa-
tion leakage” in certain formal works aiming to prove security against physical
attacks. For example, it allows quantifying the hardness assumption in Dodis et
al.’s cryptography with auxiliary input [11], or the seed-preserving assumption
used in [34]. Although less directly connected, it also provides a lower bound
on the λ-bit leakage required in leakage-resilient cryptography [12]. Third, rank
estimation yields an exact solution to evaluate the complexity of a number of
“non-standard” side-channel attacks. For example, it is perfectly suited to es-
timate the workload of collision attacks such as [24,29] (see [13], Section 5). It
would also be handy for analyzing the key-dependent algorithmic noise in the
CHES 2012 leakage-resilient PRF [23], where most subkeys cannot be highly
rated by the adversary. Fourth, our experiments suggest a cautionary note for
the use of lightweight ciphers with small key sizes in leaking devices, as a few
measurements can be enough to degrade their security within adversarial reach.
Finally, we note that the proposed algorithm is not limited to physical security
evaluations, and is potentially useful in any mathematical cryptanalysis setting
where experiments are still needed to validate an hypothetical model.

2 Rank Estimation: An Overview

This section describes the approach that allows us to perform efficient and accu-
rate rank estimations for standard key spaces (i.e. from 280 to 2256, typically).
Let us denote the independent parts of the key for which information has been
obtained as subkeys. Our general idea is to organize the key space by sorting
each of these subkeys according to their posterior likelihood, in decreasing order.
As a result, the full key space is partitioned into 2 main volumes. The first one is
defined by all key candidates with probability higher than the correct key. The
second one is defined by all key candidates with probability smaller than the cor-
rect key2. Given this geometrical representation, our rank estimation problem
can be stated as the one of finding bounds for the “higher” and “lower” volumes.

2 Between these volumes, we may find other volumes where all key candidates have
the same probability as the correct one - which will be considered by our algorithm.
Yet, in practice this “middle zone” usually contains the correct key only.



Security Evaluations beyond Computing Power 129

Organizing the key space with such volumes has one main advantage. Namely,
the “higher” (resp. “lower”) set of key candidates is delimited by a concave (resp.
convex) surface within the key space. This means that if we pick a key candidate
with a probability higher (resp. lower) than the target key, all keys with index
lower (resp. higher) will also have the same property. This fact is illustrated
in Figure 1 for a simplified 2-dimension case, with small subkey spaces. In this
example, the correct key is the blue circle, and the equipotential surface splits
the key space into candidates with higher (green, light) and lower (red, dark)
probabilities. If one picks a key candidate within the lower probability set (e.g.
the black circle), we notice that all candidates with higher indexes (inside the
gray rectangle) will be on the same side of the surface. Hence, they will have a
lower probability than that of the correct key. Taking advantage of this fact, our
method for rank estimation essentially consists in “carving” such boxes of key
candidates on each side of the probability surface, and use the volumes of these
boxes to progressively refine the (lower and higher) bounds on the key rank.

Fig. 1. Sorted key space in a simplified two-subkeys case

Note that for small key spaces, standard quadrature tools such as Monte-
Carlo integration could be used to bound the key rank. But as soon as typical
cryptographic parameters are considered, e.g. 16 dimensions supported by 28

discrete points for the case of AES-128, these tools do not work anymore. Even
when partially merging some dimensions3 (e.g. in order to obtain 4 dimensions
with support 232), they fail to provide an answer in reasonable time. To the
best of our knowledge, the algorithm carefully described here is the first one to
provide an efficient solution that fits cryptographic evaluation purposes.

3 Algorithms for Efficient Rank Estimation

This section aims at presenting the rank estimation algorithm. First, a high-level
description of the algorithm is provided. For this algorithm to work efficiently
in practice, several refinements are needed, detailed in the subsequent sections.

3 Which will generally be beneficial to improve the performances of our approach too.
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3.1 High-Level Algorithm Representation

Algorithm 1 is an high-level view of the rank estimation algorithm. For the sake
of simplicity, we assume that the target cipher is aes-128 (that is we are provided
16 subkey probability mass functions of support 28 each). The algorithm remains
valid for other ciphers by simply modifying the corresponding entries.

Algorithm 1. Rank estimation algorithm

Input: Subkey distributions D = (Di)1≤i≤16 and the key probability p∗.
Output: An interval I = [I0; I1] containing the key rank.
L ← {[0; 255]16};
I ← [0; 2128];
PreProcess(D);
while L �= ∅ do

(V,L)← PickVolume(L);
if IsCarved(V ) = false then

(V ′, I)←CarveBox(V, I, p∗,D);
L ← InsertVolume(L, V ′);

else
{V ′

i } ← SplitVolume(V );
L ← InsertVolume(L, {V ′

i });

return I ;

As stated in Section 2, our algorithm is based on the fact that when distri-
butions are sorted by decreasing probability, the frontier between the “lower”
and “higher” key spaces is convex. Thus, a PreProcess() procedure is first used
to sort distributions. It also performs other treatments in order to improve the
algorithm efficiency (discussed in Section 3.2). After initializing a list L with a
volume containing the whole key space, we iterate over volumes in this list until
it is depleted or the target accuracy is reached. The volume to process is chosen
by the PickVolume() procedure that removes the largest volume from L. The
extracted volume is then processed. For reasons that will be clarified later in
the section, we store volumes as either simple boxes (i.e. a Cartesian product of
intervals), or the set difference of two such boxes that we will denote as carved
volumes. Depending on the case, two alternative procedures are possible.

If the extracted volume is a full box, the CarveBox() procedure is called, that
chooses a point on one side of the equipotential surface and carves a key set
from this point. The result is a carved volume V ′, which is actually a difference
between two key boxes. The rank estimate I is then updated with the carved set.
Afterwards, the remaining carved volume is inserted back into list L using the
InsertVolume() procedure. Else the volume extracted from list L is a carved
volume, in which case the SplitVolume() procedure is used first, that splits it
into smaller volumes having simpler geometries. As for the first case, these are
then inserted back into the list using the InsertVolume() procedure.



Security Evaluations beyond Computing Power 131

A run of the algorithm is illustrated in Figure 2. First, a box is carved from
the key space and subtracted from the higher bound. The resulting carved box is
then split in two. In the third step, a new box is carved on the green (light) side
of the top box, and added to the lower bound. In the fourth step, another box
is carved from the green (light) side of the bottom box. After several steps, an
exact bound can be given for the correct key in Figure 1. Note that during the
rank estimation for an actual cipher, the limiting surface has too many details
to be exactly computed, hence we are limited to an estimation of the rank.

I1

I0

I0

Fig. 2. Example run of Algorithm 1

While this algorithm is seemingly simple, any direct implementation results in
either intractable computation time or too large memory requirements. We only
managed to attain tractability (and efficiency) through several specific choices
and refinements for the different procedures, described below.

3.2 The PreProcess Procedure

In addition to sorting the distributions by decreasing probability, the PreProcess
procedure also lowers the number of dimensions in the key space by merging some
subkey lists. Instead of treating a 16-dimension cube of side length 28, we will
work, for instance, on a 6-dimension space with sides up to 224. This merging
step leads to significant improvements in the algorithm efficiency and should
be applied as far as memory allows it. The impact of such a merging on the
algorithm performances will be illustrated in the experiments of Section 4.

3.3 The PickVolume Procedure

When extracting a volume from the list, one can either pick the largest one or the
smallest. Extracting the smallest volume leads to small memory requirements, as
we basically perform a depth-first exploration of the key space. But this strategy
has high computation time and becomes intractable as the algorithm gets lost in
the details of the equipotential surface. By contrast, picking the largest volume
first is equivalent to performing a breadth-first search, and allows bounds to
converge faster. Hence, we choose to maintain a list of largest volumes. Such a list
is efficiently implemented using an heap-based priority queue. Yet, its memory
cost can become critical (as many volumes have to be stored at any given time).
Improvements were needed to minimize this memory, as detailed next.
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3.4 The InsertVolume Procedure

When the number of volumes stored in the queue increases beyond what we
can efficiently store on a computer, we have two solutions: either switch to a
depth-first search (which does stop the storage increase but has the side-effect of
slowing down the convergence of bounds almost to a stop), or we can truncate
the smallest volumes in the heap (since we use a heap and not a binary tree,
we actually truncate volumes among the smallest ones, not exactly the smallest
ones). The second approach naturally leads to accuracy losses in the estimation.
Fortunately, we are not interested in the exact rank of the key but on “good
enough” bounds. Hence, we opted for this second strategy. In practice, truncation
is acceptable if the accuracy loss is small compared to the key rank, which
depends on the storage limit set in the algorithm. We will show in the Section 4
that current computer memories allow very satisfactory results in this respect.

3.5 The IsCarved Procedure

Iterations of Algorithm 1 essentially take boxes from the key space and carve
other boxes out of them. If we were only able to represent plain boxes, we
would need to perform splits along each dimension each time a box is carved.
Essentially, carving a piece out of a box would lead to an increase in memory
requirements (due to the storage of the resulting pieces): a naive split generates
up to 2d− 1 new boxes with d the number of dimensions. The storage technique
suggested in Section 3.1 allows a significant reduction of this cost. By allowing
the representation of differences between key boxes, we can store carved volumes
within as much memory as “plain ones”. As a result, the IsCarved procedure is
used each time a volume is picked in Algorithm 1, in order to determine whether
the volume passed as an argument is a plain box or a carved one.

3.6 The SplitVolume Procedure

Whenever the volume we extract from the list is not a box, but rather a difference
of two boxes, we have to simplify it and insert the resulting volumes back into the
list. As stated above, the naive approach of splitting along each dimension is very
inefficient and can generate up to 2d−1 new boxes. Instead, we propose another
way to perform this task. That is, given a volume consisting of a difference
between two boxes, we split it along a single axis. This results in two volumes,
one of which is a box, the other being either a box or a carved volume. The axis
used to split is chosen in order to maximize the volume of the resulting simple
box. This solution is illustrated in Figure 3. The carved box (left) can either be
split into seven smaller boxes (middle), or into a larger box and another carved
volume (right). We note that this alternative approach, on top of minimizing the
size of the volume list, also preserves larger volumes (which is positive since it
improves the refinement of bounds during the subsequent carving steps).
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Fig. 3. Possible approaches to the volume split

3.7 The CarveBox Procedure

(a) The Carving Point. In order to refine rank estimation, we classify key
candidates inside a volume as more or less probable than the correct key, and
carve pieces of this volume. The easiest way to do this is to pick the central
point in the box, estimate its probability and carve the corresponding box. This
approach is inefficient as it only classifies one 2−d-th of the box volume where
d is the number of dimensions. Instead, we perform an heuristic optimization
on the number of keys contained in the carved part, repeated on both sides of
the equipotential surface. In practice, the surface is sufficiently “well-behaved”
so that simple heuristics such as hill climbing (with some random restarts) was
sufficient. More computationally intensive approaches that we tested (such as
simulated annealing) only offer a marginal improvement while hampering speed.

(b) The Carving Side. Iterations of Algorithm 1 provide two boxes for updat-
ing either the inner or outer bound of the key rank. In order to choose between
them, we need a criteria. The naive proposal trying to minimize the difference
between the updated bounds is not efficient, as it will almost always choose the
largest carved volume of the two. Indeed, the rank of the key in a side-channel
attack usually tends to be small with respect to the size of the key space, with
most key candidates having probability smaller than the correct one (otherwise
the attack was ineffective). As a result, such a criteria will almost always update
the higher bound of the key rank and refine the lower one very late (i.e. when
almost all key candidates have been classified). In order to avoid such short-
comings, a better criteria is to minimize the ratio (or log difference) between
higher and lower bounds. This way, the carving results in fast refinements of the
bounds from a computational point of view - with typical bounds within a few
binary orders.

4 Experimental Results

The goal of this section is two-fold. In a first part we evaluate the speed and
accuracy of our rank estimation algorithm. In a second part we apply this tool
in the context of a security evaluation and discuss its usefulness. The experi-
ments are based on a c++ implementation of the rank estimation algorithm.
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Its functional correctness was tested by comparing the results to those of our
enumeration algorithm [32] for computationally reachable key ranks.

4.1 Performances of the Rank Estimation Algorithm

We first tried to gauge the efficiency of the rank estimation algorithm in the
previous section. To this end, we used the results of simulated template attacks
against an unprotected aes-128 implementation for inputs. That is, we con-
sidered 16 attacks targeting the 16 S-boxes in the first aes round and taking
advantage of leakage samples of the shape: li = HW(S[xi ⊕ ki]) + ni, with HW
the Hamming weight function, xi (resp. ki) the ith byte of the plaintext (resp.
key), and ni a Gaussian-distributed noise variable. As a result, we obtained at-
tack outcomes in the form of 16 lists of 256 posterior likelihoods. Note that our
following analysis is quite independent of the exact type of side-channel attack
implemented. As discussed in [32], key enumeration (hence, rank estimation)
apply to any profiled or non-profiled DPA. The only important parameter for
our performance evaluations is the rank of the correct key candidate suggested
by the attack. In practice, we played with the noise variable and number of mea-
surements in order to make this rank vary. The main criteria used to measure the
efficiency of our algorithm are speed, memory and the tightness of the bounds.

In this context, a first task is the study of the impact of merging subkey
lists during the PreProcess procedure. We analyzed convergence of the bounds
obtained by our rank estimation algorithm as a function of the execution time
in the following contexts: (i) No merging has been done on the subkey posterior
distributions, i.e. the algorithm considers 16 dimensions of support 28, leading to
4 kb of memory requirements for the tables; (ii) Subkey lists were merged two
by two, i.e. the algorithm considers 8 dimensions of support 216, leading to 524
kb of memory requirements for the tables; (iii) Subkey lists were been merged
by three, i.e. the algorithm considers 5 dimensions of support 224 and one of 28,
leading to 83 mb of memory requirements for the tables. Merging further would
require more than 4gb of memory and was not necessary in our context. As
can be noticed in the example run of Figure 4, merging has a strongly positive
impact on the performances of the algorithm. It should always be performed
up to the memory limit. The different experiments presented in the rest of this
section were always obtained by merging the lists as per (iii).

The next point of interest is the rate of convergence of the proposed algorithm.
In Figure 5, the ratios between higher and lower bound on the estimated rank
are plotted against the actual rank. More precisely, if the algorithm returns an
estimated interval [i0; i1], then we plot log2(i1/i0) on the Y-axis to show the
relative accuracy of the current estimation, against the geometrical mean of the
best estimated bounds on the X-axis. By repeating the experiment and removing
outliers4, we obtain the banana-shaped envelopes illustrated on the figure. Each
envelope corresponds to a given running-time between 5 and 900 seconds.

4 Corresponding to cases where the equipotential surface is so simple that the algo-
rithm returns a significantly more accurate interval compared to other experiments.
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These results highlight that in our setting, most of the estimation work is done
after 150 seconds. We also note that in 5 seconds, the ratio between higher and
lower bounds is at most of 14 binary orders of magnitude, which is actually a
very good indicator when evaluating the security of a cryptographic component.
In this respect, ranks from 260 to 2100 are the most difficult to estimate, while
ranks smaller than 230 can be accurately determined within a few seconds.

Eventually, another natural question is to determine how much our rank es-
timation algorithm allows improving crude lower bounds obtained by simply
multiplying the subkey ranks together. Figure 6 shows the ratio between this
approximation and the bounds returned by our algorithm after only 30s. Esti-
mated intervals are plotted as gray vertical segments, with bound values divided
by the rank product estimate. It can be observed that the product bound un-
derestimates the actual rank by 20 to 40 binary orders of magnitude.
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Fig. 6. Improvement obtained by rank estimation over rank-product lower bound

4.2 Using Rank Estimation in Physical Security Evaluations

In general, the main objective of a physical security evaluation is to determine
how many encryption traces allow an adversary to recover the secret key with
non-negligible probability, given some reasonable restrictions of its computing
power and memory requirements. For this purpose, a natural solution is to esti-
mate the metrics introduced in [31], namely the o-th order success rate (which
gives the probability that the correct key stands among the o first ones provided
by the attack), and the guessing entropy (which is the expected rank of the cor-
rect key after the attack). However, and as already mentioned in introduction,
the estimation of these metrics was so far limited to subkeys, or to success rates
of enumerable orders for master keys. In the remainder of this section, we show
how efficient rank estimation can be used to mitigate this limitation, and provide
the complete picture for side-channel attack security evaluations.

For this purpose, we define an “all-order” success rate graph, which provides
the probability of a successful key recovery (on the Z axis or color map), depend-
ing on both the number of traces (on the X-axis) and the enumeration effort (on
the Y-axis). That is, any point in this graph corresponds to the success rate for
a given number of queries q = x and order o = y. In order to relate this graph
with the evaluation framework proposed in [31], we first remark that any of its
“slices” obtained for a fixed y corresponds to a y-th order success rate. Further-
more, any slice for a fixed x is a rank distribution graph for a given number of
measurements, the mean value of which equals the guessing entropy.

Building such a graph simply requires to perform several rank estimations,
for different values of the number of encryption traces measured. The outputs
provide a set of intervals that can then be used as input to a kernel density esti-
mation (e.g. with uniform kernels). What is actually of interest to an evaluator
is the cumulant of the density function resulting from this estimation: it indi-
cates the probability that a key will be found, depending of the amount of keys
that the adversary can enumerate. Interestingly, such density estimations con-
verge quickly. For example, the security graphs in Figures 7, 8 were obtained by
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performing 100 attacks with random keys and estimating the key rank during 5
seconds, which amounts to less than 10 minutes of computation for each possible
number of traces. The continuous black (resp. white) lines indicate the minimum
(resp. maximum) ranks observed. Basically, any data/enumeration point below
the black line seems safe, while points above the white line lead to certain key
recovery. The medium zone indicates a non-negligible probability of key recovery.
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Fig. 7. Example of a security graph for a template attack against unprotected AES
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Fig. 8. Example of a security graph for a template attack against unprotected LED

For illustration, we produced the security graphs for implementations of the
block ciphers AES and LED [16], with respective key lengths 128 and 64 bits.
Our experiments exploited exactly the same leakage models as in the previous
section, with the same noise variance for both ciphers, and the number of target
subkey bytes as only difference. In the case of the AES implementation shown



138 N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert

in Figure 7, an adversary with a personal computer spending two weeks of com-
putation (i.e. enumerating ≈ 240 keys) will have a small chance of recovering
the master key when she has less than 15 traces at her disposal, and will al-
most certainly succeed if she has more than 60 traces. Comparing this result
with the first-order success rate curve, we observe that this success rate is still
stuck at zero for 60 traces, hence suggesting the necessity of key ranking in se-
curity evaluations. Besides, it is also interesting to observe that the impact of
side-channel leakage is more critical for LED, as a small number of traces (e.g.
5 in the example of Figure 8) already allows decreasing the computing power
required for possible key recovery down to approximately 240 (whereas it is still
around 280 for the AES given the same number of traces). This vulnerability is
simply due to the smaller key space. In general, the graphs of Figures 7 and 8 can
be used directly to determine the re-keying rate in a leakage-resilient construc-
tion. The designer just has to choose an enumeration threshold corresponding
to the computing power of the adversary considered, then extract the number
of measurements that can be tolerated without risking a key recovery (using
the figures black line minus a small security margin). Note that the rank and
related enumeration effort can be translated into both time and memory costs
thanks to the enumeration algorithm presented in [32]. Exemplary performances
are reported in Table 1 (where enumeration times do not include the key testing
as it depends on the cipher under attack). Figures 7 and 8 thus represent the
security of a target device for different data/time/memory trade-offs.

Table 1. Time and memory requirements for key enumeration using [32]

# of keys enumerated 220 230 240 250 260

Time 0.25 s 6 m 2 w 165 y 77× 105 y
Memory <3 mb 100 mb 11.5 gb 1.35 tb 157 tb

Eventually, and in order to confirm that the tools introduced in this paper
apply to actual implementations as easily as to simulated experiments, we built
the security graph corresponding the best attack submitted to the DPA contest
v2 [26], depicted in Figure 9. Producing this graph required approximately 20
minutes of computation on an 8-core computer, and did not imply any modifica-
tion of the rank estimation algorithm. Note that this evaluation was performed
on the public database of the contest, which is easier to attack than the private
one. This explains the small discrepancy between our graph and the “Hall of
Fame” available online. Namely, the best attack reported in the contest needs
1173 traces to reach an 80% key recovery success rate when no enumeration is
done. By adding enumeration up to rank 232, the data complexity requirement
falls down to only 439 traces! In the “easier” context of the public database (de-
scribed in Figure 9), the security graph shows that only 350 traces are needed
with a 232-key enumeration, while a first-order success rate reaches 80% for
935 traces. To conclude, we mention that just as our rank estimation applies
to profiled and non-profiled DPA, it also applies to protected implementations
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(e.g. with masking [7,15] or shuffling [17,21]). The main reason is that standard
side-channel attacks against such implementations would produce lists of subkey
scores or probabilities, as described beforehand and exploited in this paper.
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Fig. 9. Security graph for the latest attack of DPA contest v2 (public traces)

5 Conclusion

In this paper, we presented an algorithm for key rank estimation. It can be seen
as the evaluator’s counterpart to the attacker’s key enumeration algorithm de-
scribed in [32]. The rank estimation algorithm allows an evaluator to predict the
workload of an attacker trying to recover a cryptographic key using the outcome
of a side-channel attack. It typically returns accurate interval estimates [2x; 2x+e]
of the key rank in a few seconds. By contrast, the enumeration algorithm returns
an exact rank for keys of which the rank is small enough (e.g. below 240), but
will fail for keys of which the rank is beyond computing power.

Besides their direct application to single attacks, these two algorithms nat-
urally gain additional interest in an evaluation setting where multiple attacks
can be launched to analyze the security of a leaking device with statistical con-
fidence. In particular, the combination of key enumeration and rank estimation
enables the efficient computation of the metrics defined in [31]. Taking advan-
tage of these tools, we are now able to produce security graphs that summarize
the success probabilities of side-channel attacks, according to both the number
of traces and the computational power available to an adversary.

We hope that these tools will be beneficial to researchers and evaluators and
allow more thorough physical security evaluations. To that purpose, open-source
C++ implementations (and matlab hooks) for both the enumeration and rank
estimation algorithms are distributed via the authors’ home pages.
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Abstract. Masking is a well-known countermeasure to protect block
cipher implementations against side-channel attacks. The principle is
to randomly split every sensitive intermediate variable occurring in the
computation into d + 1 shares, where d is called the masking order and
plays the role of a security parameter. Although widely used in practice,
masking is often considered as an empirical solution and its effectiveness
is rarely proved. In this paper, we provide a formal security proof for
masked implementations of block ciphers. Specifically, we prove that the
information gained by observing the leakage from one execution can be
made negligible (in the masking order). To obtain this bound, we as-
sume that every elementary calculation in the implementation leaks a
noisy function of its input, where the amount of noise can be chosen by
the designer (yet linearly bounded). We further assume the existence of a
leak-free component that can refresh the masks of shared variables. Our
work can be viewed as an extension of the seminal work of Chari et al.
published at CRYPTO in 1999 on the soundness of combining masking
with noise to thwart side-channel attacks.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. It is of-
ten more efficient than a cryptanalysis in the so-called black-box model in which
no leakage occurs. Two attack categories are usually considered: the bounded
side-channel attacks and the continuous side-channel attacks. In a bounded side-
channel attack [9], the total amount of leakage accessible to the adversary is
bounded. In a continuous side-channel attack, the adversary gets some infor-
mation at each invocation of the cryptosystem, and the amount of leakage can
thus be arbitrarily large. Attacks where the adversary measures the running-
time [24], the power consumption [25] or the electromagnetic radiations [15] of
a cryptographic implementation fall into this category.

Continuous side-channel attacks have proved to be especially effective to
break unprotected cryptographic implementations. And although many inge-
nious countermeasures have been developed during past years, very few of them
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gave rise to concrete security guaranties. This has raised the need for models
and methods to formally prove the security of cryptographic implementations
against continuous side-channel attacks. A pioneering work in this direction is the
physically observable cryptography framework introduced by Micali and Reyzin
in [29] which puts forward a general theory of side-channel attacks. In partic-
ular, they formalize the assumptions that a cryptographic device can at least
keep some secrets and that only computation leaks information [29]. A few years
later, Dziembowski and Pietrzak introduced the leakage resilient cryptography
model [12], which is a generalization of the bounded retrieval model [9] where
every step of the computation leaks information on the processed part of the
device state trough a function whose range is bounded (i.e. taking values in
{0, 1}λ for some parameter λ). Under this assumption, the authors were able to
design secure pseudo-random number generators [12,32]. Further leakage resilient
cryptographic primitives were then constructed under the same – or sometimes
stronger – assumptions (see for instance [10, 13, 23, 42]). The issue of designing
generic compilers that can transform any cryptographic algorithm into a leakage
resilient implementation was also recently addressed [11,17,18,22]. These works
are nice proofs of concept but the proposed constructions are not suited for
practical implementation, especially in constrained environments such as em-
bedded systems. Moreover the practical meaning of the underlying bounded
range leakage model with respect to power or electromagnetic side channels is
questionable [40].

A more practical and traditionally used approach to secure implementations
against side-channel attacks is secret sharing [1, 37] also called masking in this
context. The idea is to randomly split a secret into several shares such that
the adversary needs all of them to reconstruct the secret. Masking was soon
identified as a sound countermeasure when side-channel attacks appeared in the
literature [4, 19]. Since then, many works have been published to address the
practical implementation and/or the security of masking for various ciphers.
However a formal security proof is still missing at this day. Our goal is to fill
this gap.

1.1 Related Works

Soundness of Masking. In [4], Chari et al. conduct a formal study of mask-
ing in the presence of noisy leakage. More precisely, the authors investigate the
soundness of randomly sharing a secret bit into d shares when the adversary has
only access to a noisy version of those shares, the noise having a Gaussian distri-
bution with variance σ2. They prove that the number of observations required to
distinguish, with success probability α, the leakage distribution when the secret
equals 0 from the leakage distribution when the secret equals 1 is lower bounded
by σd+4 logα/ log σ. This bound is frequently recalled to argue for the soundness
of masking when combined with noise. Despite its great interest and impact,
Chari et al.’s analysis has an important limitation: no solution is provided to
apply masking to the whole implementation of a cryptographic algorithm and
to analyze the global security of such an implementation.



144 E. Prouff and M. Rivain

Private Circuits and Extensions. In [21], Ishai et al. show that any circuit
with n logical gates can be transformed into a circuit of size O(nd2) which is
secure against probing attacks spying up to d wires. The main contribution of [21]
is a method to compute an AND gate between shared inputs while ensuring the
security against a d-probing adversary. However, a security proof against probing
attacks does not give full satisfaction since it does not encompass an adversary
exploiting the entire leakage produced during the processing.

In [14], Faust et al. propose an extension of Ishai et al.’s scheme. Their scheme
requires a leak-free hardware component but it is provably secure under two
different and more general leakage models. In the first model, the leakage at
each cycle is any function of the circuit internal state (i.e. the logical values
carried by all the wires) which is computationally bounded: it is assumed to be
in the complexity class AC0 (i.e. it must be computable by a circuit of constant
depth). In the second model, the leakage reveals the value of each internal state
bit, flipped with a probability p < 1/2 (i.e. xor-ed with a p-Bernoulli noise). In
a recent paper [35], Rothblum further showed how to remove the requirement of
leak-free component in the AC0 leakage model. These works achieve an important
progress towards provable security against side-channel attacks since they show
that masking can bring security even in the presence of a global leakage on the
entire state. However, the practicability of the considered models is questionable.
In particular it is unclear whether the AC0 leakage or the full leakage with
Benouilli noise really fit the physical reality of power and/or electromagnetic
leakages.

Masking Schemes. On the other hand, several works have shown how to apply
masking to various algorithms in practice. They however often omit to prove
the security of the resulting implementations. The first masking scheme was
proposed by Goubin and Patarin in [19] for the DES cipher. Further schemes were
subsequently published in which masking is applied at hardware or software level
at the cost of different area-time-memory trade-offs (see for instance [2,28,30]).
Originally, most of these schemes deal with first-order masking which splits each
sensitive variable in two shares (a mask and a masked variable). Then higher-
order masking schemes were defined to get security against side-channel attacks
exploiting the leakage of several, say d, intermediate computations [3, 16, 33,
34]. The purpose of these schemes is analogous to the d-probing secure circuit
of Ishai et al. : the computation is performed such that any d intermediate
variables occurring in the algorithm reveal no sensitive information. Most of these
schemes are actually based on the method of Ishai et al. to securely process a
multiplication between two shared variables. Consequently, they suffer the same
limitation as Ishai et al. ’s scheme: they only thwart a limited adversary that
does not exploit the overall leakage.

1.2 Our Contribution

In this paper we formally prove the security of masked implementations of block
ciphers in the only computation leaks information model [29]. In this model,
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every step of the processing reveals a leakage function of the touched part of the
device state. This function is chosen adaptively by the adversary in some pre-
determined class. For our security proof, we split the computation into several
elementary calculations (in practice, a sequence of few CPU instructions) that
each accesses a subpart x of the device state and leaks a function of x. Starting
from the observation that masking is sound when combined with noise [4] and
that many practical solutions exist to amplify leakage noise (see for instance
[6–8, 20, 27, 39, 41]), we assume the leakage functions to be noisy. The noisy
feature of a leakage function f is captured by assuming that an observation of
f(x) only implies a bounded bias in the probability distribution of x. Namely
the statistical distance between the distributions P[x] and P[x|f(x)] is bounded.
We further assume that this bound depends on a noise parameter ω that can
be chosen by the designer according to the required security level. Our security
proof has a natural limitation which is the requirement of a leak-free component,
an elementary calculation refreshing the masks of a shared variable. Under these
assumptions, we achieve an information theoretic security proof: we show that
the mutual information between the cipher input (plaintext and secret key) and
the overall leakage on the block cipher processing is upper bounded by ω−(d+1),
where d is the masking order.

This bound can be seen as an extension of the seminal work of Chari et al. [4]
as it is derived from the combination of masking with noise. We extend their
analysis in two ways. First we consider a more general leakage model which
no longer requires particular assumptions (single-bit target variable, Gaussian
noise). More importantly, we provide a security bound for a full masked block
cipher implementation whereas Chari et al. analysis focus on leaking shares
independently of any computation. Our work can also be viewed as an alternative
to previous works on program or circuit compilers with formal security proofs
against side-channel attacks [11,14,17,18,22,35]. Whereas the practical meaning
of the leakage models considered in these works is questionable, our leakage
model aims to be compliant with practical investigations about side-channel
leakage (see for instance [27, 31, 36, 38]).

2 Preliminaries

Calligraphic letters, like X , are used to denote finite sets. The corresponding large
letter X is used to denote a random variable over X , while the lower-case letter x
denotes a particular element from X . To every discrete random variable X , one
associates a probability mass function PX defined by PX(x) = P[X = x]. Let Y
be a random variable defined over some set Y and let y ∈ Y. Then (X |Y = y) de-
notes the random variable with probability mass function x �→ P[X = x|Y = y].
The entropy (or Shannon entropy) H[X ] of a discrete random variable X is de-
fined by H[X ] = −

∑
x∈X PX(x) log2(PX(x)). The mutual information between

two random variables X and Y is then defined by I(X ;Y ) = H[X ] − H[X |Y ],
where H[X |Y ] is called the conditional entropy of X given Y and is defined
by H[X |Y ] =

∑
y∈Y PY (y) H[(X |Y = y)]. The statistical distance between
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two random variables X0 and X1 is denoted by d(X0;X1) and is defined by
d(X0;X1) = ‖PX0 − PX1‖ where ‖ · ‖ denotes the Euclidean norm and PXi

denotes the vector (PXi(x))x∈X . We recall that for any N -dimensional vector
y = (y1, y2, . . . , yN ) we have

‖y‖ ≤ L1(y) ≤
√
N‖y‖ , (1)

where L1(y) denotes the Manhattan norm
∑

i |yi|.
We now introduce the notion of bias that is extensively used in our security

proof.

Definition 1. Let X and Y be two random variables. The bias of X given Y =
y, denoted β(X |Y = y), is defined as

β(X |Y = y) = d
(
X ; (X |Y = y)

)
.

The bias of X given Y , β(X |Y ), is then defined as the expected bias of X given
Y = y over Y, that is

β(X |Y ) =
∑
y∈Y

PY (y)β(X |Y = y) .

The bias of X given Y is an information metric between X and Y . If X and
Y are independent then β(X |Y ) equals zero. Moreover, as shown in the next
proposition, it is related to the mutual information between X and Y (the proof
is provided in the full version).

Proposition 1. Let X and Y be two random variables, with X uniformly dis-
tributed over a set X of cardinality N . The mutual information between X and
Y satisfies I(X ;Y ) ≤ N

ln 2β(X |Y ).

3 Model of Leaking Computation

We describe hereafter our model of leaking computation.
An algorithm is modelled by a sequence of elementary calculations (Ci)i that

are Turing machines augmented with a common random access memory called
the state. Each elementary calculation reads its input and writes its output on
the state. When an elementary calculation Ci is invoked, its input is written
from the state to its input tape, then Ci is executed, afterwards its output is
written back to the state.

A physical implementation of an algorithm is modelled by a sequence of phys-
ical elementary calculations. A physical elementary calculation (Ci, fi)i is com-
posed of an elementary calculation Ci and a leakage function fi. A leakage func-
tion is defined as a function that takes two parameters: the value held by the
accessed part of the state and a random string long enough to model the leakage
noise. Let I = (Ci, fi)i be a physical implementation of an algorithm A as de-
fined above. Each execution of I leaks the values

(
fi(xi, ri)

)
i
where xi denotes
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the input of Ci and ri is a fresh random string. In particular all the ri involved
in successive executions of I are uniformly and independently drawn.

For the sake of simplicity, we shall omit the random string parameter, which
leads to the notation fi(x) where x is the accessed value. Note that fi(x) is not
the result of a function but it can be seen as the output of a probabilistic Turing
machine. In particular, fi(x) can take several values with a given probability
distribution, and is therefore considered as a random variable in the following.
Let X be the definition set of the accessed part of the state. We shall then say
that fi is defined over X (or equivalently that X is the domain of fi).

For our security proof, we will consider special classes of leakage functions
that we shall call noisy leakage functions. Let f be a leakage function defined
over some set X and let X denote a uniform random variable over X . The
noisy property of f is captured by assuming that the bias introduced in the
distribution of X given the leakage f(X) is bounded.1 For any positive real
number ε, we define the class of noisy leakage functions w.r.t. bias ε, and we
denote by N (ε), the set of noisy functions such that β(X |f(X)) ≤ ε. In this
paper, we shall assume that the designer can constrain as willing the set of noisy
leakage functions related to any elementary calculation by linearly increasing
the amount of noise in the leakage. More precisely, we assume that the designer
controls a noise parameter ω such that an elementary calculation C can yield a
physical elementary calculation (C, f) with f ∈ N (1/ω), where ω is linear in the
security parameter.

3.1 Discussion

Our model can be seen as a specialization of the physically observable cryptog-
raphy framework [29] with leakage functions belonging to the class of noisy func-
tions as defined above (the similarities between our model and this framework
are discussed in the full version). Our model is also comparable to the leakage
resilient cryptography model [12] with two important differences relating to the
computation granularity and the class of leakage functions.

Computation Granularity. As nicely explained in [17], a computation in the
only computation leaks model is divided into several sub-computations and a
leakage function applies to the input of each sub-computation. In [12,32] the au-
thors construct stream ciphers that output an unbounded number of key-stream
blocks from a secret key block. A sub-computation is then naturally identified
as the computation of one block. In contrast, we consider a finer granularity:
the computation of one block (i.e. a single block cipher computation) is divided
into several elementary calculations, each one leaking a function of its input.
In other words, [12, 32] address the issue of constructing secure protocols from

1 For the above definition of noisy leakage functions to be sound, we need to precise
the distribution of X while bounding β(X|f(X)), and a natural choice is the uniform
distribution. Of course, this does not constrain the leakage function to only apply
on uniformly distributed inputs.
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a cryptographic primitive with limited leakage whereas we address the issue of
constructing secure cryptographic primitives from elementary calculations with
noisy leakages.

Class of Leakage Functions. The most noticeable difference between our work
and the previous leakage-resilient constructions resides in the considered class
of leakage functions. Most previous works consider the class of bounded-range
functions taking values in {0, 1}λ for some parameter λ [10–13,17,18,22,23,32].
This hypothesis is conservative in terms of security since it encompasses leak-
age functions with complex structures. However its practical meaning is unclear
with regard to power and electromagnetic side channels for which the leakage is
usually substantially larger than the secret state (but hopefully does not contain
its overall entropy).

In contrast, several techniques are known to add some noise in the side-channel
leakage in practice [6–8,20,26,27,39,41]. By noise addition we mean that the rel-
evant signal in the leakage is lowered compared to random variations, although
this may not literally result from noise addition (the terminology of hiding is
sometimes used). This motivates our definition of noisy leakage functions. Note
that in practice, power and electromagnetic leakages can realistically be modeled
by a multivariate deterministic function g of the processed data with an addi-
tional multivariate Gaussian noise N [5,27,36,38]. The class N (ε) corresponding
to such a leakage function can then be determined from the description of g and
N (see the full version for further details).

4 Masked Implementation of Block Ciphers

Several schemes have been proposed to securely process a block cipher composed
of linear layers and non-linear s-boxes. In this paper, we prove the security of the
scheme described in [3] with a secure multiplication processing close to those of
[14,21], and with additional mask-refreshing computations. Before presenting the
masking scheme, we start by formalizing the considered block cipher processing.

4.1 Block Cipher Processing

A block cipher is a cryptographic algorithm which, from a secret key, transforms
a plaintext block into a ciphertext block. In this paper, we focus on block ciphers
designed as a succession of linear functions and substitution boxes (s-boxes). S-
boxes are nonlinear functions from {0, 1}n to {0, 1}m with m ≤ n and n small
(typically n ∈ {4, 6, 8}). We assume that the addition law is the bitwise addition,
denoted ⊕, and that the s-boxes are balanced; namely every y ∈ {0, 1}m has the
same number of preimages in {0, 1}n under the s-box. In the computation model
introduced in Section 3, the processing of such a block cipher is represented as a
sequence of elementary calculations, each of them implementing either a linear
function or an s-box. The input of this processing is a pair composed of the
plaintext and the secret key and the output is the corresponding ciphertext.
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Uniformity Property. We shall assume that the block cipher satisfies the fol-
lowing uniformity property: a uniform distribution of the cipher input (plaintext-
key pair) induces a uniform distribution of the input of every of its elementary
calculation. The uniformity property is satisfied by classical block cipher designs
such as DES and AES.

4.2 Securing the Block Cipher Processing

We start with the following definition that formalizes the notion of dth-order
encoding.

Definition 2 (dth-order encoding). Let d be a positive integer and let I de-
note the integer interval {0, 1, . . . , d}. The dth-order encoding of x ∈ X is a
(d+1)-tuple (xi)i∈I satisfying

⊕
i xi = x and such that (xi)i∈I\{i0} is uniformly

distributed over X d for every i0 ∈ I.

Masking a block cipher implementation consists in choosing a security parameter
d (called masking order) and in performing the computation on a dth-order
encoding of the state. Namely, the plaintext and the secret key are split into d+1
shares. Then, a scheme is defined that specifies how each elementary calculation
is replaced by a sequence of new elementary calculations operating only on the
shares. At the end, the new sequence must return an encoding of the ciphertext
(from which the actual ciphertext can be straightforwardly recovered).

According to the block cipher model of Section 4.1, we describe hereafter
how to process a linear function and an s-box computation on shared inputs
as proposed in [3]. We first introduce the mask-refreshing component used at
several steps in the masking scheme and which is assumed to be leak-free in our
security proof.

Mask Refreshing. Our scheme requires a special kind of elementary calcu-
lation to refresh the masks of an encoding without leaking information. This
mask-refreshing oracle is denoted by O$. From an encoding of any value x, it
computes a new encoding of x with fresh random values. For the sake of sim-
plicity, we assume that when invoked the input and output of our leak-free
component do not leak. However this assumption could be relaxed since the in-
put comes from a previous elementary calculation and the output is used in the
subsequent elementary calculations (otherwise its masks would not need to be
refreshed), therefore they both leak at some point in the computation.

Secure Linear Function Processing. To secure the processing of any linear
function g, the following process is applied:

1. For every i ∈ {0, 1, . . . , d}, process zi ← g(xi).
2. Output (zi)i ← O$

(
(zi)i
)
.

3. If the encoding (xi)i is used subsequently in the block cipher processing,
process (xi)i ← O$

(
(xi)i

)
.
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Secure S-Box Processing. Let S be an s-box with input dimension n and
output dimension m ≤ n. Then S can be represented by a polynomial function

x ∈ F2n �→
⊕2n−1

i=0 αix
i where the αi are constant coefficients in F2n . The αi can

be computed from the s-box look-up table by applying Lagrange’s Theorem.2

Thanks to this representation, the s-box calculation can be done by processing
four kinds of elementary calculations over F2n : addition, multiplication by a
constant, square, and regular multiplication (i.e. of two different elements). The
three former kinds of calculations are linear (or affine including the addition by
a non-zero constant) and their processing can hence be done exactly as for linear
transformations. When the calculation is a regular multiplication, the following
scheme is applied.

Secure Regular Multiplication Processing. To secure the processing of a
regular multiplication, we use a method similar to that of [14, 21]. The input is
a pair of encodings of the multiplication operands a and b. The definition of the
sequence of elementary calculations computing the encoding of a× b is deduced
from the following relation: a × b =

(⊕
i ai
)
×
(⊕

i bi
)
=
⊕

i,j ai × bj . It is
described hereafter:

1. For every (i, j) ∈ {0, 1, . . . , d}2, process vi,j ← ai × bj .
2. For every j ∈ {0, 1, . . . , d}, process (v0j , v1j , . . . , vdj)← O$(v0j , v1j , . . . , vdj).
3. Process (v00, v01, . . . , v0d)← O$(v00, v01, . . . , v0d).

4. For every i ∈ {0, 1, . . . , d}, process zi ←
⊕d

j=0 vi,j

5. Output (zi)i ← O$
(
(zi)i
)
.

6. If one of the input encodings (a)i and (bi)i is involved in a subsequent elemen-
tary calculation, then process (ai)i ← O$

(
(ai)i
)
and/or (bi)i ← O$

(
(bi)i
)
.

Note that Steps 2 and 3 intend to refresh the masks between the subsequences
of elementary calculations in Steps 1 and 4. Namely, these steps render the
probability distributions

(
(ai)i, (bj)j |(a, b)

)
(in Step 1) and

(
(vi,j)i,j |(a, b)

)
(in

Step 4) mutually independent. Note that Step 3 is mandatory to this aim as Step
2 only makes

(
(vi,j)i|(a, b)

)
independent of

(
(ai)i, (bj)j|(a, b)

)
for every column

j separately. From this point, Step 3 ensures the global independence.
For our security proof, we shall consider each sum zi ←

⊕d
j=0 vi,j in Step 4

as d successive elementary calculations ti,j ← ti,j−1 ⊕ vi,j for 1 ≤ j ≤ d with
ti,0 = vi,0 and giving zi = ti,d.

It is clear from the above description that securing a regular multiplication
is expensive compared to securing a linear function. The complexity of a secure
multiplication is quadratic in d whereas the complexity of a secure linear function
is linear in d. Moreover the secure multiplication requires several calls to the
mask refreshing oracle. For efficiency purpose, one should hence try to minimize
the number of multiplications in the polynomial representation of the s-box. We

2 When m is strictly lower than n, the m-bit outputs can be embedded in F2n by
padding them to n-bit outputs (e.g. by setting most significant bits to 0). The
padding is then removed after the polynomial evaluation.
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refer to [3] where efficient heuristics of polynomial evaluation are proposed with
respect to this criterion.

5 Main Theorems

It is well-known that any subset of at most d shares Xi gives no information
on a secret X encoded at order d, while the whole d + 1 shares enable to fully
reconstruct the secret. In [4], Chari et al. consider an adversary which has access
to the noisy version of all the shares, i.e. Xi +Ni where Ni is a Gaussian noise
with standard deviation σ. They restrict themselves to the case of a single secret
bit and show that distinguishing the distribution of the noisy shares associated
to a secret bit at 0 and that associated to a secret bit at 1 with a probability
α ∈ [0, 1) requires at least σd+4 log α/ log σ samples. In other words, the required
number of leakage observations increases exponentially with the masking order,
the underlying base being the noise standard deviation.

Chari et al. ’s result demonstrates the soundness of using masking under a
practically relevant leakage model. However, they only focus on a static leakage
of the shares and not on the leakage occurring while computing on the shares.
In this paper, we fill this gap by providing security bounds for masked imple-
mentations that process shared variables. As explained in Section 4, a block
cipher may be decomposed into linear operations and multiplications in a finite
field. We derive hereafter upper bounds on the amount of sensitive information
leakage for both operations when protected by masking. The proofs of the cor-
responding theorems are given in the full version. Then in Section 6, we derive
an upper bound on the information leakage for the full masked implementation
of the cipher.

5.1 Sequential Processing of the Shares

Our first context deals with the case where the shares are processed sequentially
e.g. by applying the same linear function to them. For such a processing, we
provide hereafter an upper bound on the bias of the secret value distribution
given noisy leakages on its shares.

Theorem 1. Let X be a uniform random variable over some set X of cardinality
N , let d be a positive integer and let (Xi)i be a dth-order encoding of X. Let
ε ∈ [0, 1) and let f0, f1, . . . , fd be noisy leakage functions defined over X and
belonging to N (ε). We have:

β
(
X
∣∣f0(X0), f1(X1), . . . , fd(Xd)

)
≤ N

d
2 εd+1 .

Theorem 1 shows that the bias of X given the leakages on its shares decreases
exponentially with the order d, provided that the initial bias is sufficiently low,
namely lower than 1√

N
. Seeing the amount of noise as the inverse of the bias, we

hence obtained an upper-bound that decreases exponentially with the encoding
order, the base of the exponent being the amount of noise. This result is in
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accordance with [4] while being more general since it encompasses any (univariate
or multivariate) leakage distribution and any data dimension.

In some contexts, the shared variable is not uniformly distributed, but it is a
deterministic function of a uniform secret variable. This case is addressed in the
following corollary of Theorem 1.

Corollary 1. Let X be a uniform random variable over some set X of cardi-
nality N and let g be a deterministic function from X to X . Let d be a positive
integer and let (Gi)i be a dth-order encoding of g(X). Let ε ∈ [0, 1) and let f0,
f1, . . . , fd be noisy leakage functions defined over X and belonging to N (ε). We
have:

β
(
X
∣∣f0(G0), f1(G1), . . . , fd(Gd)

)
≤ N

d+3
2 εd+1 .

5.2 Multiplication of the Shares

The previous theorem deals with a situation where all the shares leak separately
which matches the context of the secure linear functions processing. However it
is not sufficient alone to deduce an upper bound for the secure multiplication
processing given in Section 4. In the latter case, the secure multiplication of two
variables A and B from their respective encodings (Ai)i and (Bj)j requires to
compute the cross-terms Ai × Bj . Hence each share Ai of A appears in d + 1
different multiplications, one per share Bj , and vice versa. Our strategy is first
to bound the bias on each share Ai and Bj given the multiple leakages on each
share. We can then bound the bias of A and B using a similar approach as in
Theorem 1, and we finally derive a bound for the bias of the pair (A,B).

We give hereafter our result for the bias given multiple leakages, and then
provide our result for the bias given the cross-term leakages.

Bias Given Multiple Leakages. The next theorem deals with the case of
repeated leakages on a variable X . We will then apply it in the secure multipli-
cation context.

Theorem 2. Let X be a uniform random variable defined over a finite set X of
cardinality N . Let ε ∈ [0, 1) and let f1, f2, . . . , ft be t noisy leakage functions
defined over X and belonging to N (ε). For any real number α ∈ (0, 1], if ε ≤ α

tN ,
then we have

β(X |f1(X), f2(X), . . . , ft(X)) ≤
((eα − 1

α

)
t+ eα

)
ε .

The bound in Theorem 2 shows that the bias of X given t leakages increases
linearly with t. A requirement is that the bias given a single leakage, namely ε,
is t times lower than 1

N or less, namely ε ≤ α
tN for some α ∈ (0, 1]. Then the bias

of X given t leakages is smaller that λ(t) ε where λ is an affine function. The
value α provides a trade-off between the constraint on ε and the coefficients of
λ. If α = 1 then λ(t) = (e − 1)t+ e ≈ 1.72 t+ 2.72, and when α approaches 0,
then λ(t) tends towards t+ 1.
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Bias Given Cross-Term Leakages. The next theorem gives an upper bound
on the bias of a uniform pair (A,B) given the leakage (fi,j(Ai, Bj))i,j .

Theorem 3. Let A and B be two random variables uniformly distributed over
some finite set X of cardinality N . Let d be a positive integer, and let (Ai)i
and (Bj)j be two dth-order encodings of A and B respectively. Let ε be a real

number such that ε ≤ α
(d+1)N2 for some α ∈ (0, 1] and let (fi,j)i,j be noisy leakage

functions defined over X × X and belonging to N (ε). We have:

β
(
(A,B)|(fi,j(Ai, Bj))i,j

)
≤ 2N

3d+2
2

(
(λ1d+ λ0)ε

)d+1
,

λ1 = eα−1
α and λ0 = λ1 + eα.

In our context, the pair (A,B) is not uniformly distributed but it is of the
form (A,B) = (g(X), h(X)) where X is uniform, and g and h are polynomial
functions. We will then use the following corollary of Theorem 3.

Corollary 2. Let X be a random variable uniformly distributed over some set X
and let g and h be deterministic functions from X to X . Let d be a positive integer
and let (Gi)i and (Hj)j be dth-order encodings of g(X) and h(X) respectively.

Let ε be a real number such that ε ≤ α
(d+1)N2 for some α ∈ (0, 1]. And let (fi,j)i,j

be noisy leakage functions defined over X ×X and belonging to N (ε). We have:

β
(
X | (fi,j(Gi, Hj))i,j

)
≤ 2N

3d+7
2

(
(λ1d+ λ0)ε

)d+1
,

λ1 = eα−1
α and λ0 = λ1 + eα.

The bound in Corollary 2 shows that the bias of X given the leakages on all the
pairs of shares (Ai, Bj) decreases exponentially with d. A requirement is that
the bias given a single leakage, namely ε, is (d+ 1) times lower than 1

N2 or less,
namely ε ≤ α

(d+1)N2 for some α ∈ (0, 1]. Then the bias of X given the (d + 1)2

leakages is smaller that (λ(d) ε)d+1 where λ is an affine function. Once again,
the value α provides a trade-off between the constraint on ε and the coefficients
of λ.

In the next section, we will use the theorems and corollaries introduced above
to deduce a security bound for a full masked implementation of block cipher.

6 Overall Security Proof

In this section, we formally prove the security of the physical implementation
I = (Ci, fi)i of a block cipher following the scheme described in Section 4 with
masking order d. Our security proof is information theoretic: we show that the
information about the cipher input (message and secret key) provided by the
overall leakage within an execution of I is upper bounded by a negligible function
of the masking order d.



154 E. Prouff and M. Rivain

The cipher is assumed to involve tlin linear transformations, tnlm nonlinear
multiplications and taff affine functions (in the s-boxes evaluations). The plain-
text and the secret key in input of the cipher are modeled as uniform random
variables M and K respectively. The input of every elementary calculation Ci

is modeled as a random variable Xi and Ci leaks a noisy function fi of Xi. The
designer is then allowed to choose a noise parameter ψi linear in the security
parameter d, such that the leakage function fi lies in the class of noisy functions
N (1/ψi).

Theorem 4. Let d be a positive integer and let I = (Ci, fi)1≤i≤q be the phys-
ical implementation of a block cipher under the scheme described in Section 4
with masking order d. For any positive real number ω, there exists a family
of real numbers ψi = O(d)ω such that if fi lies in N (1/ψi) for every i, then
the mutual information between the cipher input (M,K) and the overall leakage
(f1(X1), f2(X2), . . . , fq(Xq)) satisfies

I
(
(M,K); (f1(X1), f2(X2), . . . , fq(Xq))

)
≤ T

ωd+1
, (2)

where T = 2tnlm + taff + tlin.

The rest of this section provides a proof of Theorem 4 and exhibits the noise
parameters ψi that must be chosen for every elementary calculation Ci.

From the description of the scheme in Section 4.2, the overall sequence of
elementary calculations of the protected block cipher algorithm can be split into
several subsequences separated by masks-refreshing calculations. These subse-
quences are of four types:

1.
(
zi ← g(xi)

)
i
where g is a linear function of the block cipher,

2.
(
zi ← g(xi)

)
i
where g is an affine function of an s-box evaluation,

3.
(
vi,j ← ai × bj

)
i,j

(first step of a secure nonlinear multiplication),

4.
(
ti,j ← ti,j−1 ⊕ vi,j

)
i,j

(fourth step of a secure nonlinear multiplication).

All the remaining elementary calculations are masks-refreshing calculations
which are leak-free by assumption.

Let us denote by I1, I1, . . . , IT the successive subsequences of elementary
calculations and by L1, L2, . . . , LT their respective leakages. For every t ∈
{1, 2, . . . , T }, the leakage Lt satisfies

Lt =

⎧⎪⎨⎪⎩
(
fi(Xi)

)
i

if It is of type 1 or 2,(
fi,j(Ai, Bj)

)
i,j

if It is of type 3,(
fi,j(Ti,j−1, Vi,j)

)
i,j

if It is of type 4.

where the fi or fi,j are the leakage functions associated to the elementary calcu-
lations in It and where the (Xi)i, (Ai)i, (Bj)j , (Vi,j)i,j , or (Ti,j)i,j are random

variables modeling the elementary calculations inputs in It (note that the in-
dexing is intra-subsequence and it differs from that in Theorem 4).
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A crucial point of our security proof is that every subsequence operates on
shares with fresh random masks. As a result, given a cipher input (M,K) =
(m, k), the encodings processed in the different subsequences are mutually inde-
pendent, which in turn implies that the leakages of the different subsequences
are mutually independent (since by definition, the randomness introduced by a
noisy leakage function is independent of the randomness introduced by the oth-
ers). We deduce that the entropy of the overall leakage (L1, L2, . . . , LT ) knowing
the cipher input (M,K) satisfies:

H[(L1, L2, . . . , LT )|(M,K)] =
T∑
t=1

H[Lt|(M,K)] .

The mutual information between the cipher input and the overall leakage there-
fore satisfies:

I
(
(M,K); (L1, L2, . . . , LT )

)
= H[(L1, L2, . . . , LT )]−

T∑
t=1

H[Lt|(M,K)]

≤
T∑
i=1

I((M,K);Lt) ,

where the inequality holds since H[(Lt)t] ≤
∑

tH[Lt].
For every subsequence It, there exists a uniform random variable3 Xt =

g(M,K) such that I((M,K);Lt) = I(Xt;Lt). To complete the proof of Theorem
4, we now demonstrate that the mutual information I(Xt;Lt) is upper bounded

by (1/ω)
d+1

for some noise parameter ψt = O(d)ω, for every t ∈ {1, 2, . . . , T }.
Due to Proposition 1, this is equivalent to prove that the bias of Xt given Lt

satisfies

β(Xt|Lt) ≤
ln 2

N

(
1

ω

)d+1

, (3)

where N is the cardinal of the definition set of Xt. In the rest of the section, we
demonstrate the claim for every type of subsequence.

Security of Type 1 Subsequences. In a type 1 subsequence every elementary
calculation processes a share of the uniform input Xt of a linear function. The
security of such a subsequence directly holds from Theorem 1. Indeed, according
to Theorem 1 with ε = ψ−1t , choosing a noise parameter ψt = cω with a constant

c satisfying cd+1 ≥ (ln 2)−1N
d+2
2 implies bound (3). In particular c can be taken

equal to (ln 2)−
1
2N

3
4 ≈ 1.44N

3
4 for any d ≥ 1 and equal to a value close to

1.44
√
N for a large d.

3 For a subsequence of type 1, this variable is simply the (unmasked) input of the
corresponding linear transformation (which is indeed uniform since the cipher in-
put is uniform by assumption, and according to the uniformity property stated in
Section 4.1). For a subsequence of type 2, 3 or 4, this variable is the (unmasked)
input of the corresponding s-box (which is also uniformly distributed for the same
reasons).
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Security of Type 2 Subsequences. In a type 2 subsequence every elementary
calculation processes a share Gi of an encoding of g(Xt) where Xt is a uniform
s-box input and g is some polynomial function.

According to Corollary 1, choosing a noise parameter ψt = cω with a constant

c satisfying cd+1 ≥ (ln 2)−1N
d+5
2 implies bound (3). In particular c can be taken

equal to (ln 2)−
1
2N

3
2 ≈ 1.44N

3
2 for any d ≥ 1 and equal to a value close to

1.44
√
N for a large d.

Security of Type 3 Subsequences. In a type 3 subsequence every elementary
calculation processes a multiplication from a pair of shares (Ai, Bj), where (Ai)i
and (Bj)j are d

th-order encodings of two variables A and B to multiply. Both A

and B rely on a uniform s-box input Xt by A = g(Xt) and B = h(Xt) for some
polynomial functions g and h.

According to Corollary 2, choosing a noise parameter ψt = λ(d) ω for a sub-
sequence It of type 3 implies bound (3), as long as there exists α ∈ (0; 1] such
that λ(d) satisfies

λ(d) ≥ N2

α ω
(d+ 1) and λ(d) ≥ c(λ1,α d+ λ0,α) ,

where λ1,α = eα−1
α , λ0,α = λ1,α + eα and c is a constant satisfying cd+1 ≥

2(ln 2)−1N
3d+9

2 . In particular c can be taken to (ln 2)−
1
2N3 ≈ 1.44N3 for any

d ≥ 1 and equal to a value close to 1.44N
3
2 for a large d.

The first constraint aims to meet the requirement on ε for Corollary 2 and the
second constraint implies bound (3). To summarize, the best choice is to take λ
as

λ(d) = min
α∈(0;1]

max
(N2

α ω
(d+ 1) , c(λ1,α d+ λ0,α)

)
.

Security of Type 4 Subsequences. In a type 4 subsequence every elementary
calculation processes an addition Ti,j = Ti,j−1⊕Vi,j for 0 ≤ i ≤ d and 1 ≤ j ≤ d,
and where Ti,0 = Vi,0. For every i, the sequence of additions results in a share
Zi = Ti,d of the underlying multiplication output. That is (Z0, Z1, . . . , Zd) is an
encoding of g(Xt) where Xt is a uniform s-box input and g is some polynomial
function over X . Each elementary calculation takes as input a pair (Ti,j−1, Vi,j)
and leaks fi,j(Ti,j−1, Vi,j) where fi,j ∈ N (1/ψt). Our goal is to set ψt such that
the bias β

(
Xt|(F0(Z0), F1(Z1), . . . , Fd(Zd))

)
satisfies bound (3), where

Fi(Zi) =
(
fi,1(Ti,0, Vi,1), fi,2(Ti,1, Vi,2) . . . , fi,d(Ti,d−1, Vi,d)

)
.

Note that Fi can be seen as a noisy leakage function applied to Zi (and where
Vi,1, Vi,2, . . . , Vi,d are seen as the internal randomness of Fi).

We first analyse the bias on each Zi given the leakage Fi(Zi). Let f
′
i,j be the

noisy leakage functions defined by f ′i,j : (X,Y ) �→ fi,j(X,X ⊕ Y ). We can then
rewrite Fi(Zi) as

Fi(Zi) =
(
f ′i,1(Ti,0, Ti,1), f

′
i,2(Ti,1, Ti,2) . . . , f

′
i,d(Ti,d−1, Ti,d)

)
,
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and we have f ′i,j ∈ N (1/ψt) for every (i, j) by definition of the bias.4 Moreover
Ti,0, Ti,1, . . . , Ti,d are uniformly distributed and mutually independent, and
Ti,d = Zi. We then apply the following lemma.

Lemma 1. Let T0, T1, . . . , Td be d+1 independent random variables uniformly
distributed over some set X of cardinality N . Let ε ∈ [0, 1) and let f1, f2, . . . , fd
be noisy leakage functions defined over X ×X and belonging to N (ε). We have:

β
(
Td
∣∣f1(T0, T1), f2(T1, T2), . . . , fd(Td−1, Td)

)
≤ 2Nε .

Lemma 1 implies β(Zi|Fi(Zi)) ≤ 2N/ψt for every i. Then by Corollary 1, we get

β
(
Xt|(F0(Z0), F1(Z1), . . . , Fd(Zd))

)
≤ N

d+3
2

(2N
ψt

)d+1

= N
3d+5

2

( 2

ψt

)d+1

.

According to the above inequality, choosing a noise parameter ψt = c ω with a

constant c satisfying cd+1 ≥ 2d+1(ln 2)−1N
3d+7

2 implies bound (3). In particular

c can be taken equal to 2(ln 2)−1N
5
2 ≈ 2.89N

5
2 for any d ≤ 1 and equal to a

value close to 2.89N
3
2 for a large d.
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Abstract. We present new constructions of leakage-resilient cryptosys-
tems, which remain provably secure even if the attacker learns some
arbitrary partial information about their internal secret key. For any
polynomial �, we can instantiate these schemes so as to tolerate up to
� bits of leakage. While there has been much prior work constructing
such leakage-resilient cryptosystems under concrete number-theoretic
and algebraic assumptions, we present the first schemes under general
and minimal assumptions. In particular, we construct:
– Leakage-resilient public-key encryption from any standard public-key

encryption.
– Leakage-resilient weak pseudorandom functions, symmetric-key

encryption, and message-authentication codes from any one-way
function.

These are the first constructions of leakage-resilient symmetric-key
primitives that do not rely on public-key assumptions. We also get the
first constructions of leakage-resilient public-key encryption from “search
assumptions”, such as the hardness of factoring or CDH. Although our
schemes can tolerate arbitrarily large amounts of leakage, the tolerated
rate of leakage (defined as the ratio of leakage-amount to key-size) is
rather poor in comparison to prior results under specific assumptions.

As a building block of independent interest, we study a notion of weak
hash-proof systems in the public-key and symmetric-key settings. While
these inherit some of the interesting security properties of standard hash-
proof systems, we can instantiate them under general assumptions.

1 Introduction

A central goal in cryptography is to base cryptosystems on intractability
assumptions that are as weak and as general as possible; that way, if one
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problem turns out to be susceptible to a new attack or if another turns out
to yield better performance, we may readily replace the underlying problem in
our cryptosystem. Another goal is to design cryptosystems in strong security
models that account for a wide range of possible attacks. Our work lies at
the intersection of these two areas, by studying leakage-resilient security under
general and minimal assumptions.

Leakage Resilience. Leakage-resilient cryptosystems maintain their security even
if an attacker can learn some partial information about the internal secret key.
Aside from being a basic question of theoretical interest, the study of leakage-
resilience is motivated by several real-world scenarios where information leaks.
One such scenario involves side-channel attacks, where the physical attributes
of a computing device (e.g., its power consumption, electromagnetic radiation,
timing, temperature, acoustics, etc.) can reveal information about its internal
secret state. See e.g., [1, 5, 24, 38, 39, 46–48] for many examples of such attacks
that completely break otherwise secure cryptosystems. Another source of leakage
occurs through imperfect erasures (such as in the cold-boot attack [27]), where
memory contents, including secret key information, aren’t properly erased and
some partial information becomes available to an attacker. Another source of
leakage occurs if the secret key is stored on a compromised system to which
the attacker has remote access. As suggested in prior work, we can impede an
attacker from retrieving the secret key in its entirety by making it deliberately
huge (e.g., many gigabytes in length), but the attacker can still obtain some
partial leakage [4, 12, 16, 21]. As yet another example, we may need to use a
cryptosystem within the context of a larger protocol that intentionally leaks
some information about the secret key as a part of its design. Leakage-resilience
provides a powerful tool, allowing us to easily analyze the security of such
constructions. In summary, we believe that leakage-resilience is an interesting
and fundamental property worth studying because of its relevance to many
diverse problems including (but not limited to) side-channel attacks.

Bounded-Leakage Model. There are several security models of leakage-resilience
in the literature, differing in their specification of what information can become
available to the attacker. In this work we will focus on a simple yet general
model, called the bounded-leakage (or sometimes memory leakage) model, which
has received much attention in recent years [2–4,6–9,11–13,18,22,25,29,35,37,43].
In this model, the attacker can learn arbitrary information about the secret key,
as long as the total number of bits learned is bounded by some parameter �, called
the leakage bound. We formalize this security notion by giving the attacker access
to a leakage oracle that she can repeatedly and adaptively query; each query to
the oracle consists of a leakage function f and the oracle responds with the
“leakage” f(sk) computed on secret key sk. The leakage oracle is only restricted
in the total number of bits that it outputs throughout its lifetime, which is
bounded by �. This model is particularly interesting because of its elegance and
simplicity and its wide applicability to scenarios such as incomplete erasure,
compromised systems, and information released by high-level protocols.
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We note that several other models of leakage-resilience consider a more
complex scenario, where information can leak continually over time, with no
overall bound on the total amount of leakage. See [10,17,19,23,26,34,41,42,45]
for some examples. These models may offer a more realistic view of side-channel
attacks, where many measurements may be made by an attacker over time.
Many of these works rely on results from the bounded-leakage model as basic
building blocks. Therefore, we believe that a thorough understanding of the
bounded-leakage model is a necessary, but perhaps not sufficient, prerequisite
to understanding other more complex models. We mention that it remains
debatable how accurately any of the above models reflects realistic side-channel
attacks (see e.g., the discussion in [49]).

Prior Constructions. It turns out that essentially all cryptographic schemes
are already resilient against small amounts of leakage. In particular, they can
tolerate � = O(log(λ)) bits of leakage, where λ is the security parameter, and
schemes with stronger exact security can tolerate correspondingly larger amounts
of leakage. Intuitively, this follows since we can correctly “guess” small leakage
values with reasonable probability and hence they cannot help in an attack.1

Most prior research in leakage-resilient cryptography attempts to construct
schemes that provably tolerate larger amounts of leakage, without making any
strong exact-security assumptions on the underlying primitives. Ultimately, we
aim to tolerate any polynomial leakage bound �(λ) just by instantiating the
scheme with a sufficiently large secret key. Prior to this work, we had such
results for public-key encryption [2, 8, 43], under specific assumptions such as
LWE, DDH, DCR, QR, or somewhat more generally, the existence of “hash-proof
systems”. We also had such results for signatures [4,18,37] assuming the existence
of NIZKs and public-key encryption. Essentially nothing better was known for
symmetric-key encryption or message-authentication codes, beyond simply using
the corresponding public-key constructions in the symmetric setting.

Our Main Results. We present new constructions of several leakage-resilient
cryptosystems under the minimal assumption that such cryptosystems exist in
the standard setting, without any leakage. For any polynomial leakage-bound
�(λ) in the security parameter λ, we can instantiate these schemes so as to resit
�(λ) bits of leakage. In particular, we construct the following primitives:

• Leakage-resilient public-key encryption from any public-key encryption.

• Leakage-resilient weak pseudorandom functions, symmetric-key encryption,
and message-authentication codes from any one-way function.

We only assume the underlying primitives satisfy the usual asymptotic notion of
security, and do not require any stronger levels of exact security. These results
give us the first constructions of leakage-resilient symmetric-key primitives

1 This simple argument works for “unpredictability” applications such as signatures.
A more subtle argument also works for many “indistinguishability” applications,
including public-key encryption, weak-PRFs and symmetric-key CPA encryption
(but not, e.g., one-time encryption). See [20] for a general treatment of this question.
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that do not rely on public-key assumptions. They also give us the first
constructions of leakage-resilient public-key encryption from several specific
“search assumptions” such as the hardness of RSA, factoring, or CDH.

Leakage Amount vs. Rate. Although our schemes can tolerate an arbitrarily
large polynomial amount of leakage �, the tolerated rate of leakage (defined as
the ratio of � to the secret-key size) in these constructions is rather poor. In
particular, the leakage rate in our schemes is O(log(λ)/s(λ)) where s(λ) is the
secret-key size of the underlying non-leakage-resilient primitives. In contrast, the
state-of-the-art constructions of leakage-resilient schemes from concrete number-
theoretic assumptions such as DDH can usually achieve a (1−o(1)) leakage rate,
meaning that almost the entire secret key can leak. Allowing higher leakage rates
under general assumptions remains as an open problem.

Extensions of Our Results. We explore several extensions of our main results.
Firstly, we show that all of the results also apply to an alternate notion of
entropy-bounded leakage [17, 43], where we restrict the amount of entropy-loss
caused by the leakage rather than restricting its length. Unlike length-bounded
leakage, achieving resilience to even 1-bit of entropy-bounded leakage is non-
trivial and does not follow from the standard security of a scheme. We also
show that our public/symmetric key encryption schemes provide resilience to
“after-the-fact” leakage as defined by Halevi and Lin [29]. In particular, if the
attacker can choose to learn some arbitrary �post bits of leakage on the secret
key adaptively after seing a challenge ciphertext, she learns no more than �post
bits of information about the encrypted message (in contrast, if the leakage is
independent of the challenge ciphertext, she learns nothing about the message).
Lastly, we extend our results to the bounded-retrieval model [4,12,16,21], where
we want to have efficient schemes tolerating huge amounts (many gigabytes) of
leakage, meaning that the efficiency of the scheme should not degrade even as
the leakage-bound � increases. Since the secret-key size of such schemes must
exceed � and therefore also be huge, these schemes cannot even read their entire
secret key during each cryptographic operation. This model is motivated by the
problem of system compromise, where an attacker can download large amounts
of data from a compromised system. Due to space limitations, we defer the
extensions of our results to entropy-bounded leakage, after-the-fact leakage, and
the bounded-retrieval model to the full version of this paper [31].

1.1 Overview of Our Techniques

Our starting point is a result of Naor and Segev [43] (journal version [44]),
which constructs leakage-resilient public-key encryption from any hash-proof
system (HPS) [15]. As observed in [4, 43], this construction does not require
the full security notion of HPS and it turns out that a weaker variant, which
we will call a weak HPS (wHPS), actually suffices.2 As our first result we show

2 Although this weaker variant was used by [4,43] to simplify the exposition of HPS,
neither work seemed to considered the differences between wHPS and full HPS as
very significant.
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that, surprisingly, wHPS can be constructed generically from any public-key
encryption scheme. This is in contrast to the full notion of HPS, which we only
know how to construct from concrete number-theoretic assumptions such as
DDH, DCR or QR. This gives us our results for public-key encryption. Next, we
also define a new and meaningful notion of a symmetric-key wHPS, which allows
us to construct leakage-resilient weak pseudo-random functions and symmetric-
key encryption. We show how to construct symmetric-key wHPS generically from
any pseudorandom function (PRF), and hence only under the assumption that
one-way functions exist. Lastly, we employ several additional ideas to construct
leakage-resilient message authentication codes.

We briefly define wHPS, how it relates to leakage resilience, and how to
construct it. We focus on the public-key setting since it is conceptually simpler.

Weak Hash-Proof Systems (wHPS). A weak hash-proof system (wHPS) can be
thought of as a special type of key-encapsulation mechanism. It consists of:

• A public-key encapsulation algorithm (c, k) ← Encap(pk) that creates a
ciphertext c encapsulating a random secret value k.

• A secret-key decapsulation algorithm k = Decap(sk, c) that recovers k from
the ciphertext c.

Within the security definition of wHPS, we also require an additional invalid
encapsulation algorithm c∗ ← Encap∗(pk), which is not used by honest parties.
The scheme must satisfy the following:

• Ciphertext Indistinguishability: Valid ciphertexts (c, ·) ← Encap(pk)
are computationally indistinguishable from invalid ciphertexts c∗ ←
Encap∗(pk), even given the secret key sk.

• Smoothness: Let (pk, sk) be a random wHPS key pair and c∗ ←
Encap∗(pk) be a random invalid ciphertext. Given pk and c∗, the output
k = Decap(sk, c∗) is uniformly random and independent (information
theoretically). The randomness of k comes from the choice of the secret key
sk consistent with pk, meaning that there must be multiple ones.

In other words, the secret key sk maintains real entropy even conditioned on
pk, and this entropy is transferred to the output k = Decap(sk, c∗) when we
decapsulate a random invalid ciphertext c∗.

The above definition of wHPS departs from that of standard hash-proof
systems in several ways, but most importantly, our “smoothness” property is
defined for an average-case invalid ciphertext c∗ ← wHPS.Encap∗(pk) rather
than a worst-case choice of c∗ from some invalid set. Indeed, this makes our
definition unsuitable for applications dealing with chosen-ciphertext (CCA or
even CCA-1) security, for which hash-proof systems were originally intended.

Leakage-Resilience from wHPS. Weak hash-proof systems are particularly suited
for leakage-resilience. Assume the attacker gets a wHPS public-key pk and
observes � bits of leakage on the secret key sk. Later, the attacker sees a random
valid ciphertext c computed via (c, k) ← Encap(pk); what has she learned
about the hidden value k? Firstly, we can switch c to an invalid ciphertext
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c∗ ← Encap∗(pk) and define k = Decap(c∗, sk). This change is indistinguishable
even given the secret key sk in full, and therefore also when only given leakage
on sk. Secondly, because k = Decap(c∗, sk) is information-theoretically random
even when given pk and c∗, the �-bits of leakage that the attacker observes about
sk can reduce the entropy of k by at most � bits. Therefore, if k is sufficiently
large, it still has high entropy given the view of the attacker, and we can easily
convert it to a uniformly random value using a randomness extractor. The above
argument closely follows that of [43].

Constructing wHPS. Our main result for public-key encryption is to construct
wHPS from general assumptions. As a starting point, we give a very simple
construction where the output k ∈ {0, 1} consists of a single bit. We do so given
any standard public-key encryption (PKE) scheme, as follows:

• Choose two random PKE key-pairs (pk0, sk0), (pk1, sk1) and define the
wHPS public-key as pk = (pk0, pk1) and the wHPS secret key as sk =
(b, skb) where b← {0, 1} is a random bit. Notice that, given pk, there are at
least two possible consistent secret keys: (0, sk0) and (1, sk1).

• The valid encapsulation algorithm (c, k) ← Encap(pk) chooses a random
bit k ← {0, 1} and sets c = (c0, c1) where c0 ← PKE.Enc(pk0, k), c1 ←
PKE.Enc(pk1, k) both encrypt the same bit k.

• The invalid encapsulation algorithm c∗ ← Encap∗(pk) chooses a random
bit k ← {0, 1} and sets c∗ = (c0, c1) where c0 ← PKE.Enc(pk0, k), c1 ←
PKE.Enc(pk1, 1− k) encrypt opposite bits.

• The decapsulation algorithm Decap(sk, c) takes c = (c0, c1) and the secret
key sk = (b, skb), and outputs the decryption PKE.Dec(skb, cb) of the
ciphertext cb using the key skb.

Input indistinguishability follows since, even given the secret key sk = (b, skb),
the attacker cannot distinguish if the ciphertext c1−b encrypts the same bit k
as contained in cb or the opposite bit 1 − k. The smoothness property follows
since the decapsulation of a random invalid ciphertext c∗ = (c0, c1) is uniformly
random over the choice of the secret-key bit b.

Amplifying wHPS. The above construction only gives us a wHPS with 1-bit
output. However, we can easily amplify the output size of a wHPS to any
arbitrary polynomial n = n(λ), simply by taking n independent copies of the
scheme in parallel. Notice that in the new scheme, there will be at least 2n

possible secret keys consistent with any public key, and the output of the wHPS
on an invalid ciphertext will consist of n random and independent bits. Since
the amount of tolerated leakage � is roughly equal to the wHPS output-size n,
we can set it to be arbitrarily high.

We note that the concept of amplifying leakage-resilience directly via parallel
repetition has been suggested and explored in several works [3, 4, 9, 36, 40], with
surprising counter-examples showing that it is not secure in general. In our
special case, we only argue that parallel repetition amplifies the output size of a
wHPS (which is trivial), and then use our connection between output size and
leakage resilience to indirectly argue that the latter amplifies as well.
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The above construction can tolerate roughly n bits of leakage by storing n
decryption keys, meaning that the rate of leakage is roughly 1/s(λ), where s(λ)
is the size of the decryption key in the underlying PKE scheme. In our final
construction, we show how to increase this to any O(log(λ)/s(λ)) leakage rate.
Getting an even higher rate remains as an open problem.

Symmetric-Key wHPS. In the second part of our work, we carry the above
ideas over to the symmetric-key setting. To do so, we first define a notion of
a symmetric-key wHPS analogously to our public-key wHPS. We can think of
symmetric-key wHPS as a special type of pseudorandom function (PRF) fk(·)
with the following properties (simplified):

• input indistinguishability: There are two special distributions on the
inputs x which we call valid and invalid, and which are indistinguishable
from uniform even given the secret-key k.

• smoothness: Given multiple inputs/outptus {(x, fk(x))} for various random
valid x, and a random choice of an invalid input x∗, the output fk(x

∗) is
uniformly random and independent (information theoretically), where the
randomness comes from the choice of a consistent key k.

In other words, the key k maintains real entropy even conditioned on seeing fk(x)
for many random valid inputs x, but this entropy comes out when evaluating
fk(x

∗) at a random invalid input x∗.
We show how to use such symmetric-key wHPS schemes to construct

leakage-resilient symmetric-key encryption and weak PRFs. We then construct
symmetric-key wHPS generically from standard weak PRF, and therefore only
assuming that one-way functions exist. Our construction of MACs departs
somewhat from this abstraction and requires additional ideas.

2 Preliminaries

Notation. We let λ denote the security parameter. For an integer n, we let
[n] denote the set {1, . . . , n}. For a randomized function f , we write f(x; r)
to denote the unique output of f on input x with random coins r. We write
f(x) to denote a random variable for the output of f(x; r) over the random
coins r. For a distribution or random variable X , we write x ← X to denote
the operation of sampling a random x according to X . For a set S, we write
s ← S to denote sampling s uniformly at random from S. For distributions
X,Y , we write X ≡ Y to mean that X,Y are identically distributed, X ≈s Y
to mean that they are statistically close, and X ≈c Y to say that they are
computationally indistinguishable. We let negl(λ) denote the set of all negligible
function μ(λ) = λ−ω(1). We use calligraphic letters such as X to denote an
ensemble of sets X = {Xλ}λ∈N. To simplify notation, we often exclude the
subscript λ when clear from context, and write e.g. x ← X to denote x ← Xλ.
We say that an ensemble X is efficient if the operations of sampling a uniformly
random x← Xλ and testing x ∈ Xλ can be performed in poly(λ) time.

The Leakage Oracle. We model leakage attacks on a secret key sk by giving
the adversary access to a leakage oracle, which he can adaptively access to
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learn information about the secret key. The leakage oracle, denoted O	
sk
(·), is

parameterized by a secret key sk and a leakage parameter �. Each query to the
leakage oracle consists of a function fi : {0, 1}|sk| → {0, 1}	i (represented by a
circuit), to which the oracle answers with fi(sk).

3 The oracle keeps track of the
output sizes �i of all the leakage queries so far, and only responds to the qth
leakage query if

∑q
i=1 �i ≤ �.

3 Leakage-Resilient Public-Key Encryption

We begin with a definition of leakage-resilient public-key encryption (PKE). Our
definition is equivalent to that used by prior works [2, 43].

Definition 1 (Leakage-Resilient PKE). An �(λ)-leakage-resilient PKE con-
sists of the algorithms (LR.Gen, LR.Enc, LR.Dec) and a message space M satis-
fying the following properties:

Correctness: For all (pk, sk) in the support of LR.Gen(1λ) and all messages
m ∈M, LR.Dec(sk, LR.Enc(pk,m)) = m.

Semantic Security with �-Leakage: For all PPT adversaries A, the advan-
tage of A in the following game is negligible in λ:
Key Generation: The challenger runs (pk, sk) ← LR.Gen(1λ) and gives

pk to A.
Leakage Queries: A is given access to the leakage oracle O	

sk
(·). Without

loss of generality, we can assume that A queries O	
sk
(·) only once with a

function f whose output is � bits.
Challenge: A chooses two plaintexts m0,m1 ∈ M and gives these to the

challenger. The challenger chooses a random bit b ← {0, 1}, and sends
c∗ ← LR.Enc(pk,mb) to A. The attacker A outputs a bit b′.

We define the advantage of A as AdvA(λ) =
∣∣Pr[b′ = b]− 1

2

∣∣.
If an encryption scheme is 0-leakage-resilient we refer to it as semantically secure.

3.1 Leakage-Resilience from Weak Hash-Proof Systems

We specify our notion of weak hash-proof systems (wHPS). Our definition
essentially follows an informal description given in [43] and a formal definition
of [3], who considered a similar notion in the “identity based” setting.

Definition 2. A weak hash-proof system (wHPS) with output space K consists
of four algorithms (Gen,Encap,Encap∗,Decap) with the following syntax:

• (pk, sk)← Gen(1λ): Given security parameter λ, creates a key pair.

• (c, k) ← Encap(pk): Given a public key pk, creates a “valid” ciphertext c
encapsulating k ∈ K.

• c∗ ← Encap∗(pk): Given a public key pk, creates an “invalid” ciphertext c∗.

• k = Decap(c, sk): Given a ciphertext c and secret key sk, deterministically
recovers k ∈ K.

3 We insist on a circuit representation to ensure that a poly-time attacker can only
query poly-sized circuits, meaning that the leakage is poly-time computable.
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We require a weak hash-proof system to satisfy the following properties:

Correctness: For all (pk, sk) in the range of Gen(1λ), and for (c, k) ←
Encap(pk), we have k = Decap(c, sk).

Ciphertext Indistinguishability: If we sample (pk, sk)← Gen(1λ), (c, k)←
Encap(pk), c∗ ← Encap∗(pk), we have the computational indistinguishabil-
ity: (pk, sk, c) ≈c (pk, sk, c∗). In other words, avalid ciphertext c created
with Encap is indistinguishable from an invalid ciphertext c∗ created with
Encap∗, even given the secret key sk.

Smoothness: If we sample (pk, sk)← Gen(1λ), c∗ ← Encap∗(pk), k ← K, and
set k∗ = Decap(c∗, sk), we have the distributional equivalence: (pk, c∗, k∗) ≡
(pk, c∗, k). In other words, the decapsulated value k∗ = Decap(c∗, sk) is
uniformly random over K and independent of c∗ and pk. Since all of the
randomness of k∗ must therefore come from the choice of sk, this implicitly
requires that there are many possible choices of sk for a fixed pk.

Constructing LR-PKE from wHPS. In the full version [31], we show how to
construct leakage-resilient PKE from wHPS by following the construction of
Naor and Segev [43], while formalizing that the the weaker security of wHPS is
sufficient. We apply an extractor to the output k of the wHPS, and then use the
extracted randomness as a one-time-pad to encrypt a message of our choice.

3.2 Constructing Weak Hash-Proof Systems from Any PKE

We present a weak hash proof system starting from any semantically secure
PKE. We begin by constructing a wHPS with a very small output-space K = Zm

for some polynomial m = m(λ). In other words, the entropy of the output is
only log(m) = O(log(λ)) bits. We will then amplify this via parallel repetition.
The construction below generalizes the scheme we described in the introduction,
which corresponds to the special case of m = 2 and the output is only 1 bit. By
increasing m, we get an improvement in the leakage rate of our scheme.

Basic Construction. Let m = m(λ) be some polynomial parameter and let
Π = (PKE.Gen, PKE.Enc, PKE.Dec) be a public-key encryption scheme with
message-spaceM⊇ Zm.4 We construct a wHPS with output space K = Zm as
follows:

– wHPS.Gen(1λ): Generate m key pairs: {(pki, ski) ← PKE.Gen(1λ)}i∈[m].
Sample a random t← [m]. Output sk = (t, skt), pk = (pk1, . . . , pkm).

– wHPS.Encap(pk): Choose k ← Zm, and set c := {ci ← PKE.Enc(pki, k)}i∈[m].
Output (c, k).

– wHPS.Encap∗(pk): Choose k ← Zm. Output c∗ = {c∗i ← PKE.Enc(pki, k +
i)}i∈[m], where the addition k + i is performed in the group Zm.

– wHPS.Decap(sk, c): Parse sk = (t, skt) and c = {ci}. Output k =
PKE.Dec(skt, ct).

Theorem 1. If (PKE.Gen,PKE.Enc,PKE.Dec) is a semantically secure public-
key encryption scheme, then the construction above is a weak hash-proof system
with output space K = Zm.

4 We can set M = {0, 1}	log(m)
 and naturally interpret it as containing Zm.
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Output Amplification Via Parallel Repetition. The above construction gives us
a public-key wHPS with a polynomial-sized output domain K = Zm, so that
the entropy of the output is only logarithmic. Unfortunately, we cannot use this
scheme directly to get a meaningful LR-PKE, since we don’t even have enough
entropy to extract a single bit! However, it turns out to be very simple to increase
the output-length of a wHPS just by taking several independent copies.

Theorem 2. Let Π be any wHPS with output-domain K. Let n = n(λ) be a
polynomial and Πn be the n-wise parallel-repetition of Π. Then Πn is a wHPS
with output-domain Kn.

By taking our basic construction of wHPS with parameter m and applying n-
wise parallel-repetition, we get a scheme with leakage resilience � ≈ n · log(m)
and secret-key size ≈ n · s, meaning that we get a leakage-rate α ≈ log(m)/s.
By taking a sufficiently large n and m, the following theorem.

Theorem 3. Assume the existence of semantically-secure PKE with secret-key
size s = s(λ). Then, for any arbitrarily large polynomial � = �(λ) and any

α = α(λ) = O
(

log λ
s(λ)

)
there exists an �-leakage-resilient PKE where the leakage

rate (ratio of � to secret key size) is α.

4 Leakage-Resilient wPRF and Symmetric-Key
Encryption

Defining LR-wPRF. We begin with the definition of a Leakage-Resilient weak
PRF (wPRF). Recall that the standard notion of a wPRF tells us that, given
arbitrarily many uniformly random inputs x1, . . . , xq, the outputs of the wPRF
y1 = fk(x1), . . . , yq = fk(xq) look pseudo-random. This is in contrast with
standard PRFs where the above holds for a worst-case (adversarial) choice
of inputs {xi}. Our definition of leakage-resilient wPRF requires that wPRF
security holds even if the attacker can leak some information about the secret
key. In particular, any future output of the wPRF on a fresh random input will
still look random. Note that, since the attacker can always leak a few bits of
fk(x) for some x of his choice, we cannot hope to achieve full PRF security in
the presence of leakage, and hence settling for wPRF security is a natural choice.

Definition 3 (Leakage-Resilient weak PRF (LR-wPRF)). Let X ,Y,K be
efficient ensembles and let F = { FK : X → Y}K∈K be some efficient function
family. We say that F is an �(λ)-leakage-resilient weak PRF (LR-wPRF) if, for
all PPT attackers A the advantage of A is negligible in the following game:

Initialization: The challenger chooses a random K ← Kλ.

Learning Stage: The attacker AO�
K(·),FK($)(1λ) gets access to the leakage

oracle O	
K(·) (allowing him to learn up to � bits of information about K)

and also the wPRF oracle FK($) which does not take any input and, on each
invocation, chooses a freshly random X ← X and outputs (X,FK(X)).5

5 Without loss of generality, we can also assume that the attacker only makes a single
call to the leakage oracle O�

K(·) after making all of its calls to the wPRF oracle
FK($).
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Challenge Stage: The challenger chooses a challenge bit b ← {0, 1} and a
random input X∗ ← X . If b = 0, it sets Y ∗ := FK(X∗) and if b = 1 it
chooses Y ∗ ← Y. The challenger gives (X∗, Y ∗) to A who outputs a bit b′.
We define the advantage of the attacker A as AdvA(λ) =

∣∣Pr[b′ = b]− 1
2

∣∣.
In the setting of no leakage we call a function F satisfying the above definition
a standard wPRF.

From wPRF to CPA Encryption. In the full version [31] we show how to
construct leakage-resilient CPA-secure (LR-CPA) symmetric-key encryption
from LR-wPRF.

4.1 Leakage-Resilience Via Symmetric-Key wHPS

Toward the goal of constructing a LR-wPRF, we define a new notion of a
symmetric-key weak hash-proof system (SwHPS), which can be thought of as a
symmetric-key version of wHPS. In particular, we define a symmetric-key wHPS
as a type of wPRF family F = {FK : X → Y}K∈K with some special properties.

Other than being able to choose inputs X ← X uniformly at random from
their domain (which we refer to as the distribution Dist0), we can also define two
additional distributions Dist1 (valid), and Dist2 (invalid) over the input-domain
X . We require that samples from these various distributions are indistinguishable
even when given the secret key K. Furthermore, conditioned on seeing many
pairs {(Xi, FK(Xi))} for many different Xi ← Dist1 and a random choice of
X∗ ← Dist2, the output of FK(X∗) will be truly random and independent,
where the randomness comes from the choice of a consistent secret key K.

Definition 4 (Symmetric-Key wHPS). Let X ,Y,K be some efficient en-
sembles and let F = { FK : X → Y}K∈K be some efficient function family with
the following PPT algorithms:

• samK← SamGen(K) takes an input K ∈ K, outputs a sampling key samK.

• X ← Dist1(samK), X ← Dist2(samK) are two distributions that sample
X ∈ X using the sampling key samK. For convenience, we also define
the distribution X ← Dist0(samK) which just samples a uniformly random
X ← X and ignores the sampling key samK.

We say that F is a symmetric-key wHPS (SwHPS) if it satisfies the following
two properties:

Input Indistinguishability. For any polynomial q = q(λ) and any choice of
(b1, . . . , bq), (b

′
1, . . . , b

′
q) ∈ {0, 1, 2}q, the following distributions are computa-

tionally indistinguishable: (K,X1, . . . , Xq) ≈c (K,X ′1, . . . , X
′
q), where K ←

Kλ, samK← SamGen(K), {Xi ← Distbi(samK)}, {X ′i ← Distb′i(samK)}.
Smoothness. For any polynomial q = q(λ) the following distributions are equiv-

alent: (X1, . . . , Xq, Y1, . . . , Yq, X
∗, Y ∗) ≡ (X1, . . . , Xq, Y1, . . . , Yq, X

∗, U),
where K ← Kλ, samK← SamGen(K), {Xi← Dist1(samK), Yi := FK(Xi)}i∈[q],
X∗ ← Dist2(samK), Y ∗ = FK(X∗), and U ← Y. In other words, Y ∗

is uniformly random and independent of the other elements, where the
randomness comes from the choice of a key K.



Leakage-Resilient Cryptography from Minimal Assumptions 171

Constructing LR-wPRF from SwHPS. We now construct a leakage-resilient
wPRF from any symmetric-key wHPS. As in the public-key setting, we simply
apply an extractor to the output of the symmetric-key wHPS.

Theorem 4. Assume that X ,Y,S,Z are efficient ensembles such that F =
{ FK : X → Y}K∈K is a symmetric-key wHPS and Ext : Y × S → Z is
a (log(|Y|) − �(λ), ε(λ))-extractor for some negligible ε(λ). Define the function
family F ′ = {F ′K : (X × S)→ Z}K∈K via F ′K((X,S)) := Ext(FK(X);S). Then
F ′ is an �(λ)-LR wPRF.

4.2 Constructing Symmetric-Key wHPS

We now construct symmetric-key wHPS (SwHPS) from any weak PRF, and
therefore also from the mere existence of one-way functions.

Basic Construction. Let m = m(λ) be some polynomial and let Fweak =
{fk : X → Zm}k∈K be a standard (0-LR) wPRF family.6 Let (Enc,Dec) be a
standard symmetric-key encryption scheme constructed from Fweak as follows:

• Enck(m): Choose x ← X and output c = (x, fk(x) + m), where the addition
is performed in Zm.

• Deck(c = (x, z)): Output m := z − fk(x).

Notice that this encryption scheme has message spaceM = Zm, ciphertext space
C = (X × Zm) and key-space K. A useful property of this encryption scheme
is that we can obliviously sample c ← C without knowing the key k, and this
induces the same distribution as encrypting a random m← Zm. Given the wPRF
Fweak and the resulting encryption scheme (Enc,Dec) as above, we define the
symmetric-key wHPS system: FSwHPS = {FK : Cm → Zm}K∈([m]×K) where

F(K=(t,k))(X = (c1, . . . , cm)) := Deck(ct).

Notice that we can efficiently sample random inputs X ← Cm without knowing
the key K. We define the additional algorithms needed for the definition of
SwHPS as follows:

• samK← SamGen(K). Parse K = (t, k). Choose m− 1 values {ki ← K : i ∈
[m], i �= t} and define kt := k. Set samK := (k1, . . . , km).

• X ← Dist1(samK) (Valid). Choose r ← Zm and {ci ← Encki(r)}i∈[m]. Output
X = (c1, . . . , cm).

• X ← Dist2(samK) (Invalid). Choose r ← Zm and {ci ← Encki(r + i)}i∈[m]

where the addition is performed in Zm. Output X = (c1, . . . , cm).

For a valid X all of the ciphertexts ci decrypt to the same value r, and for an
invalid X they all decrypt to different values r + i. It is easy to see that the
distributions Dist1,Dist2 are indistinguishable from uniform (Dist0) even given
K = (t, k) since the ciphertext ct always is uniform on its own, and we cannot
distinguish the ciphertexts ci : i �= t from uniform by the security of the

6 If m is a power of 2, then we can just identify the elements of Zm with those
of {0, 1}log(m) in a natural way. Therefore, the existence of such wPRFs does not
require any special assumptions.
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wPRF. Furthermore, given many values {Xi, FK(Xi)} where Xi is valid, we
learn nothing (information theoretically) about the secret index t contained in
K = (t, k). Therefore, for a random invalid X∗ ← Dist2(samK), the output
FK(X∗) = Deckt(ct) = r + t is truly random and independent.

Theorem 5. Assuming Fweak is a standard wPRF, the function family FSwHPS

as defined above is a symmetric-key wHPS.

Output Amplification Via Parallel Repetition. The above construction only
obtains a polynomial-sized output domain, which means that the outputs only
have O(log(λ)) entropy. We amplify the output domain and entropy by using
“parallel repetition”. Formally,

Theorem 6. Assume that F = {fk : X → Y}k∈K is a symmetric-key wHPS
and let n = n(λ) be an arbitrary polynomial. Define Fn = {FK : Xn →
Yn}K∈Kn via F(k1,...,kn)(x1, . . . , xn)

def
= (fk1(x1), . . . , fkn(xn)). Then Fn is also

a symmetric-key wHPS, whose output is amplified by a factor of n.

We summarize our final results by combining all the developed ingredients.

Theorem 7. Assuming the existence of one-way functions, there exist �(λ)-LR-
wPRFs and �(λ)-LR-CPA symmetric-key encryption schemes for any polynomial
�(λ). Furthermore, assuming the existence of standard wPRFs with key-size s(λ),
the above schemes exist for any leakage rate α(λ) = O (log(λ)/s(λ)).

5 Leakage-Resilient Message Authentication

In this section, we construct leakage-resilient message-authentication codes (LR-
MACs) from the minimal assumption that one-way functions exit.

Definition 5 (Leakage-Resilient MAC). A MAC consists of the algorithms
(Tag,Ver) and an efficient ensemble K of secret-keys. For correctness, we require
that for every message m ∈ {0, 1}∗, and every key K ∈ K, and every correctly
generated tag σ ← TagK(m), we have VerK(m, σ) = 1. For security, we consider
the following game between an attacker A and a challenger:

Initialization: The challenger chooses a random key K ← Kλ.
Learning Stage: The attacker AO�

K(·),TagK(·),VerK(·,·) can adaptively ask arbi-
trary leakage, tagging and verification queries to its oracles.

Forgery: The attacker provides a forgery (m∗, σ∗) and wins if m∗ was never
given as an input to the tagging oracle TagK(·) during the leaning stage and
VerK(m∗, σ∗) = 1.

We say that such a scheme is an �(λ)-leakage-resilient message authentication
code (�-LR-MAC) if, for all PPT attackers A, the probability that A wins in the
above game is negligible.

In addition to the above definition, we also define a weaker notion of security
against “no-verification-query attacks” (nvq-MAC), where the attacker does not
get access to the verification oracle VerK(·, ·) during the learning stage. See the
full version [31] for additional discussion. As a starting step, we instantiate a
leakage-resilient nvq-MAC and then upgrade it to achieve full security.
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Constructing nvq-MACs. Let Fprf = {fk : {0, 1}∗ → Y}k∈K be a pseudorandom
function (PRF) family with super-polynomial output domain |Yλ| = λω(1). Let
n = n(λ), m = m(λ) be arbitrary polynomials. We construct a MAC with key-
space KMAC = (K× [m])n, by parsing K ∈ KMAC as K = ((k1, t1), . . . , (kn, tn))
where ki ∈ K, ti ∈ [m]. We define the algorithms (Tag,Ver) as follows:

• TagK(m): Parse K = ((k1, t1), . . . , (kn, tn)). Choose a random nonce r ←
{0, 1}λ and output the tag σ = (r, {σi,j}) where {σi,j} is an n ×m matrix
defined by:

σi,j :=

{
fki(r||m) if j = ti
y ← Y otherwise

That is, each row i ∈ [n] of the matrix {σi,j} contains one pseudorandom
value under key ki in the column ti, and the rest of the row is truly random.

• VerK(m, σ): Parse σ = (r, {σi,j}). For all i ∈ [n], check that fki(r||m) = σi,ti .

Security Intuition. We explain the security of the above construction via several
abstract properties. Firstly, we can define an alternate tagging oracle, which is
computationally indistinguishable from the original one even given the secret key
K = ((k1, t1), . . . , (kn, tn)) in full. The alternate oracle initially chooses an entire
n×m matrix of PRF keys {ki,j}, where the keys ki,ti := ki are taken fromK and
the rest of the keys ki,j for j �= ti are chosen randomly. When answering tagging
queries, the alternate tagging oracle sets all of the values σi,j := fki,j (r||m) to be
pseudorandom under the appropriate keys. Once we define the alternate tagging
oracle, we can also define two types of forgeries: valid and invalid. A forgery
m
∗, σ∗ = (r∗, {σ∗i,j}) is valid if there is some pair (i, j) with j �= ti such that

σ∗i,j = fki,j (r
∗||m∗), and is invalid otherwise. We have the following properties:

(1) Given access to the alternate tagging oracle and the key K in full, it is
computationally hard to come up with a valid accepting forgery. (Doing so
requires guessing a PRF output at some fresh point (r∗||m∗), for some PRF
key ki,j which doesn’t appear in K.)

(2) Given access to the alternate tagging oracle but not the key K, the
information-theoretic probability of outputting an invalid accepting forgery
is< 2−n log(m). (Doing so requires guessing the indices T = (t1, . . . , tn) since
the only pairs (i, j) for which σ∗i,j = fki,j (r

∗||m∗) are when j = ti. But T
has n log(m) bits of entropy and is independent of the above oracle.)

The above properties ensure leakage-resilience for up to � = n log(m)−ω(log(λ))
bits of leakage on the key K. Given such leakage, producing a valid forgery
becomes no easier, since it is already hard given K in full. On the other hand,
the probability of producing an invalid forgery can go up by a factor of at most
2	, which remains negligible. We formalize this in the following theorem.

Theorem 8. If Fprf is a PRF family with parameters as above, then the
given construction is an �(λ)-leakage-resilient nvq-MAC for any �(λ) = n(λ)
log(m(λ)) − ω(log(λ)).

In the full version [31], we show how to upgrade nvq-MAC security to full MAC
security. As a consequence, we get the following theorem.
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Theorem 9. Assuming the existence of one-way functions, there exist �(λ)-
leakage-resilient MACs for any polynomial �(λ). Furthermore, assuming the
existence of PRFs with variable-length input-size, output size λ, and key-size
s(λ), such MACs exist for any leakage rate α(λ) = O (log(λ)/s(λ)).

6 Conclusions

We saw how to construct several leakage-resilient primitives under the minimal
assumption that they exists in the standard setting without any leakage. Perhaps
the main open question is to improve the leakage rate of such constructions (say,
to some constant fraction of the secret key), or to provide black-box separations
showing that this is not be possible. Another interesting open question is to
construct leakage-resilient signatures under the minimal assumption that one-
way functions exist. Lastly, it would be interesting to come up with other
applications where weak hash-proof systems (wHPS) can replace standard HPS.
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Abstract. Many index calculus algorithms generate multiplicative rela-
tions between smoothness basis elements by using a process called Siev-
ing. This process allows us to quickly filter potential candidate relations,
without spending too much time to consider bad candidates. However,
from an asymptotic point of view, there is not much difference between
sieving and straightforward testing of candidates. The reason is that even
when sieving, some small amount of time is spent for each bad candidate.
Thus, asymptotically, the total number of candidates contributes to the
complexity.

In this paper, we introduce a new technique: Pinpointing, which al-
lows us to construct multiplicative relations much faster, thus reducing
the asymptotic complexity of relations’ construction. Unfortunately, we
only know how to implement this technique for finite fields which con-
tain a medium-sized subfield. When applicable, this method improves
the asymptotic complexity of the index calculus algorithm in the cases
where the sieving phase dominates. In practice, it gives a very inter-
esting boost to the performance of state-of-the-art algorithms. We illus-
trate the feasability of the method with discrete logarithm records in two
medium prime finite fields, the first of size 1175 bits and the second of
size 1425 bits.

1 Introduction

Index calculus algorithms form a large class of algorithms for solving hard num-
ber theoretic problems which are often used as a basis for public key cryp-
tosystems. They can be used for factoring large integers [19] and for computing
discrete logarithms in finite fields [2,11,1] and in some elliptic or hyperelliptic
curve groups [7,9,6,10,8].

All index calculus algorithms have in common two main algorithmic phases.
The first of these phases is the generation of multiplicative1 relations, which are
converted into linear or affine equalities involving the logarithms of the elements

1 In the case of curves, the relation are denoted additively, but the principle remains.
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which appear in the multiplicative relations. The second phase is the linear
algebra phase, which solves the resulting system of equations. For factoring,
the linear algebra is performed modulo 2. For discrete logarithms, it is done
modulo the order of the relevant group. In addition to these two common phases,
several other phases also appear: these extra phases heavily depend on the exact
algorithm being considered. They can be further classified as preparatory or
final phases. The preparatory phases search for a good representation of the
structure being considered in order to speed-up the main phases. For example,
polynomial selection is a typical preparatory phase which appears when factoring
with the number field sieve [20]. The final phases transform the raw output of
the linear algebra phase into a solution of the considered problem. Typically,
this includes the so-called square root phase of factoring algorithms and the
individual logarithm phase encountered in many discrete logarithm algorithms.
It should be noted that the computational cost of these prepatory and final
phases is usually much smaller than the cost of the main phases.

In most cases, the designers of index calculus algorithms aim at balancing the
theoretical complexity of the two main phases, since this usually yields the best
global effectiveness. However, this is not always possible as illustrated by the
function field sieve for the medium prime case introduced in [18]. In this specific
case, the exact asymptotic complexity varies depending on the relative contri-
bution of the base field and of the extension degree to the total size of the finite
field being considered (see Section 2). In practice, the two main phases are usu-
ally much less balanced. This is due to the fact that the generation of relations
phase can, in general, be distributed among machines in a straightforward way.
On the contrary, the linear algebra requires a tightly coordinated computation
and is generally performed on a centralized super-computer (or sometimes on
a few super-computers). Since centralized computations that require tight com-
munications are more expensive than distributed computations, implementers
usually generate an extremely large number of linear equations compared to the
number of unknowns. We can various techniques such as filtering, rebalancing or
structured Gaussian elimination, in order to reduce the size of the linear system
which is eventually solved and thus the cost of the linear algebra phase. This
may increase the total computing power used for the computation, but trad-
ing expensive centralized computations for cheaper distributed computations is
usually worthwhile.

As a consequence of these considerations, we see that the generation of re-
lations is a very important phase of index calculus algorithms. Up to now, two
main techniques are usually used. The simplest approach is direct trial where
one simply checks whether a potential candidate turns into an effective relation
by testing whether an integer or a polynomial splits into a product of “small”
elements. In theory, the parameters of index calculus are selected to make sure
that the cost of testing a candidate has a negligible contribution to the over-
all complexity. However, in practice, factoring these objects has a non-neglibible
cost. Thus, the other approach called sieving is usually prefered. The basic idea of
sieving is to proceed backward and mark all multiples of small elements. Clearly,
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an object which receives many marks is much more likely to generate a useful
multiplicative relation that an object which receives few marks. Note that, from
a theoretic point of view, sieving does not change the complexity of the sieving
phase. Indeed, all the potential candidates still need to be considered and even
reducing the cost of considering a candidate to a unit cost would not be enough
to lower the overall asymptotic complexity.

In this paper, we introduce a new technique to generate relations which is
much faster that sieving. In some cases, the cost of relation generation becomes
essentially optimal: we only require a small number of arithmetic operations per
generated relation. To indicate that this technique sometimes allows to directly
access the relations, we name it Pinpointing. Unfortunately, we only know how
to achieve this for a limited number of index calculus algorithms. More precisely,
we show how to use pinpointing for the medium prime case as described in [18].

2 A Refresher on the Medium Prime Case

The medium prime discrete logarithms proposed in [18] works as follows. In
order to compute discrete logarithms in Fqn , a degree n extension of the base
field Fq, it starts by defining the extension field implicitly from two bivariate
polynomials in X and Y :

f1(X,Y ) = X − g1(Y ), f2(X,Y ) = −g2(X) + Y,

where g1 and g2 are univariate polynomials of degree d1 and d2. In order to
define the expected extension, this requires that the polynomial −g2(g1(Y ))+Y
has an irreducible factor F (Y ) of degree n over Fq. As explained in [18], it is
easy to find polynomials g1 and g2 that satisfy this requirement.

The relative degrees of d1 and d2 in this case are controlled by an extra
parameter D, whose choice is determined by the size of q compared to qn. More
precisely, we have d1 ≈

√
Dn and d2 ≈

√
n/D.

Starting from this definition of the finite field, the medium prime field algo-
rithms consider objects of the formA(Y )X+B(Y ), whereA and B are univariate
polynomials of degree D and A is unitary. Substituting g1(Y ) for X on one side
and g2(X) for Y on the other, we obtain an equation:

A(Y ) g1(Y ) + B(Y ) = A(g2(X))X + B(g2(X)).

This relates a polynomial of degree d1 + D in Y and a polynomial of degree
Dd2 + 1 in X .

To use the equations as index calculus relations, the algorithm of [18] selects
the set of all unitary polynomials of degree at most D in X or Y , with coefficients
in Fq as its smoothness basis and keeps pairs of polynomials (a, b) such that the
two polynomials a(Y ) g1(Y ) + b(Y ) and a(g2(X))X + b(g2(X)) both factor into
terms of degree at most D. These good pairs are found using a classical sieving
approach.

Writing Q = qn, to analyze the complexity of the medium prime discrete
logarithms, [18] chooses to write q = LQ(

1
3 , αD), where as usual:

LQ(β, c) = exp((c+ o(1))(logQ)β(log logQ)1−β).
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In this setting, the (heuristic) asymptotic complexity of the sieving phase is
LQ(

1
3 , c1) and the complexity of the linear algebra is LQ(

1
3 , c2), with:

c1 =
2

3
√
αD

+ αD and c2 = 2αD.

Note that the algorithm with parameter D only works under the condition:

(D + 1)α ≥ 2

3
√
αD

. (1)

Otherwise, the number of expected relations is too small to relate all elements of
the smoothness basis. For a finite field Fqn , [18] indicates that the best complexity
is obtained choosing the smallest acceptable value for the parameter D.

2.1 Individual Discrete Logarithms Phase

Another very important phase that appears in many index calculus based algo-
rithms is the individual discrete logarithms phase which allows to compute the
logarithm of an arbitrary field element by finding a multiplicative relation which
relates this element to the elements of the smoothness basis whose logarithms
have already been computed.

In [18], this is done by first expressing the desired element as a product of
elements which can be represented as low degree polynomials in X or Y . These
polynomials can in turn be related to polynomials of a lower degree and so on,
until hitting degree one, i.e. elements of the smoothness basis. For this reason,
the individual logarithm phase is also called the descent phase.

As analyzed in [18], the asymptotic complexity of the descent phase is

LQ

(
1

3
,

1

3μ
√
αD

)
,

where μ < 1 is an arbitrary parameter. Moreover, any choice of μ in the in-
terval

]
1
2 ; 1
[
ensures that the complexity of the descent phase is asymptotically

negligible compared to (at least one of) the main phases.

3 Pinpointing

3.1 Basic Framework

In order to improve the generation of relations, we first consider the simple case
with parameter D = 1 and we construct our finite field extension using two
polynomials that have the following restricted form:

X = Y d1 and

Y = g2(X),
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where g2 is a polynomial of degree d2. To generate relations, since D = 1, we
consider the space spanned by XY , X , Y and 1, i.e., after renormalization we
are thus considering the following candidates:

Y d1+1 + aY d1 + bY + c = X g2(X) + aX + b g2(X) + c,

where a, b and c are arbitrary coefficients in Fq. A candidate yields a valid
multiplicative relation when both sides factor into linear polynomials.

We now use a simple trick and remark that the left-hand side Y d1+1+aY d1 +
bY + c splits into linear terms, if and only if, Ud1+1 +Ud1 + b a−d1 U + c a−d1−1

factors into linear terms. Indeed, the polynomial in U can be obtained from the
polynomial in Y by performing the change of variable Y = aU and dividing by
ad1+1. As stated in the following theorem, this change does not affect the way
the polynomial factors.

Theorem 1. Let f(Y ) be a monic polynomial of degree D over Fq and let
g(U) = a−Df(aU) with a ∈ Fq. Write the factorization of f into monic ir-

reducible polynomials as f(Y ) =
∏k

i=1 Fi(Y )ei , then the factorization of g into
monic irreducible factors is given by:

g(U) =

k∏
i=1

(
a− degFiFi(aU)

)ei
.

Proof. It suffices to show that the image of an irreducible polynomial I(Y ) by
the change of variable is also irreducible. Write J(U) = a− deg II(aU), if J is not
irreducible, we have a non-trivial factorization J(U) = J1(U)J2(U). Reversing
the change of variable, we find that:

I(Y ) = adeg IJ(Y/a) = adeg IJ1(Y/a)J2(Y/a).

Since I is irreducible, this would be a contradiction.
Thus J is irreducible and the theorem follows. #$

3.2 One-Sided Pinpointing

Using the change of variable trick, we obtain a first form of pinpointing which
only focuses on the Y side. This form searches for smooth polynomials in U of
the form Ud1+1 + Ud1 +B U +C, with B and C in Fq. This can be done either
by directly testing candidates or by sieving. We need to consider approximately
(d1 + 1)! candidates to find a good polynomial.

Once we have obtained one such smooth polynomial, we can amplify it (using
a change of variable U = Y/a) into many polynomials Y d1+1 + aY d1 + bY + c,
where a is an arbitrary non-zero element in Fq, b = Bad1 and c = Cad1+1. This
amortizes the cost of finding the initial polynomial, distributing this cost among
many candidates. Indeed, we expect to obtain approximately (q − 1)/(d2 + 1)!
relations by testing the right-hand sides corresponding to q − 1 different values
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of a. Adding to this the cost of finding the initial smooth polynomial, we find
an amortized cost per relation close to:

(d1 + 1)! + (q − 1)

(q − 1)/(d2 + 1)!
=

(d1 + 1)! (d2 + 1)!

q − 1
+ (d2 + 1)!

This is clearly better than the cost of classical sieving which, in this case, amounts
to (d2 + 1)! (d1 + 1)! operations per relation. More precisely, this improves the
cost of the relation by a factor of, at least, min(q − 1, (d1 + 1)!)/2.

3.3 Kummer Extensions, Frobenius and Advanced Pinpointing

With some specific extension fields, it is possible to achieve an even better im-
provement over sieving, using a two-side approach to pinpointing. Moreover, this
can be done while taking into account the action of Frobenius which allows us
to reduce the size of the linear system.

We illustrate this using Kummer extensions of degree n = d1d2− 1. We recall
that a Kummer extension of degree n is defined over a finite field Fq which
contains n-th roots of unity by a polynomial P (X) = Xn − κ, where κ has no
root of prime order m|n in Fq. Let μ denote a primitive n-th root of unity in Fq
and x denote an n-th root of κ in Fqn , then we have:

P (X) =
n−1∏
i=0

(X − μix).

As a consequence, there exists an i0, prime to n such that xq = μi0x. By changing
our choice of primitive root μ, we can ensure that i0 = 1. Thus, throughout the
sequel, we have xq = μx.

Such a Kummer extension can be obtained in our framework by defining:

X = Y d1/κ and (2)

Y = Xd2

Substituting one equation in the other, we find Xd1d2 − κX = 0. Thus dividing
by X we obtain the desired Kummer extension. If x denotes as above the image
of X in Fqn , the image of Y is y = xd2 . Once again, since we are considering
D = 1, our smoothness basis contains all the linear polynomials x+ a and y+ a
with a in Fq.

The Frobenius acts on the smoothness basis as follows:

(x + a)q = xq + a = μx+ a = μ(x+ a/μ) and

(y + a)q = yq + a = μd1 y + a = μd1(y + a/μd1).

As a consequence, in the quotient group F∗qn/F
∗
q , we have:

log(x + a/μ) = q log(x+ a) and

log(y + a/μd1) = q log(y + a).
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These relations allow us to divide the number of unknowns in the linear system
that we need to solve by a factor essentially equal to n. Indeed, all elements in the
factor base except x and y have precisely n conjuguates (including themselves).
Moreover, since xn(q−1) = 1 and yn(q−1) = 1, the logarithms of x and y are equal
to 0 modulo any large prime dividing the order of the quotient group.

Advanced Pinpointing: Generating Equations in Kummer Extensions.
As in the one-sided case, we consider the space of candidates generated by XY ,
X , Y and 1. Due to our specific choices, the renormalized candidates can be
rewritten in a slightly simpler form:

XY + aY + bX + c =

Xd2+1 + aXd2 + bX + c = Y d1+1/κ+ b Y d1/κ+ aY + c.

We now remark that the polynomial on the X side splits, if and only if, Ud2+1+
Ud2 + b a−d2 U + c a−d2−1 splits. Moreover, the polynomial on the Y side splits,
if and only if, V d1+1/κ+ V d1/κ+ a b−d1 V + c b−d1−1 splits.

Let λ = c/(ab), then the polynomials in U and V can respectively be rewrit-
ten as:

Ud2+1 + Ud2 + b a−d2 (U + λ) and (V d1+1 + V d1)/κ+ a b−d1(V + λ).

Conversely, choose a triple (A,B, λ), with A �= 0 and B �= 0 and ABd2 an n-th
power in Fq such that:

Ud2+1 + Ud2 +A (U + λ) and (V d1+1 + V d1)/κ+B(V + λ)

both split. Then, we can recover a unique (up to Frobenius action) triple (a, b, c)
corresponding to a candidate that yields an equation in the finite field. We first
recover a and b. Putting together the two equations A = ba−d2 and B = ab−d1 ,
we find bn = bd1d2−1 = 1/(ABd2). Since, by hypothesis, ABd2 is an n-th power
this equation has n distinct solutions. Choose one arbitrary solution for b, then
we necessarily have a = Bbd1 and c = λab. We thus obtain a valid candidate
(a, b, c). To show the unicity up to Frobenius action, we start from another
solution μib and obtain the triple (μd1i, μib, μ(d1+1)ic). Now, let the Frobenius
act j times on:

Xd2+1 + aXd2 + bX + c

and renormalize to obtain:

Xd2+1 + aμ−jd2Xd2 + bμ−jd1d2X + cμ−jd1(d2+1).

Since d1d2 ≡ 1 (mod n), we see that for j ≡ −i (mod n), the action of Frobenius
yields that same equation as the new choice for b.

Note. Once λ is fixed, finding the triples (A,B, λ) which satisfy the property
that ABd2 is an n-th power is a simple matter. Indeed, it suffices to partition
the list of possible values for A and B in n sublists depending on the discrete
logarithms of A (resp. B) modulo n. Since n is small, these values are easily
computed by comparing A(qn−1)/n (resp. B(qn−1)/n) with the possible n-th root
of unity in FQ.
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The d1d2+1 Variant. For a Kummer extension of degree n with n = d1d2+1,
we can proceed in a very similar way defining the finite field by the relations:

X = κ/Y d1 and

Y = Xd2,

where κ again denotes a non n-th power. It is easy to adapt the action of Frobe-
nius and the generation of equations to deal with this variant. See Section 5.2
for an example.

Further Generalization. We can also remark that the advanced form of pinpoint-
ing can also be used for some extension fields which are not Kummer extension.
Indeed, when d1d2 ± 1 does not divide the order of Fq, choosing X = Y d1/κ
(resp. X = κ/Y d1) and Y = Xd2 cannot define an extension of degree d1d2 ± 1
because the polynomial Xd1d2 − κX has two roots in Fq. However, it can yield
a extension of lower degree, depending on the factorization of the polynomial
Xd1d2±1−κ in Fq. The main drawback compared to the case of Kummer exten-
sions is that we can no longer use the action of Frobenius to reduce the size of
the smoothness basis.

Cost Considerations. For each value of λ, creating the list of A-values costs
O(q) operations and the list contains about (q − 1)/(d2 + 1)! elements. Sim-
ilarly, the list of B-values costs O(q) operations and contains approximately
(q − 1)/(d1 + 1)! elements. For a fixed λ, the total number of (A,B) pairs that
yields a good triple (A,B, λ) is approximately:

(q − 1)2

n(d1 + 1)!(d2 + 1)!
.

As a consequence, the average cost of constructing one relation is:

1 +O

(
n(d1 + 1)!(d2 + 1)!

(q − 1)

)
. (3)

If we remember that the factor n in the second term is compensated by the
fact that we only need q/n relations instead of q, we see that the other term is
reduced from (d1 + 1)! to 1. As a consequence, the gain compared to sieving is
at least (q − 1)/2.

An interesting side-effect of this advanced pinpointing is that once the list
of A and B values have been stored, the equations can be regenerated for a
constant cost. This is interesting, because these lists are smaller than the list
of equations. As a consequence, rather than storing the equations, it becomes
preferable to recompute them on the fly whenever they are needed, thus saving
disk space (and disk access time).
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3.4 Complexity of Relation Construction Using Pinpointing

We first recall that the cost of sieving from [18]:

LQ

(
1

3
, α+

2

3
√
α

)
.

Moreover it is only applicable for α ≥ 3−
2
3 .

Using One-Sided Pinpointing. As in [18], we now consider the complexity
of computing discrete logarithms in a field FQ, with Q = qn, assuming that the
parameter α defined as:

α =
1

n

(
logQ

log logQ

) 2
3

is fixed. In this setting, we have q = LQ(
1
3 , α). Since the smoothness basis has

size 2q, the cost of the linear algebra is the same as in [18], i.e., it is LQ(
1
3 , c2)

with c2 = 2α.
However, the complexity of collecting the relations is reduced compared to

sieving. Indeed, the cost of collecting approximately 2q relations becomes:

2(d1 + 1)!(q + (d2 + 1)!).

Using the usual choice for d1 and d2, this can be written as:

LQ

(
1

3
,

1

3
√
α
+max

(
α,

1

3
√
α

))
Note that this can be further improved by choosing the degrees d1 and d2 as
follows:

d1 ≈
1

3α2

(
log(Q)

log log(Q)

) 1
3

and d2 ≈ 3α

(
log(Q)

log log(Q)

) 1
3

.

For α ≥ 3−
2
3 , this reduces the complexity to

LQ

(
1

3
, α+

1

9α2

)

Using Advanced Pinpointing. To determine the asymptotic complexity of
the advanced pinpointing method, we can ignore the action of Frobenius. Indeed,
despite offering a very useful practical improvement, it does not provide an
asympotic gain. The cost of collecting enough relations in this case is:

2(q + (d1 + 1)!(d2 + 1)!).

We choose:

d1 ≈ d2 ≈ α−
1
2

(
log(Q)

log log(Q)

) 1
3
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As a consequence, the cost of building the relations becomes:

LQ

(
1

3
,max

(
α,

2

3
√
α

))
.

Direct Access to Relations. When α ≥ 2
3
√
α
, i.e. α ≥ (2/3)

2
3 , the cost of building

relations becomes equal to the number of relations. In other words, the right
summand in equation (3) becomes negligible and each relation can be built in
constant time. In this context, the pinpointing technique gives direct access to
multiplicative relations. It is weird to note that, in this best case for pinpointing,
there is no improvement on the full complexity, as shown in the next paragraph.

Impact on the Full Discrete Logarithm Complexity. In order to define the
asymptotic complexity of the discrete logarithm computation for the algorithm
with parameter D = 1, we also need to take into account the complexity of
the linear algebra LQ(

1
3 , 2α). For α ≥ 3−

2
3 , this cost is higher than the cost of

pinpointing in either version. As a consequence, in this range, the full complexity
of discrete logarithm computation becomes LQ(

1
3 , 2α). When α is in the interval

[3−
2
3 ; (2/3)

2
3 [, this is better than the algorithm of [18] whose cost is dominated

by sieving. In particular, for α = 3−
2
3 , the cost is reduced from LQ(

1
3 , 3

1
3 ) ≈

LQ(
1
3 , 1.44) to LQ(

1
3 , (2/3)

2
3 ) ≈ LQ(

1
3 , 0.96).

4 Generalization to D > 1

The one-sided pinpointing technique presented above can be generalized to the
case where D > 1 in a straightforward way. More precisely, it suffices to remark
that a polynomial:

Xd +
d−1∑
i=0

aiX
i,

can be decomposed into a product of polynomials of degree at most D, if and
only if, the polynomial:

Ud + Ud1 +

d−2∑
i=0

ai a
d−i
d−1U

i

can be decomposed into a product of polynomials of degree at most D.
As a consequence, we can essentially save a factor q−1 compared to a sieving

approach if we use a pinpointing approach in this general case.

Resulting Complexity. As in [18], we consider the case where Equation (1) is
satisfied. The amortized cost of constructing one relation is:

SD(d1 +D) + (q − 1)

(q − 1)/SD(Dd2 + 1)
=
SD(d1 +D)SD(Dd2 + 1)

q − 1
+ SD(Dd2 + 1),
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where SD(T ) denotes the inverse of the probability for a degree T polynomial
to decompose as a product of polynomials of degree at most D. We recall that
SD(T ) ≈ exp((T/D) logT/D) (see [18,21]). As a consequence, the runtime of
the relation collection is approximated by:

SD(d1 +D)SD(Dd2 + 1)qD−1 + SD(Dd2 + 1)qD.

For the usual choice, d1 ≈
√
Dn and d2 ≈

√
n/D and writing q = LQ(

1
3 , αD)

this becomes:

LQ

(
1

3
, D(D − 1)α+

1

3D
√
α
+max

(
1

3D
√
α
,Dα

))
.

Depending on the exact value of α, it can be re-optimized by changing the value
of d1 and d2. When possible, the complexity becomes:

LQ

(
1

3
, D2α+

1

9D2α2

)
.

To test whether re-optimization is possible, it suffices to compare the two com-
plexities and keep the smaller.

4.1 Kummer Extensions with D > 1

In the case where D > 1, it is clear that using Kummer extensions allows us
to account for the action of Frobenius, as in the D = 1 case. However, it is
less clear that a dual-sided approach is also possible in this case. It turns out
that the method used for D = 1 remains applicable. More precisely, define the
relation between X and Y as in equation 2 and consider the space of candidates
A(Y )X + B(Y ), where A and B are polynomials of degree D and A is unitary.
We write A(Y ) = Y D + aY D−1 + · · · and B(Y ) = bY D + cY D−1 + · · · .

The X-side is:

XDd2+1 + bXDd2 + aX(D−1)d2+1 + cX(D−1)d2 + · · ·
It splits, if and only if:

UDd2+1 + UDd2 +
a

bd2

(
U (D−1)d2+1 +

c

ab
U (D−1)d2

)
+ · · ·

also splits. Similarly, the Y -side is:

Y d1+D/κ+ aY d1+D−1/κ+ · · ·+ bY D + cY (D−1) + · · ·
It splits, if and only if:

V d1+D/κ+ V d1+D−1/κ+ · · ·+ b

ad1

(
V D +

c

ab
V (D−1)

)
+ · · ·

also splits. As a consequence, given λ = c/(ab), A = b/ad1 and B = a/bd2 such
that ABd1 is an n-th power, we can transform all smooth polynomials in U and
V into smooth polynomials in X and Y form with matching values for a, b and
c. If the other coefficients also match, we obtain a relation.

However, due to the cost of matching extra coefficients, this is not as favorable
as in the case D = 1.
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5 Application: Two Discrete Logarithm Records

In order to demonstrate the practicality of our algorithm, we give a x-couple of
new records for discrete logarithms in finite fields, in the particularly favorable
case of Kummer extensions. More precisely, we decided to improve on the discrete
logarithm record in F370 80130 presented in [17], using larger base fields and larger
extension degrees.

To the best of our knowledge, the previous discrete logarithm record in a finite
field concerned F3582 , a 923-bit field (see [13]). Our two results thus increases the
size of the previous record by more than 500 bits. In order to illustrate the
running time improvements gained from our new technique, we compare in the
sequel our running times and the running times from [13]. However, we wish to
warn the reader that this comparison should be analyzed with care. Indeed, the
finite fields we have chosen are especially well-suited to our new techniques.

5.1 A Finite Field of Size 1175 Bits

For this example, we decided to consider an extension field Fp47 given by a
Kummer extension of degree 47 = 8× 6− 1. We then chose p = 33 553 771, with
p− 1 divisible by 47.

As a consequence, we can define the extension field using the relations Y = X6

and Y 8 = 2X . This allows us to use advanced pinpointing and take advantage of
the action of Frobenius. We obtain a smoothness basis of 1.43M elements. The
cardinality of the finite field is:

p47 − 1 = 47 · 2069 · 12409 · (p− 1) · 132103049403319 · C,

where C is a 1073-bit composite cofactor of unknow factorization2

By construction, X has order 47(p − 1) and thus cannot serve as a base for
discrete logarithm. However, X − 3 is very likely to have order p47 − 1. Indeed,
none of the values (X − 3)(p

47−1)/f is equal to 1, when f is chosen as one of the
known factors of p47 − 1. This choice is validated by our computation since we
can find logarithms of random elements in basis X − 3.

As expected, the construction of the multiplicative relations is extremely ef-
ficient. For this reason, it was performed on a single laptop, using one CPU.
We used advanced pinpointing. The preparatory construction of smooth-
polynomials, for 1000 different values of λ, took a little more than 3 hours on
the laptop. Once this was done, we performed the computation of the relations
together with the structured Gaussian elimination, in 2 minutes. The resulting
linear system contains 829 405 unknowns.

As expected, the computation is dominated by the linear algebra step. We
performed this step using a block Wiedemann approach (as in [22]), based on
32 independent series of matrix-vector evaluation. Each run in the series was

2 At the time of the computation, the factorization of C was unknown. Since then,
William Hart [12] has found a 178-bit factor of C; the remaining cofactor is still
composite.
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performed on a 16-core3 node of Genci’s Curie computer, using OMP threads,
thus using a total of 512 processors. The initial matrix-vector products required
almost 37 hours. Due to memory requirement, the computation of a relation
using block Wiedemann was done on 64 cores of a larger node4 of Curie: it took
9h30min. Finally the recovery of the solution took 32 additional matrix-vectors
products of half length compared to the initial runs. Due to the extra cost of
combining the intermediate values using the coefficients in the relation, this
required almost 25 hours. The grand total amounts to about 32 000 CPU-hours.
We give a comparison of the timings with the previous record in Table 1.

Table 1. Comparison between our computations and the previous record

Bitsize Total time Relation construction Linear algebra Indiv. Log.
(CPU.h) (CPU.h) (CPU.h) (CPU.h)

[13] 923 bits 813 000 270 000 483 000 60 000

This paper 1175 bits 32 000 3 32 000 4

This paper 1425 bits 32 000 6 32 000 < 12

The reader can find some typical discrete logarithms of base elements in base
x− 3 modulo C in the eprint version of this paper [15] and in the announcement
on the number theory mailing list [14]. They have been removed from this version
to improve its compactness and lisibility.

Individual Discrete Logarithm. The computation of individual discrete log-
arithms is unchanged from [18] and requires a moderate amount of computing
power. We illustrate this by computing the logarithm of:

Z =

46∑
i=0

(
�π pi+1� mod p

)
X i.

The first step is to find a value related to Z which can be expressed using
polynomials in X of relatively low degree. Here, we find that:

Z · (X + 1)359 =
N

D
,

where N and D can be factored into irreducible polynomials of degree at most 8.
Once, this is done, we use the descent procedure to express each factor using

polynomials of lower degree in X and Y . The slowest step in the descent is the
final step that expresses polynomials of degree 2 using linear polynomials. After
the earlier steps of the descent, we have a total of 278 degree polynomials whose
logarithms are required (156 in X and 122 in Y ). In the final step, we consider

3 More precisely, it was on Curie’s thin nodes: each node contains two octocore Intel
Sandy Bridge EP (E5-2680) processors at 2.7 GHz.

4 Here, we used half of a Curie’s xlarge node, i.e. eight octocore Intel Nehalem-EX
X7560 processors at 2.26 GHz .
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all polynomials of the form XY + aY + bX + c that are multiples of the target
polynomial and use sieving to find a relation between this target and linear
polynomials. When not possible, we use a relation that also includes another
degree 2 polynomial and restart from that polynomial. The total time to obtain
all these logarithms on the laptop used for computing the relations is under 4
hours.

Finally, back-substituting all the logarithms of the linear polynomials, we
derive the logarithm of Z modulo C. To ease verification, we have also computed
this logarithm modulo the small factors and thus give its complete value. We
have:

log(Z) =

35663312714649406626328113474094944057178080787823953083099211252314049

42775893475045554815091157495604731476318649637458779492102525688657986

42649039047033462050627522813317937084662147227994756376452164608898303

68728733379152433093789922795231130025288283817373896596104544618014057

3240231646914447899262099152488534480737568049333712088197470913054182

5.2 A Finite Field of Size 1425 Bits

For this example, we decided to consider an extension field Fp57 given by a
Kummer extension of degree 57 = 8× 7 + 1. We then chose p to make sure that
p − 1 is divisible by 57 and that p57 − 1 is easy to factor. Thus, we considered
Fp57 , with p = 33 341 353.

This allows us to define the extension field using the relations: Y = X7 and
X = 2/Y 8. This illustrates the d1d2 + 1 variant of our technique on Kummer
extension. The initial smoothness basis contains 1.17M elements. The cardinality
of the finite field is:

p57 − 1 = (p− 1) · (p2 + p+ 1) · 19 · p1 · p2 where

p1 = (

18∑
i=0

pi)/19 and

p2 =

12∑
i=0

p3i − (p+ p20)

5∑
i=0

p3i.

The two primes p1 and p2 respectively have 446 and 900 bits.
Since, X has order 57(p − 1), we use X − 11 as our basis for discrete loga-

rithms. The construction of the multiplicative relations was performed on the
same laptop as previously indicated. For the preparatory construction of smooth-
polynomials, we used 2000 different values of λ, which took 6 hours on the laptop.
Once this is done, we performed the computation of the relations together with
the structured Gaussian elimination, in 2 minutes. The resulting linear system
contains 714 931 unknowns.
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Once again, the computation is dominated by the linear algebra step. This
time, we split the computation into two independent parts, adressing p1 and
p2 separately. For each of the two primes, the initial matrix-vector products
required 18 hours and 30 minutes, using a 16-core node for each prime. The
block Wiedemann step required 2h30m for p1 and 6h10m for p2, using 64 cores
for each computation. The final run of matrix-vectors products took 12 hours for
each prime. Once again, the grand total amounts to about 32 000 CPU-hours.

5.3 Individual Discrete Logarithm

The computation of individual discrete logarithms works as previously. However,
for performance reasons, we reimplemented the descent procedure in C, instead
of using a mix of PARI/GP scripts and C code as before. The computing power
required for an individual logarithm remains moderate and could be parallelized
if required. We illustrate this by computing the logarithm of:

Z =
56∑
i=0

(
�π pi+1� mod p

)
X i.

We have:

Z · (X − 11)2859 =
N

D
,

where N and D can be factored into irreducible polynomials of degree at most
10.

Once, this is done, we use the descent procedure to express each factor using
polynomials of lower degree in X and Y . The slowest step in the descent is again
the final step that expresses polynomials of degree 2 using linear polynomials.
The total time to obtain all the logarithms on the laptop used for computing
the relations is 11h20m hours.

Finally, back-substituting all the logarithms of the linear polynomials (see [16]
for some example values), we derive the logarithm of Z modulo p1 p2. To ease
verification, we have also computed this logarithm modulo the small factors and
thus give its complete value. We have:

log(Z) =

38696727954848672340251996343560616689921565412031083259217543064490314

47408883954126868476623514303774994735374412083792131893939754716315174

24844029927129365760724185099125036453504412299497357601200524653484297

57817687904797819402906339667295765269483052878960833041193969662027000

58228267455228614682567866764560024936105482975290632000822052456595422

72461445286333607026598459910186711625408343307828043847399249565522120202

6 Conclusion and Open Problems

In this paper, we have shown a new technique to replace sieving in some index
calculus algorithms. This technique can be applied whenever the target discrete
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logarithm group is a finite field that contains a subfield of the right size. We have
illustrated it with some new discrete logarithms records. Since we only know
how to use this technique in the medium prime case of the function field sieve,
it leaves open the problem of generalizing the approach to other index calculus
algorithms. The natural targets are the function field sieve without a medium-
size subfield and the number field sieve, either for factoring or computing discrete
logarithms. It should be noted that the result presented in this paper was in fact
inspired by the cubic sieve introduced in [3] (see [5] for more details) which can
be seen as its remote precursor and also offers a partial answer to the question
of pinpointing in the case of number field sieve. However, generalizing to the
general formulation of the number field sieve seems to be a difficult problem.

Another open problem is to adapt our construction to take advantage of the
action of Frobenius regardeless of the extension degree. In particular, it would be
convenient to make it compatible with the Galois invariant smoothness approach
proposed in [4].
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Abstract. In this paper we highlight the benefits of using genus 2
curves in public-key cryptography. Compared to the standardized genus 1
curves, or elliptic curves, arithmetic on genus 2 curves is typically more
involved but allows us to work with moduli of half the size. We give a
taxonomy of the best known techniques to realize genus 2 based cryp-
tography, which includes fast formulas on the Kummer surface and effi-
cient 4-dimensional GLV decompositions. By studying different modular
arithmetic approaches on these curves, we present a range of genus 2 im-
plementations. On a single core of an Intel Core i7-3520M (Ivy Bridge),
our implementation on the Kummer surface breaks the 120 thousand cy-
cle barrier which sets a new software speed record at the 128-bit security
level for constant-time scalar multiplications compared to all previous
genus 1 and genus 2 implementations.

1 Introduction

Since its invention in the 1980’s, elliptic curve cryptography [36,42] has become a
popular and standardized approach to instantiate public-key cryptography. The
use of elliptic curves, or genus 1 curves, has been well studied and consequently
all of the speed records for fast curve-based cryptography are for elliptic curves
(cf. the ECRYPT online benchmarking tool eBACS [8]). Jacobians of hyperel-
liptic curves of high genus have also been considered for cryptographic purposes,
but for large genus there are “faster-than-generic" attacks on the discrete log-
arithm problem [2,24,20,18]. Such attacks are not known, however, for genus 2
curves. In [26], Gaudry showed that scalar multiplication on the Kummer surface
associated with the Jacobian of a genus 2 curve can be more efficient than scalar
multiplication on the Jacobian itself. Thus, it was proposed (cf. [5]) that hyper-
elliptic curve cryptography in genus 2 has the potential to be competitive with
its genus 1 elliptic curve cryptography counterpart. One significant hurdle for
genus 2 cryptography to overcome is the difficulty of generating secure genus 2
curves: that is, such that the Jacobian has a large prime or almost prime group
order. In particular, for fast cryptographic implementations it is advantageous
to work over special prime fields, where the underlying field arithmetic is fast,
and to generate curves over those fields with suitable group orders. A major
� Part of this work was done while the second author was working in the Department

of Mathematics and Computer Science at the Technische Universiteit Eindhoven,
Netherlands.
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catalyst for this work is that genus 2 point counting methods and complex mul-
tiplication (CM) methods for constructing genus 2 curves with a known group
order have become more practical. Hence, the time is ripe to give a taxonomy
and a cross-comparison of all of the best known techniques for genus 2 curves
over prime fields. The focus on prime fields is motivated by the recommendations
made by the United States’ National Security Agency Suite B of Cryptographic
Protocols [46].

In this paper we set new performance speed records at the 128-bit security
level using genus 2 hyperelliptic curves. For instance, using the Kummer surface
given by Gaudry and Schost [29], we present the fastest curve based scalar mul-
tiplication over prime fields to date — this improves on the recent prime field
record for elliptic curves from Longa and Sica which was presented at Asiacrypt
2012 [40]. As an additional bonus, our implementations on the Kummer surface
inherently run in constant-time, which is one of the major steps towards achiev-
ing a side-channel resistant implementation [37]. Thus, we present the fastest
constant-time software for curve based cryptography compared to all prior im-
plementations.

Another advantage for genus 2 curves is that the endomorphism ring is larger
than for genus 1 curves, so higher dimensional scalar decomposition is possi-
ble without passing to an extension field [23,22]. For prime fields we implement
4-dimensional GLV decompositions on Buhler-Koblitz (BK) curves [14] and on
Furukawa-Kawazoe-Takahashi (FKT) curves [21], both of which are faster than
all prior eBACS-documented implementations. To optimize overall performance,
we present implementations based on two different methods that allow fast mod-
ular arithmetic: one based on the special form of the prime using “NIST-like”
reduction [52] and another based on the special form of the prime when using
Montgomery multiplication [43].

In addition, we put forward a multi-faceted case for (a special class of) Buhler-
Koblitz curves of the form y2 = x5 + b. The curves we propose are particularly
flexible in applications because they facilitate both a Kummer surface imple-
mentation and a GLV decomposition. Thus, a simple Diffie-Hellman style key
exchange can be instantiated using the fast formulas on the Kummer surface,
but if a more complicated protocol requires further group operations, one has the
option to instead exploit a 4-dimensional GLV implementation using the same
curve.

We refer to the full-version of this paper [10] for the specifications of all curves
used and more detailed information.

2 Preliminaries

In this section we recall some basic facts and notation concerning genus 2 curves
and briefly review the main techniques used to compute scalar multiplications.

Genus-2 Curves. A hyperelliptic genus 2 curve over a field of odd characteristic
K can be defined by an affine model C : y2 = f(x), where f(x) has degree 5 or
6 and has no double roots. We call C a real hyperelliptic curve if the degree of
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f is 6, and if such an f(x) has a rational root in K, then we can birationally
transform the curve so that f has degree 5 instead, in which case we say C is
an imaginary hyperelliptic curve. Arithmetic is currently slightly faster in the
imaginary case.

Unlike genus 1 elliptic curves, in genus 2, the points on the curve do not form
a group. Roughly speaking, unordered pairs of points on the curve form a group,
where the group operation adds two pairs of points by passing a cubic through the
four points, finding the other two points of intersection with the curve, and then
reflecting them over the x-axis. More formally, we denote this group by Jac(C),
the Jacobian of C, which consists of degree zero divisors on the curve modulo
principal divisors. Throughout this paper we use the Mumford representation
of general divisors D = (x2 + u1x + u0, y − (v1x + v0)) ∈ Jac(C), and instead
write D = (u1, u0, v1, v0). This avoids confusion when x and y are used as two of
the Kummer coordinates in Section 5. When working in homogeneous projective
space, we write such divisors as D = (U1 : U0 : V1 : V0 : Z), where ui = Ui/Z
and vi = Vi/Z for i ∈ {0, 1} and Z �= 0.

Scalar Multiplication. There are many different ways to compute the scalar
multiplication. Most approaches, like the double-and-add algorithm, are based
on addition chains [50] and a typical optimization to lower the number of point
additions is using windows [12] of a certain width w > 1. Given the input point P ,
we compute a lookup table consisting of the multiples [c]P such that 0 ≤ c < 2w,
and perform a point addition once every w bits (instead of at most once per bit).
After adding a precomputed multiple, we can “slide” to the next set-bit in the
binary representation of the scalar; such sliding windows [55] lower the number
of point additions required and halve the size of the lookup table since only
the odd multiples of P are required. When computing the negation of a group
element is inexpensive, which is the case for both elliptic and genus 2 curves, we
can either add or subtract the precomputed point1, reducing the total number of
group operations even further; this is called the signed windows approach [45].
See [7] for a summary of these techniques.

Adding an affine point to a projective point to obtain another projective
point, often referred to as mixed addition, is usually faster than adding two
projective points. In order to use these faster formulas, a common approach is to
convert the precomputed projective points into their affine form. This requires an
inversion for each point in the table. Using Montgomery’s simultaneous inversion
method [44], I independent inversions can be replaced by 3(I−1) multiplications
and a single inversion, which is typically much faster.

3 Fast Modular Arithmetic Using Special Primes

When performing arithmetic modulo a prime p in practice, it is common to use
primes of a special form since this may allow fast reduction. For instance, in
1 The term ‘point’ becomes ‘divisor’ in the case of hyperelliptic curves, but remains

as ‘point’ for Kummer surface arithmetic in Section 5.
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the FIPS 186-3 standard [56], NIST recommends the use of five prime fields
when using the elliptic curve digital signature algorithm (but see also [4]). Such
special primes have been studied from both a theoretical and practical point of
view. A study of a software implementation of the NIST-recommended elliptic
curves over prime fields on the x86 architecture is given by Brown et al. [13], and
in [9] a comparison is made between the performance when using Montgomery
multiplication [43] and specialized multiplication using the NIST primes. In this
section we describe two different approaches to obtain fast modular arithmetic.
We use the prime p1271 = 2127 − 1 to illustrate both methods, since this prime
is used in some of our implementations (cf. Section 4 and Section 5).

Generalized Mersenne Primes. Primes that enable fast reduction techniques
are usually of the form 2s±δ, where s, δ ∈ Z+, and δ � 2s. The constant δ is also
small compared to the word-size of the target architecture, which is typically 32
or 64 bits. Another popular choice is using a generalized Mersenne prime of the
form 2s +

∑
i∈S i, where S is a set of integers ±2j such that |2j | < 2s and the

cardinality of S is small. For example, fast reduction modulo p = 2s − δ can be
done as follows. For integers 0 ≤ a, b, ch, c	, δ < 2s, write c = a · b = ch ·2s+ c	 ≡
c	+δch (mod 2s−δ) where 0 ≤ c	+δch < (δ+1)2s. At the cost of a multiplication
by δ (which might be a shift depending on the form of δ) and an addition,
compute c′ ≡ c (mod p) where c′ is (much) smaller than c, depending on the
size of δ. This is the basic idea behind Solinas’ reduction scheme [52], which is
used to implement fast arithmetic modulo the NIST primes [56]. We refer to
this type of reduction as NIST-like reduction. When computing a · b mod p1271
with 0 ≤ a, b < p1271, one can first compute the multiplication c = a · b =
c1 · 2128 + c0, where 0 ≤ c1, c0 < 2128. A first reduction step can be computed as
c′ = (c0 mod 2127) + 2 · c1 + �c0/2127� ≡ c (mod p1271) such that 0 ≤ c′ < 2128.
One can then reduce c′ further using conditional subtractions. Modular reduction
in the case of p1271 can therefore be computed without using any multiplications.

Montgomery-Friendly Primes. Montgomery multiplication [43] involves
transforming each of the operands into their Montgomery representations and
replacing the conventional modular multiplications by Montgomery multiplica-
tions. One of the advantages of this method is that the computational complexity
is usually better than the classical method by a constant factor.

Let r = 2b be the radix of the system and b > 2 be the bit-length of a word.
Let p be an n-word odd prime such that rn−1 ≤ p < rn, and suppose we have an
integer 0 ≤ X < p. The Montgomery radix R = rn is a fixed integer such that
gcd(R, p) = 1. The Montgomery residue of X is defined as X̃ = X ·R mod p. The
Montgomery product of two integers is defined as M(X̃, Ỹ ) = X̃ · Ỹ ·R−1 mod p.
Practical instances of Montgomery multiplication use the precomputed value μ =
−p−1 mod r. The interleaved Montgomery multiplication algorithm, in which
multiplication and reduction are combined, computes C = M(A,B) for 0 ≤
A,B < p. Let A =

∑n−1
i=0 ai · ri, where 0 ≤ ai < r, and start with C = 0. For all

i ∈ Z such that 0 ≤ i < n, the result C is updated as

C ← C + ai ·B, C ←
(
C + ((μ · C) mod r) · p

)/
r.
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The division by r can be implemented by a shift since the precomputed value μ
ensures that the least significant digit (b bits) of (C+((μ·C) mod r)·p) is zero. It
can be shown that the final Montgomery product C is bounded as 0 ≤ C < 2 ·p,
and therefore a final conditional subtraction is needed when complete reduction
is required. In order to avoid handling additional carries in the Montgomery mul-
tiplication, which requires more instructions, our implementations prefer 127-bit
moduli over 128-bit moduli. In [39] it is noticed that fixing part of the modulus
can have advantages for Montgomery multiplication. For instance, the precom-
putation of μ can be avoided when −p−1 ≡ ±1 (mod r), which also avoids
computing a multiplication by μ for every iteration inside the Montgomery mul-
tiplication routine. This technique has been suggested in [35,1,31] as well. When
μ is small, e.g. μ = ±1, one could lower the cost of the multiplication of p with
(μ · c0) mod r by choosing the n − 1 most significant words of p in a similar
fashion as for the generalized Mersenne primes: �p/2b� = 2s +

∑
i∈S i.

Consider the prime p1271 on 64-bit architectures: r = 264 and we have μ =
−p−11271 mod 264 = 1, so that the multiplication by μ can be avoided. Write
C = c2 · 2128 + c1 · 264 + c0 with 0 ≤ c2, c1, c0 < 264. Due to the shape of
the most-significant word of p1271 = (263 − 1) · 264 + (264 − 1), the result of
C+((μ·C) mod r)·p

r can be obtained using only two shift and two 64-bit addition
instructions by computing c2 ·264+c0·263+c1. Similar to the NIST-like reduction,
Montgomery reduction in the setting of p1271 can be computed without using
any multiplications.

Modular Inversion. When using the regular representation of integers, one
can either use the (binary) extended GCD algorithm to compute the modular
inversion or use the special form of the modulus to compute the inverse by using
modular exponentiations. For instance, in the case of p1271, one can exploit the
congruence a2

127−2 ≡ a−1 (mod p1271). The situation when working in Mont-
gomery form is slightly different. Given the Montgomery form ã = a2bn mod p
of an integer a, we want to compute the Montgomery inverse ã−122bn ≡ a−12bn

(mod p). This would require a classical inversion and modular multiplication,
however we found that the approach presented in [11] (which uses the binary
version of the Euclidean algorithm from [33]) is faster in practice. The first
step of this approach computes a value ã−12k ≡ a−12k−bn (mod p), for some
0 ≤ k < 2bn. This value is then corrected via a Montgomery multiplication
with 23bn−k. This last multiplication typically requires a lookup table with the
different precomputed values 23rn−k mod p. In the case of p = 2127 − 1, one can
avoid this lookup table since 2t mod 2127 − 1 = 2t mod 127.

Modular Addition/Subtraction. Let 0 ≤ a, b < 2k − c. We compute (a +
b) mod (2k − c) as ((((a+c)+b) mod 2k)−c ·(1−carry((a+c)+b, 2k))) mod 2k.
The carry function carry(x, y) returns either zero or one if x < y or x ≥ y
respectively. The output is correct and bounded by 2k− c, since if a+ b+ c < 2k,
then a+b < 2k−c, while if a+b+c ≥ 2k, then (a+b+c) mod 2k = a+b−(2k−c) <
2k − c. Note that since a + c < 2k, the addition requires no carry propagation.
Furthermore, c is multiplied with either one or zero such that this multiplication
amounts to data movement.
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The modular subtraction (a − b) mod (2k − c) is performed by computing
(((a− b) mod 2k)− c · borrow(a− b)) mod 2k. Analogous to the carry function,
the borrow function borrow(x) returns zero or one if x ≥ 0 or x < 0 respectively.
If a < b, then 0 ≤ (a− b) mod 2k − c = a− b + (2k − c) < 2k − c, and if a ≥ b,
then 0 ≤ a − b < 2k − c. In some scenarios one can compute additions as
(((a + b) mod 2k) + c · carry((a + b), 2k)) mod 2k, but we note that here the
output may not be completely reduced and can be ≥ 2k − c.

4 “Generic” Genus-2 Curves and Their Arithmetic

To give a concrete idea of the advantage gained when working on the Kummer
surface or when exploiting GLV endomorphisms, we also consider the generic
scenario that employs neither technique. We make use of the fast formulas for
arithmetic on imaginary quadratic curves from [17], which employ homogeneous
projective coordinates, and focus on reducing the total number of multiplications
in projective point doublings, point additions and mixed additions.2

We assume that our curves are of the form C : y2 = x5 + f3x
3 + f2x

2 + f1x+
f0, and count multiplications by the fi as full multiplications, unless they are
zero.3 Letting m, s and a be the cost of Fp-multiplications, Fp-squarings and
Fp-additions or subtractions respectively, we summarize the modified counts as
follows. For D = (U1 : U0 : V1 : V0 : Z), one can compute [2]D in 34m+6s+34a.
For the special GLV curves in Section 6, which have f2 = f3 = 0, the projective
doubling can be computed using 32m+ 6s+ 32a. For D = (U1 : U0 : V1 : V0 : Z)
and D′ = (U ′1 : U

′
0 : V

′
1 : V

′
0 : Z

′), one can compute the projective addition D+D′

in 44m + 4s + 29a. For the mixed addition between the projective point D =
(U1 : U0 : V1 : V0 : Z) and the affine point D′ = (u′1 : u

′
0 : v

′
1 : v

′
0), one can compute

the projective result D +D′ in 37m+ 5s + 29a. Full and mixed additions cost
the same on the special GLV curves. Given these operation counts, our “generic”
implementations performed fastest when using 4-bit signed sliding windows (see
Section 2).

5 The Kummer Surface

Gaudry [26] built on earlier observations by Chudnovsky and Chudnovsky [15] to
show that scalar multiplication in genus 2 can be greatly accelerated by working
on the Kummer surface associated to a Jacobian, rather than on the Jacobian
itself. Although the Kummer surface is not technically a group, it is close enough
to a group to be able to define scalar multiplications on it, and is therefore an
attractive setting for Diffie-Hellman like protocols that do not require any further
group operations [51].

2 Note that the formulas to compute the projective doubling from [17] can be sped up
since the first multiplication to compute UU is redundant.

3 Over prime fields it is standard to zero the coefficient of the x4 term via an appro-
priate substitution.
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The Squares-only Kummer Routine. The Kummer surface that was origi-
nally proposed for cryptography in [26] is a surface whose constants are parame-
terized by the four fundamental Theta constants (ϑ1(0), ϑ2(0), ϑ3(0), ϑ4(0)), and
whose coordinates come from the four fundamental Theta functions (ϑ1(z), ϑ2(z),
ϑ3(z), ϑ4(z)), all of which are values of the classical genus 2 Riemann Theta func-
tion. Bernstein [5] pointed out that one can work entirely with the squares of the
fundamental Theta constants without any loss of efficiency. This provides more
flexibility when transforming a given genus 2 curve into an associated Kummer
surface, and makes it easier to control the size of squared fundamental Theta
constants, for which small values can give worthwhile speedups.

Cosset [16] formally presented the “squares-only” setting, in which the Kum-
mer surfaceK is completely defined by the squared fundamentals (a2, b2, c2, d2) =
(ϑ1(0)

2, ϑ2(0)
2, ϑ3(0)

2, ϑ4(0)
2) as

K : E′xyzt = ((x2 + y2 + z2 + t2)− F (xt+ yz)−G(xz + yt)−H(xy + zt))2,

where E′ = 4E2a2b2c2d2, E =
ABCD

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
,

F =
a4 − b4 − c4 + d4

a2d2 − b2c2
, G =

a4 − b4 + c4 − d4

a2c2 − b2d2
, H =

a4 + b4 − c4 − d4

a2b2 − c2d2
,⎡⎢⎣A

B
C
D

⎤⎥⎦ =

⎡⎢⎣ 1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤⎥⎦
⎡⎢⎣a

2

b2

c2

d2

⎤⎥⎦ . (1)

We write (x : y : z : t) = (ϑ1(z)
2 : ϑ2(z)

2 : ϑ3(z)
2 : ϑ4(z)

2) for the coordinates of
a projective point on K.

Extracting the Squared Kummer Surface Parameters. In [26] Gaudry
showed the relationship between the Kummer surface and the isomorphic Rosen-
hain model of the genus 2 curve C, given as

CRos : y
2 = x(x− 1)(x− λ)(x − μ)(x − ν), (2)

where the Rosenhain invariants λ, μ and ν are linked to the squared fundamen-
tals by

λ =
a2c2

b2d2
, μ =

c2(AB + CD)

d2(AB − CD)
, ν =

a2(AB + CD)

b2(AB − CD)
,

with A,B,C,D as in (1). Since the three Rosenhain invariants are functions of
the four squared fundamentals, there is a degree of freedom when inverting the
equations to compute (a2, b2, c2, d2) from (λ, μ, ν). Thus, we can set d2 = 1 [27]
and compute the other squared fundamentals as

c2 =

√
λμ

ν
, b2 =

√
μ(μ− 1)(λ− ν)

ν(ν − 1)(λ− μ)
, a2 = b2c2

ν

μ
.

Given a hyperelliptic curve C of genus 2, there are up to 120 unique Rosenhain
triples λ, μ, ν that give an isomorphic representation CRos

∼= C over the algebraic
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closure [25, §2.2]. So for a given curve with rational 2-torsion, we can expect that
there may be at least one Rosenhain triple for which the square roots above lie
in the same field as λ, μ and ν, such that the Kummer surface is also defined
over the same field (but see Section 8). If the 2-torsion is rational, then 16 must
divide the cardinality of Jac(C) [26].

Twist Security. There is an additional security consideration when working on
the Kummer surface because a random point on K can map to either the curve
CRos

∼= C or its twist C′Ros
∼= C′ [26, §5.2]. As long as the public generator P ∈ K

is chosen so that it maps back to Jac(CRos), then any honest party participating
in a Diffie-Hellman style protocol computes with multiples of P that also map
back to Jac(CRos). However, an attacker could feed a party another point P ′ ∈ K
that (unbeknownst to the party) maps back to C′Ros, and on return of [s]P ′,
attack the discrete logarithm problem on the twist instead. It is undesirable to
include a check of which curve the Kummer points map to, because the maps
are overly involved (see [10, §5]). The best solution is to compute curves where
both Jac(C) and Jac(C′) have large prime order subgroups. Such curves and
their associated Kummer surfaces are called twist-secure [29,28].

Implementation Details and Side-channel Resistance. When computing
the scalar multiplication on a Kummer surface, the combined double and pseudo-
addition routine is called for every bit in the scalar, except the first one. The main
branch, i.e. checking if the bit is set (or not), can be converted into straight-line
code by masking (pointers to) the in- and output. Since no lookup tables are used,
and all modern cache sizes are large enough to hold the intermediate values when
using 128-bit arithmetic, the algorithm (and runtime) becomes independent of
input almost for free. The only input-dependent value is the scalar n whose bit-
size can differ, meaning that the total runtime could potentially leak the value of
the most significant bits. In order to make the implementation run in constant
time, we can either increase the scalar via addition of the subgroup order, or we
can artificially increase the running time by computing on dummy values such
that we compute the combined doubling and pseudo-addition a fixed number of
times.

6 GLV in Genus-2

The Gallant-Lambert-Vanstone (GLV) method [23] significantly speeds up scalar
multiplication on algebraic curves that admit an efficiently computable endomor-
phism φ of degree d > 1, by decomposing the scalar k into d “mini-scalars”, all of
which have bit-lengths that are approximately 1/d that of k. The d scalar multi-
plications corresponding to each of these mini-scalars can then be computed as
one multi-scalar multiplication of length ≈ log2 (k)/d, which effectively reduces
the number of required doublings by a factor of d.

Endomorphisms. In general, algebraic curves over prime fields do not come
equipped with a useful endomorphism φ, which means we have to use special
curves to take advantage of the GLV method. For genus 1 elliptic curves, Gallant
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et al. suggested the curves y2 = x3 + b and y2 = x3 + ax, which both allow a
2-dimensional decompositions over prime fields. On the other hand, the genus 2
analogues of these curves, Buhler-Koblitz (BK) curves of the form y2 = x5+b [14]
and Furukawa-Kawazoe-Takahashi (FKT) curves of the form y2 = x5 + ax [21],
have φ’s whose minimal polynomials are of degree 4, which means that we can
achieve 4-dimensional scalar decompositions on genus 2 curves over prime fields.
Besides the two families above that offer 4-dimensional GLV decompositions,
families of genus 2 curves with real multiplication (RM) facilitate 2-dimensional
scalar decompositions [38,28]. To give an idea of the expected performance in
such scenarios, we also present timings for a 2-dimensional GLV decomposition
on FKT curves.

Scalar Decomposition Via Division. At Eurocrypt 2002, Park, Jeong and
Lim [48] gave an algorithm for performing GLV decomposition via division in
the ring Z[φ] generated by φ. This algorithm is very simple and effective in de-
composing the scalar k quickly: in 4-dimensional cases (BK and FKT) it takes
20 multiplications to fully decompose k, and in the 2-dimensional case the de-
composition totals just 6 multiplications. For the curves we used, this algorithm
performed slightly better on average than the (conservative) numbers quoted
in [48, Table 4].

Computing the Scalar Multiplication. We describe two approaches to im-
plement the scalar multiplication. The d-dimensional decomposition of the scalar
k results in d smaller scalars k	, for 0 ≤ � < d. The first approach precomputes
the 2d different points Li =

∑d−1
	=0

(⌊
i
2�

⌋
mod 2

)
· P	 for 0 ≤ i < 2d and stores

them in a lookup table. When processing the jth bit of the scalar, the precom-
puted multiple Li is added, for i =

∑d−1
	=0 2

	
(⌊

k�

2j

⌋
mod 2

)
. Hence, besides the

minor bit-fiddling overhead to construct the lookup table index, this requires
computing at most a single curve addition and a single curve doubling per bit
of the maximum of the k	’s. The second approach [22] is very similar to using
signed windows for a single scalar (see Section 2). We start by precomputing the
multiples L	(c) = [c]P	 for d different tables: one corresponding to each scalar
k	. When computing the scalar multiplication, the jth part (of width w bits) in
the scalar k	 determines which point needs to be added (or subtracted), namely∑d−1

	=0 ±L	

(⌊
k�

2wj

⌋
mod 2w

)
, where the addition or subtraction depends on the

addition-subtraction chain used. Thus, an addition to the running value has to
be made only once every w bits and combining the lookup table values takes at
most d− 1 additions, so one needs at most d additions per w bits. The optimal
value for w depends on the dimension d, the bit-size of k	 and the cost of (mixed)
additions and doublings. There are multiple ways to save computations in this
latter approach. After computing the multiples in the first lookup table L0, the
values for the d− 1 other tables can be computed by applying the map φ to the
individual point in the lookup table [22]. Since the computation of the map φ
only takes three or four multiplications (depending on the curve used), this is a
significant saving compared to computing the group operation which is an order
of magnitude slower. Furthermore, since the endomorphism costs the same in
affine or projective space, one can convert the points in L0 to affine coordinates
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Table 1. Performance timings in 103 cycles of various programs calculating a �log2(r)�-
bit scalar multiplication, using genus g arithmetic. The curve characteristics, such as the
prime p, the cardinality r, the size of the automorphism group #Aut, and the security
level s = log2(

√
πr

2#Aut ), are stated as well. Here p1 = 2256 − 2224 + 2192 + 296 + 1

and p2 = 264 · (263 − 27443) + 1. If an implementation runs in constant-time (CT), we
indicate this with ‘�’, if not with ‘✕’, and if unknown with ‘?’.

Primitive g CT field char p �log2(r)� #Aut s 103 cycles

curve25519 [4,6] 1 � 2255 − 19 253 2 125.8 182
ecfp256e [32] 1 ✕ 2256 − 587 255 2 126.8 227
Longa-Sica 2-GLV [40] 1 ✕ 2256 − 11733 256 6 127.0 145
surf127eps [30] 2 � 2127 − 735 251 2 124.8 236
NISTp-224 [56,34] 1 � 2224 − 296 + 1 224 2 111.8 302
NISTp-256 [56] 1 ? p1 256 2 127.8 658

(a) generic127 2 ✕ 2127 − 1 254 2 126.8 295
(b) generic127 2 ✕ 2127 − 1 254 2 126.8 248
(b) generic128 2 ✕ 2128 − 173 257 2 127.8 364
(a) Kummer 2 � 2127 − 1 251 2 124.8 139
(b) Kummer 2 � 2127 − 1 251 2 124.8 117
(b) Kummer 2 � 2128 − 237 253 2 125.8 166
(a) GLV-4-BK 2 ✕ p2 254 10 125.7 156
(a) GLV-4-FKT 2 ✕ p2 253 8 125.3 156
(a) GLV-2-FKT 2 ✕ p2 253 8 125.3 220
(b) GLV-4-BK 2 ✕ 2128 − 24935 256 10 126.7 164
(b) GLV-4-FKT 2 ✕ 2128 − 24935 255 8 126.3 167
(b) GLV-2-FKT 2 ✕ 2128 − 24935 255 8 126.3 261

using Montgomery’s simultaneous inversion method (see Section 2), and obtain
all of the affine points in the other lookup tables very efficiently through the
application of φ. This means the faster mixed addition formulas can be applied
when adding any element in a lookup table. In our implementations, the first
approach is faster in the 4-dimensional case and the second approach is faster in
the 2-dimensional case.

7 Results and Discussion

In this section we present our performance results and compare them with the
current state-of-the-art.

Benchmark Setting and Code. All of the implementations in Table 1 were
run on an Intel Core i7-3520M (Ivy Bridge) processor at 2893.484 MHz with
hyperthreading turned off and over-clocking (“turbo boost”) disabled. The im-
plementations labeled (a) use the Montgomery-friendly primes. They have been
compiled using Microsoft Visual Studio 2012 and run on 64-bit Windows, where
the timings are obtained using the time stamp counter instruction rdtsc over
several thousand scalar multiplications. The implementations labeled (b) use
the NIST-like approach and have been compiled with gcc 4.6.3 to run on 64-bit
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Linux, where the timings are obtained using the SUPERCOP toolkit for mea-
suring the performance of cryptographic software (see [8]). The implementations
labeled (b) are made publicly available through [8]. Both (a) and (b) perform a
final modular inversion to ensure that the output point is in affine form: this is
the standard setting when computing a Diffie-Hellman key-exchange.
Results. Table 1 summarizes the performance and characteristics of various
genus g curve implementations. For the security estimate we assume that the
fastest attacks possible are the “generic algorithms”, where we specifically use
the complexity of the Pollard rho [49] algorithm that exploits additional auto-
morphisms [19,58]. If r is the largest prime factor of a group with #Aut au-
tomorphisms, we compute the security level s as s = log2(

√
πr

2#Aut). We also
indicate if the implementation runs in constant time, an important step towards
achieving side channel resistance [37].

The implementations in the top part of the table are obtained from eBACS,
except for [56] and [40]. The standardized NIST curves [56], one of which is at
a lower security level, are both obtained from the benchmark program included
in OpenSSL 1.0.1.4 The implementation from [40] is not publicly available, but
the authors gave us a precompiled binary which reported its own cycle count
so that we could report numbers obtained in our test-environment. All of these
implementations were run on our hardware.
Discussion. The first thing to observe from Table 1 is that the standard NISTp-
256 curve and the genus 2 curve “generic128” (see Section 4) offer the highest level
of security. This “generic” genus 2 implementation is our slowest performing im-
plementation, yet is it still 1.80 times faster than the NIST curve at the same
security level. Interestingly, all our Kummer and 4-dimensional GLV implemen-
tations manage to outperform the previous fastest genus 2 implementation [30].
Prior to this work, the fastest curve arithmetic reported on eBACS was due to
Bernstein [4], whilst Longa and Sica [40] held the overall software speed record
over prime fields. We note that the former implementation runs in constant time,
while the latter does not. Even though our GLV implementations do not currently
run in constant time, we note that they can be transformed into constant time im-
plementations following, for instance, the techniques from [40]. Our approach (b)
on the Kummer surface sets a new software speed record by breaking the 120k
cycle barrier for constant time implementations at the 128-bit security level.

We note that Table 1 reports implementations over prime fields only. For el-
liptic curves defined over quadratic extensions of large prime fields, Longa and
Sica [40] report a non-constant time scalar multiplication in 91,000 cycles on the
Sandy Bridge architecture, while their constant time version runs in 137,000 cycles.
Over binary fields, Aranha et al. [3] perform a scalar multiplication on the Koblitz
curve K-283 in 99,000 cycles on Sandy Bridge, while Oliveira et al. [47] recently
announced a new speed record of 75,000 cycles on the same architecture. We note
that both of these binary field implementations do not run in constant time.

4 Note, to enable this implementation, using the techniques described in [34], OpenSSL
needs to be configured using “./Configure enable-ec_nistp_64_gcc_128”.
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With respect to the different arithmetic approaches from Section 3, we con-
clude that when using the prime 2127 − 1, the NIST-like approach is the way
to go. In the more general comparison of 2128 − c1 versus 264 · (263 − c2) ± 1
for NIST-like and Montgomery-friendly primes respectively, we found that the
Montgomery-friendly primes outperform the former in practice. This was a sur-
prising outcome and we hope that implementers of cryptographic schemes will
consider this family of primes as well. The implementations (b) of “generic” and
Kummer highlight the practical advantage of the prime 2127 − 1 over the prime
2128− c1: in both instances the former is around 1.4 times faster than the latter.

8 Kummer Chameleons

In this section we explore curves that facilitate both efficient scalar multiplica-
tions on the Kummer surface and efficient scalar multiplications on the Jacobian
using a GLV decomposition. Such curves give cryptographers the option of tak-
ing either route depending on the protocol at hand: for Diffie-Hellman protocols,
working on the associated Kummer surface is the most efficient option, but if
the pseudo-addition law on the Kummer surface is insufficient, the GLV method
can be used on an associated curve. Since these curves can morph depending on
the scenario, we call them Kummer chameleons.

We primarily focus on the two families that facilitate 4-dimensional GLV
decompositions. We start with the FKT family of curves to show an unfortunate
drawback which prohibits us from using this Kummer/GLV duality over prime
fields. We then move to the BK family of curves which does allow this duality
in practice. For these special families, we also show the benefits of computing
the Kummer surface parameters analytically (i.e. over C). This approach tells us
when we can (or cannot) expect to find practical Kummer parameters using the
technique of extracting K from CRos in Section 5. It can additionally reveal when
we are likely to find small surface constants, which guarantees solid speedups in
practice. For an overview of computations involving the analytic Jacobian of a
hyperelliptic curve, we refer to [57].

Recognising Kummer Parameters Over C. We use an analytic approach to
assist us in generating Kummer surfaces which are associated to a particular CM
field. For each CM field, there is a collection of period matrices which correspond
to the isomorphism classes of Jacobians of genus 2 curves with CM by that field,
and thus with known possible group orders (see [57]). The theta functions can be
evaluated at these period matrices, and approximations of the complex values of
quotients of the associated theta constants can be used to recognize the minimal
polynomials that they satisfy.

Although it can be difficult to analytically recognize the theta constants them-
selves, for special families it is often possible to recognize quotients of certain
theta constants. In Tables 2 and 3, we give the minimal polynomials satisfied
by all of the parameters required for the Kummer surface implementation for
the FKT and BK families: the values E′, F , G, H which define the surface (see
Section 5), and the constants y0, z0, t0, y′0, z′0 and t′0 which are needed in the
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Table 2. Kummer parameters (and their minimal polynomials) over C for the FKT
family

K param. E F , G, H y0, t0 z0 y′
0, t′0 z′0

Value ∈ C 17 + 31i (3 + i)/2 1 1− i 3 + 4i −3− 4i

Min. poly. x2 − 34x+ 1250 2x2 − 6x+ 5 x− 1 x2 − 2x+ 2 x2 − 6x+ 25 x2 + 6x+ 25

doubling and pseudo-addition operations (see [10, §5]). The coefficients of these
minimal polynomials can be reduced modulo any prime p, so for any p for which
the polynomials have a consistent choice of roots modulo p, they can be used to
define a Kummer surface over Fp such that the associated group order of Jac(C)
is known (from the CM field).

The Kummer Surface of FKT Curves. For curves of the form y2 = x5+ax,
the complex values (and corresponding minimal polynomials) of the required
Kummer parameters are given in Table 2. We note that once we choose i =

√
−1

by sufficiently extending Fp (if necessary), all of the required constants are de-
termined. Observe that two of the six surface constants are 1, which immediately
results in two fewer multiplications (see [10, §5]).

Mapping points from the Kummer surface to the associated Jacobian(s) ac-
tually takes points on K to divisors on Jac(CRos) or Jac(C′Ros), where CRos :
y2 = x(x − 1)(x − λ)(x − μ)(x − ν), and for which we can also recognize the
Rosenhain invariants in C as λ = (i + 1)/2, μ = i and ν = i + 1. Now, if
p ≡ 1 (mod 4), then i =

√
−1 ∈ Fp and the Rosenhain model defined by those

values is defined over Fp. The curve C : y2 = x5 + ax can be rewritten as
y2 = x(x−α)(x+α)(x−αi)(x+αi), where α is a non-trivial fourth root of −a.
Clearly C and CRos can only be isomorphic over Fp if α ∈ Fp, which implies that
Jac(C) is isogenous over Fp to the product of two elliptic curves [21, Lemma
4]. Thus C is not suitable for cryptographic applications in this case, since the
group order of Jac(C) is a product of factors of at most half the size of the total.
If instead p ≡ 3 (mod 4), then i ∈ Fp2\Fp, and from Table 2 it follows that the
Kummer surface is defined over Fp2 , which destroys the arithmetic efficiency of
the group law algorithms. Therefore, we conclude that the FKT family does not
yield a secure and efficient Kummer surface over prime fields.

The Kummer Surface of BK Curves. For curves of the form y2 = x5 +
b, the minimal polynomials for the required Kummer parameters are given in
Table 3. Since these polynomials have degree larger than two, writing down the
correct root corresponding to each Kummer parameter becomes more involved.
Furthermore, these polynomials tell us that we can not expect any Kummer
constants to automatically be small. Nevertheless, they do help us deduce when
it is possible to find practical Kummer parameters. For example, t0 is a root
of Φ5(−x2), which does not have any roots in Fp when p ≡ 11 (mod 20), yet
splits into linear factors when p ≡ 1 (mod 20). In fact, all of the polynomials in
Table 3 split into linear factors in Fp for p ≡ 1 (mod 20); this agrees with our
experiments which always extracted working Kummer parameters for BK curves
when p ≡ 1 (mod 20), and always failed to do so when p ≡ 11 (mod 20).
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Table 3. Kummer parameters (and their minimal polynomials) over C for the Buhler-
Koblitz family

Kummer parameter Minimal polynomial
E, F x2 − 20x− 400, x8 − 11x6 + 46x4 − 96x2 + 121

G, H x8 − 11x6 + 46x4 − 96x2 + 121, x2 + x− 1

y0, z0 x4 − x3 + x2 − x+ 1, x8 − 4x6 + 6x4 + x2 + 1

t0, y′
0 x8 − x6 + x4 − x2 + 1, x4 − 16x3 + 46x2 − 16x+ 1

z′0, t′0 25x8 − 100x7 + 460x6 + 580x5 + 286x4 + 36x3 − 4x2 − 4x+ 1

The only minor drawback for the Kummer surface associated to the BK family
is that, for primes congruent to 1 modulo 5, if the 2-torsion of Jac(C) or Jac(C′)
is defined over Fp, then 5 divides at least one of the two group orders. Hence,
even in the best case the two group orders have cofactors of 16 and 80, which
means either the curve or its twist will be around 1 bit less secure than the
other. In this case, generators on the Kummer surface should be chosen which
map back to the curve with cofactor 16.

Kummer Chameleons with 2-dimensional GLV. Although we have focused
on two families of genus 2 curves that offer 4-dimensional GLV over prime fields,
there are many more families that offer 2-dimensional GLV [38,53,28]. We espe-
cially mention the family due to Mestre [41], which was studied further in [28,
§4.4]. This family might be particularly attractive since the techniques in [28]
make it practical to find twist-secure instances over Fp with p = 2127− 1. Work-
ing analytically, we observed that small Kummer constants are often obtained
if we take special instances of the families with efficiently computable RM. An
example from the family due to Tautz, Tops and Verberkmoes [54] (also see [38,
§5.1]) is the Kummer surface associated to the curve y2 = x(x4 − x2 +1), which
yields t0 = 1 over C, so the techniques in [28, §4.4] could be used (over many
primes) to find twist-secure curves that can take advantage of this.

9 Conclusions
We have given a taxonomy of the state-of-the-art in genus-2 arithmetic over
prime fields, with respect to its application in public-key cryptography. We
studied two different approaches to achieve fast modular arithmetic and imple-
mented these techniques in three settings: on “generic” genus-2 curves, on special
genus-2 curves facilitating 2-and 4-dimensional GLV decompositions, and on the
Kummer surface proposed by Gaudry [26]. Furthermore, we presented Kummer
chameleons ; curves which allow fast arithmetic on the Kummer surface as well
as efficient arithmetic on the Jacobian that results from a GLV decomposition.
Ultimately, we highlighted the practical benefits of genus-2 curves with our Kum-
mer surface implementation - this sets a new software speed record at the 128-bit
security level for computing constant time scalar multiplications compared to all
previous elliptic curve and genus-2 implementations.
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Abstract. We give three new algorithms to solve the “isomorphism of
polynomial” problem, which was underlying the hardness of recovering
the secret-key in some multivariate trapdoor one-way functions. In this
problem, the adversary is given two quadratic functions, with the promise
that they are equal up to linear changes of coordinates. Her objective is to
compute these changes of coordinates, a task which is known to be harder
than Graph-Isomorphism. Our new algorithm build on previous work in
a novel way. Exploiting the birthday paradox, we break instances of the
problem in time q2n/3 (rigorously) and qn/2 (heuristically), where qn is
the time needed to invert the quadratic trapdoor function by exhaustive
search. These results are obtained by turning the algebraic problem into
a combinatorial one, namely that of recovering partial information on
an isomorphism between two exponentially large graphs. These graphs,
derived from the quadratic functions, are new tools in multivariate crypt-
analysis.

1 Introduction

The notion of equivalent linear maps is a basic concept in linear algebra; two
linear functions f and g over vector spaces are equivalent if and only if there exist
two other linear bijective functions S and T such that f = T ◦g◦S. Geometrically
speaking, this means that f and g are essentially the same function, but with
coordinates expressed in different bases. The computational problem consisting
in testing the equivalence of two linear functions (given by matrices) is easy,
because it is well-known that two linear maps are equivalent if and only if they
have the same rank.

This notion of equivalent linear maps lends itself to an obvious generalization,
by dropping the requirement that the functions shall be linear. Then, given
two vector spaces U and V , of respective dimension n and m, two functions
f, g : U → V are said to be equivalent if there exist an invertible n×n matrix S
and an invertible m×m matrix T such that g = T ◦ f ◦S. Again, the geometric
interpretation of this notion is that g and f are “the same function”, up to linear
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changes of coordinates. However, deciding the equivalence of two such functions
is no longer easy in general.

The case where f and g are polynomial maps is particularly relevant, not
only because it is a natural generalization of the linear case, but also because f
and g admit a compact representation. It is understood that a polynomial map
f is such that each coordinate of the vector f(x) is a polynomial expression of
the coordinates of the vector x. Testing the equivalence of two polynomial maps
has been called the “Isomorphism of Polynomials” (IP) problem by Patarin in
1996 [28], and later the “Polynomial Linear Equivalence” (PLE) problem by
Faugère et al. in 2006 [19].

One aspect of PLE that makes it a bit difficult to study is that depending
on the parameters (dimensions and base field of the vector spaces, degree of
the polynomials, special restrictions, etc.), the problem can take very different
forms. We will thus focus on the case where the base field of the vector space is
finite (of size q), where polynomials are quadratic, and where their domain and
codomain are the same, i.e., where f, g : (Fq)

n → (Fq)
n
are quadratic maps. This

is the setting that appears in most cryptographic constructions. In the sequel we
will call this particular restriction the Quadratic Maps Linear Equivalence (QMLE)
problem. In order to make our exposition simpler, we will furthermore assume
that q, the size of the finite field, is a power of two. The theory of quadratic
forms presents itself very differently for odd characteristic and for characteristic
two, and in order not to expose two variants of each of our results, we chose the
most computer-oriented setting.

The first “multivariate” cryptographic schemes relied on a somewhat heuristic
construction to build Trapdoor One-Way Functions, whose security was based
on the hardness of QMLE. Starting with an easy-to-invert quadratic map f , one
builds an apparently random-looking one by setting g = T ◦ f ◦ S. The idea
is that the changes of coordinate would hide the structure of f that makes it
easy to invert, so that g would look random. Inverting random quadratic maps
is extremely hard, and the best options in general are exhaustive search (if q is
small), or the computation of a Groebner basis (when q is large), both techniques
being exponential in n. This construction backed one of the advertized goals of
multivariate cryptography, namely the ability to encrypt or sign n-bit blocks
while offering n bits of security, as opposed to, e.g. RSA.

In this setting, g (and eventually f) is the public key, while S and T are
the secret key. When f is public, then recovering the secret-key precisely means
solving an instance of QMLE. Several cryptosystems have been built on this
idea [6, 29, 41, 13], but they have all been broken [22, 18, 5, 26, 21]. The main
reason behind this fiasco is that the specific instances of QMLE exposed by these
schemes were weak because f was too special, so that polynomial-time and/or
efficient algorithms to crack them have eventually been designed.

In a different direction, Patarin also proposed to use the hardness of arbi-
trarily chosen instances of the PLE problem to design a public-key identifica-
tion scheme, thus potentially avoiding the aforementioned disaster. A prover,
who has generated a pair of private/public keys (PK, SK), wants to prove her
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identity to a verifier who knows PK. In fact the prover aims to convince that she
knows SK, but without revealing any information about SK to the verifier, or
to anybody else. In 1986, Goldreich, Micali and Wigderson [24] built an elegant
zero-knowledge proof system for Graph Isomorphism (GI) and used it to build an
identification scheme. There, PK is a pair of isomorphic graphs, and SK is the
isomorphism (a permutation of the vertices). In order for this system to be se-
cure, it must be hard to solve the instance of GI formed by the public-key. Despite
a large research effort, until now no algorithm has been able to solve instances
of GI in worst-case polynomial, which is certainly encouraging. However, most
instances of GI, and in particular random instances, are extremely easy to solve.
Thus, the identification scheme of [24] relied on a presumably hard problem for
which we do not know how to generate non-trivial instances...

Patarin’s suggestion was that Graph Isomorphism could be replaced by QMLE,
with the hope that random instances of the problem would then be hard, and
that key-generation would then be straightforward. There was apparently noth-
ing to lose with the new problem, because it was shown to be harder than GI [30].
Using random instances would in principle avoid the weak instances that had
been broken. The resulting QMLE-based identification scheme is not particu-
larly efficient, and does not enjoy very attractive key-sizes, but it is quite simple.
It also has a few interesting features compared to other identification schemes
based on NP-hard combinatorial problems such as [33–38]: most notably, it does
not require hash functions nor commitment schemes, and it does not require the
parties to share a (usually large) public common string describing an instance
of the NP-complete problem.

1.1 Related Work

The QMLE problem is reminiscent of the Even-Mansour cipher [17], which turns a
fixed n-bit permutation P into an n-bit block-cipher with 2n-bit key by setting
Ek1,k2(x) = P (x + k1) + k2. Attacks against this construction aim to recover
the keys while only having black-box access to E and P . One of its distinctive
features is that the performance of a successful adversary running in time t and
sending q queries is limited by t·q ≥ 2n, under the assumption that P is a random
permutation. The known attacks match this bound [12, 16]. As mentioned above,
the hardness of QMLE would allow a similar construction where a fixed and
public quadratic permutation P is turned into a public-key encryption primitive
ES,T = T ◦ P ◦ S. In this context, adversaries not only have oracle to E and P ,
but know their full description.

Essentially two non-trivial algorithms have been proposed so far for QMLE: the
“To-and-Fro”approach [30] on the onehand, and the“GroebnerBasis”approach [19]
on the other hand. There are also several, more efficient algorithms for the special
case where the secret T matrix is known to be the identity matrix [23, 32, 9, 27].
This sub-problem is alsoGI-hard, even in very restricted settings [1]. The article [2]
considers the particular case of testing whether two boolean functions are equal
modulo a permutation of their inputs. It shows that 2n/2 queries are necessary if
one only has black-box access to the boolean functions.
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Back to the full QMLE problem, the “To-and-Fro”algorithm, while being sim-
ple, was exposed on a toy example, without pseudo-code nor detailed analyzis.
We are convinced that the algorithm works when the polynomial maps f and
g are bijective, but it cannot work as-is when they are not (the authors of [19]
made the same observation). Note that a random polynomial map is not bijective
with overwhelming probability. As is it given in [30], the “to-and-fro” algorithm
is thus not applicable to random instances of QMLE. We found out that it is
nevertheless possible to adapt the algorithm to work in the non-bijective case,
but there are several ways to do so, and some are more efficient than others.
Figuring that out required some work, and exposing it requires some space, so
we will not go deeper into this issue in this paper. In any case, the authors of [30]
claim that the complexity of their algorithm is of order O

(
q2n
)
when q > 2 and

O
(
23n
)
when q = 2, and we agree with them. The algorithm was later indepen-

dently rediscovered under the form of a procedure to test the linear equivalence
of S-boxes [7].

The“Groebner basis”algorithm, on the other hand is not heuristic, and is well-
specified. It consists in identifying coefficient-wise the equation T−1 ◦ g = f ◦ S,
which relates two vectors of n quadratic forms. It is therefore equivalent to about
n3 quadratic equations in the 2n2 coefficients of the unknown changes of coordi-
nates. These equations are then solved through the computation of a Groebner
basis. The complexity of Groebner basis algorithms is notoriously tricky to study,
and the authors of [19] did not give any definitive results. However, they empiri-
cally observed an important fact, namely that when f and g are inhomogeneous
quadratic maps, i.e., when f and g contains non-zero linear and constant terms,
then their algorithm terminated in polynomial time O

(
n9
)
. In the homogeneous

case, the authors of [19] conjectured that their algorithm is subexponential, with-
out providing any argument nor any evidence that it is the case. This assertion
is impossible to verify in practice because the complexities are too high, but our
own reasoning makes us more inclined to believe that the algorithm is plainly
exponential. Assuming that the equations form a semi-regular sequence would
allow to estimate the complexity of the Groebner basis computation [4]; doing
so results in a total complexity of O

(
218n
)
, yet assuming that the equations are

semi-regular is probably a bit of a stretch. Establishing the complexity of this
algorithm is thus essentially an open problem.

In the sequel, we will nevertheless take for granted that inhomogeneous in-
stances of QMLE are tractable and can be solved in polynomial time, using the
“Groebner-based” algorithm for instance.

It must be noted that in [30], the existence of an algorithm based on the birth-
day paradox and running in time O

(
qn/2
)
is asserted, and that this algorithm is

itself partially described in [31], where it is called the “combined powers attack”.
This algorithm is sometimes acknowledged for in the literature (e.g. in [19]).
However, it is underspecified to the point that it is impossible to implement it,
and some of the bits that are specified have major problems. Some of them deter-
ministically fail to meet their goal, and the whole construction relies on heuristic
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assumptions that are empirically false (sometimes provably). This “algorithm”
should thus be disregarded.

1.2 Our Results

We give three algorithms to solve QMLE in the homogeneous case. All these
algorithms work by reducing the solution of a homogeneous (hard) instance into
that of one or several inhomogeneous (easy) instances after some preprocessing.
We will thus assume that we are given a (black-box) Inhomogeneous solver that
presumably works in polynomial time, and we will count the number of inho-
mogeneous queries sent to this oracle. We are well-aware that this assumption
is quite strong. The empirical success of the algorithm of [19] convinced us that
it works in polynomial-time on average, yet moving from there to “worst-case
polynomial time” seems like a leap of faith. However, this assumption eases our
exposition considerably, and in practice there does not seem to be any prob-
lem (probably because the queries sent to the inhomogeneous oracle are random
enough).

Our three algorithms differ by the number of queries they send to the oracle,
by the amount of computation they perform themselves, and by their success
probability.

Algo. Preprocessing Inhom. queries success prob.
1 qn 1
2 O

(
n3 · q2n/3

)
q2n/3 62%

3 O
(
n5 · qn/2

)
1 62 % only when q = 2

Algorithm 1 is deterministic, and essentially performs an exhaustive search in
(Fq)

n
, sending one inhomogeneous query per vector. Using the algorithm of [19]

to deal with the inhomogeneous instances, the resulting complexity is O
(
n9 · qn

)
,

which already improves on the “to-and-fro” algorithm of [30].
Algorithms 2 and 3 rely on the birthday paradox to improve on exhaustive

search and break the qn barrier. To this end, two exponentially large isomorphic
graphs are derived from the two quadratic maps. Recovering a bit of information
on an isomorphism allows to make the problem inhomogeneous, and thus easy to
solve. The trick is that this partial information must be extracted without know-
ing the full graphs, because they are too large. The construction of these graphs
borrows from the differential techniques that have broken SFLASH, amongst
others.

Algorithm 2 is relatively easy to analyze and we rigorously establish its com-
plexity and success probability when dealing with random instances of the prob-
lem. Algorithm 3 is more efficient but more sophisticated and harder to analyze
(as well as somewhat heuristic). We provide an as-rigorous-as-possible complex-
ity analysis under a conjecture on random quadratic maps, and we verify exper-
imentally that we are not off by too much.

Because our algorithms are exponential in n, we do not fully break Patarin’s
identification scheme (it is of no practical value anyway), even though its key-
sizes should in principle be doubled. The construction of a Trapdoor One-Way
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Function from QMLE outlined above has already been bludgeoned to death by
cryptanalysts, and it now lies on the autopsy table. We take the role of the med-
ical examiner that appears in every good police drama, only to discover that the
corpse had a fatal disease even before being brutally assaulted. We indeed believe
that our algorithms condemn this generic construction of a Trapdoor One-Way
Function post-mortem, and give a theoretical reason not to try again, besides the
obvious “they have all been broken” argument. Our algorithms indeed break the
QMLE instance and retrieve the secret-key (asymptotically) much faster than
inverting the quadratic map by exhaustive search. This shows in passing that
this construction can only offer n/2 bits of security, instead of the n that was its
original objective.

2 A First Algorithm Based on Dehomogenization

Confronted with a homogeneous instance of QMLE, our strategy throughout this
paper is to build an inhomogeneous instance admitting the exact same solutions.
This inhomogeneous instance can in turn be solved in polynomial time, and
reveals the solution(s) of the original problem. The downside of this approach is
that the image of S must be known at one arbitrary point of the vector space.
Indeed, if β = S · α, then:

∀x. g(x) = T · f(S · x) ⇐⇒ ∀x. g(x+ α) = T · f(S · x+ β).

Thus defining g′(x) = g(x+ α) and f ′ = f(x+ β) yields an equivalent problem,
i.e., an instance that has the same solutions as the original one. In addition, the
new instance is inhomogeneous. This follows from the simple observation that
although x2 is a homogeneous polynomial, (x+α)2 = x2 +2αx+α2 is not since
it has a non-trivial linear term αx and a non-trivial constant term α2.

It follows that solving (homogeneous) instances of QMLE essentially boils
down to finding Sα, for some known and non-zero vector α. Exhaustive search
is the first option that comes to mind, leading to Algorithm 1. This algorithm
sends qn queries to the inhomogeneous solver in the worst case, and finds the so-
lutions when they exist. This algorithm terminates with probability one in time
O
(
n9 · qn

)
if the Groebner-based algorithm of [19] is used to solve the inhomoge-

neous instances. Despite being extremely simple, Algorithm 1 is asymptotically
qn times faster than to the “to-and-fro” algorithm of [30].

This dehomogenization technique exposes a crucial asymmetry in the problem:
it is apparently much more critical to obtain knowledge on S than on T . This is
not new: the “To-and-Fro” algorithm relies on the ability to transfer knowledge
of a relation β = S · α to a relation g(α) = T · f(β).

3 Moving the Problem into a Graphic World

Using the birthday paradox is a natural idea to improve on exhaustive search
algorithms in many scenarii, with the hope to halve the exponent in the com-
plexity. Here, we wish to use the birthday paradox to obtain the image of S at
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Algorithm 1. Simple algorithm based on dehomogenization

function Exhaustive-Dehomogenization(f,g)
x← random non-zero vector in (Fq)

n

for all 0 �= y ∈ (Fq)
n do

f ′(z)← f(z + y)
g′(z)← g(z + x)
query IQMLE-Solver with (f ′, g′′)
if solution (S, T ) found then return (S, T )

return “Not Equivalent”

one point, and build a dehomogenized instance, just as we did in the previous
section. One difficulty is that we want to focus only on S, and leave T alone. To
this end, we introduce a tool which is, to the best of our knowledge, new. We
associate a graph Gh to any quadratic map h : (Fq)

n �→ (Fq)
n
. Its vertices are

the elements of (Fq)
n, and there is an edge between x, y ∈ (Fq)

n if and only if
h(x+ y) = h(x) + h(y). To some extent, Gh expresses the “linear behavior” of h
(even though h is not linear) and thus we call these graphs the “linearity graphs”
of the associated quadratic maps.

These graphs are natural objects associated to quadratic maps. For instance,
the distinguisher of [15] to determine whether a given quadratic map f is an
HFE public key can be rephrased as follows: pick a random node in Gf , and
count its neighbors. If their number exceeds a given bound (which depends on
the degree of the internal HFE polynomial), then return “random”, else return
“HFE”.With the right bound on the number of neighbors, this algorithm achieves
subexponential advantage.

The essential interest of linearity graphs for our purposes is that the two
graphs Gf and Gg are connected by the secret matrix S.

Lemma 1. If T ◦g = f ◦S then S is a graph isomorphism that sends Gf to Gg.

Proof. Indeed, if x↔ y in Gg, then by definition g(x+ y) = g(x) + g(y), and it
follows that T ◦ g(x+ y) = T ◦ g(x) + T ◦ g(y), and thus that f(S · x+ S · y) =
f(S · x) + f(S · y). This in turn means that S · x ↔ S · y in Gf . It follows that
S is a graph isomorphism between Gf and Gg.

Linearity graphs thus allows a formulation of the problem where the other secret
matrix T is no longer present. We have two (exponentially large) isomorphic
graphs Gf and Gg, and we ultimately need to recover the whole isomorphism
S. However, thanks to the dehomogenization technique of the previous section,
and thanks to the ease with which inhomogeneous instances can be solved, it
turns out that recovering just a little bit of information on the isomorphism
is enough to find it completely. More precisely, we just need to know how the
isomorphism S transforms one arbitrary vertex.

Of course, completely building these graphs is prohibitively expensive (they
have qn vertices). It turns out that this is never necessary, because it is possible
to walk in these graphs without fully knowing them.
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Walking in Linearity Graphs. The function ψ(x, y) = f(x+y)+f(x)+f(y)
is a generalization of the polar form of a quadratic form to vectors thereof, in
characteristic two. It is easy to check that ψ is bilinear. Given a (non-zero) vertex
x ∈ (Fq)

n in the graph, the function:

Dxf : y �→ ψ(x, y) = f(x+ y) + f(x) + f(y)

is a familiar object in multivariate cryptology, called the Differential of f at
x [20, 15, 14, 22]. It is a linear function from (Fq)

n
to (Fq)

n
, which is then

conveniently represented by a matrix. The set of nodes adjacent to x in Gf is in
fact the kernel of Dxf . Note that x always belong to kerDxf , because x+x = 0.
The main reason we chose to focus on the case where q = 2e is that this fact is
not true when q is not a power of two.

The matrix Dxf is easy to compute given f and x. If f is a (homogeneous)
quadratic map, then it is in fact a vector of n quadratic forms, which can conve-
niently be described by a collection of n matrices F1, . . . , Fn, that are interpreted
as follows: Fk[i, j] is the coefficient of xixj in the k-th component of f . If tM
denotes the transpose of M , then the matrix representation of the differential of
f at x is given by:

Dxf =

⎛⎝x · (F1 +
tF1) . . . x · (Fn + tFn)

⎞⎠ .

Thus, given a vector x, finding the neighbors of x in Gf can be done in time
O
(
n3
)
: computing the matrix Dxf requires n matrix-vector products, and deter-

mining its kernel classically takes O
(
n3
)
operations. It is thus possible to crawl

the linearity graphs by spending a polynomial number of elementary operations
on each traversed vertex.

Structure in Linearity Graphs. Linearity graphs possess a rich structure,
thanks to their algebraic origin. Recall that in Gf , two nodes x and y are adja-
cent if ψ(x, y) = 0, where ψ is the symmetric bilinear map defined above. The
bilinearity of ψ induces a lot of structure in Gf . For instance, we always have
ψ(x, x) = 0, and by bilinearity ψ(λx, μx) = λμψ(x, x) = 0, so that the q mul-
tiples of a vector x form a clique in Gf . The set of all multiples of x are thus
topologically indifferentiable (they all have the exact same neighborhood).

Furthermore, the same reasoning shows that if two vectors x and y are adjacent
in Gf , then the set of q2 linear combinations λx + μy form a clique in Gf of
size q2.

Degree Distribution. If a quadratic map f is randomly chosen (amongst the
finite number of possibilities), then the resulting linearity graph Gf follows a
certain —mostly unknown— probability distribution, and any property of Gf

can be seen as a random variable. One of the most interesting properties of Gf

is the distribution of the degree (i.e., of the number of neighbors) of vertices in
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Gf . This result is stated in terms of the probability that a random n×n matrix
over Fq is invertible. We denote it by λ(n):

λ(n) =
n∏

i=1

(
1− 1

qi

)
Lemma 2 (theorem 2 in [15]). Let x ∈ (Fq)

n
be a non-zero vector, and f :

(Fq)
n → (Fq)

n be a uniformly random quadratic map. Then Dxf is a uniformly
random matrix vanishing over x. As a consequence, the probability that Dxf has
a kernel of dimension k ≥ 1 is:

λ(n)λ(n − 1)

λ(k)λ(k − 1)λ(n− k)
q−k(k−1)

Because λ(n) is a decreasing function of n that converges to a finite limit bounded
away from zero, then the ratio of the λ-expressions lives in a small interval,
independently of q, n and k, so that the probability is in fact of order q−k(k−1).
Of course, over Fq, a k-dimensional vector space contains qk elements, so that if
dimkerDxf = k, then the vertex x has qk neighbors.

Sparsity. Computing the expectation and the variance of the degree is technical,
but feasible:

E [degree] = q − 1

qn−2
σ2 = q2(q − 1)

(
1− q2 + 1

qn
+

q2

q2n

)
Establishing these two expressions is somewhat technical, yet because both are
sums of q-hypergeometric terms, they can be computed by “creative telescoping”
thanks to the q-analog of Zeilberger’s algorithm [42]. It follows that the expected
number of edges of Gf is essentially qn+1/2. In other terms, Gf is a very sparse
graph that has barely more edges than it has vertices.

Disconnecting Linearity Graphs. A linearity graph Gf is fully connected,
because all vertices are adjacent to the “zero” vertex. This “zero” vertex is not
very interesting (since it is adjacent to every other vertex), and, as a matter of
fact, it even turns out to be a bit annoying. Thus, it seems that there is nothing
to lose by removing it. In addition, we could also get rif of the self-loops ; they
are useless since every vertex has one.

We thus denote by G∗f the simple graph Gf in which the zero vertex has been
removed, and where self-edges are removed. It is interesting to note that the
resulting graph is no longer connected, and that there are in fact very many
connected components. Indeed, if dimkerDxf = 1, then the only neighbors of x
are its multiples, and x belong to a connected component of size q− 1. Lemma 2
tells us that this happens with probability λ(n)/λ(1), and this converges to a
finite limit bounded away from zero when n goes to infinity. Thus, a constant
fraction of the vertices belong to “small” connected components of size q − 1.
Working a bit on the λ functions reveals that this proportion grows like 1−1/q2.
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4 Just Count Your Neighbors

It is well-know that if two graphs (V1, E1) and (V2, E2) are isomorphic, and if
ρ is an isomorphism between them, then u ∈ V1 and ρ(u) ∈ V2 have the same
degree, i.e., the same number of neighbors. It follows that if u ∈ V1 and v ∈ V2
do not have the same degree, then they cannot be related by ρ.

We adapt this simple idea in the context of QMLE, under the form of Algo-
rithm 2. The main idea in this algorithm is to target vertices in the linearity
graphs of f and g that have a specific degree: we only look for a “right pair”
y = S · x amongst vertices x, y that have a prescribed degree (chosen to opti-
mise the complexity of the algorithm). The remaining of this section is devoted
to establishing the properties of this algorithm, which are summarized in the
following theorem.

Algorithm 2. First Birthday Based Algorithm

1: function SampleSet(h)
2: L← ∅
3: repeat
4: repeat
5: x← random vertex of Gh

6: until x has q
√

n/3 neighbors
7: L← L ∪ {x}
8: until |L| =

√
2qn/3

9: return L

10: function Neighbor-Counting-QMLE(f, g)
11: U ← SampleSet (f)
12: V ← SampleSet (g)
13: for all (x, y) ∈ U × V do
14: f ′(z)← f(z + y)
15: g′(z)← g(z + x)
16: query IQMLE-Solver with (f ′, g′)
17: if solution (S, T ) found then return (S, T )

18: return “Probably not equivalent”

Theorem 1. Algorithm 2 performs O
(
q2n/3

)
units of computations on aver-

age, sends at most q2n/3 queries to the inhomogeneous solver, and succeeds with
probability 1− 1/e.

The helper function SampleSet returns a set of O
(
qn/3
)
vertices of Gf (resp.

Gg), each having q
√

n/3 neighbors in the graph. It follows that there are q2n/3

queries to the inhomogeneous solver, because this is the size of the cartesian
product U × V .

It remains to establish the complexity of SampleSet, and the success prob-
ability of the algorithm. As explained above, since we are looking for a “right
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pair” y = S · x, it is safe to restrict our attention to vertices x, y that have a
specific degree (as long as vertices with such a degree exist in the graphs).

Lemma 2 gives us the expected number iterations of the innermost loop of
SampleSet that are required to find a random vertex with the required degree.
Up to a constant factor, finding a vertex with degree qk requires qk(k−1) trials,
so that finding each new random vertex requires O

(
qn/3
)
rank computations on

n× n matrices, hence O
(
n3 · qn/3

)
operations.

Lemma 2 also tells us that there are on average qn−k(k−1) vertices in Gf

each having degree qk. In Algorithm 2 we look specifically at vertices of degree

q
√

n/3, and we thus expect Gf to contain q2n/3 of them. Since the number of
iterations of the outermost repeat...until loop is roughly the square root of this
number, we do not expect more than a constant number of “extra” iterations
finding an already-known vector x. Putting everything together, we conclude
that SampleSet terminates after O

(
n3q2n/3

)
operations.

Now, the birthday bound tells us that U × V contains a “right pair” y = Sx
with probability greater than 63%, because both U and V contain about the

square root of the total number of vertices with degree q
√

n/3 (see [39] for a
precise statement of this specific version of the birthday paradox).

Practical Results. We have implemented Algorithm 2 inside the MAGMA
computer algebra system[8], running on one core of a 2.8 Ghz Xeon machine. As
shown in Table 1, we found out that in practice it is difficult to balance the cost
of building U and V on the one hand, and going through the candidate pair on
the other hand, because the target degree can only take

√
n integer values. We

could nevertheless verify in practice that the complexity of building the lists and
the expected number of right pairs in them is consistent with our expectations.
The source code is in the public domain, and is available on the webpage of
the first author. It uses an unpublished algorithm to solve the inhomogeneous
instances.

Table 1. Experimental results on Algorithm 2

n q generating U and V total time logq (target degree) |U | # pairs

16 2 0s 68s 3 1 4

22 2 28s 9h45m 4 13 400

28 2 4913s 2h15m 5 8 64

5 Map Your Neighborhood

We have seen in section 3 that the linearity graphs, once deprived from the“zero”
vertex, contain many small connected components. Of course, if y = Sx, then
the connected component of x is isomorphic to the connected component of y.
In this section, we describe an algorithm that builds upon this idea—instead of
just looking at immediate neighbors, as we did in algorithm 2, we now try to
look at the whole connected component, in order to distinguish between vertices
of the same degree.
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Canonical Graph Labeling. Given a graph G, a Canonical Labeling algo-
rithm relabels the vertices of G, thus producing a graph Canon(G), which is by
definition isomorphic to G. The result is canonical in the sense that if G and H
are isomorphic graphs, then Canon(G) = Canon(H). The canonical labels are
therefore complete invariants of the isomorphism class, and as such, computing
a canonical labeling is necessarily harder than checking if two graphs are iso-
morphic. However, computing a canonical labeling can be done in average linear
time [3], because except for an exponentially small fraction of all graphs, it can
be done with a very simple linear algorithm.

Back to our more specific problem, let us denote by Cx (resp Cy) the connected
component of x in G∗f (resp. of y in G∗g). The key idea of the algorithm presented
in this section is that y = Sx implies Canon(Cx) = Canon(Cy). Thus, it seems
that the function H : u �→ Canon(Cu) could be used as a “hash function”. In
fact, in algorithm 2, we used the degree as such a “hash function”, but it was
not very discriminating, because the degree does not contain enough entropy.
We hope that H behaves as a good hash function, and that false positives, i.e.,
pairs (x, y) such that H(x) = H(y) but y �= Sx, should be very rare.

One problem is that H does not distinguish between vertices of the same con-
nected component. To improve it, we would need a way to single out a specific
vertex in the connected component. Fortunately, most canonical labeling algo-
rithm return the isomorphism (say ρ) between their argument G and Canon(G).
To single a vertex x out in G, it is sufficient to send ρ(x) along with the canonical
labeling of G.

A Canonical-Labeling-Based Algorithm. As discussed in section 3, G∗f con-
tains many small connected components that are all isomorphic to each others,
since they are all cliques of size q− 1. Therefore, if we want our “hash function”
to be discriminating, we must avoid small connected components. Our “hash
function” will thus reject the vector x if there is no simple path starting from x
and of length at least r. In the other direction, we cannot exclude the existence
of a giant connected component of exponential size. Therefore, we only consider
the radius-r neighborhood of the vertex x we are interested in, i.e., the set of
all vertices that can be reached from x by crossing at most r edges. This is the
basis of algorithm 3.

Remarks on Algorithm 3. Establishing the complexity and success probabil-
ity of algorithm 3 is surprisingly difficult, probably because is relies on topological
properties of G∗f , which is a somewhat random but very structured graph.

Algorithm 3 has been written in a generic way, independently of the actual
value of q. However, we have only been able to discuss its properties when q = 2.
We have verified that the algorithm works as we expected in this case, but the
situation when q �= 2 is not so clear. We tend to believe that the complexity
and/or success probability degrade exponentially fast when q grows, but we fall
short of definitive conclusion.
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Algorithm 3. Canonical Labeling/Birthday Based Algorithm

1: function Hashable
[r](G, x)

2: Perform a Breadth-First Search in G starting from x
3: return True if the BFS hits a vertex r edges away from x

4: function H
[r](G, x)

5: Cx ← subgraph of G formed by all vertices at most r edges away from x.
6: ρ,G ← CanonicalLabeling(Cx)
7: return

(
G, ρ(x)

)
8: function SampleHashTable(h)
9: L← ∅
10: repeat
11: repeat
12: x← random vertex of G∗

h

13: until Hashable
[r](G∗

h, x)

14: L
[
H

[r] (G∗
h, x))

]
← x

15: until |L| =
√
2qn/2

16: return L

17: function Canonical-Labeling-QMLE(f, g)
18: U ← SampleHashTable (f)
19: V ← SampleHashTable (g)
20: for all (h1 �→ x) ∈ U, (h2 �→ y) ∈ V such that h1 = h2 do
21: f ′(z)← f(z + y)
22: g′(z)← g(z + x)
23: query IQMLE-Solver with (f ′, g′)
24: if solution (S, T ) found then return (S, T )

25: return “Probably not equivalent”

When q = 2, the structure of G∗f seems to be richer. For instance, we already
alluded to the fact that the fraction of nodes whose connected component is
of size only q − 1, grows like 1 − 1/q2. In addition, as we will see in the next
section, setting q = 2 allows us to turn most more-or-less-random graphs into
trees, which are much easier to deal with.

Preliminary Analysis of Algorithm 3. When q = 2, the correctness of the
algorithm is implied by the following three heuristic statements.

Claim. i) Hashable
[r]
(
G∗f , x

)
is true with probability ≈ 1/r over the random

choice of f (assuming x �= 0).

ii) Both Hashable
[r] and H

[r] can be evaluated in expected time O
(
rn3
)
.

iii) When restricted to elements that are Hashable
[r], then H

[r]
(
G∗f , ·

)
is an

εr-almost universal hash function family (indexed by f) for some ε < 1.
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The notion of almost universal hash function is usually useful when the hash
function is “less injective”than a random function. In this paper though, H[r] can
become more injective than a random function, as soon as r becomes sufficiently
large.

It follows from claim i that the expected number of iterations of the loop of
lines 11–13 is O (r), and it follows from claim ii that finding one admissible vector
x requires O

(
r2n3
)
operations on average. Claim iii then guarantees that if we

choose r to be a bit larger than n, then the probability to find hash collisions can
be made smaller than 2−n, and standard birthday-type results guarantee that
the number of expected hash collisions in the execution of SampleHashTable

is constant. From this, we conclude that SampleHashTable runs in expected
time O

(
r2n3qn/2

)
.

It follows from the birthday paradox [39] that there is a “right pair” in U ×V ,
i.e., a pair (x, y) with y = Sx, with probability greater than 1 − 1/e. This is
because (Fq)

n has qn elements and that the sizes of both U and V are essentially
qn/2. This guarantees the success probability of the algorithm.

Let us denote by N the number of bogus inhomogeneous queries, i.e., the
number of pairs x �= y ∈ U × V with the same hash. It follows from Markov’s
inequality and claim iii that P [N ≥ 1] ≤ 2qn · εr. Thus, as soon as r is asymp-
totically larger than n, e.g. r = n log logn, then the probability that N ≥ 1 gets
exponentially small. This concludes our preliminary analysis: algorithm 3 runs
in time O

(
n5qn/2

)
, and sends a constant number of inhomogeneous queries. It

now remains to show that our claims are valid, but we first find it reassuring
to show that the practical behavior of the algorithm is very consistent with our
expectations.

Discussion of the Claims. Because of space limitations, we discuss these
claims in the extended version of the paper [10].

Experimental Results. We have implemented Algorithm 3 using the MAGMA
computer algebra system [8], and we found out that it works well in practice, as
Table 2 shows. The experiment clearly shows that N is constant, as expected.
This justify our heuristic analysis a posteriori. The implementation is in the
public domain and is available on the webpage of the first author.

Table 2. Experimental results on Algorithm 3

n q generating U and V finding collisions |U | N
16 2 3.6 s 1s 64 6

24 2 123 s 13s 836 5

32 2 61 min 200s 11585 2

40 2 31 h 2h 165794 7
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tation of semi-regular overdetermined algebraic equations. In: Proc. International
Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)

5. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of the trms signature scheme
of pkc’05. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 143–
155. Springer, Heidelberg (2008)

6. Billet, O., Gilbert, H.: A traceable block cipher. In: Laih, C.-S. (ed.) ASIACRYPT
2003. LNCS, vol. 2894, pp. 331–346. Springer, Heidelberg (2003)

7. Biryukov, A., Cannière, C.D., Braeken, A., Preneel, B.: A toolbox for cryptanalysis:
Linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

8. Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User
Language. J. Symb. Comput. 24(3/4), 235–265 (1997)

9. Bouillaguet, C., Faugère, J.-C., Fouque, P.-A., Perret, L.: Practical cryptanalysis of
the identification scheme based on the isomorphism of polynomial with one secret
problem. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 473–493. Springer, Heidelberg (2011)
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Abstract. In this article we propose a new cryptanalysis method for
double-branch hash functions that we apply on the standard RIPEMD-128,
greatly improving over know results. Namely, we were able to build a very
good differential path by placing one non-linear differential part in each
computation branch of the RIPEMD-128 compression function, but not
necessarily in the early steps. In order to handle the low differential prob-
ability induced by the non-linear part located in later steps, we propose
a new method for using the freedom degrees, by attacking each branch
separately and then merging them with free message blocks. Overall,
we present the first collision attack on the full RIPEMD-128 compression
function as well as the first distinguisher on the full RIPEMD-128 hash
function. Experiments on reduced number of rounds were conducted,
confirming our reasoning and complexity analysis. Our results show that
16 years old RIPEMD-128, one of the last unbroken primitives belonging
to the MD-SHA family, might not be as secure as originally thought.

Keywords: RIPEMD-128, collision, distinguisher, hash function.

1 Introduction

Recent impressive progresses in hash function cryptanalysis [25,28,29,27] led to
the fall of most standardized primitives, such as MD4, MD5, SHA-0 and SHA-1. All
these algorithms share the same design rationale for their compression functions
(i.e. they incorporate additions, rotations, xors and boolean functions in an un-
balanced Feistel network), and we usually refer to them as the MD-SHA family. As
of today, among this family only SHA-2, RIPEMD-128 and RIPEMD-160 remain
unbroken.

The notation RIPEMD represents several distinct hash functions related to the
MD-SHA-family, the first representative being RIPEMD-0 [2] that was recommended
in 1992 by the European RACE Integrity Primitives Evaluation (RIPE) consor-
tium. Its compression function basically consists in two MD4-like [20] functions
computed in parallel (but with different constant additions for the two branches),
with 48 steps in total. Early cryptanalysis by Dobbertin on a reduced version

� Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06).

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 228–244, 2013.
c© International Association for Cryptologic Research 2013
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of the compression function [9] seemed to indicate that RIPEMD-0 was a weak
function and this was fully confirmed much later by Wang et al. [27] who showed
that one can find a collision for the full RIPEMD-0 hash function with as few as
216 computations.

However, in 1996, due to the cryptanalysis advances on MD4 and on the com-
pression function of RIPEMD-0, the original RIPEMD-0 was reinforced by Dob-
bertin, Bosselaers and Preneel [10] to create two stronger primitives RIPEMD-128
and RIPEMD-160, with 128/160-bit output and 64/80 steps respectively (two
other less known 256 and 320-bit output variants RIPEMD-256 and RIPEMD-320

were also proposed, but with a claimed security level equivalent to an ideal
hash function with a twice smaller output size). The main novelty compared
to RIPEMD-0 is that the two computation branches were made much more dis-
tinct by using not only different constants, but also different rotation values
and boolean functions, which greatly hardens the attacker’s task in finding good
differential paths for both branches at a time. The security seems to have in-
deed increased since as of today no attack is known on the full RIPEMD-128 or
RIPEMD-160 compression/hash functions and the two primitives are worldwide
ISO/IEC standards [12].

Even though no result is known on the full RIPEMD-128 and RIPEMD-160

compression/hash functions yet, many analysis were conducted in the recent
years. In [17], a preliminary study checked up to what extent can the known
attacks [27] on RIPEMD-0 apply to RIPEMD-128 and RIPEMD-160. Then, following
the extensive work on preimage attacks for MD-SHA family, [21,19,26] describe high
complexity preimage attacks on up to 36 steps of RIPEMD-128 and 31 steps of
RIPEMD-160. Collision attacks were considered in [16] for RIPEMD-128 and in [15]
for RIPEMD-160, with 48 and 36 steps broken respectively. Finally, distinguishers
based on non-random properties such as second-order collisions are given in
[16,22,15], reaching about 50 steps with a very high complexity.

Our Contributions. In this article, we introduce a new type of differential
path for RIPEMD-128 using one non-linear differential trail for both left and right
branches and, in contrary to previous work, not necessarily located in the early
steps (Section 3). The important differential complexity cost of these two parts
is mostly avoided by using the freedom degrees in a novel way: some message
words are used to handle the non-linear parts in both branches and the remain-
ing ones are used to merge the internal states of the two branches (Section 4).
Overall, we obtain the first cryptanalysis of the full 64-round RIPEMD-128 hash
and compression functions. Namely, we provide a distinguisher based on a differ-
ential property for both the full 64-round RIPEMD-128 compression function and
hash function (Section 5). Previously best-known results for non-randomness
properties only applied to 52 steps of the compression function, 48 steps of the
hash function. More importantly, we also derive a semi-free-start (SFS) collision
attack on the full RIPEMD-128 compression function (Section 5), significantly
improving the previous free-start (FS) collision attack on 48 steps. Any further
improvement of our techniques is likely to provide a practical SFS collision attack
on the RIPEMD-128 compression function. In order to increase the confidence in
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Table 1. Summary of known and new results on RIPEMD-128 hash function

Function Size Key Setting Target #Steps Complexity Ref.
RIPEMD-128 128 comp. function preimage 35 2112 [19]
RIPEMD-128 128 hash function preimage 35 2121 [19]
RIPEMD-128 128 hash function preimage 36 2126.5 [26]
RIPEMD-128 128 comp. function collision 48 240 [16]
RIPEMD-128 128 comp. function collision 60 257.57 new
RIPEMD-128 128 comp. function collision 63 259.91 new
RIPEMD-128 128 comp. function collision Full 261.57 new
RIPEMD-128 128 hash function collision 38 214 [16]
RIPEMD-128 128 comp. function non-rand. 52 2107 [22]
RIPEMD-128 128 comp. function non-rand. Full 259.57 new
RIPEMD-128 128 hash function non-rand. 48 270 [16]
RIPEMD-128 128 hash. function non-rand. Full 2105.40 new

our reasoning, we implemented independently the two main parts of the attack
(the merge and the probabilistic part) and the observed complexity matched our
predictions. Our results and previous works complexities are given in Table 1 for
comparison.

2 Description of RIPEMD-128

RIPEMD-128 [10] is a 128-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash functionH is built by iterating
a 128-bit compression function h that takes as input a 512-bit message block mi

and a 128-bit chaining variable cvi: cvi+1 = h(cvi,mi), where the message m
to hash is padded beforehand to a multiple of 512 bits1 and the first chaining
variable is set to a predetermined initial value cv0 = IV .

We refer to [10] for a complete description of RIPEMD-128. In the rest of this
article, we denote by [Z]i the i-th bit of a word Z, starting the counting from 0.
� and � represent the modular addition and subtraction on 32 bits, and ⊕, ∨,
∧, the bitwise “exclusive or”, the bitwise “or”, and the bitwise “and” function
respectively.

2.1 RIPEMD-128 Compression Function

The RIPEMD-128 compression function is based on MD4, with the particularity
that it uses two parallel instances of it. We differentiate these two computation
branches by left and right branch and we denote by Xi (resp. Yi) the 32-bit
word of left branch (resp. right branch) that will be updated during step i of the
compression function. The process is composed of 64 steps divided into 4 rounds
of 16 steps each in both branches.

Initialization. The 128-bit input chaining variable cvi is divided into 4 words
hi of 32 bits each, that will be used to initialize the left and right branch 128-bit

1 The padding is the same as for MD4: a “1” is first appended to the message, then
x “0” bits (with x = 512 − (|m| + 1 + 64 (mod 512))) are added, and finally the
message length |m| coded on 64 bits is appended as well.
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internal state: X−3 = h0, X−2 = h1, X−1 = h2, X0 = h3, Y−3 = h0, Y−2 = h1,
Y−1 = h2, Y0 = h3

The Message Expansion. The 512-bit input message block is divided into
16 words Mi of 32 bits each. Each word Mi will be used once in every round
in a permuted order (similarly to MD4) and for both branches. We denote by
W l

i (resp. W r
i ) the 32-bit expanded message word that will be used to update

the left branch (resp. right branch) during step i. We have for 0 ≤ j ≤ 3 and
0 ≤ k ≤ 15: W l

j·16+k = Mπl
j(k)

and W r
j·16+k = Mπr

j (k)
, where πlj and πrj are

permutations.

The Step Function. At every step i, the registers Xi+1 and Yi+1 are updated
with functions f lj and f rj that depends on the round j in which i belongs:

Xi+1 = (Xi−3 � Φl
j(Xi, Xi−1, Xi−2)�W l

i �K l
j)

≪sli ,

Yi+1 = (Yi−3 � Φr
j(Yi, Yi−1, Yi−2)�W r

i �Kr
j )

≪sri ,

where K l
j,K

r
j are 32-bit constants defined for every round j and every branch,

sli, s
r
i are rotation constants defined for every step i and every branch, Φl

j , Φ
r
j are

32-bit boolean functions defined for every round j and every branch. All these
constants and functions, as well as the IV and the permutations πlj and πrj can
be found in the original RIPEMD-128 documentation [10].

The Finalization. A finalization and a feed-forward is applied when all 64
steps have been computed in both branches. The four 32-bit words h′i composing
the output chaining variable are finally obtained by: h′0 = X63 � Y62 � h1,
h′1 = X62 � Y61 � h2, h

′
2 = X61 � Y64 � h3, h

′
3 = X64 � Y63 � h0

3 A New Family of Differential Paths for RIPEMD-128

3.1 The General Strategy

The first task for an attacker looking for collisions in some compression function
is to set a good differential path. In the case of RIPEMD and more generally
double or multi-branches compression functions, this can be quite a difficult task
because the attacker has to find a good path for all branches at the same time.
This is exactly what multi-branches functions designers are hoping: it is unlikely
that good differential paths exist in both branches at the same time when the
branches are made distinct enough (note that the weakness of RIPEMD-0 is that
both branches are almost identical and the same differential path can be used
for the two branches at the same time).

Differential paths in recent collision attacks on MD-SHA family are composed
of two parts: a low probability non-linear part in the first steps and a high prob-
ability linear part in the remaining ones. Only the latter will be handled proba-
bilistically and impact the overall complexity of the collision finding algorithm,
since during the first steps the attacker can choose message words independently.
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This strategy proved to be very effective because it allows to find much better
linear parts than before by relaxing many constraints on them. The previous
approaches for attacking RIPEMD-128 [17,16] are based on the same strategy,
building good linear paths for both branches, but without including the first
round (i.e. the first 16 steps). The first round in each branch will be covered by
a non-linear differential path and this is depicted left in Figure 1. The collision
search is then composed of two subparts, the first handling the low-probability
non-linear paths with the message blocks (step 1 and then the remaining steps
in both branches are verified probabilistically (step 2 ).

cvi cvi+1

Linear
Non

Linear

1 2

Linear
Non

Linear

1 2

cvi cvi+1

0 Linear
Non

Linear

1 32

Linear
Non

Linear

1 32

Fig. 1. The previous (left-hand side) and new (right-hand side) approach for collision
search on double-branch compression functions

This differential path search strategy is natural when one will handle the
non-linear parts in a classic way (i.e. computing only forward) during the col-
lision search, but in Section 4 we will describe a new approach for using the
available freedom degrees provided by the message words in double-branch com-
pression functions (see right in Figure 1): instead of handling the first rounds
of both branches at the same time during the collision search, we will satisfy
them independently (step 1 ), then use some remaining free message words to
merge the two branches (step 2 ) and finally handle the remaining steps in both
branches probabilistically (step 3 ). This new approach broadens the search area
of good linear differential parts, and provides us better candidates in the case of
RIPEMD-128.

3.2 Finding a Good Linear Part

Since any active bit in a linear differential path (i.e. a bit containing a difference)
is likely to cause many conditions in order to control its spread, most success-
ful collision searches start with a low-weight linear differential path, therefore
reducing the complexity as much as possible. RIPEMD-128 is no exception, and
because every message word is used once in every round of every branch in
RIPEMD-128, the best would be to insert only a single-bit difference in one of
them. This was considered in [16], but the authors concluded that none of all
single-word differences leads to a good choice and they eventually had to utilize
one active bit in two message words instead, therefore doubling the amount of
differences inserted during the compression function computation and reducing
the overall number of steps they could attack. By relaxing the constraint that
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both non-linear parts must necessarily be located in the first round, we show
that a single-word difference in M14 is actually a very good choice.

Boolean Functions. Analyzing the various boolean functions in RIPEMD-128

rounds is very important. Indeed, there are three distinct functions: XOR, ONX and
IF, with all very distinct behavior. The function IF is non-linear and can absorb
differences (one difference on one of its input can be blocked from spreading to
the output by setting some appropriate bit value conditions). In other words,
one bit difference in the internal state during an IF round can be forced to create
only a single bit difference 4 steps later, thus providing no diffusion at all. In the
contrary, XOR is arguably to most problematic function in our situation because
it can not absorb any difference. Thus, one bit difference in the internal state
during an XOR round will double the number of bit differences every step and
quickly lead to an unmanageable amount of conditions. Moreover, the linearity of
the XOR function makes it problematic when using the non-linear part search tool
that strongly leverages non-linear behavior to obtain a solution. In between, the
ONX function is non-linear for two inputs and can absorb difference up to some
extent. We can easily conclude that the goal for the attacker will be to locate
the biggest proportion of differences in the IF or if needed in the ONX functions,
and try to avoid the XOR parts as much as possible.

Choosing a Message Word. We would like to find the best choice for the
single-message word difference insertion. The XOR function located in the 4th

round of right branch must be avoided, so we are looking for a message word that
is incorporated either very early (so we can propagate the difference backward)
or very late (so we can propagate the difference forward) in this round. Similarly,
the XOR function located in the 1st round of left branch must be avoided, so we
are looking for a message word that is incorporated either very early (for a FS
collision attack) or very late (for a SFS collision attack) in this round as well. It
is easy to check that M14 is a perfect candidate, being the last inserted in 4th

round of right branch and the second-to-last in 1st round of left branch.

le
ft

round 1
XOR

0 1 2 3 4 5 6 7 8 9 101112131415

round 2
IF

7 4 13 1 10 6 15 3 12 0 9 5 2 1411 8

round 3
ONX

3 1014 4 9 15 8 1 2 7 0 6 1311 5 12

round 4
IF

1 9 1110 0 8 12 4 13 3 7 1514 5 6 2

ri
g
h
t

IF

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

ONX

6 11 3 7 0 13 5 101415 8 12 4 9 1 2

IF

15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

XOR

8 6 4 1 3 1115 0 5 12 2 13 9 7 1014

Fig. 2. The shape of our differential path for RIPEMD-128. The numbers are the message
words inserted at each step and the red curves represent the rough amount differences
in the internal state during each steps. The arrows show where the bit differences are
injected with M14.

Building the Linear Part. Once we chose that the only message difference will
be a single bit in M14, we need to build the whole linear part of the differential
path in the internal state. By linear we mean that all modular additions will
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be modeled as a bitwise XOR function. Moreover, when a difference is input of a
boolean function, it is absorbed when possible in order to remain as low weight
as possible (though, for a few special bit positions it might be more interesting to
not absorb the difference if it can erase another difference in later steps). We give
the rough skeleton of our differential path in Figure 2. Both differences inserted
in the 4th round of left and right branches are simply propagated forward for
a few steps and we are very lucky that this linear propagation leads to two
final internal states whose difference can be mutually erased after application of
the compression function finalization and feed-forward. All differences inserted
in the 3rd and 2nd rounds of left and right branches are propagated linearly
backward and will be later connected to the bit difference inserted in the 1st

round by the non-linear part. Note that since a non-linear part usually has a low
differential probability, we will try to make it as thin as possible. No difference
will be present in the input chaining variable, so the trail is well suited for a SFS
collision attack. We had to choose the bit position for the messageM14 difference
insertion and among the 32 possible choices, the most significant bit was selected
because it is the one maximizing the differential probability of the linear part we
just built (this finds an explanation by the fact that at the most significant bit
position many conditions due to carry control in modular additions are avoided).

3.3 The Non-linear Differential Part Search Tool

Finding non-linear differential path is a very complex task, but we implemented
a tool similar to [4] for SHA-1 in order to perform this task in an automated way.
Since RIPEMD-128 also belongs to the MD-SHA family, the original technique works
well, in particular when used in a round with a non-linear boolean function such
as IF.

We have to find one non-linear part in each branch and note that they can be
handled independently. We included the special constraint that the non-linear
parts should be as thin as possible (i.e. spreading on the fewer possible amount
of steps), so as to later reduce the overall complexity (linear parts have higher
differential probability than non-linear ones).

3.4 The Final Differential Path Skeleton

Applying our non-linear part search tool and reusing notations from [4], we
obtain the differential path in Figure 3, for which we provide at each step i the
differential probability Pl[i] and Pr[i] of left and right branch respectively. Also,
we give for each step i the accumulated probability P[i] starting from last step,

i.e. P[i] =
∏j=i

j=63(P
r[j] · Pl[j]).

One can check that the trail has differential probability 2−85.09 (that is∏63
i=0 P

l[i] = 2−85.09) in the left branch and 2−145 (i.e.
∏63

i=0 P
r[i] = 2−145)

in the right branch. Its overall differential probability is 2−230.09 and since we
have 511 bits of message with unspecified value (one bit of M4 is already set to
“1”), plus 127 unrestricted bits of chaining variable (one bit of X0 = Y0 = h3 is
already set to “0”), we expect many solutions to exist (about 2407.91).
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Step            Xi             l
i  Pl[i]             Yi             r

i  Pr[i]  P[i] 
 
-3: -------------------------------- 
-2: -------------------------------- 
-1: -------------------------------- 
00: -----------------------0-------- |  0   0.00 | -----------------------0-------- |  5  -1.00 | -230.09 
01: -------------------------------- |  1   0.00 | -----------------------1-------- | 14  -1.00 | -229.09 
02: -------------------------------- |  2   0.00 | -----------------------n-------- |  7   0.00 | -228.09 
03: -------------------------------- |  3   0.00 | -------------------------------- |  0  -7.00 | -228.09 
04: -------------------------------- |  4   0.00 | --0000000----------------------- |  9  -8.00 | -221.09 
05: -------------------------------- |  5   0.00 | --1111111----------------------- |  2  -7.00 | -213.09 
06: -------------------------------- |  6   0.00 | --nuuuuuu----------------------- | 11  -6.00 | -206.09 
07: -------------------------------- |  7   0.00 | --01-----------------------0-000 |  4  -5.00 | -200.09 
08: -------------------------------- |  8   0.00 | -01------------------------0-011 | 13 -14.00 | -195.09 
09: -------------------------------- |  9   0.00 | -1----------------10-0-----n-nnn |  6 -11.00 | -181.09 
10: -------------------------------- | 10   0.00 | 1n010000----------11-1---------- | 15 -14.00 | -170.09 
11: -------------------------------- | 11   0.00 | 00111111-----00--0nu-n---------- |  8 -17.00 | -156.09 
12: -------------------------------- | 12   0.00 | nuuuuuuu-----11--11--0---------- |  1  -6.00 | -139.09 
13: -------------------------------- | 13   0.00 | -------1-----nn--un--u---------- | 10  -5.00 | -133.09 
14: -------------------------------- | 14  -1.00 | -------1----01----u------------- |  3 -11.00 | -128.09 
15: -----------------------n-------- | 15  -7.00 | -------u----10----0------------- | 12  -6.00 | -116.09 
16: -----------unnnn-------0-------- |  7 -12.09 | -----0-u----u------------------- |  6  -3.00 | -103.09 
17: -------n---00000-------1-------- |  4  -7.00 | -----u-0----u------------------- | 11  -2.00 | -88.00 
18: -------0---01111---------------- | 13  -4.00 | -----u------0------------------- |  3  -2.00 | -79.00 
19: ---u---1-------n------------1--- |  1  -4.00 | 0----0-------------------------- |  7  -1.00 | -73.00 
20: ---0-----------0------------0--- | 10  -3.00 | u------------------------------- |  0  -2.00 | -68.00 
21: ---1-----------1------------n--- |  6  -6.00 | u----------------------------0-- | 13  -2.00 | -63.00 
22: ---------------unnnn--------0--- | 15 -10.00 | 0----------------------------u-- |  5  -1.00 | -55.00 
23: ---------------00000--------u--- |  3  -7.00 | -----------------------------1-- | 10  -2.00 | -44.00 
24: -------------n-11101--------1--- | 12  -4.00 | ----------------------0------0-- | 14  -1.00 | -35.00 
25: -----------n-0--------------1--- |  0  -4.00 | ----------------------u--------- | 15  -1.00 | -30.00 
26: -------u---0-1------------------ |  9  -5.00 | ----------------------u--------- |  8  -1.00 | -25.00 
27: 1------0---1-u------------------ |  5  -3.00 | ----------------------0--------- | 12   0.00 | -19.00 
28: 0------1-----0------------------ |  2  -2.00 | -------------------------------- |  4  -1.00 | -16.00 
29: n------------1------------------ | 14  -1.00 | -------0------------------------ |  9  -1.00 | -13.00 
30: u------------------------------- | 11  -1.00 | -------u------------------------ |  1  -1.00 | -11.00 
31: u------------------------------- |  8  -1.00 | -------1------------------------ |  2  -1.00 |  -9.00 

Fig. 3. The differential path for RIPEMD-128, after the non-linear parts search. The
notations are the same as in [4] and Pl[i], Pr[i] and P [i] are given in log2().

In order for the path to provide a collision, the bit difference in X61 must erase
the one in Y64 during the finalization phase of the compression function: h′2 =
X61�Y64�h3. Since the signs of these two bit differences are not specified, this
happens with probability 2−1 and the overall probability to follow our differential
path and to obtain a collision for a randomly chosen input is 2−231.09.

4 Utilization of the Freedom Degrees

In the differential path from Figure 3, the difference mask is already entirely
set, but almost all message bits and chaining variable bits have no constraint
with regards to their value. All these freedom degrees can be used to reduce the
complexity of the straightforward collision search (i.e. choosing random 512-bit
message values) that requires about 2231.09 RIPEMD-128 step computations. We
will utilize these freedom degrees in three phases:

• Phase 1: we first fix some internal state and message bits in order to prepare
the attack. This will allow us to handle in advance some conditions in the
differential path as well as facilitating the merging phase. This preparation
phase is done once for all.

• Phase 2: we will fix iteratively the internal state words X21, X22, X23, X24

from left branch, and Y11, Y12, Y13,Y14 from right branch, as well as message
wordsM12,M3,M10,M1,M8,M15,M6,M13,M4,M11 andM7 (the ordering
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is important). This will provide us a starting point for the merging phase and
due to a lack of freedom degrees, we will need to perform this phase several
times in order to get enough starting points to eventually find a solution for
the entire differential path.

• Phase 3: we use the remaining unrestricted message words M0, M2, M5,
M9 and M14 to efficiently merge the internal states of the left and right
branches.

4.1 Phase 1: Preparation

Before starting to fix a lot of message and internal state bit values, we need to
prepare the differential path from Figure 3 so that the merge can later be done
efficiently and so that the probabilistic part will not be too costly. Understand-
ing these constraints requires a deep insight of the differences propagation and
conditions fulfillment inside the RIPEMD-128 step function. Therefore, the reader
not interested in the details of the differential path construction is advised to
skip this subsection.

The first constraint that we set is Y3 = Y4. The effect is that the IF function
at step 4 of the right branch, IF(Y2, Y4, Y3) = (Y2 ∧ Y3)⊕ (Y2 ∧ Y4) = Y3 = Y4,
will not depend on Y2 anymore. We will see in Section 4.3 that this constraint
is crucial in order for the merge to be performed efficiently.

The second constraint is X24 = X25 (except the two bit positions of X24 and
X25 that contain differences), and the effect is that the IF function at step 26 of
the left branch (when computing X27), IF(X26, X25, X24) = (X26∧X25)⊕(X26∧
X24) = X24 = X25, will not depend on X26 anymore. Before the final merging
phase starts, we will not know M0, and having this X24 = X25 constraint will
allow us to directly fix the conditions located on X27 without knowingM0 (since
X26 directly depends onM0). Moreover, we fix the 12 first bits of X23 and X24 to
“01000100u001” and “01000011110” respectively because this choice is among
the few that minimizes the number of bits of M9 that needs to be set in order
to verify many of the conditions located on X27.

The third constraint consists in setting the bits 18 to 30 of Y20 to zero. The
effect is that for these 13 bit positions, the ONX function at step 21 of the right
branch (when computing Y22), ONX(Y21, Y20, Y19) = (Y21 ∨ Y20) ⊕ Y19, will not
depend on the 13 corresponding bits of Y21 anymore. Again, because we will
not know M0 before the merging phase starts, this constraint will allow us to
directly fix the conditions on Y22 without knowingM0 (since Y21 directly depends
on M0).

Finally, the last constraint that we enforce is that the first two bits of Y22 are
set to “10” and the first three bits ofM14 are set to “011”. This particular choice
of bit values is among the ones that reduces the most the spectrum of possible
carries during the addition of step 24 (when computing Y25) and we obtain a
probability improvement to reach “u” in Y25 from 2−1 to 2−0.25.

We observe that all the constraints set in this subsection consume in total
32 + 51 + 13 + 5 = 101 bits of freedom degrees, and a huge amount of solutions
(about 2306.91) are still expected to exist.
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4.2 Phase 2: Generating a Starting Point

Once the differential path properly prepared in phase 1, we would like to utilize
the huge amount of freedom degrees available to fulfill directly as many con-
ditions as possible. Our approach is to fix the value of the internal states in
both the left and right branches (they can be handled independently), exactly in
the middle of the non-linear parts where the number of conditions is important.
Then, we will fix the message words one by one following a particular scheduling,
and propagating the bit values forward and backward from the middle of the
non-linear parts in both branches.

Fixing the Internal State. We chose to start by setting the values of X21,
X22, X23, X24 in the left branch, and Y11, Y12, Y13, Y14 in the right branch,
because they are located right in the middle of the non-linear parts. We take the
first word X21 and randomly set all of its unrestricted “-” bits to “0” or “1”
and check if any direct inconsistency is created with this choice. If that is the
case, we simply pick another candidate until no direct inconsistency is deduced.
Otherwise, we can go to the next word X22, etc. If too many tries are failing for
a particular internal state word, we can backtrack and pick another choice for
the previous word. Finally, if no solution is found after a certain amount of time,
we just restart the whole process, so as to avoid being blocked in a particularly
bad subspace with no solution.

Fixing the Message Words. Similarly to the internal state words, we ran-
domly fix the value of message words M12, M3, M10, M1, M8, M15, M6, M13,
M4, M11 and M7 (following this particular ordering that facilitates the conver-
gence towards a solution). The difference here is that the left and right branch
computations are no more independent since the message words are used in both
of them. However, this does not change anything to our algorithm and the very
same process is applied: for each new message word randomly fixed, we compute
forward and backward from the known internal state values and check for any
inconsistency, using backtracking and reset if needed.

Overall, finding one new solution for this entire phase 2 takes about 5 minutes
of computation on a recent PC with a naive implementation2. However, when
one starting point is found, we can generate many for a very cheap cost by
randomizing message words M4, M11 and M7 since the most difficult part is
to fix the 8 first message words of the schedule. For example, once a solution
is found, one can directly generate 218 new starting points by randomizing a
certain portion of M7 (because M7 has no impact on the validity of the non-
linear part in the left branch, while in the right branch one has only to ensure
that the last 14 bits of Y20 are set to “u0000000000000”) and this was verified
experimentally.

2 Our message word fixing approach is certainly not optimal, but this phase is not the
bottleneck of our attack and we preferred to aim for simplicity when possible. In case
a very fast implementation is needed, a more efficient but more complex strategy
would be to find a bit per bit scheduling instead of a word-wise one.
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We give an example of such a starting point in Figure 4 and we emphasize
that by “solution” or “starting point” we mean a differential path instance with
exactly the same probability profile as this one. The 3 constrained bit values
in M14 are coming from the preparation in phase 1, and the 3 constrained bit
values in M9 are necessary conditions in order to fulfill step 26 when computing
X27. It is also important to remark that whatever instance found during this
second phase, the position of these 3 constrained bit values will always be the
same thanks to our preparation in phase 1.

The probabilities displayed in Figure 4 for early steps (steps 0 to 14) are not
meaningful here since they assume an attacker only computing forward, while
in our case we will compute backwards from the non-linear parts to the early
steps. However, we can see that the uncontrolled accumulated probability (i.e.
step 3 in right side of Figure 1) is now improved to 2−29.32, or 2−30.32 if we
add the extra condition for the collision to happen at the end of the RIPEMD-128
compression function.

Step            Xi                         Wli            l
i             Yi                         Wri            r

i]  P[i] 
 
-3: -------------------------------- 
-2: -------------------------------- 
-1: -------------------------------- 
00: -----------------------0-------- | --------------------------------  0 | -----------------------0-------- | --------------------------------  5 | -287.32 
01: -------------------------------- | 00000101111011100000110011000111  1 | ----------------------01-------- | x----------------------------011 14 | -285.32 
02: -------------------------------- | --------------------------------  2 | -----------------------n-------- | 01000010101100100011001110010110  7 | -284.32 
03: -------------------------------- | 00101100100000110100001001011110  3 | 00000000001100101010101011000000 | --------------------------------  0 | -252.32 
04: -------------------------------- | 11110000101100100000101111111100  4 | 00000000001100101010101011000000 | ----------------------0---1-1---  9 | -220.32 
05: -------------------------------- | --------------------------------  5 | 10111111101001001001010100111100 | --------------------------------  2 | -189.32 
06: -------------------------------- | 00100101011001000111000001010101  6 | 00nuuuuuu11000110111011001100100 | 10111001010001001100100111001100 11 | -157.32 
07: -------------------------------- | 01000010101100100011001110010110  7 | 00011011111101110110010011100000 | 11110000101100100000101111111100  4 | -157.32 
08: -------------------------------- | 00111100101111111010001110110000  8 | 10101101110101010010000001001011 | 01100011101010100010110001110011 13 | -157.32 
09: -------------------------------- | ----------------------0---1-1---  9 | 111000110011011100101010110n0nnn | 00100101011001000111000001010101  6 | -157.32 
10: -------------------------------- | 10001010101010011100001100111101 10 | 1n010000110010011011010100011110 | 00000110110000101001110101001010 15 | -157.32 
11: -------------------------------- | 10111001010001001100100111001100 11 | 001111111011100010nu1n1000110110 | 00111100101111111010001110110000  8 | -157.32 
12: 00111010101011111111101110101000 | 01101001001010010010111011101100 12 | nuuuuuuu011101111111101101111001 | 00000101111011100000110011000111  1 | -125.32 
13: 01110011001001011011001011011110 | 01100011101010100010110001110011 13 | 0101111110101nn10un11u1001001110 | 10001010101010011100001100111101 10 | -93.32 
14: 11110100011110100101101111011100 | x----------------------------011 14 | 010111111110010000u1001100000001 | 00101100100000110100001001011110  3 | -61.32 
15: 01101010101111000101111n00110110 | 00000110110000101001110101001010 15 | 1010100u111110000001000111001100 | 01101001001010010010111011101100 12 | -29.32 
16: 01010110010unnnn0010011000101111 | 01000010101100100011001110010110  7 | 1100101u1111u0011110011000010000 | 00100101011001000111000001010101  6 | -29.32 
17: 0100101n011000000000000111111001 | 11110000101100100000101111111100  4 | 11101u101111u0011111001011000010 | 10111001010001001100100111001100 11 | -29.32 
18: 10100010110011111110100000101000 | 01100011101010100010110001110011 13 | 11010u11000000101001100110001111 | 00101100100000110100001001011110  3 | -29.32 
19: 001u10010000101n0111000101111111 | 00000101111011100000110011000111  1 | 01010000011111101010011111100100 | 01000010101100100011001110010110  7 | -29.32 
20: 01100001101001101110001100100101 | 10001010101010011100001100111101 10 | u0000000000000000000000000000000 | --------------------------------  0 | -29.32 
21: 1011110100111111111001101001n110 | 00100101011001000111000001010101  6 | u----------------------------0-- | 01100011101010100010110001110011 13 | -27.32 
22: 101110111000101unnnn011010000111 | 00000110110000101001110101001010 15 | 01111011111011110100000101000u10 | --------------------------------  5 | -27.32 
23: 1011111110111000000001000100u001 | 00101100100000110100001001011110  3 | -----------------------------1-- | 10001010101010011100001100111101 10 | -26.32 
24: 0100001011011n011101001000011110 | 01101001001010010010111011101100 12 | ---------------------10------0-- | x----------------------------011 14 | -24.32 
25: 01000010110n10011101001000011110 | --------------------------------  0 | ----------------------u--------- | 00000110110000101001110101001010 15 | -24.08 
26: -------u---0-1------------------ | ----------------------0---1-1---  9 | ----------------------u--------- | 00111100101111111010001110110000  8 | -21.08 
27: 1------0---1-u------------------ | --------------------------------  5 | ----------------------0--------- | 01101001001010010010111011101100 12 | -19.08 
28: 0------1-----0------------------ | --------------------------------  2 | -------------------------------- | 11110000101100100000101111111100  4 | -16.08 
29: n------------1------------------ | x----------------------------011 14 | -------0------------------------ | ----------------------0---1-1---  9 | -13.08 
30: u------------------------------- | 10111001010001001100100111001100 11 | -------u------------------------ | 00000101111011100000110011000111  1 | -11.00 
31: u------------------------------- | 00111100101111111010001110110000  8 | -------1------------------------ | --------------------------------  2 |  -9.00 
32: 1------------------------------- | 00101100100000110100001001011110  3 | -------1------------------------ | 00000110110000101001110101001010 15 |  -7.00 
33: -------------------------------- | 10001010101010011100001100111101 10 | -------------------------------- | --------------------------------  5 |  -7.00 
34: -------------------------------- | x----------------------------011 14 | u------------------------------- | 00000101111011100000110011000111  1 |  -6.00 
35: -------------------------------- | 11110000101100100000101111111100  4 | 0------------------------------- | 00101100100000110100001001011110  3 |  -4.00 
36: -------------------------------- | ----------------------0---1-1---  9 | 1------------------------------- | 01000010101100100011001110010110  7 |  -3.00 
37: -------------------------------- | 00000110110000101001110101001010 15 | -------------------------------- | x----------------------------011 14 |  -3.00 
38: -------------------------------- | 00111100101111111010001110110000  8 | -------------------------------- | 00100101011001000111000001010101  6 |  -3.00 
39: -------------------------------- | 00000101111011100000110011000111  1 | -------------------------------- | ----------------------0---1-1---  9 |  -3.00 
40: -------------------------------- | --------------------------------  2 | -------------------------------- | 10111001010001001100100111001100 11 |  -3.00 
41: -------------------------------- | 01000010101100100011001110010110  7 | -------------------------------- | 00111100101111111010001110110000  8 |  -3.00 
42: -------------------------------- | --------------------------------  0 | -------------------------------- | 01101001001010010010111011101100 12 |  -3.00 
43: -------------------------------- | 00100101011001000111000001010101  6 | -------------------------------- | --------------------------------  2 |  -3.00 
44: -------------------------------- | 01100011101010100010110001110011 13 | -------------------------------- | 10001010101010011100001100111101 10 |  -3.00 
45: -------------------------------- | 10111001010001001100100111001100 11 | -------------------------------- | --------------------------------  0 |  -3.00 
46: -------------------------------- | --------------------------------  5 | -------------------------------- | 11110000101100100000101111111100  4 |  -3.00 
47: -------------------------------- | 01101001001010010010111011101100 12 | -------------------------------- | 01100011101010100010110001110011 13 |  -3.00 
48: -------------------------------- | 00000101111011100000110011000111  1 | -------------------------------- | 00111100101111111010001110110000  8 |  -3.00 
49: -------------------------------- | ----------------------0---1-1---  9 | -------------------------------- | 00100101011001000111000001010101  6 |  -3.00 
50: -------------------------------- | 10111001010001001100100111001100 11 | -------------------------------- | 11110000101100100000101111111100  4 |  -3.00 
51: -------------------------------- | 10001010101010011100001100111101 10 | -------------------------------- | 00000101111011100000110011000111  1 |  -3.00 
52: -------------------------------- | --------------------------------  0 | -------------------------------- | 00101100100000110100001001011110  3 |  -3.00 
53: -------------------------------- | 00111100101111111010001110110000  8 | -------------------------------- | 10111001010001001100100111001100 11 |  -3.00 
54: -------------------------------- | 01101001001010010010111011101100 12 | -------------------------------- | 00000110110000101001110101001010 15 |  -3.00 
55: -------------------------------- | 11110000101100100000101111111100  4 | -------------------------------- | --------------------------------  0 |  -3.00 
56: -------------------------------- | 01100011101010100010110001110011 13 | -------------------------------- | --------------------------------  5 |  -3.00 
57: -------------------------------- | 00101100100000110100001001011110  3 | -------------------------------- | 01101001001010010010111011101100 12 |  -3.00 
58: -------------------------------- | 01000010101100100011001110010110  7 | -------------------------------- | --------------------------------  2 |  -3.00 
59: ------------------------0------- | 00000110110000101001110101001010 15 | -------------------------------- | 01100011101010100010110001110011 13 |  -2.00 
60: ------------------------1------- | x----------------------------011 14 | -------------------------------- | ----------------------0---1-1---  9 |  -1.00 
61: ------------------------x------- | --------------------------------  5 | -------------------------------- | 01000010101100100011001110010110  7 |  -1.00 
62: -------------------------------- | 00100101011001000111000001010101  6 | -------------------------------- | 10001010101010011100001100111101 10 |  -1.00 
63: -------------------------------- | --------------------------------  2 | -------------------------------- | x----------------------------011 14 |  -1.00 
64: -------------------------------- |                                     | ------------------------x------- 

Fig. 4. The differential path for RIPEMD-128, after the second phase of the freedom
degree utilization. The notations are the same as in [4] and P [i] is given in log2().
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4.3 Phase 3: Merging Left and Right Branches

At the end of the second phase, we have several starting points equivalent to the
one from Figure 4, with many conditions already verified and an uncontrolled
accumulated probability of 2−30.32. Our goal for this third phase is now to use
remaining free message words M0, M2, M5, M9, M14 and make sure that both
left and right branches start with the same chaining variable.

We recall that during the first phase we enforced that Y3 = Y4, and for
the merge we will require an extra constraint X≫5

5 �M4 = 0xffffffff. The
message wordsM14 andM9 will be utilized to fulfill this constraint, and message
words M0, M2 and M5 will be used to perform the merge of the two branches
only with a few operations, and with a success probability of 2−34.

Handling the Extra Constraint with M14 and M9. First, let us deal with
the constraint X≫5

5 � M4 = 0xffffffff, which can be rewritten as X5 =
(0xffffffff�M4)

≪5 and then (0xffffffff�M4)
≪5 = X≫11

9 � (X8⊕X7⊕
X6)�M8 �K l

0 by replacing M5 using update formula of step 8 in left branch.
Finally, isolating and replacing X6 using update formula of step 9 in left branch:

M9 =X
≫13
10 � ((X

≫11
9 � M8 � K

l
0 � (0xffffffff � M4)

≪5
) ⊕ X8 ⊕ X7) � K

l
0 � (X9 ⊕ X8 ⊕ X7). (1)

All values on the right side of this equation are known if M14 is fixed. Therefore,
so as to fulfill our extra constraint, what we could do is to simply pick a random
value for M14, and then directly deduce the value of M9 thanks to equation
(1). However, one can see in Figure 4 that 3 bits are already fixed in M9 (the
last one being the 10th bit of M9) and thus a valid solution would be found
only with probability 2−3. In order to avoid this extra complexity factor, we
will first randomly fix the first 24 bits of M14 and this will allow us to directly
deduce the first 10 bits of M9 that fulfill our extra constraint up to the 10th

bit (because knowing the first 24 bits of M14 will lead to the first 24 bits of
X11, X10, X9, X8 and the first 10 bits of X7, which is exactly what we need
according to equation (1)). Once a solution is found after 23 tries on average,
we can randomize the remaining M14 unrestricted bits (the 8 most significant
bits) and eventually deduce the 22 most significant bits ofM9 with equation (1).
With this method, we completely remove the extra 23 factor, because the cost
is amortized by the final randomization of the 8 most significant bits of M14.

Merging the branches with M0, M2 and M5. Once M9 and M14 fixed, we
still have message wordsM0, M2 and M5 to determine for the merging. One can
see that with only these three message words undetermined, all internal state
values except X2, X1, X0, X−1, X−2, X−3 and Y2, Y1, Y0, Y−1, Y−2, Y−3 are fully
known when computing backwards from the non-linear parts in each branch.

This is where our first constraint Y3 = Y4 comes into play. Indeed, when
writing Y1 from the equation from step 4 in right branch, we have:

Y1 = Y≫13
5 � (Y4 ∧ Y2 ⊕ Y3 ∧ Y2)�M9 �Kr

0 = Y≫13
5 � Y3 �M9 �Kr

0

which means that Y1 is already completely determined at this point (the bit
condition present in Y1 in Figure 4 is actually handled for free when fixing M14
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and M9, since it requires to know the 9 first bits of M9). In other words, the
constraint Y3 = Y4 allowed Y1 to not depend on Y2 which is currently undeter-
mined. Another effect of this constraint can be seen when writing Y2 from the
equation from step 5 in right branch:

Y2 = Y≫15
6 �(Y5∧Y3⊕Y4∧Y3)�M2�Kr

0 = Y≫15
6 �(Y5∧Y3)�M2�Kr

0 = C0�M2

where C0 = Y≫15
6 � (Y5 ∧ Y3)�Kr

0 is a constant.
Our second constraint X≫5

5 �M4 = 0xffffffff is useful when writing X1

and X2 from the equations from step 4 and 5 in left branch

X2 = X≫8
6 � (X5 ⊕X4 ⊕X3)�M5 = C1 �M5

X1 = X≫5
5 � (X4 ⊕X3 ⊕X2)�M4 = X4 ⊕X3 ⊕X2 = X4 ⊕X3 ⊕ (C1 �M5)

where C1 = X≫8
6 � (X5 ⊕X4 ⊕X3) is a constant.

Finally, our ultimate goal for the merge is to ensure that X−3 = Y−3, X−2 =
Y−2, X−1 = Y−1 and X0 = Y0, knowing that all other internal states are de-
termined when computing backwards from the non-linear parts in each branch,
except Y2 = C0 � M2, X2 = C1 � M5 and X1 = X4 ⊕ X3 ⊕ (C1 � M5). We
therefore write the equations relating these eight internal state words:

X0 = X
≫12
4 � (X3 ⊕ X2 ⊕ X1) � M3 = X

≫12
4 � X4 � M3

= Y0 = Y
≫11
4 � (Y3 ∧ Y1 ⊕ Y2 ∧ Y1) � M0 � K

r
0 = Y

≫11
4 � (Y3 ∧ Y1 ⊕ (C0 � M2) ∧ Y1) � M0 � K

r
0

X−1 = X
≫15
3 � (X2 ⊕ X1 ⊕ X0) � M2 = X

≫15
3 � (X4 ⊕ X3 ⊕ X0) � M2

= Y−1 = Y
≫9
3 � (Y2 ∧ Y0 ⊕ Y1 ∧ Y0) � M7 � K

r
0 = Y

≫9
3 � ((C0 � M2) ∧ X0 ⊕ Y1 ∧ X0) � M7 � K

r
0

X−2 = X
≫14
2 � (X1 ⊕ X0 ⊕ X−1) � M1 = (C1 � M5)

≫14 � (X4 ⊕ X3 ⊕ (C1 � M5) ⊕ X0 ⊕ X−1) � M1

=Y−2 = Y
≫9
2 �(Y1 ∧ Y−1 ⊕ Y0 ∧ Y−1)�M14 �K

r
0 = (C0�M2)

≫9 � (Y1 ∧ X−1 ⊕ X0 ∧ X−1) � M14�K
r
0

X−3 = X≫11
1 � (X0 ⊕ X−1 ⊕ X−2) � M0 = (X4 ⊕ X3 ⊕ (C1 � M5))≫11 � (X0 ⊕ X−1 ⊕ X−2) � M0

= Y−3 = Y
≫8
1 � (Y0 ∧ Y−2 ⊕ Y−1 ∧ Y−2) � M5 � K

r
0 = Y

≫8
1 � (X0 ∧ X−2 ⊕ X−1 ∧ X−2) � M5 � K

r
0

If these four equations are verified, then we have merged left and right branch
to the same input chaining variable. We first remark that X0 is already fully
determined and thus the second equation X−1 = Y−1 only depends on M2.
Moreover, it is a T-function in M2 (any bit i of the equation depends only on
the i first bits of M2) and can therefore be solved very efficiently bit per bit. We
explain in the full version how to solve this T-function and our average cost in
order to find one M2 solution is one RIPEMD-128 step computations.

SinceX0 is already fully determined, from theM2 solution previously obtained
we directly deduce the value of M0 to satisfy the first equation X0 = Y0. From
M2 we can compute the value of Y−2 and we know that X−2 = Y−2 and we
calculate X−3 from M0 and X−2. At this point, the two first equations are
fulfilled and we still have the value of M5 to choose.

The third equation can be rewritten V≫14 = (V ⊕C2)�C3, where V = X [2] =
(C1 �M5) and C2, C3 are two constants. Similarly, the fourth equation can be
rewritten V≫11 = (V �C4)⊕C5, where C4, C5 are two constants. Solving either
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of these two equations with regards to V can be costly because of the rotations,
so we combine them to create simpler one: ((V ⊕C2)�C3)

≪3 = (V �C4)⊕C5.
This equation is easier to handle because the rotation coefficient is small: we
guess the 3 most significant bits of ((V ⊕ C2) � C3) and we solve simply the
equation 3-bit layer per 3-bit layer, starting from the least significant bit. From
the value of V deduced, we straightforwardly obtainM5 = C1�V and the cost of
recovering M5 is equivalent to 8 RIPEMD-128 step computations (the 3-bit guess
implies a factor of 8, but the resolution can be implemented very efficiently with
tables).

When all three message words M0, M2 and M5 have been fixed, the first, sec-
ond and a combination of the third and fourth equalities are necessarily verified.
However, we have a probability 2−32 that both the third and fourth equations
will be fulfilled. Moreover, one can check in Figure 4 that there is one bit condi-
tion on X0 = Y0 and one bit condition on Y2 and this further adds up a factor
2−2. We evaluate the whole process to cost about 19 RIPEMD-128 step computa-
tions on average: there are 17 steps to compute backwards after having identified
a proper couple M14, M9, and the 8 RIPEMD-128 step computations to obtain
M5 are only done 1/4 of the time because the two bit conditions on Y2 and
X0 = Y0 are filtered before.

To summarize the merging: we first compute a couple M14, M9 that satisfies
a special constraint, we find a value of M2 that verifies X−1 = Y−1, then we
directly deduce M0 to fulfill X0 = Y0, and we finally obtain M5 to satisfy a
combination of X−2 = Y−2 and X−3 = Y−3. Overall, with only 19 RIPEMD-128

step computations on average, one can merge the branches with probability
2−34.

5 Results and Implementation

5.1 Complexity Analysis and Implementation

After the quite technical description of the attack in previous section, we would
like to rewrap everything to get a clearer view of the attack complexity, the
amount of freedom degrees etc. Given a starting point from phase 2, the attacker
can perform 226 merge processes (because 3 bits are already fixed in both M9

andM14, and the extra constraint consumes 32 bits) and since one merge process
succeeds only with probability of 2−34, he obtains a solution with probability
2−8. Since he needs 230.32 solutions from the merge to have a good chance to
verify the probabilistic part of the differential path, a total of 238.32 starting
points will have to be generated and handled.

From the end of phase 1, he generates 238.32 starting points in phase 2, that
is 238.32 differential paths like the one from Figure 4 (with the same step proba-
bilities). For each of them, in phase 3 he tries 226 times to find a solution for the
merge with an average complexity of 19 RIPEMD-128 step computations for each
try. The SFS collision final complexity is 19 · 226+38.32 RIPEMD-128 step compu-
tations, which corresponds to (19/128) · 264.32 = 261.57 RIPEMD-128 compression
function computations (there are 64 steps in each branch).
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The merge process has been implemented and we give in the full version of
the article an example of a message and chaining variable couple that verifies
the merge (i.e. they follow the differential path from Figure 3 until step 25 of the
left branch and step 20 of the right branch). We measured the efficiency of our
implementation in order to confront it to our theoretic complexity estimation.
As point of reference, we observed that on the same computer, an optimized
implementation of RIPEMD-160 (OpenSSL v.1.0.1c) performs 221.44 compression
function computations per second. With 4 rounds instead of 5 and about 3/4 less
operations per step, we extrapolated that RIPEMD-128 would perform at 222.17

compression function computations per second. Our implementation performs
224.61 merge process (both phase 2 and phase 3) per second on average, which
therefore corresponds to a SFS collision final complexity of 261.88 RIPEMD-128

compression computations. While our practical results confirm our theoretical
estimations, we emphasize that the latter are a bit pessimistic, since our attack
implementation is not optimized. As a side note, we also verified experimentally
that the probabilistic part in both left and right branch can be fulfilled.

A last point needs to be checked: the complexity estimation for the generation
of the starting points. Indeed, as much as 238.32 starting points are required at
the end of phase 2 and the algorithm being quite heuristic, it is hard to analyze
precisely. The amount of freedom degrees is not an issue since we already saw in
Section 4.1 that about 2306.91 solutions are expected to exist for the differential
path at the end of phase 1. A completely new starting point takes about 5 min-
utes to be outputted on average with our implementation, but from one such
path we can directly generate 218 equivalent ones by randomizing M7. Using
the OpenSSL implementation as reference, this amounts to 250.72 RIPEMD-128

computations to generate all the starting points that we need in order to find
a SFS collision. This gross estimation is extremely pessimistic since its doesn’t
even take in account the fact that once a starting point is found, one can also
randomize M4 and M11 to find many other valid candidates with a few opera-
tions. Finally, one may argue that with this method the starting points generated
are not independent enough (in backward direction when merging and/or in for-
ward direction for verifying probabilistically the linear part of the differential
path). However, no such correlation was detected during our experiments and
previous attacks on similar hash functions [13,14] showed that only a few rounds
were enough to observe independence between bit conditions. In addition, even
if some correlations existed, since we are looking for many solutions, the effect
would be averaged among good and bad candidates.

Collision for the RIPEMD-128 Compression Function. We described in
previous sections a SFS collision attack for the full RIPEMD-128 compression
function with 261.57 computations. It is clear from Figure 4 that we can remove
the 4 last steps of our differential path in order to attack a 60-step reduced
variant of the RIPEMD-128 compression function. No difference will be present in
the internal state at the end of the computation and we directly get a collision,
saving a factor 24 over the full RIPEMD-128 attack complexity.
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We also give in the full version of the article a slightly different freedom degrees
utilization when attacking 63 steps of the RIPEMD-128 compression function (the
first step being taken out), that saves a factor 21.66 over the collision attack.

Distinguishers. We provide in the full version of this article a limited-birthday
distinguisher [11] on the full RIPEMD-128 compression but also hash function.

Conclusion

In this article, we proposed a new cryptanalysis technique for RIPEMD-128, that
led to a collision attack on the full compression function as well as a distinguisher
for the full hash function. We believe that our method still presents room for
improvements, and we expect a practical collision attack for the full RIPEMD-128
compression function to be found during the incoming years. While our results
don’t endanger the collision resistance of the RIPEMD-128 hash function as a
whole, we emphasize that SFS collision attacks are a strong warning sign which
indicates that RIPEMD-128 might not be as secure as the community expected.
Considering the history of the attacks on the MD5 compression function [7,8],
MD5 hash function [29], and then MD5-protected certificates [24], we believe that
another function than RIPEMD-128 should be used for new security applications.
Future works include reducing the attack complexity and applying our methods
to RIPEMD-160 and other parallel branches-based functions.
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Abstract. The main contributions of this paper are two-fold.
Firstly, we present a novel direction in the cryptanalysis of the crypto-

graphic hash function SHA-1. Our work builds on previous cryptanalytic
efforts on SHA-1 based on combinations of local collisions. Due to depen-
dencies, previous approaches used heuristic corrections when combining
the success probabilities and message conditions of the individual local
collisions. Although this leads to success probabilities that are seemingly
sufficient for feasible collision attacks, this approach most often does
not lead to the maximum success probability possible as desired. We
introduce novel techniques that enable us to determine the theoretical
maximum success probability for a given set of (dependent) local colli-
sions, as well as the smallest set of message conditions that attains this
probability. We apply our new techniques and present an implemented
open-source near-collision attack on SHA-1 with a complexity equivalent
to 257.5 SHA-1 compressions.

Secondly, we present an identical-prefix collision attack and a chosen-
prefix collision attack on SHA-1 with complexities equivalent to approx-
imately 261 and 277.1 SHA-1 compressions, respectively.

1 Introduction

A series of breakthrough attacks on hash functions started in 2004 when the first
collisions for MD4, MD5, HAVAL-128 and RIPEMD were presented by Wang
et al.[WFLY04, WY05]. This was soon followed by the first SHA-0 collision by
Biham et al. [BCJ+05]. Soon thereafter, Wang et al. published a more efficient
collision attack on SHA-0 [WYY05c]. In the same year, the first collision attack
on full SHA-1 [WYY05b] was presented by Wang et al. with an estimated com-
plexity of 269 compressions. A later unpublished result by Wang et al. claimed an
attack with a complexity of 263 compressions [WYY05a] which was later partly
verified by Cochran [Coc07]. This was further improved by Mendel et al. with an
unpublished attack with a complexity of 260.x compressions [MRR07]. Although
later withdrawn, McDonald et al. published an attack with claimed complexity
of 252 compressions [MHP09]. Rafi Chen claims to be able to find collisions in

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 245–261, 2013.
c© International Association for Cryptologic Research 2013



246 M. Stevens

258 [Che11] 1. For reduced step variants of SHA-1 more progress has been made
[CR06, CMR07, Gre10] and collisions have been found for up to 75 steps [GA11].

So far, it seems some kind of barrier has been reached at around 261 SHA-1
compressions. Unfortunately, as Polk et al. [PCTH11] point out, these cryptan-
alytic advancements are not fully reflected in the literature so far.

2 Our Contributions

This paper aims to renew the cryptanalytic efforts to construct a feasible collision
attack on SHA-1 and find an actual collision pair. The main contributions of this
paper are two-fold.

Firstly, we present a novel direction in the cryptanalysis of SHA-1 that we
believe will allow collision attacks with complexity well below the 261 barrier.
Collision attacks on SHA-1 are constructed in roughly two parts: a non-linear
part (over approximately the first 20 steps) and a linear part (over approximately
the last 60 steps). The linear part is constructed using a linear combination of
local collisions as described by a disturbance vector [CJ98]. So far, to obtain the
success probability of these combinations, the local collisions are first studied
independently (e.g., see [MPRR06]) and then combined. As the success probabil-
ities of local collisions can be dependent (e.g., see [Man11]), current approaches
make some heuristic corrections when joining probabilities and message condi-
tions. Although this is seemly sufficient to construct feasible collision attack on
SHA-1, it may not lead to the desired maximum success probability possible and
thereby leads to sub-optimal collision attacks. We introduce novel techniques
that enable the computation of the maximum success probability for a given
set of (dependent) local collisions, as well as the smallest set of message condi-
tions that attains this probability. That our new approach provides a distinct
advantage over the previous approach is showcased in our second contribution.

Our second contribution is an implemented near-collision attack for SHA-1
with a complexity equivalent to 257.5 compressions2. We show how this near-
collision attack can be used to construct a SHA-1 identical-prefix collision attack
with a complexity of 261 compressions. Furthermore, we present the first SHA-1
chosen-prefix collision attack with a complexity of 277.1 compressions.

Our attack distinguishes itself from previous claims on several aspects. Firstly,
we aimed to optimize the complexity over the linear part and (so far) not over
the non-linear part. Secondly, our novel direction has resulted in a competitive
attack complexity without exploiting nearly all degrees of freedoms. In fact there
are well over 50 from the 512 message bits left as degrees of freedom that can
be further exploited in future work. Lastly, it is the first public implementation

1 We like to note that using our methods we have proven that the highest probability
attainable over the last 8 steps is 2−8.356. But Chen (see Ch. 9.5) actually uses a
factor 100

3000
≈ 2−4.9, suggesting his claim may be a factor 23.5 too optimistic.

2 This complexity is not based on a purely theoretical cost analysis, but directly deter-
mined from the measured performance over the non-linear part and the (implemen-
tation verified) theoretical success probabilities over the linear part, see Sect. 5.1.
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of a SHA-1 collision attack: the source code is available online [Ste12b]. This
allows the public verification of the correctness and the complexity of our imple-
mentation and we also hope it leads to better understanding and improvements
by the scientific community. Due to space considerations, many technical details
have been omitted here, but these can be found in [Ste12a]. Despite this, we
briefly discuss how the correctness of our implementation as well as our claimed
complexity can be verified using our publicly available source code.

3 Preliminaries

Notation. SHA-1 is defined using 32-bit words X = (xi)
31
i=0 ∈ {0, 1}32 that are

identified with elementsX =
∑31

i=0 xi2
i of Z/232Z (for addition and subtraction).

A binary signed digit representation (BSDR) for X ∈ Z/232Z is a sequence

Z = (zi)
31
i=0 ∈ {−1, 0, 1}32 for which X =

∑31
i=0 zi2

i. We use the following
notation: Z[i] = zi, RL(Z, n) and RR(Z, n) (cyclic left and right rotation), w(Z)

(Hamming weight), σ(Z) = X =
∑31

i=0 ki2
i ∈ Z/232Z.

In collision attacks we consider two related messages M and M ′. For any
variable X related to the SHA-1 calculation of M , we use X ′ to denote the
corresponding variable for M ′. Furthermore, for such a ‘matched’ variable X ∈
Z/232Z we define δX = X ′ −X and ΔX = (X ′[i]−X [i])31i=0.

SHA-1’s Compression Function. The input for SHA-1’s Compress consists
of an intermediate hash value IHVin = (a, b, c, d, e) of five 32-bit words and
a 512-bit message block B. The 512-bit message block B is partitioned into 16
consecutive 32-bit strings which are interpreted as 32-bit wordsW0,W1, . . . ,W15

(using big-endian), and expanded to W0, . . . ,W79 as follows:

Wt = RL(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1), for 16 ≤ t < 80. (1)

We describe SHA-1’s compression function Compress in an ‘unrolled’ version.
For each step t = 0, . . . , 79 it uses a working state consisting of five 32-bit words
Qt, Qt−1, Qt−2, Qt−3 and Qt−4 and calculates a new state word Qt+1. The
working state is initialized before the first step as

(Q0, Q−1, Q−2, Q−3, Q−4) = (a, b, RR(c, 30), RR(d, 30), RR(e, 30)).

For t = 0, 1, . . . , 79 in succession, Qt+1 is calculated as follows:

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt + RL(Qt, 5) +RL(Qt−4, 30).
(2)

These 80 steps are grouped in 4 rounds of 20 steps each. Here, ACt is the
constant 5a82799916, 6ed9eba116, 8f1bbcdc16 or ca62c1d616 for the 1st, 2nd,
3rd and 4th round, respectively. The non-linear function ft(X,Y, Z) is defined
as (X ∧ Y )⊕ (X ∧Z), X ⊕ Y ⊕Z, (X ∧ Y )∨ (Z ∧ (X ∨ Y )) or X ⊕ Y ⊕Z for
the 1st, 2nd, 3rd and 4th round, respectively. Finally, the output intermediate
hash value δIHVout is determined as:

δIHVout = (a+Q80, b+Q79, c+RL(Q78, 30), d+RL(Q77, 30), e+RL(Q76, 30)).
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4 Joint Local-Collision Analysis

4.1 Local Collisions and the Disturbance Vector

In 1998, Chabaud and Joux [CJ98] constructed a collision attack on SHA-0
based on local collisions. A local collision over 6 steps for SHA-0 and SHA-
1 consists of a disturbance δQt+1 = 2b created in some step t by a message
word bit difference δWt = 2b. This disturbance is corrected over the next five
steps, so that after those five steps no differences occur in the five working
state words. They were able to interleave many of these local collisions such
that the message word differences (ΔWt)

79
t=0 conform to the message expansion

(cf. Eq. 1). For more convenient analysis, they consider the disturbance vector
which is a non-zero vector (DVt)

79
t=0 conform to the message expansion where

every ‘1’-bit DVt[b] marks the start of a local collision based on the disturbance
δWt[b] = ±1. We denote by (DWt)

79
t=0 the message word bit differences without

sign (i.e., DWt =W ′t ⊕Wt) for a disturbance vector (DVt)
79
t=0:

DWt :=
⊕

(i,r)∈R
RL(DVt−i, r), R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}

Note that in differential paths we work with differences δWt instead of DWt.
We say that a message word difference δWt is compatible with DWt if there are
coefficients c0, . . . , c31 ∈ {−1, 1} such that δWt =

∑31
j=0 cj ·DWt[j]. The set Wt

of all compatible message word differences given DWt is defined as:

Wt :=
{
σ(X)

∣∣ BSDR X, X [i] ∈ {−DWt[i],+DWt[i]}, i ∈ {0, . . . , 31}
}

4.2 Disturbance Vector Classes

Manuel [Man11] has classified previously found interesting disturbance vectors
into two classes. A disturbance vector from the first class denoted by I(K, b) is
defined by DVK = . . . = DVK+14 = 0 and DVK+15 = 2b. Similarly, a distur-
bance vector from the second class denoted by II(K, b) is defined by DVK+1 =
DVK+3 = RL(231, b) andDVK+15 = 2b andDVK+i = 0 for i ∈ {0, 2, 4, 5, . . . , 14}.
For both classes, the remaining DV0, . . . , DVK−1 and DVK+16, . . . , DV79 are de-
termined through the (reverse) message expansion relation (Eq. 1).

4.3 Dependencies of Local Collisions

Local collisions can interact in the following three ways.

– Message differences. Firstly, they may use message word differences in the
same bit position of the same message word. E.g., consider the disturbance
vector for whichDV50[0] and DV55[30] are the only ‘1’-bits. Then asDW55 =
DV55 ⊕ RL(DV50, 30) = 0, this means the message word differences in step
55 of the two local collisions must be chosen to cancel each other.
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– Working state differences. Secondly, local collisions starting in the same step
directly interact with each other due to carries. E.g., Wang et al. [WYY05b]
introduced a bit compression technique. They use opposite signs for two local
collisions that start in the same step at two subsequent bit positions (say
DV25[0] = DV25[1] = 1) to turn it into a single local collision.

– Boolean function differences. Thirdly, two ’close’ disturbances can interact
in the boolean function. E.g., consider the disturbance vector for which
DV25[31] and DV26[31] are the only ‘1’-bits. Then these local collisions inter-
act as in the first case as the message word differences in steps 29 and 30 can-
cel each other out. Moreover, in step 29 it is also guaranteed that δF29 = 0 as
the two disturbances input to the XOR boolean function cancel each other.
In contrast, when analyzing these two local collisions independently, each
has a probability of 0.5 that the difference δF29 has the opposite sign from
δW29. The product of the independent success probabilities is thereby lower
than the maximum joint probability of these two local collisions by a factor
0.5 ·0.5 = 0.25 (see also [Man11, Table 9]). This particular example does not
involve any carries, which in other cases may have a further impact on the
maximum success probability.

Although these examples are quite easy to analyze, disturbance vectors have a
higher density of disturbances at the beginning and the end. For these higher
density areas, it is significantly more difficult to analyze the exact impact of
these interactions on the maximum success probability. In this paper we take a
new direction in the cryptanalysis of SHA-1 in which we do not analyze these in-
teractions directly, but use a rather general approach to determine the maximum
success probability that incorporates these interactions.

4.4 Optimal Joint Local-Collision Analysis

We start at the relatively easy and well understood analysis of a single local
collision. Given the single bit disturbance ΔQt+1[b] = ±1 created in the first
step t, one analyzes the necessary message conditions to cancel this disturbance
in the subsequent steps. Most importantly, one determines what the probability
is of a successful cancellation under these message conditions. Higher success
probabilities are obtained by also considering carries in ΔQt+1 from bit position
b to higher positions.

One approach that obtains exact success probabilities is to sum the exact
success probabilities of all possible differential paths over these 6 steps t, . . . , t+5
with δQt−4 = . . . = δQt = 0, δQt+1 �= 0 and δQt+2 = . . . = δQt+6 = 0 using a
given message difference vector (δWi)

t+5
i=t . Although there are quite a few of such

differential paths for a single local collision, these can easily be enumerated.
We propose to study combinations of local collisions in a very similar way.

That is, we propose to analyze the set of all possible differential paths over a
given range of steps tb, . . . , te that contain disturbances as prescribed by the dis-
turbance vector using message word differences δWt compatible with DWt. Next,
this set is partitioned based on the values for the starting and ending working
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state differences and the message word differences. We distinguish thus only on
the pre-conditions (the differences in the starting working state and the message
words) and the post-condition (the differences in the ending working state) of dif-
ferential paths that matches how they are used in an actual collision attack. For
each partition, we compute the sum of the probabilities of its differential paths.
One can thus interpret this total partition probability as the total probability
that the ending working state differences are obtained after step te given that
both the differences in the starting working state at step tb and the differences in
the message words for steps tb, . . . , te hold. Hence, the desired maximum success
probability is the maximum over all total partition probabilities.

4.5 Definitions

More formally, we define a differential path P over steps t = tb, . . . , te to be given
as P = ((ΔQt)

te+1
t=tb−4, (ΔFt)

te
t=tb , (δWt)

te
t=tb)

3, under the following restrictions:

– correct differential steps for t = tb, . . . , te:

σ(ΔQt+1) = σ(RL(ΔQt, 5)) + σ(RL(ΔQt−4, 30)) + σ(ΔFt) + δWt. (3)

– ΔFt[31] ∈ {0, 1} and a non-zero value represents ΔFt[31] ∈ {−1,+1}. 4

The success probability Pr[P ] of a differential path P over steps tb, . . . , te is
informally defined as the probability that the given path P holds exactly for
(Q̂tb−4, Q̂

′
tb−4), . . ., (Q̂te+1, Q̂

′
te+1) for uniformly-randomly chosen Q̂tb−4, . . . , Q̂tb

and Ŵtb , . . . , Ŵte . The Q̂
′
tb−4, . . . , Q̂

′
tb

and Ŵ ′tb , . . . , Ŵ
′
te are determined through

the first five working state differences δQtb , . . . , δQte and the message differences

δWi (for i = tb, . . . , te). The remaining (Q̂tb+1, Q̂
′
tb+1), . . . , (Q̂te+1, Q̂

′
te+1) are

computed using the step function (Eq. 2). We refer to [Ste12a, Ch. 7.5] for an
equivalent definition and how to efficiently determine the probability Pr[P ].

As we are interested in differential paths with prescribed disturbances, we
define the set Qt as the set of all allowed differences ΔQt given (DVi)

79
i=0:

Qt :=
{
BSDR Y

∣∣∣ σ(Y )=σ(Z),
Z[i]∈{−DVt−1[i],DVt−1[i]}, i=0,...,31

}
.

We are now ready to define the set of all possible differential paths over steps
tb, . . . , te that we will base our analysis on:

D[tb,te] :=
{
P̂
∣∣ ΔQ̂i ∈ Qi, δŴj ∈ Wj , Pr[P̂ ] > 0

}
We define three functions ψ, φ and ω that return beginning working state differ-
ences, ending working state differences and message word differences:

3 In practice, we use a strictly smaller representation wherein ΔQtb−4 and δQte+1 are
replaced by δ(RL(Qt−4, 30)) and δQte+1, respectively. We use a simplification here
to ease presentation.

4 Here both −1 and +1 result in the same contribution in σ(ΔFt).
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ψ(P) = (ΔQi)
tb
i=tb−4, ω(P) = (δWi)

te
i=tb

,

φ(P) = (di)
te+1
i=te−3, where di =

{
σ(RL(ΔQi, 30)), i = te − 3, te − 2, te − 1;

δQi, i = te, te + 1.

We have chosen this particular definition for the ending working state differences
φ(P) as this matches δIHVout exactly. We denote by ψ(D), φ(D) and ω(D) the
sets found by applying ψ, φ or ω to all differential paths in the set D.

For a given disturbance vector (DVt)
79
t=0, the desired maximum success prob-

ability over steps tb, . . . , te denoted by FDC[tb,te]

(
(DVt)

79
t=0

)
is:

FDC[tb,te]

(
(DVt)

79
t=0

)
= max

b,e,w

∑
P̂∈D[tb,te]

ψ(P̂)=b, φ(P̂)=e, ω(P̂)=w

Pr[P̂] · c(b),

where c(b) = c((ΔQi)
te
i=tb−4) is the correction factor c(b) =

∏tb−2
i=tb−4 2

w(ΔQ̂i).
This correction factor c(b) ensures that FDC is the maximum success probabil-
ity assuming all working state bit conditions are fulfilled for Qtb−4, Qtb−3 and
Qtb−2.

5 This is due to the fact that a collision attack fulfills working state bit
conditions step by step, using message freedoms to speed up the attack, until
these freedoms cannot be exploited anymore. At that point, it is more benefi-
cial to compute all remaining steps and verify whether the desired δIHVout is
obtained. FDC returns the maximum success probability obtainable for these
remaining steps.

4.6 Differential Path Reduction

Unfortunately, analyzing a single local collision in the above manner is very feasi-
ble, whereas analyzing multiple local collisions quickly results in a prohibitively
large set of possible differential paths. We exploit the large amount of redun-
dancy among the possible differential paths to be able to efficiently compute the
desired maximum success probability even when there are many local collisions.

Note that we are only interested in the total success probability for given
pre- and post-conditions and not in the differential paths themselves per se. We
therefore propose to break up a differential path P into two valid differential
paths P̂ and P̃ with the following properties:

– P̂ and P̃ are ’disjoint’ and ’add’ to P . More specifically, we want that either
ΔQ̂i[b] or ΔQ̃i[b] to be equal to ΔQi[b] and the other to be zero (or all three

to be zero). The same holds for ΔFi[b]. Furthermore, δWi = δŴi + δW̃i;

– the success probabilities of P̂ and P̃ are independent: Pr[P ] = Pr[P̂ ] · Pr[P̃];
– ψ(P) = ψ(P̂) and φ(P) = φ(P̂);
– the success probability Pr[P̂ ] is maximal under the above restraints.

5 Note that if bit conditions up to Qtb−2 are fulfilled then ΔFtb−1 has been ensured,
but not ΔFtb .
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Algorithm 4-1. Iterative construction of reduced differential path sets

1. Let t̂ be some step in the range [tb, te].
2. Construct the entire set D[t̂,t̂] of all possible differential paths over step t̂.
3. Compute R[t̂,t̂] = {Reduce(P) | P ∈ D[t̂,t̂]}.
4. For i = t̂, t̂+ 1, . . . , te − 1, using the set R[t̂,i] we compute: R[t̂,i+1]:

(a) Let A := ∅.
(b) For all P ∈ R[t̂,i] and for all choices ΔQi+2 ∈ Qi+2, δWi+1 ∈ Wi+1, ΔFi+1 ∈

{−1, 0, 1}31 × {0, 1} let P̂ be the differential path over steps t̂, . . . , i+ 1 given
as P appended with ΔQi+2, ΔFi+1 and δWi+1.
If Pr[P̂ ] > 0 then let A := A ∪ {Reduce(P̂)}.

(c) R[t̂,i+1] := A.

5. For i = t̂, t̂− 1, . . . , tb + 1, using the set R[i,te] we compute R[i−1,te]:
(a) Let A := ∅.
(b) For all P ∈ R[i,te] and for all choices ΔQi−5 ∈ Qi−5, δWi−1 ∈ Wi−1, ΔFi−1 ∈

{−1, 0, 1}31 ×{0, 1} let P̂ be the differential path over steps i− 1, . . . , te given
as P prepended with ΔQi−5, ΔFi−1 and δWi−1.
If Pr[P̂ ] > 0 then let A := A ∪ {Reduce(P̂)}.

(c) R[i−1,te] := A.
6. Output R[tb,te].

One can interpret P̂ as the differential path P with all differences removed
that do not interact with the differences that constitute the starting and ending
working state differences ψ(P) and φ(P). We denote P̂ as Reduce(P) and P̃ as

P −P̂ . In our proposed methodology, instead of directly computing the differen-
tial paths in D[tb,te] and their probabilities, we propose to work with the set of
reduced differential paths R[tb,te] := {Reduce(P) | P ∈ D[tb,te]} and cumulative
probabilities p(P,w) for each reduced differential path P and w defined as:

p(P,w) =
∑

P′∈D[tb,te]

P=Reduce(P′),w=ω(P′)

Pr[P ′ − P ].

These cumulative probabilities have an easy interpretation using the equation:

Pr[P ] · p(P,w) =
∑

P′∈D[tb,te]

P=Reduce(P′),w=ω(P′)

Pr[P ] · Pr[P ′ − P ] =
∑

P′∈D[tb,te]

P=Reduce(P′),w=ω(P′)

Pr[P ′]

As the working state differences φ(P) and ψ(P) are unaffected by Reduce(P), the
set of reduced differential paths and the cumulative probabilities are sufficient
to determine the total success probability of any partition (b, e, w) of D[20,79].

Moreover, the set R[tb,te] of reduced differential paths can be computed effi-
ciently in an iterative manner as shown in Alg. 4-1. The cumulative probabilities
can also be computed iteratively, but unfortunately the number of possible mes-
sage difference vectors w ∈ (Wi)

te
i=tb

still grows exponentially in the number of
local collisions over these steps.
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Message Difference Vector Classes. To solve the problem of the exponential
growth of possible message difference vectors, we consider classes w of message
difference vectors w over steps i, . . . , j, where any two w �= w′ are in the same
class w if and only if p(P,w) = p(P,w′) for all P ∈ R[i,j]. It then suffices to
compute the cumulative probabilities for only one representative w ∈ w for each
class w over steps tb, . . . , te.

Let W [i,j] be the set of all message difference vector classes w over steps

i, . . . , j. An important insight is that for any class w[i,j] ∈ W [i,j] and any two
w,w′ ∈ w[i,j] it holds that the extensions w||δWj+1 and w′||δWj+1 of w and

w′ with a difference δWj+1 are both in the same class w[i,j+1] ∈ W [i,j+1]. An
analogous statement holds for prepending a δWi−1 to w and w′. These insights
imply that it is sufficient to consider only one representative of each class in
W [i,j] to determine the sets W [i−1,j] and W [i,j+1].

In conclusion, with our two key techniques of differential path reduction and
message difference vector classes, we are able to efficiently compute FDC[tb,te].

4.7 Results

We have computed FDC[20,79] for several interesting disturbance vectors. These
results are shown in Sect. B and show the maximum success probability of these
disturbance vectors over the last 60 steps. Although the total complexity of a
collision attack also depends on the complexity over the non-linear part, these re-
sults provide important insights which of these disturbance vectors may possibly
lead to the fastest collision attack.

4.8 Improvements for the Last Few Steps of SHA-1

A common approach in constructing SHA-1 collision attacks is to remove the con-
ditions for the last few steps as this will decrease the attack’s overall complexity.
The heuristic behind this effect is that for the last few steps some other differen-
tial paths that do not follow the disturbance vector actually have a higher success
probability. Our approach can be adjusted by extending the sets Q76, . . . ,Q80

with differences ΔQi from these more likely alternative differential paths. We de-
note by FDC′[tb,te], D′[tb,te] and R

′
[tb,te]

the respective function and sets wherein

the extended sets Q′76, . . . ,Q′80 are used instead of Q76, . . . ,Q80. Algorithms that
efficiently determine such extended sets Q′76, . . . ,Q′80 using ideas similar to the
analysis in Sect. 4 are omitted here, but can be found in [Ste12a, Ch. 7.5].

5 New Collision Attacks on SHA-1

5.1 Open-Source Near-Collision Attack

In this section we present our near-collision attack on SHA-1 with an average
complexity of 257.5 compressions. Our near-collision attack is based on distur-
bance vector II(52,0). Below we describe how we used our new approach from
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Table 5-1. SHA-1 near-collision differential path - round 1

t Bitconditions: qt[31] . . . qt[0] ΔWt

−4,−3,−2 ........ ........ ........ ........

−1 ...1.... ........ ........ ....0...

0 .^.0.1.. .....0.1 ...00.10 .1..1..1 {1, 26, 27}
1 .0.+^-^^ ^^^^^1^0 ^^^11^10 .0..1.+0 {4, 30, 31}
2 1-...+-- -------- -------- --.-1.+0 {2, 3, 4, 26, 28, 29, 31}
3 .-.-.0.1 11111111 11110++1 +-1-00-0 {2, 26, 27, 28, 29}
4 .-...1.0 11111111 1111-+++ ++0.1.+1 {1, 3, 4, 26, 27, 28, 29, 31}
5 .-...0.. ........ ......0. .+.+10+0 {4, 29}
6 .-.+.... ........ ......01 100-.0+. {2, 3, 4, 26, 29}
7 -1...1.. ........ ........ ...0.0.. {2, 4, 26, 27, 29, 30, 31}
8 1.1-.1.. ........ ........ .....1.. {1, 26, 27}
9 ..-..0.. ........ ........ ........ {4, 30, 31}
10 ^...00.. ........ ........ .......1 {2, 3, 4, 26, 28, 29, 31}
11 ..-.1... ........ ........ .......0 {2, 26, 27, 29}
12 0-..1... ........ ........ ......!. {3, 4, 26, 27, 28, 29, 31}
13 +..01... ........ ........ ........ {4, 28, 29, 31}
14 ..-1.... ........ ........ ......!. {2, 3}
15 +.0.1... ........ ........ ......!^ {4, 27, 28, 29, 31}
16 +-0.0... ........ ........ ......!. {3, 4, 27}
17 +..1.... ........ ........ ......^. {4, 27, 28, 29, 30}
18 -.+0.... ........ ........ ........ {2, 4, 27}
19 -....... ........ ........ ........ {4, 28, 29, 30}
20 ..+..... ........ ........ ........

Note: ΔWt uses a compact notation, e.g., ΔWt = +25−210 is notated as {5, 10}.

Sect. 4 to determine which message bitrelations and δIHVout to use and how
we constructed the first round differential path. Collision search algorithms and
various improvements using message modification techniques have already been
covered extensively in the literature. We refer to our open-source implementation
[Ste12b, Ste12a] for these details due to space considerations.

To apply our analysis of Sect. 4, we have chosen to use tb = 20 (and te = 79).
We use the improvements mentioned in Sect. 4.8 as this leads to higher success
probabilities by a factor 21.2. Let D′ := D′[20,79], for b ∈ ψ(D′), e ∈ φ(D′) and

w ∈ ω(D′) we define pb,e,w and pmax as:

pb,e,w =
∑
P̂∈D′

ψ(P̂)=b, φ(P̂)=e, ω(P̂)=w

Pr[P̂ ] · c(b), pmax = max
b,e,w

pb,e,w.

We algorithmically find a differential path over the first 20 steps that starts
from δIHVin = 0 and ends with working state differences b ∈ ψ(D′) for which
there are e and w such that pb,e,w = pmax(=FDC′[20,79](II(52, 0))). The differ-
ential path over the first round that we selected for our near-collision attack is
shown in Tbl. 5-1 and fixes a specific value b̂ and specific message differences
δŴ0, . . . , δŴ19.
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Table 5-2. SHA-1 near-collision attack target δIHVdiff values

I1 =
{
(211+24−22, 26, 231, 21, 231), (212+211+29+24−22, 27+26+24, 231, 21, 231),

(212+23+21, 27, 0, 21, 231), (212+211+24−22, 27+26, 231, 21, 231),

(212+24−21, 27, 0, 21, 231), (211+29+24−22, 26+24, 231, 21, 231),

(212+29+23+21, 27+24, 0, 21, 231), (212+29+24−21, 27+24, 0, 21, 231)
}
;

I2 =
{
(v1+c1 · 23−c2 · 25, v2, v3, v4−c3 · 22, v5)

∣∣ (vi)
5
i=1 ∈ I1, c1, c2, c3 ∈ {0, 1}

}
;

I3 =
{
(v1−c · 213, v2−c · 28, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I2, c ∈ {0, 1}

}
;

Ĩ =
{
(v1−c · 29, v2−c · 24, v3, v4, v5)

∣∣ (vi)
5
i=1 ∈ I3, c ∈ {0, 1}

}
;

Note: the resulting set Ĩ has 192 unique target δIHVdiff values. Furthermore, for any
δIHVdiff ∈ Ĩ also −δIHVdiff ∈ Ĩ.

To maximize the success probability, we only accept δIHVout in the set {e ∈
φ(D′) | ∃w : pb̂,e,w > 0.9pmax}. We can further decrease overall complexity by
only allowing w that maximize the number of e = δIHVout with pb̂,e,w > 0.9pmax.
The near-collision attack gains a speed up due to the fact that it always has
several chances of finding a target δIHVout. Note that a possible second near-
collision attack (for an identical-prefix collision attack) does not have the benefit
of the speedup as it targets one specific δIHVout = 0. More formally, for each
w ∈ ω(D′), we count the number Nw of values e for which pb̂,e,w > 0.9pmax. Let

Nmax := maxwNw (which is 6 in our case) then we limit the allowed message
difference vectors to the set W[20,79] = {w | Nw = Nmax}. Hence, we only accept
values for δIHVout in the set {e ∈ φ(D′) | ∃w ∈ W[20,79] : pb̂,e,w > 0.9pmax}. In
this manner we have found 192 target δIHVout-values (see Tbl. 5-2).

With the differential path and the set of allowed δIHVout known, we only
need the message bit relations to construct a collision attack. We translate the
set W[20,79] and the vector (δŴi)

19
i=0 into a smallest sufficient set of linear bit

relations on the message words bits using linear algebra (see Sect. A).
Using the differential path, the message bitrelations and the set of allowed

δIHVout, we have implemented a near-collision attack. For more details, we refer
to the source code which is available online at [Ste12b]. For more convenient
analysis, the attack is split in four subsequent stages:

1. The first stage finds a message block pair satisfying the message bitrelations
and which results in δQi = 0 for i = 29, 30, 31, 32, 33. This stage is the most
complex and contains all speed ups using message modification techniques.

2. The second stage is to find a message block pair that satisfies the message
bitrelations and results in δQi = 0 for i = 49, 50, 51, 52, 53.

3. The third stage is to find a message block pair that satisfies the message
bitrelations and results in δQi = 0 for i = 57, 58, 59, 60, 61.

4. The fourth and final stage is to find a message block pair that results in one
of the 192 target δIHVout in Tbl. 5-2.

The last three stages cannot use any freedoms anymore and thereby either are
or are not successful with some probability. The average total complexity of our
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Table 5-3. Example message pair each consisting of an identical-prefix block and a
near-collision block satisfying our differential path up to step 66

First message Second message

bc7e393a0470f684 e0a484dea556875a bc7e393a0470f684 e0a484dea556875a

cddff9c82d02016b 860ee7f911e18418 cddff9c82d02016b 860ee7f911e18418

71bfbff1067095c9 ed44afee78122409 71bfbff1067095c9 ed44afee78122409

a3b2eb2e16c0cfc2 06c5202810383c2b a3b2eb2e16c0cfc2 06c5202810383c2b

73e6e2c8437fb13e 4e4d5db6e383e01d 7fe6e2ca837fb12e fa4d5daadf83e019

7bea242c2bb63054 6845b1430c2194ab c7ea24360bb63044 4c45b15fe02194bf

fb5236be2bc91e19 1d11bf8f665ef9ab f75236bcebc91e09 a911bf934a5ef9af

9f8fe36a402cbf39 d77c1fb43cb00872 238fe372f02cbf29 d77c1fb884b00862

near-collision attack is thus the average complexity of the first stage divided by
the product of the success probabilities for the last three stages. Our implemen-
tation outputs the throughput of the first stage in #/s as ’timeavg 40’, and the
success probabilities of the last three stages as ’avg 53 stats’, ’avg 61 stats’ and
’avg 80 stats’, respectively. Using these numbers one can easily determine the
average complexity in SHA-1 compressions to find a near-collision. With profil-
ing and tuned optimization flags for the compiler and many hours-long runs, we
determined an average complexity of the first stage to be 220.91 SHA-1 compres-
sions per message block pair. Using our novel analysis for step ranges [33,52],
[53,60] and [61,79] and Nmax = 6, we determined the exact success probabilities
for the last three stages, namely, 2−20.91, 28 and 216.65, respectively. These prob-
abilities were verified by our implemented attack. Hence, the total complexity
of our near-collision is 211.97 · 220.91 · 28.00 · 216.65 = 257.53 SHA-1 compressions.
Finally, we like to note that with more than 50 bits of the 512 message bits left
as degrees of freedom, there is ample room to further optimize the first stage
with message modification techniques.

We provide an example message pair in Tbl. 5-3 that successfully passed the
first three stages of our near-collision attack (at a cost of about 240.9

compressions).

5.2 Identical-Prefix Collision Attack on SHA-1

The near-collision attack of Sect. 5.1 can directly be used in a two-block identical-
prefix collision attack on SHA-1.6 The second near-collision block of the two
blocks cancels the δIHVout resulting from the first near-collision block.

For the second near-collision block, we follow the steps as described in Sect. 5.1
with two modifications. Firstly, in Sect. 5.1 we allow only δIHVout = 0 (thus
δIHVin is canceled). This leads to Nmax = 1 and a different set of optimal
message difference vectors W[20,79]. Hence, the total complexity over the last

6 An additional identical-prefix block is used to satisfy a few bitconditions on the
IHV (see Tbl. 5-1) and furthermore to simplify implementation and to allow very
easy parallelization. It should be possible to remove this prefix block with only a
negligible impact on the attack complexity.
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three stages increases by a factor 6. Secondly, instead of using a differential path
starting with δIHVin = 0 in Sect. 5.1, we use a differential path that starts with
the (IHV, IHV ′) resulting from the first near-collision block.

A lower-bound for the complexity of a complete two-block identical-prefix
collision attack based on our current near-collision implementation is about
(1 + 6) · 257.5 ≈ 260.3 compressions, as the first near-collision attack has the
luxury of six allowed values for δIHVout for each possible (δWt)

79
t=0, whereas the

second near-collision attack must target one specific δIHVout. As the second-
block differential path will differ roughly only up to q4, almost all used message
modification techniques will be unaffected. Also, there will still be a relative
large amount of freedoms left to further apply message modification techniques.
Hence, it is reasonable to expect a similar complexity in the first stage (first 32
steps). Nevertheless, leaving room for a small set back, we estimate the average
complexity of our identical-prefix collision attack for SHA-1 to be equivalent to
261 SHA-1 compressions.

5.3 Chosen-Prefix Collision Attack

We present a chosen-prefix collision attack on SHA-1 using the second near-
collision attack of Sect. 5.2 that does the following. Given chosen prefixes P and
P ′, we first append bit strings Sr and S′r such that the bit lengths of P ||Sr and
P ′||S′r are both equal to N · 512 − 119. By processing the first N − 1 blocks
of P ||Sr and P ′||S′r, we obtain IHVN−1 and IHV ′N−1, resp. Furthermore, let B
and B′ be the last 512− 119 bits of P ||Sr and P ′||S′r, resp. The next step is to
perform a birthday search as explained in [vOW99] using a search space V and a
step function f : V → V . We define V = {0, 1}119 and f (based on Tbl. 5-2) as:

f(v) =

{
φ
(
Compress(IHVN−1, B||v)

)
if w(v) = 0 mod 2;

φ
(
Compress(IHV ′N−1, B

′||v)− (0, 0, 0, 0, 231)
)

if w(v) = 1 mod 2,

φ(a, b, c, d, e) = (a[i])31i=19||(b[i])31i=14||(c[i])30i=0||(d[i])31i=7||e

The probability that a birthday collision results in one of the 192 target δIHVout
is found to be approximately 2−33.46 using Monte Carlo simulations. Therefore,
a birthday search collision pair v, w with f(v) = f(w) has a probability of
q = 2−33.46−1 that τ(v) �= τ(w) and δIHVN is one of the 192 target δIHVout-
values. Using the analysis from [vOW99], this implies that the expected birthday
search complexity in SHA-1 compressions is

√
π · |V |/(2 · q) ≈ 277.06.

To complete the chosen-prefix collision attack it remains to find a near-collision
block that cancels δIHVN . But as δIHVN is one of the 192 target δIHVout, we
can directly use the construction of the second near-collision block of Sect. 5.2,
whose complexity is significantly lower than 277.06. Hence, the overall cost of
a chosen-prefix collision attack on SHA-1 is dominated by the expected 277.1

SHA-1 compressions required for the birthday search.
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6 Concluding Remarks

We have presented new collision attacks on SHA-1, most importantly an identical-
prefix collision attack with an average complexity of 261 compressions. With the
construction of these attacks, we focused mostly on obtaining the highest success
probability that is theoretically possible over the linear part. Our novel direction
in the cryptanalysis of SHA-1 is essentially based on an exhaustive and exact
analysis of all possible differential paths that follow the disturbance vector. This
is in contrast to previous approaches that combine success probabilities and
conditions of individual local collisions with heuristic corrections. In this paper
we have introduced the foundations of our novel direction. For a complete and
rigorous mathematical treatment we refer to the full version [Ste12a].

As our attacks have still over 50 out of the 512 message bits left as degrees
of freedom for further improvements using message modification techniques, we
hope that our novel methods provide the necessary advantage to construct at-
tacks with complexity well below 261 compressions and thereby contributes to
the search for the long-anticipated first SHA-1 collision.
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A Deriving Message Bitrelations

For each ŵ = (δŴi)
79
i=20 ∈W[20,79] we define the set Vŵ as the set of all (Wi)

79
i=0

that ’result’ in ŵ, i.e., (Wi ⊕ DWi) −Wi = δŴi for all i ∈ {20, . . . , 79}. Let
the set V =

⋃
w∈W[20,79]

Vw consist of all (Wt)
79
t=0 that are compatible with some

w ∈ W[20,79]. Furthermore, let V ′ be the set consisting of all elements of V
mapped to F32·80

2 . We search for an affine subspace y + U ⊆ V ′ which is as
large as possible. Choose any basis of U⊥ of size k and let the k rows of the

matrix A[20,79] ∈ F
k×(32·80)
2 consist of the k basis vectors of U⊥. It follows that

x ∈ U ⇔ A[20,79] · x = 0 and thus x ∈ y + U ⇔ A[20,79] · x = A[20,79] · y. The
matrix equation A[20,79] ·x = c[20,79] with c[20,79] = A[20,79] ·y describes sufficient
linear bit relations for steps 20 up to 79.7

The set W[0,19] = {(δŴi)
19
i=0} similarly leads to a matrix equation A[0,19] ·

x = c[0,19]. The two matrix equations can be combined into a single matrix

7 Although this seems to be impractical, we can compute this efficiently by splitting
it into independent parts and using well chosen representations.

https://hashclash.googlecode.com/files/sha1_nearcoll_attack.zip
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equation A[0,79] · x = c[0,79] that defines our message search space. Finally, this
matrix equation over the 32 ·80 message words bits is reduced using the message
expansion relation to a matrix equation over the 512 message block bits.

B SHA-1 Disturbance Vector Analysis

Tbl. B-1 is based on the disturbance vector cost function FDC[tb,te],u that is
defined as similar to FDC[tb,te], but under the additional constraint that only up
to u carries are allowed in the working state differences ΔQi. More formally, we
define:

Qt,u :=

{
BSDR Y

∣∣∣∣ σ(Y )=σ(Z),
Z[i]∈{−DVt−1[i],DVt−1[i]}, i=0,...,31,

w(Y )≤u+minX∈Qt w(X).

}
;

D[tb,te],u :=
{
P̂
∣∣ ΔQ̂i ∈ Qi,u, δŴj ∈ Wj , Pr[P̂] > 0

}
;

FDC[tb,te],u

(
(DVt)

79
t=0

)
= max

b,e,w

∑
P̂∈D[tb,te],u

ψ(P̂)=b, φ(P̂)=e, ω(P̂)=w

Pr[P̂ ] · c(b),

where c(b) = c((ΔQi)
te
i=tb−4) is the correction factor c(b) =

∏tb−2
i=tb−4 2

w(ΔQ̂i).
The tables below contain notes ε = 0, 1/8, 1/4, 1/2 for each entry. This note

indicates whether in our algorithms to compute FDC[tb,te],u we removed certain
message difference vectors w that had a ’total success probability of w’ less than
ε times the highest ’total success probability over all w′’. Although, we won’t
go into the details of the notationally heavy definition of this ’total success
probability’, it is clear that choosing ε = 0 will cause no message difference
vector to be removed. Choosing ε > 0 will result in that the maximum taken in
FDC[tb,te],u will actually be taken over a subset of all values w. Hence, choosing
ε > 0 can only affect the outcome in a negative way, i.e., a smaller maximum
success probability. Although for ε close to 1, this removal of message difference
vectors does affect the outcome (in a negative way), we have not seen this happen
for ε ≤ 0.5 for all selected studied cases. Choosing ε > 0 allows us to compute
lower-bounds for FDC[tb,te],u for disturbance vectors and values for u that were
otherwise prohibitive for our particular machine due to memory requirements.
We argue that for up to ε ≤ 0.5 these values are not just lower-bounds, but in
fact the correct outcome for FDC[tb,te],u, which is backed-up by the fact that
for increasing u these outcomes increase as expected and no sudden decrease is
seen (or, when taking the − log2, decrease as expected and no sudden increase
is seen).
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Table B-1. Disturbance vector results

u
DV 0 1 2 3 7

I(42, 0) 82.68
ε=0

78.67
ε=0

78.36
ε=1/4

I(43, 0) 82.00
ε=0

77.65
ε=0

77.31
ε=1/8

I(44, 0) 81.00
ε=0

77.41
ε=0

77.1
ε=0

76.98
ε=0

76.89
ε=1/8

I(45, 0) 81.00
ε=0

76.91
ε=0

76.66
ε=0

76.54
ε=0

76.45
ε=1/8

I(46, 0) 79.00
ε=0

75.02
ε=0

74.92
ε=0

74.84
ε=0

74.83
ε=1/8

I(47, 0) 79.00
ε=0

75.15
ε=0

74.83
ε=0

74.71
ε=0

74.61
ε=0

I(48,0) 75.00
ε=0

71.84
ε=0

71.61
ε=0

71.51
ε=0

71.42
ε=0

I(49,0) 76.00
ε=0

72.59
ε=0

72.34
ε=0

72.24
ε=0

72.15
ε=0

I(50,0) 75.00
ε=0

72.02
ε=0

71.95
ε=0

71.93
ε=0

71.92
ε=0

I(51, 0) 77.00
ε=0

73.76
ε=0

73.53
ε=0

73.43
ε=0

73.34
ε=0

I(52, 0) 79.00
ε=0

76.26
ε=0

76.24
ε=0

76.24
ε=0

76.24
ε=0

I(53, 0) 82.83
ε=0

78.86
ε=0

78.79
ε=0

78.77
ε=0

78.77
ε=0

I(54, 0) 82.83
ε=0

79.60
ε=0

79.38
ε=0

79.28
ε=0

79.19
ε=0

I(55, 0) 81.54
ε=0

78.67
ε=0

78.42
ε=0

78.32
ε=0

78.23
ε=0

I(56, 0) 81.54
ε=0

79.10
ε=0

79.03
ε=0

79.01
ε=0

79.01
ε=0

I(42, 2) 85.09
ε=0

82.17
ε=1/4

81.84
ε=1/2

81.72
ε=1/2

I(43, 2) 84.42
ε=0

81.15
ε=1/4

80.78
ε=1/2

I(44, 2) 84.42
ε=0

81.92
ε=0

81.57
ε=1/4

81.45
ε=1/2

81.36
ε=1/2

I(45, 2) 83.42
ε=0

80.80
ε=0

80.52
ε=0

80.41
ε=1/4

80.32
ε=1/2

I(46, 2) 80.42
ε=0

78.10
ε=0

78.00
ε=0

77.99
ε=1/8

77.99
ε=1/4

I(47, 2) 79.68
ε=0

77.01
ε=0

76.68
ε=0

76.56
ε=0

76.47
ε=1/8

I(48, 2) 76.68
ε=0

74.27
ε=0

73.99
ε=0

73.88
ε=0

73.79
ε=0

I(49, 2) 77.00
ε=0

74.30
ε=0

74.02
ε=0

73.92
ε=0

73.83
ε=0

I(50, 2) 77.00
ε=0

74.74
ε=0

74.63
ε=0

74.61
ε=0

74.60
ε=0

I(51, 2) 80.00
ε=0

77.47
ε=0

77.21
ε=0

77.11
ε=0

77.03
ε=0

I(52, 2) 82.00
ε=0

79.98
ε=0

79.93
ε=0

79.92
ε=0

79.92
ε=0

I(53, 2) 84.00
ε=0

81.91
ε=0

81.80
ε=0

81.78
ε=0

81.78
ε=0

I(54, 2) 84.00
ε=0

81.37
ε=0

81.06
ε=0

80.95
ε=0

80.85
ε=0

u
DV 0 1 2 3 7

I(55, 2) 84.00
ε=0

81.78
ε=0

81.53
ε=0

81.43
ε=0

81.34
ε=0

I(56, 2) 82.00
ε=0

80.22
ε=0

80.13
ε=0

80.12
ε=0

80.11
ε=0

II(44, 0) 87.00
ε=0

79.51
ε=1/2

II(45, 0) 83.00
ε=0

75.45
ε=1/8

74.82
ε=1/2

II(46,0) 76.00
ε=0

71.85
ε=0

71.83
ε=1/2

II(47, 0) 81.42
ε=0

76.23
ε=0

75.87
ε=1/2

II(48, 0) 80.00
ε=0

76.11
ε=0

75.89
ε=0

75.79
ε=1/8

II(49, 0) 80.00
ε=0

75.04
ε=0

74.72
ε=0

74.60
ε=0

74.51
ε=1/2

II(50,0) 78.00
ε=0

73.52
ε=0

73.23
ε=0

73.12
ε=0

73.02
ε=0

II(51,0) 77.00
ε=0

72.55
ε=0

72.18
ε=0

72.02
ε=0

71.88
ε=0

II(52,0) 75.00
ε=0

71.88
ε=0

71.87
ε=0

71.76
ε=0

71.75
ε=0

II(53, 0) 76.96
ε=0

73.65
ε=0

73.34
ε=1/8

73.23
ε=1/8

73.14
ε=1/8

II(54, 0) 77.96
ε=0

73.97
ε=0

73.74
ε=1/8

73.64
ε=1/8

73.55
ε=1/8

II(55, 0) 77.96
ε=0

75.22
ε=1/8

74.99
ε=1/2

74.89
ε=1/2

74.80
ε=1/2

II(56, 0) 76.96
ε=0

74.48
ε=1/2

74.18
ε=1/2

74.07
ε=1/2

73.97
ε=1/2

II(45, 2) 85.00
ε=0

78.64
ε=1/2

II(46, 2) 82.00
ε=0

77.51
ε=1/2

II(47, 2) 85.42
ε=0

79.83
ε=1/2

II(48, 2) 83.00
ε=0

78.81
ε=1/2

78.46
ε=1/2

II(49, 2) 83.00
ε=0

78.09
ε=0

77.74
ε=1/2

II(50, 2) 81.00
ε=0

76.51
ε=0

76.16
ε=1/8

76.03
ε=1/8

II(51, 2) 82.00
ε=0

77.74
ε=0

77.36
ε=1/8

77.20
ε=1/8

II(52, 2) 82.00
ε=0

79.07
ε=0

78.96
ε=0

78.94
ε=0

78.93
ε=1/2

II(53, 2) 83.00
ε=0

79.60
ε=0

79.30
ε=0

79.18
ε=0

79.09
ε=1/8

II(54, 2) 84.00
ε=0

80.49
ε=0

80.21
ε=0

80.10
ε=0

80.00
ε=1/8

II(55, 2) 84.00
ε=0

81.20
ε=0

80.88
ε=0

80.76
ε=0

80.67
ε=1/8

II(56, 2) 85.00
ε=0

82.69
ε=1/4

82.39
ε=1/4

82.27
ε=1/4

82.18
ε=1/4

Note: the columns are the negative log2 results of the cost function FDC[20,79],u.
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Abstract. In this paper, we focus on the construction of semi-free-start
collisions for SHA-256, and show how to turn them into collisions. We
present a collision attack on 28 steps of the hash function with practical
complexity. Using a two-block approach we are able to turn a semi-
free-start collision into a collision for 31 steps with a complexity of at
most 265.5. The main improvement of our work is to extend the size
of the local collisions used in these attacks. To construct differential
characteristics and confirming message pairs for longer local collisions,
we had to improve the search strategy of our automated search tool. To
test the limits of our techniques we present a semi-free-start collision for
38 steps.

Keywords: hash functions, SHA-2, cryptanalysis, collisions, semi-free-
start collisions, differential characteristics, automatic search tool.

1 Introduction

Since 2005, many collision attacks have been shown for commonly used and stan-
dardized hash functions. In particular, the collision attacks of Wang et al. [17,18]
on MD5 and SHA-1 have convinced many cryptographers that these widely de-
ployed hash functions can no longer be considered secure. As a consequence,
NIST has proposed the transition from SHA-1 to the SHA-2 family. Many com-
panies and organization follow this advice and migrate to SHA-2. Additionally,
SHA-2 is faster on many platforms than the recently chosen winner of the SHA-3
competition [14]. Hence, NIST explicitly recommends both, SHA-2 and SHA-3.
Therefore, the cryptanalysis of SHA-2 is still of high interest.

In the last few years several cryptanalytic results have been published for
SHA-256. The security of SHA-256 against preimage attacks was first studied
by Isobe and Shibutani in [5]. They have presented a preimage attack on 24
out of 64 steps. This was improved by Aoki et al. to 43 steps in [1] and later
extended to 45 steps by Khovratovich et al. in [6]. In [8] Li et al. have shown
how a particular preimage attack can be used to construct a free-start collision
attack for 52 steps of SHA-256. All attacks are only slightly faster than the
generic attack which has a complexity of 2256 for preimages and 2128 for free-
start collisions. Furthermore, second-order differential collisions for SHA-256 up
to 47 steps with practical complexity have been shown in [2, 7].

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 262–278, 2013.
c© International Association for Cryptologic Research 2013
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In [15] Nikolić and Biryukov, studied the security of SHA-256 with respect to
collision attacks. They found a differential characteristic resulting in a collision
attack for 23 steps of SHA-256. Later this approach was extended to a collision
attack on 24 steps [4, 16]. All these results use rather simple local collisions
spanning over 9 steps, which are constructed mostly manually or using basic
cryptanalytic tools. However, as pointed out in [4] it is unlikely that this approach
can be extended beyond 24 steps.

Recently, Mendel et al. proposed a technique to use local collisions spanning
over a higher number of steps. The main improvement is to use an automated
search tool to construct the differential characteristics and to find confirming
message pairs. Using local collisions spanning over more than 9 steps, a collision
attack on 27 steps and a semi-free-start collision attack on 32 steps of SHA-256
has been shown. Both attacks have practical complexity. Currently, these are
the best collision attacks on SHA-256 with practical complexity.

In this paper, we improve upon these collision attacks on SHA-256. We present
collisions for the hash function on up to 31 out of 64 steps with complexity of at
most 265.5, and semi-free-start collisions on 38 steps with complexity of 237. We
get these attacks by extending the size of the local collision to up to 18 steps.
Furthermore, we try to ensure that the first message words do not contain any
differences. This way, we can convert most of our semi-free-start collision attacks
into collision attacks on the hash function.

The remainder of this paper is structured as follows. A description of the
hash function is given in Sect. 2. A high-level overview of our attacks is given
in Sect. 3. In Sect. 4 we show how we construct local collisions spanning over a
higher number of steps. We show how to construct the differential characteristics
in Sect. 5. In Sect. 6 we present our results and show how to turn (some of) the
semi-free-start collision into collisions. Finally, we conclude in Sect. 7.

2 Description of SHA-256

SHA-256 is an iterated hash function that pads and processes the input message
using t 512-bit message blocks mj . The 256-bit hash value is computed using
the compression function f :

h0 = IV

hj+1 = f(hj ,mj) for 0 ≤ j < t

hash = ht

In the following, we briefly describe the compression function f of SHA-256.
It basically consists of two parts: the message expansion and the state update
transformation. A more detailed description of SHA-256 is given in [13].

2.1 Message Expansion

The message expansion of SHA-256 splits the 512-bit message block into 16
words Mi, i = 0, . . . , 15, and expands them into 64 expanded message words Wi

as follows:
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Wi =

{
Mi 0 ≤ i < 16
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 16 ≤ i < 64

The functions σ0(x) and σ1(x) are given by

σ0(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x) 3)

σ1(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x) 10)

2.2 State Update Transformation

We use the alternative description of the SHA-256 state update given in [11],
which is illustrated in Fig. 1.

Ai

Ai−1

Ai−1

Ai−2

Ai−2

Ai−3

Ai−3

Ai−4

Ei

Ei−1

Ei−1

Ei−2

Ei−2

Ei−3

Ei−3

Ei−4

Σ1

IF

Ki

Wi

−
+

Σ0

M
A
J

Fig. 1. The state update transformation of SHA-256

The state update transformation starts from the previous 256-bit chaining value
hj = (A−4, . . . , A−1, E−4, . . . , E−1) which is updated by applying the step func-
tions 64 times. In each step i = 0, . . . , 63 the expanded 32-bit word Wi is used
to compute the two state variables Ei and Ai as follows:

Ei = Ai−4 + Ei−4 +Σ1(Ei−1) + IF(Ei−1, Ei−2, Ei−3) +Ki +Wi

Ai = Ei −Ai−4 +Σ0(Ai−1) +MAJ(Ai−1, Ai−2, Ai−3).

For the definition of the step constants Ki we refer to [13]. The bitwise Boolean
functions IF and MAJ used in each step are defined by

IF(x, y, z) = xy ⊕ xz ⊕ z

MAJ(x, y, z) = xy ⊕ yz ⊕ xz,
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and the linear functions Σ0 and Σ1 are defined as follows:

Σ0(x) = (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22)

Σ1(x) = (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25).

After the last step of the state update transformation, the previous chaining
value is added to the output of the state update (Davies-Meyer construction).
The result is the chaining value hj+1 for the next message block mj+1.

3 Basic Attack Strategy

In this section, we give a high-level overview of our collision attacks on SHA-256.
We first construct semi-free-start collisions for SHA-256 based on a local collision
and then turn these collisions on the compression function into collisions on the
hash function. This is possible if enough message words can be chosen freely at
the input of the compression function. The main difficulty lies in the construction
of semi-free-start collisions which offer enough free message words to turn them
into collisions.

3.1 Constructing Local Collisions

If the local collision starts at step n, we get n free message words at the beginning
of a differential characteristic. In this case message words W0, . . . ,Wn−1 do not
contain any differences. Hence, they can be chosen (almost) freely to match the
initial value or the chaining value of the first block [4]. Note that in some cases,
a few bits of these message words may be needed to fulfill conditions in the
message expansion.

For our collision attack on 28 steps, we need a local collision with t = 11 steps
which starts in step n = 8 and ends in step 18 (see Fig. 2). For our attack on
31 steps, we use a local collision with t = 14 steps which starts in step n = 5
and ends in step 18 (see Fig. 2). Although, these local collision spans over fewer
words in Ei (t − 4 words) and Ai (t− 8 words), a lot of freedom is still needed
to fulfill all the conditions imposed by the differential characteristic.

Therefore, we use local collisions which are sparse, especially in steps greater
than 16. Since the message difference has the largest influence, we aim for a small
number of message words which contain differences (see Sect. 4). Additionally,
we try to keep the number of differences in the later words of Ai and Ei low.
This significantly reduces the search space and improves the running time of our
automatic search algorithm (see Sect. 5).

3.2 Turning Semi-Free-Start Collisions into Collisions

In SHA-256 a semi-free-start collision can easily be turned into a collision, if
the first 8 message words can be chosen freely. In this case, we can choose the 8
message words to match the 8 words of the initial value [4]. We use this approach
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Fig. 2. Two approaches to construct collisions for SHA-256. The left approach uses 8
free message words to turn a semi-free-start collision on 28 steps into a collision on
the hash function. The right approach uses random first blocks to increase the freedom
and thus, the size of the local collision.

in our collision attack on 28 steps of SHA-256 (see Fig. 2). However, by attacking
a higher number of steps a lot of freedom is needed for message modification, in
particular after step 15. Therefore, we aim for local collisions resulting in only a
few conditions after step 15, which limits the size of the local collision.

However, to get an attack on a higher number of steps, we need to increase
the size of the local collision. This is possible by using a 2-block approach. In
this case, we need less free message words at the beginning of the compression
function. More specifically, by using an unbalanced meet-in-the-middle approach
and computing 2k random first blocks, we only need 256 − k free message bits
to match the previous chaining value. If the complexity of finding a confirming
message pair for the semi-free-start collision is 2x, the total complexity of this
approach will be max(2k, 2x · 2128−k). We use this approach in our attack on 31
steps of SHA-256 (see Fig. 2). We construct the local collision such that the first
5 message words can be chosen freely.

3.3 Searching for Differential Characteristics and Message Pairs

A differential attack usually consists of two main steps: constructing a differ-
ential characteristic and finding a confirming message pair. Unfortunately, both
steps are difficult and depend highly on the hash function under attack. For
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our collision attacks on SHA-2 we proceed according to the following high-level
overview:

– Find a differential characteristic
1. Choose (sparse) message difference
2. Determine sparse part of the differential characteristic
3. Determine dense part of the differential characteristic

– Find a confirming message pair
4. Use message modification in dense part of the characteristic
5. Perform random trials in sparse part of the characteristic
6. Use free message words to match the initial value (optional)

To search for differential characteristics and confirming message pairs, we use
the same approach and automatic search tool as in [11]. However, the selection
of starting points for the search (message words which contain differences) and
the search strategy have been improved. We try to minimize both, the number
of message words which contain differences and the conditions on the expanded
message words (see Sect. 4). This allows us to construct sparser differential
characteristics and increases the freedom in the message words.

We start the search by first constructing a differential characteristic for the
message expansion. Next, we guess on the last few state words of the local
collision to keep the differential characteristic sparse towards the end. This im-
proved guessing strategy is essential for our attack to work. Finally, we continue
the search to find a confirming message pair.

4 Determining Message Words with Differences

In this section, we show how to construct local collisions, which result in a (semi-
free-start) collision attack on a high number of rounds. The previously best
results on SHA-256 have been published by Mendel et al. in [11]. Using a local
collision on t = 11 steps with differences in 5 message words they have shown
a collision for 27 steps of the SHA-256 hash function with practical complexity.
Additionally, a local collision on t = 16 steps with differences in 8 expanded
message words has been used to construct semi-free-start collisions on 32 steps
of SHA-256. To improve on these attacks, we need to increase the length t of the
local collision, while still keeping the part without differences large.

4.1 Constructing Local Collisions in SHA-256

Compared to previous attacks [4,11,15,16], we are able to find differential char-
acteristics over a much larger number of steps in the state update of SHA-256
(see Sect. 5). This allows us to increase the size t of the local collision. However,
for large values of t the complexity of a local collision increases significantly. The
larger the value of t, the more freedom is needed to find a confirming message
pair. Since we additionally need free message words to turn a semi-free-start
collision into a collision, we need to reduce the complexity of the local collision.
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Table 1. Message word differences and message word conditions for the attacks on 28
steps (left), 31 steps (middle) and 38 steps (right) steps of SHA-256. Rows show the
individual steps of the message expansion to compute Wi. Columns (and highlighted
rows) show those expanded message words which contain a difference. An occurrence
of a message word in the message expansion equation is denoted by ’x’. For all rows
which are not highlighted but contain an ’x’, the message differences must cancel.
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This is possible be reducing the number of message words which contain dif-
ferences. The freedom of every message word which does not contain a difference
can be used more easily for message modification. Additionally, we require that
the expanded message words cancel each other, such that we get a high number
of steps which do not contain any differences at all. This cancellation of mes-
sage word differences results in conditions on the message expansion, and fewer
message words with differences result in fewer conditions.

To find good candidates for local collisions and message word differences, we
first need to determine the initial constraints. To turn a semi-free-start collision
into a collision attack, we need to have no differences in the first (ideally 8)
message words. Furthermore, we consider only local collisions with t > 9 which
result in (semi-free-start) collision attacks on more than 27 steps. We prefer
local collisions with small values of t and which result in fewer conditions on the
expanded message words. In particular, we try to avoid many conditions (and
thus, message words with differences) after step 16 since they are more difficult
to fulfill.

4.2 Candidates of Good Local Collisions

For each candidate of t, we identify those message words which must have differ-
ences such that the differential characteristic holds for a large number of steps.
Then, we minimize the number of conditions on the expanded message and the
number of message words with differences. Using this strategy, we get many
possible candidates for good local collisions. For the three candidates shown in
Table 1 we are able to construct differential characteristics (see Sect. 5) and
present collision and semi-free-start collision attacks (see Sect. 6).

The first local collision in Table 1 spans over t = 11 steps (step 8-18) and
results in a collision on 28 steps of SHA-256. The local collision has differences
in only 5 message words (W8,W9,W13,W16,W18) and we get 4 conditions in
step 20, 23, 24, and 25 of the message expansion. The first 8 message words do
not contain any differences and therefore, we can turn a semi-free-start collision
into a real collision for SHA-256.

To extend the collision attacks on SHA-256 to more steps, we drop the con-
dition that the first 8 message words should have no differences. If only the 5
first message words contain no differences, we can still get an attack below the
birthday bound using a 2-block approach (see Sect. 3). We get a local collision
spanning over t = 14 steps (step 5-18) with differences in only 7 expanded mes-
sage words (W5, . . . ,W9,W16,W18) which results in a collision attack on 31 steps
of SHA-256. We get 6 conditions in step 20–25 of the message expansion (see
Table 1).

Finally, if we only search for local collisions which result in a semi-free-start
collision, we can extend the number of steps to attack even further. Using a local
collision spanning over t = 18 steps with differences in only 6 expanded message
words (W7,W8,W10,W15,W23,W24) we can get an attack on up to 38 steps of
SHA-256. We get conditions in 6 steps of the message expansion (see Table 1).
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5 Finding Differential Characteristics

After the message words which contain differences are fixed, we need to find a
differential characteristic. Due to the increased complexity of SHA-2 compared
to other members of the MD4 family, finding good (high probability) differential
characteristics by hand is almost impossible. We use the techniques developed
by Mendel et al. which have been applied in several attacks on ARX-based hash
functions [9–12]. Using an automated search tool, complex nonlinear differen-
tial characteristics can be found. Additionally, the tool can be used for solving
nonlinear equations involving conditions on state and message words (i.e. for
message modification).

5.1 Automated Search for Differential Characteristics

The basic idea of the search algorithm is to pick and guess previously unrestricted
bits. After each guess, the information due to these restrictions is propagated to
other bits. If an inconsistency occurs, the algorithm backtracks to an earlier state
of the search and tries to correct it. Similar to [11], we denote these three parts
of the search by decision (guessing), deduction (propagation), and backtracking
(correction). Then, the search algorithm proceeds as follows:

Let U be a set of bits. Repeat the following until U is empty:
Decision (Guessing)

1. Pick randomly (or according to some heuristic) a bit in U .
2. Impose new constraints on this bit.

Deduction (Propagation)
3. Propagate the new information to other variables and equations as de-

scribed in [11].
4. If an inconsistency is detected start backtracking, else continue with step

1.
Backtracking (Correction)

5. Try a different choice for the decision bit.
6. If all choices result in an inconsistency, mark the bit as critical.
7. Jump back until the critical bit can be resolved.
8. Continue with step 1.

In the deduction, we use generalized conditions on bits [3] to propagate infor-
mation. A generalized condition takes all 16 possible conditions on a pair of bits
into account. Table 2 lists these conditions and introduces a notation for them.
We also use generalized conditions to represent the differential characteristics
in the remainder of this paper. During the search, we propagate information
and backtrack as proposed in [11]. Similar to [11], we additionally consider lin-
ear conditions on two related bits (Xj ⊕ Xk = {0, 1}) during the search for a
confirming message pair.

The main difficulty in finding a long differential characteristic lies in the fine-
tuning of the search algorithm. There are a lot of variations possible which can
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Table 2. Notation for all generalized conditions on a pair of bits [3]

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(Xi, X
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

decide whether the search succeeds or fails. The main improvement compared
to [11] results from an improved decision (guessing) part of the search algorithm.
Instead of randomly choosing bits from the whole set of unrestricted bits, we
split the set in specific sub-sets. These sub-sets are chosen such that the resulting
differential characteristic gets sparser and the search terminates faster. We cover
these improvements which led to the new results on SHA-256 in the following
section.

5.2 Improved Decision Strategy for SHA-256

Note that already the starting point has a large influence on the efficiency of
finding a differential characteristic. In the case of our attacks on SHA-256, we
have chosen a starting point where the local collision is not so long and only
a few message words contain differences. This significantly reduces the search
space for the automatic search tool. To further improve the efficiency of the
tool, we reduce the search space further by separating the search into 3 stages,
compared to two stages in [11].

In each stage, we define a different set of unrestricted bits in Ui. This way,
we can control the order in which we guess bits. For the local collisions given in
the previous section, the best strategy is to first search for a differential charac-
teristic in the message expansion. Then, we continue by searching for a sparse
characteristic in the state update and finally, we search for a confirming message
pair. The stages are executed sequentially but we dynamically switch between
them if a contradiction occurs. If necessary, we try to correct contradictions
by backtracking into the previous stages and continue the search from there.
Additionally, we restart the search from scratch after a certain amount of incon-
sistencies occurred. This terminates search branches for which it is unlikely that
a solution can be found. The three stages can be summarized as follows:

Stage 1: We first search for a consistent differential characteristic in the mes-
sage expansion. Hence, we only add unconstrained bits ’?’ or ’x’ of Wi to the
set U1. Furthermore, we try to reduce the number of conditions after step
15 in the message expansion. In this case, it is more likely to find confirming
message pairs in the last stage of the search. To get a sparser characteristic
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in this area, we pick decision bits more often from the last few steps of the
message expansion.

Stage 2: Once we have found a differential characteristic for the message ex-
pansion, we continue with searching for a differential characteristic in the
state update. We add all unconstrained bits ’?’ or ’x’ of A and E to the
set U2. Note that we pick decision bits more often from A, since this results
in sparser characteristics for A. Similar to Stage 1, experiments have shown
that in this case, confirming message pairs are easier to find in the last stage.

Stage 3: In the last stage, we search for confirming inputs. We only pick decision
bits ’-’ which are constraint by linear two-bit conditions, similar as in [11].
This ensures that those bits which influence a lot of other bits are guessed
first. Additionally, at least all bits influenced by two-bit conditions propagate
as well. This way, inconsistent characteristics can be detected earlier and
valid solutions are found faster.

Note that after Stage 3 finishes, we already get a confirming message pair which
results in a semi-free-start collision. The corresponding differential characteristics
for 28, 31 and 38 steps of SHA-256, including bits marked with linear conditions
on two bits are given in Table 3, 4 and 5. Note that for SHA-2, the characteristics
are in general too complex to list all conditions (including non-linear conditions
on two or more bits). Therefore, all our characteristics are verified by providing
conforming message pairs in the appendix.

6 Finding Confirming Message Pairs

In this section, we present our results and show how to turn (some of) the semi-
free-start collision into collisions on the hash function. To confirm our claims,
we present confirming message pairs for those steps of our attacks which have
practical complexity.

6.1 Collision for 28 Steps of SHA-256

Using the starting point given in Table 1 and the search strategy described in
Sect. 5, we can find a semi-free-start collision for 28 steps of SHA-256. Finding the
differential characteristic took about 5 hours on a single cpu, which is equivalent
to about 236.3 SHA-256 evaluations using the current version of OpenSSL as a
reference point.

Since we can (almost) freely choose the first 8 message words, this semi-free-
start collision can be turned into a collision on the hash function with almost
no cost. The confirming message pair is given in Table 6 and the according
differential characteristic is given in Table 3.

6.2 Collision for 31 Steps of SHA-256

Using the starting point given in Table 1, we can find a semi-free-start collision
on 31 steps of SHA-256, where the first 5 message words can be chosen freely.
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Table 3. Differential characteristic for the collision attack on SHA-256 reduced to 28
steps. Bits with gray background have at least one additional condition.

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 ------------------------1------- -------------0----------00------ --------------------------------

7 ------------------------1------- ----------1--1-10-------11--1--- --------------------------------

8 -0uu-nuu-u-uu-nnn-uu---nu-n----- -0uu-1nu-uun-u-0uu-n0---nnu11--- nnnu----n-nn-u-u-n-n----n-n-----

9 -0-------n--u----------n1------- -1-1011-u1u0--0nn-0-u-n0010uu-0- 11--un1-un0nn--110-11u01uunnu---

10 nnnnnn----u-u--------u--u--uu--- 0n010n1011101011n011u1110n0nu01u --------------------------------

11 -1----------------------1------- -n-1un1-n111000n10n0110n10001-u0 --------------------------------

12 -1----------------------1------- 0011n111n00u0n11u0uu10110uu10-00 --------------------------------

13 -------------------------------- 000100010n011nuuuuuuuu1n11011101 ------n--n----------n--1n--n----

14 -------------------------------- 11-00u--0un0u000-00-u0nn-nnnu-0- ---1----------------------------

15 -------------------------------- -----1---10-11001011-00--0001--- --------------------------------

16 -------------------------------- -----1---01-1-------0-00-1111--- 1----u---0uun-----10un01uun-n---

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- -----n----n-n------1-n01n-n-u---

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

Finding the differential characteristic and confirming message pair for the semi-
free-start collision took about 21 hours on a single CPU, which is equivalent
to about 238.4 SHA-256 evaluations. The resulting differential characteristic is
given in Table 4. To demonstrate that we can indeed choose the 5 first message
words, we have set the last 5 chaining words to 0 (see Table 7).

In the characteristic on 31 steps, we have no differences in the first 5 message
words. Using a single semi-free-start collision and a two-block approach, we can
construct a collision for the SHA-256 hash function reduced to 31 steps with a
complexity of about 299.5 compression function evaluations. We start this part
of the attack with the differential characteristic given in Table 4 and continue
as follows:

1. Use the automatic tool to determine all expanded message words and state
variables in steps 5–12. This also determines the state words E1–E4 and
A−3–A4. Note that this step of the attack takes only seconds and does not
contribute to the final attack complexity.

2. Compute 296 arbitrary first message blocks to fulfill the 96 conditions on the
chaining input A−3–A−1. This step of the attack has a complexity of about
296 SHA-256 evaluations and also determines the expanded message words
W0–W4.
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Table 4. Differential characteristic for the collision attack on SHA-256 reduced to 31
steps. Bits with gray background have at least one additional condition.

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 ------------------------------0- -0----------------0------------- --------------------------------

4 ------------------------------00 -1---------1-----01---1-0--0--10 --------------------------------

5 -nnn-n-n-11----n--nu-1-------0n- 0nnnn1uu-0-1101n-1nu--0-11-1-0n1 u---uunu-------n---n----------n-

6 unnnn-------------------------0- n-n10111n--u11u00n10u1n-nn1n-1uu nn1-n---nu-nn--1u--0-un0--n0-nn-

7 -------------------n--------n-0u 101u0nn10-11011u-n111n110un1-nnn 00nn0n101-n1nnn1u0nn-n011u-1n0--

8 -------------------------------- 1-uu11110--0u10110n-10101010-0n0 0001u0001-000nuuun1n01nn-01nuuuu

9 -------------------------------- 101100uu111111nu111001--011110nn -----1---------un---0-----11un--

10 ----------------u------------u-- 1-00u1101001101un00--0001--u1n00 ---0--------------------------1-

11 -------------------------------- 010100u0nu1uuuuuu1001000000n1u10 --------------------------------

12 -------------------------------- 111nuuuuuuuuuuuuu001111101100n00 --------------------------------

13 -------------------------------- ---101-11-1-----1----------0-0-- --------------------------------

14 -------------------------------- ---100---0011111u-------1----u-- --------------------------------

15 -------------------------------- ----------------0------------0-- --------------------------------

16 -------------------------------- ----------------1------------1-- -------------unnnunnnnnnnnnnnn--

17 -------------------------------- -------------------------------- --------------------------------

18 -------------------------------- -------------------------------- ----------------n------------n--

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

3. At this point, the chaining value and the message wordsW0–W12 are chosen.
Next, we use the freedom in the message words W13–W15 to fulfill the con-
ditions on E13–E15 and W16, W18. However, this step of the attack succeeds
only with a probability of about 1/12 (verified experimentally) since we have
just not enough freedom in W13–W15. If this step fails then we go back to
step 2.

To summarize, we can find a 2-block collision for SHA-256 reduced to 31 steps
with a complexity of about 12 · 296 ≈ 299.5 SHA-256 evaluations. Note that the
complexity of the attack can be improved significantly by using a meet-in-the-
middle approach.

Instead of computing only one solution in the first step of the attack, we
compute � solutions and save them in a list L. In step 2 of the attack where we
compute an arbitrary first message blocks, we check for a match in the list L.
By increasing the size � of the list, we can reduce the number of first message
blocks that we need to compute by a factor of 1/�.

The main question is how many entries in L can be computed in our attack.
Using our unoptimized code we have already found � > 219.5 different solutions
for step 1 of the attack with an average cost of 225.5. This reduces the attack
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Table 5. Differential characteristic for the semi-free-start collision attack on SHA-256
reduced to 38 steps. Bits with gray background have at least one additional condition.

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- --------------------1----1------ --------------------------------

6 -------------------------------- 1--00--1-------1-10111---0-1--0- --------------------------------

7 -n----u-n-u---u-------n-nn------ nu-11-0uuun101-uuuuuuu1u-u-1--01 --nnnnn--nn--un----nuuu-nn------

8 ----nn-n--n--un-uu-u-u-u-n------ n01nn-1n10000-1u1uuunu00n0-nn0n1 0000011011101--1100nuuuuuuuuuu00

9 u---u-n--nuuu---n-uuu--u-------n 000n00u10001n101nu0u000111-u11un --------------------------------

10 -------------------------------- 00unn00110n1001u11u-101u111u0uun --------unnnnnnnu---------------

11 -------------------------------- 1u1-11u11-n01n100n10u1-11u100011 ------1-------------------------

12 -------------------------------- 0uu1u1u0u1uu1n01nn111u011n-01010 ----------1-----01--------------

13 -------------------------------- n0010uu01-00n1-01n0nu10u10-1-nuu ----------------0--------------1

14 -------------------------------- 101-110-1-0010-10--111-010---100 --------------------------------

15 ----u----------n---------------- 0-1-u01----00--n-00----10----111 -----------------------------u--

16 -----------------------------u-- ----n-n1---01-un11------nuu-nu01 --------------------------------

17 -------------------------------- -0--n-1---0nnnnn-nuu1---011-1-un --------------------------------

18 -------------------------------- ----0-1---00000--000--1011101100 --------------------------------

19 -------------------------------- 0---u-00nuuuuuuu0001--0011011011 --------------------------------

20 -------------------------------- 1--1--11100111---1--0unnnnnnnn0- --------------------------------

21 -------------------------------- ----1---11111111-----000000000-- --------------------------------

22 -------------------------------- ---------------------111111111-- --------------------------------

23 -------------------------------- -------------------------------- ----n---------un----------------

24 -------------------------------- -------------------------------- -----------------------------n--

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

32 -------------------------------- -------------------------------- --------------------------------

33 -------------------------------- -------------------------------- --------------------------------

34 -------------------------------- -------------------------------- --------------------------------

35 -------------------------------- -------------------------------- --------------------------------

36 -------------------------------- -------------------------------- --------------------------------

37 -------------------------------- -------------------------------- --------------------------------

complexity to about 280 SHA-256 evaluations. However, our experiments indicate
that we can expect to find about 234 different solutions, which results in a total
attack complexity of about 265.5 SHA-256 evaluations.

6.3 Semi-Free-Start Collision for 38 Steps of SHA-256

Finally, we have also improved the best semi-free-start collision attack on
SHA-256. Using the starting point given in Table 1, we can find a semi-free-
start collision for 38 steps of SHA-256. Finding the differential characteristic
and the confirming message pair took about 8 hours on a single CPU. This is
equivalent to about 237 SHA-256 evaluations. The differential characteristic is
shown in Table 5 and the resulting semi-free-start collision in Table 8.
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7 Conclusions

In this paper, we have improved the best known collision attacks on the SHA-256
hash function from 27 to 31 steps. We focus on the construction of semi-free-start
collisions which can be turned into collisions on the hash function. Our results
are hash function collisions on 31 steps of SHA-256 with complexity 265.5, and
semi-free-start collisions on 38 steps with complexity 237. We have verified all
our attacks by providing practical examples whenever this was possible.

Our results were obtained by extending the size of the local collision up to 18
steps. Furthermore, we ensure that the first message words do not contain any
differences and try to reduce the number of conditions on the expanded message
words. To find differential characteristics and confirming message pairs for local
collisions spanning over more steps we have improved the efficiency of the au-
tomatic search tool used by Mendel et al. in their attacks on reduced SHA-256
in several ways. Most importantly, we have improved the search strategy to find
sparser differential characteristics by guessing primarily bits towards the end of
the local collision.
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A Resulting Message Pair Examples

Table 6. Example of a collision for 28 steps of SHA-256

h0 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

m
14c48440 b3c3277f ad69812d c3d4dffa 7eae690b 7f9fe027 832aece8 9a489458

1607a45c db81bdc8 8786e031 d8f22801 72b6be5e 45a2652f f3fbb17a 2ce70f52

m∗ 14c48440 b3c3277f ad69812d c3d4dffa 7eae690b 7f9fe027 832aece8 9a489458

e6b2f4fc d759b930 8786e031 d8f22801 72b6be5e 47e26dbf f3fbb17a 2ce70f52

Δm
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

f0b550a0 0cd804f8 00000000 00000000 00000000 02400890 00000000 00000000

h1 01470131 cd0062bc 7e8f8c21 98938652 3d49075a 327f38e8 11f0d36d 58601725

Table 7. Example of a semi-free-start collision for 31 steps of SHA-256 with the last
5 chaining variables set to 0

h0 532f13f5 6a28c3c0 e301fab5 00000000 00000000 00000000 00000000 00000000

m
d55c884f faf18f34 b772b323 af46235b 3d8bd87b dd3e8271 26618488 02d189d0

1883a4af 4f99167b 271b11c7 81b8363d b27e389d 2155a533 8b811348 4a8da291

m∗ d55c884f faf18f34 b772b323 af46235b 3d8bd87b 523f9273 eeb902ae 36ff3d98

108477b0 4f989677 271b11c7 81b8363d b27e389d 2155a533 8b811348 4a8da291

Δm
00000000 00000000 00000000 00000000 00000000 8f011002 c8d88626 342eb448

0807d31f 0001800c 00000000 00000000 00000000 00000000 00000000 00000000

h1 6ff5a9a7 9d014158 12938ebb dbf8dc76 29fb2c4c b48b053e 1c4377a9 e21554c1

Table 8. Example of a semi-free-start collision for 38 steps of SHA-256

h0 ba75b4ac c3c9fd45 fce04f3a 6d620fdb 42559d01 b0a0cd10 729ca9bc b284a572

m
4f5267f8 8f8ec13b 22371c61 56836f2b 459501d1 8078899e 98947e61 4015ef31

06e98ffc 4babda4a 27809447 3bf9f3be 7b3b74e1 065f711d 6c6ead5e a1781d54

m∗ 4f5267f8 8f8ec13b 22371c61 56836f2b 459501d1 8078899e 98947e61 7e73f1f1

06e99000 4babda4a 277f1447 3bf9f3be 7b3b74e1 065f711d 6c6ead5e a1781d50

Δm
00000000 00000000 00000000 00000000 00000000 00000000 00000000 3e661ec0

00001ffc 00000000 00ff8000 00000000 00000000 00000000 00000000 00000004

h1 baa8df17 9f9f64dd d57d5c2c 7b232c81 1f3916e6 7a03a2be 7afb1d86 6b0eced6
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2 Koç University

3 Northeastern University

Abstract. Proofs of retrievability allow a client to store her data on a
remote server (e.g., “in the cloud”) and periodically execute an efficient
audit protocol to check that all of the data is being maintained correctly
and can be recovered from the server. For efficiency, the computation
and communication of the server and client during an audit protocol
should be significantly smaller than reading/transmitting the data in its
entirety. Although the server is only asked to access a few locations of
its storage during an audit, it must maintain full knowledge of all client
data to be able to pass.

Starting with the work of Juels and Kaliski (CCS ’07), all prior so-
lutions require that the client data is static and do not allow it to be
efficiently updated. Indeed, they store a redundant encoding of the data
on the server, so that the server must delete a large fraction of its storage
to ‘lose’ any actual content. Unfortunately, this means that even a single
bit modification to the original data will need to modify a large fraction
of the server storage, which makes updates highly inefficient.

In this work, we give the first solution providing proofs of retrievability
for dynamic storage, where the client can perform arbitrary reads/writes
on any location within her data by running an efficient protocol with
the server. At any point in time, the client can also execute an audit
protocol to ensure that the server maintains the latest version of its
data. The computation and communication complexity of the server and
client in our protocols is only polylogarithmic in the size of the data.
Our main idea is to split up the data into small blocks and redundantly
encode each block of data individually, so that an update inside any
data block only affects a few codeword symbols. The main difficulty is
to prevent the server from identifying and deleting too many codeword
symbols belonging to any single data block. We do so by hiding where
the various codeword symbols are stored on the server and when they
are being accessed by the client, using the techniques of oblivious RAM.
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1 Introduction

Cloud storage systems (Amazon S3, Dropbox, Google Drive etc.) are becoming
increasingly popular as a means of storing data reliably and making it easily
accessible from any location. Unfortunately, even though the remote storage
provider may not be trusted, current systems provide few security or integrity
guarantees. Guaranteeing the privacy and authenticity of remotely stored data
while allowing efficient access and updates is non-trivial, and relates to the study
of oblivious RAMs andmemory checking, which we will return to later. The main
focus of this work, however, is an orthogonal question: How can we efficiently
verify that the entire client data is being stored on the remote server in the first
place? In other words, what prevents the server from deleting some portion of
the data (say, an infrequently accessed sector) to save on storage?

Provable Storage. Motivated by the questions above, there has been much
cryptography and security research in creating a provable storage mechanism,
where an untrusted server can prove to a client that her data is kept intact.
More precisely, the client can run an efficient audit protocol with the untrusted
server, guaranteeing that the server can only pass the audit if it maintains full
knowledge of the entire client data. This is formalized by requiring that the data
can be efficiently extracted from the server given its state at the beginning of any
successful audit. One may think of this as analogous to the notion of extractors
in the definition of zero-knowledge proofs of knowledge [15,4].

One trivial audit mechanism, which accomplishes the above, is for the client to
simply download all of her data from the server and check its authenticity (e.g.,
using a MAC). However, for the sake of efficiency, we insist that the computation
and communication of the server and client during an audit protocol is much
smaller than the potentially huge size of the client’s data. In particular, the server
shouldn’t even have to read all of the client’s data to run the audit protocol,
let alone transmit it. A scheme that accomplishes the above is called a Proof of
Retrievability (PoR).

Prior Techniques. The first PoR schemes were defined and constructed by
Juels and Kaliski [18], and have since received much attention. We review the
prior work and and closely related primitives (e.g., sublinear authenticators [21]
and provable data possession [1]) in Section 1.2.

On a very high level, all PoR constructions share essentially the same common
structure. The client stores some redundant encoding of her data under an erasure
code on the server, ensuring that the server must delete a significant fraction
of the encoding before losing any actual data. During an audit, the client then
checks a few random locations of the encoding, so that a server who deleted a
significant fraction will get caught with overwhelming probability.

More precisely, let us model the client’s input data as a string M ∈ Σ	

consisting of � symbols from some small alphabet Σ, and let Enc : Σ	 → Σ	′

denote an erasure code that can correct the erasure of up to 1
2 of its output

symbols. The client stores Enc(M) on the server. During an audit, the client
selects a small random subset of t out of the �′ locations in the encoding, and
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challenges the server to respond with the corresponding values, which it then
checks for authenticity (e.g., using MAC tags). Intuitively, if the server deletes
more than half of the values in the encoding, it will get caught with overwhelming
probability > 1 − 2−t during the audit, and otherwise it retains knowledge of
the original data because of the redundancy of the encoding. The complexity
of the audit protocol is only proportional to t which can be set to the security
parameter and is independent of the size of the client data.1

Difficulty of Updates. One of the main limitations of all prior PoR schemes
is that they do not support efficient updates to the client data. Under the above
template for PoR, if the client wants to modify even a single location of M,
it will end up needing to change the values of at least half of the locations in
Enc(M) on the server, requiring a large amount of work (linear in the size of
the client data). Constructing a PoR scheme that allows for efficient updates
was stated as the main open problem by Juels and Kaliski [18]. We emphasize
that, in the setting of updates, the audit protocol must ensure that the server
correctly maintains knowledge of the latest version of the client data, which
includes all of the changes incurred over time. Before we describe our solution
to this problem, let us build some intuition about the challenges involved by
examining two natural but flawed proposals.

First Proposal. A natural attempt to overcome the inefficiency of updating
a huge redundant encoding is to encode the data “locally” so that a change to
one position of the data only affects a small number of codeword symbols. More
precisely, instead of using an erasure code that takes all � data symbols as input,
we can use a code Enc : Σk → Σn that works on small blocks of only k � �
symbols encoded into n symbols. The client divides the data M into L = �/k
message blocks (m1, . . . ,mL), where each block mi ∈ Σk consists of k symbols.
The client redundantly encodes each message block mi individually into a cor-
responding codeword block ci = Enc(mi) ∈ Σn using the above code with small
inputs. Finally the client concatenates these codeword blocks to form the value
C = (c1, . . . , cL) ∈ ΣLn, which it stores on the server. Auditing works as before:
The client randomly chooses t of the L·n locations in C and challenges the server
to respond with the corresponding codeword symbols in these locations, which
it then tests for authenticity.2 The client can now read/write to any location
within her data by simply reading/writing to the n relevant codeword symbols
on the server.

The above proposal can be made secure when the block-size k (which deter-
mines the complexity of reads/updates) and the number of challenged locations
t (which determines the complexity of the audit) are both set to Ω(

√
�) where

� is the size of the data (see the full version [8] for details). This way, the audit

1 Some of the more advanced PoR schemes (e.g., [24,11]) optimize the communication
complexity of the audit even further by cleverly compressing the t codeword symbols
and their authentication tags in the server’s response.

2 This requires that we can efficiently check the authenticity of the remotely stored
data C, while supporting efficient updates on it. This problem is solved by memory
checking (see our survey of related work in Section 1.2).
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is likely to check sufficiently many values in each codeword block ci. Unfortu-
nately, if we want a truly efficient scheme and set n, t = o(

√
�) to be small,

then this solution becomes completely insecure. The server can delete a single
codeword block ci from C entirely, losing the corresponding message block mi,
but still maintain a good chance of passing the above audit as long as none of
the t random challenge locations coincides with the n deleted symbols, which
happens with good probability.

Second Proposal. The first proposal (with small n, t) was insecure because
a cheating server could easily identify the locations within C that correspond
to a single message block and delete exactly the codeword symbols in these
locations. We can prevent such attacks by pseudo-randomly permuting the lo-
cations of all of the different codeword-symbols of different codeword blocks
together. That is, the client starts with the value C = (C[1], . . . ,C[Ln]) =
(c1, . . . , cL) ∈ ΣLn computed as in the first proposal. It chooses a pseudo-
random permutation π : [Ln] → [Ln] and computes the permuted value
C′ := (C[π(1)], . . . ,C[π(Ln)]) which it then stores on the server in an encrypted
form (each codeword symbol is encrypted separately). The audit still checks t
out of Ln random locations of the server storage and verifies authenticity.

It may seem that the server now cannot immediately identify and selectively
delete codeword-symbols belonging to a single codeword block, thwarting the
attack on the first proposal. Unfortunately, this modification only re-gains se-
curity in the static setting, when the client never performs any operations on
the data.3 Once the client wants to update some location of M that falls in-
side some message block mi, she has to reveal to the server where all of the n
codeword symbols corresponding to ci = Enc(mi) reside in its storage since she
needs to update exactly these values. Therefore, the server can later selectively
delete exactly these n codeword symbols, leading to the same attack as in the
first proposal.

Impossibility? Given the above failed attempts, it may even seem that truly
efficient updates could be inherently incompatible with efficient audits in PoR.
If an update is efficient and only changes a small subset of the server’s storage,
then the server can always just ignore the update, thereby failing to maintain
knowledge of the latest version of the client data. All of the prior techniques
appear ineffective against such attack. More generally, any audit protocol which
just checks a small subset of random locations of the server’s storage is unlikely
to hit any of the locations involved in the update, and hence will not detect
such cheating, meaning that it cannot be secure. However, this does not rule
out the possibility of a very efficient solution that relies on a more clever audit
protocol, which is likelier to check recently updated areas of the server’s storage
and therefore detect such an attack. Indeed, this property will be an important
component in our actual solution.

3 A variant of this idea was actually used by Juels and Kaliski [18] for extra efficiency
in the static setting.
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1.1 Our Results and Techniques

Overview of Result. In this work, we give the first solution to dynamic PoR
that allows for efficient updates to client data. The client only keeps some short
local state, and can execute arbitrary read/write operations on any location
within the data by running a corresponding protocol with the server. At any
point in time, the client can also initiate an audit protocol, which ensures that a
passing server must have complete knowledge of the latest version of the client
data. The cost of any read/write/audit execution in terms of server/client work
and communication is only polylogarithmic in the size of the client data. The
server’s storage remains linear in the size of the client data. Therefore, our scheme
is optimal in an asymptotic sense, up to polylogarithmic factors. See Section 6
for a detailed efficiency analysis.

PoR via Oblivious RAM. Our dynamic PoR solution starts with the same
idea as the first proposal above, where the client redundantly encodes small
blocks of her data individually to form the value C = (c1, . . . , cL) ∈ ΣLn,
consisting of L codeword blocks and �′ = Ln codeword symbols, as defined
previously. The goal is to then store C on the server in some “clever way” so
that that the server cannot selectively delete too many symbols within any single
codeword block ci, even after observing the client’s read and write executions
(which access exactly these symbols). As highlighted by the second proposal,
simply permuting the locations of the codeword symbols of C is insufficient.
Instead, our main idea it to store all of the individual codeword symbols of C
on the server using an oblivious RAM scheme.

Overview of ORAM. Oblivious RAM (ORAM), initially defined by Goldreich
and Ostrovsky [14], allows a client to outsource her memory to a remote server
while allowing the client to perform random-access reads and writes in a private
way. More precisely, the client has some data D ∈ Σd, which she stores on the
server in some carefully designed privacy-preserving form, while only keeping a
short local state. She can later run efficient protocols with the server to read
or write to the individual entries of D. The read/write protocols of the ORAM
scheme should be efficient, and the client/server work and communication during
each such protocol should be small compared to the size of D (e.g., polylogarith-
mic). A secure ORAM scheme not only hides the content of D from the server,
but also the access pattern of which locations in D the client is reading or writ-
ing in each protocol execution. Thus, the server cannot discern any correlation
between the physical locations of its storage that it is asked to access during
each read/write protocol execution and the logical location inside D that the
client wants to access via this protocol.

In our work, we will also always use ORAM schemes that are authenticated,
which means that the client can detect if the server ever sends an incorrect value.
In particular, authenticated ORAM schemes ensure that the most recent version
of the data is being retrieved in any accepting read execution, preventing the
server from “rolling back” updates.
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Construction of Dynamic PoR. A detailed technical description of our
construction appears in Section 5, and below we give a simplified overview. In
our PoR construction, the client starts with data M ∈ Σ	 which she splits into
small message blocks M = (m1, . . . ,mL) with mi ∈ Σk where the block size
k � � = Lk is only dependant on the security parameter. She then applies an
error correcting code Enc : Σk → Σn that can efficiently recover n

2 erasures to
each message block individually, resulting in the value C = (c1, . . . , cL) ∈ ΣLn

where ci = Enc(mi). Finally, she initializes an ORAM scheme with the initial
data D = C, which the ORAM stores on the server in some clever privacy-
preserving form, while keeping only a short local state at the client.

Whenever the client wants to read or write to some location within her data,
she uses the ORAM scheme to perform the necessary reads/writes on each of
the n relevant codeword symbols of C (see details in Section 5). To run an audit,
the client chooses t (≈ security parameter) random locations in {1, . . . , Ln} and
runs the ORAM read protocol t times to read the corresponding symbols of C
that reside in these locations, checking them for authenticity.

Catching Disregarded Updates. First, let us start with a sanity check, to
explain how the above construction can thwart a specific attack in which the
server simply disregards the latest update. In particular, such attack should be
caught by a subsequent audit. During the audit, the client runs the ORAM
protocol to read t random codeword symbols and these are unlikely to coin-
cide with any of the n codeword symbols modified by the latest update (recall
that t and n are both small and independent of the data size �). However, the
ORAM scheme stores data on the server in a highly organized data-structure,
and ensures that the most recently updated data is accessed during any subse-
quent “read” execution, even for an unrelated logical location. This is implied by
ORAM security since we need to hide whether or not the location of a read was
recently updated or not. Therefore, although the audit executes the “ORAM
read” protocols on random logical locations inside C, the ORAM scheme will
end up scanning recently updated ares of the server’s actual storage and check
them for authenticity, ensuring that recent updates have not been disregarded.

Security and “Next-Read Pattern Hiding”. The high-level security in-
tuition for our PoR scheme is quite simple. The ORAM hides from the server
where the various locations of C reside in its storage, even after observing the
access pattern of read/write executions. Therefore it is difficult for the server
to reach a state where it will fail on read executions for most locations within
some single codeword block (lose data) without also failing on too many read
executions altogether (lose the ability to pass an audit).

Making the above intuition formal is quite subtle, and it turns out that stan-
dard notion of ORAM security does not suffice. The main issue is that that the
server may be able to somehow delete all (or most) of the n codeword sym-
bols that fall within some codeword block ci = (C[j + 1], . . . ,C[j + n]) without
knowing which block it deleted. Therefore, although the server will fail on any
subsequent read if and only if its location falls within the range {j+1, . . . , j+n},
it will not learn anything about the location of the read itself since it does not
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know the index j. Indeed, we will give an example of a contrived ORAM scheme
where such an attack is possible and our resulting construction of PoR using this
ORAM is insecure.

We show, however, that the intuitive reasoning above can be salvaged if the
ORAM scheme achieves a new notion of security that we call next-read pattern
hiding (NRPH), which may be of independent interest. NRPH security consid-
ers an adversarial server that first gets to observe many read/write protocol
executions performed sequentially with the client, resulting in some final client
configuration Cfin. The adversarial server then gets to see various possibilities
for how the “next read” operation would be executed by the client for various
distinct locations, where each such execution starts from the same fixed client
configuration Cfin.4 The server should not be able to discern any relationship be-
tween these executions and the locations they are reading. For example, two such
“next-read” executions where the client reads two consecutive locations should
be indistinguishable from two executions that read two random and unrelated
locations. This notion of NRPH security will be used to show that server cannot
reach a state where it can selectively fail to respond on read queries whose lo-
cation falls within some small range of a single codeword block (lose data), but
still respond correctly to most completely random reads (pass an audit).

Proving Security via an Extractor. We now give a high-level overview
of how our PoR extractor works. In particular, we claim that we can take any
adversarial server that has a “good” chance of passing an audit and use the
extractor to efficiently recover the latest version of the client data from it. The
extractor initializes an “empty array”C. It then executes random audit protocols
with the server, by acting as the honest client. In particular, it chooses t random
locations within the array and runs the corresponding ORAM read protocols. If
the execution of the audit is successful, the extractor fills in the corresponding
values of C that it learned during the audit execution. In either case, it then
rewinds the server and runs a fresh execution of the audit, repeating this step
for several iterations.

Since the server has a good chance of passing a random audit, it is easy to
show that the extractor can eventually recover a large fraction, say > 3

4 , of
the entries inside C by repeating this process sufficiently many times. Because
of the authenticity of the ORAM, the recovered values are the correct ones,
corresponding to the latest version of the client data. Now we need to argue that
there is no codeword block ci within C for which the extractor recovered fewer
than 1

2 of its codeword symbols, as this would prevent us from applying erasure
decoding and recovering the underlying message block. Let FAILURE denote
the above bad event. If all the recovered locations (comprising > 3

4 fraction
of the total) were distributed uniformly within C then FAILURE would occur
with negligible probability, as long as the codeword size n is sufficiently large in
the security parameter. We can now rely on the NRPH security of the ORAM
to ensure that FAILURE also happens with negligible probability in our case.

4 This is in contrast to the standard sequential operations where the client state is
updated after each execution.
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We can think of the FAILURE event as a function of the locations queried by
the extractor in each audit execution, and the set of executions on which the
server fails. If the malicious server can cause FAILURE to occur, it means that it
can distinguish the pattern of locations actually queried by the extractor during
the audit executions (for which the FAILURE event occurs) from a randomly
permuted pattern of locations (for which the FAILURE event does not occur
with overwhelming probability). Note that the use of rewinding between the
audit executions of the extractor forces us to rely on NRPH security rather than
just standard ORAM security.

The above presents the high-level intuition and is somewhat oversimplified.
See Section 4 for the formal definition of NRPH security and Section 5 for the
formal description of our dynamic PoR scheme and a rigorous proof of security.

Achieving Next-Read Pattern Hiding. We show that standard ORAM
security does not generically imply NRPH security, by giving a contrived scheme
that satisfies the former but not the latter. Nevertheless, all natural ORAM
constructions in the literature do essentially satisfy NRPH security. In the full
version [8], we look at one particularly efficient ORAM construction of Goodrich
and Mitzenmacher [16] in depth, and prove that (with minor modifications) it
is NRPH secure.

Contributions. We call our final scheme PORAM since it combines the tech-
niques and security of PoR and ORAM. In particular, other than providing
provable dynamic cloud storage as was our main goal, our scheme also satisfies
the strong privacy guarantees of ORAM, meaning that it hides all contents of
the remotely stored data as well as the access pattern of which locations are
accessed when. It also provides strong authenticity guarantees (same as memory
checking; see Section 1.2), ensuring that any “read” execution with a malicious
remote server is guaranteed to return the latest version of the data (or detect
cheating). In brief, our contributions can be summarized as follows:

– We give the first asymptotically efficient solution to PoR for outsourced
dynamic data, where a successful audit ensures that the server knows the
latest version of the client data. In particular:
• Client storage is small and independent of the data size.
• Server storage is linear in the data size, expanding it by only a small
constant factor.

• Communication and computation of client and server during read, write,
and audit executions are polylogarithmic in the size of the client data.

– Our scheme also achieves strong privacy and authenticity guarantees, match-
ing those of oblivious RAM and memory checking.

We mention that the PORAM scheme is simple to implement and has low con-
crete efficiency overhead on top of an underlying ORAM scheme with NRPH
security. There is much recent and ongoing research activity in instantiating/
implementing truly practical ORAM schemes, which are likely to yield corre-
spondingly practical instantiations of our PORAM protocol.
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1.2 Related Work

Proofs of retrievability for static data were initially defined and constructed
by Juels and Kaliski [18], building on a closely related notion called sublinear-
authenticators of Naor and Rothblum [21]. Concurrently, Ateniese et al. [1]
defined another related primitive called provable data possession (PDP). Since
then, there has been much ongoing research activity on PoR and PDP schemes.

PoR vs. PDP. The main difference between PoR and PDP is the notion of
security that they achieve. A PoR audit guarantees that the server maintains
knowledge of all of the client data, while a PDP audit only ensures that the
server is storing most of the client data. For example, in a PDP scheme, the
server may lose a small portion of client data (say 1 MB out of a 10 GB file) and
may maintain an high chance of passing a future audit. On a technical level, the
main difference in most prior PDP/PoR constructions is that PoR schemes store
a redundant encoding of the client data on the server. For a detailed comparison,
see Küpçü [19,20].

Static Data. PoR and PDP schemes for static data (without updates) have
received much research attention [24,11,7,2], with works improving on commu-
nication efficiency and exact security, yielding essentially optimal solutions. An-
other interesting direction has been to extend these works to the multi-server
setting [6,9,10] where the client can use the audit mechanism to identify faulty
machines and recover the data from the others.

Dynamic Data. The works of Ateniese et al. [3], Erway et al. [13] and Wang et
al. [27] show how to achieve PDP security for dynamic data, supporting efficient
updates. This is closely related to work on memory checking [5,21,12], which
studies how to authenticate remotely stored dynamic data so as to allow efficient
reads/writes, while being able to verify the authenticity of the latest version of
the data (preventing the server from “rolling back” updates and using an old
version). Unfortunately, these techniques alone cannot be used to achieve the
stronger notion of PoR security. Indeed, the main difficulty that we resolve in
this work, how to efficiently update redundantly encoded data, does not come up
in the context of PDP.

A recent work of Stefanov et al. [26] considers PoR for dynamic data, but in
a more complex setting where an additional trusted “portal” performs some op-
erations on behalf of the client, and can cache updates for an extended period of
time. It is not clear if these techniques can be translated to the basic client/server
setting, which we consider here. However, even in this modified setting, the com-
plexity of the updates and the audit in that work is proportional to square-root
of the data size, whereas ours is polylogarithmic.

2 Preliminaries

Notation. Throughout, we use λ to denote the security parameter. We identify
efficient algorithms as those running in (probabilistic) polynomial time in λ
and their input lengths, and identify negligible quantities (e.g., acceptable error
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probabilities) as negl(λ) = 1/λω(1), meaning that they are asymptotically smaller

than 1/λc for every constant c > 0. For n ∈ N, we define the set [n]
def
= {1, . . . , n}.

We use the notation (k mod n) to denote the unique integer i ∈ {0, . . . , n− 1}
such that i = k (mod n).

Erasure Codes. We say that (Enc,Dec) is an (n, k, d)Σ-code with efficient era-
sure decoding over an alphabet Σ if the original message can always be recovered
from a corrupted codeword with at most d− 1 erasures. That is, for every mes-
sage m = (m1, . . . ,mk) ∈ Σk giving a codeword c = (c1, . . . , cn) = Enc(m),
and every corrupted codeword c̃ = (c̃1, . . . , c̃n) such that c̃i ∈ {ci,⊥} and the
number of erasures is |{i ∈ [n] : c̃i = ⊥}| ≤ d − 1, we have Dec(c̃) = m. We
say that a code is systematic if, for every message m, the codeword c = Enc(m)
contains m in the first k positions c1 = m1, . . . , ck = mk. A systematic variant
of the Reed-Solomon code achieves the above for any integers n > k and any
field Σ of size |Σ| ≥ n with d = n− k + 1.

Virtual Memory. We think of virtual memory M, with word-size w and length

�, as an array M ∈ Σ	 where Σ
def
= {0, 1}w. We assume that, initially, each

location M[i] contains the special uninitialized symbol 0 = 0w. Throughout, we
will think of � as some large polynomial in the security parameter, which upper
bounds the amount of memory that can be used.

Outsourcing Virtual Memory. In the next two sections, we look at two
primitives: dynamic PoR and ORAM. These primitives allow a client to out-
source some virtual memory M to a remote server, while providing useful secu-
rity guarantees. Reading and writing to some location of M now takes on the
form of a protocol execution with the server. The goal is to provide security
while preserving efficiency in terms of client/server computation, communica-
tion, and the number of server-memory accesses per operation, which should all
be poly-logarithmic in the length �. We also want to optimize the size of the
client storage (independent of �) and server storage (not much larger than �).

3 Dynamic PoR

A Dynamic PoR scheme consists of protocols PInit,PRead,PWrite, Audit be-
tween two stateful parties: a client C and a server S. The server acts as the
curator for some virtual memory M, which the client can read, write and audit
by initiating the corresponding interactive protocols:

– PInit(1λ, 1w, �): This protocol corresponds to the client initializing an (empty)
virtual memoryM with word-size w and length �, which it supplies as inputs.

– PRead(i): This protocol corresponds to the client reading v = M[i], where
it supplies the input i and outputs some value v at the end.

– PWrite(i, v): This protocol corresponds to setting M[i] := v, where the client
supplies the inputs i, v.

– Audit: This protocol is used by the client to verify that the server is main-
taining the memory contents correctly so that they remain retrievable. The
client outputs a decision b ∈ {accept, reject}.
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The client C in the protocols may be randomized, but we assume (w.l.o.g.) that
the honest server S is deterministic. At the conclusion of the PInit protocol, both
the client and the server create some long-term local state, which each party will
update during the execution of each of the subsequent protocols. The client may
also output reject during the execution of thePInit,PRead,PWrite protocols, to
denote that it detected some misbehavior of the server. Note that we assume that
the virtualmemory is initially empty, but if the client has some initial data, she can
write it onto the server block-by-block immediately after initialization. For ease of
presentation, we may assume that the state of the client and the server always con-
tains the security parameter, and the memory parameters (1λ, 1w, �). We now de-
fine the three properties of a dynamic PoR scheme: correctness, authenticity and
retrievability. For these definitions, we say that P = (op0, op1, . . . , opq) is a dy-
namic PoR protocol sequence if op0 = PInit(1λ, 1w, �) and, for j > 0, opj ∈
{PRead(i), PWrite(i, v), Audit} for some index i ∈ [�] and value v ∈ {0, 1}w.
Correctness. If the client and the server are both honest and P = (op0, . . . ,
opq) is some protocol sequence, then we require the following to occur with
probability 1 over the randomness of the client:

• Each execution of a protocol opj = PRead(i) results in the client outputting
the correct value v = M[i], matching what would happen if the correspond-
ing operations were performed directly on a memory M. In particular, v is
the value contained in the most recent prior write operation with location
i, or, if no such prior operation exists, v = 0.

• Each execution of the Audit protocol results in the decision b = accept.

Authenticity.We require that the client can always detect if any protocol mes-
sage sent by the server deviates from honest behavior. More precisely, consider
the following game AuthGameS̃(λ) between a malicious server S̃ and a challenger:

• The malicious server S̃(1λ) specifies a valid protocol sequence P = (op0, . . . ,
opq).

• The challenger initializes a copy of the honest client C and the (determinis-
tic) honest server S. It sequentially executes op0, . . . , opq between C and the

malicious server S̃ while, in parallel, also passing a copy of every message
from C to the honest server S.

• If, at any point during the execution of some opj , any protocol message

given by S̃ differs from that of S, and the client C does not output reject,
the adversary wins and the game outputs 1. Else 0.

For any efficient adversarial server S̃, we require Pr[AuthGameS̃(λ) = 1] ≤
negl(λ). Note that authenticity and correctness together imply that the client
will always either read the correct value corresponding to the latest contents of
the virtual memory or reject whenever interacting with a malicious server.

Retrievability. Finally we define the main purpose of a dynamic PoR scheme,
which is to ensure that the client data remains retrievable. We wish to guarantee
that, whenever the malicious server is in a state with a reasonable probability δ
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of successfully passing an audit, he must know the entire content of the client’s
virtual memory M. As in “proofs of knowledge”, we formalize knowledge via
the existence of an efficient extractor E which can recover the value M given
(black-box) access to the malicious server.

More precisely, we define the game ExtGameS̃,E(λ, p) between a malicious

server S̃, extractor E , and challenger:

• The malicious server S̃(1λ) specifies a protocol sequence P = (op0, . . . , opq).
Let M ∈ Σ	 be the correct value of the memory contents at the end of
executing P .

• The challenger initializes a copy of the honest client C and sequentially
executes op0, . . . , opq between C and S̃. Let Cfin and S̃fin be the final con-
figurations (states) of the client and malicious server at the end of this
interaction, including all of the random coins of the malicious server. De-

fine the success-probability Succ(S̃fin) def
= Pr

[
S̃fin Audit←→ Cfin = accept

]
as the

probability that an execution of a subsequent Audit protocol between S̃fin
and Cfin results in the latter outputting accept. The probability is only over
the random coins of Cfin during this execution.

• Run M′ ← E S̃fin(Cfin, 1	, 1p), where the extractor E gets black-box rewinding
access to the malicious server in its final configuration S̃fin, and attempts
to extract out the memory contents as M′.5

• If Succ(S̃fin) ≥ 1/p and M′ �= M then output 1, else 0.

We require that there exists a probabilistic-poly-time extractor E such that,
for every efficient malicious server S̃ and every polynomial p = p(λ) we have
Pr[ExtGameS̃,E(λ, p) = 1] ≤ negl(λ).

The above says that whenever the malicious server reaches some state S̃fin in
which it maintains a δ ≥ 1/p probability of passing the next audit, the extractor
E will be able to extract out the correct memory contents M from S̃fin, meaning
that the server must retain full knowledge of M in this state. The extractor is
efficient, but can run in time polynomial in p and the size of the memory �.

A Note on Adaptivity. We defined the above authenticity and retrievability
properties assuming that the sequence of read/write operations is adversarial,
but is chosen non-adaptively, before the adversarial server sees any protocol ex-
ecutions. This seems to be sufficient in most realistic scenarios, where the server
is unlikely to have any influence on which operations the client wants to perform.
It also matches the security notions in prior works on ORAM. Nevertheless, we
note that our final results also achieve adaptive security, where the attacker can
choose the sequence of operations opi adaptively after seeing the execution of
previous operations, if the underlying ORAM satisfies this notion. Indeed, most
prior ORAM solutions seem to do so, but it was never included in their analyses.

5 This is similar to the extractor in zero-knowledge proofs of knowledge. In particular
E can execute protocols with the malicious server in its state S̃fin and rewind it back
to this state at the end of the execution.
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4 Oblivious RAM with Next-Read Pattern Hiding

An ORAM consists of protocols (OInit,ORead,OWrite) between a client C and
a server S, with the same syntax as the corresponding protocols in PoR. We will
also extend the syntax ofORead andOWrite to allow for reading/writing from/to
multiple distinct locations simultaneously. That is, for arbitrary t ∈ N, we define
the protocol ORead(i1, . . . , it) for distinct indices i1, . . . , it ∈ [�], in which the
client outputs (v1, . . . , vt) corresponding to reading v1 = M[i1], . . . , vt = M[it].
Similarly, we define the protocol OWrite(it, . . . , it; v1, . . . , vt) for distinct indices
i1, . . . , it ∈ [�], which corresponds to setting M[i1] := v1, . . . ,M[it] := vt.

We say that P = (op0, . . . , opq) is an ORAM protocol sequence if op0 =
OInit(1λ, 1w, �) and, for j > 0, opj is a valid (multi-location) read/write operation.
We require that an ORAM construction needs to satisfy correctness and authen-
ticity, which are defined the sameway as in PoR. (Traditionally, authenticity is not
always defined/required for ORAM. However, it is crucial for our use. As noted in
several prior works, it can often be added at almost no cost to efficiency. It can also
be added generically by running amemory checking scheme on top of ORAM.)We
now define a new property called next-read pattern hiding.

Next-Read Pattern Hiding. Consider an honest-but-curious server A who
observes the execution of some protocol sequence P with a client C resulting in
the final client configuration Cfin. At the end of this execution, A gets to observe
how Cfin would execute the next read operation ORead(i1, . . . , it) for various
different t-tuples (i1, . . . , it) of locations, but always starting in the same client
state Cfin. We require that A cannot observe any correlation between these next-
read executions and their locations, up to equality. That is, A should not be
able to distinguish if Cfin instead executes the next-read operations on permuted
locations ORead(π(i1), . . . , π(it)) for a permutation π : [�]→ [�].

More formally, we define NextReadGamebA(λ), for b ∈ {0, 1}, between an ad-
versary A and a challenger:

– The attacker A(1λ) chooses an ORAM protocol sequence P1 = (op0, . . . ,
opq1). It also chooses a sequence P2 = (rop1, . . . , ropq2 ) of valid multi-
location read operations, where each operation is of the form ropj =
ORead(ij,1, . . . , ij,tj) with tj distinct locations. Lastly, it chooses a per-
mutation π : [�] → [�]. For each ropj in P2, define a permuted version
rop′j := ORead(π(ij,1), . . . , π(ij,tj )). The game now proceeds in two stages.

– Stage I. The challenger initializes the honest client C and the (deterministic)
honest server S. It sequentially executes the protocols P = (op0, . . . , opq1)
between C and S. Let Cfin,Sfin be the final configuration of the client and
server at the end.

– Stage II. For each j ∈ [q2]: challenger either executes the original operation
ropj if b = 0, or the permuted operation rop′j if b = 1, between C and S. At
the end of each operation execution it resets the configuration of the client
and server back to Cfin,Sfin respectively, before the next execution.

– The adversary A is given the transcript of all the protocol executions in
stages I and II, and outputs a bit b̃ which we define as the output of the game.
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Note that, since the honest server S is deterministic, seeing the protocol
transcripts between S and C is the same as seeing the entire internal state
of S at any point time.

We require that, for every efficient A, we have∣∣Pr[NextReadGame0A(λ) = 1]− Pr[NextReadGame1A(λ) = 1]
∣∣ ≤ negl(λ).

5 PORAM: Dynamic PoR via ORAM

We now give our construction of dynamic PoR, using ORAM. Since the ORAM
security properties are preserved by the construction as well, we happen to
achieve ORAM and dynamic PoR simultaneously. Therefore, we call our con-
struction PORAM.

Overview of Construction. Let (Enc, Dec) be an (n, k, d = n − k + 1)Σ
systematic code with efficient erasure decoding over the alphabet Σ = {0, 1}w
(e.g., the systematic Reed-Solomon code over F2w). Our construction of dynamic
PoR will interpret the memory M ∈ Σ	 as consisting of L = �/k consecutive
message blocks, each having k alphabet symbols (assume k is small and divides
�). The construction implicitly maps operation on M to operations on encoded
memory C ∈ (Σ)	code=Ln, which consists of L codeword blocks with n alphabet
symbols each. The L codeword blocks C = (c1, . . . , cL) are simply the encoded
versions of the corresponding message blocks in M = (m1, . . . ,mL) with cq =
Enc(mq) for q ∈ [L]. This means that, for each i ∈ [�], the value of the memory
location M[i] can only affect the values of the encoded-memory locations C[j +
1], . . . ,C[j+n] where j = n·�i/k�. Furthermore, since the encoding is systematic,
we have M[i] = C[j + u] where u = (i mod k) + 1. To read the memory
location M[i], the client will use ORAM to read the codeword location C[j+u].
To write to the memory location M[i] := v, the client needs to update the
entire corresponding codeword block. She does so by first using ORAM to read
the corresponding codeword block c = (C[j + 1], . . . ,C[j + n]), and decodes to
obtain the original memory block m = Dec(c). She then locally updates the
memory block by setting m[u] := v, re-encodes the updated memory block to
get c′ = (c1, . . . , cn) := Enc(m) and uses the ORAM to write c′ back into the
encoded memory, setting C[j + 1] := c′1, . . . ,C[j + n] := c′n.

The Construction. Our PORAM construction is defined for some parameters
n > k, t ∈ N. Let O = (OInit,ORead,OWrite) be an ORAM. Let (Enc, Dec) be
an (n, k, d = n − k + 1)Σ systematic code with efficient erasure decoding over
the alphabet Σ = {0, 1}w (e.g., the systematic Reed-Solomon code over F2w).

– PInit(1λ, 1w, �): Assume k divides � and let �code := n · (�/k). Run the
OInit(1λ, 1w, �code) protocol.

– PRead(i): Let i′ := n·�i/k�+(i mod k)+1 and run the ORead(i′) protocol.
– PWrite(i, v): Set j := n · �i/k� and u := (i mod k) + 1.

• Run ORead(j + 1, . . . , j + n) and get output c = (c1, . . . , cn).
• Decode m = (m1, . . . ,mk) = Dec(c).
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• Modify position u of m by locally setting mu := v. Re-encode the mod-
ified message-block m by setting c′ = (c′1, . . . , c

′
n) := Enc(m).

• Run OWrite(j + 1, . . . , j + n; c′1, . . . , c
′
n).

– Audit: Pick t distinct indices j1, . . . , jt ∈ [�code] at random. Run ORead
(j1, . . . , jt) and return accept iff the protocol finished without outputting
reject.

If, any ORAM protocol execution in the above scheme outputs reject, the client
enters a special rejection state in which it stops responding and automatically
outputs reject for any subsequent protocol execution.

As our main result, we now prove that if the ORAM scheme satisfies next-read
pattern hiding (NRPH) security then the PORAM construction above is also a
secure dynamic PoR scheme. See the full version [8] for a proof of the following
theorem.

Theorem 1. Assume that O = (OInit,ORead,OWrite) is an ORAM with next-
read pattern hiding (NRPH) security, and we choose parameters k = Ω(λ),
k/n = (1−Ω(1)), t = Ω(λ). Then the above scheme PORAM = (PInit,PRead,
PWrite,Audit) is a dynamic PoR scheme.

ORAM with NPRH Security. The notion of ORAM was introduced by
Goldreich and Ostrovsky [14], who also introduced the so-called hierarchical
scheme. Since then several improvements to the hierarchical scheme have been
given, including improved rebuild phases and the use of advanced hashing tech-
niques (e.g., [23,16] etc.).

In the full version of our work [8], we examine a particular ORAM scheme of
Goodrich and Mitzenmacher [16] and show that (with minor modifications) it
satisfies next-read pattern hiding security. Therefore, this scheme can be used to
instantiate our PORAM construction. We note that most other ORAM schemes
from the literature that follow the hierarchical structure also seemingly satisfy
next-read pattern hiding, and we only focus on the above example for concrete-
ness. However, in the full version of our work, we show that it is not the case
that every ORAM scheme satisfies next-read pattern hiding, and in fact give
an example of a contrived scheme which does not satisfy this notion and makes
our construction of PORAM completely insecure. We also believe that there are
natural schemes, such as the ORAM of Shi et al. [25], which do not satisfy this
notion. Therefore, next-read pattern hiding is a meaningful property beyond
standard ORAM security and must be examined carefully.

6 Efficiency

We now look at the efficiency of our PORAM construction (when instantiated
with the ORAM scheme of Goodrich-Mitzemacher [16] with the worst-case
complexity optimization [17,22]). We analyze efficiency in three ways: firstly, we
look at the overhead of PORAM scheme on top of just storing the data inside of
the ORAM , secondly, we look at the overall efficiency of PORAM, and thirdly,
we compare it with dynamic PDP [13,27] which does not employ erasure codes
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and does not provide full retrievability guarantee. In the table below, � denotes
the size of the client data and λ is the security parameter. We assume that the
ORAM scheme uses a PRF whose computation takes O(λ) work.

PORAM Efficiency vs. ORAM Overall vs. Dynamic PDP [13]
Client Storage Same O(λ) Same
Server Storage × O(1) O(�) × O(1)

Read Complexity × O(1) O(λ log2 �) × O(log �)

Write Complexity × O(λ) O(λ2 × log2 �) × O(λ× log �)

Audit Complexity Read × O(λ) O(λ2 × log2 �) × O(log �)

By modifying the underlying ORAM to dynamically resize tables during re-
builds, the resulting PORAM instantiation can achieve the same efficiency mea-
sures as above with � taken to be amount of memory currently used, rather than
the maximum memory use.
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Abstract. We formalize a new cryptographic primitive that we call
Message-Locked Encryption (MLE), where the key under which encryp-
tion and decryption are performed is itself derived from the message.
MLE provides a way to achieve secure deduplication (space-efficient se-
cure outsourced storage), a goal currently targeted by numerous cloud-
storage providers. We provide definitions both for privacy and for a form
of integrity that we call tag consistency. Based on this foundation, we
make both practical and theoretical contributions. On the practical side,
we provide ROM security analyses of a natural family of MLE schemes
that includes deployed schemes. On the theoretical side the challenge is
standard model solutions, and we make connections with deterministic
encryption, hash functions secure on correlated inputs and the sample-
then-extract paradigm to deliver schemes under different assumptions
and for different classes of message sources. Our work shows that MLE
is a primitive of both practical and theoretical interest.

1 Introduction

We introduce an intriguing new primitive that we call Message-Locked Encryp-
tion (MLE). An MLE scheme is a symmetric encryption scheme in which the
key used for encryption and decryption is itself derived from the message. In-
stances of this primitive are seeing widespread deployment and application for
the purpose of secure deduplication [1, 2, 4, 5, 7, 8, 10, 22, 23, 31, 35, 39, 43], but in
the absence of a theoretical treatment, we have no precise indication of what
these methods do or do not accomplish.

We provide definitions of privacy and integrity peculiar to this domain. Now
having created a clear, strong target for designs, we make contributions that
may broadly be divided into two parts: (1) practical and (2) theoretical. In
the first category we analyze existing schemes and new variants, breaking some
and justifying others with proofs in the random-oracle-model (ROM) [16]. In
the second category we address the challenging question of finding a standard-
model MLE scheme, making connections with deterministic public-key encryp-
tion [11], correlated-input-secure hash functions [27] and locally-computable ex-
tractors [9, 30, 40] to provide schemes exhibiting different trade-offs between as-
sumptions made and the message distributions for which security is proven. From
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our treatment MLE emerges as a primitive that combines practical impact with
theoretical depth and challenges, making it well worthy of further study and a
place in the cryptographic pantheon. Below we begin with some background and
then look more closely at our contributions.

1.1 Background

To save space, commercial cloud storage services such as Google Drive [6], Drop-
box [3] and bitcasa [1] perform file-level deduplication across all their users. Say
a user Alice stores a file M and Bob requests to store the same file M . Observ-
ing that M is already stored, the server, instead of storing a second copy of M ,
simply updates metadata associated to M to indicate that Bob and Alice both
stored M . In this way, no file is stored more than once, moving storage costs for
a file stored by u users from O(u · |M |) to O(u+ |M |) where the big-O notation
hides implementation-dependent constants.

However, as users we may want our files to be encrypted. We may not want
the storage provider to see our data. Even if we did trust the provider, we may
legitimately worry about errant employees or the risk of server compromise by
an external adversary. When users themselves are corporations outsourcing their
data storage, policy or government regulation may mandate encryption.

Conventional encryption, however, makes deduplication impossible. Say Alice
stores not her file M but its encryption CA under her password pwA. Bob would
store CB, the encryption of M under his password pwB. Two issues arise: (1)
how the server is to detect that the data underlying the two ciphertexts is the
same, and (2) even if it can so detect, what can it store short of (CA, CB) that
allows both parties, based on their separate respective passwords, to recover the
data from what is stored. Standard IND-CPA encryption means even (1) is not
possible. We might use some kind of searchable encryption [11, 20, 38] but it is
still not clear how to solve (2). Just storing Alice’s ciphertext, for example, does
not work because Bob cannot later decrypt it to recover the file, and visa versa.

Douceur et. al. (DABST) [24] proposed a clever solution called convergent
encryption (CE). Alice derives a key K = H(M) from her message M and
then encrypts the message as C = E(K,M) = E(H(M),M), where H is a
cryptographic hash function and E is a block cipher. (They assume the message
is one block long.) The ciphertext is given to the server and the user retains K.
Since encryption is deterministic, if Bob starts from the same message he would
produce the same key and ciphertext. The server can now perform deduplication
on the ciphertext C, checking, when it receives C, whether or not it is already
stored, and, if the latter, as before, not re-storing but instead updating meta-
data to indicate an additional owner. Both Alice and Bob can decrypt C since
both have the same key K.

These ideas have been attractive enough to see significant usage, with CE or
variants deployed in [1,2,4,5,8,31,35,39,43]. It is not however clear what precisely
is the underlying security goal and whether deployed schemes achieve it.
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1.2 Definitions and Relations

We introduce Message-Locked Encryption (MLE) —so named because the mes-
sage is locked, as it were, under itself— with the goal of providing an encryption
primitive that provably enables secure deduplication.

Syntax. As depicted in Fig. 2, the key generation algorithm of an MLE scheme
K maps a messageM to a keyK. The encryption algorithm E takes input the key
K and a message M and produces a ciphertext C. The decryption algorithm D
allows recovery ofM from C given the key K. The tagging algorithm T maps the
ciphertext C to a tag T used by the server to detect duplicates. (Tag correctness
requires that tags corresponding to messages M1,M2 are likely to be the same
iff M1,M2 are the same.) All algorithms may depend on a parameter P but the
latter is public and common to all parties including the adversary, and thus is
not a key.

Any MLE scheme enables deduplication of ciphertexts. CE is captured by
our syntax as the MLE scheme that lets K = H(M), C = E(K,M) and tag
T = H(C).

MLE is trivially achieved by letting the key K equal the message M . (Set
C = T = ε to the empty string and have decryption simply return the key.) This
degenerate solution is however useless for deduplication since the client stores as
K the entire file and no storage savings result. We rule it out by requiring that
keys be shorter than messages, ideally keys are of a fixed, short length.

Privacy. NoMLE scheme can achieve semantic-security-style privacy in the spirit
of [13,26]. Indeed, if the target messageM is drawn from a space S of size s then an
adversary, given an encryption C of M , can recover M in O(s) trials. (For each
candidate M ′ ∈ S test whether D(K(M ′), C) = M ′ and if so return M ′.) As
with deterministic public-key encryption [11], we therefore ask for the best possi-
ble privacy, namely semantic security whenmessages are unpredictable (have high
min-entropy). Adapting definitions from [11, 12, 14, 21] we formalize a PRV-CDA
notion where encryptions of two unpredictable messages should be indistinguish-
able. (“cda” stands for “chosen-distribution attack” [12].) We also formalize a
strongerPRV$-CDAnotionwhere the encryption of anunpredictablemessagemust
be indistinguishable from a random string of the same length (cf. [37]).

These basic notions are for non-adaptive adversaries. The corresponding adap-
tive versions are PRV-CDA-A and PRV$-CDA-A. We show that PRV-CDA does
not imply PRV-CDA-A but, interestingly, that PRV$-CDA does imply
PRV$-CDA-A. (See the right hand side of Fig. 1 for a comprehensive relations
summary.) Thus PRV$-CDA emerges as the preferred target for designs because
non-adaptive security is easier to prove yet adaptive security is implied.

Tag consistency. Suppose client Alice has a message MA and client Bob has
a different message MB. Alice is malicious and uploads not an honest encryp-
tion of MA but a maliciously-generated ciphertext CA such that, when Bob
tries to upload CB, the server sees a tag match T (CA) = T (CB). (This does
not contradict the correctness requirement that tags are usually equal iff the
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messages are equal because that holds for honestly-generated ciphertexts.) The
server thus keeps only CA, deleting CB . Yet later, when Bob downloads to get
CA, the decryption is MA, not MB, meaning the integrity of his data has been
compromised.

This is a serious concern, and not mere speculation, for such “duplicate-
faking” attacks have been found on some CE variants [39]. We define tag con-
sistency to rule out these types of integrity violations. Notion TC asks that it be
hard to create (M,C) such that T (C) = T (E(K(M),M)) but D(K(M), C) is a
string different from M . In words, an adversary cannot make an honest client
recover an incorrect message, meaning one different from the one it uploaded.
Notion STC (“S” for “strong”) asks that it additionally be hard to create (M,C)
such that T (C) = T (E(K(M),M)) but D(K(M), C) = ⊥, meaning an adversary
cannot erase an honest client’s message. STC is strictly stronger than TC; we
define both because, as we will see, some schemes meet only the weaker, but still
meaningful, TC version.

1.3 Practical Contributions

The definitional framework outlined above puts us in a position to rigorously
assess —a decade after its inception in [24]— the security of convergent encryp-
tion (CE). The task is complicated by the presence and deployment of numerous
variants of the basic CE idea. We address this by formulating two MLE schemes,
that we call CE and HCE1, that represent two major variants of CE and between
them capture the prominent existing schemes. They each make use of a RO hash
function H and a deterministic symmetric encryption scheme SE. CE with SE
set to a blockcipher, for example, is the scheme of [24] and HCE1 with SE as a
blockcipher in counter mode with fixed IV is used within the Tahoe FileSystem
(TahoeFS) [43].

CE sets K = H(M), C = SE(K,M) and tag T = H(C), while HCE1 sets
K = H(M), C = SE(K,M)‖H(K) and T = H(K). The rationale for HCE1 is
to offer better performance for the server who can simply read the tag as the
second part of the ciphertext rather than needing to compute it by hashing the
possibly long ciphertext. But we observe that HCE1 is vulnerable to duplicate
faking attacks, meaning it does not even achieve TC security. We discuss the
implications for the security of TahoeFS in Section 4.

We ask whether performance gains of the type offered by HCE1 over CE can
be obtained without loss in consistency, and offer as answers two new schemes,
HCE2 and RCE. The former is as efficient as HCE1. RCE however is even more ef-
ficient, needing just one concerted pass over the data to generate the key, encrypt
the message and produce the tag. On the other hand, HCE2 needs two passes, one
pass to generate the key and a second for encryption, while CE needs a third pass
for producing the tag. RCE achieves this via a novel use of randomization (all
previous schemes were deterministic). Roughly, encryption picks a fresh random
key L and then computes SE(L,M) and K = H(M) in the same pass, finally
placing an encryption of L under K, together with an appropriate tag, in the
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ciphertext. We have implemented all three schemes and the results [15] show
that RCE does indeed outperform the other two.

Fig. 1 (table, first four rows) summarizes the findings of our security analysis of
the four schemes. Under standard assumptions on the deterministic symmetric
encryption scheme SE (one-time real-or-random ciphertext, or ROR, security
as well as key-recovery security) and with H a RO, we show that all four MLE
schemes meet our strong privacy notion PRV$-CDA. The consistency findings are
more involved. As mentioned, HCE1 provides no tag consistency. The good news
is that CE, HCE2 and RCE all achieve TC security, so that an adversary cannot
make a client recover a file different from the one she uploaded. But only CE
offers STC security, implying that the reduction in server cost offered by HCE1,
HCE2 and RCE comes at a price, namely loss of STC-security. The conclusion is
that designers will need to trade performance for strong tag consistency. Whether
this is fundamental or if better schemes exist is an interesting open question.

1.4 Theoretical Contributions

Is MLE possible in the standard-model? This emerges as the natural and most
basic theoretical question in this domain. Another question is, how does MLE
relate to other (existing) primitives? MLE has in common with Deterministic
Public-Key Encryption (D-PKE) [11] and Correlated-input-secure Hash Func-
tions (CI-H) [27] a goal of privacy on unpredictable but possibly related inputs,
so it is in particular natural to ask about the relation of MLE to these primitives.
The two questions are related, for showing that a primitive X implies MLE yields
a construction of an MLE scheme based on X. In exploring these questions it is
instructive to distinguish between D-MLE (where encryption is deterministic)
and R-MLE (where encryption may be randomized). The connections we now
discuss are summarized by the picture on the right side of Fig. 1:

• D-PKE ⇒ D-MLE: We show how to construct an MLE scheme from any D-
PKE scheme that is PRIV-secure in the sense of [11]. The first idea that may
come to mind is to make public a public key pk for the D-PKE scheme DE
and MLE-encrypt M as DE(pk ,M). But this does not make sense because
sk is needed to decrypt and the latter is not derived from M . Our XtDPKE
(“extract-then-D-PKE”) solution, described in Section 5, is quite different and
does not exploit the decryptability of DE at all. We apply a strong randomness
extractor to M to get the MLE key K and then encrypt M bit-by-bit, the
encryption of the i-th bit M [i] being C[i] = DE(pk ,K‖i‖M [i]). Decryption,
given K, is done by re-encrypting, for each i, both possible values of the i-th
message bit and seeing which ciphertext matches C[i]. We assume a trusted
generation of pk in which nobody retains sk . XtDPKE has PRV-CDA privacy
and provides STC (strong) tag consistency.

• CI-H ⇔ D-MLE: Our XtCIH (“extract-then-CI-Hash”) scheme derives a D-
MLE scheme from any CI-H hash function [27] by using the latter in place of
the D-PKE scheme in the above. XtCIH is PRV$-CDA private while retaining
STC consistency. Conversely, any PRV$-CDA D-MLE scheme can be used to
construct a CI-H hash function, making the primitives equivalent.
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Scheme Model D/R
Privacy Integrity

PRV-CDA PRV$-CDA TC STC

CE RO D ✓ ✓ ✓ ✓
HCE1 RO D ✓ ✓ ✗ ✗
HCE2 RO D ✓ ✓ ✓ ✗
RCE RO R ✓ ✓ ✓ ✗

XtCIH STD D ✓ ✓ ✓ ✓
XtDPKE STD D ✓ ✗ ✓ ✓
XtESPKE STD R ✓ ✗ ✓ ✓

SXE STD D ✓ ✓ ✓ ✓

CI-H

D-MLE
(PRV$-CDA)

D-MLE
(PRV-CDA)

D-PKE

ES-PKE

R-MLE
(PRV$-CDA)

R-MLE
(PRV-CDA)

Fig. 1. Left: For each MLE scheme that we construct, we indicate whether it is in the
RO or standard model; whether it is deterministic or randomized; and which security
properties it is proven to possess. The assumptions for XtCIH, XtDPKE and XtESPKE
are, respectively, a CI-H function, a D-PKE scheme and an ES-PKE scheme, while the
others assume only a symmetric encryption scheme. Right: An arrow X → Y means
we can construct primitive Y from primitive X. Dark arrows are our results while light
arrows indicate trivial or known implications.

We believe these results are interesting as connections between prominent prim-
itives. However, they do not, right now, yield MLE schemes under standard
assumptions because providing the required D-PKE schemes or CI-H functions
under such assumptions is still open and deemed challenging. Indeed, Wichs [41]
shows that secure D-PKE schemes or CI-H functions may not be obtained via
blackbox reductions from any assumption that may be modeled as a game be-
tween an adversary and a challenger. We note that his result applies to D-MLE
as well but, as far as we can tell, not to R-MLE. One potential route to MLE with
standard assumptions may thus be to exploit randomization but we are unaware
of how to do this beyond noting that XtDPKE extends to a R-MLE scheme
XtESPKE based on any ES-PKE (Efficiently Searchable PKE) scheme [11], a
weaker primitive than D-PKE.

In the D-PKE domain, progress was made by restricting attention to special
message distributions. In particular D-PKE under standard assumptions have
been achieved for independent messages or block sources [14, 19, 21, 25]. CI-H
functions have been built for messages given by polynomials evaluated at the
same random point [27]. It is thus natural to ask whether we can obtain MLE
under standard assumptions for special message distributions. One might think
that this follows from our D-PKE⇒ D-MLE and CI-H⇒ D-MLE constructions
and the known results on D-PKE and CI-H, but this is not the case because our
constructions do not preserve the message distribution.

The final contribution we mention here is MLE schemes under standard as-
sumptions for certain classes of message distributions . Our SXE (Sample-extract-
encrypt) MLE scheme is inspired by locally-computable extractors [9,30,40] and
the sample-then-extract paradigm [33, 40]. The idea is to put a random subset
of the message bits through an extractor to get a key used to encrypt the rest of
the bits, and the only assumption made is a standard, ROR-secure symmetric
encryption scheme.
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1.5 Further Remarks and Related Work

There are folklore suggestions along the lines of CE predating [24]. See [34].
Recall that we have introduced an indistinguishability-from-random notion

(PRV$-CDA) for MLE and showed that it implied its adaptive counterpart. This
is of broader interest for the parent settings of deterministic and hedged encryp-
tion. Here achieving adaptive security has been challenging [12]. We suggest that
progress can be made by defining and then targeting indistinguishability-from-
random style definitions.

Mironov, Pandey, Reingold and Segev [32] suggest deduplication as a potential
application of their incremental deterministic public-key encryption scheme. But
this will only work with a single client. It won’t allow deduplication across clients,
since they would all have to share the secret key.

Recent work showed that client-side deduplication gives rise to side-channel
attacks because users are told if another user already uploaded a file [29]. MLE
is compatible with either client- or server-side deduplication (the latter prevents
such side-channels). We note that one of our new schemes, RCE, gives rise to
such a side-channel (see Section 4). MLE targets a different class of threats than
proofs of ownership [28], which were proposed for deduplication systems in order
to mitigate abuse of services for surreptitious content distribution.

In independent and concurrent work, Xu, Chang and Zhou [44] consider leak-
age resilience in the deduplication setting. They provide a randomized construc-
tion similar to RCE.

2 Preliminaries

Notations and Conventions. The empty string is denoted by ε. If x is a
vector then |x| denotes the number of components in x, x[i] denotes the i-th
component, and x[i, j] = x[i] . . .x[j] for 1 ≤ i ≤ j ≤ |x|. A (binary) string x is
identified with a vector over {0, 1} so that |x| is its length, x[i] is its i-th bit and
x[i, j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If S is a finite set then |S| denotes its
size and s←$ S denotes picking an element uniformly from S and assigning it to
s. For i ∈ N we let [i] = {1, . . . , i}. We denote by λ ∈ N the security parameter
and by 1λ its unary representation.

“PT” stands for “polynomial-time.” Algorithms are randomized unless oth-
erwise indicated. By y ← A(x1, . . . ;R), we denote the operation of running
algorithm A on inputs x1, . . . and coins R and letting y denote the output. By
y←$ A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ;R) with R
chosen at random. We denote by [A(x1, . . .)] the set of points that have positive
probability of being output by A on inputs x1, . . .. Adversaries are algorithms
or tuples of algorithms. In the latter case, the running time of the adversary is
the sum of the running times of all the algorithms in the tuple.

The guessing probability GP(X) and min-entropy H∞(X) of a random vari-
able X are defined via GP(X) = maxx Pr[X = x] = 2−H∞(X). The condi-
tional guessing probability GP(X |Y ) and conditional min-entropy H∞(X |Y )
of a random variable X given a random variable Y are defined via
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M KP K

EP C

DP M

TP T

PRV$-CDA

PRV-CDA

PRV$-CDA-A

PRV-CDA-A

Fig. 2. Left: Depiction of syntax of MLE scheme MLE = (P ,K, E ,D, T ). The param-
eter generation algorithm is not shown. Right: Relations between notions of privacy
for MLE schemes. An arrow from A to B means that any A-secure MLE scheme is also
B-secure. A barred arrow means there is an A-secure MLE scheme that is not B-secure.

GP(X |Y ) =
∑

y Pr[Y = y] · maxx Pr[X = x|Y = y] = 2−H∞(X |Y ). By
SD(X ;Y ) we denote the statistical distance between random variables X and
Y . For our security definitions and proofs we use the code-based game playing
framework of [17], though adopting some of the syntax and semantics of [36].

3 Message-Locked Encryption

Syntax and correctness. An MLE scheme MLE = (P ,K, E ,D, T ) is a five-
tuple of PT algorithms, the last two deterministic — see Fig. 2. On input 1λ

the parameter generation algorithm P returns a public parameter P . On input
P and a message M , the key-generation algorithm K returns a message-derived
key K←$KP (M). On inputs P,K,M the encryption algorithm E returns a
ciphertext C←$ EP (K,M). On inputs P,K and a ciphertext C, the decryption
algorithmD returnsDP (K,C) ∈ {0, 1}∗∪{⊥}. On inputs P,C the tag generation
algorithm returns a tag T ← TP (C). Associated to the scheme is a message
space MsgSpMLE that associates to any λ ∈ N a set MsgSpMLE(λ) ⊆ {0, 1}∗. We
require that there is a function Cl such that, for all λ ∈ N, all P ∈ [P(1λ)] and
all M ∈ {0, 1}∗, any output of EP (KP (M),M) has length Cl(P, λ, |M |), meaning
the length of a ciphertext depends on nothing about the message other than its
length. The decryption correctness condition requires that DP (K,C) = M for
all λ ∈ N, all P ∈ [P(1λ)], all M ∈ MsgSpMLE(λ), all K ∈ [KP (M)] and all
C ∈ [EP (K,M)]. The tag correctness condition requires that there is a negligible
function δ: N → [0, 1], called the false negative rate, such that Pr[TP (C) �=
TP (C′)] ≤ δ(λ) for all λ ∈ N, all P ∈ [P(1λ)] and all M ∈ MsgSpMLE(λ), where
the probability is over C←$ EP (KP (M),M) and C′←$ EP (KP (M),M). We say
that MLE is deterministic if K and E are deterministic. We observe that if MLE
is deterministic then it has perfect tag correctness, meaning a false negative rate
of 0.

Discussion. In the application to secure deduplication, the server publishes P
and maintains a database that we view as a table Da, initially everywhere ⊥.
In the UPLOAD protocol, the client, having P,M , computes K←$KP (M) and
C←$ EP (K,M). The client storesK securely. (It may do so locally or storeK en-
crypted under its password on the server, but the implementation is not relevant
here.) It sends C to the server. The latter computes T ← TP (C). If Da[T ] = ⊥
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then it lets Da[T ]← C. The server provides the client with a filename or pointer
that we may, for simplicity, just view as the tag T . In the DOWNLOAD pro-
tocol, the client sends the server a tag T and the server returns Da[T ]. If Alice
uploads M and Bob later does the same, tag correctness means that their tags
will most likely be equal and the server will store a single ciphertext on their
behalf. Downloads will return to both this common ciphertext C, and decryption
correctness guarantees that both can decrypt C under their respective (although
possibly different) keys to recover M .

A trivial construction of an MLE scheme MLE = (P ,K, E ,D, T ) may be ob-
tained by setting the key to the message. In more detail, let P(1λ) = ε; let
Kε(M) = M ; let Eε(M,M) = Tε(C) = ε; let Dε(M,C) = M . This will meet
the decryption and tag correctness conditions besides meeting the security re-
quirements (privacy and tag consistency) we will formalize below. However, this
scheme is of no use for deduplication because the client stores the entire file as
the key and no storage savings are gleaned. To avoid this kind of degenerate
scheme, we insist that an MLE scheme have keys that are shorter than the mes-
sage. Formally, there must be a constants c, d < 1 such that the function that
on input λ ∈ N returns maxP,M Pr[|KP (M)| > d · |M |c] is negligible where the
probability is over the choices of K and the maximum is over all P ∈ [P(1λ)]
and all M ∈ MsgSpMLE(λ). Particular schemes we construct or analyze, how-
ever, do much better, with the key-length for most of them depending only on
the security parameter.

Our formulation of search via tag comparison enables fast search: the server
can use the tag to index directly into a table or perform a logarithmic-time
binary search as in [11]. These requirements could be relaxed to define MLE
variants where search was allowed linear time (cf. [20]) or search ability was not
even provided. MLE does not appear easy to achieve even in the last case.

Privacy. A source is a PT algorithm M that on input 1λ returns (M0, . . . ,
Mn−1, Z) where M0, . . . ,Mn−1 are vectors over {0, 1}∗ and Z ∈ {0, 1}∗. Here
n ≥ 1 is a constant called the arity of the source. (We will only consider
n ∈ {1, 2}.) We require that all the vectors have the same length m(λ) for some
function m called the number of messages of the source. We require that there
is a function len, called the message length of the source, such that the string
Mj[i] has length len(λ, i) for all i ∈ [m(λ)] and all j ∈ {0, . . . , n− 1}. We require
that Mj[i1] �= Mj[i2] for all distinct i1, i2 ∈ [m(λ)] and all j ∈ {0, . . . , n − 1},
meaning the entries of each vector are distinct. We refer to Z as the auxil-
iary information. The guessing probability GPM of source M is defined as
the function which on input λ ∈ N returns maxi,j GP(Mj [i] |Z) where the
probability is over (M0, . . . ,Mn−1, Z)←$M(1λ) and the maximum is over all
i ∈ [m(λ)] and all j ∈ {0, . . . , n− 1}. We say thatM is unpredictable if GPM(·)
is negligible. (Meaning, messages are unpredictable given the auxiliary infor-
mation. We do not require that the components Mj [1], . . . ,Mj [m(λ)] of a vec-
tor are independent, just that each, individually, is unpredictable.) We refer to
− log(GPM(·)) as the min-entropy of the source. We say that M is MLE-valid
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main PRV-CDAA
MLE,M(λ)

P ←$ P(1λ)

b←$ {0, 1}
(M0,M1, Z)←$M(1λ)

For i = 1, . . . , |Mb| do
K[i]←$KP (Mb[i])

C[i]←$ EP (K[i],Mb[i])

b′ ←$ A(P,C, Z)

Ret (b = b′)

main PRV$-CDAA
MLE,M(λ)

P ←$ P(1λ)

b←$ {0, 1}
(M, Z)←$M(1λ)

For i = 1, . . . , |M| do
K[i]←$KP (M[i])

C1[i]←$ EP (K[i],M[i])

C0[i]←$ {0, 1}|C1 [i]|

b′ ←$ A(P,Cb, Z)

Ret (b = b′)

main TCA
MLE(λ) STCA

MLE(λ)

P ←$ P(1λ); (M,C′)←$ A(P )

If (M = ⊥) or (C′ = ⊥) then

Ret false

T ←$ TP (EP (KP (M),M))

T ′ ←$ TP (C′)

M ′ ←$DP (KP (M), C′)

If (M = M ′) then Ret false

If (T �= T ′) then Ret false

If (M ′ = ⊥) then Ret false

Ret true

Fig. 3. Games defining PRV-CDA, PRV$-CDA privacy and TC, STC tag consistency
security of MLE scheme MLE = (P ,K, E ,D, T )

if Mj [i] ∈ MsgSpMLE(λ) for all λ ∈ N, all (M0, . . . ,Mn−1, Z) ∈ [M(1λ)], all
i ∈ [m(λ)] and all j ∈ {0, . . . , n− 1}.

In the games of Fig. 3, “CDA” stands for “Chosen-Distribution Attack,” re-
ferring to the distribution on messages imposed by the MLE-valid source M,
which in game PRV-CDA has arity 2 and in game PRV$-CDA has arity 1.
If A is an adversary we let Advprv-cda

MLE,M,A(λ) = 2 · Pr[PRV-CDAA
MLE,M(λ)] − 1

and Advprv$-cda
MLE,M,A(λ) = 2 · Pr[PRV$-CDAA

MLE,M(λ)] − 1. We say that MLE is

PRV-CDA (resp. PRV$-CDA) secure over a class M of PT, MLE-valid sources

if Advprv-cda
MLE,M,A(·) (resp. Advprv$-cda

MLE,M,A(·)) is negligible for all PT A and all

M ∈ M. We say that MLE is PRV-CDA (resp. PRV$-CDA) secure if it is
PRV-CDA (resp. PRV$-CDA) secure over the class of all PT, unpredictable MLE-
valid sources. PRV-CDA asks for indistinguishability of encryptions of two unpre-
dictable messages and is based on formalizations of deterministic [11,14,21] and
hedged [12] PKE. PRV$-CDA is a new variant, asking for the stronger property
that encryptions of unpredictable messages are indistinguishable from random
strings, an adaption to this setting of the corresponding notion for symmetric
encryption from [37].

The source is not given the parameter P as input, meaning privacy is only
assured for messages that do not depend on the parameter. This is analogous to
the restriction that messages do not depend on the public key in D-PKE [11],
and without this restriction, privacy is not possible. However, the adversary A
does get the parameter.

The notions here are non-adaptive in the sense that the distribution of the
next message does not depend on the previous ciphertext. In the full version
[15], we give corresponding adaptive definitions PRV-CDA-A and PRV$-CDA-A,
and prove the relations summarized in Fig. 2. The one we highlight is that
non-adaptive PRV$-CDA implies its adaptive counterpart. This is not true for
PRV-CDA and makes PRV$-CDA preferable to achieve.
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Tag consistency. Consider the games of Fig. 3 and let A be an adversary.
Game TCMLE includes the boxed statement, while STCMLE does not. We let
AdvTC

MLE,A(λ) = Pr[TCA
MLE(λ)] and AdvSTC

MLE,A(λ) = Pr[STCA
MLE(λ)]. We say that

MLE is TC (resp. STC) secure if AdvTC
MLE,A(·) (resp. AdvSTC

MLE,A(·)) is negligible.
Tag consistency (TC) aims to provide security against duplicate faking attacks

in which a legitimate message is undetectably replaced by a fake one. In such an
attack we imagine the adversary A creating and uploading C′. Later, an honest
client, holding M (the formalism allows A to pick M) computes K←$KP (M)
and uploads C←$ EP (K,M). The server finds that the tags of C and C′ are equal
and thus continues to store only C′. Later, the honest client downloads C′ and
decrypts under K. It expects to recover M , but in a successful duplicate-faking
attack it recovers instead some message M ′ �= M . The integrity of its data has
thus been violated. TC security protects against this. Note that TC explicitly
excludes an attack in which M ′ = ⊥. Thus TC secure schemes may still admit
duplicate faking attacks that lead to erasures: a client can detect corruption
but no longer be able to recover their message. STC (strong tag consistency)
aims to additionally provide security against such erasure attacks. In terms of
implications, STC implies TC but TC does not imply STC.

Duplicate faking attacks are not just a theoretical concern. They were first
discussed in [39], yet currently deployed schemes are still vulnerable, as we’ll see
in the next section. Discussions with practitioners suggest that security against
them is viewed as an important requirement in practice.

Given any TC secure scheme, we can prevent all of the attacks above by hav-
ing a client, upon being informed that her ciphertext is already stored, download
it immediately and check that decryption yields her message. If not, she com-
plains. This however is not optimal, being expensive and complex and leading
to deduplication side-channels (cf. [29]).

If an MLE scheme is deterministic, letting the tag equal the ciphertext will
result in a scheme that is STC secure. This provides a relatively easy way to
ensure resistance to duplicate faking attacks, but the price paid is that the tag is
as long as the ciphertext. CR-hashing the ciphertext (still for a D-MLE scheme)
preserves STC, but for efficiency other, less effective options have been employed
in practice, as we will see.

ROM. An RO [16] is a game procedure H that maintains a table H[·, ·], initially
everywhere ⊥. Given a query x, k with x ∈ {0, 1}∗ and k ∈ N, it executes:
If H[x, k] = ⊥ then H[x, k]←$ {0, 1}k. It then returns H[x, k]. We will omit the
length k when it is clear from context. In the ROM, both scheme algorithms and
adversary algorithms will have access to H.

In lifting the privacy definitions to the ROM, we do not give the source access
to H. This is to simplify our proofs. Our methods and proofs can be extended
to handle sources with access to H under an extension of the definition of un-
predictability to this setting in which, following [12, 36], the unpredictability of
the source is independent of the coins underlying H.
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4 The Security of Fast MLE Schemes

We investigate four MLE schemes, two that correspond to in-use schemes and
two new schemes.

Ingredients. The schemes are built from a one-time symmetric encryption
scheme and a hash function family H = (HK,H). The former is a tuple of
algorithms SE = (SK,SE ,SD): key generation SK, on input 1λ, outputs a key
K of length k(λ); deterministic encryption SE maps a key K and plaintext M to
a ciphertext C; and deterministic decryption SD maps a key K and ciphertext
C to a message M . We require that Pr[SD(K,SE(K,M)) = M ] = 1 for all
λ ∈ N, all K ∈ [SK(1λ)], and all M ∈ {0, 1}∗. We assume that there exists
a function clSE such that for all λ ∈ N and all M ∈ {0, 1}∗ any output of
SE(K,M) has length clSE(λ, |M |). For simplicity we assume that H and SE are
compatible: H(Kh,M) outputs a message of length k(λ) for any Kh ∈ [HK(1λ)].
We require schemes that provide both key recovery security (KR) and one-time
real-or-random security (ROR) [37]. Formal definitions are recalled in [15].

The four schemes. Let SE = (SK,SE ,SD) be a symmetric encryption scheme
and H = (HK,H) be a hash function family. All schemes inherit their message
space from SE (typically {0, 1}∗), use as parameter generation HK, and share a
common key generation algorithm K which derives keys as K ← H(P,M).

The first scheme, thatwe simply call convergent encryption (CE), generalizes the
original scheme of DABST [24]. CE encrypts the message asC ← SE(K,M). Tags
are computed as T ← H(P,C). (One could alternatively use the ciphertext itself
as the tag, but this is typically not practical.) Decryption returnsM ← SD(K,C)
on inputK,C. The second scheme,HCE1 (Hash-and-CE 1), is a popular variant of
the CE scheme used in a number of systems [4, 22, 23, 43]. Compared to CE, HCE1
computes tags during encryption by hashing the per-message key (T ← H(P,K))
and including the result in the ciphertext. Tag generation just extracts this embed-
ded tag. This offloads work from the server to the client and reduces the number of
passes needed to encrypt and generate a tag from three to two.

HCE1 is vulnerable to attacks that break TC security, as first discussed in [39].
The attack is straightforward: adversary A chooses two messages M �= M ′,
computes C ← SE(H(P,M),M ′) and T ← H(P,H(P,M)), and finally outputs
(M,C ‖T ). This means an adversary, given knowledge of a user’s to-be-stored
message, can undetectably replace it with any arbitrary message. In TahoeFS’s
use of HCE1, the client additionally stores a message authentication code (MAC)
computed over the message, and checks this MAC during decryption. This means
that the TC attack against HCE1 would be detected. TahoeFS is, however, still
vulnerable to erasure attacks. We have reported this to the developers, and are
discussing possible fixes with them.

We suggest a new scheme, HCE2, that modifies HCE1 to directly include a
mechanism, called guarded decryption, that helps it to achieve TC security. The
decryption routine now additionally checks the tag embedded in the ciphertext
by recomputing the tag using the just-decrypted message. If the check fails,
then ⊥ is returned.
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For performance in practice, the important operation is deriving the ciphertext
and tag from the message. This involves generating the key, followed by encryp-
tion and tag generation. CE requires three full passes to perform encryption and
tag generation, while HCE1 and HCE2 require two. Using at least two passes
here is fundamental: deterministic MLE schemes that output bits of ciphertext
before processing most of the message will not achieve PRV-CDA security.

The fourth scheme, Randomized Convergent Encryption (RCE), takes advan-
tage of randomization to give a version of HCE2 that can generate the key,
encrypt the message, and produce the tag, all together, in a single pass. RCE
accomplishes this by first picking a random symmetric encryption key L and
then encrypting the message with L, and deriving the MLE key K in a single
pass. Finally it encrypts L using K as a one-time pad, and derives the tag from
K. Like HCE2 it uses guarded decryption.

We note that RCE does admit a side-channel attack similar to those arising in
client-side deduplication systems [29]. A user can infer whether she is the first
to upload a file, by first storing its encryption under RCE and then immediately
downloading to check if the recovered ciphertext is the one just uploaded.

For all the schemes, it is easy to verify decryption correctness. Tag correctness
follows as the tags are all deterministic.

Privacy. We prove the following theorem, which establishes the PRV$-CDA
security of the four schemes when modeling H as a RO, in the full version [15].
The key-recovery (KR) and one-time real-or-random (ROR) security notions
referred to below are recalled in [15].

Theorem 1. Let H be a RO and let SE = (SK,SE ,SD) be a one-time sym-
metric encryption scheme with key length k(·). Then if SE is both KR-secure
and ROR-secure, the scheme XXX[SE,H] for XXX ∈ {CE,HCE1,HCE2,RCE} is
PRV$-CDA-secure. �
Tag consistency. As discussed in Section 3, any deterministic scheme is STC-
secure when tags are CR-hashes of the ciphertext. So too with CE. For HCE2
and RCE, a straightforward reduction establishes the following theorem. Here
CR refers to standard collision resistance, the definition being recalled in [15].

Theorem 2. Let SE = (SK,SE ,SD) be a one-time symmetric encryption
scheme and let H = (HK,H) be a hash function family. If H is CR-secure then
HCE2[SE,H] and RCE[SE,H] are TC-secure. �
HCE2 and RCE are not STC-secure, by the same attack as used against the TC
security of HCE1. (The tag check makes it so that decryption outputs M ′ = ⊥.)
One could in theory achieve STC security using non-interactive zero-knowledge
proofs [18], but this would obviate the speedups offered by the schemes com-
pared to CE. We conclude that finding fast, STC-secure schemes with O(1) tag
generation is an interesting open problem, surfaced by our definitions and results
above.

Discussion. The above schemes use a hash function family H. In practice, we
might use SHA-256 or SHA-3, and key them appropriately by choosing a uniform
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bit string to prepend to messages. In [15] we explore various instantiations of the
MLE schemes, including ones that are entirely built from AES. We also report
on performance there.

5 Constructions without ROs

We overview Extract-Hash-Check (which yields standard model MLE from D-
PKE or CI-H hash functions) and Sample-Extract-Encrypt (which yields the
same from weaker assumptions but for particular classes of sources). Refer to [15]
for full construction descriptions and security proofs.

Extract-Hash-Check. It is natural to aim to build MLE from a D-PKE
scheme or a CI-H function because the latter primitives already provide privacy
on unpredictable messages. However, in attempting to build MLE from these
primitives, several problems arise. One is that neither of the base primitives
derives the decryption key from the message. Indeed, in both, keys must be
generated upfront and independently of the data. A related problem is that it is
not clear how an MLE scheme might decrypt. CI-H functions are not required
to be efficiently invertible. D-PKE does provide decryption, but it requires the
secret key, and it is not clear how this can yield message-based decryption.

Our solution will in fact not use the decryptability of the D-PKE scheme,
but rather view the latter as providing a CI-H function keyed by the public
key. We apply an extractor (its seed S will be in the parameters of the MLE
scheme) to the message M to get the MLE key K. Given S,M , this operation
is deterministic. The scheme encrypts the message bit by bit, creating from
M =M [1] . . .M [|M |] the ciphertext C = C[1] . . . C[|M |] in which C[i] is a hash
of K‖〈i〉‖M [i]. (The key for the hash function is also in the parameters.) To
decrypt C[i] given K, hash both K‖〈i〉‖1 and K‖〈i〉‖0 and see which equals
C[i]. (This is the “check” part.) The proof of privacy relies on the fact that each
input to each application of the hash function will have a negligible guessing
probability even given the parameters. The reduction will take an MLE source
and build a source for the hash function that itself computes K and produces
the inputs to the hash function. Details may be found in [15].

Sample-Extract-Encrypt. This MLE scheme relies only on a standard and
weak assumption, namely a one-time symmetric encryption scheme, which can
be built from any one-way function. The tradeoff is that it is only secure for a
limited class of sources.

Stepping back, if we are to consider special sources, the obvious starting point
is uniform and independent messages. Achieving MLE here is easy because we
can use part of the message as the key to encrypt the other part. The next
obvious target is block sources, where each message is assumed to have negli-
gible guessing probability given the previous ones. D-PKE for such sources was
achieved in [19]. We might hope, via the above XHC construction, to thus au-
tomatically obtain MLE for the same sources, but XHC does not preserve the
block source restriction because the inputs to the hash function for different bits
of the same message are highly correlated.
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Sample-Extract-Encrypt (SXE) builds an MLE scheme for classes of block
sources where a random subset of the bits of each message remains unpredictable
even given the rest of the bits and previous messages. For example, if a message
has some subset of uniform bits embedded within it. The scheme then uses
a random subset of the message bits as a key, applies an extractor, and then
symmetrically encrypts the rest of the message. Refer to [15] for details.
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In October 2012, the American National Institute of Standards and Technol-
ogy (NIST) announced the selection of Keccak as the winner of the SHA-3
Cryptographic Hash Algorithm Competition [10,11]. This concluded an open
competition that was remarkable both for its magnitude and the involvement
of the cryptographic community. Public review is of paramount importance to
increase the confidence in the new standard and to favor its quick adoption. The
SHA-3 competition explicitly took this into account by giving open access to the
candidate algorithms and everyone in the cryptographic community could try to
break them, compare their performance, or simply give comments.

While preparing for the SHA-3 competition, we developed and presented the
sponge construction [1]. Our initial goal of this effort was to solve the problem
of compactly expressing a comprehensive security claim. It turned out to be a
powerful tool for building a hash function and we adopted it for our SHA-3 can-
didate Keccak. Additionally, with its variable output length it can be used as a
mask generating function, a stream cipher or a MAC computation function. To
support more sophisticated modes such as single-pass authenticated encryption
and reseedable pseudorandom sequence generation, we additionally introduced
the duplex construction [3]. We have proven both sponge and duplex construc-
tions sound in the indifferentiability framework [8,2,3]. Our permutation-based
modes can be seen as an alternative to the block-cipher based modes that have
dominated mainstream symmetric cryptography in the last decades. They are
simpler than the traditional block cipher modes and offer at the same time more
flexibility by allowing to trade in security strength level for speed and vice versa.

At the core of Keccak is a set of seven permutations called Keccak-f [b],
with width b chosen between 25 and 1600 by multiplicative steps of 2 [4]. Depend-
ing on b, the resulting function ranges from a toy cipher to a wide function. The
instances proposed for SHA-3 use exclusively Keccak-f [1600] for all security
levels [5], whereas lightweight alternatives can use for instance Keccak-f [200]
or Keccak-f [400], leaving Keccak-f [800] as an intermediate choice [6]. Inside
Keccak-f , the state to process is organized in 5 × 5 lanes of b/25 bits each,
or alternatively as b/25 slices of 25 bits each. The round function processes the
state using a non-linear layer of algebraic degree two (χ), a linear mixing layer
(θ), inter- and intra-slice dispersion steps (ρ, π) and the addition of round con-
stants (ι). The choice of operations in Keccak-f makes it very different from
the SHA-2 family or even Rijndael (AES) [9,7]. On the implementation side,
these operations are efficiently translated into bitwise Boolean operations and
circular shifts, they lead to short critical paths in hardware implementations and
they are well suited for protections against side-channel attacks.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 313–314, 2013.
c© International Association for Cryptologic Research 2013



314 G. Bertoni et al.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
Ecrypt Hash Workshop 2007 (May 2007); available as public comment to NIST,
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008), http://sponge.noekeon.org/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference
(January 2011), http://keccak.noekeon.org/

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 sub-
mission (January 2011), http://keccak.noekeon.org/

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak

implementation overview (May 2012), http://keccak.noekeon.org/
7. Daemen, J., Rijmen, V.: The design of Rijndael — AES, the advanced encryption

standard. Springer (2002)
8. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on

reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

9. NIST, Federal information processing standard 180-2, secure hash standard (Au-
gust 2002)

10. NIST, selects winner of secure hash algorithm (SHA-3) competition (October
2012), http://www.nist.gov/itl/csd/sha-100212.cfm

11. NIST, Third-round report of the SHA-3 cryptographic hash algorithm competition
(November 2012), http://dx.doi.org/10.6028/NIST.IR.7896

 http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://www.nist.gov/itl/csd/sha-100212.cfm
http://dx.doi.org/10.6028/NIST.IR.7896


Batch Fully Homomorphic Encryption

over the Integers�
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Abstract. We extend the fully homomorphic encryption scheme over
the integers of van Dijk et al. (DGHV) into a batch fully homomorphic
encryption scheme, i.e. to a scheme that supports encrypting and homo-
morphically processing a vector of plaintexts as a single ciphertext.

We present two variants in which the semantic security is based on
different assumptions. The first variant is based on a new decisional
problem, the Decisional Approximate-GCD problem, whereas the sec-
ond variant is based on the more classical computational Error-Free
Approximate-GCD problem but requires additional public key elements.

We also show how to perform arbitrary permutations on the underly-
ing plaintext vector given the ciphertext and the public key. Our scheme
offers competitive performance even with the bootstrapping procedure:
we describe an implementation of the homomorphic evaluation of AES,
with an amortized cost of about 12 minutes per AES ciphertext on a
standard desktop computer; this is comparable to the timings presented
by Gentry et al. at Crypto 2012 for their implementation of a Ring-LWE
based fully homomorphic encryption scheme.

Keywords: Fully Homomorphic Encryption, Batch Encryption, Chi-
nese Remainder Theorem, Approximate GCD, Homomorphic AES..

1 Introduction

Fully Homomorphic Encryption (FHE). Fully homomorphic encryption
allows a worker to perform implicit additions and multiplications on plaintext

� This paper is a merger of two independent works [CLT13, KLYC13] built on the
same basic idea but with different contributions. The respective full versions are
posted on ePrint.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 315–335, 2013.
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values while exclusively manipulating encrypted data. The first construction of
a fully homomorphic scheme (based on ideal lattices) was described by Gen-
try in [Gen09], and proceeds in several steps. First, one constructs a somewhat
homomorphic encryption scheme, which only supports a limited number of mul-
tiplications: ciphertexts contain some noise that becomes larger with successive
homomorphic multiplications, and only ciphertexts whose noise size remains be-
low a certain threshold can be decrypted correctly. The second step is to squash
the decryption procedure associated with an arbitrary ciphertext so that it can
be expressed as a low degree polynomial in the secret key bits. Then, Gentry’s
key idea, called bootstrapping, consists in homomorphically evaluating this de-
cryption polynomial on encryptions of the secret key bits, resulting in a different
ciphertext associated with the same plaintext, but with possibly reduced noise.
This refreshed ciphertext can then be used in subsequent homomorphic opera-
tions. By repeatedly refreshing ciphertexts, the number of homomorphic opera-
tions becomes unlimited, resulting in a fully homomorphic encryption scheme.

Since Gentry’s breakthrough result, many improvements have been made, in-
troducing new variants, improving efficiency, and providing new features. Re-
cently, Brakerski, Gentry and Vaikuntanathan described a different framework
where the ciphertext noise grows only linearly with the multiplicative level in-
stead of exponentially [BGV12], so that bootstrapping is no longer necessary to
obtain a scheme supporting the homomorphic evaluation of any given polyno-
mial size circuit. Currently three main families of fully homomorphic encryption
schemes are known:

1. Gentry’s original scheme [Gen09] based on ideal lattices. An implementation
of Gentry’s scheme was proposed by Gentry and Halevi in [GH11] with
a public key of 2.3 GB and a ciphertext refresh procedure of 30 minutes;
the implementation is based on many interesting algorithmic optimizations,
including some borrowed from Smart and Vercauteren [SV10].

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers [DGHV10]. It was recently shown how to significantly reduce the
public key size in DGHV, yielding a 10.3 MB public key and an 11-minute
refresh procedure [CNT12].

3. Brakerski and Vaikuntanathan’s scheme based on the Learning with Errors
(LWE) and Ring Learning with Errors (RLWE) problems [BV11a, BV11b],
and follow-up works (e.g. the scale-free variant of Brakerski [Bra12] and the
NTRU-variant [LATV12]). An implementation is described in [GHS12b] with
an efficient (given the current state of knowledge) homomorphic evaluation
of the full AES encryption circuit. The authors use the batch RLWE-based
scheme proposed in [BGV12, GHS12a], that allows one to encrypt vectors
of plaintexts in a single ciphertext and to perform any permutation on the
underlying plaintext vector while manipulating only the ciphertext [SV11].

Our Contributions. In this paper we focus on the DGHV scheme. Our goal
is to extend DGHV to support the same batching capability as in RLWE-based
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schemes [BGV12, GHS12a], and to homomorphically evaluate a full AES circuit
with roughly the same level of efficiency as [GHS12b], in order to obtain an
implementation of a FHE scheme with similar features but based on different
techniques and assumptions.

In the original DGHV scheme, a ciphertext has the form

c = q · p+ 2r +m

where p is the secret key, q is a large random integer, and r is a small ran-
dom integer (noise); the bit message m ∈ {0, 1} is recovered by computing
m = [c mod p] mod 2. The scheme is clearly homomorphic for both addition and
multiplication, since addition and multiplication of ciphertexts correspond to
addition and multiplication of plaintexts modulo 2.

To encrypt multiple bits mi into a single ciphertext c, we use the Chinese
Remainder Theorem with respect to a tuple of (�+1) coprime integers q0, p0, . . . ,
p	−1. The batch ciphertext has the form

c = CRTq0,p0,...,p�−1
(q, 2r0 +m0, . . . , 2r	−1 +m	−1),

and correctly decrypts to the bit vector (mi) given by mi = [c mod pi] mod 2 for
all 0 � i < �.1 Modulo each of the pi’s the ciphertext c behaves as in the original
DGHV scheme. Accordingly, the addition or multiplication of two ciphertexts
yields a new ciphertext that decrypts to the componentwise sum or product
modulo 2 of the original plaintexts.

The main challenge, however, was to prove the semantic security of our new
scheme. In the original DGHV scheme, public-key encryption is performed by
masking the message m with a random subset sum of the public key elements
xj = qj · p+ rj as

c =

[
m+ 2r + 2

∑
j∈S

xj

]
x0

. (1)

The semantic security is proved by applying the Leftover Hash Lemma on the
subset sum modulo q0, and using the random 2r in (1) to further randomize the
ciphertext modulo p.

To prove semantic security for the batch scheme our first technique is to rely
on a new assumption, namely the Decisional Approximate-GCD assumption.
Under this assumption the integers xj in the subset-sum from (1) are assumed
to be indistinguishable from random modulo x0; semantic security is then proved
by applying the Leftover Hash Lemma modulo x0; the additional random 2r in
(1) becomes unnecessary. Extending DGHV public-key encryption to the batch
setting is then straightforward; namely one can use the same random subset
sum technique with public key elements xj having a small residue modulo each
of the pi’s instead of only modulo p. We show that our batch DGHV scheme can
encrypt � = Õ(λ3) bits in a single ciphertext; therefore the ciphertext expansion
ratio becomes Õ(λ2) instead of Õ(λ5) in the original scheme.

1 We denote by CRTq0,p0,...,p�−1(q, a0, . . . , a�−1) the unique integer u with 0 � u <

q0 ·
∏�−1

i=0 pi such that u ≡ q (mod q0) and u ≡ ai (mod pi) for all 0 � i < �.
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In Section 4 we describe a different technique that does not rely on a new de-
cisional assumption but on the known (computational) Error-Free Approximate-
GCD assumption used in previous work [DGHV10, CMNT11, CNT12]. For the
proof of semantic security to go through in the batch setting, the ciphertext c
should be independently randomized modulo each of the pi’s, which is not easy
to achieve without knowing the pi’s. Indeed, if we only use a single additive term
2r as in Equation (1), then the same random term 2r = 2r mod pi is added mod-
ulo each of the pi, which breaks the security proof. Our technique is to replace
the term 2r in (1) by another subset sum of public key elements which, taken
modulo each of the pi’s, generate a lattice with special properties. We then apply
the Leftover Hash Lemma modulo this lattice instead of only modulo q0, which
proves semantic security.

In addition to componentwise addition and multiplication, we also show how
to perform any permutation on plaintext bits publicly. As opposed to RLWE
based schemes [BGV12, GHS12a], we cannot use an underlying algebraic struc-
ture to perform rotations over plaintext bits (clearly, the automorphisms of Z do
not provide any useful action on ciphertexts). Instead we show how to perform
arbitrary permutations on the plaintext vector during the ciphertext refresh op-
eration at no additional cost (but with a slight increase of the public key size).
Our ciphertext refresh operation Recrypt is done in parallel over the � slots, with
the same complexity as a single Recrypt operation in the original scheme.

Finally, we describe an implementation of our batch DGHV scheme of Sec-
tion 4, with concrete parameters. We perform an homomorphic evaluation of
the full AES encryption circuit. For the “Large” parameters with 72 bits of secu-
rity, our implementation homomorphically encrypts up to 531 AES ciphertexts
in parallel in an amortized time of 12 minutes per AES ciphertext on a desk-
top computer. This is comparable to the timings presented by Gentry et al. at
Crypto 2012 for their implementation of an RLWE-based scheme [GHS12b].2

While our batch variant of DGHV does not provide additional features nor
significantly improved efficiency over the RLWE-based scheme of [GHS12a], we
believe it is interesting to obtain FHE schemes with similar properties but based
on different techniques and assumptions.

2 The Somewhat Homomorphic DGHV Scheme

We first recall the somewhat homomorphic encryption scheme over the integers
of van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) in [DGHV10]. Let λ
be the security parameter, τ be the number of elements in the public key, γ their
bit-length, η the bit-length of the secret key p and ρ (resp. ρ′) the bit-length of
the noise in the public key (resp. in a fresh ciphertext).

For a real number x, we denote by �x�, �x�, and �x� the upper, lower, and
nearest integer part of x. For integers z, p we denote the reduction of z modulo
p by (z mod p) or [z]p with −p/2 < [z]p � p/2.

2 Notice that our implementation uses bootstrapping whereas the implementation
of [GHS12b] used a leveled homomorphic encryption scheme without bootstrapping.
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For a specific η-bit odd integer p, we use the following distribution over γ-bit
integers:

Dγ,ρ(p) =

{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) :

Output x = q · p+ r

}
.

DGHV.KeyGen(1λ). Generate an η-bit random prime integer p. For 0 � i � τ ,
sample xi ← Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart unless
x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and
a random integer r in (−2ρ′ , 2ρ′), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

. (2)

DGHV.Evaluate(pk, C, c1, . . . , ct). Given the circuit C with t input bits and t
ciphertexts ci, apply the addition and multiplication gates of C to the ci-
phertexts, performing all the additions and multiplications over the integers,
and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← [c mod p]2.

As shown in [DGHV10] the scheme is somewhat homomorphic, i.e., a limited
number of homomorphic operations can be performed on ciphertexts. More pre-
cisely, given two ciphertexts c = q · p+ 2r+m and c′ = q′ · p+ 2r′ +m′ where r
and r′ are ρ′-bit integers, the ciphertext c+ c′ is an encryption of m+m′ mod 2
under a (ρ′+1)-bit noise and the ciphertext c · c′ is an encryption of m ·m′ with
noise bit-length * 2ρ′. Since the ciphertext noise must remain smaller than p to
maintain correctness, the scheme roughly allows η/ρ′ successive multiplications
on ciphertexts. The scheme is semantically secure under the Approximate-GCD
assumption (see [DGHV10]):

Definition 1 (Approximate GCD). The (ρ, η, γ)-approximate GCD problem
consists, given a random η-bit odd integer p and given polynomially many sam-
ples from Dγ,ρ(p), in outputting p.

3 Batch DGHV Scheme Based on a New Decisional
Assumption3

We describe our first extension of the DGHV scheme for the batch setting. We
extend the DGHV scheme by packing � plaintexts m0, . . . , m	−1 into a single
ciphertext, using the Chinese Remainder Theorem. Moreover, for somewhat ho-
momorphic encryption, this allows us to encrypt not only bits but elements from
rings of form ZQ.

3 A part of this section was made public through [Mem12].
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Therefore, for public parameters Q0, . . . , Q	−1, we encrypt (m0, . . . ,m	−1) ∈
ZQ0 × · · · × ZQ�−1

into a ciphertext of the following form:

c = CRTq0,p0,...,p�−1
(q,Q0r0 +m0, . . . , Q	−1r	−1 +m	−1),

where q is uniform random modulo q0 and ri’s are small noises. Decryption can
be done by

mi = [c mod pi]Qi .

Homomorphic addition and multiplication is done by the corresponding arith-
metic operations on ciphertexts.

This scheme can be considered as encrypting vectors (m0, . . . ,m	−1) and sup-
porting parallel, componentwise additions and multiplications. Or, if we choose
the Qi’s to be pairwise coprime, then using the isomorphism Z∏

Qi
∼=
∏

ZQi , we
may regard this as a somewhat homomorphic encryption supporting arithmetic
operations on ZQ, with Q =

∏
Qi.

In order to allow public-key encryption, we provide integers x′i and xi in the
public key, such that x′i mod pj = Qjr

′
i,j + δi,j , and xi mod pj = Qjri,j for all i,

j where δi,j is the Kronecker delta. Then, a plaintext vectorm = (m0, . . . ,m	−1)
is encrypted as follows:

c =

[
	−1∑
i=0

mi · x′i +
∑
i∈S

xi

]
x0

.

As explained in the introduction, the additional, larger noise 2r from the DGHV
scheme is not used in this version. This simplifies the construction, with the
trade-off of a new decisional assumption and a larger security loss. In Section 4,
we present another version which handles this issue differently. In Section 5,
we describe a transformation to fully homomorphic encryption schemes where
Q0 = · · · = Q	−1 = 2.

3.1 Description

IDGHV.KeyGen(1λ, (Qj)0�j<	). Choose η-bit distinct primes pj , 0 � j < �, and
denote π their product. Let us define the error-free public key element x0 =
q0 · π, where q0 ← Z ∩ [0, 2γ/π) is a 2λ

2

-rough integer.4 Make sure that
gcd(Qj, x0) = 1 for 0 � j < �, and abort otherwise.5

Choose the following integers xi and x′i with a quotient by π uniformly and
independently distributed in Z ∩ [0, q0), and with the following distribution
modulo pj for 0 � j < �:

1 � i � τ, xi mod pj = Qjri,j , ri,j ← Z ∩ (−2ρ, 2ρ),
0 � i � �− 1, x′i mod pj = Qjr

′
i,j + δi,j , r′i,j ← Z ∩ (−2ρ, 2ρ).

4 An integer a is b-rough when it does not contain prime factors smaller than b. As

in [CMNT11] one can generate q0 as a product of 2λ
2

-bit primes.
5 Note that the abort case happens with negligible probability.
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Finally, let pk =
{
x0, (Qi)0�i�	−1 , (xi)1�i�τ , (x

′
i)0�i�	−1

}
and let sk =

(pj)0�j�	−1.

IDGHV.Encrypt(pk,m). For any m = (m0, . . . ,m	−1) with mi ∈ ZQi , choose a
random binary vector b = (bi)1�i�τ ∈ {0, 1}τ and output the ciphertext:

c =

[
	−1∑
i=0

mi · x′i +
τ∑

i=1

bi · xi

]
x0

. (3)

IDGHV.Decrypt(sk, c). Output m = (m0, . . . ,m	−1) where mj ← [c mod pj ]Qj .

IDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0.

IDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.

3.2 Parameters and Correctness

The size of the message space is determined by � and the binary length of the
Qj’s, which can be an integer from 2 to η/8 depending on the multiplicative
depth of the scheme. The parameters should satisfy the following constraints:

• ρ = Ω̃(λ), to be secure against Chen-Nguyen’s attack [CN12] and Howgrave-
Graham’s attack [HG01],

• η = Ω̃(λ2 + ρ · λ), to resist the factoring attack using the elliptic curve
method [Len87], and to permit enough multiplicative depth,

• γ = ω(η2 logλ), to resist Cohn and Heninger’s attack [CH11] and the attack
using Lagarias algorithm [Lag85] on the approximate GCD problem,

• τ = γ + ω(logλ), in order to use leftover hash lemma (see Section 3.3).

We choose γ = Õ(λ5), η = Õ(λ2), ρ = 2λ, τ = γ + λ which is similar to
the DGHV’s convenient parameter setting [DGHV10]. We remark that bi can
be chosen in a much larger interval so as to reduce the public key size as in
Section 4.

Notice that the above scheme is correct as is proved in the full version
[KLYC13] with the definition of correctness for homomorphic encryption
schemes, with respect to a set of permitted circuits.

3.3 Semantic Security

Here we show the semantic security of the IDGHV scheme, based on a new as-
sumption called �-DACDQ. In fact, this rather complicated assumption is given
only as an intermediate step for the proof, and in Section 3.4, we prove this
assumption from a simpler decisional assumption, called the Decisional Approx-
imate GCD assumption (DACD). So the security of our scheme is eventually
based on this assumption.

Given two integer vectors p = (p0, . . . , p	−1), Q = (Q0, . . . , Q	−1) of length
� and an integer q0, let us define the distribution Dρ(p;Q; q0) as follows. The
output of the distribution is

x = CRTq0,p0,...,p�−1
(q,Q0r0, . . . , Q	−1r	−1),

where q ← Z ∩ [0, q0) and ri ← Z ∩ (−2ρ, 2ρ) for i = 0, . . . , �− 1.
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Definition 2 (�-Decisional Approximate GCDQ Problem: �-DACDQ).
The (ρ, η, γ, μ)-�-decisional approximate GCDQ problem is: for η-bit distinct
primes p0, . . . , p	−1 and μ-bit integers Q0, . . . , Q	−1, given a γ-bit integer x0 :=
q0p0 · · · p	−1, with gcd(x0, Qi) = 1 for i = 0, . . . , � − 1, and polynomially many
samples from D := Dρ(p;Q; q0) and a set X consisting of � integers x′i =
CRTq0,p0,...,p�−1

(qi, Q0r
′
i,0+δi,0, . . . , Q	−1r

′
i,	−1+δi,	−1) where qi, r

′
i,j are chosen

as qi ← Z ∩ [0, q0), r
′
i,j ← Z ∩ (−2ρ, 2ρ) for all i, j ∈ {0, . . . , � − 1}, determine

b ∈ {0, 1} from z = x+ r · b mod x0 where x← D and r ← Z ∩ [0, x0).

The (ρ, η, γ, μ)-�-decisional approximate GCDQ assumption then states that this
problem is hard for any polynomial time distinguisher.

Theorem 1. The IDGHV scheme is semantically secure under the �-decisional
approximate GCDQ assumption.

Proof. We provide a sketch of the proof. See the complete proof in the full
version [KLYC13].

Essentially, the idea of the proof is that the IDGHV scheme is a lossy encryp-
tion [BHY09]. Both the correctly generated public key pk and the lossy key pk′

have the following form{
x0, (Qi)0�i�	−1 , (xi)1�i�τ , (x

′
i)0�i�	−1

}
,

but note that, for the real public key pk, xi are chosen as xi ← Dρ(p;Q; q0), and
for the lossy public key pk′, xi ← Z ∩ [0, x0).

Now we may rely on the standard hybrid argument to show that pk and pk′

are computationally indistinguishable, under the (ρ, η, γ, μ)-�-decisional approx-

imate GCDQ assumption: for each ı̂ ∈ {1, . . . , τ}, we define pk(ı̂), where

xi ←
{
Z ∩ [0, x0) for 1 � i � ı̂,

Dρ(p;Q; q0) for ı̂ < i � τ .

Then pk(0) is identical to pk, and pk(τ) is identical to pk′, and using the (ρ, η, γ, μ)-

�-decisional approximate GCDQ assumption, we may show that pk(ı̂) is indis-

tinguishable from pk(ı̂+1) for ı̂ = 0, . . . , τ − 1, proving that pk and pk′ are
computationally indistinguishable.

Next, we show that under the lossy key pk′, the IDGHV scheme is semantically
secure: for any two plaintexts m and m′, the distributions of their corresponding
ciphertexts c, c′ under the lossy key pk′ are statistically close. Namely, recall that
from Equation (3), we have

c =

[
	−1∑
i=0

mi · x′i +
τ∑

i=1

bi · xi

]
x0

.
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Now, when we choose xi from the lossy public key pk′, xi are uniform on
Z ∩ [0, x0), and we may use the Leftover Hash Lemma. In fact we may use
the simplified version shown in Lemma 1 of [DGHV10] to conclude that the dis-
tribution of [

∑τ
i=1 bi · xi]x0 is statistically close to the uniform distribution on

Z ∩ [0, x0), when the parameters are chosen according to Section 3.2. Therefore,
the distribution of c is uniformly random, regardless of the plaintext vector m.
This shows that IDGHV is a lossy encryption scheme, and the semantic security
directly follows from that. #$

3.4 Hardness Assumption

We show that the semantic security of our scheme can be based on a simpler
decisional assumption with a single prime p. For two specific integers p and q0,
we use the following distribution over γ-bit integers:

Dρ(p, q0) := {Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output y = q · p+ r} .

Definition 3 (Decisional Approximate GCD Problem: DACD). The
(ρ, η, γ)-decisional approximate GCD problem is: for a random η-bit prime p,
given a γ-bit integer x0 = q0 · p and polynomially many samples from Dρ(p, q0),
determine b ∈ {0, 1} from z = x + r · b mod x0 where x ← Dρ(p, q0) and
r ← Z ∩ [0, x0).

The (ρ, η, γ)-decisional approximate GCD assumption then states that this
problem is hard for any polynomial time distinguisher.

We now give a sketch of the proof of the following lemma. For the detailed
proof, see the full version [KLYC13].

Lemma 1. The �-decisional approximate GCDQ problem is hard under the de-
cisional approximate GCD assumption.

Proof (Sketch). The main difference between DACD and 1-DACDQ is the
existence of Q0 in the latter problem. When Q0 is coprime to x0, it is easy to
see that both problems are equivalent. Namely, multiplying by Q0 modulo x0
efficiently converts samples from Dρ(p, q0) to Dρ((p); (Q0); q0).

Now, we need to show that the �-DACDQ problem is hard under the
1-DACDQ assumption. We use a hybrid argument. From the 1-DACDQ prob-
lem instance x0 = q0 ·p and samples from Dρ((p); (Q0); q0), we choose �−1 primes
ourselves. Putting a prime p from 1-DACDQ at a random position i0 among the
pi’s, we can construct samples from Dρ(p;Q; q0) using the Chinese Remainder
Theorem with samples from Dρ((p); (Q0); q0). And a set X also can be efficiently
constructed. For the challenge z, we construct a �-DACDQ challenge z′ such
that

z′ = CRTx0,(pi)i
=i0
(z, r′0Q0, . . . , r

′
i0−1Qi0−1, e

′
i0+1, . . . , e

′
	−1)

where r′i ← Z ∩ (−2ρ, 2ρ) and e′i ← Z ∩ [0, pi). By the hybrid argument, it can
be shown that any �-DACDQ distinguisher can be efficiently converted to a
1-DACDQ distinguisher. This terminates the proof of Lemma 1. #$
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Corollary 1. The IDGHV scheme is semantically secure under the decisional
approximate GCD assumption.

3.5 Application to Secure Large Integer Arithmetic

Secure integer arithmetic is one of the most important applications of homo-
morphic encryption schemes. It includes frequently used statistical functions
such as mean, standard deviation, logistical regression, and secure evaluation of
a multivariate function over the integers. Some applications may require very
large integer inputs in the computation of these functions. For the homomorphic
computation of these functions, one may use FHE supporting homomorphic
bit operations. However, the large ciphertext expansion and rather high cost of
bootstrapping make this cumbersome and inefficient. In fact, even an addition of
two λ-bit integers using bit operations needs computing degree-O(λ) polynomial
over Z2 due to the carry computation. For this reason, it is very important to
construct an efficient somewhat homomorphic scheme supporting large integer
arithmetic on encrypted data.

As mentioned earlier in this section, IDGHV scheme supports arithmetic op-
erations on ZQ with Q =

∏	−1
i=0 Qi when all Qi’s are pairwise coprime. We can

freely choose � up to Õ(λ3) depending on the applications. And the advantage
of our scheme in the overhead stands out, as the plaintext space gets larger.

4 Batch DGHV Scheme Based on the Error-Free
Approximate-GCD

In this section, we present a variant of the previous IDGHV scheme but based on
a (weaker) computational assumption instead of the decisional assumption from
Def. 3. This is made possible by adding a new set of elements in the public key
but yields a more intricate scheme.6

Ideally we would like to base the security of the new batch DGHV scheme on
the same assumption as the original single-bit DGHV scheme, i.e. the
Approximate-GCD assumption from Definition 1. However we can only show
its security under the (stronger) Error-Free Approximate-GCD assumption al-
ready considered in [DGHV10, CMNT11, CNT12]. For two specific integers p
and q0, we use the following distribution over γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output y = q · p+ r} .

Definition 4 (Error-free approximate GCD). The (ρ, η, γ)-error-free ap-
proximate-GCD problem is: For a random η-bit prime p, given y0 = q0·p where q0
is a random integer in [0, 2γ/p), and polynomially many samples from Dρ(p, q0),
output p.

6 For the sake of simplicity, we use Q0 = · · · = Q�−1 = 2 throughout the rest of the
paper; however the security proof extends to general Qi’s as in Section 3.
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In the following we briefly explain our proof strategy. In the original DGHV
scheme, public-key encryption is performed by masking the message m with a
random subset sum of the public key elements xj = qj · p+ rj as

c =

[
m+ 2r + 2

∑
j∈S

xj

]
x0

. (4)

The semantic security is proved by applying the Leftover Hash Lemma on the
subset sum modulo q0, and using the random 2r in (4) to further randomize the
ciphertext modulo p.

However in the batch scheme it would not be sufficient to add such random
term 2r; namely the same random 2r = 2r mod pi would be added modulo
each of the pi’s, whereas for the security proof to go through these random
terms should be independently distributed modulo each of the pi’s. Therefore
a new technique is required to extend DGHV to a semantically secure batch
encryption scheme, whose security can be based on the Error-Free Approximate-
GCD problem.

In the following, we start by describing a variant of DGHV still for a single bit
message m only, but which does extend naturally to the batch setting. We first
consider the DGHV scheme without the additional random 2r, since this term
is of no use in the batch setting. A single message bit m is then encrypted as

c =
[
m+ 2

∑
i∈S

xi

]
x0

where xi = qi · p+ ri. In order to prove semantic security as in [DGHV10], one
should prove that the values q and r′ given by c = q · p+ 2r′ +m are essentially
random and independently distributed. The randomness of q = 2

∑
i∈S qi mod q0

follows from the Leftover Hash Lemma (LHL) modulo q0. However we cannot
apply the LHL to r′ =

∑
i∈S ri because it is distributed over Z instead of modulo

an integer. Note that in the original scheme the randomness of r′ followed from
adding a random 2r in (4), much larger than the ri’s.

Let us assume that we could somehow reduce the integer variable r′ =
∑

i∈S ri
modulo some integer $. Then we could apply the LHL simultaneously modulo
q0 and modulo $, and the distributions of q mod q0 and r′ mod $ would be
independently random as required. However, during public-key encryption we
certainly do not have access to the variable r′ =

∑
i∈S ri, so we cannot a priori

reduce it modulo an integer $ in the encryption phase.
Our technique is the following: instead of reducing the variable r′ modulo $,

we add a large random multiple of $ to r′. This can be done by extending the
public key with a new element Π such that Π mod p = $. Encryption would
then be performed as

c =
[
m+ 2b ·Π + 2

∑
i∈S

xi

]
x0

(5)

for some large random integer b. Modulo p this gives a new integer r′′ = r′+b ·$,
and we argue that this enables to proceed as if r′ was actually reduced modulo $.
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Namely, if we generate the ri’s such that the sum r′ =
∑

i∈S ri is not much larger
than $, then reducing r′ modulo $ would just subtract a small multiple of $,
which is negligible compared to the large random multiple b ·$ obtained through
(5). Formally the distribution of r′+b·$ is statistically close to (r′ mod $)+b·$,
which enables us to apply the LHL to r′ mod $ and eventually obtain a security
proof.

Now the advantage of (5) is that it can be easily extended to the batch
setting. Instead of using a single random multiple of Π , we use a subset sum of �
such multiples Πi, where Πi mod pj = $i,j. The Leftover Hash Lemma is then
applied modulo the lattice generated by the $i,j . This shows that the random
noise values modulo the pi’s follow essentially independent distributions, and
eventually leads to a security proof based on the Error-Free Approximate-GCD
problem above.

4.1 Description

BDGHV.KeyGen(1λ). Generate a collection of � random η-bit primes pj , 0 �
j < �, and denote π their product. Let us define the error-free public key
element x0 = q0 · π, where q0 ← Z ∩ [0, 2γ/π) is a 2λ

2

-rough integer.
Generate the following integers xi, x

′
i and Πi with a quotient by π uniformly

and independently distributed in Z∩ [0, q0), and with the following distribu-
tion modulo pj for 0 � j < �:

1 � i � τ, xi mod pj = 2ri,j ,

0 � i � �− 1, x′i mod pj = 2r′i,j + δi,j ,

0 � i � �− 1, Πi mod pj = 2$i,j + δi,j · 2ρ
′+1,

with ri,j ← Z ∩ (−2ρ′−1, 2ρ′−1) and r′i,j , $i,j ← Z ∩ (−2ρ, 2ρ). Finally, let

pk =
{
x0, (xi)1�i�τ , (x

′
i)0�i�	−1 , (Πi)0�i�	−1

}
and sk = (pj)0�j�	−1.

BDGHV.Encrypt(pk,m ∈ {0, 1}	). Choose random integer vectors b = (bi) ∈
(−2α, 2α)τ and b′ = (b′i)0�i�	−1 ∈ (−2α′

, 2α
′
)	 and output the ciphertext:

c =

[
	−1∑
i=0

mi · x′i +
	−1∑
i=0

b′i ·Πi +

τ∑
i=1

bi · xi

]
x0

. (6)

BDGHV.Decrypt(sk, c). Output m = (m0, . . . ,m	−1) where mj ← [c]pj mod 2.

BDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0

BDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.
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4.2 Parameters and Correctness

The parameters must meet the following constraints (where λ is the security
parameter):

• ρ = Ω(λ) to avoid brute force attack on the noise [CN12, CNT12],

• η � α′ + ρ′ + 1 + log2(�) for correct decryption,

• η � ρ·Θ(λ log2 λ) for homomorphically evaluating the “squashed decryption”
circuit

• γ = ω(η2·logλ) in order to thwart lattice-based attacks [DGHV10, CMNT11];

• ρ′ � ρ+ λ and α′ � α+ λ for the proof of semantic security,

• α · τ � γ + λ and τ � � · (ρ′ + 2) + λ in order to apply the leftover hash
lemma.

To satisfy the above constraints one can take ρ = 2λ, η = Õ(λ2), γ = Õ(λ5),
α = Õ(λ2), τ = Õ(λ3) as in [CNT12], with ρ′ = Õ(λ), α′ = Õ(λ2) and � = Õ(λ2).
We refer to Section 5.4 for concrete parameters and timings. We show in [CLT13,
Appendix A] that the above scheme is correct for a set of permitted circuits.

4.3 Semantic Security

To prove the semantic security of our scheme, we first introduce a temporary
decisional assumption that is implied by the Error-Free Approximate-GCD as-
sumption.

Given integers q0 and p0, . . . , p	−1, we define the oracle Oq0,(pi)(v) which,

given as input a vector v ∈ Z	, outputs x with

x = CRTq0,(pi)(q, v0 + 2r0, . . . , v	−1 + 2r	−1)

where q ← [0, q0) and ri ← (−2ρ, 2ρ). Therefore Oq0,(pi)(v) outputs a ciphertext
for the plaintext v. Note that the components vi can be any integer, not only
0, 1.

Definition 5 (O-�-dAGCDλ,γ,η). The oracle �-decisional-approximate-GCD
problem is as follows. Pick random η-bit integers p0, . . . , p	−1 of product π, a

random 2λ
2

-rough q0 ← Z ∩ [0, 2γ/π), a random bit b, set v0 = (0, . . . , 0) and
v1 ← {0, 1}	. Given x0 = q0p0 · · · p	−1, z = Oq0,(pi)(vb) and oracle access to
Oq0,(pi), guess b.

This decisional problem is somehow to distinguish between an encryption of 0
and an encryption of a random message. To prove the semantic security of our
scheme, we must show that this still holds when using the public-key encryption
procedure instead of the oracle Oq0,(pi); this essentially amounts to applying a
variant of the Leftover Hash Lemma. We refer to the full version [CLT13] for the
proof.
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Theorem 2. The batch DGHV scheme is semantically secure under the oracle
�-decisional-approximate-GCD assumption.

Lemma 2. The oracle-�-decisional-approximate-GCD problem is hard if the
error-free-approximate-GCD problem is hard.

Corollary 2. The batch DGHV scheme is semantically secure under the error-
free-approximate-GCD assumption.

5 Making the Scheme Fully Homomorphic

In this section, we follow Gentry’s blueprint [Gen09] to transform a somewhat
homomorphic encryption scheme into a fully homomorphic encryption scheme.
This technique applies directly to both schemes described in Section 3 and 4.

5.1 The Squashed Scheme

As mentioned in the introduction, to follow Gentry’s blueprint and make our
somewhat homomorphic schemes amenable to bootstrapping, we first need to
squash the decryption circuit, i.e. change the decryption procedure so as to
express it as a low degree polynomial in the bits of the secret key.

We use the same technique as in the original DGHV scheme [DGHV10]
but generalize it to the batch setting. We add to the public key a set y =
{y0, . . . , yΘ−1} of rational numbers in [0, 2) with κ bits of precision after the
binary point, such that for all 0 � j � � − 1 there exists a sparse subset
Sj ⊂ [0, Θ − 1] of size θ with

∑
i∈Sj

yi * 1/pj mod 2. The secret-key is replaced
by the indicator vector of the subsets Sj . Formally the scheme is modified as
follows:

BDGHV.KeyGen(1λ). Generate sk∗ = (p0, . . . , p	−1) and pk∗ as before. Set xpj ←
�2κ/pj� for j = 0, . . . , �− 1. Choose at random Θ-bit vectors sj = (sj,0, . . . ,
sj,Θ−1), each of Hamming weight θ, for 0 � j < �. Choose at random Θ
integers ui ∈ [0, 2κ+1) for 0 � i < Θ, fulfilling the condition that xpj =∑Θ−1

i=0 sj,i · ui mod 2κ+1 for all j. Set yi = ui/2
κ and y = (y0, . . . , yΘ−1).

Hence, each yi is a positive number smaller than two, with κ bits of preci-
sion after the binary point, and verifies

1

pj
=

Θ−1∑
i=0

sj,i · yi + εj mod 2 (7)

for some |εj | < 2−κ. Finally, output the key pair

sk = (s0, . . . , s	−1) and pk = (pk∗, y0, . . . , yΘ−1) .



Batch Fully Homomorphic Encryption over the Integers 329

BDGHV.Expand(pk, c). The ciphertext expansion procedure takes as input a ci-
phertext c and computes an expanded ciphertext: for every 0 � i � Θ − 1,
compute zi given by zi = �c · yi� mod 2 with n bits of precision after the
binary point. Define the vector z = (zi)i=0,...,Θ−1 and output the expanded
ciphertext (c, z).

BDGHV.Decrypt(sk, c, z). Output m = (m0, . . . ,m	−1) with

mj ←
[⌊

Θ−1∑
i=0

sj,i · zi

⌉]
2

⊕ (c mod 2) . (8)

This completes the description of the scheme. We use n = �log2(θ + 1)� as
in [CMNT11].

5.2 Bootstrapping

As in [DGHV10], we get that the BDGHV scheme is bootstrappable. Moreover,
the Recrypt procedures works naturally in parallel over the plaintext bits.

Namely the decryption equation (8) for the batch scheme can be evaluated
homomorphically by providing for all 0 � i < Θ an encryption σi of the �
secret-key bits sj,i, with:

σi = Encrypt(s0,i, . . . , s	−1,i) .

This gives a new ciphertext that encrypts the same �-bit plaintext vector, but
with a (possibly) reduced noise. Notice that the � equations in (8) are homomor-
phically evaluated in parallel, one in each of the � plaintext slots of the ciphertext.
Therefore, with the same complexity as a single Recrypt operation in the original
scheme, the batch Recrypt operation is performed in parallel over the � slots.

From Gentry’s theorem, we obtain a homomorphic encryption scheme for
circuits of any depth. The proof of the following theorem is identical to the
proof of [CMNT11, Theorem 5.1].

Theorem 3. Let E be the above scheme, and let DE be the set of augmented
(squashed) decryption circuits. Then DE ⊂ C(PE).

5.3 Complete Set of Operations for Plaintext Vectors

From what precedes, we can implement homomorphic SIMD-type operations
on our packed ciphertexts, where the Add and Mult operations are applied to
� different input bits at once. However, a desired feature when dealing with
packed ciphertexts is the ability to move values between plaintext slots with a
public Permute operation. As opposed to [GHS12a] we cannot rely on an un-
derlying algebraic structure. Instead we show how to perform such Permute at
ciphertext refresh time, i.e. when performing a Recrypt. This feature is therefore
supported at no extra cost assuming a ciphertext refresh operation has to be car-
ried out anyway (i.e. after each Mult gate). Notice that a similar technique was
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independently described in [BGH13] for the RLWE-based fully homomorphic
schemes [BV11a, BV11b, GHS12a].

For any permutation ζ over {0, . . . , �− 1}, we want to homomorphically eval-
uate the function

�-Permute (ζ, (u0, . . . , u	−1)) =
(
uζ(0), . . . , uζ(	−1)

)
.

Let ζ be a permutation to be applied homomorphically on the plaintext bits.
During the KeyGen operation, the authority can define for each i ∈ [0, Θ − 1]

σζi = Encrypt(sζ(0),i, . . . , sζ(	−1),i).

Now, performing the ciphertext refresh operation (“recryption”) with the σζi ’s
instead of the σi’s gives a ciphertext of the plaintext vector (mζ(0), . . . ,mζ(	−1))
which is exactly the desired result. Therefore any permutation ζ can be imple-
mented by putting the corresponding σζi ’s in the public key.

To be able to perform arbitrary permutations on the plaintext vector, one can
augment the public key by a minimal set of permutations ζ’s that generates the
whole permutation group S	 over {0, . . . , �− 1}, such as the transposition (1, 2)
and the cycle (1, 2, . . . , �). In that case the impact on the public key is small
(as only 2 · Θ · γ bits are added), but the performance overhead is significant,
since as many as O(�) ciphertext refresh operations may be needed to carry out
a desired permutation.

A more practical solution is to use a Beneš network [Ben64] of permutations
as in [GHS12a]. In that case it suffices to add 2 log2(�) permuting elements
to the public key to enable circular rotations by ±2i bit position. Then any
permutation can be obtained in (2 log(�) − 1) steps. At each step, at most two
rotations and two Select operations are performed, where the Select operation
on c1 and c2 constructs a ciphertext where each of the � plaintext slot is chosen
either from c1 or c2; such Select operation is easily obtained with two Mult (and
two recryptions) and one Add, see [GHS12a]. This approach has a limited impact
on the public key (2 log2(�) ·Θ · γ more bits), and any permutation can then be
performed with at most 6 · (2 log2 �− 1) recryptions.

In practice, however, the circuit to be homomorphically evaluated is likely to
be known in advance, so it is possible to put a set of distinguished permutations
in the public key that provides an optimal time-memory trade-off. In the next
section, we describe two variants of homomorphic evaluations of the full AES
circuit that require respectively only four permutations and no permutation
at all.

5.4 Implementation Results

We provide in Table 1 concrete key sizes and timings for the batch DGHV scheme,
based on a C++ implementation using the GMP library. We use essentially the
same parameters as in [CNT12, CT12]; in particular, the parameters take into
account the attack from [CN12]. We use the same compressed public-key variant



Batch Fully Homomorphic Encryption over the Integers 331

as in [CNT12]; a complete description of the scheme is given in [CLT13]. As
in [CMNT11, CNT12], we take n = 4 and θ = 15 for all security levels.

We obtain essentially the same running times as in [CNT12]. The main differ-
ence is that the Recrypt operation is now performed in parallel over � = 531 bits
(for the “Large” setting) instead of a single bit.

Table 1. Benchmarking for our Batch DGHV with a compressed public key on a
desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM)

Instance λ 	 ρ η γ/106 τ Θ pk size

Small 52 37 41 1558 0.90 661 555 13 MB
Medium 62 138 56 2128 4.6 2410 2070 304 MB
Large 72 531 71 2698 21 8713 7965 5.6 GB

KeyGen Encrypt Decrypt Expand Recrypt

1.74s 0.23s 0.02s 0.08s 1.10s
73s 3.67s 0.45s 1.60s 11.9s

3493s 61s 9.8s 28s 172s

6 Homomorphic Evaluation of the AES Circuit

In this section, we show how to homomorphically evaluate the AES-128 encryp-
tion circuit using the batch encryption scheme of Section 4 with compressed
public key elements (see [CLT13]), and provide concrete timings. A similar
implementation with the RLWE-based fully-homomorphic encryption scheme
[BV11a, BV11b, GHS12a] was already described in [GHS12b]. As mentioned in
[SV11, NLV11, GHS12b], such an implementation can be used to optimize the
communication cost in cloud-based applications. Indeed, since the ciphertext ex-
pansion ratio in most fully-homomorphic encryption schemes is huge, data can
rather be sent encrypted under AES with a ciphertext expansion equal to 1, along
with the public key pkFHE of the FHE scheme as well as the AES secret-key en-
crypted under pkFHE. Then, before the cloud performs homomorphic operations
on the data, it can first run the AES decryption algorithm homomorphically to
obtain the plaintext data encrypted under pkFHE.

We consider our BDGHV scheme with � slots. We describe two variants of our
implementation which we call byte-wise bitslicing and state-wise bitslicing .

Byte-Wise Bitslicing. In this representation, the 16-byte AES state is viewed
as a matrix of 16 rows of 8 bits each (one row for every byte). Each of the
8 columns is then stored on a different ciphertext. Therefore an AES state is
stored in 8 ciphertexts, and one can perform k = �/16 AES encryptions in
parallel using these 8 ciphertexts. Formally the AES state is composed of the
ciphertexts c0, . . . , c7, where the underlying plaintexts m0, . . . ,m7 are such that
mi[k · 16 + j] is the i-th bit of the j-th element of the AES state of the k-th
AES (see Figure 1).7 We briefly describe how to implement the AES stages; full
details on the implementation are given in [CLT13].

The AddRoundKey stage performs a XOR between the AES state and the
current round key. This operation only consists of 8 Add operations. To minimize

7 Thus, m0 represents the LSBs of the AES states of the k AES-plaintexts, and m7

the MSBs. This construction is similar to general-purpose bitslicing [Bih97, KS09].
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Fig. 1. Bit ordering in mi in the byte-wise bitslicing representation

the number of Recrypt during the SubBytes stage, we used the 115 gates circuit
of Boyar and Peralta [BP10] to compute the Sbox.8 Thus, this step needs 17
Recrypt operations on 9 of the temporary variables and on the 8 outputs. In
total, this stage costs 83 Add, 32 Mult and 17 Recrypt.

The ShiftRows stage consists in performing a permutation of the state. For
this we add the σζi ’s of the associated permutation ζ in the public key, and
the rotation is performed at no additional cost during the final Recrypt of the
SubBytes stages. Finally the MixColumns stage requires 3 permutations of the
AES state; this yields a total of 3× 8 = 24 Recrypt and 38 Add, and the addition
of the σζi ’s of three permutations ζ to the public key.

In total, our byte-wise implementation of AES requires 1260 Add, 320 Mult,
and 377 Recrypt.

State-Wise Bitslicing. In this representation, each of the 128 bits of the AES
state is stored in a different ciphertext. One can then perform k = � AES en-
cryptions in parallel. This corresponds to a full bitslice implementation of AES.
More precisely the AES state is composed of 128 ciphertexts c0, . . . , c127, where
the underlying plaintexts m0, . . . ,m127 are such that mi+j·8[k] is the i-th bit of
the j-th byte of the state of the k-th AES.

The AddRoundKey stage requires 128 Add operations. The SubBytes stage
is implemented using the same circuit as above. Since the circuit needs to be
evaluated on each of the 16 bytes of the AES state, the stage costs 16×83 = 1328
Add, 16 × 32 = 512 Mult, and 16 × 17 = 272 Recrypt. The ShiftRows stage
consists in performing a permutation of the state, and this is done by permuting
the indices of bits in the homomorphic AES state at no additional cost. The
MixColumns stage requires 608 Add. The total cost the AES evaluation is then
14688 Add, 5120 Mult and 2448 Recrypt.

Implementation Results. We implemented both variants using the concrete pa-
rameters from Table 1; our results are summarized in Table 2. The relative
time is the total time of AES evaluation divided by the number of encryptions
processed in parallel. Notice that the state-wise bitslicing variant yields better
relative times.

Our timings are comparable to [GHS12b] for the RLWE-based scheme, where
a relative time of 5 minutes per block is reported; the authors used a 24-core
server with 256GB of RAM, while our program runs on a more modest desktop
computer with 4 hyper-threaded cores and 32GB of RAM (the whole public key

8 To minimize the number of bootstrappings in a given circuit we refer to [LP13].
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Table 2. Timings of byte-wise and state-wise homomorphic AES developed in C++
with GMP, running on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM)

(a) Timings for byte-wise representation

Instance λ � # of enc. Add- ShiftRows Mix- Total AES Relative
in parallel RoundKey & SubBytes Columns (in hours) time

Small 52 48 3 0.04s 21s 29s 0.125 2min 30s

Medium 62 144 9 0.3s 210s 290s 1.25 8min 20s

Large 72 528 33 1.6s 2970s 4165s 18.3 33min

(b) Timings for state-wise representation

Instance λ � # of enc. Add- Sub- Shift- Mix- Total AES Relative
in parallel RoundKey Bytes Rows Columns (in hours) time

Small 52 37 37 0.06s 309s 0s 0.09s 0.74 1min 12s

Medium 62 138 138 4.5s 3299s 0s 0.44s 7.86 3min 25s

Large 72 531 531 27s 47656s 0.04s 2.8s 113 12min 46s

fits in RAM). We claim a slightly lower security level, however: 72 bits versus 80
bits for the implementation from [GHS12b].
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Abstract. Homomorphic message authenticators allow the holder of a
(public) evaluation key to perform computations over previously authen-
ticated data, in such a way that the produced tag σ can be used to certify
the authenticity of the computation. More precisely, a user knowing the
secret key sk used to authenticate the original data, can verify that σ
authenticates the correct output of the computation. This primitive has
been recently formalized by Gennaro and Wichs, who also showed how
to realize it from fully homomorphic encryption. In this paper, we show
new constructions of this primitive that, while supporting a smaller set
of functionalities (i.e., polynomially-bounded arithmetic circuits as op-
posite to boolean ones), are much more efficient and easy to implement.
Moreover, our schemes can tolerate any number of (malicious) verifica-
tion queries. Our first construction relies on the sole assumption that
one way functions exist, allows for arbitrary composition (i.e., outputs
of previously authenticated computations can be used as inputs for new
ones) but has the drawback that the size of the produced tags grows with
the degree of the circuit. Our second solution, relying on the D-Diffie-
Hellman Inversion assumption, offers somewhat orthogonal features as
it allows for very short tags (one single group element!) but poses some
restrictions on the composition side.

1 Introduction

Cloud Computing allows a user to outsource his data to remote service providers
in such a way that he can later access the data from multiple platforms (e.g.,
his desktop at work, his laptop, his smartphone, etc.), and virtually from ev-
erywhere. Moreover, using this paradigm, even clients with very limited storage
capacity (e.g., smart phones) can have access “on demand” to very large amounts
of data. Having access to the outsourced data does not necessarily mean only
to retrieve such data. Indeed, a user may wish to perform a computation on
(a subset of) the outsourced data, and this too can be delegated to the service
provider. These and other benefits are the key success of Cloud Computing. The
paradigm, however, raises security concerns essentially because cloud providers
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cannot always be trusted. One problem is related to preserving the privacy of
the outsourced data. This question has been successfully addressed by the recent
work on fully homomorphic encryption [24]. The second question deals with en-
forcing the authenticity of the computations performed on the outsourced data,
and is the focus of this work. In a nutshell, this problem can be described as
follows. Assume that a client outsources a collection of data m1, . . . ,mn to a
server, and later asks the server to run a program P over (m1, . . . ,mn). The
server computes m←P(m1, . . . ,mn) and sends m to the client. The problem
here is that the client wants to be sure that m is the value obtained by running
P on its own data. A trivial solution would be to have the server sendm1, . . . ,mn

to the client, who can then compute/check m = P(m1, . . . ,mn) by itself. This
however vanishes the advantages of the outsourcing and is too costly in terms
of bandwidth. Therefore, the main goal here is to find solutions in which the
server can authenticate the output of the computation by sending some value
whose size is much shorter than m1, . . . ,mn. Such property is also motivated by
the fact that, in spite of the continuous progress in increasing the computational
power of small devices, bandwidth (especially in mobile data connections) seems
to remain the most serious and expensive bottleneck.

The research community has recently put a notable effort in developing new
cryptographic tools that can help in solving this and related problems. It is
the case, for instance, for works on verifiable computation [28,29,26,21,17,3] and
memory delegation [18].

Another line of research has explored the idea of enabling computation on
authenticated data [2] by means of homomorphic authentication primitives.

In the public key setting Boneh and Freeman introduced the notion of (fully)
homomorphic signatures [11]. Roughly speaking, a homomorphic signature al-
lows a user to generate signatures σ1, . . . , σn on messages m1, . . . ,mn so that
later anyone (without knowledge of the signing key) can compute a signature σ
that is valid for the value m = f(m1, . . . ,mn). Boneh and Freeman also showed
a realization of homomorphic signatures for bounded (constant) degree polyno-
mials, from ideal lattices.

Very recently, Gennaro and Wichs proposed, formally defined and constructed
the secret-key analogue of homomorphic signatures, that is homomorphic mes-
sage authenticators (homomorphic MACs, for short) [23]. Their construction
makes use of fully homomorphic encryption and allows to evaluate every circuit.

In this work, we continue the study of homomorphic MACs and propose new
constructions which, while less general than that given in [23], are much more
efficient.

Homomorphic Message Authenticators. Informally, a homomorphic MAC
scheme enables a user to use his secret key for generating a tag σ which authen-
ticates a message m so that later, given a set of tags σ1, . . . , σn authenticating
messages m1, . . . ,mn respectively, anyone can homomorphically execute a pro-
gram P over (σ1, . . . , σn) to generate a short tag σ that authenticates m as the
output of P(m1, . . . ,mn). Given such a primitive, it is not hard to imagine how
it can be employed to solve the problem of verifying computations on outsourced
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data. However, the above description needs some refinements, in particular to
explain what means to authenticate a message as the output of a program. To
do this Gennaro and Wichs introduce the notion of labeled data and programs.
The label τ of a data m is some binary string τ chosen by the user to authenti-
cate m, i.e., σ←Auth(sk, τ,m). One can think of labels as some indexing of the
data. For example, assume that a company outsources a database with infor-
mations on its customers, in which each column contains a different attribute
(e.g., age, expended amount, etc.). Then, to authenticate the “age” column of
the database the user can define a label “(age, i)” for the age value in record
i. On the other hand, a labeled program P is defined by a circuit f and a set
of labels τ1, . . . , τn, one for each input wire of f . This can be seen as a way to
specify on which inputs the circuit should be evaluated upon, without knowing
the input values themselves. So, given a labeled program P = (f, τ1, . . . , τn) and
a set of tags σ1, . . . , σn that authenticate messagesmi under label τi, anyone can
run the homomorphic evaluation algorithm σ←Eval(P , σ1, . . . , σn) whose output
σ will authenticate m = P(m1, . . . ,mn). Precisely, the secret-key verification al-
gorithm takes as input a triple (m,P , σ) and verifies that m is the output of the
program P run on some previously authenticated and labeled messages, without
knowing such messages themselves.

Informally, homomorphic MACs are secure if any adversary who can adap-
tively query tags for messages of its choice cannot produce a valid tag σ that
authenticates m as the output of P unless σ can be honestly computed by
applying Eval on the queried tags.

Homomorphic MACs are also required to be succinct. Informally, succinctness
requires that the output of P run over (previously) authenticated data can be cer-
tified with significantly less communication than that of sending the original in-
puts. Another property one might want from homomorphic MACs is composabil-
ity, which allows to combine tags authenticating previous computations to cre-
ate a tag that authenticates a composition of such computations. More precisely,
given tags σ1, . . . , σt that authenticatem1, . . . ,mt as the outputs of P1, . . . ,Pt re-
spectively, composability allows to further compute σ←Eval(P , σ1, . . . , σt) which
authenticates m = P(m1, . . . ,mt) as the output of P∗, the composed program
obtained by running P on the outputs of P1, . . . ,Pt.

1.1 Our Contribution

In this paper we propose the first practically efficient constructions of homomor-
phic MACs. The most attractive feature of our schemes is that they are efficient,
simple to implement and rely on well studied assumptions. Moreover, they are
secure against PPT adversaries that can make an unbounded number of ver-
ification queries, as opposite to the construction in [23] that supports only an
a-priori bounded number of verification queries (see next section for more details
about this). On the negative side our solution works only for functionalities that
can be expressed as arithmetic circuits with certain additional restrictions that
we describe below.
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Our first construction is surprisingly simple and relies only on the existence
of pseudorandom functions. While it offers arbitrary composition, it does not
achieve full succinctness. More precisely, the size of the authentication tags grows
with the degree d of the circuit1, and thus we are able to guarantee succinct
authenticators only when d is smaller than the input size n.

Our second construction enjoys succinct, constant-size tags (just one group
element!) but only supports a limited form of composition . More precisely, for
a fixed bound D (polynomial in the security parameter) the scheme allows to
evaluate any arithmetic circuit of degree d ≤ D. In general, the evaluation has
to be done in a “single shot”, that is the authentication tags obtained from the
Eval algorithm cannot be used again to be composed with other tags. However,
we interestingly show that the scheme achieves what we call local composition.
The idea is that one can keep locally a non-succinct version of the tag that
allows for arbitrary composition. Next, when it comes to send an authentication
tag to the verifier, one can securely compress such large tag in a very compact
one of constant-size. We prove the security of our second construction under the
D-Diffie Hellman Inversion assumption [13,30] (where D is the bound on the
maximal circuit’s degree supported by the scheme).

Succinct Tags and Composition. Even though our solutions do not achieve
succinctness and composition at the same time, we argue that these limitations
might not be too relevant in many real life scenarios. First, we notice that several
interesting functions and statistics (e.g., the standard deviation function) can be
represented by constant-degree polynomials. In such a case, our first construction
perfectly fits the bill as it is efficient, simple to implement and produces constant-
size tags (and, of course, it only requires the existence of a PRF to be proved
secure). For the case of polynomials of large degree d (i.e., d polynomial in the
security parameter), our scheme fits well in those applications where composition
is not needed. Think for example of the application described at the beginning of
this section. There, if the server just runsm←P(m1, . . . ,mn) on the client’s data,
using our second construction it can produce a succinct tag that authenticates
m as P ’s output, and this tag is only one group element.

Finally, in applications where composition is needed but does not involve dif-
ferent parties, the notion of local composition achieved by our second scheme
still allows to save in bandwidth and to (locally) compose tags of partial
computations.

Overview of Our Techniques. The main idea behind our construction is a
“re-interpretation” of some classical techniques for information-theoretic MACs.
The authentication tag of a messagem ∈ Zp with label τ is a degree-1 polynomial
y(z) ∈ Zp[z] that evaluates to m on the point 0, and to rτ on a random point x
(i.e., y(0) = m and y(x) = rτ ). Here rτ = FK(τ) is a pseudorandom value, unique
per each label, defined by the PRF, while x is the secret key. If we do not care
about the homomorphic property and we assume that each rτ is truly random,

1 Informally, the degree of an arithmetic circuit is related to the degree of the poly-
nomial computed by the circuit (see next section for more details).
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then this is a secure information-theoretic MAC. Now, the basic observation
that allows to show the homomorphic property is the following. Let f be an
arithmetic circuit and assume to evaluate the circuit over the tags (i.e., over these
polynomials y(z)) as follows: for every additive gate we compute the addition
of the two input polynomials, and for every multiplicative gate we compute
the multiplication of them (i.e., the convolution of their coefficients). Now, we
observe that these operations are naturally homomorphic with respect to the
evaluation of the polynomial in every point. In particular, if we have two tags
y(1) and y(2) (i.e., we are given only the coefficients of these polynomials) such
that y(1)(0) = m1 and y(2)(0) = m2, then for y = y(1)+y(2) (resp. y = y(1)∗y(2))
we clearly obtain y(0) = m1 +m2 (resp. y(0) = m1 ·m2). The same holds for its
evaluation at the random point x, i.e., y(x) = rτ1 + rτ2 (resp. y(x) = rτ1 · rτ2).
By extending this argument to the evaluation of the entire circuit f , this allows
to verify a tag y for a labeled program P = (f, τ1, . . . , τn) and a message m, by
simply checking that m = y(0) and f(rτ1 , . . . , rτn) = y(x), where rτi = FK(τi).

A drawback of this construction is that the tag’s size grows linearly with
the degree of the evaluated circuit f . The reason is that the above homomorphic
evaluation increases the degree of the “tag polynomial” y at every multiplication
gate. This is why this MAC fails in achieving the succinctness property when
the degree d becomes greater than the input size n of the circuit.

Our second construction overcomes this drawback as follows. First, the eval-
uation algorithm computes a tag y = (y0, . . . , yd) as before, and then it “accu-

mulates” these coefficients in a single group element Λ =
∏d

i=1(g
xi

)yi . Verifi-
cation will check that gf(rτ1 ,...,rτn ) = gm · Λ. If Λ is computed correctly, then
Λ = gy(x)−y(0), and thus one can easily see why correctness holds. The need
to resort to the (D − 1)-Diffie Hellman Inversion assumption2, comes from the
fact that, in order to perform the evaluation procedure correctly, the values

gx, gx
2

, . . . , gx
D

need to be published as part of the evaluation key ek. Once a
tag of the Λ form is created, it can be composed with other tags of the same
form only for additions but not for multiplications. To satisfy partial composi-
tion, the idea is that one can keep locally the large version of the tag consisting
of the coefficients y0, . . . , yd, and always send to the verifier its compact version
Λ =

∏d
i=1(g

xi

)yi . In the full version of this paper we also show an extension
of this scheme that, by using bilinear pairings, allows to further compute an
additional level of multiplications and unbounded additions on tags of the Λ
form.

1.2 Related Work

Homomorphic Message Authenticators and Signatures. Recently, many
papers considered the problem of realizing homomorphic (mostly linear) authen-
ticators either in the symmetric setting (MAC) or in the asymmetric one (signa-
tures). This line of research has been initiated by the work of Johnson et al. [27]

2 Very briefly, this assumption states that it is computationally infeasible to compute

g1/x, given g, gx, gx
2

, . . . , gx
D−1
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and became very popular in recent years because of the important application
to linear network coding. Efficient solutions for this latter application have been
proposed both in the random oracle [10,22,12,14] and in the standard model
[1,4,15,16,20,5,6]. Linearly-homomorphic message authenticators have been con-
sidered also for proofs of retrievability for outsourced storage [32]. Only two
works, however, consider the problem of realizing solutions for more complex
functionalities (i.e., beyond linear).

Boneh and Freeman defined the notion of (fully) homomorphic signatures
and showed a realization for bounded (constant) degree polynomials, from ideal
lattices [11]. With respect to our work this solution has the obvious advantage of
allowing for public verifiability. On the negative side it is not truly practical and
the bound on the degree of the supported polynomials is more stringent than in
our case (as they can support only polynomials of constant degree).

Closer to our setting is the recent work of Gennaro and Wichs [23] where
fully homomorphic MACs are introduced, formally defined and constructed. The
solution given there supports a wider class of functionalities with respect to
ours, and it allows to achieve succinct tags and composability at the same time.
Their tags have size μ(λ) = poly(λ) where λ is the security parameter, and
thus they are asymptotically succinct as long as the circuit’s input size n is
greater than μ(λ). Despite its nice properties, the proposed construction seems
unfortunately far from being truly practical as it relies on fully homomorphic
encryption. Moreover, it is proven secure only for a bounded and a-priori fixed
number of verification queries3, meaning with this that the scheme becomes
insecure if the verifier leaks information on whether it accepts/rejects tags.

Succinct Non-interactive Arguments of Knowledge. The problem of
realizing homomorphic signatures can be solved in theory using Succinct Non-
interactive Arguments of Knowledge (SNARKs) [8]. In a nutshell, given any NP
statement a SNARK allows to construct a succinct argument that can be used
to prove knowledge of the corresponding witness. The nice feature of SNARKs
is that the size of the argument is independent of the size of both the statement
and the witness. A drawback of SNARKs is that they are not very efficient (or at
least not nearly as practical as we require) and require either the random oracle
model [29] or non-standard, non-falsifiable assumptions [25]. Moreover, SNARK-
based solutions seem to allow for only very limited composability [34,9].

Other Related Work. Thenotion of homomorphic authenticators is also (some-
what) related to the notion of verifiable computation [28,29,26,21,17,3,7,31,19].
There, onewants to delegate a computationally heavy task to a remote serverwhile
keeping the ability to verify the result in a very efficient way. While the two primi-
tives might seem quite different at first, one can reinterpret some of the results on
verifiable computation in our setting. The resulting solutions however present sev-
eral limitations that make them of limited practical interest compared to

3 More precisely, their basic construction cannot support verification queries at all.
This can be extended to allow for some fixed a-priori number of queries q at the cost
of increasing by O(q) the size of the tag.
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homomorphic authenticators. We refer the reader to [23] for a nice discussion
about this.

Homomorphic authenticators are also related to memory delegation [18]. This
primitive allows a client to outsource large amounts of data to a server so that he
can later verify computations on the data. The advantage of this approach over
ours is that it offers an efficient verification procedure, and it supports a dynamic
memory in which the client can update the outsourced data. However, current
(non-interactive) realizations of memory delegation, in the standard model, are
rather inefficient and require the user to keep a state. Moreover, in known con-
structions, efficient verification comes at the price of an offline phase where the
runtime of both the delegator and the server depends polynomially on the size
of the memory.

Organization. The paper is organized as follows. In Section 2 we provide
a background and relevant definitions of arithmetic circuits and homomorphic
authenticators. Section 3 describes our first construction from PRFs while our
second compact construction is given in Section 4. For lack of space, all proofs
will appear in the full version of this paper.

2 Background and Definitions

Arithmetic Circuits. Here we provide a very brief overview of arithmetic
circuits. The interested reader is referred to [33] for a more detailed treatment
of the subject.

An arithmetic circuit over a field F and a set of variables X = {τ1 . . . τn}, is
a directed acyclic graph with the following properties. Each node in the graph
is called gate. Gates with in-degree 0 are called input gates (or input nodes)
while gates with out-degree 0 are called output gates. Each input gate is labeled
by either a variable or a constant. Variable input nodes are labeled with binary
strings τ1, . . . , τn, and can take arbitrary values in F. A constant input node
instead is labeled with some constant c and it can take only some fixed value
c ∈ F. Gates with in-degree and out-degree greater than 0 are called internal
gates. Each internal gate is labeled with an arithmetic operation symbol. Gates
labeled with × are called product gates, while gates labeled with + are called
sum gates. In this paper, we consider circuits with a single output node and
where the in-degree of each internal gate is 2. The size of the circuit is the
number of its gates. The depth of the circuit is the length of the longest path
from input to output.

Arithmetic circuits evaluate polynomials in the following way. Input gates
compute the polynomial defined by their labels. Sum gates compute the poly-
nomial obtained by the sum of the (two) polynomials on their incoming wires.
Product gates compute the product of the two polynomials on their incoming
wires. The output of the circuit is the value contained on the outgoing wire of the
output gate. The degree of a gate is defined as the total degree of the polynomial
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computed by that gate. The degree of a circuit is defined as the maximal degree
of the gates in the circuit.

We stress that arithmetic circuits should be seen as computing specific poly-
nomials in F[X ] rather than functions from F|X| to F. In other words, when
studying arithmetic circuits one is interested in the formal computation of poly-
nomials rather than the functions that these polynomials define4.

In this paper we restrict our interest to families of polynomials {fn} over
F which have polynomially bounded degree, meaning with this that both the
number of variables and the degree of fn are bounded by some polynomial p(n).
The class VP (also known as AlgP/poly) contains all such polynomials. More
precisely it contains all polynomially bounded degree families of polynomials
that are computable by arithmetic circuits of polynomial size and degree.

2.1 Homomorphic Message Authenticators

Labeled Programs. First, we recall the notion of labeled programs intro-
duced by Gennaro and Wichs in [23]. A labeled program P consists of a tuple
(f, τ1, . . . , τn) where f : Fn → F is a circuit, and the binary strings τ1, . . . , τn ∈
{0, 1}∗ are the labels of the input nodes of f . Given some labeled programs
P1, . . . ,Pt and a function g : Ft → F it is possible to define the composed pro-
gram P∗ = g(P1, . . . ,Pt) which consists in evaluating a circuit g on the outputs
of P1, . . . ,Pt respectively. The labeled inputs of P∗ are all distinct labeled inputs
of P1, . . . ,Pt, i.e., all inputs with the same label are put together in a single in-
put of the new program. We denote with Iτ = (gid, τ) the identity program with
label τ where gid is the canonical identity function and τ ∈ {0, 1}∗ is some input
label. Finally, we notice that any program P = (f, τ1, . . . , τn) can be expressed
as the composition of n identity programs P = f(Iτ1 , . . . , Iτn).

While Gennaro and Wichs [23] defined labeled programs for Boolean circuits
(i.e., f : {0, 1}n → {0, 1}), here we consider its extension to the case of arithmetic
circuits f : Fn → F where F is some finite field, e.g., Zp for a prime p.

Homomorphic Authenticator Scheme. A homomorphic message authenti-
cator scheme HomMAC is a 4-tuple of algorithms working as follows:

KeyGen(1λ): on input the security parameter λ, the key generation algorithm
outputs a secret key sk and a public evaluation key ek.

Auth(sk, τ,m): given the secret key sk, an input-label τ and a message m ∈M,
it outputs a tag σ.

Ver(sk,m,P , σ): given the secret key sk, a message m ∈ M, a program P =
(f, τ1, . . . , τn) and a tag σ, the verification algorithm outputs 0 (reject) or 1
(accept).

Eval(ek, f,σ): on input the evaluation key ek, a circuit f : Mn → M and a
vector of tags σ = (σ1, . . . , σn), the evaluation algorithm outputs a new
tag σ.

4 While, in general, every polynomial defines a unique function the converse is not
true as a function may be expressed as a polynomial in several ways.
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Authentication Correctness. Intuitively, a homomorphic MAC satisfies
this property if any tag σ generated by the algorithm Auth(sk, τ,m) authenti-
cates with respect to the identity program Iτ . Formally, we require that for any

message m ∈M, all keys (sk, ek)
$← KeyGen(1λ), any label τ ∈ {0, 1}∗, and any

tag σ
$← Auth(sk, τ,m), it holds: Pr[Ver(sk,m, Iτ , σ) = 1] = 1.

Evaluation Correctness. Informally, this property states that if the eval-
uation algorithm is given a vector of tags σ = (σ1, . . . , σn) such that each σi
authenticates some message mi as the output of a labeled program Pi, then the
tag σ produced by Eval must authenticate f(m1, . . . ,mn) as the output of the
composed program f(P1, . . . ,Pn).

More formally, let us fix a pair of keys (sk, ek)
$← KeyGen(1λ), a function

g :Mt →M and any set of message/program/tag triples {(mi,Pi, σi)}ti=1 such
that Ver(sk,mi,Pi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(ek, g, (σ1, . . . , σt)), then it must hold: Ver(sk,m∗,P∗, σ∗) = 1.

Succinctness. The size of a tag is bounded by some fixed polynomial in the
security parameter, that is independent of the number of inputs taken by the
evaluated circuit.

Security. Let HomMAC be a homomorphic MAC scheme as defined above.
Consider the following experiment HomUF−CMAA,HomMAC(λ) between a chal-
lenger and an adversary A against HomMAC:

Setup. The challenger generates (sk, ek)
$← KeyGen(1λ) and gives ek to A. It

also initializes a list T = ∅.
Authentication queries. The adversary can adaptively ask for tags on label-

message pairs of its choice. Given a query (τ,m), if there is some (τ, ·) ∈ T
(i.e., the label was already queried), then the challenger ignores the query.

Otherwise, it computes σ
$← Auth(sk, τ,m), returns σ to A and updates the

list T = T ∪ (τ,m). If (τ,m) ∈ T (i.e., the query was previously made), then
the challenger replies with the same tag generated before.

Verification queries. The adversary is also given access to a verification ora-
cle. Namely, A can submit a query (m,P , σ) and the challenger replies with
the output of Ver(sk,m,P , σ).

Forgery. At some point the adversary is supposed to output a forgery (m∗,P∗ =
(f∗, τ∗1 , . . . , τ

∗
n), σ

∗). Notice that such tuple can be returned by A also as a
verification query (m∗,P∗, σ∗).

Before describing the outcome of this experiment, we define the notion of well
defined program with respect to a list T . Informally, there are two ways for a
program P∗ = (f∗, τ∗1 , . . . , τ

∗
n) to be well defined. Either all the τ∗i s are in T or,

if there are labels τ∗i not in T , then the inputs associated with such labels are
somewhat “ignored” by f∗ when computing the output. In other words input
corresponding to labels not in T do not affect the behavior of f∗ in any way.

More formally, we say that a labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well

defined on T if either one of the following two cases occurs:
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1. there exists i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T (i.e., A never asked an
authentication query with label τ∗i ), and f∗({mj}(τj,mj)∈T ∪ {m̃j}(τj,·)/∈T )
outputs the same value for all possible choices of m̃j ∈M;

2. T contains tuples (τ∗1 ,m1), . . . , (τ
∗
n ,mn), for some messages m1, . . . ,mn.

The experiment HomUF−CMA outputs 1 if and only if Ver(sk,m∗,P∗, σ∗) = 1
and one of the following conditions holds:

– Type 1 Forgery: P∗ is not well-defined on T .
– Type 2 Forgery: P∗ is well defined on T and m∗ �= f∗({mj}(τj,mj)∈T ), i.e.,
m∗ is not the correct output of the labeled program P∗ when executed on
previously authenticated messages (m1, . . . ,mn).

We say that a homomorphic MAC scheme HomMAC is secure if for every PPT
adversary A we have that Pr[HomUF−CMAA,HomMAC(λ) = 1] is negligible.

Remark 1 (Comments on our definition). First, we observe that our definition
explicitly disallow the possibility of re-using a label to authenticate more than
one value. Essentially, this is a way to uniquely keep track of the authenticated
inputs. We notice that such restriction is implicitly present in the Gennaro-Wichs
construction as well as in all previous works on homomorphic signatures.

Second, the notion of well defined programs aims at capturing, in a formal way,
which tuples generated by the adversary should be considered as forgeries. The
catch here is that, since we are dealing with a homomorphic primitive, we should
be able to differentiate MACs produced by Eval from MACs generated in some
other, possibly malicious, way. Notice, however, that even maliciously generated
MACs should not necessarily be considered as forgeries. This is because, in our
setting, the adversary can trivially modify a circuit C she is allowed to evaluate
by adding dummy gates and inputs that are simply ignored in the evaluation of
the modified circuit (i.e., the new circuit is semantically equivalent to C). This
last case does not constitute an infringement of our security requirements. Our
notion of well defined program P captures exactly this: either P is run on legal
(i.e. in T ) inputs only, or, if this is not the case, those inputs not in T do not
affect the computation in any way.

Finally, we observe that for arbitrary computations checking whether a pro-
gram is well defined may not be efficiently computable. In particular, the difficult
task is to check the first condition, i.e., whether a program always outputs the
same value for all possible choices of the inputs that are not in T . However, for
the case of arithmetic circuits in (exponentially) large fields and of polynomial
degree this check can be efficiently performed as follows: by fixing all inputs in
T one writes the computation as a new multivariate polynomial whose variables
are only the inputs not in T . Then, one checks whether this polynomial is a
constant function.

Remark 2 (Relations with previous definitions). Our definition is very similar to
that proposed by Gennaro and Wichs in [23] except for two modifications. First,
we explicitly allow the adversary to query the verification oracle. Second, we
adopt a definition of forgery slightly weaker than that in [23]. More precisely,
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Gennaro and Wichs define Type 1 forgeries as ones where at least one new label
is present. Type 2 forgeries, on the other hand, contain only labels that have
been already queried, but m∗ is not the correct output of the program when
executed on the previously queried inputs.

Notice that our notion becomes equivalent to that given in [23] by simply
changing the definition of “well defined program” so that P∗ = (f∗, τ∗1 , . . . , τ

∗
n)

is said well defined on T if (τi,mi) ∈ T ∀i = 1, . . . n. The difference between the
two definitions is that, as we explained above, we do not consider forgeries all
those tuples where ”fresh” labels (i.e. labels not in T ) do not contribute to the
output of the program.

Even though our security definition is weaker than the one in [23], we stress
that it is perfectly meaningful for the notion of homomorphic MAC. Indeed, we
are still excluding from forgeries all those MACs that can be trivially computed
by the adversary from what it queried during the game.

On a technical level, our definition of forgery is inspired by the security def-
inition recently proposed by Freeman for homomorphic signatures [20], except
that in our case we do not consider the notion of data set.

3 Our Homomorphic MAC from OWFs

In this section we propose our first construction of homomorphic MACs whose se-
curity relies only on a pseudo-random function (and thus on one-way functions).
The scheme is simple and efficient and allows to homomorphically evaluate arith-
metic circuits f : Zn

p → Zp for a prime p of roughly λ bits, where λ is the security
parameter.

Our Scheme. In our construction we restrict to circuits whose additive gates do
not get inputs labeled by constants. This can be done without loss of generality
as, when needed, one can use an equivalent circuit in which there is a special
variable/label for the value 1, and can publish the MAC of 1. The description of
our scheme follows.

KeyGen(1λ). Let p be a prime of roughly λ bits. Choose a seed K of a pseudo-

random function FK : {0, 1}∗ → Zp and a random value x
$← Zp. Output

sk = (K,x), ek = p and let the message space M be Zp.
Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,

compute rτ = FK(τ), set y0 = m, y1 = (rτ − m)/x mod p and output
σ = (y0, y1). Basically, y0, y1 are the coefficients of a degree-1 polynomial y(z)
with the special property that it evaluates to m on the point 0 (y(0) = m),
and it evaluates to rτ on a hidden random point x (y(x) = rτ ).
In our construction we will interpret tags σ as polynomials y ∈ Zp[z] of
degree d ≥ 1 in some (unknown) variable z, i.e., y(z) =

∑
i yiz

i.
Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evalu-

ation key ek = p, an arithmetic circuit f : Zn
p → Zp, and a vector σ of tags

(σ1, . . . , σn).
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Intuitively, Eval consists in evaluating the circuit f on the tags σ1, . . . , σn
instead of evaluating it on messages. However, since the values σi’s are not
messages in Zp, but rather are polynomials y(i) ∈ Zp[z], we need to specify
how this evaluation is carried through.
Eval proceeds gate-by-gate as follows. At each gate g, given two tags σ1, σ2 (or
a tag σ1 and a constant c ∈ Zp), it runs the algorithm σ←GateEval(ek, g, σ1,
σ2) described below that returns a new tag σ, which is in turn passed on as
input to the next gate in the circuit.
When the computation reaches the last gate of the circuit f , Eval outputs
the tag vector σ obtained by running GateEval on such last gate.
To complete the description of Eval we describe the subroutine GateEval.

– GateEval(ek, g, σ1, σ2). Let σi = y(i) = (y
(i)
0 , . . . , y

(i)
di
) for i = 1, 2 and

di ≥ 1 (see below for the special case when one of the two inputs is a
constant c ∈ Zp).
If g = +, then:
• let d = max(d1, d2). Here we assume without loss of generality that
d1 ≥ d2 (i.e., d = d1).

• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) =
y(1)(z)+ y(2)(z). This can be efficiently done by adding the two vec-
tors of coefficients, y = y(1) + y(2) (y(2) is eventually padded with
zeroes in positions d1...d2).

If g = ×, then:
• let d = d1 + d2.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) =
y(1)(z) ∗ y(2)(z) using the convolution operator ∗, i.e., ∀k = 0, . . . , d,

define yk =
∑k

i=0 y
(1)
i · y(2)k−i.

If g = × and one of the two inputs, say σ2, is a constant c ∈ Zp, then:
• let d = d1.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = c ·
y(1)(z).

Return σ = (y0, . . . , yd).
As one can notice, the size of a tag grows only after the evaluation of a
multiplication gate (where both inputs are not constants). It is not hard to
see that after the homomorphic evaluation of a circuit f , it holds |σ| = d+1,
where d is the degree of f .

Ver(sk,m,P , σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and
σ = (y0, . . . , yd) be a tag for some d ≥ 1. Verification proceeds as follows:
– If y0 �= m, then output 0 (reject). Otherwise continue as follows.
– For every input wire of f with label τ compute rτ = FK(τ).
– Next, evaluate the circuit on rτ1 , . . . , rτn , i.e., compute ρ←f(rτ1 , . . . , rτn),

and use x to check whether the following equation holds:

ρ =

d∑
k=0

ykx
k (1)

If this is true, then output 1. Otherwise output 0.
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Observe that the above applies also to identity programs Iτ , in which case
the algorithm just checks that rτ = y0 + y1 · x and y0 = m.

Efficiency. Our scheme is extremely efficient in generating a tag using the Auth
algorithm: just one PRF evaluation (e.g., one AES evaluation, in practice).

If we analyze the Eval algorithm, its complexity is dominated by the cost of
evaluating the circuit f with an additional overhead due to the modified gate
evaluation and to that the tag’s size grows with the degree of the circuit. If the
circuit has degree d, in the worst case, this overhead is going to be O(d) for
addition gates, and O(d log d) for multiplication gates5.

The cost of verification is basically the cost of computing ρ = f(rτ1 , . . . , rτn),

that is O(|f |), plus the cost of computing
∑d

i=0 yix
i, that is O(d).

Correctness. Very roughly, correctness follows from the special property of
the polynomials y generated by Auth, i.e., that y(0) = m and y(x) = rτ . In
particular, this property is preserved when evaluating the circuit f over tags
y(1), . . . , y(n). We give a formal proof of correctness in the full version of this
paper.

Security. The security of our scheme is established by the following theorem
(again the proof is deferred to the full version of this paper).

Theorem 1. If F is a PRF, then the homomorphic MAC scheme described in
Section 3 is secure.

4 A Compact Homomorphic MAC for Circuits of
Bounded Polynomial Degree

As we mentioned earlier, the homomorphic MAC of Section 3 has the drawback
that the tags’ size grows linearly with the degree of the evaluated circuit. While
this may be acceptable in some cases, e.g., circuits evaluating constant-degree
polynomials, it may become impractical in other situations, e.g., when the degree
is greater than the input size of the circuit. In this section, we propose a second
scheme that solves this issue and enjoys tags of constant size. The scheme keeps
almost the same efficiency of the previous one, even though constant-size tags
come at the price of a couple of restrictions. First, we have to fix an a-priori
bound D on the degree of the circuits that can be evaluated. Second, the homo-
morphic evaluation has to be done in a “single shot”, that is the authentication
tags obtained from the Eval algorithm cannot be used again to be composed
with other tags. Nevertheless, we show that the scheme achieves an interesting
property that we call local composition. The idea is that one can keep locally
a non-succinct version of the tag that allows for arbitrary composition. Later,
when it comes to send an authentication tag to the verifier, one can securely
compress such large tag in a very compact one of constant-size.

5 This bound follows from that one can use optimized algorithms based on FFT to
compute the convolution.
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For security, in addition to a PRF we need to rely on a computational as-

sumption that says that one cannot compute g given values gx, . . . , gx
D

. This
problem is basically a re-writing of a problem already considered in the past:
the �-Diffie-Hellman Inversion. We recall its definition below.

Definition 1 (�-DHI [13,30]). Let λ ∈ N be the security parameter, and G
be a group of order p > 2λ. For a generator g ∈ G and a randomly chosen

x
$← Zp we define the advantage of an adversary A in solving the �-DHI prob-

lem as AdvDHI
A (λ) = Pr[A(g, gx, . . . , gx�

) = g1/x] and we say that the �-DHI
assumption holds in G if for every PPT A and for � = poly(λ), the advantage
AdvDHI

A (λ) is at most negligible in λ.

Our Construction. The description of our scheme follows.

KeyGen(1λ, D). Let λ be the security parameter and D = poly(λ) be an up-
per bound so that the scheme can support the homomorphic evaluation of
circuits of degree at most D. The key generation works as follows.
Generate a group G of order p where p is a prime of roughly λ bits, and

choose a random generator g
$← G. Choose a seed K of a pseudorandom

function FK : {0, 1}∗ → Zp and a random value x
$← Zp. For i = 1 to

D compute hi = gx
i

. Output sk = (K, g, x), ek = (h1, . . . , hD) and let the
message space M be Zp.

Auth(sk, τ,m). The tagging algorithm is the same as the one of the construction
in Section 3. To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,
compute rτ = FK(τ), set y0 = m , y1 = (rτ − m)/x mod p, and output
σ = (y0, y1).

Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the eval-
uation key ek, an arithmetic circuit f : Zn

p → Zp, and a vector σ of tags
(σ1, . . . , σn) so that σi ∈ Z2

p (i.e., it is a tag for a degree-1 polynomial).
First, proceed exactly as in the construction of Section 3 to compute the
coefficients (y0, . . . , yd). If d = 1 (i.e., the circuit f computes a degree-1

polynomial), then return σ = (y0, y1). Otherwise, compute Λ =
∏d

i=1 h
yi
i

and return σ = Λ.
Ver(sk,m,P , σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ

be a tag of either the form (y0, y1) ∈ Z2
p or Λ ∈ G. First, proceed as in the

construction of Section 3 to compute ρ = f(rτ1 , . . . , rτn). If the program P
computes a polynomial of degree 1, then proceed exactly as in the construc-
tion of Section 3 and check that ρ = y0 + y1 · x and y0 = m. Otherwise, use
g to check whether the following equation holds:

gρ = gm · Λ (2)

If the checks are satisfied, then output 1. Otherwise output 0.

Correctness. The correctness easily follows from the correctness of the scheme
described in Section 3 and by observing that equation (2) is essentially equivalent
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to checking that ρ =
∑d

i=0 yix
i, which is the verification equation (1) in the

scheme of Section 3.

Local Composition. The above scheme satisfies an interesting property that
we call local composition. The idea is that one can keep locally the large version of
the tag, i.e., the polynomial y with its d+1 coefficients y0, . . . , yd, but still send its
compact version Λ =

∏d
i=1(g

xi

)yi to the verifier. Keeping y allows for arbitrary
composition as in the scheme of Section 3. In applications where composition
does not involve many parties, this property allows to achieve succinct tags and
local composition of partial computations at the same time.

Extension. In the full version of this paper we show an extension of this
scheme that, by using pairings, allows to further compute an additional level of
multiplications and unbounded additions on tags of the Λ form.

Security. Security follows from the following theorem (whose proof is postponed
to the full version of this paper).

Theorem 2. If F is a PRF and the (D− 1)-Diffie Hellman Inversion Assump-
tion holds in G, then the homomorphic MAC scheme described in Section 4 is
secure.
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Abstract. We consider the problem of streaming verifiable computation, where
both a verifier and a prover observe a stream of n elements x1, x2, . . . , xn and
the verifier can later delegate some computation over the stream to the prover.
The prover must return the output of the computation, along with a cryptographic
proof to be used for verifying the correctness of the output. Due to the nature
of the streaming setting, the verifier can only keep small local state (e.g., loga-
rithmic) which must be updatable in a streaming manner and with no interaction
with the prover. Such constraints make the problem particularly challenging and
rule out applying existing verifiable computation schemes.

We propose streaming authenticated data structures, a model that enables
efficient verification of data structure queries on a stream. Compared to previ-
ous work, we achieve an exponential improvement in the prover’s running time:
While previous solutions have linear prover complexity (in the size of the stream),
even for queries executing in sublinear time (e.g., set membership), we propose a
scheme with O(logM log n) prover complexity, where n is the size of the stream
and M is the size of the universe of elements. Our schemes support a series of
expressive queries, such as (non-)membership, successor, range search and fre-
quency queries, over an ordered universe and even in higher dimensions. The
central idea of our construction is a new authentication tree, called generalized
hash tree. We instantiate our generalized hash tree with a hash function based
on lattices assumptions, showing that it enjoys suitable algebraic properties that
traditional Merkle trees lack. We exploit such properties to achieve our results.

1 Introduction

With the growing market of cloud computing, it is crucial to construct protocols that en-
able the verification of computation performed by untrusted servers. For example, when
searching over our remotely stored Gmail inbox, it would be desirable if the search re-
sults could be accompanied by a cryptographic proof vouching for their correctness,
e.g., that no email was omitted (either deliberately or not) from the answer.

We consider verifiable computation in a streaming setting, where the dataset out-
sourced is rapidly evolving (e.g., stock quotes, network flows, sensor streams), and the
verifier can only store a small state as the stream goes by (which should be efficiently
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updatable). Many prior verifiable computation schemes are unsuitable in the streaming
setting: Some schemes require that the verifier (client) has access to all the data ahead
of time, and performs some preprocessing (e.g., [17,40]) before outsourcing it to the
prover (server). Other existing schemes allow a client to update the dataset through an
interactive protocol between the client and the server (e.g., [35]). Particularly, since the
client does not have sufficient local storage to store all the data, the client needs the
server’s help to update its local state. Unfortunately, requiring an interactive protocol
for every update may be too expensive in a streaming setting. For example, consider a
network traffic accounting application [14], where an ISP charges a customer based on
the type and duration of its network flows. To enforce that the ISP is performing the ac-
counting correctly, the ISP logs a customer’s network flows such that the customer can
later make queries to the logs to perform auditing (typically the customer does not have
sufficient local storage to log all the flows). In such high link-speed settings, performing
an interactive protocol with every packet or flow sent is very expensive.

Our Contributions. We introduce streaming authenticated data structures, and de-
sign expressive and efficient schemes that do not require any interaction between the
client and server while the stream is observed. In our scenario, streaming elements
x1, x2, . . . , xn are inserted into a data structure that is stored by the prover and the
verifier stores and updates small local state of size O(log n). At any point of time, the
verifier can send a data structure query to the prover, e.g., “return the predecessor of
y” or “return the elements in the range [a, b]”. Subsequently the prover can compute an
answer and a proof in time O(logM logn), where n is the size of the stream and M is
the size of the ordered universe from where the elements are drawn. Our protocols are
based on the difficulty of solving the small integer solution problem [30], and are the
first ones to achieve the following properties simultaneously:

1. Independence of prover and verifier. While elements x1, x2, . . . , xn are stream-
ing, the verifier and the prover update their states independently and with no inter-
action (there is not even unidirectional communication1). The only eligible inter-
action occurs in the querying phase (which is inherent anyways). Such interaction
consists only of one round as opposed to existing schemes in the statistical setting
that can have up to a logarithmic number of interactions (e.g., [11,12]).

2. Efficiency. The running times of the verifier and the prover (for both updates and
queries) as well as the proof size are all logarithmic in n and M , where n is the size
of the stream and M is the size of the elements universe. In comparison, existing
schemes in this setting (e.g., [10,11,12]) incur a linear proof generation overhead
on the server, even for sublinear computations (see Section 1.1). We thus achieve an
exponential improvement for many common queries in the prover’s running time.

3. Expressiveness. Our construction supports a wide range of queries over an ordered
universe, such as (non-)membership, successor, range search and frequencies. Our
results can also be extended for d-dimensional elements, by applying well-known
techniques from authenticated data structures [27]. To the best of our knowledge,
our construction is the first streaming verifiable protocol to support such an exten-
sive suite of queries with logarithmic prover and verifier complexity.

1 Such a property is not achieved in the recent work of Schröder and Schröder [42].
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1.1 Related Work

The research community has introduced streaming verifiable computation, both in the
statistical [11,12] and the cryptographic setting [10,42], where a verifier and a prover
observe a stream of n elements x1, x2, . . . , xn and the verifier can delegate some com-
putation over the stream to the prover. The protocols in [11,12] are probabilistic and
use multiple interactions for verification, which reveal the secret randomness. Thus
they support one-shot computation tasks, whereas we allow any number of queries.

Although most of the existing streaming verifiable protocols [10,11,12] are particu-
larly efficient in terms of verifier complexity (e.g., (poly-)logarithmic in the size of the
stream), the main shortcoming of all previous work (except for the work of Schröder and
Schröder [42], see next paragraph) is the fact that the prover complexity is linear in the
size of the stream, even for sublinear (logarithmic) computations, e.g., membership and
range search queries on a stream of elements drawn from an ordered universe.2 This sig-
nificantly limits the applicability of these protocols since such an overhead introduces a
large amount of latency, making them impractical for real-world deployment. Indeed, as
Cormode et al. [12] point out in their experimental results,“the chief bottleneck of these
protocols seems to beP’s time to make the proof”. In this paper, we address the prover’s
complexity bottleneck for queries of practical importance (e.g., range search) and we
design constructions supporting logarithmic prover and verifier complexity. Apart from
a major theoretical improvement, we believe our protocols comprise a significant step
towards practical verifiable streaming protocols.

The only efficient verifiable streaming protocol (with logarithmic prover complex-
ity) was recently introduced by Schröder and Schröder [42]. Their construction can be
applied only to sequential streams and hence it does not support data structures like
dictionaries, where the relative order is decided depending on the element that is be-
ing streamed. Therefore it cannot be used to verify range queries efficiently. Moreover,
there is unidirectional communication from the verifier to the prover per stream update.

Practical streaming verifiable computation has been also studied by the database
community, with often increased worst-case complexities. Li et al. [25] considered
verifying queries on a data stream with sliding windows, hence the verifier’s space
is proportional to the window size. The protocol of Papadopoulos et al. [33] verifies
continuous queries over a stream, again requiring linear verifier space in the worst case.

Other related works such as verifiable computation [2,5,15,16,17,18,34,40] and au-
thenticated data structures [13,20,21,31,35,36,37,38] are not directly applicable to the
streaming setting or their application yields high complexities or interactive protocols.

Why Common Solutions Fail. Traditional Merkle trees [28] (using collision resistant
hash functions like SHA-2) can be used to provide very efficient proofs for membership
and range search queries in logarithmic time. However, since the client cannot keep
linear amount of local state, in order to update the digest when a new item is streamed,
the client needs to interact with the server, where the server returns and proves the
correctness of the path of the Merkle tree that is “touched” by the update (e.g., see [35]).

To avoid interaction with the prover, one could use accumulator-based solutions
(e.g., [9]). Indeed, accumulators have the attractive property that a set of elements can

2 For linear-time computations, linear complexity at the prover is acceptable, e.g., see [11].
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be represented with a small digest that can be updated in a very straightforward way,
e.g., by performing an exponentiation and with no interaction. However, this property
comes at some significant cost, since proofs of membership can be computed in linear
time (or time O(nε), e.g., see [36]) which translates into increased prover complexity.

Our work combines the merits of the above paradigms, enabling flexible updates
with no interaction and at the same time achieving logarithmic prover complexity.

1.2 Our Techniques

The core idea of our scheme is a new primitive called generalized hash tree, which
is a generalization of traditional Merkle trees [28]. Generalized hash trees can be in-
stantiated with various collision resistant hash functions. In our construction we choose
the hash function hn(x, y) = Lx + Ry mod q (originally introduced in [1]), where
L,R are picked at random from Zk×m

q and x, y are m-dimensional vectors with entries
bounded by n < q. As in Merkle trees, we hierarchically apply this hash function over a
binary tree—however this creates a problem, since the output of the above hash function
is a vector of different dimensions and larger entries than its inputs. To overcome this
problem, we devise a way to map the outputs back to the input domain. Although many
mappings could be used, we choose one that maintains the function’s homomorphic
properties (Figure 4.2), allowing us to express the label of the root (i.e., the roothash) as
the sum of well-defined functions of the leaves called partial labels (see Definition 16).

For example if the stream contains elements {3, 4, 6, 7}, we can simply express the
label of the root of our hash tree as L(3) + L(4) + L(6) + L(7), where L(x) is the
partial label that depends only on x and on the public matrices L and R, and which
can be computed in logarithmic time. Clearly, such representation allows for efficient
streaming updates of the verifier’s state (label of the root), just like accumulators con-
structions [9]. More importantly (and unlike accumulators constructions), a proof for
any element can still be computed in logarithmic time, by having the prover maintain
an appropriate Merkle-tree-like authenticated data structure.

2 Definitions

We now present definitions for streaming authenticated data structures (SADS3). Our
definitions are similar to the ones given by Chung et al. [10] for streaming delegation,
adjusted to the data structures setting. We denote with k the security parameter and with
n = poly(k) an upper bound on the size of the stream.4 PPT stands for probabilistic
polynomial-time and neg(k) is a negligible function, i.e., a function less than 1/p(k),
for all polynomials p(k). Finally we define [n] = {0, 1, . . . , n}.

Definition 1 (SADS scheme). Let D be any data structure that supports queries q
and updates upd. An SADS (streaming authenticated data structure) scheme A is a
collection of the following six PPT algorithms:

1. pk← genkey(1k, n): On input the security parameter k and an upper bound n on
the size of the stream, it outputs a public key pk;

3 This acronym has also been used by Pappas et al. [39] to denote a private search system.
4 Otherwise (i.e., if n is not poly(k)) the server might need exponential space.
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2. {auth(D0), d0} ← initialize(D0, pk): On input an empty data structure D0 and
the public key pk, it computes the authenticated data structure auth(D0) and the
respective state d0 of it;

3. dh+1 ← updateVerifier(upd, dh, pk): On input an update upd to data structure
Dh, the current state dh and the public key pk, it outputs the updated state dh+1

(run by verifier);
4. {Dh+1, auth(Dh+1)} ← updateProver(upd, Dh, auth(Dh), pk): On input an up-

date upd to data structure Dh, the authenticated data structure auth(Dh) and the
public key pk, it outputs the updated data structure Dh+1 along with the updated
authenticated data structure auth(Dh+1) (run by prover);

5. {α(q), Π(q)} ← query(q,Dh, auth(Dh), pk): On input a query q on data struc-
tureDh, the authenticated data structure auth(Dh) and the public key pk, it returns
the answer α(q) to the query, along with a proof Π(q) (run by prover);

6. {1, 0} ← verify(q, α(q), Π(q), dh, pk): On input a query q, an answer α(q), a
proof Π(q) for query q, a digest dh and the public key pk, it outputs either 1 (ac-
cepts) or 0 (rejects) (run by verifier);

As part of the data structure specification (and not of the above definition), we also
define the algorithm {0, 1} ← check(q, α,Dh) such that it outputs 1 if and only if α is
the correct answer to query q on data structure Dh (otherwise it outputs 0).

Note that there is no secret key in our definition, supporting in this way a stronger
definition with public verifiability, as opposed to other verifiable streaming construc-
tions that appear in the literature [10,42], where the verifier’s state needs to be secret.

There are two properties that an SADS scheme should satisfy, namely correctness
and security (as in signature schemes definitions).

Definition 2 (Correctness). Let A be an SADS scheme consisting of the set of algo-
rithms {genkey, initialize, updateVerifier, updateProver, query, verify}. We say that the
SADS scheme A is correct if, for all k ∈ N, for all pk output by algorithm genkey, for
all Dh, auth(Dh), dh output by one invocation of initialize followed by polynomially-
many invocations of updateVerifier and updateProver, where h ≥ 0, for all queries
q and for all Π(q), α(q) output by query(q,Dh, auth(Dh), pk), with all but negligible
probability neg(k), it holds that 1← verify(q,Π(q), α(q), dh, pk).

Definition 3 (Security). Let A be an SADS scheme consisting of the set of algorithms
{genkey, initialize, updateVerifier, updateProver, query, verify}, k be the security pa-
rameter, D0 be the empty data structure and pk← genkey(1k). Let also Adv be a PPT
adversary and let d0 be the state output by initialize(D0, pk).

– (Update) For i = 0, . . . , h− 1 = poly(k), Adv picks the update updi to data struc-
ture Di. Let di+1 ← updateVerifier(updi, di, pk) be the new state corresponding
to the updated data structure Di+1.

– (Forge) Adv outputs a query q, an answer α and a proof Π .
We say that the SADS schemeA is secure if for all k ∈ N, for all pk output by algorithm
genkey, and for any PPT adversary Adv it holds that

Pr

[
{q,Π, α} ← Adv(1k, pk); 1← verify(q, α,Π, dh, pk);

0← check(q, α,Dh).

]
≤ neg(k) . (2.1)
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3 Small Integer Solution Problem

The security of our constructions is based on the hardness of the small integer solution
problem, as given in the following definition:

Definition 4 (Problem SISq,μ,β). Given an integer q, a matrix M ∈ Zk×μ
q picked uni-

formly at random (where μ ≥ k) and a real β, find an integer vector z ∈ Zμ\{0} such
that Mz = 0 mod q and ‖z‖ ≤ β.

For certain parameters, Micciancio and Peikert [29] proved that SIVPγ (shortest in-
dependent vector problem [41]), a hard problem in lattices, reduces to SISq,μ,β for
γ = poly(k). In the following we state an immediate corollary of Theorem 1.1 in [29]:

Corollary 1 (Reducing SIVPγ to SISq,μ,β [29]). Let SISq,μ,β be an instance of the
small integer solution problem. Let also β, μ, q be poly(k), where q is a prime such that
q ≥ β · kδ for some δ > 0. SISq,μ,β is as hard as approximating the problem SIVPγ in
the worst case to within certain γ = β

kδ ·O(β
√
k · poly(log k)).

For exponential values of γ, i.e., γ = 2O(k), one can use the LLL algorithm [24] and
solve the SIVPγ problem in polynomial time. However, for polynomial γ, no efficient
algorithm is known to date, even for factors slightly smaller than exponential [41].
Therefore, for the parameters of Corollary 1, SISq,μ,β is also hard, leading to the fol-
lowing assumption:

Assumption 1 (Hardness of SISq,μ,β). Let k be the security parameter and SISq,μ,β be
an instance of the small integer solution problem. Let also β, μ, q be poly(k), where q
is a prime such that q ≥ β · kδ for some δ > 0. There is no PPT algorithm for solving
SISq,μ,β , except with negligible probability neg(k).

3.1 Setting the Parameters q, μ and β

For the application we are considering in this paper, we are using an instance of the
problem SISq,μ,β where β (i.e., the norm of the solution vector) takes polynomially-
large values depending on a polynomially-bounded application parameter n (n will be
the size of the stream). Specifically we are going to use the parameters q, μ, β as set by
the algorithm parameters(1k, n) in Figure 3.1.

We note here that the parameters in Figure 3.1 comply with Corollary 1: First, as
n = poly(k), all q, μ, β are poly(k). Second, q/

√
�log q� ≥

√
2 · n · k0.5+δ ⇔ q ≥

β · kδ, since β = n
√
μ and μ = 2k�log q�. Also note that there is always a prime

q = Θ(n · k0.5+δ ·
√
log k) satisfying the inequality above, for some δ > 0.

3.2 The Hash Function

Our construction uses a hash function that is a syntactic modification (it accepts two
inputs instead of one) of the collision resistant hash function presented by Micciancio
and Regev [30], following seminal work by Ajtai [1] and Goldreich et al. [19]. The
security of our function is based on the hardness of SISq,μ,β , using the parameters by
Micciancio and Peikert [29], as shown above. We note here that a similar two-input hash
function was also used to build a string commitment scheme by Kawachi et al. [23].
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Algorithm {q, μ, β} ← parameters(1k, n): For n = poly(k), let q be the smallest prime
satis- fying q/

√
�log q� ≥

√
2 · n · k0.5+δ for some δ > 0. Set μ = 2k�log q� and β = n

√
μ.

Fig. 3.1. Setting the parameters of SISq,μ,β as a function of the application parameter n

Definition 5 (Hash function [29,30]). Let k be the security parameter, n = poly(k)
and q, μ, β be the parameters output by algorithm parameters(1k, n). Set m = μ

2 . Let
also L,R ∈ Zk×m

q be two k ×m matrices picked uniformly at random. We define the
function hn : [n]m × [n]m → Zk

q as hn(x, y) = L · x + R · y mod q.

Theorem 1 (Collision resistance [29,30]). Let k be the security parameter, n =
poly(k) and {q, μ, β} ← parameters(1k, n). Set m = μ

2 . Let also L,R ∈ Zk×m
q

be matrices picked uniformly at random. Assuming hardness of SISq,μ,β (see Assump-
tion 1), there is no PPT algorithm that outputs two distinct pairs of vectors (x1, y1) ∈
[n]m × [n]m and (x2, y2) ∈ [n]m × [n]m such that L · x1 + R · y1 = L · x2 + R · y2

mod q, except with negligible probability neg(k).

3.3 Binary Representations

For our constructions, we are going to need binary representations of vectors:

Definition 6 (Binary representation of scalars). Let τ = �log q�. Denote with b(a) =
[b0, b1, . . . , bτ−1]T ∈ {0, 1}τ the binary representation of a ∈ Zq , i.e., a =

∑τ−1
i=0 bi2i.

Note now that Definition 6 can be naturally extended for vectors a ∈ Zk
q : For i =

0, . . . , k− 1, ai is mapped to the respective τ entries b(ai) in the resulting vector b(a):

Definition 7 (Binary representation of vectors). Let a = [a0, a1, . . . , ak−1]T ∈ Zk
q .

We denote with b(a) = [b(a0), b(a1), . . . , b(ak−1)]T ∈ {0, 1}k·τ (τ = �log q�) the
binary representation of a ∈ Zk

q , where b(ai) is defined in Definition 6.

For example, if k = 2, q = 8 and a = [6, 3]T ∈ Z2
8, then b(a) = [0, 1, 1, 1, 1, 0]T, since

b(6) = [0, 1, 1]T and b(3) = [1, 1, 0]T.

4 Generalized Hash Trees

The main primitive of our construction is what we call a generalized hash tree. A gen-
eralized hash tree has several differences from the traditional Merkle hash tree [28].

First we recall that a Merkle hash tree is a labeled binary tree T where the label
λ(w) of every node w is the collision resistant hash (e.g., a SHA-2 hash) of the labels
λ(u) and λ(v) and of its children u and v, i.e., λ(w) = h(λ(u), λ(v)). When function
h is applied recursively on all the nodes of the tree, the label λ(r) of the root r has the
following property: A PPT adversary cannot find two different data sets at the leaves
that produce the same label at the root of a Merkle tree.

In our work, instead of using a hash function such as SHA-2 that lacks algebraic
structure, we employ the hash function hn described in Section 3. However, we cannot



360 C. Papamanthou et al.

directly apply this function since its domain (vectors in [n]m) is different from its range
(vectors in Zk

q ). Generalized hash trees, introduced in the next section, provide a way to
overcome this domain-range discrepancy problem.

4.1 Defining Generalized Hash Trees

Let h : D × D → R be a collision resistant hash function accepting two inputs that
take values from domain D and outputting a value in a different rangeR. Generalized
hash trees solve the domain-range discrepancy problem (and at the same time maintain
the authentication and algorithmic properties of traditional Merkle hash trees [28]) as
follows: They require that the labels λ(u) ∈ D and λ(v) ∈ D of the children u and v
hash to a deterministic and easily computable projection function f : D → R of the
label λ(w) ∈ D of the parent w, i.e., f(λ(w)) = h(λ(u), λ(v)).

An immediate implication of this property is that the labels of a generalized hash
tree are generally not uniquely determined by the labels of the leaves: In the above ex-
ample, λ(w) can be any f -preimage of h(λ(u), λ(v)). However, the collision resistant
property of Merkle trees is still true: Any two valid hash trees representing different
data sets at the leaves but with the same root label yield a collision to the underlying
hash function. We now continue with defining generalized hash trees formally. We first
need the following definition for representing binary trees.

Definition 8 (Full binary tree). A full binary tree T is a non-empty tree where every
internal node has two children. It is represented with set of binary strings, where ε is the
empty string representing the root of T and w0 and w1 are the string representations
of the left and right children of a node having string representation w.

For example, a full binary tree with five nodes is T = {ε, 0, 1, 00, 01}. Note that full
binary trees need not be complete, i.e., not all leaves must lie at the same level.

Definition 9 (Labeled binary tree). A labeled binary tree (T, λ) is a full binary tree T
along with labels λ(w) for all w ∈ T .

Definition 10 (Generalized hash tree). Given functions h : D×D → R and f : D →
R, a generalized hash tree (T, λ, f, h) is a labeled binary tree (T, λ) such that (a) for
all w ∈ T , λ(w) ∈ D; (b) for all internal nodes w ∈ T , f(λ(w)) = h(λ(w0), λ(w1)),
where w0 and w1 are the left and right children of w respectively.

Definition 11 (Tree collision). A tree collision is a pair of two distinct generalized
hash trees (T, λ, f, h) and (T, l, f, h) such that λ(ε) = l(ε).

We now give our main security theorem, establishing collision resistance for general-
ized hash trees. The proof is in the Appendix (see Section 6).

Theorem 2 (Collision resistance). Let k be the security parameter, T be a full binary
tree of poly(k) depth. If h is collision resistant, there is no PPT algorithm that can
output a tree collision (T, λ, f, h) and (T, l, f, h), except with probability neg(k).
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Function y = f(x): Let τ = �log q�. On input a vector x ∈ [n]m, where m = k · τ , output a
vector y of k entries such that each yi (i = 0, . . . , k − 1) is the number in Zq represented by the
radix-2 representation [xiτ , xiτ+1, . . . , x(i+1)τ−1]

T, namely

yi =

τ−1∑

j=0

xiτ+j2
j mod q , for i = 0, . . . , k − 1 .

Fig. 4.2. The projection function f . It parses the input x as a vector of radix-2 representations and
convers it to a vector y (of smaller dimension) storing the respective numbers in Zq .

4.2 An Instantiation of Generalized Hash Trees

In our application setting, we are using a structured binary tree which is a special case
of the full binary tree from Definition 8:

Definition 12 (Structured binary tree). Let M be a power of two. A structured binary
tree TC is a full binary tree T of logM levels where all the leaves lie at the last level of
the tree, storing values C = [c0, c1, . . . , cM−1], where ci ∈ Zq .

Definition 13 (Range of a node). Let w be a node of a structured binary tree TC. The
set range(w) contains the leaves of the subtree of TC rooted on w.

In the following sections, we instantiate the generalized hash tree for a structured binary
tree using the lattice-based hash function hn(x, y) = L · x + R · y from Definition 5,
where D = [n]m and R = Zk

q—see Section 3 for the definition of all parameters
k, n,m, q. We will also show which projection function f to use and how to compute
the labels λ so that Definition 10 is satisfied.

4.3 The Projection Function f

The projection function f : [n]m → Zk
q we use is very simple. It parses the input

vector x as a radix-2 representation (i.e., a base-2 representation but not necessarily of
binary coefficients) and converts it to the respective vector in Zk

q . We give the code of
the function in Figure 4.2. We now have the following corollary for function f :

Corollary 2 (Applying function f to binary representations). Let a ∈ Zk
q . Then

f(b(a)) = a, where b(a) is the binary representation of a defined in Definition 6.

Clearly, function f is a linear function. This property (stated below) is crucial for prov-
ing that the labels (defined in Section 4.4) comply with Definition 10:

Corollary 3 (Linearity of function f ). Let x ∈ [n]m and y ∈ [n]m such that x + y ∈
[n]m. Then f(x + y) = f(x) + f(y).

4.4 Computing the Labels

We now continue with defining the labels of the generalized hash tree (see Defini-
tion 16). Before that, we give some necessary definitions:
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Definition 14. Define the functions g0 : [n]m → [n]m and g1 : [n]m → [n]m such that
g0(x) = b(L · x) and g1(x) = b(R · x). Also, for a bitstring w = b1b2 . . . be, define the
function gw : [n]m → [n]m as the composition gw(x) = gb1 ◦ gb2 ◦ . . . ◦ gbe(x).

Definition 15 (Partial labels of a node w). Let TC be a structured binary tree. The
partial label of a leaf node v with respect to itself is defined as Lv(v) = 1, where 1 =
[1, 1, . . . , 1]T ∈ [n]m. For every other node w of TC , and for every leaf v ∈ range(w),
the partial label Lw(v) of w with respect to v is defined as Lw(v) = gv−w(1), where
v − w is the result of removing prefix w from bitstring v.

E.g., for a structured binary tree of 8 leaves, the partial label of the root wrt leaves 2 and
3 are Lε(2) = b(L · b(R · b(L · 1))) and Lε(3) = b(L · b(R · b(R · 1))) respectively.

Definition 16. Let TC be a structured binary tree, where C = [c0, c1, . . . , cM−1]. For
every node w ∈ TC we define a function λ(w) =

∑
v∈range(w) cv · Lw(v).

Lemma 1. Let TC be a structured binary tree. If
∑M−1

i=0 ci ≤ n, then for all nodes
w ∈ TC it holds that λ(w) ∈ [n]m, where λ(w) is the function defined in Definition 16.

Proof. Write λ(w) as in Definition 16. Since
∑M−1

i=0 ci ≤ n and the entries of each
partial label Lw(v) are in {0, 1}, it follows that λ(w) ∈ [n]m. �

Lemma 2. Let TC be a structured binary tree. If
∑M−1

i=0 ci ≤ n, then f(λ(w)) =
L ·λ(w0)+R ·λ(w1), where λ(w) is the function defined in Definition 16 and w is any
internal node of TC .

Proof. Let w be an internal node of the structured binary tree TC. Let w0 be its left
child and w1 be its right child. Since

∑
ci ≤ n, by Lemma 1, it is λ(w) ∈ [n]m, so we

can apply function f . Therefore we have

f(λ(w)) = f

⎛⎝ ∑
v∈range(w)

cv · Lw(v)

⎞⎠ (Def. 16)

=
∑

v∈range(w0)

cv · f (Lw(v)) +
∑

v∈range(w1)

cv · f (Lw(v)) (Cor. 3)

=
∑

v∈range(w0)

cv · f (gw−v(1)) +
∑

v∈range(w1)

cv · f (gw−v(1)) (Def. 15)

=
∑

v∈range(w0)

cv · f (g0(gw0−v(1))) +
∑

v∈range(w1)

cv · f (g1(gw1−v(1))) (Def. 14)

=
∑

v∈range(w0)

cv · f (g0(Lw0(v))) +
∑

v∈range(w1)

cv · f (g1(Lw1(v))) (Def. 15)

=
∑

v∈range(w0)

cv · f (b(L · Lw0(v))) +
∑

v∈range(w1)

cv · f (b(R · Lw1(v))) (Def. 14)

=
∑

v∈range(w0)

cv · L · Lw0(v) +
∑

v∈range(w1)

cv · R · Lw1(v) (Cor. 2)

= L · λ(w0) + R · λ(w1) (Def. 16). This completes the proof. �
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Theorem 3. Let TC be a structured binary tree. If
∑M−1

i=0 ci ≤ n, then (TC , λ, f, hn) is
a generalized hash tree, where hn(x, y) = L ·x+R ·y is the function from Definition 5,
λ is defined in Definition 16 and f is the function in Figure 4.2.

Proof. It follows from Lemmas 1 and 2 and by Definition 10. �

4.5 Efficient Updates of the Labels

Note that Definition 16 enables very efficient updates of the label of any node, whenever
a leaf value changes. For example, if λ(ε) is the label of the root of a generalized
hash tree (TC , λ, f, hn) with eight leaves {0, 1, 2, . . . , 7} where c3 = 2, c4 = c6 =
c7 = 1 and c0 = c1 = c2 = c5 = 0, then the root label λ(ε) can be expressed
as 2Lε(3) + Lε(4) + Lε(6) + Lε(7). Particularly, each occurrence of an element i
contributes Lε(i) (i.e., partial label of the root ε with respect to i) to the root label.
Adding (or removing) an element x to the set is equivalent to addingLε(x) (or−Lε(x))
to λ(ε). It is also important to note that the partial labels (defined in Definition 15)
required for such updates can be easily computed in polylogarithmic time:

Lemma 3. The partial label Lw(v) can be computed in time O(logM log2 n).

Proof. Computing Lw(v), by Definition 15, requires O(logM) recursive calls, each
one of which involves: (a) computing a binary representation of k O(log q)-bit numbers,
which takes time O(k log q); (b) multiplying a k × O(k log q) matrix with a vector of
O(k log q) bits, which takes time O(k log2 q). This completes the proof. �

5 Our SADS Construction

Let TC be a structured binary tree with M leaves corresponding to the universe of in-
teger values U = {0, 1, . . . ,M − 1}. For our construction, we are using a generalized
hash tree (TC , λ, f, hn) as described in the previous section, where λ is defined in Def-
inition 16, f is the function in Figure 4.2, hn is the hash function from Definition 5
and {c0, c1, . . . , cM−1} correspond to the frequency of elements {0, 1, . . . ,M − 1}
appearing in the stream. Note that even for an exponential value of M , the condition∑M−1

i=0 ci ≤ n of Theorem 3 still holds since for the elements x that do not appear in
the stream it is cx = 0. To store the generalized hash tree, we store only the labels that
are defined on the paths from non-zero leaves to the root (all other labels are zero). This
requires space proportional to O(ν logM), where ν is the number of distinct element
appearing in the stream. In this way, we avoid storing O(M) space, which is prohibitive
given the potential exponential universe size M .

Figure 5.3 presents our SADS scheme for frequency queries. We note that algorithms
query and verify are the same for all generalized hash trees, unlike the update algorithms
that are specific for the algebraic hash function hn.

5.1 Range Search Queries

In this section we show how to support range search queries. The proof for a range
search query [x, y] simply contains the two proofs Π(x) and Π(y) as output by
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Algorithm pk← genkey(1k, n): Call {q, μ, β} ← parameters(1k , n) from Figure 3.1, on input
the security parameter k and a bound n on the size of the stream. Set pk = {L,R, q,U}, where U
is a universe such that |U| = M and L,R are picked uniformly at random from Zm

q for m = μ
2

.

Algorithm{auth(D0), d0} ← initialize(D0, pk): LetD0 be a structured binary treeTC where
ci = 0 (i = 0, . . . ,M−1). The algorithm outputs the generalized hash tree (TC , λ, f, hn) as auth(D0),
where λ(v) = 0 ∈ [n]m for all nodes v in TC . Also it outputs d0 = 0 ∈ [n]m.

Algorithmdh+1 ← updateVerifier(x, dh, pk): Letx ∈ U be the current element of the stream.
The algorithm updates the local state by setting dh+1 = dh + Lε(x), where ε is the root of TC
and Lε(x) is defined in Definition 15.

Algorithm {Dh+1, auth(Dh+1)} ← updateProver(x,Dh, auth(Dh), pk): Let x ∈ U
be the current element of the stream. The algorithm sets cx = cx + 1, outputting the updated tree
TC . Let v�, . . . , v1 be the path in TC from node v� (v� stores cx) to the child v1 of the root ε of TC .
Set

λ(vi) = λ(vi) + Lvi(x) for i = �, �− 1, . . . , 1 , (5.2)

where Lvi(x) is defined in Definition 15. The new authenticated data structure auth(Dh+1) is the new
generalized hash tree with the updated labels as computed in Equation 5.2.

Algorithm {α(q), Π(q)} ← query(q,Dh, auth(Dh), pk): Let q be a frequency query for
el-ement x ∈ U . Set α(q) = cx (note that if cx = 0, x is not contained in the collection). Let
v�, . . . , v1 be the path in the structured binary tree TC from node v� (v� stores the value cx) to the
child v1 of the root ε of TC . Let also w�, . . . , w1 be the sibling nodes of v�, . . . , v1. Proof Π(q)

contains the ordered sequence of the pairs of labels belonging to the tree path from leaf v� to the
root ε of the tree, i.e., the pairs {(λ(v�), λ(w�)), (λ(v�−1), λ(w�−1)), . . . , (λ(v1), λ(w1))}.

Algorithm {1, 0} ← verify(q, α(q), Π(q), dh, pk): Let q be a frequency query for element
x ∈ U . Parse Π(q) as {(λ(v�), λ(w�)), . . . , (λ(v1), λ(w1))} and α(q) as cx.
If λ(v�) �= cx1 or λ(v�), λ(w�) �= [n]m, output 0. Compute values y�−1, y�−2, . . . , y0 as yi =

L · λ(vi+1) + R · λ(wi+1) (if vi+1 is vi’s left child) or yi = R · λ(vi+1) + L · λ(wi+1) (if vi+1

is vi’s right child). For i = � − 1, . . . , 1, if f(λ(vi)) �= yi or λ(vi), λ(wi) /∈ [n]m output 0. If
f(dh) �= y0, output 0. Output 1.

Fig. 5.3. Algorithms of the SADS scheme for verifying frequency queries

algorithms query(x,Dh, auth(Dh), pk) and query(y,Dh, auth(Dh), pk) respectively
from Figure 5.3. It also contains the frequencies Cxy = {ca1 , ca2 , . . . , cas} of the re-
ported range as an answer. Let now Rxy = {a1, a2, . . . , as} denote the respective
reported range that corresponds to Cxy.

For verification, the proofsΠ(x) andΠ(y) are verified first by using algorithm verify
from Figure 5.3. If this verification is successful, perform the following test (else reject):
If for all labels λ(v) ∈ Π(x) ∪ Π(y) such that range(v) ∩ Rxy is not empty, the
following relation (as in Definition 16)

λ(v) =
∑

i∈range(v)∩Rxy

ci · Lv(i) (5.3)
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is true, output 1 (i.e., accept), else output 0 (i.e., reject). The above relation ensures
that all the range (with the correct frequencies) has been reported, or otherwise, the
adversary could find a collision. The above technique can be also used for verifying
successor queries, where the reported range is empty.

We now give our final result stating the formal security guarantee of our algorithms,
along with their detailed asymptotic performance. The correctness of our scheme fol-
lows easily by inspecting the algorithms, therefore its proof is omitted. The security
proof and the proof of asymptotic performance are in the Appendix.

Theorem 4 (Streaming authenticated frequency with range search). Let k be the se-
curity parameter, n = poly(k) be an upper bound on the size of a stream containing el-
ements from an ordered universe U of size M , {q, μ, β} ← parameters(1k, n) and ν be
the number of unique elements that have appeared in the stream. There exists a stream-
ing authenticated data structure scheme for one-dimensional frequency queries and
one-dimensional range queries (outputting the respective frequencies) such that: (a) It
is correct according to Definition 2 and secure according to Definition 3 and assuming
hardness of SISq,μ,β (Assumption 1); (b) Algorithms updateVerifier and updateProver
run in O(logM log2 n) time; (c) Algorithm query (both for frequency and range search
queries) runs in O(logM logn) time, outputting a proof of size O(logM logn); (d)
A frequency query can be verified in O(logM log2 n) time and a range search query
can be verified in O(s logM log2 n) time, where s is the size of the output range; (e)
The space required at the verifier is O(log n) and the space required at the prover is
O(ν logM logn).

Our algorithms can be extended to two (or multiple) dimensions by leveraging existing
methods for multidimensional range queries [27], carefully adjusted in our framework.
Due to space limitations, we defer such extensions to the full version of our paper.

6 Applications

In this section we present three applications of our construction.

Cryptographic Accumulator with Efficient Witness Generation. A cryptographic
accumulator [4,6] allows one to hash a set of inputs into one short accumulation value,
such that there is a witness that a given input was incorporated into the accumulator,
and at the same time, it is infeasible to find a witness for a value that was not accumu-
lated. In CRYPTO 2002, Camenisch and Lysyanskaya [9] introduced dynamic accumu-
lators, that enable updating the accumulation value when inputs are dynamically added
or deleted, such that the cost of an update is independent of the number of accumu-
lated inputs. However, all dynamic accumulator constructions that appeared since then
(e.g., [3,8,9,26,32]) share one common limitation: Computing a witness, in absence of
the trapdoor information (which has many practical applications, e.g., [36]), takes at
least linear time. We observe that our construction comprises a dynamic accumulator
that does not have this limitation: Specifically, for a set of elementsX ⊆ {0, 1, . . . ,M−
1}, our accumulation value, from Definition 16, is acc(X ) =

∑
i∈X Lε(i). To update

the accumulation value with element y, one has to set acc(X ) = acc(X ) + γ · Lε(y),
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where γ ∈ {1,−1} depending on whether we add or remove y from the set. Our con-
struction satisfies basic accumulator properties such as quasi-commutativity and effi-
cient updates [9]. Moreover, one can use the generalized hash tree and compute wit-
nesses in logarithmic time (see Theorem 4), as opposed to linear time.

Parallel Online Memory Checking in the Public Key Setting. Memory checking [7]
studies the problem of cryptographically verifying the correctness of untrusted indexed
storage by only storing small local memory. Many checkers with logarithmic sequential
query complexity (number of reads and writes to the untrusted memory), e.g., [7,31,20],
have appeared in the literature. However, parallelizing existing checker constructions
can only be achieved in the secret key setting (e.g., see [22]). Checkers in the public key
setting (e.g., [20]) cannot be naturally parallelized because they are traditionally imple-
mented with Merkle trees [28]: Whenever a leaf value of the checker tree is written,
the roothash can be updated only after the value of its child has been updated, which
is an inherently sequential process. Our generalized hash tree can be used to overcome
this barrier, yielding a parallel memory checker in the public key setting (recall we do
not use any secret keys in our construction). This is because in our construction, when-
ever a leaf value i is written, changing its value from c to c′, we can execute algorithm
updateProver from Section 5 in parallel (note the loop described in Relation 5.2 is fully
parallelizable) and by accessing only the old value c, thus issuing O(1) queries to the
untrusted memory. Therefore our construction yields the first parallel memory checker
in the public key setting with O(1) query complexity using O(logM) processors.

Authenticated Data Structure with Logarithmic Space at the Trusted Source. Our
construction can be used for implementing an authenticated dictionary with improved
space bounds in the three-party model—the traditional model of authenticated data
structures [43]. Specifically, we can reduce the space of the trusted source from O(n) to
O(log n). This is because in the three-party model of authenticated data structures, the
only goal of the trusted source is to update the publish the latest digest dh, which, in our
construction can be achieved in a streaming fashion (by storing only the previous di-
gest dh−1) and without having access to all the elements of the dictionary (only access
to the element of the update is required, see Algorithm updateVerifier). In previous
implementations however (e.g., [20,36]), the source keeps all the Merkle tree locally
(otherwise the digest cannot be updated), therefore requiring O(n) local space.
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Appendix

Proof of Collision Resistance (Proof of Theorem 2)

Since generalized hash trees (T, λ, f, h) and (T, l, f, h) comprise a collision, it is λ(ε) =
l(ε) and there exists v	 ∈ T such that λ(v	) �= l(v	)—see Definition 11. Consider now
the path of nodes v	, v	−1, . . . , v1, v0 = ε from node v	 to the root v0 = ε of T . Let also
w	, w	−1, . . . , w1 be the siblings of the nodes v	, v	−1, . . . , v1 respectively. We define
the following events: (1) E	,0: l(v	) �= λ(v	); (2) Ei,0: l(vi) �= λ(vi) for i = �−1, . . . , 1;
(3) Ei,0: l(vi) = λ(vi) for i = � − 1, . . . , 1; (4): E0,1: λ(ε) = l(ε). The probability that
a PPT algorithm can output a collision (T, λ, f, h) and (T, l, f, h) is at most

Pr[E	,0 ∩ (E	−1,0 ∪ E	−1,1) ∩ (E	−2,0 ∪ E	−2,1) ∩ . . . ∩ E0,1]
≤ Pr[E	,0 ∩ E	−1,1] + . . .+ Pr[E1,0 ∩ E0,1] =

∑
0≤i≤	−1

Pr[Ei+1,0 ∩ Ei,1] .

Note that the event Ei+1,0 ∩ Ei,1 is equivalent to the set of conditions: (i) l(vi+1) �=
λ(vi+1); (ii) l(vi) = λ(vi) (recall v0 = ε).

It is easy to see that if h is collision resistant, the probability Pr[Ei+1,0 ∩ Ei,1] is
neg(k) since it is equivalent with outputting a collision to function h: Since
both (T, λ, f, h) and (T, l, f, h) are generalized hash trees it is f(l(vi)) = h(l(vi+1),
l(wi+1)) and f(λ(vi)) = h(λ(vi+1), λ(wi+1)). Since now λ(vi) = l(vi) we have
f(λ(vi)) = f(l(vi)). But l(vi+1) �= λ(vi+1) and therefore (λ(vi+1), λ(wi+1)) is a
collision with the pair (l(vi+1), l(wi+1)). Therefore the probability Pr[Ei,0|Ei−1,1] is
neg(k), implying that the sum

∑	−1
i=0 Pr[Ei,0|Ei−1,1] is also neg(k), as T has polyno-

mial depth and � is no greater than T ’s depth. �

Proof of Security (Stated in Theorem 4)

Fix the security parameter k and output pk = (L,R, q,U) by calling algorithm genkey.
Let Adv be a PPT adversary. Let D0 an initial structured binary tree TC where ci = 0
for i = 0, . . . ,M − 1 and let d0 be the state output by initialize(D0, pk).

1. Update. For t = 1, . . . , h ≤ n, the adversary Adv picks an element xt ∈ U . Let
dt be the final state output by calling updateVerifier for every element xt and let
TC be the final structured binary tree Dt after all the updates have been performed,
where C = [c0, c1, . . . , cM−1].

2. Forge. Let x ∈ U be a query element and α �= cx be an incorrect value for index x
picked by Adv (as in Definition 3). The adversary Adv outputs

Π(x) = {(l(v	), l(w	)), (l(v	−1), l(w	−1)), . . . , (l(v1), l(w1))}

as the proof for element x, where v	 is the node corresponding to index x.

We prove that the probability that 1 ← verify(x, α,Π(x), dh, pk) while α �= cx is
negligible. To do that we consider the full binary tree T (see Definition 8) defined by
the nodes (v	, w	), (v	−1, w	−1), . . . , (v1, w1) and the root node ε. It is easy to see
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that since the verification algorithm accepts, (T, l, f, hn) is a generalized hash tree as
defined in Definition 10, and where l is the labeling in Π(x).

Consider now the structured binary tree TC (where C = [c0, c1, . . . , cM−1]) as de-
fined in Definition 12. Let T ′C be the subtree of TC that has the same nodes as T . By The-
orem 3, the adversary can compute (T, λ, f, hn), which is also a generalized hash tree.
However, since α �= cx this means that l(v	) �= λ(v	). Note now that λ(ε) = l(ε) = dh
and therefore the adversary has output a tree collision, which, by Theorem 2, happens
with probability neg(k) since hn is collision resistant (see Theorem 1). A same argu-
ment applies for the range search query. This completes the proof. �

Proof of Asymptotic Performance (Stated in Theorem 4)

Algorithm updateVerifier requires computing the partial label Lε(x), where x is the
element of the update and ε is the root of TC . Computing Lε(x) can be achieved in
O(logM log2 n) time, by Lemma 3.

Algorithm updateProver needs to compute the partial labels Lvj (x) (j = �, . . . , 0),
where v	, v	−1, . . . , v0 are the nodes of the structured binary tree from element x to the
root of the tree. By Definition 15, all these labels can be computed in O(logM log2 n)
time during the computation of Lε(x) (i.e., in one pass). However, to update a label
λ(vi), one needs to retrieve it from the underlying data structure that stores the “useful”
portion of the generalized hash tree (and either store it back or delete if the label be-
comes 0). Therefore updateProver needs to spend an extra O(log ν) time in the worst
case, where ν is the number of the currently stored elements. Since however ν ≤ n, it
follows that the time required is O(logM log2 n).

Algorithm query for membership and successor queries needs to retrieve O(logM)
binary representations of O(log n) bits each, spending O(log ν) time to retrieve each
one of them. Since ν ≤ n, it follows that query runs in O(logM logn) time. The
proof has also size O(logM logn), since it contains O(logM) binary representations
of O(log n) bits each. Since range search is implemented via s successor queries, the
same bounds apply multiplied with s, where s is the size of the output range.

Finally, for the space at the client, it is required that the client store dh, which consists
of k O(log n)-bit numbers, therefore the space at the client is O(log n). For the space
at the prover, we recall that we only store labels λ(v) that lie on tree paths starting from
leaves x such that cx > 0 (all these labels are also non-zero and have O(log n) bits).
Since at every point in time there are ν elements stored in the data structure, it follows
that the space at the server is O(ν logM logn).
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Abstract. In this paper, we revisit meet-in-the-middle attacks on AES
in the single-key model and improve on Dunkelman, Keller and Shamir
attacks at Asiacrypt 2010. We present the best attack on 7 rounds of
AES-128 where data/time/memory complexities are below 2100. More-
over, we are able to extend the number of rounds to reach attacks on 8
rounds for both AES-192 and AES-256. This gives the best attacks on
those two versions with a data complexity of 2107 chosen-plaintexts, a
memory complexity of 296 and a time complexity of 2172 for AES-192 and
2196 for AES-256. Finally, we also describe the best attack on 9 rounds
of AES-256 with 2120 chosen plaintexts and time and memory complex-
ities of 2203. All these attacks have been found by carefully studying the
number of reachable multisets in Dunkelman et al. attacks.

1 Introduction

The Rijndael block cipher has been designed by Daemen and Rijmen in 1997
and accepted as the AES (Advanced Encryption Standard) standard since Octo-
ber 2000 by the NIST. Nowadays, it is probably the most used block cipher. It
has very good performances in both software and hardware on various platforms
and it is provably resistant against differential and linear attacks.

However, new attacks have been recently developed using many ideas from
the cryptanalysis of hash functions. The first analysis studies AES in the strong
adversarial model where the adversary can ask the encryption of a message under
a related-key by specifying the relation. Biryukov, Khovratovich and Nikolic
show some drawbacks of the key-schedule algorithms and how to exploit it to
mount an attack on the full versions of AES-192 and AES-256 in [4,5,6]. In a
second analysis, Dunkelman, Keller and Shamir show in [15] more efficient meet-
in-the-middle attacks using ideas from rebound attacks on hash functions [22].
Finally, the biclique attack [8] also uses meet-in-the-middle ideas for preimage
attacks on hash functions by Sasaki et al. [1]. It has been developed by Bogdanov,
Khovratovich and Rechberger in [8] and allows to mount an attack on the full
AES for all versions with a marginal time complexity over exhaustive search.

Overview of the Attacks on AES. The first attack on AES is the SQUARE
attack, proposed by Daemen, Knudsen and Rijmen on the SQUARE block ci-
pher [10]. In [11], Daemen and Rijmen remark that if we encrypt a δ-set, i.e. a
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set of 256 plaintexts where a byte (called active byte) can take all values and the
15 other bytes are constant, after 3 rounds of Rijndael, the sum of each byte
of the 256 ciphertexts equals zero. This distinguishing property can be used to
mount efficient attacks up to 6 rounds. The first attack has a time complexity of
272 encryptions and requires 232 messages, and it has been improved by Ferguson
et al. to 246 operations in [16].

Then, Gilbert and Minier show in [18] that this property can be made more
precise using functions of the active byte, which allows to build a distinguisher on
3 rounds. The main idea is to consider the set of functions mapping one active
byte to one byte after 3 rounds. This set depends on 9 one-byte parameters
so that the whole set can be described using a table of 272 entries of a 256-
byte sequence (f(0), . . . , f(255)). Their attack allows to break 7 rounds of AES
with a marginal time complexity over exhaustive search. This idea has been
generalized at Fse 2008 by Demirci and Selçuk in [12] using meet-in-the-middle
techniques, whereas Gilbert and Minier used collision between the functions.
More specifically, they show that on 4 rounds, the value of each byte of the
ciphertext can be described by a function of the active byte parameterized by
25 in [12] and 24 8-bit parameters in [13]. The last improvement is due to the
observation that the 25th parameter is a key byte which is constant for all
functions. Consequently, by considering (f(0) − f(0), f(1)− f(0), . . . , f(255)−
f(0)) we can use only 24 parameters. The main drawback of the meet-in-the-
middle attack is the memory requirement. Indeed, the basic attack only works
for the 256-bit version and then Demirci and Selçuk have to use a time/memory
tradeoff to extend the attack for the 192-bit AES version.

Another idea has been developed by Biham and Keller [3] and is based on a
4-round impossible differential, as well as the work of Bahrak and Aref in [2].
Later, this idea has been refined by Lu, Dunkelman, Keller and Kim in [20]. At
the present time, it is the most efficient attack on 7-round AES-128.

At Asiacrypt 2010, Dunkelman, Keller and Shamir develop many new ideas
to solve the memory problems of the Demirci and Selçuk attacks. First of all, they
show that instead of storing the whole sequence, we can only store the associated
multiset, i.e. the unordered sequence with multiplicity rather than the ordered
sequence. This reduces the table by a factor 4 and avoids the need to guess
one key byte during the attack. The second and main idea is the differential
enumeration which allows to reduce the number of parameters that describes
the set of functions from 24 to 16. However, to reduce this number, they rely on
a special property on a truncated differential characteristic. The idea consists in
using a differential truncated characteristic whose probability is not too small.
The property of this characteristic is that the set of functions from one state
to the state after 4 rounds can only take a restricted number of values, which
is much smaller than the number of all functions. The direct consequence is an
increase of the amount of needed data, but the memory requirement is reduced
to 2128 and the same analysis also applies to the 128-bit version. However, this
attack is not better than the impossible differential attack even though many
tradeoffs could be used.
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Finally, at Crypto 2011, Bouillaguet, Derbez and Fouque describe in [9]
new meet-in-the-middle attacks that allow to efficiently break a small number
of rounds of AES using a very small amount of data. These attacks have been
found automatically. Similar attacks have been developed against other sym-
metric schemes that reuse AES component such as the Pelican-MAC message
authentication code or the LEX stream cipher. However, the complexity of the
algorithm that looks for the best attack is exponential in the number of vari-
ables and if we try to take into account more rounds or more plaintext/ciphertext
pairs, then the program does not find anything of interest. This tool looks promis-
ing since improvements on existing attacks usually consider a small number of
rounds. For instance, if we want to improve on Dunkelman et al. attacks, we
need to study 4 rounds of AES.

Dunkelman, Keller and Shamir’s Attack. In [15], a new attack is devel-
oped using ideas from differential and meet-in-the-middle attacks. In the first
stage, differential attacks find a differential characteristic with high or low prob-
ability covering many rounds. Then, in the online stage, the adversary asks for
the encryption of many pairs: for each pair, the adversary tries to decrypt by
guessing the last subkey and if the differential characteristic is followed, then
the adversary increases the counter of the associated subkey. If the probability
of the characteristic is high enough, then the counter corresponding to the right
secret-key would be among the higher counters. In some case, it is also possible
to add some rounds at the beginning by guessing part of the first subkeys.

Here, Dunkelman et al. propose a novel differential attack. Instead of increas-
ing a counter once a pair is found, the adversary uses another test to eliminate
the wrong guesses of the first or last subkeys. This test decides with probability
one whether the middle rounds are covered with the differential. The idea is
that the middle rounds follow a part of the differential and the function f that
associates each byte of the input state to one byte of the output state can be
stored efficiently. Demirci and Selçuk propose to store in a table the function
with no differential characteristic, which turns out to be much larger that this
one. Consequently, in Dunkelman et al.’s attack, the adversary guesses the first
and last subkeys and looks for a pair that follows the beginning and last rounds
of the differential characteristic. Once such a pair is found, the adversary takes
one of the messages that follows the characteristic and constructs a structure to
encrypt which is related to a δ-set for the intermediate rounds. From the encryp-
tion of this set, the adversary can decrypt the last rounds and check whether
the encryption of this δ-set belongs to the table. If this is the case, then the part
of the first and last subkeys are correct and an exhaustive search on the other
parts of the key allows to find the whole key.

To construct the table, the idea is similar to the attack. We need to find a
pair of messages that satisfies the truncated differential characteristic. Then, we
take one message in the pair and we compute the function f . Dunkelman et al.
use a rebound technique to find the pair that follows the characteristic.

Our Results. Dunkelman et al. show that by using a particular 4-round dif-
ferential characteristic with a not too small probability, the active states in the
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middle of the characteristic can only take 264 values. In their characteristic,
they also need to consider the same 8 key bytes as Demirci and Selçuk. They
claim that "In order to reduce the size of the precomputed table, we would like
to choose the δ-set such that several of these parameters will equal to predeter-
mined constants. Of course, the key bytes are not known to the adversary and
thus cannot be "replaced" by such constants". Here, we show that it is possible
to enumerate the whole set of solutions more efficiently than by taking all the
values for the key bytes such that every value of these bytes are possible. We
show that the whole set can take only 280 values with this efficient enumeration
technique. Of course, it might be possible to improve this result to 264 but not
any further since the key bytes may take all the 264 possible values. Using the
same ideas, we show that it is possible to have an efficient enumeration for a 5-
round differential characteristic which allows us to mount an attack on 9 rounds
for AES-256. The bottleneck of the attack is no longer the memory, but the
time and data complexities.

In this paper, we show that the number of parameters describing the functions
can be further reduced to 10 and that this attack is now more efficient than the
impossible differential attack [20]. We describe the best key-recovery attacks on 7
rounds of all versions of AES with all complexities below 2100, as the related-key
attack of Biryukov and Nikolic̀ in [7]. We also show improved key-recovery at-
tacks on 8 rounds of AES-192 and on 8 and 9 rounds of AES-256. Additionally,
we show that all our attacks are optimal in the class of attacks from [15] that we
revisit. We also show that it allows us to attack one more round on AES-256,
and for the AES-192 the attack is comparable even though some improvements
can be made. To this end, we use several tradeoffs proposed by Dunkelman et
al. and we use a more careful analysis of the enumeration technique.

Organization of the Paper. In Section 2, we describe the AES and some prop-
erties used by the previous attacks on this block cipher. In Section 3, we present
our basic attack on 7 rounds for all AES versions. Then, in section Section 4, we
show that we can also attack 8 rounds for AES-192 and AES-256 and 9 rounds
for AES-256.

2 AES and Previous Work

2.1 Description of the AES

The Advanced Encryption Standard (AES) [23] is a Substitution-Permutation
Network that can be instantiated using three different key bit-lengths: 128, 192,
and 256. The 128-bit plaintext initializes the internal state viewed as a 4 × 4
matrix of bytes as values in the finite field GF (28), which is defined via the
irreducible polynomial x8 + x4 + x3 + x + 1 over GF (2). Depending on the
version of the AES, Nr rounds are applied to that state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. Each of the Nr AES round
(Figure 1) applies four operations to the state matrix (except the last one where
we omit the MixColumns):
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Fig. 1. Description of one AES round and the ordering of bytes in an internal state

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times

in parallel on each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by
M × C where M is a constant 4 × 4 maximum distance separable matrix
over GF (28),

After the Nr-th round has been applied, a final subkey is added to the internal
state to produce the ciphertext. We refer to official specification document [23]
for the key expansion algorithms to produce the Nr + 1 subkeys.

Proposition 1 (Differential Property of S). Given Δi and Δo two non-
zero differences in F256, the equation S(x) + S(x +Δi) = Δo, has one solution
in average. This property also applies to S−1.

Notations and Units. In this paper, we count the AES rounds from 0 and we
refer to a particular byte of an internal state x by x[i], as depicted in Figure 1, or
x[i, . . . , j] for bytes as positions between i and j. Moreover, in the ith round, we
denote the internal state after AddRoundKey by xi, after SubBytes by yi, af-
ter ShiftRows by zi and after MixColumns by wi. To refer to the difference in
a state x, we use the notation Δx. The first added subkey is the master key k−1,
and the one added after round i is denoted by ki. In some cases, we are interested
in swapping the order of the MixColumns and AddRoundKey operations.
As these operations are linear they can be interchanged, by first XORing the
data with an equivalent key and applying the MixColumns operation after-
wards. We denote the equivalent subkey for this new round-function description
by: ui = MC−1(ki). We measure memory complexities of our attacks in number
of 128-bit AES blocks and time complexities in terms of AES encryptions.

In the following sections, we use particular structures of messages captured
by Definition 1 and Definition 2.

Definition 1 (δ-set, [11]). Let a δ-set be a set of 256 AES-states that are all
different in one state bytes (the active byte) and all equal in the other state bytes
(the inactive bytes).

Definition 2 (Multisets of bytes). A multiset generalizes the set concept by
allowing elements to appear more than once. Here, a multiset of 256 bytes can
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take as many as
(
28+28−1

28

)
≈ 2506.17 different values. From the point of view of

information theory, we can represent such a multiset on 512 bits.

2.2 Attack Scheme

In this section, we present a unified view of the previously known meet-in-the-
middle (MITM) attacks on AES [12, 15, 18], where n rounds of the block cipher
can be split into three consecutive parts of n1, n2 and n3 rounds, n = n1+n2+n3,
such that a particular set of messages may verify a certain property that we
denote 	 in the sequel in the middle n2 rounds (Figure 2).

n1 rounds n2 rounds n3 rounds

	
Fig. 2. General scheme of the meet-in-the-middle attack on AES, where some messages
in the middle rounds may verify a certain 	 property used to perform the meet-in-
the-middle

The general attack uses three successive steps:

Precomputation phase
1. In this phase, we build a lookup table T containing all the possible

sequences constructed from a δ-set such that one message verifies the 	
property.

Online phase
2. Then, in the online phase, we need to identify a δ-set containing a mes-

sage m verifying the desired property.
3. Finally, we partially decrypt the associated δ-set through the last n3

rounds and check whether it belongs to T .

The two steps of the online phase require to guess some key bytes while the goal
of this attack is to filter some of their values. In the best case, only the right
ones should pass the test.

Demirci and Selçuk Attack. The starting point is to consider the set of func-
tions f : {0, 1}8 → {0, 1}8 that maps a byte of a δ-set to another byte of the
state after four AES rounds. A convenient way is to view f as an ordered byte se-
quence (f(0), . . . , f(255)) so that it can be represented by 256 bytes. The crucial
observation made by the generalizing Gilbert and Minier attack is that this set is
tiny since it can be described using 25 byte-parameters (225·8 = 2200) compared
with the set of all functions of this type which counts as many as 28·2

8

= 22048 el-
ements. Considering the differences (f(0)− f(0), f(1)− f(0), . . . , f(255)− f(0))
rather than values, the set of functions can be described by 24 parameters.
Dunkelman et al. identify these parameters as: the full state x3 of message 0,
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four bytes of state x2 of message 0, four bytes of subkey k3. The four bytes
of the state x2 only depend on the column of z1 where the active byte of the
δ-set is located; for instance, if it is column 0, then those bytes are x2[0, 1, 2, 3].
Similarly, the four bytes of k3 depend on the column of x5 where the byte we
want to determine is located; as an example, if it is column 0, then those bytes
are k3[0, 5, 10, 15].

In their attacks [12], Demirci and Selçuk use the 	 property that does not
filter any message. Consequently, they do not require to identify a particular
message m. The data complexity of their basic attack is very small and around
232. However, since there is no particular property, the size of the table T is very
large and the basic attack only works for the AES-256. To mount an attack
on the AES-192, they consider some time/memory tradeoff. More precisely, the
table T does not contain all the possible states, but only a fraction α. Conse-
quently, a specific δ-set may not be in the table T , so that we have to wait for this
event and redo the attack O(1/α) times on average. The attack becomes prob-
abilistic and the memory requirement makes the attack possible for AES-192.
The consequence of this advanced version of the attack, which also works for
AES-256, is that the amount of data increases a lot. The time and memory
requirement of the precomputation phase is due to the construction of table T
that contains messages for the n2 = 4 middle rounds, which counts as many as
2 8·24 = 2192 ordered sequences of 256 bytes.

Finally, it is possible to remove from each function some output values. Since
we know that these functions can be described by the key of 24 or 32 bytes, one
can reduce T by a factor 10 or 8 by storing only the first differences. Such an
observation has been used by Wei et al. in [24].

Dunkelman et al. Attack. In [15], Dunkelman, Keller and Shamir introduced
two new improvements to further reduce the memory complexity of [12]. The
first one uses multisets, behaving as unordered sequences, and the authors show
that there is still enough information so that the attack succeeds. The second
improvement uses a particular 4-round differential characteristic (Figure 3) to
reduce the size of the precomputed lookup table T , at the expense of trying
more pairs of messages to expect at least one to conform to the truncated char-
acteristic. The main idea of the differential characteristic is to fix the values of
as many state-bytes as possible to a constant. Assume now we have a message

z1

u1

x2 z2

u2

x3 z3

k3

x4 z4

k4

x5

Fig. 3. Truncated differential characteristic used in the middle of the 7-round attacks
on AES. A hatched byte denotes a non-zero difference, whereas a while cell has no
difference.



378 P. Derbez, P.-A. Fouque, and J. Jean

m such that we have a pair (m,m′) that satisfies the whole 7-round differential
characteristic and our goal is to recover the key. Contrary to classical differ-
ential attacks, where the adversary guesses some bytes of the last subkey and
eliminates the wrong guess, the smart idea of Dunkelman et al. is to use a ta-
ble to recover the right key more efficiently. Usually, differential attacks do not
use memory to recover the key or to find the right pair. The attack principle
consists in constructing the δ-set from m which can be made since we already
have to guess some key bytes to check if the pair (m,m′) has followed the right
differential characteristic. Then, the table allows to identify the right key from
the encryption of the δ-set.

It is now easy to see that the differential characteristic can be described using
only 16 bytes. The states x3 and y3 can only take 232 possible differences each,
so that the number of solutions for these two states is 264. We also have the 4
key-bytes of u2 and the 4 key-bytes of k3 corresponding to the active bytes of
Figure 3 in states z2 and x4.

The following Table 1 shows the best cryptanalysis of AES variants, including
our new results detailed in this article.

Table 1. Current cryptanalysis of reduced AES variants in the secret-key model

Version Rounds Data (CP) Time Memory Technique Reference

128

7 2112.2 2117.2 2112.2 ID [20]
7 2106.2 2110.2 290.2 ID [21]
7 2116 2116 2116 MITM [15]
7 2105 299 290 MITM Section 3
7 297 299 298 MITM Section 3
8 288 2125.3 28 Bicliques [8]

10 (full) 288 2126.2 28 Bicliques [8]

192

7 2116 2116 2116 MITM [15]
7 299 299 296 MITM Section 3
8 2113 2172 2129 MITM [15]
8 2113 2172 282 MITM Section 4.1
8 2107 2172 296 MITM Section 4.1
9 280 2188.8 28 Bicliques [8]

12 (full) 280 2189.4 28 Bicliques [8]

256

7 2116 2116 2116 MITM [15]
7 299 298 296 MITM Section 3
8 2113 2196 2129 MITM [15]
8 2113 2196 282 MITM Section 4.1
8 2107 2196 296 MITM Section 4.1
9 2120 2251.9 28 Bicliques [8]
9 2120 2203 2203 MITM Section 4.2

14 (full) 240 2254.4 28 Bicliques [8]
CP: Chosen-plaintext. ID: Impossible Differential. MITM: Meet-in-the-Middle.

3 New Attack on AES

In this section, we describe our basic attack on AES, which is independent of
the key schedule algorithms. We begin in Section 3.1 by describing an efficient
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way to enumerate and store all the possible multisets in the middle that are
used to mount the meet-in-the-middle attack. We continue in Section 3.2 by
applying the general scheme previously described to construct a key-recovery
attack on all AES versions reduced to 7 rounds. Finally, in Section 3.3, we show
that modifying slightly the property for the middle rounds allows to trade some
memory for data and time.

3.1 Efficient Tabulation

As in the previous results, our attack also uses a large memory lookup table
constructed in the precomputation phase, and used in the online phase. Dunkel-
man, Keller and Shamir showed that if a message m belongs to a pair of states
conforming to the truncated differential characteristic of Figure 3, then the mul-
tiset of differences Δx5[0] obtained from the δ−set constructed from m in x1 can
only take 2128 values, because 16 of the 24 parameters used to build the multisets
can take only 264 values instead of 2128. We make the following proposition that
reduces the size of the table by a factor 248.

Proposition 2. If a message m belongs to a pair of states conforming to the
truncated differential characteristic of Figure 3, then the multiset of differences
Δx5[0] obtained from the δ−set constructed from m in x1 can only take 280

values. More precisely, the 24 parameters (which are state bytes of m) can take
only 280 values in that case. Conversely, for each of these 280 values there exists
a tuple (m,m′, k) such that m is set to the chosen value and, the pair (m,m′)
follows the truncated characteristic.

Proof. The proof uses rebound-like arguments borrowed from the hash function
cryptanalysis domain [22]. Let (m,m′) be a right pair. We show in the following
how the knowledge of 10 particular bytes restricts the values of the 24 parameters
used to construct the multisets, namely:

x2[0, 1, 2, 3], x3[0, . . . , 15], x4[0, 5, 10, 15]. (1)

In the sequel, we use the state names mentioned in Figure 1. The 10 bytes

Δz1[0], x2[0, 1, 2, 3], Δw4[0], z4[0, 1, 2, 3]. (2)

can take as many as 280 possible values, and for each of them, we can determine
the values of all the differences shown on Figure 3: linearly in x2, applying the
SBox to reach y2, linearly for x3 and similarly in the other direction starting
from z4.

By the differential property of the AES SBox (Proposition 1), we get on aver-
age one value for each of the 16 bytes of state x31. From the known values around
the two AddRoundKey layers of rounds 3 and 4, this suggests four bytes of
1 In fact, only 264 values of the 10 bytes lead to a solution for x3 but for each value,

there are 216 solutions for x3.
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the equivalent subkey u2 = MC−1(k2) and four others in subkey k3: those are
u2[0], u2[7], u2[10], u2[13] and k3[0], k3[5], k3[10], k3[15]; they are marked by a
bullet (•) in Figure 3.

The converse is now trivial: the only difficulty is to prove that for each value
of the 8 key bytes, there exists a corresponding master key. This actually gives
a chosen-key distinguisher for 7 rounds of AES, as it has been done in [14].

To construct the multiset for each of the 280 possible choice for the 10 bytes
from (2), we consider all the 28− 1 possible values for the difference Δy1[0], and
propagate them until x5. This leads to a multiset of 28− 1 differences in Δx5[0].
Finally, as the AES SBox behaves as a permutation over F256, the sequence in
Δy1[0] allows to derive the sequence in Δx1[0]. Note that in the present case
where there is a single byte of difference between m and m′ in the state x1,
both messages belongs to the same δ-set. This does not hold if we consider more
active bytes as we will see in Section 4. #$

3.2 Simple Attack

Precomputation Phase. In the precomputation phase of the attack, we build
the lookup table that contains the 280 multisets for difference Δx5 by following
the proof of Proposition 2. This step is performed by first iterating on the 280

possible values for the 10 bytes of (2) and for each of them, we deduce the possible
values of the 24 original parameters. Then, for each of them, we construct the
multiset of 28 − 1 differences. Using the differential property of the AES SBox
(Proposition 1), we can count exactly the number of multisets that are computed:

280 ×
(
4× 28 − 1

(28 − 1)2
+ 2× (28 − 1)(27 − 1− 1)

(28 − 1)2

)16

≈ 280.09. (3)

Finally, the lookup table of the 280.09 possible multisets that we simplify to 280

requires about 282 128-bit blocks to be stored. To construct the table, we have
to perform 280 partial encryptions on 256 messages, which we estimate to be
equivalent to 284 encryptions.

Online Phase. The online phase splits into three parts: the first one finds pairs
of messages that conform to the truncated differential characteristic of Figure 3,
which embeds the previous 4-round characteristic in the middle rounds. The
second step uses the found pairs to create a δ-set and test them against the
precomputed table and retrieve the secret key in a final phase.

To generate one pair of messages conforming to the 7-full-round characteristic
where there are only four active bytes in both the plaintext and the ciphertext
differences, we prepare a structure of 232 plaintexts where the diagonal takes all
the possible 232 values, and the remaining 12 bytes are fixed to some constants.
Hence, each of the 232 × (232 − 1)/2 ≈ 263 pairs we can generate satisfies the
plaintext difference. Among the 263 corresponding ciphertext pairs, we expect
263 · 2−96 = 2−33 to verify the truncated difference pattern. Finding one such
pair then requires 233 structures of 232 messages and 232+33 = 265 encryptions
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under the secret key. Using this secret key, the probability that the whole trun-
cated characteristic of Figure 3 is verified is 2−2×3×8 = 2−48 because of the two
4 → 1 transitions in the MixColumns of rounds 0 and 5. By repeating the
previous procedure to find 248 pairs, one is expected to verify the full 7-round
characteristic. All in all, we ask the encryptions of 248+65 = 2113 messages to find
248 pairs of messages. Note that we do not have to examine each pair in order
to find the right one. Indeed, if a pair verifies the full 7-round characteristic,
then the ciphertext difference has only four active bytes. Thus, we can store the
structures in a hash table indexed by the 12 inactive bytes to get the right pairs
in average time of one.

For each of the 248 pairs, we get 28×(8−2×3) ·28 = 224 suggestions for the 9 key
bytes: k−1[0, 5, 10, 15], u5[0] and u6[0, 7, 10, 13]. Indeed, there are 28 possibilities
for the bytes from k−1 since the pair of diagonals in x0 need to be active only in
w0 after the MixColumns operation. Among the 232 possible values for those
bytes, only 232 × 2−24 = 28 verifies the truncated pattern. The same reasoning
applies for u6[0, 7, 10, 13], and the last byte u5[0] can take all the 28 values.

For all 224 possibilities, we construct a δ-set to use the precomputed table. To
do so, we partially decrypt the diagonal of one message, using the four known
bytes from k−1 and consider the 28 − 1 possible non-zero differences for Δx1[0].
This gives one set of 28 plaintexts, whose corresponding ciphertexts may be
partially decrypted using the four known bytes from u6 and the one from u5.
Once decrypted, we can construct the multiset of differences for Δx5 and check
if it lies in the precomputed lookup table. If not, we can discard the subkey with
certainty. On the other hand, the probability for a wrong guess to pass this test
is smaller than 280 · 2−467.6 = 2−387.6 so, as we try 248 · 224 = 272 multisets, only
the right subkey should verify the test. Note that the probability is 2−467.6 (and
not 2−506.17) because the number of ordered sequences associated to a multiset
is not constant.

To evaluate the complexity of the online phase of the simple attack, we count
the number of AES encryptions. First, we ask the encryption of 2113 chosen-
plaintexts, so that the time complexity for that step is already 2113 encryp-
tions. Then, for each of the 248 found pairs, we perform 224 partial encryp-
tions/decryptions of a δ-set. We evaluate the time complexity of this part to
248+24+8 · 2−5 = 275 encryptions since we can do the computations in a good
ordering. All in all, the time complexity is dominated by 2113 encryptions, the
data complexity is 2113 chosen-plaintexts, and the memory complexity is 282

since it requires to store 280 multisets.

3.3 Efficient Attack: New Property 	

Unlike the previous attacks where the bottleneck complexity is the memory, our
attack uses a smaller table which makes the time complexity to find the pairs
the dominating one. Therefore, we would like to decrease the time spent in that
phase. The natural idea is to find a new property 	 for the four middle rounds
that can be checked more efficiently. To do so, we reuse the idea of Dunkelman
et al. from [15], which adds an active byte in the second round of the differential
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ΔP

Δx0 Δz0 Δx1 Δz1 Δx2 Δz2

Δx3 Δz3 Δx4 Δz4 Δx5 Δz5 Δx6 Δz6

ΔC

Fig. 4. Example of a truncated differential characteristic used in the efficient attack
on 7 rounds

characteristic. The sequence of active bytes becomes:

8
R0−→ 2

R1−→ 4
R2−→ 16

R3−→ 4
R4−→ 1

R5−→ 4
R6−→ 16, (4)

with the constraint that the two active bytes of the second round belong to the
same diagonal to be transformed in a column in the next round.

As a consequence, it is now easier to find pairs conforming to that truncated
differential characteristic. Indeed, the size of the structures of plaintexts may take
as many as 264 different values, so that we can construct at most 264·(264−1)/2 =
2127 pairs from each structure. Therefore, it is enough to ask the encryption
of 28·3·3/2127−8·12 = 241 structures to get 272 pairs with the desired output
difference pattern, and expect one to conform to the 7-round characteristic of
Figure 4. Consequently in this new setting, we only need 2105 chosen plaintexts.
In return, the number of pairs that the adversary has to consider is increased
by a factor 224 and so is the time complexity. Furthermore, we now need 11
parameters to generate the 24 parameters of the precomputed table, increasing
the memory requirement by a factor 28. These parameters are the previous
10 ones and the difference in the second active byte of z2. All in all, the time
complexity of this attack is 275+24 = 299 encryptions, the data complexity is 2105
chosen plaintexts and the memory requirement is 282+8 = 290 128-bit blocks.

Note that the time spent on one pair is the same for both the simple attack
and the new one. Indeed, let K be the key bytes needed to construct the multiset.
We suppose that we have a set of pairs such that one follows the differential. To
find it, and incidentally some key-byte values, we proceed as follows: for each
pair (m,m′), enumerate all possible values of K such that (m,m′,K) have a
non-zero probability to follow the differential. For each of them, construct the
corresponding multiset from m or m′. If it belongs to the table, then we expect
that it follows the differential characteristic since the table has been constructed
that way. Otherwise, we know with probability 1 that either the pair (m,m′)
does not satisfy the characteristic, or the guessed value from K is wrong.

Assuming that the bytes of diagonals 0 and 2 of the structure of plaintexts
takes all the values2, the two differences in the first state of the second round
can take four different positions: (0, 10), (1, 11), (2, 8) and (3, 9). Similarly, the
2 Those are bytes 0, 2, 5, 7, 8, 10, 13 and 15.
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position of the active byte in the penultimate round is not constrained; it can
be placed anywhere on the 16 positions. We can also consiser the opposite: one
active byte at the beginning, and two active bytes in the end. These possibilities
actually define tweaked versions of the property 	 and allows to trade some
time for memory: with less data, we can check more tables for the same final
probability of success. Namely, by storing 4×16+

(
4
2

)
×4 = 28 tables to cover all

the cases by adapting the proof of Proposition 2, the encryption of 241/28 = 233

structures of 264 plaintexts suffices to expect a hit in one of the 28 tables. There-
fore, the memory complexity reaches 298 AES blocks and the time complexity
remains unchanged since we analyze 28 times less pairs, but the quantity of work
to check one pair is multiplied by the same factor.

3.4 Turning the Distinguisher into a Key Recovery Attack

In this section, we present an efficient way to turn this distinguisher into a key
recovery attack. First, let us summarize what the adversary has in his possession
at the end of the efficient attack: a pair (m,m′) following the truncated differ-
ential characteristic, a δ-set containing m, the knowledge of 9 key bytes and
the corresponding multiset for which we found a match in the precomputed ta-
ble. Thus, there are still 256, 2120 or 2184 possible keys, if we consider AES-128,
AES-192 or AES-256 respectively. As a consequence, performing an exhaustive
search to find the missing key bytes would drastically increase the complexity
of the whole attack, except for the 128-bit version. Even in that case, it seems
nontrivial to recover the 256 possible keys in less than 296, as the 9 key bytes do
not belong to the same subkey.

A natural way to recover the missing bytes would be to replay the efficient
attack by using different positions for the input and output differences. Unfortu-
nately, this increases the complexity, and it would also interfere with the trade-off
since we could not look for several positions of the differences anymore.

We propose a method that recovers the two last subkeys in a negligible time
compared to the 299 encryptions of the efficient attack. First the adversary
guesses the 11 parameters used to build the table of multisets, computes the
value the corresponding 24 parameters and keeps the only one used to build
the checked multiset. In particular, he obtains the value of the all intermediate
state x3 and one column of x2. As a consequence, and for any position of the
active byte of x5, the Demerci and Selçuk original attack may be performed re-
ally quickly. Indeed, among the 9 (resp. 24) bytes to guess to perform the online
(resp. offline) phase, at least 4 (resp. 20) are already known and the data needed
is also in his possession. Finally, the adversary do this attack for each position
of the active byte of x5 and thus retrieves the two last subkeys.

4 Extension to More Rounds

4.1 8-Round Attacks on AES-192 and AES-256

We can extend the simple attack on the AES presented Section 3.2 to an 8-round
attack for both 192- and 256-bit versions by adding one additional round at the
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P

x0 z0 x1 z1 x2 z2 x3 z3

x4 z4 x5 z5 x6 z6 x7 z7

C

Fig. 5. Scheme of the attack on 8 rounds. Gray bytes are needed to identify a δ-set
and to build the multiset. Black bytes are needed to construct the table. White bytes
are constant for a δ-set. If differences in hashed bytes are null then black bytes can be
derived from the difference in circled bytes.

end. This attack is schematized on Figure 5. The main difficulty compared to
the previous attack is that we cannot apply a first step to the structure to filter
the wrong pairs. Indeed, now for each pair from the structure, there exists at
least one key such that the pair follows the differential characteristic. Then our
goal is to enumerate, for each pair and as fast as possible, the key bytes needed
to identify a δ-set and construct the associated multiset assuming that the pair
is a right one.

The main idea to do so is the following: if there is a single non-zero difference
in a column of a state before (resp. after) the MixColumns operation, then the
difference on same column in the state after (resp. before) can only assume 28−1
values among all the (28−1)4 possible ones. Combining this with the key schedule
equations and to the differential property of the AES SBox (Proposition 1), this
leads to an attack requiring 2113 chosen plaintexts, 282 128-bit blocks of storage
and a time complexity equivalent to 2172 (resp. 2196) encryptions on AES-192
(resp. AES-256).

To reach this time complexity, the position of the output active byte must be
chosen carefully. The position of the input active byte for both the pair and the
δ-set must be identical, as well as the output active byte of the pair and the byte
that is to be checked. Then, the output difference must be located at position
1, 6, 11 or 12 in the case of AES-192. As for the AES-256, it can be located
anywhere, except on bytes 0, 5, 10 and 15. Finally, in both cases, the position
of the input difference does not matter.

Assume that the positions of the input and output active bytes are respectively
0 and 1. In the first stage of the attack, we ask for the encryption of 281 structures
of 232 plaintexts. Then, the following procedure applied on each of the 281 ·
232+31 = 2144 pairs allows to enumerate the 224 possible values for the needed
key bytes in about 224 simple operations for the 192-bit version:

1. (a) Guess the difference in x1[0] then deduce bytes 0, 5, 10 and 15 of k−1.
(b) Store all these values in a hash table T−1 indexed by k−1[15].

2. Guess the difference in z5[13].
3. (a) Guess the difference in z6[3] and z6[6], and deduce the actual values of

the two first columns of x7 and bytes x6[14] and x6[15].
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(b) Deduce u6[3], u6[6] and bytes 0, 1, 4, 7, 10, 11, 13 and 14 of k7 (or u7 if
we do not omit the last MixColumns) and store all these values in a
hash table T7.

4. (a) Similarly, guess the difference in the two other active bytes of z6 and
deduce u6[9], u6[12] and the 8 others bytes of the last subkey.

(b) Retrieve u6[3], u6[6] and bytes 0, 1, 4, 7, 10, 11, 13 and 14 of k7 (resp.
u7) using T7 since u6[3] and u6[6] are linearly dependent of k7 (and also
of u7).

(c) Deduce u5[13] and k−1[15] from k7.
(d) Get bytes 0, 5 and 10 of k−1 using T−1.

The fact we can deduce u5[13], u6[3], u6[6] comes from the following observation.

Proposition 3. By the key schedule of AES-192, knowledge of the subkey k7
allows to linearly deduce columns 0 and 1 of k6 and column 3 of k5.

In contrast, to deduce k−1[15] from k7, we need a more complicated observation
made by Dunkelman et al. in [15].

Proposition 4 (Key bridging, [15]). By the key schedule of AES-192, the
knowledge of columns 0, 1, 3 of the subkey k7 allows to deduce column 3 of the
whitening key k−1.

Note that it is now easy to see why the choice of the input active byte does not
affect the complexity and why only four positions for the output active byte lead
to the minimal complexity.

Finally, for each of the 2144 pairs and for each of the 224 subkeys corresponding
to one pair, the adversary identifies the δ-set and verifies whether the correspond-
ing multiset belongs to the precomputed table. Thus, the time complexity of this
part is equivalent to 2144 · 224 · 28 · 2−4 = 2172 encryptions.

In the case of the 256-bit version, k6 and k7 are independent and the only key
schedule property we can use is the following one.

Proposition 5. By the key schedule of AES-256, knowledge of the subkey k7
allows to linearly deduce columns 1, 2 and 3 of k5.

Then, there are 248 possible values for the required key bytes and a procedure
like the previous one enumerates them in 248 simple operations.

It is possible to save some data in exchange for memory by considering several
differentials in parallel. We can bypass the fact that all the positions for the
output active byte does not lead in the same complexity by performing the
check on y5 instead of x5. This is done by just adding one parameter to the
precomputed table and increases its size by a factor 28. Then, we can look for
all the 4 · 16 = 26 differentials in parallel on the same structure. All in all, the
data complexity and the memory requirement become respectively 2107 chosen
plaintexts and 296 128-bit blocks.
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4.2 9-Round Attack on AES-256

The 8-round attack on AES-256 can be extended to an attack on 9-round by
adding one round right in the middle. This only increases the memory require-
ments: the time and data complexities remain unchanged. More precisely, the
number of parameters needed to construct the precomputed table turns out to
be 24 + 16 = 40, but they can only assume 28×(10+16) = 2208 different values.
All in all, the data complexity of the attack stays at 2113 chosen-plaintexts, the
time complexity remains 2196 encryptions and the memory requirement reaches
about 2210 128-bit blocks. To reduce its complexity, we can cover only a fraction
2−7 of the possible multisets stored in the precomputed table. In return, the
data and time complexities are increased by a factor 27 by replaying the attack
several times. This way, we reach the complexities mentioned in Table 1. This
attack is schematized on Figure 6.

x0 z0 x1 z1 x2 z2 x3 z3 x4

z4 x5 z5 x6 z6 x7 z7 x8 z8

Fig. 6. Scheme of the attack on 9 rounds. Gray bytes are needed to identify a δ-set
and to build the multiset. Black bytes are needed to construct the table. White bytes
are constant for a δ-set. If differences in hashed bytes are null then black bytes can be
derived from the difference in circled bytes.

5 Conclusion
In this article, we have provided improved cryptanalysis of reduced round vari-
ants of all the AES versions in the standard single-key model, where the adversary
wants to recover the secret key. In particular, we present the best attack on 7
rounds of all AES versions that runs in less than 2100 encryptions of chosen-
plaintexts, and an attack on 9 rounds of AES-256 in about 2203 encryptions.
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Abstract. Recently, a number of relations have been established among
previously known statistical attacks on block ciphers. Leander showed
in 2011 that statistical saturation distinguishers are on average equiva-
lent to multidimensional linear distinguishers. Further relations between
these two types of distinguishers and the integral and zero-correlation
distinguishers were established by Bogdanov et al. [6]. Knowledge about
such relations is useful for classification of statistical attacks in order to
determine those that give essentially complementary information about
the security of block ciphers. The purpose of the work presented in this
paper is to explore relations between differential and linear attacks. The
mathematical link between linear and differential attacks was discovered
by Chabaud and Vaudenay already in 1994, but it has never been used
in practice. We will show how to use it for computing accurate estimates
of truncated differential probabilities from accurate estimates of correla-
tions of linear approximations. We demonstrate this method in practice
and give the first instantiation of multiple differential cryptanalysis us-
ing the LLR statistical test on PRESENT. On a more theoretical side,
we establish equivalence between a multidimensional linear distinguisher
and a truncated differential distinguisher, and show that certain zero-
correlation linear distinguishers exist if and only if certain impossible
differentials exist.

Keywords: statistical cryptanalysis, block cipher, key-alternating block
cipher, multiple differential attack, truncated differential, multidimen-
sional linear attack, zero-correlation, impossible differential.

1 Introduction

Block ciphers are used as building blocks for many symmetric cryptographic
primitives for encryption, authentication, pseudo-random number generation,
and hash functions. Security of these primitives is evaluated in regard to known
attacks against block ciphers. Among the different types of attacks, the statistical
ones exploit non-uniform behaviour of the data extracted from the cipher to
find information about the secret key. Linear cryptanalysis [25] and differential
cryptanalysis [4] are the most prominent statistical attacks against block ciphers.
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Recently, a number of relations have been established among some previously
known statistical attacks on block ciphers. Leander [23] observed that the statisti-
cal saturation distinguishers [15] are on average equivalent tomultidimensional lin-
ear distinguishers [20]. Further relations between these two types of distinguishers
and the integral and zero-correlation distinguishers were established by
Bogdanov et al. [6]. The goal of the work presented in this paper is to explore rela-
tions between linear and differential attacks. The strength of linear distinguishers
relies on exceptionally high correlation, or a complete lack of it, while differential
distinguishers are measured based on their probabilities. In the latter case also
impossible differentials can be meaningful. The mathematical link between differ-
ential probability and linear correlation was presented by Chabaud and Vaudenay
already in 1994 [12], but has never been used in practice due to its large compu-
tational complexity. In spite of this link, it is well known that resistance against
differential cryptanalysis does not imply resistance against linear cryptanalysis.
Also examples of the converse situation are known in the classical setting of dis-
tinguishers based on single differentials and single linear approximations [28]. In
this paper, we will see that the situation changes when the distinguishers involve
multiple differentials and linear approximations. Indeed, wewill establish relations
between multidimensional linear distinguishers and truncated differential distin-
guishers, and show, in particular, that existence of a zero-correlation relation is
equivalent to existence of an impossible differential property.

The second major goal of the current paper is to apply the Chabaud-Vaudenay
link in practice. The main motivation is due to the fact that, for some ciphers, it
may be easier to evaluate probabilities of differentials than correlations of linear
approximations, and for some other ciphers, the other way round. The block ci-
pher PRESENT [5] is known to have a clear structure of linear approximations
and their correlations have previously been evaluated accurately in [14] and [23].
On the other hand, the differentials over PRESENT split to numerous differen-
tial trails and their probabilities are hard to evaluate directly using traditional
methods such as branch-and-bound algorithms [26,7] or transition matrices [16].

As computation of the exact formula of the Chabaud-Vaudenay link between
differential probabilities and squared correlations is not feasible, we develop a
method based on theoretical arguments and assumptions to reduce the time
complexity of the computation. The validity of these assumptions is then tested
on a reduced-round version of PRESENT and PUFFIN [13].

Recently, an attack called multiple differential cryptanalysis (MDC) was pro-
posed as an “all-in-one” generalisation of differential cryptanalysis [2,9]. In these
papers, distributions of differences for small block ciphers were evaluated to
provide attacks using LLR and χ2 scoring functions. This model, which im-
proves and generalises differential, truncated differential, and impossible dif-
ferential cryptanalysis methods remained, however, to be completed. To apply
the LLR statistical test to actual block ciphers, cryptanalysts must be able to
provide an upstream evaluation of the differential probabilities [9]. Up to now,
computation of differential probabilities has been challenging for many ciphers.
Given the method described above, we compute accurate estimates of truncated
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differential probabilities and give the first practical instantiation of multiple dif-
ferential cryptanalysis using the LLR statistical test on PRESENT.

The rest of the paper is organised as follows. In Section 2, we first recall the
basic definitions, the link between differential probabilities and linear correla-
tions, and present the theoretical foundations for reducing the time complexity
of using the link in practice. We then establish two new links between linear and
differential cryptanalysis. The first one expresses the capacity of a multidimen-
sional linear approximation in terms of a truncated differential probability, and
the second one shows a relation between zero-correlation approximations and im-
possible differentials. In Section 3 we present the method for computing squared
correlations for key-alternating block ciphers. Section 4 is devoted to the MDC
method, the related LLR test, and its data complexity. In Section 5, parameters,
like time complexity of the computation and time complexity of the MDC are
described. In Section 6 we present the results from practical experiments and
conclude in Section 7.

2 Links between Differential and Linear Cryptanalysis

2.1 Differential Probabilities and Correlations of Linear
Approximations

In differential cryptanalysis [4], the attacker is interested in finding and exploiting
non-uniformity in occurrences of plaintext and ciphertext differences. Given a
vectorial Boolean function F : Fn2 → Fm2 , a differential is a pair (δ,Δ) where
δ ∈ Fn2 and Δ ∈ Fm2 and its probability is defined as

P[δ
F→ Δ] = PX [F (X)⊕ F (X⊕ δ) = Δ] ,

where the probability is taken over the distribution ofX. Throughout this paper,
it will be assumed that X is uniformly distributed in Fn2 in which case

P[δ
F→ Δ] = 2−n#{x ∈ Fn2 |F (x)⊕ F (x⊕ δ) = Δ}.

Linear cryptanalysis [25] uses a linear relation between bits from plaintexts,
corresponding ciphertext and encryption key. Linear relations are expressed as
Boolean functions of the plaintext and the key. The strength of the linear relation
is measured by its correlation.

Let f : Fn2 → F2 be a Boolean function. Its correlation is defined as its
correlation with the all-zero function as

corx(f) = 2−n
[
# {x ∈ Fn2 |f(x) = 0} −# {x ∈ Fn2 |f(x) �= 0}

]
,

where the quantity within brackets can be computed as the Walsh transform of
f evaluated at zero, see e.g. [11].

Given a vectorial Boolean function F : Fn2 → Fm2 we are interested in Boolean
functions f(x) = a · x ⊕ b · F (x) defined by linear relations where a ∈ Fn2 and
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b ∈ Fm2 are called linear input and output masks. Chabaud and Vaudenay showed
that differential probabilities and squared linear correlations are linked to each
other by the Walsh transform.

Theorem 1 ([12]). Let F : Fn2 → Fm2 be a vectorial Boolean function. The
probability of the differential (δ,Δ) over F can be given as

P[δ
F→ Δ] = 2−m

∑
a∈Fn

2

∑
b∈Fm

2

(−1)a·δ⊕b·Δcor2x (a · x⊕ b · F (x)) . (1)

This formula has not been used before to compute differential probabilities of
block cipher in practice. Indeed, the direct application of it would require com-
putation and summing up 2n+m squared correlations where n is the length of
the input and m is the length of the output in bits of the function F . Later
we will see that restricting attention to truncated differentials of a block cipher
would allow us to reduce the size of the output space. Still, the problem with the
large input space remains. Next, let us recall an important result of correlations
of restrictions of Boolean functions.

Theorem 2. Let F : Fs2 × Ft2 → Fm2 be a vectorial Boolean function, and let
xt ∈ Ft2 be uniformly distributed. Then∑
xt∈Ft

2

cor2xs
(a · xs + b · F (xs, xt)) = 2t

∑
c∈Ft

2

cor2xs,xt
(a · xs + c · xt + b · F (xs, xt)) ,

for all a ∈ Fs2 and all b ∈ Fm2 .

This fact appeared in the context of Boolean functions as Lemma 4 of [24],
see also [11], and was named as Fundamental Theorem in [27]. It describes
the underlying principle for computing the average squared linear correlation,
see Theorem 4 below, as well as for demonstrating the existence of the link
between statistical saturation attack and the multidimensional attack [23]. We
will use it now to derive the first result for reducing computations of differential
probabilities according to Formula (1).

In our experiments, we observed that for SPN type block ciphers the number
of active Sboxes at the first round influences the probability of the differen-
tial. Large probabilities can be found only with small number of active S-boxes.
Hence, from the cryptanalyst’s point of view, it seems reasonable to select the
input difference δ to have a small Hamming weight. In such a situation we can
apply Theorem 2 and reduce the space over which the correlations are computed.

Lemma 1. Let Fn2 = Fs2×Ft2 and δ ∈ Fn2 be such that δ = (δs, δt) where δs ∈ Fs2
and δt ∈ Ft2. If δt = 0, then we have, for any fixed b ∈ Fm2 ,∑

a∈Fn
2

(−1)a·δcor2x (a · x⊕ b · F (x))

= 2−t
∑
xt∈Ft

2

∑
as∈Fs

2

(−1)as·δscor2xs
(as · xs ⊕ b · F (xs, xt)),

where x = (xs, xt) ∈ Fs2 × Ft2 and as ∈ Fs2.
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This formula involves restricting the input space artificially by fixing a part of
the input to xt ∈ Ft2, and then taking the average over these fixations. Accord-
ing to our experiments this average can be accurately estimated in practice by
restricting xt to a small subset T of Ft2. How to choose T depends on the spe-
cific structure of the cipher under consideration and will help to reduce the time
computation from 2n to 2s.

2.2 Links between Multidimensional Linear Approximations and
Truncated Differentials

In this section, we present new links between multidimensional linear and trun-
cated differential attacks. A multidimensional linear relation (approximation)
of a vectorial Boolean function is a linear space formed by a number of linear
relations. Without loss of generality, we can assume that the input space and
output space is split into two subspaces so that F : Fs2 × Ft2 → Fq2 × Fr2. Let us
consider linear approximations of the form

(as, 0) · x⊕ (bq, 0) · F (x), as ∈ Fs2, bq ∈ Fq2,

and truncated differentials of the form

(δs, ∗) F→ (Δq, ∗), δs ∈ Fs2, Δq ∈ Fq2,

and define the probability of such a truncated differential as

P((δs, ∗) F→ (Δq , ∗)) = 2−t
∑
δt∈Ft

2

∑
Δr∈Fr

2

P((δs, δt)
F→ (Δq, Δr)).

Then by summing up on both sides of Equation (1) over all δt ∈ Ft2 and Δr ∈ Fr2,
we obtain the following link between truncated differentials and multidimen-
sional linear approximations.

Theorem 3. For all δs ∈ Fs2 and Δq ∈ Fq2 it holds that

P((δs, ∗) F→ (Δq , ∗)) = 2−q
∑
as,bq

(−1)as·δs⊕bq·Δqcor2x((as, 0) · x⊕ (bq, 0) · F (x)).

As an application of this result, let us consider a function, which satisfies an
integral [17], for which some part of the output is uniformly distributed if some
part of the input is fixed to an arbitrary value. One example of such a func-
tion is a three-round Feistel network with a bijective round-function. Another
example is a function formed by three rounds backward or four rounds forward
of the AES encryption function [22,18]. As corollary of Theorem 3 we obtain
the equivalence between such an integral condition and a condition on certain
truncated differentials.

Corollary 1. Let F : Fs2 × Ft2 → Fq2 × Fr2. Then the following are equivalent:
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(i) corxt((bq, 0) · F (xs, xt)) = 0 for all xs ∈ Fs2 and bq ∈ Fq2 \ {0},
(ii) corx((as, 0) · x⊕ (bq, 0) · F (x)) = 0 for all as ∈ Fs2 and bq ∈ Fq2 \ {0},
(iii) P((δs, ∗) F→ (Δq, ∗)) = 2−q for all δs ∈ Fs2 and Δq ∈ Fq2,

(iv) P((0, ∗) F→ (0, ∗)) = 2−q.

Proof. The equivalence of (i) and (ii) follows from Theorem 2. By Theorem 3, (ii)
implies (iii). The implication from (iii) to (iv) is trivial, and finally, (iv) implies
(ii) by Theorem 3.

The first condition means that the distribution of the first q bits of the output
is uniform when taken over a fixed component xs and variable component xt
in the input. Obviously, the conditions of Corollary 1 can hold only if t ≥ q.
In case t = q, we have the following equivalence between zero-correlation linear
approximations and impossible differentials.

Corollary 2. Let F : Fs2 × Ft2 → Ft2 × Fr2 be a vectorial Boolean function. Then
all non-trivial linear relations (as, 0) · x ⊕ (bq, 0) · F (x), as ∈ Fs2, bq ∈ Fq2 \ {0},
have correlation zero if and only if all non-trivial differentials (0, δq)

F→ (0, Δr),
δq ∈ Fq2 \ {0}, Δr ∈ Fr2, are impossible.

3 Key-Alternating Block Cipher

3.1 Linear Correlations

Let EK : Fn2 → Fn2 be a key-alternating block cipher, parametrised by a master
key K, and comprising r′ applications of the round function Rk, parametrised
by the round key k. Let (k0, k1, k2, · · · , kr′) be the round keys derived from the
master key K. Without loss of generality, we assume that the key addition is
the last component of the round function, that is, Rki(x) = R(x) ⊕ ki, for all
i = 1, . . . , r′. Then the block cipher EK is defined as follows

EK(x) = Rkr′ ◦ · · ·Rk2 ◦Rk1(x ⊕ k0).

In the context of last rounds attacks, let us denote by FK the first r rounds of
the cipher. Then EK(x) = Rkr′ ◦ · · · ◦Rkr+1 ◦ FK(x⊕ k0).

By guessing (parts of) the keys kr+1, . . . , kr′ the ciphertext can be (partially)
decrypted over these rounds to achieve (partial) information about output data
of FK . Success of the attacks depends of many criteria. In the context of statis-
tical attack, an evaluation of a non-uniform behaviour of r rounds of the cipher,
allow the attacker to first build a distinguisher that will be used after to mount
the attack.

As shown by Daemen [16] the correlation of a linear approximation
(a · x ⊕ b · FK(x)) can be computed as a sum of key-dependent signed prod-
ucts of correlations of linear approximations that are chained over consecutive
rounds. A chain of masks U = (u0, u1 · · · , ur) ∈ (Fn2 )

r+1
, where ui−1 and ui
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are the input and output masks over R at round i, is called a linear trail. If
k0, · · · , kr are the round keys derived from a fixed master key K, then

corx (a · x⊕ b · FK(x))

=
∑

U ;u0=a;ur=b

(−1)u0·k0⊕···⊕ur ·kr

r−1∏
i=0

corx(ui · x⊕ ui+1 · R(x)). (2)

Success and data complexity estimates in differential cryptanalysis are based on
the average differential probabilities taken over all possible keys. We obtain a
formula for this quantity by application of (1) for F = FK , and then taking the
average of both sides over K. It remains to compute the averages of the squared
correlations. Next we recall the frequently used estimate of average squared cor-
relations. This general form is obtained directly from Formula (2) by squaring
both sides and taking the average over the round keys, or alternatively, by ap-
plication of Theorem 2 by setting y = K and F (x,K) = FK(x). By Ex(F (x))
we denote the average value of F taken over x.

Theorem 4. Using the notation given in this section and assuming that the
round keys k0, . . . , kr are independent and uniformly distributed, we have

Ek0,...,kr

[
cor2x(a · x⊕ b · FK(x))

]
=
∑

U ;u0=u;
ur=w

r−1∏
i=0

cor2x(ui · x⊕ ui+1 ·R(x)). (3)

3.2 Algorithm for Computing Average Squared Correlations

Daemen’s formula (2) describes a way how to compute correlations round by
round using correlation matrices. Similarly, Formula (3) can be implemented as
a product of transition matrices corresponding to squared correlations of linear
approximations over one round of the cipher.

In practice, as all correlations of one round linear approximations cannot be
stored, a selection of the most significant linear approximations must be done,
and only the squared correlations of the selected trails should be stored in the
transition matrix. For instance, in the case of PRESENT, the single-bit linear
trails are dominant, and a sharp estimate of the expected squared correlations
of the cipher can be computed based only on these trails [14,23].

LetΩ be aN×N matrix consisting of the squared correlations of the dominant
one round linear approximations. We denote

Ω[i, j] = Ek

[
cor2x(ui · x⊕ uj · Rk(x))

]
,

where wi, i = 1, . . . , N , are the selected masks and k is the round key. Then by

(3), if z rounds of the cipher with master key K is denoted by R
(z)
kz , we have

Ekz

[
cor2x(wi · x⊕ wj ·R(z)

kz )
]
≈ Ωz [i, j],

where Ωz is the z-th power of the matrix Ω.
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As only the masks corresponding to the most dominant approximations can
be reached using the transition matrix Ω, rounds at the beginning and at the end
should be added to complete the computation of the expected squared correlation
for other input and output masks.

4 Multiple Differential Cryptanalysis

In the context of linear cryptanalysis, generalisations using distribution vectors
and LLR and χ2 statistical tests were provided first by Baignères, Junod and
Vaudenay [3], and more recently, with applications to practical ciphers, by Her-
melin, Cho, Nyberg [19]. For differential cryptanalysis, such multidimensional
extensions appeared not until 2012 [2,9]. In [2], a framework for such attacks
was presented and tested for small block cipher. Cryptanalysis using multiple
differentials on real ciphers, however, requires selection of suitable subsets of
output differences, or grouping them in an appropriate way. In an attack model
called “unbalanced partitioning” [9], a subspace of output differences is taken
into consideration. In this model, the probability distributions involved ordi-
nary differential probabilities, while the “balanced partitioning” model involves
probability distributions of truncated differentials. The latter approach allows
considering information from the whole output space. Advantages and disadvan-
tages of both partitioning functions are discussed in [9]. In this article, we focus
on MDC using balanced partitioning and probability distributions of truncated
differentials, for the simple reason that those can be efficiently computed using
the method of squared correlations.

4.1 Truncated Differentials

Let FK : Fn2 → Fn2 be, as before, r rounds of the block cipher. We aim at
computing the probability distribution of truncated differentials, where the input
difference δ is fixed, and the output differences are truncated and vary over all
possible values. More concretely, let Δ be an output difference in a vector space
V ⊂ Fn2 . Let V̄ be a complementary subspace of V , that is V̄ ⊕ V = Fn2 . Then
SΔ = Δ⊕ V̄ is a truncated output difference and ∪Δ∈V SΔ = Fn2 .

The probability of the truncated differential (δ, SΔ) is defined
1

P
[
δ

F→ SΔ

]
=
∑
γ∈SΔ

P
[
δ

F→ γ
]
= P

[
δ

G→ Δ
]
, (4)

where GK = π ◦ FK and π is a projection from Fn2 to V .
In what follows in this paper, we assume that δ is fixed and Δ takes all

possible values in V . We study the non-uniformity of the distribution vector

p = [P(δ
G→ v)]v∈V , and denote pv = P(δ

G→ v), for v ∈ V . Then

pv =
1

|V | ·
∑
a∈Fn

2

∑
b∈V

(−1)a·δ⊕b·vEK

(
cor2x (a · x⊕ b ·GK(x))

)
. (5)

1 A more general definition is given in section 2.2.
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Using the optimisations given in Lemma 1 and Section 3.2 we can efficiently
compute estimates of the expected values of the squared correlationsEK(cor2x(a·
x ⊕ b · GK(x)), for all a ∈ Fn2 and b ∈ V . In all our experiments we compute
correlations over two rounds “by hand” without the transition matrix at the
beginning and at the end, to obtain the following formula

1

|T |
∑
xt∈T

N∑
i,j=1

cor2xs
(as ·xs ⊕ wi ·R2(xs, xt))Ω

r−4[i, j]cor2x(wj ·x⊕ b·π(R2(x)), (6)

where in the computation of the first correlation x = (xs, xt) ∈ Fs2 × Ft2 and
as ∈ Fs2. Sometimes, depending of the cipher more that two rounds of correlations
can be used before going to selected correlations represented by the matrix Ω.

4.2 LLR Statistical Test and Data Complexity

We adopt the classical model of statistical cryptanalysis and assume that the
Wrong-Key Randomisation Hypothesis holds. It means that for a wrong key
guess the corresponding distribution is assumed to be uniform. We will denote
the uniform distribution vector by θ = [θv]v∈V where each θv = 1

|V | .

When evaluating the security of the cipher or the complexity of a statistical
distinguisher, accurate estimates of the differential probabilities are important.
In [9], the authors studied the complexities of MDC for the LLR and the χ2 dis-
tinguishers. When a good estimate of the expected probabilities is available, then
the LLR distinguisher provides better data and memory complexities than the
one based using χ2 statistics. Nevertheless, it is well known that a small devia-
tion in the estimation of the expected probability distribution will not allow the
construction of a distinguisher using the LLR test. We demonstrate the accuracy
of the estimates computed using Equation (6) by performing simulated attacks
using the LLR distinguisher and by comparing the theoretical and the observed
data complexity. Next we recall results from [3,9] concerning the complexity of
an attack using the LLR statistical test.

Definition 1. Let p = [pv]v∈V be the expected probability distribution vector, θ
the uniform one and qk the observed one for a key candidate k. For a given num-
ber of sample NS, the optimal statistical test consists in comparing the following
statistic to a fixed threshold.

LLR(qk, p, θ)
def
= NS

∑
v∈V

qv log

(
pv
θv

)
.

Definition 2. Let p and p′ be two probability distribution vectors over V . The
relative entropy (aka. Kullback-Leibler divergence) between p and p′ is

D (p||p′) def
=
∑
v∈V

pv log

(
pv
p′v

)
.
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We also define the following metrics

D2 (p||p′) def
=
∑
v∈V

pv log
2

(
pv
p′v

)
, and ΔD (p||p′) def

= D2 (p||p′)−D (p||p′)2 .

Theorem 5. Let a be the advantage (see [31]) of an attack then the data com-
plexity required to reach success probability PS is

N = 2 ·

[√
ΔD (p||θ)Φ−10,1(PS) +

√
ΔD (θ||p)Φ−10,1 (1− 2−a)

]2
[D (p||θ) +D (θ||p)]2

, (7)

where Φ0,1 is the cumulative function of the standard normal distribution.

5 Practical Applications

Computation of the truncated differential probabilities using (6) depends on
the ciphers. To compose the transition matrix, cryptanalyst must identify the
important linear trails of the cipher. We consider this problem for two SPN block
ciphers PRESENT[5] and PUFFIN[13].

5.1 Description of the Ciphers

The block cipher PRESENT is designed as a lightweight primitive which operates
on 64-bit blocks of data. Ciphertexts are obtained after 31 iterations of the round
function. The 16 Sboxes of PRESENT are all identical and are defined as a 4-bit
non-linear permutation. PRESENT is parametrised by a 80-bit or a 128-bit key.
More details on the specification can be found in [5].

The lightweight block cipher PUFFIN was introduced in [13]. It is defined as
a 64-bit SPN block cipher parametrised with a 128-bit key. The round function
as described in [13] is applied 32 times2. The structure of this cipher is similar
to the one of PRESENT. By choosing involution components, the designers aim
at efficient implementation in hardware.
Even if PUFFIN might not be of general interest, we selected it as a reference
cipher for our experiments on PRESENT. As the Sboxes and the linear diffusion
of these ciphers are essentially different, the linear and differential attacks have
different impact on these ciphers. For PRESENT, linear cryptanalysis is more
powerful (26 rounds [14]) than differential cryptanalysis (18 rounds [8,34]). For
PUFFIN, the best linear and differential types of attacks are about equally strong
[10,23]. The observed differences are largely due to the fact that PRESENT has
the particularity of having strong single-bit linear relations over the S-box. The
Sbox of PUFFIN is built in such a way that differences of Hamming weight
one have high probabilities but the single-bit linear relations are not among the
strongest. In our experiments, the transition matrix for PRESENT is composed

2 Later, the same authors propose a new version of this cipher called PUFFIN2 [32].
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of correlations for single-bit masks, while for PUFFIN we use a matrix consisting
of all single-bit and two-bit linear approximations of the Sbox. By this choice
we also aim at showing that the estimation method (6) works also in case when
the single-bit linear trails are not dominant.

5.2 Parameters in Practice

In the context of differential cryptanalysis the attacker builds a distinguisher
over all but a small number of the last rounds of the cipher and wants to recover
information on the subkeys used at these last rounds. As partial decryption
(inversion of some Sboxes) over the last rounds is time consuming, the ratio
between the number of guessed keys and the number of Sbox inversions is often
maximised. With this aim in mind, it is reasonable to choose a projected output
space V which corresponds to a group of active Sboxes in the following round.
Since PRESENT and PUFFIN use 4-bit Sboxes, we conduct experiments with
|V | = 24, 28, 212, 216.

The MDC attack described in Section 4 takes into consideration all cipher-
texts in the computation of the observed probability distributions. Contrary
to classical differential cryptanalysis, there is no sieving, which means that the
time complexity of the attack is always larger than the data complexity [9]. For
instance, for an SPN cipher, where only part of the last round key is guessed
during the attack, the time complexity is of the order of |V | × N , where |V | is
the size of the projected output difference space and N the data complexity as
derived in Theorem 5. As stated in [9], the memory complexity of multiple dif-
ferential attacks using the LLR statistical test is dominated by the storage of the
expected distribution p and the storage of an array of counters for recording the
observed frequencies. When only the last round subkey is guessed, the memory
complexity is then the storage of 2× |V | counters.

5.3 Time Complexity of Computation of Differential Probability

In practice, difficulty of the computation of the truncated differential proba-
bilities using square correlations depends of the structure of the cipher and
of the number of square correlations to compute. Formula (6) shows that for
a fixed truncated differential, this computation can be decomposed into three
steps consisting of computing the correlations over the first rounds, the inter-
mediate rounds and the last rounds. In the case of PRESENT and PUFFIN an
efficient computation of r-round squared correlation can be done using transi-
tional matrices on r− 4 rounds and by adding two rounds at the beginning and
the end. For other ciphers than PRESENT, larger transition matrices should be
taken into consideration. In the case of PUFFIN, computation of the powers of
this matrix remain easy and fast using the two-bit linear trails. Using Lemma 1,
computation for the first two rounds is done by computing the squared corre-
lation over xs ∈ Fs2 for a certain small number of restrictions specified by a set
T of randomly selected xt. Experiments show that the distribution of output
differences is less uniform if the fixed input difference δ is selected such that
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only one Sbox is active. Hence we can choose xs ∈ F4
2. Computation over T = 28

random xt has been seen to be enough for the ciphers studied in this paper. For
the last two rounds, an average over 220 random x, gives also a good estimate
of the squared correlations corx(wj · x⊕ b · π(R2(x)).

If we store values used many times, the time complexity of the computation
of a truncated differential is dominated by the computation of the squared cor-
relations over the first and and last rounds. It corresponds to a small number of
encryptions. Using squared correlations and the transition matrix, computation
of the expected differential probabilities can then be considered as independent of
the number of rounds. In comparison, the complexity of the branch-and-bound
algorithm is exponential in the number of rounds[8]. Hence, the computation
of the truncated probabilities depends only on the size of V . For V = 24 this
computation takes less than one minute on a standard computer.

In Section 4, we motivated why to use truncated differential probabilities in
MDC. Truncated differential probabilities should be computed for all v ∈ V . As
Formula (5) can be decomposed as

pv =
1

|V |
∑
b∈V

(−1)b·v ·
∑
a∈Fn

2

(−1)a·δEK

(
cor2x (a · x⊕ b ·GK(x))

)
,

computation can be done efficiently by storing first the estimates of the sum
over the input mask a computed using Lemma 1, for all b ∈ V . Then all pv,
v ∈ V , can be computed simultaneously using Fast Fourier Transform with time
complexity |V | log |V |.

6 Experiments and Attacks

6.1 Experiments

In this section we describe the experiments done with PRESENT and PUFFIN.
We build an LLR distinguisher using the computed estimates of theoretical prob-
ability distributions over r rounds to attack r+1 rounds of the cipher. These ex-
periments have been conducted in the following order: computation of the square
correlation using transitional matrices, simulation of 100 multiple differential at-
tacks using the LLR statistical test, and comparison between experimental data
complexity and the theoretical one given by Theorem 5.

We conducted experiments on the ciphers PRESENT and PUFFIN with dif-
ferent numbers of rounds, different input differences, and different projected
output spaces V of different sizes. Figure 1 illustrates the accuracy of the theo-
retical estimates in the case of the PRESENT cipher, for different sizes of V and
different numbers of rounds. In this figure, we compare the differences in data
complexity between the theoretical formula of Theorem 5 and the data require-
ments obtained using a mean over 100 simulated attacks. For the experiments
presented in this figure, we selected δ = 0xf00000. The advantage a is equal to 4
for |V | ≥ 28, and equal to 2 for |V | = 24. The numbering of Sboxes corresponds
to the one given in the specification [5]. Results of experiments on PUFFIN are
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Fig. 1. Data complexity of attacks on 9, 10, 11 rounds of PRESENT

given in Appendix A. The obtained results from our simulations of MDC at-
tacks are two-fold. First, it is well known that the LLR statistical test is efficient
only if the analyst can provide a good estimate of the theoretical distribution.
As the results of these experiments presented in Figure 1, 2 are tight, we can
conclude that we were able to provide sufficiently accurate estimates of the dif-
ferential probabilities using Formula (6). Secondly, we show for the first time an
instantiation of an MDC attack on a full block size version of a state-of-the-art
cipher.

6.2 Attacks on PRESENT

In the case of PRESENT with 80-bit key, the time complexity is bounded from
above by 280. If the attack needs the full codebook then the size of the probability
distribution must be less than 216. Different parameters are possible for the at-
tack. As example, we propose an attack over 18 rounds using MDC distinguisher
over 17 rounds. Parameters of this attack, with input difference δ = 0xf00000

and projected output difference space concentrated on Sboxes S5, S9 and S13,
correspond to the ones used in attacks on a reduced-round version of the cipher
(cf. Figure 1 with |V | = 212). Using the full codebook, this attack recovers 6-
bits of the key with a success probability of 85% and has a time complexity of
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Table 1. Parameters of attacks on PRESENT

#rounds Key Length Data Comp. Adv. Success Prob. Time Memory

18 80 264 6 bits 85% 276 + 274 213

18 80 262 2 bits 85% 274 + 278 213

19 128 264 6 bits 85% 2124 + 2122 260

19 128 262 2 bits 85% 2122 + 2126 260

Table 2. Summary of the attacks on PRESENT

#rounds Version Type of attack Data Time Memory Reference

16 80 Differential 264.0 264.0 232.0 [33]

18 80 Multiple Differential 264.0 264.0 232.0 [8]
18 80 Multiple Differential 264.0 264.0 232.0 [34]
18 80 Multiple Differential (LLR) 262 278 213 This paper
19 128 Algebraic Differential 262.0 2113.0 n/r [1]
19 128 Multiple Differential (LLR) 262 2126 260 This paper
24 80 Linear 263.5 240.0 240.0 [30]
24 80 Statistical Saturation 257.0 257.0 232.0 [15]
25 128 Linear 264.0 296.7 240.0 [29]
26 80 Multiple Linear 264.0 272.0 232.0 [14]

276 on which we add the exhaustive search of the 274 remaining keys. Memory
complexity of this attack, is defined by the storage of the expected distribution
vector and the storage of the counter array, and is equal to 213 counters.

For the 128-bit key, partial inversion of the last two rounds is possible. There-
fore using the same distinguisher over 17 rounds, we can propose an attack on
19 rounds. The choices of parameters for this attack are resumed in Table 1.

We conclude that the MDC distinguisher using truncated differentials de-
scribed in this paper is the best distinguisher on PRESENT in the context of
differential cryptanalysis. On the other hand, the key recovery attacks presented
in this paper do not significantly improve over the previous differential attack on
this cipher (18 rounds for both the 80-bit key and the 128-bit key). Best attacks
on PRESENT are summarised in Table 2. We present a comparison between the
attacks in this paper and the ones in [8,34] which are based on simple differen-
tials. Output differences of these simple differential focus on a small number of
Sboxes. In this case, a sieving process can be applied, for both key schedules,
and therefore one can invert two rounds of the cipher. Thus, using a 16-round
distinguisher, 18 rounds can be attacked. In this paper, distribution of output
differences over the the whole output space is taken into consideration. As no
sieve is applied before guessing the key, the time complexity is larger and per-
mits to invert only one round, for the 80-bit key. This explains why using the
17-round distinguisher, we are able to attack only 18 rounds of PRESENT-80
and 19 rounds for PRESENT-128.

Overall, the multiple differential attack presented in this paper corresponds
quite well to the known differential properties of the PRESENT cipher. On the
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other hand, our simulations show that for PUFFIN truncated differentials do
not provide better attacks than simple differential distribution.

7 Conclusion

Relations and dependencies between statistical attacks are of great importance
when analysing the security of primitives based on block ciphers. In this paper,
we extracted new relations between multiple differential and multidimensional
linear distinguishers, and subsequently, between zero-correlation and impossible
differential distinguishers. We used, for the first time, the relation between corre-
lation of linear approximation and differential probability in practice to compute
estimates of truncated differential probabilities of state-of-the-art ciphers from
squared correlations of a selected set of linear approximations. We also derived
a method to reduce the number of correlations needed to be computed, and in
this manner, succeeded to speed up the computation of these correlations to
make the computation possible on a standard computer. Time complexity of
this method is immune to the number of rounds, while for branch-and-bound
algorithm it increases exponentially with the number of rounds.

The method developed in this paper was tested experimentally on the block
ciphers PRESENT and PUFFIN and was further developed to a multiple dif-
ferential attack on PRESENT which improves the best known attack in the
differential context.

An interesting topic left for further research is to instantiate Theorem 3 on
some ciphers and investigate it more closely. In this theorem, the truncated dif-
ferentials and the multidimensional linear approximations occupy disjoint parts
of the cipher, while in the method described in this paper the truncated differ-
entials are located in the areas covered by known strong linear approximations.
Therefore it may lead to essentially different results.

Acknowledgments. We wish to thank Gregor Leander for useful discussions
that led us to discovery of the results presented in Section 2.2. We also wish to
thank the anonymous reviewers for helpful comments.

References

1. Albrecht, M., Cid, C.: Algebraic techniques in differential cryptanalysis. In: Dunkel-
man, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg (2009)

2. Albrecht, M.R., Leander, G.: An All-In-One Approach to Differential Cryptanal-
ysis for Small Block Ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 1–15. Springer, Heidelberg (2013)

3. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)



New Links between Differential and Linear Cryptanalysis 403

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

7. Blondeau, C., Gérard, B.: Links between theoretical and effective differential prob-
abilities: Experiments on PRESENT. In: TOOLS 2010 (2010)

8. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Practice.
In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011)

9. Blondeau, C., Gérard, B., Nyberg, K.: Multiple Differential Cryptanalysis Using
LLR and χ2 Statistics. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 343–360. Springer, Heidelberg (2012)

10. Blondeau, C., Gérard, B.: Differential Cryptanalysis of PUFFIN and PUFFIN2.
In: ECRYPT Workshop on Lightweight Cryptography - LC 2011 (2011)

11. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. Cam-
bridge University Press (to appear)

12. Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

13. Cheng, H., Heys, M., Wang, C.: PUFFIN: A Novel Compact Block Cipher Targeted
to Embedded. In: Fanucci, L. (ed.) DSD 2008, pp. 383–390. IEEE (2008)

14. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

15. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–
210. Springer, Heidelberg (2009)

16. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

17. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

18. Gilbert, H.: An untwisted representation of AES. Early Symmetric Crypto Semi-
nar, Mondorf-les-Bains, Luxemburg (January 2013)

19. Cho, J.Y., Hermelin, M., Nyberg, K.: A new technique for multidimensional linear
cryptanalysis with applications on reduced round serpent. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 383–398. Springer, Heidelberg (2009)

20. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s al-
gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

21. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

22. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

23. Leander, G.: On Linear Hulls, Statistical Saturation Attacks, PRESENT and a
Cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 303–322. Springer, Heidelberg (2011)

24. Linial, N., Mansour, Y., Nisan, N.: Constant Depth Circuits, Fourier Transform,
and Learnability. Journal of the Association for Computing Machinery 40(3), 607–
620 (1993)



404 C. Blondeau and K. Nyberg

25. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

26. Matsui, M.: On Correlation Between the Order of S-boxes and the Strength of
DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375.
Springer, Heidelberg (1995)

27. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

28. Nyberg, K.: S-boxes and round functions with controllable linearity and differential
uniformity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 111–130. Springer,
Heidelberg (1995)

29. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

30. Ohkuma, K.: Weak keys of reduced-round PRESENT for linear cryptanalysis. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 249–265. Springer, Heidelberg (2009)
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A Appendices

Figure 2 presents results of some experiments on a reduced-round version of
PUFFIN. Distribution over r rounds was computed using Formula (6) to simulate
multiple differential attack on r + 1 rounds. Different experiments have been
conducted. In this figure we illustrate the results for the input difference δ = 0x2

and output projected space V concentrated on S3 and S5 (for |V | = 28) and
S3, S5, S9 (for |V | = 212).
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Fig. 2. Data complexity of attacks on 12, 13, 14 rounds of PUFFIN
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Abstract. This paper discusses provable security of two types of cas-
cade encryptions. The first construction CEl, called l-cascade encryption,
is obtained by sequentially composing l blockcipher calls with indepen-
dent keys. The security of CEl has been a longstanding open problem
until Gaži and Maurer [9] proved its security up to 2κ+min{n

2
,κ} query

complexity for large cascading length, where κ and n denote the key size
and the block size of the underlying blockcipher, respectively. We improve

this limit by proving the security of CEl up to 2κ+min{κ,n}− 16
l (

n
2
+2) query

complexity: this bound approaches 2κ+min{κ,n} with increasing cascade
length l.

The second construction XCEl is a natural cascade version of the
DESX scheme with intermediate keys xored between blockcipher calls.
This can also be viewed as an extension of double XOR-cascade pro-
posed by Gaži and Tessaro [10]. We prove that XCEl is secure up to

2κ+n− 8
l (

n
2
+2) query complexity. As cascade length l increases, this bound

approaches 2κ+n.
In the ideal cipher model, one can obtain all the evaluations of the

underlying blockcipher by making 2κ+n queries, so the (κ+n)-bit security
becomes the maximum that key-length extension based on a single κ-bit
key n-bit blockcipher is able to achieve. Cascade encryptions CEl (with
n ≤ κ) and XCEl provide almost optimal security with large cascade
length.

1 Introduction

The key length of a blockcipher, say κ, is a crucial factor that limits its achievable
security level: no matter how carefully designed, one can recover its secret key
simply by trying all possible 2κ keys. For example, the Data Encryption Standard
(DES) [1] using 56-bit keys was one of the most predominant algorithms for
encryption of data. No feasible attacks faster than a brute-force attack have
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been proposed (as most of them require a huge amount of data), while advances
in computational power made a brute-force attack itself practical. As a result,
DES was replaced by a new standard algorithm AES [4]. On the other hand, in
order to protect legacy applications based on DES, there have been considerable
research on constructing DES-based encryption schemes which employ longer
keys. This approach is called key-length extension, for which Triple-DES [2,3,5]
and DESX (due to Rivest) are the most popular constructions.

The Triple-DES approach transforms a κ-bit key n-bit blockcipher E into an
encryption scheme that accepts three κ-bit keys k1, k2, k3 ∈ {0, 1}κ and encrypts
an n-bit message block u as v = Ek3(Ek2(Ek1 (u))). Bellare and Rogaway [6]

proved its security up to 2κ+
min{n,κ}

2 query complexity assuming E is an ideal
blockcipher. The triple encryption can be naturally extended to sequentially
composing more than three blockcipher calls with independent keys. It has been
a longstanding open problem if the security of cascade encryption improves with
increasing cascade length. Recently, Gaži and Maurer [9] partially answered this
question by showing the security bound (in terms of the threshold number of
queries) approaches roughly the value 2κ+min{n

2 ,κ}. In this paper, we will revisit
this question.

The DESX approach transforms a κ-bit key n-bit blockcipher E into an
encryption scheme that accepts a κ-bit key k ∈ {0, 1}κ and additional n-bit
whitening keys ki, ko ∈ {0, 1}n and encrypts an n-bit message block u as v =

ko ⊕ Ek(ki ⊕ u). Killan and Rogaway [13] proved its security up to 2
κ+n

2 query
complexity. As an efficient key-length extension, Gaži and Tessaro [10] proposed
a cascade of two DESX schemes with some refinement, and proved its security
up to 2κ+

n
2 query complexity.

Our Contribution. Since one can obtain all the evaluations of a κ-bit key
n-bit blockcipher by making 2κ+n queries, the (κ+ n)-bit security becomes the
maximum that key-length extension based on a single κ-bit key n-bit blockcipher
is able to achieve: a standard brute-force attack of 2κ+n query complexity is given
in Appendix A.

Therefore it is natural to ask if there is key-length extension with the optimal
(κ + n)-bit security. In order to answer this question, we consider two types
of cascade encryptions. The first construction is a regular cascade encryption.
Formally, l-cascade encryption CEl accepts an lκ-bit key k = (k1, . . . , kl) ∈
({0, 1}κ)l and encrypts a plaintext u ∈ {0, 1}n by computing

v = CElk[E](u) = Ekl
◦ Ekl−1

◦ · · · ◦ Ek2 ◦ Ek1(u).

In this paper, we prove that CEl is pseudorandom up to 2κ+min{κ,n}− 16
l (

n
2 +2)

query complexity (ignoring log factor). As cascade length l increases, this bound
approaches 2κ+min{κ,n}, improving the limit 2κ+min{n

2 ,κ} given by Gaži and Mau-
rer when n

2 < κ.
The second construction can be viewed as a cascade of DESX: l-xor-

cascade encryption XCEl accepts an (lκ+ (l + 1)n)-bit key (k, z) ∈ ({0, 1}κ)l ×
({0, 1}n)l+1

and for
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k = (k1, . . . , kl) ∈ ({0, 1}κ)l and z = (z0, . . . , zl) ∈ ({0, 1}n)l+1
,

encrypts a plaintext u ∈ {0, 1}n by computing

v = XCElk,z[E](u) = ⊕zl ◦ Ekl
◦ ⊕zl−1

◦ · · · ◦ ⊕z1 ◦ Ek1 ◦ ⊕z0(u),

where for z ∈ {0, 1}n, ⊕z denotes the mapping x �→ x ⊕ z from {0, 1}n to

itself. We prove the security of XCEl up to 2κ+n− 8
l (

n
2 +2) query complexity. With

increasing cascade length, this bound approaches 2κ+n. So XCEl asymptotically
provides optimal security with large cascade length, and this observation also
applies to cascade encryption CEl if n ≤ κ (as in the case of DES and AES). See
Figure 1 for pictorial representation of CEl and XCEl.

(a) l-cascade encryption CEl (b) l-xor-cascade encryption XCEl

Fig. 1. Two types of cascade encryptions

Proof Techniques. We will use a combinatorial framework that lifts the
NCPA-security of l/2-cascade construction to the CPA security of l-cascade
construction. Maurer, Pietrzak, and Renner [15] proved that if two independent
encryption schemes F and G are NCPA-secure, then F ◦ G−1 is CPA-secure.
Combinatorial interpretation of this property, based on Lemma 2, was first in-
troduced in [14], where the key-alternating cipher of t rounds is viewed as a
composition of two independent key-alternating cipher of t/2 rounds, and the
NCPA-security of each component is analyzed. A similar approach can be ap-
plied to our constructions, while a difficulty comes from the fact that the two
components are commonly based on a single blockcipher. We address this prob-
lem by using random key space separation: randomly partition a key space into
two subspaces of the same size and make the first l/2 blockcipher calls use keys
from one key subspace and the last l/2 calls from the other. The modified key
sampling process is shown to be indistinguishable from the original one, while
by having the two components use their keys from separate key subspaces, we
can view a cascade encryption as a composition of two independent ones.

The NCPA-security of each component is proved by coupling technique. Since
first introduced by Mironov [16] in a cryptographic context and recently revisited
by Morris, Rogaway and Stegers [17] to analyze the security of maximally un-
balanced Feistel networks, it became a powerful tool used for the security proof
of various types of iterated constructions including generalized Feistel networks,
shuffling-based encryption schemes and key-alternating ciphers [14,11,12]. Care-
ful definition and analysis of a coupling, given in the proof of Lemma 5, is the
core of our security proof.
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Other Related Work. Recently, Gaži [8] presented a distinguishing attack

on cascade encryption of odd (resp. even) length l using roughly 2κ+
l−1
l+1n (resp.

2κ+
l−2
l n) queries. For xor-cascade encryption of length l (and its generalization), a

distinguishing attack of 2κ+
l−1
l n query complexity is presented. In the random sys-

tem framework, the security of xor-cascade encryption of odd (resp. even) length

l is proved up to 2κ+
l−1
l+1n (resp. 2κ+

l−2
l n) query complexity, and especially up to

2κ+
l−1
l n query complexity for l ∈ {3, 4}. These lower bounds are tighter than ours.

2 Preliminaries

2.1 General Notation

For an integer n ≥ 1, let In = {0, 1}n be the set of binary strings of length
n. The set of all permutations on In will be denoted Pn. We will usually write
N = 2n.

For a set T and an integer s ≥ 1, T ∗s denotes the set of all sequences that
consists of s pairwise distinct elements of T . For integers 1 ≤ s ≤ t, we will write
(t)s = t(t− 1) · · · (t− s+ 1). If |T | = t, then (t)s becomes the size of T ∗s.

2.2 The Ideal Cipher Model

A blockcipher is a function family E : K × {0, 1}n → {0, 1}n such that for all
k ∈ K the mapping E(k, ·) is a permutation on In. We write BC(K, n) to mean
the set of all such blockciphers, shortening to BC(κ, n) when K = {0, 1}κ. In
the ideal cipher model, a blockcipher E is chosen from BC(K, n) uniformly at
random. It allows for two types of oracle queries E(k, x) and E−1(k, y) for x, y ∈
{0, 1}n and k ∈ K.1 The response to an inverse query E−1(k, y) is x ∈ {0, 1}n
such that E(k, x) = y.

2.3 Indistinguishability

Let C ∈ {CEl,XCEl} be an n-bit encryption scheme that employs λ-bit keys
and makes oracle queries to a blockcipher E ∈ BC(κ, n). So each key k ∈
{0, 1}λ and a blockcipher E ∈ BC(κ, n) define a permutation Ck[E] on In.
In the indistinguishability framework (in the ideal cipher model), Ck[E] uses a
random secret key k and makes oracle queries to an ideal blockcipher E, while
a permutation P is chosen uniformly at random from Pn. A distinguisher A
would like to tell apart two worlds (Ck[E], E) and (P,E) by adaptively making
forward and backward queries to the permutation and the blockcipher. Formally,
A’s distinguishing advantage is defined by

AdvPRP
C (A) = Pr

[
P

$← Pn, E
$← BC(κ, n) : A[P,E] = 1

]
−Pr

[
k

$← {0, 1}λ, E $← BC(κ, n) : A[Ck[E], E] = 1
]
.

1 We interchangeably use both representations E(k, x) and Ek(x), and similarly
E−1(k, y) and E−1

k (y).
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For q1, q2 > 0, we define

AdvPRP
C (q1, q2) = max

A
AdvPRP

C (A),

where the maximum is taken over all adversaries A making at most q1 queries
to the outer permutation and at most q2 queries to the underlying blockcipher.

Combinatorial Framework. We assume that a distinguisher A making q1
forward and/or backward queries to the permutation oracle records a query
history

Q1 = (ui, vi)1≤i≤q1 ,

where (ui, vi) represents the evaluation obtained by the i-th query to the permu-
tation oracle. So according to the instantiation, it implies either Ck[E](ui) = vi

or P (ui) = vi. By making q2 queries to the underlying blockcipher E, A also
records the second query history

Q2 = (xi, ki, yi)1≤i≤q2 ,

where (xi, ki, yi) represents the evaluation E(ki, xi) = yi obtained by the i-th
query to the blockcipher. The pair of the query histories

T = (Q1,Q2)

is called the transcript of the attack; it contains all the information that A has
obtained at the end of the attack. In this work, we will only consider information
theoretic distinguishers. Therefore we can assume that a distinguisher is deter-
ministic without making any redundant queries, and hence the output of A can
be regarded as a function of T , denoted A(T ) or A(Q1,Q2).

If a permutation Ck[E](resp. P ) is consistent with Q1, i.e., Ck[E](ui) =
vi(resp. P (ui) = vi) for every i = 1, . . . , q1, then we will write Ck[E] - Q1(resp.
P - Q1). Similarly, if a blockcipher E ∈ BC(κ, n) is consistent with Q2 (i.e.,
E(ki, xi) = yi for i = 1, . . . , q2), then we will write E - Q2. Using these nota-
tions, we have

AdvPRP
C (A) =

∑
A(Q1,Q2)=1

Pr
[
P

$← Pn, E
$← BC(κ, n) : P - Q1 ∧ E - Q2

]
−

∑
A(Q1,Q2)=1

Pr
[
k

$← {0, 1}λ, E $← BC(κ, n) : Ck[E] - Q1 ∧ E - Q2

]
, (1)

where the sum is taken over all the possible transcripts T = (Q1,Q2) such that
A(Q1,Q2) = 1.2

2 Here we only consider “valid” transcripts that A might produce by communicating
with a permutation P ∈ Pn and a blockcpher E ∈ BC(κ, n). For example, in a valid
transcript T = (Q1,Q2), (x, y) and (x′, y) with x �= x′ could not be both contained
in Q1.
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2.4 Coupling Technique

Given a finite event space Ω and two probability distributions μ and ν defined
on Ω, the total variation distance between μ and ν, denoted ‖μ− ν‖, is defined
as

‖μ− ν‖ = 1

2

∑
x∈Ω

|μ(x)− ν(x)|.

The following definitions are also all equivalent.

‖μ− ν‖ = max
S⊂Ω

{μ(S)− ν(S)} = max
S⊂Ω

{ν(S)− μ(S)} = max
S⊂Ω

{|μ(S)− ν(S)|}.

A coupling of μ and ν is a distribution τ on Ω × Ω such that for all x ∈ Ω,∑
y∈Ω τ(x, y) = μ(x) and for all y ∈ Ω,

∑
x∈Ω τ(x, y) = ν(x). In other words, τ

is a joint distribution whose marginal distributions are respectively μ and ν. We
will use the following two lemmas in subsequent security proofs.

Lemma 1. Let μ and ν be probability distributions on a finite event space Ω,
let τ be a coupling of μ and ν, and let (X,Y ) be a random variable sampled
according to distribution τ . Then ‖μ− ν‖ ≤ Pr[X �= Y ].

Lemma 2. Let Ω be some finite event space and ν be the uniform probability
distribution on Ω. Let μ be a probability distribution on Ω such that ‖μ−ν‖ ≤ ε.
Then there is a set S ⊂ Ω such that

1. |S| ≥ (1−
√
ε)|Ω|,

2. μ(x) ≥ (1−
√
ε)ν(x) for every x ∈ S.

The proof of the above lemmas is given in [14]. For completeness, we include the
same proof in Appendix B.

3 Security Proofs

In the security proof of cascade encryption CEl, we will assume that for any x,
y ∈ In, there are at most β keys k such that (x, k, y) ∈ Q2. Define the weight of
Q2 by

ω(Q2) = max
x,y∈In

|{k : (x, k, y) ∈ Q2}| .

Then we have

Pr
[
E

$← BC(κ, n) : ω(Q2) > β
]
≤ 22n−β (2)

for any β ≥ e2κ−n+1. Note that a distinguisher A is deterministic, so once
E is chosen then Q2, and hence ω(Q2) is uniquely determined. This bound has
already been used in [6,9], while for completeness we give a proof in Appendix C.
With this probabilistic restriction, the security proof of cascade encryption CEl

will use the following lemma.
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Lemma 3. Let δ > 0 and β ≥ e2κ−n+1. Assume that for any transcript
T = (Q1,Q2) such that |Q1| = q1, |Q2| = q2 and ω(Q2) ≤ β, we have

p1(Q1|Q2) ≥ (1− δ)p2(Q1|Q2),

where

p1(Q1|Q2) = Pr

[
k

$← I lκ, E
$← BC(κ, n) : CElk[E] - Q1 |E - Q2

]
,

p2(Q1|Q2) = Pr

[
P

$← Pn, E
$← BC(κ, n) : P - Q1 |E - Q2

]
= 1/(N)q1 .

Then we have
AdvPRP

CEl (A) ≤ δ + 22n−β.

Proof. For a transcript T = (Q1,Q2), define

p(Q2) = Pr
[
E

$← BC(κ, n) : E - Q2

]
,

p1(Q1,Q2) = Pr
[
k

$← I lκ, E
$← BC(κ, n) : CElk[E] - Q1 ∧ E - Q2

]
= p1(Q1|Q2)p(Q2),

p2(Q1,Q2) = Pr
[
P

$← Pn, E
$← BC(κ, n) : P - Q1 ∧ E - Q2

]
= p2(Q1|Q2)p(Q2).

Then by (1) and (2), we have

AdvPRP
CEl (A) =

∑
A(Q1,Q2)=1

p2(Q1,Q2)−
∑

A(Q1,Q2)=1

p1(Q1,Q2)

=
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2)−
∑

A(Q1,Q2)=1
ω(Q2)≤β

p1(Q1|Q2)p(Q2)

+
∑

A(Q1,Q2)=1
ω(Q2)>β

p2(Q1,Q2)−
∑

A(Q1,Q2)=1
ω(Q2)>β

p1(Q1,Q2)

≤
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2)−
∑

A(Q1,Q2)=1
ω(Q2)≤β

p1(Q1|Q2)p(Q2) +
∑

ω(Q2)>β

p2(Q2)

≤
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2)− (1− δ)
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1|Q2)p(Q2) + 22n−β

≤ δ
∑

A(Q1,Q2)=1
ω(Q2)≤β

p2(Q1,Q2) + 22n−β ≤ δ + 22n−β . ��

In the security proof of xor-cascade encryption XCEl, we put no restriction on
the weight of Q2. In this case, we can use the following lemma whose proof is
similar as Lemma 3. (We might simply apply β =∞ to Lemma 3.)
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Lemma 4. Let δ > 0. Assume that for any transcript T = (Q1,Q2) such that
|Q1| = q1 and |Q2| = q2, we have

p1(Q1|Q2) ≥ (1− δ)p2(Q1|Q2),

where

p1(Q1|Q2) = Pr

[
k

$← I lκ, z
$← I l+1

n , E
$← BC(κ, n) : XCElk,z[E] - Q1 |E - Q2

]
,

p2(Q1|Q2) = Pr

[
P

$← Pn, E
$← BC(κ, n) : P - Q1 |E - Q2

]
= 1/(N)q1 .

Then we have
AdvPRP

XCEl(q1, q2) ≤ δ.

3.1 Security of Cascade Encryption

In this section, we analyze the security of cascade encryption CEl for even length
l = 2d. We begin with slightly modifying the key sampling process of CEl.
Consider the following three key sampling processes.

A: Choose k ∈ I lκ uniformly at random.
B: Choose k ∈ (Iκ)

∗l uniformly at random.
C: Randomly partition T1 ∪ T2 = Iκ so that |T1| = |T2|, choose k′ ∈ (T1)

∗d and
k′′ ∈ (T2)

∗d uniformly at random, and then define k = (k′,k′′).

One can distinguish sampling processes A and B with advantage at most(
l

2

)
1

2κ
≤ l2

2κ+1
. (3)

On the other hand, sampling processes B and C have exactly the same proba-
bility distribution. (See Appendix D for the proof.) Taking into account (3), we
will analyze the security of

CElk[E] = CEdk′′ [E] ◦ CEdk′ [E],

where k, k′ and k′′ are defined by key sampling process C instead of the original
process A.

If CElk[E] - Q1 for a query history Q1 = (ui, vi)1≤i≤q1 , then it follows that

CEdk′ [E] - (ui, wi)1≤i≤q1 and CEdk′′ [E] - (wi, vi)1≤i≤q1 ,

for some w = (wi)1≤i≤q1 ∈ (In)
∗q1 . Therefore for a transcript T = (Q1,Q2), we

have

p1(Q1|Q2) =
∑
w∈Ω

Pr[T1
$← P2κ−1(Iκ),k

′ $← (T1)
∗d,k′′

$← (T2)
∗d,

E
$← BC(κ, n) : CEdk′ [E] - (ui, wi) ∧ CEdk′′ [E] - (wi, vi) |E - Q2],
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where Ω = (In)
∗q1 , P2κ−1(Iκ) is the set of all subsets of Iκ of size 2κ−1, and

T2 = Iκ\T1.
Given a partition (T1, T2) of Iκ, a blockcipher E ∈ BC(κ, n) is naturally

partitioned into two blockciphers E′ ∈ BC(T1, n) and E
′′ ∈ BC(T2, n), and vice

versa. Given a query history Q2 for E, then this partition also induces two query
histories Q′2 for E′ and Q′′2 for E′′. Namely, for Q2 = (xi, ki, yi)1≤i≤q2 , Q′2 =
(xi, ki, yi)1≤i≤q2,ki∈T1

and Q′′2 = (xi, ki, yi)1≤i≤q2,ki∈T2
. With these notations,

we have

Pr[T1
$← P2κ−1(Iκ),k

′ $← (T1)
∗d,k′′ $← (T2)

∗d, E
$← BC(κ, n) :

CEd
k′ [E] � (ui, wi) ∧ CEd

k′′ [E] � (wi, vi) |E � Q2]

=
1(
2κ

2κ−1

) ∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

Pr[k′ $← (T1)
∗d,k′′ $← (T2)

∗d, E′ $← BC(T1, n),

E′′ $← BC(T2, n) : CE
d
k′ [E′] � (ui, wi) ∧ CEd

k′′ [E′′] � (wi, vi) |E′ � Q′
2 ∧E′′ � Q′′

2],

and hence

p1(Q1|Q2) =
1( 2κ

2κ−1

) ∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

∑
w∈Ω

Pr[k′ $← (T1)
∗d,k′′ $← (T2)

∗d, E′ $← BC(T1, n),

E′′ $← BC(T2, n) : CEd
k′ [E

′] � (ui, wi) ∧ CEd
k′′ [E

′′] � (wi, vi) |E′ � Q′
2 ∧ E′′ � Q′′

2],

where

∑
w∈Ω

Pr[k′ $← (T1)
∗d,k′′

$← (T2)
∗d, E′

$← BC(T1, n), E
′′ $← BC(T2, n) :

CEdk′ [E′] - (ui, wi) ∧ CEdk′′ [E′′] - (wi, vi) |E′ - Q′2 ∧ E′′ - Q′′2]
=
∑
w∈Ω

Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CE
d
k[E] - (ui, wi) |E - Q′2]

×Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CE
d
k[E] - (wi, vi) |E - Q′′2]. (4)

In order to upper bound each factor of the products appearing in (4), we fix
a query history Q2 = (xi, ki, yi)1≤i≤q′ such that q′ ≤ q2 and ω(Q2) ≤ β, and
define a probability distribution μs for each s = (si)1≤i≤q1 ∈ Ω, where for each
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w = (wi)1≤i≤q1 ∈ Ω,

μs(w) = Pr

[
k

$← (Iκ)
∗d, E

$← BC(κ, n) : CEdk[E] - (si, wi)1≤i≤q1 |E - Q2

]
.

Using the coupling technique, we can upper bound the statistical distance be-
tween μs and the uniform probability distribution. The proof will be given at
the end of this section.

Lemma 5. Let d be even, let μs be the probability distribution defined as above,
and let ν be the uniform probability distribution on Ω. Then for M > 0, we have
‖μs − ν‖ ≤ ε, where

ε = q1

(
2q2

M(2κ − d)
+

2Mβ

2κ − d
+

2M

N −M

) d
2

.

Applying Lemma 5 with s = u = (ui)1≤i≤q1 , Q2 = Q′2 and

μu(w) = Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CE
d
k[E] - (ui, wi) |E - Q′2],

and using Lemma 2, we have a subset S1 ⊂ Ω such that |S1| ≥ (1−
√
ε)|Ω| and

Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CE
d
k[E] - (ui, wi) |E - Q′2]

≥ (1−
√
ε)ν(w) =

1−
√
ε

(N)q1

for every w ∈ S1, where

ε = q1

(
2q2

M(2κ−1 − d)
+

2Mβ

2κ−1 − d
+

2M

N −M

) d
2

.

Here BC(T1, n) is viewed as equivalent to BC(κ− 1, n).
For Q′′2 , define Q′′′2 where (x, k, y) ∈ Q′′2 if and only if (y, k, x) ∈ Q′′′2 . Again,

applying Lemma 5 with s = v = (vi)1≤i≤q1 , Q2 = Q′′′2 and

μv(w) = Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CE
d
k[E] - (vi, wi) |E - Q′′′2 ]

= Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CE
d
k[E] - (wi, vi) |E - Q′′2],

we have a subset S2 ⊂ Ω such that |S2| ≥ (1−
√
ε)|Ω| and

Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CE
d
k[E] - (wi, vi) |E - Q′′2]

≥ (1−
√
ε)ν(w) =

1−
√
ε

(N)q1
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for every w ∈ S2. Let S = S1 ∩ S2. Since |S| ≥ (1− 2
√
ε)|Ω|, it follows that

∑
w∈Ω

Pr[k $← (T1)
∗d, E

$← BC(T1, n) : CE
d
k[E] - (ui, wi) |E - Q′2]

×Pr[k $← (T2)
∗d, E

$← BC(T2, n) : CE
d
k[E] - (wi, vi) |E - Q′′2]

≥ (1− 2
√
ε)|Ω| ·

(
1−√ε
(N)q1

)2

≥ (1− 4
√
ε)p2(Q1|Q2).

Therefore we have

p1(Q1|Q2) ≥
1(
2κ

2κ−1

) ∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

(1− 4
√
ε)p2(Q1|Q2)

= (1 − 4
√
ε)p2(Q1|Q2). (5)

By (3), (5) and Lemma 3, we have the following theorem.

Theorem 1. Let CEl be an l-cascade encryption scheme using a κ-bit key n-bit
blockcipher. If l = 2d and d is even, then for M > 0 and β ≥ e2κ−n,

AdvPRP
CEl (q1, q2) ≤

l2

2κ+1
+4q

1
2
1

(
2q2

M(2κ−1 − d)
+

2Mβ

2κ−1 − d
+

2M

N −M

) d
4

+22n−β.

Optimizing parameters. Let β ≥ max{3n, e2κ−n}. Then 3n ≤ β, and hence

22n−β ≤ 1/2n. Let M =
√

q2
β by solving 2q2

M(2κ−1−d) = 2Mβ
2κ−1−d . Then for q2 ≤

2κ+n, M ≤
√

2κ+n

e2κ−n ≤ N√
e
and hence

1

N −M
≤
(
1− 1√

e

)−1
1

N
≤ e

N
.

This implies

2M

N −M
≤ 2M · e2κ−n

2κ
≤ 2Mβ

2κ−1 − d

(
=

4Mβ

2κ − l

)
.

Using this inequality, the upper bound of Theorem 1 is simplified as follows.

Corollary 1. Let CEl be an l-cascade encryption scheme using a κ-bit key n-bit
blockcipher. If l is a multiple of 4, then for β ≥ max{3n, e2κ−n},

AdvPRP
CEl (q1, q2) ≤

l2

2κ+1
+ 4q

1
2
1

(
12
√
βq2

2κ − l

) l
8

+
1

2n
.
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Interpretation. Assuming that l2/2κ+1 and 1/2n are negligible, focus on the
second term of the above upper bound. If we set q1 = 2n to the maximum
number of queries to the outer permutation and approximate 2κ − l ≈ 2κ, then
the distinguishing advantage becomes negligible when

q2 �
22κ−

16
l (n

2 +2)

144β
≤ min

{
22κ−

16
l (n

2 +2)

432n
,
2κ+n− 16

l (n
2 +2)

144e

}
.

Alternatively, let q2 = min
{

22κ

432n ,
2κ+n

144e

}
. Then the second term is upper bounded

by 2
n
2 +2− l

8 , approaching zero as the length l increases.

Proof of Lemma 5. Fix s = (si)1≤i≤q1 and form = 0, . . . , q1, define probability
distributions πm where for each w = (w1, . . . , wq1 ) ∈ Ω,

πm(w) = Pr[(um+1, . . . , uq1)
$← (In\{s1, . . . , sm})∗(q1−m),k

$← (Iκ)
∗d,

E
$← BC(κ, n) : CEdk[E] - (si, wi)1≤i≤m∧CEdk[E] - (ui, wi)m+1≤i≤q1 |E - Q2].

Then we can check that π0 = ν and πq1 = μs. Since

‖μs − ν‖ ≤
q1−1∑
m=0

‖πm+1 − πm‖, (6)

we will focus on upper bounding ‖πm+1 − πm‖ for each m = 0, . . . , q1 − 1. In
order to couple πm+1 and πm, we will define a random variable (T, V ) on Ω×Ω
by the sampling process described in Figure 2. In this description,

D(k) = {x ∈ In : (x, k, y) ∈ Q2 for some y},
R(k) = {y ∈ In : (x, k, y) ∈ Q2 for some x},

for each key k ∈ Iκ. So they denote the domain points and the range points of
the evaluations of E(k, ·) determined by Q2, respectively.

In lines 1 to 4, the first m + 1 elements are initialized. They are updated
in lines 5 to 23 along cascade encryption. Specifically, the first m elements are
faithfully updated in lines 7 to 11, while the (m + 1)-th element is updated in
lines 12 to 23 according to four conditions. The last q1 −m− 1 elements of the
output are determined in lines 24 to 29 without any update process.
As for this random variable, we point out some noteworthy properties.

1. In any case, the first m elements of T and V are equal.
2. If t[d] = v[d], then T = V at the end of the experiment.
3. By ignoring the steps used to sample V , we obtain the process for sampling

T as described in Figure 3(a). Similarly, we obtain the process for sampling
V as described in Figure 3(b). We can check that T and V follow probability
distributions πm+1 and πm, respectively.
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1: for i← 1 to m do
2: wi[0] ← si

3: t[0]← sm+1

4: v[0]
$← In\{s1, . . . , sm}

5: for j ← 1 to d do

6: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

7: for i← 1 to m do
8: if wi[j − 1] ∈ D(k[j]) then
9: wi[j] ← E(k[j], wi[j − 1])
10: else if wi[j − 1] /∈ D(k[j]) then

11: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

12: if t[j − 1] ∈ D(k[j]) and v[j − 1] ∈ D(k[j]) then
13: t[j] ← E(k[j], t[j − 1])
14: v[j] ← E(k[j], v[j − 1])
15: else if t[j − 1] ∈ D(k[j]) and v[j − 1] /∈ D(k[j]) then
16: t[j] ← E(k[j], t[j − 1])

17: v[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

18: else if t[j − 1] /∈ D(k[j]) and v[j − 1] ∈ D(k[j]) then

19: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

20: v[j] ← E(k[j], v[j − 1])
21: else if t[j − 1] /∈ D(k[j]) and v[j − 1] /∈ D(k[j]) then

22: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

23: v[j] ← t[j]

24: if t[d] = v[d] then

25: (vm+2, . . . , vq1)
$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

26: (tm+2, . . . , tq1)← (vm+2, . . . , vq1)
27: else
28: (vm+2, . . . , vq1)

$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

29: (tm+2, . . . , tq1)
$← (In\{w1[d], . . . , wm[d], t[d]})∗(q1−m−1)

30: T ← (w1[d], . . . , wm[d], t[d], tm+2, . . . , tq1)
31: V ← (w1[d], . . . , wm[d], v[d], vm+2, . . . , vq1)
32: return (T, V )

Fig. 2. Sampling process for random variable (T, V )
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1: for i← 1 to m do
2: wi[0]← si

3: t[0]← sm+1

4: for j ← 1 to d do

5: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

6: for i← 1 to m do
7: if wi[j − 1] ∈ D(k[j]) then
8: wi[j] ← E(k[j], wi[j − 1])
9: else if wi[j − 1] /∈ D(k[j]) then

10: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

11: if t[j − 1] ∈ D(k[j]) then
12: t[j] ← E(k[j], t[j − 1])
13: else if t[j − 1] /∈ D(k[j]) then

14: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

15: (tm+2, . . . , tq1)
$← (In\{w1[d], . . . , wm[d], t[d]})∗(q1−m−1)

16: return T = (w1[d], . . . , wm[d], t[d], tm+2, . . . , tq1)

(a) Sampling T

1: for i← 1 to m do
2: wi[0]← si

3: v[0]
$← In\{s1, . . . , sm}

4: for j ← 1 to d do

5: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

6: for i← 1 to m do
7: if wi[j − 1] ∈ D(k[j]) then
8: wi[j] ← E(k[j], wi[j − 1])
9: else if wi[j − 1] /∈ D(k[j]) then

10: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

11: if v[j − 1] ∈ D(k[j]) then
12: v[j] ← E(k[j], v[j − 1])
13: else if v[j − 1] /∈ D(k[j]) then

14: v[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

15: (vm+2, . . . , vq1)
$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

16: return V = (w1[d], . . . , wm[d], v[d], vm+2, . . . , vq1)

(b) Sampling V

Fig. 3. Sampling T and V separately
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Therefore by Lemma 1, we have

‖πm+1 − πm‖ ≤ Pr [T �= V ] = Pr [t[d] �= v[d]] . (7)

Since t[j] = v[j] implies t[j+2] = v[j+2] for j = 0, . . . , d−2 (actually, t[j′] = v[j′]
for every j′ > j), we have

Pr [t[d] �= v[d]] ≤
d
2∏

h=1

Pr

[
t[2h] �= v[2h] |t[2h− 2] �= v[2h− 2]

]
. (8)

For a fixed h = 1, . . . , d2 , assume that t[2h−2] �= v[2h−2], and on this condition,
consider the probability that t[2h] and v[2h] are different. In order for this event
to happen, either t[2h − 2] or v[2h − 2] should map to a point within D(k[2h])
since otherwise t[2h − 1] and v[2h − 1] both outside D(k[2h]) would map to
an identical point t[2h] = v[2h]. We divide this event into three subcases. In
the following description, we fix a parameter M > 0, and call a key k heavy if
|R(k)| = |D(k)| > M .

Case 1: Either k[2h − 1] or k[2h] is heavy. Since there are at most q2/M
heavy keys and k[2h−1] and k[2h] are chosen from the set of size at least 2κ−d,
the probability of this case is at most

2q2
M(2κ − d)

. (9)

Case 2: k[2h] is not heavy, and either (t[2h − 2], k[2h − 1], y) ∈ Q2 or
(v[2h − 2], k[2h− 1], y) ∈ Q2 for some y ∈ D(k[2h]). First, assume that k[2h]
is not heavy. Since |D(k[2h])| ≤ M and ω(Q2) ≤ β, the number of keys k such
that either (t[2h− 2], k, y) ∈ Q2 or (v[2h− 2], k, y) ∈ Q2 for some y ∈ D(k[2h])
is at most 2Mβ. Therefore the probability that one of such keys is chosen as
k[2h− 1] is at most

2Mβ

2κ − d
. (10)

Case 3: The remaining case. Here we assume that any of k[2h − 1] and
k[2h] is not heavy. Furthermore, k[2h− 1] and Q2 do not determine a mapping
from one of t[2h− 2] and v[2h− 2] to any point within D(k[2h]). However either
t[2h−2] or v[2h−2] might still go into D(k[2h]) by probabilistic sampling. Since
|D(k[2h])| ≤ M and |R(k[2h − 1])| ≤ M , this case occurs with probability at
most

2M

N −M
. (11)

We notice that the update of wi[2h− 2], i = 1, . . . ,m, does not affect this upper
bounding. By (6), (7), (8), (9), (10) and (11), we obtain

‖μs − ν‖ ≤ q1

(
2q2

M(2κ − d)
+

2Mβ

2κ − d
+

2M

N −M

) d
2

.
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3.2 Security of Xor-cascade Encryption

In this section, we analyze the security of xor-cascade encryption XCEl for even
length l = 2d. The argument is very similar to the security proof of the orig-
inal cascade encryption except modifying key sampling process and applying
Lemma 6. First, the following original key sampling processA is modified into B:

A: Choose k ∈ I lκ and z ∈ I l+1
n uniformly at random.

B: Randomly partition T1 ∪ T2 = Iκ so that |T1| = |T2|, choose k′ ∈ (T1)
∗d and

k′′ ∈ (T2)
∗d uniformly at random, and then define k = (k′,k′′). Next, choose

z′ = (z′0, . . . , z
′
d) ∈ Id+1

n and z′′ = (z′′0 , . . . , z
′′
d ) ∈ Id+1

n uniformly at random,
and then define

z = (z′0, . . . , z
′
d ⊕ z′′0 , . . . , z

′′
d ) ∈ I l+1

n .

One can distinguish sampling processes A and B with advantage at most(
l

2

)
1

2κ
≤ l2

2κ+1
. (12)

Taking into account (12), we analyze the security of

XCElk,z[E] = XCEdk′′,z′′ [E] ◦ XCEdk′,z′ [E],

where (k, z), (k′, z′) and (k′′, z′′) are defined by key sampling process B.
For Q1 = (ui, vi)1≤i≤q1 and Q2 = (xi, ki, yi)1≤i≤q2 , we can prove

p1(Q1|Q2) =
1( 2κ

2κ−1

)×

∑
T1∪T2=Iκ

|T1|=|T2|=2κ−1

∑
w∈Ω

(Pr[k $← (T1)
∗d
, z

$← I
d+1
n , E

$← BC(T1, n) : XCE
d
k[E] � (u

i
, w

i
) |E � Q′

2]

×Pr[k $← (T2)
∗d, z

$← Id+1
n , E

$← BC(T2, n) : XCEd
k[E] � (wi, vi) |E � Q′′

2]),

with the same notations as the previous section. In order to estimate the proba-
bilities appearing as the summands, we fix a query history Q2 = (xi, ki, yi)1≤i≤q′
such that q′ ≤ q2, and for each s ∈ Ω define a probability distribution μs such
that for each w = (wi)1≤i≤q1 ∈ Ω,

μs(w) = Pr[k $← (Iκ)
∗d, z

$← Id+1
n , E

$← BC(κ, n) :

XCEdk[E] - (si, wi)1≤i≤q1 |E - Q2].
Then we have the following lemma.
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Lemma 6. Let d > 0, let μs be the probability distribution defined as above,
and let ν be the uniform probability distribution on Ω. Then for M > 0, we have
‖μs − ν‖ ≤ ε, where

ε = q1

(
q2

M(2κ − d)
+

2M

N

)d
.

The proof will be given at Appendix E. Using this lemma and exactly the same
argument for the original cascade encryption, we can also prove the following
theorem.

Theorem 2. Let XCEl be an l-xor-cascade encryption scheme using a κ-bit key
n-bit blockcipher. If l = 2d, then for M > 0,

AdvPRP
XCEl(q1, q2) ≤

l2

2κ+1
+ 4q

1
2
1

(
q2

M(2κ−1 − d)
+

2M

N

) d
2

.

Optimizing Parameters. By solving q2
M(2κ−1−d) = 2M

N , we set M =
√

Nq2
2κ−l ,

obtaining the following corollary.

Corollary 2. Let XCEl be an l-cascade encryption scheme using a κ-bit key
n-bit blockcipher. If l is even, then

AdvPRP
XCEl(q1, q2) ≤

l2

2κ+1
+ 4q

1
2
1

(
16q2

N(2κ − l)

) l
8

.

Interpretation. Assuming that l2/2κ+1 is negligible, set q1 = 2n and approx-
imate 2κ − l ≈ 2κ. Then the distinguishing advantage becomes negligible when

q2 � 2κ+n−4− 8
l (

n
2 +2).

Alternatively, let q2 = 2κ+n−5. Then we can check that AdvPRP
CEl (2n, 2κ+n−5)

approaches zero as the length l increases (up to the condition that l2/2κ+1 is
negligible).
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10. Gaži, P., Tessaro, S.: Efficient and Optimally Secure Key-Length Extension for
Block Ciphers via Randomized Cascading. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 63–80. Springer, Heidelberg (2012)

11. Hoang, V.T., Morris, B., Rogaway, P.: An Enciphering Scheme Based on a Card
Shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 1–13. Springer, Heidelberg (2012)

12. Hoang, V.T., Rogaway, P.: On Generalized Feistel Networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

13. Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). Journal of Cryptology 14, 17–35 (2001)

14. Lampe, R., Patarin, J., Seurin, Y.: An Asymptotically Tight Security Analysis of
the Iterated Even-Mansour Cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

15. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007)

16. Mironov, I.: (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

17. Morris, B., Rogaway, P., Stegers, T.: How to Encipher Messages on a Small Domain:
Deterministic Encryption and the Thorp Shuffle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009)

A A Brute-force Attack of 2κ+n Query Complexity
In this section, we describe a standard information theoretic brute-force attack
against a λ-bit keym-bit encryption schemeC thatmakes a certain number of calls
to a κ-bit key n-bit blockcipher E.3 An adversaryA executes the following steps.

1. A makes all possible 2κ+n queries to the underlying blockcipher E.
2. A makes t nonadaptive forward queries to the outer permutation, recording

query history Q = (ui, vi)1≤i≤t.
3. If there is a λ-bit key k such that Ck[E](ui) = vi for every i = 1, . . . , t, then
A outputs 0. Otherwise, A outputs 1.

Since we have

Pr
[
k

$← {0, 1}λ, E $← BC(κ, n) : A[Ck[E], E] = 0
]
= 1,

Pr
[
P

$← Pn, E
$← BC(κ, n) : A[P,E] = 0

]
≤ 2λ

(2m)t
,

AdvPRP
C (A) gets close to 1 as t) λ

m .

3 The output size m of C might be different from the block size n of E.

http://eprint.iacr.org/2013/019
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B Proof of Lemma 1 and Lemma 2
Proof of Lemma 1. Let λ be a coupling of μ and ν and let (X,Y ) ∼ λ.
By definition, for any z ∈ Ω, λ(z, z) ≤ min{μ(z), ν(z)}. Since Pr [X = Y ] =∑

z∈Ω λ(z, z), we have

Pr [X = Y ] ≤
∑
z∈Ω

min{μ(z), ν(z)}.

Therefore we have

Pr [X �= Y ] ≥ 1−
∑
z∈Ω

min{μ(z), ν(z)} =
∑
z∈Ω

(μ(z)−min{μ(z), ν(z)})

=
∑
z∈Ω

μ(z)≥ν(z)

(μ(z)− ν(z)) = max
S⊂Ω

{μ(S)− ν(S)} = ‖μ− ν‖.

Proof of Lemma 2. Let S = {x ∈ Ω : μ(x) ≥ (1 −
√
ε)ν(x)}. By definition,

any element of S satisfies the second condition. Contary to the first condition,
suppose that |S| < (1 −

√
ε)|Ω|. This implies ν(Ω\S) = 1 − |S|/|Ω| >

√
ε, and

hence

ν(Ω\S)− μ(Ω\S) ≥ ν(Ω\S)−
(
1−

√
ε
)
ν(Ω\S) =

√
εν(Ω\S) >

(√
ε
)2

= ε.

This is a contradiction to ‖μ− ν‖ ≤ ε.

C Proof of Inequality (2)

Fix x, y ∈ In. For any β > 0,

Pr
[
E

$← BC(κ, n) : |{k : E(k, x) = y}| ≥ β
]
≤
(
2κ

β

)(
1

2n

)β
≤
(
e2κ

β2n

)β
.

Therefore for any Q2 (which might be the maximum query history of size 2κ+n

including all the evaluations ofE), ω(Q2) is smaller than β except with probability

P = 22n
(
e2κ

β2n

)β
,

where P ≤ 22n−β if β ≥ e2κ−n+1.

D Equivalence of Key Sampling Processes B and C for
CEl

Fix a key k = (k′,k′′) ∈ (Iκ)
∗l, where k′ = (k′1, . . . , k

′
d) and k′′ = (k′′1 , . . . , k

′′
d ).

Then the number of partitions (T1, T2) such that {k′1, . . . , k′d} ⊂ T1 and

{k′′1 , . . . , k′′d} ⊂ T2 is
(
2K−2d
K−d

)
, where K = 2κ−1. For each (T1, T2), key sam-

pling process C chooses k′ and k′′ from T1 and T2, respectively, with probability
(1/(K)d)

2. So the probability that C chooses k′ and k′′ is



424 J. Lee

(
2K−2d
K−d

)(
2K
K

) ( 1

(K)d

)2

=
(2K − 2d)!(K!)2

(2K)!((K − d)!)2
·
(
(K − d)!

K!

)2

=
(2K − 2d)!

(2K)!
=

1

(2κ)2d
,

which is the same as the probability that key sampling process B chooses k =
(k′,k′′).

E Proof of Lemma 6

Fix s = (si)1≤i≤q1 and for m = 0, . . . , q1, define probability distributions πm
where for each w = (w1, . . . , wq1) ∈ Ω,

πm(w) = Pr[(um+1, . . . , uq1)
$← (In\{s1, . . . , sm})∗(q1−m),k

$← (Iκ)
∗d, z

$← Id+1
n ,

E
$← BC(κ, n) : XCEd

k[E] � (si, wi)1≤i≤m ∧ XCEd
k[E] � (ui, wi)m+1≤i≤q1 |E � Q2].

Then we can check that π0 = ν and πq1 = μs. Since

‖μs − ν‖ ≤
q1−1∑
m=0

‖πm+1 − πm‖, (13)

we focus on upper bounding ‖πm+1−πm‖ for each m = 0, . . . , q1−1. In order to
couple πm+1 and πm, we will define a random variable (T, V ) on Ω × Ω by the
sampling process described in Figure 4. Then we can check that their marginal
distributions are πm+1 and πm, and

‖πm+1 − πm‖ ≤ Pr [T �= V ] = Pr [t[d] �= v[d]] . (14)

Since t[j] = v[j] implies t[j + 1] = v[j + 1] for j = 0, . . . , l− 1, we have

Pr [t[d] �= v[d]] ≤
d∏

j=1

Pr

[
t[j] �= v[j] |t[j − 1] �= v[j − 1]

]
. (15)

In order to upper bound Pr

[
t[j] �= v[j] |t[j − 1] �= v[j − 1]

]
for each j, we first

choose k[j] from the set of size at least 2κ − d. For a parameter M > 0, there
are at most q2/M heavy keys k such that

|R(k)| = |D(k)| > M.

Therefore the probability that k[j] is heavy is at most

q2
M(2κ − d)

. (16)

Conditioned on the case that k[j] is not heavy, either t[j−1]⊕z[j−1] or v[j−1]⊕
z[j − 1] should map to a point within D(k[j]) since otherwise t[j] ⊕ z[j − 1] and
v[j]⊕z[j−1] both outsideD(k[j]) wouldmap to an identical point t[j+1] = v[j+1].
The probability of this event over the random choice of z[j − 1] is at most
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2M

N
. (17)

Then by (13), (14), (15), (16) and (17), we obtain

‖μs − ν‖ ≤ q1

(
q2

M(2κ − d)
+

2M

N

)d
.

1: for i← 1 to m do
2: wi[0] ← si

3: t[0]← sm+1

4: v[0]
$← In\{s1, . . . , sm}

5: for j ← 1 to d do

6: k[j]
$← Iκ\{k[1], . . . , k[j − 1]}

7: z[j − 1]
$← In

8: for i← 1 to m do
9: wi[j − 1]← wi[j − 1]⊕ z[j − 1]
10: if wi[j − 1] ∈ D(k[j]) then
11: wi[j] ← E(k[j], wi[j − 1])
12: else if wi[j − 1] /∈ D(k[j]) then

13: wi[j]
$← In\({w1[j], . . . , wi−1[j]} ∪ R(k[j]))

14: if t[j − 1]⊕ z[j − 1] ∈ D(k[j]) and v[j − 1]⊕ z[j − 1] ∈ D(k[j]) then
15: t[j] ← E(k[j], t[j − 1]⊕ z[j − 1])
16: v[j] ← E(k[j], v[j − 1]⊕ z[j − 1])
17: else if t[j − 1]⊕ z[j − 1] ∈ D(k[j]) and v[j − 1]⊕ z[j − 1] /∈ D(k[j]) then
18: t[j] ← E(k[j], t[j − 1]⊕ z[j − 1])

19: v[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

20: else if t[j − 1]⊕ z[j − 1] /∈ D(k[j]) and v[j − 1]⊕ z[j − 1] ∈ D(k[j]) then

21: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

22: v[j] ← E(k[j], v[j − 1]⊕ z[j − 1])
23: else if t[j − 1]⊕ z[j − 1] /∈ D(k[j]) and v[j − 1]⊕ z[j − 1] /∈ D(k[j]) then

24: t[j]
$← In\({w1[j], . . . , wm[j]} ∪ R(k[j]))

25: v[j] ← t[j]

26: z[d]
$← In

27: if t[d] = v[d] then

28: (vm+2, . . . , vq1)
$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

29: (tm+2, . . . , tq1)← (vm+2, . . . , vq1)
30: else
31: (vm+2, . . . , vq1)

$← (In\{w1[d], . . . , wm[d], v[d]})∗(q1−m−1)

32: (tm+2, . . . , tq1)
$← (In\{w1[d], . . . , wm[d], t[d]})∗(q1−m−1)

33: T ← (w1[d]⊕ z[d], . . . , wm[d]⊕ z[d], t[d]⊕ z[d], tm+2, . . . , tq1)
34: V ← (w1[d]⊕ z[d], . . . , wm[d]⊕ z[d], v[d]⊕ z[d], vm+2, . . . , vq1)
35: return (T, V )

Fig. 4. Sampling process for random variable (T, V )
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Abstract. Preneel et al. (Crypto 1993) assessed 64 possible ways to
construct a compression functions out of a blockcipher. They conjectured
that 12 out of these 64 so-called PGV constructions achieve optimal se-
curity bounds for collision resistance and preimage resistance. This was
proven by Black et al. (Journal of Cryptology, 2010), if one assumes that
the blockcipher is ideal. This result, however, does not apply to “non-
ideal” blockciphers such as AES. To alleviate this problem, we revisit
the PGV constructions in light of the recently proposed idea of random-
oracle reducibility (Baecher and Fischlin, Crypto 2011). We say that the
blockcipher in one of the 12 secure PGV constructions reduces to the one
in another construction, if any secure instantiation of the cipher, ideal or
not, for one construction also makes the other secure. This notion allows
us to relate the underlying assumptions on blockciphers in different con-
structions, and show that the requirements on the blockcipher for one
case are not more demanding than those for the other. It turns out that
this approach divides the 12 secure constructions into two groups of equal
size, where within each group a blockcipher making one construction se-
cure also makes all others secure. Across the groups this is provably not
the case, showing that the sets of “good” blockciphers for each group
are qualitatively distinct. We also relate the ideal ciphers in the PGV
constructions with those in double-block-length hash functions such as
Tandem-DM, Abreast-DM, and Hirose-DM. Here, our results show that,
besides achieving better bounds, the double-block-length hash functions
rely on weaker assumptions on the blockciphers to achieve collision and
everywhere preimage resistance.

1 Introduction

The design of hash functions (or compression functions) from blockciphers has
been considered very early in modern cryptography. Preneel, Govaerts, and Van-
dewalle [27] initiated a systematic study of designing a compression function
F : {0, 1}n×{0, 1}n → {0, 1}n out of a blockcipher E : {0, 1}n×{0, 1}n → {0, 1}n
by analyzing all 64 possible ways to combine the relevant inputs and outputs
using xors only. Preneel et al. conjectured only 12 out of these 64 PGV construc-
tions to be secure, including the well-known constructions of Matyas–Meyer–
Oseas (MMO) and Davies–Meyer (DM). The idea continues to influence hash-
function design till today. Indeed, one of the former five final candidates in the
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SHA-3 competition, Skein [13], explicitly refers to this design methodology, and
other former candidates like Grøstl [15] are based on similar principles.

The conjecture about the 12 secure PGV variants was later shown to be true
in the ideal-cipher model (ICM) by Black et al. [9,10]. Roughly speaking, Black
et al. show that assuming E implements a random blockcipher, the 12 secure
PGV compression functions achieve optimal security of Θ(q2 · 2−n) for collision
resistance and Θ(q·2−n) for preimage resistance, where q is the number of queries
to the ideal cipher (and its inverse). Black et al. also discuss 8 further variants
which, if used in an iteration mode, attain optimal collision resistance and sub-
optimal preimage resistance of Θ(q2 · 2−n). The remaining 44 PGV versions are
insecure.

Idealized models. As pointed out by Black et al. [10], security proofs for the
PGV schemes in the ICM should be treated with care. Such results indicate that
in order to break the security of the PGV scheme one would need to take advan-
tage of structural properties of the blockcipher. Yet blockciphers such as AES,
or the Threefish blockcipher used in Skein, clearly display a structure which is
far from an ideal object. For instance, IDEA seems quite unsuitable to base a
compression function on [33], while for AES recent related-key attacks [7,8] cast
some shadow on its suitability for this purpose. Indeed, Khovratovich [20, Corol-
lary 2] states unambiguously that “AES-256 in the Davies–Meyer hashing mode
leads to an insecure hash function,” but remarks that it is not known how to
attack, for instance, double-block-length constructions. Moreover, it is currently
still unknown how to exploit these weaknesses in AES-256 to break the stan-
dard collision or preimage security of any AES-instantiated PGV compression
function. Consequently it may well be that AES makes some of the 12 PGV
constructions secure, whereas others turn out to be insecure, despite a proof
in the ICM. Unfortunately, it is very hard to make any security claims about
specific PGV constructions with respect to a “real” blockcipher, or to even de-
termine exactly the necessary requirements on the blockcipher for different PGV
constructions to be secure.

Recently, a similar issue for the random-oracle model, where a monolithic
idealized hash function is used, has been addressed by Baecher and Fischlin [4]
via the so-called random-oracle reducibility. The idea is to relate the idealized
hash functions in different (primarily public-key) schemes, allowing to conclude
that the requirements on the hash function in one scheme are weaker than those
in the other scheme. That is, Baecher and Fischlin consider two cryptographic
schemes A and B with related security games in the random-oracle model. They
define that the random oracle in scheme B reduces to the one in scheme A, if any
instantiation H of the random oracle, possibly through an efficient hash function
or again by an oracle-based solution, which makes scheme A secure, also makes
scheme B secure. As such, the requirements on the hash function for scheme
B are weaker than those for the one in scheme A. To be precise, Baecher and
Fischlin allow an efficient but deterministic and stateless transformation T H for
instantiating the random oracle in scheme B, to account for, say, different input
or output sizes of the hash functions in the schemes. Using such transformations



428 P. Baecher et al.

they are able to relate the random oracles in some public-key encryption schemes,
including some ElGamal-type schemes.

Our results for the PGV constructions. We apply the idea of oracle
reducibility to the ideal-cipher model and the PGV constructions. Take any two
of the 12 PGV constructions, PGVi and PGVj , which are secure in the ICM. The
goal is to show that any blockcipher (ideal or not) which makes PGVi secure, also
makes PGVj secure. Here, security may refer to different games such as standard
notion for collision resistance, preimage resistance, or everywhere preimage re-
sistance [30]. Although we can ask the same question for indifferentiability from
random functions [25], the PGV constructions, as pointed out in [11,21], do not
achieve this level of security.1

Our first result divides the 12 secure PGV constructions into two groups G1
and G2 of size 6, where within each group the ideal cipher in each construction
reduces to the ideal cipher in any other construction (with respect to collision re-
sistance, [everywhere] preimage resistance, and preimage awareness). We some-
times call these the PGV1-group and the PGV2-group respectively: these two
schemes are representatives of their respective groups. Across different groups,
however, and for any of the security games, starting with the ideal cipher we
can derive a blockcipher which makes all schemes in one group secure, whereas
any scheme in the other group becomes insecure under this blockcipher. This
separates the PGV1-group and the PGV2-group in terms of direct ideal-cipher
reducibility. In direct reducibility we use the blockcipher in question without any
modifications in another construction. This was one of the reasons to investigate
different PGV constructions in the first place. For free reductions allowing arbi-
trary transformations T of the blockcipher, we show that the PGV constructions
can be seen as transformations of each other, and under suitable T all 12 PGV
constructions reduce to each other.

Preneel et al. [27] already discussed equivalence classes from an attack per-
spective. Our work reaffirms these classes and puts them on a solid theoretical
foundation. Dividing the 12 constructions into two groups allows us to say that,
within each group, one can use a blockcipher in a construction under the same
qualitative assumptions on the blockcipher as for schemes; only across the groups
this becomes invalid. In other words, the sets (or more formally, distributions)
of “good” blockciphers for the groups are not equal, albeit they clearly share the
ideal cipher as a common member making both groups simultaneously secure.
We note that our results are also quantitatively tight in the sense that the block-
ciphers within a group are proven to be tightly reducible to each other in terms
of the number of queries, running times, and success probabilities.

PGV and double-block-length hashing. Double-block-length (DBL) hash
or compression functions aim at surpassing the 2n/2 upper bound for collision
resistance of the PGV constructions by using two “PGV-like” constructions in
parallel, doubling the output length. There are three major such compression

1 This mainly motivates why we chose the oracle reducibility notion of [4] rather than
the indifferentiability reducibility notion in [25].
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functions, namely, Tandem-DM (TDM, [22]), Abreast-DM (ADM, [22]), and
Hirose’s construction (HDM, [19]). Several results underline the optimality of
collision-resistance [19,23,24] and preimage-resistance bounds [2] for these func-
tions in the ICM.

We next establish a connection between the basic PGV constructions and the
double-block-length compression functions. Since all the DBL constructions have
a “PGV1-part” (with twice the key size) built in, it follows that any collision for
any of the DBL functions immediately yields a collision for PGV1 built from a
blockcipher with 2n-bit key. In other words, the ideal cipher in the DBL con-
structions directly reduces to the one in double-key PGV1. We also prove that
there is a free reduction to single-key PGV1 from this double-key variant, thereby
relating DBL functions to PGV1 for free transformations. It follows, via a free
reduction to PGV1 and a free reduction from PGV1 to PGV2, that DBL functions
reduce to PGV2 for free transformations. An analogous result also applies to the
everywhere preimage-resistance game, but, somewhat curiously, we show such a
result cannot hold for the (standard) preimage-resistance game.

When it comes to free reducibility from PGV to DBL functions, we present
irreducibility results for the collision-resistance and [everywhere] preimage-resist-
ance games.We achieve this by making use of an interesting relationship to (lower
bounds for) hash combiners [17,16,26]. Namely, if one can turn a collision (or
preimage) for, say, PGV1 into one for a DBL compression function, then we can
think of PGV1, which has n-bit digests, as a sort of robust hash combiner for
the DBL function (which has 2n-bit outputs). However, known lower bounds for
hash combiners [26] tell us that such a combiner (with tight bounds and being
black-box) cannot exist, and this transfers to ideal-cipher reducibility. More in
detail, by combining Pietrzak’s techniques [26] with a lower bound on generic
collision finders by Bellare and Kohno [5] on compression functions, we confirm
the irreducibility result formally for the simple case of black-box reductions
making only a single call to the PGV collision-finder oracle (as also discussed
in [26]). We leave the analysis of the full case to the final version. In summary, not
only do the DBL functions provide stronger guarantees in terms of quantitative
security (as well as efficiency and output length), but they also provably rely on
qualitatively weaker assumptions on the blockcipher for the collision-resistance
and everywhere preimage-resistance games.

Finally, we demonstrate that for none of the aforementioned DBL construc-
tions the ideal cipher directly reduces to the one in either of the other schemes.
That is, starting with the ideal cipher, for each target DBL function we construct
a blockcipher which renders it insecure but preserves collision resistance for the
other two functions. We are not aware of an analogous result for free reductions,
but can exclude transformations which are involutions.

2 Preliminaries

Notation. We write x← y for assigning value y to variable x. We write x←$ X
for sampling x from (finite) set X uniformly at random. If A is a probabilistic
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algorithm we write y ←$ A(x1, . . . , xn) for the action of running A on inputs
x1, . . . , xn with coins chosen uniformly at random, and assigning the result to y.
We use “|” for string concatenation, denote the bit complement of x ∈ {0, 1}�
by x. We set [n] := {1, . . . , n}. We say ε(λ) is negligible if |ε(λ)| ∈ λ−ω(1).

Blockciphers. A blockcipher with key length k and block length n is a set of
permutations and their inverses on {0, 1}n indexed by a key in {0, 1}k. This set
can therefore be thought of as a pair of functions

E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 : {0, 1}k × {0, 1}n → {0, 1}n .

We denote the set of all such blockciphers by Block(k, n). A blockcipher is effi-
cient if the above functions can be implemented by an efficient Turing machine.

Ideal and idealized (block)ciphers. An idealized (block)cipher with key
length k and block length n is a distribution E on Block(k, n). We often consider
an E-idealized model of computation where all parties are given oracle access to
a blockcipher chosen according to E . The ideal-cipher model is the E-idealized
model where E is the uniform distribution on Block(k, n). We denote the set
of all idealized ciphers with key length k and block length n (i.e., the set of
all distributions on Block(k, n)) by Ideal(k, n). Below, when saying that one has
oracle access to an idealized cipher E it is understood that a blockcipher is
sampled according to E and that one gets oracle access to this blockcipher.

Compression functions. A compression function is a function mapping {0, 1}l
to {0, 1}m where m < l. We are primarily interested in compression functions

which are built from a blockcipher. In this case we write FE,E−1

: {0, 1}l →
{0, 1}m. A compression function is often considered in an idealized model where
its oracles are sampled according to an idealized cipher E .

2.1 Security Notions for Compression Functions

We now recall a number of fundamental security properties associated with
blockcipher-based hashing.

Definition 1 (Everywhere preimage and collision resistance [30]). Let

FE,E−1

: {0, 1}l → {0, 1}m be a compression function with oracle access to a
blockcipher in Block(k, n). Let E denote an idealized cipher on Block(k, n). The
preimage- (resp., everywhere preimage-, resp., collision-) resistance advantage

of an adversary A in the E-idealized model against FE,E−1

are defined by

Advpre
F,E(A) := Pr

[
FE,E−1

(X ′) = Y :
(E,E−1)←$ E ;X ←$ {0, 1}l;
Y ← FE,E−1

(X);X ′ ←$ AE,E−1

(Y )

]
,

Advepre
F,E (A) := Pr

[
FE,E−1

(X) = Y : (E,E−1)←$ E ; (Y, st)←$ A1;X ←$ AE,E−1

2 (st)
]
,

Advcoll
F,E(A) := Pr

[
X0 �= X1 ∧ FE,E−1

(X0) = FE,E−1

(X1) :
(E,E−1)←$ E ;
(X0, X1) ←$ AE,E−1

]
.
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For the set Sq of all adversaries which place at most q queries to their E or E−1

oracles in total we define

Advpre
F,E(q) := max

A∈Sq

{
Advpre

F,E(A)
}
,

and similarly for the everywhere preimage-resistance and collision-resistance
games. We note that although a compression function cannot be collision-resist-
ant nor everywhere preimage-resistance with respect to a fixed blockcipher, re-
ducibility arguments still apply [29].

Some of our results also hold for “more advanced” properties of hash or com-
pression functions like preimage awareness [12]. (The definition can be found in
the full version of the paper.) If so, we mention this briefly.

2.2 Reducibility

In order to define what it means for an idealized cipher to reduce to another, we
begin with a semantics for security games similar to that in [6]. We capture the
three security properties above by our notion, but can also extend the framework
to cover a larger class of security games, such as complex multi-stage games and
simulation-based notions. In the simpler case, we will consider a game between
a challenger or a game Game and a sequence A1,A2, . . . of admissible adver-
saries (e.g., those which run in polynomial time). When the game terminates
by outputting 1, this is deemed a success for the adversary (in that instance of
the game). To determine the overall success of the adversaries, we then measure
the success probability with respect to threshold t (e.g., 0 for computational
games, or 1

2 for decisional games). We present our formalism in the concrete set-
ting. However, our definitions can be easily extended to the asymptotic setting
by letting the game, its parameters, and adversaries to depend on a security
parameter.

Definition 2 (Secure E-idealized games). An E-idealized game consists of
an oracle Turing machine Game (also called the challenger) with access to an
idealized cipher E and n adversary oracles, a threshold t ∈ [0, 1], and a set S
of n-tuples of admissible adversaries. The game terminates by outputting a bit.
The advantage of adversaries A1, . . . ,An against Game is defined as

AdvGame
E (A1, . . . ,An) :=

∣∣∣∣Pr [GameE,E
−1,AE,E−1

1 ,...,AE,E−1

n = 1

]
− t

∣∣∣∣ ,
where the probability is taken over Game, A1, . . . ,An, and (E,E−1)←$ E. For
bounds ε ∈ [0, 1] and T,Q ∈ N we say Game is (Q, T, ε)-secure if

∀(A1, . . . ,An) ∈ S : AdvGame
E (A1, . . . ,An) ≤ ε

and Game together with any set of admissible adversaries runs in time at most
T and makes at most Q queries to the sample of the idealized cipher, including
those of the adversaries.
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For example, the above notion captures everywhere preimage resistance by hav-
ing A1 terminate by outputting (Y, st) with no access to the blockcipher, and

AE,E−1

2 (st) return someX ; the challenger then outputs 1 if and only if FE,E−1

(X) =
Y . Note that in particular, the construction F is usurped, together with the ev-
erywhere preimage experiment, in the general notation Game. We also note that
with the above syntax we can combine multiple games into one by having a “mas-
ter” adversary A first send a label to the challenger deciding which sub-game to
play and then invoking the corresponding parties and game. Note also that as
in [4] we assume that an idealized cipher can be given as an entirely ideal object,
as a non-ideal object through a full description of an efficient Turing machine
given as input to the parties, or a mixture thereof.

Ideal-cipher transformations. A transformation of ideal ciphers is a func-
tion T which maps a blockcipher from Block(k, n) to another blockcipher in
Block(k′, n′). Typically, we will only be interested in efficient transformations
i.e., those which can be implemented by efficient oracle Turing machines in the
E-idealized model, written T E. Note that the requirement of T being a func-
tion implies that, algorithmically, the oracle Turing machine is deterministic
and stateless. Below we envision the (single) transformation T to work in dif-
ferent modes Enc,Dec to provide the corresponding interfaces for a blockcipher
(E′,E′−1). Slightly abusing notation, we simply write T and T −1 for the corre-

sponding interfaces E′ and E′−1 (instead of T E,E−1

Enc for E′ and T E,E−1

Dec for E′−1).
The transformation is written as

E′(K,M) := T E,E−1

(K,M) and E′
−1

(K,M) := T −1E,E
−1

(K,M) .

Any transformation T also induces a mapping from Ideal(k, n) to Ideal(k′, n′).
When E is sampled according to E , then T induces an idealized cipher E ′ ∈
Ideal(k′, n′) which we occasionally denote by T E .

Definition 3 (Ideal-cipher reducibility). Let Game1 and Game2 be two ide-
alized games relying on blockciphers in Block(k, n) and Block(k′, n′) respectively.
We say the idealized cipher in Game2 reduces to the idealized cipher in Game1,
if for any E1 ∈ Ideal(k, n) there is a deterministic, stateless, and efficient trans-
formation T : Block(k, n)→ Block(k′, n′) such that if

∀(A1,1, . . . ,A1,n1) ∈ S1 : AdvGame1
E1 (A1,1, . . . ,A1,n1) ≤ ε1 ,

whenever Game1 runs in time at most t1 and makes at most Q1 queries to the
block cipher sampled according to E1, then setting E2 := T E1 , we have that

∀(A2,1, . . . ,A2,n2) ∈ S2 : AdvGame2
E2 (A2,1, . . . ,A2,n2) ≤ ε2 ,

where Game runs in time at most t2 and makes at most Q2 queries to the block-
cipher sampled according to E2. In this case we say the reduction is (Q1/Q2, T,
t1/t2, ε1/ε2)-tight, where T is an upper bound on the number of queries that T
places to its oracle per invocation. When k = k′, n = n′, and T is the identity
transformation, we say the reduction is direct; else it is called free.
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Definitional choices. In this work, our focus is on reducibility among block-
cipher-based hash functions. In this setting, there are often no assumptions be-
yond the idealized cipher being chosen from a certain distribution. In this case,
the strict, strong, and weak reducibility notions as discussed in [4] all collapse
to the one given above. Of particular interest to us are two types of trans-
formations. First, free transformations which can be arbitrary, and second the
identity/dummy transformation which does not change the cipher. This latter
type of direct reducibility asks if any idealized cipher making one construction
secure makes the other secure too. The former type, however, apart from appro-
priately modifying the syntactical aspects of the blockcipher (such as the key
or the block size), asks if the model for which one primitive is secure can be
reduced to the model for which the other is secure.

3 Reducibility among the PGV Functions

We start by recalling the blockcipher-based constructions of hash functions by
Preneel et al. [27,10]. The PGV compression functions rely on a blockcipher
E : {0, 1}n × {0, 1}n → {0, 1}n, and map {0, 1}2n to {0, 1}n:

PGVE
i : {0, 1}2n → {0, 1}n for E : {0, 1}n × {0, 1}n → {0, 1}n .

There are 64 basic combinations to build such a compression function, of which
12 were first believed [27] (under category “�” or “FP”) and later actually
proven to be secure [10] (under category “group-1”). We denote these secure
compression functions by PGV1, . . . ,PGV12 and adopt the s-index of [10] (as
defined in Figure 2 there); they are depicted in Figure 1. The PGV1 and PGV5

functions can be instantiated with a blockcipher whose key length and message
length are not equal. The remaining function, however, do not natively support
this feature but they can be generalized such that they do [32].

1 4 5 8 9 12

2 3 6 7 10 11

Fig. 1. The 12 optimally secure PGV constructions PGVE
i for i ∈ [12]. A triangle

denotes the location of the key input. When used in an iteration mode, the top input
is a message block and the left input is the chaining value. The first (resp. second) row
corresponds to the PGV1-group (resp. PGV2-group).
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For i ∈ [12] and q ≥ 0, the security bounds for uniform E according to [9,32,10]
are

Advcoll
PGVi,E(q) ≤

q2

2n
, Advpre

PGVi,E(q) ≤
2q

2n
, and Advepre

PGVi,E(q) ≤
2q

2n
.

These bounds also hold when the key length and block length are not equal.
Furthermore, for uniform E , there exist adversaries A and B making q queries
to their E and E−1 oracles in total such that [10]2

Advcoll
PGVi,E(A) ≥

1

8e

q2 + 1

2n
, Advpre

PGVi,E(B) ≥
q + 1

2n+1
, and

Advepre
PGVi,E(B) ≥

q + 1

2n+1
.

As we will show in the two following theorems, when it comes to ideal-cipher
reducibility, the 12 secure PGV constructions can be further partitioned into
two subgroups as follows, which we call the PGV1-group and PGV2-group, re-
spectively.

G1 := {PGV1,PGV4,PGV5,PGV8,PGV9,PGV12}
G2 := {PGV2,PGV3,PGV6,PGV7,PGV10,PGV11}

The PGV1 and PGV2 functions will be representative of their respective groups.
The next proposition shows that, within a group, the compression functions

are ideal-cipher reducible to each other in a direct and tight way (i.e., with
the identity transformation and preserving the security bounds). It is worth
pointing out that Preneel et al. [27] already discussed equivalence classes from
an attack perspective. Present work reaffirms these classes and puts them on
a solid theoretical foundation. As noted before, we cannot hope that any PGV
compression function construction is indifferentiable from random (given access
to E and E−1), so we do not cover this property here; we can, however, include
the notion of preimage awareness [12] to the games which are preserved.

Proposition 1. Any two PGV constructions in G1 (resp., in G2) directly and
(1, 1, 1, 1)-tightly reduce the idealized cipher to each other for the [everywhere]
preimage-resistance, collision-resistance, and preimage-awareness games.

The proof of Proposition 1 appears in the full version of this paper.
Note that since we can combine the individual games into one, we can conclude

that any blockcipher making a scheme from one group secure for all games
simultaneously, would also make any other scheme in the group simultaneously
secure. Also, the above equivalence still holds for PGV1 and PGV5 in case they
work with a blockcipher with different key and message length.

The next theorem separates the two groups with respect to the collision-
resistance and [everywhere] preimage-resistance games.

2 The “plus one” terms are introduced in order to compactly capture the zero-query
lower bounds.
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Theorem 1. No PGV construction in G1 (resp., in G2) directly reduces to any
PGV construction in G2 (resp., in G1) for any of the collision-resistance and
[everywhere] preimage-resistance games.

For collision resistance and preimage resistance we assume the ideal cipher,
whereas for everywhere preimage resistance we only need the minimal prop-
erty that there exists some blockcipher making the schemes in one group secure,
in order to achieve the separation. Due to space constraints we present the proof
in the full version of this paper.

Proposition 2. Any two PGV constructions PGVi and PGVj for i, j ∈ [12]
(1, 1, 1, 1)-tightly reduce the idealized cipher to each other for the [everywhere]
preimage-resistance and collision-resistance games (under free transformations).

To prove this (which we do in the full version of this paper), we first show
that there is a transformation such that there is an inter-group reduction, i.e.,
PGV2 ∈ G2 reduces to PGV1 ∈ G1 and vice versa—indeed we will use the same
transformation for either direction. By transitivity we then obtain a reduction
for any two constructions through Proposition 1, where we view the identity
transformation as a special case of an arbitrary one.

4 Double-Block-Length Hashing and PGV

4.1 Reducibility from DBL to PGV

In this section we study the relation between three prominent double-block-
length hash function constructions in the literature, namely, Hirose-DM [18,19],
Abreast-DM [22,23], and Tandem-DM [22,24,14], and the PGV constructions.
All the DBL compression functions under consideration here map 3n-bit inputs
to 2n-bit outputs, and rely on a blockcipher with 2n-bit keys and n-bit block.
More precisely, these constructions are of the form

FE : {0, 1}3n → {0, 1}2n where E : {0, 1}2n × {0, 1}n → {0, 1}n .

E

E

A2

B2

B1A3

c

A1

(2.a) Hirose-DM

E

B1

B2

A1

A2

E

A3

(2.b) Abreast-DM

E

E

B1

B2

A1

A2

A3

(2.c) Tandem-DM

Fig. 2. The three double-block-length compression functions. The hollow circle in
Abreast-DM denotes bitwise complement.
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We denote the Hirose-DM for a constant c ∈ {0, 1}n\{0n}, the Abreast-DM, and
the Tandem-DM compression functions by HDMc, ADM, and TDM, respectively.
These functions are defined as follows (see Figure 2 for pictorial representations).

HDME
c (A1, A2, A3) := (E(A1|A2, A3)⊕A3,E(A1|A2, A3 ⊕ c)⊕A3 ⊕ c)

ADME(A1, A2, A3) :=
(
E(A2|A3, A1)⊕A1,E(A3|A1, A2)⊕A2

)
TDME(A1, A2, A3) := (E(A2|A3, A1)⊕A1,E(A3|E(A2|A3, A1), A2)⊕A2)

The next proposition shows that collisions (resp., somewhere preimages) in
HDMc directly lead to collisions (resp., somewhere preimages) for the double-key
versions of PGV1 and PGV5 functions.

Proposition 3. The idealized ciphers in HDMc, for any c ∈ {0, 1}n \ {0n},
ADM, and TDM compression functions directly and (1, 1, 1, 1)-tightly reduce to
those in the (double-key versions of the) PGV1 and PGV5 functions for the ev-
erywhere preimage-resistance and collision-resistance games.

The proof of the proposition appears in the full version of this paper. Note that
despite the tightness of the reduction, a blockcipher that makes the schemes
PGV1 and PGV5 ideally secure is not guaranteed to make the double-block-
length compression functions secure beyond the implied single-length security
bound.

Curiously, the above argument fails for the preimage-resistance game as we
cannot extend a challenge value for PGV1 to a full challenge value for a DBL
construction. The proof of the following proposition appears in the full version.

Proposition 4. The idealized cipher in none of the DBL constructions directly
reduces to the idealized cipher in PGV1 (and hence neither to the one in PGV5)
for the (standard) preimage-resistance game.

Direct ideal-cipher reducibility to the other PGV constructions is not syntacti-
cally possible as only the PGV1 and PGV5 constructions can be natively instan-
tiated with a double-block-length blockcipher.3 Note that the above proposition
leaves open the (im)possibility of free reductions from DBL to PGV, which we
leave to future work.

We next show that under free transformations a double-block-length instan-
tiation of PGV1 reduces to a single-block-length instantiation of PGV1. By the
transitivity of reductions we obtain reducibility of the idealized cipher in the
DBL constructions to that in any of the PGV constructions.

Proposition 5. The idealized cipher in PGV1 instantiated with an idealized ci-
pher in Ideal(2n, n) (2, 2, 1, 1)-tightly reduces to the one in PGV1 when instanti-
ated with an idealized cipher in Ideal(n, n) for the everywhere preimage-resistance
and collision-resistance games.

3 There exist modifications of the PGV constructions which can be instantiated with
DBL blockciphers [32]. We leave their treatment to future work.
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For space reasons, we defer the proof to the full version of this paper.

Remark. Although Merkle–Damg̊ard chaining does not in general preserve the
preimage resistance of the underlying compression function, there exist more
sophisticated chaining rules, such as ROX [1], which do so. If such chaining
rules are used to compress the keys in the proposition above, we also obtain
reducibility for the preimage-resistance game.

4.2 Separations among the DBL Compression Functions

We now investigate direct reducibility among the DBL compression functions,
as well as PGV1 and DBL functions. We focus on collision resistance, but similar
techniques (for separations) may be applicable to the other security games. For
this game, there are twelve relations to be considered, three of which have already
been settled by Proposition 3. We study the remaining relations by providing
separations among all the possible pairs. In doing so, we give blockciphers E
such that one of the DBL constructions (and hence by Proposition 3 the PGV1

function, too) admits a trivial collision, whereas the other two constructions are
simultaneously secure.

We start with the HDMc compression function where c �= 0n. Let E be a
blockcipher. Define a modified blockcipher Ẽ as follows.

Mc := E−1(0n|0n,E(0n|0n, 0n)⊕ c) , C0 := E(0n|0n, 0n) , Cc := E(0n|0n, c) .

Ẽ(K1|K2,M) :=

⎧⎪⎨⎪⎩
C0 ⊕ c if (K1|K2,M) = (0n|0n, c) ;
Cc if (K1|K2,M) = (0n|0n,Mc) ;

E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=

⎧⎪⎨⎪⎩
c if (K1|K2, C) = (0n|0n, C0 ⊕ c) ;

Mc if (K1|K2, C) = (0n|0n, Cc) ;

E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 above define a blockcipher and we have c �= 0n. Hence,

HDMẼ
c (0

n, 0n, 0n) = (Ẽ(0n|0n, 0n)⊕ 0n, Ẽ(0n|0n, c)⊕ c) = (C0, C0) ,

HDMẼ
c (0

n, 0n, c) = (Ẽ(0n|0n, c)⊕ c, Ẽ(0n|0n, 0n)⊕ 0n) = (C0, C0) .

and the pair ((0n, 0n, 0n), (0n, 0n, c)) thus constitutes a non-trivial collision for

HDMẼ
c . However, the next lemma shows that ADM and TDM remain collision-

resistant for this cipher. The proof appears in the full version of this paper.

Lemma 1. Let Ẽ be a blockcipher as above with a distribution according to

(E,E−1)←$ Block(2n, n). Then ADMẼ and TDMẼ are both collision-resistant.

Due to space constraints we also provide the remaining separating examples in
the full version of this paper.
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Theorem 2. Let c ∈ {0, 1}n \ {0n}. Then among the compression functions
HDMc, ADM, and TDM neither one directly reduces the idealized cipher in either
one of the other two functions for the collision-resistance game.

As a corollary of the above results we get that there is no direct reduction from
PGV to any of the DBL compression functions: otherwise we also obtain direct
reducibility to any other DBL compression function via Theorem 3, which we
have shown to be impossible in the above theorem. In the next section we will
extend this irreducibility result to free reductions.

4.3 Irreducibility of PGV to DBL

We now turn our attention to the converse of Propositions 3 and 5: can one
convert any idealized cipher which makes a DBL construction secure to one
which makes a PGV construction secure? We show strong evidence towards the
impossibility of such a reduction. To this end, we restrict the class of reductions
under the construction to black-box ones [28]. Such a reduction is a pair of oracle
Turing machines (T ,R). Both machines have access to a blockcipher, T is a
transformation which implements an idealized cipher, andR is a reduction which
given oracle access to an algorithm B breaking the security of a PGV construction
when instantiated with T E, breaks the security of a DBL construction with
respect to E (for random E). As it will become apparent from the proof of
the theorem, the type of reductions that we actually rule out allow both the
transformation and the reduction to depend on the blockcipher and hence, in
the terminology of [28], the class of reductions that we rule out lies somewhere in
between fully black-box and ∀∃semi-black-box reductions. More concisely, this
class is captured as an NBN reduction in the CAP taxonomy of [3], meaning
that the Construction may make non-black-box use of primitive, and that the
reduction makes black-box use of the Adversary resp. non-black-box use of the
Primitive.

We make two further simplifications on the structure of the reduction. First
we assume that R queries its break oracle B once. We call this a single-query
reduction. Second, we require the reduction to succeed with a constant probabil-
ity whenever B is successful. Now, the intuition behind the impossibility of the
existence of such a reduction follows that for lower bounds on the output size of
hash combiners [26]. The underlying idea is that the collision-resistance security
of any of the DBL constructions is beyond that of the PGV constructions. More
precisely, around Θ(2n) queries are needed to break the collision resistance of
any of the DBL constructions with noticeable probability, whereas this bound is
only Θ(2n/2) for the PGV constructions. To derive a contradiction, we may sim-
ulate the break algorithm B for the reduction with only Θ(2n/2) queries, and the
reduction will translate this collision efficiently to a DBL construction collision,
which contradicts the Θ(2n) collision-resistance bound.

We are now ready to state our irreducibility theorem. Since we are dealing
with an impossibility result, for the sake of clarity of the presentation we present
the theorem in asymptotic language. The proof appears in the full version.
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Theorem 3. There is no single-query fully black-box ideal-cipher reduction from
any of the PGV constructions to any of the DBL constructions for the collision-
resistance and [everywhere] preimage-resistance games as long as the reduction
is tight: when the number of queries, run times, and success probabilities are
parameterized by a security parameter, the reduction is (O(1),O(1),O(1),O(1))-
tight.

It is conceivable that the techniques of [26] can be leveraged to derive a more
general theorem which rules out reductions that call the break oracle multiple
times. Furthermore, one might also be able to extended the result to arbitrary
games for two given constructions, as long as a lower bound on the success
probability of an attack on the security of the first construction is noticeably
higher than an upper bound on the security of the second.

5 Summary and Future Work

We summarize our reducibility results in Figure 3 and refer to the caption for
details. One important observation from these results is that we do not have
one single “Y” column, i.e., a compression function which reduces to all of the
other ones—or, equivalently, a compression function which is secure if any of the
others is secure. This would be a clear winner in the sense that it is the safest
choice for practice.

For the “n” entries of Table 3.b we can show that there is a separation for a
large class of potential transformation functions. More specifically, we show that
there is no surjective transformation T to reduce, say, ADM to HDM1n , as long as
the transformation also preserves HDM-security “backwards.” Here, surjectivity
means that T E varies over all possible blockciphers if E runs through all block-
ciphers, and backward security preservation means that E is secure for HDM if
T E is. Transformations which are covered by this include, for example, those of
the form T E

π1,π2
(K1|K2,M) = π2(E(K1|K2, π1(M))) for fixed involutions π1, π2

over {0, 1}n, or more generally, any transformation which is an involution (over
Block(2n, n)).4 The argument is as follows. Assume that there exists such a T .
Then for any blockcipher E which makes HDM secure, the blockcipher T E makes
ADM secure. However, we also know that there is a blockcipher E� such that E�

gives rise to a collision-resistant HDME�

1n but renders ADME�

collision-tractable
(see the full version of this paper). Now define E to be any blockcipher in the
preimage of E� under T (such an E exists as T is surjective). The transforma-
tion now maps E to E�, which means that it fails to provide security for ADM.
Furthermore, E makes HDME

1n collision-resistant by assumption about backward
security. This, however, contradicts the requirement of reducibility from ADM
to HDM, because E makes HDM secure but T E is insecure for ADM.

4 An example of a surjective transformation which is not backward-secure for PGV1

is T E(K,M) = E(K,M)⊕K, because it maps PGV1 for T E to PGV2 for E, and we
know that there are idealized ciphers making PGV2 secure but PGV1 insecure.
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(3.b) Results for arbitrary transforma-
tions.

Fig. 3. Summary of our reducibility results for collision resistance. A “Y” or “N” in
a cell means that any cipher which makes the compression function corresponding to
the row collision-resistant also makes the compression function corresponding to the
column collision-resistant. A “–” in direct reductions indicates a syntax mismatch.
The number below an entry indicates the theorem/proposition supporting the claim.
An arrow “→” means that the result is implied by the left table. Reductions on the
diagonal of TDM, HDMc, and ADM trivially follow by self-reductions. Note that for
arbitrary transformations each cell might be using different transformations. The star
symbol “�” denotes reducibility by transitivity. An “n” is a separation for a restricted
class of transformations; see Section 5.

Open problems. Recall that we showed that one can transform a good blockci-
pher E (or rather distribution E) for the PGV1-group into a good one T E for the
PGV2-group. We also presented a transformation in the opposite direction. Ide-
ally, though, one would be interested in a single transformation T which, given E
making a PGV construction secure, turns it into T E which simultaneously makes
both the PGV1-group and the PGV2-group secure. Such a transformation would
be of interest because incorporating it into the compression function would result
in a construction that relies on a weaker assumption than either just PGV1 or
PGV2. Consequently, it would provide a handle to strengthen existing schemes
(in a provable way). Note that such a result would not contradict the separation
of direct reducibility between the PGV1-group and the PGV2-group, because si-
multaneous security looks for a (transformed) cipher in the intersection of good
(distributions over) blockciphers for both groups. This intersection is clearly non-
empty because it contains the ideal cipher; the question to address here is how
hard it is to hit a distribution when starting with the minimal security assump-
tion that (a potentially non-ideal) E is good for at least one PGV construction.
We remark our technique of separating the DBL constructions from PGV1 does
not seem to apply here, as the simultaneous security bound for PGV1 and PGV2

is Θ(q2/2n). However, surjective, backward-secure transformations are still ruled
out according to the same argument as in the HDM vs. ADM case.

Another direction of research left open here is the existence of reductions
among two compression functions for different games. For example, one might
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ask whether the collision resistance of one construction for a blockcipher gives
preimage resistance in another (or perhaps the same) construction with the same
cipher. In particular, using Simon’s result [31] one might be able to demonstrate
the impossibility of reducing collision resistance to preimage resistance for any
of the PGV constructions.

Finally, let us emphasize that all results in this work apply directly to com-
pression functions. Needless to say, in practice compression functions are iterated
in order to hash arbitrary lengths of data. This could extend the set of E that
provide security, potentially changing the scope for transformations between con-
structions. We leave the question of the existence of reductions among iterated
hash functions as an interesting open problem.
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Abstract. We revisit the security of Fiat-Shamir signatures in the
non-programmable random oracle model. The well-known proof by
Pointcheval and Stern for such signature schemes (Journal of Cryptol-
ogy, 2000) relies on the ability to re-program the random oracle, and
it has been unknown if this property is inherent. Pailler and Vergnaud
(Asiacrypt 2005) gave some first evidence of the hardness by showing
via meta-reduction techniques that algebraic reductions cannot succeed
in reducing key-only attacks against unforgeability to the discrete-log
assumptions. We also use meta-reductions to show that the security of
Schnorr signatures cannot be proven equivalent to the discrete logarithm
problem without programming the random oracle. Our result also holds
under the one-more discrete logarithm assumption but applies to a large
class of reductions, we call single-instance reductions, subsuming those
used in previous proofs of security in the (programmable) random ora-
cle model. In contrast to algebraic reductions, our class allows arbitrary
operations, but can only invoke a single resettable adversary instance,
making our class incomparable to algebraic reductions.

Our main result, however, is about meta-reductions and the question
if this technique can be used to further strengthen the separations above.
Our answer is negative. We present, to the best of our knowledge for the
first time, limitations of the meta-reduction technique in the sense that
finding a meta-reduction for general reductions is most likely infeasible.
In fact, we prove that finding a meta-reduction against a potential reduc-
tion is equivalent to finding a “meta-meta-reduction” against the strong
existential unforgeability of the signature scheme. This means that the
existence of a meta-reduction implies that the scheme must be insecure
(against a slightly stronger attack) in the first place.

1 Introduction

On a technical level, we investigate the security of Fiat-Shamir (FS) signatures
[10] in the non-programmable random oracle model (NPROM), i.e., where pro-
gramming the hash function is prohibited. Such programming has been exploited
in the security proof for common FS signatures by Pointcheval and Stern [23],
bringing forward the question if the security result remains valid in the more
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stringent model of non-programmable random oracles. Conceptually, though,
the more interesting result in the paper refers to limitations of so-called meta-
reductions. Such meta-reductions are also called “reductions against the reduc-
tions” as they basically treat the reduction as an adversary itself and reduce the
existence of such a reduction to a presumably hard problem, ruling out reductions
and therefore security proofs for the underlying scheme. This proof technique re-
cently gained quite some attention as it rules out certain reductions, especially
those which only treat the adversary but not the underlying primitive as a black
box (e.g., [9,20,15,14,21,16,2,27]). We show, via a “meta-meta-reduction”, that
one cannot use the meta-reduction technique to show impossibility results for
FS signatures in the NPROM.

1.1 Fiat-Shamir Signatures in the NPROM

The class of FS signatures comprises all transformed three-move identification
schemes in which the challenge ch, sent by the verifier in return of the prover’s
initial commitment com, is replaced by the hash value H(com,m) for message
m. The prover’s response resp, together with com, then yields the signature
(com,resp) for m. For some cases, like the Schnorr signature scheme [26], the
signature can be shortened by using (ch,resp) instead.

The common security proof for FS signature schemes in the random oracle
model [6], given in [23], basically works as follows. The reduction to the under-
lying problem, such as the discrete logarithm problem for the Schnorr scheme,
runs the adversary twice. In the first runs the reduction gets a signature forgery
(com,resp) for message m and challenge ch = H(com,m). In the second run
it re-programs H to yield a distinct challenge ch

′ = H(com,m) and response
resp

′. From both signatures the reduction can then compute a solution to the
underlying problem. Clearly, this technique relies on the programmability of the
hash function.1

Fischlin et al. [13] later defined reductions in the non-programmable random
oracle model (NPROM) by externalizing the hash function to both the adver-
sary and the reduction.2 In the NPROM the reduction may still observe the
adversary’s queries to the hash function, but cannot change the reply. Obvi-
ously, this non-programming property matches much closer our understanding
of “real” hash functions and instantiations through, say, SHA-3. Interestingly,
though, Fischlin et al. [13] do not investigate this arguably most prominent ap-
plication of the random oracle methodology. Instead, they separate programming
and non-programming reductions (and an intermediate notion called weakly pro-
gramming reductions) through the case of OAEP encryption, FDH signatures,

1 Note that this proof reduces the security of the signature scheme to the underlying
number-theoretic problem via special soundness. Abdalla et al. [1] more generally
consider FS schemes with reductions to the identification schemes. We do not cover
the latter type of reductions and schemes here.

2 The role of programmability was first investigated by Nielsen [18], even though not
for reductions as in the proofs of Fiat-Shamir schemes.
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and trapdoor permutation based KEMs. Weakly programming reductions are
allowed to reset the random oracle and redirect the value to some (external)
random answer. Our first result is to formally confirm the intuition that FS sig-
natures should still be secure in the weakly programmable random oracle model.

1.2 Limitations Through Meta-Reductions

The more interesting question is if FS signatures can be shown to be secure in
the NPROM. Our first result in this regard is negative and applies to discrete
log schemes like the Schnorr signature scheme [26] or the RSA-based Guillou-
Quisquater scheme [17]. Namely, we first consider any reductionR which initiates
only a single (black-box) instance of the adversary A for some public key pk, but
such that it can reset A arbitrarily to the point after having handed over the
public key (from the fixed group). Note that the reduction in the programmable
ROM in [23] is of this kind, only that it can also change the behavior of the
random oracle, unlike our reductions here in the NPROM. We show that this
type of single-instance reduction to the discrete log problem cannot succeed in
the NPROM under the one-more discrete log assumption [5].

Our impossibility result follows from presenting a meta-reductionM against
R. That is, we show that if one can find a reduction R which successfully solves
the DL problem given black-box access to any successful adversary A against
the signature scheme, then there is a meta-reductionM breaking the one-more
DL problem directly. Since we also present a successful (unbounded) adversary
A which M can simulate towards R efficiently, we conclude that the existence
of reduction R would already contradict the one-more DL problem.

We observe that our meta-reduction, too, works in the NPROM and thus
cannot program the random oracle for R; else the meta-reduction would violate
the idea of modeling hash functions as non-programmable. It is also easy to
show that, if the meta-reduction, unlike the reduction, was allowed to program
the random oracle, this “unfair” situation would straightforwardly dismiss the
possibility of such reductions. However, such an approach seems to violate the
idea behind non-programmable oracles as a mean to capture real-world hash
functions over which no party, not even the meta-reduction, has control.

The noteworthy property of our meta-reduction M is that, unlike most of
the previous proposals (cf. [11]), it does not work by resetting the reduction
R. The reset strategy is usually used to rewind the reduction and, in case of
signature schemes, get an additional signature through a signing query in an
execution branch, and display this signature back to R as a forgery in the main
branch. However, this means that one needs to take care of correlations between
the additional signature and the reduction’s state. Instead of using such resets,
our meta-reduction will essentially run two independent copies of the reduction
and use the signatures of one execution in the other one. The independence of
the executions thus “decorrelates” the additional signature from the reduction’s
state, avoiding many complications from the resetting strategy.
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1.3 Limitations of Meta-reductions

Does our meta-reduction impossibility result for non-programming reductions
extend to other cases like the discrete logarithm problem? We show that this is
unlikely, thus showing limitations of the meta-reduction technique. The idea is to
consider the meta-reduction itself as a reduction, and to use the meta-reduction
technique against this reduction. Hence, we obtain a “meta-meta-reduction” N
which now simulates the reductionR forM, just as the meta-reduction simulates
the adversary for R.

More concretely, assume that we consider reductions R transforming an ad-
versary A against the signature scheme in a black-box way into a solver for
some cryptographic problem ΠR. Then, a meta-reductionM should turn R (to
which it has black-box access) into a successful solver for some problemΠM. For
technical reasons, in our case this problem ΠM has to be non-interactive, e.g.,
correspond to the discrete logarithm problem; this also circumvents the case of
our previous meta-reduction for the interactive one-more DL problem. Then we
show that such a meta-reduction can be used to build a meta-meta-reduction N
against the strong unforgeabilty of the signature scheme.

In other words, the meta-reduction technique cannot help to rule out black-
box reductions to arbitrary problems, unless the signature is insecure in the first
place. Here, insecurity refers to the notion of strong unforgeability where the
adversary also succeeds by outputting a new signature to a previously signed
message. In fact, in the programmable ROM the security proof in [23] actually
shows that the FS schemes achieve this stronger notion.

1.4 Related Work

As mentioned before, meta-reductions have been used in several recent results
to rule out black-box reductions for Fiat-Shamir schemes, and especially for
Schnorr signatures. Paillier and Vergnaud [20] analyzed the security of Schnorr
Signatures in the standard model. They showed with the help of meta-reductions
that, if the one-more discrete logarithm assumption holds, the security of Schnorr
signatures cannot be reduced to the (one-more) discrete logarithm problem, at
least using algebraic reductions. While algebraic reductions where first defined
by Boneh and Venkatesan [7], Paillier and Vergnaud [20], however, use a slightly
more liberal definition of algebraicity. Their notion basically states that, given
the discrete logarithm of all of the reduction’s inputs and access to the reduction,
it is possible to compute the discrete logarithm of any group element output by
the reduction. We note that the ability to trace the discrete logarithms of the
group elements produced by the reduction is important to their result and allows
them to prove impossibility even for key-only attacks.

Paillier and Vergnaud [20] also extended their result to other signature
schemes, including the Guillou-Quisquater scheme [17] and the one-more RSA
assumption [5]. They also considered the tightness loss in the Pointcheval-Stern
proof for the Schnorr signature scheme in the programmable random oracle
model. They showed, again for algebraic reductions, that the security loss of a
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factor
√
qH is inevitable, where qH is the maximum number of random oracle

queries by the adversary. This bound was later raised to q
2/3
H by Garg et al. [15]

in the same setting. Seurin [27] recently improved this bound further to O(qH).
Using meta-reduction techniques and considering algebraic reductions, too, he
proved it is unlikely that a tighter reduction exists.

In a recent work, Baldimtsi and Lysyanskaya [4] showed, via meta-reductions,
that one cannot prove blind Schnorr signatures secure via black-box reduc-
tions. Their meta-reduction, like ours here, has the interesting feature of be-
ing non-resetting. Remarkably, though, they seem to rule out the more liberal
programming reductions, whereas our result is against the “more confined” non-
programming reductions. However, their result considers a special type of pro-
gramming reduction, called naive. This roughly means that one can predict the
reduction’s programmed random oracle answers by reading the reduction’s ran-
dom tape. This property is inherently tied to the programmability and is clearly
not fulfilled by non-programmable, external random oracles; for such oracles even
the reduction does not know the answers in advance. This, unfortunately, also
means that their meta-reduction technique may not apply to non-programmable
hash functions. In other words, one may be able to bypass their impossibil-
ity result and may still be able to find a cryptographic security proof for such
schemes, by switching to the non-programmable random oracle model, or even
to standard-model hash functions.

1.5 Organization

In Section 2 we first recall some basic facts about signatures and (general and
discrete-log specific) cryptographic problems. Then we show that FS signatures
are secure in the weakly programmable random oracle model, and prove our
meta-reduction impossiblity result for single-instance reductions in the NPROM
in Section 3. Our main result about meta-meta-reductions appears in Section 4.

2 Preliminaries

We use standard notions for digital signature schemes S = (KGen, Sign,Vrfy)
such as existential unforgeability and strong existential unforgeability. We usu-
ally assume (non-trivially) randomized signature schemes, where the signature
algorithm has super-logarithmic min-entropy for the security parameter κ, i.e.,
H∞(Sign(sk,m)) ∈ ω(log(κ)) for all keys sk, all messages m, and given the ran-
dom oracle. For formal definitions refer to the full version of this paper.

2.1 Cryptographic Problems

We define a cryptographic problem as a game between a challenger and an ad-
versary. The challenger uses an instance generator to generate a fresh instance of
the problem. The adversary is then supposed to find a solution for said instance.
The challenger may assist the adversary by providing access to some oracle,
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like a decryption oracle in a chosen-ciphertext attack against indistinguishability.
Eventually the adversary outputs a solution for the problem instance and the
challenger uses a verification algorithm to check whether the solution is correct.

For many problems there exist trivial adversaries, e.g., succeeding in an indis-
tinguishability game by pure guessing. One is usually interested in the advantage
of adversaries beyond such trivial strategies. We therefore introduce a so-called
threshold algorithm to cover such trivial attacks and measure any adversary
against this threshold adversary.

Definition 1 (Cryptographic Problem). A cryptographic problem Π =
(IGen,Orcl,Vrfy,Thresh) consists of four algorithms:

– The instance generator IGen takes as input the security parameter 1κ and
outputs a problem instance z. The set of all possible instances output by
IGen is called Inst.

– The computationally unbounded and stateful oracle algorithm Orcl takes as
input a query q ∈ {0, 1}∗ and outputs a response r ∈ {0, 1}∗ or a special
symbol ⊥ indicating that q was not a valid query.

– The deterministic verification algorithm Vrfy takes as input a problem in-
stance z ∈ Inst and a candidate solution x ∈ Sol. The algorithm outputs

b ∈ {0, 1}. We say x is a valid solution to instance z if and only if b
?
= 1.

– The efficient threshold algorithm Thresh takes as input a problem instance z
and outputs some x. The threshold algorithm is a special adversary and as
such also has access to Orcl.

We note that the algorithms IGen, Orcl, Vrfy potentially have access to shared
state that persists for the duration of an experiment.

Definition 2 (Hard Cryptographic Problem). For a cryptographic prob-
lem Π = (IGen,Orcl,Vrfy,Thresh) and an adversary A we define the following
experiment:

ExpAΠ(κ) : [z ← IGen(1κ);x← AOrcl(z); b← Vrfy(z, x); output b].

The problem Π is said to be hard if and only if for all probabilistic polynomial-
time algorithms A the following advantage function is negligible in the security
parameter κ:

AdvAΠ(κ) = Pr
[
ExpAΠ(κ)

?
= 1
]
− Pr

[
ExpThreshΠ (κ)

?
= 1
]
,

where the probability is taken over the random tapes of IGen and A.

We sometimes require some additional properties of cryptographic problems,
summarized in the following definition:

Definition 3 (Specific Cryptographic Problems). Let Π = (IGen,Orcl,
Vrfy,Thresh) be a cryptographic problem as defined in Definition 1.

– The problem Π is said to be non-interactive if and only if Π.Orcl is the
algorithm that always outputs ⊥ and never changes the shared state.
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– The problem Π is said to be efficiently generatable if and only if Π.IGen is
a polynomial-time algorithm.

– The problem Π is said to be solvable if and only if Π.Sol is recursively
enumerable, and the following holds:

∀z ← Π.IGen(1κ) : (∃x ∈ Π.Sol : Π.Vrfy(z, x)
?
= 1).

– The problem Π is said to be monotone if and only if for all instances z ←
Π.IGen(1κ), all solutions x ∈ Π.Sol, all n ∈ N, and all sequences of queries

(q1, . . . , qn) the following holds: If Π.Vrfy(z, x)
?
= 1 holds after executing the

queries Π.Orcl(q1); . . . ;Π.Orcl(qn), then this already held before Π.Orcl(qn)
was executed.

Intuitively, an algorithm solving a monotone problem is not punished for issuing
fewer queries. In particular, if a solution is valid after some sequence of queries,
it is also valid if no queries were executed at all.

2.2 Discrete Logarithm Assumptions

The discrete logarithm problem with its corresponding hardness assumption is a
specific instance of a non-interactive, efficiently generatable, and solvable prob-
lem. The assumption about the computational infeasibility of computing loga-
rithms in certain groups is formally defined in Definition 4.

Definition 4 (Discrete Logarithm Assumption). Let G = 〈g〉 be a group
of prime order q with |q| = κ. The discrete logarithm (DL) problem over G
—written DLG— is defined as follows:

Instance and Solution space: The instance space Inst is G and the solution
space Sol is Zq.

Instance Generation: The instance generator IGen(1κ) chooses z
$← G and

outputs z. Note that this sampling of z may require to pick a random w
$← Zq

and compute z = gw.

Verification: The verification algorithm Vrfy(z, x) computes z′ = gx. If z′
?
= z,

then it outputs 1, otherwise it outputs 0.

Threshold: The threshold algorithm Thresh(z) chooses x
$← Zq and outputs x.

The discrete logarithm assumption is said to hold over G if DLG is hard.

A natural extension of the discrete logarithm problem are the interactive, effi-
ciently generatable, monotone, and solvable one-more discrete logarithm prob-
lems first introduced by Bellare et al. [5]. They are interactive, as the adversary
is given access to an oracle capable of solving the DLG problem. However, an ad-
versary computing n+1 discrete logarithms can only request at most n discrete
logarithms from the DL oracle, hence, the name one-more discrete-log problem.
The problems with their corresponding hardness assumptions are formally de-
scribed in Definition 5. The assumptions are believed to be stronger than the
regular DL assumption [8].
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Definition 5 (n-One-More Discrete Logarithm Assumption [5]). Let
G = 〈g〉 be a group of prime order q with |q| = κ. The n-one-more discrete
logarithm (n-DL) problem over G –written n-DLG– is defined as follows:

Instance and Solution space: The instance space Inst is Gn+1 and the so-
lution space Sol is Zn+1

q .
Shared State: The shared state consists only of a single counter variable i.
Instance Generation: The instance generator IGen(1κ) initializes i := 0 in

the shared state, chooses z0, . . . , zn
$← G, and outputs (z0, . . . , zn).

Oracles: The oracle algorithm Orcl(z), on input z ∈ G, increments i := i + 1.

It then exhaustively searches Zq for an x such that gx
?
= z and outputs x.

On input some z �∈ G, Orcl outputs ⊥.
Verification: The verification algorithm Vrfy((z0, . . . , zn), (x0, . . . , xn))

computes z′j = gxj . If z′j
?
= zj for all j and if i ≤ n, then it outputs 1,

otherwise it outputs 0.

Threshold: The threshold algorithm Thresh(z) chooses x0, . . . , xn
$← Zq and

outputs (x0, . . . , xn).

The n-one-more discrete logarithm (n-DL) assumption is said to hold over G, if
and only if the n-DLG problem is hard.

3 Security of Schnorr Signatures

We first recall the definition of the Schnorr signature scheme (SSS) [25,26] as de-
rived from the Schnorr identification scheme via the Fiat-Shamir transform [10].
Afterwards, we analyze the security of the resulting signature scheme in two
variants of the random oracle model, in which reductions are limited in the way
they can program the random oracle.

Definition 6 (Schnorr Signature Scheme). Let G be a cyclic group of prime
order q with generator g and let H : {0, 1}∗ → Zq be a hash function modeled as
a random oracle. The Schnorr signature scheme, working over G, is defined as
follows:

Key Generation: The key generation algorithm KGen(1κ) proceeds as follows:

Pick sk
$← Zq, compute pk := gsk, and output (sk, pk).

Signature Generation: The signing algorithm Sign(sk,m; r) proceeds as fol-
lows: Use r ∈ Zq and compute R := gr. Compute c := H(R,m) and
y := r + sk · c mod q. Output σ := (c, y).

Signature Verification The verification algorithm Vrfy(pk,m, σ) proceeds as

follows: Parse σ as (c, y). If c
?
= H(pk−cgy,m), then output 1, otherwise

output 0.
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3.1 Unforgeability of Schnorr Signatures under Randomly
Programming Reductions

We begin by showing that the original proof by Pointcheval and Stern [22,23]
still holds for randomly programming reductions. Randomly programming reduc-
tions as defined in [13] do not simulate the random oracle themselves. Instead,
they can re-set the random oracle to another hash value. As shown in [13] such
randomly programming reductions are equivalent to the weakly-programmable
random oracle model (WPROM) which is in between the programmable and
non-programmable ROM. Whereas a conventional random oracle has only a sin-
gle interface implementing a random mapping from domainDom to range Rng,
a weakly programmable random oracle has three interfaces, which allow for pro-
gramming but only in a weak sense: one cannot freely re-program the hash values
but only re-set them to another random value:

Definition 7 (Weakly Programmable Random Oracle). A weakly pro-
grammable random oracle (WPRO) exposes three interfaces to the caller:

Evaluation: The evaluation interface ROeval behaves as a conventional random
oracle, mapping Dom→ Rng.

Random: The random interface ROrand takes as input bit strings of arbitrary
length and implements a random mapping {0, 1}∗ → Rng.

Programming: The programming interface ROprog takes as input a pair (a, b) ∈
Dom× {0, 1}∗ and programs ROeval(a) to evaluate to ROrand(b).

The randomly programming reduction gets oracle access to all three interfaces,
whereas the adversary only gets access to the ROeval interface. We now show
that randomly programming reductions are sufficient to prove SSS secure in the
ROM.

Theorem 1 (EUF-CMA Security of SSS Under Randomly Programming
Reductions). The EUF-CMA security of SSS is reducible to the discrete log-
arithm problem over G using a randomly programming reduction R.

The proof is close to the one in the programmable case and omitted here; the
reader may refer to the full version for a sketch. We thus show that the lim-
ited programmability of a randomly programming random oracle is sufficient to
obtain a (loose) proof of security for Schnorr signatures. In particular, choosing
range points of the random oracle at will is not required for the proof. We note
that the above result transfers to other FS schemes such as [19,17,12].

3.2 Schnorr Signatures are not Provably Secure under
Non-programming Single-Instance Reductions

We now show that the Schnorr Signature Scheme cannot be proven existentially
unforgeable under chosen message attacks without programming the random
oracle —at least with respect to a slightly restricted type of reduction. We ac-
tually prove that, if such a reduction exists, the 1-one-more discrete logarithm
assumption does not hold over G.
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We term the restricted class of reductions as single-instance reductions. Such
single-instance reductions only invoke a single instance of the adversary and,
while they may rewind the adversary, they may not rewind it to a point before
it received the public key for the first time. This class of reductions is espe-
cially relevant, because both the original security reduction by Pointcheval and
Stern [23] as well as the one in Theorem 1 are of this type.

Instead of simulating the random oracle itself, a non-programming reduction
works relative to an external fixed random function and it is required to honestly
answer all random oracle queries. That is, the black-box reduction can observe
the adversary’s queries to the random oracle, but cannot change the answers.
We omit a formal approach (see [13]) because the definition reflects the intuition
straightforwardly. We remark that the approach assumes fully-black-box reduc-
tions [24] (or, in terms of the CAP taxonomy of [3], the BBB-type of reduction)
which need to work for any (unbounded) adversary oracle. In particular, and we
will in fact exploit this below, the adversary can thus depend on the reduction.
We may therefore think of the adversary as a family A of adversaries AR,a,
depending on the reduction R and using some randomness a. We believe it is
conceptually easier in this case here to make the randomness a explicit, as op-
posed to having a single adversary that internally chooses a at the beginning of
the execution. It is nonetheless sometimes convenient to omit these subindices
and to simply write A.

Theorem 2 (Non-Programming Irreducibility for SSS). Assume that the
1-one-more discrete logarithm assumption holds over G. There exists no non-
programming single-instance fully-black-box reduction that reduces the EUF-CMA
security of SSS over G to the discrete logarithm problem over G.

More precisely, assume there exists a non-programming single-instance fully-
black-box reduction R that converts any adversary A against the EUF-CMA secu-
rity of SSS working in group G into an adversary against the DL problem over G.

Assume further that the reduction has success probability SuccR
A

DL,G(κ) for given
A and runtime TimeR(κ). Then, there exists a family A of successful (but pos-
sibly inefficient) adversaries AR,a against the EUF-CMA security of SSS and a
meta-reduction M that breaks the 1-DL assumption over G with non-negligible

success probability SuccM1-DL,G(κ) ≥ (SuccR
AR,a

DL,G (κ))2 for a random AR,a ∈ A and
runtime TimeM(κ) = 2 · TimeR(κ) + poly(κ).

Note that the fact that A breaks SSS working over G implies that for any public
key pk output by R it holds that pk ∈ G.

Proof. (Sketch) Roughly, the meta-reduction M – depicted in Figure 1 – with
inputs z0, z1 works as follows: It invokes two instances R0 and R1 of the re-
duction in a black-box way, on inputs z0 and z1, respectively, and independent
random tapes. When the instances ofR invoke the forger with public key pk0 and
pk1 respectively, M simulates a specific (inefficient) forger. To do so, the meta-
reduction queries random messages to the sign oracles and obtains signatures on
them. It then queries the quotient of the two public keys, i.e., pk0pk

−1
1 , to the
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Fig. 1. The meta-reduction uses two instances of R and simulates the adversary A by
obtaining the difference between the secret keys and adapting the signatures output
by R to the other key, respectively.

DLOM oracle, thus obtaining the difference between the secret keys. The differ-
ence between the secret keys can then be used to adapt the obtained signatures
to the other public key, respectively. These adapted signatures are then returned
to the reductions as forgeries. As we are working in the (non-programmable) ran-
dom oracle model, the instances of R expect to see all the random oracle queries,
the (simulated) adversary would issue. The meta-reduction M therefore makes
sure to issue exactly those queries. Then the meta-reduction mimics the behavior
of the adversary closely, and succeeds in solving the 1-one-more DL problem. #$

Remark 1. Note that the restriction to single-instance reductions is crucial at
this point. Consider a reduction that would output a second public key, either by
invoking another instance of A or by rewinding the adversary to a point before
it received the public key. The meta-reduction would then need to issue another
query to the DLOM oracle to simulate the signing oracle. Obviously, M would
then have made 2 queries to the DLOM oracle and could, thus, no longer win in
the 1-DL experiment.

Remark 2. It should be noted, that the meta-reduction employed in the proof of
Theorem 2 only works because SSS is defined relative to a single fixed random
oracle. If one uses a common variant of the Fiat-Shamir transform, in which the
random oracle is “personalized” by including the public key in the hash query,
c = H(pk, R,m), the meta-reduction no longer works. This is due to the fact
that in this case signatures can no longer be simply adapted to another public
key, using only the secret keys’ difference.
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Remark 3. The idea immediately applies to other FS signature schemes with
unique keys, where there is a related one-more problem, such as the RSA-GQ
scheme [17].

4 Limitations of the Meta-reduction Technique

Paillier and Vergnaud [20], as well as we here, have used meta-reductions to
provide evidence that, once we drop programmability, the security of Schnorr
signatures might not be equivalent to the discrete log problem after all. However,
it is interesting to note that in both cases the meta-reduction-based proofs rely
on the one-more discrete log assumption. As the discrete log assumption does
not seem to imply its one-more variants [8] the results are, thus, conditional
and not as strong as they could be. The obvious question is therefore: “Can we
do better?” Unfortunately, the answer turns out to be “Not without finding an
actual adversary.”

Our results actually holds for any randomized signature scheme S (where, as
explained in Section 2, the signing algorithm has super-logarithmic min entropy)
for which the signing algorithm’s hash queries in any signature generation can al-
ways be reconstructed from the signature alone, in the right order. We call them
randomized signature schemes with reconstructible hash queries , for a formal def-
inition refer to the full version. These schemes include Fiat-Shamir transformed
schemes such as Schnorr but also cover (randomized versions of) FDH-RSA sig-
natures. We show that finding a meta-reduction to a non-interactive problem
such as the discrete log problem is at least as hard as finding an adversary
against the strong existential unforgeability of S. For this, we first describe an
inefficient reduction R that is capable of detecting when the forgery it receives is
actually one of the signatures it produced itself as an answer to a signing query.
For example, a meta-reduction may make several signing requests to a reduction
and then reset these requests in order to use one additional message-signature
pairs as the forgery. Our reduction will be able to spot such attempts.

The meta-reduction result of the previous section does not apply here, even
though our reduction here will be of the single-instance type. The reason is that
the meta-reduction there assumed an (interactive) one-more DL problem –and
made use of the DL oracle– whereas the meta-reduction here should work for
non-interactive problems such as the discrete log problem.

4.1 An Inefficient Reduction for Randomized Signature Schemes
with Reconstructible Hash Queries

Let S be a randomized signature scheme and let ΠR be a monotone solvable
problem. Let Q be the set of message-signature pairs (mi, σi) resulting from
queries to R’s signing oracle. Furthermore, let p be the maximum number of
signature queries issued by a forger A and assume that R knows the polyno-
mially bounded p. We note that for the adversary in our single-instance reduc-
tions in the previous section, the reduction could have been given p = 1, too.
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For the moment, the reader may think of the meta-reduction as running a single
instance of the reduction; we will later reduce the multi-instance case to the
single-instance case via standard “guess-and-insert” techniques.

The reduction R on input an instance z of ΠR first generates a key pair
(sk, pk)← S.KGen(1κ), then initializes the counter variable i := 0, and chooses a
random function O : {0, 1}2κ × Zp → Coinspk. The public key pk is then output
as the key under which the forger is supposed to forge a signature. When the
forger queries a message m to the signing oracle, R determines random coins
ω ← O(m, i), computes the signature as σ ← S.Sign(sk,m;ω), and returns σ
to the forger. The counter i is then incremented by one. If the counter is ever
incremented to p+ 1, then R aborts, as it is obviously not interacting with the
real adversary.

Eventually, the forger outputs a forgery (m∗, σ∗). If the signature does not

verify, i.e., S.Vrfy(pk,m∗, σ∗) ?
= 0, then R immediately aborts. Otherwise, the

reduction computes σj ← S.Sign(sk,m∗;ωj) with ωj ← O(m∗, j) for all j ∈
Zp and checks whether σj

?
= σ∗. If the check holds for any σj , then R also

immediately aborts. Otherwise, R enumerates all possible solutions x ∈ ΠR.Sol

and checks whether ΠR.Vrfy(x, z)
?
= 1. Once such an x is found, it is output by

R as the solution. Because ΠR is monotone and solvable, it is guaranteed that
there exists a valid solution even though R never issues a single oracle query
and that the enumeration of possible solutions will terminate in finite time.

Observe that the adversary A used by R is an EUF-CMA adversary, therefore,
whenever A forges successfully, it forges a signature for a message m∗ that has
not been queried before. The probability that R will reject such a forgery is
the probability that at least one of the σi collides with σ∗. As O is a random
function, all values to which O evaluates on input m∗ and some number i are
uniformly and independently distributed. For each σi, the probability that it
matches σ∗ is thus bounded through the min-entropy of the random variable

describing S.Sign(sk,m∗), i.e., ∀i ∈ Zp : (Pr[σi
?
= σ∗] ≤ 2−H∞(S.Sign(sk,m∗))).

Therefore, the probability that R will accept a forgery is at least 1 − p ·
2−H∞(S.Sign(sk,m∗)). As S is randomized, the probability for each σi to match is
negligible and thus

SuccR
A

ΠR(κ) ≥ (1− p · ε(κ)) · SuccS,AEUF-CMA(κ) = SuccS,AEUF-CMA(κ)− ε′(κ)

for negligible functions ε, ε′. Therefore, we conclude that SuccR
A

Π (κ) is non-
negligible for any successful adversary A and that R is, thus, a successful –albeit
inefficient– reduction from problem ΠR to the EUF-CMA security of S.

We next show that the checks of our reduction prevent the meta-reduction to
replay signatures to the reduction. This step relies on the fact that the meta-
reduction can only use the reduction in a black-box way, MR, and has for
example no control over the coin tosses of R. First, we show that we can restrict
ourselves to meta-reductions which actually take advantage of the reduction, at
least if the meta-reduction’s problem ΠM is hard:
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Lemma 1 (Meta-Reductions Rely on the Reduction). Let M be a non-
programming meta-reduction that converts any (EUF-CMAS 
 ΠR) reduction in
a black-box way into an adversary against some hard problem ΠM. Further, let
the reduction used byM be R as described above. Then it holds thatM provides
R with a forgery (m∗, σ∗) with non-negligible advantage.

Proof. Assume that this was not the case. Then one could easily simulate R and
the meta-reduction interacting with this reduction would solve ΠM efficiently
with non-negligible advantage. This contradicts the hardness of the problem. #$

Hence, from now on we condition on the meta-reduction to always provide the
reduction with a forgery, without losing more than a negligible advantage. In
this case we have:

Lemma 2 (Meta-Reductions Cannot Replay Signatures). Let M be a
non-programming meta-reduction that converts any (EUF-CMAS 
 ΠR) reduc-
tion in a black-box way into an adversary against some hard problem ΠM. Let Q
be the set of message-signature pairs (mi, σi) resulting from M’s queries to the
reduction’s signing oracle, and let (m∗, σ∗) be the message-signature pair output
by M as a forgery on behalf of the adversary. Further, let the reduction used by
M be R as described above. Then it holds that (m∗, σ∗) �∈ Q.

Proof. The proof is rather straightforward. Observe that by construction of R
the following holds: ∀(m,σ) ∈ Q : ∃i ∈ Zp : ω ← O(m, i) ∧ σ ?

= S.Sign(m, i;ω).
Therefore, it follows directly that, for (m∗, σ∗) ∈ Q, the reduction R will abort

and SuccR
M

ΠR (κ) = 0 for M if it replays an element of Q as a forgery. Note that
here we rely on the previous Lemma which assumes that M always provides
such a forgery. As it, thus, would not be a successful meta-reduction it must
hold that (m∗, σ∗) �∈ Q. #$

4.2 A Reduction against the Meta-reduction

Using the reduction described in the previous section, we now prove that finding
an efficient meta-reduction for a randomized signature scheme is at least as hard
as finding a strong existential forger.

Theorem 3 (Meta-Reductions toNon-Interactive ProblemsAreHard).
Let S be a randomized signature scheme with reconstructible hash queries, ΠR
be a monotone solvable problem, and ΠM be a non-interactive, efficiently gener-
atable problem. If ΠM is hard, then finding an efficient meta-reduction M that
converts any successful (EUF-CMAS 
 ΠR)-reduction in a black-box way into
an efficient successful adversary against ΠM is at least as hard as finding an
sEUF-CMA adversary against S.

More precisely, assume there exists an efficient non-programming black-box
meta-reduction M that converts any (EUF-CMAS 
 ΠR)-reduction into an ad-
versary against ΠM. Then, there exists a meta-meta-reduction N that converts
M into an adversary against the sEUF-CMA security of S with non-negligible
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success probability SuccS,N
M

sEUF-CMA(κ) ≥ 1
r ·Succ

MR

ΠM (κ) and runtime TimeNM(κ) =
TimeMR(κ) + poly(κ), where R is the reduction described above and r is the
maximal number of reduction instances invoked by M.

Note that, since M needs to work for any (black-box) R, we may assume that
R knows r. Indeed, we take advantage of this fact in the proof.

x← ΠM.IGen(κ)

R

N

M

Sign(sk, ·)

x

x

pk

m

σ

m∗, σ∗

pk
NM

Fig. 2. The meta-meta-reduction relies on the fact that M cannot replay an old sig-
nature. It simply outputs the forgery provided by M. The meta-meta-reduction can
be generalized for multiple instances of R using a standard guess-and-insert approach.

The proof is omitted here, but can be found in the full version. The idea
is outlined in Figure 2. The meta-meta-reduction picks one of the r reduction
instances run byM at random and substitutes this instance with the help of its
external signature oracle. The reconstruction property guarantees that N can
still pretend towards M to have made the hash queries of externally provided
signatures locally. All other reduction instances are simulated by N itself. In
order to be successful,M needs to provide a forgery to some of the R-instances,
and with probability 1/r it will be the one which is “externalized” by N . In this
case, Lemma 2 ensures that the forgery is a strong forgery against the external
signature oracle.
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Abstract. We put forward new techniques for designing signature schemes. As
a result, we present practical signature schemes based on the CDH, the RSA,
and the SIS assumptions. Our schemes compare favorably with existing schemes
based on these assumptions.

Our core idea is the use of tag-based signatures. Concretely, each signatures
contains a tag which is uniformly chosen from a suitable tag set. Intuitively, the
tag provides a way to embed instances of computational problems. Indeed, care-
fully choosing these tag spaces provides new ways to partition the set of possible
message-tag pairs into “signable” and “unsignable” pairs. In our security proof,
we will thus be able to sign all adversarially requested messages, and at the same
time use an adversarially generated forgery with suitably large probability.

Keywords: digital signatures, CDH assumption, pairing-friendly groups, RSA
assumption, SIS assumption.

1 Introduction

On the Difficulty of Constructing Digital Signature Schemes. From a purely theo-
retical point of view, digital signatures turn out to be a weaker primitive than public-key
encryption (PKE): digital signature schemes are equivalent to one-way functions [29],
while PKE appears to be a stronger primitive [24]. However, somewhat surprisingly, it
seems much harder to construct practical signature schemes than PKE schemes. For in-
stance, there exist practical and even chosen-ciphertext secure PKE schemes from a va-
riety of assumptions (e.g., DDH [12], CDH [9], DCR [14], factoring [18], or LPN [28]),
while it seems much harder to construct practical signature schemes from any of the
above assumptions.1 Indeed, the most efficient known schemes (e.g., [13, 15, 25, 5, 19])
are based on what [20] call “strong” assumptions.2 Intuitively, to contradict a strong as-
sumption, it suffices to solve one out of many possible problem instances given by the
challenge. For instance, the strong RSA assumption demands that finding any e ≥ 2
and C1/e mod N when given N and C ∈ �N is hard.

1 We ignore here schemes based on random oracles (e.g., full-domain hash [3]), since these
come only with heuristic proofs.

2 There are also practical schemes based on standard, non-strong assumptions, e.g., [6, 33, 22,
20]; these however suffer from large keys or signatures, or from a comparatively inefficient
signing process. A notable exception are dual systems and dual form signatures [32, 17], which
are however based on decisional assumptions like DLIN.
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We believe that this reliance on strong assumptions is very natural for a signature
scheme. Namely, in the standard security experiment for digital signatures, an adver-
sary A wins if it generates a signature for a (fresh) message of his own choice. This
gives A much more freedom (by choosing signature and message freely) than, e.g., an
adversary in an encryption security experiment. Thus, if we use A in a straightforward
way as a problem-solver in a security reduction to a computational assumption,A itself
may select which instance of the particular problem it is going to solve (by choosing
the forgery message). Note that we cannot simply guess which instance A is going to
solve, since there usually will be superpolynomially many possible messages (and thus
problem instances).3

Our Approach: Tag-Based Signatures. In this work, we explore tag-based signature
schemes as a means to enable security reductions to standard computational assump-
tions. In a tag-based signature scheme, each signature carries a tag t that can be chosen
freely during signature time. Intuitively, the tag further parameterizes the problem in-
stance we want to let A solve during a security reduction. The benefit of this additional
parameterization becomes apparent when one considers tags from a small domain: if
there are only few (i.e., polynomially many) tags, we could try to guess the tag t∗ used
in A’s forgery in advance. Our security reduction could then set up things such that
precisely signatures with tags t �= t∗ can be generated, and any signature with tag t∗

can be used to solve an underlying computational problem. (For now, let us assume that
A never reuses a tag from a previously signed message in his forgery.)

Showcase: Compact CDH-Based Signatures. To showcase our ideas, we first con-
sider a tag-based signature scheme in pairing-friendly groups. The scheme itself can be
seen as a variant of the stateful signature scheme of Hohenberger and Waters [23], with
tags (chosen from a suitably-sized tag space) in place of states. At this point, our work
forks up into two directions: first, we show that this scheme achieves a bounded form
of security in which an upper bound on the number of adversarial signature queries is
known prior to setting the scheme’s parameters. This yields an extremely compact and
efficient scheme for reasonable security parameters. Next, we show how to achieve full
security by employing a different, somewhat more generic proof strategy. This yields
an asymptotically more efficient scheme, at the cost of a qualitatively worse security
reduction. (With “qualitatively worse”, we mean that the reduction loss depends – in
a polynomial way – on the adversary’s runtime and success.) In both cases, we prove
security under the computational Diffie-Hellman (CDH) assumption.

More on the Bounded Security of our Scheme. First, consider an adversary A that
makes only a fixed, a-priori bounded number q of signing queries. Our tag space will
then consist of vectors

−→
t over a polynomial domain whose size depends on q. In the

security reduction, we will guess a suitable vector prefix
−→
t (i) of the challenge tag that

is different from all tag prefixes that arise during the signature generation for A. This
allows us to embed a CDH challenge into the prefix

−→
t (i) during the security proof.

3 There are more clever ways of embedding a computational problem into a signature scheme
(e.g., partitioning [11, 33]). These techniques however usually require special algebraic fea-
tures such as homomorphic properties or pairing-friendly groups. For instance, partitioning is
not known to apply in the (standard-model) RSA setting.
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On a technical level, this strategy opens the door to an interesting tradeoff between
public key and signature size. Namely, using a partitioning argument, we can allow a
very limited number of tag-prefix-collisions (in the sense that tags with the prefix

−→
t (i)

used in the forgery occur in the signatures generated for A). This yields smaller public
keys, at the cost of additional group elements in the signatures. For reasonable security
parameters (and assuming q ≤ 230 signature queries), we thus obtain a scheme with 4
and 15 group elements per signature, resp. public key.

Confined Guessing. To prove our scheme fully secure, we rely on a new technique
we call “confined guessing”. Concretely, we view our scheme as the combination of
several instances of a mildly secure tag-based scheme, each instance with a different
tag size. Here, mild security means that an adversary has to commit in advance on the
tag t∗ of his forgery. The basic version of our CDH-based scheme can be proven mildly
secure, since the CDH challenge can be embedded precisely in signatures with tag t∗.
(In particular for small tag sets, it may be necessary to generate a constant number of
signatures with tag t∗ for A. We can solve this problem using a partitioning technique,
which – since the number of required t∗-signatures is small – can be very efficient.)

A signature in our fully secure scheme consists of log(λ) signatures (σi)
log(λ)
i=1 of a

mildly secure scheme. (In the CDH case, these signatures can be aggregated.) The i-th
signature component σi is created with tag chosen as uniform 2i-bit string. Hence, tag-
collisions (i.e., multiply used tags) are likely to occur after a few signatures in instances
with small i, while instances with larger i will almost never have tag-collisions.

We will reduce the (full) security of the new scheme generically to the mild secu-
rity of the underlying scheme. When reducing a concrete (full) adversary B to a mild
adversary A, we will first single out an instance i∗ such that (a) the set of all tags
is polynomially small (so we can guess the i∗-th challenge tag t∗i∗ in advance), and
(b) tag-collisions occur only with sufficiently small (but possibly non-negligible) prob-
ability in an attack with A (so only a constant number of t∗i∗ -signatures will have to
be generated for A). This instance i∗ is the challenge instance, and all other instances
are simulated by A for B. Any valid forgery of B must contain a valid signature under
instance i∗ with 2i

∗
-bit tag. Hence any B-forgery implies an A-forgery. This leads to a

very compact scheme (e.g., in the CDH case, with O(1) and O(log(λ)) group elements
per signature, resp. public key). However, the loss in the security reduction depends
(polynomially) on an adversary’s success and runtime.

Other Applications. We also show how to generalize our confined guessing paradigm
to other computational settings. In particular, we construct mildly secure schemes from
the RSA and SIS assumptions. Combining this with our generic transformation, this
gives compact and very efficient new fully secure signature schemes.

Efficiency Comparison. The most efficient previous CDH-based signature scheme [33]
has signatures and public keys of size O(λ), resp. O(1) group elements. Our CDH-
based scheme also has constant-sized signatures, and more compact public keys. Con-
cretely, we can get public keys of O(

√
λ/ log(λ)) group elements when only aiming

at bounded security (see Table 1 for exact figures). Besides, we can get public keys of
O(log(λ)) group elements at the price of a worse security reduction. Our RSA-based
scheme has similar key and signature sizes as existing RSA-based schemes [22, 20], but
requires significantly fewer (i.e., only O(log(λ)) instead of O(λ), resp. O(λ/ log(λ))
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many) generations of large primes. Again, this improvement is bought with a worse
security reduction. Our SIS-based scheme offers an alternative to the existing scheme
of [7]. Concretely, our scheme has larger (by a factor of log(λ)) signatures and a worse
security reduction, but significantly smaller (by a factor of λ/ log(λ)) public keys.

Note on the History of This Paper. This paper is the result of a merge of two papers
submitted to Eurocrypt. Both submissions contained essentially the same CDH-based
scheme. One submission, by Seo, contained its bounded security analysis. The other, by
Böhl, Hofheinz, Jager, Koch, and Striecks, contained the confined guessing strategy. In
this merged paper, the results of Seo, resp. BHJKS, are contained in Section 4, resp. 5.
During the merge, Seo acted as corresponding author.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , �n�}. We write [a, b] to denote the set of
integers {a, . . . , b}. Throughout the paper, λ ∈ � denotes the security parameter. For
a finite set S, we denote by s ← S the process of sampling s uniformly from S. For a
probabilistic algorithm A, we write y ← A(x) for the process of running A on input
x with uniformly chosen random coins, and assigning y the result. If A’s running time
is polynomial in λ, then A is called probabilistic polynomial-time (PPT). A function
f : �→ � is negligible if it vanishes faster than the inverse of any polynomial (i.e., if
∀c∃λ0∀λ ≥ λ0 : |f(λ)| ≤ 1/λc). On the other hand, f is significant if it dominates the
inverse of some polynomial (i.e., if ∃c, λ0∀λ ≥ λ0 : f(λ) ≥ 1/λc).

Signature Schemes. A signature scheme SIG consists of three PPT algorithms (Gen,
Sig, Ver). The key generation algorithm Gen(1λ) outputs a public key pk and a se-
cret key sk . The signing algorithm Sig(sk ,M), given the secret key sk and a message
M , outputs a signature σ. Given the public key pk , a message M , and a signature σ,
Ver(pk ,M, σ) outputs a verdict b ∈ {0, 1}. For correctness, we require for any λ ∈ �,
all (pk , sk)← Gen(1λ), all M , and all σ ← Sig(sk ,M) that Ver(pk ,M, σ) = 1.

EUF-(na)CMA Security. A signature scheme SIG is existential unforgeable under
adaptive chosen-message attacks (EUF-CMA) iff for any PPT forger F in the following
experiment the probability to win is negligible. F receives a public key pk generated
as (pk , sk) ← Gen(1λ), and has access to a signing oracle Sig(sk , ·). F wins if it
outputs a valid signature for a message M such that it has never queried Sig(sk ,M).
In the non-adaptive (EUF-naCMA) case the adversary is forced to output messages
M1, . . . ,Mq it wants to see signed before obtaining the public key pk . F wins if it
outputs a valid signature for a message M �= Mj ∀j ∈ [q]. We define Adveuf-cma

SIG,F (λ)

and Adveuf-nacma
SIG,F (λ) to be F ’s winning probability in the adaptive, resp. non-adaptive

case.

EUF-q-(na)CMA Security. In addition to the previous notions, we define two weaker
security notions for signatures. The notions existential unforgeability with respect to
q-bounded adaptive chosen-message-attacks (EUF-q-CMA), resp. non-adaptive chosen-
message-attacks (EUF-q-naCMA) are exacly the same as the EUF-CMA, resp. EUF-
naCMA security notions above, except that the adversary is restricted to at most q
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signature queries. We define Adveuf-q-cma
SIG,F (λ) and Adveuf-q-nacma

SIG,F (λ) to be F ’s winning
probability in the adaptive, resp. non-adaptive case. Concretely, if for any PPT algo-
rithm F , which issues at most (polynomial) q signing queries and runs in time T ,
Adveuf-q-cma

SIG,F (λ) < ε and Adveuf-q-nacma
SIG,F (λ) < ε, then we say that SIG is (q, ε, T )- EUF-

CMA secure, resp. (q, ε, T )-EUF-naCMA secure.

Pseudorandom Functions. For any set S a pseudorandom function (PRF) with range
S is an efficiently computable function PRFS : {0, 1}λ × {0, 1}∗ → S. We may also
write PRFSκ (x) for PRFS(κ, x) with key κ ∈ {0, 1}λ. Additionally we require that

Advprf
PRFS ,A

(λ) :=
∣∣∣Pr [APRFS

κ (·) = 1 for κ← {0, 1}λ
]
− Pr

[
AUS(·) = 1

]∣∣∣
is negligible in k where US is a truly uniform function to S. Note that for any efficiently
samplable set S with uniform sampling algorithm Samp we can generically construct a

PRF with range S from a PRF PRF{0,1}
λ

by using the output of PRF{0,1}
λ

κ as random
coins for Samp. (We can assume without loss of generality that Samp requires only
λ bits of randomness.) Following this principle we can construct (PRFSi)i∈[n] for a

family of sets (Si)i∈[n] from a single PRF PRF{0,1}
λ

.

Chameleon Hashing. A chameleon hash scheme CHS consists of two PPT algorithms
(CHGen,CHTrapColl). CHGen(1λ) outputs a tuple (CH, τ) whereCH is the description
of an efficiently computable functionCH :M×R→ N which maps a messageM and
randomness r to a hash value CH(M, r). The trapdoor τ allows to produce collisions in
the following sense: given arbitrary M, r,M ′, CHTrapColl(τ,M, r,M ′) finds r′ with
CH(M, r) = CH(M ′, r′). We require that the distribution of r′ is uniform given only
CH and M ′. We say that CH is collision-resistant iff for (CH, τ) ← CHGen(1λ) and
any PPT adversary C, which receives as input CH, the probability AdvcrCH,C(λ) to find
(M, r) �= (M ′, r′) with CH(M, r) = CH(M ′, r′) is negligible in λ.

Generic Transformation from Non-Adaptive to Adaptive Secure Signatures. There
is a well known generic transformation from EUF-naCMA secure signatures to EUF-
CMA secure signatures which was used in many previously proposed signature schemes
(e.g., [26, 31, 4, 23, 22]). Analogously, we can construct a generic transformation from
EUF-q-naCMA secure signatures to EUF-q-CMA secure signatures.

Lemma 1. If SIG is (q, ε, T )-EUF-naCMA secure signature scheme and CHS is a cha-
meleon hash scheme, then there is a generic transformation taking SIG and CHS as
input and outputting (q, 2(ε+ εch), T

′)-EUF-CMA secure signature scheme, where the
chameleon hash function satisfies (εch, Tch)-collision resistance and T ′ ≈ T ≈ Tch.

We provide the details of the generic transformation in [30].

3 Our CDH-Based Signature Scheme

Overview. Our starting point is an interpretation of the stateful signature scheme of
Hohenberger and Waters [23] as a tag-based scheme. In this section, we will only
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describe the scheme (and a natural generalization); the next two sections will present
two surprisingly different analyses of this scheme. But first, we start with a few prepara-
tory definitions.

Bilinear Groups. We say that G is a bilinear group generator if on inputting the security
parameter λ, it outputs a tuple (p,G1,G2,Gt, e), where p is a (2λ+ 1)-bit prime, G1,
G2, and Gt are finite abelian groups of order p, and e : G1 × G2 → Gt is a non-
degenerate bilinear map, that is, (bilinearity) for all a, b ∈ Zp and g ∈ G1, g′ ∈ G2,
e(ga, g′b) = e(g, g′)ab and (non-degeneracy) for generators g ∈ G1 and g′ ∈ G2,
e(g, g′) �= 1. If G1 = G2, then we use a notation G to denote G1 = G2 and we say that
e is a type-1 pairing. If G1 �= G2 but there is an efficiently computable homomorphism
φ : G2 → G1, then we say that e is a type-2 pairing. Otherwise (that is, G1 �= G2 and
there are no efficiently computable homomorphisms between G1 and G2), we say that
e is a type-3 pairing.

CDH Assumption. Let G be a bilinear group generator. We say that G satisfies the
(εdh, Tdh)-DH assumption if for any Tdh- time probabilistic algorithm B the following
advantage AdvdhG,B is less than εdh:

AdvdhG,B = Pr
[
B(p,G,Gt, e, g, g

a, gb)→ gab : G(λ)→ (p,G,Gt, e), a, b← Zp, g ← G
]
.

Tag-Based Signature Schemes. Our basic scheme will be tag-based; that means that
signature and verification take an additional tag as input. More formally, a tag-based
signature scheme SIGt = (Gent, Sigt,Vert) with message space Mλ and tag space
T = Tλ consists of three PPT algorithms. Key generation (pk , sk)← Gent(1

λ) takes as
input a security parameter and outputs a key pair (pk , sk). Signing σ ← Sigt(sk ,M, t)
computes a signature σ on input a secret key sk , message M , and tag t. Verification
Vert(pk ,M, σ, t) ∈ {0, 1} takes a public key pk , message M , signature σ, and a tag t,
and outputs a bit. For correctness, we require for any λ ∈ �, all (pk , sk)← Gent(1

λ),
all M ∈ Mλ, all t ∈ T , and all σ ← Sigt(sk ,M, t) that Vert(pk ,M, σ, t) = 1.

The Basic (Tag-Based) Scheme. The signature scheme SIGCDH from Figure 1 is de-
rived from the stateful CDH-based scheme of [23], but with states interpreted as tags,
and with two additional modifications. First, we substitute the implicit chameleon hash
function uMvr used in [23] with a product uM =

∏m
i=0 u

Mi

i . (The parameterm will be
fixed later.) Second, we omit the wlog(t)�-factor in the “Boneh-Boyen hash function”,
which simplifies this part to (zth)s.

The Generalized (Non-Tag-Based) Scheme. We also provide a natural generalization
of SIGCDH, which we call SIGCDH

gen (see Figure 2). Compared to SIGCDH, SIGCDH
gen first

hashes the message to be signed (using a chameleon hash with images in �p); besides,
SIGCDH

gen uses a pseudorandom function to derive l tags ti that are incorporated into the
mentioned “Boneh-Boyen hash function”. The number l of tags and the respective sets
Ti from which the ti are chosen which will be defined in our respective analyses.
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Gent(1
λ)

(p,G,Gt, e)← G(λ)
α← �p

g, u0, . . . , um, z, h← �

sk := α
pk :=
(g, gα, u0, . . . , um, z, h)

return (pk , sk)

Sigt(sk ,M, t)
s ← �p

uM :=
m∏
i=0

uMi

i

σ̃1 := (uM )α(zth)s

σ̃2 := gs

return (σ̃1, σ̃2)

Vert(pk ,M, σ = (σ̃1, σ̃2), t)
if t �∈ Tλ

return 0
if e(σ̃1, g) �=

e(uM , gα)e(σ̃2, z
th)

return 0
else

return 1

Fig. 1. The modified Hohenberger-Waters CDH-based signature scheme SIGCDH [23]

Gen(1λ)
(p,G,Gt, e)← G(λ)
(CH, τ )← CHGen(1λ)
α← �p

g, h, u0, . . . , um,
z1, . . . , zl ← �

κ← {0, 1}λ
sk := (g,α,CH)
pk := (g, gα, (uj)

m
j=0,

(zi)
l
i=1, h,CH, κ)

return (pk , sk)

Sig(sk ,M)
s, r ← �p

x := CH(M, r)

ux :=
∏m

i=0 u
xi

i

for i := 1 to l do
ti := PRFTi

κ (x)
z :=

∏l
i=1 z

ti
i

σ̃1 := (ux)α(z · h)s
σ̃2 := gs

return (σ̃1, σ̃2, r)

Ver(pk ,M, σ = (σ̃1, σ̃2, r))
x := CH(M, r)
for i := 1 to l do

ti := PRFTi
κ (x)

if e(σ̃1, g) �=

e(ux, gα)e(σ̃2, h
l∏

i=1

ztii )

return 0
else

return 1

Fig. 2. The generalized CDH-based signature scheme SIGCDH
gen

4 Bounded CMA Security

In this section, we first analyze the security of the basic tag-based signature scheme so
that it is a EUF-q-naCMA secure signature scheme with somewhat short public key.
Then, we prove that the generalized tag-based signature scheme is a EUF-q-naCMA
secure signature scheme with short public key. The proposed signature scheme is for
fixed length messages, but we note that we can easily modify it for arbitrary length
messages by using collision resistant hash functions; first, compute a hash value of a
long message, and then use it as a message for the signature scheme.

4.1 Combining Two Techniques: ‘Somewhat’ Short Public Key

We begin with exploring two techniques for obtaining short signatures in the standard
model. In the simulation of the EUF-q-naCMA model, the simulator should give a set
of signatures on messages queried by the adversary, but the simulator should not be
able to create signatures on all messages other than those queried by the adversary. If
the simulator can create signatures on all messages, then the simulator does not need
help from the adversary to obtain the forgery since the simulator can sign on all mes-
sages himself; hence, we cannot extract the solution of the DH problem from the output
of the adversary. We can use programmable hash functions [19] to allow the simula-
tor to produce only signatures on messages queried by the adversary. In particular, we
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use weak programmable hash functions [20] to construct EUF-q-naCMA secure short
signatures. For a 2λ-bit message M , we consider M as an element of Zp. (

∏m
i=0 u

Mi

i )
is a weak programmable hash function on input M that, in the EUF-q-naCMA model,
allows the simulator to sign on at most m messages, which are given by the adversary
before generating the public key.4 Furthermore, we can construct a simulator that ex-
tracts the solution of gab from the forgery by imbedding ga in ui and setting g and gα

by g and gb, respectively.
There is the other technique that obtains short signatures with short public key by

maintaining the index counter in the signer side [23]. The idea of this technique is first
to restrict the adversary to attack one of the polynomially many indexes and then uses
the technique for selectively-secure signatures such as that used in the Boneh-Boyen
signature scheme [5]. We can combine this technique with programmable hash func-
tions. Since our aim is a stateless signature scheme, we should modify this technique
so that the signer does not maintain the current index but randomly chooses it from
some fixed set for each signature. Then, we obtain a short signature with somewhat
short public key, which is our basic tag-based scheme in Figure 1, where t is uniformly
chosen from t∗ = [1, Q] for another parameter Q ≥ q. For the basic scheme, we set
Q to be polynomial in λ. The strategy of the simulation in the EUF-q-naCMA model
is as follows: The simulator guesses t∗, the tag of the forgery, (with non-negligible 1

Q
probability) and uses the technique for the selectively-secure signature scheme of the
Boneh-Boyen signatures. For each signature, the tag is randomly chosen so that there
may exist several signatures containing the same tag as t∗ among the resulting signa-
tures of singing queries. Under normal circumstances, the simulator cannot produce
signatures with tag t∗ (since we use technique for selectively-secure scheme). We can
resolve this by using the weak programmable hash functions. If we uniformly choose
a tag from [1, Q] at most q times for polynomial Q ≥ q, there are at most Θ( λ

log λ)
same tags as the tag of the forgery with overwhelming probability. Therefore, we can
set m = Θ( λ

log λ) and the simulator can create m signatures, which has the same tag as
that of the forgery. Since our main scheme in the next subsection is a generalization of
the scheme in Figure 1, we omit the detailed security analysis of the scheme in Figure 1.

Remark. We used the combination of the two techniques in this section for signature
schemes based on the DH assumption. There is similar approach for signature schemes
based on the RSA assumption and q-DH assumption [20]. Note that our original con-
tribution is explained in Section 4.2.

4.2 Asymmetric Trade: Realizing Short Public Key

Let Q, m, and l be functions in λ. For readers who want to see the specific parameters
a little early, we give an example parameter below. We will explain about selecting
parameters in the last part of this subsection.

Example Parameter 1. Q = 23q, m =
⌈√

λ
log λ

⌉
, and l =

⌈√
λ

log λ

⌉
.

4 M i is not the i-th bit of M , but the i times product of M .



Practical Signatures from Standard Assumptions 469

We first describe a signature scheme which is EUF-q-naCMA secure under the
DH assumption in Figure 3. By applying standard techniques using the chameleon
hashes and the pseudo-random functions, we can obtain the generalized (non-tag-based)
scheme in Figure 2.

Gen(1λ)
(p,G,Gt, e)← G(λ)
α← �p

g, h, u0, . . . , um,
z1, . . . , zl ← �

sk := (g,α)
pk := (g, gα, (uj)

m
j=0,

(zi)
l
i=1, h)

return (pk , sk)

Sig(sk ,M)
s← �p

uM :=
∏m

i=0 u
Mi

i

for i := 1 to l do
ti ← [1, Q]

z :=
∏l

i=1 z
ti
i

σ̃1 := (uM )α(z · h)s
σ̃2 := gs

return (σ̃1, σ̃2,
−→
t )

Ver(pk ,M, σ = (σ̃1, σ̃2,
−→
t ))

for i := 1 to l do
if ti �∈ [1, Q]

return 0
if e(σ̃1, g) �=

e(uM , gα)e(σ̃2, h
l∏

i=1

ztii )

return 0
else

return 1

Fig. 3. EUF-q-naCMA secure signature with short public key

For each signature σ = (σ̃1, σ̃2,
−→
t ), we call

−→
t tag vector. In contrast to the basic

tag-based scheme, we use a vector
−→
t instead of an integer t1 in signatures. Roughly

speaking, our analysis shows that the signature scheme in Figure 3 with Ti := [1, Q]
for i ∈ {1, . . . , l} satisfies non-adaptive unforgeability (against bounded CMA) when
ml = Ω( λ

log λ) (this result contains the signatures with somewhat short public key in
Figure 1). In addition (roughly speaking again), since the public key size is Θ(m + l)
group elements, we can attain the minimal public key size when m and l are nearly
equal. On the other hand, the size of signatures will increase when the parameter l
increases. However, each ti is a logQ-bit integer, and so

−→
t is asymptotically much

shorter than Θ(λ)-bit (if we set Q as a polynomial in λ). This is an asymmetric trade
between the public key and tag vectors. When we apply the example parameter 1, the
signature size will be bounded by two group and a field element, that is, the signature
size is Θ(λ) bits. We give precise analysis of the efficiency of the proposed signature
scheme in Section 4.2.

Our construction of the short signatures with short public key in Figure 3 is a sim-
ple generalization of the basic tag-based scheme (short signatures with somewhat short
public key) in Figure 1. However, the analysis of the security in the EUF-q-naCMA
model is more challenging than the construct itself. The basic strategy of the simulator
in the EUF-q-naCMA model of the signature scheme in Figure 1 is guessing the tag
t∗ of the forgery and then using the programmability of the weak programmable hash
function (

∏m
i=0 u

Mi

i ) to sign for the signature with the same tag. We cannot naively
apply this proof strategy to the generalized construction. To obtain short public key,
we should set l sufficiently large (but not too much). However, if l is large, then the
simulator cannot guess the tag vector of the forgery, t∗ ∈ [1, Q]l, with non-negligible
probability. That is, we would fail to construct a polynomial-time reduction. We devel-
oped a proof technique to resolve this problem.
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Our Proof Strategy. We now explain our proof strategy for polynomial-time reduction
from solving the DH problem to the breaking the non-adaptive unforgeability of the
proposed signature scheme. In particular, we explain the method to guess the tag vector
t∗ of the forgery with non-negligible probability. In fact, we cannot guess all the bits of
t∗, but only part of t∗ with non-negligible probability. This is sufficient for our proof
strategy.

We begin with defining notations for efficient explanation. Let T and T i be sets [1, Q]
and [1, Q]i (i times canonical product set), respectively. For j ∈ [1, q], let tj ∈ T l be
the tag vector (randomly chosen by the simulator) of the signature on the jth message
(queried by the adversary). Let

−→
t ∗ = (t∗1, . . . , t

∗
l ) ∈ T l be the tag vector of the forgery

output by the adversary. For
−→
t ∈ T l and i ≤ l, let

−→
t (i) ∈ T i be the first i entries of−→

t (e.g.,
−→
t = (t1, . . . , tl) and

−→
t (i) = (t1, . . . , ti)). We separate the adversaries into

several types according to the relations between
−→
t ∗ and {−→t i}i∈[1,q]. To this end, for

fixed {−→t i}i∈[1,q], we first define the set Ti as

{t̂ ∈ T i | ∃ at least (m+ 1) distinct j1, . . . , jm+1 ∈ [1, q]

such that t̂ =
−→
t
(i)
j1

= . . . =
−→
t
(i)
jm+1

}.

Let us consider an example to help the readers understand the definition of Ti.

Example. Suppose that

−→
t
(i)
1 = . . . =

−→
t
(i)
m+2 �=

−→
t
(i)
j for j ∈ [m+ 3, q],

−→
t
(i+1)
1 = . . . =

−→
t
(i+1)
m+1 �=

−→
t
(i+1)
j for j ∈ [m+ 2, q],

and
−→
t
(i)
m+3, . . . ,

−→
t
(i)
q are distinct. Then,{−→

t
(i)
j ∈ Ti for j ∈ [1,m+ 2]

−→
t
(i)
j �∈ Ti for j ∈ [m+ 3, q],

,

{−→
t
(i+1)
j ∈ Ti+1 for j ∈ [1,m+ 1]

−→
t
(i+1)
j �∈ Ti+1 for j ∈ [m+ 2, q],

and |Ti| = |Ti+1| = 1. �
We can easily see that |Ti+1| ≤ |Ti|. Let n be the largest integer in [1, l] such that
Tn �= ∅. If we choose m, l, and Q appropriately, we then obtain the following two
properties with overwhelming probability, where the probability is taken over the choice
of {−→t i}i∈[1,q].

1. |T1| < λ
2. n < l (equivalently Tl = ∅, that is, |Tl| < 1)

When Q ≥ q, the following lemma implies the above two properties. (e.g., we obtain
the above properties when we apply the example parameter 1 to Lemma 2.)

Lemma 2. Pr−→
t 1,...,

−→
t q←Tl

[|Ti| ≥ j] < ( qm+1

(m+1)!Qim )j .

Proof. Let F be the set of all functions from [1, q] to Si. For −→y ∈ Si and f ∈ F ,
let |f−1(−→y )| be the number of the distinct pre-images of −→y . Let Tf be the set of all
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−→y ∈ Im(f) such that |f−1(−→y )| ≥ m + 1, where Im(f) means the set of all images
of f . Then, we can consider Pr−→s 1,...,

−→s q←Sk [|Si| ≥ j] as

Pr
f←F

[|Tf | ≥ j].

To compute Prf←F [|Tf | ≥ j], we count all functions f such that |Tf | ≥ j, then divide
the result by |Si|q (the number of all elements in F ). In fact, we count the number
of f such that |Tf | ≥ j, allowing duplications, so that we compute the upper bound
of Prf←F [|Tf | ≥ j]. To define an f , we choose j distinct subsets A1, . . . , Aj of size
m+ 1 from [1, q] and j distinct vectors −→y 1, . . . ,

−→y j from Si, and then set f(a) = −→y t

for all a ∈ At and t ∈ [1, j]. For other integers a ∈ [1, q]\(A1∪. . .∪Aj), we arbitrarily
define f(a). This way of defining a function covers all f such that |Tf | ≥ j. We count
all f that are defined as above. Then, the number of such f is bounded by

( j−1∏
t=0

(
q − t(m+ 1)

m+ 1

)
· (|Si| − t)

)
· (|Si|)(q−j(m+1)),

where the notation
(·
·
)

denotes the binomial coefficient.
Therefore, we can obtain the desired result as follows:

Pr−→s 1,...,
−→s q←Sk [|Si| ≥ j] = Prf←F [|Tf | ≥ j]

<

(∏j−1
t=0 (

q−t(m+1)
m+1 )·(Qi−t)

)
·(Qi)(q−j(m+1))

|Si|q

<

(
qm+1

(m+1)!

)j

Qij+i(q−j(m+1))

Qiq

= ( qm+1

(m+1)!Qim )j .

#$

For now, let us assume that we have m, l, and Q such that the above two properties
hold. We separate the types of adversaries according to

−→
t ∗ as follows.

Type-1 :
−→
t ∗(1) �∈ T1.

Type-2 :
−→
t ∗(1) ∈ T1, and

−→
t ∗(2) �∈ T2.

...
Type-i :

−→
t ∗(i−1) ∈ Ti−1, and

−→
t ∗(i) �∈ Ti.

...
Type-n :

−→
t ∗(n−1) ∈ Tn−1, and

−→
t ∗(n) �∈ Tn.

Type-(n+ 1) :
−→
t ∗(n) ∈ Tn.

Here,
−→
t ∗(i−1) ∈ Ti−1 implies that

−→
t ∗(j) ∈ Tj for all j ∈ [1, i− 1]. Therefore, we can

see that the above n+1 types of adversaries are pairwise disjoint and cover all possible
adversaries. For the type-i adversary, the simulator can guess

−→
t ∗(i) with probability

1
|Ti−1|·|T | ; it guesses

−→
t ∗(i−1) with 1

|Ti−1| and t∗i with 1
|T | (we use the second property

for the case i = n + 1). Since the simulator can guess the type of the adversary with
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probability 1
l , it can guess the tag vector of the forgery with at least probability 1

lλQ (we
use the first property for the inequality |Ti−1| ≤ |T1| < λ).

The other parts of the proof strategy are similar to the strategy for the short signatures
with somewhat short public key in Figure 1 as we mentioned in Section 4.1; (1) guess−→
t ∗(i), (2) use the proof technique for the reduction from solving the DH problem to

breaking the selectively secure signatures, and (3) generate for the signature with the
same tag vector as t∗(i), using the programmability of the weak programmable hash
functions. Since

−→
t ∗(i) �∈ Ti (for i = n + 1,

−→
t ∗(i) �∈ Ti = ∅) implies that there are

at most m tag vectors same as
−→
t ∗(i), the simulator can response m signatures with

tag vector
−→
t ∗(i) using the programmability of (

∏m
i=0 u

Mi

i ). If lλQ is bounded by a
polynomial in λ, then we obtain the polynomial-time reduction.

By applying the above strategy, we give the following theorem.

Theorem 1. The signature scheme in Figure 3 is (q, ε, T )-EUF-naCMA secure assum-
ing the (εdh, Tdh)-DH assumption holds such that

εdh =
1

lλQ
(ε− qm+1

(m+ 1)!Qlm
− q

p
− (

qm+1

(m+ 1)!Qm
)λ) and T ≈ Tdh.

Because of space constraints, we relegate the proof Theorem 1 in [30].
To derive a meaningful result about the asymptotic security from Theorem 1, we

need the following three conditions.

Condition 1. lλQ is polynomially bounded in λ.
Condition 2. qm+1

(m+1)!Qlm is a negligible function in λ.

Condition 3. ( qm+1

(m+1)!Qm )λ is a negligible function in λ.

We give asymptotic values of m, l, and Q for satisfying the above conditions and short
public key in Section 4.2. For such parameters (e.g., example parameter 1), we obtain
the following corollary by applying the generic transformation using the chameleon
hashes.

Corollary 1. Let SIG be the signature scheme resulting from the generic transforma-
tion on the signature scheme in Figure 3 and CHSetup. Then, SIG is (q, 2(ε+εCH), T )-
EUF-CMA secure assuming ( ε

lλQ − neg(λ), Tdh)-DH assumption holds, where εCH is
the advantage for breaking the collision resistance of CHSetup, T ≈ Tdh.

Tag-Free Scheme by Pseudorandom Functions. We apply a trick for tag-free scheme
using (non-adaptive) pseudorandom functions (PRF). Note that similar techniques are
used in the RSA-based signatures [23, 22, 20, 34] to generate random prime numbers
used in each signature. If we use this trick (and the chameleon hashes), we can obtain
the generalized (tag-based) signature scheme in Figure 2, where ∀Ti = [1, Q]; each
signature has a tag vector that is uniformly chosen from its domain. Thus, a signer can
use pseudorandom functions (PRF) mapping from messages to tag vectors, and pub-
lishes the PRF the signer used along with its key. Even though the signer publishes
the PRF key, (in the non-adaptive security model) we can use the fact that the distri-
bution of tag vectors is indistinguishable from the uniform distribution. The resulting
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signature size is reduced by eliminating tag vectors from signatures but augmenting
signing/verification costs and adding constant factor in public key size (that is, public

key size is still Θ(
√

λ
log λ) group elements);

Corollary 2. Let SIG be the signature scheme in Figure 2 with ∀Ti = [1, Q]. Then,
SIG is (q, 2(ε+ εCH+ εPRF), T )-EUF-CMA secure assuming ( ε

lλQ −neg(λ), Tdh)-DH
assumption holds, where εCH and εPRF are advantages for breaking the collision resis-
tance of the chameleon hash functions and the pseudo-randomness of PRF, respectively,
T ≈ Tdh, and neg(λ) is a negligible function in λ.

Parameter Selection for Short Public Key. The description of our construction did
not explain how to choose m, l, and Q. We show how to minimize public key size.
From Theorem 1, we obtained three conditions for polynomial-time reduction to the

DH problem. First, lλQ should be polynomially bounded in λ. Second, qm+1

(m+1)!Qlm and

( qm+1

(m+1)!Qm )λ should be a negligible function in λ. For simple analysis, we assume that

Q = Cq for small constantC > 1 and compute conditions form and l when qm+1

(m+1)!Qlm

and ( qm+1

(m+1)!Qm )λ are smaller than 1
2λ

. We compute asymptotically minimal values of
m and l for short public key size, and then provide practical parameters with reasonable
reduction loss, which is comparable to that of Waters signature in [33].

Condition 1. lλq is polynomially bounded in λ.
Condition 2. qm+1

(m+1)!Qlm < 1
2λ

.

Condition 3. ( qm+1

(m+1)!Qm )λ < 1
2λ

.

From the condition 2, at least the denominator should be larger than 2λ. Since Q = Cq
and (m + 1)! ≈

√
2π(m+ 1)(m+1

e )m+1 (by Stirling’s approximation), where e is
the Euler’s number, lm = Ω( λ

log λ ) or m = Ω( λ
log λ). For minimizing public key

size, we should minimize m + l since the size of public key is Θ(m + l). Therefore,

m = Θ(
√

λ
log λ) and l = Θ(

√
λ

log λ) are (asymptotically) minimal parameters for

minimal public key size. In fact, if we set m = Θ(
√

λ
log λ ) and l = Θ(

√
λ

log λ ), then

the condition 1 and 3 also hold.
Next, we provide practical parameters for λ ∈ {80, 256} and q ∈ {230, 240}, where

λ is the security parameter and q is the bound for adversarial signing queries. If the
above condition 2 and condition 3 hold, our security proof loses 4lλQ factor in the sim-
ulation (when we ignore negligible factors), which is asymptotically larger than Waters
signature scheme’s reduction loss. However, for practical choices of λ and q, l is a
small constant (at most 3 in our example parameters) and Q is Cq with small con-
stant (C = 23 in our example parameters); and thus, the reduction loss in our example
parameters is at most 96λq, which is comparable to that given in [33]5. The example

5 Hofheinz et al. proposed a variant of Waters signatures using a special encoding for optimal
security reduction Θ( 1

q
) [21]. In [21], however, they do not provide a concrete constant fac-

tor of Θ notation for practical security parameters, but only asymptotic analysis for optimal
security reduction.
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Table 1. Practical parameters for EUF-q-CMA secure signature scheme: ‘τG1 ’ and ‘τG2 ’ are
the bit-lengths to represent elements in G1 and G2, respectively. For type-1 pairings, τG1 = τG2 .
‘τZp ’ is the size of prime p that is order of cyclic groups G1, G2, and Gt. ‘τGch

’ is the bit length
to represent an element in the group Gch (of order p′ ≤ p), over which the chameleon hashes
defined. ‘|K|’ is a size of a PRF key.

Security Parameter λ q m l PK size Sig. size

80 tag-based 230 7 2 12τG2 + τG1 + 2τGch
2τG1 + 2τZp

scheme 240 8 2 13τG2 + τG1 + 2τGch
2τG1 + 2τZp

tag-free 230 7 2 12τG2 + τG1 + 2τGch
+ |K| 2τG1 + τZp

scheme 240 8 2 13τG2 + τG1 + 2τGch
+ |K| 2τG1 + τZp

256 tag-based 230 7 3 13τG2 + τG1 + 2τGch
2τG1 + 2τZp

scheme 240 8 2 13τG2 + τG1 + 2τGch
2τG1 + 2τZp

tag-free 230 7 3 13τG2 + τG1 + 2τGch
+ |K| 2τG1 + τZp

scheme 240 8 2 13τG2 + τG1 + 2τGch
+ |K| 2τG1 + τZp

practical parameters are given in the table 1. To get the table 1, we firstly set Q = 23q
and q ∈ {230, 240}, and then find small m and l satisfying the above three conditions.
The size of a tag vector is a l�logQ�-bit string, which is asymptotically smaller than

2λ if l = Θ(
√

λ
log λ ) and Q is a polynomial in λ; and thus, we can assume that a tag

vector is a field element of Zp. In particular, when we apply practical parameters in the
table 1, the size of a tag vector is still smaller than 2λ (e.g., a tag vector is 129-bit string
when l = 3 and Q = 243).

Instantiation Using Asymmetric Pairings. Although we described our construction
using type-1 pairings, we can easily modify our construction to be instantiated using
type-2 pairings or type-3 parings. The scheme using type-1 pairings and its security
proof does not use the symmetry property; Our main idea to achieve sub-linear public
key is to divide adversarial types according to tag vectors in the security proof, and this
technique is independent of pairing’s type. We provide the details of the scheme using
type-2 or type-3 parings in [30].

5 Confined Guessing

Overview. In this section, we will explain the schemes from Section 3 as arising from
a more general transformation. The final schemes (and in particular SIGCDH

gen ) are fully
EUF-CMA secure (in contrast to EUF-q-CMA security), and have asymptotically very
short public keys. The downside of this analysis is that the security reduction is quali-
tatively worse than the one from Section 4. Namely, the reduction loss depends on the
adversary’s success. Nonetheless, the reduction loss is always polynomial for polyno-
mially bounded adversaries.
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5.1 From Mild to Full Security

We start with a completely generic transformation from mildly secure tag-based sig-
nature schemes to fully secure schemes. We first define a mild security notion for tag-
based schemes, dubbed EUF-naCMA∗m security, which requires an adversary F to ini-
tially specify all messages Mi it wants signed, along with corresponding tags ti. Only
then, F gets to see a public key, and is subsequently expected to produce a forgery for
an arbitrary fresh message M∗, but with respect to an already used tag t∗ ∈ {ti}i. As a
slightly technical (but crucial) requirement, we only allow F to initially specify at most
m messages Mi with tag ti = t∗. We call m the tag-collision parameter; it influences
key and signature sizes, and the security reduction.

Definition 1 (EUF-naCMA∗m security). Let m ∈ �. A tag-based signature scheme
SIGt is existentially unforgeable under non-adaptive chosen-message attacks with m-

fold tag-collisions (short: EUF-naCMA∗m secure) iff the function Adv
euf-nacma∗m
SIGt,F

(λ) :=

Pr
[
Exp

euf-nacma∗m
SIGt,F

(λ) = 1
]

is negligible for any PPT adversary F . Here, experiment

Exp
euf-nacma∗m
SIGt,F

(λ) is defined in Figure 4.

Experiment Expeuf-nacma∗m
SIGt,F

(λ)

(Mj, tj)
q(λ)
j=1 ← F (1λ)

(pk , sk)← Gent(1
λ)

σj ← Sigt(sk ,Mj, tj) for j ∈ [q(λ)]

(M∗, σ∗, t∗)← F (pk , (σj)
q(λ)
j=1 )

if Vert(pk ,M∗, σ∗, t∗) = 0

or M ∈ {Mj}q(λ)j=1

or |{j ∈ [q(λ)] : tj = t∗}| > m

or t /∈ {tj}q(λ)j=1

then return 0, else return 1

Fig. 4. The EUF-naCMA∗
m experiment for tag-

based signature schemes

In this subsection, we will show how to
use a EUF-naCMA∗m secure scheme SIGt

to build an EUF-naCMA secure scheme
SIG. (Full EUF-CMA security can then be
achieved using chameleon hashing [26].)

To this end, we separate the tag space
Tλ into l := �logc(λ)� pairwise disjoint
sets T ′i , such that |T ′i | = 2c

i�. Here c > 1
is a granularity parameter that will affect
key and signature sizes, and the security re-
duction. For instance, if c = 2 and Tλ =
{0, 1}λ, then we may set T ′i := {0, 1}i.
The constructed signature scheme SIG as-
signs to each message M a vector of tags
(t1, . . . , tl), where each tag is derived from
the message M by applying a pseudorandom function as ti := PRFT

′
i

κ (M). The PRF
seed κ is part of SIG’s public key.6

A SIG-signature is of the form σ = (σi)
l
i=1, where each σi ← Sigt(sk ,M, ti) is a

signature according to SIGt with message M and tag ti. This signature is considered
valid if all σi are valid w.r.t. SIGt.

The crucial idea is to define the sets T ′i of allowed tags as sets quickly growing in
i. This means that (m+ 1)-tag-collisions (i.e., the same tag ti being chosen for m+ 1
different signed messages) are very likely for small i, but become quickly less likely for
larger i. Concretely, let SIGt = (Gent, Sigt,Vert) be a tag-based signature scheme with

6 It will become clear in the security proof that actually a function with weaker security prop-
erties than a fully-secure PRF is sufficient for our application. However, we stick to standard
PRF security for simplicity. Thanks to an anonymous reviewer for pointing this out.
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Gen(1λ)
(pk ′, sk)← Gent(1

λ)
κ← {0, 1}λ
pk := (pk ′, κ)
return (pk , sk)

Sig(sk ,M)
ti := PRFTi

κ (M) for i ∈ [l]
σi ← Sigt(sk ,M, ti)
return σ := (σi)

l
i=1

Ver((pk ′, κ),M, σ = (σi)
l
i=1)

ti := PRFTi
κ (M) for i ∈ [l]

return
l∧

i=1

Vert(pk
′,M, σi, ti)

Fig. 5. Our EUF-naCMA secure signature scheme

tag space Tλ =
⋃l

i=1 T ′i , let m ∈ � and c > 1, and let PRF be a PRF. SIG is described
in Figure 5.

It is straightforward to verify SIG’s correctness. Before turning to the formal proof,
we first give an intuition why SIG is EUF-naCMA secure. We will map an adversary F
on SIG’s EUF-naCMA security to an adversary F ′ on SIGt’s EUF-naCMA∗m security.
Intuitively, F ′ will internally simulate the EUF-naCMA security experiment for F and
embed its own SIGt-instance (with public key pk ′) in the SIG-instance of F by setting
pk := (pk ′, κ). Additionally, the seed κ for PRF is chosen internally by F ′.

Say that F makes q = q(λ) (non-adaptive) signing requests for messagesMj , for all
j ∈ [q]. To answer these q requests, F ′ can obtain signatures under pk ′ from its own

EUF-naCMA∗m experiment. The corresponding tags are chosen as in SIG, as t(j)i =

PRFTiκ (Mj). Once F produces a forgery σ∗ = (σ∗i )
l
i=1, F ′ will try to use σ∗i∗ (with tag

t∗i∗ = PRFTi∗κ (M∗) for some appropiate i∗ ∈ [l]) as its own forgery.
Indeed, σ∗i∗ will be a valid SIGt-forgery (in the EUF-naCMA∗m experiment) if (a) F ′

did not initially request signatures for more thanm messages for the forgery tag t∗i∗ , and
(b) t∗i∗ already appears in one of F ′’s initial signature requests. Our technical handle to
make this event likely will be a suitable choice of i∗. First, recall that the i-th SIGt-
instance in SIG uses �ci�-bit tags. We will hence choose i∗ such that

(i) the probability of an (m + 1)-tag-collision among the t(j)i∗ is significantly lower
than F ’s success probability (so F will sometimes have to forge signatures when
no (m+ 1)-tag collision occurs), and

(ii) |T ′i∗ | = 2c
i∗� is polynomially small (so all tags in T ′i∗ can be queried by F ′).

We turn to a formal proof:

Theorem 2. If PRF is a PRF and SIGt is an EUF-naCMA∗m secure tag-based signature
scheme, then SIG is EUF-naCMA secure. Concretely, let F be an EUF-naCMA forger
on SIG with non-negligible advantage ε := Adveuf-nacma

SIG,F (λ) and making q = q(λ)

signature queries. Then ε(λ) > 1
p(λ) for some polynomial p and λ ∈ K for an infinite

set K ⊆ �. For λ ∈ K there exists a EUF-naCMA∗m forger F ′ on SIGt with advantage

ε′ := Adv
euf-nacma∗m
SIGt,F ′ (λ) and making q′(λ) ≤

(
qm+1

ε(λ)

)c/m
signature queries, such that

ε′ ≥ ε/2− εPRF − 1
|Mλ| , where εPRF is the advantage of a suitable PRF distinguisher

on PRF andMλ the message space.

Proof. First, F ′ receives messages M1, . . . ,Mq from F . Let ε(λ) be F ’s advantage
in the EUF-naCMA experiment. F ′ chooses the challenge instance i∗ such that the
probability of an (m+ 1)-tag collision is at most ε(λ)/2, i.e.,
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Pr
[
∃ {j0, . . . , jm} ⊆ [q] : t

(j0)
i∗ = . . . = t

(jm)
i∗ | ∀j ∈ [q] : t

(j)
i∗ ← Ti∗

]
≤ ε(λ)

2
, (1)

and such that |T ′i∗ | is polynomial in λ. Concretely, i∗ := �logc(log2(( q
m+1

ε(λ) )
1/m))� is

an index that fulfills these conditions. (See [8, Lemma 3.5] for a complete analysis.) F ′

then chooses a PRF-key κ← {0, 1}λ.
Recall that a signature σ = (σ1, . . . , σl) of SIG consists of l signatures of SIGt. In

the sequel we write σ(j) = (σ
(j)
1 , . . . , σ

(j)
l ) to denote the SIG-signature for message

Mj , for all j ∈ {1, . . . , q}. Adversary F ′ uses its signing oracle provided from the
SIGt-security experiment to simulate these SIG-signatures. To this end, it proceeds as
follows.

Simulation of Signatures. In order to simulate all signatures σ(j)
i with i �= i∗, F ′

computes t(j)i := PRFT
′
i

κ (Mj) and defines message-tag pair (Mj, t
(j)
i ). F ′ will later

request signatures for these message-tag pairs from its EUF-naCMA∗m-challenger. Note
that t(j)i �∈ T ′i∗ for all i �= i∗, since the sets T ′1 , . . . , T ′l are pairwise disjoint.

To compute the i∗-th SIGt-signature σ
(j)
i∗ contained in σ(j), F ′ proceeds as fol-

lows. First it computes t(j)i∗ := PRFT
′
i∗

κ (Mj) for all j ∈ {1, . . . , q}. If a (m + 1)-
fold tag-collision occurs, then F ′ aborts. This defines q message-tag-pairs (Mj, tj) for

j ∈ {1, . . . , q}. Note that the list (t(1)i∗ , . . . , t
(q)
i∗ ) need not contain all elements of T ′i∗ ,

that is, it might hold that T ′i∗ \ {t
(1)
i∗ , . . . , t

(q)
i∗ } �= ∅. If this happens, then F ′ chooses

a dummy message M ← Mλ uniformly at random and associates it with all tags
t ∈ T ′i∗ \ {t

(1)
i∗ , . . . , t

(q)
i∗ } that are not contained in {t(1)i∗ , . . . , t

(q)
i∗ }. This defines further

message-tag- pairs (M, t) for each t ∈ T ′i∗ \ {t
(1)
i∗ , . . . , t

(q)
i∗ }. We do this since F ′ has

to re-use an already queried tag for a valid forgery later and F ′ does not know at this
point which tag F is going to use in his forgery later.

Finally F ′ requests signatures for all message-tag-pairs from its challenger, and re-
ceives in return signatures σ(j)

i∗ for all j, as well as a public key pk ′.
F ′ defines pk := (pk ′, κ) and hands (pk , σ(1), . . . , σ(q)) to F . Note that each σ(j) is

a valid SIG- signature for message Mj .

Extraction. Suppose F eventually generates a forged signature σ∗ = (σ∗i )
l
i=1 for

a fresh message M∗ �∈ {M1, . . . ,Mq}. If M∗ = M , then F ′ aborts. Otherwise it

forwards ((σ∗i∗ ,PRF
T ′
i∗

κ (M∗)), M∗) to the EUF-CMA∗m challenger.
This concludes the description of F ′.

Analysis. Let badabort be the event that F ′ aborts. It is clear that F ′ successfully forges
a signature whenever F does so, and badabort does not occur. Note that message M is
independent of the view of F , thus we have Pr[M = M∗] ≤ 1/|Mλ|. Hence, to prove
our theorem, it suffices to show that Pr [badabort] ≤ ε/2 + εPRF + 1/|Mλ| since this
leaves a non-negligible advantage for F ′.

First note that the probability of an (m+1)-tag collision would be at most ε/2 by (1)
if the tags t(j)i∗ were chosen truly uniformly from T ′i∗ . Now recall that the actual choice

of the t(j)i∗ = PRFT
′
i∗

κ (Mj) was performed in a way that uses PRF only in a black-box
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way. Hence, if (m + 1)-tag collisions (and thus badabort) occurred significantly more
often than with truly uniform tags, we had a contradiction to PRF’s pseudorandomness.
Concretely, a PRF distinguisher that simulates F ′ until the decision to abort is made
shows Pr [badabort] ≤ ε/2 + εPRF + 1/|Mλ|, and thus the theorem. #$

In order to obtain a fully EUF-CMA secure signature scheme, one may combine our
EUF-naCMA-secure scheme with a suitable chameleon hash function or a one-time
signature scheme. This is a very efficient standard construction, see for instance [22,
Lemma 2.3] for details.

5.2 The CDH-Based Scheme

In this subsection we explain the schemes from Section 3 in the our confined guessing
framework. We start with with the tag-based scheme SIGCDH (Figure 1) and prove it
EUF-naCMA∗m-secure. Then we can apply our generic transformation from Section 5.1
to achieve full EUF-CMA security. Finally, we illustrate some optimizations that allow
us to reduce the size of public keys and signatures, for instance by aggregation. The
result is essentially the generic scheme SIGCDH

gen .

Theorem 3. If CDH holds in�, then SIGCDH from Figure 1 is EUF-naCMA∗m-secure.

Let F be a PPT adversary with advantage ε := ε(λ) := Adv
euf-nacma∗m
SIGCDH,F

(λ) and runtime

T asking for q = q(λ) signatures, then it can be used to solve a CDH challenge with
probability εdh = (ε ·m)/q and Tdh ≈ T .

Proof sketch. Because of space constraints we will only sketch the proof here. The
complete proof can be found in [8].

Public Key Setup. The simulation receives a CDH challenge (g, ga, gb) and signature
queries (Mi, ti)i∈[q].We guess an index i∗ ← [q] for which we expect F to forge a
signature on a new message M∗ �= Mi∗ , but with t∗ = ti∗ . Let M∗j (for j ∈ [m])
denote the corresponding messages to ti∗ . We set up a polynomial f(X) :=

∏m
i=1(X−

M∗i ) =
∑m

i=0 diX
i ∈ �p[X ] and choose random exponents r0, . . . , rm, xz , xh ∈

�p. Write r(X) :=
∑m

i=0 riX
i, so uM = gbf(M)+r(M). We embed our challenge,

the coefficients di, ti∗ and the random exponents in the public key as follows: we set
pk := (g, ga, u0, . . . , um, z, h) for ui := (gb)digri , z := gb+xz , and h := g−bti∗ gxh .
(Observe that this implicitly sets sk := a.)

Signing. We have to consider two cases. If ti = ti∗ and thus Mi = M∗j for some j,

we choose a random si ← �p and set σ̃1,i = (ga)r(M
∗
j ) · (zti∗h)si , σ̃2,i = gsi . Since

f(M∗j ) = 0, this signature is valid:

σ̃1,i = (ga)r(M
∗
j ) · (zti∗h)si = (gbf(M

∗
j )gr(M

∗
j ))a · (zti∗h)si = (uM

∗
j )a · (zti∗h)si .

If ti �= ti∗ , let s′i ← �p and Si := gs
′
i/(ga)f(Mi)/(ti−ti∗ ) = gs

′
i−af(Mi)/(ti−ti∗ ). A

valid signature σi := (σ̃1,i, σ̃2,i) can then be computed as follows: σ̃1,i = (ga)r(Mi) ·
Sxzti+xh

i · (gb)s′i(ti−ti∗ ) and σ̃2,i = Si.
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Extract from Forgery. If F generates a valid signature (M∗, t∗, σ∗) for t∗ = ti∗ , then
σ̃∗1 = ((gb)f(M

∗)(gr(M
∗)))a((gb+xz)t

∗
(gxh−bti∗ ))s

∗
= gabf(M

∗)gar(M
∗)gs

∗(xzt
∗+xh)

As M∗ �=M∗j , we have f(M∗) �= 0, so (σ̃∗1/(g
ar(M∗)σ̃∗

(xzt∗+xh)

2 ))1/f(M
∗) = gab.

Analysis. We denote by ε the advantage of the adversary F in the experiment and by
success the event that the simulation outputs a solution gab. Since the exponents are
randomly chosen this yields the correct distribution for F . The simulator is successful
if F is successful and it guesses t∗ correctly. So we have Pr [success] = ε·m

q . #$

Optimizations. Now, with this result and our generic transformation from Section 5.1
we can construct a stateless signature scheme, which is proven EUF-naCMA secure by
Theorem 2. By applying a chameleon hash function CH, we obtain a fully EUF-CMA-
secure signature scheme. This signature scheme does have a constant size public key
but signatures consist of O(log(λ)) group elements.

Now, we concentrate on how we can improve this and achieve constant size signa-
tures. This will be done by aggregation, essentially by multiplying the signatures of
each instance similar to [27]. We re-use u0, . . . , um, one sk := α and one random-
ness s for all instances i (see Figure 2). Unfortunately, we need additional elements
in the public key for the aggregation to work. In this sense our optimization is rather
a tradeoff: We prefer constant-size signatures with public keys of logarithmic length
over logarithmic-length signatures with constant-size public keys. The result is scheme
SIGCDH

gen (Figure 2). The proof of the following theorem can be found in [8].

Theorem 4. If the CDH assumption holds in � and CH is a chameleon hash func-
tion, then SIGCDH

gen (Figure 2) is EUF-CMA secure. Let F be a PPT adversary with

advantage ε := ε(λ) := Adveuf-cma
SIGCDH

gen ,F (λ) and runtime T asking for q := q(λ) signa-
tures, then it can be used to solve a CDH challenge with probability at least εdh =

εc/m+1

2c/m+1·qc(m+1)/m − εPRF − εCH, where εPRF and εCH correspond to the advantages for
breaking the PRF and the chameleon hash respectively. Tdh ≈ T .

5.3 Our RSA-Based Scheme

In this subsection we construct a stateless signature scheme SIGRSA
opt that is EUF-CMA-

secure under the RSA assumption. The result is the most efficient RSA-based scheme
currently known.

The prototype for our construction is the stateful RSA-based scheme of Hohenberger
and Waters [23], to which we refer as SIGRSA

HW09 from now on. We first show that a
stripped-to-the-basics variation of their scheme (which is tag-based but stateless), de-
noted SIGRSA, is mildly secure, i.e., EUF-naCMA∗m secure. Subsequently, we apply our
generic transformation from Section 5.1 and add a chameleon hash to construct a fully
secure stateless scheme. Finally we apply common aggregation techniques which yields
the optimized scheme SIGRSA

opt .

Definition 2 (RSA assumption). Let N ∈ � be the product of two distinct safe primes
P and Q with 2

λ
2 ≤ P,Q ≤ 2

λ
2 +1−1. Let e be a randomly chosen positive integer less

than and relatively prime to ϕ(N) = (P − 1)(Q − 1). For y ← �
×
N we call the triple
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(N, e, y) RSA challenge. The RSA assumption holds if for every PPT algorithm A the
probability

Pr [A(N, e, y) = x ∧ xe ≡ y mod N ]

is negligible for a uniformly chosen RSA challenge (N, e, y).

EUF-naCMA∗
m-Secure Signature Scheme. We start with the basic scheme SIGRSA.

Let N = PQ be an RSA modulus consistent with the RSA assumption (Definition 2).
Basically, a SIGRSA signature for a message-tag-pair (M, t) is a tuple ((uM )

1
p mod

N, t) where p is a prime derived from the tag t. Analogously to our CDH scheme
(Section 3), we define uM :=

∏m
i=0 u

Mi

i using quadratic residues (ui)mi=0 to allow for
the signing of up to m messages with the same tag. The message space is {0, 1}	 where
we pick � = λ/2 for our realization – we will need later that 1

2λ−� is negligible. To
construct a mapping from tags to primes we use a technique from [22] and [20]: For a

PRF PRF{0,1}
λ

, a corresponding key κ← {0, 1}λ, and a random bitstring b← {0, 1}λ,
we define

P(κ,b)(t) := PRF{0,1}
λ

κ (t||μt)⊕ b

where μt := min{μ ∈ � : PRF{0,1}
λ

κ (t||μ) ⊕ b is prime} and || denotes the concate-
nation of bitstrings.7 We call μt the resolving index of t. The complete scheme SIGRSA

is depicted in Figure 6.

Gent(1
λ)

Pick modulus N = PQ,
ui ← QRN

(i ∈ {0, . . . ,m})
κ← {0, 1}λ
b← {0, 1}λ
pk := (N, (ui)

m
i=0, κ, b)

sk := (P,Q)
return (pk , sk)

Sigt(sk ,M, t)
p := P(κ,b)(t)
σ̂ :=

(
∏m

i=0 u
Mi

i )
1
p mod N

return (σ̂, t)

Vert(pk ,M, σ = (σ̂, t))
if t �∈ T

return 0
p := P(κ,b)(t)

if σ̂p �≡
∏m

i=0 u
Mi

i mod N
return 0

else
return 1

Fig. 6. The tag-based RSA scheme SIGRSA

Differences to SIGRSA
HW09. We give a brief overview how SIGRSA relates to SIGRSA

HW09. To
reduce overhead, we first removed all components from SIGRSA

HW09 that are not required
to prove EUF-naCMA∗m-security. This includes the chameleon hash (we are in a non-
adaptive setting) and the logarithm-of-tag-construction (we guess from a small set of
tags only). Our setup of P(κ,b) slightly differs from the one in SIGRSA

HW09 since we do
need that every tag is mapped to a prime.

7 P(κ,b)(t) can be computed in expected polynomial time but not in strict polynomial time.
However, one can simply pick an upper bound μ and set P(κ,b)(t) = p for some arbitrary but
fix prime p if μt > μ for the resolving index of t μt. For a proper μ the event μt > μ will
only occur with negligible probability (see [8], Theorem 5.6).
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Theorem 5. If F is a PPT EUF-naCMA∗m-adversary for SIGRSA with advantage ε :=

Adv
euf-nacma∗m
SIGRSA,F

(λ) asking for q := q(λ) signatures, then it can be used to efficiently solve
an RSA challenge according to Definition 2 with probability at least

ε

q′λ2
− λ2εPRF −O(

1

2λ/2
)

where q′ denotes the number of distinct tags queried by F and εPRF is the advantage of
a suitable distinguisher for the PRF.

The proof for Theorem 5 can be found in [8]. The main idea is exactly that of the proof
for Theorem 3. One additional challenges is that we have to map every tag to a prime
(realized by P(κ,b)). Furthermore, in the extraction phase, we need to use Shamir’s trick
here to perform a division in the exponent – this requires coprime exponents. Now,
by Theorem 5, our generic transformation from Section 5.1 applied to SIGRSA yields
an EUF-naCMA-secure signature scheme. Finally, we use chameleon hashing [26] to
generically construct the fully secure scheme SIGRSA

gen , like for instance the RSA-based
chameleon hash from [22, Appendix C].

Optimizations. The resulting signature scheme of the previous section SIGRSA
gen may

be EUF-CMA-secure but is not very compact yet. In addition to parameters for the
chameleon hash, a signature of SIGRSA

gen consists of l = �logc(λ)� SIGRSA signatures.
This can be improved considerably to constant size signatures by generic aggregation.

Figure 7 depicts the resulting scheme SIGRSA
opt for the two parameters l (which im-

plicitly contains the granularity parameter c) and m. We still use l tags (intuitively rep-
resenting the l instances of the original scheme) for signing and verification. However,
the public key’s size depends only on m (which is a fixed parameter) and the signa-
ture size is constant: We need one group element and randomness for the chameleon
hash (which is typically also about the size of a group element). As mentioned, the
functions (PRFTi)i∈[l] necessary to generate the tags for a signature can be generically

constructed from PRF{0,1}
λ

.

Gen(1λ)
Pick modulus N = PQ
ui ← QRN ,

(i ∈ {0, . . . ,m})
κ← {0, 1}λ
b← {0, 1}λ
(CH, τ )← CHGen(1λ)
pk :=
(N, (ui)

m
i=0, κ, b,CH)

sk := (P,Q)
return (pk , sk)

Sig(sk ,M)
Pick uniform r for CH
x := CH(M, r)
for i := 1 to l do

ti := PRFTi
κ (x)

pi := P(κ,b)(ti)
p :=

∏
i∈[l] pi

σ̂ :=
(
∏m

i=0 u
xi

i )
1
p mod N

return (σ̂, r)

Ver(pk ,M, (σ̂, r))
x := CH(M, r)
for i := 1 to l do

ti := PRFTi
κ (x))

pi := P(κ,b)(ti)
p :=

∏
i∈[l] pi

if σ̂p �≡
∏m

i=0 u
xi

i mod N
return 0

else
return 1

Fig. 7. The optimized RSA-based signature scheme SIGRSA
opt
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Theorem 6. Let F be a PPT EUF-CMA adversary against SIGRSA
opt with advantage

ε := Adveuf-cma
SIGRSA,F (λ) asking for q := q(λ) signatures (at most). Then it can be used to

efficiently solve an RSA challenge according to Definition 2 with probability at least

ε(λ)c/m

2c/m · qc(m+1)/m
− ε(λ)

2
− εPRF − εCH −O

(
1

2λ/2

)
where εPRF and εCH are the success probabilities for breaking PRF, resp. CH.

The proof for Theorem 6 can be found in [8] and is analogous to the proof for Theorem 4.
Again, we have the additional challenges of mapping tags to primes and meeting the
prerequisite for Shamir’s trick in the extraction phase.

5.4 Our SIS-Based Scheme

Let us now sketch the SIS-based signature scheme. Due to space limitations, this sketch
is extremely brief. We refer to [8] for details.

In previous chapters we have used the character m to denote the number of repeat-
ing tags in the EUF-naCMA∗m security experiment. Unfortunately, the same charac-
ter is commonly used in lattice-based cryptography to denote the dimension of a ma-
trix �n×m

p . In order to be consistent with the literature, and since we consider only
EUF-naCMA∗1-security in the sequel, we will from now on use m to denote the dimen-
sion of matrices.

Again we construct a tag-based signature scheme first and prove EUF-naCMA∗1-
security. The scheme is described in Figure 8. It is based on techniques from [16, 2, 10,
7], in particular it exhibits many similarities to the identity-key generation algorithm of
the IBE scheme from [2], where our tags correspond to identities of [2].

Figure 8 uses two algorithmsTrapGen and SampleLeft, which we unfortunately can
not describe in detail here. Essentially, TrapGen computes a matrixA ∈ �n×m

q together
with a short basis TA of Λ⊥p (A), and SampleLeft samples a short vector e ∈ �2m

p

statistically close to DΛu
p (A|Gt),γ . A difference to [2] is that we must be able to issue

one signature for message-tag-pair (Mi, ti) with ti = t∗, but without knowing any
trapdoor. This is resolved by a suitable set-up of the vector v contained in the public
key in the proof. See [8] for details.

Gent(1
λ)

(A,TA)←
TrapGen(p, n)

Z, Y ← �
n×m
q

U ← �
n×�
q

v ← �
n
p

sk := TA

pk := (U,A,Z, Y, v)
return (sk , pk)

Sigt(sk ,M, t)
Gt := Z +H(t)Y mod p
u := UM + v
e← SmpL(A, TA, Gt, u, γ)
return (e, t) ∈ �2m

p × T

Vert(pk ,M, σ = (e, t))
if t �∈ T or M �∈ {0, 1}�

return 0
if e ≤ 0 or ‖e‖ >

√
2m · γ

return 0
Gt := Z +H(t)Y ∈ �n×2m

p

if (A|Gt)e = UM + v mod p
return 1

else return 0

Fig. 8. The EUF-naCMA∗
1-secure SIS scheme
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EUF-CMA-Secure Scheme. By applying the generic transformation from Section 5.1
to our lattice-based EUF-naCMA∗1-secure signature scheme, we obtain EUF-naCMA-
secure signatures. Concretely, suppose we use message space {0, 1}	 with � = m.
Then the resulting EUF-naCMA-secure signature scheme has public keys consisting
of 4nm + n elements of �p plus a key κ for the PRF. Signatures consist of l low-
norm vectors in �n

p , where l = �logc(λ)� = O(logλ) is defined as in Section 5.1.
Unfortunately we are not able to aggregate signatures, like we did for the optimized
CDH- and RSA-based constructions, due to the lack of signature aggregation techniques
for lattice-based signatures. We leave this as an interesting open problem.

To obtain a fully EUF-CMA-secure signature scheme, one can combine this EUF-
naCMA-secure scheme with a suitable chameleon hash function, like for instance the
SIS-based construction from [10, Section 4.1]. This adds another 2mn elements of �p

to the public key, plus one additional low-norm vector e ∈ �m
p to each signature.
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Abstract. We study the problem of constructing locally computable
Universal One-Way Hash Functions (UOWHFs) H : {0, 1}n → {0, 1}m.
A construction with constant output locality, where every bit of the out-
put depends only on a constant number of bits of the input, was estab-
lished by [Applebaum, Ishai, and Kushilevitz, SICOMP 2006]. However,
this construction suffers from two limitations: (1) It can only achieve a
sub-linear shrinkage of n − m = n1−ε; and (2) It has a super-constant
input locality, i.e., some inputs influence a large super-constant number
of outputs. This leaves open the question of realizing UOWHFs with con-
stant output locality and linear shrinkage of n −m = εn, or UOWHFs
with constant input locality and minimal shrinkage of n−m = 1.

We settle both questions simultaneously by providing the first con-
struction of UOWHFs with linear shrinkage, constant input locality, and
constant output locality. Our construction is based on the one-wayness
of “random” local functions – a variant of an assumption made by Gol-
dreich (ECCC 2000). Using a transformation of [Ishai, Kushilevitz, Os-
trovsky and Sahai, STOC 2008], our UOWHFs give rise to a digital
signature scheme with a minimal additive complexity overhead: signing
n-bit messages with security parameter κ takes only O(n + κ) time in-
stead of O(nκ) as in typical constructions. Previously, such signatures
were only known to exist under an exponential hardness assumption. As
an additional contribution, we obtain new locally-computable hardness
amplification procedures for UOWHFs that preserve linear shrinkage.

1 Introduction

The question of minimizing the parallel time complexity of cryptographic primi-
tives has been the subject of an extensive body of research. At the extreme, one
would aim for an ultimate level of efficiency at the form of constant -parallel time
implementation. Namely, the goal is to have “local” cryptographic constructions
in which each bit of the output depends only on a small constant number of
input bits, and each bit of the input influences only a constant number of out-
puts. Achieving both constant input locality and constant output locality allows
an implementation by constant-depth circuit of bounded fan-in and bounded

� Supported by Alon Fellowship, ISF grant 1155/11, Israel Ministry of Science and
Technology (grant 3-9094), and GIF grant 1152/2011.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 486–502, 2013.
c© International Association for Cryptologic Research 2013
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fan-out [7]. Furthermore, such local constructions have turned to be surprisingly
helpful in speeding-up the sequential complexity of cryptography [17]. At a more
abstract level, the study of locally computable cryptography allows to under-
stand whether extremely simple functions can generate cryptographic hardness.

Intuitively, one may suspect that functions with local input-output depen-
dencies may be vulnerable to algorithmic attacks. Still, during the last decade
it was shown that, under standard intractability assumptions, many crypto-
graphic tasks can be implemented by local functions [6,5,7]. This includes basic
primitives such as one-way functions and pseudorandom generators, as well as,
more complicated primitives such as public-key encryption schemes. One notable
exception, for which such a result is unknown, is hash functions with linear
shrinkage.

A collection of hash functions H = {h : {0, 1}n → {0, 1}m} shrinks a long
n-bit string into a shorter string of length m < n such that, given a random

function h
R← H and a target string x, it is hard to find a sibling y �= x that

collide with x under h. The exact specification of the above game corresponds
to different notions of hashing. We will mainly consider universal one-way hash
functions (UOWHFs) [21], in which the adversary specifies the target string x
without seeing the function h. (This property is also known as target collision
resistance [8], TCR in short.) A central parameter of a hash function is the
amount of shrinkage it provides. We measure this as the difference between the
output length m and the input length n, namely the additive shrinkage n−m.
We say that the shrinkage is linear if n−m = Ω(n), i.e., m < (1− ε)n for some
constant ε. In this paper we ask:

Are there UOWHFs with linear shrinkage and constant output and/or
input locality ?

Previous Results. The results of [6] show that any log-space computable UOWHF
can be converted into a UOWHF with constant output locality and sub-linear
shrinkage of n−m = nε, for a constant ε < 1. (A similar result holds for collision-
resistance hash functions.) This gives rise to UOWHFs with constant output
locality based on standard cryptographic assumptions (e.g., factoring), or, more
generally, on any log-space computable one-way function [21,24,15]. Although
there are several ways to amplify the shrinkage of a UOWHF (cf. [21,8]), none
of these transformations preserve low locality, and so the question of obtaining
UOWHFs with linear shrinkage and constant output locality has remained wide
open.

The situation is even worse for constant input locality. In [7] it was shown that
tasks which involve secrecy (e.g., one-wayness, pseudorandomness, symmetric or
public-key encryption) can be implemented with constant input locality (under
plausible assumptions), while tasks which require some form of non-malleability
(e.g., MACs, signatures, non-malleable encryption) cannot be implemented with
constant input locality. Interestingly, hash functions escaped this characteriza-
tion. Although it is easy to find near-collisions in a function with constant input
locality (simply flip the first bit of the target x), it is unknown how to extend
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this to a full collision. Overall, the question of computing UOWHFs with con-
stant input locality has remained open, even for the case of a single-bit shrinkage
n−m = 1.1

1.1 Main Result

We construct the first locally computable UOWHF with linear shrinkage. Our
construction has both constant input locality and constant output locality, and
is based on the one-wayness of random local functions (also known as Goldre-
ich’s one-way function [14]). The latter assumption asserts that a random local
function f : {0, 1}n → {0, 1}m is one-way where f is chosen uniformly at random
as follows. View the n inputs and m outputs as vertices in a bipartite graph G
and connect each output node yi to a random set of d distinct input nodes. To
compute the i-th output apply some fixed d-local predicate P : {0, 1}d → {0, 1}
to the d inputs that are connected to yi. This experiment defines a distribu-
tion FP,n,m over functions with output locality of d. (See Section 3 for a formal
definition.) We prove the following theorem.

Theorem 1. There exists a constant d and a predicate P : {0, 1}d → {0, 1} for
which the following holds. If the collection FP,n,m=O(n3) is one-way then there
exists a collection H of UOWHF with linear shrinkage, constant input locality,
and constant output locality.

The theorem is constructive, and can be applied to every predicate which satisfies
a simple criteria. In particular, we show that the predicateMSTd1,d2(x, y) = (x1∧
. . .∧xd1)⊕(y1⊕. . .⊕yd2) defined by [20] satisfies the theorem for every d1 ≥ 2 and
every sufficiently large constant d2. The hypothesis of the theorem (one-wayness
of random local functions) was extensively studied in the last few years and it
is supported both experimentally [22,13] and theoretically [14,2,13,10]. In fact,
recent evidence suggest that, for a proper predicate, this collection may even be
pseudorandom [4,3]. Interestingly, Theorem 1 can be proved under the (possibly
weaker) assumption that FP,n,m=O(n) is a weak pseudorandom generator (i.e.,
its output cannot be distinguished from truly random string with advantage
better than, say, 0.1).

There are several interesting corollaries that follow from Theorem 1. First, it
is possible to reduce the output locality to 4 (which is almost optimal) while
preserving (tiny) linear shrinkage (i.e., m = (1 − ε)n for some small ε) via the
compiler of [6].2 Second, by self-composing H a constant number times, one
can get arbitrary linear shrinkage (i.e., m = εn for arbitrary constant ε > 0)
at the expense of increasing the locality to a larger constant. Furthermore, by
iterating H a logarithmic number of times we get a linear-time computable hash
function H′ with polynomial shrinkage factor of m = nε (the i-th level of the

1 We note that standard transformations from one-way functions to
UOWHFs [21,24,15] are inherently non-local as they employ primitives such
as k-wise independent hash functions which cannot be computed locally.

2 When applied to local functions, the AIK compiler preserves linear shrinkage.
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circuit contains O(n/2i) gates). As observed by [17], one can then employ the
Naor-Yung transform [21] and sign n-bit messages with linear time complexity
and only additive cryptographic overhead, i.e., O(n + κ). (See [17] for details.)
This is contrasted with standard signature schemes whose complexity grows
multiplicatively with the security parameter, i.e., O(nκ). Previously, such linear-
time computable UOWHFs and signatures were only known to exist assuming
that Goldreich’s collection is exponentially-hard to invert [17].3

1.2 Techniques

Hashing via Random Local Functions? As a starting point, we ask whether the
collection FP,n,m=n(1−ε) itself can be used, even heuristically, as a UOWHF.
To make the question non-trivial, let us assume that the distribution of the
input-output dependency graph is slightly modified such that the graph is (c, d)-
regular, i.e., each input affects c outputs and each output depends on d inputs.
(Otherwise, we are likely to have some inputs of degree 0, with no influence at
all.) For concreteness let us think of P as the majority predicate. A moment of
reflection suggests that collisions are easy to find even with respect to a random
target string x. Indeed, suppose that there exists an input variable xi that all
of its neighboring inputs (i.e., the inputs that share an output with xi) turn
to be zero. In this case, we can flip the insensitive input xi without affecting
the output of the function, and this way obtain a trivial collision. Observe that
each input variable has a constant probability of being insensitive as it has at
most cd = O(1) neighbors. Overall, one is likely to find Ω(n) insensitive inputs.
Furthermore, by collecting an independent set I of insensitive inputs (that do
not share any common output) one can simultaneously flip any subset of the
inputs in I without changing the output. Hence, we find exponentially many
collisions x′ which form a “ball” around x of diameter Ω(n). It is not hard to
show that a similar attack can be applied to FP,n,m for every predicate P except
for XOR or its negation. (Unfortunately, in the latter case collisions can be found
via Gaussian elimination.)

Despite this failure, let us keep asking: Can FP,n,m achieve some, possibly
weak, form of collision resistance ? Specifically, one may hope to show that it is
hard to find collisions which are β-far from the target x, for some (non-trivial)
constant β. This assumption is intuitively supported by study of the geome-
try of the solutions of random Constraint Satisfaction Problems (e.g., Random
SAT) [1]. Thinking of each output as inducing a local constraint on the inputs, it
can be essentially showed that, for under-constraint problems where m < n, the
space of solutions (siblings of x) is shattered into far-apart clusters of Hamming-
close solutions. It is believed that efficient algorithms cannot move from one
cluster to another as such a transition requires to pass through solutions x′

which violate many constraints (i.e., f(x′) is far, in Hamming distance, from
f(x)). Therefore, it seems plausible to conjecture that the collection FP,n,m is
secure with respect to β-far collisions.

3 Exponential hardness assumptions do not seem to help in the context of locally
computable UOWHFs.
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As our main technical contribution, we prove that a weak form of this con-
jecture holds assuming the one-wayness of FP,n,m′ (where m′ > n > m). Specif-
ically, we prove that, for some constants ε, β, δ ∈ (0, 1), it is hard to find β-far
target collisions in FP,n,(1−ε)n with probability better than δ. To prove Theo-
rem 1, we show that (δ, β)-target collision resistance (TCR) can be locally am-
plified into standard TCR while preserving linear shrinkage. Let us sketch the
main ideas behind each of these steps.

One-wayness ⇒ (δ, β)-TCR. Assume that we have an algorithm A that, given a

random function h
R← FP,n,m=(1−ε)n and a random target w, finds a β-far sibling

with probability δ. We show how to use A to invert the collection FP,n,m′ with

output length of m′ ≈ 2m. Given a random function fG
R← FP,n,m′ specified

by a random input-output dependencies graph G, and an image y = fG(x) of

a random point x
R← {0, 1}n, we will recover the preimage x as follows. First,

we choose a target w uniformly at random and partition the graph G into two
subgraphs: G0 which contains only the output nodes for which fG(w) agrees
with y (and all input nodes), and G1 which contains the remaining subgraph.
Assuming that P is balanced, each subgraph contains roughly m′ outputs. Next,
we define h = fG0 to be the restriction of fG to the output nodes for which
fG(w) agrees with y, and ask A for a β-far sibling w′ of w under h. Let us
(optimistically) assume that w′ is statistically independent of the sub-graph G1

that was not used by h. That is, imagine that this part of the dependencies
graph is chosen uniformly at random after w′ is obtained. Since w is far from
w′, this pair is expected to disagree on a constant fraction γ of the remaining
coordinate of fG1 . Remembering that the pair (w, x) did not agree on any of
these coordinates, we conclude that x and w agree on a fraction of 1

2 +γ/2 of the
outputs of fG (i.e., γ-fraction of the coordinates of fG1 and all the coordinates of
h = fG0). Assuming that P is sensitive enough, it follows that w′ and x must be
correlated – their Hamming distance is bounded by a constant which is strictly
smaller than 1

2 . At this point we employ a result of [9] that allows to fully recover
x given such a correlated string w′ (and additional O(n) outputs).

The above argument is over-optimistic, as there is no reason to assume that w′

is statistically independent of the subgraph G1. Fortunately, we can show that
a failure of the above approach allows to distinguish the string y = f(x) from a
truly random string. At this point, we employ the result of [3] which shows that
this string is somewhat pseudorandom assuming the one-wayness of FP,n,m′′ for
larger m′′. Hence, we are in a win-win situation: we invert F either by finding
a correlated string, or by distinguishing its output from a random string. (See
Section 4 for details.)

(δ, β)-TCR ⇒ δ-TCR. The above reduction leaves us with a δ-secure β-TCR H
of linear shrinkage n −m = εn, where δ, β, ε are constants. Our first goal is to
get rid of β (i.e., obtain security with respect to standard, possibly close, colli-
sions). A tempting approach would be to compose H with an error correcting
code C, i.e., map an input x to a codeword C(x) and hash the result via h ∈ H.
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A code of constant relative distance larger than β and constant rate smaller
than ε will fully eliminate β-close collisions (in an information theoretic sense),
while preserving linear shrinkage. Unfortunately, this transformation is inher-
ently non-local, as local functions cannot compute codes with constant relative
distance and constant rate.4 We solve the problem via a dual approach: Instead
of computing a codeword C(x) and composing the result with h, we concatenate
h(x) with the syndrome Mx where M is a sparse parity-check matrix M whose
dual relative distance is β. It is not hard to show that a pair of β-close strings
x and x′ will always be mapped by M to different outputs y �= y′, and so the
mapping x �→ (h(x),Mx) is immunized against β-close collisions. Unlike the case
of sparse generating matrices, whose distance is deemed to be non-constant, the
dual distance of sparse parity-check matrices can be constant (aka LDPC) and
so the transformation is locally computable. (See Section 5.2.)

δ-hard TCR ⇒ TCR. We move on to amplify the error parameter δ from con-
stant to negligible. Typically this is done via t-wise direct-product, i.e., x �→
(h1(x), . . . , ht(x)) where the hi’s are chosen independently from H. The error δ
decreases exponentially fast and so any super-logarithmic t leads to a negligible
error [11]. Unfortunately, in our case even a super-constant t will completely ruin
the shrinkage and the input locality. An alternative, more economic, approach is
to first stretch the input x into a longer string C(x) = (c1, . . . , ct) ∈ ({0, 1}n)t via
an error-correcting code C, and then apply t-wise direct product [18,11]. If the
code has a constant relative distance, any collision (x′, x) is translated into a pair

C(x), C(x′) which collide under Ω(t) of the coordinates of (h1, . . . , ht)
R← Ht.

Hence, the error parameter decreases exponentially with t while keeping the
shrinkage linear (for properly chosen parameters). Unfortunately, this optimiza-
tion is inherently non-local as it requires a code with good distance. Nevertheless,
we observe that even if C is replaced with a sparse generating matrix G, the re-
sulting transformation is not completely useless. Although the distance of G is
bad, it can be shown any pair of β-far inputs x, x′ will be mapped by G to a pair
(y, y′) which is Ω(t) far apart. As a result, the modified construction amplifies
hardness with respect to β-far collisions, but does not amplify hardness with
respect to close collisions. Fortunately, such collisions can be again eliminated
via LDPCs.5 (See Section 5.3.)

We note that the above transformations can also be used to locally amplify
collision resistance.

4 In fact, such codes are as bad as possible as their relative distance is O(1/n).
5 One can change the order of the transformations, namely, transform (δ, β)-TCR to
β-TCR and then to TCR. This allows to use LDPCs only once. Still we prefer the
current order as once β is eliminated (in the first step), it is easy to amplify the
shrinkage factor to a small constant via a constant number of self-compositions.
Overall, this results in a more flexible reduction that works for a wider range of
parameters.
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2 Preliminaries

General. By default, logarithms are taken to base 2. For reals p, q ∈ (0, 1) we
let D2(p‖q) := p log(pq ) + (1 − p) log(1−p1−q ) denote the relative entropy func-

tion. Observe that 1−D2(p‖ 12 ) equals to the binary entropy function H2(p) :=
−p log(p)−(1−p) log(1−p). We will use the following additive form of Chernoff-
Hoeffding bound. LetX1, . . . , Xn be i.i.d. random variables whereXi ∈ [0, 1] and
E[Xi] = p. Then, for every ε > 0, the average X̄ = n−1

∑
iXi satisfies

Pr
[
X̄ ≥ p+ ε

]
< 2−D2(p+ε‖p)n and Pr

[
X̄ ≤ p− ε

]
< 2−D2(p−ε‖p)n.

A simpler form follows by noting that D2(p+ ε‖p) > 2ε2.

Collection of Functions. We model cryptographic primitives as collections of
functions F =

{
fk : {0, 1}n → {0, 1}m(n)

}
k∈{0,1}s(n) equipped with a pair of ef-

ficient algorithms: (1) an evaluation algorithm which given (k ∈ {0, 1}s, x ∈
{0, 1}n) outputs fk(x); and (2) a key-sampling algorithm K which given 1n sam-
ples a index k ∈ {0, 1}s(n). We will sometimes keep the key-sampler implicit and

write f
R← F to denote the experiment where k

R← K(1n) and f = fk. A collec-
tion of functions has constant output locality (resp., constant input locality) if
there exists a constant d (which does not grow with n) such that for every fixed
k each output of the function fk depends on at most d inputs (resp., each input
of fk affects at most d outputs). The collection is locally computable if it has
both constant input locality and constant output locality.

One-wayness and Pseudorandomness. A collection of functions F is δ-secure β
approximation-resilient one-way (in short, (δ, β) one-way) if for every efficient
adversary A the following event happens with probability at most δ: Given

f
R← F and y = f(x) for random x

R← {0, 1}n, the adversary A outputs a
list of candidates X ′ which contains some string x′ which is β-close to some
preimage of y. The special case of β = 0 corresponds to the standard notion
of δ-secure one-wayness, or simply one-wayness when δ = neg(n). A collection
of functions F is δ-pseudorandom if the distribution ensemble (f, f(x)) is δ
computationally-indistinguishable from the distribution ensemble (f, y), where

f
R← F , x R← {0, 1}n and y

R← {0, 1}m.

Hash Functions. Let m = m(n) < n be an integer-valued function. A collection
of functions H = {h : {0, 1}n → {0, 1}m} is δ-secure β target-collision resistance
((δ, β)-TCR) if for every pair of efficient adversaries A = (A1,A2) it holds that

Pr
(x,r)

R←A1(1
n)

h
R←H

[A2(h, x, r) = x′ s.t. Δ(x′, x) > β and h(x) = h(x′)] ≤ δ,

where Δ(·, ·) denotes relative Hamming distance. That is, first the adversary
A1 specifies a target string x and a state information r, then a random hash
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function h is selected, and then A2 tries to form a β-far collision x′ with x under
h. The collection is δ-secure β random target-collision resistance ((δ, β) RTCR)
if the above holds in the special case where A1 outputs a uniformly chosen

target string x
R← {0, 1}n and empty state information. (As we will see, there

are standard local transformations from RTCR to TCR). The standard notions
of δ-RTCR and δ-TCR correspond to the case where β = 0 (or just β < 1/n). If,
in addition, δ is negligible we obtain standard RTCR and TCR. The shrinking
factor of H is the ratiom/n. When m/n < 1/(1+H2(β)) and δ = o(1) TCR and
RTCR become non-trivial in the sense that their existence implies the existence
of one-way functions. For an extensive study of hash functions see [8,23].

3 Random Local Functions and Sensitivity

Let P : {0, 1}d → {0, 1} be a predicate, and let G = (S1, . . . , Sm) where each
Si ⊆ [n] is a subset of [n] that contains d distinct ordered elements Si,1, . . . , Si,d ∈
[n]. We will think of G as a bipartite graph with n input vertices and m output
vertices where each output i is connected to the d inputs in Si. We define the
function fG,P : {0, 1}n → {0, 1}m as follows: Given an n-bit input x, the i-th
output bit yi is computed by applying P to the restriction of x to the i-th set Si,
i.e., yi = P (xSi). For m = m(n) and some fixed predicate P : {0, 1}d → {0, 1},
we let FP,n,m denote the collection

{
fG,P : {0, 1}n → {0, 1}m(n)

}
where the key

G is sampled by selecting m(n) sets uniformly and independently at random
from all the possible n · (n − 1) · . . . · (n − d + 1) ordered sets. We refer to the
latter distribution as the uniform distribution over (n,m, d) graphs and denote
it by Gn,m,d. When the predicate P is clear from the context, we omit it from
the subscript and write fG and Fn,m.

By definition, the ensemble FP,n,m has a constant output locality of d. How-
ever, some inputs will have large (super-constant) locality. Still, one can show,
via simple probabilistic argument, that the locality of most inputs will be close
to the expectation md/n which is constant when m = O(n). We will later use
this fact to reduce the input locality to constant.

3.1 Sensitivity

Let P : {0, 1}d → {0, 1} be a d-local predicate. For a pair of strings x, x′ ∈ {0, 1}n
let sP (x, x

′) be the expected relative Hamming distance between the images f(x)
and f(x′) where f is randomly chosen from FP,n,m. Equivalently, we may write
sP (x, x

′) as
Pr
S
[P (xS) �= P (x′S)], (1)

where S is a random set of d distinct indices i1, . . . , id which are chosen from [n]
uniformly at random without replacement. Imagine the following experiment:
first x is chosen uniformly at random, and then an α-far string x′ is chosen
adversarially in order to minimize sP (x, x

′). We will be interested in predicates
P for which, except with negligible probability, the value of sP (x, x

′) in the
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above experiment will be relatively high (as a function of α). To analyze this
property we make several simple observations. By symmetry, the strategy of the
adversary boils down to selecting the fraction α0,1 of 0’s which are flipped to
1, and the fraction α1,0 of 1’s which are flipped to 0’s (where α = α0,1 + α1,0).
Furthermore, it suffices to analyze a simpler experiment in which x is a random
string of Hamming weight n/2 and the set S (from Eq. 1) is chosen by selecting
d indices uniformly at random from [n] with replacement (i.e., the tuple may not
be distinct). We will show (in Lemma 1) that, with all but negligible probability
over x, these simplifications add a small o(1) error to the value of the experiment.

The above observations motivate a new quantitative measure of sensitivity
which refines the standard notion of noise sensitivity. For α0,1, α1,0 ∈ [0, 12 ],
let D(α0,1, α1,0) be a distribution over pairs w,w′ ∈ {0, 1}d where w is chosen
uniformly at random and the i-th bit of w′ is obtained by flipping the i-th bit of
w with probability 2α0,1 if wi = 0, and with probability 2α1,0 if wi = 1. (Hence,
Pr[(wi, w

′
i) = (01)] = α01, and Pr[(wi, w

′
i) = (00)] = 1

2 − α01, etc.) For α ∈ [0, 1]
let sP (α) denote the infimum of Pr

(w,w′)
R←D(α0,α1)

[P (w) �= P (w′)] taken over

all α0,1 and α1,0 which sum-up to α. Call x typical if its Hamming weight is
n/2±n2/3. By Chernoff bound, a random string is typical with all but negligible
probability. The following lemma, whose proof is deferred to the full version,
relates sP (x, x

′) to sP (α).

Lemma 1. For every predicate P , the function sP (α) is well defined and contin-
uous. Also, for every typical x and every string x′ sP (x, x

′) ≥ sP (Δ(x, x′))−o(1).

Good Predicates. We say that P is (β, γ) good if: (1) The value of sP (·) is lower-
bounded by γ in the interval [β, 1]; and (2) P has a sensitive coordinate meaning
that P (w) = w1 ⊕ P ′(w2, . . . , wd) for some (d− 1)-local predicate P ′. Observe
that the latter condition implies that P is balanced and that sP (

1
2 ) =

1
2 .

In the next section we will use (β, γ)-good predicate to construct β-RTCRs
with shrinkage 1− ε where ε ∈ (0, 12 ) satisfies the inequality

ε < 1− 1

2(1−H2(
1
2 − γ))

, (2)

whereH2 is the binary entropy function. In general, we would like to have a small
value of β > 0 and a large value of γ ≤ 1

2 (which leads to a larger ε and better
shrinkage). It turns out that by increasing the locality, one can simultaneously
push β arbitrarily close to 0 and γ arbitrarily close to 1

2 . This is illustrated by
the following family of predicates which generalizes the predicate from [20]. Let
MSTd1,d2 be the (d1 + d2) local predicate (x1 ∧ . . . ∧ xd1) ⊕ (y1 ⊕ . . .⊕ yd2). In
the full version we will prove the following lemma.

Lemma 2. For every constants γ < 1
2 , β > 0 and integer d1 ≥ 2 there exists a

constant d2 for which MSTd1,d2 is (β, γ)-good.
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4 Random Local Functions Are (δ, β)-RTCR

Let P be (β, γ) good predicate. Assume that Eq 2 holds for some ε > 0 and let
m = (1 − ε)n. In Section 4.1 we prove the following.

Theorem 2. For every δ1, δ2 ∈ (0, 1) there exists a constant μ > 0 such that if
FP,n,2m is both δ1-pseudorandom and (δ2,

1
2−μ) one-way then FP,n,m is δ′-secure

β-RTCR where δ′ = 2(δ1 + δ2) + neg(n).

It was shown in [9, Thm. 1.3] and [3, Prop. 3.4] that if Fn,m is one-way for
sufficiently long output length m, then it is also approximate one-way and pseu-
dorandom for shorter output lengths. Together with Theorem 2, we get:

Corollary 1. For every constant δ > 0, there exists a constant c such that
if FP,n,cn3 is one-way then FP,n,(1−ε)n is δ-secure β-RTCR. Furthermore, if
FP,n,(1−ε)n is δ-secure β-RTCR then for every constant η > 0 there exists a δ-

secure β
1−η -RTCR H with constant input and constant output locality and shrink-

age factor of 1−ε
1−η .

The “furthermore” part is obtained by randomly fixing a small fraction of the
inputs of FP,n,m (the ones with maximal influence). See full version for details.

4.1 Proof of Theorem 2

Assume, towards a contradiction, that FP,n,m is not δ′-secure β-RTCR. Namely,

there exists an efficient adversary A which, given a random target w
R← {0, 1}n

and a random graph G
R← Gn,m,d, finds, with probability δ′, a string z which

is a β-far sibling of w under fG. Assume that Fn,2m is δ1-pseudorandom. We
construct an attacker B who breaks the (δ2,

1
2 − μ) one-wayness of Fn,2m for

some constant μ whose value will be determined later. Given a graph G =
(S1, . . . , S2m) and a string y ∈ {0, 1}2m, the algorithm B is defined as follows:

1. Randomly choose w
R← {0, 1}n and let r = fG,P (w) ⊕ y.

2. Fail, if the number of 0’s in r is smaller than m or larger than m+m2/3.
3. Let I0 be the set of the firstm indices i for which ri = 0, and I1 = {i : ri = 1}.

Let G0 = {Si : i ∈ I0} and G1 = {Si : i ∈ I1}.
(Note that fG0,P (w) = yI0 and that fG1,P (w) = 1⊕ yI1 .)

4. Apply A to (G0, w) and let z ∈ {0, 1}n denote the resulting output.
5. If P (zSi) = yi for at least m(1 + γ)− 2m2/3 of indices i ∈ [2m] output z;

Otherwise, Fail.

We begin by bounding the failure probability of the algorithm. Intuitively, the
algorithm does not fail due to the following reasoning. Assuming that z is a
collision, we have that P (zSi) = yi for all the m indices i ∈ I0. In addition,
if z is β-far from w and statistically independent of G1 then (since P is (β, γ)
good), the outputs fG1,P (w) and fG1,P (z) are expected to disagree on a set of
γm coordinates. Since fG1,P (w) = 1⊕ yI1 , this translates to γm indices in I1 for
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which P (zSi) = yi. The above analysis is inaccurate as the random variables z
and G1 are statistically dependent (via the random variable (w,G0)). Still the
above approach can be used when the input y (as well as the graph G) is truly
random.

Claim 3. Pr
G

R←Gn,2m,d,y
R←{0,1}2m

[B(G, y) does not fail] > δ′/2− neg(n).

Proof. When the pair (G, y) is uniformly chosen, the process B(G, y) can be
equivalently described as follows. In the first step, we choose S1, . . . , S2m uni-

formly at random, choose a random string w
R← {0, 1}n, and a random string

r
R← {0, 1}2m. We let y = fG,P (w)⊕ r. Then steps 2–5 are performed exactly as

before. This process is clearly equivalent to B(G, y), but easier to analyze. The
main observation is that the string w is statistically independent of the graphsG0

and G1 which are just random graphs (whose size is determined by the random
variable r).

Specifically, consider the following event: (1) The number of zeroes in r is
larger than m/2; (2) The number of zeroes in r is smaller than m/2+m2/3; (3)
A outputs β-far collision z with w under fG0,P ; (4) The Hamming weight of w
is n/2± n2/3; (5) P (zSi) = yi for at least m(1 + γ)− 2m2/3 of indices i ∈ [2m].

Event (1) happens with probability 1
2 (this follows from the “mean in the

median” result for the binomial distribution, cf. [19]), and Event (2) happens
with all but negligible probability due to a Chernoff bound. Hence, by a union
bound (1) and (2) happen together with probability 1

2 − neg(n). Fix some r

which satisfies both (1) and (2) and let m1 ≥ m−m2/3 be the Hamming weight

of r. Now, w is a random string and G0
R← Gn,m,d, hence, A is invoked on

the “right” probability distribution and (3) happens with probability δ′. By a
Chernoff bound, (4) happens with all but negligible probability. Therefore, by
union bound, (3) and (4) happen simultaneously (conditioned on (1,2)) with
probability δ′−neg(n). Fix w and G0 which satisfy (3) and (4), and let us move
to (5).

Since w and z form a collision under fG0,P , we have that fG0,P (z) = yI0 and
therefore P (zSi) = yi for all the m indices i ∈ I0. Hence, it suffices to show that
P (zSi) = yi for at least

(γ −m−1/3)m1 ≥ γm− 2m2/3

of the indices in I1. (Recall that m1 > m − m2/3.) We claim that this hap-

pens with all but negligible probability (taken over the random choice of G1
R←

Gn,m1,d). To see this, define for every i ∈ I1 a random variable ξi which equals to
one if P (zSi) = yi. Equivalently, ξi = 1 if P (zSi) �= P (wSi). Furthermore, since
the sets Si are distributed uniformly and independently, each ξi takes the value
1 independently with probability at least

sP (w, z) ≥ sP (Δ(w, z))− o(1) > γ

where the first inequality follows from Lemma 1 and the fact that w is “typical”
(of Hamming weight n/2 ± n2/3); and the second inequality follows from the
goodness of P and the fact that Δ(w, z) ≥ β. Therefore, by Chernoff’s bound,
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Pr
[∑

ξi < (γ −m−1/3)m1

]
< 2−D2(γ−m−1/3‖γ)m1 < e−Ω(m1/3),

which is negligible in n and so the claim follows. #$

Moving back to the case where y is an image of a random string x, we show that
when B does not fail its output is likely to be correlated with x.

Claim 4. There exists a constant μ such that the following holds. With all but

negligible probability over the choice of x
R← {0, 1}n and G

R← Gn,2m,d, there is
no string z such that fG,P (x) and fG,P (z) agree on at least m(1 + γ) − 2m2/3

coordinates but Δ(x, z) ∈ (12 ± μ).

Proof. Let μ > 0 be a small constant for which the value of sP (·) in the interval
(12 ± μ) is lower bounded by a constant η which satisfies η > 1

2 − γ and

2(1− ε)D2(
1

2
− γ‖η) > 1. (3)

Observe that for μ = 0 we can take η = 1
2 (as sP (

1
2 ) =

1
2 ) and so Eq 3 translates

to 2(1 − ε)H2(
1
2 − γ) > 1 which follows from Eq 2. Since sP is a continuous

function, and the LHS of Eq 3 is also continuous in η, we conclude that Eq 3
also holds for sufficiently small constant μ > 0.

Let us condition on the event that x is typical (as in Lemma 1), which, by a
Chernoff bound, happens with all but negligible probability. Fix some string z
for which Δ(x, z) ∈ (12±μ). For a random d size set S we have, by Lemma 1, that

Pr[P (xS) �= P (zS)] ≥ sP (Δ(x, z)) > η − o(1) > 1
2 − γ. Let G = (S1, . . . , Sm)

R←
Gn,2m,d. Since each set Si is chosen independently and uniformly at random,
we can upper-bound (via Chernoff) the probability that fG,P (x) and fG,P (z)
disagree on less than 2m − (m(1 + γ) − 2m2/3) = (1 − γ)m + 2m2/3 of the
coordinates by

p = 2−2mD2(
1
2−γ+o(1)‖s(x,z)) ≤ 2−2(1−ε)D2(

1
2−γ+o(1)‖η−o(1))n.

By a union bound over all z’s, we get that the claim holds with probability p ·2n
which is negligible since Eq.3 holds. #$

We can now complete the proof of the theorem. Let G
R← Gn,2m,d and y =

fG,P (x) where x
R← {0, 1}n. Consider the event that: (1) G and x satisfy Claim 4;

and (2) B(G, y) does not fail and outputs the string z. In this case, either the
string z or its negation has a non-trivial agreement of 1

2 + μ with x, which
may happen with probability at most δ2 due to the approximate one-wayness of
Fn,2m. Hence, it suffices to show that the above event happens with probability
at least δ′/2−δ1−neg(n). Indeed, (1) happens with all but negligible probability
(due to Claim 4), and (2) happens with probability δ′/2 − δ1 − neg(n) due to
Claim 3 and the fact that (G, y) is δ1-indistinguishable from (G, y′) for truly

random y′
R← {0, 1}2m. #$
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5 From (δ, β)-RTCR to TCR

In this section we will start with δ-secure β-RTCR with shrinkage factor of 1− ε
and gradually amplify each of the parameters via locally computable transforma-
tions (described in Sections 5.1–5.3). Formally, we prove the following theorem.

Theorem 5. For every ε ∈ (0, 1) there exist universal constants δ, β ∈ (0, 1)
such that for every desired constant shrinkage factor ε′ ∈ (0, 1) the following
holds. Any locally computable δ-secure β-RTCR with shrinkage factor of 1 − ε
can be transformed into a locally computable TCR with shrinkage factor of ε′.

We note that the proof of the theorem can be adopted to the setting of collision
resistance hash functions. Namely, it allows to locally transform a δ-secure β-
collision resistance hash function with shrinkage factor 1 − ε into a standard
collision resistance hash function with arbitrary constant shrinkage.

Observe that our main theorem (Theorem 1) follows by combining Theorem 5
with Corollary 1 instantiated with (β, γ)-good predicate P where β < β∗ and
γ > γ∗ for some universal constants β∗ > 0 and γ∗ < 1

2 . The exact values of β∗

and γ∗ are determined by the quality of LDPC codes. (See section 5.2.)

5.1 Standard Transformations

We begin with two standard transformations.

Claim 6 (RTCR to TCR). Let H = {hk} be δ-secure β-RTCR with shrinkage

factor of 1− ε. Then the collection H′ =
{
h′k,y

}
defined by h′k,y(x) = hk(x⊕ y)

is δ-secure β-TCR.

Assume that we already have δ-secure standard-TCR (β = 0) with shrinkage
factor of 1 − ε. A standard way to amplify the shrinkage factor from 1 − ε to
(1 − ε)t is via iterated self-composition [21]. We note that when t = O(1) the
locality remains constant.

Claim 7 (Amplifying the Shrinkage Factor). Let H = {hk} be a δ-secure
TCR with shrinkage factor of 1−ε and key sampler K. For any constant integer
t ≥ 1, the collection Ht (defined below) is tδ-secure TCR with shrinkage factor
of (1 − ε)t. The collection Ht is defined recursively, via

Ht = {hk1,...,kt} , hk1,...,kt(x) = hkt(hk1,...,kt−1(x)), where ki
R← K(1n(1−ε)

i−1

).

A proof for t = 2 follows from [8, Lemma 3.2]. The case of arbitrary constant t
follows by induction (or can be proven directly via a similar argument).

5.2 Reducing the Distance Parameter β

In this section we transform β-TCR to standard TCR (with some loss in hardness
and shrinkage). Such a transformation can be easily obtained (non-locally) by
encoding the input x via an error-correcting code. Here we provide a local alter-
native which employs low-density parity-check matrices (LDPC). Such matrices
will also be used to amplify the hardness parameter δ in the next section.
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LDPC. In order to amplify the distance parameter β we will need sparse parity
check matrices of a good code. Let m < n be an integer. We say that a matrix
M ∈ Zm×n

2 has a dual (relative) distance of β ∈ (0, 1) if the Hamming weight
of every non-zero codeword x ∈ ker(M) = {x|Mx = 0} is larger than βn. We
say that a family Mm(n)×n of efficiently samplable distributions over matrices

in {0, 1}m(n)×n is a low-density parity check code with error δ and distance β (in

short, (δ, β)-LDPC) if (1) with probability at least 1−δ a matrixM
R←Mm(n)×n

has dual distance of β and (2) all matrices M in the support ofM are sparse in
the sense that the number of ones in each row and each column is bounded by
some absolute constant d which does not depend on n. We will make use of the
following proposition due to [12, Thm. 7.1].

Proposition 1. For every ε ∈ (0, 1) there exists an efficiently samplable distri-
bution Mεn×n of (0, β(ε))-LDPC for some β = ε/polylog(1/ε).

Lemma 3 (β-TCR to TCR). Let ε′ < ε and letMε′n×n be an (δ′, β)-LDPC.
Let H = {hk} be δ-secure β-TCR with shrinkage factor of 1− ε and key sampler
K, and define

H′ =
{
h′k,M

}
h′k,M = (hk(x),Mx), where (k,M)

R← (K(1n),Mε′n×n)

Then, H′ is (δ + δ′)-secure TCR with shrinkage factor of 1− ε+ ε′.

Proof. We need the following observation: when M
R←M has a dual distance of

β, any pair of distinct strings x and x′ which collide under h′k,M must be β-far.
Indeed, if this is not the case then, since Mx = Mx′, the vector x ⊕ x′ is a
non-zero vector in the kernel of M whose Hamming weight is smaller than βn,
in contrast to our assumption. The lemma now follows easily.

Let A2 be an TCR adversary that, given (x, r)
R← A1(1

n) and hk,M
R← H′,

finds a collision x′ with x under hk,M with probability δA. To prove the lemma

we define an adversary B that finds a β-close collision x′ with x
R← A1(1

n)

under hk
R← H with probability δB ≥ δA − δ′. Given a key k

R← K(1n) and a

target/state pair (x, r)
R← A1(1

n), the adversary B samples M
R← M and call

A2 with hk,M . Let good be the set of matrices whose dual distance is β and
let us say that A wins if it outputs a valid collision x′ with x under hk,M , i.e.,
x′ �= x, hk(x) = hk(x

′) and Mx = Mx′. Then we can write

δA = Pr
k,M,x,r

[A1(k,M, x, r) wins |M ∈ good] · Pr
M
[M ∈ good]

+ Pr
k,M,x,r

[A1(k,M, x, r) wins |M /∈ good] · Pr
M
[M /∈ good]

≤ Pr
k,M,x,r

[A1(k,M, x, r) wins |M ∈ good] · (1− δ′) + δ′

≤ δB + δ′,

where the last inequality follows from the observation. #$

Observe that the above transformation is local since the family M is sparse.
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5.3 Hardness Amplification

We move on to amplify the hardness parameter δ from constant to negligible.
In addition to LDPCs (i.e., sparse shrinking linear transformations), we employ
Distance Amplifiers (i.e., sparse linear transformations which expands the input)
which has the property of mapping any pair (x, x′) of far-apart inputs to a pair
of far apart outputs (y, y′). This can be seen as a relaxation of standard error-
correcting codes which amplify the distance between any pair of distinct inputs.

Distance Amplifiers. Let m > n be an integer and β, γ ∈ (0, 1) be constants.
We say that a matrix T ∈ Zm×n

2 is (β → γ)-distance amplifying if for every
pair x, x′ ∈ {0, 1}n of β-far strings the m-bit strings Tx and Tx′ are γ-far.
(Jumping ahead, we note that γ is allowed to be smaller than β as long as
it is larger than the hardness parameter δ.) We say that a family Tm(n)×n of

efficiently samplable distributions over matrices in {0, 1}m(n)×n is a (β → γ)
sparse distance amplifier (in short, (β → γ)-SDA) if (1) with all but negligible

probability a matrix T
R← Tm(n)×n is (β → γ)-distance amplifying and (2) all

matrices T in the support of T are sparse, meaning that the number of ones in
each row and each column is bounded by some absolute constant d which does
not depend on n. In the full version we prove the following proposition.

Proposition 2. For every constant β ∈ (0, 1) and constant γ ∈ (0, 12 ) there ex-
ists an efficiently samplable (β → γ)-SDA Tcn×n where c = c(β, γ) is a constant.

Let T ∈ {0, 1}cn2×n2

. In the following we think of the linear mapping x �→ Tx
as a mapping from n2-bit strings to a tuple of cn strings of length n each.
Accordingly, for i ∈ [cn] we let (Tx)i ∈ {0, 1}n denote the i-th entry of Tx.

Lemma 4 (Hardness Amplification). Let H = {hk : {0, 1}n → {0, 1}ε1n} be
δ-secure β-TCR with key sampler K, let Mε0n2×n2 be a β-LDPC, and Tcn2×n2

be a (β → γ)-SPA, where the constants ε0, ε, γ, δ ∈ (0, 1) and c > 1 satisfy
ε0 + εc < 1 and δ < γ. Then, the following collection H′ which shrinks n2-bit
strings by a factor of ε0 + εc is a standard TCR:

h′(k1,...,kcn),M,T : x �→ (Mx, hk1((Tx)1), . . . , hkcn((Tx)cn)) ,

where M
R←Mε0n2×n2 , T

R← Tcn2×n2 and ki
R← K(1n) for i ∈ [cn].

Proof. Let A = (A1,A2) be an adversary that breaks H′ with probability δA.
We construct an adversary B = (B1,B2) that given cn independent samples of
H finds collisions on γ fraction of them with probability δB. Namely, let δB be

Pr
k

R←Kcn(1n)

(y,R)
R←B1(1

n)

[B2(k,y, R) = y′ s.t. | {i : (yi �= y′i) ∧ (hki(yi) = hki(y
′
i))} | ≥ γcn],

where k = (k1, . . . , kcn),y = (y1, . . . , ycn), and y′ = (y′1, . . . , y
′
cn). A general

threshold direct product theorem of Impagliazzo and Kabanets [16, Thm 5.2]
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shows that the advantage δB is upper-bounded by 2−cnD(γ‖δ)+neg(n) = neg(n).
Hence, to prove the lemma it suffices to show that

δA − neg(n) ≤ δB.

Let us define B. The target sampler B1(1
n) samples M

R← Mε0n2×n2 , T
R←

Tcn2×n2 and (x, r)
R← A1(1

n). It outputs the state R = (M,T, x, r) and the
target vector y = (y1, . . . , ycn) where yi = (Tx)i. Given (k,y, R = (x, r,M, T )),
the collision-finder B2 passes to A2 the key (k,M, T ), the target x, and the state
r, and asks for a collision x′ under h′k,M,T . The output of B2 is y′ = (y′1, . . . , y

′
cn)

where y′i = (Tx′)i. We say that A1(k,M, T, x, r) wins if its output x′ collide
with x under h′k,M,T and x �= x′. A pair (M,T ) is good if M has dual distance
of β and T is (β → γ) distance amplifying. We claim that

δA − neg(n) ≤ Pr
k,M,T,x,r

[A1(k,M, T, x, r) wins |(M,T ) ∈ good] ≤ δB.

The first inequality follows from Bayes’ law together with Pr[good] > 1−neg(n).
As for the second inequality, observe that if A wins and (M,T ) are good then the
collision x and x′ must be β-far (as Mx =Mx′) and therefore Tx and Tx′ must
disagree on at least γcn2 coordinates. Hence, for at least γ fraction of i ∈ [cn] we
have that (Tx)i �= (Tx′)i. Furthermore, hki((Tx)i) = hki((Tx

′)i) for all i ∈ [cn]
since A wins. Hence, in this case B wins as well and the claim follows. #$

Theorem 5 follows by combining Claims 6, 7 and Lemmas 3, 4 with properly
chosen parameters. See full version for details.

Acknowledgement. We thank Uri Feige and Danny Vilenchik for valuable
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Abstract. A central question in the theory of public-key cryptogra-
phy is to determine which minimal assumptions are sufficient to achieve
security against chosen-ciphertext attacks (or CCA-security, for short).
Following the large body of work on hardness and correctness amplifi-
cation, we investigate how far we can weaken CCA security and still be
able to efficiently transform any scheme satisfying such a weaker notion
into a fully CCA-secure one.

More concretely, we consider a weak CCA-secure bit-encryption scheme
with decryption error (1 − α)/2 where an adversary can distinguish
encryptions of different messages with possibly large advantage β <
1−1/poly. We show that whenever α2 > β, the weak correctness and se-
curity properties can be simultaneously amplified to obtain a fully CCA-
secure encryption scheme with negligible decryption error. Our approach
relies both on a new hardcore lemma for CCA security as well as on re-
visiting the recently proposed approach to obtain CCA security due to
Hohenberger et al (EUROCRYPT ’12).

We note that such amplification results were only known in the simpler
case of security against chosen-plaintext attacks.

1 Introduction

1.1 Public-Key Encryption and CCA Security

The seminal work of Goldwasser and Micali [1] introduced semantic security as
the basic security notion for public-key encryption. Semantic security demands
that no polynomial-time adversary, given only the public key, can distinguish
encryptions of any two messages m0 and m1 of its choice, except with negligi-
ble advantage. Often, this notion is also referred to as security against a chosen
plaintext attack, or CPA security, for short. This is in contrast to the stronger no-
tion of (adaptive) chosen-ciphertext security (CCA security, for short) [2], where
the above indistinguishability requirement must hold true even for adversaries
with the additional ability to query a decryption oracle; as CCA security is re-
quired by many applications, it is by now considered to be the golden standard
for secure public-key encryption.

In contrast to the case of CPA security, where simple constructions from
generic assumptions (such as trapdoor permutations (TDP)) can be given, de-
livering CCA-secure public-key encryption from general assumptions proved it-
self to be a much more challenging problem. In particular, determining whether

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 503–519, 2013.
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CCA-secure public-key encryption can be achieved solely from CPA-secure public-
key encryption remains a major longstanding open question. Constructions ad-
ditionally relying on non-interactive zero-knowledge proof systems (NIZKs) are
known [3,4,2,5]. But, so far, all constructions of NIZKs require the existence of
(enhanced) TDPs, which are not known to be implied by CPA-secure encryp-
tion; furthermore, known constructions based on NIZKs are all non-black-box.
It is in fact likely that no black-box construction of a CCA-secure scheme from
a CPA-secure one exists, as confirmed at least for a certain natural class of
constructions [6]. For this reason, efficient constructions have been instead given
from more concrete families of assumptions, such as hash proof systems and vari-
ants thereof [7,8], lossy TDFs [9], correlated-product secure TDFs [10], adaptive
TDFs [11], or using random oracles [12,13].

1.2 Our Results: From Weak to Strong CCA Security

In this paper, we ask and answer the following question:

“How far can we weaken CCA security and still provide a black-box con-
struction of a CCA-secure encryption scheme from a scheme only satis-
fying the weaker notion?”

Our approach follows the one of the large body of works on security amplifi-
cation, which has considered a wide range of cryptographic primitives and was
initiated by Yao [14] in the context of one-way functions. Interestingly, limited
work has been devoted to amplification of public-key encryption. The problem
was first considered by Dwork, Naor, and Reingold [15] for CPA-secure public-
key encryption. Constructions achieving better parameters were later proposed
by Holenstein [16] and by Holenstein and Renner [17]. However, the question of
amplifying CCA security has remained wide open. This is the question that we
tackle and solve in this work.1

Modeling Weak CCA Encryption.Our model of weak CCA encryption ex-
tends naturally the model of weak CPA encryption considered in [15,17]. We
start from a bit-encryption2 scheme with key generation algorithm Gen, encryp-
tion algorithm Enc, and decryption algorithm Dec, and weaken it in two different
directions, allowing both for non-negligible decryption errors as well as for non-
negligible adversarial advantage in a chosen-ciphertext attack. More concretely,
for two given parameters 0 < α, β ≤ 1, where α ≥ 1/p(κ) and β < 1 − 1/q(κ)
for some polynomials p and q, we assume the following two conditions:

1 Note that in the secret-key setting, amplification of CCA security is, at least in prin-
ciple, known to be feasible, as any weak form of CCA security implies weak one-way
functions, and these are sufficient to build CCA-secure symmetric-key encryption
via standard techniques.

2 As every meaningful encryption scheme has at least the ability to encrypt a binary
value, this is the weakest possible assumption in terms of message space of the basic
scheme.
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(i) α-weak decryptability: The decryption error over a random key-pair
and a random bit is at most 1−α

2 . We stress that this is a very weak
guarantee, as it is taken over random choices of the keys and of the bit b,
as well as of the coins used to encrypt b.

(ii) β-weak security: We consider the usual CCA-security game where an
adversary obtains first the public key, and later a challenge ciphertext
encrypting a random bit b. Moreover, the adversary can ask arbitrary
decryption queries, with the sole exception that after the adversary obtains
the challenge ciphertext, it cannot ask for its decryption. The task of
the adversary is to output a guess b′, and we are going to require that
Pr [b′ = b] ≤ 1+β

2 for all polynomial-size adversaries.

Justifying weak CCA security. There are several reasons why assuming
the existence of such a weak scheme is reasonable. Let us mention some natural
examples.

- Within the general agenda of achieving CCA security from general assump-
tions, we may envision that a construction of a weak CCA scheme is poten-
tially much easier to find than a construction of a full-fledged CCA-secure
encryption scheme.

- An existing scheme designed to be CCA-secure may end up being less secure
than expected due to the discovery of a better concrete attack or due to im-
plementation errors, as in the recently discussed case of faulty key generation
for RSA-based systems [18,19].

- It may be generally easier to build a CCA-secure scheme with large decryp-
tion errors. For example, as pointed out in [20], an encryption scheme with
a simple, easily learnable, decryption algorithm must have large decryption
error. In contrast to CPA encryption, reducing the decryption error turns
out to be a major challenge in the case of CCA-secure encryption, even if
the scheme is already fully CCA secure.

Our main result. The question we are going to ask is whether for certain α
and β, there exists a transformation which delivers a CCA-secure encryption
scheme from any scheme which has α-weak decryptability and β-weak security.
We provide an affirmative answer to this question.

Theorem 1 (Main theorem, informal). If α2 > β, there exists a black-box
construction transforming any scheme with α-weak decryptability and β-weak
security into a CCA-secure encryption scheme with negligible decryption error.

Unfortunately, we cannot rule out constructions achieving a wider range of pa-
rameters α and β. In fact, we remark that the problem of determining the optimal
parameters is open even in the simpler case of amplifying weak CPA security.
While the constraint α2 > β is shown [17] to be necessary for a restricted class
of CPA black-box amplifiers, we see little value in extending this result to CCA
security, as our amplifier itself is not within this class.
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1.3 Our Techniques

We now turn to a high-level overview of our techniques. In particular, our ap-
proach builds upon a number of previous works [17,21,22], which we first review.
Then, we will move to a description of our two main new tools, namely hardcore
lemmas for CCA-security and heavy-ciphertext pre-sampling, and of their use.

Amplification of CPA Encryption. Given a bit-encryption scheme PKE
with α-weak decryptability and β-weak security with respect to chosen-plaintext
attacks, the Holenstein-Renner (HR) construction [17] produces a fully CPA-
secure encryption scheme with negligible decryption error. To encrypt each mes-
sage m, the HR construction invokes the basic bit-encryption scheme PKE to
encrypt several fresh random bits b1, · · · , bn under n public keys pk1, · · · , pkn,
producing ciphertexts c1, · · · , cn; the bits b1, · · · , bn are then carefully “com-
bined” to generate a one-time-pad k for hiding the actual message m, as well as
some additional ciphertext component c′; the additional component c′ is used
by the legitimate receiver, given the secret keys, to reconstruct the one-time
pad, but it should not leak any information about k to the adversary. The final
ciphertext is c = (c1, . . . , cn, c

′,m⊕ k).
The reason why such a combiner can exist is that the probability that the

legitimate receiver, given the secret keys, can learn each individual bit bi from ci
is (1 + α)/2, which we expect to be sufficiently larger than the probability that
the adversary learns bi from ci without the secret keys. To make this intuition
sound, one uses Impagliazzo’s hardcore lemma [23] and its tighter version by
Holenstein [16]: The lemma implies that if PKE is β-weakly CPA secure, then, for
each i, with probability 1−β (over the choice of bi, the randomness for sampling
pki and encrypting bi), the encryption of bi is a “hard instance”, meaning that
given its encryption ci, the bit bi is (computationally) indistinguishable from a
random independent bit. This gap between what an honest decryptor and an
eavesdropper can recover can be leveraged by an information-theoretically secure
one-way key-agreement protocol as in the setting of Maurer [24], which turns out
to provide directly the right type of combiner.

From bit CCA Encryption to String CCA Encryption. It is well known
that a CPA-secure string encryption scheme can be built from a CPA-secure
bit-encryption scheme via simple parallel encryption of each bit. However, this
approach does not lift to extending the message space of CCA-secure bit encryp-
tion, as an adversary can easily maul a challenge ciphertext c1 · · · ci · · · cn of a
n-bit string b1 · · · bi · · · bn into another ciphertext c1 · · · c′i · · · cn of a related string
b1 · · · 0 · · · bn, and thus win in the CCA security game—additional structure is
needed to retain CCA security. Myers and shelat [21] showed that although this
approach is not CCA secure, it satisfies a weaker adaptive security property—
called UCCA security—which requires indistinguishability to hold for adversaries
that can query a decryption oracle on any ciphertext c1, · · · , cn of their choice,
except those that “quote” the challenge ciphertext, denoted as c∗1, · · · , c∗n, at
any of its components, that is ci = c∗i for some i. Myers and shelat, and later
Hohenberger, Lewko, and Waters (HLW) [22], showed how to construct a string
CCA-secure scheme PKE from such a UCCA-secure string encryption scheme
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PKEs.
3 We briefly review the HLW construction: It uses PKEs as an inner

encryption scheme PKEin = PKEs and two outer schemes PKEout,1, PKEout,2

that are CCA-1 and CPA secure respectively. To encrypt a message m, the en-
cryption algorithm proceeds by encrypting m together with two random strings
rout,1 and rout,2 into an inner ciphertext cin = Encin(pkin, (m, rout,1, rout,2)); it
then encrypts the inner ciphertext into two outer ciphertexts (cout,1, cout,2) using
rout,1 and rout,2 respectively as the randomness for encryption, that is, cout,i =
Encout,i(pkout,i, cin; rout,i) for i = 1, 2; the final ciphertext is simply (cout,1, cout,2).
At a high level, the two outer schemes prevent the adversary from issuing a de-
cryption query for a ciphertext whose embedded inner ciphertext “quotes” that
in the challenge ciphertext, thus reducing CCA to UCCA security.

Our Approach. A seemingly plausible attempt for constructing a CCA-secure
encryption scheme from a weak scheme PKE with α-decryptability and β-weak
CCA-security is to first try to show that the HR construction PKE′, when in-
stantiated with PKE as the basic bit-encryption scheme, is UCCA secure, and
subsequently plugging PKE′ as the inner encryption scheme into the HLW con-
struction PKE, and show that it yields a CCA-secure encryption scheme.

Unfortunately, we encounter the following two challenges: First, it is unclear
whether the weak CCA security of PKE is amplified through the construction
of PKE′ to UCCA security; in particular, known hardcore lemmas [23,16] only
hold for games where the challenger is stateless, but the challenger in the CCA
security game is stateful (it changes its behavior before and after the challenge
ciphertext is generated). Second, it turns out that the security proof of the
HLW construction requires the basic scheme PKE to have “unpredictability”—
that is, a random cipheretxt (of a random bit) of PKE has high entropy and
is almost impossible to blindly guess—which holds trivially for any fully-secure
CPA encryption scheme with negligible decryption error, but is not satisfied by
a weak CCA encryption scheme.

Overcoming these two difficulties turns out to be quite challenging and re-
quires the adoption of new techniques, which we now illustrate.

Step 1: The Hardcore Lemma for CCA security and XCCA security.

To overcome the first difficulty, we prove a variant of Impagliazzo’s hardcore
lemma which applies to CCA security (Theorem 2 below): It implies that if a
scheme is weakly β-CCA-secure, then with probability 1− β (over the random-
ness for choosing a random plaintext bit, for key generation, and for encryption),
given an encryption of a random bit b, b is indistinguishable from a random in-
dependent bit even to adversaries with access to the decryption oracle. Our new
hardcore lemma can be used to prove that PKE′ satisfies an even stronger adap-
tive security property than UCCA, called XCCA (read as “cross”-CCA), which
guarantees indistinguishability even for adversaries with access to decryption
oracles that decrypts ciphertext of the basic scheme PKE under each individual

3 In fact, [22] showed a more general construction of string CCA encryption schemes
from any encryption scheme that is DCCA secure and unpredictable. In particular,
UCCA security is a special case of DCCA security.
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component key of PKE′, subject to the restriction that the decryption oracle
for the i-th component does not answer queries that “quote” the correspond-
ing component in the challenge ciphertext. As we will see shortly, this stronger
security guarantee is quintessential for overcoming the second difficulty.

Finally, rather than presenting a direct proof of the hardcore lemma for
CCA security, we provide a general characterization of games for which hard-
core lemmas exist, which extends beyond games for which such lemmas are
known [23,16,25]. Our hardcore lemma for CCA-security is then simply derived
as a special case. We believe this step to be of independent interest.

Step 2: From XCCA security to CCA security.We prove that the CCA
security of PKE can be based on the stronger XCCA security of the inner encryp-
tion PKE′, even if the underlying basic scheme PKE is not sufficiently “unpre-
dictable” – in contrast to the proof in [22]. This requires a substantially different
analysis than the one of [22], and in particular a new reduction. Concretely, we
overcome lack of unpredictability by introducing a new technique called heavy-
ciphertext pre-sampling. Roughly speaking, this technique allows the security
reduction (from CCA security of PKE to XCCA security of PKE′) to proactively
predict and decrypt all highly likely ciphertexts of PKE, and the challenging task
is to prove that these are the only components of the inner challenge ciphertext
an adversary may indeed easily “quote” after seeing the challenge ciphertext.

2 Preliminaries

2.1 Basic Concepts and Notation

The probability distribution of a random variable X is usually denoted as PX ,
and we occasionally use the shorthand PX(x) for Pr [X = x]. Adversaries are
going to be modeled as non-uniform families of (randomized) circuits for ease of
exposition, but all results extend with some work to the uniform setting.

2.2 Weak and Strong CCA-secure Encryption

A public-key encryption scheme with message space M ⊆ {0, 1}∗ is a triple
PKE = (Gen,Enc,Dec), where (i) Gen is the (randomized) key generation algo-
rithm, outputting a pair (pk, sk) consisting of a public- and a secret-key, respec-
tively (ii) Enc is the (randomized) encryption algorithm outputting a ciphertext
c = Enc(pk,m) for any messagem ∈M and a valid public key pk; and (iii) Dec is
the deterministic decryption algorithm such that Dec(sk, c) ∈M∪{⊥}. All algo-
rithms additionally take (implicitly) as input the security parameter 1κ in unary
form, and the message space M may also depend on the security parameter κ.
Whenever M = {0, 1}, we say that the scheme is a bit-encryption scheme. We
sometimes need to make the randomness used by Gen and Enc explicit: In these
cases, we write Gen(r) and Enc(pk,m; r) to highlight the fact that random coins
r are used to generate keys by Gen and to encrypt the message m, respectively.
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Correctness of PKE. Throughout this paper, we say that the encryption
scheme PKE with message space M has decryption error δ if

Pr
[
(pk, sk)

$← Gen, m
$←M : Dec(sk,Enc(pk,m)) �= m

]
≤ δ,

where the probability is additionally over the random coins of Enc. Moreover, we
say that a scheme is almost perfectly correct, if for an overwhelming fraction of
randomness r used by the key generation algorithm, for (pk, sk) = Gen(r), and
all messages m ∈M, we have Pr [Dec(sk,Enc(pk,m)) = m] = 1.

Security of PKE. In general, security of the scheme PKE = (Gen,Enc,Dec)
is defined via the following security game involving a challenger CCCA2 and an
adversary A:

Game CCA2APKE:

(i) CCCA2 generates (pk, sk)
$← Gen and b

$← {0, 1}, and gives pk to A.
(ii) A asks decryption queries c, which are answered with Dec(sk, c).

(iii) A outputs (m0,m1) with |m0| = |m1|; CCCA2 sends A c∗
$← Enc(pk,mb).

(iv) A asks decryption queries c �= c∗, which are answered with Dec(sk, c).
(v) The adversary A outputs a bit b′, and wins the game if b′ = b.

We refer to decryption queries in phase (ii) and (iv) as before-the-fact and
after-the-fact decryption queries, respectively. Moreover, in the case that PKE is
a bit-encryption scheme we assume without loss of generality that (m0,m1) =
(0, 1), and hence Enc(pk, b) is the challenge ciphertext. We also define the CCA2-
advantage of the adversary A as AdvCCA2

PKE (A) = 2 ·Pr [b′ = b]−1. We say that an
encryption scheme is CCA-secure if AdvCCA2

PKE (A) is negligible for all polynomial-
size adversariesA. We say it is q-CCA-secure if this holds for adversaries making
at most q decryption queries, whereas it is CPA-secure if it is 0-CCA-secure. The
following notation will also be convenient.

Definition 1. For α, β ∈ [0, 1], a bit-encryption scheme PKE is (α, β)-CCA-
secure if the following two properties hold: (i) PKE has decryption error (1−α)/2,
and (ii) For any polynomial-size adversary A, we have AdvCCA2

PKE (A) ≤ β.

In passing, we point out that CPA-secure encryption with negligible decryption
error implies one-way functions [26], and in turn implies pseudorandom genera-
tors [27], all in a black-box way.

3 The Hardcore Lemma for CCA Security

Impagliazzo’s Hardcore Lemma [23] asserts that if it is mildly hard to compute
P (x) for a predicate P on a random input x given side information f(x) (i.e., say
this can be done with probability at most 1+ε

2 ), then there exists a sufficiently
large subset S (the “hardcore set”) of the inputs such that when sampling x′

from S, it is infeasible to predict P (x′) from f(x′) noticeably better than by
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random guessing. A tight proof where the set S contains a (1 − ε)-fraction of
the inputs is due to Holenstein [16]. The main contribution of this section is to
derive a similar statement for (weak) CCA-secure encryption to be used below.

In particular, we present a new abstraction of existing proofs of hardcore
lemmas, which is of independent interest. Not only we apply it to derive the
hardcore lemma for CCA security of bit-encryption, but it also yields previous
more restricted statements [23,25] as special cases.

Bit-guessing games. We consider games (such as the CCA-security game)
where the adversary is asked to guess a bit. Formally, a bit-guessing game is
a tuple G = (PX , C, P ), where PX is a probability distribution with support
X , C is an interactive stateful machine taking an auxiliary input x ∈ X , and
P : X → {0, 1} is a predicate. Combined with an adversary A, G defines the

following random experiment: First, an input x
$← PX is sampled. Then A

interacts with the challenger C(x) and outputs a bit b
$← AC(x) (the oracle C(x)

keeps state). The G-advantage of A relative to a distribution P is

AdvG
P (A) = 2 · Pr

[
x

$← P, b
$← AC(x) : b = P (x)

]
− 1 . (1)

We say that G is (s, ε)-hard if AdvG
PX

(A) ≤ ε for all s-size adversaries A.
Hardcore lemmas and measures.A measure M for a bit-guessing game G
is a mappingM : X → [0, 1], and its density is μ(M) =

∑
x∈X PX(x)·M(x). We

associate with M the probability distribution PM such that PM(x) := PX(x) ·
M(x)/μ(M) for all x ∈ X . The role of a measure is that of adjoining an event E
to the sampling of x

$← PX such that Pr
[
E
∣∣X = x

]
=M(x); then in particular

Pr [E ] = μ(M), and Pr
[
X = x

∣∣ E] = PM(x).
We ask the question of which bit-guessing games admit a hardcore measure:

Assuming the game G is ε-hard for some ε ∈ [0, 1], we seek for a measure M
with large density (e.g. μ(M) ≥ 1− ε) such that conditioned on the associated
event E , the game G is very hard to win. In [25], a proof that this is true for
the case where C(x) is stateless for each x was given. Our new approach extends
this to possibly stateful challengers, as in the case of CCA security.

Abstract hardcore lemmas.We give a sufficient condition on a bit-guessing
game G = (PX , C, P ) to admit a hardcore lemma – informally, this condition
corresponds to the ability, for any given and possibly unknown x, to estimate
the probability that a binary-output adversary for G, sampled according to a
given distribution over circuits, outputs one when run on C(x). In particular,
we call an oracle O a size s circuit sampler for G if, upon each invocation, it
returns the description of a valid adversary A for G of size s. For each such O,

we define pG,O
1 (x) as the probability that a randomly sampled adversary A $← O

outputs one when run with C(x), i.e., pG,O
1 (x) := Pr

[
B $← O, b′

$← BC(x) : b′ = 1
]
.

The following definition captures the notion of a good estimation algorithm for
pG,O
1 (x) which can only interact with C(x) and obtain samples from O, but does

not learn x and must be equally successful on all such x.
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Definition 2 (p1-estimator). A (s, s′, q, γ, η)-p1-estimator for a bit-guessing
game G = (PX , C, P ) is a size s circuit E with output in [0, 1] such that

Pr
[
B1, . . . ,Bq $← O, p1

$← EC(x)(B1, . . . ,Bq) :
∣∣∣p1 − pG,O

1 (x)
∣∣∣ > γ

]
< η

for all size-s′ circuit samplers O and for all x.

Note that in particular q · s′ ≤ s. The following theorem relates the existence of
a hardcore lemma for a certain game G with the existence of a p1-sampler for
G. Its proof abstracts the ones of [16,25] and is found in the full version.

Proposition 1 (The Abstract Hardcore Lemma). Let s ∈ N and ε ∈ [0, 1].
Let G = (PX , C, P ) be a bit-guessing game which is (s, ε)-hard. Then, for all
γ > 0, if for some s′ = s′(γ) there exists an (s, s′, q, γ(1 − ε)/4, γ(1− ε)/4)-p1-
estimator for G, then there exists a measure M =Mγ such that:

(i) μ(M) ≥ 1− ε, (ii) AdvG
PM(B) ≤ γ for all s′-size B.

The hardcore lemma for CCA-security. We are now going to show a
hardcore lemma for CCA-security as an application of Proposition 1. Let PKE =
(Gen,Enc,Dec) be a public-key bit encryption scheme such that Gen and Enc take
randomness of lengths ρGen and ρEnc, respectively. Formally, we consider the bit-
guessing game CCA2[PKE] = (PX , CCCA2, P ) where PX is the uniform distribu-
tion on {0, 1}ρGen×{0, 1}ρEnc×{0, 1}, whereas CCCA2(rGen, rEnc, b) is the challenger
for the CCA-security game for PKE with challenge bit b, public key and secret
key (pk, sk) = Gen(rGen), and challenge ciphertext c∗ = Enc(pk, b; rEnc). More-
over, we define P (rGen, rEnc, b) = b. The following lemma gives an appropriate
p1-estimator for CCA2[PKE].

Lemma 1. For all PKE = (Gen,Enc,Dec) with message space {0, 1}, and all
s′ ∈ N, γ, η ∈ (0, 1], there exists a (s, s′, q, γ, η)-p1-estimator for CCA2[PKE]
with q = O(log(1/η)/γ2) and s = s′ · q +O(1).

Proof. The estimator E , given pk from CCCA2, runs sequentially each of B1, . . . ,Bq
on input pk until they output their query (0, 1). All before-the-fact decryption
queries are answered using the challenger CCCA2. It then obtains a challenge ci-
phertext c∗, and then resumes the execution of Bi’s from the last state before out-
putting (0, 1), again using the challenger to reply to decryption queries. Finally,
let b′i be the output of Bi; the estimator E outputs the average z = (1/q)·

∑q
i=1 b

′
i.

The error is at most γ with probability at most η by the Chernoff bound. #$

The above proof crucially relies on the scheme encrypting one-bit messages: For
a larger set of messages, each Bi could ask a different message pair, and the
above estimation technique would fail.

The following theorem is a simple combination of Proposition 1 and Lemma 1.

Theorem 2 (Hardcore Lemma for CCA Security). Let α, β ∈ [0, 1], and
let s ∈ N. Moreover, let PKE = (Gen,Enc,Dec) be a public-key encryption
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scheme with message space {0, 1}, and assume that AdvCCA2
PKE (A) ≤ β for all

s-size adversaries A. Then, for all γ > 0, there exists a measure M such that

μ(M) ≥ 1 − β, and Adv
CCA2[PKE]
PM

(B) ≤ γ for all adversaries B with size s′,

where s = O(s′ · log(1/γ(1− ε))/γ2(1− ε)2).

In the full version, we provide a more detailed discussion about related results
and extensions to the uniform setting, which we here omit due to lack of space.

4 From Weak to Strong CCA Security

We present our construction to transform an (α, β)-CCA encryption scheme into
a fully CCA-secure encryption scheme. First, we review some tools underlying
our construction, before turning to its description and security.

4.1 Information-Theoretically Secure Key-Agreement

We consider the problem of two parties, Alice and Bob, agreeing on a secret key
with unconditional security in a setting where they each hold values X1, . . . Xn

and Y1 . . . , Yn, respectively, in presence of an adversary obtaining correlated val-
ues Z1, . . . , Zn; in particular, (Xi, Yi, Zi) are sampled independently from a given
tripartite probability distributions PXY Z for all 1 ≤ i ≤ n. That is, (Xi, Yi, Zi)
are correlated for each i, but independent across distinct indices i �= j. More-
over, Alice and Bob are connected via an authenticated channel, allowing them
to exchange messages, which is however wiretapped by the adversary. Secret-key
agreement in this setting was first considered by Maurer [24]. Here, we consider
the special case where the channel only allows one-way communication from
Alice to Bob. The following definition captures protocols for this setting.

Definition 3 (One-way key-agreement). Let ε, δ : N → [0, 1], and let n, � :
N → N be monotonically increasing. Also, let P = {Pκ}κ∈N be a family of
sets of probability distribution PXY Z . A (P , ε, δ, n, �)-one-way key-agreement
(OKA) protocol is a pair of probabilistic polynomial-time algorithms OKA =
(KAEnc,KADec) such that for all κ ∈ N and PXY Z ∈ Pκ, the following two

properties hold when sampling (X1, Y1, Z1), . . . , (Xn, Yn, Zn)
$← PXY Z (where

n = n(κ)), (C,K)
$← KAEnc(1κ, X1, . . . , Xn), K

′ $← KADec(1κ, Y1, . . . , Yn;C),

and K ′′
$← {0, 1}	(κ)’: (1) K = K ′ with probability at least 1 − δ(κ), and (2)

(C,K,Z1, . . . , Zn) and (C,K ′′, Z1, . . . , Zn) have statistical distance at most ε(κ).

The following set of distributions was introduced in [17].

Definition 4 ([17]). Let α, β : N → [0, 1]. Let D(α, β) = {Dκ(α, β)}κ∈N be

such that for all κ ∈ N, PXY Z ∈ Dκ(α, β) if (X,Y, Z)
$← PXY Z satisfies

(i) Pr [X = 0] = Pr [X = 1] = 1
2 , i.e., X is uniform, (ii) Pr [X = Y ] ≥ 1+α(κ)

2 ,
(iii) there exists an event E, defined on (X,Z), such that Pr

[
X = 0

∣∣Z = z, E
]
=

Pr
[
X = 1

∣∣Z = z, E
]
= 1

2 for all z, and Pr [E ] ≥ 1− β(κ).
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The following two propositions show feasibility of OKA protocols for D(α, β)
for certain values of α and β. The first proposition was proved by Holenstein
and Renner [17], the second is proved in the full version. We note that there is
no a-priori reason why α2 and β could not be closer, yet no better gap can be
proven given existing constructions of capacity-achieving error-correcting codes.

Proposition 2. Let α, β : N → [0, 1] be such that α2 > β + Ω(1), and let
� : N → N be a polynomial function. Then, there exists a polynomial-time
(D(α, β), ε, δ, n, �)-OKA protocol such that n(κ) = 1

7 · �(κ) · (α2 − β − O(1))

and moreover, ε(κ) is negligible in n(κ), and δ(κ) = 2−Θ(n(κ)).

Proposition 3. Let p, � : N→ N be polynomially bounded and let ε′ : N→ [0, 1].
Then, there exists a D(1, 1 − 1

p(κ) , ε, δ, n, �)-OKA protocol where n(κ)

= 2/(1− β(κ)) · (�(κ)+ 2 log(1/ε′(κ))+O(1)), ε(κ) ≤ O(
√
ε′(κ)), and δ(κ) = 0.

4.2 The Construction

Let PKE = (Gen,Enc,Dec) be a bit-encryption scheme which is (α, β)-secure. As-
suming the existence of an information-theoretically secure one-way key agree-
ment protocol for D(α, β), we present a construction of a CCA-secure public-key
encryption scheme PKE = (Gen,Enc,Dec), with message length � = �(κ) and
negligible decryption error, which makes black-box use of the basic scheme PKE.

At the highest level, our construction PKE follows the paradigm recently pro-
posed by Hohenberger, Lewko, and Waters [22]. In particular, it consists of an
inner scheme PKEin = (Genin,Encin,Decin) and two outer schemes PKEout,1 =
(Genout,1,Encout,1,Decout,1) and PKEout,2 = (Genout,2,Encout,2,Decout,2), all three
of which will be built from PKE, and specified below. For & ∈ {in, (out, 1), (out, 2)},
let us further denote by ��, ρ� and t� the message, randomness, and ciphertext
lengths of PKE�, respectively. We are going to require �in = � + ρout,1 + ρout,2
as well as �out,1 = �out,2 = tin. A formal description of PKE is given in Figure 1,
on top: We encrypt the message m, together with two random values rout,1 and
rout,2, obtaining an inner ciphertext cin, which is then encrypted twice with the
two outer schemes, using rout,1 and rout,2 as the respective random coins. De-
cryption recovers the message by decrypting the ciphertext via Decout,1 and Decin
using the corresponding secret keys, and then checks validity of the ciphertext
by re-encrypting the inner ciphertext using the public keys and the recovered
random coins.

We now turn to describing the construction of the component schemes PKEin,
PKEout,1 and PKEout,2 from the basic scheme PKE.

The Inner Scheme.Let OKA = (KAEnc,KADec) be a (D(α, β), ε, δ, n, �in)-one-
way key agreement protocol such that ε and δ are negligible, and known (recall
that PKE is (α, β)-CCA secure). We define PKEin = (Genin,Encin,Decin) as in
Figure 1, at the bottom: It encrypts random bits b1, . . . , bn with the basic scheme,
and then generates a session key k via KAEnc(b1, . . . , bn), and a ciphertext c′,
and uses the key k as an one-time pad. Decryption via KADec is then obvious.
It is easy to see that the decryption error of this scheme is inherited from OKA,
i.e., it is upper bounded by exactly δ.
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Scheme PKE = (Gen,Enc,Dec):

Key generation Gen(1κ): Sample (pkin, skin)
$← Genin(1

κ) and for i = 1, 2,

(pkout,i, skout,i)
$← Genout,i(1

κ). Return (pk = (pkin, pkout,1, pkout,2), sk =
(skin, skout,1, pkout,1, pkout,2)).

Encryption Enc(pk,m), m ∈ {0, 1}	: Sample rout,i
$← {0, 1}ρout,i for i =

1, 2. Generate cin
$← Encin(pkin,m ‖ rout,1 ‖ rout,2) and cout,i ←

Encout,i(pkout,i, cin; rout,i) for i = 1, 2. Output ciphertext cout,1 ‖ cout2 .
Decryption Dec(sk, c = cout,1 ‖ cout2): Decrypt c′in ← Decout,1(skout,1, cout,1)

and m′ ‖ r′out,1 ‖ r′out,2 ← Decin(skin, c
′
in). If Encout,i(pkout,i, c

′
in; r
′
out,i) =

cout,i for i = 1, 2 then return m, else return ⊥.

Scheme PKEin = (Genin,Encin,Decin):

Key generation Genin(1
κ): Sample (pk1, sk1), . . . , (pkn, skn)

$← Gen(1κ).
Return (pk = (pk1, . . . , pkn), sk = (sk1, . . . , skn)).

Encryption Encin(pk,m), m ∈ {0, 1}	in: For all i ∈ [n], sample bi
$← {0, 1}

and generate ci
$← Enc(pk[i], bi). Compute (k, c′)

$← KAEnc(b1, . . . , bn).
Return ciphertext (c1, . . . , cn, c

′,m⊕ k).
Decryption Decin(sk, c = (c1, . . . , cn, c

′, c′′)): Decrypt b′i ← Dec(sk[i], ci)
for i = [n] and k′ ← KADec(b′1, . . . , b

′
n; c
′). Return plaintextm′ = c′′⊕k′.

Fig. 1. Descriptions of public-key encryption schemes PKE and PKEin

The outer schemes.We now instantiate the two outer schemes. The following
description is fairly high-level, but sufficient to fully specify the construction.
We refer the reader unfamiliar with the basic components to the full version for
a more detailed description.

We first derive a CPA-secure public-key encryption scheme PKE	,ρout with mes-
sage length � = poly(κ) and randomness length ρ = ω(log(κ)) from the basic
scheme PKE which also enjoys almost-perfect correctness:4

1. We use the same construction as in PKEin to achieve a CPA-secure scheme
PKE′out, with message length truncated to 1-bit. CPA-security of the resulting
scheme follows from the proof in [17] or from the stronger Lemma 2 below.
Let ρ be the randomness length of PKE′out.

2. We apply the transformation by Dwork, Naor, and Reingold [15] to enhance
correctness of PKE′out with negligible decryption error to almost-perfect cor-
rectness, via sparsification of the randomness space. Let δ be the decryption
error of PKE′out. The transformation of [15] reduces randomness length to
ρ′ = 1

4 · log(1/δ(κ)) = ω(log(κ)) via a PRG G : {0, 1}ρ′ → {0, 1}ρ, whose
existence is implied by the existence of PKE′out in a black-box fashion [26,27].

4 In the following, we are not going to optimize the complexity of the scheme; it is
clear that some modifications can be done to save on complexity.
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3. We then use parallel repetition of � copies of PKE′′out to obtain PKE	,ρout, pos-
sibly using a PRG again to shorten the overall randomness length to ρ.

We let PKEout,2 = PKE
	out,2,ρout,2
out . To obtain the first outer scheme PKEout,1, we

rely on the result by Cramer et al [28] that transforms a CPA-secure encryption
scheme into a 1-CCA secure one in a black-box way, which preserves the almost
perfect correctness property of the underlying CPA-secure scheme. By applying

their transformation to PKE
	out,1,ρ
out (for some ρ = poly(κ)), and then finally using

a PRG to reduce the randomness length to ρout,1, we obtain a 1-CCA secure
encryption scheme that is almost-perfectly correct.

4.3 CCA Security of PKE

We turn to our main result and show that our construction PKE is CCA secure.

Theorem 3. Let ε and δ be two negligible functions. Assume that PKE is (α, β)-
CCA-secure, and OKA is a (D(α, β), ε, δ, n, �in)-one-way key-agreement protocol.
Then, PKE is a CCA-secure encryption scheme with negligible decryption error.

In particular, by Propositions 2 and 3, we achieve amplification whenever α2 >
β +Ω(1), and whenever α = 1 and β < 1− 1

p(κ) for some polynomial p.

Overview of the Security Proof. Towards showing the CCA security of PKE, we
first show that it follows from Theorem 2 that the inner encryption scheme PKEin

satisfies a strong adaptive security property, which we refer to as XCCA (to be
read as “cross”-CCA) security. We are then going to reduce the CCA security of
PKE to the XCCA security of PKEin using the 1-CCA security of PKEout,1 and
the CPA security of PKEout,2, combined with their almost perfect correctness.
This second step resembles the proof of [22] only at a first glance, as it will
require a completely different technique to handle the fact that ciphertexts of
the basic scheme PKE are not sufficiently unpredictable.

Before proceeding to describing the two steps in more details, we first de-
scribe the XCCA security game. For simplicity, here we only define the XCCA
game w.r.t. the concrete scheme PKEin; one can easily generalize the definition
to a larger class of encryption schemes whose ciphertext contains multiple com-
ponent ciphertexts of a base encryption scheme, similarly to [21]; we omit the
details here. The game proceeds almost identically to the CCA game except
that instead of having access to the decryption oracle for the whole encryption
scheme, the adversary has access to the decryption oracles of the basic encryp-
tion scheme PKE using each of the component secret keys; the i’th decryption
oracle using the i’th component secret key is denoted as Dec(sk[i], ·). As a re-
sult, the adversary cannot make any after-the-fact decryption queries that is the
same as any of the component ciphertexts encrypted using one of the component
public keys pk[i] in the challenge ciphertext. Similar to the CCA game, we de-
fine the XCCA-advantage of the adversary A as AdvXCCA

PKEin
(A) = 2 ·Pr [b′ = b]−1.
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We say that PKEin is XCCA-secure if no polynomial sized adversary can achieve
a non-negligible advantage in the XCCA game.

We remark that the XCCA game is closely related to the notion of UCCA
security defined in [21], and the similar notion of DCCA security in [22]: In
comparison, in the UCCA security game w.r.t. PKEin, the adversary only has
access to the decryption oracle of the whole encryption scheme, but is not allowed
to make any after-the-fact query that quotes any of the component ciphertexts
in the challenge ciphertext (in DCCA a more fine grained control on disallowed
queries is considered). As we will see shortly, the stronger security guarantee
given by XCCA is crucial for our proof to succeed.

With the definition of the XCCA game in mind, the remainder of the proof
proceeds via the following two lemmas, for which we give a proof sketch. (A
formal proof is given in the full version.)

Lemma 2. Let ε and δ be two negligible functions. Assume that PKE is (α, β)-
secure, and OKA is a (D(α, β), ε, δ, n, �in)-one-way KA protocol. Then, PKEin is
XCCA-secure.

Lemma 3. Assume that PKEin, PKEout,1 and PKEout,2 are respectively XCCA,
1-CCA and CPA secure, and PKEout,1 and PKEout,2 have almost-perfect correct-
ness, then PKE is CCA secure.

Proof Sketch of Lemma 2: We are going to use the hardcore lemma for CCA-
security (Theorem 2) to show that PKEin is XCCA secure. Informally speaking,
in the XCCA game, with respect to each random bit bi used to generate the
component ci of the challenge ciphertext, the adversary is participating in an
independently and randomly executed CCA game for PKE: Indeed, each ran-
dom bit bi is encrypted using an independently and randomly chosen public key
pk[i] and random coins, and the adversary has access to the decryption oracle
Dec(sk[i], ·). Thus, by the hardcore lemma, each of these CCA games has prob-
ability 1− β of delivering an “hard instance”, and thus the corresponding bit bi
remains hidden to the adversary, i.e., it looks (pseudo-)random with probability

1 − β. More precisely, each triple (bi,Dec(sk[i], ci), ci), with ci
$← Enc(pk[i], bi)

is computationally indistinguishability from a sample from a valid distribution
from D(α, β). In this case, then it simply follows from the fact that OKA is
a (D(α, β), ε, δ, n, �in)-one-way key agreement scheme that the key k output by
KAEnc(b1, · · · , bn) remains random and thus the message mb is hidden.

Proof Sketch of Lemma 3: We base the CCA security of PKE on the XCCA
security of PKEin via a black-box reduction. The reduction B participates in the
XCCA game for PKEin and internally emulates the CCA game for PKE to a
CCA-adversary A succeeding with non-negligible advantage γ as follows:

- It receives the public key pk in the XCCA game and internally generates
the public key pk by sampling key pairs (pkout,1, skout,1) and (pkout,2, skout,2)
for the two outer schemes and gives pk = (pk, pkout,1, pkout,2) to A.
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- To emulate the challenge ciphertext c∗ of PKE that encrypts either m0 or
m1 chosen by A in the emulated CCA game, B first chooses random rout,1
and rout,2, and obtains the challenge ciphertext c∗in of PKEin that encrypts
mb‖rout,1‖rout,2 for a random b ∈ {0, 1} chosen in the XCCA game. It then
produces c∗ honestly by encrypting c∗out,1 = Encout,1(c

∗
in; rout,1) and c∗out,2 =

Encout,2(c
∗
in; rout,2).

- Finally, it emulates the decryption oracle Dec(sk, ·) for A by using the secret
key skout,1 and the decryption oracles {Dec(sk[i], ·)}i∈[n] in the XCCA game.

It is easy to see that as long as A does not ask any after-the-fact queries whose
inner ciphertext (embedded in the first outer ciphertext) “quotes” the inner
challenge ciphertexts c∗in, i.e., it does not share a common component ciphertext,
B always decrypts queries from A perfectly and consequently also emulates the
view of A perfectly.

It is therefore tempting to try to show that the probability that A “quotes”
is negligible. Indeed, this is the approach taken by [21,22]. The rationale in their
proof is that if the basic scheme PKE has unpredictability — a random ciphertext
of a random bit has high entropy and is hard to blindly guess — then the fact that
A manages to quote would violate the 1-CCA security of the first outer scheme
or the CPA-security of the second outer scheme. In [22], a series of hybrids is used
to remove the circular dependence between the inner challenge ciphertext and
the randomness used in its two outer encryptions, and move to a setting where
A’s view is statistically independent from the inner challenge ciphertext, but the
quoting probability is negligibly close to the original one. One can then easily
show that unpredictability of PKE yields that quoting occurs with negligible
probability only.

Unfortunately, this approach fails completely in our setting, as our basic en-
cryption scheme PKE does not ensure unpredictability; in fact, it is possible to
build an (α, β)-CCA-secure scheme where ciphertexts have very low min-entropy.
We address this via a new technique, called heavy ciphertext pre-sampling: We
observe that if A can blindly guess some component ciphertext ci in c∗in, then ci
is a ciphertext value which appears with sufficiently large probability when en-
crypting a random bit under pk[i]. Hence, we can hope that the same value is hit
by the reduction B by simply generating a large number of random encryptions
(of random bits) of PKE under pk[i]; call these pre-sampled ciphertexts. Since
the component ciphertexts in c∗in are generated identically to the pre-sampled
ciphertexts, the probability that A’s guess collides with the former is the same
as the probability it collides with any of the pre-sampled ciphertexts. Setting the
size of the pre-sampling large enough, say poly(1/ε), the reduction can exhaust
all the component ciphertexts that A may “quote” with probability 1 − ε, for
any ε. Furthermore, due to the strong security provided by the XCCA game, the
reduction B, with access to the decryption oracles of the component ciphertexts,
can obtain the decrypted values of these pre-sampled ciphertexts before-the-fact.
This is crucial, since even if we know that a ciphertext is obtained by encrypt-
ing some bit d, its actual decryption could well be equal 1 − d due to the weak
α-correctness.
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Intuitively this solves the problem, as whenever A makes an after-the-fact
query that “quotes” c∗in, B can still decrypt by using either the external decryp-
tion oracles (for components that do not quote) or the decrypted values of the
pre-sampled ciphertexts (for these that quote). This will allow us to show that
B succeeds in emulating the view of A with high probability, and thus the CCA
security of PKE reduces to the XCCA security of PKEin.
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Abstract. A key-dependent message (KDM) secure encryption scheme
is secure even if an adversary obtains encryptions of messages that de-
pend on the secret key. Such key-dependent encryptions naturally oc-
cur in scenarios such as harddisk encryption, formal cryptography, or
in specific protocols. However, there are not many provably secure con-
structions of KDM-secure encryption schemes. Moreover, only one con-
struction, due to Camenisch, Chandran, and Shoup (Eurocrypt 2009) is
known to be secure against active (i.e., CCA) attacks.

In this work, we construct the first public-key encryption scheme that
is KDM-secure against active adversaries and has compact ciphertexts.
As usual, we allow only circular key dependencies, meaning that en-
cryptions of arbitrary entire secret keys under arbitrary public keys are
considered in a multi-user setting.

Technically, we follow the approach of Boneh, Halevi, Hamburg,
and Ostrovsky (Crypto 2008) to KDM security, which however only
achieves security against passive adversaries. We explain an inherent
problem in adapting their techniques to active security, and resolve this
problem using a new technical tool called “lossy algebraic filters” (LAFs).
We stress that we significantly deviate from the approach of Camenisch,
Chandran, and Shoup to obtain KDM security against active adversaries.
This allows us to develop a scheme with compact ciphertexts that consist
only of a constant number of group elements.

Keywords: key-dependentmessages, chosen-ciphertext security, public-
key encryption.

1 Introduction

KDM Security. An encryption scheme is key-dependent message (KDM) se-
cure if it is secure even against an adversary who has access to encryptions of
messages that depend on the secret key. Such a setting arises, e.g., in harddisk
encryption [10], computational soundness results in formal methods [7, 2], or
specific protocols [13]. KDM security does not follow from standard security [1,
15], and there are indications [19, 5] that KDM security (at least in its most
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general form) cannot be proven using standard techniques; it seems that dedi-
cated constructions and proof techniques are necessary.1

The BHHO Approach to KDM-CPA Security. Boneh, Halevi, Hamburg,
and Ostrovsky [10] (henceforth BHHO) were the first to construct and prove a
public-key encryption (PKE) scheme that is KDM secure under chosen-plaintext
attacks (KDM-CPA-secure) in the standard model, under the Decisional Diffie-
Hellman (DDH) assumption. While they did not prove their scheme secure un-
der messages that arbitrarily depend on the secret key, their result encompasses
the important case of circular (CIRC-CPA) security. Loosely speaking, a PKE
scheme is circular secure if it is secure even in a multi-user setting where en-
cryptions of arbitrary secret keys under arbitrary public keys are known. This
notion is sufficient for certain applications [13], and can often be extended to
stronger forms of KDM security [5, 12]. Inspired by BHHO, KDM-CPA-secure
PKE schemes from other computational assumptions followed [4, 11, 25].

Since we will be using a similar approach, we give a high-level intuition of
BHHO’s approach. The crucial property of their scheme is that it is publicly
possible to construct encryptions of the secret key (under the corresponding
public key). Thus, encryptions of the secret key itself do not harm the (IND-
CPA) security of that scheme. Suitable homomorphic properties of both keys
and ciphertexts allow to extend this argument to circular security (for arbitrarily
many users/keys), and to affine functions of all keys.

Why the BHHO Approach Fails to Achieve KDM-CCA Security.
When considering an active adversary, we require a stronger form of KDM secu-
rity. Namely, KDM-CCA, resp. CIRC-CCA security requires security against an
adversary who has access to key-dependent encryptions and a decryption oracle.
(Naturally, to avoid a trivial notion, the adversary is not allow to submit any
of those given KDM encryptions to its decryption oracle.) Now if we want to
extend BHHO’s KDM-CPA approach to an adversary with a decryption oracle,
the following problem arises: since it is publicly possible to construct (fresh)
encryptions of the secret key, an adversary can generate such an encryption
and then submit it to its decryption oracle, thus obtaining the full secret key.
Hence, the very property that BHHO use to prove KDM-CPA security seemingly
contradicts chosen-ciphertext security.

Our Technical Tool: Lossy Algebraic Filters (LAFs). Before we describe
our approach to KDM-CCA security, let us present the core technical tool we
use. Namely, a lossy algebraic filter (LAF) is a family of functions, indexed by a
public key and a tag. A function from that family takes a vector X = (Xi)

n
i=1 as

input. Now if the tag is lossy, then the output of the function reveals only a linear
combination of the Xi. If the tag is injective, however, then so is the function. We
require that there are many lossy tags, which however require a special trapdoor
to be found. On the other hand, lossy and injective tags are computationally

1 We mention, however, that there are semi-generic transformations that enhance the
KDM security of an already “slightly” KDM-secure scheme [5, 12, 3].
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indistinguishable. This concept is very similar to (parameterized) lossy trapdoor
functions [27], and in particular to all-but-many lossy trapdoor functions (ABM-
LTFs [20]). However, we do not require efficient inversion, but we do require that
lossy functions always reveal the same linear combination about the input. In
particular, evaluating the same input under many lossy tags will still leave the
input (partially) undetermined.

We give a construction of LAFs under the Decision Linear (DLIN) assump-
tion in pairing-friendly groups. Similar to ABM-LTFs, lossy tags correspond to
suitably blinded signatures. (This in particular allows to release many lossy tags,
while still making the generation of a fresh lossy tag hard for an adversary.) How-
ever, unlike with ABM-LTFs, functions with lossy tags always release the same
information about its input. Our construction has compact tags with O(1) group
elements, which will be crucial for our KDM-CCA secure encryption scheme.2

Our Approach to KDM-CCA Security. We can now describe our solution
to the KDM-CCA dilemma explained above. We will start from a hybrid between
the BHHO-like PKE schemes of Brakerski and Goldwasser [11], resp. Malkin
et al. [25]. This scheme has compact ciphertexts (O(1) group elements), and its
KDM-CPA security can be proved under the Decisional Composite Residuosity
(DCR) assumption. As with the BHHO scheme, the scheme’s KDM-CPA security
relies on the fact that encryptions of its secret key can be publicly generated.
Essentially, our modification consists of adding a suitable authentication tag to
each ciphertext. This authentication tag comprises the (encrypted) image of the
plaintext message under an LAF. During decryption, a ciphertext is rejected in
case of a wrong authentication tag.

In our security proof, all authentication tags for the key-dependent encryp-
tions the adversary gets are made with respect to lossy filter tags. This means
that information-theoretically, little information about the secret key is released
(even with many key-dependent encryptions, resp. LAF evaluations). However,
any decryption query the adversary makes must refer (by the LAF properties)
to an injective tag. Hence, in order to place a valid key-dependent decryption
query, the adversary would have to guess the whole (hidden) secret key.3

Thus, adding a suitable authentication tag allows us to leverage the techniques
by BHHO, resp. Brakerski and Goldwasser, Malkin et al. to chosen-ciphertext
attacks. In particular, we obtain a CIRC-CCA-secure PKE scheme with compact
ciphertexts (of O(1) group elements). We prove security under the conjunction of
the following assumptions: the DCR assumption (in �∗N3), the DLIN assumption

2 The size of the LAF public key depends on the employed signature scheme. In our
main construction, we use Waters signatures, which results in very compact tags, but
public keys of O(k) group elements, where k is the security parameter. Alternatively,
at the end of Section 3.1, we sketch an LAF with constant-size (but larger than in
our main construction) tags and constant-size public keys.

3 We will also have to protect against a re-use of (lossy) authentication tags, and
“ordinary”, key-independent chosen-ciphertext attacks. This will be achieved by a
combination of one-time signatures and 2-universal hash proof systems [16, 24, 22].
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(in a pairing-friendly group), and the DDH assumption (somewhat curiously, in
the subgroup of order (P − 1)(Q− 1)/4 of �∗N3 , where N = PQ).4

Relation to Camenisch et al.’s CIRC-CCA-secure Scheme. Camenisch,
Chandran, and Shoup [14] present the only other known CIRC-CCA-secure PKE
scheme in the standard model. They also build upon BHHO techniques, but in-
stead use a Naor-Yung-style double encryption technique [26] to achieve chosen-
ciphertext security. As an authentication tag, they attach to each ciphertext
a non-interactive zero-knowledge proof that either the encryption is consistent
(in the usual Naor-Yung sense), or that they know a signature for the cipher-
text. Since they build on the original, DDH-based BHHO scheme, they can use
Groth-Sahai proofs [18] to prove consistency. Compared to our scheme, their
system is less efficient: they require O(k) group elements per ciphertext, and
the secret key can only be encrypted bitwise. However, their sole computational
assumption to prove circular security is the DDH (or, more generally, k-Linear)
assumption in pairing-friendly groups. One thing to point out is their implicit
use of a signature scheme. Their argument is conceptually not unlike our LAF
argument. However, since they can apply a hybrid argument to substitute all
key-dependent encryptions with random ciphertexts, they only require one-time
signatures. Furthermore, the meaning of “consistent ciphertext” and “proof” in
our case is very different. (Unlike Camenisch et al., we apply an argument that
rests on the information that the adversary has about the secret key.)

Note about Concurrent Work. In a work concurrent to ours, Galindo,
Herranz, and Villar [17] define and instantiate a strong notion of KDM secu-
rity for identity-based encryption (IBE) schemes. Using the IBE→PKE trans-
formation of Boneh, Canetti, Halevi, and Katz [9], they derive a KDM-CCA-
secure PKE scheme. Their concrete construction is entropy-based and achieves
only a bounded form of KDM security, much like the KDM-secure SKE scheme
from [23]. Thus, while their ciphertexts are very compact, they can only tolerate
a number of (arbitrary) KDM queries that is linear in the size of the secret key.
In particular, it is not clear how to argue that the encryption of a full secret key
in their scheme is secure.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , n}. Throughout the paper, k ∈ � is
the security parameter. For a finite set S, s← S denotes the process of sampling
s uniformly from S. For a probabilistic algorithm A, y ← A(x;R) denotes the
process of running A on input x and with randomness R, and assigning y the

4 Very roughly, we resort to the DDH assumption since we release partial information
about our secret keys. Whereas the argument of [11, 25] relies on the fact that the
secret key sk is completely hidden modulo N , where computations take place in
�N , we cannot avoid to leak some information about sk mod N by releasing LAF
images of sk . However, using a suitable message encoding, we can argue that sk is
completely hidden modulo the coprime order (P − 1)(Q− 1)/4 of quadratic residues
modulo N , which enables a reduction to the DDH assumption.
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result. We write y ← A(x) for y ← A(x;R) with uniformly chosen R. If A’s
running time is polynomial in k, A is called probabilistic polynomial-time (PPT).

Standard Definitions. Due to lack of space, we postpone some standard
definitions to the full version [21]. These include definitions of PKE and signature
schemes, (one-time/strong) EUF-CMA security, IND-CPA security, (chameleon)
hash functions, and the DCR, DDH, and DLIN assumptions.

Key-unique SKE Schemes. A secret-key encryption (SKE) scheme (E,D)
consists of two PPT algorithms. Encryption E(K ,M) takes a key K and a mes-
sage M , and outputs a ciphertext C. Decryption D(K , C) takes a key K and a
ciphertext C, and outputs a messageM . For correctness, we want D(K , C) =M
for all M , all K , and all C ← E(K ,M). We say that (E,D) is key-unique if for
every ciphertext C, there is at most one key K with D(K , C) �= ⊥. For instance,
ElGamal encryption can be interpreted as a key-unique SKE scheme through
E(x,M) := (gx, gy, gxy ·M) (and the obvious D). This example assumes a pub-
licly known group � = 〈g〉 in which the DDH assumption holds.5 If a larger
message space (e.g., {0, 1}∗) is desired, hybrid encryption techniques (which are
easily seen to preserve key-uniqueness) can be employed.

Pairings. A (symmetric) pairing is a map e : � × � → �T between two
cyclic groups � and �T that satisfies e(g, g) �= 1 and e(ga, gb) = e(g, g)ab for all
generators g of � and all a, b ∈ �.
Waters signatures. In [28], Waters proves the following signature scheme
EUF-CMA secure:6

– Gen(1k) chooses groups �,�T of prime order p, along with a pairing e : �×
�→ �T , a generator g ∈ �, and uniform group elements gω, H0, . . . , Hk ∈
�. Output is vk = (�,�T , e, p, g, (Hi)

k
i=0, e(g, g)

ω) and sigk = (vk , gω).
– Sig(sigk ,M), for M = (Mi)

k
i=1 ∈ {0, 1}k, picks r ← �p, and outputs σ :=

(gr, gω · (H0

∏k
i=1H

Mi

i )r).

– Ver(vk ,M, (σ0, σ1)), outputs 1 iff e(g, σ1) = e(g, g)ω · e(σ0, H0

∏k
i=1H

Mi

i ).

KDM-CCA and CIRC-CCA security. Let n = n(k) and let PKE be a
PKE scheme with message space M. PKE is chosen-ciphertext secure under
key-dependent message attacks (n-KDM-CCA secure) iff

Advkdm-cca
PKE,n,A(k) := Pr

[
Expkdm-cca

PKE,n,A(k) = 1
]
− 1/2

is negligible for all PPT A, where experiment Expkdm-cca
PKE,n,A is defined as follows.

First, the experiment tosses a coin b ← {0, 1}, and samples public parameters
pp ← Pars(1k) and n keypairs (pk i, sk i) ← Gen(pp). Then A is invoked with
input pp and (pk i)

n
i=1, and access to two oracles:

– a KDM oracle KDMb(·, ·) that maps i ∈ [n] and a function f : ({0, 1}∗)n →
{0, 1}∗ to a ciphertext C ← Enc(pp, pk i,M). If b = 0, then M = f((sk i)

n
i=1);

else, M = 0|f((ski)
n
i=1)|.

5 In our application, � can be made part of the public parameters.
6 In fact, our description is a slight folklore variant of Waters’s scheme. The original
scheme features elements gα, gβ in vk , so that e(gα, gβ) takes the role of e(g, g)ω.
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– a decryption oracle DEC(·, ·) that takes as input an index i ∈ [n] and a
ciphertext C, and outputs Dec(pp, sk i, C).

When A finally generates an output b′ ∈ {0, 1}, the experiment outputs 1 if b = b′

(and 0 else). We require that (a) A never inputs a ciphertext C to DEC that has
been produced by KDMb (for the same index i), and (b) A only specifies PPT-
computable functions f that always output messages of the same length. As a
relevant special case, PKE is n-CIRC-CCA-secure if it is n-KDM-CCA secure
against all A that only query KDMb with functions f ∈ F for

F := {fj : fj((sk i)
n
i=1) = sk j}j∈[n] ∪ {fM : fM ((sk i)

n
i=1) = M}M∈M .

(Technically, what we call “circular security” is called “clique security” in [10].
However, our notion of circular security implies that of [10].) Our main result
will be a PKE scheme that is n-CIRC-CCA-secure for all polynomials n = n(k).

3 Lossy Algebraic Filters

Informal Description. An (�LAF, n)-lossy algebraic filter (LAF) is a family of
functions indexed by a public key Fpk and a tag t. A function LAFFpk ,t from the
family maps an input X = (Xi)

n
i=1 ∈ �n

p to an output LAFFpk ,t(X), where p is
an �LAF-bit prime contained in the public key.

The crucial property of an LAF is its lossiness. Namely, for a given public
key Fpk , we distinguish injective and lossy tags.7 For an injective tag t, the
function LAFFpk ,t(·) is injective, and thus has an image of size pn. However, if t
is lossy, then LAFFpk ,t(·) only depends on a linear combination

∑n
i=1 ωiXi mod p

of its input. In particular, different X with the same value
∑n

i=1 ωiXi mod p are
mapped to the same image. Here, the coefficients ωi ∈ �p only depend on Fpk
(but not on t). For a lossy tag t, the image of LAFFpk ,t(·) is thus of size at most
p. Note that the modulus p is public, while the coefficients ωi may be (and in
fact will have to be) computationally hidden.

For this concept to be useful, we require that (a) lossy and injective tags
are computationally indistinguishable, (b) lossy tags can be generated using a
special trapdoor, but (c) new lossy (or, rather, non-injective) tags cannot be
found efficiently without that trapdoor, even when having seen polynomially
many lossy tags before. In view of our application, we will work with structured
tags: each tag t = (tc, ta) consists of a core tag tc and an auxiliary tag ta. The
auxiliary tag will be a ciphertext part that is authenticated by a filter image.

Definition 1. An (�LAF, n)-lossy algebraic filter (LAF) LAF consists of three
PPT algorithms:

Key generation. FGen(1k) samples a keypair (Fpk ,Ftd). The public key Fpk
contains an �LAF-bit prime p and the description of a tag space T = Tc ×
{0, 1}∗ for efficiently samplable Tc. A tag t = (tc, ta) consists of a core tag
tc ∈ Tc and an auxiliary tag ta ∈ {0, 1}∗. A tag may be injective, or lossy, or
neither. Ftd is a trapdoor that will allow to sample lossy tags.

7 Technically, there may also be tags that are neither injective nor lossy.
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Evaluation. FEval(Fpk , t,X), for a public key Fpk and a tag t = (tc, ta) ∈ T ,
maps an input X = (Xi)

n
i=1) ∈ �n

p to a unique output LAFFpk ,t(X).
Lossy tag generation. FTag(Ftd , ta), for a trapdoor Ftd and ta ∈ {0, 1}∗,

samples a core tag tc such that t = (tc, ta) is lossy.
We require the following:
Lossiness. The function LAFFpk ,t(·) is injective if t is injective. If t is lossy,

then LAFFpk ,t(X) depends only on
∑n

i=1 ωiXi mod p for ωi ∈ �p that only
depend on Fpk.

Indistinguishability. Lossy tags are indistinguishable from random tags:

AdvindLAF,A(k) := Pr
[
A(1k,Fpk )FTag(Ftd ,·) = 1

]
− Pr

[
A(1k,Fpk )OTc (·) = 1

]
is negligible for all PPT A, where (Fpk ,Ftd)← FGen(1k), and OTc(·) is the
oracle that ignores its input and samples a random core tag tc.

Evasiveness. Non-injective (and in particular lossy) tags are hard to find, even
given multiple lossy tags:

AdvevaLAF,A(k) := Pr
[
t non-injective

∣∣∣ t← A(1k,Fpk)FTag(Ftd ,·)
]

is negligible with (Fpk ,Ftd)← FGen(1k), and for any PPT algorithm A that
never outputs a tag obtained through oracle queries (i.e., A never outputs
t = (tc, ta) when tc has been obtained by an oracle query FTag(Ftd , ta)).

3.1 Construction

Intuition. We present a construction based on the DLIN problem in a group
� of order p with symmetric pairing e : � × � → �T . Essentially, each tag
corresponds to n DLIN-encrypted Waters signatures. If the signatures are valid,
the tag is lossy. The actual filter maps an input X = (Xi)

n
i=1 ∈ �n

p to the tuple

LAFFpk ,t(X) := M ◦X := (

n∏
j=1

M
Xj

i,j )
n
j=1 ∈ �

n
T , (1)

where the matrix M = (Mi,j)i,j∈[n] ∈ �n×n
T is computed from public key and

tag. Note that this mapping is lossy if and only if the matrix

M̃ := (M̃i,j) := (dloge(g,g)(Mi,j))i,j ∈ �n×n
p (2)

of discrete logarithms (to some arbitrary basis e(g, g) ∈ �T ) is non-invertible.
For a formal description, let �LAF(k), n(k) be two functions.

Key generation. FGen(1k) generates cyclic groups �,�T of prime order p
(where p has bitlength �log2(p)� = �LAF(k)), and a symmetric pairing e :
�×�→ �T . Then FGen chooses
– a generator g ∈ � and a uniform exponent ω ← �p,
– uniform group elements U1, . . . , Un ← �, H0, . . . , Hk ← �, and
– a keypair (Hpk ,Htd) for a chameleon hash CH : {0, 1}∗ → {0, 1}k.
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FGen finally outputs

Fpk := (�,�T , e, p, g, (Hi)
k
i=0, (Ui)

n
i=1,W := e(g, g)ω,Hpk)

Ftd := (Fpk , gω,Htd).

For convenience, write Ui = gui for suitable (unknown) exponents ui.
Tags. (Core) tags are of the form

tc := (R, (S̃i)
n
i=1, (Si,j)

n
i,j=1, RCH) ∈ �×�×�n×n ×RCH

(for CH’s randomness spaceRCH), where we require e(Uj′ , Si,j) = e(Uj , Si,j′)

whenever i �∈ {j, j′}. This means we can write R = gr, S̃i = gs̃i , and Si,j =
Usi
j (for i �= j) for suitable r, si, s̃i. To a tag t = (tc, ta) (with auxiliary part

ta ∈ {0, 1}∗), we associate the matrix M = (Mi,j)
n
i,j=1 ∈ �n×n

T with

Mi,j = e(Uj , S̃i) · e(g, Si,j) = e(g, g)uj(s̃i+si) (i �= j)

Mi,i =
e(g, Si,i)

W · e(H0

∏k
i=1H

Ti

i , R)

(3)

for (Ti)
k
i=1 := CHHpk (R, (S̃i)

n
i=1, (Si,j)

n
i,j=1, ta;RCH). If the matrix M̃ of dis-

crete logarithms (see (2)) is invertible, we say that t is injective; if M̃ has
rank 1, then t is lossy. Thus, for lossy tags, Mi,j = e(g, g)uj(s̃i+si) for all i, j.

Evaluation. FEval(Fpk , t,X), for t = (tc, ta), ta ∈ {0, 1}∗, X = (Xi)
n
i=1 ∈

�
n
p, and Fpk and tc as above, computes M as in (3) and then (Yi)

n
i=1 :=

LAFFpk ,t(X) ∈ �n
T as in (1).

Lossiness. If we write Yi = e(g, g)yi, the definition of FEval implies (yi)
n
i=1 =

M̃ ·X . Since injective tags satisfy that M̃ is invertible, they lead to injective

functions LAFFpk ,t(·). But for a lossy tag, M̃i,j = uj(s̃i + si), so that

yi =

n∑
j=1

uj(s̃i + si)Xj = (s̃i + si) ·
n∑

j=1

ujXj mod p.

Specifically, LAFFpk ,t(X) depends only on
∑

i ωiXi mod p for ωi := ui.
Lossy tag generation. FTag(Ftd , ta), for Ftd as above and ta ∈ {0, 1}∗, first

chooses a random CH-image T = (Ti)
k
i=1 ∈ {0, 1}k that can later be ex-

plained, using Htd , as the CH-image of an arbitrary preimage. FTag then
chooses uniform r, si, s̃i ← �p and sets (for i �= j)

R := gr, S̃i := gs̃i ,

Si,j := Usi
j , Si,i := U s̃i+si

i · gω ·
(
H0

k∏
i=1

HTi

i

)r

.
(4)

Finally, FTag chooses RCH with CHHpk (R, (S̃i)
n
i=1, (Si,j)

n
i,j=1, ta;RCH) = T

and outputs tc = (R, (S̃i)
n
i=1, (Si,j)

n
i,j=1, RCH). Intuitively, tc consists of n

DLIN encryptions (with correlated randomness si, s̃i) of Waters signatures

(gr, gω · (H0

∏k
i=1H

Ti

i )r) for message T . Indeed, substituting into (3) yields
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Mi,i :=
e(g, g)ui(s̃i+si) ·W · e(g, (H0

∏k
i=1H

Ti

i )r)

W · e(gr, H0

∏k
i=1H

Ti

i )
= e(g, g)ui(s̃i+si).

Hence, M̃i,j = uj(s̃i + si) for all i, j, and thus the resulting tag t = (tc, ta)
is lossy.

A Generalization. In the full paper [21], we also show how to generalize the
above construction to achieve constant-size tags and evaluation keys.

Other Instances and Further Applications of LAFs. Since LAFs can
be seen as “disguised signature schemes”, it seems interesting to try to con-
vert other signature schemes (and in particular schemes that do not require
pairing-friendly groups) to LAFs. Besides, LAFs would seem potentially useful
in other settings, specifically in settings with inherently many challenges (e.g.,
the selective-opening setting [6]).

Theorem 1. If the DLIN assumption holds in �, and CH is a chameleon hash
function, then the LAF construction LAF from Section 3.1 satisfies Definition 1.

The lossiness of LAF has already been discussed in Section 3.1. We prove indis-
tinguishability and evasiveness separately.

Lemma 1. For every adversary A on LAF’s indistinguishability, there exists a
DLIN distinguisher B such that AdvindLAF,A(k) = n · AdvdlinB (k).

Intuitively, to see Lemma 1, observe that lossy tags differ from random tags only
in their Si,i components, and in how the CH randomness RCH is generated. For
lossy tags, the Si,i are (parts of) DLIN ciphertexts, which are pseudorandom
under the DLIN assumption. Furthermore, the uniformity property of CH guar-
antees that the distribution of RCH is the same for lossy and random tags. We
formally prove Lemma 1 in the full version [21].

Lemma 2. For every adversary A on LAF’s evasiveness, there exist adversaries

B, C, and F with AdvevaLAF,A(k) ≤
∣∣∣AdvindLAF,B(k)

∣∣∣+ AdvcrCH,C(k) + Adveuf-cma
SigWat,F

(k).

Intuitively, Lemma 2 holds because lossy (or, rather, non-injective) tags cor-
respond to DLIN-encrypted Waters signatures. Hence, even after seeing many
lossy tags (i.e., encrypted signatures), an adversary cannot produce a fresh en-
crypted signature. We note that the original Waters signatures from [28] are
re-randomizable and thus not strongly unforgeable. To achieve evasiveness, we
have thus used a chameleon hash function, much like Boneh et al. [8] did to make
Waters signatures strongly unforgeable. We give a formal proof in [21].

Combining Lemma 1, Lemma 2, and the fact that Waters signatures are EUF-
CMA secure already under the CDH assumption, we obtain Theorem 1.

4 CIRC-CCA-Secure Encryption Scheme

Setting and Ingredients. First, we assume an algorithm GenN that outputs
�N -bit Blum integers N = PQ along with their prime factors P and Q. If N
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is clear from the context, we write �rnd and �msg for the unique subgroups of
�∗N3 of order (P − 1)(Q − 1)/4, resp. N2. We also write h := 1 + N mod N3,
so 〈h〉 = �msg. Note that it is efficiently possible to compute dlogh(X) := x
for X := hx ∈ �msg and x ∈ �N2 . Specifically, it is efficiently possible to test
for membership in �msg. In our scheme, �msg will be used to embed a suitably
encoded message, and �rnd will be used for blinding. We require that
– P and Q are safe primes of bitlength between �N/2− k and �N/2 + k,
– gcd((P − 1)(Q− 1)/4, N) = 1 (as, e.g., for uniform P,Q of a certain length),
– �N ≥ 25k + 8 (e.g., k = 80 and �N = 2048)
– the DCR assumption holds in �∗N3 , and the DDH assumption holds in �rnd.
We also assume an (�LAF, n)-lossy algebraic filter LAF for n = 6 and �LAF =

(�N + k + 1)/(n− 2). Our scheme will encrypt messages from the domain

M := �23k × �p·2k × �N ·2k−2 ,

where p is the modulus of the used LAF. (The reason for this weird-looking
message space will become clearer in the proof.) During encryption, we will have
to treat a message M = (a, b, c) ∈ M both as an element of �N2 and as an
LAF-input from �n

p. In these cases, we can encode

� := a+ 23k · b+ p · 24k · c ∈ �,
[M ]�n

p
:= (a, b mod p, c0, . . . , cn−3) ∈ �n

p

(5)

for the natural interpretation of �i-elements as integers between 0 and i−1, and
c’s p-adic representation (ci)

n−3
i=0 ∈ �n−2

p with c =
∑n−3

i=0 ci · pi. By our choice of

�N and �LAF, we have 0 ≤ [M ]� < N2 − 2k. However, the encoding [M ]�n
p
is not

injective, since it only depends on b mod p (while 0 ≤ b < p · 2k).
Finally, we assume a strongly OT-EUF-CMA secure signature scheme Sig =

(SGen, Sig,Ver) with k-bit verification keys, and a key-unique IND-CPA secure
symmetric encryption scheme (E,D) (see Section 2) with k-bit symmetric keys
K and message space {0, 1}∗.

Now consider the following PKE scheme PKE:

Public Parameters. Pars(1k) first runs (N,P,Q)← GenN(1k). Recall that this
fixes the groups �rnd and �msg. Then, Pars selects two generators g1, g2 of �rnd.
Finally, Pars runs (Fpk ,Ftd) ← FGen(1k) and outputs pp = (N, g1, g2,Fpk ). In
the following, we denote with p the LAF modulus contained in Fpk .

Key Generation. Gen(pp) uniformly selects four messages sj = (aj , bj, cj) ∈
M (for 1 ≤ j ≤ 4) as secret key, and sets pk :=

(
u := g

[s1]�
1 g

[s2]�
2 , v := g

[s3]�
1 g

[s4]�
2

)
and sk := (sj)

4
j=1.

Encryption. Enc(pp, pk ,M), for pp and pk as above, and M ∈ M, uni-
formly selects exponents r, r̃ ← �N/4, a random filter core tag tc, a Sig-keypair

(vk , sigk )← SGen(1k), and a random symmetric key K ∈ {0, 1}k for (E,D), and
computes
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(G1, G2) := (gr1 , g
r
2) CE ← E(K , LAFFpk ,t([M ]�n

p
))

(G̃1, G̃2) := (gr̃1 , g
r̃
2) σ ← Sig(sigk , ((Gj , G̃j)

2
j=1, Z, Z̃, CE, tc))

Z := (uvkv)r·N
2

C := ((Gj , G̃j)
2
j=1, Z, Z̃, CE, tc, vk , σ)

Z̃ := (uvkv)rur̃hK+2k·[M ]�

for the auxiliary tag ta := vk , and the resulting filter tag t := (tc, ta).

Decryption. Dec(pp, sk , C), for pp, sk and C as above, first checks the signa-

ture σ and rejects with ⊥ if Ver(vk , ((Gj , G̃j)
2
j=1, Z, Z̃, CE, tc), σ) = 0, or if

Z �=
(
G

[s1]�·vk+[s3]�
1 G

[s2]�·vk+[s4]�
2

)N2

.

Then Dec computes

Z ′ := G
[s1]�·vk+[s3]�
1 G

[s2]�·vk+[s4]�
2 G̃

[s1]�
1 G̃

[s2]�
2

and then K ∈ {0, 1}k,M ∈ M with K + 2k · [M ]� := dlogh(Z̃/Z
′). If Z̃/Z ′ �∈

�msg, or no such M exists, or D(K , CE) �= LAFFpk ,t([M ]�n
p
) (for t = (tc, ta)

computed as during encryption), then Dec rejects with ⊥. Else, Dec outputs M .

Secret Keys as Messages. Our scheme has secret keys s = (sj)
4
j=1 ∈ M4;

hence, we can only encrypt one quarter sj of a secret key at a time. In the
security proof below, we will thus only consider KDM queries that ask to encrypt
a specific secret key part. Alternatively, we can change our scheme, so that 4-
tuples ofM-elements are encrypted. To avoid malleability (which would destroy
CCA security), we of course have to use only one LAF tag for this. Our CIRC-
CCA proof below applies to such a changed scheme with minor syntactic changes.

Efficiency. When instantiated with our DLIN-based LAF construction from
Section 3, and taking n = 6 as above, our scheme has ciphertexts with 43 �-
elements, 6 �N3-elements, plus chameleon hash randomness, a one-time signa-
ture and verification key, and a symmetric ciphertext (whose size could be in
the range of one �N2 -element plus some encryption randomness). The number
of group elements in the ciphertext is constant, and does not grow in the secu-
rity parameter. The public parameters contain O(k) group elements8 (most of
them from �), and public keys contain two �N3 -elements; secret keys consist
of four �N2 -elements. While these parameters are not competitive with cur-
rent non-KDM-secure schemes, they are significantly better than those from the
circular-secure scheme of Camenisch et al. [14].9

Security Proof (single-user user). It is instructive to first treat the single-
user case. Here, we essentially only require that PKE is IND-CCA secure, even if

8 Using the generalized LAF mentioned at the end of Section 3.1, public parameters
with O(1) group elements are possible, at the cost of a (constant) number of extra
group elements per tag.

9 For instance, Section 7 of the full version of [14] implies that their scheme has a public
key, resp. ciphertext of about 500, resp. 1000 �-elements (for log2(|�|) = 160).
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encryptions of its secret key are made public. For the multi-user case (see [21]),
we can then proceed like [10, 11] and re-randomize keys and ciphertexts of a
single PKE instance. This enables an analysis analogous to the single-user case.

Theorem 2. Assume the DCR assumption holds in �N3 , the DDH assumption
holds in �rnd, LAF is an LAF, Sig is a strongly OT-EUF-CMA secure signature
scheme, H is collision-resistant, and (E,D) is a key-unique IND-CPA secure SKE
scheme. Then PKE is 1-CIRC-CCA-secure.

Proof. Assume a PPT adversary A on PKE’s 1-CIRC-CCA security. Say that A
always makes q = q(k) KDM queries. We proceed in games. Let out i denote the
output of Game i.

Game 1 is the 1-KDM-CCA experiment with PKE and A. By definition,
Pr [out1 = 1]− 1/2 = Advkdm-cca

PKE,A (k).
In Game 2, we modify the way KDM queries are answered. Namely, in each

ciphertext prepared for A, we set up Z and Z̃ up as

Z :=
(
G

[s1]�·vk+[s3]�
1 G

[s2]�·vk+[s4]�
2

)N2

Z̃ := G
[s1]�·vk+[s3]�
1 G

[s2]�·vk+[s4]�
2 G̃

[s1]�
1 G̃

[s2]�
2 · hK+2k·[M ]� .

(6)

for the already prepared (Gj , G̃j) = (grj , g
r̃
j ). This change is only conceptual by

our setup of u, v, so Pr [out2 = 1] = Pr [out1 = 1] .
In Game 3, we again change how KDM ciphertexts are prepared. Intuitively,

our goal is now to prepare the Gj and G̃j with additional �msg-components,

such that Z̃, as computed in (6), is of the form g · hK for some g ∈ �rnd. (That

is, we want the �msg-components of the Gj , G̃j to cancel out the h2
k·[M ]� term

in (6).) To do so, we prepare Gj = grj /h
αj·2k and G̃j = grj/h

α̃j ·2k for j ∈ {1, 2}
and suitable αj , α̃j to be determined. Z̃ is still computed as in (6), so

Z̃ = g · hK+2k·[M ]�−2k(α1([s1]�·vk+[s3]�)+α2([s2]�·vk+[s4]�)+α̃1[s1]�+α̃2[s2]�)

for g = g
r·([s1]�·vk+[s3]�)+r̃[s1]�
1 g

r·([s2]�·vk+[s4]�)+r̃[s2]�
2 =

(
uvkv
)r
ur̃ ∈ �rnd. So to

prepare a KDM encryption of sj∗ with Z̃ = g · hK , we can set (α1, α2, α̃1, α̃2)
to (0, 0, 1, 0) for j∗ = 1, to (1, 0,−vk , 0) for j∗ = 2, to (0, 0, 1, 0) for j∗ = 3, and
to (0, 1, 0,−vk) for j∗ = 4. (vk can be chosen independently in advance.) The
remaining parts of C are prepared as in Game 2. We claim

Pr [out3 = 1]− Pr [out2 = 1] ≤ 4 · Advdcr�∗
N3 ,B

(k) +O(2−k) (7)

for a suitable DCR distinguisher B that simulates Game 2, resp. Game 3. Con-
cretely, B gets as input a value W̃ ∈ �∗N3 of the form W̃ = g̃N

2 ·hb for b ∈ {0, 1}.
Note that if we set W := W̃−2

k

, we have W = gr̂/hb·2
k ∈ �∗N3 , with uniform

gr̂ ∈ �rnd. First, B guesses a value of j∗ ∈ [4]. (This gives a very small hybrid
argument, in which in the j∗-th step, only encryptions of sj∗ are changed.) We
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only detail B’s behavior for the case j∗ = 3; the other cases are easier or anal-
ogous. First, B sets up g1 := WN2

and g2 := W γN4

for uniform γ ∈ �N/4. To
prepare an encryption of s3, B chooses uniform ρ, ρ̃ ∈ �N2/4 and sets

G1 := W ρ·(ρ−1) G2 := W γ·ρ·(ρ−1)·N2

G̃1 := W vk·ρ̃·(ρ̃−1) G̃2 := W γ·vk·ρ̃·(ρ̃−1)·N2

,

where the values ρ−1, ρ̃−1 are computed modulo N2. This implicitly sets r = ρ ·
(ρ−1)/N2 mod |�rnd| and r̃ = vk · ρ̃ ·(ρ̃−1)/N2 mod |�rnd|, both of which are sta-

tistically close to uniform. Furthermore, Gj = grj/h
b·αj ·2k and G̃j = gr̃j/h

b·α̃j·2k ;
so, depending on B’s challenge, encryptions of s3 are prepared as in Game 2 or
Game 3. Similar arguments work for j∗ = 1, 2, 4, and (7) follows. (The O(2−k)
term in (7) accounts for the statistical defect caused by choosing �rnd-exponents
from �N/4, resp. �N2/4.)

Using the definition of u and v, our change in Game 3 implies Z̃ = (uvkv)r ·
ur̃ · hK when a key part sj is to be encrypted. (However, note that we still

have Z = (uvkv)r·N
2

in any case.) This means that A still obtains information
about the sj (beyond what is public from pk ) from its KDM queries, but this
information is limited to values LAFFpk ,t([sj ]�n

p
). We will now further cap this

leaked information by making LAFFpk ,t(·) lossy. Namely, in Game 4, we use the
LAF trapdoor Ftd initially sampled along with Fpk . Concretely, when preparing
a ciphertext C for A, we sample tc using tc ← FTag(Ftd , ta) for the corresponding
auxiliary tag ta = vk . A simple reduction shows

Pr [out4 = 1]− Pr [out3 = 1] = AdvindLAF,C2
(k)

for a suitable adversary C2 on LAF’s indistinguishability.
In Game 5, we reject all decryption queries of A that re-use a verification

key vk from one of the KDM ciphertexts. To show that this change does not
significantly affect A’s view, assume a decryption query C that re-uses a key
vk = vk∗ from a KDM ciphertext C∗. Recall that C contains a signature σ of
X := ((Gj , G̃j)

2
j=1, Z, Z̃, CE, tc) under an honestly generated Sig-verification-key

vk = ta = t∗a = vk∗. Since we assumed t = (tc, ta) = (t∗c , t
∗
a) = t∗, and A is not

allowed to query unchanged challenge ciphertexts for decryption, we must have
(X, σ) �= (X∗, σ∗) for the corresponding message X∗ and signature σ∗ from C∗.
Hence, Game 4 and Game 5 only differ when A manages to forge a signature. A
straightforward reduction to the strong OT-EUF-CMA security of Sig yields

Pr [out5 = 1]− Pr [out4 = 1] = q(k) · Advseuf-cma
LAF,F (k)

for a forger F against Sig that makes at most one signature query.
In Game 6.i (for 0 ≤ i ≤ q), the first i challenge ciphertexts are prepared

using Z = ĝN
2

and Z̃ = ĝ · ur̃ · hK (if a key component sj is to be encrypted),

resp. Z̃ = ĝ · ur̃ · hK+2k[M ]� (if a constant M ∈ M is to be encrypted) for an
independently uniform ĝ ← �rnd drawn freshly for each ciphertext. Obviously,
Game 6.0 is identical to Game 5: Pr [out6.0 = 1] = Pr [out5 = 1] . We will move
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from Game 6.i to Game 6.(i+1) in several steps. During these steps, we denote

with C = ((Gj , G̃j)
2
j=1, Z, Z̃, CE, tc, vk , σ) the (i+ 1)-st KDM ciphertext.

InGame 6.i.1, we change the�rnd parts ofG1, G2 from a Diffie-Hellman tuple
(with respect to g1, g2) to a random tuple. Concretely, if an sj is to be encrypted,

we set (G1, G2) = (gr11 /hα1·2k , gr22 /hα2·2k); if a constant M is encrypted, we set
(C1, C2) = (gr11 , gr22 ), in both cases for independently uniform r1, r2 ← �N/4.
The �msg parts of G1, G2 are thus unchanged compared to Game 6.i. Note that

the G̃j are still prepared as G̃j = gr̃j /h
α̃·2k , resp. G̃j = gr̃j . A straightforward

reduction to the DDH assumption in �rnd yields

q(k)∑
i=1

(Pr [out6.i = 1]− Pr [out6.i.1 = 1]) = q(k) · Advddh�rnd,D1
(k) +O(2−k)

for a suitable D1. The O(2−k) error term accounts for the statistical difference
caused by the choice of exponents rj ← �N/4, which induces an only almost-

uniform distribution on group elements grj . Note that at this point, Z and Z̃
are still computed as in (6), even if an sj is to be encrypted.

In Game 6.i.2, we compute Z and Z̃ as Z = ĝN
2

and Z̃ = ĝ ·ur̃ ·hK , resp. Z̃ =

ĝ · ur̃ · hK+2k[M ]� for a fresh ĝ ← �rnd. Thus, the difference to Game 6.i.1 is

that we substitute a�rnd-element computed as G
[s1]�·vk+[s3]�
1 G

[s2]�·vk+[s4]�
2 with

a fresh random ĝ. To show that this change affects A’s view only negligibly, it
suffices to show that A’s statistical information about

X := dlogg

(
G

[s1]�·vk+[s3]�
1 G

[s2]�·vk+[s4]�
2

)
= γ1r1([s1]� · vk + [s3]�) + γ2r2([s2]� · vk + [s4]�) mod |�rnd|

(for some arbitrary generator g of �rnd and γj = dlogg(gj)) is negligible. This
part will be rather delicate, since we will have to argue that both A’s KDM
queries and A’s decryption queries yield (almost) no information about X .

First, observe that A gets the following information about the sj :

– pk reveals (through u and v) precisely the two linear equations γ1[s1]� +
γ2[s2]� mod |�rnd| and γ1[s3]�+ γ2[s4]� mod |�rnd| about the sj , where the
γj are as above. For r1 �= r2, these equations are linearly independent of the
equation that definesX . Hence, for uniform r1, r2,X is (almost) independent
of pk .

– By LAF’s lossiness, KDM queries yield (through CE = E(K , LAFFpk ,t([sj ]�n
p
))

in total at most one equation ω1aj + ω2bj +
∑n−2

i=0 ω3+icj,i mod p for each
j, where (aj , bj , cj,0, . . . , cj,n−3) := [sj ]�n

p
, and the ωi are the (fixed) coeffi-

cients from LAF’s lossiness property. (Recall the encodings [sj ]�, [sj]�n
p
of the

sj = (aj , bj, cj) from (5).) Hence, the bj ∈ �p·2k fully blind the information
released about the cj ∈ �2k−2N through the KDM ciphertexts. Thus, KDM
ciphertexts reveal no information about cj mod |�rnd| and hence also about
[sj ]� mod |�rnd|.

Consequently, even given pk and the KDM ciphertexts, X is statistically close
to independently uniform. This already shows that our change from Game 6.i.2
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affects A’s view only negligibly if A makes no decryption queries. It remains to
show that decryption queries yield no additional information about the sj .

To do so, let us say that a ciphertext C is consistent iff there exist r, r̃ with
(Gj , G̃j) = (grj , g

r̃
j ) for both j ∈ {1, 2}. Note that the decryption of a consistent

ciphertext yields no information about the sj beyond pk . (pk and r, r̃ determine
the values Z,Z ′ computed during decryption; everything else follows from Z ′

and C.) So it suffices to prove the following lemma (which we do in [21]):

Lemma 3. In the situation of Game 6.i.� (for � ∈ {1, 2}), let badquery.i.	 be the
event that A places an inconsistent decryption query that is not rejected. Then

q(k)∑
i=1

(Pr [badquery.i.1] + Pr [badquery.i.2]) ≤ 2 · q(k) · AdvevaLAF,F (k) +O(2−3k).

for a suitable evasiveness adversary F on LAF.

By our discussion above and Lemma 3, we obtain that

q(k)∑
i=1

|Pr [out6.i.2 = 1]− Pr [out6.i.1 = 1]| ≤ 2 · q(k) · AdvevaLAF,F (k) +O(2−3k).

In Game 6.i.3, we reverse the change from Game 6.i.1. Concretely, we prepare

the Gj as Gj = grj/h
αj ·2k , resp. Gj = grj for a single r ← �N/4. Another

straightforward reduction to the DDH assumption in �rnd yields that

q(k)∑
i=1

(Pr [out6.i.3 = 1]− Pr [out6.i.2 = 1]) = q(k) · Advddh�rnd,D2
(k) +O(2−k)

for a suitable D2. To close the hybrid argument, note that Games 6.i.3 and
6.(i+1) are identical.

In Game 7, we clear the �msg-component of Z̃ in all ciphertexts prepared for

A. That is, instead of computing Z̃ = ĝ · ur̃ · hK , resp. Z̃ = ĝ · ur̃ · hK+[M ]� for
a freshly uniform ĝ ← �rnd, we set Z̃ = ĝ · ur̃. (We stress that we still compute

Z = ĝN
2

.) Since all Z̃ already have an independently uniform �rnd-component,
a straightforward reduction to the DCR assumption yields

Pr [out6.q = 1]− Pr [out7 = 1] = Advdcr�∗
N3 ,E

(k) +O(2−k)

for a DCR distinguisher E. Note that because of the re-randomizability of DCR,
there is no factor of q(k), even though we substitute many group elements at
once. However, since the precise order of�rnd is not known, this re-randomization
costs us an error term of O(2−k).

In Game 8, we substitute the symmetric ciphertexts CE in all KDM cipher-
texts by encryptions of random messages. By our change in Game 7, we do not
use the symmetric keys K used to produce CE anywhere else. Thus, a reduction
to the IND-CPA security of (E,D) gives

Pr [out7 = 1]− Pr [out8 = 1] = q(k) · Advind-cpa(E,D),G(k)
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for an IND-CPA adversary G. Note that in Game 8, A’s view is independent
of the challenge bit b initially selected by the KDM challenger. Hence, we have
Pr [out8 = 1] = 1/2. Taking things together yields the theorem.
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Abstract. One of the main tools to construct secure two-party computation pro-
tocols are Yao garbled circuits. Using the cut-and-choose technique, one can
get reasonably efficient Yao-based protocols with security against malicious ad-
versaries. At TCC 2009, Nielsen and Orlandi [28] suggested to apply cut-and-
choose at the gate level, while previously cut-and-choose was applied on the
circuit as a whole. This idea allows for a speed up with practical significance
(in the order of the logarithm of the size of the circuit) and has become known
as the “LEGO” construction. Unfortunately the construction in [28] is based on
a specific number-theoretic assumption and requires public-key operations per
gate of the circuit. The main technical contribution of this work is a new XOR-
homomorphic commitment scheme based on oblivious transfer, that we use to
cope with the problem of connecting the gates in the LEGO construction. Our
new protocol has the following advantages:

1. It maintains the efficiency of the LEGO cut-and-choose.
2. After a number of seed oblivious transfers linear in the security parameter,

the construction uses only primitives from Minicrypt (i.e., private-key cryp-
tography) per gate in the circuit (hence the name MiniLEGO).

3. MiniLEGO is compatible with all known optimization for Yao garbled gates
(row reduction, free-XORs, point-and-permute).

1 Introduction

Secure two-party computation allows two parties to compute a function of their inputs
while ensuring security properties such as the privacy of the inputs and the correct-
ness of the outputs. The first protocol for secure two-party computation is Yao’s gar-
bled circuit [21, 32]. In recent years there has been a significant effort to bring secure
computation into practice. These efforts resulted in terrific improvements in terms of
algorithmic complexity, efficiency of implementations etc. (see e.g., [1, 2, 5, 7, 11–13,
15–20, 22–24, 27–31] and references therein). Perhaps the most interesting problem is
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how to achieve protocols with security against malicious adversaries that are efficient
enough to be used in practice.

In a nutshell, Yao’s protocol works as follows: A constructs an encrypted version
of the circuit to be computed (the “garbled circuit”) and sends it to B who evaluates
the encrypted circuit on encrypted inputs, thus learning nothing but the output of the
computation. One of the main problems of this protocol is that if A is malicious she
can encrypt a circuit different than the one B agreed on computing, with dramatic con-
sequences for the correctness of the result and the privacy of B’s input. One of the
main tools to cope with this is the so called cut-and-choose technique: A prepares many
copies of the encrypted circuit and B checks some of them for correctness. This induces
a probability on the unopened circuits to be correct. Nielsen and Orlandi [28] presented
a twist on this approach, known as LEGO: their approach consists of performing a
cut-and-choose test at the gate level (instead of at circuit level), and allows to save a
factor O(log(s)) with s being the circuit size, in the computation and communication
complexity w.r.t., “standard” cut-and-choose at the circuit level. However, the approach
did not have a practical impact for the efficiency of Yao-based protocols, for several
reasons:

1. LEGO uses public-key primitives for each gate in the circuit: Each gate has associ-
ated three commitments to its input/output keys. Those commitments are used for
the “soldering” and need to be homomorphic. For this purpose LEGO uses Ped-
ersen commitments. This is a drawback for the efficiency of the protocol (group
operations, even in an elliptic curve, are orders of magnitude slower than symmet-
ric primitives such as hash functions or private-key encryption). Moreover, it limits
LEGO to discrete logarithm computational assumptions.

2. LEGO is not compatible with known optimization for Yao’s protocol: Keys in LEGO
are element of Zp for some prime p, while using binary strings {0, 1}t is more nat-
ural and standard. Therefore, it is not possible to use the “free-XOR” trick with
LEGO, nor many of the others optimizations that are tailored for bit-string keys.

3. LEGO has too many bricks: there are many different kind of objects in LEGO (key-
filters, not-two gates, etc.) that make the use of LEGO complex to understand and
implement.

Contributions. In this paper, we present a generalization and a simplification of the
LEGO approach. The main technical difference is to replace the Pedersen commitments
with some XOR-homomorphic commitments based on oblivious transfer (OT) which
we believe is of independent interest and might be used in other applications. We take
this direction as OT can be efficiently extended (both with passive [14] and active secu-
rity [9,27]), the price is only a few private-key operations per OT (together with a small
number of “real” seed OTs that use public-key technology to bootstrap the process).
Doing so allows us to:

1. Maintain LEGO’s good complexity and achieve statistical security 2−k when the
replication factor is only ρ = O(k/ log(s)) against a replication factor of ρ = O(k)
for standard cut-and-choose such as the one in [22]

2. Implement a variant on LEGO whose security only relies on generic, symmetric
primitives (except for the few seed OTs needed to bootstrap the OT extension).
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3. Achieve a variant of LEGO that uses “standard” garbled gates (ANDs and free
XORs), compatible with garbled gates optimization.

Whether our proposed protocol will be more efficient in practice than protocols with
standard cut-and-choose [7, 18, 20, 29, 31] will only be decided by performing a se-
rious comparison of similar implementations running on the same hardware-network
configuration of our and other approaches. This is on-going work.

Technical Overview. The main idea of the protocol we present here is the same as
in [28]: A prepares many garbled gates (NANDs in [28], while here we use ANDs)
together with commitments to the input and output garbled keys. If A prepares a gate
dishonestly we view it as a faulty gate, i.e., one that does not give the correct output
on some inputs. B asks A to open a random subset of the AND gates and checks them
for correctness. If the check goes through, B randomly permutes the unopened gates
into buckets representing a redundant AND gate. He solders the gates within a given
bucket together and then solders the buckets together to form a circuit that computes
the function even in the presence of a minority of faulty gates within each bucket. As
part of this soldering NOT gates can be injected thus the garbled AND gates and the
soldering alone provides a universal set of Boolean gates.

As the gates have been generated independently, the output keys of the gates in one
layer of the circuit cannot be directly fed as input to the next layer. Therefore, A reveals
the XOR difference between the output keys in the first layer with the corresponding
input keys in the second layer (using the XOR-homomorphic properties of the commit-
ment scheme). This allows B to “align” the input keys of the gates in one layer with
the output keys of the gates in the previous layer. He then evaluates all ρ garbled gates
in a bucket on the same input key and take the output of the bucket to be any output
key agreed upon by more than �ρ/2� of the replicated garbled gates it contains. The
main intuition for the security of LEGO cut-and-choose is as follows: If A had sent B k
faulty gates, B would detect this with probability 1 − 2−k. Therefore, if B accepts the
test, with very high probability there are only a few faulty gates among the unopened
ones. As all gates are permuted at random and placed in random buckets in the circuit,
only very little redundancy is needed to correct for all faulty gates.

Because we use XOR homomorphic commitments, our construction can be instanti-
ated with essentially any free-XOR compatible garbled gate scheme and is compatible
with various state of the art optimizations (such as free-XOR, row-reduction, point-and-
permute).

Organization. We start with preliminaries and background in Section 2. We then con-
tinue to go through the overall description of the secure-two party computation proto-
col in Section 3. This is followed by Section 4 where we describe the main technical
contribution of this paper; the XOR homomorphic commitments.

2 Background

In this section we formalize our goal in the UC framework (refer to textbooks such
as [8, 10] for definitions). We furthermore list the basic building blocks of our protocol
and quickly review their individual constructions.
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The Ideal Functionality. In Fig. 1 the ideal functionality for secure function evaluation
is presented (taken almost verbatim from [28]). Note that the functionality is insecure
in the sense that A can try to guess B’s input bits, but if her guess is wrong B is told that
A is cheating. This models a standard problem in Yao based protocols known as “se-
lective failure attack”, that can be solved by modifying the circuit to be evaluated. For
instance, to evaluate a circuit C

(
(ai)i∈[	], (bi)i∈[	]

)
securely one could instead evaluate

C′
(
(ai)i∈[	], (bi,j)i∈[	],j∈[k]

)
= C
(
(ai)i∈[	], (⊕i∈[k]bi,j)j∈[	]

)
i.e., B encodes his real

input bit in the parity of a k bit-long string, and the modified circuit first reconstructs
the real input and then evaluates the original circuit. Now, in order to guess one of B’s
real input bits A needs to guess correctly the k random bits, so she will fail with prob-
ability 1 − 2−k. As our construction allows to compute XOR gates for free, this only
marginally increases the complexity. Better encodings can be used (See [20]) to reduce
the size of the encoded input from � · k bits to max(4�, 8k) bits.

Circuit and inputs: On input (init, A, k) from A and input (init, B, k) from B where
A = (a, CA), B = (b, CB) proceed as follows:

1. Let k be a statistical security parameter and let CA and CB be descriptions of
Boolean circuits consisting of NOT, XOR and AND gates computing the corre-
sponding Boolean functions fA, respectively fB .

2. Leak CA, CB and k to the adversary.
3. If CA �= CB , then the ideal functionality outputs disagreement! to both parties

and terminates. Otherwise, let C = CA and parse C as (�,C′), where � ∈ N and C′ is
a circuit with 2� input wires and � output wires. I.e., we potentially add blank wires
to make sure that the size of A’s input, B’s input and the output are the same. Thus
C′ computes the Boolean function f = fA.

4. Finally parse a as a ∈ {0, 1}� and b ∈ {0, 1}� and return (�,C′) to both A and B.
Corrupt A: On input (corrupt) from A, let her be corrupt. She can then specify a set

{(i, βi)}i∈I , where I ⊆ {1, . . . , k} and βi ∈ {0, 1}. If βi = bi for i ∈ I , then
output correct! to A. Otherwise, output You were nicked! to A and output
Alice cheats! to B.

Evaluation: If both parties are honest or A was not caught above, then on input
(evaluate) from both A and B the ideal functionality computes z = f(a, b) and
outputs z to A. The adversary decides the time of delivery.

Fig. 1. The ideal functionality, FSFE, for secure function evaluation for two parties

Building Blocks. We here review the main building blocks of our protocol.

Generic Free-XOR Yao Gate. Our protocol is compatible with every “free-XOR com-
patible” garbling schemes. In particular, it is possible to use very optimized garbling
schemes. We now describe such a garbling scheme that combines the state of the art
optimizations for Yao Gates i.e., free XOR [17], permutation bits [26], garbled row-
reduction [26] in the same way as [1].

In particular this means that to garble a gate 4 evaluations of AES are needed, and
a garbled gate consists of only 3 ciphertexts (therefore saving on communication com-
plexity). The evaluation of the gate consists of a single AES evaluation.
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– We have a (possibly randomized) algorithm Yao(L0, R0, Δ, id) with id a unique
gate identifier, a left input zero-key L0 ∈ {0, 1}t, a right input zero-key R0 ∈
{0, 1}t and a global difference Δ ∈ {0, 1}t outputs a garbled gate gg and a output
zero-key O0 ∈ {0, 1}t.

– We have a (possibly randomized) algorithm Eval(gg, L′, R′) that on input a garbled
gate gg, a left key L′ ∈ {0, 1}t and a right key R′ ∈ {0, 1}t outputs an output key
O′ ∈ {0, 1}t ∪ {⊥}.

– We define the one-keys L1,R1,O1 s.t. L0 ⊕ L1 = R0 ⊕R1 = O0 ⊕O1 = Δ.

The idea is that a garbled AND gate gg has a zero- and a one-key associated with each
of its wires (left input, right input and output wire), and that these keys represent the
bit values on those wires. E.g., if gg is a garbled AND gate generated as (gg,O0) ←
Yao(L0, R0, Δ, id) then Eval(gg, La, Rb) for any a, b ∈ {0, 1} should output Oa∧b.

Note that if A samples Δ and a zero-key, say L0, at random and give the key La

to B then there is no way for B to infer the bit a from La. Furthermore, even if B
learns a he cannot guess the key L1−a with better probability than guessing Δ. For a
garbling scheme to be secure we want that even if B learns gg and keys La and Rb for
a, b ∈ {0, 1}, and is able to evaluate Oa∧b ← Eval(gg, La, Rb), then he cannot guess
L1−a, R1−b or O1−a∧b with better probability then guessing the random string Δ, even
if he knows a and/or b.

Thus B can evaluate the garbled gate gg without knowing anymore about the output
than he can infer from his knowledge of a and b. Furthermore, B cannot evaluate the
gate on any other inputs. Thus if B sends back Oa∧b to A, A can learn a ∧ b (as she
knows O0 and Δ) and be confident that this is the correct result. We formalize this
intuition about correctness and security of a garbled gate in Def. 1.

Definition 1. We say that (Yao,Eval) is a Yao free-XOR garbling scheme if the follow-
ing holds:

Correctness: Let (gg,O0) ← Yao(L0, R0, Δ, id). Then for all a, b ∈ {0, 1},
Eval(gg, La, Rb) = Oa∧b, with overwhelming probability over the choices of L0,
R0, Δ and the random coins of Yao and Eval.

Secrecy: Consider the following indistinguishability under chosen input attack game
for a stateful adversary A: The adversary outputs two pairs of bit vectors(
ai0, b

i
0

)
i∈[k] ,

(
ai1, b

i
1

)
i∈[k] ∈ {0, 1}

2k. The game picks a uniformly random chal-

lenge c ∈R {0, 1}, samples Δ ∈R {0, 1}t and for i = 1, . . . , k it samples Li, Ri ∈R

{0, 1}t, samples (ggi, Oi
0)← Yao

(
Li
0, R

i
0, Δ, i

)
and then inputs

(
ggi, Li

ai
c
, Ri

bic

)
i∈[k]

to A. Finally A outputs a bit d ∈ {0, 1} and wins if d = c. We say that the scheme
is IND-CIA if for all PPT A, A wins the IND-CIA game with at most negligible
advantage in t.

In the full version [6] we describe an optimized garbling scheme that can be used with
our protocol. See also [1].

Soldering. The idea for this component is the same as in [28], however, slightly changed
to support a general gate garbling scheme. When a garbled gate gg1 has the same zero-
key (and therefore also one-key) associated to one of its wires, as is associated with one
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of gg2’s wires, we say that the given wire of gg1 is soldered to the given wire of gg2.
This is a useful concept when we want to build circuits of garbled gates. To see this
consider a garbled gate gg1 with its left input wire soldered to the output of gg2, and its
right input wire soldered to the output of gg3. This means that if gg2 and gg3 has output
zero-keys O2

0 and O3
0 respectively, then gg1 has left and right zero-keys L1

0 = O2
0 and

R1
0 = O3

0 . Thus if we evaluate gg2 and gg3 on some input and obtain output keys O2
a

and O3
b we can use this to further evaluate gg1 on these outputs. The resulting output

would be some output key O1
a∧b.

Alternatively notice that if gg1 has, e.g., left, input zero-key L1
0 = O2

0 ⊕O3
0 then

O2
a ⊕O3

b = O2
0 ⊕O3

0 ⊕ (a⊕ b)Δ = L1
0 ⊕ (a⊕ b)Δ = L1

a⊕b .

In this case we say that the left input wire of gg1 is soldered to the XOR of the output
of gg2 and gg3. This is because by XOR’ing the outputs keys of gg2 and gg3 we get the
left input key of gg1 corresponding to XOR of the outputs of gg2 and gg3. This is also
why we call the garbling free-XOR: we do not need to garble XOR gates, since this is
handled by the soldering.

In our protocol we will first generate garbled gates where all zero-keys are picked
independently, and then in a later stage we will solder the wires of the garbled gates
to each other to form a garbled circuit. For this purpose, we introduce a function
Shift

(
gg, Ld, Rd, Od

)
that on input a garbled gate (gg,O0) ← Yao (L0, R0, Δ, id),

and three differences Ld, Rd, Od ∈ {0, 1}t, outputs a new shifted gate sgg. The shifted
gate sgg is the gate gg modified to have have input zero-keys

(
L0 ⊕ Ld

)
and
(
R0 ⊕Rd

)
and output zero-key

(
O0 ⊕Od

)
.

This can be implemented by letting Shift output the concatenation of its inputs i.e.,
sgg =

(
gg, Ld, Rd, Od

)
and let the evaluation of a shifted gate sgg be defined by:

ShiftEval
(
sgg, L̂, R̂, Ô

)
= Eval

(
gg, L̂⊕ Ld, R̂⊕Rd

)
⊕Od

where for all K we define ⊥ ⊕ K = ⊥. It is clear that a shifted gate is correct (with
respect to the shifted zero-keys) if and only if a standard gate is correct, and clearly
shifting a gate does not threaten its security property. A shifted gate can be shifted
again: The Shift function will just update the values Ld, Rd, Od accordingly.

Consider two garbled gates
(
gg1, O1

0

)
← Yao

(
L1
0, R

1
0, Δ, 1

)
and
(
gg2, O2

0

)
←

Yao
(
L2
0, R

2
0, Δ, 2

)
. The shifted gate sgg2 = Shift

(
gg2,
(
O1

0 ⊕ L2
0

)
, 0, 0
)

then be-
comes a garbled gate with left zero-key L2

0 ⊕
(
O1

0 ⊕ L2
0

)
= O1

0 . I.e. the output wire of
gg1 is now soldered to the left input wire of sgg2.

Similarly we could have used the Shift function to solder the input of sgg2 to the
XOR of some other garbled gates.

If one wish to use NOT gates then these can be implemented as part of this shifting
by a simply change in the the difference, i.e., to add a NOT gate to the soldering to the
left wire of a gate we simply use ¬Ld = Ld ⊕Δ instead of just Ld.

To see this assume we want to put a NOT into the soldering between gg1 and
gg2. In this case we would have ¬L1d = L1d ⊕ Δ = O1

0 ⊕ L2
0 ⊕ Δ, i.e., sgg2 =

Shift
(
gg2,
(
O1

0 ⊕ L2
0 ⊕Δ

)
, 0, 0
)
. Thus when the evaluator does

ShiftEval
(
sgg2, L2, 0, 0

)
= Eval

(
gg2, L2

a ⊕ (O1
0 ⊕ L2

0 ⊕Δ), R2
)
.
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If a = 0 we get the left input key for gg2 is L2
0⊕ (O1

0 ⊕L2
0⊕Δ) = O1

0 ⊕Δ = O1
1 and

similarly for a = 1 we get L2
1⊕ (O1

0 ⊕L2
0⊕Δ) = (L2

0 ⊕Δ)⊕O1
0 ⊕ (L2

0 ⊕Δ) = O1
0 .

Thus we clearly see that the bit represented by the left input key (along with the key
itself) for gg2 has been flipped.

Initialization
On input (init, ID,W ) from the adversary, with |ID| = μ, |W | ≤ κ and W ⊂ ID,
output ID to both A and B and let J = ∅. If A is honest, then W = ∅.

Commit
On input (commit, j ∈ ID,mj) with mj ∈ {0, 1}h from A, and where no value of
the form (j, ·) is stored, store (j,mj). If j ∈ ID \W , add J = {j} to J and associate
with J the equation Xj = mj . Then output (commit, j) to B.

Open
On input (open, J ⊂ ID) from A, where for all j ∈ J a pair (j,mj) is stored do the
following:

– If A is honest, output (open, J,⊕j∈Jmj) to B.
– If A is corrupted wait for A to input (corrupt-open, J,mJ ). Then add J to J ,

associate the equation ⊕j∈JXj = mJ to J , and check that the equation system
{⊕j∈JXj = mJ}J∈J has a solution. If so, output (open, J,mJ ) to B. Otherwise,
output Alice cheats to B and terminate.

Oblivious Opening
On input (OT-choose, otid, b) with b ∈ {0, 1} from B output (OT-choose, otid)
to A. On input (OT-open, otid, J0, J1) from A with J0, J1 ⊂ ID where for all j ∈
J0, J1 a pair (j,mj) is stored and (OT-choose, otid, ∗) was input before by B do the
following:

– If A is honest, output (OT-open, otid, Jb,⊕j∈Jbmj) to B (Note that B does not
learn the set of ids J1−b).

– If A is corrupted, wait for A to input (guess, g) with g ∈ {0, 1,⊥}. If g ∈ {0, 1}
and g �= b output Alice cheats to B and terminate. Otherwise, proceed to wait
for A to input (corrupt-open, J0, J1,mJ0 ,mJ1). Add Jb to J and associate
the equation ⊕j∈JbXj = mJb to Jb. Check that the equation system still has a
solution as described above. If so, output (OT-open, Jb,mJb) to B. Otherwise
output Alice cheats to B.

OR Open
For up to ω Or-Openings, that must all occur before the first Oblivious-Opening, do
the following: On input (OR-open, J0, J1, a) from A, with J0, J1 ⊂ ID, a ∈ {0, 1}
where for all j ∈ J0, J1 a pair (j,mj) is stored do the following:

– If A is honest, output (OR-open, J0, J1,⊕j∈Jamj) to B.
– If A is corrupted, and if Ja ∩ W �= ∅, wait for corrupt A to input

(corrupt-open, Ja, mJa), add Ja to J and associate ⊕j∈JaXj = mJa to Ja.
Check if the equation system still has a solution as described above. If so, output
(OR-open, J0, J1,mJa) to B. Otherwise output Alice cheats to B.

before the first Oblivious-Opening.

Fig. 2. The ideal functionality, FCOM, for the commitment scheme used by πLEGO

Homomorphic Commitments. To securely implement the soldering described above,
we cannot simply have (potentially malicious) A send the differences needed to shift
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the gates. Instead we will have A give homomorphic commitments to all zero-keys of
each gate, and then have her open the differences of the committed keys. Therefore we
need a homomorphic commitment scheme. In Fig. 2 we state the ideal functionality
FCOM for the homomorphic commitments that we implement in Section 4. As we are
now going to use this functionality to implementFSFE we will briefly recap the features
of this functionality.

The functionality allows A to commit to messages and to later reveal those mes-
sages. In addition the functionality allows to reveal the XOR of two or more committed
messages to B (without revealing any extra information).

The functionality is “insecure”, in the sense that A can choose a set of up to κ wild-
card commitments where she can change her mind about the committed value at open-
ing time. However, openings need to be consistent. More specifically, the FCOM func-
tionality stores a system of linear equations. Initially these equations simply specify
that non-wildcard commitments must be opened to the value, they were commitments
to. Every time A performs an opening involving wildcard commitments this defines
a new linear equation, which is stored in the ideal functionality. For an opening of a
wildcard commitment to be successful the set of linear equations stored in the ideal
functionality must be consistent.

If the set of equations stored in the ideal functionality restricts the opening of a
commitment in such a way that it can only be opened to one value, we say that the com-
mitment is fixed to that value. Note, that all non-wildcard commitments are fixed, and a
fixed wildcard commitment can essentially be viewed as a non-wildcard commitment.

As we are treating the commitments as an ideal functionality, we need to push into
the ideal functionalities two extra commands (in a way similar to the commit-and-prove
functionality in [3])): apart from the regular openings the functionality allows to open
(the XOR of) committed messages in two alternative ways: In an Oblivious-Opening,B
can choose between two sets of committed messages and learn the XOR of the messages
in one of them. In an Or-Opening we allow A to open the XOR of one out of two sets
of committed messages without revealing which one. For technical reasons there can
only be a total of ω Or-Openings and all Or-Openings must be done before the first
Oblivious-Opening. Also, note that there is a build-in selective failure attack in the
Oblivious-Opening. However, this is not a problem as we will only use this type of
opening to handle B’s input where, as discussed above, the FSFE functionality already
allows a selective failure attack.

Commitment from B to A. Additional to the FCOM functionality we are going to use
an extractable commitment Com. This commitment is used only once by B to commit
to his challenge in the cut-and-choose phase and extraction is needed for simulation (to
avoid selective opening issues). Since this commitment does not need to be homomor-
phic it can be easily implemented in the FOT-hybrid model.

3 The MiniLEGO Protocol

We now show how to use the ingredients outlined in the previous section in order to
construct the MiniLEGO protocol.
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We denote by C′ the Boolean circuit to be evaluated. We assume C′ to be composed
of NOT, XOR and AND gates. The XOR gates are allowed to have unbounded fan-in
while the AND gates have fan-in 2. With each AND gate in C′ we associate a unique
label and we let gates be the set of all these labels. A subset inputGates ⊂ gates of size
2� are specially marked as input gates. The AND gates in inputGates should be given
the same bit on both input wires, so that the gate simply computes the identity function.
A subset in Ainputs ⊂ inputGates of size � are taken to be A’s inputs. The remaining
� gates in Binputs = inputGates \ Ainputs are B’s inputs (for convenience assume that
Binputs = [�]). A has input bits (a1, . . . , a	), while B has input bits (b1, . . . , b	).

A subset outputGates ⊂ gates of size � are marked as output gates. The output of
these gates are taken to be the output of the circuit. Note that this means that all output
gates are AND gates. This is without loss of generality: a circuit with XOR gates as
output gates can be modified to an equivalent circuit with AND gates as output gates by
adding at most � AND gates. The � output bits are denoted (z1, . . . , z	).

The wiring of the circuit C′ is described by two functions lp, rp : gates\inputGates→
2gates∪{�}. We call lp(j) the left parents of j (resp. rp(j) the right parents of j), and
take the left (resp. right) input of j to be the XOR of the output bits of all gates in lp(j)
(resp. rp(j)). Thus, the XOR gates of C′ are implicitly defined by the lp and rp func-
tions. If the special symbol � is included in the set returned by lp, rp, this means that a
NOT gate is inserted between gate j and its parent gate (i.e., the input is XORed with
the constant 1). We assume that max(lp(j) ∪ rp(j)) < j for all j.

Garbled Circuit. Let Γ = 2ρs for s = |gates| and some replication factor ρ ∈ N. For
our protocol A will construct Γ garbled gates. She constructs twice as many garbled
gates as is needed to build the garbled circuit, because half the gates are going to be
checked during the cut-and-choose phase. We choose to check exactly half for the sake
of presentation but, as in [31], this could be changed to any fraction in order to optimize
concrete efficiency.
Bucket Notation. In the protocol individual garbled gates are combined together in
“buckets” of gates. We introduce here some convenient notation that allow us to ad-
dress the gates in a bucket, the bucket of a gate etc. Let B be the family of ρ-to-1,
ρ-wise independent functions from a set U ⊂ [Γ ] of size ρs to gates. For a func-
tion BucketOf ∈ B let Bucket be the function that, for all j ∈ gates outputs the set
{i ∈ U |BucketOf(i) = j}. Let BucketHead(j) be the function that returns the “first”
(in lexicographic order) element of Bucket(j).

There are Γ ′ = 3Γ + 1 keys in the protocol, because every constructed AND gate
has a left, right and output key and in addition there is a global difference Δ. The key
index is written as a superscript while subscripts are in {0, 1} and describe the value
carried by the key i.e., Ki

b = Ki ⊕ (bΔ). Let id be a function that on input a key
Kj

0 ∈ {0, 1}t returns a unique label for that key. We will sometimes abuse notation and

write id
(
Kj

1

)
to denote the set

{
id
(
Kj

0

)
, id (Δ)

}
. This will simplify the notation

when using the FCOM functionality.

Protocol Specification. The protocol πLEGO in Fig.s 3 and 4 progresses in six phases:
Setup, Garbling, Cut-and-choose, Soldering, Input and Evaluation. Here we
describe these phases one by one.
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During Setup, A or B initialize the FCOM functionality by calling (init, ID,W )
with ID = Γ ′ and |W | ≤ k. For the remainder of the protocol if FCOM outputs
Alice cheats , B will abort the protocol. Then A samples the global difference
Δ and commits to it using the commit command in FCOM. B samples his challenge
for the cut-and-choose phase and the BucketOf function as described above, and com-
mits to both using the extractable commitment Com. B also “commits” to his input
using the OT-choose command of the FCOM functionality. These commitments of
B’s are needed to avoid selective opening issues in the cut-and-choose phase and reduce
the security of the protocol to the IND-CIA game.

In Garbling, A constructs the candidate garbled gates (ggi)i∈[Γ ] and commits to the
input/output zero-keys of each garbled gate using FCOM.

In Cut-and-choose, B reveals his challenge. The challenge consists of a set of in-
dices T ⊂ [Γ ] of size ρs and a sequence of bits (ui, vi)i∈T , indicating that B wants to
test garbled gate ggi on input (ui, vi). A opens the corresponding input and output keys
for the test gates, allowing B to check for correctness. Note that B only tests one set of
inputs for each gate – otherwise he will learn Δ.

In the remainder of the protocol the garbled gates that are not checked in Cut-and-
choose, those with indices in U = [Γ ] \T , are used to build a garbled circuit according
to the following fault tolerant circuit design: With each gate j ∈ gates we associate a
bucket of ρ AND gates. To evaluate gate j we will evaluate each gate in the bucket of
j on the inputs given to j. If more than �ρ/2� of the gates in the bucket agree on their
output bit, we take this bit to be the output of j (otherwise the output is ⊥). Clearly if
there are more than �ρ/2� non-faulty gates in each bucket the output is correct.

To build such a garbled circuit the gates that were not checked (ggi)i∈U are put into
buckets using the BucketOf function. Then B uses the Shift function as described in
Section 2 to solder the wires of the garbled gates. Since A may be malicious we cannot
simply have her sent the XOR’s of zero-keys that B needs for soldering. Instead A
reveals the XOR’s by opening the corresponding commitments to the zero-keys.

The garbled circuit is constructed in Soldering in three different soldering steps: For
all j ∈ gates Horizontal Soldering solders all wires of all gates in (ggi)i∈Bucket(j)
to the corresponding wires of ggBucketHead(j). This allows to evaluate all the gates in
the same bucket on the same input keys and get the same output keys. I.e., if A is
honest, after the horizontal soldering all the gates in one bucket have exactly the same
keys. For all j ∈ gates Vertical Soldering solders the left input wire of ggBucketHead(j)

to the XOR of the output wires of
(
ggBucketHead(i)

)
i∈lp(j), and the right input wire of

ggBucketHead(j) to the XOR of the output wires of
(
ggBucketHead(i)

)
i∈rp(j) (and we use

the convention O� = Δ to deal with NOT gates – note that Δ can be seen as the 1
key of a special wire with zero-key equal to 0t). Note that since Horizontal Soldering
made all garbled gates in a bucket have the same input keys, this essentially means
soldering all the gates in the bucket to the output wires of gates in (Bucket(i))i∈lp(j)
and (Bucket(i))i∈rp(j). I.e., vertical soldering is “functional”, in the sense that it ensures
that the garbled circuit computes the right circuit, C′. For all j ∈ inputGates Input
Soldering simply solders the left and right input wire of garbled gates in Bucket(j) to
each other, i.e., the gates in inputGates compute the identity function.
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Setup Choose ρ = O(k/ log(s)) and Γ = 2ρs where s = |gates| in C′. Let Γ ′ = 3Γ + 1
and proceed as follows:

1. A and B initialize a FCOM functionality by having either of them call
(init, ID,W ) with |ID| = Γ ′ and |W | ≤ k.

2. A samples Δ ∈R {0, 1}t and inputs (commit, id(Δ),Δ) to FCOM.
3. B samples a random T ⊂ [Γ ] of size ρs, and for all i ∈ T samples ui, vi ∈R {0, 1}.

Let U = [Γ ] \ T .
4. B samples BucketOf ∈ B as described in Section 2.
5. B sends CT = Com(T, (ui, vi)i∈T ,BucketOf, rT ) to A.
6. For each j ∈ Binputs, B inputs (OT-choose, j, bj) to FCOM.

Garbling
1. For all i ∈ [Γ ], A samples Li

0, R
i
0 ∈R {0, 1}t, computes

(
ggi, Oi

0

)
←

Yao
(
Li

0, R
i
0,Δ, i

)
and sends GG =

(
ggi

)
i∈[Γ ]

to B.

2. A inputs
(
commit, id

(
Li

0

)
, Li

0

)
,

(
commit, id

(
Ri

0

)
, Ri

0

)
and(

commit, id
(
Oi

0

)
, Oi

0

)
to FCOM.

Cut-and-choose
1. B sends T , (ui, vi)i∈T , BucketOf and randomness rT to A.
2. If this is not a valid opening of CT A aborts. Otherwise, for all i ∈ T A inputs to
FCOM

(
open, id

(
Li

ui

))
,
(
open, id

(
Ri

vi

))
,
(
open, id

(
Oi

ui∧vi

))
. Let L̂i, R̂i, Ôi

be the values output to B by FCOM.

3. B aborts if there is an i ∈ T so that Ôi �= Eval
(
ggi, L̂i, R̂i

)
.

Soldering
1. Horizontal Soldering: For all j ∈ gates, let h = BucketHead(j): For all i �= h ∈

Bucket(j) A inputs
(
open,

{
id
(
Lh

)
, id

(
Li

)})
,
(
open,

{
id
(
Rh

)
, id

(
Ri

)})
,

and
(
open,

{
id
(
Oh

)
, id

(
Oi

)})
to FCOM. Let Lid, Rid, Oid be the keys output

to B from FCOM and sggi = Shift
(
ggi, Lid, Rid, Oid

)
.

2. Vertical Soldering: For all j ∈ gates \ inputGates, let h = BucketHead(j):

A inputs

(
open,

{
id
(
Lh

)}
∪
{
id
(
OBucketHead(i)

)}
i∈lp(j)

)
and(

open,
{
id
(
Rh

)}
∪
{
id
(
OBucketHead(i)

)}
i∈rp(j)

)
to FCOM. Let Lhd

, Rhd

be the keys output to B by FCOM and sggh = Shift
(
ggh, Lhd

, Rhd
, 0t

)
.

3. Input Soldering: For all j ∈ inputGates, let h = BucketHead(j): A inputs(
open,

{
id
(
Lh

)
, id

(
Rh

)})
to FCOM. Let Rhd

be the key output to B by FCOM

and sggh = Shift
(
sggh, 0t, Rhd

, 0t
)

.

Fig. 3. The Protocol πLEGO implementing FSFE (Part 1)

In Input, for all j ∈ Ainputs A uses the Or-Opening of FCOM to open the input key
to the garbled gates in Bucket(j) corresponding to her input bit. For all j ∈ Binputs B
also learns the input key to the garbled gates in Bucket(j) corresponding to his input
bit, using the Oblivious-Opening.

Given the initial input keys in Evaluation B evaluates each bucket of garbled gates in
the following way: He evaluates each gate in the bucket on the left and right input keys
for that bucket. If a key appears more than �ρ/2� times as the output key of the garbled
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gates in the bucket, he takes this to be the output key of the bucket. If no such key exists
B aborts. Note that by the way we soldered the garbled circuit, this corresponds exactly
to the fault tolerant circuit we described above. Finally B provides A with the output
keys. Knowing Δ, A can decipher the output keys and obtain the output values.

Input
1. For all j ∈ Ainputs let h = BucketHead(j), A inputs(

OR-open, id
(
Lh

0

)
, id

(
Lh

1

)
, aj

)
to FCOM.

2. For all j ∈ Binputs let h = BucketHead(j), A inputs(
OT-open, j, id

(
Lh

0

)
, id

(
Lh

1

))
to FCOM.

3. In both cases let L̂h be the key output from FCOM to B. B computes a list of can-

didate keys Candj =
(
ShiftEval

(
sggi, L̂h, L̂h

))
i∈Bucket(j)

. If any key appears

more than ρ/2 times in Candj name it Ôj , otherwise B aborts.
Evaluate

1. For each gate j ∈ gates \ inputGates, B computes:
(a) Left and right keys L̂j =

⊕
l∈lp(j) Ô

l and R̂j =
⊕

l∈rp(j) Ô
l.

(b) The list of output keys Candj =
(
ShiftEval

(
sggi, L̂j , R̂j

))
i∈Bucket(j)

.

(c) If a key appears more than ρ/2 times in Candj name it Ôj and proceed, other-
wise abort.

2. For all j ∈ outputGates, B sends Ôj to A.
3. For all j ∈ outputGates, A outputs zj = 0 if Ôj = O

BucketHead(j)
0 , zj = 1 if

Ôj = O
BucketHead(j)
1 and aborts otherwise.

Fig. 4. The Protocol πLEGO implementing FSFE (Part 2)

Theorem 1. Let k be the security parameter, ρ = O(k/ log(s)). If (Yao,Eval) is an
IND-CIA secure Yao free-XOR garbling scheme then the protocol πLEGO in Fig.s 3 and
4 UC, active, static securely implements FSFE in the (FCOM)-hybrid model (initialized
with (init, ID,W ) for |ID| = 3Γ + 1 and |W | ≤ k).

Analysis. We sketch the idea of the proof. Details are in the full version. First consid-
ering a corrupted B and then considering a corrupted A.

Corrupted B. B does not receive any output nor has any real way of cheating in the
protocol (in the output phase, if B changes the output key in a way that makes A ac-
cept, then he must have guessed Δ, thus breaking the IND-CIA game). Essentially, we
only need to argue that his view does not leak any information, thanks to the IND-CIA
security of the garbling scheme. Note that in the protocol B starts by committing to his
input and challenge for the cut-and-choose phase. This allows the simulator S to ex-
tract all this information at the beginning of the simulation (and provide input on behalf
of corrupted B to the ideal functionality). Then we reduce the security of the proto-
col to the IND-CIA security of the garbling scheme: the simulator knows in fact T and
U before it sends the gates to B, therefore S will place honestly constructed gates in T
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(for which it knows the openings and therefore can easily simulate the cut-and-choose
test – remember that the simulator fully controlsFCOM) and the challenge garbled gates
from the IND-CIA game in U : that is, the simulator produces a view such that distin-
guishing between a real and a simulated execution is equivalent to winning the IND-CIA
game.

Corrupted A. Essentially, the proof of security boils down to proving correctness. By
the design of the garbled circuit, correctness follows when there is more than �ρ/2�
correct gates in each of the buckets.

The LEGO approach ensures that if A passes the cut-and-choose test, then with over-
whelming probability there are at most k faulty gates left in U . Those faulty gates are
then randomly assigned into buckets, and this means that with overwhelming proba-
bility each bucket will have a majority of correct gates. However, as opposed to [28]
where all commitments were binding, here we have also k wildcard commitments to
deal with. This is in problematic, as wildcard commitments can be opened to anything,
and we need make sure that this does not break correctness.

To be more specific we say that a garbled gate ggi is faulty if the commitments to
its input and output zero-keys are fixed to values Li

0, Ri
0 and Oi

0 respectively, and there
exists some a, b ∈ {0, 1} so that Eval

(
ggi, Li

a, R
i
b

)
does not output Oi

a∧b with over-
whelming probability. If a gate ggi has a wire where the commitment to the associated
zero-key is not fixed, then we say that this wire is faulty, and ggi has faulty wiring. We
say that ggi is fault free if it is neither faulty nor has faulty wiring. If a garbled gate
ggi is faulty, fault free or has faulty wiring, we say the same of any shifted gate sggi

resulting from shifting ggi.
Gates ggi with faulty wiring are problematic for the cut-and-choose test: If i ∈ T

A can choose to let ggi act as a fault free gate by opening the wildcard commitments
consistently with the actual zero-keys used to generate ggi. On the other hand, if i ∈ U
A can make sggi faulty by opening the commitment inconsistently in Soldering1.

In the full version we show that, with overwhelming probability, there will be a
majority of fault free gates in

(
ggi
)
i∈Bucket(j) for all j ∈ gates. It is easy to verify that

this means that after Horizontal Soldering all commitments to zero-keys are fixed. I.e.,
the commitment to the zero-key of a faulty wire will be fixed to open as one specific
value. If this value is not consistent with the zero-keys used to generate the associated
garbled gate, then that gate becomes faulty.

Note however, that for all j ∈ gates all fault free shifted gates
(
sggi
)
i∈Bucket(j)

resulting from Horizontal Soldering will have identical input and output keys, as re-
quired of the garbled circuit, even if some gates in

(
ggi
)
i∈Bucket(j) had faulty wiring.

I.e., the effect of a garbled gate ggi having faulty wiring is at worst that shifted gate
sggi after Soldering is faulty. Since we use a FCOM functionality with at most k wild-
card commitments we still have at most k faulty gates in Evaluation. Since these faulty
gates are placed in random buckets we can still guarantee correctness with overwhelm-
ing probability.

1 By inconsistently we mean inconsistent with the actual keys used for ggi, not inconsistent with
the equations stored in FCOM.
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Note that the faulty wires are also the reason for gate replication on the input layer,
to not let A change her or B’s input by using the wildcard commitments.

4 Commitments

In this section we present our novel construction of XOR-homomorphic commitment
based solely on OT. We also describe how to transform this general construction of
XOR-homomorphic commitments into the specific type we need in Fig.s 3 and 4.

The Ideal Functionality. We name our ideal functionality FWCOM and describe it in
Fig. 5. The functionality allows A to commit to up to μ messages and to later reveal
those messages. In addition the FWCOM allows to reveal the XOR of two or more com-
mitted messages to B (without revealing any extra information). In the context of Fig.s
3 and 4. this is the same as FCOM except without the methods for Oblivious Opening,
OR open and (which will become apparent later on) contains more wildcards than we
can handle in Fig.s 3 and 4.

We formalize FWCOM in the following way: First we let the adversary specify a set
of identifiers ID of size κ used to identify each of the μ commitments (for technical
reasons ID will be a subset of [2μ]). In addition the adversary gives a set W ⊂ ID,
of size at most κ, to identify the wildcard commitments. FWCOM stores a set of linear
equations on μ variables (Xi)i∈ID (one for each commitment). Initially this set is empty.
Each time A commits to a message mj using a non-wildcard commitment (i.e., j ∈
ID \W ) FWCOM will store the equation Xj = mj . For wildcard commitments no such
equation are stored when A makes the commitment. If A instructs FWCOM to open the
XOR of the set of commitments J ⊂ ID we let corrupted A input a message mJ ∈
{0, 1}t she wants to open to. The functionality then adds the equation

⊕
j∈J Xj = mJ

to the set of stored equations and checks that this set of equations has a solution, i.e.,
if there is an assignment of values in {0, 1}t to each variable Xj such that all equations
are satisfied. If so, the functionality permanently stores the equation

⊕
j∈J Xj = mJ

and opens the XOR of the set of commitments J as mJ . Otherwise, FWCOM will output
Alice cheats to B and terminate. Note that if J ∩W = ∅ then for all j ∈ J the
functionality has stored the equation Xj = mj , and therefore a corrupt A can only open
the commitment successfully if mJ =

⊕
j∈J mj . Note also that if, e.g., A has made

commitments i ∈ W and j ∈ ID \W , and opens the XOR of commitments i and j as
m′ then for all later openings A can only successfully open the wildcard commitment
i as m′i = mj ⊕ m′. In these cases, when a commitment can only successfully be
opened to one value, we say that the commitment is fixed to that value. Non-wildcard
commitments are always fixed; when A opens the XOR of a wildcard commitments
and non-wildcard commitments, a wildcard commitment can become fixed. When a
wildcard commitment has been fixed it can essentially be viewed as a non-wildcard
commitment.

Notice that the terminology can become a little confusing because of the wildcard
commitments: when we say that A opens the XOR of some set of commitments J ⊂ ID
to a value mJ , then we cannot guarantee that mJ =

⊕
j∈J mj , when J ∩W �= ∅.
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Initialization: On input (init, ID,W ) with |ID| = μ, |W | ≤ κ and W ⊂ ID from the
adversary output ID to both parties and let J = ∅. If A is honest, then W = ∅.

Commit On input (commit, j ∈ ID,mj) with mj ∈ {0, 1}t from A, and where no value
of the form (j, ·) is stored, store (j,mj). If j ∈ ID\W , add J = {j} toJ and associate
with J the equation Xj = mj . Then output (commit, j) to B.

Open On input (open, J ⊂ ID) from A, where for all j ∈ J a pair (j,mj) is stored do:
– If A is honest, output (open, J,⊕j∈Jmj) to B.
– If A is corrupted wait for A to input (corrupt-open, J,mJ). Then add J to
J , associate the equation ⊕j∈JXj = mJ to J , and check that the equation system
{⊕j∈JXj = mJ}J∈J has a solutiona. If so, output (open, J,mJ ) to B. Otherwise,
output Alice cheats to B and terminate.

a I.e., there should be an assignment of values to the wildcard commitments such that all
stored openings can be explained by this assignment.

Fig. 5. The ideal functionality, FWCOM, for our basic commitment scheme consisting

Building blocks. Here we give the building blocks from which we implement FWCOM.

Oblivious Transfer. We use a
(
n
u

)
-Oblivious Transfer functionality with message strings

of length 2μ. We denote this functionality
(
n
u

)
-FOT(2μ). On input start from both A

and B the
(
n
u

)
-FOT(2μ) functionality picks n message strings S1, . . . , Sn ∈R {0, 1}μ,

a uniformly random set I ⊆ {1, . . . , n} with |I| = u and outputs (Si)i∈[n] to A and

(I, (Si)i∈I) to B. We can implement
(
n
u

)
-FOT(2μ) for any 2μ = poly(k) using a FOT

functionality and a pseudo random generator (prg), where k is the security parameter,
using the same technique as in [27]: Simply use the FOT(k) functionality to send seeds
to the prg and then use the prg to expand those seeds to 2μ bits. One can then construct
a
(
n
u

)
-FOT(2μ) functionality from

(
2
1

)
FOT(2μ) e.g., as described in [25].

Error Correcting Codes. We also need an error correcting code (ECC), which encodes
an t-bit string as an n-bit string with minimal distance at least d using some φ-bits of
randomness. It should at the same time be a secret sharing scheme in that seeing u
random positions of a random codeword does not leak information on the message. We
denote this scheme by ssecct,n,d,u. We use enct,n,d,u to denote the encoding function
and we use dect,n,d,u to denote the decoding function. Both should be PPT and we drop
parameters for notational convenience. The code should have the following properties.

Error correction. For all m ∈ {0, 1}t, r ∈ {0, 1}φ and error vectors e ∈ {0, 1}n with
hw(e) < d/2 it holds that dec(enc(m; r) ⊕ e) = m, where hw is the Hamming
weight in {0, 1}n. We assume that dec(C) = ⊥whenC has distance more than d/2
to all codewords and we assume that there exists an efficient algorithm ncw (nearest
codeword) such that ncw(enc(m; r) ⊕ e) = enc(m; r) when hw(e) < d/2.

Privacy. There exists a PPT function xpl which can explain any codeword as being a
codeword of any message to anyone who knows at most u positions of the code-
word. Formally, for all I ⊂ [n], |I| = u and all m,m′ ∈ {0, 1}t the distributions
D0 and D1 described below are statistically close. The distributionD0 is generated
as follows: sample r ∈R {0, 1}φ, let c = enc(m; r) and output ((ci)i∈I ,m, r). The
distribution D1 is generated as follows: sample r′ ∈R {0, 1}φ, let c = enc (m′; r′),
sample r ← xpl(I,m′, r′,m) and output ((ci)i∈I ,m, r).
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Linearity. For all m,m′ ∈ {0, 1}t and r, r′ ∈ {0, 1}φ it holds that enc(m; r) ⊕
enc(m′; r′) = enc(m⊕m′; r ⊕ r′).

Note that Error correction implies that the minimal distance is at least d, i.e., for all
m �= m′ ∈ {0, 1}t and r, r′ ∈ {0, 1}φ, c = enc(m; r) and c′ = enc(m′; r′) it holds
that ham(c, c′) ≥ d where ham is the Hamming distance.

We further require of the parameters of ssecc that: n = Θ(k), u = Θ(n) and d =
Θ(n). I.e., both the privacy and minimum distance of ssecc must be a constant fraction
of the length of codewords, and the code should have constant rate. Codes that satisfy
the desired properties can be found in [4].

Protocol Specification. Here we describe the ideas behind the protocol πWCOM imple-
menting FWCOM described in Fig. 6.

Let v ∈ {0, 1}n and I = {i1, i2, . . . , iu} ⊆ [n]. We define the function wI :
{0, 1}n → {0, 1}u so that wI(v) = (vi1 , vi2 , . . . , viu) ∈ {0, 1}u, i.e., wI(v) is the
u-bit string consisting of the u bits in v indexed by I .

In the protocol a commitment to a message m is a one-time pad of m with some key
T . Clearly this is hiding but not binding. To make the commitment binding we allow the
receiver of the commitment (B) to learn wI(m) for some secret set I ⊆ [n]. We denote
wI(m) the watch bits of the commitment. To open the commitment to m A sends m′ to
B and B checks if wI(m

′) = wI(m). If this is not the case B rejects the opening.
The watch bits give some degree of binding since A can only open the commitment

to some message m′ �= m if wI(m
′) = wI(m). I.e., if u = |I| is large enough A can

only hope to change a few bits ofmwithout getting caught. On the other hand the watch
bits clearly compromises the hiding property of the commitment. To avoid this we use
the code ssecc to encode the message m and commit to the encoded m instead. I.e., a
commitment to m becomes enc(m; r)⊕ T . By privacy of sseccm is now hidden.

The encoding additionally strengthens the binding of the commitment: codewords
c and c′ encoding to two different messages m and m′ must be different in many bit
positions. Thus for A to open a commitment to m to m′ none of these positions must
be in the watch bits.

More precisely let d = 2w + 1 be the minimum distance of ssecc for some w < n
2 .

Suppose a corrupt A gives the commitment, c ⊕ T . Note that when A is corrupt c does
not have to be a codeword. In that case we have that c = ncw(c) ⊕ e for some error
vector e ∈ {0, 1}n, and we say the commitment has hw(e) errors.

Regardless of the number of errors, consider what it takes for A to be able to open
this commitment to two different messages m′ and m′′, with codewords c′ and c′′ re-
spectively: for any two different codewords c′ and c′′ one of them has distance at least
w to c, say c′. In other words c′ has at least w bit positions different from c. If A tries
to open the commitment to m′, B only accepts the opening if none of these bit posi-
tions are in his u watch bits for the commitment. Thus for any commitment (possibly
with errors) the probability that a cheating A can open the commitment to two different
messages m′ and m′′ is at most(
n− u

w

)(
n

w

)−1
=

w−1∏
i=0

n− u− i

s− i

w−1∏
i=0

w − i

n− i
=

w−1∏
i=0

n− u− i

n− i
=

w−1∏
i=0

1− u

n− i
.
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Assume that w = w′n and u = u′n for constants 0 < u′, w′ < 1, then the probability
of A breaking the binding property is at most

w−1∏
i=0

(
1− u

n− i

)
≤

w−1∏
i=0

(
1− u′n

n

)
= (1− u′)

w′n
.

Thus with k being the security parameter, n = Θ(k) and for any positive constants
u′, w′ with 0 < u′, w′ < 1, A will have negligible probability of breaking binding.

Notice, that while c′ will have distance at least w to c it could be that c′′ is much
closer to c. E.g., c′′ could be the nearest codeword to c. In this case, we have that, if
the commitment has very few errors, a cheating A could open the commitment to m′′

with noticeable probability (say, if the number of errors were constant in k). This is not
a problem since such a “slightly wrong” commitment can be seen as a commitment to
the message m′′ encoded by the nearest codeword c′′.

To get XOR-homomorphic commitments, more work has to be done. The problem
being that the XOR of several commitments with errors, may become a commitment
that breaks binding, even if the individual commitments only have a few errors. Con-
sider a number of commitments made with non-codewords ci with nearest codewords
c′i. The XOR the non-codewords c =

⊕
i ci may then be very far from the XOR of their

nearest codewords c′ =
⊕

i c
′
i. In fact c might be so far away from c′ that it gets very

close to some other codeword c′′. Hence the XOR of the commitments can be opened
to a message different from the XOR of the message associated with the individual
commitments. This would break the binding property.

To deal with this problem, the protocol initialization πWCOM starts by letting A com-
mit to 2μ random messages. We then do a cut-and-choose test to check that half of these
commitments can be opened correctly. IfA passes the test we have that, with overwhelm-
ing probability, the remaining commitments only have a few errors. Additionally, those
errors must be isolated to a few common bit positions. Thus the result of XOR’ing these
commitments will at most have a few errors, namely in these few positions.

Thus if A passes the cut-and-choose test we use the un-tested random commitments
to implement the actual commitments. The resulting commitment will have exactly the
same errors as the random commitment (if any).

Theorem 2. Let k be the security parameter and use a code with n = Θ(k), u = Θ(n),
d = Θ(n) and k < d/2 as, e.g., given by [4]. Then the protocol in Fig. 6 UC, active,
static securely implementsFWCOM in the

((
n
u

)
-FOT(2μ)

)
-hybrid model when initialized

on (init, ID,W ) with |ID| = μ and |W | ≤ nk + k.

Analysis. Simulating when no party is corrupted or both parties are corrupted is straight
forward. Simulating when B is corrupted is also quite simple, and can be done using
standard techniques from simulation in secure multi-party computation based on secret
sharing. Thus we will only sketch the proof for corrupted B, and focus on the case of
corrupted A.

Corrupted B. The simulator commits to 0t in all commitments. When asked to open
such a commitment Uj to a given mj ∈ {0, 1}t it uses the efficient algorithm xpl
to explain the commitment as Uj = enc(xj ; rj) ⊕ Tj for xj = yj ⊕ mj . The only
non-trivial detail is that if the simulator is asked to open a commitment, where the
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Setup To set up the scheme A and B run the following.
1. A and B run a

(
n
u

)
-FOT(2μ) functionality and get as output (Ri)i∈[n] and

(I, (Ri)i∈I) respectively where R1, . . . , Rn ∈R {0, 1}2μ and I is a uniformly ran-
dom subset of [n] with |I | = u.

2. A lets R ∈ {0, 1}n×2μ be the matrix with Ri as the i’th row and lets Tj ∈ {0, 1}n
be the j’th column of Ra.

3. A for j = 1, . . . , 2μ, samples xj ∈R {0, 1}t, rj ∈R {0, 1}φ and sends the commit-
ment cj = (enc(xj; rj)⊕ Tj , j). Let cj = (Uj , j) the value received by B.

4. B sends a uniformly random subset C ⊂ [2μ]. This also defines ID = C̄.
5. For j ∈ C, A opens cj by sending oj = (xj , rj , j).
6. For j ∈ C, B receives (x′

j , r
′
j , j) and checks that wI

(
enc

(
x′
j ; r

′
j

))
= wI(Uj) ⊕

wI(Tj), if not B terminates the protocol.
Commit To commit to mj for j ∈ ID A sends (yj , j) to B where yj is the correction value

yj = xj ⊕mj .
Open To open the XOR of commitments J ⊂ ID the parties do the following.

1. For j ∈ J , let cj = (enc(xj ; rj)⊕ Tj , j) be the commitments sent in initialization
and yj the value sent during commitment. A computes the opening of

⊕
j∈J mj as

oJ =
(⊕

j∈J xj ,
⊕

j∈J rj , J
)

, and sends it to B.

2. If an opening of J was done previously, B uses the previous mJ , otherwise he
proceeds as follows: Let cj = (Uj , j) be the commitments received during Setup.
B accepts oJ = (xJ , rJ , J) iff

wI(enc(xJ ; rJ )) = wI

(⊕
j∈J

Uj

)
⊕ wI

(⊕
j∈J

Tj

)
, where

wI

(⊕
j∈J

Uj

)
=

⊕
j∈J

wI(Uj) and wI

(⊕
j∈J

Tj

)
=

⊕
j∈J

wI(Tj) .

If B accepts he outputs xJ ⊕ yJ , where yJ =
⊕

j∈J yj . Otherwise, B rejects the
opening and terminates the protocol.

a Notice B can use (Ri)i∈I to compute wI(Tj) for all j ∈ [2μ].

Fig. 6. The protocol πWCOM implementing FWCOM

value of the opening follows from previous openings (i.e., using some linear equation),
it computes the opening as a linear combination of the previous simulated openings.
As an example, if the simulator opened Uj as Uj = enc(xj ; rj)⊕ Tj and opened Ui as
Ui = enc(yi; ri)⊕Ti. Then it will openUj⊕Ui as Uj = enc(xj⊕xi; rj⊕ri)⊕Tj⊕Ti.
Corrupted A. Intuition of the proof when A is corrupted is that the cut-and-choose test
will catch A if there are many indices i for which there exists a commitment that has an
error in position i. This is because if the errors of the commitments are very spread out,
with high probability, many of them will be in the watch bits positions. As mentioned
above, this means that almost all errors must be isolated in a few positions. Therefore
XOR’s of commitments will also have errors only in these position, so the XOR’s will
also be close to their “correct” codeword. The formal proof is complicated by the fact
that a few commitments with many errors, or errors outside isolated few positions, may
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pass the cut-and-choose. These commitments will be the wildcards. It can be shown
that not even a commitment with many errors can be opened to two different values,
as it would give a codeword encoding a non-zero value which is 0 in all the watch
bits, which happens with negligible probability by the watch bits being random and the
minimal distance high. This translates into it being impossible to make any combination
of openings of linear equations yielding inconsistent outputs.

Completing the Construction. There is a gap between the ideal functionalityFWCOM that
we just implemented and the functionalityFCOM used in the protocolπLEGO. The gap can
be closed using standard techniques, as sketched now. There are many more details on
this in the full version. We can reduce the number of wildcard commitments by opening
random pairs of commitments and discarding one of the commitments. This fixes any
wildcard commitment not lucky enough to be paired with another wildcard commitment.
We can implement Oblivious Opening by sending both openings through an oblivious
transfer: note that we allow selective errors in the ideal functionality, so it is not an issue
that the adversary can send one correct and one incorrect opening. Finally, we can imple-
ment OR Open using a standard technique where the committer commits to many pairs
of values, each pair being a random permutation of the values in the two commitments
of which he wants to open one. Then for each pair he is randomly challenged by the re-
ceiver to either uses the XOR homomorphism to show that the correct two messages were
committed, or to open one of the two commitments to the claimed value.
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How to Hide Circuits in MPC

an Efficient Framework for Private
Function Evaluation

Payman Mohassel and Saeed Sadeghian

University of Calgary

Abstract. We revisit the problem of general-purpose private function
evaluation (PFE) wherein a single party P1 holds a circuit C, while each
Pi for 1 ≤ i ≤ n holds a private input xi, and the goal is for a subset (or
all) of the parties to learn C(x1, . . . , xn) but nothing else. We put forth a
general framework for designing PFE where the task of hiding the circuit
and securely evaluating its gates are addressed independently: First, we
reduce the task of hiding the circuit topology to oblivious evaluation of
a mapping that encodes the topology of the circuit, which we refer to
as oblivious extended permutation (OEP) since the mapping is a gener-
alization of the permutation mapping. Second, we design a subprotocol
for private evaluation of a single gate (PFE for one gate), which we refer
to as private gate evaluation (PGE). Finally, we show how to naturally
combine the two components to obtain efficient and secure PFE.

We apply our framework to several well-known general-purpose MPC
constructions, in each case, obtaining the most efficient PFE construction
to date, for the considered setting. Similar to the previous work we only
consider semi-honest adversaries in this paper.

1 Introduction

In a private function evaluation (PFE) protocol, a party P1 holds a function
f , and its corresponding circuit Cf , while every party Pi holds a private input
xi; their goal is for a subset (or all) of the parties to learn f(x1, . . . , xn) with-
out learning any information beyond this. In particular, besides the size of the
circuit, and the length of P1’s inputs and outputs, Pi (i ≥ 2) should not learn
anything else about the circuit. This is in contrast to the standard setting for
secure multi-party computation where the function f and the corresponding cir-
cuit Cf are publicly known to all the participants. PFE is particularly useful
in scenarios where learning the function compromises privacy, reveals security
vulnerabilities, or when service providers need to hide the function or a specific
implementation of it to protect their Intellectual Property. A number of papers
in the literature have considered the design of efficient general-purpose private
function evaluation protocols [1,2,3,4].

Solutions Based on Universal Circuits. Most general-purpose PFE solu-
tions reduce the problem to secure computation of a universal circuit Ug that
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c© International Association for Cryptologic Research 2013
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takes as input the circuit Cf (with at most g gates), and the parties’ private
inputs x1, . . . , xn, and outputs f(x1, . . . , xn). The main objective of this line
of work is to design smaller size universal circuits, and to optimize their im-
plementation using existing MPC constructions such as Yao’s garbled circuit
protocol [2,5,3].

The Universal circuit approach works with any secure MPC protocol for evalu-
ating boolean circuits and is applicable to both the two-party and the multi-party
settings. Its main disadvantage, and the main motivation for other alternatives
is the additional overhead in efficiency due to the size of universal circuits and
the complexity of designing and implementing such circuits. Valiant [6] showed
a construction of a boolean universal circuit achieving an optimal circuit size of
|Ug| ≈ 19g log g. Kolesnikov and Schneider [2] gave an alternative construction of
universal circuits. They obtain a worse asymptotic bound of |Ug| ≈ 1.5g log2 g,
but their techniques lead to smaller constant factors and seem to yield smaller
universal circuits than Valiant’s construction for circuit sizes less than 5000.
Furthermore, the universal circuit approach does not provide a satisfactory so-
lution in case of arithmetic circuits. While universal arithmetic circuits exist
(e.g. see [7] and [8]), their sizes are too large for any practical purpose (e.g. as
high as O(g5)).

Solutions Based on Homomorphic Encryption. It is relatively easy to de-
sign a PFE based on a fully homomorphic encryption scheme [9]. While asymp-
totically optimal, this solution is not practical due to its high computational cost.
Recently, Katz and Malka [4] designed a novel two-party PFE protocol based on
a singly homomorphic encryption. Complexity of the resulting protocol is linear
in the size of the circuit but the number of public-key operations is also linear
in the size of the circuit. Standard techniques for reducing public-key operations
(e.g. OT extension) do not seem applicable either. Given the significant gap be-
tween the efficiency of public- vs. symmetric-key operations, this new approach
improves over the universal circuit only when dealing with large circuits. Finally,
this solution only works in the two-party setting.

Our Contribution. Practical design and implementation of MPC has been the
subject of active research in the last few years. As discussed above, however,
when it comes to PFE the situations is not the same. The existing solutions are
considerably less scalable and more expensive compared to their MPC counter-
parts, and no good solution exists for the multiparty case, or when considering
arithmetic circuits. We revisit private function evaluation with the intention of
designing more practical two-party and multi-party constructions. In particular,
we put forth a general framework for designing PFE and show how it enables us
to construct more efficient PFE variants of the well-known MPC protocols.

Our Framework for Designing PFE. In order to fully hide a circuit C, one needs
to hide two types of information about it: (i) the topology of the circuit, and (ii)
the function of the gates in the circuit (AND, OR, XOR). Note that these are in
addition to what is already hidden in a MPC setting. Following this observation
we divide the task of private function evaluation into two different functionalities:
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(1) the Circuit Topology Hiding (CTH) functionality, and (2) the Private Gate
Evaluation (PGE) functionality. Next, we describe these two functionalities in
more detail:

CTH Functionality. We observe that the topology of a circuit C can be fully
described using a mapping πC : {1 . . . |OW|} → {1 . . . |IW|} where OW (outgoing
wires) is the union of the set of input wires {ow1 = x1, . . . , own = xn}, and the
output wires for each non-output gate in the circuit {own+1, . . . , own+g−o} (g is
the circuit size and o is the number of output gates), and IW (incoming wires) is
the set of input wires to all the gates in the circuit {iw1, . . . , iw2g}. πC maps i to j
(πC(i) = j) if and only if wire owi ∈ OW is connected to iwj ∈ IW, in the circuit C.
Note that since the fan-out for each gate can be more than one, πC is not always
a function, but it is easy to check that its inverse π−1C is. Note that the party
who knows the function f and the corresponding circuit C can efficiently compute
πC . Figure 1 demonstrates an example circuit and its corresponding mapping.
Intuitively the FCT H functionality provides a mechanism for obliviously applying
the mapping πC to the n input values and the (g − o) values for intermediate
outgoing wires (i.e. mapping them to incoming wires) in an on-demand fashion,
and as the MPC protocol proceeds.

PGE Functionality. The PGE functionality can be seen as a PFE protocol where
the function is a single gate. P1 provides the gate’s functionality, while all parties
including P1 provide their shares of the two inputs to the gate. The functionality
returns to each party, his share of the gate’s output.

These two functionalities can be naturally composed to obtain a complete
PFE protocol as described in Figure 4. A visual demonstration of the steps
appears in Figure 2.

Efficient Realizations of FCT H. We refer to the mapping πC : {1 . . . |OW|} →
{1 . . . |IW|} discussed above as an extended permutation (EP) since it not only
permutes the elements in {1 . . . |OW|}, but also can replicate them as many
times as needed. A main component of our FCT H realization is a protocol for
oblivious evaluation of this extended permutation (OEP) on a vector of inputs:
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Fig. 1. An example circuit and the corresponding mapping
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the first party holds πC and a blinding1 vector t of size |IW|, while the second
party holds an input vector x of size |OW|. Their goal is to let the second party
learn the output of πC applied to x, blinded by t. Neither party should learn
anything else. OEP can be instantiated using a singly homomorphic encryption,
or any general-purpose 2PC. As discussed in the Full version, however, neither
solution is efficient enough for use in practice. We introduce a new and efficient
construction for OEP based on generalized switching networks and oblivious
transfer.

OEP via Generalized Switching Networks. First, we show how to efficiently
implement an extended permutation using a generalized switching network SN.
Once the EP is represented using a SN, we solve the OEP problem by designing
a new OT-based protocol for Oblivious Switching Network evaluation (OSN)
where one party P1 holds the selection bits to SN, and a blinding vector t, while
the other party P2 holds the input vector x to the SN. The goal is for P2 to learn
the output of SN applied to the input vector x, blinded by t. Our OSN protocol
runs in a constant number of rounds and requires O(g) oblivious transfers where
g is the number of switches in the network. We also need a multiparty variant of
our OEP protocol where the mapping is known to a single party while the input
vector x and the blinding vector t are shared among the players. We show how
to construct such an m-party OEP protocol via m invocations of the two-party
version.

2j − 1

2j

1

2g

1

n+ j − o

n+ g − o

CTH

Reveal(2j − 1)

Reveal(2j)

[a]i

[b]i
If P1 then Gj

PGE

OMAP([c]i, n + j − o)
[c]i

PGE(Gj, [a], [b])

1

2

3

Fig. 2. Steps of framework for party i and the jth gate in a topological order

Improved Oblivious Shuffling. Digressing from the main topic of this paper, we
note that OSN is a generalization of the previously studied problems such as
oblivious shuffling [10] (a subprotocol used for private set intersection), or se-
cure two-party permutation [11,12]. Our new construction yields more efficient
solutions to these problems as well, improving on the previous proposals based

1 The nature of blinding is intentionally left unspecified as different protocols may use
different blinding functions. Our constructions use XOR or addition in a finite Ring
for this purpose.
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Table 1. Comparison of oblivious shuffling protocols. N is number of shuffled elements,
� is the length of each, and k is the security paremeter.

Oblivious Shuffling Protocols Asymptotic Complexity

HE-Based O(N) Asym.

Garbled Circuit-Based [10] ( 4�(N logN−N+1)
3

+ 2N�) Sym. + O(k) Asym.

OSN-Based (our paper) (2N logN − 2N + 2) Sym. + O(k) Asym.

on garbled circuit implementation of sorting networks, permutation networks,
or randomize shell sort [10,11,12]. See Table 1 for efficiency comparison with
previous work.

Applying our Framework to Existing MPC. We apply the above framework to the
GMW protocol [13], Yao’s garbled circuit protocol [14], and secure computation
of arithmetic circuits via homomorphic encryption [15]. In each case we obtain
the most efficient PFE construction to date, for the considered setting.

Linear Multi-party PFE. We apply our framework to the seminal GMW
protocol [13] to obtain a multiparty PFE against a dishonest majority. The
CTH component can be instantiated using either the HE-based or the SN-based
OEP discussed above. We also design a simple and efficient multiparty PGE
functionality given a multiparty OT as in [16]. To the best of our knowledge,
this is the first multiparty PFE besides the generic solutions of applying MPC to
universal circuits. When instantiated using a HE-based OEP, it yields the first
multiparty PFE with linear complexity (in the circuit size) and when instantiated
using our new SN-based OEP, it yields a black-box construction based solely on
OT. What makes the second instantiation desirable from a practical point of
view, as demonstrated in some recent GMW implementations [17,18], is that it
only uses oblivious transfers. As a result, one can use OT extension [19] and
pre-processing techniques [20] to significantly reduce the number of public-key
operations, and to shift the bulk of the computation to an offline phase. Table 2
compares the efficiency of these two constructions with the only other alternative,
i.e. using GMW with universal circuits.

Table 2. Comparison of m-party PFE protocols. g denotes the number of gates.

Multi-Party PFE Complexity

[2] Universal Circuits O(m2g log2 g) Sym. + O(k) Asym.

[6] Universal Circuits O(m2g log g) Sym. + O(k) Asym.

GMW-PFE (SN-OEP) O(m2g +mg log g) Sym. + O(k) Asym.

GMW-PFE (HE-OEP) O(m2g) Sym. + O(mg) HE. + O(k) Asym.

More Efficient Two-party PFE. We also design a constant round two-
party PFE based on Yao’s garbled circuit protocol [14]. Once again, the FCT H
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functionality is realized using our OEP constructions and for the FPGE func-
tionality we use Yao’s garbling/ungarbling algorithms. To ensure that functions
of the gates are hidden, we build the circuit entirely out of NAND gates. As we
will see in Section 5.3, multiple subtleties need to be addressed for this work and
in particular to guarantee that the circuit evaluator can unblind garbled keys
during the evaluation of the garbled circuit without learning the values for the
intermediate wires.

We note that the construction of [4] also fits in the general framework de-
scribed above (though not presented in this way). However, our new abstraction
helps us gain more efficiency improvements. When using our HE-OEP, we ob-
tain a two-party PFE with linear complexity that is simpler and more efficient
than that of [4] (see Full Version for details), and when implemented using our
SN-OEP, the resulting protocol is concretely more efficient for most circuit sizes,
since the number of public-key operations can be made independent of the circuit
size (via OT extension). Our construction is both asymptotically and concretely
more efficient than the previous work of [2] based on universal circuits. It is
concretely more efficient than Valiant’s construction [6]. Table 3 summarizes ef-
ficiency comparison of our two-party PFE with all previous constructions. In
the full version of this paper [21], we show (thorough operations counting) that
our construction concretely improves over previous constructions for benchmark
circuits such as AES, RSA and Edit-distance.

Linear 2PC for Arithmetic Circuits. We also apply our framework to the
construction for secure computation of arithmetic circuits based on a homomor-
phic encryption [15], and obtain the first two-party PFE for arithmetic circuits
with linear complexity. Besides utilizing our FCT H realizations, we instantiate
the FPGE functionality by designing a secure gate evaluation protocol wherein
only one party knows/learns the functionality (multiplication or addition) but
both parties learn their share of the output (product or sum).

Table 3. Comparison of 2-party PFE protocols. (HM: Homomorphic Multiplication,
HA: Homomorphic Addition, HE: Homomorphic Encryption). Last column shows con-
crete gain over universal circuit approaches for benchmark circuits, AES, RSA and
Edit-distance (refer to Full version for detailed discussion). g denotes the number of
gates.

2-Party PFE Complexity Gain

[2] 1.5g log2 g sym. + O(k) Asym. 3-6

[6] 19g log g sym. + O(k) Asym. 2

[4] O(g) Sym. + O(g) (HE+HM+HA) + O(k) Asym. -

Yao-PFE (HE-OEP) O(g) Sym. + O(g) (HE+HA) + O(k) Asym. -

Yao-PFE (SN-OEP) O(g log g) Sym. + O(k) Asym. 1
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2 Preliminaries

Notations. For a set D, we denote its size by |D|. We use the same notation to
show the size (number of gates) of a circuit C. We denote a vector by v. We use
[a] to denote secret sharing of a value a among multiple parties. We intentionally
do not specify the sharing scheme used. In our constructions we use a number of
different schemes such as XOR sharing, and additive sharing over a finite ring.
We denote the ith party’s shared by [a]i. We use {1...n} to denote the set of
positive integers less than equal to n.

Generalized Switching Networks. A switching network SN is a set of inter-
connected switches that takes N inputs and a set of selection bits, and outputs
N values. Each switch in the network accepts two �-bits strings as input and
outputs two �-bit strings. In our generalized notion of a switch, each of the two
output strings can take the value of each of the two input strings. Therefore,
assuming input values (x0, x1), and output values (y0, y1), four different switch
types are possible. The two selection bits s0 and s1 determine the switch type.
In particular, the output of the switch will be y1 = xs1 ,and y0 = xs0 . In the rest
of the paper, we drop the term generalized and simply refer to these networks
as switching networks.

Definition 1 (Mapping for a Switching Network). The mapping π :
{1...N} → {1...N} corresponding to a switching network SN is defined such
that π(i) = j if and only if after evaluation of SN on the N inputs, the value of
the input wire i is assigned to the output wire j (assuming a standard numbering
of the input/output wires).

Note that the mapping π need not be a function since the value for each input
wire maybe mapped to multiple output wires in the network. On the other hand,
π−1 is always a function.

Permutation Networks. A permutation network PN is a switching network
for which the mapping is a permutation. In constructing a permutation network,
one only needs to use two of the four switch types described above. Particularly,
for each switch (also called a permutation cell) with inputs I0 and I1, one se-
lection bit is sufficient to select between the two possible outputs (I0, I1) and
(I1, I0).

An optimal construction for a permutation network was proposed by Waks-
man [22]. The main theorem of [22] states that for any N power of 2, there exists
a permutation network with N logN −N +1 switches, and depth of 2 logN − 1.
We refer the reader to [22] for the details of the construction which can be
efficiently implemented with O(N logN) complexity.

In the remainder of the paper, if a switch takes two selection bits, we refer to
it as a 2-switch, and otherwise we use the term 1-switch.

Security Definitions. Security definitions are the standard notions of security
against semi-honest adversaries (see Full version).
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3 Our Framework for Designing PFE Protocols

Similar to the previous work on private function evaluation, we assume that
the following information about the circuit is publicly known: the number of
gates in the circuit, the number of each party’s input wires, and the number of
output wires. Everything else about the circuit is considered private information.
We aim to hide the circuit through the CTH and PGE functionalities discussed
earlier. In this section we formally describe these functionalities and explain how
they can be combined to obtain a PFE.

Our interpretation of sharing (denote using []) in the following discussion
is very general. In the GMW-based PFE we use XOR sharing, for arithmetic
circuits we use additive shares over a finite ring, and in Yao’s garbled circuit,
one party holds one random key (in a key pair) while the other party holds the
mapping of each key to its actual bit value.

The FCT H functionality with circuit parameters n (number of input wires),
g (number of gates), o (number of output wires), and internal variables
Out[i, j] for 1 ≤ i ≤ m and 1 ≤ j ≤ 2g where m is the number of parties,
and Out[i, j] denote Pi’s share for the value of the j-th incoming wire in
the circuit.
Parties Setup: P1 computes the mapping πC corresponding to cir-

cuit C. He also generates m random vectors ti, 1 ≤ i ≤ m, where
ti =< ti[1], . . . , ti[2g] >. Pi for 2 ≤ i ≤ m generates a random key vector
ki =< ki[1], . . . , ki[2g] >.
On Queries:

OMAP([x], j):

– P1’s Input: πC, t1, . . . , tm.
– Pi’s (1 ≤ i ≤ m) Input: [x]i, ki, index j for outgoing wire owj .

It sends to P1, Out[i, l] = [x]i ⊗ ki[l]⊗ ti[l] for all l where πC(j) = l. Other
parties do not receive any output.

Reveal(j):

– Pi’s (1 ≤ i ≤ m) Input: index j for the incoming wire iwj .

It reveals Out[i, j] to Pi for i ≥ 2. (Note that Pi can unblinds Out[i, j] using
ki[j] and recover his fresh random share of [x]i ⊗ ti[j].)

Fig. 3. The Circuit-Topology Hiding Functionality (FCT H)

CTH Functionality. As described in the introduction, the interconnection of wires
in the circuit can be represented by a mapping πC . The CTH functionality is
responsible for obliviously applying this mapping to the values of the input
wires and the intermediate wires in the circuit, in an on-demand fashion. Our
definition of the CTH functionality captures this useful property refered to as
on-demand mapping via use of the OMAP/Reveal queries. The OMAP queries
allow the participants in the CTH to feed their shares of the values for each
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outgoing wire to the mapping (individually) and obtain the mapped/blinded
outcomes for each incoming wire through the Reveal queries. Our new realization
of the CTH functionality as well as the existing constructions all possess the on-
demand property (see full version). Figure 3 describes the CTH functionality
more formally.

The role of vectors k is to prevent P1 from learning the other parties’ shares
and the role of vectors t is to hide P1’s mapping πC from the other parties. The
operator⊗ is used to denote a blinding operation. Depending on the CTH realiza-
tion, the blinding operation can be XORing, modular addition, or homomorphic
addition using an additively homomorphic encryption.

The PGE Functionality.The PGE functionality can be seen as a PFE protocol
where the function is a single gate. A formal description is as follows.

Inputs: P1’s input is G, [a]1, [b]1. Pi’s input (i ≥ 2) is [a]i, [b]i.
Output: Pi’s output is fresh random shares of G(a, b), i.e. [c]i = [G(a, b)]i

Our PFE Framework. These two functionalities can be naturally composed to
obtain a complete PFE protocol as described in Figure 4. Our framework can
be seen as a way to extend a PFE protocol for one gate (PGE) to a PFE pro-
tocol for the complete circuit (by employing the CTH functionality). We give
an overview next. In the initialization phase, P1, knowing the circuit C, sorts
the gates topologically and computes the mapping πC corresponding to it. Next,
each party distributes shares of its input to all parties. The idea is for the parties
to send the value of each outgoing wire to the CTH functionality as soon as it is
ready. Hence, at the start of the protocol they send shares of their input values
to FCT H (the input wires are the first set of outgoing wires in the circuit). The
FCT H maps these values to the corresponding incoming wires (through OMAP
queries). This ends the initialization phase. Parties then individually evaluate
the gates. For the current gate being evaluated, parties obtain their shares for
the two input values using two Reveal queries to the FCT H. Next, parties invoke
the PGE functionality to receive fresh random shares for the output of the cur-
rent gate. Parties send these newly learnt shares to the CTH functionality and
repeat the process until all gates are evaluated.A visual demonstration of the
steps appears in Figure 2.

Theorem 1. Given secure realizations of FCT H and FPGE against semi-honest
adversaries, the above PFE framework is secure against semi-honest adversaries.

4 Realizing the CTH Functionality via OEP

What is an Extended Permutation? Before describing our construction in more
detail, we need to explain the notion of an extended permutation. Recall that a
mapping π : {1...N} → {1...N} is a permutation if it is a bijection (i.e. one-to-
one and onto). An extended permutation generalizes this notion as follows:

Definition 2 (Extended Permutation). For positive integers M and N , we
call a mapping π : {1...M} → {1...N} an extended permutation (EP) if for
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every y ∈ {1...N} there is exactly one x ∈ {1...M} such that π(x) = y. We often
denote x by π−1(y).

Note that in an extended permutation, unlike a standard permutation mapping,
the mapping can also replicate/omit elements (as many times as needed) hence
allowing the range to be larger or smaller than the domain.

CTH and the OEP Problem. To realize the CTH functionality we have to imple-
ment n+g−o OMAP queries, one for each outgoing wire, and 2g Reveal queries,
one for each incoming wire. When combined, these OMAP/Reveal queries nat-
urally form a problem we refer to as oblivious evaluation of the extended permu-
tation (OEP). We define the two-party OEP problem here. In the full version,
we describe a natural generalization of the problem to the m-party case and
show how to efficiently realize it using m invocations of the two-party variant
(wee need the multiparty variant for our GMW-based PFE).

P1’s Inputs: The circuit C with g gates, n input wires, and o output gates.
Denote the corresponding mapping by πC.
Pi’s Input (1 ≤ i ≤ m): xj for all input wires j in the circuit belonging
to Pi.
Outputs: For 1 ≤ i ≤ m, Pi learns his share of the values for the output
wires.

Initialization:

1. P1 sort the gates in the circuit, topologically. Denote the ordered gates
by G1, . . . , Gg .

2. For 1 ≤ i ≤ m, Pi distributes shares of his inputs among all parties.
3. For 1 ≤ j ≤ n, parties make the query OMAP([xj ], j) to the FCT H.

Private Function Evaluation:
For 1 ≤ j ≤ g:

1. Parties make the queries Reveal(2j − 1) , and Reveal(2j) to the FCT H.
Denote the output Pi receives by [a]i and [b]i, respectively.

2. Parties invoke the FPGE where Pi’s input is ([a]i, [b]i), while P1’s input
also includes the gate functionality (Gj). Each party Pi receives its
share of the gate’s output, i.e. [Gj(a, b)]i.

3. If j < g − o, parties send the query OMAP([Gj(a, b)], n+ j) to FCT H.

For g − o < j ≤ g, parties reveal their shares of [Gj(a, b)], and everyone
reconstructs the value of the o output wires.

Fig. 4. A General Framework For m-Party PFE of Circuits

Definition 3 (The Two-party OEP Problem: 2-OEP(π,x, t)). In this prob-
lem, the first party P1 holds an extended permutation π : {1...M} → {1...N} for
two positive integers M and N , and a blinding vector t = (t1, . . . , tN ) while the
second party P2 holds a vector of inputs x = (x1, . . . , xM ). Both the xis and
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tis are �-bit strings where � is a positive integer. At the end of the protocol, P2

learns (xπ−1(1) ⊕ t1, . . . , xπ−1(N) ⊕ tN )2, while P1 does not learn anything.

4.1 A New OEP Protocol

Next, we design a novel OEP protocol that improves on the efficiency of the
above constructions. First, we show how to efficiently implement any extended
permutation using a switching network. Then, we design a new and efficient
protocol for oblivious evaluation of a switching network (OSN).
Building EPs out of Switching Networks. We first show how to construct an
extended permutation using a switching network. Note that in a switching net-
work, the number of inputs and outputs are the same which is in contrast
to an extended permutation. Since for circuits we only deal with the case of
N ≥ M , the switching network we build for simulating an extended permuta-
tion π : {1...M} → {1...N}, takesM real inputs of the EP and N−M additional
dummy inputs.

We divide the switching network into three components: (i) dummy-value
placement, (ii) replication, and (iii) permutation (See Figure 5). Each component
takes the output of the previous one as input.

Dummy-value Placement Component. takes the real and dummy values as
input and for each real input that is mapped to k different outputs according to
π, outputs the real value followed by k − 1 dummy values. This is repeated for
each real value. This process can be efficiently implemented using a Waksman
permutation network.

Replication Component. takes the output of the previous component as in-
put. It directly outputs each real value but replaces each dummy input with
the real input that precedes it. Each replacement can be implemented using a
1-switch (with a single selection bit) choosing between rows 1 and 3 of Figure 5
(a), as discussed in Section 2. The entire replication phase can be implemented
using N − 1 such switches. At the end of this step, we have the necessary copies
for each real input and the dummy inputs are eliminated.

Permutation Component. takes the output of the replication component
as input and permutes each element to its final location as prescribed by π.
Once again, this can be efficiently implemented using a Waksman permutation
network.

Size of the Switching Network for an EP. Adding up the three components,
the total number of 1-switches needed to implement the extended permutation
described above is 2(N logN −N + 1) +N − 1 = 2N logN −N + 1.

Oblivious Evaluation of Switching Networks (OSN). Next, we design a new and
efficient protocol for oblivious evaluation of a generalized switching network.
In this problem, P2 holds the input vector x while P1 holds the selection bits

2 For simplicity we use XOR as the blinding function but one can replace XOR with
any other natural blinding function.
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Fig. 5. (a) A 2-Switch (Left), (b) A Switching Network for an EP (Right)

into the switching network, and a blinding vector t. P2 learns the output of
the network on his vector x blinded using vector t. We start with a high level
overview. A complete description appears in the full version.

Secure Evaluation of a Single 2-Switch. The idea can be best explained by de-
scribing the procedure for secure evaluation of a single 2-switch u in the network.
Consider a 2-switch with input wires wi and wj and output wires wk and wl.
P2 assigns four uniformly random values ri, rj , rk, rl to the four wires. P1 holds
the blinded values xi ⊕ ri and xj ⊕ rj for the two input wires. The goal is to
let P1 learn the blinded values for the output wires (see Figure 5). Particularly,
depending on the value of his two selection bits s0(u) and s1(u), P1 learns one of
the four possible output pairs: (xi⊕rk, xj⊕rl), (xi⊕rk, xi⊕rl), (xj⊕rk, xi⊕rl),
or (xj ⊕ rk, xj ⊕ rl).

To implement this step, P2 creates a table with four rows: (ri ⊕ rk, rj ⊕ rl),
(ri ⊕ rk, ri ⊕ rl), (rj ⊕ rk, ri ⊕ rl), and (rj ⊕ rk, rj ⊕ rl). Then, P1 and P2 engage
in a 1-out-of-4 oblivious transfer in which P2’s input is the four rows of the
table he just created, and P1’s input is his two selection bits for the switch u.
Without loss of generality suppose that P1’s selection bits are 0, and 0. Hence,
P1 retrieves the first row in the table, i.e. (ri⊕ rk, rj ⊕ rl). He then XORs xi⊕ ri
and ri ⊕ rk to recover xi ⊕ rk and XORs xj ⊕ rj and rj ⊕ rl to recover xj ⊕ rl,
i.e. the blinded values for the output wires.

Evaluating the Entire Switching Network. The above protocol can be extended
to securely evaluate the entire switching network in constant round. In an offline
stage, P2 generates a set of random values for every wire in the network, and
computes a table for each as described above. Then, P1 and P2 engage in a series
of parallel 1-out-of-4 oblivious transfers, one for each switch, where P1 learns a
single row of each table according to his selection bits.

In the online stage, P2 blinds his input vector using the randomness for the
input wires, and sends them to P1. P1 now has all the information necessary
to evaluate the switches in the network in a topological order, and recover the
blinded values for the output wires (at this stage, P1 locally performs a sequence
of XORs discussed above). He then applies an additional layer of blinding using
his random vector t, and returns the result to P2. P2 can remove his own blinding
(i.e. the randomness he generated for the output wires in the network) to learn
the output of the switching network blinded only with P1’s vector t.

The above OSN protocol runs in a constant number of rounds and requires
one invocation of an oblivious transfer per switch in the network. We omit the
proof of the following theorem.
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Theorem 2. In the OT-hybrid model, the above OSN protocol (and the resulting
OEP) is secure against semi-honest adversaries.

Efficiency of the New OEP. We can now evaluate the efficiency of the OEP
protocol that results from applying our OSN construction to the switching
network corresponding to an EP. As discussed earlier, the total number of
switches needed to implement an extended permutation π : {1...M} → {1...N}
is 2N logN −N +1. Furthermore, we only need to use 1-switches to implement
an EP which means we only need 1-out-of-2 OT as opposed 1-out-of-4 OT. This
yields an OEP protocol with O(k) public-key operations and 4N logN − 2N +2
symmetric-key operations. The communication of the protocol is dominated by
O(N logN) hash values.

How OSN Realizes FCT H Queries. It remains to show how our OSN implemen-
tation of OEP realizes the queries in FCT H. While it is obvious that our OSN
protocol securely performs all the OMAP/Reveal queries combined, for it to fully
satisfy the CTH, we need the ability to make these queries on-demand (see full
version for details).

5 Efficient PFEs from MPC

5.1 Multi-Party Private Function Evaluation

In this section we apply our framework to the seminal GMW protocol to obtain
a multi-party PFE variant. In particular, we need to describe how the CTH and
the PGE functionalities are designed and then plug them into the framework
to obtain the desired multiparty PFE. We implement the PGE functionality by
means of a multi-party private gate evaluation (m-XOR-PGE(G, a, b)) protocol.
In such a protocol, only P1 knows the functionality of the gate G while each
party holds his XOR share of the input bits a and b and obtains his XOR share
of the output bit G(a, b). See full version, for an efficient instantiation based on
oblivious transfer. The protocol requires the same number of OTs as a single
gate evaluation in the standard GMW. Hence, making the gate functionality
private comes for free in terms of computation or communication.

For the CTH functionality, we can use the multiparty variant of either the
HE-OEP or the SN-OEP constructions discussed earlier, where each party uses
his XOR shares of the outgoing wires as input to the OEP and obtains his share
of the value for the incoming wires.

The following theorem is implied by the security of our framework
(Theorem 1), secure instantiations of the OEP and the PGE functionalities and
a standard sequential composition theorem [23].

Theorem 3. Given that the OEP and m-XOR-PGE protocols are secure against
semi-honest adversaries, the Multi-Party PFE protocol based on our framework
is also secure against semi-honest adversaries.
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Efficiency. The resulting protocol requires a single invocation of the m-OEP
protocol (even though the protocol is executed in an on-demand fashion), and
one invocation of the m-XOR-PGE per gate. Using the HE-OPE instantiation, we
obtain a protocol with linear complexity (linear number of exponentiations), and
using the SN-OPE, we obtain a protocol that uses O(m2g+mg log g) invocations
of OT (O(m2g) for the PGE andO(mg log g) for the OEP). The number of rounds
is equal to the number of gates since they are evaluated sequentially.

5.2 Private Function Evaluation for Arithmetic Circuits

PGE for Arithmetic Circuits. Let E = (Gen,Enc,Dec) be a semantically secure
and additively homomorphic encryption scheme. Suppose a = [a]1 + [a]2 and
b = [b]1 + [b]2 are the inputs to the gate, and c = [c]1 + [c]2 is the output of the
gate (where the addition occurs over the domain of plaintexts for the encryption
scheme). [a]i, [b]i, [c]i are the shares of Pi. In order to hide the functionality of
the gate, we design a PGE protocol in which P2’s actions are independent of
the functionality of the gate (i.e. addition or multiplication). To achieve this, P2

sends to P1 encryption of [a]2, [b]2, and [a]2[b]2. Given these three ciphertexts,
P1 can compute an encryption of both the sum and the product of a and b using
homomorphic properties of the scheme. He then sends an encrypted random
shares of the outcome to P1 to decrypt (See Full version for details). It is easy
to see that the protocol is secure again semi-honest adversaries if the encryption
scheme is semantically secure. We omit the proof of the following theorem.

Theorem 4. Given E = (Gen,Enc,Dec) a semantically secure encryption
scheme, 2-Arith-PGE protocol is secure against semi-honest adversaries.

We plug in the above PGE and our HE-OEP protocols in our general frame-
work to obtain an efficient and secure 2PC for arithmetic circuits with linear
complexity. The following theorem is implied by the security of our framework
(Theorem 1), secure instantiations of the OEP and the PGE functionalities and
a standard sequential composition theorem [23].

Theorem 5. Given that the OEP and 2-Arith-PGE protocols are secure against
semi-honest adversaries, the 2-Party Arithmetic PFE protocol based on our
framework is secure against semi-honest adversaries.

Efficiency. Each PGE invocation requires a constant number of public-key oper-
ations adding up to a total of O(g) public-key operations. The HE-OEP has a
linear complexity leading to a PFE protocol with similar complexity. The number
of rounds is equal to the number of gates since they are evaluated sequentially.

5.3 A Constant-Round Two-Party PFE

In this section we apply the PFE framework to Yao’s garbled circuit protocol.
We only describe the high level ideas here. A full description of the protocol
(2-PFE) appears in the Full version of the paper [21]. At first sight, it may not
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be obvious how to interpret the sharing mechanism in Yao’s protocol. But a
closer look at the garbling and evaluation steps reveals that the bit value a for
a wire in the circuit is shared by having P2 (garbler) hold the mapping of a pair
of random keys to their bit value (k0 → [a]2,k

1 → [a]2), and P1 (the evaluator)
holding one of the two keys (k[a]1). Note that one may wonder why we do not
simplify the sharing scheme by always letting [a]2 = 0. But such a sharing would
indeed be insecure in our PFE framework, and more specifically would allow the
evaluator to learn values for the intermediate wires as he evaluates the circuit
(since he creates and knows the mapping of keys). Making the CTH component
work with this sharing scheme turns out to be the main technical difficulty in
designing an efficient Yao-base PFE.

General Idea. Recall Yao’s garbled circuit protocol in the semi-honest case. In
our construction, the evaluator is the party who holds the circuit, while we
intend to hide the circuit from the garbler. We need to hide the topology of the
circuit from him using the CTH functionality: first, the Garbler generates his
own random shares for the output wires of all the gates in the circuit (i.e. the
permuted garbled key pairs for all those wires). Next, he sends all his shares
to the CTH functionality, and receives his output which are his shares for the
input wires to all the gates in the circuit (i.e. garbled key pairs for all those
wires). The garbler now has all garbled keys he needs to garble the circuit. If
we assume that all the gates are NAND, there would be no need to hide the
gates functionalities. Therefore, our FPGE functionality realization consists of
the normal garbling of the gates by the garbler and the standard evaluation of
the gates by the evaluator. Next, we go into the details of each component and
address some of the subtleties that arise.

PGE Realization. Realization of the FPGE functionality is simple. Lets assume
that the inputs are shared using the above sharing scheme. P2 first randomly
generates his own share of the output wire for the current gate, which is basically
generating two random keys and assigning them to bits zero and one. He then
sends his share to CTH functionality. Upon receiving his shares for input wires
to the gates, from CTH functionality, P2 garbles each gate using his shares for
the input and output wires of the gate. He then sends the garbled gates to P1

who can use his own share of the input wires to ungarble a single row and learn
his own share of the output wire.

We now need to integrate our CTH realization with the above PGE construc-
tion. For this to work, we need to modify our standard CTH realization, particu-
larly to make sure that its outputs are fresh shares based on the sharing scheme
above (i.e. [a]1 and [a]2, and the key pair are fresh and random).

CTH Realization. During the evaluation, P1 needs to XOR his share with its cor-
responding blinding value(s) to obtain his correct input share for evaluating the
next garbled gate. But observing which blinding value enables correct decryption
of the next garbled gate (potentially) reveals the value of that intermediatewire.To
avoid this issue, we need to ensure that the shares generated by the CTH are truly
random. In particular,we need to ensure that P1 cannot associate the first blinding
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with key 0 and the second blinding with key 1. As a first solution,
P2 randomly swaps the key pairs to prevent such association by P1.

P2 Swaps Each Key Pair Randomly. We solve this problem by having P2

swap each key pair randomly and independently (using a random bit-vector v)
before using them in the OMAP queries (for the CTH). Each pair should be
swapped using a different bit since using the same bit would reveal whether the
bit values for certain intermediate wires are the same or not. If the first(second)
blinding is used for two or more wires we learn that their value is the same,
though we don’t know if it zero or one. This solves the issue above, but under-
mines correctness of the protocol. When P2 sends the swapped key pairs to P1,
he gets back an extended permuted (and blinded) set of key pairs. As a result,
P2 does not know the correct order for each pair, and will not be able to perform
the garbling of the gates without knowing which key is for 0 and which is for 1.

P1 and P2 Jointly Swap Each Key Pair Into Its Original Form. A naive
fix would be to attach each “swapping bit” to its corresponding key pair as it
goes through the CTH, and reveal the bit to P2 as part of the output of the CTH,
who then uses it to swap the key pair back to its original order. But this would
allow P2 to learn some information about πC (and the topology of the circuit)
by comparing the swapping bits in the input and output key pairs for the CTH.

To address this issue, P1 and P2 perform this step together, each holding an
XOR share of swapping bits. In particular, the random bit vector v will be fed to
the CTH, but P2 only learns a blinded version, i.e. v′′i = vπ−1(i)⊕v′i for 1 ≤ i ≤ 2g,
where the blinding vector v′ = (v′1, . . . , v

′
2g) is only known to P1. To swap each

key pair back to its original order, P1 first swaps the pair using v
′
i, and sends it to

P2. P2 then swaps it one more time using v′′i which puts the key pair back in its
original order. Of course, at this point, the key shares are fresh and random.

If we use a homomorphic-based OEP, this solution is sufficient, but when
using the CTH functionality in a black-box way, and particularly when using
our SN-OEP construction, there is one more issue to address. The described
solution does not use the OEP in a black-box fashion, since P1 needs to swap
the outcome using v′, before sending it to P2. But if the pair is swapped using
a random bit vector not known to P2, he cannot use the appropriate random
values to unblind the result (recall the final step of the OEP where P2 removes
his blinding from the output).

P1 Does his Swapping Using an OSN Protocol. To handle this problem,
we require that P1’s swapping procedure based on the bit-vector v′ takes place
as part of an oblivious switching network evaluation where the v′is are P1’s
selection bits to the network. This requires the use of an additional layer of
switches attached to the original switching network for the OEPs. This also has
the advantage of making the usage of the OEP and the OSN protocols black-box.

When using our SN-OEP in the above construction, the total number of sym-
metric operations required for the protocol is 8g log 2g + 5g + 2. We discuss our
efficiency in detail in the Full version [21] where we also prove the following
theorem.
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Theorem 6. Given that the OSN and the OEP protocols are secure against
semi-honest adversaries, and that Yao’s protocol uses a symmetric-key encryp-
tion with related-key security, the 2-PFE protocol is secure against semi-honest
adversaries.
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Abstract. Halevi, Lindell, and Pinkas (CRYPTO 2011) recently pro-
posed a model for secure computation that captures communication
patterns that arise in many practical settings, such as secure computation
on the web. In their model, each party interacts only once, with a single
centralized server. Parties do not interact with each other; in fact, the
parties need not even be online simultaneously.

In this work we present a suite of new, simple and efficient protocols
for secure computation in this “one-pass” model. We give protocols that
obtain optimal privacy for the following general tasks:

– Evaluating any multivariate polynomial F (x1, . . . , xn) (modulo a
large RSA modulus N), where the parties each hold an input xi.

– Evaluating any read once branching program over the parties’ inputs.

As a special case, these function classes include all previous functions for
which an optimally private, one-pass computation was known, as well as
many new functions, including variance and other statistical functions,
string matching, second-price auctions, classification algorithms and
some classes of finite automata and decision trees.

1 Introduction

Most of the literature on secure multi-party computation assumes that all parties
remain on-line throughout the computation. Unfortunately, this assumption
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is problematic in many emerging environments, where the parties are often
disconnected from the network due to geographic or power constraints. Moreover,
the protocols typically require each party to broadcast a large number of
messages to the other parties, which can be quite impractical in large distributed
networks. We would like to minimize interaction to the greatest extent possible
due to practical communication and bandwidth considerations — ideally, each
party would need to send only one message.

We consider secure computation in a one-pass client-server model put forth in
a recent work of Halevi, Lindell and Pinkas [13].1 In this model, there is a single
server and multiple clients, and the goal is for the server to securely compute
some function of the inputs held by the respective clients. Each client connects
to the server once (hence “one-pass”) and interacts with it, without any other
client necessarily being connected at the same time. In particular, there is no
need for any two clients to interact. This model is applicable in settings where
maintaining constant network connectivity can be problematic — for example,
when deployed troops are communicating with the central command center. It
is also applicable in situations where the participants cannot be coordinated for
social reasons. Imagine trying to get thirty program committee members across
different time zones online at the same time to cast a vote. Instead, in the one-
pass model, each will receive an email instructing them to login to the server
at their leisure. When all participants have done so, the server can compute the
output and post the data to a website (or email it out). Similarly, if a website
would like to gather data from its visitors, it is unreasonable to ask that they
remain logged-in to the site for the duration of the computation. Instead, as they
login, they can upload the relevant data according to the protocol, assured of
their privacy, and the server can compute the agreed-upon function offline.

1.1 Security for the One-Pass Model

We briefly outline the security model for the one-pass client-server setting and
previous results of Halevi et al. [13] — hereafter, “HLP.” First, observe that
secure computation in this setting is easy if the server is always honest, and is
trusted with user data: each client simply sends its input to the server, encrypted
under the server’s public key; the server will then perform all of the computation.
However, assuming that the server is completely honest is not realistic. Instead,
we aim to protect the privacy of the honest parties’ inputs even amidst a
malicious server that may collude with some subset of the clients. Together with
the requirement that the protocol be one-pass, this imposes inherent limitations
on what we can securely compute in this model. To see why this is the case,
consider parties P1, P2, . . . , Pn computing some function f(x1, . . . , xn), where
party Pi holds xi and the parties go in order P1, P2, . . . , Pn. If the server
colludes with the last t parties, then the correctness and one-pass nature of
the protocol imply that the coalition can compute the “residual function”

1 The ideas of “non-interactive” and “one-pass” computations can be further traced
back to [19, 15]. See Section 1.3.
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f(x1, . . . , xn−t, ·, · · · , ·), on any choice of a t-tuple (zn−t+1, . . . , zn), and for
arbitrarily many such choices. In other words, inherent to this one-pass model is
the fact that parties P1, . . . , Pn−t must disclose enough information about their
inputs to allow the remaining parties to correctly evaluate the residual function
f(x1, . . . , xn−t, ·, · · · , ·). Once the last parties have this information, nothing can
prevent them from using it repeatedly. This is in stark contrast to the standard
interactive model for secure computation, where the adversary only learns the
output of the computation on a single set of inputs, and which allows us to
securely compute every efficiently computable function [20, 11].

Due to these inherent limitations of the one-pass model, the “best possible”
security guarantee that one could hope for is that the protocol reveals no more
information than what is revealed by oracle access to this residual function
f(x1, . . . , xn−t). Throughout this paper, this will be the notion we mean when
we refer to security (following [13], we will also refer to this notion as optimal
privacy); for completeness, we provide the formal definitions in Section 2.2.
HLP [13] presented practical optimally private protocols for sum of inputs,
selection, and symmetric functions like majority, and leave as an open problem
whether we can obtain practical optimally private protocols for some larger
classes of functions. Indeed, there is no clear candidate for such a larger class
of functions as the previous protocols are somewhat ad-hoc and seem to rely on
different ideas.

Even ignoring the issue of practical efficiency, the aforementioned functions
are essentially the only ones for which we have optimally private protocols. The
main technical challenge in designing optimally private protocols is as follows:
on one hand, the view yi of the server after interaction with party Pi should
encode sufficient information about the first i inputs x1, . . . , xi to be able to
compute the function f ; on the other hand, in order to establish security, the
simulator needs to be able to efficiently reconstruct the view yi given only oracle
access to the residual function f(x1, . . . , xi, ·, · · · , ·). HLP formalize this via the
notion of minimum-disclosure decomposition, which is a combinatorial property
of the function itself, providing a necessary condition for the existence of an
optimally private protocol. In addition, they demonstrate that every function
with this combinatorial property admits some optimally private protocol, albeit
a highly inefficient one. However, beyond the small classes of functions mentioned
above, they do not demonstrate that any function has such a property. Indeed,
using pseudorandom functions, they demonstrate that not all functions have a
minimum-disclosure decomposition.

1.2 Our Results

We present practical, optimally private protocols for two broad classes of
functions: (1) sparse polynomials over large domains, which capture many
algebraic and arithmetic functions of interest, such as mean and variance, and
(2) read-once branching programs, which capture symmetric functions, string
matching, classification algorithms and some classes of finite automata and
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decision trees (c.f. [16, 15]).2 Together, these two classes capture all of the
functions addressed in the previous work of HLP, and also include many more
functions of interest. One such concrete example is a second-price auction (the
n-party functionality that returns the index of the largest value along with the
second largest value). This function is asymmetric, but can be represented as a
branching program. A second-price auction with n parties and discrete bids in
the range {1, . . . , k} has an associated branching program of width nk2.

We begin by giving a simplified exposition of the protocols (achieving security
against semi-honest adversaries), and outlining the simulation strategies used in
the proof of security. In particular, the simulation strategies provide a solution
to the minimum-disclosure decomposition problem.

Computing Sparse Polynomials. Consider a sparse3 polynomial F in n variables
X1, . . . , Xn, where party Pi holds an input xi for variable Xi. The parties go in
the order P1, . . . , Pn. Consider the following polynomial:

Fi(Xi+1, . . . , Xn) := F (x1, . . . , xi, Xi+1, . . . , Xn).

Informally, party Pi will post to the server an encryption of the coefficients of
polynomial Fi. The next party Pi+1 will homomorphically evaluate an encryption
of (the coefficients of) Fi+1 given its input xi+1 and the previous encryption of
Fi (Figure 1). To do so, the encryption scheme must be homomorphic with
respect to affine functions over the integers. We are able to realize such an
encryption scheme from the DCR assumption, which leads to a one-pass protocol
for computing sparse polynomials over ZN , where N is a RSA modulus. Overall,
each party does O(M) group operations and sends O(M) group elements, where
M is an upper bound on the number of monomials in F .

To establish security of this protocol, we must show a simulator that can
efficiently reconstruct the coefficients of Fi given oracle access to appropriate
residual function, which in this case is Fi itself. (For technical reasons, the
simulator needs to reconstruct not just the encrypted coefficients but the
coefficients themselves.) We show that by querying Fi on sufficiently many
random points, the simulator can obtain the coefficients of Fi by solving a
suitable system of linear equations.

Computing Branching Programs. Consider a layered read-once branching pro-
gram, where party i holds the input xi in the i’th layer. Our protocol proceeds
by evaluating the branching program in a bottom-up manner, “percolating”
output labels from the end of the branching program towards the start node.
Accordingly, we label the output layer of the branching program L0, and layers
L1, . . . , Ln proceed up from there. The parties go in order P1, . . . , Pn, and
party Pi will post to the server an encryption of the output labels on all of
the nodes in the i’th layer. The next party, Pi+1, generates an encryption of

2 For technical reasons outlined below, our protocol for computing polynomials relies
on having a large input domain (namely, ZN). On the other hand, the nature of
branching programs makes them well-suited to functions with small input domains.
Thus these two classes of functions are somewhat incomparable.

3 That is, F can be written as the sum of poly(n) monomials.
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Fig. 1. Obtaining coefficients of Fi using the coefficients of Fi−1 and the value of xi.
Shaded boxes are encrypted values. Operations on arrows are homomorphic operations
possible in an additively homomorphic scheme.

labels in layer i + 1, given xi+1 and an encryption of labels in the i’th layer
(Figures 2 & 3). Due to the simplicity of the percolation operation, it suffices
to use an encryption scheme which is homomorphic with respect to the identity
map (i.e., re-randomizable). Such an encryption scheme may be realized from the
DCR, DDH and DLIN assumptions (the latter two instantiations are important
for compatibility with Groth-Sahai proofs [12]). Overall, each party does O(w)
group operations and sends O(w) group elements, where w is an upper bound
on the width of the branching program.
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Fig. 3. How party #1 truncates the
branching program, corresponding to
input x1 = 1

To establish security of this protocol, we must show a simulator that can
efficiently compute the labels that the protocol assigns to the layer corresponding
to the last honest party, given oracle access to the appropriate residual function.
For each node u in the i’th layer, the simulator runs a depth-first search to find
a path to u from the start node in the branching program. The path determines
a set of inputs on which to query the residual function; the result of the query
will be the label on the node u.
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The Full-fledged Protocol: More Details. The outline above is a little over-
simplified. The parties will in fact need to use a homomorphic threshold
encryption scheme, which is also re-randomizable, in order to provide “circuit
privacy” (that is, hide the homomorphic operations). Roughly speaking, the i’th
party Pi’s message will be encrypted under the public keys of parties Pi+1, . . . , Pn
and the server, so that the message will be private unless all of these parties and
the server are corrupted. The use of homomorphic threshold encryption here is
analogous to previous constructions [13].

The protocols outlined above obtain optimal privacy against only semi-honest
adversaries. To achieve security against malicious adversaries, we can use a
generic GMW-style compiler via non-interactive zero-knowledge proofs in the
random oracle model, in line with previous work. For our branching-program
protocol, we provide an alternative method, in the standard model, that relies
on Groth-Sahai proofs. The same approach does not apply to our polynomial-
evaluation protocol, since it requires an additively homomorphic encryption
scheme, and none are known that are compatible with Groth-Sahai proofs.

As with previous constructions, our protocols can often be extended to handle
arbitrary ordering of the players (which is useful in such an asynchronous
interaction setting). Indeed, this is the case for our polynomial evaluation
protocols. Our branching-program protocol can also allow for arbitrary ordering
if the function computed is such that the branching program can be adjusted “on
the fly” based on the order in which the parties show up; this is the case for all
symmetric functions, as well as some asymmetric ones such as the second-price
auction mentioned above.

Finally, we note that while the previously known constructions of [13] are
captured as special cases of our two protocols, our technical novelty over these
previous constructions is two-fold. First, for our polynomial-evaluation protocol
we provide a novel threshold homomorphic encryption scheme based on the
DCR assumption. This is important for extending the expressivity from simple
summations to more general polynomials while keeping the protocol practical.4

Second, proving security for our constructions (in particular, proving that
the functions admit minimum-disclosure decompositions) requires much more
sophisticated simulation strategies than those required by the previous work. In
particular, for the classes of functions considered previously, there is no need to
solve systems of linear equations or solve s-t connectivity, as we do in this work.

1.3 Additional Related Work

Related Constructions. Surprisingly, our result statements are similar to the
results of Harnik, Ishai and Kushilevitz [14, Section 4] for a very different
problem. They showed how to securely compute branching programs and sparse

4 Recall that if efficiency is not an issue, then we could instead rely on threshold
fully homomorphic encryption, or a threshold variant of i-hop garbled circuits [9],
as shown in [13].
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polynomials5, where every pair of parties makes a single call to an oblivious
transfer channel. In their setting, as in ours, the parties incrementally maintain
a succinct representation of the inputs of the first i parties. Beyond that
similarity, however, the security goal and the underlying communication model
are very different. Specifically, they achieve security in the standard MPC setting
where the simulator calls the ideal functionality once (there is no “one pass”
restriction); indeed, our simulation strategy is very different from theirs. An
interesting open problem is to adapt their result on linear branching programs
to our setting; the key technical obstacle appears to be solving the analogue of
s-t connectivity on the computation graph for linear branching programs.

Related Models. There is a large body of work considering the general theme
of secure computation with a restricted communication pattern. Sander, Young
and Yung [19] were the first to put forth the notion of ‘non-interactive’ secure
computation, but only in the context of two-party computation. Extensions to
the multi-party setting were addressed recently in the work of Ishai et al. [17].
These are essentially ‘two-pass’ protocols, where it is still possible to securely
compute any efficiently computable function. Secure computation in two passes
was also recently considered by Asharov et al. [1].

The notion of one-pass computation was considered by Ibrahim, Kiayias,
Yung and Zhou [15]. The notion of security is however quite different – roughly
speaking, they do not allow the server to collude with the clients, which is in some
sense the main source of technical difficulty in the model we study here; their
main goal is to minimize server’s storage. Ibrahim et al. also provided an efficient
protocol for computing branching programs in their model. We note that their
protocol is very different from ours: (1) the computation is done in a top-down
manner, whereas ours is done in a bottom-up manner; and (2) the transitions
from one layer to the next is encoded using a degree w polynomial where w is
the width of the branching program, and the parties homomorphically evaluate
a degree w polynomial on ciphertexts. The authors showed how to realize the
latter based on only the DCR assumption, whereas our protocol may be based on
either the DDH, DLIN, or DCR assumptions. The idea for evaluating branching
programs in a bottom-up manner originates in a paper of Ishai and Paskin [16]
in a different context; their main result exploits the DCR assumption to obtain
short ciphertexts.

Other Related Works. We also point out that both classes of functions we
consider in this work have been studied in several recent works in a variety
of different settings [4, 3, 18, 16, 15].

Organization. We summarize the general one-pass framework [13] (including
minimum-disclosure decomposition) Section 2. We provide a generic protocol

5 They handle sparse polynomials over bits, whereas we consider sparse polynomials
over ZN . In addition, they evaluate the branching programs top-down, whereas we
do it bottom-up.
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construction in Section 3, and show how to apply it to computing polynomials
and branching programs in Sections 4 and 5 respectively. We provide concrete
instantiations for underlying primitives in Section 6.

2 General Framework

We design our protocols in the registered public-key infrastructure (PKI) model
[2]. We assume that in an initial setup phase every party registers a public and
private key pair with a central authority and all the public keys are made known
to everyone. We discuss the exact assumptions in the full version.

2.1 Decompositions

As described above, we prove that our protocols leak only the minimum possible
information, even if the server colludes with some of the players. We assume
that parties P1, . . . , Pn interact with the server in order, with P1 going first and
Pn going last.6 As in [13], we define a decomposition of the function f that the
players are computing, by a sequence of functions f1, . . . , fn.

Definition 1 (Decomposition). For a function f : Dn → R, we define a
decomposition of f by a tuple of n functions, f1, . . . , fn, where f1 : D → {0, 1}∗,
fi : {0, 1}∗×D → {0, 1}∗ for 1 < i < n, and fn : {0, 1}∗×D → R, such that for
all (x1, . . . , xn) ∈ Dn, it holds that fn(fn−1(· · · f2(f1(x1), x2) · · · , xn−1), xn) =
f(x1, . . . , xn). We define a partial decomposition inductively as f̃1(x1) = f1(x1)
and f̃i(x1, . . . , xi) = fi(f̃i−1(x1, . . . , xi−1), xi).

Minimum-Disclosure Decompositions: As in the work of Halevi et al. [13], we use
the notion of a minimum-disclosure decomposition to argue that our protocols
reveal as little information as possible. For a function f , a decomposition of f
given by f1, . . . , fn, some fixed inputs x = (x1, . . . , xn), and for all i ∈ [n], we
define the residual function gxi (zi+1, . . . , zn) = f(x1, . . . , xi, zi+1, . . . , zn).

Definition 2 ([13]). A decomposition of function f , given by f1, . . . , fn, is
a minimum-disclosure decomposition if there exists a probabilistic, black-box
simulator S that for any set of inputs x = (x1, . . . , xn) having total length m, and
any i ∈ [n], when S is given black-box access to an oracle computing gxi (·), the
output of the simulator satisfies Sgxi (·)(m,n, i) = f̃i(x1, . . . , xi), and the running
time of Sgxi (·)(m,n, i) is polynomial in m and n.

2.2 Defining Security

Security is defined using the real/ideal world paradigm [10, 13]. In the ideal world,
there is a trusted party that computes f , which is represented by some fixed

6 As noted before, the parties can actually interact with the server in arbitrary order
for our polynomial evaluation protocol and in many cases for the branching program
protocol as well.
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decomposition, f1, . . . , fn. Each party Pi gives input xi to the trusted party. If
Pi is honest, or semi-honest, he simply uses the value xi that was found on his
input tape; a malicious Pi(z), with auxiliary information z, may use any input
of his choice. We denote the corrupted set of parties by I ⊂ {P1, . . . , Pn+1}. If
Pn+1 /∈ I (i.e. if the server is honest), the trusted party sends output f(x1, . . . , xn)
to the server. If Pn+1 ∈ I, then we let i∗ denote the largest index such that Pi∗ /∈ I
(i.e. Pi∗ is the last honest party). The trusted party ignores inputs (xi∗+1, . . . , xn)
and sends f̃i∗(x1, . . . , xi∗) to the adversary controlling I. In this case, we stress
that the trusted party does not send f(x1, . . . , xn), although this can of course be
computed by the adversaryonce he is given f̃i∗(x1, . . . , xi∗). This subtlety becomes
importantwhile proving security, because the simulatorwill have noway to extract
the input of malicious party Pj for j > i∗.

In the real world, f is computed by a sequence of protocols π = (π1, . . . , πn),
where πi is a two-party protocol between the server and Pi. Each party Pi uses
input xi in πi, and, as above, if they are honest or semi-honest, they use the
input found on their input tape. The server uses his output from πi−1 as input
to πi. Each player is also given all n+ 1 public keys, denoted by p̃k, which are
set up as described at the beginning of this Section.

Let S(z) denote an ideal-world adversary holding auxiliary input z and
corrupting some set of parties I. On input set x = (x1, . . . , xn) and security pa-
rameter κ, we denote the output of S(z) and server Pn+1 by Idealf̄ ,S(z),I(x, z, 1

κ).
Let A(z) denote a real-world adversary holding auxiliary input z and corrupting
the set of parties I. On input set x = (x1, . . . , xn) and security parameter κ, we
denote the output of A(z) and server Pn+1 by Realf̄ ,A(z),I(x, z, p̃k, 1

κ).

Definition 3 ([13]). We say that a protocol π = (π1, . . . , πn) securely computes
a decomposition f̄ = (f1, . . . , fn) with optimal privacy, if π is a minimum
decomposition for f̄ , and if for any non-uniform, PPT adversary A(z) corrupting
some subset of parties I in the real-world, there exists a non-uniform, PPT
adversary S(z) corrupting I in the ideal-world such that{

Idealf̄ ,S(z),I(x, z, 1
κ)
}

c=
{
Realπ,A(z),I(x, z, p̃k, 1

κ)
}
.

2.3 Homomorphic Threshold Encryption

Our constructions require a (n-out-of-n) threshold encryption scheme which
supports the following properties in addition to the standard Enc, Dec, and Gen
procedures: (These properties generalize the “layer re-randomizable encryption”
in [13, Definition 4.1].)

– To encrypt to a set of users whose corresponding public keys comprise the
set S, one simply aggregates their public keys via p̃k ← Aggregate(S), and
then encrypts normally treating p̃k as a normal public key.

– The scheme is homomorphic (with respect to a class of functions we
specify later when describing our main protocols). More formally, there is a
procedure Eval which takes a (possibly aggregated) public key, a ciphertext,
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and a function, and outputs another ciphertext. We then require that for all
valid keypairs (sk, pk), all supported functions f , and all ciphertexts C:

Dec(sk,Eval(pk, C, f)) = f(Dec(sk, C))

– Given an encryption C under public keys pk1, . . . , pkn, the owner of any
corresponding secret key ski, i ∈ [n], can transform C into a (fresh)
encryption of the same message, under the remaining n− 1 public keys.
More formally, there is a procedure Strip which takes a (aggregated) public
key, a secret key, and a ciphertext, and outputs another ciphertext. We
require that, for all valid keypairs (sk∗, pk∗), all S / pk

∗, all plaintexts M ,
and all C in the support of Enc(Aggregate(S),M), we have

Strip(Aggregate(S), sk∗, C) ≈s Enc(Aggregate(S \ {pk∗}),M).

Semantic Security. For an adversary A = (A1,A2) we define the advantage
AdvThEncA(k) to be:∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡⎢⎢⎢⎢⎢⎢⎣U \ U
∗ �= ∅ ∧ b = b′ :

(pki, ski)← Gen(1k), i = 1, . . . , n;

(U,U∗,M0,M1)← A1(1
k, pk1, . . . , pkn);

b
$← {0, 1};

C ← Enc(Aggregate({pki | i ∈ U}),Mb);

b′ ← A2(C, {ski | i ∈ U∗});

⎤⎥⎥⎥⎥⎥⎥⎦−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
A threshold encryption scheme is said to be indistinguishable against chosen
plaintext attacks (IND-CPA) if for all PPT adversaries A, the advantage
AdvThEncA(k) is a negligible function in k.

3 Our General Protocol

Our protocols are designed using the following high-level approach, which is
essentially an abstraction of that in [13].

1. We begin with a decomposition for the class of functions we are interested in,
namely sparse polynomials and read-once branching programs, as described
in Sections 4 and 5 respectively. We show that our decompositions are in fact
minimal, proving that our protocols are optimally private for these classes
of functions.

2. We construct a semi-honest protocol by combining the decomposition with
a threshold homomorphic encryption scheme. (See Section 3.1.) For our
constructions, the only homomorphic operations we need to support are
the identity function and affine functions. In Section 6, we provide concrete
instantiations from DDH, DCR and DLIN.

3. We construct a protocol that is secure against malicious parties by having
the participants first encrypt their inputs and then prove consistency using
suitable NIZKs. We provide a detailed treatment in the design of NIZKs,
where we completely specify the witnesses used by the honest provers. (Some
of these details were omitted in [13].) These results appear in the full version.
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3.1 Protocol for Semi-honest Adversaries

We consider n parties P1, . . . , Pn, with corresponding registered key pairs
{(pki, ski)}i∈[n]. Let f1, . . . , fn be a decomposition for f in which the parties
go in order 1, . . . , n. Our protocol is as follows: At a high level, party
i sends to the server the ciphertext Ci, which is an encryption of the
value yi := fi(yi−1, xi) = f̃i(x1, . . . , xi) under the aggregated public key
p̃ki = Aggregate(pki+1, . . . , pkn+1). Ciphertext Ci is generated by applying the
encryption scheme’s homomorphic properties to ciphertext Ci−1. In more detail:

1. Party P1 computes C1
$← Enc(p̃k1, f1(x1)) and sends C1 to the server Pn+1.

2. For i = 2, . . . , n: party Pi receives Ci−1 from the server, and sends Ci to the
server, where:

Ci
$← Strip(p̃ki, ski,Eval(p̃ki, Ci−1, fi(·, xi)).

3. Upon receiving Cn from Pn, the server Pn+1 decrypts the ciphertext using
its secret key skn+1 and outputs the result.

From the properties of Eval and Strip, it is easy to see that if all players are
honest, then Ci ≈s Enc(p̃ki, yi) for all i. Correctness then follows from the fact
that f1, . . . , fn is a correct decomposition.

Lemma 1 (Semi-honest security). If (Gen,Enc,Dec,Aggregate,Eval, Strip) is
a secure threshold encryption scheme (Section 2.3), then the above protocol is
an optimally private protocol for decomposition (f1, . . . , fn), against semi-honest
adversaries.

4 Computing Sparse Multivariate Polynomials

In this section we instantiate our general framework to obtain a protocol for
evaluating a multivariate polynomial on the parties’ inputs. We begin with a
simple lemma about learning the coefficients of a multivariate polynomial via
oracle queries:

Lemma 2. Let F ∈ ZN [X1, . . . , Xn] be a known multivariate polynomial with
total degree d, where N is square-free, and d ≤ p/2 for every prime p dividing
N . Let M be the number of monomials in F . Fix an (unknown) input to the
polynomial (x1, . . . , xn) ∈ (ZN )n and define:

Fi(Xi+1, . . . , Xn) := F (x1, . . . , xi, Xi+1, . . . , Xn)

Then, for each i, it is possible to learn the coefficients of the polynomial Fi by
making a polynomial number (in M and logN) of queries to an oracle for Fi.

Proof. Our approach for learning the coefficients of Fi is to simply query Fi
on a sufficiently large number of random points (the number of points to be
determined later). Then the coefficients of Fi can be viewed as unknowns in a
linear system over ZN , which can be solved via Gaussian elimination. We must
show that the linear system uniquely determines Fi with high probability.
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Fix i and recall that F is fixed and known. Let us say that a monomial m′

in variables {Xi+1, . . . , Xn} is valid if there exists some monomial m ∈ F (with
nonzero coefficient) such that the degree of Xj is the same in both m′ and m,
for all j ∈ {i + 1, . . . n}. Since Fi is of the form F (x̂1, . . . , x̂i, Xi+1, . . . , Xn),
every monomial of Fi must be valid. Then we may restrict our linear system to
polynomials whose monomials are all valid, by including unknowns only for the
coefficients of valid monomials. Recall that there are at mostM valid monomials.
Now, it suffices to show that the linear system uniquely determines Fi, among
polynomials that contain only valid monomials.

Let p be a prime divisor of N . Fix any polynomial F ′ �= Fi, where F
′ contains

only valid monomials. Then by the Schwartz-Zippel lemma, we have that Fi and
F ′ agree on q randomly selected points (modulo p) with probability at most
(d/p)q ≤ 1/2q. There are at most NM such multivariate polynomials F ′, and
at most logN prime divisors of N , so choose q = Mk logN log logN . Then
by a union bound, we have that Fi agrees with some other F ′ on all q random
points modulo some prime divisor with probability at most 1/2k. By the Chinese
Remainder Theorem, the linear system over ZN uniquely determines Fi with
probability at least 1− 1/2k.

Function Decomposition. The preceding lemma suggests that, given a sparse
polynomial F , we may compute its minimum-disclosure decomposition as
follows:

fi(·, xi) takes as input the list of coefficients for a polynomial P (Xi, Xi+1, . . . ,
Xn) and outputs the list of coefficients for the polynomial P ′(Xi+1, . . . , Xn)
where P ′(Xi+1, . . . , Xn) := P (xi, Xi+1, . . . , Xn).

Specifically, fi proceeds as follows:

1. For each monomial of P that contains a term of the form Xt
i , multiply that

coefficient by xti.
2. For each set of monomials whose degrees in Xi+1, ..., Xn are identical, add

the coefficients together.

This next Lemma follows directly from Lemma 2.

Lemma 3. The decomposition described above is a minimum-disclosure decom-
position.

Secure, One-pass Protocols. It is easy to see that fi(·, xi) is an affine function
of its inputs. Therefore, using our general framework in the preceding section, it
suffices to construct a threshold homomorphic encryption scheme that supports
computing affine functions on encrypted values. Indeed, we provide such an
instantiation based on DCR in the full version.

Theorem 1. Under the DCR assumption, there is a one-pass protocol, secure
against a semi-honest adversary, for evaluating any F ∈ ZN [X1, . . . , Xn] withM
monomials, where N is a RSA modulus and M and the total degree of F satisfy
the bounds given in Lemma 2. The protocol achieves optimal privacy, its runtime
is polynomial inM , n, and logN , and it requires O(M) exponentiations per party.
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In Section 6, with further details in the full version, we demonstrate concrete in-
stantiations ofNIZKs appropriate to ensure security againstmalicious adversaries.
This leads to the following Theorem.

Theorem 2. Under the DCR assumption, there is a one-pass protocol in the
random-oracle model, secure against malicious adversaries, for evaluating any F ∈
ZN [X1, . . . , Xn] expressed as a sum of monomials, whereN is as in Lemma 2. The
protocol achieves optimal privacy and it requires O(nM |D|) exponentiations per
party (where D denotes the input domain for each party).

5 Computing Branching Programs

In this section we describe our protocol for computing branching programs.

Overview. A (deterministic) branching program P is defined by a directed acyclic
graph in which the nodes are labeled by input variables and every nonterminal
node has two outgoing edges, labeled by 0 and 1.7 An input naturally induces
a computation path from a distinguished initial node to a terminal node, whose
label determines the output. We rely on a technique of Ishai and Paskin [16] for
computing branching programs (BPs) in a bottom-up manner. Let x1, . . . , xn
be the inputs to the BP. First, without loss of generality we may make the BP
layered (defined below), incurring at most a quadratic blow-up in its size (this
blow-up may be avoided in specific cases, see [16]). In a layered BP, all nodes can
be partitioned into layers L0, . . . , Ln, with the property that all nodes in layer
i ∈ {1, . . . , n} correspond to input variable Xi and have outgoing edges only into
layer i− 1. (Because we work in a bottom-up manner, we label the output layer
L0, and the topmost layer Ln.) Layer 0 contains only output nodes.

Imagine evaluating a layered BP by “percolating” output labels from the end
of the BP towards the start node, as follows.8 Starting at layer L0, we do the
following: For every edge (u, v) between layer Li and Li−1 that is labeled with
the value xi (that is, if we are at node u and Xi assumes the value xi, we proceed
to node v), copy the output label from node v to node u (there will not be a
conflict by the deterministic property of the branching program). Finally, the
start node in layer Ln is labeled with the output of the computation.

This process naturally lends itself to a decomposition of the branching
program’s functionality. Namely, the ith phase of the decomposition outputs
the labels of all nodes in layer i. To show that this decomposition is minimum-
disclosure, we must argue that an adversary could also learn this information

7 We note that our protocols work also for more general “linear branching programs”,
where the edges are labeled with affine functions.

8 We note that computing branching programs in a top-down manner may also be
considered in the one-pass model. Each party simply posts an encryption of the
unique active node in its layer. This leads to a minimum-disclosure decomposition if
the BP does not have redundant states, which can be achieved using a variant of the
Myhill-Nerode algorithm. However, this top-down approach requires the threshold
encryption to support the BP’s transition function as a homomorphic operation,
whereas our bottom-up approach requires only re-randomizability.
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by corrupting the server and parties i + 1 through n in the ideal world. To see
why, first assume that all nodes in the branching program are reachable from
the start node. Then a path from the start node to some node v in layer i
naturally corresponds to a set of inputs that the adversary could query to the
residual function. The result of the query is the label that this process would
have assigned to node v.

Definitions. We proceed with the details of our protocol:

Definition 4 (Branching program). A branching program on variables X =
(X1, . . . , Xn) with input domain D and output range R is defined by a tuple
{G = {V,E},Sout, φV , φE}. V contains a single start node with in-degree 0, and
a set of designated leaf nodes, Sout, along with any internal nodes. The function
φV assigns each node in Sout with an output value from R, and every other node
with a variable from X. φE is a function that labels each edge (u, v) ∈ E with
values from D.

Definition 5 (Read-Once, Layered BP). In a layered branching program,
V can be partitioned into layers Ln, . . . , L1, L0 = Sout such that for any node
u ∈ Li and v ∈ Lj, with i > j, the length of every path from u and v is exactly
i− j. A layered branching program is read-once if every node in layer i is labeled
with variable Xi (possibly after re-naming the variables).

Informally, we can think of every node in layer i as having the same height,
and the same variable assignment. Looking ahead, layer i will coincide with the
input variable of player Pi. We note that any branching program can be turned
into a layered branching program with at most a quadratic blowup in the size
of V . For simplicity, we will assume that our branching programs are already
read-once, layered branching programs.

Function Decomposition. Let F : Dn → R denote the function on X =
(X1, . . . , Xn) described by a read-once, layered branching program BP . Let
si = |{v ∈ Li}| denote the size of layer i in BP . We assume some (arbitrary)
ordering on the nodes in each layer: let (v1, . . . , vsi) be the ordered nodes
of layer i, and (u1, . . . , usi−1) the ordered nodes in layer i − 1. We define
fi : Rsi−1 × {xi} → Rsi as follows. Let inj ∈ R denote the jth input to fi,
and outk ∈ R denote the kth output. Then outk = inj if and only if (vk, uj) ∈ E,
and φE(vk, uj) = xi.

Intuitively, this decomposition percolates the output “up” the graph, stripping
off layers as it goes. For example, f1(φV (Sout), x1) fixes the variable X1 = x1 in
layer 1, and percolates the resulting output values from layer 0 up to each node
in layer 1. The output nodes in Sout now become irrelevant to the computation.
Similarly, f̃i = fi(· · · f2(f1(φV (Sout), x1), x2) · · · , xi) strips off layers 0 through
i − 1, labeling all the nodes in layer i with the correct output, and making
all layers j < i irrelevant. More specifically, consider two nodes uj ∈ Li and
vk ∈ Sout. If there exists some path p = (ei, . . . , e1) from uj to vk such that

(φE(ei), . . . , φE(e1)) = xi, . . . , x1, then f̃i(x1, . . . , xi) assigns φV (vk) to node uj .
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Lemma 4. The decomposition of F described above is a minimum-disclosure
decomposition.

Proof. We must show that for every i ∈ [n], there exists a simulator Sgxi (·)(m,
n, i), that outputs f̃i(x1, . . . , xi). Recall that the output of f̃i contains si = |{v ∈
Li}| values, out1, . . . outsi ∈ R. To compute the value of outj , the simulator
takes the jth node uj in layer Li and runs a breadth-first-search on G to find a
path from the start node to uj. Let xn, . . . , xi+1 denote the input assignments
associated with the edges along this path (according to φE). S queries his oracle
and sets outj = gxi (xi+1, . . . , xn).

Secure, One-pass Protocols. To obtain a secure protocol using our framework in
Section 2, we need to specify the homomorphic operation required by party
Pi. It is easy to verify that we only need to re-randomize ciphertexts. By
our conventions for homomorphic encryption (Section 2.3), re-randomization is
performed when Pi strips his secret key’s contribution from the ciphertext. We
do not require any homomorphic operations beyond this. A formal description
of the protocol is in Figure 4.

Branching Programs
Inputs: Player Pi holds input xi ∈ {0, 1}. Each also has a full description of
the branching program, BP = {G = {V, E},Sout, φV , φE} Let Li = {v1, . . . , vsi}
denote the nodes in layer i.
Protocol:
Player P1 begins the protocol. For each vj ∈ L1,

– P1 finds u ∈ Sout such that (u, vj) ∈ E and φE(u, vj) = x1.
– He computes ψj = Enc(p̃k2, φV (u)).

P1 sends C1 := (ψ1, . . . , ψs1) to the server.

For i = 2 . . . n:

– Party Pi receives ciphertexts Ci−1 = (ψ1, . . . , ψsi−1) from the server.
– For every vj ∈ Li,

• Pi finds uk ∈ Li−1 such that (uk, vj) ∈ E and φE(uk, vj) = xi. We let ψk

denote the ciphertext corresponding to uk.
• Pi sets ψ

′
j = Strip(p̃ki, ski, ψk).

– Pi sends Ci := (ψ′
1, . . . , ψ

′
si) to the server.

Output: Let Cn be the (single) ciphertext sent from Pn to the server. The server
computes and outputs Dec(skn+1, Cn).

Fig. 4. A protocol secure for computing branching program BP

Theorem 3. Assuming an encryption scheme satisfying the conditions of
Section 2.3 w.r.t. the identity function, the protocol in Figure 4 is a one-pass
protocol, secure against a semi-honest adversary, for evaluating any read-once,
layered branching program. The protocol achieves optimal privacy. For branching
programs of width w, the runtime is polynomial in w and n, and it requires O(w)
exponentiations per party.
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In Section 6 we provide instantiations of the NIZKs that are necessary to make
this protocol secure against malicious adversaries. This gives us the following
theorem as well.

Theorem 4. Assuming an encryption scheme satisfying the conditions of
Section 2.3 w.r.t. the identity function, and that the NIZK schemes mentioned
above are secure, there is a one-pass protocol, secure against a malicious
adversary, for evaluating any read-once, layered branching program. The protocol
achieves optimal privacy. For branching programs of width w and output domain
D, the runtime is polynomial in w, n and |D|, and it requires O(nw|D|)
exponentiations per party.

6 Realizing the Required Encryption and NIZK Schemes

In the full version, we present three threshold homomorphic encryption schemes.
Two are based on the DDH and DLIN assumptions, respectively, and support
homomorphic evaluation of the identity function (i.e., re-randomization). The
third is based on the DCR assumption, and supports homomorphic evaluation of
affine functions over ZN . We rely on the first two schemes for branching programs
and the last for sparse polynomials. The full details of our malicious-secure
protocol are given in the full version. There we also describe concrete and efficient
NIZK proofs, consistent with our instantiations of homomorphic threshold
encryption, for the statements described in the malicious-secure protocol.

In the random oracle model, it suffices to construct appropriate Σ-protocols
and then apply the Fiat-Shamir technique. We additionally use techniques
of Cramer et al. [7] to compose simple Σ-protocols using logical conjunction
and disjunction. The main challenge then is to show how party Pi can prove
that the ciphertexts Ci−1 and Ci are consistent, in that Ci was derived from
Ci−1 according to the protocol (with the encryption scheme’s Strip and Eval
operations). We eventually reduce this problem to the task of proving that two
ciphertexts encrypt the same value (under different aggregated public keys), for
which we provide efficient Σ-protocols.

Our instantiations based on the DDH and DLIN assumptions are compatible
with our protocol for evaluating branching programs. For these homomorphic
threshold schemes, we describe efficient NIZK proofs in the standard model,
using the NIZK scheme of Groth and Sahai [12].

Acknowledgements. We thank Yuval Ishai and Yehuda Lindell for helpful
discussions.
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Abstract. We construct the first Message Authentication Codes
(MACs) that are existentially unforgeable against a quantum chosen mes-
sage attack. These chosen message attacks model a quantum adversary’s
ability to obtain the MAC on a superposition of messages of its choice. We
begin by showing that a quantum secure PRF is sufficient for construct-
ing a quantum secure MAC, a fact that is considerably harder to prove
than its classical analogue. Next, we show that a variant of Carter-Wegman
MACs can be proven to be quantum secure. Unlike the classical settings,
we present an attack showing that a pair-wise independent hash family is
insufficient to construct a quantum secure one-time MAC, but we prove
that a four-wise independent family is sufficient for one-time security.

Keywords: Quantum computing, MAC,chosen message attacks, post-
quantum security.

1 Introduction
Message Authentication Codes (MACs) are an important building block in cryp-
tography used to ensure data integrity. A MAC system is said to be secure if an
efficient attacker capable of mounting a chosen message attack cannot produce
an existential MAC forgery (see Section 2.2).

With the advent of quantum computing there is a strong interest in post-
quantum cryptography, that is systems that remain secure even when the ad-
versary has access to a quantum computer. There are two natural approaches to
defining security of a MAC system against a quantum adversary. One approach
is to restrict the adversary to issue classical chosen message queries, but then
allow the adversary to perform quantum computations between queries. Security
in this model can be achieved by basing the MAC construction on a quantum
intractable problem.

The other more conservative approach to defining quantum MAC security is to
model the entire security game as a quantum experiment and allow the adversary
to issue quantum chosen message queries. That is, the adversary can submit a
superposition of messages from the message space and in response receive a
superposition of MAC tags on those messages. Informally, a quantum chosen
message query performs the following transformation on a given superposition
of messages: ∑

m

ψm

∣∣m
〉 −→

∑

m

ψm

∣∣m, S(k, m)
〉

where S(k, m) is a tag on the message m with secret key k.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 592–608, 2013.
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To define security, let q be the number of queries that the adversary issues by
the end of the game. Clearly it can now produce q classical message-tag pairs by
sampling the q superpositions it received from the MAC signing oracle. We say
that the MAC system is quantum secure if the adversary cannot produce q + 1
valid message-tag pairs. This captures the fact that the adversary cannot do any
better than trivially sampling the responses from its MAC signing oracle and is
the quantum analogue of a classical existential forgery.

1.1 Our Results

In this paper we construct the first quantum secure MAC systems. We begin with
a definition of quantum secure MACs and give an example of a MAC system
that is secure against quantum adversaries capable of classical chosen message
queries, but is insecure when the adversary can issue quantum chosen message
queries. We then present a number of quantum secure MAC systems.

Quantum Secure MACs. In the classical settings many MAC systems are based
on the observation that a secure pseudorandom function gives rise to a secure
MAC [BKR00, BCK96]. We begin by studying the same question in the quan-
tum settings. Very recently Zhandry [Zha12b] defined the concept of a quantum
secure pseudorandom function (PRF) which is a PRF that remains indistin-
guishable from a random function even when the adversary can issue quantum
queries to the PRF. He showed that the classic GGM construction [GGM86]
remains secure under quantum queries assuming the underlying pseudorandom
generator is quantum secure.

The first question we study is whether a quantum secure PRF gives rise to
a quantum secure MAC, as in the classical settings. To the MAC adversary
a quantum secure PRF is indistinguishable from a random function. Therefore
proving that the MAC is secure amounts to proving that with q quantum queries
to a random oracle H no adversary can produce q + 1 input-output pairs of H
with non-negligible probability. In the classical settings where the adversary can
only issue classical queries to H this is trivial: given q evaluations of a random
function, the adversary learns nothing about the value of the function at other
points. Unfortunately, this argument fails under quantum queries because the
response to a single quantum query to H : X → Y contains information about all
of H . In fact, with a single quantum query the adversary can produce two input-
output pairs of H with probability about 2/|Y| (with classical queries the best
possible is 1/|Y|). As a result, proving that q quantum queries are insufficient to
produce q + 1 input-output pairs is quite challenging. We prove tight upper and
lower bounds on this question by proving the following theorem:

Theorem 1 (informal). Let H : X → Y be a random oracle. Then an adver-
sary making at most q < |X | quantum queries to H will produce q+1 input-output
pairs of H with probability at most (q +1)/|Y|. Furthermore, when q � |Y| there
is an algorithm that with q quantum queries to H will produce q +1 input-output
pairs of H with probability 1 − (1 − 1/|Y|)q+1 ≈ (q + 1)/|Y|.
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The first part of the theorem is the crucial fact needed to build quantum se-
cure MACs and is the harder part to prove. It shows that when |Y| is large
any algorithm has only a negligible chance in producing q + 1 input-output
pairs of H from q quantum queries. To prove this bound we introduce a new
lower-bound technique we call the rank method for bounding the success proba-
bility of algorithms that succeed with only small probability. Existing quantum
lower bound techniques such as the polynomial method [BBC+01] and the ad-
versary method [Amb00, Aar02, Amb06, ASdW09] do not give the result we
need. One difficulty with existing lower bound techniques is that they generally
prove asymptotic bounds on the number of queries required to solve a problem
with high probability, whereas we need a bound on the success probability of
an algorithm making a limited number of queries. Attempting to apply exist-
ing techniques to our problem at best only bounds the success probability away
from 1 by an inverse polynomial factor, which is insufficient for our purposes.
The rank method for proving quantum lower bounds overcomes these difficulties
and is a general tool that can be used in other post-quantum security proofs.

The second part of Theorem 1 shows that the lower bound presented in the
first part of the theorem is tight. A related algorithm was previously presented
by van Dam [vD98], but only for oracles outputting one bit, namely when Y =
{0, 1}. For such a small range only about |X |/2 quantum queries are needed to
learn the oracle at all |X | points. A special case where Y = X = {0, 1} and q = 1
was developed independently by Kerenidis and de Wolf [KdW03]. Our algorithm
is a generalization of van Dam’s result to multi-bit oracles.

Quantum Secure Carter-Wegman MACs. A Carter-Wegman MAC [WC81] signs
a message m by computing

(
r, h(m)⊕F (k, r)

)
where h is a secret hash function

chosen from an xor-universal hash family, F is a secure PRF with secret key k,
and r is a short random nonce. The attractive feature of Carter-Wegman MACs
is that the long message m is hashed by a fast xor-universal hash h. We show
that a slightly modified Carter-Wegman MAC is quantum secure assuming the
underlying PRF is quantum secure in the sense of Zhandry [Zha12b].

One-time Quantum Secure MACs. A one-time MAC is existentially unforgeable
when the adversary can make only a single chosen message query. Classically,
one-time MACs are constructed from pair-wise independent hash
functions [WC81]. These MACs are one-time secure since the value of a pair-
wise independent hash at one point gives no information about its value at an-
other point. Therefore, a single classical chosen-message query tells the adversary
nothing about the MAC tag of another message.

In the quantum settings things are more complicated. Unlike the classical set-
tings, we show that pair-wise independence does not imply existential unforge-
ability under a one-time quantum chosen message attack. For example, consider
the simple pair-wise independent hash family H = {h(x) = ax + b}a,b∈Fp with
domain and range Fp. We show that a quantum adversary presented with an
oracle for a random function h ∈ H can find both a and b with a single quan-
tum query to h. Consequently, the classical one-time MAC constructed from
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H is completely insecure in the quantum settings. More generally we prove the
following theorem:

Theorem 2 (informal). There is a polynomial time quantum algorithm that
when presented with an oracle for h(x) = a0 + a1x + . . . + adxd for random
a0, . . . , ad in Fp can recover a0, . . . , ad using only d quantum queries to the oracle
with probability 1 − O(d/n).

The h(x) = ax + b attack discussed above is a special case of this theorem with
d = 1. With classical queries finding a0, . . . , ad requires d + 1 queries, but with
quantum queries the theorem shows that d queries are sufficient.

Theorem 2 is a quantum polynomial interpolation algorithm: given oracle ac-
cess to the polynomial, the algorithm reconstructs its coefficients. This problem
was studied previously by Kane and Kutin [KK11] who prove that d/2 quantum
queries are insufficient to interpolate the polynomial. Interestingly, they conjec-
ture that quantum interpolation requires d + 1 quantum queries as in the classical
case, but Theorem 2 refutes that conjecture. Theorem 2 also applies to a quantum
version of secret sharing where the shares themselves are superpositions. It shows
that the classical Shamir secret sharing scheme [Sha79] is insecure if the shares are
allowed to be quantum states obtained by evaluating the secret sharing polynomial
on quantum superpositions. More generally, the security of secret sharing schemes
in the quantum settings was analyzed by Damård et al. [DFNS11].

As for one-time secure MACs, while pair-wise independence is insufficient for
quantum one-time security, we show that four-wise independence is sufficient.
That is, a four-way independent hash family gives rise to an existentially un-
forgeable MAC under a one-time quantum chosen message attack. It is still an
open problem whether three-way independence is sufficient. More generally, we
show that (q + 1)-way independence is insufficient for a q-time quantum secure
MAC, but (3q + 1)-way independence is sufficient.

Motivation. Allowing the adversary to issue quantum chosen message queries
is a natural and conservative security model and is therefore an interesting one
to study. Showing that classical MAC constructions remain secure in this model
gives confidence in case end-user computing devices eventually become quantum.
Nevertheless, one might imagine that even in a future where computers are
quantum, the last step in a MAC signing procedure is to sample the resulting
quantum state so that the generated MAC is always classical. The quantum
chosen message query model ensures that even if the attacker can bypass this
last “classicalization” step, the MAC remains secure.

As further motivation we note that the results in this paper are the tip of a large
emerging area of research with many open questions. Consider for example sig-
nature schemes. Can one design schemes that remain secure when the adversary
can issue quantum chosen message queries? Similarly, can one design encryption
systems that remain secure when the the adversary can issue quantum chosen ci-
phertext queries? More generally, for any cryptographic primitive modeled as an
interactive game, one can ask how to design primitives that remain secure when
the interaction between the adversary and its given oracles is quantum.
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Other RelatedWork. Several recent works study the securityof cryptographic prim-
itives when the adversary can issue quantum queries [BDF+11, Zha12a, Zha12b].
So far these have focused on proving security of signatures, encryption,and identity-
based encryption in the quantum random oracle model where the adversary can
query the random oracle on superpositions of inputs. These works show that many,
but not all, random oracle constructions remain secure in the quantum random
oracle model. The quantum random oracle model has also been used to prove se-
curity of Merkle’s Puzzles in the quantum settings [BS08, BHK+11]. Meanwhile,
Damård et al. [DFNS11] examine secret sharing and multiparty computation in a
model where an adversary may corrupt a superposition of subsets of players, and
build zero knowledge protocols that are secure, even when a dishonest verifier can
issue challenges on superpositions.

Some progress toward identifying sufficient conditions under which classical
protocols are also quantum immune has been made by Unruh [Unr10] and Hall-
gren et al. [HSS11]. Unruh shows that any scheme that is statistically secure
in Cannetti’s universal composition (UC) framework [Can01] against classical
adversaries is also statistically secure against quantum adversaries. Hallgren et
al. show that for many schemes this is also true in the computational setting.
These results, however, do not apply to MACs.

2 Preliminaries: Definitions and Notation

Let [n] be the set {1, ..., n}. For a prime power n, let Fn be the finite field on n
elements. For any positive integer n, let Zn be the ring of integers modulo n.

Functions will be denoted by capitol letters (such as F ), and sets by capitol
script letters (such as X ). We denote vectors with bold lower-case letters (such
as v), and the components of a vector v ∈ An by vi, i ∈ [n]. We denote matrices
with bold capital letters (such as M), and the components of a matrix M ∈
Am×n by Mi,j , i ∈ [m], j ∈ [n]. Given a function F : X → Y and a vector
v ∈ X n, let F (v) denote the vector (F (v1), F (v2), ..., F (vk)). Let F ([n]) denote
the vector (F (1), F (2), ..., F (n)).

Given a vector space V , let dim V be the dimension of V , or the number of
vectors in any basis for V . Given a set of vectors {v1, ..., vk}, let span{v1, ..., vk}
denote the space of all linear combinations of vectors in {v1, ..., vk}. Given a
subspace S of an inner-product space V , and a vector v ∈ V , define projSv
as the orthogonal projection of v onto S, that is, the vector w ∈ S such that
|v − w| is minimized.

Given a matrix M, we define the rank, denoted rank(M), to be the size of the
largest subset of rows (equivalently, columns) of M that are linearly independent.

Given a function F : X → Y and a subset S ⊆ X , the restriction of F to S
is the function FS : S → Y where FS(x) = F (x) for all x ∈ S. A distribution D
on the set of functions F from X to Y induces a distribution DS on the set of
functions from S to Y, where we sample from DS by first sampling a function F
from D, and outputting FS . We say that D is k-wise independent if, for each set
S of size at most k, each of the distributions DS are truly random distributions
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on functions from S to Y. A set F of functions from X to Y is k-wise independent
if the uniform distribution on F is k-wise independent.

2.1 Quantum Computation

The quantum system A is a complex Hilbert space H with inner product 〈·|·〉.
The state of a quantum system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1).
Given quantum systems H1 and H2, the joint quantum system is given by the
tensor product H1 ⊗ H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2, the product state is
given by |ψ1〉|ψ2〉 ∈ H1 ⊗ H2. Given a quantum state |ψ〉 and an orthonormal
basis B = {|b0〉, ..., |bd−1〉} for H, a measurement of |ψ〉 in the basis B results in
a value bi with probability |〈bi|ψ〉|2, and the state |ψ〉 is collapsed to the state
|bi〉. We let bi ← |ψ〉 denote the distribution on bi obtained by sampling |ψ〉.

A unitary transformation over a d-dimensional Hilbert space H is a d × d
matrix U such that UU† = Id, where U† represents the conjugate transpose. A
quantum algorithm operates on a product space Hin ⊗Hout ⊗Hwork and consists
of n unitary transformations U1, ..., Un in this space. Hin represents the input
to the algorithm, Hout the output, and Hwork the work space. A classical input
x to the quantum algorithm is converted to the quantum state |x, 0, 0〉. Then,
the unitary transformations are applied one-by-one, resulting in the final state

|ψx〉 = Un...U1|x, 0, 0〉 .

The final state is measured, obtaining (a, b, c) with probability |〈a, b, c|ψx〉|2. The
output of the algorithm is b.

Quantum-accessible Oracles. We will implement an oracle O : X → Y by a
unitary transformation O where

O|x, y, z〉 = |x, y + O(x), z〉

where + : X × X → X is some group operation on X . Suppose we have a
quantum algorithm that makes quantum queries to oracles O1, ..., Oq. Let |ψ0〉
be the state of the algorithm before any queries, and let U1, ..., Uq be the unitary
transformations applied between queries. The final state of the algorithm will be

UqOq...U1O1|ψ0〉

We can also have an algorithm make classical queries to Oi. In this case, the
input to the oracle is measured before applying the transformation Oi.

Fix an oracle O : X → Y. Let O(q) : X q → Yq be the oracle that maps x into
O(x) = (O(x1), O(x2), ..., O(xq)). Observe that any quantum query to O(q) can
be implemented using q quantum queries to O, where the unitary transforma-
tions between queries just permute the registers. We say that an algorithm that
makes a single query to O(q) makes q non-adaptive queries to O.
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2.2 Quantum Secure MACs
A MAC system comprises two algorithms: a (possibly) randomized MAC signing
algorithm S(k, m) and a MAC verification algorithm V (k, m, t). Here k denotes
the secret key chosen at random from the key space, m denotes a message in the
message space, and t denotes the MAC tag in the tag space on the message m.
These algorithms and spaces are parameterized by a security parameter λ.

Classically, a MAC system is said to be secure if no attacker can win the
following game: a random key k is chosen from the key space and the attacker is
presented with a signing oracle S(k, ·). Queries to the signing oracle are called
chosen message queries. Let {(mi, ti)}q

i=1 be the set of message-tag pairs that
the attacker obtains by interacting with the signing oracle. The attacker wins
the game if it can produce an existential forgery, namely a valid message-tag pair
(m∗, t∗) satisfying (m∗, t∗) �∈ {(mi, ti)}q

i=1. The MAC system is said to be secure
if no “efficient” adversary can win this game with non-negligible probability in λ.

Quantum Chosen Message Queries. In the quantum settings we allow the ad-
versary to maintain its own quantum state and issue quantum queries to the
signing oracle. Let

∑
m,x,y ψm,x,y

∣∣m, x, y
〉

be the adversary’s state just prior to
issuing a signing query. The MAC signing oracle transforms this state as follows:

1. it chooses a random string r that will be used by the MAC signing algorithm,
2. it signs each “slot” in the given superposition by running S(k, m; r), that is

running algorithm S with randomness r. More precisely, the signing oracle
performs the following transformation:

∑

m,x,y

ψm,x,y

∣∣m, x, y
〉 −→

∑

m,x,y

ψm,x,y

∣∣m, x ⊕ S(k, m; r), y
〉

When the signing algorithm is deterministic there is no need to choose an r.
However, for randomized signing algorithms the same randomness is used to
compute the tag for all slots in the superposition. Alternatively, we could have
required fresh randomness in every slot, but this would make it harder to im-
plement the MAC system on a quantum device. Allowing the same randomness
in every slot is more conservative and frees the signer from this concern. At any
rate, the two models are very close — if need be, the random string r can be
used as a key for a quantum-secure PRF [Zha12b] which is used to generate a
fresh pseudorandom value for every slot.

Existential Forgery. After issuing q quantum chosen message queries the adver-
sary wins the game if it can generate q + 1 valid classical message-tag pairs.
Definition 1. A MAC system is existentially unforgeable under a quantum cho-
sen message attack (EUF-qCMA) if no adversary can with the quantum MAC
game with non-negligible advantage in λ.
Zhandry [Zha12b] gives an example of a classically secure PRF that is insecure
under quantum queries. This PRF gives an example MAC that is classically
secure, but insecure under quantum queries. Our goal for the remainder of the
paper is to construct EUF-qCMA secure MACs.
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3 The Rank Method

In this section we introduce the rank method which is a general approach to
proving lower bounds on quantum algorithms. The setup is as follows: we give a
quantum algorithm A access to some quantity H ∈ H. By access, we mean that
the final state of the algorithm is some fixed function of H . In this paper, H will
be a set of functions, and A will be given oracle access to H ∈ H by allowing
A to make q quantum oracle queries to H , for some q. For now, we will treat H
abstractly, and return to the specific case where H is a set of functions later.

The idea behind the rank method is that, if we treat the final states of the
algorithm on different H as vectors, the space spanned by these vectors will be
some subspace of the overall Hilbert space. If the dimension of this subspace is
small enough, the subspace (and hence all of the vectors in it) must be reasonably
far from most of the vectors in the measurement basis. This allows us to bound
the ability of such an algorithm to achieve some goal.

For H ∈ H, let |ψH〉 be the final state of the quantum algorithm A, before
measurement, when given access to H . Suppose the different |ψH〉 vectors all lie
in a space of dimension d. Let ΨA,H be the the |H| × d matrix whose rows are
the various vectors |ψH〉.
Definition 2. For a quantum algorithm A given access to some value H ∈ H,
we define the rank, denoted rank(A, H), as the rank of the matrix ΨA,H.

The rank of an algorithm A seemingly contains very little information: it gives
the dimension of the subspace spanned by the |ψH〉 vectors, but gives no indi-
cation of the orientation of this subspace or the positions of the |ψH〉 vectors
in the subspace. Nonetheless, we demonstrate how the success probability of an
algorithm can be bounded from above knowing only the rank of ΨA,H.

Theorem 3. Let A be a quantum algorithm that has access to some value H ∈ H
drawn from some distribution D and produces some output w ∈ W. Let R :
H×W → {True, False} be a binary relation. Then the probability that A outputs
some w such that R(H, w) = True is at most

(
max
w∈W

Pr
H←D

[R(H, w)]
)

× rank(A, H) .

In other words, the probability that A succeeds in producing w ∈ W for which
R(H, w) is true is at most rank(A, H) times the best probability of success of any
algorithm that ignores H and just outputs some fixed w.

Proof. The probability that A outputs a w such that R(H, w) = True is

Pr
H←D

w←|ψH〉
[R(H, w)] =

∑

H

Pr
D

[H ]
∑

w:R(H,w)

|〈w|ψH〉|2 =
∑

w

∑

H:R(H,w)

Pr
D

[H ]|〈w|ψH〉|2

Now, |〈w|ψH〉| is just the magnitude of the projection of |w〉 onto the space
spanned by the vector |ψH〉, that is, projspan|ψH〉(|w〉). This is at most the



600 D. Boneh and M. Zhandry

magnitude of the projection of |w〉 onto the space spanned by all of the |ψH′〉
for H ′ ∈ H, or projspan{|ψ

H′〉}(|w〉). Thus,

Pr
H←D

w←|ψH〉
[R(z, w)] ≤

∑

w

⎛

⎝
∑

H:R(H,w)

Pr
D

[H ]

⎞

⎠
∣∣∣projspan{|ψ

H′〉}(|w〉)
∣∣∣
2

Now, we can perform the sum over H , which gives PrH←D [R(H, w)]. We can
bound this by the maximum it attains over all w, giving us

Pr
H←D

w←|ψH〉
[R(H, w)] ≤

(
max

w
Pr

H←D
[R(H, w)]

) ∑

w

∣∣∣projspan{|ψ
H′〉}(|w〉)

∣∣∣
2

Now, let |bi〉 be an orthonormal basis for span{|ψH′〉}. Then
∣∣∣projspan{|ψ

H′〉}(|w〉)
∣∣∣
2

=
∑

i

|〈bi|w〉|2

Summing over all w gives
∑

w

∣∣∣projspan{|ψ
H′〉}(|w〉)

∣∣∣
2

=
∑

w

∑

i

|〈bi|w〉|2 =
∑

i

∑

w

|〈bi|w〉|2

Since the w are the possible results of measurement, the vectors |w〉 form an
orthonormal basis for the whole space, meaning

∑
w |〈bi|w〉|2 = | |bi〉 |2 = 1.

Hence, the sum just becomes the number of |bi〉, which is just the dimension of
the space spanned by the |ψH′ 〉. Thus,

Pr
H←D

w←|ψH〉
[R(H, w)] ≤

(
max
w∈W

Pr
H←D

[R(H, w)]
)

(dim span{|ψH′ 〉}) .

But dim span{|ψH′ 〉} is exactly rank(ΨA,H) = rank(A, H), which finishes the
proof of the theorem. ��
We now move to the specific case of oracle access. H is now some set of functions
from X to Y, and our algorithm A makes q quantum oracle queries to a function
H ∈ H. To use the rank method (Theorem 3) for our purposes, we need to
bound the rank of such an algorithm. First, we define the following quantity:

Ck,q,n ≡
q∑

r=0

(
k

r

)
(n − 1)r .

Theorem 4. Let X and Y be sets of size m and n and let H0 be some function
from X to Y. Let S be a subset of X of size k and let H be some set of functions
from X to Y that are equal to H0 except possibly on points in S. If A is a
quantum algorithm making q queries to an oracle drawn from H, then

rank(A, H) ≤ Ck,q,n .
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Proof. The proof appears in the full version [BZ13]. Here we sketch our ap-
proach. Let |ψq

H〉 be the final state of a quantum algorithm after q quantum
oracle calls to an oracle H ∈ H. We wish to bound the dimension of the space
spanned by the vectors |ψq

H〉 for all H ∈ H. We accomplish this by exhibiting
a basis for this space. Our basis consists of |ψq

H′ 〉 vectors where H ′ only differs
from H0 at a maximum of q points in S. A simple counting argument shows that
there are exactly Ck,q,n such H ′ oracles. We show in the full version that these
|ψq

H′〉 vectors do indeed span the entire space. ��

3.1 An Example

Suppose our task is to, given one quantum query to an oracle H : X → Y,
produce two distinct pairs (x0, y0) and (x1, y1) such that H(x0) = y0 and
H(x1) = y1. Suppose further that H is drawn from a pairwise independent
set H. We will now see that the rank method leads to a bound on the success
probability of any quantum algorithm A.

Corollary 1. No quantum algorithm A, making a single query to a function
H : X → Y drawn from a pairwise independent set H, can produce two distinct
input/output pairs of H, except with probability at most |X |/|Y|.
Proof. Let m = |X | and n = |Y|. Since no outputs of H are fixed, we will set
S = X in Theorem 4, showing that the rank of the algorithm A is bounded
by Cm,1,n = 1 + m(n − 1) < mn. If an algorithm makes no queries to H , the
best it can do at outputting two distinct input/output pairs is to just pick two
arbitrary distinct pairs, and output those. The probability that this zero-query
algorithm succeeds is at most 1/n2. Then Theorem 3 tells us that A succeeds
with probability at most rank(A, H) times this amount, which equates to m

n . ��
For m > n, this bound is trivial. However, for m smaller than n, this gives a non-
trivial bound, and for m exponentially smaller than n, this bound is negligible.

4 Outputting Values of a Random Oracle

In this section, we will prove Theorem 1. We consider the following problem:
given q quantum queries to a random oracle H : X → Y, produce k > q dis-
tinct pairs (xi, yi) such that yi = H(xi). Let n = |Y| be the size of the range.
Motivated by our application to quantum-accessible MACs, we are interested
in the case where the range Y of the oracle is large, and we want to show that
to produce even one extra input/output pair (k = q + 1) is impossible, except
with negligible probability. We are also interested in the case where the range
of the oracle, though large, is far smaller than the domain. Thus, the bound we
obtained in the previous section (Corollary 1) is not sufficient for our purposes,
since it is only non-trivial if the range is larger than the domain.
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In the classical setting, when k ≤ q, this problem is easy, since we can just
pick an arbitrary set of k different xi values, and query the oracle on each value.
For k > q, no adversary of even unbounded complexity can solve this problem,
except with probability 1/nk−q, since for any set of k inputs, at least k −q of the
corresponding outputs are completely unknown to the adversary. Therefore, for
large n, we have have a sharp threshold: for k ≤ q, this problem can be solved
efficiently with probability 1, and for even k = q + 1, this problem cannot be
solved, even inefficiently, except with negligible probability.

In the quantum setting, the k ≤ q case is the same as before, since we can
still query the oracle classically. However, for k > q, the quantum setting is
more challenging. The adversary can potentially query the random oracle on a
superposition of all inputs, so he “sees” the output of the oracle on all points.
Proving that it is still impossible to produce k input/output pairs is thus more
complicated, and existing methods fail to prove that this problem is difficult.
Therefore, it is not immediately clear that we have the same sharp threshold as
before.

In Section 4.1 we use the rank method to bound the probability that any (even
computationally unbounded) quantum adversary succeeds. Then in Section 4.2
we show that our bound is tight by giving an efficient algorithm for this problem
that achieves the lower bound. In particular, for an oracle H : X → Y we
consider two cases:

– Exponentially-large range Y and polynomial k, q. In this case, we will see
that the success probability even when k = q + 1 is negligible. That is, to
produce even one additional input/output pair is hard. Thus, we get the
same sharp threshold as in the classical case

– Constant size range Y and polynomial k, q. We show that even when q is
a constant fraction of k we can still produce k input/output pairs with
overwhelming probability using only q quantum queries. This is in contrast
to the classical case, where the success probability for q = ck, c < 1, is
negligible in k.

4.1 A Tight Upper Bound

Theorem 5. Let A be a quantum algorithm making q queries to a random oracle
H : X → Y whose range has size n, and produces k > q pairs (xi, yi) ∈ X × Y.
The probability that the xi values are distinct and yi = H(xi) for all i ∈ [k] is
at most 1

nk Ck,q,n.

Proof. The complete proof is given in the full version [BZ13]. Here we prove
the special case where k is equal to the size of the domain X . In this case, any
quantum algorithm that outputs k distinct input/output pairs must output all
input/output pairs. Similar to the proof of Corollary 1, we will set S = X , and
use Theorem 4 to bound the rank of A at Ck,q,n. Now, any algorithm making
zero queries succeeds with probability at most 1/nk. Theorem 3 then bounds
the success probability of any q query algorithm as Ck,q,n/nk. ��
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For this paper, we are interested in the case where n = |Y| is exponentially large,
and we are only allowed a polynomial number of queries. Suppose k = q + 1, the
easiest non-trivial case for the adversary. Then, the probability of success is

1
nq+1

q∑

r=0

(
q + 1

r

)
(n − 1)r = 1 −

(
1 − 1

n

)q+1
≤ q + 1

n
. (4.1)

Therefore, to produce even one extra input/output pair is impossible, except
with exponentially small probability, just like in the classical case. This proves
the first part of Theorem 1.

4.2 An Optimal Attack
In this section, we present a quantum algorithm for the problem of computing
H(xi) for k different xi values, given only q < k queries:
Theorem 6. Let X and Y be sets, and fix integers q < k, and k distinct values
x1, ..., xk ∈ X . There exists a quantum algorithm A that makes q non-adaptive
quantum queries to any function H : X → Y, and produces H(x1), ..., H(xk)
with probability Ck,q,n/nk, where n = |Y|.
The proof appears in the full version [BZ13], and is similar to the algorithm of
[vD98], though generalized to handle arbitrary range sizes. This algorithm has
the same success probability as in Theorem 5, showing that both our attack and
lower bound of Theorem 5 are optimal. This proves the second part of Theorem 1.

As we have already seen, for exponentially-large Y, this attack has negligible
advantage for any k > q. However, if n = |Y| is constant, we can do better. The
error probability is

k∑

r=q+1

(
k

r

)(
1 − 1

n

)r(
1
n

)k−r

=
k−q−1∑

s=0

(
k

s

)(
1
n

)s(
1 − 1

n

)k−s

.

This is the probability that k consecutive coin flips, where each coin is heads
with probability 1/n, yields fewer than k − q heads. Using the Chernoff bound,
if q > k(1 − 1/n), this probability is at most

e− n
2k (q−k(1−1/n))2

.

For a constant n, let c be any constant with 1 − 1/n < c < 1. If we use q = ck
queries, the error probability is less than

e− n
2k (k(c+1/n−1))2

= e− nk
2 (c+1/n−1)2

,

which is exponentially small in k. Thus, for constant n, and any constant c
with 1 − 1/n < c < 1, using q = ck quantum queries, we can determine k
input/output pairs with overwhelming probability. This is in contrast to the
classical case, where with any constant fraction of k queries, we can only produce
k input/output pairs with negligible probability. As an example, if H outputs
two bits, it is possible to produce k input/output pairs of of H using only q =
0.8k quantum queries. However, with 0.8k classical queries, we can output k
input/output pairs with probability at most 4−0.2k < 0.76k.



604 D. Boneh and M. Zhandry

5 Quantum-Accessible MACs

Using Theorem 5 we can now show that a quantum secure pseudorandom func-
tion [Zha12b] gives rise to the quantum-secure MAC, namely S(k, m) =
PRF(k, m). We prove that this mac is secure.

Theorem 7. If PRF : K × X → Y is a quantum-secure pseudorandom function
and 1/|Y| is negligible, then S(k, m) = PRF(k, m) is a EUF-qCMA-secure MAC.

Proof. Let A be a polynomial time adversary that makes q quantum queries
to S(k, ·) and produces q + 1 valid input/output pairs with probability ε. Let
Game 0 be the standard quantum MAC attack game, where A makes q quantum
queries to MACk. By definition, A’s success probability in this game is ε.

Let Game 1 be the same as Game 0, except that S(k, ·) is replaced with
a truly random function O : X → Y, and define A’s success probability as
the probability that A outputs q + 1 input/output pairs of O. Since PRF is a
quantum-secure PRF, A’s advantage in distinguishing Game 0 from Game 1 is
negligible.

Now, in Game 1, A makes q quantum queries to a random oracle, and tries to
produce q+1 input/output pairs. However, by Theorem 5 and Eq. (4.1) we know
that A’s success probability is bounded by (q +1)/|Y| which is negligible. It now
follows that ε is negligible and therefore, S is a EUF-qCMA-secure MAC. ��

5.1 Carter-Wegman MACs

In this section, we show how to modify the Carter-Wegman MAC so that it
is secure in the quantum setting presented in Section 2.2. Recall that H is an
XOR-universal family of hash functions from X into Y if for any two distinct
points x and y, and any constant c ∈ Y,

Pr
h←H

[H(x) − H(y) = c] = 1/|Y|

The Carter-Wegman construction uses a pseudorandom function family PRF
with domain X and range Y, and an XOR-universal family of hash functions H
from M to Y. The key is a pair (k, H), where k is a key for PRF and H is a
function drawn from H. To sign a message, pick a random r ∈ X , and return
(r, PRF(k, r) + H(m)).

This MAC is not, in general, secure in the quantum setting presented in
Section 2.2. The reason is that the same randomness is used in all slots of a
quantum chosen message query, that is the signing oracle computes:

∑

m

αm|m〉 −→
∑

m

αm|m, r, PRF(k, r) + H(m)〉

where the same r is used for all classical states of the superposition. For ex-
ample, suppose H is the set of functions H(x) = ax + b for random a and b.
With even a single quantum query, the adversary will be able to obtain a and
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PRF(k, r) + b with high probability, using the algorithm from Theorem 10 in
Section 6. Knowing both of these will allow the adversary to forge any message.

We show how to modify the standard Carter-Wegman MAC to make it secure
in the quantum setting.

Construction 1 (Carter-Wegman). The Quantum Carter-Wegman MAC
(QCW-MAC) is built from a pseudorandom function PRF, an XOR-universal
set of functions H, and a pairwise independent set of functions R.

Keys: The secret key for QCW-MAC is a pair (k, H), where k is a key for PRF
and H : M → Y is drawn from H

Signing: To sign a message m choose a random R ∈ R and output the pair(
R(m), PRF(k, R(m)) + H(m)

)
as the tag. When responding to a quan-

tum chosen message query, the same R is used in all classical states of the
superposition.

Verification: To verify that (r, s) is a valid tag for m, accept iff PRF(k, r) +
H(m) = s.

Theorem 8. The Quantum Carter-Wegman MAC is a EUF-qCMA secure
MAC.

The proof is given in the full version [BZ13].

6 q-time MACs

In this section, we develop quantum one-time MACs, MACs that are secure
when the adversary can issue only one quantum chosen message query. More
generally, we will study quantum q-time MACs.

Classically, any pairwise independent function is a one-time MAC. In the
quantum setting, Corollary 1 shows that when the range is much larger than
the domain, this still holds. However, such MACs are not useful since we want
the tag to be short. We first show that when the range is not larger than the
domain, pairwise independence is not enough to ensure security:

Theorem 9. For any set Y of prime-power size, and any set X with |X | ≥ |Y|,
there exist (q + 1)-wise independent functions from X to Y that are not q-time
MACs.

To prove this theorem, we treat Y as a finite field, and assume X = Y, as
our results are easy to generalize to larger domains. We use random degree q
polynomials as our (q + 1)-wise independent family, and show in Theorem 10
below that such polynomials can be completely recovered using only q quantum
queries. It follows that the derived MAC cannot be q-time secure since once the
adversary has the polynomial it can easily forge tags on new messages. The proof
of the following theorem appears in the full version [BZ13]:

Theorem 10. For any prime power n, there is an efficient quantum algorithm
that makes only q quantum queries to an oracle implementing a degree-q polyno-
mial F : Fn → Fn, and completely determines F with probability 1 − O(qn−1).
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The theorem shows that a (q + 1)-wise independence family is not necessarily a
secure quantum q-time MAC since after q quantum chosen message queries the
adversary extracts the entire secret key. The case q = 1 is particularly interesting.

6.1 Sufficient Conditions for a One-Time Mac

We show that, while pairwise independence is not enough for a one-time MAC,
4-wise independence is. We first generalize a theorem of Zhandry [Zha12a]:

Lemma 1. Let A be any quantum algorithm that makes c classical queries and q
quantum queries to an oracle H. If H is drawn from a (c+2q)-wise independent
function, then the output distribution of A is identical to the case where H is
truly random.

Proof. The complete proof is given in the full version [BZ13]. If q = 0, then this
theorem is trivial, since the c classical outputs A sees are distributed randomly.
If c = 0, then the theorem reduces to that of Zhandry [Zha12a]. By adapting the
proof of the c = 0 case to the general case, we get the lemma. ��
Using this lemma we show that (3q+1)-wise independence is sufficient for q-time
MACs.

Theorem 11. Any (3q + 1)-wise independent family with domain X and range
Y is a quantum q-time secure MAC provided (q + 1)/|Y| is negligible.

Proof. Let D be some (3q + 1)-wise independent function. Suppose we have
an adversary A that makes q quantum queries to an oracle H , and attempts to
produces q + 1 input/output pairs. Let εR be the probability of success when H
is a random oracle, and let εD be the probability of success when H is drawn
from D. We construct an algorithm B with access to H as follows: simulate A
with oracle access to H . When A outputs q +1 input/output pairs, simply make
q + 1 queries to H to check that these are valid pairs. Output 1 if and only if all
pairs are valid. Therefore, B makes q quantum queries and c = q + 1 classical
queries to H , and outputs 1 if and only if A succeeds: if H is random, B outputs
1 with probability εR, and if H is drawn from D, B outputs 1 with probability
εD. Now, since D is (3q + 1)-wise independent and 3q + 1 = 2q + c, Lemma 1
shows that the distributions of outputs when H is drawn from D is identical to
that when H is random, meaning εD = εR.

Thus, when H is drawn from D, A’s succeeds with the same probability that
it would if H was random. But we already know that if H is truly random, A’s
success probability is less than (q + 1)/|Y|. Therefore, when H is drawn from D,
A succeeds with probability less than (q + 1)/|Y|, which is negligible. Hence, if
H is drawn from D, H is a q-time MAC. ��

7 Conclusion

We introduced the rank method as a general technique for obtaining lower
bounds on quantum oracle algorithms and used this method to bound the prob-
ability that a quantum algorithm can evaluate a random oracle O : X → Y
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at k points using q < k queries. When the range of Y is small, say |Y| = 8, a
quantum algorithm can recover k points of O from only 0.9k queries with high
probability. However, we show that when the range Y is large, no algorithm can
produce k input-output pairs of O using only k − 1 queries, with non-negligible
probability. We use these bounds to construct the first MACs secure against
quantum chosen message attacks. We consider both PRF and Carter-Wegman
constructions. For one-time MACs we showed that pair-wise independence does
not ensure security, but four-way independence does.

These results suggest many directions for future work. First, can these bounds
be generalized to signatures to obtain signatures secure against quantum chosen
message attacks? Similarly, can we construct encryption systems secure against
quantum chosen ciphertext attacks where decryption queries are superpositions
of ciphertexts?

Acknowledgments. We thank Luca Trevisan and Amit Sahai for helpful con-
versations about this work. This work was supported by NSF, DARPA, IARPA,
the Air Force Office of Scientific Research (AFO SR) under a MURI award,
Samsung, and a Google Faculty Research Award. The views and conclusions
contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or
implied, of DARPA, IARPA, DoI/NBC, or the U.S. Government.

References

[Aar02] Aaronson, S.: Quantum lower bound for the collision problem. In: STOC,
pp. 635–642 (2002)

[Amb00] Ambainis, A.: Quantum lower bounds by quantum arguments. In: STOC,
pp. 636–643 (2000)

[Amb06] Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Com-
put. Syst. Sci. 72(2), 220–238 (2006)

[ASdW09] Ambainis, A., Spalek, R., de Wolf, R.: A new quantum lower bound
method, with applications to direct product theorems and time-space
tradeoffs. Algorithmica 55(3), 422–461 (2009)

[BBC+01] Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum
Lower Bounds by Polynomials. Journal of the ACM (JACM) 48(4), 778–
797 (2001)

[BCK96] Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited:
The cascade construction and its concrete security. In: FOCS, pp. 514–523
(1996)
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Abstract. A serious concern with quantum key distribution (QKD)
schemes is that, when under attack, the quantum devices in a real-life im-
plementation may behave differently than modeled in the security proof.
This can lead to real-life attacks against provably secure QKD schemes.

In this work, we show that the standard BB84 QKD scheme is one-
sided device-independent. This means that security holds even if Bob’s
quantum device is arbitrarily malicious, as long as Alice’s device be-
haves as it should. Thus, we can completely remove the trust into Bob’s
quantum device for free, without the need for changing the scheme, and
without the need for hard-to-implement loophole-free violations of Bell in-
equality, as is required for fully (meaning two-sided) device-independent
QKD.

For our analysis, we introduce a new quantum game, called a
monogamy-of-entanglement game, and we show a strong parallel repe-
tition theorem for this game. This new notion is likely to be of inde-
pendent interest and to find additional applications. Indeed, besides the
application to QKD, we also show a direct application to position-based
quantum cryptography: we give the first security proof for a one-round
position-verification scheme that requires only single-qubit operations.

1 Introduction

Background. Quantum key distribution (QKD) makes use of quantum me-
chanical effects to allow two parties, Alice and Bob, to exchange a secret key
while being eavesdropped by an attacker Eve [5,11]. In principle, the security
of QKD can be rigorously proven based solely on the laws of quantum mechan-
ics [27,33,31]; in particular, the security does not rely on the assumed hardness
of some computational problem. However, these security proofs typically make
stringent assumptions about the devices used by Alice and Bob to prepare and
measure the quantum states that are communicated. These assumptions are not
necessarily satisfied by real-world devices, leaving the implementations of QKD
schemes open to hacking attacks [25].

One way to counter this problem is by protecting the devices in an ad-hoc
manner against known attacks. This is somewhat unsatisfactory in that the

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 609–625, 2013.
c© International Association for Cryptologic Research 2013
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implementation may still be vulnerable to unknown attacks, and the fact that
the scheme is in principle provably secure loses a lot of its significance.

Another approach is to try to remove the assumptions on the devices necessary
for the security proof; this leads to the notion of device-independent (DI) QKD.
This line of research can be traced back to Mayers and Yao [28] as well as [2,1].
After some limited results [26,13], the possibility of DI QKD has recently been
shown in the most general case by Reichhardt et al. in [30]. In a typical DI QKD
scheme, Alice and Bob check if the classical data obtained from the quantum
communication violates a Bell inequality, which in turn ensures that there is
some amount of fresh randomness in the data that cannot be known by Eve.
This can then be transformed into a secret key using standard cryptographic
techniques like information reconciliation and randomness extraction.

While this argument shows that DI QKD is theoretically possible, the disad-
vantage of such schemes is that they require a loophole free violation of a Bell
inequality by Alice and Bob. This makes fully DI QKD schemes very hard to
implement and very sensitive to any kind of noise and to inefficiencies of the
physical devices: any deficiency will result in a lower observed (loophole free)
Bell inequality violation, and currently conceivable experimental parameters are
insufficient to provide provable security. Trying to find ways around this problem
is an active line of research, see e.g. [12,24,7,23].

Our Result. Here, we follow a somewhat different approach, not relying on
Bell tests, but making use of the monogamy of entanglement. Informally, the
latter states that if Alice’s state is fully entangled with Bob’s, then it cannot
be entangled with Eve’s, and vice versa. As a consequence, if Alice measures a
quantum system by randomly choosing one of two incompatible measurements,
it is impossible for Bob and Eve to both have low entropy about Alice’s measure-
ment outcome. Thus, if one can verify that Bob has low entropy about Alice’s
measurement during the run of the scheme, it is guaranteed that Eve’s entropy
is high, and thus that a secret key can be distilled.

Based on this idea, we show that the standard BB84 QKD scheme [5] is one-
sided DI. This means that only Alice’s quantum device has to be trusted, but no
assumption about Bob’s measurement device has to be made in order to prove
security. Beyond that it does not communicate the measurement outcome to Eve,
Bob’s measurement device may be arbitrarily malicious.

One-sided DI security of BB84 was first claimed in [38]. However, a close in-
spection of their proof sketch, which is based on an entropic uncertainty relation
with quantum side information, reveals that their arguments are insufficient to
prove full one-sided DI security (as confirmed by the authors). It needs to be
assumed that Bob’s measurement device is memoryless. The same holds for the
follow up work [37,6] of [38].

One-sided DI security is obviously weaker than fully DI security (as e.g.
achieved in [30]). Still, what is interesting is that there is no need for a new
scheme — good old BB84 does it. In that sense, we obtain one-sided DI security
for free. In particular, no hard-to-implement loophole-free Bell tests are needed.



One-Sided Device-Independent QKD from Monogamy Games 611

Despite the practical motivation, our result is of theoretical nature. This is
because, as in all contemporary fully DI schemes, our analysis (implicitly) as-
sumes that every qubit sent by Alice is indeed received by Bob, or, more generally,
whether it is received or not does not depend on the basis it is to be measured in;
this is not necessarily satisfied in practical implementations — and some recent
attacks on QKD take advantage of exactly this effect by blinding the detectors
whenever a measurement in a basis not to Eve’s liking is attempted [25].

Our analysis of BB84 QKD with one-sided DI security admits a noise level
of up to 1.5%. This is significantly lower than the 11% tolerable for standard
(i.e. not DI) security. We believe that this is not inherent to the scheme but an
artifact of our analysis. Improving this bound by means of a better analysis is
an open problem (it can be slightly improved by using a better scheme, e.g.,
the 6-state scheme). Nonetheless, one-sided DI QKD appears to be an attractive
alternative to DI QKD in an asymmetric setting, when we can expect from one
party, say, a server, to invest into a very carefully designed, constructed, and
tested apparatus, but not the other party, the user, and/or in case of a star
network with one designated link being connected with many other links.

Technique. In order to prove one-sided DI security of BB84, we introduce and
study a new quantum game, which we call a monogamy of entanglement game
(or simply a monogamy game). This is a game of a specific form, played by three
parties, Alice, Bob and Charlie. Of central importance to us is the monogamy
game G×nBB84, which is as follows.

Preparation Phase: Bob and Charlie agree on and prepare an arbitrary quan-
tum state ρABC , where ρA consists of n qubits. They pass ρA to Alice and
hold on to ρB and ρC , respectively. After this phase, Bob and Charlie are
no longer allowed to communicate.

Question Phase: Alice chooses θ ∈ {0, 1}n uniformly at random and announces
θ to Bob and Charlie. Additionally, she measures every qubit ρAi of ρA in
the computational basis if θi = 0, and in the Hadamard basis if θi = 1. This
results in a bit string x ∈ {0, 1}n.

Answer Phase: Bob and Charlie independently form a guess of x by performing
measurements (which may depend on θ) on ρB and ρC , respectively.

Winning Condition: The game is won if both Bob and Charlie guess x correctly.

From the perspective of classical information processing, our game may appear
somewhat trivial — after all, if Bob and Charlie were to provide some classical
information k to Alice who would merely apply a randomly chosen function fθ,
they could predict the value of x = fθ(k) perfectly from k and θ. In quantum
mechanics, however, the outcome of a measurement is in general not determin-
istic, and the well-known uncertainty principle [15] places a limit on how well
observers can predict the outcome of incompatible measurements. For instance,
if Bob and Charlie were restricted to classical memory (i.e., ρB and ρC are
“empty”), it is not too hard to see that the best strategy gives a winning proba-
bility of (12 + 1

2
√
2
)n ≈ 0.85n.
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In a fully quantum world, however, uncertainty is not quite the end of the story,
as indeed Bob and Charlie are allowed to have quantum memory. To illustrate
the power of such a memory, consider the same game played just between Alice
and Bob. As Einstein, Podolsky and Rosen famously observed [10]: if ρAB is a
maximally entangled state, then once Bob learns Alice’s choice of measurement
θ, he can perform an adequate measurement on his share of the state to obtain
x himself. That is, there exists a strategy for Bob to guess x perfectly. Does
this change when we add the extra player, Charlie? We can certainly be hopeful
as it is known that quantum entanglement is “monogamous” [34] in the sense
that the more entangled Bob is with Alice, the less entangled Charlie can be.
In the extreme case where ρAB is maximally entangled, even if Bob can guess
x perfectly every time, Charlie has to resort to making an uninformed random
guess. As both of them have to be correct in order to win the game, this strategy
turns out to be worse than optimal (see below).

An analysis of our game thus requires a tightrope walk between uncertainty
on the one hand, and the monogamy of entanglement on the other. Writing
pwin(G

×n
BB84) for the maximal winning probability, maximized over the choice of

the initial state ρABC and over the measurements performed by Bob and Charlie,
we prove that

pwin(G
×n
BB84) =

(1
2
+

1

2
√
2

)n
. (1)

We thus see that, interestingly, monogamy of entanglement wins out entirely,
cancelling the power of Bob and Charlie’s quantum memory — the optimal win-
ning probability can be achieved without any entanglement at all. We also show
a generalization of (1), which upper bounds pwin(G

×n
BB84) for a variant of the game

G×nBB84 for which Bob and Charlie need to guess the string x only approximately.
Our result in particular implies that pwin(G

×n
BB84) = pwin(GBB84)

n, i.e., strong
parallel repetition holds. This means that one cannot play n parallel executions
of the game GBB84 = G×1BB84 better than repeating the optimal strategy for one exe-
cution n times. Even classically, analyzing the n-fold parallel repetition of games
or tasks is typically challenging. In many cases, only non-strong parallel repeti-
tion holds, meaning that pwin(G

×n) ≤ εn for some ε < 1, but with ε > pwin(G).
Furthermore, proving such (strong or not) parallel repetition theorems tends to
be intriguingly difficult; examples include the parallel repetition of interactive
proof systems (see e.g. [29]) or the analysis of communication complexity tasks
(see e.g. [19]). In a quantum world, such an analysis is often exacerbated further
by the presence of entanglement and the fact that quantum information cannot
generally be copied. Famous examples include the analysis of the “parallel repeti-
tion” of channels in quantum information theory (where the problem is referred
to as the additivity of capacities), see e.g. [14], entangled non-local games [16], or
the question whether an eavesdropper’s optimal strategy in QKD is to perform
the optimal strategy for each round.

In this light, our proof of (1) is surprisingly simple. It is inspired by tech-
niques due to Kittaneh [18] and uses merely tools from linear algebra. At the
core of the proof is a newly derived operator norm inequality that bounds the
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norm ‖
∑

iAi‖ of the sum of positive semi-definite operators A1, . . . , AN via the
respective norms of the square root of pairwise products AiAj .

In the context of one-sided DI QKD, it turns out that the game G×nBB84 pretty
much captures an execution of BB84, with Eve playing the role of Charlie, and
considering a gedankenexperiment where Eve measures her quantum side infor-
mation in order to try to guess the raw key x Alice obtains. Our bound on
pwin(G

×n
BB84) then implies that no matter what measurement Bob’s device per-

forms, if the outcome of his measurement is strongly correlated to Alice’s raw
key x, then Eve has a hard time in guessing x. The latter holds for any mea-
surement Eve may perform, and as such it follows that x has lower bounded
min-entropy conditioned on Eve’s quantum side information. As a consequence,
a secret key can be extracted from x using standard techniques.

Further Application. We expect our notion of and our results on monogamy
games to find other applications. Indeed, one additional direct application is to
position verification. Here, we consider a 1-dimensional setting where a prover
wants to convince two verifiers that he controls a certain position, pos. The
verifiers are located at known positions around pos, and they are honest and
connected by secure communication channels. Moreover, all parties are assumed
to have synchronized clocks, and the message delivery time between any two
parties is assumed to be proportional to the distance between them.

Position verification and variants thereof (like distance bounding) is a rather
well-studied problem in the field of wireless security (see e.g. the references in [9]).
It was shown in [9] that in the presence of colluding adversaries at different lo-
cations, position verification is impossible classically, even with computational
hardness assumptions. That is, the prover can always trick the verifiers into be-
lieving that he controls a position. The fact that the classical attack requires the
adversary to copy information, initially gave hope that we may circumvent the
impossibility result using quantum communication. However, such schemes were
subsequently broken [17,22] and indeed a general impossibility proof holds [8]:
without any restriction on the adversaries, in particular on the amount of pre-
shared entanglement they may hold, no quantum scheme for position verification
can be secure. This impossibility proof was constructive but required the dishon-
est parties to share a number of EPR pairs that grows doubly-exponentially in
the number of qubits the honest parties exchange. This was reduced by Beigi and
König [3] to a single exponential amount. On the other hand, there are schemes
for position verification that are provably secure against adversaries that have
no pre-shared entanglement, or only hold a couple of entangled qubits [8,22,3].

However, all known schemes that are provably secure with a negligible sound-
ness error (the maximal probability that a coalition of adversaries can pass the
position verification test for position pos without actually controlling that spe-
cific position) against adversaries with no or with bounded pre-shared entan-
glement are either multi-round schemes, or require the honest participants to
manipulate large quantum states.

In the full version [36], we present the first provably secure one-round position
verification scheme with negligible soundness error in which the honest parties
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are only required to perform single qubit operations. We prove its security against
adversaries with an amount of pre-shared entanglement that is linear in the
number of qubits transmitted by the honest parties.

Outline. In Section 2, we introduce the terminology and notation used through-
out this work, and we derive the operator norm inequality that is central to our
main result. In Section 3, we discuss the monogamy game G×nBB84, prove a strong
parallel repetition theorem, and discuss some generalizations. In Section 4, we
then make use of these results to prove one-sided DI security of BB84. The
application to position verification is given in the full version [36].

2 Technical Preliminaries

Basic Notation and Terminology. We assume the reader to be familiar with
the basic concepts of quantum information theory; we merely fix some notation
and terminology here.

Let H be an arbitrary, finite dimensional complex Hilbert space. L(H) and
P(H) denote linear and positive semi-definite operators on H, respectively. Note
that an operator A ∈ P(H) is in particular Hermitian, meaning that A† = A.
The set of density operators on H, i.e., the set of operators in P(H) with unit
trace, is denoted by S(H). For A,B ∈ L(H), we write A ≥ B to express that
A−B ∈ P(H). When operators are compared with scalars, we implicitly assume
that the scalars are multiplied by the identity operator, which we denote by 1H,
or 1 if H is clear from the context. A projector is an operator P ∈ P(H) that
satisfies P 2 = P . A POVM (short for positive operator valued measure) is a set
{Nx}x of operators Nx ∈ P(H) such that

∑
xNx = 1, and a POVM is called

projective if all its elements Nx are projectors. We use the trace distance

Δ(ρ, σ) := max
0≤E≤1

tr(E(ρ− σ)) =
1

2
tr|ρ− σ|, where |L| =

√
L†L,

as a metric on density operators ρ, σ ∈ S(H).
The most prominent example of a Hilbert space is the qubit space, H ≡ C2.

The vectors |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
form the computational basis, and the vectors

H |0〉 = (|0〉 + |1〉)/
√
2 and H |1〉 = (|0〉 − |1〉)/

√
2 the Hadamard basis, where

H denotes the Hadamard matrix. More generally, we often consider systems
composed of n qubits, H ≡ C2 ⊗ · · · ⊗ C2. For x, θ ∈ {0, 1}n, we write |xθ〉 as a
shorthand for the state vector Hθ1 |x1〉 ⊗ · · · ⊗Hθn |xn〉 ∈ H.

The Schatten ∞-Norm. For L ∈ L(H), we use the Schatten ∞-norm ‖L‖ :=
‖L‖∞ = s1(L), which evaluates the largest singular value of L. It is easy to verify
that this norm satisfies ‖L‖2 = ‖L†L‖ = ‖LL†‖. Also, for A,B ∈ P(H), ‖A‖
coincides with the largest eigenvalue ofA, andA ≤ B implies ‖A‖ ≤ ‖B‖. Finally,
for any block-diagonal operator A⊕B we have ‖A⊕B‖ = max{‖A‖, ‖B‖}.

We need the following fact. Note that the statement does not hold in general
if the projectors are replaced by general positive semi-definite operators.
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Lemma 2.1. Let P,Q ∈ P(H) be projectors with P ≤ Q, and let L ∈ L(H).
Then, it holds that

∥∥PL∥∥ ≤ ∥∥QL∥∥ and
∥∥LP∥∥ ≤ ∥∥LQ∥∥.

Proof. ‖PL‖2 =
∥∥L†P †PL∥∥ =

∥∥L†PL∥∥ ≤ ∥∥L†QL∥∥ =
∥∥L†Q†QL†∥∥ = ‖QL‖2,

and the proof of the second statement follows analogously. #$

Applying the lemma twice, we get ‖PQ‖2 ≤ ‖P ′Q‖2 ≤ ‖P ′Q′‖2 = ‖P ′Q′P ′‖ for
any two pairs of projectors satisfying P ≤ P ′ and Q ≤ Q′.

One of our main tools is the following Lemma 2.2, which bounds the Schatten
norm of the sum of n positive semi-definite operators by means of their pairwise
products. We derive the bound using a construction due to Kittaneh [18], which
was also used by Schaffner [32] to derive a similar, but less general, result.

We call two permutations π : [N ] → [N ] and π′ : [N ] → [N ] of the set
[N ] := {1, . . . , N} orthogonal if π(i) �= π′(i) for all i ∈ [N ]. The N cyclic shifts
for instance form a set of N permutations of [N ] that are mutually orthogonal.

Lemma 2.2. Let A1, A2, . . . , AN ∈ P(H), and let {πk}k∈[N ] be a set of N mu-
tually orthogonal permutations of [N ]. Then,∥∥∥∥ ∑

i∈[N ]

Ai

∥∥∥∥ ≤ ∑
k∈[N ]

max
i∈[N ]

∥∥∥√Ai

√
Aπk(i)

∥∥∥ .
Proof. We define X = [Xij ] as the N × N block-matrix with blocks given by
Xij = δj1

√
Ai. The two matrices X†X and XX† are easy to evaluate, namely

(X†X)ij = δi1δj1
∑

iAi and (XX†)ij =
√
Ai

√
Aj , respectively. As such, we see

that
∥∥∑

iAi

∥∥ = ‖X†X‖ = ∥∥XX†
∥∥.

Next, we decompose XX† into XX† = D1+D2+ . . .DN , where the matrices
Dk are defined by the permutations πk, respectively, as (Dk)ij = δj,πk(i)

√
Ai√

Aj . The requirement on the permutations ensures that XX† =
∑

kDk. More-
over, since the matrices Dk are constructed such that they contain exactly one
non-zero block in each row and column, they can be transformed into a block-
diagonal matrix D′k =

⊕
i

√
Ai

√
Aπk(i) by a unitary rotation. Hence, using

triangle inequality and the unitary invariance of the norm, we get
∥∥∑

k Ak

∥∥ =∥∥XX†
∥∥ ≤∑k ‖Dk‖ =

∑
k ‖D′k‖ =

∑
k maxi

∥∥√Ai

√
Aπk(i)

∥∥. #$

CQ-States and Min-Entropy. A state ρXB ∈ S(HX ⊗ HB) is called a
classical-quantum (CQ) state with classical X over X , if it is of the form

ρXB =
∑
x∈X

px|x〉〈x|X ⊗ ρxB ,

where {|x〉}x∈X is a fixed basis of HX , {px}x∈X is a probability distribution,
and ρxB ∈ S(HB). For such a state, X can be understood as a random variable
that is correlated with (potentially quantum) side information B.

If λ : X → {0, 1} is a predicate on X , then we denote by Prρ[λ(X)] the proba-
bility of the event λ(X) under ρ; formally, Prρ[λ(X)] =

∑
x px λ(x).
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We also define the state ρXB|λ(X), which is the state of the X and B condi-
tioned on the event λ(X). Formally,

ρXB|λ(X) =
1

Prρ[λ(X)]

∑
x

pxλ(x)|x〉〈x|X ⊗ ρxB .

For a CQ-state ρXB ∈ S(HX ⊗HB), the min-entropy of X conditioned on B
[31] can be expressed in terms of the maximum probability that a measurement
on B yields the correct value of X , i.e. the guessing probability. Formally, we
define [20] Hmin(X |B)ρ := − log pguess(X |B)ρ, where

pguess(X |B)ρ := max
{Nx}x

∑
x

px tr(ρ
x
BNx).

Here, the optimization is taken over all POVMs {Nx}x on B, and here and
throughout this paper, log denotes the binary logarithm.

In case of a CQ-state ρXBΘ with classical X , and with additional classical side
information Θ, we can write ρXBΘ =

∑
θ pθ |θ〉〈θ|⊗ρθXB for CQ states ρθXB. The

min-entropy of X conditioned on B and Θ then evaluates to Hmin(X |BΘ)ρ =
− log pguess(X |BΘ)ρ, where pguess(X |BΘ)ρ =

∑
θ pθ pguess(X |B)ρθ . An intuitive

explanation of the latter equality is that the optimal strategy to guess X simply
chooses an optimal POVM on B depending on the value of Θ.

An overview of the min-entropy and its properties can be found in [35]. We
merely point out the chain rule here: for a CQ-state ρXBΘ with classical X and
Θ, where Θ is over {0, 1}n, it holds that Hmin(X |BΘ)ρ ≥ Hmin(X |B)ρ − n.

3 Parallel Repetition of Monogamy Games

In this section, we formalize the notion of a monogamy game, and we show
strong parallel repetition for the game G×nBB84. Then, we generalize our analysis
to arbitrary projective measurements for Alice, and to the case where Bob and
Charlie are allowed to make some errors.

Definition 3.1. A monogamy-of-entanglement game G consists of a finite di-
mensional Hilbert space HA and a list of projective measurements Mθ =
{F θ

x}x∈X on a HA, indexed by θ ∈ Θ, where X and Θ are finite sets.

We typically use less bulky terminology and simply call G a monogamy game.
Note that for any positive integer n, the n-fold parallel repetition of G, denoted as
G×n and naturally specified by H⊗nA and {F θ1

x1
⊗· · ·⊗F θn

xn
}x1,...,xn for θ1, . . . , θn ∈

Θ, is again a monogamy game.

Definition 3.2. We define a strategy S for a monogamy game G as a list

S =
{
ρABC , P

θ
x , Q

θ
x

}
θ∈Θ,x∈X , (2)

where ρABC ∈ S(HA ⊗HB ⊗HC), and HB and HC are arbitrary finite dimen-
sional Hilbert spaces. Furthermore, for all θ ∈ Θ, {P θ

x}x∈X and {Qθ
x}x∈X are

POVMs on HB and HC , respectively. A strategy is called pure if the state ρABC

is pure and all the POVMs are projective.
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If S is a strategy for game G, then the n-fold parallel repetition of S, which is
naturally given, is a particular strategy for the parallel repetition G×n; however,
it is important to realize that there exist strategies for G×n that are not of this
form. In general, a strategy Sn for G×n is given by an arbitrary state ρA1...AnBC ∈
S(H⊗nA ⊗ HB ⊗ HC) (with arbitrary HB and HC) and by arbitrary POVM
elements on HB and HC , respectively, not necessarily in product form.

The winning probability for a game G and a fixed strategy S, denoted by
pwin(G,S), is defined as the probability that the measurement outcomes of Al-
ice, Bob and Charlie agree when Alice measures in the basis determined by a
randomly chosen θ ∈ Θ and Bob and Charlie apply their respective POVMs
{P θ

x}x and {Qθ
x}x. The optimal winning probability, pwin(G), maximizes the

winning probability over all strategies. The following makes this formal.

Definition 3.3. The winning probability for a monogamy game G and a strategy
S is defined as

pwin(G,S) :=
∑
θ∈Θ

1

|Θ| tr
(
ΠθρABC

)
, where Πθ :=

∑
x∈X

F θ
x ⊗ P θ

x ⊗Qθ
x . (3)

The optimal winning probability is pwin(G) := supS pwin(G,S), where the supre-
mum is taken over all strategies S for G.

In fact, due to a standard purification argument and Neumark’s dilation theorem,
we can restrict the supremum to pure strategies (cf. [36]).

Strong Parallel Repetition for GBB84. We are particularly interested in the
game GBB84 and its parallel repetition G×nBB84. The latter is given by HA = (C2)⊗n

and the projectors F θ
x = |xθ〉〈xθ | = Hθ1|x1〉〈x1|Hθ1 ⊗ · · · ⊗ Hθn |xn〉〈xn|Hθn

for θ, x ∈ {0, 1}n. The following shows the exact value of pwin(G
×n
BB84), and in

particular it shows strong parallel repetition.

Theorem 3.4. For any n ∈ N, n ≥ 1, we have

pwin(G
×n
BB84) =

(
1

2
+

1

2
√
2

)n
. (4)

Proof. We first show that this probability can be achieved. For n = 1, consider
the following strategy. Bob and Charlie prepare the state |φ〉 := cos π

8 |0〉 +
sin π

8 |1〉 and send it to Alice. Then, they guess that Alice measures outcome 0,
independent of θ. Formally, this is the strategy S1 =

{
|φ〉〈φ|, P θ

x = δx0, Q
θ
x =

δx0
}
. The optimal winning probability is bounded by the winning probability of

this strategy,

pwin(GBB84) ≥
(
cos

π

8

)2
=

1

2
+

1

2
√
2
,

and the lower bound in Eq. (4) follows by repeating this simple strategy n times.



618 M. Tomamichel et al.

To show that this simple strategy is optimal, let us now fix an arbitrary, pure
strategy Sn = {ρA1...AnBC , P

θ
x , Q

θ
x}. From the definition of the norm, we have

tr(MρABC) ≤ ‖M‖ for any M ≥ 0. Using this and Lemma 2.2, we find

pwin(G
×n
BB84,Sn) ≤

1

2n

∥∥∥∑
θ

Πθ
∥∥∥ ≤ 1

2n

∑
k

max
θ

∥∥ΠθΠπk(θ)
∥∥, (5)

where the optimal permutations πk are to be determined later. Hence, the prob-
lem is reduced to bounding the norms

∥∥ΠθΠθ′
∥∥, where θ′ = πk(θ). The trivial

upper bound on these norms, 1, leads to pwin(G
×n
BB84,Sn) ≤ 1. However, most of

these norms are actually very small as we see below.
For fixed θ and k, we denote by T the set of indices where θ and θ′ differ,

by T c its complement, and by t the Hamming distance between θ and θ′ (i.e.,
t = |T |). Consider the projectors

P̄ =
∑
x

|xθT 〉〈xθT | ⊗ 1T c ⊗ P θ
x ⊗ 1C and Q̄ =

∑
x

|xθ
′

T 〉〈xθ
′

T | ⊗ 1T c ⊗ 1B ⊗Qθ′

x ,

where |xθT 〉 is |xθ〉 restricted to the systems corresponding to rounds with index
in T , and 1T c is the identity on the remaining systems.

Since Πθ ≤ P̄ and Πθ′ ≤ Q̄, we can bound
∥∥ΠθΠθ′

∥∥2 ≤ ∥∥P̄ Q̄P̄∥∥ using
Lemma 2.1. Moreover,

P̄ Q̄P̄ =
∑
x,y,z

|xθT 〉〈xθT |yθ
′

T 〉〈yθ
′

T |zθT 〉〈zθT | ⊗ 1T c ⊗ P θ
xP

θ
z ⊗Qθ′

y

=
∑
x,y

|〈xθT |yθ
′

T 〉|2 |xθT 〉〈xθT | ⊗ 1T c ⊗ P θ
x ⊗Qθ′

y

= 2−t
∑
x

|xθT 〉〈xθT | ⊗ 1T c ⊗ P θ
x ⊗ 1C ,

where we used that P θ
xP

θ
z = δxzP

θ
x and |〈xθT |yθ

′

T 〉|2 = 2−t. The latter relation
follows from the fact that the two bases are diagonal to each other on each qubit
with index in T . From this follows directly that ‖P̄ Q̄P̄‖ = 2−t. Hence, we find∥∥ΠθΠθ′

∥∥ ≤ √2−t. Note that this bound is independent of the strategy and only
depends on the Hamming distance between θ and θ′.

To minimize the upper bound in (5), we should choose permutations πk that
produce tuples (θ, θ′ = πk(θ)) with the same Hamming distance as this means
that the maximization is over a uniform set of elements. A complete mutually
orthogonal set of permutations with this property is given by the bitwise XOR,
πk(θ) = θ⊕k, where we interpret k as an element of {0, 1}n. Using this construc-
tion, we get exactly

(
n
t

)
permutations that create pairs with Hamming distance

t, and the bound in Eq. (5) evaluates to

1

2n

∑
k

max
θ

∥∥ΠθΠπk(θ)
∥∥ ≤ 1

2n

n∑
t=0

(
n

t

)( 1√
2

)t
=

(
1

2
+

1

2
√
2

)n
.

As this bound applies to all pure strategies, we conclude the proof. #$
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Arbitrary Games, and Imperfect Guessing. The above upper-bound tech-
niques can be generalized to an arbitrary monogamy game, G, specified by an
arbitrary finite dimensional Hilbert space HA and arbitrary projective measure-
ments {F θ

x}x∈X , indexed by θ ∈ Θ, and with arbitrary finite X and Θ. The
only additional parameter relevant for the analysis is the maximal overlap of the
measurements, c(G) := max ‖F θ

xF
θ′

x′ ‖2, where the max is over all θ �= θ′ ∈ Θ and
all x, x′ ∈ X . c(G) satisfies 1/|X | ≤ c(G) ≤ 1 and c(G×n) = c(G)n. This is in ac-
cordance with the definition of the overlap as it appears in entropic uncertainty
relations, e.g. in [21]. Note also that in the case of GBB84, we have c(GBB84) =

1
2 .

In addition to considering arbitrary monogamy games, we also generalize The-
orem 3.4 to the case where Bob and Charlie are not required to guess perfectly
but are allowed to make some errors. The maximal winning probability in this
case is defined as follows, where we again restrict to pure strategies.

Definition 3.5. Let Q = {(πqB, π
q
C)}q be a set of pairs of permutations of X ,

indexed by q, with the meaning that in order to win, Bob and Charlie’s respective
guesses for x must form a pair in {(πqB(x), π

q
C(x))}q. Then, the optimal winning

probability of G with respect to Q is

pwin(G;Q) := sup
S

∑
θ∈Θ

1

|Θ| tr(Π
θρABC) with Πθ :=

∑
x∈X

F θ
x ⊗
∑
q

P θ
πq
B(x)⊗Qθ

πq
C(x)

where the supremum is taken over all pure strategies S for G.

We find the following upper bound on the guessing probability, generalizing the
upper bound on the optimal winning probability established in Theorem 3.4.
The proof closely follows the proof of the upper bound in Theorem 3.4, and is
deferred to the full version [36].

Theorem 3.6. For any positive n ∈ N, we have

pwin(G
×n;Q) ≤ |Q|

(
1

|Θ| +
|Θ| − 1

|Θ|
√
c(G)

)n
.

Recall that in case of GBB84, we have |Q| = 1, |Θ| = 2, and c(GBB84) =
1
2 , leading

to the bound stated in Theorem 3.4.
One particularly interesting example of the above theorem considers binary

measurements, i.e. X = {0, 1}, where Alice will accept Bob’s and Charlie’s an-
swers if and only if they get less than a certain fraction of bits wrong. More
precisely, she accepts if d(x, y) ≤ γ n and d(x, z) ≤ γ′ n, where d(·, ·) denotes
the Hamming distance and y, z are Bob’s and Charlie’s guesses, respectively. In
this case, we let Qn

γ,γ′ consist of all pairs of permutations (πqB , π
q
C) on {0, 1}n of

the form πqB(x) = x ⊕ k, πqC(x) = x ⊕ k′, where q = {k, k′}, and k, k′ ∈ {0, 1}n
have Hamming weight at most γ and γ′, respectively. One can upper bound
|Qn

γ,γ′| ≤ 2nh(γ)+nh(γ′), where h(·) denotes the binary entropy. We thus find

pwin(G
×n;Qn

γ,γ′) ≤
(
2h(γ)+h(γ′) 1 + (|Θ| − 1)

√
c(G)

|Θ|

)n
.
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4 Application: One-Sided Device-Independent QKD

In the following, we assume some familiarity with quantum key distribution
(QKD). For simplicity, we consider an entanglement-based [11] variant of the
BB84 QKD scheme [5], where Bob waits with performing the measurement until
Alice tells him the right bases. This protocol is impractical because it requires
Bob to store qubits. However, it is well known that security of this impractical
version implies security of the original, more practical BB84 QKD scheme [4].
It is straightforward to verify that this implication also holds in the one-sided
device-independent setting we consider here.

The entanglement-based QKD scheme, E-QKD, is described in Figure 1. It is
(implicitly) parameterized by positive integers 0 < t, s, � < n and a real number
0 ≤ γ < 1

2 . Here, n is the number of qubits exchanged between Alice and Bob, t
is the size of the sample used for parameter estimation, s is the leakage (in bits)
due to error correction, and � is the length (in bits) of the final key. Finally, γ is
the tolerated error in Bob’s measurement results.

State Preparation: Alice prepares n EPR pairs 1√
2

(
|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉

)
. Then,

of each pair, she keeps one qubit and sends the other to Bob.
Confirmation: Bob confirms receipt of the n qubits. (After this point, there can-

not be any communication between Bob’s device and Eve.)
Measurement: Alice chooses random Θ ∈ {0, 1}n and sends it to Bob, and Alice

and Bob measure the EPR pairs in basis Θ to obtain X and Y , respectively.
(Remember: Bob’s device may produce Y in an arbitrary way, using a POVM
chosen depending on Θ acting on a state provided by Eve.)

Parameter Estimation: Alice chooses a random subset T ⊂ {1, . . . , n} of size t,
and sends T and XT to Bob. If the relative Hamming distance, drel(XT , YT ),
exceeds γ then they abort the protocol and set K = ⊥.

Error Correction: Alice sends a syndrome S(XT̄ ) of length s and a random
universal2 hash function F : {0, 1}n−t → {0, 1}� to Bob.

Privacy Amplification: Alice computes K = F (XTc ) and Bob K̂ = F (X̂Tc ),
where X̂Tc is the corrected version of YTc .

Fig. 1. An entanglement-based QKD scheme E-QKD

A QKD protocol is called perfectly secure if it either aborts and outputs an
empty key, K =⊥, or it produces a key that is uniformly random and inde-
pendent of Eve’s (quantum and classical) information E+ gathered during the
execution of the protocol. Formally, this means that the final state must be of
the form ρKE+ = Prρ[K �=⊥] ·μK⊗ρE+|K �=⊥+Prρ[K =⊥] · |⊥〉〈⊥|K⊗ρE+|K=⊥,
where μK is a 2	-dimensional completely mixed state, and |⊥〉〈⊥|K is orthogonal
to μK .
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Relaxing this condition, a protocol is called δ-secure if ρKE+ is δ-close to the
above form in trace distance, meaning that ρKE+ satisfies

Pr
ρ
[K �=⊥] ·Δ(ρKE+|K �=⊥, μK ⊗ ρE+|K �=⊥) ≤ δ . (6)

It is well known and has been proven in various ways that E-QKD is δ-secure
(with small δ) with a suitable choice of parameters, assuming that all quantum
operations are correctly performed by Alice and Bob. We now show that the
protocol remains secure even if Bob’s measurement device behaves arbitrarily
and possibly maliciously. The only assumption is that Bob’s device does not
communicate with Eve after it received Alice’s quantum signals. This restriction
is clearly necessary as there would otherwise not be any asymmetry between Bob
and Eve’s information about Alice’s key. Note that the scheme is well known to
satisfy correctness and robustness; hence, we do not argue these here.

Theorem 4.1. Consider an execution of E-QKD, with an arbitrary measure-
ment device for Bob. Then, for any ε > 0, protocol E-QKD is δ-secure with

δ = 5e−2ε
2t + 2−

1
2

(
log(1/β◦)n−h(γ+ε)n−	−t−s+2

)
where β◦ =

1

2
+

1

2
√
2
.

Note that with an optimal error correcting code, the size of the syndrome for
large n approaches the Shannon limit s = nh(γ). The security error δ can then
be made negligible in n with suitable choices of parameters if log(1/β◦) > 2h(γ),
which roughly requires that γ ≤ 0.015. Hence, the scheme can tolerate a noise
level up to 1.5% asymptotically.1

The formal proof is given below. The idea is rather simple: We consider a
gedankenexperiment where Eve measures her system, using an arbitrary POVM,
with the goal to guess X . The execution of E-QKD then pretty much coincides
with G×nBB84, and we can conclude from our results that if Bob’s measurement
outcome Y is close to X , then Eve must have a hard time in guessing X . Since
this holds for any measurement she may perform, this means her min-entropy
on X is large and hence the extracted key K is secure.

Proof. Let ρΘTABE = ρΘ ⊗ ρT ⊗ |ψABE〉〈ψABE | be the state before Alice and
Bob perform the measurements on A and B, respectively, where system E is held
by the adversary Eve. Here, the random variableΘ contains the choice of basis for
the measurement, whereas the random variable T contains the choice of subset
on which the strings are compared (see the protocol description in Fig. 1.) More-
over, let ρΘTXY E be the state after Alice and Bob measured, where — for every
possible value θ— Alice’s measurement is given by the projectors {|xθ〉〈xθ |}x,
and Bob’s measurement by an arbitrary but fixed POVM {P θ

x}x.
As a gedankenexperiment, we consider the scenario where Eve wants to guess

the value of Alice’s raw key, X . Eve wants to do this during the parameter
estimation step of the protocol, exactly after Alice broadcast T but before
she broadcasts XT .2 For this purpose, we consider an arbitrary measurement
1 This can be improved slightly by instead considering a six-state protocol, where the

measurement is randomly chosen among three mutually unbiased bases on the qubit.
2 Note that the effect of Eve learning XT is taken into account later, in Eq. (8).
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strategy of Eve that aims to guess X . Such a strategy is given by — for every
basis choice, θ, and every choice of sample, τ — a POVM {Qθ,τ

x }x. The values of
θ and τ have been broadcast over a public channel, and are hence known to Eve
at this point of the protocol. She will thus choose a POVM depending on these
values to measure E and use the measurement outcome as her guess.

For our gedankenexperiment, we will use the state, ρΘTXY Z , which is the
(purely classical) state that results after Eve applied her measurement on E. Let
ε > 0 be an arbitrary constant. By our results from Section 3, it follows that for
any choices of {P θ

x}x and {Qθ,τ
x }x, we have

Pr
ρ
[drel(X,Y )≤γ+ε ∧ Z=X ] ≤ pwin(G

×n
BB84;Qn

γ+ε,0) ≤ βn

with β = 2h(γ+ε) · β◦, where drel denotes the relative Hamming distance. This
uses the fact that Alice’s measurement outcome is independent of T , and T can
in fact be seen as part of Eve’s system for the purpose of the monogamy game.

We now construct a state ρ̃ΘTXY E as follows.

ρ̃ΘTXY E = Pr
ρ
[Ω] · ρΘTXY E|Ω +

(
1− Pr

ρ
[Ω]
)
· σΘTXY E ,

where Ω denotes the event Ω = {drel(X,Y ) ≤ drel(XT , YT ) + ε}, and we take
σTΘXY E to be an arbitrary state with classical Θ, T , X and Y for which
drel(X,Y ) = 1, and hence drel(XT , YT ) = 1. Informally, the event Ω indicates
that the relative Hamming distance of the sample strings XT and YT deter-
mined by T was representative of the relative Hamming distance between the
whole strings, X and Y , and the state ρ̃ΘTXY E is so that this is satisfied with cer-
tainty. By construction of ρ̃ΘTXY E , we have Δ(ρΘTXY E , ρ̃ΘTXY E) ≤ 1−Prρ[Ω],
and by Hoeffding’s inequality,

1− Pr
ρ
[Ω] = Pr

ρ
[drel(X,Y ) > drel(XT , YT ) + ε] ≤ e−2ε

2t.

Moreover, note that the event drel(XT , YT ) ≤ γ implies drel(X,Y ) ≤ γ+ ε under
ρ̃ΘTXY E . Thus, for every choice of strategy {Qθ,τ

x }x by the eavesdropper, the
resulting state ρ̃ΘTXY Z , obtained by applying {Qθ,τ

x }x to E, satisfies

Pr
ρ̃
[drel(XT , YT )≤γ ∧ Z=X ] ≤ Pr

ρ̃
[drel(X,Y )≤γ+ε ∧ Z=X ] (7)

≤ Pr
ρ
[drel(X,Y )≤γ+ε ∧ Z=X ] ≤ βn.

We now introduce the event Γ = {drel(XT , YT ) ≤ γ}, which corresponds to the
event that Bob does not abort the protocol. Expanding the left hand side of (7)
to Prρ̃[Γ ] · Prρ̃[Z = X |Γ ] and observing that Prρ̃[Γ ] does not depend on the
strategy {Qθ,τ

x }x, we can conclude that

∀ {Qθ,τ
x }x : Pr

ρ̃
[Z=X |Γ ] ≤ β(1−α)n

where α ≥ 0 is determined by Prρ̃[Γ ] = βαn. Therefore, by definition of the
min-entropy, Hmin(X |ΘTE, Γ )ρ̃ ≥ n(1−α) log(1/β). (This notation means that
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the min-entropy of X given Θ, T and E is evaluated for the state ρ̃ΘTXY E|Γ ,
conditioned on not aborting.) By the chain rule, it now follows that

Hmin(X |ΘTXTSE, Γ )ρ̃ ≥ Hmin(XXTS|ΘTE, Γ )ρ̃ − t− s (8)
≥ n(1− α) log(1/β)− t− s .

Here, the min-entropy is evaluated for the state ρ̃XΘTXT SE that is constructed
from ρ̃XΘTE by calculating the error syndrome and copying XT from X as done
in the prescription of the protocol. In particular, Δ(ρ̃XΘTXT SE , ρXΘTXTSE) ≤
e−2ε

2t. Finally, privacy amplification with universal2 hashing applied to the state
ρ̃XΘTXT SE ensures that the key K satisfies [31]

Δ(ρ̃KFΘTXT SE|Γ , μK ⊗ ρ̃FΘTXTE|Γ ) ≤
1

2

√
β(1−α)n 2	+t+s .

And, in particular, recalling that Prρ̃[Γ ] = βαn, we have

Pr
ρ̃
[Γ ] ·Δ(ρ̃KFΘTXT SE|Γ , μK ⊗ ρ̃FΘTXTE|Γ ) ≤

1

2

√
βn 2	+t+s .

Using β = 2h(γ+ε)β◦ and applying Lemma 4.2 below concludes the proof. #$

Lemma 4.2. Let ρXB, ρ̃XB ∈ S(HX ⊗HB) be two CQ states with X over X .
Also, let λ : X → {0, 1} be a predicate on X and Λ = λ(X), and let τX ∈ S(HX)
be arbitrary. Then

Pr
ρ
[Λ] ·Δ(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 5Δ(ρXB, ρ̃XB) + Pr

ρ̃
[Λ] ·Δ(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) .

Proof. We set δ := Δ(ρXB , ρ̃XB). From Δ(ρXB , ρ̃XB) = δ it follows in particular
that the two distributions PX and P̃X are δ-close, and thus that the state

σXB := Pr
ρ
[Λ] · ρ̃XB|Λ + Pr

ρ
[¬Λ] · ρ̃XB|¬Λ

is δ-close to ρ̃XB, and hence 2δ-close to ρXB, where ¬Λ is the negation of the
event Λ. Since Λ is determined by X , we can write

Δ(ρXB, σXB) = Pr
ρ
[Λ] ·Δ(ρXB|Λ, ρ̃XB|Λ) + Pr

ρ
[¬Λ] ·Δ(ρXB|¬Λ, ρ̃XB|¬Λ) ,

from which it follows that Prρ[Λ] · Δ(ρXB|Λ, ρ̃XB|Λ) ≤ 2δ, and, by tracing out
X , also that Prρ[Λ] ·Δ(ρB|Λ, ρ̃B|Λ) ≤ 2δ. We can now conclude that

Pr
ρ
[Λ] ·Δ(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 4δ + Pr

ρ
[Λ] ·Δ(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ)

≤ 5δ + Pr
ρ̃
[Λ] ·Δ(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) ,

which proves the claim. #$
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1 Introduction

Arithmetization of Boolean computations is a well known technique: it maps
a Boolean circuit to a set of polynomial (e.g., quadratic) equations over a
field. The celebrated result IP=PSPACE [35, 41] used arithmetization as a
crucial tool and set the stage for the PCP theorem [2–4, 20], which provided
a new characterization of NP that revolutionized the notion of “proof” – in
particular, it shows that NP statements have probabilistically checkable proofs
(PCPs) that can be verified in time polylogarithmic in the size of a classical
proof.

Cryptographers quickly seized on the potential applicability of PCPs to secure
computation. Kilian [32] showed how to use PCPs to construct interactive argu-
ments (i.e., computationally sound proof systems [14]) for NP that are succinct –
i.e., polylogarithmic in their communication complexity. Micali [36] showed how
to make these arguments non-interactive in the random oracle model. Recent
work [8, 19, 26] (see also [17]) has improved Micali’s construction by removing
the random oracle, which is known to be uninstantiable [15], and replacing it
with an “extractable collision-resistant hash function” (ECRH), whose security
relies on the plausible, but non-falsifiable [37], assumption that for any algorithm
that computes an image of the ECRH, there is an extractor (that watches the
algorithm) that computes a pre-image.1 These recent constructions have been
called succinct non-interactive arguments (SNARGs) of knowledge (SNARKs),
since, under the knowledge assumption, the SNARG permits “knowledge” ex-
traction of the entire hash preimage – i.e., the entire PCP.

PCPs are not the only arithmetization technique for creating SNARKs. Groth
shows how to arithmetize a Boolean circuit so that a proof of its satisfiabil-
ity can be written using only a constant number of group elements [27] (af-
ter a single pre-processing stage to establish a common reference string (CRS)
[9, 10]).

Our work provides a brand new form of arithmetization which we call
Quadratic Span Programs (QSPs), since it is a generalization of the notion of
Span Programs proposed by Karchmer and Wigderson [31]. We show that our
new arithmetization technique yields far more efficient SNARKs than either
PCP-based or Groth-like proofs. Using QSPs, we construct a NIZK argument
in the CRS model for circuit SAT consisting of just 7 group elements. The CRS
size and prover computation are quasi-linear in the circuit size, making our
scheme quite practical, to the point where we have implemented and evaluated
it (see Section 5). A variant of our technique works directly on arithmetic circuits
over large fields, obtaining Quadratic Arithmetic Programs (QAPs) and avoid-
ing the complexity of a Boolean description of an arithmetic computation (see
Section 4).

1 We know that the security of succinct non-interactive arguments cannot be based on
falsifiable assumptions via black box reductions [1, 23]; hence non-falsifiable “knowl-
edge” assumptions seem unavoidable in this context.



628 R. Gennaro et al.

1.1 Quadratic Span Programs

QSPs are a natural extension of span programs (SPs), a linear-algebraic model
of computation introduced by Karchmer and Wigderson [31].2 An SP of size m
over a field F consists of a set V = {v0(x), v1(x), . . . , vm(x)} of polynomials of
degree d− 1, a partition of the indices I = {1, . . . ,m} into two sets Ilabeled and
Ifree, and a further partition of Ilabeled as ∪i∈[n],j∈{0,1}Iij meant to represent n
Boolean inputs. The SP is said to “compute” a function f if the following is true
for all input assignments u ∈ {0, 1}n: the polynomial v0(x) can be expressed as
a linear combination of the polynomials that “belong” to the input assignment
u – namely, the set of polynomials Vu with indices in Iu = Ifree ∪i Ii,ui – iff
f(u) = 1.

Functions with polynomial size SPs are in NC2, since linear algebra is in
NC2. Consequently, it is widely believed that SPs cannot efficiently compute all
functions in P (or verify all NP relations).

We define QSPs somewhat similarly to SPs.

Definition 1 (Quadratic Span Program). A quadratic span program (QSP)
Q over field F contains two sets of polynomials V = {vk(x) : k ∈ {0, . . . ,m}}
andW = {wk(x) : k ∈ {0, . . . ,m}} and a divisor polynomial D(x), all from F [x].
Q also contains a partition of the indices I = {1, . . . ,m} into two sets Ilabeled
and Ifree, and a further partition of Ilabeled as ∪i∈[n],j∈{0,1}Iij.

For input u ∈ {0, 1}n, let Iu = Ifree∪i Ii,ui be the set of indices that “belong”
to input u. Q accepts an input u ∈ {0, 1}n iff there exist tuples (a1, . . . , am) and
(b1, . . . , bm) from Fm, with ak = 0 = bk for all k /∈ Iu:

D(x) divides
(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

bk · wk(x)
)
. (1)

Q “computes” a Boolean function f : {0, 1}n → {0, 1} if it accepts exactly those
inputs u where f(u) = 1. Q has size m and degree deg(D(x)).

QSPs are a natural extension of (linear) SPs. An SP accepts an input u if and
only if the target polynomial can be written as an affine linear combination
of polynomials that “belong” to u. A QSP accepts an input u if and only if
the divisor polynomial divides a product of two affine linear combinations of
polynomials that “belong” to u, where “product” is polynomial multiplication.

Unlike SPs, QSPs can efficiently compute any function in P , and the “canon-
ical QSP” we build has performance parameters that yield faster SNARKs, as
stated in the two theorems below.

Theorem 1. (Informal) For any Boolean circuit C with s gates and any field
F of size at least d = O(s), there is a QSP of size and degree O(s) (with small
constants) over F that computes C.

2 SPs were first defined [31] in terms of vectors {v0,v1, . . . ,vm}, rather than polyno-
mials. The “target” vector v0 must be expressible as a linear combination of the
vectors that “belong” to the input assignment u (as defined above). Our definition
in terms of polynomials is equivalent [22]: just think of each vector as the evaluation
of the corresponding polynomial on a fixed set of points.
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Theorem 2. (Informal) Given a circuit C with s gates, computing the polyno-
mials D(x), V and W of our “canonical” QSP, which computes C, takes O(s)
work (O(s) F operations). Given u ∈ {0, 1}n for which C(u) = 1, computing
suitable tuples (a1, . . . , am), (b1, . . . , bm) ∈ {0, 1}m that satisfy Equation 1 takes
O(s) work. Given (a1, . . . , am), computing v(x) = v0(x) +

∑m
k=1 ak · vk(x) takes

O(s) work. (Similarly for w(x).) Computing the quotient h(x) = v(x)·w(x)/D(x)
takes Õ(s) work.

We obtain such performance by exploiting the sparseness of the polynomials
vk(x)’s and wk(x)’s in our canonical QSP. In particular, they behave similarly
to Lagrange basis polynomials �j(x) =

∏
i�=j(x− ri)/(rj − ri) in that they each

evaluate to 0 at almost all roots of D(x), which is a product of linear terms.
This makes it easy to compute v(x) and w(x) in linear time by representing
them by their evaluation at these roots. Computing h(x) in purely linear, versus
quasi-linear, time remains an open problem.

1.2 From QSPs to SNARKs, NIZKs, and Verifiable Computing

We use QSPs to build SNARKs and NIZKs in the CRS model [9, 10].

SNARKs. Our SNARK for f uses a CRS in which the QSP polynomials (e.g.,
{vk(x)}) are represented by terms gvk(σ) (etc.), where g is a generator of a
bilinear group [12], and σ ∈ F is secret. The CRS size is linear in the circuit
size of f . To oversimplify, to compute a SNARK, the prover uses its satisfying
input to compute tuples (a1, . . . , am) and (b1, . . . , bm), and then uses them and
the CRS to compute gv = gv(σ), gw = gw(σ), gh = gh(σ) for v(x), w(x), h(x) as
defined in Theorem 2. The verifier confirms that e(gv, gw) = e(gh, g

t(σ)), where
e is the bilinear map. (The actual scheme is more complicated – see Section
3.2.) For security, we require a non-falsifiable “knowledge” assumption which, as
noted above, is necessary [1, 23].

NIZK. It is straightforward to randomize our public-verifier SNARK to make it
statistical zero knowledge and obtain a non-interactive zero-knowledge (NIZK)
argument [9, 10]. Details are in Section 3.3.

Verifiable Computation. In the full version [22], we use our QSP-based
SNARK to achieve a very efficient scheme for public verifiable computation [21,
39].

Remark on Efficiency and Adaptivity. In the description above, the CRS
(the QSP polynomials) depend on a particular language or relation. We can
achieve an “adaptive” solution (where first the CRS is fixed, and then the lan-
guage or relation is selected) by applying our QSP construction to the universal
circuit, at the cost of expanding the circuit by a logarithmic factor, yielding
quasi-linear complexity for CRS size and prover computation.
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1.3 Comparisons to Other Work on Succinct Arguments

PCP-based Protocols. Ishai, Kushilevitz and Ostrovsky [30] were perhaps
the first to seriously investigate how to tweak PCP-techniques to yield the best
possible succinct arguments. However in their solution the prover’s computation
(and also the verifier’s computation in a pre-processing step) is quadratic in the
size of the classical proof.

Very recently, Ben-Sasson et al. present a new PCP scheme with quasilinear
complexity for the prover and the CRS [7]. Our direct construction of QSPs
yields better asymptotic performance, even before these PCPs are converted
into SNARKs.

Groth-like Schemes. Groth et al. [28, 29] previously constructed NIZKs over
bilinear groups with various attractive properties, but with size linear in the
circuit. More recently, Groth essentially found a way to compress the proof into
a constant number of group elements [27] (still higher than ours – 42 group
elements versus 7 for ours). Security relies on a non-falsifiable “knowledge of
exponent” assumption, similar to the one we use.

The main drawbacks of Groth’s succinct NIZK are the prover complexity and
the CRS size, which are both quadratic in the circuit size. Lipmaa [33] showed
how to reduce the size of the CRS in Groth’s construction from quadratic to
quasi-linear in the circuit size, but prover complexity remains quadratic.

2 Quadratic Span Programs (QSPs)

Above, we defined Quadratic Span Programs (QSPs) in a manner that is su-
perficially similar to that of span programs (SPs). The crucial difference is that
QSPs can compute any efficiently computable function. We demonstrate this via
an explicit construction of a QSP for any circuit C.3 The construction uses two
components: a gate checker and a wire checker.

2.1 A Gate Checker

While we do not know how to efficiently construct SPs for arbitrary functions
f ∈ P, we can always efficiently construct an SP for a function related to f ,
called the gate checker function for f , which ensures that a set of wire values is
consistent with the gates in a circuit for f .

Definition 2 (Gate Checker Function). Let f : {0, 1}n → {0, 1} be a func-
tion whose Boolean circuit C has s gates. Let N = n+ s – the total number of
wires in C (wires that fan out are considered one wire). Define φ : {0, 1}N →
{0, 1} to be a function that outputs ‘1’ iff the input is a valid assignment of C’s
wires with output wire set to ‘1’. We say that φ is the gate checker function
for f .

3 The full version of the paper [22] gives a formal reduction from circuit SAT to a
QSP satisfiability problem, hence proving that QSP SAT is NP complete.
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An SP for the gate checker function φ does not, however, compute the function
f ; such an SP has labeled (non-free) polynomials even for the interior wires of C,
whereas an SP for f is only permitted to have labeled polynomials for C’s input
wires. If we simply move the polynomials for the interior wires to the “free” set,
then we might introduce additional valid linear combinations that do not satisfy
C; in particular these linear combinations could use polynomials that correspond
to conflicting assignments (both ‘0’ and ‘1’) for some interior wire in C.

What we prove however, is that these conflicting assignments are the only
possible problem we introduce by moving the polynomials for the interior wires
to the “free” set. In other words, if we restrict the linear combination to use
polynomials associated with at most one value per wire, then the SP for φ can
also be used to compute the function f . The following lemma formalizes the
property.

Lemma 1. Let S = ({v0(x), . . . , vm(x)}, Ifree, Ilabeled = ∪i∈[N ],j∈{0,1}Iij) be
an SP that computes the gate checker function φ of f . Then, for all u ∈ {0, 1}n,
the following is true iff f(u) = 1: there exists a tuple (a1, . . . , am) satisfying the
following constraints:

– Target in Span: v0(x) =
∑

k ak · vk(x).
– Correct Inputs: For all k ∈ ∪ni=1Iiui , we have ak = 0.
– No Double Assignments: For all i ∈ {n+1, . . . , N} and all k1 ∈ Ii0 and
k2 ∈ Ii1, at most one of ak1 , ak2 is nonzero.

In particular, if f(u) �= 1, then a linear combination that satisfies the first and
second constraints must violate the third – i.e., must make a “double assignment”
of some wire i ∈ {n+ 1, . . . , N}.
Proof. (Lemma 1) If f(u) = 1, then we can assign the wires of C validly with
the output wire set to 1. Therefore, we can extend u ∈ {0, 1}n to an input
u′ ∈ {0, 1}N that satisfies φ. Since u′ satisfies φ, there is a linear combination
(a1, . . . , am) such that v0(x) =

∑
k ak · vk(x) and ak = 0 for all k ∈ ∪ni=1Iiu′

i
,

thus satisfying the constraints listed in the lemma.
Conversely, suppose that (a1, . . . , am) satisfies the constraints. Then, since S

computes φ, there is an extension u′ ∈ {0, 1}N of u ∈ {0, 1}n such that φ(u′) = 1
and such that u′ “agrees” with the tuple (a1, . . . , am) in the sense that ak = 0
for all k ∈ Iiu′

i
, i ∈ [N ]. Since φ(u′) = 1 where u′ is an extension of u, and since

φ tests the satisfaction of f ’s Boolean circuit, we must have f(u) = 1.

Looking ahead, our construction will use the span program for φ to obtain
efficient proofs about the correct evaluation of f . The second component of
our construction, the wire checker, will efficiently verify that the No Double
Assignments property holds.

2.2 A Wire Checker

To prevent double wire assignments, we introduce some additional polynomials
in the form of a wire checker, defined as follows.4

4 While Definition 3 resembles a QSP, a wire checker is not, on its own, a QSP.



632 R. Gennaro et al.

Definition 3 (Aggregate Wire Checker). Let I = ∪i∈[N ],j∈{0,1}Iij be a
partition of [m]. An aggregate wire checker for I consists of polynomials D(x),
V = {vk(x) : k ∈ I} and W = {wk(x) : k ∈ I} such that

D(x) divides
(∑
k∈I

ak · vk(x)
)
·
(∑
k∈I

bk · wk(x)
)

(2)

if {ak} and {bk} indicate consistent bit assignments of all N bits (i.e., for each
i ∈ [N ], for some bit Bi, ak = bk = 0 for all k ∈ IiB̄i

), but not if {ak} and {bk}
indicate inconsistent bit assignments of any of the N bits in the following sense:
For some i ∈ [N ],

– There exist ka ∈ Ii0 and k′a ∈ Ii1 and kb ∈ Ii0 ∪ Ii1 such that aka �= 0,
ak′

a
�= 0 and bkb

�= 0, or

– There exist ka ∈ Ii0 ∪ Ii1 and kb ∈ Ii0 and k′b ∈ Ii1 such that aka �= 0,
bkb
�= 0 and bk′

b
�= 0.

The size of the wire checker is |I|, and the degree is deg(D(x)).

To construct an aggregate wire checker, we first construct a checker for a single
wire. Let I0 = {1, . . . , L0}, I1 = {L0 + 1, . . . , L0 + L1}, and I = I0 ∪ I1 be the
indices associated with the wire.

Construction of a Wire Checker.

1. Let Lmax = max(L0, L1). For L
′ = 3Lmax − 2, select distinct roots R(0) =

{r(0)1 , . . . , r
(0)
L′ } and R(1) = {r(1)1 , . . . , r

(1)
L′ } from F . Set R = R(0) ∪R(1). Set

D(x) =
∏

r∈R(x− r).

2. Interpolate the polynomials in {vk(x)} and {wk(x)} to have degree (L′ +
L0 − 1) if k ∈ I0 and (L′ + L1 − 1) if k ∈ I1, and to satisfy:

(a) For k ∈ I0, vk(r) = 0 for all r ∈ R(0)∪{r(1)1 , . . . , r
(1)
L0
} except vk(r(1)k ) = 1,

and wk(r) = 0 for all r ∈ R(1) ∪ {r(0)1 , . . . , r
(0)
L0
} except wk(r

(0)
k ) = 1.

(b) For k ∈ I1, vk(r) = 0 for all r ∈ R(1)∪{r(0)1 , . . . , r
(0)
L1
} except vk(r(0)k−L0

) =

1, and wk(r) = 0 for all r ∈ R(0) ∪ {r(1)1 , . . . , r
(1)
L1
} except wk(r

(1)
k−L0

) = 1.

Lemma 2. The construction above is a wire checker.

Proof. (Lemma 2) Clearly, D(x) divides the product in Equation 2 – i.e.,
(
∑

k∈I ak · vk(r)) · (
∑

k∈I bk · wk(r)) = 0 for all r ∈ R – if {ak}, {bk} indicate
consistent assignments.

If {ak} indicates a double assignment and {bk} is nonzero, then
∑

k∈I0 ak ·
vk(x) has at most L0 − 1 roots in R(1), since it is nonzero of degree L′ + L0 − 1
and already has R(0) as roots. A similar analysis shows that

∑
k∈I1 ak · vk(x)

has at most L1−1 roots in R(0). Note that
∑

k∈I ak ·vk(x) has exactly the same

roots inR(1) that
∑

k∈I0 ak ·vk(x) does, since the other part of the sum – namely,∑
k∈I1 ak ·vk(x) – has everything in R(1) as a root. Similarly,

∑
k∈I ak ·vk(x) has

exactly the same roots in R(0) that
∑

k∈I1 ak · vk(x) does. So,
∑

k∈I ak · vk(x)
has at most L0+L1−2 ≤ 2Lmax−2 roots in R. Since

∑
k∈I bk ·wk(x) is nonzero
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and degree-(L′ + Lmax − 1), it has at most L′ + Lmax − 1 roots in R. So, the
overall product has at most L′ + 3Lmax − 3 < 2L′ roots, and is therefore not
divisible by D(x).

Using the Chinese Remainder Theorem, we compose the wire checkers for indi-
vidual wires into an aggregate wire checker for the whole circuit.

Construction of an Aggregate Wire Checker.

1. Generate all of the roots and the divisor polynomial. For each wire i ∈ [N ],
select distinct roots for R(i0) and R(i1) from F as in the single-wire checker.
Note that the roots are distinct across the i’s as well. Set R = ∪iR(i0)∪R(i1).
Set the aggregate wire checker’s divisor polynomial to D(x) =

∏
iDi(x) =∏

r∈R(x− r).

2. Generate polynomials for the individual wire checkers. For each wire i ∈ [N ],
construct the sets of polynomials V(i) and W(i) as in the single-wire checker.

3. Compose individual wire checkers via CRT. For i ∈ [N ], for k ∈ Ii0 ∪ Ii1,
interpolate vk(x) to be of degree at most deg(D(x))− 1 and satisfy vk(x) =

v
(i)
k (x) mod Di(x) and vk(x) = 0 mod D(x)/Di(x). Analogously for wk(x).
Set V = {vk(x)} and W = {wk(x)}.

Lemma 3. The above construction is an aggregate wire checker.

Proof. (Lemma 3) If {ak}, {bk} indicate consistent assignments, then they are
consistent on the i-th bit for k restricted to Ii0 ∪ Ii1. Hence, Di(x) divides the
product in Eqn.2 when the summations are restricted to k ∈ Ii0∪Ii1. Since vk(x)
and wk(x) are divisible by Di(x) for all k /∈ Ii0 ∪ Ii1, the overall (unrestricted)
product in Eqn.2 is divisible by Di(x). Since this holds for all i, the product is
divisible by D(x).

If, for some i, {ak} indicates a double assignment of the i-th bit and {bk} is
nonzero over k ∈ Ii0∪Ii1, then, by Lemma 2, Di(x) does not divide the product
in Eqn.2 when the summations are restricted to k ∈ Ii0 ∪ Ii1. As above, Di(x)
divides everything else, and thus the overall product in Eqn.2 is not divisible by
Di(x), and thus not divisible by D(x).

2.3 Conscientious Span Programs

Notice that the aggregate wire checker definition above enforces a slightly weaker
condition than forbidding double assignments: it states that double assigning a
wire with the {ak} (i.e., using non-zero ak values from both Ii0 and Ii1) is
forbidden, unless the {bk} indicate a non-assignment of that wire – i.e., all the
corresponding bk = 0 (and vice versa for a double assignment in the {bk}).

To compensate for the weakness of the wire checker, we require the SP being
checked to be conscientious, which guarantees that every satisfying linear com-
bination uses at least one polynomial from the sets associated with its input.
In our canonical QSP, we will use the wire checker above on two instances of a
conscientious SP for φ. Conscientiousness guarantees that each instance includes
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a non-zero coefficient for each wire used in the satisfying assignment, and hence
the wire checker will always catch double assignments in either instance.

More formally, we define a conscientious SP as follows:

Definition 4. Let S = ({v0(x), . . . , vm(x)}, Ifree, Ilabeled = ∪i∈[n],j∈{0,1} Iij)
be an SP. We say that S is a conscientious SP for f : {0, 1}n → {0, 1} if, for
any tuple (a1, . . . , am) that satisfies the usual SP requirements that f(u) = 1 for
u ∈ {0, 1}n iff (1) v0(x) =

∑
k ak · vk(x) and (2) for all k ∈ ∪ni=1Iiūi we have

ak = 0, we also have the property that for all i ∈ [n], there exists k ∈ Iiui such
that ak �= 0. Let m be the size of the SP and deg(v0(x)) + 1 be the degree of the
SP.

To construct a conscientious SP for φ, we first build a conscientious SP for a
single NAND gate.

Lemma 4. There is a degree-9 conscientious SP for NAND of size 12.

Proof. (Lemma 4) Choose a set of 9 distinct roots in F to get R = (r0, rl0, r
′
l0,

rl1, r
′
l1, rr0, r

′
r0, rr1, r

′
r1). Define 9 “linearly independent” polynomials {v0(x),

vl0(x), v
′
l0(x), vl1(x), v

′
l1(x), vr0(x), v

′
r0(x), vr1(x), v

′
r1(x)} to be the correspond-

ing Lagrange basis polynomials for R; that is, they are the degree-8 polynomials
obtained by interpolating such that ∀r ∈ R, v0(r) = 0, except that v0(r0) = 1;
vl0(r) = 0, except that vl0(rl0) = 1, and so on. We will use the convention that
the pair of polynomials Vl0 = (vl0(x), v

′
l0(x)) belongs to the assignment of 0 to

the left wire, etc.
Set vo0(x) = v0(x) − vl1(x) − vr1(x) and Vo0 = {vo0(x)}, so that one can

express v0(x) as a linear combination of polynomials in Vl1 ∪ Vr1 ∪ Vo0.
Set vo1(x) = v0(x) − vl0(x) − vr0(x), v

′
o1(x) = v0(x) − v′l0(x) − v′r1(x), and

v′′o1(x) = v0(x) − v′l1(x) − v′r0(x), and Vo1 = {vo1(x), v′o1(x), v′′o1(x)}, so that one
can express v0(x) as a linear combination of polynomials associated to the other
satisfying gate assignments.

That the above polynomials define a conscientious SP for NAND of the
claimed size and degree follows by inspection. The details are elaborated in
the full version.

To obtain a conscientious SP for an entire circuit, we build a conscientious SP
for each gate, using a distinct set of roots Ri for each SP, and then compose the
gate SPs together using the Chinese Remainder Theorem, just as we did when
building the aggregate wire checker.

Lemma 5. Suppose a circuit C consists of s Boolean gates from some set Γ –
e.g, Γ = {NAND}. Suppose that, for each gate g ∈ Γ , there is a conscientious SP
of sizem′ and degree d′ that computes whether its input is a satisfying assignment
of g’s input/output wires. Then there is a conscientious SP S of size m = s ·m′
and degree d = s · d′ that computes the gate checker function φ for C. S is a
straightforward composition of SPs {Sg} for the individual gates g of C.

Intuition. The proof is constructive. For each gate g, build an SP S(g) follow-
ing Lemma 4, obtaining from each a unique set of roots R(g) and polynomi-

als {v(g)0 (x)} ∪ V(g). Let R = ∪gR(g). Let v0(x) be a polynomial such that
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v0(r) = v
(g)
0 (r) for all r ∈ R(g) and all gates g in the circuit. For each gate g,

extend g’s polynomials such that for all v(x) ∈ V(g), and r ∈ R/R(g), v(r) = 0.
The aggregate SP’s set of polynomials V will consist of v0(x) along with all of
the extended polynomials. Since the roots used in each SP are unique across all
SPs, this composition preserves all of the local linearity relationships created by
Lemma 4; it also does not introduce any new relationships, since the unique roots
prevent “interactions” across the gate SPs. See the full version of the paper [22]
for the full proof.

2.4 The Canonical Quadratic Span Program

We now describe how to take any polynomial-time computable function f , and
construct a polynomial-size QSP that computes f . The construction uses the
Chinese Remainder Theorem (CRT) to merge the two components above, the
gate checker and the wire checker, so that the quadratic test (Eq. 1) checks both
at once. The wire checker’s guarantee of no double assignments relies on the fact
that the SP for the gate checker is conscientious, and hence must use at least
one polynomial for each wire to arrive at a satisfying linear combination. Thus,
we can conclude that the wire values are consistent with the circuit’s gates, and
that no wire is set to both 0 and 1.

More specifically, we build two copies of the conscientious SP for the gate
checker, ensuring that all of the roots used are distinct. One copy will become the
V polynomials in the QSP, while the other copy will become theW polynomials.
We then construct the polynomials for the aggregate wire checker described
above, using a third set of distinct roots. Since all of the divisor polynomials
from the different components have different roots, they are relatively prime.
Hence, we can use the CRT to define the final QSP polynomials so that they
match the value of the constituent polynomials from each component.

The Canonical QSP: Qcan,f .

1. Take as input the Boolean circuit C for f : {0, 1}n → {0, 1}, which has s
gates.

2. Using disjoint sets of rootsR(V) andR(W), construct two instances of the con-
scientious gate checker SP for C – namely, S(V) = (V̂ = {v̂0(x), . . . , v̂m(x)},
Ifree, Ilabeled) and S(W) = (Ŵ = {ŵ0(x), . . . , ŵm(x)}, Ifree, Ilabeled).

3. Define D̂(V)(x) =
∏

r∈R(V)(x − r) and D̂(W)(x) =
∏

r∈R(W)(x − r). Note
that because we use distinct roots for each incarnation, the resulting divisor
polynomials D̂(V)(x) and D̂(W)(x) are relatively prime.

4. Using disjoint sets of roots R = {R(i0),R(i1) : i ∈ [N ]} and the partition of
Ilabeled, construct the aggregate wire checker from Lemma 3, which consists
of the following polynomials: D′(x) =

∏
r∈R(x− r), V ′ = {v′1(x), . . . , v′m(x)}

and W ′ = {w′1(x), . . . , w′m(x)}.
5. Define D(x) = D̂(V)(x) · D̂(W)(x) ·D′(x).
6. Finally, define V = {v0(x), . . . , vm(x)} and W = {w0(x), . . . , wm(x)} using

the CRT to interpolate vk(x) and wk(x) as follows:
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vk(x) =

⎧⎪⎪⎨
⎪⎪⎩

v̂k(x) mod D̂(V)(x)
v′k(x) mod D′(x)

1 mod D̂(W)(x) if k = 0

0 mod D̂(W)(x) if k �= 0

wk(x) =

⎧⎪⎪⎨
⎪⎪⎩

ŵk(x) mod D̂(W)(x)
w′

k(x) mod D′(x)

1 mod D̂(V)(x) if k = 0

0 mod D̂(V)(x) if k �= 0

7. Output Qcan,f = (V ,W , D(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij), where the
labeled indices ∪i∈[n+1,N ]Iij from the gate checker SP for C have been moved
to Ifree.

The proof of the following theorem is in the full version [22].

Theorem 3. For any Boolean circuit C with n inputs, s gates, and N = n+ s
total wire values, the canonical QSP computes C.

2.5 Performance and Technical Issues

By Lemmas 4 and 5, given a function f whose Boolean circuit has s (NAND)
gates, we have a conscientious SP of size 12s and degree 9s for f ’s gate-checker
function. However, for performance and technical reasons, we use a larger con-
scientious SP of size 36s and degree 27s.

The first reason we use a larger SP is that we transform f ’s Boolean circuit to
one with fan-out two (except that one “dummy” input, set to ‘1’, may feed into
multiple gates). The resulting circuit may be larger by a constant factor. We
reduce fan-out to two before applying the SP composition lemma (Lemma 5) be-
cause we want the evaluation vectors {(vk(r1), . . . , vk(rd)), (wk(r1), . . . , wk(rd)) :
k ∈ [m], r ∈ R} of our QSP to be sparse – i.e., to have only constant nonzero sup-
port. Sparseness allows us, for example, to compute v(x) = v0(x) +

∑
ak · vk(x)

very quickly in evaluation representation, in time linear in the degree of the QSP.
The second reason is that we obtain a strong QSP.

Definition 5 (Strong QSP). A QSP Q = (V ,W , t(x), Ifree, Ilabeled =
∪i∈[n],j∈{0,1}Iij) is a strong QSP if |Iij | = 1 for all i ∈ [n], j ∈ {0, 1} and
the QSP divisibility requirement (Eq.1) holds only if {ak}, {bk} are “unequiv-
ocally” bound to some input u ∈ {0, 1}n – in particular, ak = 1 = bk for all
{k = Iiui} and ak = 0 = bk for all {k = Iiūi}.

In a strong QSP, the labeled sets are singletons, and the QSP can be satisfied
only by applying an unequivocal 0/1 linear combination to the labeled vectors.
Ultimately, this property helps improve the performance of our cryptographic
constructions for NIZKs and verifiable computation, since a verifier who knows
part of the circuit input (e.g., the statement u portion of the input to a rela-
tion) will be able to “predict” the portion of the QSP linear combination that
corresponds to u (and therefore this portion does not need to be “sent” by the
prover).

When it is applied to the partition Ilabeled = ∪i∈[N ],j∈{0,1}Iij of the SP for
the gate checker function, the size of the aggregate wire checker is |Ilabeled| ≤ 24s
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and the degree is 76s. (See full version [22] for details.) Since the QSP has two
SPs and one aggregate wire checker, and since composing the SPs with the wire
checker does not increase the size, the QSP has size 36s and degree 130s.

3 Overview of Cryptographic Constructions and Security

We build SNARKs and NIZKs in the common reference string (CRS) model [9,
10] for relations R(u,w) with n′-bit statements and (n − n′)-bit witnesses. We
apply our QSPs for n-bit inputs to the circuit computing R.

Groth’s construction [27] specifically targets the circuit SAT relation; in par-
ticular, he takes u to be a circuit that can be chosen adaptively and uses
R(u,w) = u(w). The CRS size and prover computation grow quadratically with
|u|. The verifier computation is O(|u|), but it can be reduced to O(1) in an amor-
tized sense with u-dependent pre-processing. To compare directly with Groth,
we can handle u being an adaptively-chosen circuit by constructing R from a
universal circuit. In this case, the size of the circuit computing R may be larger
than |u| by a logarithmic factor, which correspondingly increases the CRS size
and prover computation to Õ(|u|). The verifier computation is O(|u|), but it can
be reduced to O(1) in an amortized sense just as in Groth. If u, or any part of
u, can be chosen non-adaptively, our scheme becomes more efficient.

We present our constructions with their proof intuition, deferring the formal
proofs to the full version [22].

3.1 Definitions

First, we define a SNARK for a Prover P who holds a witness w which he can
use to convince a Verifier V of a statement u.

Definition 6 (SNARK). We say that Π = (Gen,P,V) is a succinct non-
interactive argument of knowledge (SNARK) with security parameter κ for an
NP language L with a corresponding NP relation R with n′-bit statements and
(n− n′)-bit witnesses , if it satisfies the following properties:

Perfect Completeness: For all A,

Pr

⎡⎣V(priv, u, π) = 1
if (u,w) ∈ R

∣∣∣∣∣∣
(crs, priv)← Gen(1κ)

(u,w)← A(crs)
π ← P(crs, u, w)

⎤⎦ = 1,

where P(crs, u, w) runs in time poly(κ, n).

Soundness: For all efficient A,

Pr

[
V(priv, u, π) = 1
u �∈ L

∣∣∣∣ (crs, priv)← Gen(1κ)
(u, π)← A(1κ, crs)

]
= negl(κ).

Succinctness: The proof length is |π| = poly(κ).
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Extraction: For any poly-size prover P∗, there exists a poly-size extractor EP∗ ,
such that for any auxiliary information z ∈ {0, 1}κ, the following holds

Pr

⎡⎣V(priv, u, π) = 1
(u,w) /∈ R

∣∣∣∣∣∣
(crs, priv)← Gen(1κ)
(u, π)← P∗(crs, z)
w ← EP∗(crs, z)

⎤⎦ = negl(κ).

We omit the standard definition of NIZKs. Note that, to build a NIZK, it suffices
to build (as we do) a SNARK that is statistical zero-knowledge.

3.2 Our SNARK Construction

We can create a SNARK for an NP relation R = {(u,w)} with n′-bit statements
and (n − n′)-bit witnesses by building a canonical QSP for the function f such
that f(u,w) = 1 iff (u,w) ∈ R. At a high-level, the prover uses his inputs to
evaluate the circuit for f , hence obtaining linear combinations for the QSP that
satisfy Eq.1. He uses these combinations to compute v(x) = v0(x)+

∑
ak · vk(x)

(and similarly for w(x)), and convinces the verifier that the QSP’s quadratic
property holds (Eq.1), which implies f(u,w) = 1, by calculating h(x) such that
h(x) ·D(x) = v(x)w(x).

To protect against malicious provers, all of the calculations described above
are performed over encoded values. Specifically, the CRS holds an encoding of
the evaluation of each polynomial (e.g., the {vk(x)}) at a secret point σ. The
encoding permits homomorphic operations, which allow the prover to calculate
v(σ), w(σ), and h(σ) inside the encoding. The encoding also permits a quadratic
equality check so that the verifier can check that Equation 1 holds.

An encoding scheme E has two algorithms (Setup, E), where Setup takes the
security parameter and generates parameters for the scheme, and E (possibly
randomized) produces an encoding for an element. Our preferred encoding is
exponentiation within a bilinear group: E(vk(σ)) = gvk(σ), in which case, the
quadratic equality check is performed via a pairing. One may also use an addi-
tively homomorphic encryption scheme, e.g., Paillier5: E(vk(σ)) = Encpk(vk(σ)).
In this case, the verifier needs a secret key sk to remove the encoding and perform
the quadratic check, and hence the SNARK is designated-verifier.

As a final note, to ensure the prover uses circuit inputs matching u, the verifier
calculates the portion of v(σ) that corresponds to u independently, leaving the
portion of v(σ) that corresponds to the witness to the prover.

To base the security of our scheme on an existing knowledge of exponent
assumption [27], we add terms to the CRS of the form E(ασi), E(αvk(σ)),
E(αwk(σ)), E(βvvk(σ)), E(βwwk(σ)), and extend the proof with relations be-
tween these terms and those in the basic proof (see Section 3.4).

5 Technically, our constructions apply only where the encoding space is a field, and the
plaintext space of Paillier is a ring, not a field. However, it would be easy to extend
our results to Paillier, using the fact that one is unlikely to encounter encodings of
nontrivial zero divisors in ZN unless one is able to factor N .
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CRS generation Gen: On input security parameter κ, construct a common
random string CRS = (crsP , crsV ). Let f be the function checking the rela-
tion R(u,w) and let Qf = (V ,W , D(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij , I =
Ifree ∪ Ilabeled) be a QSP of size m and degree d for the functionality f6.

Let Iin = ∪n′

i=1Iij and Imid = I \ Iin. Generate public and private param-
eters (pk, sk) for the encoding scheme E. Generate uniformly at random
α, σ, βv, βw, γ ← F ∗ and set the output:

crsP =
(
pk,Qf , n

′, {E(σi)}i∈[0,d], {E(ασi)}i∈[0,d],
{E(vk(σ))}k∈Imid

, {E(wk(σ))}k∈I ,
{E(αvk(σ))}k∈Imid

, {E(αwk(σ))}k∈I ,
{E(βvvk(σ))}k∈Imid

, {E(βwwk(σ))}k∈I
)

crsV =
(
pk, sk, E(1), E(α), E(γ), E(βvγ), E(βwγ),

{E(vk(σ))}k∈{0}∪Iin , E(w0(σ)), E(D(σ))
)
.

Prove P: On input crsP , statement u ∈ {0, 1}n′
and witness w, P evaluates Qf

to obtain (a1, . . . , am) and (b1, . . . , bm) and polynomial h(x) such that

h(x) ·D(x) =
(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

bk · wk(x)
)
.

Let vmid(x) =
∑

k∈Imid
ak · vk(x) and w(x) =

∑
k∈I bk ·wk(x). Then, P uses

the encoding’s homomorphism to output the following proof:

π =
(
E(vmid(σ)), E(w(σ)), E(h(σ)),

E(αvmid(σ)), E(αw(σ)), E(αh(σ)), E(βv vmid(σ) + βww(σ))
)
.

Verify V: On input crsV , u, and π = (πvmid
, πw, πh, πv′

mid
, πw′ , πh′ , πy), V con-

firms that the terms are in the support of validly encoded elements. Let
Vmid, W , H , V ′mid, W

′, H ′, and Y be what is encoded. V computes an en-
coding E(vin(σ)) of vin(σ) =

∑
k∈Iin ak ·vk(σ). V confirms that the following

equations hold:

H ·D(σ) = (v0(σ) + vin(σ) + Vmid) · (w0(σ) +W ),

V ′mid = αVmid,W
′ = αW,H ′ = αH, γY = (βvγ)Vmid + (βwγ)W.

3.3 Making the SNARK Statistical Zero-Knowledge (NIZKs)

In our NIZK construction, the prover simply randomizes each of the terms
v0(σ) + vin(σ) + Vmid and w0(σ) +W so that their product is still divisible by
D(σ), but the terms reveal nothing more about the original values. We achieve
this by adding random multiples of D(σ) to both terms, which preserves the di-
visibility property for their product. We supplement crsP with additional terms

6 For example, with circuit SAT, f is a universal circuit.
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to facilitate computation of the remainder of the randomized proof. Specifically,
we include: E(D(σ)), E(αD(σ)), E(βvD(σ)), E(βwD(σ)), E(v0(σ)), E(αv0(σ)),
E(w0(σ)) and E(αw0(σ)).

After generating a proof π as above, the prover randomizes it as follows. He
picks random δvmid

, δw ← F and outputs the following proof:

π′ =
(
E(v′mid(σ)), E(w′(σ)), E(h′(σ)),

E(αv′mid(σ)), E(αw′(σ)), E(αh′(σ)), E(βvv
′
mid(σ) + βww

′(σ))
)
,

where v′mid(x) = vmid(x) + δvmid
D(x), w′(x) = w(x) + δwD(x), h′(x) = (v0(x) +

vin(x)+v′mid(x)) ·(w0(x)+w′(x))/D(x), and v0(x), vin(x), vmid(x) and w(x) are
the values computed in the SNARK construction from the previous section. The
encodings in the new proof π′ can be computed efficiently from the encodings in
π and the augmented crsP .

3.4 Security

We base security on two assumptions, the q-power Diffie-Hellman (q-PDH) as-
sumption and the q-power knowledge of exponent (q-PKE) assumption. When
we instantiate our construction and the q-PDH and q-PKE assumptions with
an encoding scheme E(a) = ga over a bilinear group, the q-PDH and q-PKE
assumptions are virtually identical to those used by Groth in his NIZK construc-
tion [27].7 Also, the bilinear group version of our q-PDH assumption is very
similar to, but weaker than, assumptions that were used to construct hierar-
chical identity-based encryption and broadcast encryption schemes with short
ciphertexts [11, 13].

The q-PDH assumption is a “conventional” falsifiable assumption, though
still somewhat unusual in its dependence on q, which is related to the size of the
circuits for the functions computed by our SNARKs.

Assumption 1 (q-PDH). Let κ be a security parameter, and q = poly(κ). The
q-power Diffie-Hellman (q-PDH) assumption holds for encoding E if for all non-
uniform probabilistic polynomial time adversaries A we have

Pr

⎡⎣ pk ← E .Setup(1κ) ; σ ← F ∗ ;
τ ← (pk,E(1), E(σ), . . . , E(σq), E(σq+2), . . . , E(σ2q)) ;

y ← A(τ) : y = E(σq+1)

⎤⎦ = negl(κ).

The q-PKE assumption is a non-falsifiable “knowledge” assumption, similar in
spirit to (but more complicated than) early knowledge-of-exponent assumptions
(KEAs) [6, 18].

Assumption 2 (q-PKE). Let κ be a security parameter, and q = poly(κ). The
q-power knowledge of exponent (q-PKE) assumption holds for encoding E if for

7 Our q-PDH assumption is actually weaker than his q-CPDH assumption, and our
q-PKE assumption is identical to Groth’s [27] and Lipmaa’s [33], except that we
extend the assumption to handle auxiliary inputs.
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every non-uniform probabilistic polynomial time adversary A, there exists a non-
uniform probabilistic polynomial time extractor χA such that

Pr

⎡⎢⎢⎣
pk ← E .Setup(1κ) ; α, σ ← F ∗;

τ ← (pk,E(1), E(σ), . . . , E(σq), E(α), E(ασ), . . . , E(ασq));
(E(c), E(ĉ); a0, . . . , aq)← (A||χA)(τ, z) :

ĉ = αc ∧ c �=
∑q

k=0 akσ
k

⎤⎥⎥⎦ = negl(κ)

for any auxiliary information z ∈ {0, 1}poly(κ) that is independent of α.

Next we state our main security theorem.

Theorem 4. If the q-PDH and d-PKE assumptions hold for some q ≥ max{2d−
1, d+2}, then the NIZK scheme defined in Section 3.3, instantiated with a QSP
of degree d, is secure under Definition 6.

Here, we provide some intuition, using a simpler version of our scheme, which
has the following 6 element proof:

π = (E(vmid(σ)), E(w(σ)), E(h(σ)), E(αvvmid(σ)), E(αww(σ)), E(αhh(σ))) .

For the version above, the intuition is that it is hard for the prover, who knows
the CRS but not αw, to output any pair (E(W ), E(W ′)) with W ′ = αwW unless
he knows a representation {bk : k ∈ I} of W such that W =

∑
bkwk(σ). Knowl-

edge of exponent assumptions (KEAs)8 formalize this intuition: they say that
for any algorithm that outputs a pair of encoded elements with ratio αw, there
is an extractor that “watches” the algorithm’s computation and outputs the rep-
resentation (the linear combination). In the security proof, extractors for the v,
w and h terms extract out polynomials vmid(x), w(x), h(x) that are in the spans
of {vk(x) : k ∈ Imid}, {wk(x) : k ∈ I}, {xi : i ∈ [d]}. If the proof verifies, then
(v0(σ) + v(σ)) · (w0(σ) +w(σ)) = h(σ) ·D(σ) for v(x) = vmid(x) +

∑
k∈Iin vk(x).

If indeed (v0(x) + v(x)) · (w0(x) +w(x)) = h(x) ·D(x) as polynomials, then the
soundness of our QSP implies that we have extracted a true proof. Otherwise,
(v0(x) + v(x)) · (w0(x) + w(x)) − h(x) ·D(x) is a nonzero polynomial having σ
as a root, which allows the simulator to solve a hard problem.

We modified this simpler scheme to the more complicated SNARK construc-
tion in order to base security on assumptions slightly weaker than Groth’s [27].
With these assumptions, we can only extract representations of the encoded
terms with respect to the power basis {xi} (as in [27]), not with respect to {vk(x) :
k ∈ Imid}. Thus, this extraction does not guarantee that vmid(x) and w(x) are
in their proper spans. We ensure this via the final term E(βvvmid(σ)+βww(σ)),
from which the simulator can solve a hard problem if vmid(x) or w(x) lies outside
its proper span.

3.5 Efficiency

Next we state the complexities for our SNARK construction and refer the reader
to the full version of the paper [22] for the proofs.

8 KEAs [6, 18, 24] exist for Paillier/RSA [19, 24], bilinear groups [27, 33], and even
lattices [34].
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Prover’s Work. The prover computation requires a number of group operations
linear in the size of the QSP, aside from the computation of h(x), which can be
computed in O(d · log2(d)) time, where d is the degree of the QSP, via multipoint
evaluation and interpolation. When we construct a SNARK for circuit SAT, we
use a QSP for a universal circuit, which has size O(|C| log |C|) where |C| is the
maximum size of the circuits in the satisfiability problem.

Verifier’s Work. The verification of the SNARK is proportional to the state-
ment size and independent of the size of the witness. We can further reduce the
verification work [22] to a constant plus a hash function evaluation by applying
an ordinary hash function to the statement and proving a new relation which
takes the the hash output as the statement.

4 Quadratic Programs for Arithmetic Circuits

We also construct Quadratic Arithmetic Programs (QAPs), a natural extension
of QSPs which “naturally” compute arithmetic circuits modulo the group order
p. For some functions, arithmetic circuits are much smaller than their Boolean
counterparts, suggesting that, in such cases, QAPs are a more attractive option.
In fact, it turns out (see [38]) that QAPs are more efficient than QSPs, even for
the Boolean case.

The full details of the QAP construction appear in the final version [22]; here
we present the definition of QAPs and our main result about them.

Definition 7 (Quadratic Arithmetic Programs (QAP)). A quadratic
arithmetic program (QAP) Q over field F contains three sets of polynomials
V = {vk(x) : k ∈ {0, . . . ,m}}, W = {wk(x) : k ∈ {0, . . . ,m}}, Y = {yk(x) : k ∈
{0, . . . ,m}}, and a divisor polynomial D(x), all from F [x].

Let f : Fn −→ Fn′
be a function having input variables with labels 1, . . . , n and

output variables with labels m−n′+1, . . . ,m. We say that Q is a QAP that com-
putes f if the following is true: a1, . . . , an, am−n′+1, . . . , am ∈ Fn+n′

is a valid
assignment to the input/output variables of f iff there exist (an+1, . . . , am−n′) ∈
Fm−n−n′

such that D(x) divides:

(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)
)
−
(
y0(x) +

m∑
k=1

ak · yk(x)
)
.

The size of Q is m. The degree of Q is deg(D(x)).

We prove that we can build very efficient QAPs for arbitrary circuits.

Theorem 5. Let C be an arithmetic circuit with input from Fn that has s
multiplication gates, each with fan-in two, and whose output gates are all multi-
plication gates. There is a QAP with size n+ s and degree s that computes C.
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5 Concrete Performance

We developed a system called Pinocchio [38] that includes a compiler that trans-
forms a subset of C into either a QSP or QAP, and a set of programs for generat-
ing the CRS, creating proofs, and verifying proofs. It supports NIZK proofs and
VC proofs, with both designated and public verifiers. We use a pairing-based
encoding, with a 256-bit BN-curve [5] that provides 128 bits of security.

We find that QAPs outperform QSPs, and that Pinocchio significantly outper-
forms state-of-the-art systems [16, 40] based on PCPs [2, 25, 30].9 For example,
we measured the time for NxN matrix multiplication using random 32-bit ma-
trix entries. For N = 25 to 100, Pinocchio’s verifier takes 8-13ms, making it 5-7
orders of magnitude faster than previous work, while the worker takes 8.9-776.4s,
making it 19− 60× faster.

Acknowledgments. We thank Nir Bitansky, Jens Groth, Yuval Ishai, Seny
Kamara, Helger Lipmaa, and the anonymous reviewers for all of their helpful
suggestions.
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Abstract. Verification of a polynomial’s evaluation in a secret committed value
plays a role in cryptographic applications such as non-membership or mem-
bership proofs. We construct a novel special honest verifier zero-knowledge
argument for correct polynomial evaluation. The argument has logarithmic com-
munication cost in the degree of the polynomial, which is a significant improve-
ment over the state of the art with cubic root complexity at best. The argument is
relatively efficient to generate and very fast to verify compared to previous work.
The argument has a simple public-coin 3-move structure and only relies on the
discrete logarithm assumption.

The polynomial evaluation argument can be used as a building block to con-
struct zero-knowledge membership and non-membership arguments with com-
munication that is logarithmic in the size of the blacklist. Non-membership proofs
can be used to design anonymous blacklisting schemes allowing online services
to block misbehaving users without learning the identity of the user. They also
allow the blocking of single users of anonymization networks without blocking
the whole network.

Keywords: Zero-knowledge argument, discrete logarithm, polynomial evalua-
tion, anonymous blacklisting, membership and non-membership proofs.

1 Introduction

In many cryptographic applications a party wants to prove possession of a secret value
u that fulfills a certain property. Since polynomials are widely used a natural question is
for instance given a polynomial P (X) and a value v whether the secret value u satisfies
P (u) = v in a prime order field Zp.

We propose a special honest verifier zero-knowledge argument of knowledge for two
committed values u, v satisfying P (u) = v for a given polynomial P (X) of degree D.
The argument has the following properties:

– It is based on the discrete logarithm assumption in a prime order group
– It has a standard 3-round public coin structure and a common reference string with

just a few group elements
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– Communication grows logarithmically in the degree of the polynomial
– Both the prover and the verifier are computationally efficient
– We have a working implementation, which gives us real life performance data

As a concrete application of our polynomial evaluation argument we will look at
blacklisting anonymous users, which is a notoriously difficult cryptographic problem.
Anonymizing networks such as Tor [35] allow a user to hide her IP address and are
used by a number of groups including undercover police agents, abuse victims and cit-
izens living under dictatorships. During the Arab Spring for instance the Tor network
experienced a spike in users from Libya and Egypt [13]. However, anonymous access to
services can also lead to abuse. Wikipedia for instance allows anonymous postings, but
blocks the IP address of misbehaving users. This crude solution means that if one user
of Tor abuses Wikipedia, all users whose traffic comes out of the same Tor relay with
this IP-address are blocked. So one misbehaving user causes many innocent users to be
punished. Johnson et al. [20] suggested the Nymble system to deal with this problem. In
this alternative solution IP-addresses are not blocked but instead each user anonymously
proves that she has not been blacklisted. Using the polynomial evaluation argument we
construct a non-membership proof, which enables a user to efficiently prove that she
has not been blacklisted.

We can also use our polynomial evaluation argument to construct efficient member-
ship proofs. Membership proofs are useful when operating a whitelist access control
system, or in applications such as e-voting or e-auctions where users want to prove that
their votes are valid or their bids belong to a set of approved values.

1.1 Our Contribution

Our main contribution is an efficient special honest verifier zero-knowledge argument of
knowledge for two secret committed values u, v ∈ Zp satisfying P (u) = v for a given
polynomial P (X) ∈ Zp[X ], where p is a prime. We work over an order p group G and
use the Pedersen commitment scheme, i.e., a commitment to u is of the form guhr for
some r ∈ Zp. Given the coefficients of the polynomial P (X) =

∑D
i=0 aiX

i and two
Pedersen commitments our zero-knowledge argument can demonstrate knowledge of
openings of the commitments to values u and v such that P (u) = v.

Our polynomial evaluation argument is highly efficient. The communication com-
plexity is O(logD) group and field elements, which is very small compared to the
statement size of D field elements. The prover computesO(logD) exponentiations and
O(D logD) multiplications in Zp, and the verifier calculatesO(logD) exponentiations
and O(D) multiplications in Zp. The constants in the expressions are small and the ar-
gument very efficient in practice as illustrated by a concrete implementation. We refer
to Sections 3 and 5 for further details on the efficiency and a comparison with previous
solutions.

The argument has a simple 3-move public coin structure: the prover sends a
message, the verifier picks a challenge uniformly at random from Zp, and the prover
answers the challenge. It has perfect completeness, perfect special honest verifier
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zero-knowledge1, and computational soundness, which is based on the discrete loga-
rithm assumption in G.

The discrete logarithm assumption is one of the most fundamental and well-studied
cryptographic assumptions. There are several types of prime order groups where the
discrete logarithm assumption is believed to hold, for instance an order p subgroup of
Z∗q where q is a large prime, or a group of points on an elliptic curve. There are examples
of elliptic curve groups where group elements are roughly |p| bits and the best known
attacks have a complexity ofΩ(

√
p) group operations. In such groups a communication

complexity of O(k log k) bits suffices to get a security level of 2−k when D = poly(k)
and |p| = O(k).2

Based on the polynomial evaluation argument we then construct zero-knowledge ar-
guments for membership and non-membership with logarithmic communication com-
plexity. More precisely, given a Pedersen commitment c and a list of values L =
{λ1, . . . , λD} we give a zero-knowledge argument of knowledge that c is a commit-
ment to u ∈ L in the case of a membership proof or u /∈ L in the case of a non-
membership proof. Following Brands et al. [4] we do this by computing the polynomial
P (X) =

∏D
i=1(X − λi) and demonstrating P (u) = 0 in the case of a membership

proof or P (u) �= 0 in the case of a non-membership proof. With our polynomial eval-
uation argument this requires only O(logD) communication, which is much smaller
than the size of the list.

1.2 Related Work

Polynomial Evaluation Arguments. Given two committed values u, v we give a zero-
knowledge argument that P (u) = v for a public polynomial P (X) of degree D. Kil-
ian [21] gave a communication efficient argument for circuit satisfiability and several
other general purpose zero-knowledge arguments for NP-languages exist. However,
since they are not tailored for the discrete logarithm setting using them would require a
costly NP-reduction.

In the prime order group setting there are already several general zero-knowledge
techniques for the satisfiability of arithmetic circuits that can demonstrate the correct-
ness of a polynomial evaluation. Using Cramer and Damgård [11] we would get a linear
communication complexity for this problem and using Groth [15] we would get a com-
munication complexity of O(

√
D) group elements. Using stronger assumptions and a

pairing-based argument by Groth [16] we could reduce this further to a communication
complexity of O(D

1
3 ) group elements.

1 Standard techniques can be used to make the argument fully zero-knowledge against malicious
adversaries at a negligible cost of a few extra group elements in the common reference string
as described in Section 2.2. There is therefore no loss of generality in considering just the
special honest verifier zero-knowledge case.

2 It is uncommon to have zero-knowledge arguments for large statements where an asymptotic
communication complexity of O(k log k) suffices for a security level of 2−k. Hash-trees and
cut-and-choose techniques give a communication complexity of Ω(k2) for instance and RSA-
type assumptions require group elements to be k3−o(1) bits to guard against factorization with
the general number field sieve.
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Fujisaki and Okamoto [14] looked at the specific problem of polynomial evaluation
in an RSA-based context but their zero-knowledge argument has linear complexity. The
most efficient zero-knowledge argument for correct polynomial evaluation stems from
Brands et al. [4], which has a communication complexity of O(

√
D) group elements

and is based on the discrete logarithm assumption just like our argument.

Membership Proofs and Non-membership Proofs. Proofs for set membership and non-
membership for a committed u ∈ L or u /∈ L where L = {λ1, . . . , λD} have been
studied in their own right. The most straightforward approach is to prove in a one by
one manner the conjunction λ1 �= u ∧ . . . ∧ λD �= u in the case of non-membership or
the disjunction λ1 = u ∨ . . . ∨ λD = u in the case of membership. In the context of
revoking members of group signature schemes Bresson and Stern [5] proposed such a
solution based on the strong RSA assumption. Peng and Bao [32] gave a general dis-
crete logarithm based zero-knowledge arguments of non-membership with linear com-
plexity. Brands et al. [4] improved the communication complexity to O(

√
D) group

elements and later Peng [31] gave a solution for a non-membership proof with the same
complexity using techniques similar to Brands et al. [4].

Accumulators [2,9,37,29,8,38] provide another mechanism for giving membership
proofs. An accumulator is a succinct aggregate of a set of values where it is possible to
issue membership proofs for each accumulated value. A party in possession of such a
membership proof, typically a few group elements, can then demonstrate that the value
is included in the set. Non-membership accumulators have also been proposed [22,39].
However, most accumulators rely on a trusted party to maintain the accumulator and if
corrupt this trusted party can issue arbitrary membership proofs. Furthermore, accumu-
lators rely on cryptographic assumptions that have been less studied than the discrete
logarithm problem, for instance the strong RSA assumption or the pairing-based q-SDH
assumption. These assumptions also mean that group elements have to be large and once
this has been factored in the accumulator-based solutions end up having larger commu-
nication than our membership and non-membership proofs for groups over elliptic or
hyper-elliptic curves. The construction of Camacho et al. [6] does not rely on a trusted
party and only assumes the existence of hash functions; however proofs in their setting
depend logarithmically on the number of accumulated elements.

In Song’s non-membership proof [34] the prover publishes a constant number of
elements and the verifier checks these elements against a blacklist by carrying out a
few operations for each blacklist element; several systems along these lines have been
proposed [1,3,27]. The operations consist either of exponentiations or pairings, so this
scheme places a heavy computational burden on the verifier.

Camenisch et al. [7] gave a membership proof where the elements in the set are
signed by a trusted third party. Now membership can be proven with a constant number
of group elements by demonstrating that the value has been signed. Related ideas have
recently been used by Libert et al. [23] in the context of revoking group signatures,
where a trusted third party signs representatives of sets that cover the whitelist of non-
revoked users and the user gives a zero-knowledge proof of belonging to this set [28].

All these solutions suffer from similar drawbacks that accumulator-based solutions
have though. They require trust in a third party to be honest when blacklisting members
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or signing messages, and to get efficient proofs the signatures are built from strong
assumptions such as the strong RSA assumption or pairing-based assumptions.

A different approach is taken by Nymble-like systems [36,19,18,26], which also rely
on a trusted third party. The user obtains a pseudonym, a “nymble”, from the trusted
third party which is only valid for a certain time frame with one server. The blacklist
consists of nymbles by misbehaving users and in [36,19] the server simply checks if
the nymble of a connecting user is contained in the blacklist. To weaken the trust in the
trusted third party Lofgren and Hopper [26] use accumulators together with the Nymble
setup, while Henry and Goldberg [18] rely on the techniques of Brands et al. [4] for the
user to give a zero-knowledge argument for the non-membership of the blacklist.

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from a set S. We
say a function f : N → [0, 1] is negligible if f(k) = O(k−c) for every constant c > 0.
We say 1 − f is overwhelming if f is negligible. We will give a security parameter
k written in unary as input to all parties in our protocols. Intuitively, the higher the
security parameter the more secure the protocol.

2.1 The Pedersen Commitment Scheme

The Pedersen commitment scheme [30] works as follows. First the key generation al-
gorithm G on input 1k chooses a cyclic group G of k-bit prime order p and random
generators g, h. The commitment key is ck = (G, p, g, h). To commit to a ∈ Zp the
committer picks randomness r ∈ Zp and computes

comck(a; r) = gahr.

The Pedersen commitment scheme is computationally binding under the discrete loga-
rithm assumption, i.e., a non-uniform probabilistic polynomial time adversary has neg-
ligible probability of finding two different openings of the same commitment. The Ped-
ersen commitment scheme is perfectly hiding since the commitment is uniformly dis-
tributed in G no matter what the value a is.

The Pedersen commitment scheme is homomorphic. For all a, b ∈ Zp and r, s ∈ Zp

comck(a; r) · comck(b; s) = gahr · gbhs = ga+bhr+s = comck(a+ b; r + s).

We use the Pedersen commitment scheme because of its elegance and its security resting
on the discrete logarithm assumption. However, our protocols could also work with
other homomorphic commitment schemes and we will describe our arguments in a way
such that it would be easy to plug in another homomorphic commitment scheme.
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2.2 Zero-Knowledge Arguments of Knowledge

In the arguments we consider a proverP and a verifier V both of which are probabilistic
polynomial time interactive algorithms. All our protocols will be 3-move public-coin
arguments; first the prover sends a message, then the verifier responds with a random
challenge, and finally the prover sends an answer to the challenge.

We assume the existence of a probabilistic polynomial time setup algorithm G that
when given a security parameter k returns a common reference string σ. In this paper the
common reference string will always be a public key ck for the Pedersen commitment
scheme.

Let R be a polynomial time decidable ternary relation, we call w a witness for a
statement x if (σ, x, w) ∈ R. We define the CRS-dependent language

Lσ = {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w in the relation R.
The public transcript produced by P and V when interacting on inputs s and t is

denoted by tr ← 〈P(s),V(t)〉. The transcript consists of the initial message from the
prover, the random challenge from the verifier, the answer from the prover and the
decision to accept or reject from the verifier. We write 〈P(s),V(t)〉 = b depending on
whether the verifier rejects, b = 0, or accepts, b = 1.

Definition 1 (Argument of knowledge). The triple (G,P ,V) is called an argument of
knowledge for the relation R if we have completeness and witness-extended emulation
as defined below.

Definition 2 (Perfect completeness). (G,P ,V) has perfect completeness if for all non-
uniform polynomial time adversaries A

Pr[σ ← G(1k); (x,w)← A(σ) : (σ, x, w) �∈ R or 〈P(σ, x, w),V(σ, x)〉 = 1] = 1.

To define an argument of knowledge we follow Groth and Ishai [17] that borrowed the
term witness-extended emulation from Lindell [25]. Informally, their definition says
that given an adversary that produces an acceptable argument with some probability,
there exist an emulator that produces a similar argument with the same probability and
at the same time provides a witness w. We give a strong black-box definition where the
emulator just has black-box access to a prover and verifier’s interaction, which it can
rewind and run again with fresh randomness for the verifier.

Definition 3 (Computational witness-extended emulation). (G,P ,V) has witness-
extended emulation if for all deterministic polynomial time P∗ there exists an expected
polynomial time emulator X such that for all non-uniform polynomial time interactive
adversaries A

Pr[σ ← G(1k); (x, s)← A(σ); tr ← 〈P∗(σ, x, s),V(σ, x)〉 : A(tr) = 1]

≈ Pr[σ ← G(1k); (x, s)← A(σ); (tr, w) ← X 〈P
∗(σ,x,s),V(σ,x)〉(σ, x) :

A(tr) = 1 and if tr is accepting then (σ, x, w) ∈ R],

where the verifier picks fresh public coin challenges in each oracle call by
X 〈P∗(σ,x,s),V(σ,x)〉.



652 S. Bayer and J. Groth

In the definition, s can be interpreted as the state of P∗, including the randomness. So,
whenever P∗ is able to make a convincing argument when in state s, the emulator can
extract a witness. This is why we call it an argument of knowledge.

Definition 4 (Public coin). An argument (G,P ,V) is called public coin if the verifier
chooses his messages uniformly at random and independently of the messages sent by
the prover, i.e., the challenges correspond to the verifier’s randomness ρ.

An argument is zero-knowledge if it does not leak information about the witness beyond
what can be inferred from the truth of the statement. We will present arguments that
have special honest verifier zero-knowledge in the sense that if the verifier’s challenge
is known in advance, then it is possible to simulate the entire argument without knowing
the witness.

Definition 5 (Perfect special honest verifier zero-knowledge). A public coin argu-
ment (G,P ,V) is called a perfect special honest verifier zero knowledge (SHVZK)
argument for R if there exists a probabilistic polynomial time simulator S such that for
all interactive non-uniform polynomial time adversaries A we have

Pr[σ ← G(1k); (x, w, ρ) ← A(σ); tr ← 〈P(σ, x,w),V(σ, x; ρ)〉 : (σ, x,w) ∈ R and A(tr) = 1]

= Pr[σ ← G(1k); (x, w, ρ) ← A(σ); tr ← S(σ, x, ρ) : (σ, x,w) ∈ R and A(tr) = 1],

where ρ is the public coin randomness used by the verifier as the challenge.

Full zero-knowledge. In real life applications special honest verifier zero-knowledge
may not suffice since a malicious verifier may give non-random challenges. However,
it is easy to convert an SHVZK argument into a full zero-knowledge argument secure
against arbitrary verifiers in the common reference string model using standard tech-
niques. The conversion can be very efficient and only costs a small additive overhead, so
we will in the paper without loss of generality just focus on building efficient SHVZK
arguments.

One example of such a conversion that would work in our case is the following: The
common reference string is set up with an additional group element y. The prover will
now use an OR-proof [12] to show that she knows a witness for the statement being
true or she knows the discrete logarithm of y. Since she does not know the discrete
logarithm of y this is a convincing argument of knowledge. On the other hand, we can
set the simulator up such that it does know the discrete logarithm of y and now it is
easy to simulate proofs. This conversion yields an argument of knowledge with perfect
zero-knowledge at the price of an extra group element in the common reference string.

3 Polynomial Evaluation Argument

Given a polynomialP (U) =
∑D

i=0 aiU
i and two commitments c0, cv , we will describe

an argument of knowledge of openings of the commitments to values u and v such that
P (u) = v. (The notation c0 for the commitment to u = u2

0

matches other commitments
cj to u2

j

that the prover will construct in the argument.)
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By padding with zero-coefficients we can without loss of generality assume D =
2d+1 − 1. It is useful to write i in binary, i.e., i = id . . . i0 where ij ∈ {0, 1}. We can

then rewrite the term U i as U i = U
∑d

j=0 ij2
j

=
∏d

j=0(U
2j )ij . Substituting this in the

polynomial we get

P (U) =
D∑
i=0

aiU
i =

1∑
i0,...,id=0

aid...i0

d∏
j=0

(U2j )ij .

The prover will make commitments c1, . . . , cd to u2
1

, u2
2

, . . . , u2
d

, use standard tech-
niques to prove they are well-formed, and prove that when inserted into the rewrit-
ten polynomial we have

∑1
i0,...,id=0 aid...i0

∏d
j=0(u

2j )ij = v. Since d = �logD� the
prover only makes a logarithmic number of commitments, which will help keep com-
munication low.

To show the committed powers of u in c0, c1, . . . , cd evaluate to the commited v the
prover picks random values f0, . . . , fd ← Zp and defines a new polynomial

Q(X) =
1∑

i0,...,id=0

aid...i0

d∏
j=0

(Xu2j + fj)
ijX1−ij = Xd+1P (u) +Xdδd + . . .+Xδ1 + δ0.

The idea behind this choice ofQ(X) is that for each ij either anXu2
j

factor is included
or an X factor is included so the coefficient of Xd+1 is P (u). Each fj on the other
hand is not multiplied by X and will therefore only affect the lower degree coefficients
δ0, . . . , δd of Q(X).

The prover will now demonstrate that the coefficient of Xd+1 in the secret Q(X) is
the same as v in a way that cancels out the δ0, . . . , δd coefficients. The prover sends
the verifier commitments cf0 , . . . , cfd to f0, . . . , fd, and commitments cδ0 , . . . , cδd
to δ0, . . . , δd. Afterwards, the verifier will pick a random challenge x ← Zp. The
prover will now open suitable products of the commitments in a way such that the
verifier can check that the committed values u, v satisfy Q(x) = xd+1v + xdδd +
. . . + δ0. More precisely, after receiving the challenge x the prover opens each prod-
uct cxj cfj to f̄j = xu2

j

+ fj . Furthermore, the prover opens cx
d+1

v

∏d
j=0 c

xj

δj
to

δ̄ =
∑1

i0,...,id=0 ai0...id
∏d

j=0 f̄
ij
j x1−ij . Note that the verifier can calculate δ̄ himself

and therefore only accepts the opening if

1∑
i0,...,id=0

ai0...id

d∏
j=0

f̄
ij
j x1−ij = xd+1v + xdδd + . . .+ xδ1 + δ0.

This has negligible probability of being true unless P (u) = v.
Returning to the commitments c1, . . . , cd to u2

1

, . . . , u2
d

we said the prover could
use standard techniques to show that they contain the correct powers of u. To do this
the prover sends some commitments cfuj to fju

2j to the verifier and later opens the

commitments cxuj+1
c
−f̄j
uj cfuj to

xu2
j+1

− (xu2
j

+ fj)u
2j + fju

2j = 0.

The full polynomial evaluation argument is given below.
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Common reference string: ck ← G(1k)
Statement: P (U) =

∑D
i=0 aiU

i =
∑1

i0,...,id=0 aid...i0
∏d

j=0(U
2j )ij ∈ Zp[U ] and

c0, cv ∈ G
Prover’s witness: u, v, r0, t ∈ Zp such that c0 = comck(u; r0), cv = comck(v; t) and

P (u) = v
Initial message: Compute

1. c1 = comck(u
21 ; r1), . . . , cd = comck(u

2d ; rd) where r1, . . . , rd ← Zp

2. cf0 = comck(f0; s0), . . . , cfd = comck(fd; sd) where f0, s0, . . . , fd, sd ← Zp

3. δ0, . . . , δd ∈ Zp such that

1∑
i0,...,id=0

aid...i0

d∏
j=0

(Xu2
j

+ fj)
ijX1−ij = Xd+1v +

d∑
j=0

Xjδj

4. cδ0 = comck(δ0; t0), . . . , cδd = comck(δd; td) where t0, . . . , td ← Zp

5. cfu0 = comck(f0u
20 ; ξ0), . . . , cfud−1

= comck(fd−1u
2d−1

; ξd−1) where
ξ0, . . . , ξd−1 ← Zp

Send: c1, . . . , cd, cf0 , . . . , cfd , cδ0 , . . . , cδd , cfu0 , . . . , cfud−1

Challenge: x← Zp

Answer: Compute for all j

f̄j = xu2j + fj r̄j = xrj + sj t̄ = xd+1t+
d∑

i=0

tix
i ξ̄j = xrj+1− f̄jrj + ξj

Send: f̄0, r̄0, . . . , f̄d, r̄d, t̄, ξ̄0, . . . , ξ̄d−1
Verification: Accept if and only if for all j

cxj cfj = comck(f̄j ; r̄j) cxj+1c
−f̄j
j cfuj = comck(0; ξ̄j)

and

cx
d+1

v

d∏
i=0

cx
i

δi = comck

⎛⎝ 1∑
i0,...,id=0

aid...i0

d∏
j=0

f̄
ij
j x1−ij ; t̄

⎞⎠
Example: Let G = 〈g = 3〉 ⊂ Z∗467, which has prime order p = 233 and let h = 266.
The common reference string describing (G, p, g, h) is ck = {467, 233, 3, 266}. The
statement consists of the polynomial P (X) = 93X4 + 3X2 + 115X + 51 ∈ Z233[X ]
and commitments cu0 = 90, cv = 68. We have d = �log 4� = 2.

The prover knows values u = 5, v = P (u) = 110 ∈ Z233 and r0 = 201, t =
189 ∈ Z233 such that cu0 = 90 ∈ G and cv = 68 ∈ G. To prove knowledge of the
witness the prover first picks r1 = 23, r2 = 63 at random from Z233 and computes
commitments c1 = 387 and c2 = 4 to u2

1

= 25 and u2
2

= 159. The prover also picks
f0 = 161, f1 = 220, f2 = 15, s0 = 10, s1 = 37, s2 = 149 randomly from Z233 and
sets cf0 = 48, cf1 = 4, cf2 = 324.

Next she computes δ0, δ1, δ2. She calculates the five products
∏d

j=0(Xu2
j

+

fj)
ijX1−ij for i = i2i1i0 ∈ {0, 1, 2, 3, 4} using a binary tree.
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1

X

X2
X3

x3u+X2f0 = 5X3 + 161X2

X2u2 +Xf1

X3u2 +X2f1 = 25X3 + 220X2

X3u3 +X2(u2f0 + uf1) +Xf0f1
= 75X3 + 232X2 + 4X

Xu4 + f2 X2u4 +Xf2 X3u4 +X2f2 = 159X3 + 15X2

The prover takes the ai and multiplies them on the result of the binary tree, to get

i = 0 : a0 ·X3 = 51X3

i = 1 : a1 · (5X3 + 161X2) = 109X3 + 108X2

i = 2 : a2 · (25X3 + 220X2) = 75X3 + 194X2

i = 3 : a3 · (75X3 + 232X2) = 0

i = 4 : a4 · (159X3 + 15X2) = 108X3 + 230X2

Last, to extract the values δi she adds for i = 0, 1, 2 the coefficients for each X i to get
δ0 = 0, δ1 = 0, δ2 = 66 mod 233. Now the prover picks t0 = 33, t1 = 201, t2 = 205
at random and commits to the δi’s to get cδ0 = 438, cδ1 = 329, cδ2 = 467.

Finally, the prover calculates f0u = 106, f1u
2 = 174 and commits to these values.

So, she picks ξ0 = 13, ξ1 = 75 and computes cfu0 = 352, cfu1 = 141. She sends all
the commitments to the verifier.

The verifier returns a random challenge x = 123 ∈ Z233, and the prover calculates
answers f̄0 = 77, f̄1 = 33, f̄2 = 0, r̄0 = 35, r̄1 = 70, r̄2 = 209, t̄ = 189, ξ̄0 =
180, ξ̄1 = 75, and sends all values to the verifier.

The verifier checks first if all commitments are in G and all answers valid numbers
in Z233. Then he checks for i = 0, 1, 2 if cxui

cfi = comck(f̄i; r̄i):

cxu0
cf0 = 68 = comck(f̄0; r̄0) cxu1

cf1 = 91 = comck(f̄1; r̄1) cxu2
cf2 = 220 = comck(f̄2; r̄2).

Next, he checks cxui+1
c−f̄iui

cfui = comck(0, ξ̄i) for i = 0, 1, i.e.,

cxu1
c−f̄0u0

cfu0 = 157 = comck(0; ξ̄0) cxu2
c−f̄1u1

cfu1 = 250 = comck(0; ξ̄1).

Then the verifier calculates δ̄ =
∑1

i0,...,id=0 ai0...id
∏d

j=0 f̄
ij
j x1−ij in a binary tree

fashion. The output leaves in the binary tree are x3 = 129, x2f̄0 = 166, x2f̄2 =
171, xf̄0f̄1 = 90, x2f̄2 = 0. He multiplies the values by the ai’s and adds the re-
sults together, to get δ̄ = a0129 + a1166+ a2171+ a390+ a40 = 86 ∈ Z233. Finally,
he checks the last verification equation cx

3

v cx
2

δ2
cx

1

δ1
cx

0

δ0
= 395 = comck

(
δ̄; t̄
)
.
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Efficiency. The communication in the polynomial evaluation argument for a degree
D = 2d+1 − 1 polynomial is roughly 4d group elements and 3d field elements.

The prover uses 8d exponentiations to compute the commitments. She also has
to calculate δ0, . . . , δd that are defined to satisfy

∑1
i0,...,id=0 aid...i0

∏d
j=0(Xu2

j

+

fj)
ijX1−ij = Xd+1v +

∑d
j=0X

jδj . The prover can calculate the D degree d + 1

polynomials
∏d

j=0(Xu2
j

+ fj)
ijX1−ij in a binary-tree fashion for all choices of

i0 . . . , id ∈ {0, 1} at a cost of dD multiplications in Zp. Multiplying with the aid...i0 ’s
uses another dD multiplications. The total cost for the prover is therefore 8d exponen-
tiations in G and 2dD multiplications in Zp.

The verifier can check the argument using 6d exponentiations in G since the expo-
nent x is used twice in the verification equations. He also needs to compute the sum∑1

i0,...,id=0 aid...i0
∏d

j=0 f̄
ij
j x1−ij , which can be done in a binary tree fashion for all

choices of i0, . . . , id ∈ {0, 1} using 2D multiplications in Zp.
We have ignored small constants in the calculations above and just focused on the

dominant terms. Using multi-exponentiation techniques, randomized verification and
other tricks it is possible to reduce the computation even further for the prover and
verifier, so the estimates are quite conservative.

Theorem 6. Assuming the discrete logarithm assumption holds the polynomial evalu-
ation argument is a public coin perfect SHVZK argument of knowledge of openings of
c0 and cv to u and v such that P (u) = v.

Proof. Perfect completeness follows by careful inspection.
We will now argue perfect SHVZK. Given a challenge x ∈ Zp the simulator

picks c1, . . . , cd, cδ1 , . . . , cδd ← G and f̄0, r̄0, . . . , f̄d, r̄d, t̄, ξ̄0, . . . , ξ̄d−1 ← Zp and

for all j he sets cfj = comck(f̄j ; r̄j)c
−x
j cfuj = comck(0; ξ̄j)c

−x
j+1c

f̄j
j and cδ0 =

comck

(∑1
i0,...,id=0 aid...i0

∏d
j=0 f̄

ij
j x1−ij ; t̄

)
c−x

d+1

v

∏d
i=1 c

−xi

δi
.

This is a perfect simulation. In a real argument c1, . . . , cd, cδ1 , . . . , cδd are uni-
formly random perfectly hiding commitments as in the simulation. In a real argument
f̄0, r̄0, . . . , f̄d, r̄d, t̄, ξ̄0, . . . , ξ̄d−1 ∈ Zp are also uniformly random because of the ran-
dom choice of f0, r0, . . . , fd, rd, t0, ξ0, . . . , ξd−1. Finally, both in the simulation and in
the real argument given these choices the verification equations uniquely determine
the values of cf0 , . . . , cfd , cδ0 and cfu0 , . . . , cfud−1

. This means simulated and real
arguments given a challenge x have identical probability distributions.

Finally, we will show that the argument has witness-extended emulation. The em-
ulator X runs the argument with random challenge x ← Zp and if the transcript tr is
accepting it rewinds until it has d+2 accepting arguments. For a prover with ε chance of
making a convincing argument we expect the emulator to rewind d+2

ε ε = d + 2 times,
so X runs in expected polynomial time.

There is negligible probability that the verifier will end up with two or more
transcripts with the same challenge x, so we just need to be able to extract a wit-
ness when we have d + 2 transcripts with different challenges. Given f̄

(1)
j , r̄

(1)
j and

f̄
(2)
j , r̄

(2)
j in the first two answers to challenges x1 and x2 the emulator can take lin-

ear combinations of the verification equations to get openings of the commitments
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cj . More precisely, we have that the two answers satisfy cx1

j cfj = comck(f̄
(1)
j ; r̄

(1)
j )

cx2

j cfj = comck(f̄
(2)
j ; r̄

(2)
j ). Pickingα1, α2 such thatα1x1+α2x2 = 1 andα1+α2 = 0

gives us cj = cα1x1+α2x2

j cα1+α2

fj
= comck(α1f̄

(1)
j + α2f̄

(2)
j ;α1r̄

(1)
j + α2r̄

(2)
j ), which

is an opening of cj .
Other types of linear combinations of the verification equations give us openings of

the other commitments cfj , cfuj , cv and cδi the prover sends in the initial message. In
the case of cδi we find the linear combination as follows: Let

M =

⎛⎜⎝1 x1 . . . xd+1
1

...
...

1 xd+2 . . . x
d+1
d+2

⎞⎟⎠ .

Since it is a Vandermonde matrix with different x1, . . . , xd+2 it is invertible. By taking
linear combinations of the verification equations

cx
d+1

v

d∏
i=0

cx
i

δi = comck

⎛⎝ 1∑
i0,...,id=0

aid...i0

d∏
j=0

f̄
ij
j x1−ij ; t̄

⎞⎠
for different challenges x1, . . . , xd+2 we get that⎛⎜⎜⎜⎝

δ0 t0
...

...
δd td
v t

⎞⎟⎟⎟⎠ = M−1

⎛⎜⎜⎝
∑1

i0,...,id=0 aid...i0
∏d

j=0(f̄
(1)
j )ijx

1−ij
1 t̄(1)

...
...∑1

i0,...,id=0 aid...i0
∏d

j=0(f̄
(d+2)
j )ijx

1−ij
d+2 t̄(d+2)

⎞⎟⎟⎠
which gives us openings of cδ0 , . . . , cδd and cv.

We now have openings to all the commitments. Because the commitments are bind-
ing, each answer must be computed as they are by an honest prover in the argument.
Therefore, the verification equations cxj cfj = comck(f̄j , r̄j) give us f̄j = xuj + fj ,
where uj is the extracted value in cj and fj is the extracted value in cfj .

The verification equations cxj+1c
−f̄j
j cfuj = comck(0; ξ̄j) give us that the committed

values satisfy xuj+1 − (xuj + fj)uj + φj = 0 for j = 0, . . . , d− 1 with φj being the
value we extracted for cfuj . Since each of the polynomial equalities is of degree 1 in x
and holds for d+ 2 different challenges x we see that uj+1 = ujuj . Since u0 = u this

gives us u1 = u2
1

, u2 = u2
2

, . . . , ud = u2
d

.
Turning to the verification equation

cx
d+1

v

d∏
i=0

cx
i

δi = comck

⎛⎝ 1∑
i0,...,id=0

aid...i0

d∏
j=0

f̄
ij
j x1−ij ; t̄

⎞⎠
we now have that this corresponds to the degree d+ 1 polynomial equation

Xd+1v +Xdδd + . . .+Xδ1 + δ0 =
1∑

i0,...,id=0

aid...i0

d∏
j=0

(Xu2
j

+ fj)
ijX1−ij .
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With d + 2 different values x1, . . . , xd+2 satisfying the equation, we conclude the two
polynomials are identical. Looking at the coefficient for Xd+1 we conclude that the
extracted openings of c0 and cv satisfy P (u) = v. #$

4 Membership and Non-membership Arguments

In this section we will construct membership and non-membership arguments for com-
mitted values being included in whitelists or excluded from blacklists. In both cases the
whitelists or blacklists are given as a set L ⊂ Zp, and the goal is to show that the com-
mitted value u ∈ L in the case of membership or u /∈ L in the case of non-membership.

Let us first describe a non-membership argument for a committed value not belong-
ing to a set L = {λ1, . . . , λD} using ideas from Brands et al. [4]. We define a poly-
nomial P (X) =

∏D
i=1(X − λi) with the elements in the set as roots. With this choice

of polynomial we have u ∈ L if and only if P (u) = 0. The prover has a commitment
c and will demonstrate that the committed value u does not belong to L by showing
P (u) �= 0.

The prover computes v = P (u) and makes a commitment to v. She can now give an
SHVZK argument that the new commitment contains v = P (u) using the polynomial
evaluation argument from Section 3. To prove non-membership she just needs to prove
v �= 0. To do this the prover commits to w = v−1 and uses a multiplication argument
to show v · w = 1, which will convince the verifier that v �= 0. The main cost in this
argument is the polynomial evaluation argument; multiplication arguments are standard
cryptographic tools [10] that only cost a couple of group elements in communication.

Common reference string: ck ← G(1k)
Statement: L = {λ1, . . . , λD} ⊂ Zp, P (X) =

∏D
i=1(X − λi) ∈ Zp[X ], c ∈ G

Prover’s witness: u, r ∈ Zp such that c = comck(u; r) and u /∈ L
Argument: Pick s, t ← Zp, compute v = P (u), w = v−1 and cv =

comck(v; s), cw = comck(w; t), and send cv, cw to the verifier. Engage in parallel
in an SHVZK multiplication argument [10] to show v · w = 1 and in the SHVZK
polynomial evaluation argument from Section 3 to show P (u) = v.

Verification: The verifier accepts u �∈ L if and only if cv, cw ∈ G and the two SHVZK
arguments are valid.

Theorem 7. If the discrete logarithm assumption holds, the above protocol is a public
coin SHVZK argument of knowledge of an opening of c to u �∈ L.

Proof. Perfect completeness follows from the perfect completeness of the two SHVZK
arguments.

The SHVZK simulator picks cv, cw ← G at random and runs the SHVZK simulators
for the two underlying SHVZK arguments. Since the commitment scheme is perfectly
hiding and the underlying SHVZK arguments are perfect SHVZK this gives us perfect
SHVZK.

The protocol has witness-extended emulation. The emulator X runs the witness-
extended emulator for the two underlying SHVZK arguments to get openings u, v, w of
the commitments satisfying v · w = 1 and P (u) = v. The first equality tells us v �= 0
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and the second equality then tells us P (u) �= 0. This means u is a not a root of the
polynomial P (X) =

∏D
i=1(X − λi) and therefore u /∈ L. #$

It is easy to modify the non-membership argument into a membership argument. If
u ∈ L then P (u) = 0. We therefore get a membership argument by removing cw and
instead of a multiplication argument letting the prover give an SHVZK argument for cv
containing v = 0. Arguments of knowledge of an opening of a commitment to 0 are
standard and only cost a couple of group elements in communication [33].

Efficiency. The coefficients of the polynomialP (X) =
∏D

i (X −λi) can be computed
in a binary tree fashion with the linear functions X − λi as leaves. Fast polynomial
multiplication techniques that rely on the Fast Fourier Transform can if p is an FFT
friendly prime multiply two degree n polynomials using O(n logn) multiplications
in Zp. This means the prover and the verifier can compute the coefficients of P (X)
using O(D log2D) multiplications in Zp. If the list stays fixed, the computation of the
polynomials coefficients is a one-time cost. Single element additions or deletions can
be done using D multiplications. If multiple elements are added or deleted at the same
time the per element cost can be reduced by using fast polynomial multiplication and
division techniques.

Once the coefficients of P (X) are given, the main cost of the membership and non-
membership arguments are dominated by the underlying polynomial evaluation argu-
ment. For moderate D the computation is dominated by the logarithmic number of
exponentiations involved in the polynomial evaluation argument. For large D the com-
putational cost of computing the coefficients of the polynomial matters more as do the
multiplications in the polynomial evaluation argument.

5 Comparison and Implementation

The first approaches to prove for committed u, v ∈ Zp that p(u) = v for a given poly-
nomial P (X) with order D split in two parts: first construct commitments c1, . . . , cD
to values u, u2 . . . , uD and then use the homomorphic property of the commitment
scheme to get P (u) as a linear combination of u, u2, . . . , uD. This requires D com-
mitments and D multiplication arguments to show that the commitments c1, . . . , cD
have been correctly constructed and contain the correct powers of u. The cost can re-
duced to O(

√
D) as suggested in Brands et al. [4] by splitting the polynomial in

√
D

polynomials of degree
√
D each.

Our protocol also has a two part structure but only needs logD commitments
c1, . . . , cd and logD multiplication arguments to prove they have been correctly formed
and contain u2, u4, u8, u16, . . . , u2

d

. By using a sophisticated combination of these
values in combination with the homomorphic properties of the commitment scheme,
we then get the desired argument for v = p(u). This reduces our communication to
O(logD) group elements.

Table 1 gives the asymptotic communication and computation costs of polynomial
evaluation arguments based on the discrete logarithm assumption. The polynomial eval-
uation argument from Brands et al. [4] achieves the best complexity, so we will in the
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Table 1. Comparison of our polynomial argument with former work

SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
Fujisaki and Okamoto [14] 3 O(D) O(D) O(D) G+O(D) Zq

Brands et al. [4] 3 O(
√
D) O(

√
D) O(

√
D) G+O(

√
D) Zq

Groth [15] 7 O(D) O(
√
D)

√
D G+

√
D Zq

This paper 3 O(logD) O(logD) O(logD) G+O(logD) Zq

Table 2. Detailed comparison of our blacklist argument with Brands et al. [4] argument

SHVZK Rounds Time P Time P Time V Time V Size
argument Expos Multip. Expos Multip. Elements
[4] 3 8

√
D 2D + 8

√
D 7

√
D D + 4

√
D 4

√
D G+ 3

√
D Zq

This paper 3 8 logD 2D logD 7 logD 2D 4 logD G+ 3 logDZq

following give a more detailed theoretical and practical comparison. In Table 2 we give
a more detailed theoretical analysis that also counts the number of multiplications.

Based on Table 2 we would expect our verifier to run faster than Brands et. al.’s as
our asymptotic computation cost is much smaller and we expect our argument size to
be much smaller. Just looking at the numbers of exponentiations needed by the prover
can be a little deceptive though since in our polynomial evaluation argument we need
O(D logD) multiplications in Zp to compute the δj and for large D this cost becomes
dominant. Our performance gain for the prover is therefore largest in the range, where
D is large enough for logD to be significantly smaller than

√
D yet not so large that

the cost of D logD multiplications in Zp becomes dominant.
We implemented our polynomial evaluation argument and Brands et al.’s argument

in C++ with the NTL library to obtain experimental confirmation of our theoretical
analysis and to get a real life comparison based on similar implementation techniques.

For the comparison of the polynomial evaluation arguments we have used a 256-bit
subgroup modulo a 1536-bit prime, assumed that the polynomialP (X) is pre-computed
and obtained the running time for polynomials with degree between 10 and 500, 000
elements. The performance measurements have been obtained on a MacBook Pro with
a 2.54 GHz Intel Core 2 Duo CPU, 4 GB RAM running Mac OS X 10.8.6; all code is
single threaded and optimized code using the multi exponentiation techniques by [24].
The results can be found in Table 3.

As expected our verifier runs faster than Brands et al.’s verifier and we also see that
our communication compares very favorably against Brands et al.’s communication. For
moderate sizeD it is also the case that our prover is the most efficient, however, for very
largeD the cost to calculate the δjs becomes dominant for our prover and here Brands et
al.’s prover is faster. Other experiments we have conducted show that for larger security
parameters the crossover happens for even larger D and for all reasonable degrees of
the polynomial our argument is faster.
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Table 3. Our polynomial evaluation argument compared to Brands et al. [4]. All experiments
used a 256-bit subgroup modulo a 1536-bit prime and a MacBook Pro, 2.54 CPU, 4 GB RAM.

Elements Prover Prover Verifier Verifier Communication Communication
in list D Brands et al. This paper Brands et al. This paper Brands et al. This paper

10 21 ms 13 ms 24 ms 17 ms 12 KB 8 KB
100 66 ms 24 ms 69 ms 30 ms 37 KB 15 KB

1000 227 ms 41 ms 234 ms 45 ms 128 KB 21 KB
10000 747 ms 182 ms 759 ms 81 ms 406 KB 29 KB

100000 2386 ms 1420ms 2402 ms 217 ms 1295 KB 35 KB
1000000 8650 ms 15512 ms 8165 ms 1315 ms 4161 KB 41 KB

The computation cost of the non-membership argument by Brands et al. is smaller
than the cost of their polynomial argument. It still requires very large degree D also for
the non-membership argument of Brands et al. to become better from a computational
perspective though; for moderate size D we have a clear performance advantage.
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Abstract. A major general paradigm in cryptography is the following
argument: Whatever an adversary could do in the real world, it could just
as well do in the ideal world. The standard interpretation of “just as well”
is that the translation from the real to the ideal world, usually called a
simulator, is achieved by a probabilistic polynomial-time algorithm. This
means that a polynomial blow-up of the adversary’s time and memory
requirements is considered acceptable.

In certain contexts this interpretation of “just as well” is inadequate,
for example if the concrete amount of memory used by the adversary is
relevant. The example of Ristenpart et al. (Eurocrypt 2011), for which
the original indifferentiability notion introduced by Maurer et al. (Euro-
crypt 2004) is shown to be insufficient, turns out to be exactly of this
type. It requires a fine-grained statement about the adversary’s memory
capacity, calling for a generalized treatment of indifferentiability where
specific resource requirements can be taken into account by modeling
them explicitly.

We provide such treatment and employ the new indifferentiability no-
tion to prove lower bounds on the memory required by any simulator in
a domain extension construction of a public random function. In partic-
ular, for simulators without memory, even domain extension by a single
bit turns out to be impossible. Moreover, for the construction of a ran-
dom oracle from an ideal compression function, memory roughly linear in
the length of the longest query is required. This also implies the impossi-
bility of such domain extension in any multi-party setting with potential
individual misbehavior by parties (i.e., no central adversary).

1 Introduction

1.1 Simulation-Based Security

The so-called “real world – ideal world” paradigm is underlying all current cryp-
tographic frameworks aiming for composable security statements. Using the lan-
guage of [MRH04, MR11], the purpose of a protocol is to construct an “ideal”
resource (which is secure by definition) from “real” resources assumed to be
available. The security of such a construction is then argued by showing that if
some misbehaving entity (adversary) deviates from the prescribed protocol in
the real world, it cannot achieve anything more than what would also be possible
in the ideal world. Since the ideal resource is considered secure by definition, any

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 664–683, 2013.
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such action is seen as harmless, thus implying the security of the protocol using
the real resources.

The translation of the adversarial actions from the real world to the ideal
world is described by exhibiting an algorithm performing it, called a simulator.
The above argument for the real construction being as secure as the ideal re-
source is then valid as long as we assume that the adversary can, in addition to
executing its attack, also translate it into the ideal-world setting by performing
the job of the simulator itself. Simulators are typically modeled as probabilistic
polynomial-time (PPT) Turing machines, which implies also polynomial memory
(the range of the tape that can be accessed within this time) and randomness
limitations. This potentially leads to a polynomial blow-up of the attack’s re-
source requirements when translated from the real to the ideal world.

The implicit step of considering this overhead acceptable is hard-coded into
most of the existing frameworks, such as the universal composability [Can01], in-
differentiability [MRH04] and reactive simulatability [BPW04]. It is appropriate
in most natural settings and hence the results in the above-mentioned frame-
works have a wide scope of applicability. However, there are practical settings
where this rough approach is not sufficient and a more fine-grained analysis is
needed. One such scenario was recently exhibited in [RSS11] in the context of
indifferentiability, considering the setting of auditable storage. Before we intro-
duce our contributions, let us briefly review both the indifferentiability notion
and the example from [RSS11].

1.2 The Case of Indifferentiability

Indifferentiability was introduced in [MRH04] as a generalization of indistin-
guishability for settings where some access to the internal state of the considered
resources is available publicly, within reach of any potential attacker. The frame-
work comes with a composition theorem loosely interpreted as saying that an
ideal resource can be replaced by an indifferentiable construction in any context.

The indifferentiability framework found its most important application in the
analysis of hash function constructions [CDMP05]. Many existing cryptographic
constructions are proven secure in the random oracle model [BR93], but once
we instantiate the random oracle (RO) by an existing cryptographic hash func-
tion H , such a proof can be seen at most as a heuristic argument towards the
security of the construction [CGH98]. However, if one uses a hash function con-
struction Hf that was proven indifferentiable from a RO when using an ideal
compression function f , this excludes any possible attacks exploiting the struc-
ture of H and reduces the security of the construction to the security of the
underlying compression function f , a more compact object that is simpler to
analyze. As a consequence, an indifferentiability proof in the setting with an
ideal compression function is generally considered an important argument to-
wards the security of a practical hash function design and many of the SHA-3
candidates (including the winner Keccak [BDPVA08a]) enjoy such a proof (see
e.g. [BDPVA08b, CN08, DRRS09, DRS09, AMP10]).
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Storage-Auditing Scenario from [RSS11]. Re-examining the guarantees
provided by indifferentiability, in [RSS11] the authors present an example of a
two-party protocol for storage verification. Its goal is to allow the first party
(the user) to verify that the second party (the server – e.g. a storage service) is
properly storing a certain piece of data that the user has provided earlier. The
protocol is using a hash function and as long as it is modeled as a RO, it is
clearly impossible for a malicious server to pass the verification without actually
storing the user’s data. However, as observed in [RSS11] this is no longer true
if the RO is replaced by a particular iterative construction with an underlying
ideal compression function, even though this construction is known to be indif-
ferentiable from a RO. This puts in question the meaning of an indifferentiability
proof as a security argument relevant in all possible contexts.

The best way to understand this example is to consider in greater detail the
memory requirements of the simulator used in the indifferentiability proof in
question. The simulator is modeled as a PPT algorithm, guaranteeing that the
real implementation is at least as good as the ideal RO as long as the attacker
is capable of performing the tasks modeled by the simulator, in particular has
polynomial amount of memory available. However, this is an unacceptable as-
sumption if we want to investigate whether the server can pass the verification
procedure without allocating all the memory required to store the user’s mes-
sage. As a side contribution, we give a more detailed explanation of this problem
in the full version of our paper.

1.3 Contributions of This Paper

Our contributions are three-fold. First, we introduce a new formalism based on
abstract cryptography (AC, [MR11]), allowing a fine-grained modelling of re-
source requirements, necessary to capture problems such as the one described
above. Second, we apply this new formalism to the problem of domain extension
of public random functions and prove lower bounds on the memory needed by
any simulator in this type of constructions. And finally, we investigate the conse-
quences of these bounds for settings with multiple parties that may potentially
deviate from the prescribed behavior in an uncoordinated manner. We proceed
by a detailed description of all three parts.

Memory-Aware Reducibility. In Section 3 we introduce the notion of memo-
ry-aware reducibility that is derived from reducibility1 in the classical indiffer-
entiability setting as given in [MRH04, MR11], but does not allow the memory
requirements of the simulator to be “swept under the rug”, requiring only that
they are polynomial. In accordance with the spirit of the AC framework that is
used to formalize it, our notion requires any memory necessary for the simulator
to be explicitly modeled as a part of the ideal resource; with the intuitive mean-
ing that the real construction is provably as good as the ideal resource as long

1 The term “reducibility” is used in [MRH04] and, for consistency, also throughout
this paper. It is to be understood in the same sense as the term “construction” used
above, but the viewpoint is reversed. To construct S from R means the same as to
reduce (the need for) S to (the need for) R.
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as we assume that the adversary has the necessary amount of memory available.
We also give a composition theorem for our new notion.

An independent approach to analyzing the complexity of the simulator in an
indifferentiability statement appeared recently in [DRST12], where the authors
focus on the number of queries the simulator issues per invocation. To the best of
our knowledge, our work is the first one pointing out the importance of the sim-
ulator’s memory requirements. However, we stress that the applicability of our
approach goes beyond modeling memory, extending also to other resources such
as computational power or randomness, would the investigated setting require it.

Simulator Memory for Domain Extension. In Section 4 we look at the
most important application of indifferentiability: the question of domain exten-
sion for public random functions. More precisely, we consider constructions that
can be used to obtain an arbitrary input-length RO R∗,n : {0, 1}∗ → {0, 1}n
from an ideal compression function Rm,r : {0, 1}m → {0, 1}r in an indifferen-
tiable way, such as the various variants of the Merkle-Damg̊ard construction
proposed in [CDMP05]. We also consider the question of finite domain exten-
sion, i.e., constructing R	,r from Rm,r for � > m.

The formalism of memory-aware reducibility allows us to investigate the min-
imal necessary memory requirements of the simulator for any such domain-
extension construction. We prove two lower bounds on the memory required
by the simulator, with the following consequences (see Section 4 for the precise
bounds):

1. With stateless simulators (i.e., without any memory) even domain extension
by a single bit (i.e., � = m+ 1) is impossible.

2. For the class of simulators issuing at most one query to the ideal resource per
invocation, any simulator for a domain extension by d bits (i.e., �−m = d)
requires at least d bits of memory.

These bounds hold for both the information-theoretic and the computational
setting. They naturally imply analogous impossibility results for constructing an
arbitrary input-length RO, with the obvious transition of � denoting the length of
the longest query issued to the RO. This answers negatively the open question of
the existence of such a construction using no simulator memory asked in [RSS11].
As another consequence, we also obtain the irreducibility of the RO to the ideal
cipher with respect to stateless simulators, in contrast to the equivalence of
these two ideal primitives with respect to classical indifferentiability [CDMP05,
CPS08, HKT11].

Random Oracles Used by Multiple Parties. The impossibility results de-
scribed above have some intriguing consequences for the setting where a RO is
being used in a protocol bymultiple parties, if we consider that several of these par-
ties might deviate from the prescribed protocol in a potentially non-coordinated
way (for example due to conflicting goals). According to the AC framework, a se-
curity notion for such a situation has to involve local simulators for each of the
parties that deviate from the protocol. Clearly, if a distinguisher is allowed to ac-
cess two such simulators (for two of the parties) in the ideal world, these have
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to be essentially stateless as otherwise they would produce inconsistent results
when brought to different states. On the other hand, our results described above
imply that also for this setting, no stateless simulator can exist. Hence, roughly
speaking, for settings where one cannot assume a central adversary coordinating
all the actions of the misbehaving parties, no secure construction of a RO from
an ideal compression function exists. This might be relevant in the contexts of
rational cryptography [HT04], incoercible computation [CG96], receipt-free voting
[BT94] or collusion-free computation [LMs05, AKL+09] and its recent composable
variants [AKMZ12, CV12]. We formalize the above argument in Section 5 as an
illustration of the impact of our results.

2 Preliminaries

Basic Notation.We denote sets by calligraphic letters or capital greek letters
(e.g. X , Σ) and their cardinalities by |X |, |Σ|. For a superset clear from the
context, we denote the complement of a set X by X . Throughout the paper all
logarithms considered are to the base 2. The notation �·� corresponds to the
usual ceiling function.

We denote random variables and concrete values they can take on by upper-
case letters X,Y, . . . and lower-case letters x, y, . . ., respectively. For random
variables U and V with ranges U and V , respectively, we let PU|V be the
corresponding conditional probability distribution, seen as a (partial) function
U × V → [0, 1]. Here the value PU|V (u, v) = P[U = u|V = v] is well defined
for all u ∈ U and v ∈ V such that PV (v) > 0 and undefined otherwise. For
a discrete random variable X with range X we denote by H(X) the Shannon
entropy of X , i.e., H(X) =

∑
x∈X −PX(x) logPX(x) where PX(x) denotes the

probability that X takes on the value x ∈ X . Moreover, we denote by H(Y |X)
the usual notion of conditional entropy of Y given X , satisfying the chain rule
H(Y |X) = H(XY ) − H(X). For a probability p ∈ [0, 1] we also use the no-
tion of binary entropy denoted h(p) that is defined as the Shannon entropy of
the binary random variable taking on the two possible values with probabilities
p and 1− p.

Resources, Converters and Distinguishers. To formulate our results we
use the language of abstract systems [MR11, Mau11] to which we give here a
self-contained introduction, partly following the exposition given in [MRT12]. At
the highest level of abstraction, a system is an object with interfaces via which it
interacts with its environment (consisting of other systems). Two systems can be
composed by connecting one interface of each system, and the composed object
is again a system. Also, every two different systems are mutually independent.

We consider three distinct types of systems: resources, converters and dis-
tinguishers. Resources2 are denoted by upper-case boldface letters such as S,T.

2 In this paper we sometimes also use the term “resources” in a more informal way
to refer to computational power, memory, etc. This should cause no confusion, since
these resources could also be formalized in the sense of the notion introduced above.
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In this paper we mostly (but not always) consider resources with two interfaces,
hence our exposition here will only cover this case. In the indifferentiability
setting these interfaces are referred to as private and public (for reasons explained
below). Examples of resources discussed below are a fixed input-length random
oracle with input length m and output length r denoted Rm,r; an arbitrary
input-length random oracle with output length n denoted R∗,n; and an ideal
block cipher with key length k and block length n denoted Ek,n. Unless indicated
otherwise, we see these as 2-interface resources providing access to the same
random function at each interface.

Converters are systems having one inner and one outer interface and are
denoted by small Greek letters such as φ, π, σ. The set of all converters considered
is denoted as Σ. A converter φ can be composed with a resource S by attaching
the inner interface of φ to one of the interfaces of S. For example, if φ is attached

to the private interface of S this can be depicted as φ� S . Note that the
composed system is again a 2-interface resource that exposes the outer interface
of φ instead of the interface of S to which φ was connected, together with the
other interface of S.

To describe the composition of resources and converters algebraically, we can
take advantage of the restriction to 2-interface resources: We will understand
the left and the right side of the symbol S as representing the private and the
public interface of the system S, respectively. Hence, attaching a converter π
to the left (private) interface of a resource S results in a resource πS while
attaching a converter σ to the right (public) interface of a resource T results
in a resource Tσ. If two 2-interface resources S and T are used in parallel, this
is denoted as S‖T and is again a 2-interface resource; each of the interfaces of
S‖T allows to access the corresponding interface of both subsystems S and T.
Two converters ψ and φ can also be composed: either sequentially, obtaining a
converter ψ ◦ φ such that (ψ ◦ φ)S = ψ(φS); or in parallel, obtaining ψ|φ such
that (ψ|φ)(S‖T) = (ψS)‖(φT). The application of composed converters to the
public interface works in an analogous way. The term id refers to the “identity
converter” that forwards all inputs and outputs, we always assume id ∈ Σ. For a
2-interface system S we sometimes denote by [S]L(x) (resp. [S]R(x)) its response
to a query x on its left (resp. right) interface.

We instantiate the general concept of abstract systems given above by consid-
ering (probabilistic) systems that communicate by passing messages from dis-
crete sets and within discrete time steps. These can be formalized by the notion
of random systems [Mau02], i.e., conditional distributions of the outputs of the
system (as random variables) given all previous inputs and outputs, where each
input or output is associated to a specific interface. Since being sufficient for our
setting, we restrict our considerations to resources that only produce output in
response to an input and on the same interface where the input was received. For
a converter we assume that it is always invoked by a query at the outer interface,
it then issues zero or more queries to the resource attached to its inner interface
and finally produces an output at the outer interface. Under these assumptions,
the behavior of composed systems is determined in the natural way, with the
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Sπ T σ

Fig. 1. The real (left) and the ideal (right) setting considered for reducibility in the
context of indifferentiability

parallel composition of two resources defined asynchronously: each input at an
interface of S‖T explicitly specifies one of the subsystems, and this subsystem
is invoked with the input.

A distinguisher D is a system that connects to all interfaces of a resource T
and outputs (at a separate interface) a single bit denoted B. The complete in-
teraction of D and T defines a random experiment and the probability that the
bit B is 1 in this experiment is written as PDT(B = 1). The distinguishing ad-
vantage of D for the systems S and T is then defined as ΔD(S,T) :=

∣∣PDS(B =

1)− PDT(B = 1)
∣∣. We denote by D the set of all distinguishers considered and

define ΔD(S,T) := supD∈DΔ
D(S,T).

Classical (weak) Indifferentiability. In the classical indifferentiability de-
fined in [MRH04] one restricts only to resources having two interfaces. The first
one, referred to as private, is meant to model the access to the resource by all
honest parties. On the other hand, the second interface is called public and is
present to model the adversarial access to the internal state of the resource.

Let S andT be such 2-interface resources. For given setsΣ andD of converters
and distinguishers, respectively, we define T being ε-reducible to S in the sense
of weak indifferentiability (denoted S

ε−→
wi

T) as

S
ε−→
wi

T :⇔ (∃π ∈ Σ)(∀D ∈ D)(∃σ ∈ Σ) : ΔD(πS,Tσ) ≤ ε

and refer to the converters π and σ as the protocol and the simulator, respec-
tively. Usually we call S the real and T the ideal resource; hence also the random
experiment of D interacting with πS (resp. Tσ) is called the real (resp. ideal)
experiment. The two settings distinguished are depicted in Fig. 1.

Note that by choosing the sets Σ and D, this definition covers both infor-
mation-theoretic and computational indifferentiability; moreover, one could also
easily derive an asymptotic definition. These remarks are also true for all other
reducibility notions presented below.

Strong Indifferentiability. For given sets Σ and D we define T being ε-
reducible to S in the sense of strong indifferentiability (denoted S

ε−→
si
T) as

S
ε−→
si
T :⇔ (∃π, σ ∈ Σ)(∀D ∈ D) : ΔD(πS,Tσ) ≤ ε.

Clearly reducibility under strong indifferentiability implies reducibility under
the weak one and moreover, positive indifferentiability results (such as those
in [CDMP05] showing security of MD-variants) typically prove this stronger
type of statement by exhibiting a simulator that does not depend on the dis-
tinguisher. A detailed discussion of the relationship between these two forms of
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simulatability in various formalisms can be found in [HU05, Can01], here we
only remark that both notions are composable in the spirit of Theorem 1 (see
below).

function chop-MDf (m)
m′ ← Pad(m)

parse m′ as m1‖ · · · ‖mb for mi ∈ {0, 1}d
y0 ← 0r (or any fixed initialization vector)
for i = 1 to b do yi ← f(mi‖yi−1)
return first r/2 bits of yb

Domain Extension for

Hash Functions. Finally,
we briefly introduce the do-
main extension construction
chop-MD from [CDMP05]
that will serve us as a use-
ful example throughout the
paper. Let f : {0, 1}r+d → {0, 1}r be a compression function. The function
chop-MDf : {0, 1}∗ → {0, 1}r/2 is as defined in the box above. The role of the
function Pad is to append the length of the message and a padding in a decodable
way to obtain m′ with length being a multiple of d bits. It will not be relevant
for our discussion.

3 Memory-Aware Reducibility

Stateless simulators.To formally define memory-aware reducibility, we need
to consider the class of stateless converters in the following sense. A stateless
converter uses no memory between answering outer queries, i.e., its behavior for
a particular query depends only on the query itself and the ongoing interaction
at the inner interface, not on previous outer queries and the transcript of the
interaction during their evaluation. However, it might of course be randomized,
using fresh randomness at every invocation. This is captured by the following
formal definition.

Definition 1. A converter φ is stateless if there exists a sequence of conditional
probability distributions pφIXj+1|X1...XjY1...YjQ

for j ≥ 0 such that whenever φ

received a query q at the outer interface and has then issued the sequence of
queries x1, . . . , xj to the inner interface, obtaining responses y1, . . . , yj, then

pφIXj+1|X1...XjY1...YjQ
(i, xj+1, x1, . . . , xj , y1, . . . , yj, q) determines the probability

that its next action will be to output the value xj+1 at interface i ∈ {inner, outer}.
For a set of converters Σ we denote by Σsl the set of all stateless converters
from Σ.

For example, the converter accessing an ideal compression function and realizing
a Merkle-Damg̊ard construction on top of it would be stateless according to the
above definition.

Quantifying the Memory Requirements of the Simulator.Let Ms de-
note a resource that provides a dummy private interface and at the public (ad-
versarial) interface, it provides the functionality of s-bit memory, i.e., allows ef-
ficient storage and retrieval of arbitrary information such that its size is in every
point in time upper-bounded by s bits. To quantify the memory requirements of
the simulator in a reducibility statement we shall require it to be stateless and
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only use the memory provided by the ideal resource, leading to the following
formalism (broadly denoted as memory-aware reducibility).

Definition 2. For given sets Σ and D of converters and distinguishers, respec-
tively, we define T being ε-reducible to S in the presence of s bits of adversarial
memory (denoted S

ε,s−−→
m

T) as

S
ε,s−−→
m

T :⇔ (∃π ∈ Σ)(∀D ∈ D)(∃σ ∈ Σsl) : Δ
D(πS, [T||Ms]σ) ≤ ε.

Informally speaking, the statement S
ε,s−−→
m

T indicates that T can be constructed
securely from S within error ε in an environment where the adversary has s bits
of memory available. In other words, whatever the adversary can achieve in the
real world he could also achieve in the ideal world, but it might need up to s
more bits of memory to do so. Evaluating whether this is acceptable depends on
the context in which we want to use S instead of T.

As before, by specifying the sets of converters and distinguishers to be consid-
ered, this definition covers both computational and information-theoretic memo-
ry-aware reducibility; moreover, the transition to an asymptotic definition would
be straightforward. Alongside the notion of reducibility, one could also explicitly
define the underlying notion of memory-aware indifferentiability that would only
consider the trivial protocol π = id, leading to the same relationship between in-
differentiability and the respective reducibility as in the classical case [MRH04].
Since our results make use of the reducibility notion, we omit this step.

In case of no memory (i.e., s = 0) the notion of memory-aware reducibility
S

ε,0−−→
m

T collapses to the notion of reducibility with stateless simulators. If we
refer to this situation, we usually omit the 0 and simply write S

ε−→
m

T. In this
special case, the underlying indifferentiability notion is technically equivalent to
the notion of reset indifferentiability introduced in [RSS11]: First, if the simula-
tor is stateless, then it can be used also in the scenario with resets with the same
outcome. On the other hand, any simulator that satisfies the requirements of re-
set indifferentiability must be able to simulate successfully even in presence of an
adversary that resets it before every query, hence there also exists an equivalent
stateless simulator. However, our motivation to introduce stateless simulators is
completely different. We do not put them forward to define a security notion
by themselves, but only as a tool for modeling the memory requirements of the
simulator explicitly.

Composability.The formalism of memory-aware reducibility given above leads
to statements that are composable under some natural closure assumptions on
the sets Σ and D of converters and distinguishers considered. Here we only state
the respective composition theorem informally.

Theorem 1 (Informal). Let Σ be closed under both sequential composition
◦ and parallel composition | and let D be closed under the emulation of any
converter and of any resource. Let S, T and V be resources such that S

ε1,s1−−−→
m

T
and T

ε2,s2−−−→
m

V. Then we have:

1. For any resource U, S‖U ε1,s1−−−→
m

T‖U and U‖S ε1,s1−−−→
m

U‖T,
2. S

ε1+ε2,s1+s2−−−−−−−−→
m

V.
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4 Lower Bounds on Simulator Memory for Any
Domain-Extending Construction

We now investigate the amount of memory that we must assume to be available
to the adversary in order to be able to conclude the security of classical domain
extension constructions for hash functions.

4.1 Fixed Input-Length Random Oracles

The following theorem upper-bounds the achievable domain extension for fixed
input-length random oracles, given a bound on the memory available to the
simulator. In particular, it implies that without simulator memory, even domain
extension by a single bit becomes impossible, thus solving an open problem
introduced in [RSS11].

Theorem 2. Assume that for any π ∈ Σ, the distinguisher D constructed from
π according to Fig. 2 is present in D. Then any reduction Rm,r ε,s−−→

m
R	,r with3

r ≥ 2 and ε ≤ 0.04 satisfies4

�−m ≤ s+ �log(min{s, t})� (1)

where t ≥ 1 denotes an upper bound on the number of queries the simulator
issues to the ideal primitive R	,r to answer a single query.

Proof. Recalling Def. 2, let us denote by π the protocol performing the reduction
from the statement and let us consider a distinguisher D interacting with either
πRm,r or [R	,r‖Ms]σ, where σ is the stateless simulator corresponding to D.

Proof Overview.We only consider the trivial distinguisher D given in Fig. 2
that chooses a random input X ∈ {0, 1}	 and then evaluates the {0, 1}	-domain
function on the input X in two different ways. First it queries the private (left)
interface for the whole input X ; second it simulates the protocol π on X on its
own and uses the public (right) interface to answer the {0, 1}m-queries issued
by π. Moreover, it never repeats a query to the right interface: in case the
simulated protocol π would issue a repeated query, it is answered as before. We
will refer to this modified (simulated) protocol π as π′; note that D is capable
of this modification since it can keep the history of query-answer pairs in its
state. Finally, D outputs 1 if and only if the two values obtained from these
evaluations are equal. The distinguisher D participating in both the real and
the ideal setting is depicted in Fig. 3. Note that it is natural to expect that this
simple distinguisher D is present in any reasonable distinguisher class.

3 The bound degrades gracefully for smaller r and bigger ε. In particular, for the
same ε and r = 1 with no memory (s = 0) domain extension by a single bit is still
impossible.

4 To avoid handling the special case s = 0 separately we use the notational convention
log 0 = 0 throughout this section.
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Distinguisher D(S): where S ∈
{
πRm,r, [R�,r‖Ms]σ

}

1: X
$← {0, 1}�

2: query Y := [S]L(X)
3: simulate π to evaluate Ŷ := π(X)

answer new inner queries by querying [S]R
answer repeated inner queries consistently

4: if Y = Ŷ then
5: return 1
6: return 0

Fig. 2. The distinguisher D for the proof of Theorem 2

Rm,rπ

D
π′

m→r

�→r m→r

�→r �→r

B ∈ {0, 1}

R�,r

Ms

σ

D
π′

�→r

(�)

�→r m→r(��)

�→r �→r

B ∈ {0, 1}

Fig. 3. The real and the ideal setting for the proof of Theorem 2. The notation i→ o
describes an interface that accepts queries from {0, 1}i and responds with elements
from {0, 1}o.

Clearly if D interacts with πRm,r it always outputs 1. It remains to analyze
the probability of D outputting 1 when interacting with [R	,r‖Ms]σ. To this
end, we consider the ideal setting depicted on the right-hand side of Fig. 3 and
upper-bound the probability that the output of the protocol π′ simulated by
D will be the correct value R	,r(X). Informally speaking, we do this by upper-
bounding the amount of useful information that π′ can obtain about the actual
values of R	,r and show that it is not enough to recover R	,r(X) with sufficient
probability.

We use two separate approaches to bound this amount, each proving the above
claim for one of the values in the minimum term in (1). In the first approach, we
upper-bound the number of distinct queries the simulator σ is able to issue to
R	,r in any of its possible configurations (determined by the query it is answering
and the state of its memory), thus using the channel denoted (&) in Fig. 3 as
the “bottle-neck” to be considered. On the other hand, in the second approach
we upper-bound the information provided by σ to π′, this time the channel (&&)
acting as the “bottle-neck”. We now give the details of both approaches.

First approach: the channel (&). To capture the randomness involved in
the ideal distinguishing experiment, we denote by Rw the (fresh, independent)
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internal randomness used by σ when it is answering an outer query w ∈ {0, 1}m
for the first time5 and let Rσ := {Rw}w∈{0,1}m . Moreover, let RR denote the

overall randomness of the ideal resource R	,r, i.e., its function table. For a fixed
randomness Rσ = rσ and RR = rR where rσ = {rw}w∈{0,1}m , let us denote

by f(w, z, rw, rR) ⊆ {0, 1}	 the set of all queries that the (stateless) simulator
σ issues to the random oracle R	,r while evaluating an outer query w with the
available memory Ms containing value z ∈ {0, 1}s, using randomness rw while
the responses from R	,r are determined by rR. Since the random variables Rw

and RR represent the only sources of randomness in this evaluation, f is a well-
defined deterministic mapping and by our assumption |f(w, z, rw, rR)| ≤ t for
all possible inputs. Let us define Srσ,rR to be the set of all possible queries under
all inputs (w, z) for this fixed randomness (rσ , rR), i.e.,

Srσ ,rR :=
⋃

w∈{0,1}m
z∈{0,1}s

f(w, z, rw, rR),

then we have |Srσ,rR | ≤ 2m+s+log t for any (rσ, rR). Since X ∈ {0, 1}	 was cho-
sen at random and independently from SRσ ,RR , we obtain P(X ∈ SRσ,RR) ≤
2m+s+log t/2	 = 2m+s+log t−	. Hence, if � − m > s + �log t� then X �∈ SRσ ,RR

with probability at least 1/2. However, if X �∈ SRσ ,RR then π′ has no infor-
mation about R	,r(X) and hence can only guess it successfully with negligible
probability. Therefore, any proper simulation requires �−m ≤ s+ �log t�.
Second approach: the channel (&&). In this case, let us denote by σz(w)
the response of σ to a query w ∈ {0, 1}m with the available memory set to the
value z ∈ {0, 1}s and let us denote by Z ′(w, z) ∈ {0, 1}s the new contents of the
memory after this invocation of σ. Note that since σ is stateless, both σz(w) and
Z ′(w, z) are random variables fully determined by the function table of R	,r and
the internal randomness of σ used during this invocation. We can now define T
to be the table containing a sample of σz(w) and Z ′(w, z) for all possible w and
z, formally T := {(σz(w), Z ′(w, z))}(w,z)∈{0,1}m×{0,1}s . Then T can be seen as

a random variable distributed over {0, 1}(r+s)·2m+s

and is again determined by
the function table of R	,r and the randomness used by σ.

We now consider a different protocol ρ instead of π′ which we allow to be
stateful, but we only provide it with access to T , not σ (which we denote by
ρT ). We claim that the probability of the best such ρ in reconstructing R	,r(X)
given access to T is not smaller than the same probability for π′ given access to
the right interface of [R	,r‖Ms]σ, i.e., we have

max
ρ

P[ρT (X) = R	,r(X)] ≥ P
[
[[R	,r‖Ms]σπ

′]R(X) = R	,r(X)
]
. (2)

This is because one possible ρ to be considered on the left side of (2) is the
following: it simulates π′ and answers each of its queries to σ using the respective

5 Formally, one can imagine σ being replaced by a stateful simulator that chooses all
random variables Rw at the beginning and then uses it when the query w arrives for
the first time. This view does not change the outcomes of the experiment.
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value from T instead (recall that π′ asks each query at most once). It also keeps
track of the memory contents in its own state, updating it after each answered
query according to the value given in T . This ρ clearly achieves equality in (2).

Now, since any ρ as described above only has access to T , we can use a corol-
lary of the well-known Fano’s inequality [Fan61] to upper-bound the probability
of ρ successfully reconstructing R	,r(X) based on T . To simplify the notation,
we shall denote by F the whole function table of R	,r seen as a random variable

(uniformly distributed over {0, 1}r2�). The value X is chosen independently at
random, hence we can lower-bound the probability p̄e of error in a randomly
chosen bit of R	,r(X) as follows:

h(p̄e) ≥
1

r2	
H(F |T ) = 1

r2	
(H(FT )−H(T )) ≥ 1

r2	
(H(F )−H(T ))

≥ 1

r2	
(
r2	 − (r + s)2m+s

)
= 1− 2m+s−	 −

(s
r

)
2m+s−	.

The first inequality follows from Fano’s inequality, see e.g. [CK11, Corollary 3.8]
or the full version of this paper. Now if � − m > s + �log s� then since m, s, �
are integers we get 2m+s−	 ≤ 1/2 and (s/r) · 2m+s−	 ≤ 1/2r, hence h(p̄e) ≥
1/2− 1/2r, resulting in p̄e ≥ 0.04 for r ≥ 2. Therefore any simulator successful
beyond 96% has to satisfy �−m ≤ s+ �log s� as desired. #$

Before we apply our result also to other contexts, note that our argument
above is completely information-theoretic and hence the bound applies to both
information-theoretic and computational memory-aware reducibility.

4.2 Arbitrary Input-Length Random Oracles

Seen from a different perspective, the above theorem also imposes a lower bound
on the required simulator memory for any reduction of an arbitrary input-length
random oracle to a fixed input-length random oracle (i.e., an ideal compression
function) as a function of the lengths of hashed messages.

In the statement below we shall again consider the distinguisher given in
Fig. 2, this time for the setting of the reduction Rm,r ε,s−−→

m
R∗,r. To emphasize

that it chooses the value X from the set {0, 1}	 ⊆ {0, 1}∗, we shall denote it D	,
note that it again implicitly depends on a protocol π. One could give a similar
statement also for a distinguisher asking several private queries and using the
public interface to evaluate the protocol π on the longest one.

Corollary 1. If for every π ∈ Σ the distinguisher D	 described above is present
in D then any reduction Rm,r ε,s−−→

m
R∗,r with r ≥ 2 and ε ≤ 0.04 satisfies

s ≥ �−m− �log(min{s, t})�

where t ≥ 1 denotes an upper bound on the number of queries the simulator itself
issues to the ideal primitive to answer a single query. For the more general case
Rm,r ε,s−−→

m
R∗,n we still have s ≥ �−m− �log t� under the same assumptions.
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The proof is analogous to the proof of Theorem 2 and we omit it. To illustrate
the meaning of the above statement, let us consider the domain extension con-
struction chop-MD described in Section 2. The simulator presented in [CDMP05]
to show its indifferentiability from a random oracle would use (without optimiza-
tions) roughly (1 + r/m) · � bits of memory to answer all queries of the distin-
guisher D	 considered in Corollary 1, while always asking at most one query to
the ideal primitive to answer a single query itself. Our result implies that for
any indifferentiable domain extension construction, if the respective simulator is
of this single-query form then it needs at least �−m bits of memory. Since typ-
ically �) m, this implies that the simulator given in [CDMP05] has essentially
optimal memory requirements within this class (i.e., linear in �).

4.3 Random Oracle vs. Ideal Cipher

Our proof of Theorem 2 relies on information-theoretic arguments that remain
valid also after introducing additional permutation structure into the real re-
source. Hence, as a side result, we also obtain the impossibility of reducing an
arbitrary input-length random oracle to an ideal cipher with respect to state-
less simulators. This is in contrast to the results of [CDMP05] that demonstrate
the possibility of such reduction with respect to stateful simulators. The proof
of the following corollary uses the same arguments as part (&&) in the proof of
Theorem 2 and is hence omitted.

Corollary 2. If for every π ∈ Σ and for � = k + n + �log(n/r)� + 2 the dis-
tinguisher D	 considered in Corollary 1 is present in D, then any reduction
Ek,n ε−→

m
R∗,r has to satisfy ε ≥ 0.1.

5 Domain Extension Is Impossible in a General
Multi-party Setting

As a particular application of our results, in this section we present some interest-
ing consequences of the lower bound on simulator memory for domain extension
of public random functions established in the previous section.

The approach taken in any indifferentiability analysis is to model the system
in question as having two interfaces: the private one and the public one, as de-
scribed in Section 2. However, we often consider the constructed primitives to
be used in an environment or protocol involving multiple parties. For example, a
random oracle is typically understood to be available to all entities participating
in a protocol (or possibly many concurrent protocols) that use it. The generic
translation of an indifferentiability result into a security guarantee for such a set-
ting is then tacitly assumed. Namely, we view all the honest parties as accessing
identical copies of the private interface of the real primitive, each party running
a local copy of the protocol π realizing the reduction. On the other hand, all the
misbehaving parties are allowed to access the internals of the construction via
identical copies of the public interface.
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This implicit reasoning step imposes some requirements on the reduction used.
For example, when constructing a random oracle from an ideal compression
function, all honest parties should use the same protocol π and moreover, it
should be stateless in the sense of Definition 1. This is intuitively easy to see,
since an inherently stateful protocol could lead to inconsistent behavior observed
by different honest parties. In the ideal world the resource (a random oracle) is
stateful, with the state (its function table) accessible to all honest parties. If in
the real world a part of this state was stored by the protocol, different parties
running different instances of the protocol could obtain different function values
for the same query. Naturally, typical protocols constructing a random oracle
from an ideal compression function such as the variants of the Merkle-Damg̊ard
construction proposed in [CDMP05] are indeed designed to be stateless.

It turns out that for a generic transition from an indifferentiability statement
to a security guarantee in a setting with multiple parties, using a stateless proto-
col is in general by itself not sufficient. However, before we can formally approach
this question, we first have to describe how we formulate security requirements
in the multi-party setting. For this task we use the approach of abstract cryp-
tography (AC) of Maurer and Renner.

AC Reducibility.Here we only give a very brief introduction to the AC frame-
work required for our exposition, further details and the justification of the
framework are given in [MR11]. The framework introduces a strong notion of
isomorphism given at a very abstract level that, when applied to the particular
setting of abstract systems, gives rise to the security notion described below.
Its main technical difference compared to other simulation-based security defi-
nitions (e.g. [Can01, BPW04]) relevant for our discussion is that it requires the
existence of a local simulator for each of the parties.

From now on, we will be discussing more general resources having n interfaces
labeled 1, . . . , n, hence we also have to extend our notation. If φ̂ = (φ1, . . . , φn)

is an n-tuple of converters and S is an n-interface resource, we write φ̂S to
denote the resource S with the converter φi applied to its i-th interface for
all i ∈ {1, . . . , n}. For a subset P ⊆ {1, . . . , n} and an n-tuple of converters

φ̂ = (φ1, . . . , φn) let us denote by φ̂P the n-tuple of converters that is obtained

from φ̂ by replacing all converters on positions not in P by the identity converter
id. Hence, for two n-interface resources S and T, the notation π̂PS below denotes
the system S with a protocol from π̂ connected to every interface in P while σ̂PT
denotes T with a simulator from σ̂ connected to every interface not in P .

Let S and T be n-interface resources. For some understood Σ and D, we say
that T is ε-reducible to S in the sense of AC (denoted S

ε−−→
AC

T) if there exist
two n-tuples of converters π̂ = (π1, . . . , πn) and σ̂ = (σ1, . . . , σn) such that for
every subset P of indices {1, . . . , n} and every distinguisher D ∈ D we have
ΔD(π̂PS, σ̂PT) ≤ ε, i.e.:

S
ε−−→

AC
T :⇔ (∃π̂, σ̂ ∈ Σn)(∀P ⊆ {1, . . . , n})(∀D ∈ D) : ΔD(π̂PS, σ̂PT) ≤ ε.

(3)
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For a 1-interface resource S, let us denote by Ŝn the n-interface resource that
provides access to the same internal copy of S on each of its interfaces (including
the same randomness). For P ⊆ {1, . . . , n} and a distinguisher D from the class
D let ProjP(D) denote a new distinguisher for the 2-interface indifferentiability
setting that works exactly as D does but asks all D’s queries to interfaces in
P at the private interface instead and all D’s queries to interfaces in P at the
public interface instead. Moreover, let ProjP(D) := {ProjP(D) | D ∈ D}.
Generic Transition to n-Party Setting. Now we are ready to state a
theorem that formalizes the above-mentioned generic transition from any indif-
ferentiability statement to a more meaningful statement in the multi-party AC
setting: it turns out that using stateless protocols and simulators is sufficient.
Since the isomorphism notion introduced in the AC framework requires us to
make statements where the simulators are chosen independently of the distin-
guisher (such as in (3)), to relate indifferentiability to AC we make use of its
strong version described in Section 2. The proof of Theorem 3 is deferred to the
full version of our paper.

Theorem 3. Let S, T be 1-interface resources and let n ∈ N. If Ŝ2
ε−→
si
T̂2 for

a class of converters Σ and distinguishers D, and both the protocol π and the
simulator σ used in this reduction are stateless, then we have Ŝn

ε−−→
AC

T̂n for the
class of converters Σ and any class of distinguishers D′ such that ProjP(D′) ⊆ D
for all P ⊆ {1, . . . , n}.

Impossibility of Domain Extension. Let us now consider the specific case
of the domain extension for random functions in the n-party case6 (i.e., the

reduction R̂m,r
n

ε−−→
AC

R̂	,r
n with � > m). In this case using inherently stateful sim-

ulators σi would also lead to inconsistencies, for the same reason as described
for the protocols πi. Note that we cannot claim that such a reduction cannot be
achieved using a stateful simulator, since its stateful behavior might not manifest
in the distinguishing experiment. However, any such stateful simulator could be
replaced by a stateless one without significant impact, as formalized in Lemma 1
below (its proof is deferred to the full version). Later we observe that the simu-
lators cannot be stateless (for the same reason as in the indifferentiability case),
leading to the impossibility result.

For the statement of Lemma 1, we will assume that the set of distinguishers
D satisfies a simple closure property. For any D ∈ D asking queries only to
interfaces 1 and 2, let D(i) denote a distinguisher that proceeds the same way
as D but when it asks its i-th query to interface 2, it asks the same query also
to interface 3. At the end, D(i) determines its output bit solely on whether the
response to its i-th query to interface 2 was consistent with the response to the
same query to interface 3. We assume D(i) ∈ D for all D ∈ D and all 1 ≤ i ≤ q
where q is an upper bound on the number of D’s queries to interface 2.

6 In the rest of the section we will use symbols such as Rm,r to refer to the single-
interface resource and use the introduced notation to explicitly state the number of
interfaces we want to consider (e.g., R̂m,r

n ).



680 G. Demay et al.

Lemma 1. Consider some fixed n ≥ 3, � > m and some fixed sets of converters
Σ and distinguishers D satisfying the property given above. Assume that there
exists a reduction R̂m,r

n
ε−−→

AC
R̂	,r

n via a tuple of protocols π̂ = (π1, . . . , πn) and
simulators σ̂ = (σ1, . . . , σn). Then there also exists a tuple of simulators σ̂′ =
(σ1, σ

′
2, σ3, . . . , σn) such that σ′2 is stateless and for every distinguisher D ∈ D

accessing only interfaces 1 and 2 we have ΔD(π̂{1}R̂
m,r
n , σ̂′{1}R̂

	,r
n ) ≤ (q + 1)ε

where q is an upper bound on the number of its queries to interface 2.

Let us now denote by D̂ the distinguisher given in Fig. 2 (implicitly parametri-
zed by a converter π ∈ Σ) modified into the n-interface setting as follows:
it uses interface 1 for all its (originally) private-interface queries, while using

interface 2 for all public-interface queries. If D̂ ∈ D then the upper bound

given in Lemma 1 applies to ΔD̂(π̂{1}R̂
m,r
n , σ̂′{1}R̂

	,r
n ). On the other hand, since

� > m and σ′2 uses no memory, following the proof of Theorem 2 we also get

that ΔD̂(π̂{1}R̂
m,r
n , σ̂′{1}R̂

	,r
n ) > 0.04. Combining these observations we get the

following corollary.

Corollary 3. Consider some fixed n ≥ 3, r ≥ 2, � > m and sets of converters Σ
and distinguishers D satisfying the properties required in Lemma 1 and addition-
ally such that for each π ∈ Σ the respective D̂ is in D. If there exists a reduction
R̂m,r

n
ε−−→

AC
R̂	,r

n via a tuple of protocols π̂ = (π1, . . . , πn) then ε > 0.04/(p + 1)
where p is an upper bound on the number of {0, 1}m-queries the protocol π1 used
for this reduction needs to evaluate on one {0, 1}	-input.

Hence by the above result it is impossible to extend the domain of a public
random function even by a single bit in a multi-party environment where the
parties must be modeled as possibly having conflicting goals or deviating from
the protocol in an uncoordinated manner (or, technically speaking, in any sce-
nario where a proper modeling requires the use of local simulators). The above
result extends trivally also to the case of infinite domain extension, i.e., the con-
struction of a public random oracle from an ideal compression function. This is in
contrast to the two-party indifferentiability setting (with several constructions
that achieve this transformation) where one implicitly makes the assumption
that all dishonest parties are coordinated by a hypothetical central adversary.
This seems to be a very strong assumption in particular for random oracles that
are typically thought of as being used by many different parties in many differ-
ent applications. Of course, a particular use of a construction proven secure in
the 2-party scenario within a multi-party setting as discussed above might still
be secure under some additional assumptions, however our result indicates that
such use should always be explicitly justified.

6 Conclusions

We have introduced a general way of treating simulation-based security in situa-
tions where a more fine-grained quantification of a certain resource is necessary.
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Focusing on indifferentiability as the security notion in question and memory
as the resource, this also allowed us to explain from a different perspective the
unexpected security failure of the protocol given in [RSS11] when used with the
construction chop-MD.

We proceeded by giving lower bounds on the required simulator memory for
any reduction of a public random oracle to a public random function, showing
that memory roughly linear in the length of the longest query is necessary, and
that with no memory even domain extension by a single bit becomes impossible.

Finally, we applied our result to the setting where the random oracle is used by
multiple parties with no central adversary to coordinate potential misbehavior.
We showed that special care must be taken in such settings when replacing the
random oracle by a construction using an ideal compression function, since no
construction secure in every such setting exists.
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Abstract. The multiple ideal query (MIQ) model was introduced by
Goyal, Jain and Ostrovsky [Crypto’10] as a relaxed notion of security
which allows one to construct concurrently secure protocols in the plain
model. The main question relevant to the MIQ model is how many
queries must we allow to the ideal world adversary? The importance
of the above question stems from the fact that if the answer is positive,
then it would enable meaningful security guarantees in many application
scenarios, as well as, lead to resolution of long standing open questions
such as fully concurrent password based key exchange in the plain model.

In this work, we continue the study of the MIQ model and prove severe
lower bounds on the number of ideal queries per session. Following are
our main results:
1. There exists a two-party functionality that cannot be securely real-

ized in the MIQ model with only a constant number of ideal queries
per session.

2. There exists a two-party functionality that cannot be securely real-
ized in the MIQ model by any constant round protocol, with any
polynomial number of ideal queries per session.

Both of these results are unconditional and even rule out protocols proven
secure using a non-black-box simulator. We in fact prove a more general
theorem which allows for trade-off between round complexity and the
number of ideal queries per session. We obtain our negative results in
the following two steps:
1. We first prove our results with respect to black-box simulation, i.e.,

we only rule out simulators that make black-box use of the adversary.
2. Next, we give a technique to “compile” our negative results w.r.t.

black-box simulation into full impossibility results (ruling out non-
black-box simulation as well) in the MIQ model. Interestingly, our
compiler uses ideas from the work on obfuscation using tamper-proof
hardware, even though our setting does not involve any hardware.
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1 Introduction

The notion of secure computation is central to cryptography. Introduced in the
seminal works of [43,18], secure multi-party computation allows a group of (mu-
tually) distrustful parties P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly
compute any functionality f in such a manner that the honest parties obtain
correct outputs and no group of malicious parties learn anything beyond their
inputs and prescribed outputs.

The classical results for secure computation are only in the stand-alone set-
ting where security holds only if a single protocol session is executed in isolation.
Unfortunately, as it has become increasingly evident over the last two decades,
stand-alone security does not suffice in real-world scenarios where several proto-
col sessions may be executed concurrently – a typical example being protocols
executed over modern networked environments such as the Internet.

Background: Concurrently Secure Computation. Towards that end, the
last decade has a seen a significant effort by the cryptographic community to-
wards obtaining protocols that are concurrently composable, i.e., protocols that
remain secure even when executed concurrently over an insecure network. For
example, we could require security under concurrent self-composition (which is
the focus of this work): a protocol should remain secure even when there are mul-
tiple copies executing concurrently. The framework of universal composability
(UC) [7] was introduced to capture the setting of concurrent general composi-
tion, where a protocol may be executed concurrently not only with several copies
of itself but also with other arbitrary protocols.

General positive results for UC secure computation are known based
on various trusted setup assumptions, such as a common random string
[7,8,12,3,13,25,29]. However, a driving goal in cryptographic research is to elim-
inate the need to trust other entities. As such, positive results for concurrently-
secure computation in the plain model (which is the main focus of this work)
are highly desirable, both from a theoretical and practical viewpoint.

Negative Results for Concurrent Composition.Unfortunately, in the plain
model, by and large, most of the results have been negative. UC secure protocols
for most functionalities of interest were ruled out in [8,10,40,27]. These impossi-
bility results were extended to the setting of general composition by Lindell [30].
Later, Lindell [31] established broad negative results even for the setting of con-
current self-composition by showing equivalence of concurrent self-composition
and general composition for functionalities that allow each party to “communi-
cate” to the other via the output. Following the work of Barak et al. [5] and
Goyal [20], recently Agrawal et al. [1] and Garg et al. [16] ruled out essentially
all non-trivial two-party functionalities for concurrent self-composition, even in
the setting where the inputs of honest parties are fixed in advance for all the
protocol sessions.

On the positive side, it is known how to realize zero-knowledge and related
functionalities, with security in similar models (e.g., [14,42,28,39,5,32]). The re-
cent work of Goyal [20] obtains positive results for a broader class of
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functionalities; however, (in keeping with the negative results mentioned above)
these results are only relevant to the restricted setting where an honest party
uses the same, static input in all of the sessions.

The Search for Relaxed Security Notions. While the above discussion
paints a rather bleak picture of state of the art on concurrent security, for-
tunately, there is a brighter side. Indeed, several prior works have studied
relaxations of the standard definition of secure computation that bypass the
above negative results, yet provide strong and meaningful security guarantees
in the concurrent setting. A well studied notion is that of security w.r.t. super-
polynomial simulation [37,41,6,29,11,15] which intuitively guarantees that a real-
world adversary does not learn any more information than what can be com-
puted in super-polynomial time in the ideal world. Another notion is that of
input-indistinguishable computation [34,15] which intuitively guarantees that
an adversary cannot decide which input (out of possibly many inputs leading to
the same output) is used by the honest party in the protocol.

Recently, Goyal, Jain and Ostrovsky [23] introduced the multiple ideal query
(MIQ) model for concurrent self-composition where the ideal world adversary is
allowed to make more than one output query per session to the ideal functional-
ity. The exact number of queries allowed is a priori fixed by a parameter λ. In our
view, the main advantage of this notion over the previously discussed notions is
that it provides an (arguably) intuitive, easy to understand, security guarantee.
In particular, in this model, one can precisely measure the amount of “extra”
information that the adversary can potentially learn. The security guarantee is
provided with standard polynomial time simulation (and adversary) and follows
the ideal/real world security formalization. Furthermore, for functionalities such
as password-based key exchange, the MIQ definition in fact implies the previous
standard definition [19] when λ = O(1).

The MIQ model has also proven relevant in the related setting of resettability.
Goyal and Sahai [24] introduced the notion of resettable secure computation and
construct such protocols in the model where the ideal adversary can “reset” the
trusted party at any point. This gives the ideal adversary the power to query the
trusted party multiple times (per session in the real world). This allows them to
get a general positive result for all PPT computable functionalities in the plain
model in the resettable ideal world setting.

The multiple ideal query model has also proven relevant as technical tool. In
particular, the recent positive results of Goyal [20] can be seen as obtained using
the following two step paradigm. First, very roughly, Goyal constructs a protocol
secure in the multiple ideal query model. Then, the additional queries made to
the ideal trusted party are eliminated by constructing an “output predictor”.

We believe the study of the MIQ model is well motivated: both because the
guarantee provided in the concurrent setting is interesting and non-trivial on its
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own, as well as the connection it has to constructing secure protocols in other
related settings.

In this work, we continue the study of the MIQ model.

Our Question: How many Queries? The main question relevant to the MIQ
model is how many queries must we allow to the ideal world adversary? Note
that if we allow a large number of queries, then the security guarantee may
quickly degrade and become meaningless; in particular, the adversary may be
able to learn the input of the honest party in the worse case. On the other hand,
if the number of allowed queries is very small, say 1 + ε per session, then the
security guarantee is very close to that of the standard definition.

To exemplify this further, consider the oblivious polynomial evaluation func-
tionality [35,36] where two parties wish to jointly evaluate a polynomial over a
point. The input of party P1 is a polynomial Q, while the input of P2 is a point α.
At the end of the protocol, the party P2 gets Q(α) as the output. This is a nat-
ural functionality with applications to list intersection, mutual authentication,
metering on the web, etc (see [36] for more details on these).

Now, note that if we only allow, say, 2 queries to a malicious P2 in the ideal
world (per real world session), then as long as Q is a high-degree polynomial,
the security guarantee for P1 is still quite meaningful. Instead of a single point,
now a malicious adversary may learn the output on two points of its choice
(from an exponential domain of points). The adversary still does not learn any
information about what the polynomial evaluates to on rest of the (exponential)
domain. On the other hand, if we allow too many queries (exceeding the degree
of the polynomial), then the ideal world adversary may be able to learn the
entire polynomial Q thus rendering the security guarantee meaningless.

The only known positive results in the MIQ model are due to [23,21]. Goyal
et. al. [23] provide a construction where the average number of queries in the
ideal world per real world session is a constant (with the constant depending
upon the adversary). This was further improved in a recent result [21] which
provides a construction where the average number of ideal queries in any session
are (1 + 1

poly(n) ).

If the guarantee on the number of queries per session is only in expecta-
tion, this means that in some sessions, the ideal adversary may still be able to
make a large number of queries (while keeping the number of queries low in
other sessions). Considering the oblivious polynomial evaluation example above,
this means that the security in some sessions may be completely compromised.
Furthermore, consider the problem of concurrent password based key exchange
[26,17,9,2,23]. An interesting question that has remained open so far is designing
a concurrent password based key exchange in the plain model where different
pair of parties share different (but correlated) passwords. Indeed, this is the
most natural setting for password based key exchange (PAKE) and all currently
known construction either do not provide concurrent security or are not in the
plain model. We note that a positive result in the MIQ model where the number
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of queries per sessions is a strict constant would directly imply a positive result
for this problem.1 This raises the following natural question:

“Do there exist concurrent secure protocols in the MIQ model where the num-
ber of ideal queries per session is a strict constant?”

1.1 Our Results

In this work, we continue the study of the MIQ model and prove severe uncon-
ditional lower bounds on the number of ideal queries per session. Following are
our main results:

1. There exists a two-party functionality that cannot be securely realized in
the MIQ model with only a constant number of ideal queries per session.

2. There exists a two-party functionality that cannot be securely realized in the
MIQ model by any constant round protocol, with any polynomial number of
ideal queries per session.

Both of these results are unconditional and even rule out protocols proven se-
cure using a non-black-box simulator. We in fact prove a more general theorem
that provides a trade-off between the round-complexity and the number of ideal
queries per session.

Let ceily(x) be recursively defined as ceily(x) = �x · ceily−1(x)�. Our main
result is stated as follows:

Theorem 1. There exists a two-party functionality f such that for any d = d(k)
and n = n(k) that satisfy nd = poly(k), no n-round protocol Π securely realizes
f in the MIQ model with at most λ = ceild(1+

1
n ) number of queries per session.

Application to Concurrent Precise Zero-Knowledge. While our main re-
sults concern with the MIQ model, interestingly, they also find applications in
the setting of precise simulation [33]. Recall that in the setting of precise simu-
lation, we wish to ensure that the resource utilization of the simulator is “close”
to the resource utilization of the adversary in the real world interaction. The
resource being studied is typically the running time, however, previous works
have also considered a more general setting where the resource in question can
be, e.g., memory. One can consider a general setting, where instead of focusing
only on a particular resource (such as time), we consider many resources at the
same time, such as memory, cache, power, etc. A general question we may ask
is whether it is possible to perform simulation that achieves precision for each
of these resources simultaneously.

To be more concrete, say we have a concurrent adversary interacting with the
prover in many sessions and making use of k different resources (each resource

1 The first positive result for concurrent PAKE in the plain model provided by Goyal
et. al. [23] was for the single password setting where there is a single global correct
password which every party is required to use for authentication. This restriction
stems from their solution requiring a constant number of ideal queries per session
on an average.
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may be utilized by the adversary at any arbitrary point). A natural question
is: can one obtain a zero-knowledge simulator such that its utilization of each
resource is only within a constant factor of the adversary? Our negative results
directly imply a negative answer for this question as well where the number of
resources is equal to the number of sessions. In other words, viewing the ideal
functionality query in session i as a utilization of the i-th resource, we directly
have that the simulator will end up going over a constant factor for at least
one of the resources. Similarly, our results also imply a severe lower bound for
constant round protocols: there exists a resource whose utilization will, in fact,
not be within any polynomial factor of the adversary’s utilization.

Independent of our work, Pass [38] has been able to obtain a positive re-
sult in the stand-alone setting for the above problem. In particular, [38] gives
a construction where the simulator is able to be precise in multiple resources
simultaneously in the standalone setting.

1.2 Our Techniques

In this section, we give an overview of our techniques. We obtain our negative
results in the following two steps: we first prove our results with respect to
black-box simulation, i.e., we only rule out simulators that make black-box use
of the adversary. Next, we give a technique to “compile” our negative results
w.r.t. black-box simulation into full impossibility results (ruling out non-black-
box simulation as well) in the MIQ model. Below, we discuss each of these steps
separately.

Impossibility for Black-box Simulation. Recall that in order to prove secu-
rity of a two-party computation protocol, we need to demonstrate that for every
real world adversary A that controls one of the parties, there exists an ideal
world adversary (or simulator S) who can simulate the view of A. Typically,
the simulator S works by extracting the input a used by A and then querying
the ideal functionality with a to receive the correct output; this output is then
used to complete the simulation of A’s view. Now, further recall that the only
advantage that a black-box simulator has over the real adversary is the ability
to rewind. In other words, a black-box simulator extracts the input of A by
rewinding. However, in the concurrent setting, extracting the input of A in each
session is a non-trivial task. In particular, given an adversarial scheduling, it
may happen that in order to extract the input of A in a given session s, the
simulator S rewinds past the beginning of another session s′ (that is interleaved
inside the protocol messages of session s). When this happens, A may change
its input in session s′. Thus, the simulator S would be forced to query the ideal
functionality more than once for the session s′.

We now briefly explain how the above intuition can be further extended to
achieve a black-box impossibility result even when the simulator is allowed to
make multiple queries to the ideal functionality. For concreteness, let us consider
the (simplified) case where the simulator is allowed a fixed constant C number
of queries per session. Note that in order to obtain the desired negative result,
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we need to construct a concurrent adversary A that can force any black-box
simulator S to make more than C queries for at least one session. We now briefly
discuss how to construct such an adversary. Let n be the round complexity of
the protocol, where n is any polynomial in the security parameter.

Consider the following static adversarial scheduling of messages. Consider an
“outer” session (say) s. We will call it a session at level 0. Now, between every
round of messages in the outer session, place a new complete protocol session.
We will call these n sessions to be at level 1. Next, we again place a new complete
protocol session between every round of messages in each session at level 1. Note
that this creates n2 sessions at level 2. Repeat this process recursively until
we reach level C, where there are exactly nC sessions. Thus, in total, we have

m = nC+1−1
n−1 sessions, which is polynomial in the security parameter.

Now, as discussed earlier, a black-box simulator S must perform at least one
rewinding in order to extract the input of A in the “outer” session s. Suppose
that S rewinds the ith round of session s. Then, this immediately implies that
the ith session at level 1 is executed at least twice, which in turn means that
S will be forced to query the ideal functionality twice for that session. Now,
note that S will need to extract A’s input in each of these two executions in
order to complete them successfully. Thus, assuming that (even if) S rewinds
different rounds in each of these two executions, we have that there exist two
sessions at level 2 that are each executed three times. Continuing this argument
inductively, we can show that for every level i, there exists at least one session
that is executed i + 1 times. As a result, we obtain that there exists a session
s∗ at level C that is executed C + 1 times. If the adversary chooses a different
input in each of the C + 1 executions, we have that S must query the ideal
functionality C + 1 times for session s∗. Thus, we conclude that the black-box
simulator S, who is only allowed C queries, must fail.2

From Black-Box to Non-Black-Box. We now discuss a compilation tech-
nique to transform our negative results for black-box simulation into full impos-
sibility results that rule out non-black-box simulation as well.

Recall that the main advantage that a non-black-box simulator has over a
black-box simulator is that the former can make use of the adversary’s code.
Then, our high-level approach is to “nullify” this advantage by making use of
secure program obfuscation. We note, however, that general program obfuscation
is known to be impossible [4]. Towards this end, our key idea is to use positive
results on program obfuscation using stateless tamper-proof hardware tokens by
Goyal et. al. [22]. In the obfuscation with hardware model, one can take the
given program and convert it into an obfuscated program using an obfuscation
key k. The obfuscated program, for execution, would require oracle access to a
hardware token having the obfuscation key k. We denote the functionality of the
token (required to run the obfuscated program) by ftoken (parameterized by the
key k).

2 We remark that in order to prove our general result, a more tight analysis is neces-
sary; see the technical sections.
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Very roughly, our idea is to implement the “token functionality” ftoken of [22]
using two-party computation. An important point is that ftoken is “robust” to
any polynomial number of queries; thus, it is particularly suited to the MIQ
model. In more detail, we obtain our negative result in the following three steps:

Toy Experiment: Let Π be any protocol for the ftoken functionality and let
A be any concurrent adversary for Π that rules out black-box simulators
that make at most λ queries per session. We first consider a toy experiment
involving three parties, namely, Alice, Bob and David. In this experiment,
Alice and Bob interact in multiple ideal world executions of the token func-
tionality ftoken. At the same time, Bob and David are involved in concurrent
real-world executions of Π where Bob and David follow the same scheduling
of messages as defined by adversary A. Furthermore, the adversary Bob is
allowed to reset David at any point during their interaction.
David, who has a secret input secret is instructed to reveal secret to Bob if
all the executions of Π are completed “successfully”. The goal of Bob is to
successfully complete its interaction with David and learn the value secret.
Then, the main idea in this experiment is that, by relying on our black-box
impossibility result, we show that no adversarial Bob can succeed in learning
secret, except with negligible probability.

Ideal World: In the second step, we eliminate David from the above exper-
iment by obfuscating his next-message function in the ftoken-hybrid model
and give it as an auxiliary input to Bob (while the corresponding obfuscation
“key” is given to Alice). This results in a scenario where Alice and Bob are
the only parties, who interact in multiple ideal world executions of ftoken.
From the security of obfuscation, we can argue that this experiment can be
reduced to the toy experiment; as such, no adversarial Bob can learn secret,
except with negligible probability.

Real World Experiment: We finally consider the real world experiment,
which is the same as previous step, except that all the ideal world invo-
cations of ftoken are now replaced with real-world executions of protocol Π .
It is not difficult to see that in this experiment, an adversary Bob can simply
play a “man-in-the-middle” between Alice and David (since Bob has David’s
obfuscated code); as a result, Bob can learn secret with probability 1.

From above, it follows that the adversary Bob in the real world experiment
is a ppt concurrent adversary for Π whose view cannot be simulated by any
simulator that makes at most λ queries per session, thus yielding us the desired
result. We refer the reader to the technical sections for more details.

2 Preliminaries

2.1 Our Model

In this section, we present our security model. Throughout this paper, we denote
the security parameter by k.
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Concurrently Secure Computation in the MIQ Model. We define our
security model by extending the standard real/ideal paradigm for secure com-
putation. We consider a malicious, static adversary. We do not require fairness
and only consider security with abort. Finally, we only consider computational
security. We now proceed to describe the ideal and real world experiments and
then give our security definition.

Ideal model. We first define the ideal world experiment, where there is a
trusted party for computing the desired two-party functionality f . Let there be
two parties P1 and P2 that are involved in multiple sessions, say m = m(k). An
adversary may corrupt either of the two parties. As in the standard ideal world
experiment for concurrently secure computation, the parties send their inputs
to the trusted party and receive the output of f evaluated on their inputs.
The main difference from the standard ideal world experiment is that the ideal
adversary is allowed to make λ (as opposed to one) output queries (with possibly
different inputs of its choice) in each session. The ideal world execution proceeds
as follows.

Inputs: P1 and P2 obtain a vector of m inputs, denoted x and y respectively.
The adversary is given auxiliary input z, and chooses a party to corrupt.
Without loss of generality, we assume that the adversary corrupts P2 (when
the adversary controls P1, the roles are simply reversed). The adversary
receives the input vector y of the corrupted party.

Session initiation: The adversary initiates a new session by sending a start
message to the trusted party. The trusted party then sends (start, i) to P1,
where i is the index of the session.

Honest parties send inputs to trusted party: Upon receiving (start,i)
from the trusted party, honest party P1 sends (i, xi) to the trusted party,
where xi denotes P1’s input for session i.

Adversary sends input to trusted party: Whenever the adversary wishes,
it may send a message (i, �, y′i,	) to the trusted party for any y′i,	 of its
choice. Upon sending this pair, it receives back (i, �, f(xi, y

′
i,	)) where xi is

the input value that P1 previously sent to the trusted party for session i.
The only limitation is that for any i, the trusted party accepts at most λ
tuples indexed by i from the adversary.

Adversary instructs trusted party to answer honest party: When the
adversary sends a message of the type (output, i, �) to the trusted party,
the trusted party sends (i, f(xi, y

′
i,	)) to P1, where xi and y′i,	 denote the

respective inputs sent by P1 and adversary for session i.
Outputs: The honest party P1 always outputs the values f(xi, y

′
i,	) that it

obtained from the trusted party. The adversary may output an arbitrary
(probabilistic polynomial-time computable) function of its auxiliary input z,
input vector y and the outputs obtained from the trusted party.

The ideal execution of a function f with security parameter sec, input vectors
x, y and auxiliary input z to S, denoted idealf,S(k,x,y, z), is defined as the
output pair of the honest party and S from the above ideal execution.
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Definition 1 (λ-Ideal Query Simulator). Let S be a non-uniform probabilis-
tic (expected) ppt machine representing the ideal-model adversary. We say that
S is a λ-ideal query simulator if it makes at most λ output queries per session
in the above ideal experiment.

Real model. We now consider the real model in which a real two-party pro-
tocol is executed (and there exists no trusted third party). Let f be as above
and let Π be a two-party protocol for computing f . Let A denote a non-uniform
probabilistic polynomial-time adversary that controls either P1 or P2. The par-
ties run concurrent executions of the protocol Π , where the honest party follows
the instructions of Π in all executions. The honest party initiates a new session
i with input xi whenever it receives a start-session message from A. The schedul-
ing of all messages throughout the executions is controlled by the adversary.
That is, the execution proceeds as follows: the adversary sends a message of the
form (i,msg) to the honest party. The honest party then adds msg to its view
of session i and replies according to the instructions of Π and this view. At the
conclusion of the protocol, an honest party computes its output as prescribed
by the protocol. Without loss of generality, we assume the adversary outputs
exactly its entire view of the execution of the protocol.

The real concurrent execution ofΠ with security parameter k, input vectors x,
y and auxiliary input z toA, denoted realΠ,A(k,x,y, z), is defined as the output
pair of the honest party and A, resulting from the above real-world process.

Definition 2 (λ-Secure Concurrent Computation in the MIQ Model).
A protocol Π is said to λ-securely realize a functionality f under concurrent self
composition in the MIQ model if for every real model non-uniform ppt adversary
A, there exists a non-uniform (expected) ppt λ-ideal query simulator S such that
for all polynomials m = m(k), every pair of input vectors x ∈ Xm, y ∈ Y m,

every z ∈ {0, 1}∗s, {idealf,S(k,x,y, z)}k∈N
c≡ {realΠ,A(k,x,y, z)}k∈N.

2.2 Obfuscation with Tamper-Proof Hardware Tokens

In this work, we use ideas from the area of obfuscation using tamper-proof hard-
ware tokens. In particular, we use the positive result of Goyal et al. [22] on se-
cure program obfuscation using stateless tamper-proof hardware tokens. Below,
we give an abstract overview of the scheme of [22] that we will use in our negative
results. We remark that the discussion below hides most of the internal details of
the scheme of [22]. We refer the reader to [22] for the details of the scheme.

Obfuscation in Token Hybrid Model. In order to obfuscate a circuit C, the
sender executes the following steps:

– Sample a token instance T ← SampleT. The token instance has some secret
values hardwired inside it. We will denote the secret values as a key K (that
is drawn from some distribution K). In other words, sampling of the token
instance just involves to sampling the key K from the distribution K.

– Compute the obfuscated program O(C)← Obfuscate(C,K)
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To compute C(x) on any input x, the obfuscated programO(C) makes tC queries
of various types to the token T , where each q is drawn from some distribution
Q. Here, tC , denoted as the query parameter of the obfuscation scheme, is an
integer that depends on the size of the circuit C that is obfuscated.

Obfuscating Stateful Programs. The above description is only relevant to ob-
fuscating stateless circuits C. We note that it is also possible to obfuscate the
programs of stateful (or reactive) machines M in the above scheme by using
standard techniques. The basic idea is that obfuscated code O(M) is computed
in such a manner that its output on any given input x consists of both M(x)
and an authenticated encryption of its resultant state after the computation of
M(x).

We now recall the following security lemma from [22] (informally stated):

Lemma 1 ([22]). Assuming the existence of one-way functions, (SampleT, Ob-
fuscate) is a (stateful) program obfuscation scheme in the token-hybrid model
with the following properties. For any adversary having the obfuscated program
O(C) along with oracle access to the token, there exists an ideal world simulator
having only black-box access to the circuit C, such that, the output distribution
of the simulator is computationally indistinguishable from that of the adversary.

The Token Functionality. A key idea that is used in our negative results
is to implement the working of the hardware token T via a two-party secure
computation protocol. To this end, we abstract the working of the token T as
the following two-party functionality ftoken, that we will refer to as the “token
functionality”.

Denote by ftoken the token functionality with the key K hardwired inside the
description of its circuit. The input and output interface of the functionality
ftoken is described as follows:

Inputs: Party P1 gets a token key K ← K as input, while P2 gets a query
q ← Q as input.

Outputs: P1 gets no output, while P2 gets ftoken(K; q).

Note that ftoken is a deterministic functionality. We now state a lemma regarding
the unpredictability of outputs of ftoken. We note that this lemma is implicit
in [22].

Lemma 2 (Unpredictability of Output of ftoken [22]). There exists a dis-
tribution Q (with super-logarithmic min-entropy) from which a query q can be
sampled with the following properties. Any adversary A, given oracle access to
the functionality ftoken(K; ·) (where K is sampled at random from K) with the
restriction that it is allowed to query ftoken(K; ·) on any string except q, can
output ftoken(K; q) with only negligible probability.

3 Black-Box Impossibility in the MIQ Model

In this section, we prove impossibility results for concurrently secure compu-
tation in the MIQ model with respect to black-box simulation. Due to lack of
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space, we only state our result statements here and refer the reader to the full
version for their formal proofs.

Let ceily(x) be recursively defined as ceily(x) = �x · ceily−1(x)�. Our general
result, stated below, shows a trade-off between the query parameter λ and the
round-complexity n of the protocol:

Theorem 2. There exists a functionality f such that for any d = d(k) and
n = n(k) that satisfy nd = poly(k), no n-round protocol Π λ = ceild(1 + 1

n )-
securely realizes f in the MIQ model with respect to black-box simulation.

Note that ceild(1 +
1
n ) ≥ d + 1. Thus, we obtain the following general corollary

when substituting d with λ:

Corollary 1. There exists a functionality f such that for any λ = λ(k) and
n = n(k) that satisfy nλ = poly(k), no n-round protocol Π λ-securely realizes f
in the MIQ model with respect to black-box simulation.

By plugging in n = poly(k) and λ = O(1) above, we get the following as a sub-
corollary, ruling out general positive results in the MIQ model when a (black-box)
simulator is allowed only a constant number of ideal queries per session:

Corollary 2. There exists a functionality f that cannot be O(1)-securely realized
in the MIQ model with respect to black-box simulation.

Finally, by plugging in n = O(1) and d = log(k) in Theorem 2, we obtain the
following corollary ruling out constant-round protocols in the MIQ model:

Corollary 3. There exists a functionality f that cannot be securely realized in
the MIQ model by any O(1)-round protocol w.r.t. black-box simulation, even if a
(black-box) simulator is allowed any (fixed) poly(k) ideal queries per session.

In fact, we will prove something stronger, as stated below. We first give the
following definition:

Definition 3 (λ-special black-box adversary). Let λ = λ(k) and Π =
(P1, P2) be a protocol for functionality f . A ppt concurrent adversary A for
Π that corrupts party P2 is said to be λ-special adversary if the following holds:

– A outputs accept with probability 1 in the real-world execution with P1.

– Except with negligible probability, no λ-ideal query black-box simulator can
send a query to A such that it outputs accept.

Now, it is easy to see that Theorem 2 is implied by the following theorem:

Theorem 3. For every d = d(k) and n = n(k)-round protocol Π for the ftoken
functionality, if nd = poly(k), then there exists a λ-special adversary for Π,
where λ = ceild(1 +

1
n ).
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4 Full Impossibility in the MIQ Model

We now present full impossibility results for concurrently secure computation
in the multiple ideal query model, ruling out non-black-box simulation as well.
More concretely, we present a technique to “compile” our impossibility results
w.r.t. black-box simulation into full impossibility results. We now state our main
theorem of this section:

Theorem 4. Let λ = λ(k) and Π be any protocol for the ftoken functionality.
If there exists a ppt λ-special black-box adversary A for Π, then there exists
a ppt concurrent adversary B for Π whose view cannot be simulated by any
(potentially non-black-box) ppt λ-ideal query simulator.

Combining Theorem 3 with the above theorem, we immediately obtain our main
result stated in Theorem 1. We also derive the analogous corollaries of Corol-
lary 1, 2, 3, ruling out non-black-box simulation as well. We skip the formal
statements here due to lack of space.

4.1 Proof of Theorem 4

Let λ = λ(k) and Π be any protocol for the ftoken functionality. Then, given any
λ-special black-box adversaryA forΠ , we now show how to construct a λ-special
adversary B for Π . We use ideas from obfuscation using stateless tamper-proof
hardware tokens [22] in order to show this transformation.

We recommend the reader to review the outline of the three main steps in our
proof as described in Section 1.2. We now proceed to describe each of the steps
in details. We first setup some notation.

Notation. Let m be the number of sessions that adversary A schedules for pro-
tocol Π . Let K1, . . . ,Km denote a set of token keys, where each Ki is drawn at
random from the distribution K. Let q1, . . . , qm be a set of query strings for the
token functionality, where each qi is drawn at random from the distribution D
(as defined in Lemma 2). Finally, let secret be a random string in {0, 1}k.
(Toy) Experiment I: Restating the Black-Box Impossibility Result.
Consider the following scenario involving three parties, namely, Alice, Bob and
David. Alice is given an input vector (K1, . . . ,Km), while David is given an input
vector ((K1, q1), . . . , (Km, qm); secret). Here, the input values are chosen in the
manner as described above. We describe the interaction between Alice and Bob,
and Bob and David, separately.

Interaction between Alice and Bob. Alice and Bob are interacting in m ideal
world executions of the functionality ftoken, where Alice plays the role of P1

using input vector (K1, . . . ,Km) and Bob plays the role of P2 using any inputs
of its choice. In each of these m ideal world executions, the adversary Bob is
allowed to query the token functionality λ times using any inputs of its choice.

Interaction between Bob and David. At the same time, Bob and David are in-
teracting in m real-world concurrent executions of protocol Π , where Bob plays
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the the role of P1 with any inputs of its choice and David plays the role of P2

by simply running the code of the λ-special adversary A.3
Bob and David are instructed to assume the identities of Alice and Bob, re-

spectively, in these sessions. The messages of the m sessions follow the same
schedule as defined by the adversary A. Furthermore, the adversary Bob is al-
lowed to reset David at any point during their interaction. That is, at any point
during their interaction, Bob can choose to “rewind” David to an earlier state
and create new threads of execution.

In each session i ∈ [m], David verifies whether his output yi = ftoken(Ki, qi)
(where qi is the input of David in that session, chosen in the same manner as A
would); if this is not the case, then David aborts the interaction with Bob and
outputs ⊥ (i.e., David does not continue any remaining sessions with Bob). If
all of the m sessions are completed successfully, then David sends secret to Bob
(as the only additional message outside of the m concurrent executions of Π).

Lemma 3. Bob outputs secret in Experiment I with negligible probability.

Experiment II: Ideal World. We now “eliminate” the party David from the
above toy experiment. Note that eliminating David results only in interactions
between Alice and Bob, which is indeed our desired setting of concurrent self-
composition. Very roughly, in order to eliminate David, we would like to obfuscate
David’s next message function and give it as auxiliary input to Bob. Since gen-
eral program obfuscation is impossible in the plain model [4], our key idea is to
use positive results on secure program obfuscation using tamper-proof hardware
tokens, and adapt them to our setting. In particular, we will use the positive
results of Goyal et al. [22] on secure program obfuscation using a stateless hard-
ware token that implements the ftoken functionality. We now give more details.
Some of the notation used below is as defined in Section 2.2.

Eliminating David. Consider the next message function NMF of party David as
described in Experiment I. Sample a key K ← K. Compute the obfuscation
of NMF in the ftoken-hybrid model, where ftoken has the key K hardwired. The
resulting program, denoted as O(NMF)← Obfuscate(K,NMF), is given as auxil-
iary input to Bob. The key K, on the other hand, is given as an additional input
to Alice.

Ideal World Experiment. Experiment II, or in other words, the ideal world exper-
iment is defined in the same manner as Experiment I, except that we eliminate
the party David in the manner as described above. Note that in order to evaluate
the program O(NMF) on any input, Bob would need to answer the queries q of
O(NMF) to the token functionality ftoken(K, ·). In particular, recall from Section
2.2 that the obfuscated code O(C) for a program C makes tC queries to the
token functionality, where tC (referred to as the query parameter) depends on
the size of the circuit C. Then, in the ideal world experiment, we have Alice and
Bob engage in tNMF ·m ·n additional ideal executions of ftoken, where tNMF is the

3 In particular, if A chooses to ignore the inputs q1, . . . , qm and choose fresh inputs
“on-the-fly”, then David follows the same strategy.
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query parameter for the obfuscation scheme of [22] as determined by the circuit
description of NMF, m is the number of sessions that adversaryA schedules, and
n is the round complexity of protocol Π . In each of these tNMF ·m ·n executions,
Alice uses the key K as input, while Bob is allowed to use any inputs of its
choice. Further, in each of these tNMF ·m · n ideal executions, Bob is allowed to
query the token functionality λ times using any inputs of its choice.

Thus, overall the ideal world experiment between Alice and Bob consists of
the following:

– m “main” ideal executions of ftoken, where in each session i ∈ [m], Alice uses
key Ki as input, while Bob is allowed to use any inputs of its choice.

– tNMF ·m ·n “auxiliary” ideal executions of ftoken, where in each session, Alice
uses key K as input, while Bob is allowed to use any inputs of its choice.

Further, as explained above, in each of the m+ tNMF ·m · n ideal executions of
ftoken, Bob is allowed to query the ideal functionality λ times using any inputs
of its choice.

Lemma 4. Bob outputs secret in Experiment II with negligible probability.

Experiment III: Real World. We now describe the final experiment, which is
the real world experiment between Alice and Bob. This experiment is essentially
the same as Experiment II, except that each ideal world execution of ftoken is
now replaced with a real world execution of protocol Π between Alice and Bob.
In more detail, the interaction between Alice and Bob consists of the following:

– m “main” executions of protocol Π , where the messages of the m executions
are scheduled in the same manner as defined by the adversary A. In each
i ∈ [m] main session, Alice uses the keys Ki as her input.

– tNMF ·m · n “auxiliary” executions of protocol Π that are scheduled by Bob
in the manner, as described below. In each of these auxiliary sessions, Alice
uses key K as her input.

Alice’s program: Alice is given input the keys K1, . . . ,Kn for the m “main”
sessions, and key K for the tNMF ·m · n “auxiliary” sessions.

Alice behaves honestly according to the protocol Π and responds honestly to
all protocol invocations made by Bob by using the code of P1.

Bob’s program: Bob is given as auxiliary input the obfuscated program
O(NMF), where NMF is the next-message function of David (as described above).
Let secret be the secret value hardwired in O(NMF).

For i = 1, . . . ,m · n, do:
1. Upon receiving the ith message from Alice in m main sessions, say ai, sus-

pend (temporarily) the ongoing session. Run the code O(NMF) on input ai.
4

4 Note that the input to O(NMF) would also include the authenticated state informa-
tion that O(NMF) would have output earlier. We exclude this from the description
for simplicity of notation.
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Whenever O(NMF) makes a query q, start a new auxiliary session of Π with
Alice, and run the code of P2 honestly using input q. Since O(NMF) makes
tNMF different queries, in total, tNMF auxiliary sessions of Π are executed
sequentially by Bob.

2. If i < m · n, then on receiving the output di from O(NMF) outputs, resume
the suspended “main” session and send di to Alice as the response to ai.
Otherwise, output the value di = secret.

Lemma 5. Bob outputs the value secret in Experiment III with probability 1.

Completing the Proof of Theorem 4. The adversary B is simply the adver-
sary Bob in Experiment III as described above. The proof of Theorem 4 then
follows immediately from Lemma 4 and 5. We refer the reader to the full version
for the missing proofs of the lemmas.
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Abstract. Physically Uncloneable Functions (PUFs) [28] are noisy phys-
ical sources of randomness. As such, they are naturally appealing for
cryptographic applications, and have caught the interest of both the-
oreticians and practitioners. A major step towards understanding and
securely using PUFs was recently taken in [Crypto 2011] where Brzuska,
Fischlin, Schröder and Katzenbeisser model PUFs in the Universal Com-
position (UC) framework of Canetti [FOCS 2001]. A salient feature of
their model is that it considers trusted PUFs only; that is, PUFs which
have been produced via the prescribed manufacturing process and are
guaranteed to be free of any adversarial influence. However, this does not
accurately reflect real-life scenarios, where an adversary could be able to
create and use malicious PUFs.

The goal of this work is to extend the model proposed in [Crypto
2011] in order to capture such a real-world attack. The main contribution
of this work is the study of the Malicious PUFs model. To this end,
we first formalize the notion of “malicious” PUFs, and extend the UC
formulation of Brzuska et al. to allow the adversary to create PUFs with
arbitrary adversarial behaviour. Then, we provide positive results in this,
more realistic, model. We show that, under computational assumptions,
it is possible to UC-securely realize any functionality.

1 Introduction

The impossibility of secure computation in the universal composability frame-
work was proved first by Canetti and Fischlin [9], and then strengthened by
Canetti et al. in [10]. Impossibility of even weaker notions has been proved
in [1, 5, 16].

As a consequence, several setup assumptions, and relaxations of the UC frame-
work have been proposed to achieve UC security [4, 11, 19, 29].

In recent years, researchers have started exploring the use of secure hardware
in protocol design. The idea is to achieve protocols with strong security guar-
antees (like UC) by allowing parties to use hardware boxes that have certain

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 702–718, 2013.
c© International Association for Cryptologic Research 2013
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security properties. An example of the kind of security required from such a
hardware box is that of tamper-proofness ; i.e., the receiver of the box can only
observe the input/output behaviour of the functionality that the box imple-
ments. This property was formalized by Katz in [20], and it was shown that UC
security is possible by relying on the existence of tamper-proof programmable
hardware tokens, and computational assumptions. Smart cards are well under-
stood examples of such tokens, since they have been used in practice in the last
decades. Several improvements and variations of Katz’s model have been then
proposed in follow up papers (e.g., [17]).

Spurred by technological advances in manufacturing, recently a new hard-
ware component has gained a lot of attention: Physically Uncloneable Functions
(PUFs) [27,28]. A PUF is a hardware device generated through a special physical
process that implements a “random” function1 that depends upon the physical
parameters of the process. These parameters can not be “controlled”, and pro-
ducing a clone of the device is considered infeasible2 . Once a PUF has been
constructed, there is a physical procedure to query it, and to measure its an-
swers. The answer of a PUF depends on the physical behavior of the PUF itself,
and is assumed to be unpredictable, or to have high min-entropy. Namely, even
after obtaining many challenge-response pairs, it is infeasible to predict the re-
sponse to a new challenge.

Since their introduction by Pappu in 2001, PUFs have gained a lot of atten-
tion for cryptographic applications like anti-counterfeiting mechanisms, secure
storage, RFID applications, identification and authentication protocols [14, 15,
18, 18, 22, 33, 34]. More recently PUFs have been used for designing more ad-
vanced cryptographic primitives. In [31] Rührmair shows the first construction
of Oblivious Transfer, the security proof of which is later provided in [32]. In [3],
Armknecht et al. deploy PUFs for the construction of memory leakage-resilient
encryption schemes. In [23] Maes et al. provide construction and implementation
of PUFKY, a design for PUF-based cryptographic key generators. There exist
several implementations of PUFs, often exhibiting different properties. The work
of Armknecht et al. [2] formalizes the security features of physical functions in
accordance to existing literature on PUFs and proposes a general security frame-
work for physical functions. A survey on PUF implementations is given in [24].
Very recently in [21] Katzenbeisser et al. presented the first large scale evaluation
of the security properties of some popular PUFs implementations (i.e., intrinsic
electronic PUFs).

Modeling PUFs in the UC Framework. Only very recently, Brzuska et al. [7]
suggested a model for using PUFs in the UC setting that aims at abstracting
real-world implementations. The unpredictability and uncloneability properties
are modeled through an ideal functionality. Such functionality allows only the

1 Technically, a PUF does not implement a function in the mathematical sense, as the
same input might produce different responses.

2 SRAM PUFs (memory-based PUFs) might be cloneable according to recent
finding [6].
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creation of trusted PUFs. In [7] PUFs are thought as non-PPT setup assump-
tions. As such, a PPT simulator cannot simulate a PUF, that is, PUFs are non-
programmable. Although non-programmable, PUFs are not modeled as global
setup [8]. [7] shows how to achieve unconditional UC secure Oblivious Transfer,
Bit Commitment and Key Agreement with trusted PUFs.

1.1 Our Contribution

We observe that the UC formulation of PUFs proposed by Brzuska et al. makes
the following crucial assumption: the model considers trusted PUFs only, that
is, adversaries are assumed to be unable to produce fake/malicious PUFs. As
we argue below, we feel that assuming that an adversary cannot misbehave by
creating fake/malicious PUFs, might be unrealistic in the real world. Given that
the study of PUFs is still in its infancy, it is risky to rely on assumptions on the
impossibility of the adversaries in generating and accessing PUFs adversarially.
The main contribution of this work is to study security models that capture
such plausible real-world attacks, and provide protocols that are secure in the
presence of such adversaries.

Modeling malicious PUFs. We augment the UC framework so to enable the
adversary to create untrusted (malicious) PUFs. But what exactly are malicious
PUFs? In real life, an adversary could tamper with a PUF in such a way that
the PUF loses any of its security properties. Or the adversary may introduce
new behaviours; for example, the PUF may start logging its queries. To keep the
treatment of malicious behaviour as general as possible, we allow the adversary
to send as PUF any hardware token that meets the syntactical requirements of
a PUF. Thus, an adversary is assumed to be able to even produce fake PUFs
that might be stateful and programmed with malicious code. We assume that
a malicious PUF however cannot interact with its creator once is sent away to
another party. If this was not the case, then we are back in the standard model
(see the Introduction in the full version [26]).

UC secure computation with malicious PUFs. The natural question is whether
UC security can be achieved in such a much more hostile setting. We give a pos-
itive answer to this question by constructing a computational UC commitment
scheme in the malicious PUFs model. Our commitment scheme needs two PUFs
that are transferred only once (PUFs do not go back-and-forth), at the beginning
of the protocol and it requires computational assumptions. We avoid that PUFs
go back-and-forth by employing a technique that requires OT. The results of
Canetti, et al. [11] shows how to achieve general UC computation from com-
putational UC commitments. Whether unconditional UC secure computation is
possible in the malicious PUF model, is still an open problem.

Hardness assumptions with PUFs. Notice that as correctly observed in [7], since
PUFs are not PPT machines, it is not clear if standard complexity-theoretic
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assumptions still hold in presence of PUFs. We agree with this observation.
However the critical point is that even though there can exist a PUF that helps
to break in polynomial time a standard complexity-theoretic assumptions, it is
still unlikely that a PPT adversary can find such a PUF. Indeed a PPT machine
can only generate a polynomial number of PUFs, therefore obtaining the one that
allows to break complexity assumptions is an event that happens with negligible
probability and thus it does not effect the concrete security of the protocols.

In light of the above discussion, only one of the following two cases is possi-
ble. 1) Standard complexity-theoretic assumptions still hold in presence of PPT
adversaries that generate PUFs; in this case our construction is secure. 2) There
exists a PPT adversary that can generate a PUF that breaks standard assump-
tions; in this case our construction is not secure, but the whole foundations of
complexity-theoretic cryptography would fall down (which is quite unlikely to
happen) with respect to real-world adversaries. We elaborate on this issue in
Section 3.1.

Additional results. We now mention additional results that can be found in the
full version of this paper [26] but have been omitted from the present confer-
ence version due to lack of space. Firstly, we further investigate the feasibility
of achieving unconditional security in the malicious PUF model. We leave the
important question of unconditional UC open, but provide a construction of an
unconditional commitment scheme in the malicious PUF model. Secondly, we
propose and study another modification to the original model of Brzuska et al.
In the new model which we call “oblivious-query model”, all parties (and the
adversary) use trusted PUFs, but in the security proofs, the simulator is not
allowed to observe the adversary’s queries to its PUF. The main motivation for
studying this modification is that the ability of the simulator to observe adver-
sary’s queries stems from the assumption that there is only a single, prescribed
procedure for evaluating a PUF. As we discuss in detail in the full version, this
assumption is not well-justified in the real world. Our main contribution in the
oblivious-query model is the construction of an unconditional UC protocol for
OT. Lastly, we show that if both adversarial modes discussed above are com-
bined, viz., adversaries can create malicious PUFs and may query honest PUFs
via non-prescribed processes, then UC security is impossible.

Independent work. Very recently and independently of us, van Dijk and
Rührmair [36] also study the use of PUFs in cryptographic protocols. Among
other things, they consider the “bad” PUF model where PUFs can be augmented
with malicious behaviour like keeping a log of queries, etc. They show that un-
conditional OT is impossible using bad PUFs, but their setting is very different
from ours. For a detailed discussion about the work of van Dijk and Rührmair,
see the Introduction of the full version [26].
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2 Definitions

Notation. We let n be the security parameter and PPT be the class of proba-

bilistic polynomial time Turing machines. We use v
$← A() when the algorithm

A is randomized. We denote by disham(a, b) the Hamming distance of a and b.

Physically uncloneable functions. We follow definitions given in [7]. A PUF is
a noisy physical source of randomness. The randomness property comes from
an uncontrollable manufacturing process. A PUF is evaluated with a physical
stimulus, called the challenge, and its physical output, called the response, is
measured. Because the processes involved are physical, the function implemented
by a PUF can not (necessarily) be modeled as a mathematical function, neither
can be considered computable in PPT. Moreover, the output of a PUF is noisy,
namely, querying a PUF twice with the same challenge, could yield to different
outputs. The mathematical formalization of a PUF due to [7] is the following.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample and
Eval, and is parameterized by the bound on the noise of PUF’s response dnoise
and the range of the PUF’s output rg. Algorithm Sample abstracts the PUF
fabrication process and works as follows. On input the security parameter, it
outputs a PUF-index id from the PUF-family satisfying the security property
(that we define soon) according to the security parameter. Algorithm Eval ab-
stracts the PUF-evaluation process. On input a challenge q, it evaluates the
PUF on q and outputs the response a of length rg. The output is guaranteed to
have bounded noise dnoise, meaning that, when running Eval(1n, id, q) twice, the
Hamming distance of any two responses a1, a2 is smaller than dnoise(n). Wlog,
we assume that the challenge space of a PUF is a full set of strings of a certain
length.

Definition 1 (Physically Uncloneable Functions). Let rg denote the size
of the range of the PUF responses of a PUF-family and dnoise denote a bound of
the PUF’s noise. P = (Sample,Eval) is a family of (rg, dnoise)-PUF if it satisfies
the following properties.

Index Sampling. Let In be an index set. On input the security parameter n,
the sampling algorithm Sample outputs an index id ∈ In following a not
necessarily efficient procedure. Each id ∈ In corresponds to a set of distribu-
tions Did. For each challenge q ∈ {0, 1}n, Did contains a distribution Did(q)
on {0, 1}rg(n). Did is not necessarily an efficiently sampleable distribution.

Evaluation. On input the tuple (1n, id, q), where q ∈ {0, 1}n, the evaluation
algorithm Eval outputs a response a ∈ {0, 1}rg(n) according to distribution
Did(q). It is not required that Eval is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges q ∈ {0, 1}n, when
running Eval(1n, id, q) twice, the Hamming distance of any two responses
a1, a2 is smaller than dnoise(n).

In the paper we use PUFid(q) to denote Did(q). When not misleading, we omit
id from PUFid, using only the notation PUF.
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Security of PUFs. We assume that PUFs enjoy the properties of uncloneability
and unpredictability. Unpredictability is modeled via an entropy condition on the
PUF distribution. Namely, given that a PUF has been measured on a polynomial
number of challenges, the response of the PUF evaluated on a new challenge has
still a significant amount of entropy. Formally,

Definition 2 (Unpredictability). A (rg, dnoise)-PUF family P=(Sample,Eval)
for security parameter n is (dmin(n),m(n))-unpredictable if for any q ∈ {0, 1}n
and challenge list Q = (q1, . . . , qpoly(n)), one has that, if for all 1 ≤ k ≤
poly(n) the Hamming distance satisfies disham(q, qk) ≥ dmin(n), then the aver-
age min-entropy satisfies H̃∞(PUF(q)|PUF(Q)) ≥ m(n), where PUF(Q) denotes
a sequence of random variables PUF(q1), . . . ,PUF(qpoly(n)) each corresponding
to an evaluation of the PUF on challenge qk. Such a PUF-family is called a
(rg, dnoise, dmin,m)-PUF family.

Fuzzy extractors. Fuzzy extractors of Dodis et al. [13] are applied to the outputs
of the PUF, to convert such noisy, high-entropy measurements into reproducible
randomness. Very informally, a fuzzy extractor is a pair of efficient randomized
algorithms (FuzGen,FuzRep). FuzGen takes as input an �-bit string, that is the
PUF’s response a, and outputs a pair (p, st), where st is a uniformly distributed
string, and p is a public helper data string. FuzRep takes as input the PUF’s
noisy response a′ and the helper data p and generates the very same string st
obtained with the original measurement a. The security property of fuzzy extrac-
tors guarantees that, if the min-entropy of the PUF’s responses are greater than
a certain parameter m, knowledge of the public data p only, without the mea-
surement a, does not give any information on the secret value st. The correctness
property, guarantees that, all pairs of responses a, a′ that are close enough, i.e.,
their hamming distance is less then a certain parameter t, will be recovered by
FuzRep to the same value st generated by FuzGen. In order to apply fuzzy ex-
tractors to PUF’s answers, it is sufficient to pick an extractor whose parameters
match with the parameter of the PUF being used.

3 UC Security with Malicious PUFs

In Section 1 we have motivated the need of a different formulation of UC security
with PUFs that allows the adversary to generate malicious PUFs. In this section
we first show how to model malicious PUFs in the UC framework, and then
show that as long as standard computational assumptions still hold when PPT
adversaries can generate (even malicious) PUFs, there exist protocols for UC
realizing any functionality with (malicious) PUFs.

3.1 Modeling Malicious PUFs

We allow our adversaries to send malicious PUFs to honest parties3. As discussed
before, the motivation for malicious PUFs is that the adversary may have some

3 Throughout this section, we assume the reader is familiar with the original UC PUF
formulation of Brzuska et al. [7] (Section 4.2).
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control over the manufacturing process and may be able to produce errors in the
process that break the PUF’s security properties. Thus, we would like parties
to rely only on the PUFs that they themselves manufacture (or obtain from a
source that they trust), and not on the ones they receive from other (possibly
adversarial) parties.

Malicious PUFs families. In the real world, an adversary may create a malicious
PUF in a number of ways. For example, it can tamper with the manufacturing
process for an honestly-generated PUF to compromise its security properties
(unpredictability, for instance). It may also introduce additional behaviour into
the PUF token, like logging of queries. Taking inspiration from the literature
on modeling tamper-proof hardware tokens, one might be tempted to model
malicious PUFs analogously in the following way: to create a malicious PUF,
the adversary simply specifies to the ideal functionality, the (malicious) code
it wants to be executed instead of an honest PUF. Allowing the adversary to
specify the malicious code enables the simulator to “rewind” the malicious PUF,
which is used crucially in security proofs in the hardware token model. However,
modeling malicious PUFs in this way would disallow the adversary from modi-
fying honest PUFs (or more precisely, the honest PUF manufacturing process).
To keep our treatment as general as possible, we do not place any restriction
on a malicious PUF, except that it should have the same syntax as that of an
honest PUF family, as specified in Definition 1. In particular, the adversary is
not required to know the code of malicious PUFs it creates, and thus our sim-
ulator can not rely on rewinding in the security proofs. Formally, we allow the
adversary to specify a “malicious PUF family”, that the ideal functionality uses.
Of course, in the protocol, we also want the honest parties to be able to obtain
and send honestly generated PUFs. Thus our ideal functionality for PUFs, FPUF

(Fig. 1) is parameterized by two PUF families: the normal (or honest) family
(Samplenormal,Evalnormal) and the possibly malicious family (Samplemal,Evalmal).
When a party Pi wants to initialize a PUF, it sends a initPUF message to FPUF in
which it specifies the mode ∈ { normal, mal }, and the ideal functionality uses the
corresponding family for initializing the PUF. For each initialized PUF, the ideal
functionality FPUF also stores a tag representing the family (i.e., mal or normal)
from which it was initialized. Thus, when the PUF needs to be evaluated, FPUF

runs the evaluation algorithm corresponding to the tag.
As in the original formulation of Brzuska et al., the ideal functionality FPUF

keeps a list L of tuples (sid, id, mode, P̂ , τ). Here, sid is the session identifier of
the protocol and id is the PUF identifier output by the Samplemode algorithm. As
discussed above mode ∈ { normal, mal} indicates the mode of the PUF, and P̂
identifies the party that currently holds the PUF. The final argument τ specifies
transition of PUFs: τ = notrans indicates the PUF is not in transition, while τ =
trans(Pj) indicates that the PUF is in transition to party Pj . Only the adversary
may query the PUF during the transition period. Thus, when a party Pi hands
over a PUF to party Pj , the corresponding τ value for that PUF is changed from
notrans to trans(Pj), and the adversary is allowed to send evaluation queries to
this PUF.When the adversary is done with querying the PUF, it sends a readyPUF
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message to the ideal functionality, which hands over the PUF to Pj and changes
the PUFs transit flag back to notrans. The party Pj may now query the PUF.
The ideal functionality now waits for a receivedPUF message from the adversary,
at which point it sends a receivedPUF message to Pi informing it that the hand
over is complete. The ideal functionality is described formally in Fig. 1.

Allowing adversary to create PUFs. We deviate from the original formulation of
FPUF of Brzuska et al. [7] in one crucial way: we allow the ideal-world adversary S
to create new PUFs. That is, S can send a initPUF message to FPUF. In the original
formulation of Brzuska et al., S could not create its own PUFs, and this has
serious implications for the composition theorem. We thank Margarita Vald [35]
for pointing out this issue. We elaborate on this in Appendix H in the full
version [26]. Also, it should be noted that the PUF set-up is non-programmable,
but not global [8]. The environment must go via the adversary to query PUFs,
and may only query PUFs in transit or held by the adversary at that time.

We remark that the OT protocol of [7] for honest PUFs, fails in the presence
of malicious PUFs. Consider the OT protocol in Fig. 3 in [7]. The security
crucially relies on the fact that the receiver Pj can not query the PUF after
receiving sender’s first message, i.e., the pair (x0, x1). If it could do so, then it
would query the PUF on both x0 ⊕ v and x1 ⊕ v and learn both s0 and s1. In
the malicious PUF model however, as there is no guarantee that the receiver can
not learn query/answer pairs when a malicious PUF that he created is not in its
hands, the protocol no longer remains secure.

PUFs and computational assumptions. The protocol we present in the next
section will use computational hardness assumptions. These assumptions hold
against probabilistic polynomial-time adversaries. However, PUFs use physical
components and are not modeled as PPT machines, and thus, the computa-
tional assumptions must additionally be secure against PPT adversaries that
have access to PUFs. We remark that this is a reasonable assumption to make,
as if this is not the case, then PUFs can be used to invert one-way functions,
to find collisions in CRHFs and so on, therefore not only our protocol, but any
computational-complexity based protocol would be insecure. Note that PUFs
are physical devices that actually exist in the real world, and thus all real-world
adversaries could use them.

To formalize this, we define the notion of “admissible” PUF families. A PUF
family (regardless of whether it is honest or malicious) is called admissible with
respect to a hardness assumption if that assumption holds even when the ad-
versary has access to PUFs from this family. We will prove that our protocol
is secure when the FPUF ideal functionality is instantiated with admissible PUF
families. In particular, all the cryptographic tools that we use to construct our
protocol can be based on the DDH assumption. From this point on in this paper,
a “PUF family” would be taken to mean a PUF family which is admissible with
respect to DDH.
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FPUF uses PUF families P1 = (Samplenormal ,Evalnormal) with parameters
(rg, dnoise, dmin, m), and P2 = (Samplemal,Evalmal).
It runs on input the security parameter 1n, with parties P = {P1, . . . , Pn } and
adversary S .

– When a party P̂ ∈ P∪{S } writes (initPUF, sid, mode, P̂ ) on the input tape of FPUF,
where mode ∈ { normal, mal }, then FPUF checks whether L already contains a
tuple (sid, ∗, ∗, ∗, ∗):
• If this is the case, then turn into the waiting state.
• Else, draw id ← Samplemode(1

n) from the PUF family. Put
(sid, id, mode, P̂ , notrans) in L and write (initializedPUF, sid) on the com-
munication tape of P̂ .

– When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there
exists a tuple (sid, id, mode, Pi, notrans) in L.
• If not, then turn into waiting state.
• Else, run a← Evalmode(1

n, id, q). Write (responsePUF, sid, q, a) on Pi’s commu-
nication input tape.

– When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a
tuple (sid, ∗, ∗, Pi, notrans) in L.
• If not, then turn into waiting state.
• Else, modify the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id,

mode, ⊥, trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S ’s communication input
tape.

– When the adversary sends (evalPUF, sid,S , q) to FPUF, check if L contains a tuple
(sid, id, mode, ⊥, trans(∗)) or (sid, id, mode,S ,notrans).
• If not, then turn into waiting state.
• Else, run a← Evalmode(1

n, id, q) and return (responsePUF, sid, q, a) to S .
– When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id, mode,
⊥, trans(Pj)).

• If not found, turn into the waiting state.
• Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans)

and write (handoverPUF, sid, Pi) on Pj ’s communication input tape and store
the tuple (receivedPUF, sid, Pi).

– When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else,
write this tuple to the input tape of Pi.

Fig. 1. The ideal functionality FPUF for malicious PUFs

3.2 Constructions for UC Security in the Malicious PUFs Model

In this section we present a construction for UC-secure commitment scheme in
the malicious PUFs model, which yields UC-security for any PPT functionality
via the [11] compiler.
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We first recall some of the peculiarities of the PUFs model. A major difficulty
when using PUFs, in contrast to say tamper-proof tokens, is that PUFs are not
programmable. That is, the simulator can not simulate the answer of a PUF, and
must honestly forward the queries to the FPUF functionality. The only power of
the simulator is to intercept the queries made by the adversary to honest PUFs.
Thus, in designing the protocol, we shall force parties to query the PUFs with
the critical private information related to the protocol, therefore allowing the
simulator to extract such information in straight-line. In the malicious PUFs
model the behaviour of a PUF created and sent by an adversary is entirely in
the adversary’s control. A malicious PUF can answer (or even abort) adaptively
on the query according to some pre-shared strategy with the malicious creator.
Finally, a side effect of the unpredictability of PUFs, is that the creator of a
honest PUF is not able to check the authenticity of the answer generated by
its own PUF, without having the PUF in its hands (or having queried the PUF
previously on the very same value).

Techniques and proof intuition. Showing UC security for commitments requires
obtaining straight-line extraction against a malicious sender and straight-line
equivocality against a malicious receiver. Our starting point is the equivocal
commitment scheme of [12] which builds upon Naor’s scheme [25]. Naor’s scheme
consists of two messages, where the first message is a randomly chosen string r
that the receiver sends to the sender. The second message is the commitment
of the bit b, computed using r. More precisely, to commit to bit b, the second
message is G(s)⊕ (r∧ b|r|), where G() is a PRG, and s a randomly chosen seed.
The scheme has the property that if the string r is crafted appropriately, then
the commitment is equivocal. [12] shows how this can be achieved by adding a
coin-tossing phase before the commitment. The coin tossing of [12] proceeds as
follows: the receiver commits to a random string α (using a statistically hiding
commitment scheme), the sender sends a string β, and then the receiver opens
the commitment. Naor’s parameter r is then set as α⊕ β.

Observe that if the simulator can choose β after knowing α, then it can control
the output of the coin-tossing phase, and therefore equivocate the commitment.
Thus, to achieve equivocality against a malicious receiver, the simulator must
be able to extract α from the commitment. Similarly, when playing against a
malicious sender, the simulator should be able to extract the value committed
in the second message of Naor’s commitment.

Therefore, to construct a UC-secure commitment, we need to design an ex-
tractable commitment scheme for both directions. The extractable commitment
of α that we construct for the receiver, must be statistically-hiding (this is nec-
essary to prove binding). We denote such commitment as Comsh = (Ssh,Rsh). On
the other hand, the commitment sent by the sender, must be extractable and
allow for equivocation. We denote such commitment as Comeq = (Seq,Req). As
we shall see soon, the two schemes require different techniques as they aim to
different properties. However, they both share the following structure to achieve
extractability.
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The receiver creates a PUF and queries it with two randomly chosen challenges
(q0, q1), obtaining the respective answers (a0, a1). The PUF is then sent to the
sender. To commit to a bit b, the sender first needs to obtain the value qb. This
is done by running an OT protocol with the receiver. Then the sender queries the
PUFwith qb and commits to the responseab. Note that the sender does not commit
to the bit directly, but to the answer of the PUF. This ensures extractability. To
decommit to b, the sender simply opens the commitment of the PUF-answer sent
before. Note that the receiver can check the authenticity of the PUF-answer with-
out having its own PUF back. The simulator can extract the bit by intercepting
the queries sent to the PUF and taking the one that is close enough, in Hamming
distance, to either q0 or q1. Due to the security of OT, the sender can not get both
queries (thus confusing the simulator), neither can the receiver detect which query
has been transferred. Due to the binding property of the commitment scheme used
to commit qb, a malicious sender cannot postpone querying the PUF to the de-
commitment phase (thus preventing the simulator to extract already in the com-
mitment phase). Due to the unpredictability of PUFs, the sender cannot avoid to
query the PUF to obtain the correct response.

This protocol achieves extractability. To additionally achieve statistically hid-
ing and equivocality, protocol Comsh and Comeq develop on this basic structure
in different ways accordingly to the different properties that they achieve. The
main difference is in the commitment of the answer ab.

In Protocol Comsh, Ssh commits to the PUF-response ab using a statisti-
cally hiding commitment scheme. Additionally, Ssh provides a statistical zero-
knowledge argument of knowledge of the message committed. This turns out to
be necessary to argue about binding (that is only computational). Finally, the
OT protocol executed to exchange q0, q1 must be statistically secure for the OT
receiver. The formal description of protocol Comsh is provided in Fig. 2.

In Protocol Comeq the answer ab is committed following Naor’s commitment
scheme. The input of Seq is the Naor’s parameter decided in the coin-flipping
phase, and is the vector r̄ of strings r1, . . . , rl (ab is a l-bit string, where l is
the range of the PUF). Earlier we said that the simulator can properly craft r̄,
so that it will be able equivocate the commitment of ab. However, due to the
structure of the extractable commitment shown above, being able to equivocate
the commitment of ab is not enough anymore. Indeed, in the protocol above,
due to the OT protocol, the simulator will be able to obtain only one of the
PUF-queries among (q0, q1), and it must choose the query qb already in the
commitment phase (when the secret bit b is not known to the simulator). Thus,
even though the simulator has the power to equivocate the commitment to any
string, it might not know the correct PUF-answer to open to. We solve this
problem by asking the receiver to reveal both values (q0, q1) played in the OT
protocol (along with the randomness used in the OT protocol), obviously only
after Seq has committed to the PUF-answer. Now, the simulator can: play the
OT protocol with a random bit, commit to a random string (without querying
the PUF), and then obtain both queries (q0, q1). In the decommitment phase,
the simulator gets the actual bit b. Hence, it can query the PUF with input
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Sender’s Input: b ∈ {0, 1}.

Commitment Phase

Rsh : (Initialization and PUF exchange)

1. Create PUFR; obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. Handover PUFR to Ssh.

Rsh ⇔ Ssh : (Statistical OT phase)
Rsh runs as the OT Sender with input (q0, q1), and Ssh runs as the OT Receiver
with input b. Let q′b be the local output of Ssh.

Ssh ⇔ Rsh : (Statistically Hiding Commitment)

Ssh queries PUFR on input q′b and obtains a′
b. If PUFR aborts, set a′

b
$← {0, 1}l.

Ssh commits to a′
b using a statistically-hiding commitment scheme. Let c be the

transcript of the commitment phase.
Ssh ⇔ Rsh : (Proof of knowledge of the Decommitment)

Ssh proves that he knows the decommitment of c running a statistical ZK Argu-
ment of Knowledge protocol. If the proof is not accepting, Rsh aborts.

Decommitment Phase

Ssh : if PUFR did not abort, send opening to a′
b to Rsh.

Rsh : if the opening for a′
b is accepting and FuzRep(a′

b, pb) = stb then accept b.
Otherwise reject.

Fig. 2. Statistically Hiding Straight-Line Extractable Bit Commitment Comsh

qb, obtain the PUF-answer, and equivocate the commitment so to open to such
PUF-answer. There is a subtle issue here and is the possibility of selective abort of
a malicious PUF. If the PUF aborts when queried with a particular string, then
we have that the sender would abort already in the commitment phase, while the
simulator aborts only in the decommitment phase. We avoid such problem by
requiring that the sender continues the commitment phase by committing to a
random string in case the PUF aborts. The above protocol is statistically binding
(we are using Naor’s commitment), straight-line extractable, and assuming that
Naor’s parameter was previously ad-hoc crafted, it is also straight-line equivocal.
To commit to a bit we are committing to the l-bit PUF-answer, thus the size
of Naor’s parameter r̄, is N = (3n)l. Protocol Comeq is formally described in
Fig. 3.

The final UC-secure commitment scheme Comuc = (Suc,Ruc) consists of the
coin-flipping phase, and the (equivocal) commitment phase. In the coin flipping,
the receiver commits to α using the statistically hiding straight-line extractable
commitment scheme Comsh. The output of the coin-flipping is the Naor’s param-
eter r̄=α⊕ β used as common input for the extractable/equivocal commitment
scheme Comeq. Protocol Comuc = (Suc,Ruc) is formally described in Fig. 4.

Both protocol Comsh,Comeq require one PUF sent from the receiver to the
sender. We remark that PUFs are transferred only once at the beginning of the
protocol. We finally stress that we do not assume authenticated PUF delivery.
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Sender’s Input: Bit b ∈ {0, 1}.
Common Input: r̄ = (r1, . . . , rl).

Commitment Phase

Req : (Initialization and PUF exchange)

1. Create PUFR. Obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. Handover PUFR to Seq;

4. Choose random tape ranOT
$← {0, 1}∗.

Req ⇔ Seq : (Statistical OT phase)
Req runs as the OT Sender with input (q0, q1) using randomness ranOT, and Seq

runs as the OT Receiver with input b. Let q′b be the local output of Seq. Let τOT

be the transcript of the execution of the OT protocol.
Seq: (Statistically Binding Commitment)

1. a′
b ← PUFR(q

′
b). If PUFR aborts, a′

b
$← {0, 1}l.

2. for 1 ≤ i ≤ l, pick si
$← {0, 1}n, ci = G(si)⊕ (ri ∧ a′

b[i]).
a

3. send c1, . . . , cl to Req.
Req: upon receiving c1, . . . , cl, send ranOT, q0, q1 to Seq.
Seq: check if transcript τOT is consistent with (ranOT, q0, q1, b). If the check fails abort.

Decommitment Phase

Seq : if PUFR did not abort, send ((s1, . . . , sl), a
′
b), b to Rsh.

Req : if for all i, it holds that (ci = G(si)⊕ (ri ∧ a′
b[i])) ∧ (FuzRep(a′

b, pb) = stb) then
accept. Else reject.

a where (ri ∧ a′
b[i])[j] = ri[j] ∧ a′

b[i].

Fig. 3. Statistically Binding Straight-line Extractable/Equivocal Commitment Comeq

Namely, the privacy of the honest party is preserved even if the adversary inter-
feres with the delivery process of the honest PUFs (e.g., by replacing the honest
PUF).

Theorem 1. If Comsh = (Ssh,Rsh) is a statistically hiding straight-line ex-
tractable commitment scheme in the malicious PUFs model, and Comeq =
(Seq,Req) is a statistically binding straight-line extractable and equivocal commit-
ment scheme in the malicious PUFs model, then Comuc = (Suc,Ruc) in Fig. 4,
is a UC-secure commitment scheme in the malicious PUFs model.

The above protocol can be used to implement the multiple commitment function-
ality Fmcom by using independent PUFs for each commitment. Note that in our
construction we can not reuse the same PUF when multiple commitments are
executed concurrently4. The reason is that, in both sub-protocols Comsh,Comeq,

4 Note that however our protocol enjoys parallel composition and reuse of the same
PUF, i.e., one can commit to a string reusing the same PUF.
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Sender’s Input: Bit b ∈ {0, 1}.

Commitment Phase

Ruc ⇔ Suc : (Coin Flipping)

1. Ruc picks α
$← {0, 1}N ; commit to α by running as sender in protocol Comsh

while Suc runs as receiver.
2. Suc sends β

$← {0, 1}N to Ruc.
3. Ruc sends decommitment for α to Suc.
4. Suc: if the decommitment is not accepting, abort. Else Ruc and Suc set r̄ =

α⊕ β.
Suc ⇔ Ruc : (Equivocal Commitment)

Suc commit to b by running as sender in Comeq where Ruc runs as receiver, and
the common input is r̄.

Decommitment Phase

Suc runs the decommitment phase of Comeq to open b.
Ruc accepts if the decommitment of b is accepting.

Fig. 4. Computational UC Commitment Scheme (Suc,Ruc)

in the opening phase the sender forwards the answer obtained by querying the
receiver’s PUF. The answer of a malicious PUF can then convey information
about the value committed in concurrent sessions that have not been opened
yet.

When implementing Fmcom one should also deal with malleability issues. In
particular, one should handle the case in which the man-in-the-middle adversary
forwards honest PUFs to another party. However such attack can be ruled out by
exploiting the unpredictability of honest PUFs as follows. Let Pi be the creator
of PUFi, running an execution of the protocol with Pj . Before delivering its own
PUF, Pi queries it with the identity of Pj concatenated with a random nonce.
Then, at some point during the protocol execution with Pj it will ask Pj to
evaluate PUFi on such nonce (and the identity). Due to the unpredictability of
PUFs, and the fact that nonce is a randomly chosen value, Pj is able to answer
to such a query only if it possesses the PUF. The final step to obtain UC security
for any functionality consists in using the compiler of [11], which only needs a
UC secure implementation of the Fmcom functionality.

4 Conclusion

We introduce the Malicious PUF model which models the very realistic attack
of an adversary replacing a proper PUF with a “PUF-looking” device that im-
plements an arbitrary malicious functionality. We show that in this model is
possible to achieve UC-security relying on complexity-theoretic assumptions, by
providing an implementation of UC-secure commitment scheme.
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Abstract. Assuming solely the existence of one-way functions, we show how
to construct Garbled RAM Programs (GRAM) where its size only depends on
fixed polynomial in the security parameter times the program running time. We
stress that we avoid converting the RAM programs into circuits. As an example,
our techniques implies the first garbled binary search program (searching over
sorted encrypted data stored in a cloud) which is poly-logarithmic in the data size
instead of linear. Our result requires the existence of one-way function and enjoys
the same non-interactive properties as Yao’s original garbled circuits.

Keywords: Secure Computation, Oblivious RAM, Garbled Circuits.

1 Introduction

Often times, such as in cloud computation, one party wants to store some data remotely
and then have the remote server perform computations on that data. If the client does not
wish to reveal this data or the nature of the computation and the results of the computa-
tion to the remote server, then one must resort to using secure computation methods in
order to process this remotely stored data. In other words, suppose two parties want to
compute some program π on their private inputs without revealing to each other (or just
one party) anything but the output. The earliest research in secure two-party computa-
tion modeled π as a circuit and was accomplished under Yao’s Garbled Circuits [33]
or the Goldreich-Micali-Wigderson [10] paradigm. Both of these approaches require
the program π to be converted to a circuit. Even the recent work of performing secure
computation via fully homomorphic encryption requires representing the program π
as a circuit. However, many algorithms are more naturally and compactly represented
as RAM programs, and converting these into circuits may lead to a huge blowup in
program size and its running time.

Of course, there are known polynomial transformations between time-bounded RAM
programs, time-bounded Turing Machines and circuits [8,27]: Given a T -time RAM
program, [8] shows how one can transform it into a O(T 3)-time TM, and [27] shows
how to transform a T -time TM into circuits of size O(T logT ), which results in a
O(T 3 logT ) blowup. Our work aims at circumventing these transformation costs and
executing RAM programs directly in a private manner, while retaining the same nonin-
teractive properties as Yao’s Garbled circuits. This goal is especially important for the
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case of complex real-world RAM programs with running time that is much larger than
the input size. Unrolling these complicated RAM programs with multiple execution
paths, recursion, multiple loops, etc. into a circuit makes the circuit size polynomially
larger and often prohibitive.

It should be noted that our work is also important in practical applications where
the sizes of the inputs are vastly different, such as database search, or where multi-
ple queries against the same large data-set must be executed. When compiling a RAM
program into a circuit, the compiled circuit must inherently be able to compute all exe-
cution paths of the RAM program. Thus, the circuit itself must be at least be as large as
the input size, which in some applications may be is exponentially larger than execution
path of the insecure solution (e.g. consider a binary search). One can argue that even if
the circuit is large, we can “charge” the large circuit cost to the large input size, but in
many cases this is unacceptable: consider the case where a large data is encrypted and
uploaded off-line, such as a large database, and multiple encrypted queries are made on-
line, where the insecure execution path is, for example, poly-logarithmic in the database
size and we do not want to “pay” an on-line cost of circuit size which is linear in the
database size.

An alternative approach for secure conversion of RAM programs into circuits is dy-
namic evaluation: even if the resulting circuit is large and the total size of the is resulting
circuit is prohibitive, one can execute and even compile the large circuit dynamically
and intelligently evaluate only parts of the circuit so as to “prune off” dead paths (e.g.
short-circuiting techniques) to make the evaluation efficient, even in the case of large in-
puts. However, until now it was not known how to convert RAM programs into circuits
which result in an efficient secure non-interactive execution in a way that does not re-
veal the execution path of the compiled RAM program. Naturally, using interaction, one
can use the Goldreich-Micali-Wigderson [10] paradigm along with revealing bits along
the way to help prune and determine execution path – however our ultimate goal is to
explore the non-interactive garbling solutions for RAM programs without revealing the
execution path.

Another alternative method for computing RAM programs without first convert-
ing them to circuits was proposed by Ostrovsky and Shoup [25] which used Oblivi-
ous RAM [11] as a building block. The Ostrovsky-Shoup compiler allows parties to
execute Oblivious RAM programs directly, i.e., without first unrolling it into a cir-
cuit, which provided an alternative approach to secure RAM computation. The method
was further improved by Gordon et al. [16] in order to perform sublinear amortized
database search. Lu and Ostrovsky [21] considered two-server Oblivious RAM inside
the Ostrovsky-Shoup compiler, which led to logarithmic overhead in both the computa-
tion and the communication complexity. Note that these three works allow secure RAM
evaluation without having to unroll the program into a circuit and represent a different
way to perform secure computation that reveals only the program running time. Among
these, [21] is the best result for programs (instead of circuits) in terms of computa-
tion complexity and communication complexity. However, in terms of round complex-
ity, these papers leave much to be desired: they all require at least one round for each
CPU computation step, even using the so-called non-interactive RAM solution of [31],
which reduces each read/write to one round between the client and the server. Since the
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running time of CPU is at least t steps for programs that run in time t, this leads to Ω(t)
round complexity. In contrast, in this paper, we show how to retain poly-log overhead
in communication and computation, and make the entire computation non-interactive
in the OT-hybrid model, just like Yao.

1.1 The Blueprint for RAM Program Garbling

We describe our approach at a high level: we start with an ORAM compiler (with certain
properties which we will describe later) that takes a program and converts it into an
oblivious one. We call this new program the “ORAM CPU” because it can be thought
of as a client running a CPU that performs a local computation followed by reading or
writing something on the remote server. As a conceptual segue, consider the following
change: instead of the ORAM CPU locally performing its computation, it creates a
garbled circuit representing that computation, and also garbles all the inputs for that
computation (the inputs are just the client state and the last fetched item, possibly with
some randomness) and sends it to the server who then evaluates the circuit. The output
of this computation is just the next state and the next read/write query, and the server
preforms the read/write query locally, and sends back the result of the read/write query
along with the state to the ORAM CPU. We emphasize that this is just a conceptual
intermediate step, since this step does not actually give us any savings and possibly
interferes with the security of the ORAM CPU by having its state revealed to the server.

Next, we change where the ORAM CPU state is stored: instead of letting the client
hold it, it is stored on the server in garbled format. That is to say, the garbled circuit
that the client sends to the server now outputs a garbled state instead of a regular state,
which can then be used as input for the next ORAM CPU step. As long as the garbled
circuit for the next CPU step uses the same input encoding as the one generated by our
current CPU step, then the client does not need to interact with the server. However, the
garbled CPU also performs read/write operations into ORAM memory that need to be
carefully interleaved with our computations. We need to describe how this is done next.

Let us suppose that the ORAM compiler had the property that the ORAM CPU
knows exactly when the contents of a memory location that it wants to read next was
last written to (which is the case for many ORAM schemes). We attempt to perform
the same strategy as we did with garbling the state: whenever the ORAM CPU wants to
write something to memory. We store memory bits as Yao’s garbled keys, based on the
actual location, and the time last written. Thus, the bit stored in some particular location
has one of the two garbled keys. However, this does not immediately work, because if
each memory location uses a different encoding, the CPU circuit does not know which
encoding to use when reading at some future time.

In order to resolve this, we construct a circuit that assists with this transition: the
circuit takes as input a time step and memory location computes (in a garbled form)
two possible encodings for 0/1 encoded in this location and outputs a garbled circuit
encoded for that time step to “translate” keys stored in memory to keys needed by the
CPU. Since this circuit does not require the knowledge of the memory location ahead of
time, the client can generate as many of these as needed at the start of the computation.
Indeed, if the ORAM program runs in t steps, the client can generate t of these circuits,
garble them, and send them all to the server, non-interactively.
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Note that we need Oblivious RAM with poly-log overhead where the client size is
at most some fixed polynomial in the security parameter times some poly-log factor
in n. This is because for every ORAM fetch operation, we also need to emulate the
client’s internal computation of the Oblivious RAM using garbled circuit, which incurs
a multiplicative overhead in the size and the running time of the client. Thus, the smaller
the client of Oblivious RAM, the more efficient our solution is: in order to achieve
poly-log overhead, all Oblivious RAM schemes where client memory is larger than
poly-logarithmic (e.g. [9,6]) is not useful for our purposes. We expand on the intuition
in Section 3.1. In Section 3 we give the main construction for garbled RAM programs.
When combined with oblivious transfer, this gives a one-round secure two-party RAM
program computation in the semi-honest model (which can be extended to multi-party
using the Beaver-Micali-Rogaway paradigm[2]), which we discuss in Section 4. In the
full version [20], we also show how to construct a single-round ORAM.

1.2 Related Work on Secure RAM Computation

Oblivious RAM was introduced in the context of software protection by Goldreich
and Ostrovsky [11]. In the original work by Goldreich [9], a solution was given with
O(
√
n) and communication overhead where lookups could be done in a single round

and O(2
√
logn log log n) communication overhead for a recursive solution. Subsequently,

Ostrovsky [23,24] gave a solution with only poly-log overhead and constant client mem-
ory (the so-called “hierarchical solution”).

Subsequent to Goldreich and Ostrovsky [23,24,9,11], works on Oblivious RAM (e.g.
[31,32,26,13,14,28,15,18,29]) looked at improving the concrete and asymptotic param-
eters of Oblivious RAM. The notion of Private Information Storage introduced by
Ostrovsky and Shoup [25] allows for private storage and retrieval of data, and was
primarily concentrated in the information theoretic setting. This model differs from
Oblivious RAM in the sense that, while the communication complexity of the scheme
is sub-linear, the server performs a linear amount of work on the database. The work of
Ostrovsky and Shoup [25] gives a multi-server solution to this problem in both the com-
putational and the information-theoretic setting and introduces the Ostrovsky-Shoup
compiler of transforming Oblivious RAM into secure RAM computation. The notion of
single-server “PIR Writing” was subsequently formalized in Boneh, Kushilevitz, Ostro-
vsky and Skeith [5] where they provide a single-server solution. The case of amortized
“PIR Writing” of multiple reads and writes was considered in [7].

With regard to secure computation for RAM programs, the implications of the
Ostrovsky-Shoup compiler was explored in the work of Naor and Nissim [22] which
shows how to convert RAM programs into so-called circuits with “lookup tables”
(LUT). The Ostrovsky-Shoup compiler was further explored in the work of Gordon
et al. [16] in the case of amortized programs. Namely, consider a client that holds a
small input x, and a server that holds a large database D, and the client wishes to
repeatedly perform private queries f(x,D). In this model, an expensive initialization
(depending only on D) is first performed. Afterwards, if f can be computed in time T
with space S with a RAM machine, then there is a secure two-party protocol comput-
ing f in time O(T ) · polylog(S) with the client using O(log S) space and the server
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using O(S · polylog(S)) space. The secure RAM computation solution of Lu and Os-
trovsky [21] can be viewed as a generalization of the [25] model where servers must
also perform sublinear work.

1.3 Our Results

In this paper, we show how to garble any Random Access Machine (RAM) Program πt
that runs in time upper bounded by t while keeping all the non-interactive advantages
of the Yao’s Garbled Circuit approach. More specifically, we present a program gar-
bling method which consists of a triple of polynomial-time algorithms (G,GI,GE).
G takes as input any RAM program πi that includes an upper bound t on its running
time and a pseudorandom function (PRF) family F and a seed s for PRF of size k (a se-
curity parameter) and outputs a garbled program Πt = G(πt, t, F, s), where all inputs
are polynomial in the security parameter. Just like gabled circuits, we provide a way to
garble any input x for πt into Garbled Input X = GI(x, s), and an algorithm to eval-
uate a garbled program on garbled inputs GE(Πt, t,X). The correctness requirement
is that for any x, πt, F, s it holds that πt(x) = GE(G(πt, t, F, s), GI(x, s)) with the
security guarantee that nothing about x is revealed except its running time t, expressed
in terms of computational indistinguishability (≈) between the simulator Sim and gar-
bled outputs. So far, the above description matches Yao’s garbled circuit description.
The difference is both in the running time and the size of garbled program for our new
garbling method.

Main Theorem. Assume one-way functions exist, and let the security parameter be k
and let F be a PRF family based on the one-way function. Then, there exists a Program
Garbling triple of poly-time algorithms G,GI,GE such that for any t any πt and any
input x of length n we have the following.

Correctness: ∀x, πt, F, s: πt(x) = GE [G(πt, t, F, s), GI(x, s)].
Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where |s| = k,

[G(πt, t, F, s), GI(x, s)] ≈ Sim
[
1k, t, |x|, πt(x)

]
.

Garbled Program Size: The size of the garbled program

|G(πt, t, F, s)| = O ((|π|+ t)· kO(1) · polylog(n)
)
.

Garbled Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(
n · kO(1) · polylog(n)

)
.

Our main construction is a garbled program based on any one-way function (or a block-
cipher), and is time-compact in the sense that if the original program runs in t time and
has size n, our garbled RAM runs in O(t · poly(k, logn)).

1.4 Remarks

– Making programs and outputs private. We note that similar to Yao, we can make
πt to be a time-bounded universal program ut, (i.e., an interpreter) and x =
(π′t, y) include both time-bounded program π′t and input y, so that ut(x) = π′t(y).
Part of the specification of π′t may also include masking its output – i.e. to have
output blinded (XORed) with a random string. That allows, just like Yao, to keep
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both the program and the output hidden from a machine that evaluates the garbled
program. Such a modification has been utilized in the literature (see, e.g. [1]).

– Reactive functionalities. Our result shows that we can first garble a large input x,
|x| = n with garbled input size equal to O(|x| · kO(1) · polylog(n)) so that later,
given private programs π1

t1 , . . . , π
j
tj , . . . for polynomially many programs where

program πj runs in time tj and potentially modifies x, (e.g., database updates)
we can garble and execute all of these programs just revealing running times ti,
and nothing else. The size of each garbled program remains O

(
(|πi|+ ti) · kO(1)·

polylog(n)). It is also easy to handle the case where the length of x changes, pro-
vided that an upper bound by how much each program changes the length of x is
known prior to garbling of next program.

– Cloud computing. As an example of the power of our result we outline secure
cloud computation/delegation. In this simple application one party has an input and
wants to store it remotely and then repeatedly run different private programs on this
data. Reactive functionalities allow us to do this with one important restriction: we
do not give the server a choice in adaptively selecting the inputs: but this is not an
issue as the server itself has no inputs to the program. The other possible problem
is if the programs themselves are contrived and circularly reference the code for the
garbling algorithm. Such programs would be highly unnatural to run on data and
so we disallow them in our setting.

– Two-party computation. Note that just like in Yao’s garbled circuits, in order to
transmit the garbled inputs corresponding to input bits held by a different party for
the sake of secure two-party computation, one relies on Oblivious Transfer (OT)
that can be done non-interactively in the OT-hybrid model. Here, we insist that the
OT-selected inputs to our garbled program are committed to prior to receiving the
RAM garbled program, i.e. non-adaptively [3].

– Optimizations. We remark that step two of our blueprint is applicable to almost all
ORAM schemes with small CPU as follows: instead of collapsing in the hierarchi-
cal Oblivious RAMs multiple rounds of a single read/write to a single round, we
can implement our step 2 directly for each round of each read/write (e.g. even inside
a single read/write simulation of Oblivious RAM that requires multiple rounds) of
the underlying Oblivious RAM: by implementing an oracle call for each Oblivious
RAM CPU read/write using our method of compiling memory fetch “on the fly”
into garbled circuits. Any Oblivious RAM where the CPU can tell precisely when
any memory location was overwritten last can be complied using our approach.
(We call such Oblivious RAMs “predictive memory” RAMs and explore this fur-
ther in the full version.) For example, this property holds for [18] ORAM. It also
allows a generic method to “collapse” all multi-round predictive memory Oblivious
RAM with small CPU into a single round. Observe that the overall complexity for
garbling programs depends both on the CPU complexity and the ORAM read/write
complexity.

– Tighter Input Compactness. Using an ORAM scheme that has small input encod-
ing and small size CPU (such as [18]) we can also make Input Compactness in our
main theorem tighter: for all programs we can make garbled inputs to be O(nk),
where recall thatn is the input size and k is the security parameter. We remark that if
we wish to garble only “large” programs that run time at least Ω(n · logn · kO(1)),
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we can make Input Compactness even better under the assumption that one can
encode inputs to garbled circuits to be of size O(n + k) and have the garbled pro-
gram “unpack” the inputs to the full O(nk) size. Such packing techniques for have
been recently developed for garbling the inputs of garbled circuits by Ishai and
Kushilevitz [17].

– Stronger Adversarial models. As already mentioned we describe the scheme in
the honest-but-curious model based on honest-but-curious Yao, and only in the non-
adaptively secure setting (see [3] for further discussion of adaptivity.) There is a
plethora of works that convert Yao’s garbled circuits from honest-but-curious to
malicious setting, as well strengthening its security in various settings. Since our
machinery is build on top of Yao’s garbled circuits (and Obvious RAMs that work
in the fully adaptive setting), many of these techniques for stronger guarantees for
Yao’s garbled circuit apply in a straightforward manner to our setting as well. We
postpone description of malicious models to the full version.

2 Preliminaries

2.1 Oblivious RAM

We work in the RAM model with stored programs, where there is a CPU that can
run a program that performs a sequence of reads or writes to locations stored on a large
memory. This machine, which we will refer to as the CPU or the client, can be viewed as
a stateful1 processor with only a few special data registers that store program counters,
query counters, and cryptographic keys (primarily a seed for a PRF) and that CPU
can run small programs which model a single CPU step. Given the CPU state Σ and
the most recently read element x, CPU(Σ, x) does simple operations such as addition,
multiplication, updating program counter, or executing PRF followed by producing the
next read/write command as well as updating to the next state Σ′.

Because we wish to hide the type of access performed by the client, we unify both
types of accesses into a operation known as a query. A sequence of n queries can be
viewed as a list of (memory location, data) pairs (v1, x1), . . . , (vn, xn), along with a
sequence of operations op1, . . . , opn, where opi is a READ or WRITE operation. In
the case of READ operations, the corresponding x value is ignored. The sequence of
queries, including both the memory location and the data, performed by a client is
known as the access pattern.

In our model, we wish to obliviously simulate the RAM machine with a client, which
can be viewed as having limited storage, that has access to a server. However, the server
is untrusted and assumed to malicious. An oblivious RAM is secure if the view of a
any malicious server can be simulated in poly-time in a way that is indistinguishable
from the view of the server during a real execution. For concreteness, we focus on
sequence of buffersBk, Bk+1, . . . , BL of geometrically increasing sizes. Typically k =
O(1) (the first buffer is of constant size) and L = logn (the last buffer may contain
all n elements), where n is the total number of memory locations. These buffers are

1 We can consider a stateless version where all registers are stored in memory. For ease of
exposition, we let the client hold local state.
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standard bucketed hash tables, with buckets of size b. We refer the reader to [11] for
more information.

2.2 Yao’s Garbled Circuits

Garbled circuits were introduced by Yao [33]. A series of works looked at proving
the security and formalizing the notions of garbled circuits, including Lindell and
Pinkas [19], and recently, the work of Bellare et al. [4]. We refer the reader to the
latter work for more details, and we briefly summarize the key properties.

A circuit garbling scheme we view as a triple of algorithms (G,GI,GE) where
G(1k, C) takes as input a security parameter k and circuit C and outputs some garbled
circuit Γ and garbling key gsk.GI(x, gsk) converts an input x and a gsk into a garbled
input X , and GE(Γ,X) evaluates a garbled circuit on an garbled input.

We first make an observation that the labels (keys) on a given wire used in a garbled
circuit can be re-used in additional newly generated gates, as long as the value does
not change between the uses and it is not revealed whether this label represents 0 or 1.
(For example, assume that garbled circuit evaluator is given a label on some input wire,
which is a key representing a 0 or a 1. We claim that the same key can be used as input
key for other garbled circuits that are generated later.) This observation allows us to
execute garbled circuits in “parallel” or “sequentially” where some labels are re-used.
Indeed, this observation is implicitly used in classic garbled circuits in gates where the
fan-out is greater than 1: all outgoing wires share the same labels (see e.g. Footnote 8
in Lindell-Pinkas [19]).

Lemma 1. Suppose C and C′ are two circuits and suppose there is some input x
for which we want to compute C(x) and C′(x) (resp. C(C′(x))). Suppose the wires
w0, . . . , wn in C represent the input wires for x and similarly define w′0, . . . , w

′
n rep-

resent the input wires of x in C′ (resp. v′0, . . . , v
′
n be the output wires of C′). Let kbwi

represent the label indicating wire wi = b, and let C and C′ be randomly garbled into
GC(C) and GC(C′) under the restriction that kbwi

= kbw′
i

(resp. kbwi
= kbv′

i
). Then the

tuple (GC(C), GC(C′), {kxi
wi
}ni=0) can be computationally simulated.

Proof. Consider the composite circuit D = C||C′ (resp. E = C ◦ C′) which is just
a copy of C and a copy of C′ in parallel (resp. sequence). Then every garbling of D
induces a garbling of C and C′ with the restriction exactly as above. By the security
of garbled circuits, there exists a simulator that can simulate (GC(D), {kxi

wi
}ni=0). We

can construct a simulator for our lemma by simply taking this simulator and taking the
output and separate out GC(C) and GC(C′), as the lemma requires.

Remark: If the data is encrypted bit by bit using Yao’s keys, Lemma 1 allows us to run
arbitrary garbled circuits on this data, akin to general purpose “function evaluation” on
encrypted data. This observation itself has a number of applications, we describe these
in the full version of the paper.
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3 Non-interactive Garbled RAM Programs

3.1 Informal Description of Main Ideas

We consider the RAM model of computation as in the works of [11,23,24] where a
RAM program along with data is stored in memory, and a small, stateful CPU with a
O(1) instruction set that can storeO(1) words that can be of size polylog(n) = poly(k)
where k is the security parameter. Our starting point is a ORAM model that can tolerate
fully malicious tampering adversary (see [24,11]). Each step of the CPU is simply a
read/write call to main memory followed by executing its next CPU instruction. We
now summarize our ideas for building Garbled RAM programs from an Oblivious RAM
program.

In order to garble a RAM program πt, we consider the two fundamental opera-
tions separately and show how to mesh them together: 1) Read/Write (v, x) from/to
memory. 2) Execute an instruction step to update state and produce next read/write
query: Σ′,READ/WRITE(v′, x′) ← CPU(Σ, x). Updating the state can include up-
dating local registers, incrementing program counters and query counters, and updating
cryptographic keys.

Our goal is to transform this into a non-interactive process by letting the client send
the server enough garbled information to evaluate the program up to t steps, where t
upper bounds the RAM program running time. We give some intuition as to how to con-
struct a circuit for each step, and then how to garble them. The first part will be modeled
as the circuit CORAM , and the second part will be modeled as the circuit CCPU . The cir-
cuits satisfy a novel property: the plain circuit CORAM emulates a query for the ORAM
client and outputs a bit representation of a garbled circuit GCORAM . This GCORAM

has output encodings that will be compatible with the garbled circuit GC(CCPU ) to
evaluate a garbled the CPU’s next step. We remark that GCORAM actually contains
several sub-circuits, but is written as a single object for ease of exposition. If we gener-
ate t of these garbled circuits, then a party can evaluate a t-time garbled RAM program
by consuming one garbled CORAM and one garbled CCPU per time step.

We first consider the circuit CCPU , which is straightforward to describe. This circuit
takes as input Σ representing the internal state of the CPU, and x the last memory
contents read. Recall that the CPU performs a step CPU(Σ, x) and updates the state
to Σ′ and gives the next read/write query to memory location v′ and contents x′. In
order to turn this into a circuit, we can sacrifice some efficiency and have a “universal”
instruction in which we run every atomic instruction (from its constant sized instruction
set) and simply multiplex the actual results using the instruction opcode. This universal
instruction is modeled as a circuit which is of size kO(1). We remark that although this
circuit is simple, the complexity arises from when we want to garble this circuit: the
garbling must be done in a way so that the garbled inputs and outputs are compatible
with GCORAM .

The circuit CORAM must emulate the client in Oblivious RAM (we can think of it
as being a non-interactive client either by breaking out each individual step as a sepa-
rate circuit, or using a non-interactive ORAM). The input of the circuit is just an ORAM
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read/write query2, and the output of the circuit is a bit representation that describes
a set of garbled circuits, equivalent to what would have been produced via the
ORAM client which we call GCORAM . We give full details on the construction in
Section 3.2. It is important that we argue that the result of this fetch can be combined
with the evaluation of the CPU step. Observe that since the labels in our ORAM are
generated as pseudo-random time-labeled encodings, so we know ahead of time only
the encoding of the output (but know neither the input nor output) of the i-th invocation
of the ORAM. Thus when garbling CCPU , the input encodings use exactly the output
encodings from the respective outputs of the ORAM. Recall in our ORAM protocol the
server sends back the encoded output to the client; here, we do not send it back, and
instead keep the result and use it as input in the next CPU step (which is secure and
correct via Lemma 1).

Then, putting it all together, to garble a RAM program πt that runs in time t, the
program garbling algorithm G generates t garbled CORAM and CCPU circuits, and also
encodes the initial state Σ0 of the CPU with the program initialized, counters set to
zero, and with fresh cryptographic keys. The full construction of G is given the next
section, Section 3.2.

3.2 Main Construction of Garbled Programs

We first describe how to construct the algorithms G,GI,GE. Given a program πt run-
ning in time t, we describe the algorithm G that converts it into a garbled program Πt.
In order to do so, we follow the two steps outlined above and we consider the construc-
tion of a circuit that performs an ORAM query CORAM and a circuit that runs one CPU
step CCPU .

Our garbling algorithmG will provide enough garbled circuits to execute t steps of a
program πt. Each step is a garbled RAM query (done obliviously via ORAM) followed
by a garbled CPU computation. It starts with a garbled encoding of the initial state
Σ0 of the CPU with the program πt initialized, counters set to zero, and with fresh
cryptographic keys. For each of the t time steps, it creates a garbled GC(CORAM ) for
a read/write of that time step, then a garbled GC(CCPU ) to perform a CPU step. We
show how to construct CORAM and CCPU such that they can be garbled and interleaved.
We will show that this garbling is independent of the actual program path, regardless of
what memory locations have been fetched, and is correct and secure.

First, we describe CORAM to mimic an oblivious read/write access to main mem-
ory. For this, it can just perform the steps in our Oblivious RAM, with one difference:
G does not know ahead of time which memory location will be used. Hence, in order
to overcome this, the circuit CORAM must take a memory location as input and inter-
nally formulate what the ORAM client computes. CORAM outputs what the “virtual”
ORAM client would have sent to the server: a garbled circuit GCORAM representing
a read/write query. The novelty in this construction is that when we feed a memory

2 Since the ORAM client uses randomness as well as time-labeled encodings (which are outputs
of the PRF), we will allow these to be inputs to CORAM , so that they may be pre-computed
“for free” rather than computed via the circuit. The circuit consumes these inputs in order to
generate the output garbled circuit without having to evaluate these itself.
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location v into CORAM , the output precisely is a garbled ORAM read/write query rel-
ative to that memory location. In order to hide v, both CORAM and v are garbled into
GC(CORAM ) and V respectively, and by the correctness of garbled evaluation, the out-
put is still GCORAM . By the security of the underlying ORAM, this output GCORAM

can actually be simulated.
Although it is a circuit that outputs another circuit, there is no circularity in this

construction: given a query location and some fixed randomness, the behavior of the
ORAM client is completely deterministic, straight-line, and takes kO(1) · polylog(n)
steps, so the output can be represented by a circuit also of that size. This ORAM client
is independent of the main program CPU which only uses ORAM as an “oracle”. We
emphasize this again, because G will most likely be ran by a client, G does not play the
role of the ORAM client but rather emulates the ORAM client via CORAM , so this is

Inputs: An ORAM query to read/write (v, x) and a query number �. This circuit interprets the
client performing the �-th ORAM query, which uses randomness and time-labeled encodings
based on �. As such, this circuit also takes these randomness bits and pre-computed encodings
as inputs.
Output: A garbled circuit GCORAM representing a read/write ORAM query.
Circuit Description: We describe the functionality of the circuit CORAM . We recall our
algorithm for a ORAM query. Using time-labeled encodings via PRFs, it generates a set of
|B1|+ 2L− 2 garbled GC(Cmatch) which has hard-coded location information built into it,
with corresponding garbled GC(Cnext) circuits, and one final GC(Cwrite) garbled circuit for
writing the element back to the top level (and possibly an update circuit). Although the ORAM
client evaluates these PRFs internally, we do not encode this as part of our circuit CORAM , but
rather we “consume” them as input. Similarly, the ORAM client must use randomness, which
we also consume from the input of CORAM .

1. For the top level, B1, for each bucket, CORAM creates a time-labeled garbled circuit
GC(Cmatch) consuming the input encodings to be used as garbled labels.

2. For subsequent levels i = 2 . . . L:
(a) The circuit CORAM computes q0i = hi(v) and consumes q1i from the input (the input

itself is uniformly random)
(b) Consume two secret keys for encryption sk0

i and sk1
i from the input and create a

garbled circuit GC(Cnext)
(c) Create two time-labeled garbled circuits GC(Cmatch), one that searches for w in

bucket q0i encrypted under sk0
i , and one that searches for w in bucket q1i encrypted

under sk1
i , again consuming the encoding from the input to CORAM .

3. CORAM also creates a garbled GC(Cwrite) that writes the result back to the first empty
position the top level buffer Bk.

4. If � is a multiple of |B1|, then a reshuffle step is performed using the time-labeled garbled
update circuit GC(Cupdate).

5. The combined set of garbled circuits is referred to as GCORAM .

We point out that throughout this entire process, every time a query circuit is created, G incre-
ments � in order to keep track of the time-labeled encodings required by the CORAM circuits.

Fig. 1. The ORAM Client Circuit CORAM
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not a client attempting to capture its own logic in a circuit. We provide a pseudocode
description of CORAM in Figure 1.

Looking ahead, G will garble this circuit and ensure that the output of an ORAM
query has the same encoding as that used to garble CCPU . The algorithm G can then
garble both CCPU and CORAM ahead of time, without having to know the memory
location.

Next, we consider building the circuit which performs a single CPU step in the RAM
program, CCPU that is supposed to perform Σ′,READ/WRITE(v′, x′)← CPU(Σ, x).
In order to hide which instruction is being executed, we build the circuit to take an
instruction opcode and we run every single-step instruction from its constant sized in-
struction set (not all possible program paths) of the CPU. The circuit multiplexes the
actual results using the instruction opcode. This universal instruction is modeled as a
circuit which is of size kO(1) and is independent of the ORAM circuit, independent of
the queried locations, and independent of the current running time.

One may ask the question: How can this circuit be interleaved with the CORAM

circuit if it is independent of it?
The answer is that when G garbles CCPU , the encoding will depend on the output

of CORAM in the previous time-step. Note that this construction is not circular as each
garbling only depends on the previous one, leading up to a total of t time steps. This can
be done because G knows the encoding of the output encoding (but not the output) of
the Oblivious RAM query, which does not depend on the location queried. This output
encoding is then used for the input parameter encoding for GC(CCPU ). We provide a
pseudocode description of G in Figure 2.

Inputs: A program πt with an upper bound on running time t, and a pseudo-random function
family F along with a key s.
Algorithm Description: The algorithm G is performed as follows. It creates an encoding of
the initial state of the CPU, Σ0 with the program πt initialized. It also encodes an initial
program counter and cryptographic keys. We show how to construct CORAM and CCPU such
that they can be garbled and interleaved across t time steps. We must argue that this garbling is
independent of the actual program path, regardless of what memory locations have been
fetched, and is correct and secure.
For each time step i = 1 . . . t, G creates:

1. A garbled read/write query circuit GC(CORAM ) for performing query number i on some
(unknown variable) garbled location Vi (and Xi in the case of a write). G pre-computes
randomness and PRF evaluations and hardwires them. Although G does not know the
eventual output, it knows the encoding of it, which is independent of the queried location.
It uses this encoding for the following:

2. A garbled instruction circuit GC(CCPU ) with input wires of Xi using the encoding from
above, and the input wires of Σi using the output encoding from the previous CPU step.
The output is a garbled location Vi+1 (and Xi+1 in the case of a write) to be used in the
next read/write query and an garbled updated state Σi+1.

Fig. 2. Program Garbling Algorithm G
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Inputs: A garbled program Πt with garbled input X .
Algorithm Description: The algorithm GE is performed as follows. It first stores the initial
encoded program state and inputs into memory. Then, for each time step i = 1 . . . t, GE
performs:

1. Evaluate the garbled query circuit GC(CORAM ) on a garbled memory location Vi. The
output is GCORAM which itself is a garbled circuit that represents a read/write query in
our ORAM protocol. Execute the query playing the role of the server to obtain some
garbled output Xi which is kept locally instead of sent to the client.

2. Evaluate the garbled instruction circuit GC(CCPU ) on garbled inputs Xi and Σi. Obtain a
new read/write query Vi+1.

After t steps, output the final value Xt+1.

Fig. 3. Garbled Program Evaluation Algorithm GE

The algorithm GI for garbling an input of size n is just the time-labeled encodings
starting from wherever the RAM program expects the inputs to be located.

The algorithmGE used to evaluate a garbled programΠt on garbled inputs evaluates
the garbled circuit GC(CORAM ), then executing the garbled instruction GC(CCPU )
one at a time, up to t times. The process is precisely performing the same steps as G
except evaluating garbled circuits instead of generating them. In addition, once it gets
the garbled ORAM query, it must also execute it as well. We provide a pseudocode
description of G in Figure 3.

3.3 Main Result

We now state our main result:

Theorem 1. Assume one-way functions exist, and let the security parameter be k and
let F be a PRF family based on the one-way function. Then, there exists an efficient
Program Garbling triple of algorithms G,GI,GE such that for any πt any t and any
input x of length n, we have the following.

Correctness: ∀x, πt, F, s:
πt(x) = GE [G(πt, t, F, s), GI(x, s)].
Security: ∃ poly-time simulator Sim, such that ∀π, t, x, s, where
|s| = k [G(πt, t, F, s), GI(x, s)] ≈ Sim

[
1k, t, |x|, πt(x)

]
.

Program Size: The size of the garbled program

|G(πt, t, F, s)| = O
(
(|π| + t) · kO(1) · polylog(n)

)
.

Input Size: Let |x| = n and |s| = k. ∀x, s the garbled input size

|GI(x, s)| = O
(
n · kO(1) · polylog(n)

)
.

Proof. We give an outline of the proof of security, and refer the reader to the full
version [20] for the full proofs.

Security. We design the simulator Sim as follows. We know that the server performs
the following:
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1. Evaluate the garbled query circuit GC(CORAM ) on a garbled memory location Vi.
The output is GCORAM which itself is a garbled circuit that represents a read/write
query in the underlying ORAM.

2. Execute the garbled ORAM queryGCORAM playing the role of the server to obtain
some garbled output Xi which is kept locally instead of sent to the client.

3. Evaluate the garbled instruction circuit GC(CCPU ) on garbled inputs Xi and Σi.
Obtain a new read/write query Vi+1.

The underlying Oblivious RAM is secure and uses time-labeled garbled circuits and
encodings and can be simulated by some SimORAM . Furthermore, the underlying Yao’s
garbled circuits are secure, and can be simulated by some SimY ao. Thus, the access
pattern of the ORAM can be simulated even for tampering adversary, and we need only
show that the garbled circuit emulating the ORAM client GC(CORAM ) and garbled
instructions GC(CCPU ) can also be simulated. The garbled circuits can be interleaved
securely due to Lemma 1, and the time-labeled encodings themselves are just outputs
of a PRF. By the security of Yao’s garbled circuits and the underlying PRF, these can
be simulated securely.

4 Application to Secure RAM Computation

We give an example application in which only one party has input and wants to re-
peatedly run programs on this data. Such is the case of secure cloud computing, where
someone stores data in the cloud and then later runs computations against that data.
We emphasize that in this setting, there is no issue of adaptivity because the server has
no inputs. In the typical setting of two-party secure computation, we deal with this by
making the server first perform OTs to retrieve its inputs before the client sends the
garbled program. In the multi-party setting, the technique can be utilized in the Beaver-
Micali-Rogaway paradigm [2] to achieve constant-round MPC with the same approach
as in [2] but with garbled RAM programs. That is to say, in this application, a client
wishes to store some data x on a remote server and then run various RAM programs
on x without the server learning the results of the programs or x itself. Of course, the
client could always ignore the server altogether and run all the programs on x locally,
so we are envisioning a scenario in which the client does not want to carry around all of
its data locally and wants to only store a few cryptographic keys or counters. To apply
Garbled RAM programs to this application, the client first garbles the input x to get
X = GI(x) and sends it to the server. Then for each program the client wants to run,
it recalls the encoding of the previous output and creates a garbled program using the
labels of the previous output as inputs for the current program.

5 Conclusions and Open Problems

Recently, Goldwasser at. al. [12] have shown how to construct a reusable Garbled Yao.
It is tempting to plug it into our construction to achieve reusable GRAM with compact-
ness proportional to program size and independent of its running time. The idea is to
compute poly-many iterations of the CPU computation using reusable Yao (instead of
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sending fresh garbled circuit for each CPU step) where CPU computes its own garbled
keys for each step. This is possible only if there exists poly-time reusable circular-secure
Garbled Yao with input encoding of size independent of the circuit size. Constructing
such a gadget is an interesting open problem even under non-standard assumptions.
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