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Abstract. In this paper we present a novel parallel coordinate based clustering
method using Gaussian mixture distribution models to characterize the conforma-
tional space of proteins. We detect highly populated regions which may correspond
to intermediate states that are difficult to detect experimentally. The data is repre-
sented as feature vectors of N dimensions, which are lower-dimension projections
of the protein conformations. Parallel coordinates are a visualization technique that
lays out coordinate axes in parallel rather than orthogonal to each other, thereby al-
lowing patterns between pairs of axis as well as outliers to be visually identified in
multi-dimensional data. We believe that the size of the resulting clusters may pro-
vide information about the likelihood of the corresponding conformations to exist
as important intermediates. We tested our method on the conformational space for
the enzyme Adenylate Kinase (AdK) which undergoes large scale conformational
changes and used our method to detect clusters which may correspond to exper-
imentally known intermediates. Finally, we compare our clusters with the ones
generated by the K-Means clustering algorithm and discuss the advantages of our
method for the problem of characterizing proteins conformational space.

Keywords: Clustering, Parallel Coordinates, Protein Conformational Search,
AdK, Structural Bioinformatics.

1 Introduction

Proteins are flexible molecules that undergo structural (conformational) changes as part
of their interactions with other proteins or drug molecules [1]. Changes in torsional an-
gles may induce localized changes or large scale domain motions. Characterizing the
conformational space of proteins is crucial for understanding the way they perform their
function. There is promise that understanding the connection between protein structure,
dynamics and function can contribute a lot to our understanding of how molecular ma-
chines function. Therefore, the question of how the structure and dynamics of proteins
relate to their function has challenged scientists for several decades but still remains
open.

Existing physics-based computational methods that sample the conformational space
of proteins include Molecular Dynamics (MD) [2], Monte Carlo (MC) [3] and their
variants, as well as approximate methods based on geometric sampling [4–7], Elastic
Network Modeling [8], normal mode analysis [9], morphing [10] and more. One of
the main challenges in modeling conformational changes in proteins is the difficulty in
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detecting intermediate structures that may correspond to transition states. These inter-
mediate states are transient and therefore hard to detect experimentally, but they may
be crucial to understanding folding, docking, binding and conformational change pro-
cesses, as well as for drug design, since many times a drug is targeted as a transition
state analog or to block the target molecule from undergoing a structural change. In
addition, full-scale conformational search of even a medium sized protein is very de-
manding computationally and the conformational landscape of proteins is many times
rugged and hard to navigate. Therefore, the challenging problem of fully characterizing
conformational pathways in proteins still remains open. Recently, we developed a semi-
coarse grained conformational search method that conducts a fast, approximate search
on the conformational space of proteins undergoing large-scale domain motions [4].
While the method produced feasible conformational pathways, these pathways needed
to be clustered and filtered to extract meaningful intermediate conformations.

In this work we use a variant of the above mentioned conformational search
algorithm [4] to provide an approximate description of the protein conformational land-
scape. The algorithm runs a large number of monte-carlo like searches in the confor-
mational space of proteins undergoing large-scale changes. By repeating the procedure
a large number of times we produce a set of feasible pathways which provide a good
coverage of the space.

In order to find highly populated regions which may correspond to intermediate
structures, we introduce a clustering method that takes as input conformational path-
ways represented by a lower-dimensional projection of the protein conformational space
and outputs clusters of data that can give us information about the likelihood of the
existence of given structures. The method performs a statistical analysis of multi-
dimensional data representing conformations. Each dimension is partitioned in a pos-
sibly different number of blocks using model-based clustering with Gaussian mixture
models and the data flow between pairs of dimensions is analyzed in order to create
disjoint multi-dimensional clusters of conformations and identify structures that are
unlikely to be meaningful local minima as outliers.

Experimental results regarding the conformational space for the enzyme Adenylate
Kinase (AdK) suggest that the combination of our conformational search and clustering
method can help us detect highly populated areas in the conformational space, repre-
sented by large clusters, which may indicate the location of important intermediate
structures in the protein conformational space, as demonstrated by similarity to known
AdK intermediate homologs. In order to evaluate our clustering method, we compare
our results with the ones generated by multiple runs of the K-means algorithm [11, 12]
and present the advantages of our approach.

The paper is organized as follows. Section 2 presents the methods for protein con-
formational search and clustering. The methodology is evaluated experimentally in sec-
tion 3. Finally, the paper is concluded in section 4.

2 Methods

2.1 Protein Conformational Search

We use a semi–coarse grained protein structure representation. The proteins are stripped
of their side-chain and hydrogen atoms and represented at the backbone and C-β level
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(Glycine is represented by its backbone only). We apply a semi-coarse-grained poten-
tial function to approximate the protein energy [13] and an efficient distance measure to
estimate the distance between two protein structures based on the positions and angles
of their secondary structure elements [4]. This measure represents each protein confor-
mation as a feature vector whose size is the order of magnitude of the number of rigid
elements in the protein, thus projecting the structures onto a much lower dimensional
space than its full representation and is more “natural” to protein structures than other
projections such as PCA, since PCA is limited by its linear nature.

The search algorithm used here is a variant of a Monte Carlo search that leads from
one conformational state of the protein (start) to another (goal), applying successive
geometric transformations to a randomly selected backbone degree of freedom of the
structure while retaining only intermediate structures with an energy below a threshold
[4]. We used that method to validate the results at the previous paper. In this paper
we used the Monte-Carlo based search rather than a Robotics based search used in the
previous work [14], since that method tends to bias the results towards the goal structure
and in the present work we wanted to generate as random a sampling of the low-energy
conformational space as possible. The reader is encouraged to refer to [4] for more
details about the conformational search method.

2.2 Clustering Method

Today, the majority of clustering methods for multi-dimensional data incorporates
metric functions that evaluate the distance between feature vectors extracted from a
data-set. In this scenario, multiple dimensions are combined and are simultaneously
considered according to a metric function in order to create a set of clusters.

In this paper, we propose an alternative clustering method based on parallel coordi-
nates [15] and Gaussian mixture models [16], and argue that it is suited for providing
information about the likelihood of the existence of given intermediate conformations
in a protein conformational space.

To formally describe our clustering method, we introduce the following notation.
The symbol C stands for a set of conformations represented by feature vectors in the
data set, n for the conformational space dimensionality and Σ is the n× n covariance
matrix of the data set where each element along the diagonal, Σ [i, i], corresponds to the
variance of dimension di with 1 ≤ i ≤ n. The statistical information provided by Σ is
used to create L , an ordered list of dimensions. The threshold used by the algorithm
to find outliers or conformations that are unlikely to exist is given by τ where 0 ≤
τ ≤ 1. It corresponds to the minimum fraction of diverging vectors that can form a
new cluster, considering the total number of vectors in the original cluster from which
the split occurred. Finally, B stands for the matrix containing information about the
blocks of each dimension’s partition. For instance, B[i, j] corresponds to the block from
dimension j in which the corresponding data value from conformation i is located.

Parallel coordinates is a common way of visualizing high-dimensional geometry and
analyzing multivariate data. Dimensions or axis are laid out in parallel rather than or-
thogonal to each other. Each data value of an n-dimensional vector is positioned on
the line corresponding to its axis, between the minimum (at the bottom) and the maxi-
mum (at the top) values of the axis. Points belonging to the same vector are connected
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Fig. 1. Example of parallel coordinates for a 5-dimensional data set

by lines, which allows patterns between dimensions and outliers to be visually identi-
fied. For example, Figure 1 shows a 5-dimensional data set displayed as a sequence of
parallel coordinates. Notice the inverse relationship between D1 and D2 and the cor-
relation between D2 and D3: lower values of D1 usually imply higher values of D2
and vice-versa; higher values for D2 usually imply higher values for D3 and vice-versa.
Likewise, we can visualize the correlation between D3 and D4 and the cross among
the lines between D4 and D5. Exceptions or outliers corresponding to diverging lines
that disrespect the usual behavior between dimensions can also be spotted using this
technique.

The real strength of parallel coordinates is in modeling relations between variables,
as discussed in [17]. Our method analyzes the variance of each dimension to model
those relations. The model is simply represented using L . The purpose of L is to de-
termine the order in which the algorithm will analyze the data flow between consecutive
pairs of dimensions in order to form clusters.

Given a set C of conformations represented by feature vectors in n dimensions, the
covariance matrix Σ of the data set is generated and all dimensions are placed in L
in increasing order of variance. We do not claim that this arrangement is optimal. The
optimal ordering of the dimensions is a topic for further study.

In order to assign a unique cluster to each conformation and identify outliers our
method first performs a model-based clustering on each dimension separately using
Gaussian mixture distribution models to estimate density. A Gaussian or normal mix-
ture model is a parametric probability density function represented as a weighted sum of
Gaussian component densities. Gaussian mixture models are commonly used as para-
metric models of the probability distribution of continuous measurements or features.
Model-based clustering [18] is based on a finite mixture of distributions, in which each
mixture component corresponds to a different cluster or block. For continuous data, the
most common component distribution is a Gaussian distribution. Choosing a suitable
number of components gc is essential for creating a useful model of the data and for
data partitioning. The authors of [19] state that when a Gaussian mixture model is used
for clustering, there might be an overestimation of the number of clusters. This is be-
cause a cluster may be better represented by a mixture of Gaussians than by a single
Gaussian distribution. In [20] the authors argue that the goal of clustering is not the
same as that of estimating the best approximating mixture model. Indeed, our objective
in this work is not to find the number of components that best approximates the data,
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as an estimation for the number of blocks in each dimension’s partition. Instead, we de-
termine the minimum number of Gaussian components associated to each dimension’s
data, whose Root-Mean-Square deviation (RMSD) corresponds to a local minimum or
approximates a minimum since the RMSD global minimum usually corresponds to a
high number of components.

The process of choosing the number of components gc for the data associated to a
dimension from a sample conformation data set is demonstrated in Figure 2. It starts
with the generation of a fine histogram with N bins corresponding to a sequence of
uniformly spaced single-valued points {xk : k = 1, . . . ,N} with associated data values
{yk : k = 1, . . . ,N}. Then, a set of m Gaussian models with a number of components
varying from 1 to m is used for fitting the histogram’s data. The Gaussian model is
given by Eq. 1 where a corresponds to the amplitude, b is the centroid location, c is
related to the peak width and m is the number of peaks to fit.

f (x) =
m

∑
i=1

aie

[
−
(

x−bi
ci

)2
]

(1)

We analyze the curve generated for the graph where the x-axis represents the number
of components {xi : i = 1, . . . ,m} and the y-axis corresponds to the associated RMSD
values. We choose the smallest number of components with an RMSD corresponding
to a local minimum or to a value that approximates a minimum.

Once the number of components corresponding to the number of clusters for each
dimension is estimated, a Gaussian model-based clustering is used to partition the di-
mensions. Each element of the conformation’s feature vector is assigned to a unique
cluster in the corresponding dimension and this information is stored in B.

(a) (b) (c)

Fig. 2. Illustration of data modeling process: (a) histogram of data in a single dimension, (b) plot
of RMSD versus number of Gaussian components, (c) data fitting with four Gaussian components

Once L and B are generated, the initial conformation clusters are created taking into
consideration only the data and clusters from dimension L [1]. Then, for each pair of
dimensions (L [i],L [i+1]), we continue to refine our initial set of clusters by grouping
the vectors that belong to the same cluster, i.e., those vectors that fall into the same block
in L [i+1]. The vectors comprising the cluster must also satisfy the constraint given by
τ , whereby any ”diverging” set of vectors must have a number of elements greater than
a fraction τ of the total number of vectors in the original cluster. Vectors that do not
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satisfy this constraint are considered outliers or conformations that are unlikely to exist
as meaningful intermediates; such vectors are removed from the clustering process.
The final set of clusters is formed after all consecutive pairs of dimensions have been
considered according to the order given by L and the process described above.

The algorithm for the proposed clustering method takes as input C and τ , and outputs
a set of disjoint clusters as well as a set of outliers. The name of each final cluster shows
the identification of the corresponding dimension blocks. The pseudocode is presented
as Algorithm 1.

Algorithm 1 . Clustering Algorithm

Require: C , τ
Ensure: A set of disjoint clusters and a set of outliers

Compute Σ
Compute L
Compute B
i← 1
Name each initial cluster in L [i] according to the block from which it originated
for all consecutive pairs (L [i],L [i+1]) do

for all clusters up to dimension L [i] do Evaluate Tβ = τ∗cardinality of cluster β
end for
Use B to find and group the vectors that belong to same cluster β up to dimension L [i] and

fall into the same block at dimension L [i+1]
Obtain the cardinality Tgβ of each group g, where β represents the original cluster from

which those vectors originated
if Tgβ ≥ Tβ then

Discard β and create a new cluster with the corresponding vectors
Add the current dimension block identification (at dimension L [i+1]) to the name of the

original cluster β in order to name the new cluster
else

Remove corresponding vectors from clustering process and classify them as outliers
end if

end for

The implementation of the algorithm includes MATLAB scripts and C code.

3 Experimental Results

3.1 Tested System - Adenylate Kinase (AdK)

The conformational search and subsequent clustering was run on AdK. It is a monomeric
phosphotransferase enzyme that catalyzes reversible transfer of a phosphoryl group
from ATP to AMP. The structure of AdK, which contains 214 amino acids, is com-
posed of the three main domains, the CORE (residues 1–29, 68–117, and 161–214),
the ATP binding domain called the LID (residues 118–167), and the NMP binding do-
main (residues 30–67). AdK assumes an “open” conformation in the unligated structure
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and a “closed”conformation. The RMSD between the two structures is 6.95Å. Suppos-
edly, during the transition from the “open” to “closed” form, the largest conformational
change occurs in the LID and NMP domain with the CORE domain being relatively
rigid. Our model contains 8 rigid elements where most of the CORE domain was mod-
eled as one large segment and was considered fixed, since it does not undergo a large-
scale motion. Hence, the data were represented as feature vectors of 8 dimensions each.
We ran the search 30 times in the direction of 1AKE-4AKE and 30 times in the reverse
direction. Overall we collected 11,823 intermediate conformations.

3.2 Resulting Clusters

The data set C generated by our conformational search consists of the 60 pathways
containing 11,823 conformations projected onto an 8-dimensional space which repre-
sents the protein conformational space. In order to perform a model-clustering of each
dimension, the number of blocks in each partition is determined based on the number of
components of the Gaussian mixture model chosen. The process for choosing the num-
ber of components generates histograms with 100 bins and analyzes Gaussian models
with up to 8 components for each dimension. We use MATLAB with default arguments
and the Trust-region algorithm [21, 22] to generate each model. We also used MATLAB
to run the Gaussian model-based clustering, with the number of mixture components as
input argument.

Our experiments use 4 different values of τ , the threshold used for identifying out-
liers: 0.05, 0.1, 0.2 and 0.3. Among all clusters generated by our method, we are inter-
ested in the large clusters (with at least 20 members), which distribute narrowly around
their cluster center. While several of the most populated clusters may contain confor-
mations that are close to known intermediates, some of them are narrower than oth-
ers, regarding their deviation in terms of the centroid location. Since we are evaluating
the RMSD between known structures and the resulting clusters centroid location, nar-
rower clusters may produce more desirable results because their standard deviation is
lower. We observed that for our sample data set, some clusters having at least 20 con-
formations contain conformations that are close to known intermediates structures (see
Section 3.3). Further study is needed to determine the appropriate size for cluster of
interest taking into consideration the standard deviation with respect to the centroid lo-
cation and RMSD from known structures. Table 1 presents statistics about the resulting
clusters according to selected values of τ . Notice that as the value of τ increases, so
does the number of outliers detected by the algorithm.

3.3 Comparison with Known Intermediates

In general, knowledge about intermediate conformations is needed in order to provide
a case-specific validation, but this knowledge does not always exist. As a matter of
fact, intermediate structures are hard to obtain due to their relative high energy with
respect to the native structures. With the advances in structural detection and simula-
tion methods, one can expect to have more information about intermediate states in the
future. AdK has several known mutant and intermediate structures. In a recent study
[23] the energy profile of AdK was produced using elastic network interpolation (ENI).
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Table 1. Statistics containing the number of resulting clusters (not considering the cluster contain-
ing the set of outliers), number of outliers and number of clusters with at least 20 conformations
as well as the number of conformations in the smallest and largest clusters according to selected
values of τ

τ = 0.05 τ = 0.1 τ = 0.2 τ = 0.3
no of clusters 329 231 58 10
no of outliers 567 1703 4380 7547
no of clusters with 20+ conformations 88 75 44 10
size of smallest cluster 1 1 2 85
size of largest cluster 1312 1312 1312 1312

The method was used to generate the conformational transition pathway between the
open and closed form of AdK and back, and compare the intermediates to known struc-
tural intermediates. Inspired by that study, we performed a similar test on our results. We
focused on five known intermediates: chains A, B, and C of the hetero-trimer Adenylate
Kinase from Aquifex Aeolicus (PDB accession code 2RH5), which are conformational
change intermediates of the ligand free AdK [24], 1E4Y, which is an AdK mutant hav-
ing 99% sequence identity with 4AKE and 1AKE and is a closed form of AdK binding
with AP5, and 1DVR, which is a mutant that exhibits LID closure [25]. We selected all
the clusters that containted at least 20 members and recorded for each cluster center the
closest conformation to 1E4Y, 1DVR and to chains A, B and C of 2RH5. Our results
are shown in Table 2. For each intermediate, the table shows the lowest RMSD from the
closest conformation cluster center and the cluster number. We considered only “well-
behaved” clusters, that is - the maximum distance from the cluster average was at most
3Å. Figure 4 shows the distribution of the RMSDs of cluster elements from the cluster
center for these clusters. Notice that the same intermediate was the closest to chains B
and C of 2RHC. This can be explained by the fact that the two chains are very similar
to one another – the RMSD between them is approximately 2Å. The data corresponds
to the result of our clustering method with a threshold τ of 0.05. In fact, this value of
τ provided the best result obtained by our method. Figure 3 shows the intermediate
structures superimposed on the closest cluster center for each intermediate.

Table 2. RMSDs of cluster centers from five known AdK mutants representing intermediate
states. The data were taken from our proposed method, cutoff of 0.05.

Intermediate PDB code 2RH5(A) 2RH5(B) 2RH5(C) 1E4Y 1DVR
Cluster name 1 2 3 1 1 1 2 3 1 2 1 2 1 1 2 3 1 2 1 2 1 1 2 3 1 2 2 2 2 1 3 3 1 1 3 2 2 1 2 1
Cluster size 33 21 21 84 101
RMSD with cluster average† 2.55 2.49 2.89 2.56 2.77

† The RMSD was calculated with respect to the C−α atoms of the aligned residues between the two proteins

3.4 Comparison of the Proposed Clustering with K-Means

In order to validate our clustering algorithm, we compare our results to others gener-
ated by the K-Means algorithm. Weka [26] was the workbench used to run K-Means
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(a) 1DVR (b) 1E4Y (c) 2RH5 (chain A) (d) 2RH5 (chain B) (e) 2RH5 (chain C)

Fig. 3. Cluster representatives (blue) superimposed on known intermediates (red). See Table 2 for
details.
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Fig. 4. Distribution of RMSD of cluster elements from cluster average for the clusters represent-
ing AdK intermediates (see Figure 3 and Table 2. See inset legend for cluster name.

with Euclidian distance and a maximum of 2000 iterations. We selected 3 well spaced
arbitrary values for the number of clusters K within the range of the number of clusters
found by our method (see Table 1): 20, 80 and 150. Table 3 shows the results according
to the number of clusters K. As seen, with K = 20 clusters there was no narrow clus-
ter (with a radius below 3Å) corresponding to intermediates 1DVR and 1E4Y within a
reasonable RMSD. Only at K = 150 the results were comparable to our method.
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Table 3. RMSDs of cluster centers generated by K-Means from five known AdK mutants repre-
senting intermediate states

2RH5(A) 2RH5(B) 2RH5(C) 1E4Y 1DVR
K RMSD size RMSD size RMSD size RMSD size RMSD size
20 2.69 91 2.73 91 3.35 91 – – – –
80 2.64 28 2.71 112 3.17 36 2.58 55 2.88 20
150 2.52 31 2.43 120 2.95 43 2.52 77 2.82 82

The proteins conformational space may contain many intermediate structures that
are unlikely to exist as significant intermediates. Therefore, outlier detection is highly
desirable in a clustering algorithm for the characterization of protein conformational
space. The K-Means algorithm does not allow for the detection of outliers whereas
our clustering method has the advantage of providing a flexible way to detect them. In
addition, there is no a-priory way to know K, the number of clusters, in advance, and
an educated guess has to be made. Our method provides a more deterministic way to
evaluate the number of clusters. As a matter of fact, in this paper K was determined
according to the number of clusters discovered by our method (see Table 1).

4 Conclusion

Characterization of protein conformational space is a very challenging problem due
to the large amount of calculations required to characterize that complex and multi-
dimensional space and due to the scarcity of experimental data regarding intermediate
states. In this paper we presented a clustering method based on parallel coordinates
and used it to characterize the conformational space of AdK and detect highly popu-
lated areas that may correspond to intermediate structures, which are usually hard to
detect using experimental methods. In the case of AdK, however, several intermediate
homologs exist and we were able to find cluster centers corresponding to these inter-
mediates. The advantage of our method over K-means clustering and other standard
clustering methods is that it allows the detection of outliers and does not require the
number of final clusters to be given as input. Also, the parameters can be adjusted to
gain insight about the optimal number of clusters. Detecting the ideal cutoff for the data
and trying to find better ways to merge close clusters is the subject of on-going research.
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