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Preface

This volume contains a selection of the best contributions delivered at the 9th

International Meeting on Computational Intelligence Methods for Bioinformatics
and Biostatistics (CIBB 2012) held at The Methodist Hospital Research Institute
(TMHRI), Houston, Texas (USA), during 12–14 July, 2012.

The CIBB meeting series is organized by the Special Interest Group on Bioin-
formatics and Intelligence of the International Neural Network Society (INNS) to
provide a forum open to researchers from different disciplines to present and dis-
cuss problems concerning computational techniques in bioinformatics, systems
biology and medical informatics with a particular focus on neural networks, ma-
chine learning, fuzzy logic, and evolutionary computational methods. Until 2012,
CIBB meetings were held annually in Italy with an increasing number of partic-
ipants: From 2004 to 2007, CIBB had the format of a special session of larger
conferences, namely, WIRN 2004 in Perugia, WILF 2005 in Crema, FLINS 2006
in Genoa, and WILF 2007 in Camogli. Given the great success of the special
session at WILF 2007 that included 26 strongly rated papers, the Steering Com-
mittee decided to turn CIBB into an autonomous conference starting with the
2008 edition in Vietri. The following editions in Italian venues were held in Genoa
(2009), Palermo (2010) and Gargnano (2011). CIBB 2012 was the first edition
organized outside Italy, and attracted 23 paper submissions from national and
international research groups. A rigorous peer-review selection process was ap-
plied to ultimately select the papers included in the program of the conference.
This volume includes the best contributions presented at the conference.

The success of CIBB 2012 is to be credited to the contribution of many
people. Firstly, we would like to thank the organizers of the special sessions
for attracting so many strong papers, which extended the focus of the main
topics of CIBB. Second, particular thanks are due to the Program Committee
members and reviewers for providing high-quality reviews. We would like to
thank the keynote speakers Jim Bezdek (University of West Florida, USA), Elia
Biganzoli (University of Milan, Italy), and Doug Robinson (SAS-JMP Genomics,
Cary, USA).

February 2013 Leif E. Peterson
Francesco Masulli

Giuseppe Russo
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A Theoretical Analysis of Visual Distributions  
of Ionizing-Radiation-Induced Foci in Human Cells  

by Heavy Ions 

Artem L. Ponomarev1,2 and Francis A. Cucinotta2 

1 USRA, 3600 Bay Area Blvd., Houston, TX 77058 
artem.l.ponomarev@nasa.gov 

2 NASA Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 

Abstract.  Our purpose is to improve counting of DNA damage foci for high-
LET (linear energy transfer) irradiation using computer modeling.  The analysis 
of patterns of DNA RIFs (radiation-induced foci) produced by high-LET Fe 
ions was conducted by a Monte Carlo model that superimposes the heavy ion 
track structure with the human genome on the level of chromosomes.  The im-
age segmentation algorithm is used to compare the Monte Carlo data with expe-
rimental images of RIFs.  In the experiment, we conducted the enumeration of 
radiation-induced foci using immunofluorescence using proteins that detect 
DNA damage.  The model predicts the spatial and genomic distributions of 
DNA DSBs (double strand breaks) in a cell nucleus for a particular dose of rad-
iation that can be compared to the visible distributions of RIFs.  We used the 
model to do analyses for three irradiation scenarios: 1) the ions were oriented 
perpendicular to the flattened nuclei in a cell culture monolayer; 2) the ions 
were parallel to that plane; and 3) round nucleus.  For these scenarios the statis-
tics and spatial distribution of regions of densely arranged foci, termed DNA 
foci chains, were predicted numerically using this model.  We showed that DSB 
clustering needs to be taken into account to determine the true DNA damage fo-
ci yield, which helps to determine the DSB yield. Using the model analysis, a 
researcher can refine the DSB yield per nucleus per particle. We showed that 
purely geometric artifacts, present in the experimental images, can be analyti-
cally resolved with the model, and that the quantization of track hits and DSB 
yields can be provided to the experimentalists.  

Keywords: NASARadiationTrackImage model, ionizing radiation, human 
cells, DNA damage foci, DNA double-strand breaks, image segmentation, 
Monte Carlo method. 

1 Introduction 

Heavy ion radiation will be encountered during future space missions [1] and in ha-
dron radiation therapy [2].  The yield of DNA double-strand breaks (DSBs) from 
heavy ion radiation is an important measure of cellular damage.  DSBs can lead to 
cell death, chromosomal aberrations, mutations, and genomic instability, which can 
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contribute to late effects such as cancer. The DSB yield is sometimes estimated by 
counting radiation-induced foci (RIFs) [3,4,5]. One component of these foci is the 
phosphorylated histone variant H2AX (histone variant 2AX), denoted as gamma-
H2AX, which rapidly accumulates at sites of DNA DSBs [3,6,7,8].  The DSB yield 
per cell at a given dose can be roughly determined by counting foci at a given time 
following radiation exposure.  However, because foci formation is a biochemical 
kinetic process involving both formation and loss of foci [9] there is never an exact 
one-to-one correspondence between the number of DSBs and foci even for X-rays.  
Also, low level background foci may be present that are not associated with DSBs but 
are the result of other cellular processes such as DNA replication [10].  In addition, 
multiple DSBs may be visible as a single focus due to DNA supercoiling [11].  These 
DSBs appear to be closely associated physically, but are actually distally located in 
space along a DNA molecule.  For heavy ions clustering of damage including DSBs 
along the trajectory of the ion leads to further complexities in relating foci counts to 
damage numbers. 

This paper reviews our work that addresses our approaches to overcome the difficul-
ties that arise in accurate enumeration of RIFs that result from merged and closely 
aligned DNA DSBs that often result from heavy ion radiation, where damaged areas 
appear as streaks of merged foci [12].  This blurring, or merging, of foci is practically 
absent in cells irradiated with X-rays or γ-ray -- both low-LET (linear energy transfer) 
radiations, as they are more homogenously distributed in experimental images.  We have 
termed this particular artifact a foci chain, meaning an optically visible chain of several 
foci.  A strict algorithmic definition will be given to the notion of a foci chain with the 
intent to quantitate these objects and to infer the “true” DSB yield.  The algorithm simu-
lates a three-dimensional (3D) cell nucleus and generates the foci in three dimensions.  
The application of the model to the maximum projection images, where the foci are rec-
orded into a two-dimensional (2D) image, is given by the analysis of foci chains in a 2D 
plane corresponding to an experimental image.  To study the relation of DNA DSBs to 
foci we will assume a simplified concept of a DSB: it is a DNA break within a DNA 
locus of approximately 2 kilo base pairs (kbp) in genomic content.  The justification for 
this approximation is given in [11].  Multiple DSBs within the same locus, should they 
occur, will be counted as single events with this approximation. Below we show the key 
results that would enable an experimentalist to quantitate heavy-ion-induced foci accu-
rately and help to resolve streaks of foci in images [12].  This work provides an approach 
to improve the count of foci and information on how to apply these findings to the de-
termination of DSB yields in human cells.  Another application of our visual analysis 
approaches developed herein was made in [13]. 

2 Materials and Methods 

Cells were exposed to 1,000 MeV/n Ti ions at the NASA (National Aeronautics and 
Space Administration) Space Radiation Laboratory at Brookhaven National Laborato-
ry (NSRL), with the beamline parallel to the monolayer of cells.  At 30 minutes after  
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exposure, cultures were fixed with 4% paraformaldehyde for 10 minutes at room tem-
perature and were washed 2 times with phosphate buffered saline (PBS).  Cultures 
were shipped back to JSC (NASA Lyndon B. Johnson Space Center) for further  
analysis. 

For immunostaining, cells were washed in PBS, permeablized using 0.1% Triton 
X-100 for 3 minutes, followed by washing 3 times in PBS.  Cells were blocked with 
1% bovine serum albumin /0.1% Nonidet P-40 for 30 minutes at room temperature, 
and then incubated for 1 hour at room temperature with mouse antibody against 
pSer1981 ataxia telangiectasia, mutated (ATM, or ataxia telangiectasia mutated) 
(Rockland Immunochemicals, Gilbertsville, Pennsylvania, USA) and rabbit antibody 
against γ-H2AX (Millipore, Billerica, Massachussetts, USA).  Following three washes 
with PBS (phosphate buffered saline), cells were incubated with secondary antibodies 
Alexa488 anti-mouse and Alexa594 anti-rabbit (Molecular Probes/Invitrogen 
Carlsbad, California US) for 30 minutes at room temperature, washed 3 times with 
PBS and mounted using ProlongGold containing 4',6-diamidino-2-phenylindole (Invi-
trogen). Images were collected and recorded using a Leica TCS-SP2 Laser scanning 
confocal microscope with a 40X objective (Leica Microsystems, Bannockburn,  
Illinois, USA).   

To generate numerical data we use a research tool with applicable algorithms, 
termed herein as the NASARadiationTrackImage©1 model [11]. The model is used to 
simulate the whole nucleus in a Monte Carlo scheme.  The model uses a random walk 
polymer representation of each chromosome constrained to within territories within a 
cell nucleus of a given volume and shape.  Ion track structure is represented by a radi-
al dose formalism [14].  The application of a stochastic track structure is being cur-
rently tested (not presented here).  The algorithm for induction of DSBs is described 
in [11].  

As an initial estimate, a one-to-one correspondence between foci and DSBs is as-
sumed (even though questioned by some researchers), and, therefore, foci are as-
signed to DSBs as 3D balls of a finite diameter.  The stochastic pattern of DSBs for 
each Monte Carlo realization is produced, which is highly non-random for heavy ions.  
Non-randomness (meaning non-Poisson statistics of objects in a given area) in DSB 
patterns is due to the fact that the majority of DSBs are aligned along the ion trajecto-
ry, with only a very small fraction occurring at distances larger than one micron, as 
determined by the physical track structure [15].  Fig. 1 demonstrates the spatial distri-
bution of DSBs and associated foci.  If the foci touch each other in the 2D equatorial 
plane of a cell nucleus, they are said to be linked.  This projection onto a 2D plane is 
necessary to reflect the experimental technique, in which the maximum projection 
(MP) of cells and objects in cells is used. Such plane has a parallel orientation for the 
flat nucleus parallel to the beam, and a perpendicular orientation to the beam  
in a round nucleus and a flat nucleus perpendicular to the beam.  An MP set of foci,  
in which each focus is linked to another member of the set, is called a focus  
chain. 

                                                           
1 NASARadiationTrackImage refers to the model’s ability to analyze and visualize, via DNA 

damage foci, DSB patterns induced by radiation tracks (copyright by USRA). 
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An alternative method for counting foci is done with a segmentation algorithm. 
The following flowchart briefly outlines how it works [16]: 

 

 
 
 
 

 

 

 

 

 
 
 
 
 
 
 

Input morphological parameters for the maximum object size (volume or 
area), border complexity, and maximum lateral extent in X, Y or Z  

dimension. 

Apply a global low threshold to image I(x, y, z) to remove obvious noise. 
 

Do the first round of sorting to create interconnected sets of pixels (voxels) 
associated with each non-zero pixel (voxel) that satisfy the morphological 

parameters. This procedure creates so-called valid pixels (voxels). 

Check all valid pixels (voxels) for nearest neighbors to combine them into 
final interconnected sets, which are the final objects (such as segmented foci). 
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3 Results 

3.1 Foci Chains  

In Fig. 1, Panel A, foci chains can be seen in an MP (maximum projection) experi-
mental image obtained from high-LET irradiated fibroblasts. The simulated foci 
chains (Fig. 1, Panel B) are shown in a model generated image for high-LET Ti ions. 
The difference is that in Panel A, the image is two-dimensional and obtained by a  
 

 
Fig. 1. Comparison of experimental images and model images of radiation-induced foci. Panel 
A. Formation of radiation-induced foci in noncycling normal human fibroblasts (HF19) ex-
posed to 0.8 Gy Ti ions (E=1,000 MeV/n, LET=108 keV/μm). The simulated cell in Panel B 
received three hits of Ti ions. The scale in the insert below Panel A helps the viewer see the 
image scale and the size of the nucleus. Panel B. The GUI shows a simulated cell nucleus with 
the diameter 12 μm (which gives approximately the same scale for both Panels). Bright color 
fields in Panel B correspond to individual chromosomes, black balls visible inside the simu-
lated nucleus are DSBs and red lines are heavy ion tracks. 
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maximum projection technique.  In Panel B, the simulated foci are 3D objects; albeit 
they are simulated in a flattened nucleus and the foci chain are analyzed also in a 
projection to a 2D plane (parallel to the cell disk, or more precisely, the cell equator).  
In contrast to high LET, a simulation with low-LET X-rays produce foci, which are 
not linked in 99.4% of cases (data not shown). 

To address whether the shape of the cell nucleus had any impact on the model cal-
culations, we performed simulations to calculate the probability of the formation of a 
MP foci chain of a given length in a round nucleus and in a flat nucleus, both with the 
ion beam parallel and perpendicular to the plane of the cell monolayer.  Flat nuclei 
were given by an ellipsoid with the same volume V as the round nucleus but with the 
principal axes (a, b, c) reduced by a factor of 4 in the Z-direction and extended by a 
factor of 2 in the lateral direction (for an ellipsoid, V = abc = 904 μm3).  This orienta-
tion was perpendicular to the beam, a different manipulation of the parameters a, b, 
and c can make the nucleus disk to be parallel to the beam.  

The MP foci chain probabilities (strictly, the P.D.F., or the probability density 
function for a chain of a given length to be realized) for the Fe, He, and Si ions are 
shown in Fig. 2.  Herein, we demonstrate one example with Fe ions, E=1,000 MeV/n 
(LET=150 keV/μm) at D=1 Gy. More examples are given in [12], which include a 
fluence of exactly one ion per nucleus, He ions with E=0.75 MeV/n (corresponding to 
LET = 124 keV/μm), Si ions with E=90 MeV/n (corresponding to LET = 155 
keV/μm).  Using our model, we can vary ion type, LET and fluence to do sensitivity 
studies for the focus chain formation [12].  

 
Fig. 2. The P.D.F. (probability density function) of MP foci chains P(n) vs # foci forming a 
chain. Three situations were simulated: nuclei were round as they might be in vivo; nuclei were 
flat, as they might be in a cell culture. For flat cells, the beam struck perpendicular or parallel to 
the plane of the cell monolayer in a cell culture.  Three types of ions were considered: Fe ions, 
E=1,000 MeV/n (LET=150 keV/μm) at D=1 Gy. 
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The focus chain probabilities show some dependence on the shape of the nucleus. A 
flat nucleus oriented parallel to the beam appears to have a slightly higher probability of 
foci chains for a given n for shorter chains.  Such orientation is what experimentalists 
observe usually.  Even though the P.D.F. is higher for longer chain for the perpendicular 
orientation, one has to keep in mind that these are normalized distribution functions that 
have to cross over to preserve the area under the curve.  Overall, the longer chains are very 
unlikely; therefore, the parallel orientation will have more visible chains from the experi-
mentalist’ point of view.  The data show that the probability to have n foci in a chain even 
though drops off fast, remains non-zero for larger chains.  The probability P for a focus to 
be contained within a chain of length 1, which means an isolated focus (not merged with 
other foci), was P(1)=0.684 for a round nucleus, P(1)=0.731 for a flat nucleus perpendicu-
lar to the beam, and P(1)=0.676 for a flat nucleus parallel to the beam (Fe ions, one ion per 
nucleus, first datum point in Fig. 2).  In Fig. 2, P(1) shows not only how frequently a  
researcher would have to count merged foci (this frequency is given by 1-P(1)), but also 
gives a technique for adjusting the focus count, or focus yield.  From the definition of the 
P.D.F., it follows that the total number of foci is the number of stand-alone foci divided by 
P(1).  Higher P(1) observed for C (Fig. 3) and Si (Fig. 2, 3) ions indicate that the foci 
chains are less likely, as follows from the P.D.F. function definition.  Fe ions, overall, are 
the worst in terms of inducing foci chains because of their higher focus yield per hit in 
addition to high  P(1) and, therefore, the theoretical study is more useful for the Fe ion 
data.  For example, in Fig. 3, for Fe ions, P(1)=0.671; for Si ions, P(1)=0.760; for C ions, 
P(1)=0.860, which means fewer stand-alone foci for Fe ions.  

 

Fig. 3. Comparisons of the P.D.F. of MP chained foci vs. the length of the chain for a flat nuc-
leus parallel to the incident radiation for three ions.  Fe ions have a higher density of energy in 
the penumbra than Si and C ions, which is reflected in the higher likelihood of longer chains of 
foci (D=1 Gy, E=1,000 MeV/n for all ions).  At this energy, LETFe= 150, LETSi  = 43, LETC = 
8 (keV/μm). 
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Other calculations are done to compare the impact of different ions on foci pat-
terns, rather than the impact of the nucleus geometry.  In Fig. 3, all nuclei are flat with 
the nucleus disk being parallel to the particle beam and all ions have energy E=1,000 
MeV/n (but different LET’s).  Other LET’s and E’s are presented in [12].  The other 
data show that, at low energy E (very high LET), the lighter ions (C ions) are more 
likely to produce some chains, as their  P(1) was a little less than for the other ions. 

3.2 Example of Image Analysis 

We can use the image in Fig. 1 as a demonstration of the technique that uses  P(1), the 
probability to have a chain with one focus, or, simply, an isolated focus.  In Fig. 1, 
Panel A, if one uses manual counting of the number of isolated islands of foci (foci 
chains), then the count is about 22. The model prediction, or the automated counting, 
predicts that the number of foci should be 22.0/0.697=31.6.  To reiterate, this is the 
number of apparent foci divided by the model-predicted P(1).  Here and elsewhere the 
data are based on the MP algorithm that allows us comparing the data with the image 
in Fig. 1.  Therefore, we predict that this particular nucleus has 31.6 DSBs. 

We demonstrate the use of an additional tool that NASARadiationTrackImage GUI 
(graphics user interface) has.  The presented segmentation procedure is not a model, 
but rather a technique that counts objects in images, which are foci in this case.  This 
tool was developed as an attempt to automate image analysis and does not take into 
account track and chromatin geometry and statistical effects of DNA damage at dif-
ferent LET. The segmentation algorithm [16] identified 32 objects, which takes into 
account more subtle, not visible to human eye, variations in the intensity between 
neighboring foci (Fig. 4).  In this example, 32 DSBs from segmentation is approx-
imately equal to 31.6 DSBs from the above analysis, which shows that a different 
technique concurs with the model. 

 

Fig. 4. The segmentation algorithm (part of NASARadiationTrackImage GUI) identified at 
least 32 DNA damage foci in the nucleus shown in Figure 1, Panel A. 
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4 Discussion and Conclusions 

This paper addresses the difficulty of counting merged foci, which is used to evaluate 
the number of DSBs in irradiated cells. The proposed analysis is based on the assump-
tion that the number of foci corresponds to the number of DSBs [17,18], even though 
this is not entirely correct [9,11,19].  The problem of the one-to-one correspondence 
of foci to DSBs is not addressed here, in this work we only considered the problem of 
overlapping or chained foci.  The present analysis does not take into account the ki-
netics of foci evolution.  Our analysis is good for a given time in the experiment.  As 
experimental time progresses, the distribution of sizes of foci can change [13].  The 
analysis has not addressed this change in size, even though such analysis can be easily 
added.   

Other important work in the area of foci counting that takes into account chromatin 
organization was done in [19, 20].  These efforts addressed the impact of euchroma-
tin/heterochromatin on foci distributions in images [19], and the impact of chromatin 
remodeling and ensuing DSB relocation to DSB repair centers, as evidenced from foci 
images recorded in 3D, as well as time [20]. 

In radiation assays with high-LET particles, the DNA damage foci form streaks, 
and their density in the vicinity of the track center is sufficiently high to create optical 
complications for the count of foci.  The other two complications include the multiple 
DSBs in a focus and the precise conversion of an isolated focus into a DSB (or lack of 
one-to-one correspondence between foci and DSBs).  

A simple and straightforward way proposed to deal with the merged foci is a mod-
ification of the program, NASARadiationTrackImage [11], where the algorithm that 
simulates MP chained foci gives a better quantification of the merged foci.  These 
simulations produce chained foci both graphically and numerically, and the numerical 
data include a statistics of focus chains of different lengths. 

The presented approach offered a quick way to get a better focus and associated 
DSB yields.  One can use the proposed P.D.F. for the focus chains and P(1), the prob-
ability of a focus to be not chained. Using the definition of a P.D.F., the DSB yield is 
simply  

)1(P

N
DSByield = ,                                                    (1) 

where N  is the number of not chained foci (and other values are defined above). 

The difficulty to count the number of actual foci present in real images was re-
solved by the model analysis.  Estimates on the probability of defined foci chains 
were calculated with a stochastic Monte Carlo algorithm that is based on the track 
structure and predicts the distribution of DNA damage.  The analysis of foci chains 
will be useful for the experimentalists to give proper estimates of the dose-dependent 
DSB yield for high-LET particles. 

Acknowledgments. The simulations were done on the NASA JSC Beowulf computer 
cluster machine. Funding was through the NASA Risk Assessment Project. 
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Abstract. The Monte-Carlo simulation code RITRACKS is used to simulate the 
radiation track structure of heavy ions and electrons. The original version of the 
code RITRACKS was developed to perform calculations using one central process 
unit (CPU). New computers now comprises several cores for computation, 
allowing the processing of several instructions simultaneously and of parallel 
computing. While computers based on multi-core CPU offers potentially 
tremendous improvement in terms of performance, the computer programs which 
were originally developed to work on a single CPU needs to be adapted to use 
multiple cores. In this paper, we discuss how the code RITRACKS was modified 
and adapted to use multiple CPU on a Windows-based workstation by using the 
TThread object provided in the CodeGear(TM) RAD Studio development 
environment. The advantages and limitations of this approach will also be 
discussed. 

Keywords: Multiple CPU computing, Monte-Carlo simulations, radiation track 
structure, C++, TThread object. 

1 Introduction 

The simulation of the radiation track structure is of great interest in several fields, 
such as in radiotherapy treatment planning, micro and nanodosimetry, space radiation, 
radiation chemistry and DNA damage studies [1]. Amorphous track structure models 
have been used for several decades to understand the initial interactions of ions with 
matter [2]. The first Monte-Carlo code track structure simulations was developed 
later, in the 1980's [3]. Since then, many other simulation codes have been developed, 
with different purposes (reviewed in [1]). Because of the stochastic nature of ionizing 
radiation interactions, Monte-Carlo simulations provide a better representation of the 
track structure, which is not described by amorphous track models [4]. However, 
Monte-Carlo codes are more difficult to use than amorphous track models because 
they require much more computation power and time as well as a significant amount 
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of storage space due to the large number of histories which is often necessary to 
minimize statistical fluctuations on the results.  

The software RITRACKS (Relativistic Ion Tracks) is a Monte-Carlo program  
used to simulate radiation tracks for heavy ions and electrons [4-6]. In principle  
any ion track can be simulated if the energy is within the range of which the cross 
sections for interactions of primary particles and secondary electrons with target 
molecules are known. The dose deposited by the radiation can be calculated in 
microvolumes [7] and in nanovolumes (voxels) [8]. An example of a track structure 
calculated by RITRACKS is shown in Figure 1. 

 

Fig. 1. Visualization of the track structure of a 12C6+ ion, 25 MeV/u, as simulated by 
RITRACKS (linear energy transfer ~78 keV/μm) 
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The code has been validated with experimental data. For instance, RITRACKS  
was used recently to simulate radial dose experiments of Schmollack and coworkers 
[9] in 100 nm diameter volumes. Most experimental data such as the frequency of hits 
and the mean energy deposited in the detector per event and per ion were reproduced 
satisfactorily by these simulations.  

The drawback of the use of RITRACKS is its long calculation time. Regarding this 
aspect, the use of computers with multiple CPU can significantly reduce the 
calculation time for a given task and/or allow more tasks to be completed in a given 
time. In this paper, a method developed to use several CPUs on Microsoft Windows-
based systems is explained in details. This method uses the TThread object provided 
in the CodeGear(TM) RAD Studio C++ Builder environment. By using this method, 
we have been able to decrease the simulation time necessary for RITRACKS to 
perform a given task. The program presented here can be easily adapted to parallelize 
similar codes. Finally, simulation performance results are given and issues with this 
approach is discussed.  

2 Materials and Methods 

The code RITRACKS was developed using the CodeGear(TM) RAD Studio 
environment in the programming language C++ and is designed to work on Windows 
systems. The major components of RITRACKS are 1) The differential and integrated 
interaction cross sections of ions and electrons with water; 2) Cross sections sampling 
algorithms and routines; 3) Particles transport routines; 4) Data collection and 
management (notably calculation of dose); 5) Input/output routines; 6) A graphic user 
interface (GUI); 7) A 3D interface for the visualization of the track structure; 8) Cross 
section visualization windows; 9) A help file; 10) Redistributable libraries. The 
calculation part "TrackCalc.exe" is an independent program which is compiled 
separately from the GUI. This part can also be compiled and executed on Linux 
machines. The calculation part of the code RITRACKS calculates the energy 
deposition events, ionization and excitation of water molecules by the heavy ion and 
the energy, the position and direction of the secondary electrons, as well as the tracks 
of the secondary electrons. The ion and electron  cross sections, transport methods 
and simulation results were given in our previous publications [4-6]. The algorithm of 
the calculation part is summarized in Figure 2. 

The computer that was used for this work is a Dell Workstation comprising a 
Intel(R) Xeon(R) CPU E5430 @ 2.66 GHz. This computer is a 4-core using the 
hyper-threading technology, that is, for each processor core that is physically present, 
the operating system addresses two virtual processors, and shares the workload 
between them when possible. The technology is transparent to operating systems and 
programs. Therefore, the 4-core machine behaves as a 8-cores machine.  
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Fig. 2. The algorithm of code RITRACKS 

The steps to use the full features of multiple CPU machines are: 1) Copy of the 
program and necessary input and data files in separate directories; 2) Execution of 
tasks on available CPUs; 3) Collection of results. This is illustrated in Figure 3. 

2.1 Copy of the Program and Necessary Files 

The initial condition file is also created at this time. In each copy of this file, an initial 
SEED value to generate a particular sequence of random numbers is given [10]. 
Therefore, each copy of the program is the same, but is executed by using a different 
sequence of random numbers. Consequently, different tracks are generated by each 
copy of the program, because these random numbers are used as described in [4] to 
generate tracks. Therefore, an average can be made over a large number of tracks in a 
short time.  
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Fig. 3. The use of multiple CPU 

2.2 Execution of Tasks on Available CPUs 

This section is the most important for the use of multiple CPU. In Borland C++, this 
is done by using the object TThread. These objects are used to control the execution 
of the program. Their structure is as follows: 

 
File Unit2.cpp 

 

#include <vcl.h> 
#include "Unit2.h" 
 
__fastcall  
ThreadRunExtProgram::ThreadRunExtProgram(bool 
CreateSuspended, int tNo, int tCPUNo, String wDir,  
String eName, bool sConsole):  
TThread(CreateSuspended) 
{ 
    threadNo         = tNo; 
   threadCPUNo       = tCPUNo; 
   workingDirectory    = wDir; 
   exeName         = eName; 
   showConsole       = sConsole; 
   extThreadNo       = threadNo; 
   dirToThread       = wDir 
  +"\\Copy"+String(threadNo).c_str(); 
} 
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void __fastcall ThreadRunExtProgram::Execute() 
{ 
    lpCurrentDirectory   = workingDirectory+"/" 
              +"Copy"+String(threadNo) 
              +"/"; 
   szCmdLine1       = workingDirectory 
               +"/"+"Copy" 
              +String(threadNo)+"/" 
                 +exeName; 
  
  // Execute external application  
  privateErrorCode    =          
ExecuteExt(threadCPUNo,szCmdLine1.t_str(), 
 lpCurrentDirectory.t_str(), showConsole); 
 
  Synchronize(AffMessage); 
} 
 
void __fastcall ThreadRunExtProgram::AffMessage() 
{ 
  errorCodeThread     = privateErrorCode; 
} 

 
The corresponding header file is 
 

 
File Unit2.h 

 

#ifndef Unit2H 
#define Unit2H 
//-------------------------------------------------------
-------------------- 
#include <Classes.hpp> 
//-------------------------------------------------------
-------------------- 
class ThreadRunExtProgram : public TThread 
{ 
 private: 
 
  String   szCmdLine1; 
  String   lpCurrentDirectory; 
  int    privateErrorCode; 
  int    threadNo; 
  int    threadCPUNo; 
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  String   workingDirectory; 
  String   exeName; 
  bool    showConsole; 
  
protected: 
  void __fastcall Execute(); 
  void __fastcall AffMessage(); 
  
public: 
  int __thread errorCodeThread; 
  int __thread extThreadNo; 
 
  __fastcall ThreadRunExtProgram(bool  
CreateSuspended, int tNo, int tCPUNo, 
  String wDir, String eName, bool sConsole); 
}; 
//-------------------------------------------------------
-------------------- 
#endif 

 
The main parts are the creation (ThreadRunExtProgram(...)), the execution (Execute()) 
and synchronization with variables which do not belong to the thread (AffMessage()). 
Most variables used in Unit2.cpp and Unit2.h have self-explanatory names. The objects 
ThreadRunExtProgram are declared as follows in the main program: 

ThreadRunExtProgram **threads  = new 
ThreadRunExtProgram*[nMaxThreads]; 

where nMaxThreads is the max number of threads, set arbitrarily to 10000. They are 
initialized as follows: 

for (int i=0; i < noThreads; i++) { 
 
 threads[i]     = new ThreadRunExtProgram(true,    
          i, i%nCPUUsed,                   
          workDirectories(i).c_str(), 
          "TrackCalc.exe", showConsole); 
 threads[i]->FreeOnTerminate   = true; 
 threads[i]->OnTerminate   = EndOfThread; 
} 

The variable CreateSuspended is set to true, to prevent the threads from being 
executed at this  moment. A CPU number i%nCPUUsed is assigned to the task, since 
it is possible to execute the program "TrackCalc.exe" on a specific CPU by using the 
routine given in Appendix I. The function EndOfThread() is called when the thread is 
done. The instruction WaitForSingleObject() in the routine ExecuteExt() is 
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particularly important, because the thread is halted at this point and waits for the 
program "TrackCalc.exe" to complete or for a run-time error to occur.  

The threads are executed as follows: 
 

for (int i=0; i < noThreads && i<nCPUUsed; i++) { 
 threads[i]->Resume();   
} 

 
The variable nCPUUsed indicates the number of CPUs which should be used for the 
simulation. It is possible to execute more tasks than the number of CPUs 
simultaneously, but the program limits the nCPUUsed to the total number of CPUs to 
avoid more than one task running simultaneously on the same CPU.  The routine 
EndOfThreads() is called whenever a task is completed.  

 

void __fastcall TForm1::EndOfThread(TObject *Sender) 
{ 
 ThreadRunExtProgram *threadTemp   = dynamic_cast 
<ThreadRunExtProgram  *>(Sender); 
 int nT                = threadTemp 
  ->extThreadNo; 
 
 if (threadTemp->errorCodeThread==0) { 
  statusLabels[nT]->Font->Color  = clBlack; 
  statusLabels[nT]->Caption    = "Simulation    
                     complete"; 
  completeExecution[nT]      = true; 
 } 
 else 
 { 
  statusLabels[nT]->Font->Color  = clRed; 
  statusLabels[nT]->Caption    = "This 
                        simulation  
                     crashed!!"; 
  crashedTasks++; 
 } 
 
 completedTasks++; 
 
 int noNext              = nT+nCPUUsed; 
 
 if (noNext<noThreads) { 
  threads[noNext]->Resume(); 
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  statusLabels[noNext]->Caption  = "Starting 
                      simulation"; 
  Form6->Update(); 
 } 
 if (completedTasks==noThreads) 
 { 
  Form1->RichEdit1->Lines->Append("All threads  
    complete. Collecting results."); 
  PostSimulation(); 
 } 
} 

 
The instance of ThreadRunExtProgram which called the routine EndOfThreads() is 
obtained by using the function dynamic_cast. The routine EndOfThreads() then 
verifies if an error code is returned, which indicate that there was a run-time error in 
the execution of the program "TrackCalc.exe". Then the next task is executed.  

2.3 Collection of Results 

When all the tasks are completed, the routine PostSimulation() is called. The results from 
the different simulations are compiled and averaged in this routine. An important aspect to 
consider regarding the collection of results is the synchronization of the threads. To 
optimize the CPU usage, all processors should be assigned a similar task. By using the 
approach described in this paper, since the only difference between threads is the sequence 
of random numbers, all threads are expected to complete more or less at the same time. 

3 Results  

The simulation time to perform the simulation of 50 12C6+ of 25 keV/μm tracks for a 
given number of CPUs is given in Figure 4. 

The number of CPUs in use can be verified by looking at the Performance tab of 
the Windows Task Manager. A sharp rise in the CPU usage  is usually seen on the 
active CPUs. The simulation time decreases by from 529 s to 282 s by using two 
CPUs instead of one. Then the simulation time decreases to a lesser extent to reach a 
plateau at ∼200 s when four or more CPUs are used. Similar studies of the simulation 
time for a given task as a function of the number of CPUs used were performed (not 
shown); similar results regarding the calculation time were found. The fact that there 
is no improvement of the calculation time by using over four CPUs may indicate that 
our method do not use the full advantages of the hyperthreading technology. 

We have also calculated the number of tracks a per second function of the 
number of CPU. as shown in Figure 5. To perform this study, each processor is 
assigned the task of simulating 20 tracks. 
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Fig. 4. Simulation time as a function of the number of CPU for the simulation of 50 12C6+ ion 
tracks, 25 MeV/amu 

 
Fig. 5. Number of calculated tracks per second as a function of the number of CPU for 12C6+ 
ion tracks, 25 MeV/amu. Each CPU is assigned the task of simulating 20 tracks. 
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The number of calculated tracks per second increase from ∼0.09 tracks/s for 1 CPU 
to ∼0.24 tracks/s for 4 CPU. The number of calculated tracks per second do not 
increase much by further increasing the number of CPU.   

4 Discussion 

Processors comprising several CPUs are now routinely used in today's computers, and 
there is a trend for manufacturers to increase the number of CPUs present in each 
machine. These processors have the potential to greatly increase performance of 
programs, but it is necessary to parallelize the codes to use their full potential. In this 
paper, we have presented the improvement in simulation time by using multiple CPU 
for the code RITRACKS. Although the gain of performance is relatively modest, 
there are many good reasons to use this approach. First, a gain of a factor 2-3 may 
means that several hours or days of calculations can be saved. Second, the 
parallelization code presented here is expected to yield further gain of performance on 
newer systems comprising more cores. Third, when a long simulation is done by a 
conventional program using one CPU, it may crash. In most cases, the data is usually 
lost. The simulation using multiple CPU can be useful, because the final results are 
obtained by averaging the data from successful tasks only. Therefore, it may also help 
the software development by tracking errors, because the same program can be 
executed simultaneously using different initial conditions, notably a different 
sequence of random numbers.  

An issue possibly limiting performance with multicore computers may be the 
input/output (I/O), notably writing to disk. If several processes are writing to the same 
disk simultaneously, it may significantly slow down the whole task. Even if the disk 
is partitioned, the processes are writing to the same physical disk. Therefore it may be 
useful to have several physical hard drives on a computer comprising multiple cores. 
It would be possible to assign a disk to a task. Another issue that was encountered 
regarding I/O was copying of files, which is done automatically by the program 
before and after the threads. We have found that the conventional built-in Microsoft 
Windows "copy" and "xcopy" commands are not thread-safe, and that some files were 
not copied correctly. The situation was improved by using the command "Robocopy" 
included in the Microsoft Windows Resource Kit, but not fully corrected. Therefore 
we have added the option to verify if a copy is done properly after an attempt.       

Parallelizing a computer code is not a simple task, and there are probably several 
ways for doing it. In our case, the threads are independent from each other; therefore 
the approach presented in this paper is relatively simple and may also be used for 
similar programs, notably Monte-Carlo simulation codes which usually require a large 
number of histories. The method presented here can be easily modified to execute 
other programs using multiple CPU, allowing faster computational time and/or use of 
larger number of histories. Another technology, the general purposes graphic 
processing units (GPGPU) have appeared recently. These are improved graphic cards  
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comprising multiple cores with a simpler architecture than normal CPU, and which 
can be used to speed-up parallel calculations. Unfortunately, Monte-Carlo track 
structure codes are too complex to use with available GPGPU.  
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Appendix I: Routine to Execute a Program on a Specific CPU 

The following code is used to execute a program on a specific CPU, and wait for it to 
complete. 

#include <windows.h> 
#include <strsafe.h> 
 

int ExecuteExt(int CPUNo, String processName,  
LPCTSTR lpCurrentDirectory, bool showConsole ) 
{ 
 DWORD    dwExitStatus; 
 STARTUPINFO   si         = {sizeof(si)}; 
 PROCESS_INFORMATION  pi      = {0};     
 char     *pszArgs; 
 ULONG    ulValue; 
 DWORD_PTR  dwProcess, dwSystem; 
 DWORD    dwCreationFlags;  
 DWORD    dwExitCode       = 0;   
 DWORD    RetCode;          
 String    sCPUNo         = CPUNo; 
 String    space         = " "; 
 

 String    sCmdLine        =   
             sCPUNo+space+processName; 
 PSTR      szCmdLine       =  
             sCmdLine.t_str(); 
 TCHAR*    appName        = 
             processName.t_str(); 
 

 if (showConsole) { 
  dwCreationFlags = 
   CREATE_SUSPENDED|NORMAL_PRIORITY_CLASS; 
 } 
 else 
 { 
  dwCreationFlags =  
    CREATE_SUSPENDED|CREATE_NO_WINDOW; 
 } 
 

 pszArgs              = szCmdLine; 
 

 // Make sure we got a valid cpu index 
 ulValue = 1 << strtoul((const char *)  
  &szCmdLine[0], &pszArgs, 10); 
 GetProcessAffinityMask(GetCurrentProcess(),  
  &dwProcess, &dwSystem); 
 ulValue &= ulValue & dwSystem; 
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 if (!ulValue || pszArgs == &szCmdLine[0]) 
 { 
  MessageBox(NULL, "cpcpu <CPU n> <command  
    line>\r\n\r\nn = 0 based CPU index", "USAGE",  
    MB_ICONINFORMATION); 
  return ~ERROR_SUCCESS; 
 } 
 

 while(*pszArgs && isspace(*pszArgs)) pszArgs++; 
 
 

 if (*pszArgs) 
 { 
  CreateProcess(NULL, pszArgs, NULL,NULL,FALSE,  
    dwCreationFlags, NULL,lpCurrentDirectory,&si, 
   &pi); 
 

    // Handle from CreateProcess is 
     PROCESS_ALL_ACCESS  
    if (pi.hProcess) 
  { 
   // Make it run where we want 
   SetProcessAffinityMask(pi.hProcess, ulValue);     
   ResumeThread(pi.hThread); 
 

   // Wait for the process to finish 
   WaitForSingleObject(pi.hProcess,INFINITE); 
 

   GetExitCodeProcess( pi.hProcess, &RetCode ); 
 

   CloseHandle(pi.hThread); 
   CloseHandle(pi.hProcess); 
  } 
  else 
  { 
   int er = GetLastError();  
   return er;  
    } 
 } 
 else 
 { 
  MessageBox(NULL, "cpcpu <CPU n> <command  
    line>\r\n\r\nn = 0 based CPU index","USAGE", 
   MB_ICONINFORMATION); 
  return ~ERROR_SUCCESS; 
 } 
 return RetCode;  
} 
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Abstract. Although moderate dose (0.5 to 2 Gy) of  ionizing radiation (IR) is 
well recognized to cause various disorders of the hematopoietic system (e.g., 
short-term effects like cytopenia, and long-term effects like leukemia), many 
quantitative aspects of the dynamics of the hematopoiesis response to long  
duration low dose rate IR still require additional investigation. Recently two 
cell kinetics models after acute radiation exposure are proposed to describe the 
perturbation of granulocytes and lymphocytes, respectively, in peripheral blood 
of various mammals. These two models are indeed built on a similar coarse-
grained structure of hematopoietic system, thus they have the potential to form 
a unified model to characterize the mammalian hematopoietic system after var-
ious types of IR exposure. In this study we investigate the capability of the 
models to simulate the data of hematological measurements of the Techa River 
residents chronically exposed to IR in 1950-1956. Our modeling investigation 
indicates human hematopoietic precursor cells are more sensitive to chronic 
radiation than previously considered.  

Keywords: biomathematical model, hematopoiesis system, radiation effect, 
chronic radiation. 

1 Introduction 

Space radiation is one of the many unavoidable factors that may cause serious health 
hazards to astronauts in space exploration. Beside the unpredictable sporadic solar 
particle events (SPE) which can impose relative large dose of radiation in a short 
timeframe, low level chronic radiation from Galactic Cosmic Rays (GCR) with high-
energy and charge particles is another major concern due to the particles’ high pene-
trating power to deep seated organs and their high radiation quality factors [6, 7, 8]. 
Among many tissues/organs of the human body that are sensitive to IR, the hemato-
poietic system is one of the most vulnerable. It has been established that the  
hematopoietic stem cell pool is very radiosensitive, even low level of IR exposure can 
cause perturbation in its proliferating function as well as its own maintenance [19]. 
This pool is responsible for the maintenance in the peripheral blood of different blood 
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cell types (erythrocytes, granulocytes, platelets, lymphocytes, etc.), which perform 
many important functions such as oxygenation, nutrient and waste  transportation, 
defense and immune response, coagulation, etc. Appraise the risk of human hemato-
poietic stem cell and hematopoietic system under various scenario of space radiation 
is one of the most important task for future space radiation protection [16]. 

Recently we have investigated two mathematical models of blood cell kinetics af-
ter radiation, based on a coarse-grained hematopoietic scheme proposed by Smirnova 
et al. [15, 18, 20]. One is for the granulopoiesis system, which describes the dynami-
cal interactions of neutrophiles, eosinophiles, and basophiles in peripheral blood and 
their progenitor compartments in bone marrow. By utilizing species-dependent hema-
topoietic and radiobiological parameters for beagle dog, rhesus monkey, and human, 
this model can generate results consistent with experiments and empirical records 
from various sources, involving acute, protracted, and chronic radiation [12, 13]. 
Another model is for the lymphopoiesis system, which analyzes the lymphocyte 
changes in the blood of exposed human victims in radiation accidents [14]. Model 
simulations with reported absorbed doses as inputs can qualitatively and quantitative-
ly describe a wide range of accidental data in vastly different scenarios. In addition, 
the absolute lymphocyte counts and the depletion rate constants calculated by this 
model show good correlation with two widely recognized empirical methods for early 
dose assessment [14]. These works demonstrate the potential to use Smirnova’s mod-
els to build up a unified model to characterize mammalian hematopoietic response  
to IR. 

Granulocytes and lymphocytes are the main components of mammalian immune 
system. The neutrophiles, the dominant type of granulocyte in all mammalians, are 
highly phagocytic and can kill a variety of microorganisms. The eosinophiles and 
basophiles are specialized to participate in allergic inflammatory responses [3]. Lym-
phocytes comprise of  T cells, B cells and natural killer (NK) cells. NK cells are a 
part of the innate immune system and play a major role in defending the host from 
both tumors and virally infected cells.  T cells are involved in cell-mediated immuni-
ty, whereas B cells are primarily responsible for humoral immunity (relating 
to antibodies). Though these peripheral cells have different radiosensitivity, all origi-
nate from a same hematopoietic stem cell pool, and all show certain degree of  
depression after acute, protracted, and chronic radiation [13, 14].  

Previous study on beagle dogs indicates the chronic radiation effects of granulo-
cytes can be modeled with a same scheme as the acute radiation but with a dose-rate 
dependent radiosensitivity parameter for bone marrow precursor cells [13]. Recently a 
series of results were published for the hematological measurements of the Techa 
River residents chronically exposed to IR in 1950-1956 [1, 2]. This prompts us to 
investigate the dose-rate dependent relationship for human hematopoietic system, so 
that the canine model can be reasonably extended to human model. In this study, 
based upon the suppressed levels of granulocytes and lymphocytes under different 
levels of chronic radiation, we find a unified relationship between the chronic dose-
rate and radiosensitivity parameters can be identified, both for the granulopoiesis and 
lymphopoiesis models. This reinforces the modeling power of Smirnova’s scheme on 
the radiation effects on mammalian hematopoiesis systems.  
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2 Mathematical Models 

Based on the hematopoietic scheme of Smirnova [15], each hematopoietic line con-
siders three coarse-grained compartments according to the degree of the maturity and 
differentiation of the cells: 

• X1, the bone-marrow precursor cells (from stem cells in the respective microenvi-
ronment to morphologically identifiable dividing cells); 

• X2, the nondividing maturing bone-marrow cells; 
• X3, the mature cells in peripheral blood. 

The granulopoiesis model considers also the mature granulocytes in various tissues 
(X4), as granulocytes only transiently stay in blood (usually a few hours), then migrate 
into tissues in an age-independent manner.  

As nondividing maturing-only cells and mature cells for granulopoietic line are 
much more radio-resistant [11], only X1 cells in granulopoiesis are assumed to be 
affected by radiation. Under whole body irradiation at a dose rate N, the dynamics of 
the concentration of four cell compartments is 

     (1)

     (2)

     (3)

     (4)

where ix (i=1-4) are the concentrations of cells in compartment i, B is the reproduc-
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intact from any radiation damage. The dynamics of the damaged cells are described 
by 

     (5)

    111
11

1

1

1
d

d xx
D

N

dt

dx ν
ρ

−
+

= , (6)

,111
1 x

D

N
xBx

dt

dx

c

−−= γ

,21
2 xx

dt

dx δγ −=

,32
3 xx

dt

dx κδ −=

,43
4 xx

dt

dx ψκ −=

,1111
1

1
wdcwdwd

c

wd xxBxx
D

N

D

N

dt

dx νγ −−+







−=



 Modeling the Depressed Hematopoietic Cells for Immune System 29 

    121
1

1

1

1

1 hd
hd xx

D

N

dt

dx ν
ρ

ρ
−

+
= , (7)

where xwd1, xd1, and xhd1 are the concentrations of weakly damaged, damaged cells, 
and heavily damaged X1 cells, respectively, D1 is the conventional radiobiological 
dose D0 for X1 cells, i.e., a dose after which the cells in this compartment lose 63% of 
their initial number, ρ1 the ratio of the numbers of Xd1 and Xhd1 cells, and νc, ν1 and ν2 
the specific death rates of three types of damaged cells.  

Based on the implicit regulation mechanism, the production rate of X1 cells is de-
termined by other parameters and cell concentrations: 

1
44332211111 ]})([1/{ −+++Γ+Φ+++= xxxxxxxB hddwd θθθθβα ,  (8) 

where α is the maximum specific rate of cell division, θi (i=1-4), Φ, and Γ represent 
the dissimilar contribution of different cells to the regulators production.  

For lymphopoiesis model, as both mature lymphocytes and their precursors are ra-
diosensitive [4], each compartment in this system is assumed to be perturbed by radia-
tion [15], and the corresponding equations are: 
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groups of cells [13, 14]. The control parameters and radiosensitivity parameters are 
species dependent, which have been estimated based on the information of conven-
tional hematological and radiobiological studies with different species [13, 14]. 

3 Results and Discussions 

We first show the modeling investigation of chronic radiation effects on beagle dogs 
and our previous attempt to extrapolate the model to humans. The experimental data 
of chronic radiation effects are retrieved from reports of researchers at Argonne Na-
tional Laboratory, which documented granulocyte concentrations of beagle dogs over 
long-term chronic gamma-rays irradiation at various levels [17]. From these data, it is 
noteworthy that, if the dose-rates are low enough, the granulocytes in the peripheral 
blood is stabilized at a lower level, and the subjects can survive very high accumulate 
doses for many years. At levels of 3.0, 7.5, and 18.8 mGy d-1 of total body irradiation, 
the granulocytes concentrations in dogs are reduced to about 65%, 51%, and 41%, 
respectively, of the normal value [10]. Their experiment also indentified a threshold 
of dose-rate between 37.5 and 75.0 mGy d-1, beyond which the hematopoietic system 
may fail [17].   

 

Fig. 1. Modeling the suppression of granulocyte level of beagle dogs under various levels of chron-
ic irradiation, using a dose-rate dependent radiosensitivity scheme of canine granulopoiesis model. 
The simulated stabilized concentrations of granulocytes are all consistent with experimental data 
(see text). 
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For acute and high dose-rate protracted irradiation, we used a fixed radio-
sensitivity parameter for the dividing cell pool [13]. We found this scheme does not 
apply to chronic radiation. If a constant radio-sensitivity parameter is used, the model 
could not regenerate the suppressed levels of granulocytes consistently. Instead,  
using a dose-rate dependent radio-sensitivity parameters Dc=30.9N+0.0869 for X1 
cells, and a smaller rate of X1 cell division α (0.8→0.6) (i.e., assuming a suppressed 
proliferation capability under chronic radiation), with all other parameters kept the 
same as in the acute model, the chronic model can accurately simulate all three sup-
pressed levels of granulocytes in beagle dogs at different dose-rates (Figure 1). With 
these assumptions, the level of depressed granulocyte at a rate of 37.5 mGy d-1 is 
predicted to be about 37% to normal, which is also consistent to the experimental 
report [17]. 

The above Dc-N relationship indicates the compartment of the intact X1 cells ac-
quire certain radio-resistance with the increase of the daily dose-rate. This relation 
was found by fitting the model to experimental data and, interestingly, happens to be 
well correlated to the daily dose-rate threshold beyond which the chronic irradiation 
onto the dogs is life threatening [17]. According to this relationship, the highest dose-
rate compatible to the model is about 42.5 mGy d-1. For a dose-rate higher than this 
threshold, the model becomes unphysical and cannot generate meaningful result. 

In a previous study [13], as no hematopoietic data for human could be found in li-
terature for chronic radiation, a similar treatment was applied to human granulopoie-
sis models, i.e., the X1 cell division rate α was scaled from 0.6 to 0.5, and a same Dc-
N relationship as for canines was applied.  We modeled the granulopoietic effects of 
astronauts under chronic dose-rate 1.5 mSv d-1, which has been predicted for the GCR 
near solar minimum [5]. Though the level of granulocytes in blood is just slightly 
depressed (to a level around 90%), according to our model, there will be persistent 
presence of weakly damaged X1 cells in bone marrow [13].   

Recently a series of results were published for the hematological measurements 
of  the Techa River residents chronically exposed to IR in 1950-1956 [1, 2, and ref-
erences therein]. These works show distinguished dose-rate effects on the inhibition 
of different blood cell lines, as well as the deterministic characteristics of the radiation 
response over a large cohort of human population (Figure 2). Modeling investigation 
has been conducted with an approach of time delayed differential equations [2].  
However, it requires a large number of parameters, such as the steady-state number of 
hematopoietic stem cells, parameters of feedback regulating function of different cell 
lines, which are not currently well characterized. Particularly, the model relies upon 
the contribution of the accumulative dose as well as the dose rates. The animal expe-
riments previously conducted clearly demonstrate the suppressed level of hematopoie-
tic cells are only dose-rate dependent, which could be maintained for many years  
as long as the dose rates are not life threatening [17]. The results of our previous  
investigations indicate Smirnova’s scheme of hematopoietic models appear to be 
more appropriate to describe this feature.  
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Fig. 2. Data of blood counts for four blood lines, obtained during the years of maximal expo-
sure to radiation (1950-1956) for inhabitants of the Techa River. The figure is taken from [2] 
with the publisher's permission. The counts of cohorts with no radiation are used as normal 
values in this study. 

To model the depressed levels of lymphocyte counts of the Techa River due to 
chronic radiation, the chronic lymphopoiesis model assumes a suppressed division 
rate of X1 cell (α=0.5 instead of 0.6), and the same Dc-N relationship as for canines, 
with other control parameters and radiobiological parameters the same as the acute 
human model previously applied to simulate the empirical data of accidental patients 
[14]. This treatment is guided from the previous investigation of the canine model for 
chronic radiation [13]. However, the modeled results are found not consistent with the 
recorded data. The simulated concentrations of lymphocyte in peripheral blood at all 
dose-rates are significant higher than the recorded data (Figure 3). This disagreement 
could be due to several reasons, which include deficiencies in our model, errors in 
dose reconstruction methods, the possibility of doses from internal emitters including 
alpha particles, and possible differences in radiation sensitivity between cohorts  
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Fig. 3. Rescaled lymphocyte counts of inhabitants of the Techa River subdued by chronic radia-
tion, and model simulations of different schemes. The normal value is assumed 2.3 ×109 
cells/L. 

studied in the report and our estimation. We are unable to account for most of these 
possibilities, but seek to adjust the scheme used for canine model to improve the 
model agreement with the radiation response of human hematopoietic system. Though 
the canine model and human model share a same general structure, their parameters 
are much different from each other [13].  

We thus tried to modify the Dc-N relationship to see whether a better fitting be-
tween the model and recorded data could be achieved. As the results indicate the hu-
man precursor cells are apparently more sensitive to chronic radiation than canines 
(Figure 3), the value of Dc for human at a dose rate N should be smaller than the cor-
responding value for canine. A modified Dc-N relationship is found to provide a better 
fitting between the model and recorded data at all dose rates (Figure 3).  

As the granulopoiesis model shares a same coarse-grained hematopoietic structure 
with the lymphopoiesis model, and the X1 cells in both models refer to the same pre-
cursor cells cohort, it is vital to check whether this modified Dc-N relationship also 
applies to the granulopoiesis system. The Techa River data provides the neutrophile 
counts for groups under different dose rates (Figure 2) [2]. As neutrophiles are  
the main components (up to 99%) of granulocytes, their kinetics under chronic  
radiation should follow a same scheme as the granulopoiesis model. We found, if the 
canine Dc-N relationship is applied, the simulated inhibition neutrophiles due to  
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Fig. 4. Rescaled neutrophile counts of inhabitants of the Techa River subdued by chronic radia-
tion, and model simulations of different schemes. The normal value is assumed 3.75 ×109 
cells/L. 

chronic radiation is also significantly underestimated (Figure 4). On the other hand, 
the modified Dc-N relationship gives a much better fitting between model and record-
ed data (Figure 4). This demonstrates a unified dose-rate dependent radiosensitivity 
parameter applies to both of the lymphopoiesis and granulopoiesis systems for hu-
mans under chronic radiation, and confirms that, barring possible dosimetry errors in 
the Techa river study, the human hematopoietic precursor cells are more sensitive to 
chronic radiation than the cell compartment in the previously well-characterized ca-
nine model.  

4 Conclusions and Future Work 

A unified dose-rate dependent radiosensitivity parameter is found to be applicable to 
both lymphopoiesis and granulopoiesis systems for human. This is not unexpected as 
both models follow a same coarse-grained scheme of hematopoietic structure, and 
particularly, the mature lymphocytes and granulocytes in peripheral blood are devel-
oped from a same precursor cell cohort [3]. Moreover, this modeling investigation on 
the Techa River hematological data indicates the previous assumption of the radiosen-
sitivity parameter for human hematopoietic stem cells need to be corrected [13]. The 
Techa riverside area is known as the only region in the world where a significant 
number of the population suffered from chronic radiation for a long time period.  
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Though a historical tragedy, the collected data and consequent analysis can be of 
great value to the study of the mechanisms involved in the development of chronic 
radiation effects in humans, which is essential to radiation protection in future human 
space exploration. 

In addition to the lymphocyte and granulocyte data, the Techa River hematological 
data also contains platelet and erythrocyte counts [2]. It will be of interest to investi-
gate whether the hematopoietic scheme of this study also applies to these cellular 
lines. Based on our previous studies, this scheme appears to have the potential to 
build up a unified model to characterize mammalian hematopoietic response to vari-
ous scenarios of radiation, which has been pursued by many researchers for several 
decades [4, 9]. 
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Abstract. This paper presents an approach to medical image registration using a
segmentation step based on Fuzzy C-Means (FCM) clustering and the Scale In-
variant Feature Transform (SIFT) for matching keypoints in segmented regions.
To obtain robust segmentation, FCM is applied on feature vectors composed by
local information invariant to image scaling and rotation, and to change in illu-
mination. SIFT is then applied to corresponding regions in reference and target
images, after the application of an alpha-cut. The proposed registration method is
more robust to noise artifacts than standard SIFT. The paper shows also a method
for FCM clustering speeding-up based on a dynamic pyramid approach using low
resolution images of increasing size.

1 Introduction

Image registration [13] is the process of aligning images so that corresponding fea-
tures can easily be related. In medical imaging it allows us to extract complementary
information from different modalities, and to compare accurately images from the same
modality [4,10]. Recently, registration has been also applied in image guided surgery
interventions, and in serial imaging analysis for the study of diseases progression.

To achieve image registration, the computer rotates, scales and translates one im-
age (target image) to match another image (reference image). Methods to perform the
registration can be categorized as feature-based, intensity-based, and gradient-based,
although hybrid approaches are possible [13]. In feature-based methods the registration
is based on the correspondence of a small set of salient points, landmarks, or on align-
ment of segmented binary structures in images being registered (e.g., lines, curves or
points matching). These methods are relatively fast, but they are lacking in robustness
of feature extraction and accuracy of feature matching. Furthermore, extracted features
need to be invariant to image deformations. To this aim, because of the noise entailed
in medical images, some preprocessing steps are usually applied to enhance feature
appearance using image gradients and gamma corrections. In particular, the accuracy
of the registration result depends on the quality of the previous region segmentation
procedure.

Medical image segmentation methods are usually based on gray level features (e.g.,
histograms, edges, regions), texture features (e.g., first or higher order statistics, spec-
tral methods) correspondence, or also on model based or atlas based techniques [13,14].

L.E. Peterson, F. Masulli, and G. Russo (Eds.): CIBB 2012, LNBI 7845, pp. 37–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. SIFT feature detection technique

Recently, artificial neural network methods and clustering techniques have been suc-
cessfully applied [11,9].

In this paper we apply fuzzy clustering to automatically detect robust candidate re-
gions for a registration method based on the Scale Invariant Feature Transform (SIFT) [6]
that is a popular feature-based image registration method matching points using a simi-
larity measure.

This paper is organized as follows: The Scale Invariant Feature Transform and Fuzzy
C-Means clustering algorithm are presented in Sect.s 2 and 3; Sect. 4 presents the pro-
posed FCM–SIFT registration framework; results and discussion are in Sect. 5; Sect. 6
contains the conclusions.

2 Scale Invariant Feature Transform

In Scale-Invariant Feature Transform (SIFT) [6], robust and salient reference points
(keypoints) of objects are extracted from the reference image and from a target image
to be co-registered respect to it. Fig. 1 shows our implementation of SIFT to detect
keypoints from corresponding segmented regions in the reference and target images.
The main steps are:

1. Scale-space extrema detection. In this step we search over all scales and image
locations by using a Difference-of-Gaussian function (DoG) to identify potential
interest points that are invariant to scale and orientation. We compare each pixel
in the DoG images to its eight neighbors at the same scale and nine correspond-
ing neighboring pixels in each of the neighboring scales. If the pixel value is the
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maximum or minimum among all compared pixels, it is selected as a candidate
key-point. Specifically, a DoG image D(x, y, σ) is given by:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ), (1)

where L(x, y, kσ) is the convolution of the original image I(x, y) with the Gaus-
sian kernel

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2)

at scale kσ , i.e.,
L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y) (3)

Note that this first step produces many keypoints.
2. Keypoint localization. Keypoints are selected using measures of their stability, us-

ing nearby data, scale, and ratio of principal curvatures. This information allows
points to be rejected that have low contrast and are sensitive to noise or poorly
localized along an edge.

3. Orientation assignment. Orientations are then assigned on the basis of local image
gradient directions to each key-point for rotation invariance. SIFT operates on data
transformed to the assigned orientation, scale, and location for each feature, pro-
viding invariance to these transformations. For an image sample L(x, y) at scale σ,
the gradient magnitude, m(x, y), and orientation Θ(x, y), are pre-computed using
pixel differences:

m(x, y) =
√

[(L(x+ 1, y, σ)− L(x− 1, y, σ)]2 + [(L(x, y + 1, σ)− L(x, y − 1, σ)]2

(4)
and

Θ(x, y) = tan−1

(
L(x+ 1, y, σ)− L(x− 1, y, σ)

L(x, y + 1, σ)− L(x, y − 1, σ)

)
(5)

where L(x, y, σ)m is the Gaussian smoothed image.

After applying SIFT on target and reference images we obtain the set of salient fea-
ture points. It is worth noting that the quality of SIFT results, as for other feature-based
methods for registration, is strongly affected by the quality of the previous region seg-
mentation procedure.

3 Fuzzy C-Means Algorithm

The determination of consistent clusters, i.e., matched segments/regions in the refer-
ence and target images is a main step in SIFT. In [6], clustering is performed by the
generalized Hough transform. In the approach we propose in this paper clustering is
obtained using the Fuzzy C-Means [1] (FCM) clustering algorithm.

The FCM algorithm is aimed to the minimization of the following functional:

Jm(U, Y ) ≡
n∑

i=1

c∑
k=1

(uik)
mEk(xi) (6)
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where: X = {x1, x2, . . . , xn} is a data set containing n unlabeled sample points; Y =
{y1, y2, . . . , yc} is the set of the centers of clusters; U = [uik] is the c × n fuzzy c-
partition matrix, containing the membership values of all samples to all m ∈ (1,∞)
is the fuzziness control parameter; Ek(xi) is a dissimilarity measure (distance or cost)
between data point xi and the center yk of a specific cluster k. We use the Euclidean
distance Ek(xi) = ‖xi − yk‖2 as the dissimilarity measure.

The clustering problem can be formulated as the minimization of Jm with respect to
Y , under the normalization constraint

∑c
k=1 uik = 1.

The necessary conditions for minimization of Jm are then:

yk =

∑n
i=1(uik)

mxi∑n
i=1(uik)m

for all k, (7)

uik =

⎧⎪⎨
⎪⎩
(∑c

l=1
Ek(xi)
El(xi)

) 2
1−m

if Ek(xi) > 0 ∀k, i;

1 if Ek(xi) = 0 and uil = 0 ∀ l �= k

(8)

The Fuzzy C-Means algorithm starts with a random initialization of the fuzzy c-partition
matrix U (or of the centroids yk) and then implements a Picard iteration of Eq.s 7 and 8
until convergence (defined, e.g., as when the change of centroids is smaller than an
assigned threshold).

Note that if one chooses m = 1 the Fuzzy C-Means functional Jm (Eq. (6)) reduces
to the expectation of the K-Means (KM) global error < E >≡

∑n
i=1

∑c
k=1 uikEk(xi),

and the FCM becomes the crisp KM algorithm [15,5,3].

4 Fuzzy C-Means Based Scale Invariant Feature Transform

As already stated, in our proposed approach for image registration SIFT operates on the
matched segments (clusters) obtained from FCM. Starting from those segments, SIFT
extracts the matching keypoints in both reference and target images and obtains the
registration parameters able to recover their correspondence.

In order to find robust and reliable clusters, FCM must be performed in a feature
space with features invariant to image scaling and rotation. In our approach, for each
pixel we consider intensity value, spatial location, and neighborhood average intensity
and deviation from the eight surrounding pixels. These features are well localized in
both the spatial and frequency domains (reducing the probability of disruption by oc-
clusion, clutter, or noise), are invariant to image scaling and rotation, and are partially
invariant to moderate changes in illumination and 3D camera viewpoint [2,12,7].

After clustering the two images, we select the minimal volume (fuzzy cardinality)
cluster, corresponding to a region in each image, and then we apply an α-cut, where
α is a threshold selected in the interval [0, 1] that selects pixels with high membership
to cluster. This approach minimizes the search space for finding the correspondence of
keypoints, as it selects the most reliable pixels of the region. Note that, if α = 0 we
get the whole pixels of the segmented region, while if α = 1 we select pixels having
stronger membership to the cluster only, but this sub-set could be empty or could lose



Feature-Based Medical Image Registration 41

Table 1. The FCM–SIFT registration framework

1. Image Preprocessing: Adjust threshold gray level enhancement in both target and
reference images and obtain image pyramid.

2. Segment Extraction: Apply FCM on target and reference images with c clusters
and obtain U fuzzy membership matrix.

3. Segment matching:
(a) Calculate cluster volumes from the fuzzy membership matrix U.
(b) Find the minimum volume clusters in both images (which represent the small-

est matched region in the two images) and and extract two reliable segments
from them withan α-cut.

4. Feature matching: Apply SIFT on both segments to extract invariant robust feature
points.

5. Registration:
(a) Infer spatial correspondence between at least two points of extracted matched

feature points in both images.
(b) Extract registration parameters.
(c) Apply spatial transformation on target image.

Table 2. Experiments. For each experiment we report: horizontal translation (Tx), vertical trans-
lation (Ty), rotation degree (R), and scaling factor (S).

Experiment Tx Ty R S

T1 20 20 252 1.0
T2 -30 -30 0 .6
T3 40 0 324 1.3
T4 0 -10 144 .8
T5 -20 -20 120 .7

good keypoint candidates. Therefore, we choose the highest value of α that select a
region with a size corresponding to an assigned percentage of the full image.

The steps of the proposed FCM–SIFT registration framework are described in Tab. 1.
At the end of the FCM–SIFT registration, we obtain the registration parameters between
target and reference images (namely, horizontal translation Tx, vertical translation Ty,
rotation angle R, and scaling factor S).

5 Experimental Results and Discussion

We validated our FCM–SIFT registration framework on a sample set of Computer To-
mography (CT) images of the head. The software was developed in Matlab R2009b
under Windows 7 32 bit. The computation time (T ime) was evaluated on a laptop with
2.00 GHz dual-core processor and 3.25 GB of RAM. As usual, time is given as a rough
indication only, with the additional caveat that Matlab is inefficient in specific opera-
tions, for instance loops.

The target images where obtained by transforming the original image with a combi-
nation of translation, rotation, and anisotropic scaling.
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(a)

(b)

(c)

(d)

Fig. 2. Axial CT head plane. (a) From left to right: Reference image, target image, segmented
reference image, and segmented target image. (b) The five clusters obtained from the reference
image. (c) The five clusters obtained from the target image. (d) SIFT matching using the minimal
volume regions, after α-cut.
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Axial plane: Tx = −1, Ty = 3, R = −1.7, S = 0.00,
T ime = 18, CC = 0.84, MSE = 31.80

Coronal plane: Tx = 0, Ty = 0, R = −2.73, S = 0.06,
T ime = 52, CC = 0.68, MSE = 35.74

Sagittal plane: Tx = −1, Ty = −1, R = −0.15, S = 0.00
T ime = 24, CC = 0.99, MSE = 7.54

Fig. 3. FCM–SIFT registration results with CT of head on axial, sagittal, and coronal planes.
From left to right: reference, moving, registered, and error images.

Fig. 2 shows the segment extraction on axial head CT slice on reference and target
images using FCM clustering. In Fig. 2a, from left to right, there are the reference im-
age, the target image, the segmented reference image, and the segmented target image.
FCM is performed using a number of clusters c = 5 estimated on the basis of a-priori
experimental knowledge and a fuzzyfication parameterm = 2. Fig.s 2b and 2c show the
five clusters obtained from reference and target images. After clustering, we identified
in the two images the segments with minimal volumes to be matched. Then we selected
the regions with points with highest memberships by applying the α-cut thresholding.
Finally, we applied the SIFT on this pair of sub-regions. Fig. 2d shows SIFT matching
of salient keypoints of the selected regions.

Fig. 3 illustrates some FCM–SIFT registration results with CT on axial, sagittal, and
coronal planes. For each projection, we report, from left to right, the reference and target
images, the registered image, and the error image defined as the difference between the
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(a)

(b)

Fig. 4. Experiments T1–T5: Running time in seconds (a) and cross correlation between registered
and reference images (b) v.s. threshold α
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Axial plane: Tx = 7, Ty = 7, R = 13.78, S = 0.43,
T ime = 84, CC = 0.05, MSE = 72.86

Coronal plane: Tx = 0, Ty = 1, R = 0.44, S = 0.00,
T ime = 54, CC = 0.42, MSE = 59.20

Sagittal plane: Tx = 1, Ty = 1, R = 3.09, S = 0.11,
T ime = 277, CC = 0.16, MSE = 4.10

Fig. 5. FCM–SIFT registration results with CT of head on axial, sagittal, and coronal planes.
From left to right: reference, target with salt and pepper noise (ν = 0.5), registered, and error
images.

reference and the registered image. We show also the values of the cross correlation
(CC), the root mean square error (MSE), the computation time (T ime), the value of
threshold of the α-cut, the horizontal translation (Tx), the vertical translation (Ty), the
rotation degree (R), and the scaling factor (S).

In Fig. 4, we report the results of five experiments (T1–T5), using the axial CT of
head illustrated in Fig. 2. The target image is obtained by applying the transforma-
tions shown in Tab. 2. Fig. 4a shows the dependence of running time of the FCM–SIFT
technique on the value of α, that is the threshold of the α-cut. Fig. 4b, in turn, shows
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the dependence of the cross correlation (CC) between reference and registered images
obtained using the FCM–SIFT technique on the value of α-cut.

To study the noise robustness of our approach to segmentation, we applied the FCM–
SIFT technique on noisy orthogonal slices in axial, sagittal, and coronal planes, by
adding salt and pepper noise (impulse noise) to the target image. This kind of noise is
typically observed on advanced medical imaging equipments such as CT, MRI (Mag-
netic Resonance Imaging) and PET (Positron Emission Tomography). It appears as
randomly occurring sparse light and dark disturbances in the image (white and black
pixels). Typical sources include flecks of dust inside the camera, or, with digital cam-
eras, faulty CCD (Charge-Coupled Device) image sensors elements.

We compared the results of registration in the presence of salt and pepper noise
using our proposed approach FCM–SIFT, a modified version of our approach using
KM instead of FCM (KM–SIFT), and standard SIFT. In our experiments we notice
that the breakdown point1 for standard SIFT and KM–SIFT is a noise density value
ν = .4, as those methods cannot detect the correspondence between reference and target
images in the presence of a noise density higher than this value, while the breakdown
point of FCM–SIFT is ν = .59. Fig. 5 shows the of FCM–SIFT registration results in
the presence of salt and pepper noise (ν = .50). To increase the breakdown point of
FCM–SIFT we have to increase α; but this is possible until a critical value where the
registration results degrade as we may cut off relevant features.

As shown in Fig. 4a, the average registration time in FCM–SIFT is about 30 seconds,
while the average registration time in standard SIFT is about 4 seconds. For speeding
up the clustering phase, we have experimented also a dynamic pyramid approach for
clustering, applying FCM on low resolution images of increasing size. This pyramidal
approach to FCM can reduce the average registration time to about 10 seconds.

For speed up the clustering phase, we use a dynamic pyramid approach that allow us
to operate on reduced images instead of original images, thus reducing clustering and
registration times. Then we reconstruct the pyramid and register the original images
after calculating the registration parameters from reduced resampled images obtained
from scale resolution pyramid.

6 Conclusions

Medical image registration procedures allow us to extract complementary information
from different modalities, and to accurately compare images from the same modal-
ity [4,10].

This paper proposes an approach to medical image registration using a segmentation
step segmentation based on Fuzzy C-Means (FCM) clustering [1] and Scale Invariant
Feature Transform (SIFT) [6] for matching keypoints in segmented regions.

It is worth noting that the quality of SIFT results, as for other feature-based methods
for registration, is strongly affected by the quality of the previous region segmentation
procedure. To obtain robust segmentation, we applied FCM feature vectors including

1 We use here this term, borrowed from Robust Statistics [8], as the minimum value of noise
density that makes the SIFT procedure unsuccessfully.
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local information invariant to image scaling and rotation, and to change in illumina-
tion [2,12,7].

The paper shows also how to reduce the running time of the clustering step following
a dynamic pyramid approach applying FCM on low resolution images of increasing
size. The reported speed-up is about three.

Medical images are often corrupted by noise; in particular, salt and pepper noise is
typically observed on advanced medical imaging equipments. The robustness of algo-
rithms with respect to noise is then a major request in medical imaging. From our ex-
perimental results, we can conclude that the proposed FCM–SIFT registration method
is more robust to noise artifacts than standard SIFT and a modified version of our
approach using KM instead of FCM.
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Abstract. Cone-beam computed tomography (CBCT) can provide true
3D information of anatomical structures, with advantages of much thin-
ner slice thickness and significantly lowered effective dose of radiation.
However, CBCT images are extremely low contract and noisy. It is very
difficult to segment thin bones. It usually takes 4-5 hours to manually
segment a set of CBCT data. To this end, we developed a novel approach
based on the joint optimization of alignment and statistical surface rep-
resentation with wavelet transform for segmentation of CBCT images. It
included two main steps: customized wavelet base initialization (CWBI)
and base invariant wavelet active shape model (BIWASM). We validated
our approach with others by comparing the surface deviation between
segmented shape to the ground truth. The results showed that our ap-
proach outperformed the others in accuracy and computing time.

Keywords: Segmentation, Cone-beam CT, Statistical Shape Model.

1 Introduction

Computed tomography (CT) are commonly used for treatment planning of pa-
tients with craniomaxillofacial and dentofacial deformities [11]. With the giant
leap of technology, CT scans are gradually replaced by cone-beam computed
tomography (CBCT) scans. Like conventional CT, CBCT has true 3D informa-
tion of the anatomical structures. In addition, CBCT slice thickness (0.125mm)
is much thinner than CT (0.625mm). CBCT is also a safer imaging modality.
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(a) (b) (c)

Fig. 1. Shape extraction and patch decomposition. (a) 9 control landmark points. (b)
Patch decomposition using shortest paths as boundaries. (c) Extraction of patches and
shape.

Its effective dose of for a whole head scan (≈50gSv) is significantly lower than
CT’s (≈4500gSv) [11], [10]. However, CBCT images are very low contract and
noisy [9]. This makes extremely difficult to segment thin bones (i.e., anterior walls
of maxillary sinus) from the background without picking up unwanted noises.
Therefore, the purpose of this project is to develop a novel approach based on
the joint optimization of alignment and statistical surface representation with
diffusion wavelet transform for segmentation of CBCT images.

2 Customized Wavelet Distribution Model

2.1 Shape Customization and Discrete Surface Wavelet Transform

Nineteen volumetric images were acquired using a CBCT scanner (Sirona, Ben-
sheim, Germany) with a voxel resolution of 0.287mm × 0.287mm×, 0.287mm.
Thresholding segmetation was first applied to each of these volumetric images
to obtain bone images. These bone images were recovered by hand-segmentation
slice by slice. Then, Marching Cube Algorithm was applied on each of recovered
bone images to calculate surfaces (meshes) of bone images. These bone surfaces
are the ground truths for physical skeleton surfaces. We will use these 19 ground
truths of bone surfaces to validate the results in Section 4 and generate landmark
points in later stage.

The base of the shape is identified by first manually pinpointing 9 anatomical
control landmark points [Fig. 1 (a)] on the ground truth of bone surfaces and
then determining the boundaries (shortest distance) of shape Fig. 1 (b). Patch
decomposition is performed by dividing the shape into 4 topological patches.
Then, these patches are extracted from the bone surfaces to form a shape [Fig. 1
(c)]. Once the patches are customized, we need to find their corresponding pla-
nar domains in order to calculating the parameterization mapping. Since each of
the patches is defined by control landmark points, the planar domain for each of
the patches can be defined as a polygon by those control landmark points. The
parameterization will be calculated using barycentric mapping [8] in the study.
Mean Value Coordinate will be used to calculate the spring constants.

The Calmull-Clark subdivision [3] is performed to generate landmark points
of the shape in several steps. First, the subdivision is performed on each of pa-
rameterization domains (e.g. planarKp-polygons) of the patches to generate new
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(a) (b) (c) (d)

Fig. 2. (a) Base mesh for subdivision. (b) Fifth subdivision. (c) Scaling coefficients
after one decomposition of DSWT. (d) Scaling coefficients after five decompositions of
DSWT (coarsest mesh).

points. Then, the remeshed patches with subdivision connectivity are obtained
by inverse mapping these points on the parameterization domains onto the orig-
inal patches. The same number of subdivisions is used for each of the patches.
Finaly, the remeshed shape with regularized landmark points can be obtained
by stitching these remeshed patches. Fig. (2)(a) and (b) shows the base mesh
and the remeshed stitched shape. 4225 landmark points are generated for each
of the training datasets.

2.2 Wavelet Distribution Model (WDM)

Once the landmark points in each of the training shapes are generated using
Calmull-Clark subdivision, these training shapes will be used to build WDM.
Let Si be the set of 4225 landmark points in ith shape in the image space.
All the shapes are transformed to a common coordinate of model space using
Procrustes Analysis [7] to minimize their squares of distance. Let S̃i be the trans-
formed shape in the model space. Assume xi is the 3n-dimensional shape vectors
formed by concatenation of the coordinates of all transformed landmark points
in S̃i.

Ths discrete surface wavelet transform (DSWT) [Fig. (2)(c) and (d)] of the
remeshed shape Si is implemented by using lifting scheme of biorthogonal wavelet
transform. [1]. The construction of this DSWT is based on Calmull-Clark sub-
division of arbitray two-manifold topology. Let DSWT of xi be W(xi) ≡ {si,0 ∪
wi,l, l = 0, 1, . . . , J}, For simplicity of notatoin, all the scaling coefficients si,0
(base mesh) will be viewed as wavelet coefficients at (−1)-scale,i.e. wi,−1. PCA
is performed on wi,l over all the shapes to obtain the matrices Pl of eigenvectors.
A set of wavelet coefficients w̃l of a shape at specific scale l can be generated by
a shape parameter b̃l

w̃l = w̄l +Plb̃l (1)

Similarly, the wavelet coefficients wl of any shape at scale l can be approximated
by projecting wl onto the subspace of Pl

wl ≈ w̄l +Plbl (2)

with
bl = PT

l (wl − w̄l) (3)
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3 A Novel Segmentation Algorithm

In the study, the training shape for statistical shape model (SSM) is exstracted
from the outer surface in the skull model and is a shape-customized open sur-
face with closed boundary. It is a partial shape in the skull model. We observe
that Active Shape Model (ASM) and Wavelet Active Shape Model(WASM) may
become unreliable in order to recognize the corresponding partial shape in the
skull model. In the follwing, we propose a novel algorithm called base invariant
wavelet active shape model (BIWASM) and an initialization method called cus-
tomized wavelet base initialization (CWBI) to overcome this problem.

Let Sb be the base formed by 9 selected control landmark points by using user
interaction on slices of segmented images. The selection criterion is the same as
that of control landmark points demonstrated in Fig. 1 (a). Assume yb is the
vector formed by concatenation of the coordinates of all the points in Sb. Define

f(T ,b) ≡ ‖yb − T
(
x̃(bl, ∀l)

)
‖2 (4)

where x̃(bl, ∀l) ≡ C
(
W−1(w̄l + Plbl, ∀l)

)
, and C is the operator extracting

those corresponding control landmark points from a shape in the model space.
To generate a better initial shape, we need to calcuate bl and T by minimizing
(4). f(T ,b) is a non-linear function. We can use simulated annealing approach
to solve it. However, these optimal search approach is computational expensive
in 3D. Therefore, in this work, we propose a simple and efficient approach to
estimate an initial shape. By using the model parameter w̄−1,P−1 at base scale
in (1), an yb can be approximated by calculating b−1 and a transformation
Tb. Since the construction of DSWT is based on the structure of Calmull-Clark
subdivision, it can be observed in Fig. 2(d) thatw−1 has the same mesh structure
as that in Fig. 2(a) or the same patch structure in Fig. 1(b). Tb is used to define
a transformation between the model space and image space. A new base in the
model space is defined by

w−1,b ≡ T −1
b (Sb) (5)

w−1,b cannot be exactly expressed by b−1. By combining local details using
the mean wavelet coefficients {w̄l, l ≥ 0} of WDM, the initial shape can be
constructed by

ỹ(0) = Tb(W−1(w−1,b ∪ {w̄l, l ≥ 0})) (6)

This new initial shape can be interpreted as a controlled base shape attached
with mean local details of WDM. Tb will play an essentail role in the following
proposed BIWASM.

The shape in our study is different from the ones used in [6], [2], [5]. It is a
partial shape in skull model and is a shape-customized open surface with closed
boundary. However, ASM and WASM algorithm are not capable of constraining
the evolving shape. Therefore, we design a new WASM by fixing the transfor-
mation between model space and image space. Tb in (5) is used to define this
invariant transformation for the second step of WASM. To keep the shape con-
trained by the control landmark points Sb, the base shape w−1,b in the model
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Algorithm 1. Customized Wavelet Base Initialization (CWBI)

Tb ← (Sb,b−1, w̄−1)
w−1,b ← T −1

b (Sb)
x ← W−1(w−1,b ∪ {w̄l, l ≥ 0})
ỹ(0) ← Tb(x)

Algorithm 2. Base Invariant Wavelet Active Shape Model (BIWASM)

(ỹ(0), Tb,w−1,b) ← (Sb,b−1, w̄−1); use Algorithm 1 to calculate the initial shape
and the transformation
while Until convergence do

y(k) ← ỹ(k); calculate a candidate shape by examining the neighboring region of
each of the landmark points, and the corresponding control landmark points in
y(k) are replaced with Sb.
x′ ← T −1

b (y(k)); calculate inverse transformatoin of y(k)

wl ← W(x′); DSWT.
bl ← PT

l (wl − w̄l), l ≥ 0; calculate the shape parameter fitting wl using (3).
Apply the constraints on bl, l ≥ 0.
wl ← w̄l +Pbl, l ≥ 0; generate wavelet coefficients in the model space using (1)
x ← W−1(w−1,b ∪ {wl, l ≥ 0}); inverse DSWT.
ỹ(k+1) ← Tb(x);

end while

space and Sb in the image space will be unchanged during the iteration. Im-
age feature model is also calculated using first, second, third order derivative
of image profile along each of the landmark points. The proposed algorithm is
summarized in Algorithm 2.

4 Valiations

Nineteen sets of CBCT images were used for the validation. Their ground truths
of bone surface were manually established as described above. They served as
a control group. The outer surfaces of anterior wall of maxilla was segmented
using our BIWASM with CBWI approach. The same images were also segmented
using ASM [4] with Registration-Based Initialization (RBI), WASM with RBI,
and WASM with CWBI, respectively. They all served as an experimental group.

4.1 Data Preparation

The segmentation dataset, referred as the datasets to test segmentation ap-
proaches, were labeled Di, i = 1, 2, . . . , 19. Each of the segmentation datasets Di

consisted of a set of CBCT volumetric images (target datasets) and its corre-
sponding ground truth of bone surface. The model datasets, referred as the train-
ing datasets in the base invariant active shape model, were defined by 19 shapes
and 19 sets of CBCT volumetric images. They were labeled Mi, i = 1, 2, . . . , 19
in the same order.



A Novel Approach for CBCT Segmentation 53

Once N model datasets were built as training datasets, one segmentation
(target) dataset, other than N model datasets, was used to compare our devel-
oped approaches to the three traditional approaches. The preparation of target
dataset was completed in the following 3 steps. Step 1 was landmark digitiza-
tion. Nine control landmarks were digitized interactively for initialization. Step
2 was initialization. The digitized control landmarks were used to create 2 initial
shapes using 2 initialization methods: RBI and our newly developed CWBI. RBI
was used to register these selected control landmarks of the shapes in the image
space and their corresponding landmarks of mean shape in the model space,
and to transform the mean shape in the model space into the image space. The
resulted initial shape served as the input of ASM and WASM. CWBI was used
to calculate a transformation between the base formed by those 9 control land-
mark points and a wavelet base in the model space. It was also used to add the
mean local details using WDM to obtain an initial shape. The resulted initial
shape served as the input of WASM and BIWASM. Step 3 was to calculate the
final shapes. This step produced 4 kinds of final shapes: ASM-RBI, WASM-RBI,
WASM-CWBI, and BIWASM-CWBI.

Once the datasets were prepared, the final step was to compare the ground
truth to the final shapes generated by different approaches. It was done by calcu-
lating surface deviations, the closest distances, and Hausdorff distance between
the ground truths and the final shapes generated in the third step. Therefore,
there were 4225 surface distances and one Hausdorff distance produced from
each target dataset. The validation was achieved by two sets of comparisons.
The first set of the comparisons was to detect the variabilities amongst 4 ap-
proaches when the number of training datasets was static, while the second set
of comparisons was to detect the variabilities amongst 4 approaches when the
number of training datasets was dynamic. In addition, the computational times
were also compared amongst the 4 approaches.

The first set of comparisons was conducted using leave-one-out arrangement
(cross validation). Six groups (total of 69) leave-one-out experiments were con-
ducted: i = 1, 2, . . . , 19 (19 experiments), i = 1, 2, . . . , 16 (16 experiments),
i = 1, 2, . . . , 13 (13 experiments), i = 1, 2, . . . , 10 (10 experiments), i = 1, 2, . . . , 7
(7 experiments), i = 1, 2, . . . , 4 (4 experiments). The dataset was randomly se-
lected using SPSS software. In each experiment, the target dataset was excluded
from the training datasets. For example, in the second group, the experiment of
the datasets i = 1, 2, . . . , 16 was conducted using Mi, i = 1, 2, . . . , 11, 13, . . . , 16,
and the target D12 dataset was excluded from the training dataset. After final
shapes were generated by four approaches (ASM-RBI, WASM-RBI, WASM-
CWBI, BIWASM-CWBI), they were compared to their ground truths. In each
of the six groups of experiments, the mean and standard deviation of surface
distances were calculated over 80275, 67600, 54925 , 42250, 29575, and 16900
surface distances, respectively. The mean Hausdorff distances was also calculated
over the 19, 16, 13, 10, 7 and 4 final shapes, respectively.

The second set of comparisons was conducted by using 13 segmentation
datasets Di, i = 1, 2, . . . , 13 and varying the number of model datasets by 12,
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Fig. 3. (a), (b), and (c) are mean surface distances, standard deviation of surface
distances, and mean Hausdorff distances in the first set of the comparisons
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Fig. 4. (a), (b), and (c) are mean surface distances, standard deviation of surface
distances, and mean Hausdorff distances in the second set of comparisons
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Fig. 5. The ground truth (red) and the final shapes in ASM-RBI, WASM-RBI, WASM-
CWBI and BIWASM-CWBI for a single dataset

15, and 18. The dataset was also randomly selected using SPSS software. Three
groups of the datasets were used to conduct 39 experiments. Again, the target
dataset was excluded from the training datasets. In each group, 13 experiments
were conducted using each segmentation approach, respectively. Means and stan-
dard deviations of surface distances were calculated over 54925 (13×4225) surface
distances, respectively. The mean Hausdorff distances were also calculated over
the 13, 13, and 13 final shapes, respectively.

4.2 Results

The results (Fig. 3, 4) showed that our BIWASM-CWBI approach outperformed
the others in every single experiment. In both sets of comparisons, the
largest mean surface distance was 0.26mm, standard deviation was 0.2mm, and
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Table 1. The Computation Times in the First Experiment

ASM-RBI WASM-RBI WASM-CWBI BIWASM-CWBI

164s 575s 618s 205s

Hausdorff distance was 1.6mm. It also indicated that the more accurate re-
sult was achieved with more training dataset. The results indicated that our
BIWASM-CWBI approach was capable of capture the outer surface of thin bones
(1mm) in the skull model. We noted that in the first sets of comparisons, the
curves were raised when 9 sets training models were employed. This might due
to poor image quality of the target dataset. This was confirmed later by our
visual inspection Fig. 5.

Finally, the computational times of the 4 approaches are presented in Table
1. This was calculated in the 1st set of experiment based on Di and Mi, i =
1, 2, . . . , 16, 18, 19. The computer was Intel i7 2.8Hz with 4G RAM. The result
revealed that the computational time of our approach was comparable with that
of ASM-RBI and significantly shorter than WASM-RBI and WASM-CWBI.

5 Validation
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Abstract. This paper presents motif retrieval from a macromolecule or
a protein by using structure comparison in 3D through an exhaustive
matching analysis of secondary structures. The comparison is based on
three parameters: midpoint distance (Md), axis distance (Ad) and angle
(ϕ) related to a couple of SSs in 3D space. The barycenter of the motif
is assigned as Reference Point (RP) and in order to find the RP related
to every possible motif (instance) in the macromolecule a voting process
is performed. The searched motif is compared with all possible instances
having the same number of motif SSs in the macromolecule and gives a
vote to the candidate barycenter for every correspondence. The point,
which has the maximum number of votes, is determined as candidate
RP. In this paper motifs composed by four and five secondary structures
are searched. Experimental results show a good accuracy in determining
the RP and hence in the retrieval of the searched motif.

Keywords: structural motif search, protein motif retrieval, protein struc-
ture comparison, exhaustive matching, protein secondary structure.

1 Introduction

Proteins are crucial molecules in biological phenomena because they form much
of the functional and structural machinery in every organisms. The function
performed by each protein is determined by its spatial structures that can be
described at various level of detail, ranging from atomic coordinates, through
vector approximations, to SS elements. Protein structure comparison is an im-
portant issue that helps biologists understand various aspects of protein function
and evolution. Indeed the 3D fold has a major effect on the ability of a protein to
bind other proteins or ligands. Therefore, similarity analysis in terms of protein
structure is very important in order to uncover the role of an unknown protein.
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Comparison of protein structures is also essential for estimating the evolutionary
distances between proteins and protein families.

The structural comparison problem in a protein structure retrieval system
has been studied in several computational biology literatures. Can et al. [3]
present a new method for conducting protein structure similarity searches and
applies differential geometry knowledge on protein 3D structure for extracting
signatures such as curvature, torsion and SS type. Camoglu et al. [2] build an
indexing structure based on SS elements triplets by using R-tree in order to
find similarities in a protein structure database. Chionh et al. [9] propose the
SCALE algorithm to compare protein 3D structures based on angle-distance
matrices that utilizes angles and distances between SS elements. Chi et al. [8]
design a fast system for protein structure retrieval by using image based distance
matrices and a multidimensional index. Zotenko et al. [17] propose an approach
to speed up protein structure comparison by mapping a protein structure to
a high-dimensional vector and approximating structural similarity by distance
between the corresponding vectors. Krissinel et al. [14] describe the Secondary
Structure Matching (SSM) algorithm of protein structure comparison in 3D,
which includes an original procedure of matching graphs built on the protein’s
SS elements, followed by an iterative 3D alignment of protein backbone Cα

atoms. Cantoni et al. [4, 5] made a study for retrieving structural motifs by
using Hough transform and range tree. They also retrieved the Greek Key motif,
which is formed by four SSs, from the protein files by using the GHT [6, 7].

A structural motif is a 3D structural element which appears in a variety of
molecules and usually consists of just a few secondary structures. Several mo-
tifs packed together to form compact, local, semi-independent units are called
domains. The size of individual structural domains varies from between about
25 up to 500 amino acids, but the majority, 90%, has less than 200 residues
with an average of approximately 100 residues. The protein family is a group of
evolutionarily related proteins, that have a common ancestor and typically have
similar 3D structures, functions, and significant sequence. Note that it is also
often used the term super-*, where * can stand for motif, or domain, or family,
or fold, or class [5]. Many methods have been proposed for defining protein SSs,
but the Dictionary of Protein Secondary Structure (DSSP) [13] method is the
most commonly used. This method classifies eight types of SSs, even though
in most cases only the three dominant configurations are considered: helices in-
clude 310-helix, α-helix and π-helix; sheets or strands include extended strand
(in parallel and/or anti-parallel β-sheet conformation); finally, coils include hy-
drogen bonded turn, bend, and amino acid residues which are not in any of the
previous types. The structural analysis for protein recognition and comparison
is conducted mainly on the basis of the two most frequent components [11]: the
helices and the strands.

This paper is organized as following. In Section 2, we introduce briefly the
GHT and then explain the exhaustive matching algorithm that we adopt for
motif retrieval. In Section 3, we represent the experiments and their results.
Finally, we conclude this paper with possible future works in Section 4.
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2 Methods

2.1 Generalized Hough Transform

In this paper an algorithm based on GHT is used. This transform is an extracting
method using coordinate transformation [12]. It was introduced by P.V.C. Hough
in 1962 and patented by IBM. Hough used angle-radius parameters exclusively
for retrieving the straight lines. HT was extended for extracting circles by R.O.
Duda and P.E. Hart in 1972 [10] and for retrieving parabolas by H. Wechsler
and J. Sklansky in 1973 [16]. Later it was generalized as GHT by Ballard for
retrieving arbitrary shapes [1]. Basically, the original HT is a voting process
where each contour point detected in the image votes for all possible patterns
passing through that point. As an example in the implementation to detect
straight lines, votes are accumulated in an array A(ρ, θ), where θ is the angle
made by the normal to the straight line with the x-axis and ρ is the perpendicular
distance of the straight line from the origin. The representation of the straight
line in (ρ, θ) form is

x cos θ + y sin θ = ρ (1)

This accumulator array A(ρ, θ) is called the Hough Space (HS). The number
of votes for each cell in A(ρ, θ) represents the number of pixels in the searched
pattern extracted from the image. In this process each pixel in the image space
is mapped to a sinusoidal curve of Eq. 1 in the HS. So HT is a transformation
from a point to a curve [15]. In GHT arbitrary shapes are represented in the
HS which consists of the parameters of the rigid motion - in 2D (x, y, θ, s) x, y
representing translation, θ rotation and s a scaling factor. For each ’evidence’
extracted from the image, like in the original Hough approach, a mapping rule
is defined which determines the value of the parameters of rigid motion (locus
of points in HS) compatible with the ’evidence’.

In this paper the GHT is exploited for comparison and search of structural
similarity between a given motif or domain or entire protein and the proteins
of a database, like, for instance, the PDB [18]. Note that, if the searched struc-
ture is just a component of a protein (like a structural motif or a domain) the
same algorithm supports the detection and the statistical distribution of these
components.

2.2 Exhaustive Matching

This algorithm directly matches the motif and all possible instances in the macro-
molecule and uses the couple parameters in order to match. The number of
couples in motif is given by Eq. 2,

C = (m, 2) =
m!

(m− 2)!2!
(2)

where m is the number of SSs into the motif. For every motif couple Md, Ad and
ϕ are calculated. In Fig. 1 a couple of SSs (A and B) is represented. The local
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reference system is highlighted together with the three quoted parameters and
the corresponding RP position. Considering midpoint coordinates, the barycen-
ter of the motif is determined and selected as RP. In the voting process we will
vote on the barycenters of the instances in the macromolecule. In this algorithm
let N, m, M be the number of SSs in the macromolecule, the number of SSs in
the motif and the number of instances in the macromolecule respectively, i.e. M
is the m-combinations in N. So, it can be computed as:

M = (N,m) =
N !

(N −m)!m!
(3)

Fig. 1. Representation of the local reference system and the couple parameters: Md,
Ad, ϕ

For every instance, C Md, C Ad, C ϕ (totally Cx3 values) and barycenters
location are determined. Then every parameter is compared to the expected
values considering a heuristic error rate, 1%. If the compared parameters are
compatible, a vote is given to the barycenter related to that instance. Tab. 1
describes a sketch of this algorithm, as it can be easily seen, the computational
complexity is of the order O(CM) ∼= O(Nm). In Fig. 2 a graphic sketch of this
process is given. Here, the aim is at searching the motif model on the top right
in the macromolecule on the left. To do this, couple parameters are used. In
this figure only the parameter Md is represented. Md values (d1, d2, d3) for the
three couples in the motif are stored in the RT. If the motif couple parameters
are equal to macromolecule couple parameters the RP is determined according
to the mapping rule related to that motif couple. On the top of Fig. 2 a complete
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instance of the model is present, so the correspondent RP position will gather
three contributions (only one is graphically shown). Instead on bottom right an
instance constituted of two SSs is present: only one contribution is given in the
correspondent RP’ position.

Later a 3D vote space is built and then this space is scanned by using a
KxKxK cubic mask for neighbors vote cumulation. In this experimentation K
has been limited to 3. After the scanning process the point/points having the
highest votes is/are determined and is/are considered as candidate RP of the
motif.

Table 1. Sketch of the algorithm for the structural block exhaustive matching search

Input : Protein .nss file; N: number of protein SSs; m: number of motif SSs
Output : Locations of candidate motifs in the accumulator ARP , representing

the parameter space.
1 Select randomly m SSs among the N SSs of the protein to create the motif

model.
2 Find the motif barycenter location as RP.
3 Calculate the number of couples in the motif: C = (m, 2).
4 for i = 1, C
5 Compute the three parameters: Mdi, Adi and ϕi

6 Compute M = (N,m).
7 for j = 1,M
8 Compute Mdj , Adj and ϕj parameters.
9 Compute RPj location.
10 for i = 1, C
11 if (Mdj , Adj , ϕj equal to Mdi, Adi, ϕi) then ARPj = ARPj + 1

3 Experiments and Results

The proposed algorithm consists of an exhaustive matching for searching a gen-
eral motif in the macromolecule. Firstly a motif model is created by using SSs
of a given macromolecule, e.g. for creating five-SS motif, in our experimenta-
tion, five SSs of the macromolecule are selected randomly and used. Later two
peculiar motifs (the Greek Key motif) and four random motifs are selected as
four-SS motif. For the searching algorithms, Md, Ad and ϕ parameters are used
as comparison parameters. Md is the Euclidean distance between middle points
of two SSs, Ad is the shortest distance between two SSs axis and ϕ is the angle
between two SSs translated to present common extreme (see Fig. 1).

In a first set of the experiments 1FNB, 4GCR and 7FAB proteins were used
as macromolecule for searching a motif composed by five SSs. These proteins
are shown in the lower side of Figs. 3, 4 and 6. From these proteins five SSs
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Fig. 2. The voting process for a few couple of helices. On the top right a sketch of a
motif having three SSs and on the left RP location of a compatible couple.

were selected randomly to create the motif model and totally six different motifs
(two motifs for each protein) were used for testing. Figures 3 and 4 represent
two motifs from 1FNB and 7FAB proteins and their parameters space. Table 2
shows the number of SSs in the proteins, the number of five-SS instances in these
proteins and the number of couples in the motif.

Table 2. Proteins and a few important parameters

PDB ID
#SSs in the

protein
#SSs in the

motif
#Instances in
the protein

#Couples in
the motif

1FNB 22 5 26334 10

4GCR 18 5 8568 10

7FAB 46 5 1370754 10

The motif has 10 couples so for every couple parameters 10 values were cal-
culated, and the expected number of vote having detected all possible matches
is 30. Then the algorithm in Tab. 1 was performed. A 3x3x3 cubic mask was
applied to the parameter space. Then clouds were found where the votes are
cumulated and the center of this cloud was determined as candidate RP. The
results are represented in Tab. 3.
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Fig. 3. SSs of the 1FNB protein. Red lines are α-helices and blue lines are β-strands.
Bold lines form the five-SS motif. RP and Max. vote coordinates are almost coincident
for both algorithms.
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Fig. 4. SSs of the 7FAB protein. Red lines are α-helices and blue lines are β-strands.
Bold lines form the five-SS motif. RP and Max. vote coordinates are almost coincident
for both algorithms.
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Table 3. Results for searching the motif formed by five SSs by exhaustive matching

PDB ID
Mask
dim.

Motif RP Candidate RP
#Max
votes

Error
rate

1FNB 3x3x3 [32.13 0.24 11.75] [32.11 0.26 11.77] 30 0.10%

1FNB 3x3x3 [22.91 -1.61 23.34] [22.91 -1.64 23.37] 30 0.13%

4GCR 3x3x3 [10.50 15.70 29.17] [10.14 15.81 29.40] 36 1.27%

4GCR 3x3x3 [8.62 16.16 25.08] [6.67 16.76 26.72] 34 8.43%

7FAB 3x3x3 [-31.88 20.51 -2.24] [-31.37 20.09 -0.08] 30 5.95%

7FAB 3x3x3 [-24.74 17.59 24.23] [-25.35 17.46 23.16] 33 3.19%

As shown in Tab. 3 the RP of the motif is almost coincident to the RP of the
candidate instance. Here the motif is retrieved from the macromolecules 1FNB,
4GCR and 7FAB with 0.12%, 4.85% and 4.57% average error rates respectively.
Note that in three cases the peaks are increased by spurious votes given by
surrounding cooccurrences compatible to the admitted tolerance. Nevertheless
this increasing is negligible for the block detection!

In the second set of the experiments we used the same proteins but different
motifs. Here, two particular (the Greek Key motif) and four random motifs were
used. Figures 5 and 6 represent the Greek Key motifs from 1FNB and 4GCR
proteins and their parameters space. Table 4 shows the number of SSs in the
proteins, the number of instances in these proteins and the number of couples
in the motif.

Table 4. Proteins and a few important parameters

PDB ID
#SSs in the

protein
#SSs in the

motif
#Instances in
the protein

#Couples in
the motif

1FNB 22 4 7315 6

4GCR 18 4 3060 6

7FAB 46 4 163185 6

In this part of the experiments the motif has 6 couples. So expected number
of vote is 18. The results with the exhaustive matching approach are shown in
the Tab. 5. The RP of the motif is almost coincident to the RP of candidate
instance. The Greek Key motifs and the other motifs are retrieved from the
macromolecules 1FNB, 4GCR and 7FAB with 0.21%, 0.24% and 0.12% average
error rates respectively. Note that also in this case there are two peaks slightly
different in amplitude from the expected value. One is increased by three extra
contribution, also in this case given by surrounding cooccurrences. A second is
decreased by just one vote, absolutely negligible for the detection decision, due
probably to a rounding calculus error.
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Fig. 5. SSs of the 1FNB protein. Red lines are α-helices and blue lines are β-strands.
Bold lines form the Greek Key motif. RP and Max. vote coordinates are almost coin-
cident for both algorithms.
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Bold lines form the Greek Key motif. RP and Max. vote coordinates are almost coin-
cident for both algorithms.
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Table 5. Results for searching the motif formed by four SSs by exhaustive matching

PDB ID
Mask
dim.

Motif RP Candidate RP
#Max
votes

Error
rate

1FNB 3x3x3 [31.38 1.08 11.69] [31.40 1.12 11.66] 18 0.16%

1FNB 3x3x3 [13.81 3.40 17.11] [13.80 3.42 17.06] 18 0.25%

4GCR 3x3x3 [7.06 14.85 34.81] [7.14 14.84 34.74] 21 0.28%

4GCR 3x3x3 [12.85 17.20 13.52] [12.89 17.19 13.49] 18 0.20%

7FAB 3x3x3 [-17.51 11.68 22.94] [-17.54 11.71 22.95] 17 0.14%

7FAB 3x3x3 [-29.04 21.41 25.94] [-29.04 21.41 25.90] 18 0.09%

4 Conclusion and Future Work

The function of a protein is determined by its spatial structure so it is important
to learn structure-function relationship in the protein universe by comparing
their structures and retrieving similar motifs, domains, proteins. This paper
aims at retrieving a motif (formed by SSs). In order to retrieve the motif the
algorithm uses exhaustive matching. Using this algorithm two sets of experiments
were performed. The first set experiments consist of retrieving five-SS motif, the
result shows that the RP of the instance is almost coincident to the expected
RP. We can say that this algorithm is successful for retrieving a motif from
the macromolecule. A second set of experiments consist of retrieving also the
Greek Key motif from the 1FNB and 4GCR proteins. Also in this case the
results showed that the RP of the instance having the maximum vote is almost
coincident to the expected RP. For four-SSs motif retrieval the test results are
quite encouraging, obviously more experiments are required for a valid statistics.

In future works, co-occurrence with primitives of more than two SSs can be
pursued and also it can be experimented for different types of motifs and higher
number of SSs up to structural domains. Moreover, the approach can be tested
also for domain and protein comparison and search.
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Abstract. In this paper we present a novel parallel coordinate based clustering
method using Gaussian mixture distribution models to characterize the conforma-
tional space of proteins. We detect highly populated regions which may correspond
to intermediate states that are difficult to detect experimentally. The data is repre-
sented as feature vectors of N dimensions, which are lower-dimension projections
of the protein conformations. Parallel coordinates are a visualization technique that
lays out coordinate axes in parallel rather than orthogonal to each other, thereby al-
lowing patterns between pairs of axis as well as outliers to be visually identified in
multi-dimensional data. We believe that the size of the resulting clusters may pro-
vide information about the likelihood of the corresponding conformations to exist
as important intermediates. We tested our method on the conformational space for
the enzyme Adenylate Kinase (AdK) which undergoes large scale conformational
changes and used our method to detect clusters which may correspond to exper-
imentally known intermediates. Finally, we compare our clusters with the ones
generated by the K-Means clustering algorithm and discuss the advantages of our
method for the problem of characterizing proteins conformational space.

Keywords: Clustering, Parallel Coordinates, Protein Conformational Search,
AdK, Structural Bioinformatics.

1 Introduction

Proteins are flexible molecules that undergo structural (conformational) changes as part
of their interactions with other proteins or drug molecules [1]. Changes in torsional an-
gles may induce localized changes or large scale domain motions. Characterizing the
conformational space of proteins is crucial for understanding the way they perform their
function. There is promise that understanding the connection between protein structure,
dynamics and function can contribute a lot to our understanding of how molecular ma-
chines function. Therefore, the question of how the structure and dynamics of proteins
relate to their function has challenged scientists for several decades but still remains
open.

Existing physics-based computational methods that sample the conformational space
of proteins include Molecular Dynamics (MD) [2], Monte Carlo (MC) [3] and their
variants, as well as approximate methods based on geometric sampling [4–7], Elastic
Network Modeling [8], normal mode analysis [9], morphing [10] and more. One of
the main challenges in modeling conformational changes in proteins is the difficulty in
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detecting intermediate structures that may correspond to transition states. These inter-
mediate states are transient and therefore hard to detect experimentally, but they may
be crucial to understanding folding, docking, binding and conformational change pro-
cesses, as well as for drug design, since many times a drug is targeted as a transition
state analog or to block the target molecule from undergoing a structural change. In
addition, full-scale conformational search of even a medium sized protein is very de-
manding computationally and the conformational landscape of proteins is many times
rugged and hard to navigate. Therefore, the challenging problem of fully characterizing
conformational pathways in proteins still remains open. Recently, we developed a semi-
coarse grained conformational search method that conducts a fast, approximate search
on the conformational space of proteins undergoing large-scale domain motions [4].
While the method produced feasible conformational pathways, these pathways needed
to be clustered and filtered to extract meaningful intermediate conformations.

In this work we use a variant of the above mentioned conformational search
algorithm [4] to provide an approximate description of the protein conformational land-
scape. The algorithm runs a large number of monte-carlo like searches in the confor-
mational space of proteins undergoing large-scale changes. By repeating the procedure
a large number of times we produce a set of feasible pathways which provide a good
coverage of the space.

In order to find highly populated regions which may correspond to intermediate
structures, we introduce a clustering method that takes as input conformational path-
ways represented by a lower-dimensional projection of the protein conformational space
and outputs clusters of data that can give us information about the likelihood of the
existence of given structures. The method performs a statistical analysis of multi-
dimensional data representing conformations. Each dimension is partitioned in a pos-
sibly different number of blocks using model-based clustering with Gaussian mixture
models and the data flow between pairs of dimensions is analyzed in order to create
disjoint multi-dimensional clusters of conformations and identify structures that are
unlikely to be meaningful local minima as outliers.

Experimental results regarding the conformational space for the enzyme Adenylate
Kinase (AdK) suggest that the combination of our conformational search and clustering
method can help us detect highly populated areas in the conformational space, repre-
sented by large clusters, which may indicate the location of important intermediate
structures in the protein conformational space, as demonstrated by similarity to known
AdK intermediate homologs. In order to evaluate our clustering method, we compare
our results with the ones generated by multiple runs of the K-means algorithm [11, 12]
and present the advantages of our approach.

The paper is organized as follows. Section 2 presents the methods for protein con-
formational search and clustering. The methodology is evaluated experimentally in sec-
tion 3. Finally, the paper is concluded in section 4.

2 Methods

2.1 Protein Conformational Search

We use a semi–coarse grained protein structure representation. The proteins are stripped
of their side-chain and hydrogen atoms and represented at the backbone and C-β level
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(Glycine is represented by its backbone only). We apply a semi-coarse-grained poten-
tial function to approximate the protein energy [13] and an efficient distance measure to
estimate the distance between two protein structures based on the positions and angles
of their secondary structure elements [4]. This measure represents each protein confor-
mation as a feature vector whose size is the order of magnitude of the number of rigid
elements in the protein, thus projecting the structures onto a much lower dimensional
space than its full representation and is more “natural” to protein structures than other
projections such as PCA, since PCA is limited by its linear nature.

The search algorithm used here is a variant of a Monte Carlo search that leads from
one conformational state of the protein (start) to another (goal), applying successive
geometric transformations to a randomly selected backbone degree of freedom of the
structure while retaining only intermediate structures with an energy below a threshold
[4]. We used that method to validate the results at the previous paper. In this paper
we used the Monte-Carlo based search rather than a Robotics based search used in the
previous work [14], since that method tends to bias the results towards the goal structure
and in the present work we wanted to generate as random a sampling of the low-energy
conformational space as possible. The reader is encouraged to refer to [4] for more
details about the conformational search method.

2.2 Clustering Method

Today, the majority of clustering methods for multi-dimensional data incorporates
metric functions that evaluate the distance between feature vectors extracted from a
data-set. In this scenario, multiple dimensions are combined and are simultaneously
considered according to a metric function in order to create a set of clusters.

In this paper, we propose an alternative clustering method based on parallel coordi-
nates [15] and Gaussian mixture models [16], and argue that it is suited for providing
information about the likelihood of the existence of given intermediate conformations
in a protein conformational space.

To formally describe our clustering method, we introduce the following notation.
The symbol C stands for a set of conformations represented by feature vectors in the
data set, n for the conformational space dimensionality and Σ is the n× n covariance
matrix of the data set where each element along the diagonal, Σ [i, i], corresponds to the
variance of dimension di with 1 ≤ i ≤ n. The statistical information provided by Σ is
used to create L , an ordered list of dimensions. The threshold used by the algorithm
to find outliers or conformations that are unlikely to exist is given by τ where 0 ≤
τ ≤ 1. It corresponds to the minimum fraction of diverging vectors that can form a
new cluster, considering the total number of vectors in the original cluster from which
the split occurred. Finally, B stands for the matrix containing information about the
blocks of each dimension’s partition. For instance, B[i, j] corresponds to the block from
dimension j in which the corresponding data value from conformation i is located.

Parallel coordinates is a common way of visualizing high-dimensional geometry and
analyzing multivariate data. Dimensions or axis are laid out in parallel rather than or-
thogonal to each other. Each data value of an n-dimensional vector is positioned on
the line corresponding to its axis, between the minimum (at the bottom) and the maxi-
mum (at the top) values of the axis. Points belonging to the same vector are connected



Characterizing Intermediate Conformations in Protein Conformational Space 73

Fig. 1. Example of parallel coordinates for a 5-dimensional data set

by lines, which allows patterns between dimensions and outliers to be visually identi-
fied. For example, Figure 1 shows a 5-dimensional data set displayed as a sequence of
parallel coordinates. Notice the inverse relationship between D1 and D2 and the cor-
relation between D2 and D3: lower values of D1 usually imply higher values of D2
and vice-versa; higher values for D2 usually imply higher values for D3 and vice-versa.
Likewise, we can visualize the correlation between D3 and D4 and the cross among
the lines between D4 and D5. Exceptions or outliers corresponding to diverging lines
that disrespect the usual behavior between dimensions can also be spotted using this
technique.

The real strength of parallel coordinates is in modeling relations between variables,
as discussed in [17]. Our method analyzes the variance of each dimension to model
those relations. The model is simply represented using L . The purpose of L is to de-
termine the order in which the algorithm will analyze the data flow between consecutive
pairs of dimensions in order to form clusters.

Given a set C of conformations represented by feature vectors in n dimensions, the
covariance matrix Σ of the data set is generated and all dimensions are placed in L
in increasing order of variance. We do not claim that this arrangement is optimal. The
optimal ordering of the dimensions is a topic for further study.

In order to assign a unique cluster to each conformation and identify outliers our
method first performs a model-based clustering on each dimension separately using
Gaussian mixture distribution models to estimate density. A Gaussian or normal mix-
ture model is a parametric probability density function represented as a weighted sum of
Gaussian component densities. Gaussian mixture models are commonly used as para-
metric models of the probability distribution of continuous measurements or features.
Model-based clustering [18] is based on a finite mixture of distributions, in which each
mixture component corresponds to a different cluster or block. For continuous data, the
most common component distribution is a Gaussian distribution. Choosing a suitable
number of components gc is essential for creating a useful model of the data and for
data partitioning. The authors of [19] state that when a Gaussian mixture model is used
for clustering, there might be an overestimation of the number of clusters. This is be-
cause a cluster may be better represented by a mixture of Gaussians than by a single
Gaussian distribution. In [20] the authors argue that the goal of clustering is not the
same as that of estimating the best approximating mixture model. Indeed, our objective
in this work is not to find the number of components that best approximates the data,
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as an estimation for the number of blocks in each dimension’s partition. Instead, we de-
termine the minimum number of Gaussian components associated to each dimension’s
data, whose Root-Mean-Square deviation (RMSD) corresponds to a local minimum or
approximates a minimum since the RMSD global minimum usually corresponds to a
high number of components.

The process of choosing the number of components gc for the data associated to a
dimension from a sample conformation data set is demonstrated in Figure 2. It starts
with the generation of a fine histogram with N bins corresponding to a sequence of
uniformly spaced single-valued points {xk : k = 1, . . . ,N} with associated data values
{yk : k = 1, . . . ,N}. Then, a set of m Gaussian models with a number of components
varying from 1 to m is used for fitting the histogram’s data. The Gaussian model is
given by Eq. 1 where a corresponds to the amplitude, b is the centroid location, c is
related to the peak width and m is the number of peaks to fit.

f (x) =
m

∑
i=1

aie

[
−
(

x−bi
ci

)2
]

(1)

We analyze the curve generated for the graph where the x-axis represents the number
of components {xi : i = 1, . . . ,m} and the y-axis corresponds to the associated RMSD
values. We choose the smallest number of components with an RMSD corresponding
to a local minimum or to a value that approximates a minimum.

Once the number of components corresponding to the number of clusters for each
dimension is estimated, a Gaussian model-based clustering is used to partition the di-
mensions. Each element of the conformation’s feature vector is assigned to a unique
cluster in the corresponding dimension and this information is stored in B.

(a) (b) (c)

Fig. 2. Illustration of data modeling process: (a) histogram of data in a single dimension, (b) plot
of RMSD versus number of Gaussian components, (c) data fitting with four Gaussian components

Once L and B are generated, the initial conformation clusters are created taking into
consideration only the data and clusters from dimension L [1]. Then, for each pair of
dimensions (L [i],L [i+1]), we continue to refine our initial set of clusters by grouping
the vectors that belong to the same cluster, i.e., those vectors that fall into the same block
in L [i+1]. The vectors comprising the cluster must also satisfy the constraint given by
τ , whereby any ”diverging” set of vectors must have a number of elements greater than
a fraction τ of the total number of vectors in the original cluster. Vectors that do not
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satisfy this constraint are considered outliers or conformations that are unlikely to exist
as meaningful intermediates; such vectors are removed from the clustering process.
The final set of clusters is formed after all consecutive pairs of dimensions have been
considered according to the order given by L and the process described above.

The algorithm for the proposed clustering method takes as input C and τ , and outputs
a set of disjoint clusters as well as a set of outliers. The name of each final cluster shows
the identification of the corresponding dimension blocks. The pseudocode is presented
as Algorithm 1.

Algorithm 1 . Clustering Algorithm

Require: C , τ
Ensure: A set of disjoint clusters and a set of outliers

Compute Σ
Compute L
Compute B
i ← 1
Name each initial cluster in L [i] according to the block from which it originated
for all consecutive pairs (L [i],L [i+1]) do

for all clusters up to dimension L [i] do Evaluate Tβ = τ∗cardinality of cluster β
end for
Use B to find and group the vectors that belong to same cluster β up to dimension L [i] and

fall into the same block at dimension L [i+1]
Obtain the cardinality Tgβ of each group g, where β represents the original cluster from

which those vectors originated
if Tgβ ≥ Tβ then

Discard β and create a new cluster with the corresponding vectors
Add the current dimension block identification (at dimension L [i+1]) to the name of the

original cluster β in order to name the new cluster
else

Remove corresponding vectors from clustering process and classify them as outliers
end if

end for

The implementation of the algorithm includes MATLAB scripts and C code.

3 Experimental Results

3.1 Tested System - Adenylate Kinase (AdK)

The conformational search and subsequent clustering was run on AdK. It is a monomeric
phosphotransferase enzyme that catalyzes reversible transfer of a phosphoryl group
from ATP to AMP. The structure of AdK, which contains 214 amino acids, is com-
posed of the three main domains, the CORE (residues 1–29, 68–117, and 161–214),
the ATP binding domain called the LID (residues 118–167), and the NMP binding do-
main (residues 30–67). AdK assumes an “open” conformation in the unligated structure
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and a “closed”conformation. The RMSD between the two structures is 6.95Å. Suppos-
edly, during the transition from the “open” to “closed” form, the largest conformational
change occurs in the LID and NMP domain with the CORE domain being relatively
rigid. Our model contains 8 rigid elements where most of the CORE domain was mod-
eled as one large segment and was considered fixed, since it does not undergo a large-
scale motion. Hence, the data were represented as feature vectors of 8 dimensions each.
We ran the search 30 times in the direction of 1AKE-4AKE and 30 times in the reverse
direction. Overall we collected 11,823 intermediate conformations.

3.2 Resulting Clusters

The data set C generated by our conformational search consists of the 60 pathways
containing 11,823 conformations projected onto an 8-dimensional space which repre-
sents the protein conformational space. In order to perform a model-clustering of each
dimension, the number of blocks in each partition is determined based on the number of
components of the Gaussian mixture model chosen. The process for choosing the num-
ber of components generates histograms with 100 bins and analyzes Gaussian models
with up to 8 components for each dimension. We use MATLAB with default arguments
and the Trust-region algorithm [21, 22] to generate each model. We also used MATLAB
to run the Gaussian model-based clustering, with the number of mixture components as
input argument.

Our experiments use 4 different values of τ , the threshold used for identifying out-
liers: 0.05, 0.1, 0.2 and 0.3. Among all clusters generated by our method, we are inter-
ested in the large clusters (with at least 20 members), which distribute narrowly around
their cluster center. While several of the most populated clusters may contain confor-
mations that are close to known intermediates, some of them are narrower than oth-
ers, regarding their deviation in terms of the centroid location. Since we are evaluating
the RMSD between known structures and the resulting clusters centroid location, nar-
rower clusters may produce more desirable results because their standard deviation is
lower. We observed that for our sample data set, some clusters having at least 20 con-
formations contain conformations that are close to known intermediates structures (see
Section 3.3). Further study is needed to determine the appropriate size for cluster of
interest taking into consideration the standard deviation with respect to the centroid lo-
cation and RMSD from known structures. Table 1 presents statistics about the resulting
clusters according to selected values of τ . Notice that as the value of τ increases, so
does the number of outliers detected by the algorithm.

3.3 Comparison with Known Intermediates

In general, knowledge about intermediate conformations is needed in order to provide
a case-specific validation, but this knowledge does not always exist. As a matter of
fact, intermediate structures are hard to obtain due to their relative high energy with
respect to the native structures. With the advances in structural detection and simula-
tion methods, one can expect to have more information about intermediate states in the
future. AdK has several known mutant and intermediate structures. In a recent study
[23] the energy profile of AdK was produced using elastic network interpolation (ENI).
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Table 1. Statistics containing the number of resulting clusters (not considering the cluster contain-
ing the set of outliers), number of outliers and number of clusters with at least 20 conformations
as well as the number of conformations in the smallest and largest clusters according to selected
values of τ

τ = 0.05 τ = 0.1 τ = 0.2 τ = 0.3
no of clusters 329 231 58 10
no of outliers 567 1703 4380 7547
no of clusters with 20+ conformations 88 75 44 10
size of smallest cluster 1 1 2 85
size of largest cluster 1312 1312 1312 1312

The method was used to generate the conformational transition pathway between the
open and closed form of AdK and back, and compare the intermediates to known struc-
tural intermediates. Inspired by that study, we performed a similar test on our results. We
focused on five known intermediates: chains A, B, and C of the hetero-trimer Adenylate
Kinase from Aquifex Aeolicus (PDB accession code 2RH5), which are conformational
change intermediates of the ligand free AdK [24], 1E4Y, which is an AdK mutant hav-
ing 99% sequence identity with 4AKE and 1AKE and is a closed form of AdK binding
with AP5, and 1DVR, which is a mutant that exhibits LID closure [25]. We selected all
the clusters that containted at least 20 members and recorded for each cluster center the
closest conformation to 1E4Y, 1DVR and to chains A, B and C of 2RH5. Our results
are shown in Table 2. For each intermediate, the table shows the lowest RMSD from the
closest conformation cluster center and the cluster number. We considered only “well-
behaved” clusters, that is - the maximum distance from the cluster average was at most
3Å. Figure 4 shows the distribution of the RMSDs of cluster elements from the cluster
center for these clusters. Notice that the same intermediate was the closest to chains B
and C of 2RHC. This can be explained by the fact that the two chains are very similar
to one another – the RMSD between them is approximately 2Å. The data corresponds
to the result of our clustering method with a threshold τ of 0.05. In fact, this value of
τ provided the best result obtained by our method. Figure 3 shows the intermediate
structures superimposed on the closest cluster center for each intermediate.

Table 2. RMSDs of cluster centers from five known AdK mutants representing intermediate
states. The data were taken from our proposed method, cutoff of 0.05.

Intermediate PDB code 2RH5(A) 2RH5(B) 2RH5(C) 1E4Y 1DVR
Cluster name 1 2 3 1 1 1 2 3 1 2 1 2 1 1 2 3 1 2 1 2 1 1 2 3 1 2 2 2 2 1 3 3 1 1 3 2 2 1 2 1
Cluster size 33 21 21 84 101
RMSD with cluster average† 2.55 2.49 2.89 2.56 2.77

† The RMSD was calculated with respect to the C−α atoms of the aligned residues between the two proteins

3.4 Comparison of the Proposed Clustering with K-Means

In order to validate our clustering algorithm, we compare our results to others gener-
ated by the K-Means algorithm. Weka [26] was the workbench used to run K-Means
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(a) 1DVR (b) 1E4Y (c) 2RH5 (chain A) (d) 2RH5 (chain B) (e) 2RH5 (chain C)

Fig. 3. Cluster representatives (blue) superimposed on known intermediates (red). See Table 2 for
details.
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Fig. 4. Distribution of RMSD of cluster elements from cluster average for the clusters represent-
ing AdK intermediates (see Figure 3 and Table 2. See inset legend for cluster name.

with Euclidian distance and a maximum of 2000 iterations. We selected 3 well spaced
arbitrary values for the number of clusters K within the range of the number of clusters
found by our method (see Table 1): 20, 80 and 150. Table 3 shows the results according
to the number of clusters K. As seen, with K = 20 clusters there was no narrow clus-
ter (with a radius below 3Å) corresponding to intermediates 1DVR and 1E4Y within a
reasonable RMSD. Only at K = 150 the results were comparable to our method.
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Table 3. RMSDs of cluster centers generated by K-Means from five known AdK mutants repre-
senting intermediate states

2RH5(A) 2RH5(B) 2RH5(C) 1E4Y 1DVR
K RMSD size RMSD size RMSD size RMSD size RMSD size
20 2.69 91 2.73 91 3.35 91 – – – –
80 2.64 28 2.71 112 3.17 36 2.58 55 2.88 20
150 2.52 31 2.43 120 2.95 43 2.52 77 2.82 82

The proteins conformational space may contain many intermediate structures that
are unlikely to exist as significant intermediates. Therefore, outlier detection is highly
desirable in a clustering algorithm for the characterization of protein conformational
space. The K-Means algorithm does not allow for the detection of outliers whereas
our clustering method has the advantage of providing a flexible way to detect them. In
addition, there is no a-priory way to know K, the number of clusters, in advance, and
an educated guess has to be made. Our method provides a more deterministic way to
evaluate the number of clusters. As a matter of fact, in this paper K was determined
according to the number of clusters discovered by our method (see Table 1).

4 Conclusion

Characterization of protein conformational space is a very challenging problem due
to the large amount of calculations required to characterize that complex and multi-
dimensional space and due to the scarcity of experimental data regarding intermediate
states. In this paper we presented a clustering method based on parallel coordinates
and used it to characterize the conformational space of AdK and detect highly popu-
lated areas that may correspond to intermediate structures, which are usually hard to
detect using experimental methods. In the case of AdK, however, several intermediate
homologs exist and we were able to find cluster centers corresponding to these inter-
mediates. The advantage of our method over K-means clustering and other standard
clustering methods is that it allows the detection of outliers and does not require the
number of final clusters to be given as input. Also, the parameters can be adjusted to
gain insight about the optimal number of clusters. Detecting the ideal cutoff for the data
and trying to find better ways to merge close clusters is the subject of on-going research.
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Abstract. Proteins are important macromolecules in living systems and
serve various functions in almost all biological processes. Protein func-
tion information is reported in many scientific articles. Extraction of the
function information from the articles is useful for drug discovery, un-
derstanding of life phenomenon, and so on. However, it is infeasible to
extract the function information manually from a number of articles. In
this paper, we propose a method of extracting sentences containing pro-
tein function information by iterative learning with feature update. In
this method, we use a classifier in order to distinguish the sentences con-
taining the function information from the other sentences, and introduce
a semi-automatic procedure, in which a new classifier is reconstructed
based on the user’s feedback for the previous classified results. In the
experiment with twelve articles as feedback data, it was confirmed that
F-measure was improved by iterating learning without getting the neg-
ative effect of the feedback.

Keywords: protein function information, information extraction, deci-
sion tree, iterative learning.

1 Introduction

Protein serve various functions by interacting with other chemical compounds,
and plays important roles in living systems[1]. Protein function is clarified by
protein structure analysis and the obtained knowledge has been stated in a
number of scientific articles. In order to make the knowledge available read-
ily, it is required to construct a database storing protein function information.
Many protein-related databases have been developed (e.g. PIR (Protein Infor-
mation Resource)[2], PDB (Protein Data Bank)[3], Swiss-Prot (Swiss Protein
Database)[4]). However, the useful information that has not been registered in
such databases is still contained in huge volumes of articles.

Recently, there have been many attempts to extract significant information
from biomedical documents. For example, Tsai et al.[5] and Sun et al.[6] pro-
posed an approach to biomedical named entities recognition using Conditional
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Random Fields (CRF) [7] based on orthographical features or word conjunctions.
And Seki et al. proposed a method using a protein name dictionary and rules for
detection and filters[8]. On the other hand, researches to extract protein interac-
tions information from biomedical literatures have been also conducted. Bunescu
et al. attempted to identify human protein names and extract protein inter-
actions comprehensively using various information extraction (IE) methods[9];
dictionary-based extraction, Rapier[10] and BWI[11] (a rule learning algorithm),
Hidden Markov Models (HMMs)[12], Support Vector Machine (SVM)[13], and
existing protein name identification systems (KEX[14] and ABGene[15]). Cooper
et al. proposed a method for the discovery of protein-protein interactions using a
combination of linguistic information (for example, verbs used to describe protein
interactions) and graphical relations between proteins[16]. Hao et al. proposed
an approach to discovering English expression patterns, optimizing them and
extracting protein-protein interactions using them[17].

While these researches aim to extract biomedical named entities or protein
interactions, we focus on literature about proteins whose structures are analyzed
and registered in PDB, and have proposed a framework which assists the user in
extracting protein function information interactively. In our scheme, a concept
of extracting sentences containing the protein function information by iterative
learning[18] has been introduced. Extraction of the sentences can be considered
to classify sentences based on whether they contain the function information or
not. In the previous method[18], the SVM (Support Vector Machine) is used
as a classifier (we call this method ‘SVM-based method’), where one sentence
corresponds to one instance, and characteristics (keywords, patterns, etc.) of
each sentence corresponds to the features of the instance. Each time receiving
a feedback, which implies true/false evaluation for the classified sentences and
new features automatically generated from these sentences, a whole classifier
is reconstructed based on the training data including new features and new
instances from the feedback, because in the SVM generally it is difficult to re-
construct just a part of the classifier that causes misclassifications. The method
of incremental learning of SVM, where a new classifier is learnt not from scratch
but by updating the current classifier every time a new instance is given, has
been developed[19]. However, this method does not consider the feature update,
namely the situation that new features (new attributes) as well as new instances
are given incrementally. Although the feedback often improves classification ac-
curacy in many cases, if the new classifier is built based on the feedback without
referring the current classifier, the accuracy of the classifier may not be stable
in iteration steps.

In this paper, we propose a new method of reconstructing a classifier partly
based on a feedback in each iterative learning phase in order to make the ac-
curacy rising steadily. As mentioned above, an SVM cannot flexibly respond to
a feedback, because the inside of the model of an SVM is invisible. Therefore
we use a decision tree[20][21] for the classifier. A decision tree consists of the
combination of rules as a tree-structure. In the tree-structure, each node has one
rule, each rule is expressed by features and each instance is classified according
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to whether it satisfies the condition of the rule at the node. It is more visible
how instances are classified, compared with an SVM. There have been a lot of
approaches to the incremental learning using the decision tree[22][23]. However,
few of them suppose that new features are given by a feedback incrementally.
In a decision tree, the feature at the node which frequently makes misclassi-
fications can be easily identified. In our method, more accurate classifiers can
be built by removing such wrong features and by adding new features and in-
stances obtained from the user’s feedback. In addition, by reconstructing not
only a whole of decision tree but also a subset at which more misclassifications
are taken place, a subset where instances are correctly classified can be kept in
iteration. It is expected that the reconstructed decision tree is more accurate
than the previous one.

2 Extracting Protein Function Information by Iterative
Learning

In this section, the outline of iterative learning is shown firstly. Next features
and the way to generate new patterns as one of the features are described.
Then the algorithms of identifying the features which have a negative effect and
of building a new classifier are described. Finally the whole procedure of the
proposed method is summarized.

2.1 Outline of Iterative Learning

If enough instances and features as training data are not given in advance, an
accurate classifier cannot be built based on only the training data. However, each
time a classifier is applied to a new article, if the result of the classification is
evaluated by a user, the classifier may be modified based on the user’s feedback.
Then it is expected to improve the accuracy of the classifier by iterating above
processes.

We have proposed the SVM-based method of sentence classification using
iterative learning in[18]. In this method, multiple features are assigned to each
sentence, and a classifier is built based on them. In each iterative learning phase,
a user determines whether the classified result is true or false. If false, patterns
and instances extracted from the result are added to the training data, and a
classifier is reconstructed and taken advantage of for next learning. Figure 1
shows the outline of the iterative learning, in which tagged document is used as
the training data, and an SVM is used as a learner and a classifier.

On the other hand, in the new method proposed in this paper, a decision
tree is used as a classifier. A decision tree consists of the combination of rules
as a tree-structure in Figure 2. In a decision tree, each node corresponds to one
rule and each rule is defined by one or more features. Instances are classified
according to whether it satisfies a condition of the rule at the node. Therefore
when the classified result is evaluated, it is possible to identify the features
which cause misclassifications. In addition, it is possible to reuse the subset of



84 K. Miyanishi and T. Ohkawa

Fig. 1. The outline of the SVM-based method

a decision tree where instances are correctly classified because the inside of a
decision tree is observable. In the proposed method, these characteristics are
employed in iterative learning, and a classifier (a decision tree) is refined by
removing features which have a negative effect. We call this method ‘IDTFU
(Iterative Decision Tree learning with Feature Update)’. The outline of the
IDTFU is shown in Figure 3.

Fig. 2. Decision Tree

Unlike the SVM-based method in Figure 1, features with a negative effect are
extracted from a classifier and removed at the steps (8) and (9) in Figure 3.
And the new classifier can be built based on the subset of the previous classifier
where instances are correctly classified.
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Fig. 3. The outline of the IDTFU

2.2 Features about Protein Function Information

Protein function infomation can be observed in articles about protein structure
analysis. Sentences which contain protein function information have some char-
acteristics. That is to say, the sentences may include names of substances and
interactions, or sequences of some keywords. A classifier is built by using these
characteristics as features for training data. The kinds of features used in the
IDTFU are described below. Here, part-of-speech tag is put to each sentence in
the documents using Brill’s Tagger[24] in advance. And some types of named en-
tities are tagged as each meaning (for example, <protein>, <residue>,<atom>,
etc)[25].

1. Atomic distances between interacting substances
When an amino acid residue interacts a substance, an atom or a part of
atoms in the residue gets close to the substance. Therefore if the distance
in three-dimensional space between a residue and a substance written in a
sentence is shorter than a certain pre-defined threshold value, it is considered
that the residue interacts the substanc[26] and “1” is assigned, otherwise “0”
is assigned as a value of one feature for the sentence.

2. Keywords
Frequently occurring words in sentences containing protein function infor-
mation are significant as a hint for classification. Thus if the keywords, for
example “interact”, “bind”, “hydrogen bond”, and so on, are included in a
sentence, “1” is assigned to the sentence, otherwise “0” is assigned.

3. Patterns
Frequently occurring sequences of words in sentences conatining protein
function information are also the hint for classification. These sequences
are defined as patterns with wildcard characters, and used as features. For
example, “<residue> (.)* play (.)* <function>”, “<protein> (.)* contain



86 K. Miyanishi and T. Ohkawa

(.)* <residue>”, where “<residue>” means the name of a residue, for exam-
ple “Arg21” and “His23”. Similarly, “<function>” and “<protein>” mean
respectively the name of a function and a protein. If a sentence matches one
of these patterns, “1” is assigned to the sentence, otherwise “0” is assigned.

2.3 Generation of New Patterns

In the IDTFU, patterns are generated automatically from misclassified instances
and added to a set of training data as features in each iterative learning phase. If
the target sentence includes words that are inappropriate for generating patterns,
such words are removed, for example, a pronoun, definite or indefinite articles,
and so on. In addition, words except a named entity, a verb and a noun are also
removed.

For example, from the sentence
“At <residue> 270Glu1S </residue>, the electron density is again good and
clearly shows <interaction> a stacked ring interaction </interaction> between
<residue> 281Phe1L </residue> and <residue> 286Phe1F </residue>.”[27],
the following six patterns are generated.

<residue>(.)*electron(.)*density(.)*<residue>
<residue>(.)*electron(.)*shows(.)*<residue>
<residue>(.)*electron(.)*<residue>
<residue>(.)*density(.)*shows(.)*<residue>
<residue>(.)*density(.)*<residue>
<residue>(.)*shows(.)*<residue>

2.4 Identification of the Features to Be Removed

The features monotonously increase by the pattern generation. If training data
include features which disturb the improvement of the accuracy of the classifier,
they should be removed. In the IDTFU, decision tree is used as a classifier and
each node in the decision tree describes a condition of a feature. The feature of
the node at which more instances are misclassified is the candiate to be removed.
If the number of misclassified instances and the ratio of misclassification at a
node are more than the thresholds Tn1 and Tr1 respectively, the path from the
node to the root node is identified as the candidate to be removed (Figure 4).

The procedure of identifying the candidate to be removed is described in
Figure 5, where LALL is a set of all leaves in the current decision tree, and C is
the set of candidate leaves. NUM−MISS(l) returns the number of misclassification
at the node l, and MISS−RATIO(l) returns the misclassification ratio at the
node l.

Next, as shown in Figure 6, the node at the bottom of the candidate path is
removed tentatively and the accuracy (F-measure) is obtained by Cross Valida-
tion (CV). If the accuracy obtained after removing the node is higher than one
obtained before removing, the feature which the node indicates is determined to
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Fig. 4. Extraction of the candidate to be removed

Procedure: cand ident (Input : LALL Output : C)
1 initialize : C = ∅
2 ∀ l ∈ LALL

3 n := NUM−MISS(l)
4 r := MISS−RATIO(l)
5 if(n > Tn1 && r > Tr1)

C := C ∪ l
6 return C

Fig. 5. Procedure: cand ident for identifying a candidate node to be removed

be removed. In addition, the parent node of the removed node is treated as a
new candidate to be removed. This process is continued while the accuracy is
improving.

This procedure is formally described in Figure 7, where Nc is each candidate
leaf identified by the procedure cand ident, and Nr is the node to be removed. Tc

is the current decision tree, and CALC−F(T ) returns F-measure of the decision
tree T . Ft is F-measure of the current decision tree by Cross Validation and used
as the threshold. REMOV E−PARENT(N, T ) removes the parent node of N from
T , and PARENT(N) returns the parent node of N .

2.5 Reconstruction of Decision Tree

The simplest way to update a decision tree is reconstruction of a whole decision
tree. When a current learner gets user’s feedback, new features and new in-
stances are added to current training data and some features are removed from
them based on the feedback. Then, new decision tree can be built from scratch
using the new training data. The IDTFU provides the following more effective
strategies to reconstruct a decision tree.
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Fig. 6. Determination of the node to be removed

Procedure: node det (Input : Nc Output : Nr)
1 Ft := CALC−F (Tc)
2 Nr ← NULL

3 Np ← Nc

4 Tr := REMOVE−PARENT(Np, Tc)
5 Fc := CALC−F (Tr)
6 if (Fc > Ft)

Nr := Np

Np := PARENT(Np)
go to 4

7 else
return Nr

Fig. 7. Procedure: node det for determining a node to be removed

(a) Add Features, Remove Features and Reconstruct a Subset of the
Decision Tree. The first strategy is to reconstruct a subset of decision tree.
It may not always be efficient to reconstruct a whole decision tree every time
getting user’s feedback. In this case, only the subset which frequently misclassifies
should be reconstructed. After the node is removed by the method mentioned
in 2.4, the edge from the node is reconstructed as shown in Figure 8.

(b) Same as strategy (a) If the Size of the Decision Tree is Small,
Otherwise Reconstruct a Whole Decision Tree. The second strategy is a
hybrid method. That is to say, a subset of decision tree is reconstructed while the
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Fig. 8. Reconstruction of subset trees

size of decision tree is smaller than a certain threshold, and otherwise a whole
decision tree is reconstructed. While a subset of decision tree is reconstructed
in iterative learning, the number of misclassification at each node which is not
reconstructed does not change. Therefore as the decision tree becomes larger, the
sum of misclassification may be increasing. In addition, it is generally preferred
that the size of decision tree is small because the decision tree is unlikely to
overfit to the training data. For these reasons, the hybrid method expects to be
effective.

The procedure of reconstruction of subset trees shown in Figure 8 is described
in Figure 9, where Tc is the current decision tree, Nr is the node to be removed
based on the procedure node det, and Tn is the reconstructed decision tree. I(N)
is a set of instances at the node N , REMOV E(T,N) removes the node N from
the decision tree T . BUILD−SUBTREE(T, I) builds a subtree based on instances
I, add the subtree to the tree T , and returns a reconstructed tree.

Procedure: sub reconst (Input : Tc, Output : Tn)
1 Tr := REMOVE(Tc, Nr)
2 Tn := BUILD−SUBTREE(Tr, I(Nr))

Fig. 9. Procedure: sub reconst for reconstructing subtree

The common part of both methods (a) and (b) is shown in Figure 10, where
BUILD(D) builds a decision tree based on the training data D, and Ff is a set
of new features obtained by the feedback. In this part, the first classifier is built
based on the initial training data, and new features are added to the training
data after receiving a feedback.

The procedure of the method (a) is shown in Figure 11. In the method (a),
features which have a negative effect are removed from the current training data
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Procedure: common part of tree reconst
1 D ← initial data for training
2 T := BUILD(D)
3 if receive the feedback
4 D := D ∪ Ff

Fig. 10. The common part of procedure of tree reconstruction

at line 5, where Fr is the features to be removed based on the procedure node det,
and REMOV E−F(D,F ) removes features F from the data D. And the decision
tree is partly reconstructed at line 6.

The method (b) is shown in Figure 12, where Ts is the threshold value of the
size of a decision tree. That is to say, while the size of the decision tree is smaller
than Ts, the tree is reconstructed partly. If the size is larger than Ts, the tree is
reconstructed whole.

Procedure: tree reconst a
1-4 common part
5 D := REMOVE−F(D, Fr)
6 T := sub reconst(T )

Fig. 11. The procedure of tree reconstruction (a)

Procedure: tree reconst b
1-4 common part
5 if the size of T < Ts

6 D := REMOVE−F(D, Fr)
7 go to 2
8 else
9 T := RECONSTRUCT(T )

Fig. 12. The procedure of tree reconstruction (b)

3 Evaluation

We evaluate the effectiveness of the IDTFU by using articles stating protein
structural analysis shown in Table 1, each of which is referred by PDB. PDB-ID
is the identifier of the protein registered in PDB, and the “correct sentence”
means the sentence containing protein function information.

Named entities in these articles are already tagged manually. In our experi-
ment, one article is used for training, another is for evaluation, and the others
are used as feedback data. We conduct sixteen trials changing the combination
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Table 1. Statistics of the articles referred in the experiment

PDB-ID # of sentences # of correct sentences

1a0h 289 26
1a0q 259 23
1a26 203 13
1a3l 214 23
1a3r 299 21
1a4j 190 13
1a5a 113 10
1a5h 245 39
1a5i 275 73
1a5v 241 20
1a5y 256 33
1a5z 304 8
2a2g 288 13
2a39 312 4

Table 2. The difference of feature update and reconstructing tree in each method

method features features tree reconstruction
addition removal subset whole

SVM-based ©
IDTFU (a) © © ©
IDTFU (b) © © © ©

Fig. 13. Extraction accuracy in each method
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of training data, evaluation data and feedback data. The order of feedback data
is decided randomly.

We compare the IDTFU ((a) and (b)) with the SVM-based method in order
to evaluate the effectiveness of the IDTFU. The outline about feature update
or reconstruction of decision tree in each method is shown in Table 2. Ts, the
threshold of the size of the decision tree, in Figure 12 is 40 including leaf nodes,
because the size of the tree often becomes between 40 and 50 nodes after several
iteration steps.

The average F-measure of each method for 16 trials is shown in Figure 13.
Although the F-measure of the SVM-based method is the highest in the initial
learning phase, the F-measure goes up and down depending on the feedback. On
the other hand, the F-measure of the IDTFU rises monotonously by iterative
learning and converges in higher value than the highest value obtained by the
SVM-method.

From this experiment, it is obvious the accuracy of the IDTFU steadily rises
by iterative learning based on the feedback. In addition, the IDTFU always has
a certain level of accuracy when receiving any feedback, because the variance is
small at each iteration step. In the IDTFU (b), the whole of the decision tree is
reconstructed when the size of the tree becomes larger than a certain threshold.
Therefore the classifier is reconstructed and often gets a higher accuracy than
the accuracy that the IDTFU (a) shows.

4 Conclusion

In this paper, we proposed a method of extracting sentences containing protein
function information by iterative learning with feature update. The IDTFU (a)
is to update features and reconstruct the subset of the decision tree, and the
IDTFU (b) is to update features and reconstruct the subset or the whole of
the decision tree. We compared these methods with the SVM-based method,
and evaluated the effectiveness of the IDTFU. While the accuracy of the SVM-
based method rises and falls depending on the feedback and the variance of
F-measure for the combination of training data, evaluation data and feedback
data at each iteration step is large, the accuracy of the IDTFU usually rises
steadily and the variance is small. In addition, we confirmed that the hybrid
tree reconstruction, namely applying subset tree reconstruction or whole tree
reconstruction selectively, was effective for improving accuracy of the iterative
learning.
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Abstract. Covariance models are very effective for finding new members of 
non-coding RNA sequence families in genomic data. However, the computation 
burden of applying CM-based search algorithms can be prohibitive. When an-
notating the genome of a newly sequenced organism it is usually desired to 
search the sequence data using a large number of ncRNA families. Computa-
tional burden can be reduced if the families are clustered into statistically  
similar models and a single cluster-average representative model produced.  
The database is then searched with the representative model for each cluster at a 
relatively low detection threshold. The output of this pre-filtered database is 
then processed with the individual family members of the cluster. A base-pair 
conflict metric has previously been proposed for use in model clustering. In this 
work an alternative metric using standard alignment algorithms and a special 
mixed primary-secondary structure scoring matrix is proposed. 

Keywords:  non-coding RNA, covariance model, sequence analysis, second-
ary structure. 

1 Introduction 

Reduction of the large computational burden imposed by covariance-model-based 
non-coding RNA (ncRNA) gene finding has been the subject of much research. Me-
thods examined have included direct hardware acceleration [1], various database pre-
filtering operations and search space limiters [2-5], model simplifications [6], and 
generic (non-family specific) ncRNA search algorithms [7]. These have been applied 
with varying degrees of success and often the methods are not mutually exclusive and 
can be combined. 

Covariance models [8-9] are preferred for ncRNA over primary-structure-only me-
thods such as profile hidden Markov models due to the high degree of secondary 
structure conservation and low degree of primary structure conservation in these se-
quences. Intra-molecular bonding patterns map very well to three-dimensional shape 
and function in ncRNAs, whereas primary structure is a poor predictor of secondary 
structure. Portions of genomic sequence which code for protein can be converted to 
equivalent amino acid sequences with much more primary structure similarity within 
a protein family. A major cost associated with allowing both primary and secondary 
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structure to be expressed in statistical models such as covariance models (CMs) is a 
large increase in database search computational effort. As compared to profile hidden 
Markov models [10], this increase can be as much as an order of magnitude and com-
pared with faster algorithms such as BLAST [11-12] the increase may be many orders 
of magnitude. 

A very popular strategy for ncRNA gene search has been to group known ncRNA 
genes into families and form a statistical model of each family using a multiple 
alignment of the family sequences mapped onto a secondary structure specification. 
Such a methodology may be found in the Rfam database [13-15], which uses the In-
fernal [16-17] suite of CM-based algorithms for model building and database search. 
The choice of how much variation to allow within a family versus breaking a family 
up into independent families is rather arbitrary and this choice has so far been treated 
as an art. Recent versions of the Rfam database have also included groups of families 
called clans. However, these clans are intended more for the purpose of presenting 
potential similarity in biological function than as a way to group families for im-
provement of efficiency in database search. Clans are useful as a sanity check on clus-
tering used in model combination for computational efficiency purposes since we 
expect that families that are members of the same clan due to functional similarity are 
more likely to have structural similarity than families that are not members of the 
same clan. 

Clustering of models can be taken to the extreme of insisting on placing all fami-
lies in a single cluster and finding a single generic search model that can be used as a 
database pre-filter. This filter separates the database into two parts: sections of the 
database that do not seem to contain any ncRNA and those that possibly do contain 
one or more ncRNA genes. There is rather convincing evidence [18] that merely 
searching for database sections that have the potential to form stem-loop structures is 
not informative enough to do any significant amount of database reduction. There is a 
lot of diversity in the number of stem-loop structures and sizes of stems and loops 
between families as well as very little primary sequence similarity between families. 
However, there is generally a lot of similarity in secondary structure and a significant 
if not large amount of primary sequence similarity within families. This leads to mod-
eling of families individually. The idea of clustering and combining models can be 
viewed as an intermediate between these two extremes. 

Jiang and Wiese [19] have taken this clustering and model combining approach to 
search time reduction. In order to do the clustering, it is necessary to have a distance 
metric for comparing the models to be clustered. Their approach is to use a base pair 
conflict metric. This is a pair-wise metric that uses the dot-bracket RNA secondary 
structure notation for the two models as input and looks for instances where mapping 
one model onto the other would imply a pseudoknot. Covariance models do not allow 
pseudoknots and where they do occur in actual ncRNA families, they are simply ig-
nored and treated as non-based-paired sequence locations. Combination of two mod-
els such that there is an implied pseudoknot is an indication that the two models are 
not amenable to such combination. Formally, if positions (m, n) are base paired in one  
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model and positions (i, j) are based paired in another, then if m < i < n < j or i < m < j 
< n, there is an implied pseudoknot, or in the Jiang-Wiese terminology a base pair 
conflict. Note that the two base pairs (m, n) and (i, j) should be specified with m < n 
and i < j for this definition to work. Their distance metric is based on a count of the 
number of base pair conflicts. 

The approach taken in this work is similar to that of Jiang and Wiese with the ex-
ception that an entirely different distance metric is proposed. The new metric uses the 
alignment score output of standard pair-wise or multiple alignment algorithms. A 
special 12-character alphabet for mixed primary-secondary structure description is 
used and an associated special-purpose scoring matrix is introduced. Since there are 
twelve characters in the alphabet and the characters are judiciously chosen to match 
valid amino acid symbols (of which there are 20), any alignment algorithm designed 
to handle proteins should work. As a side effect of scoring the alignment for a cluster 
with three or more family members using a multiple alignment algorithm, a consensus 
secondary structure is normally obtained. This consensus secondary structure may be 
used as a guide on which to build a combined covariance model. Furthermore, the 
metric uses both primary and secondary structure information, whereas the base pair 
conflict metric uses only secondary structure information. 

The remainder of this work is structured as follows. Section 2 gives details of the 
special alphabet and scoring matrix for this application as well as the support-vector-
machine clustering and combined model building methods. Section 3 compares the 
use of the proposed metric with that of the base pair conflict metric using the same 
data found in the Jiang and Wiese paper. Section 4 expands the analysis to a case of 
members of two Rfam clans with the result that the clustering tends to automatically 
place members of the same clan in the same clusters. The concluding section dis-
cusses work yet to be done as well as summarizing the results of the analysis sections. 

2 Distance Metric, Clustering, and Model Combination 

Three steps are required to obtain a reduced set of combined models for comprehen-
sive annotation of a genome with ncRNA putative genes. First, a set of distances be-
tween family models for which searches are to be performed needs to be obtained. 
Knowledge about the type of organism the genome belongs to will likely lead to eli-
mination of some of the Rfam families from consideration. For example, if the  
organism is a mammal and a certain family is known to only exist in bacteria, then it 
probably does not make sense to even consider that family. Second, these distances 
are used to cluster the family models. There is a tradeoff between fewer clusters re-
sulting in faster processing and more clusters resulting in better search results. Third, 
the models in each cluster need to be combined into a single covariance model for use 
in the first round of search. A subsequent round of search will be applied to the results 
of each first round search using the original models for each of the members of the 
cluster. 
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2.1 Alphabet and Scoring Matrix 

Stockholm format alignment files are available for each Rfam family which include 
“#=GC SS_cons” and “#=GC RF” lines giving consensus secondary structure and prima-
ry structure respectively. A script is written to extract these lines from each family of 
interest and a mixed primary-secondary structure symbol is generated for each alignment 
column. The 12-character alphabet for these symbols is shown in Figure 1a. The symbols 
are chosen to be valid amino acid symbols such that any standard alignment program that 
can handle protein sequences will not do anything unusual based on the assumption that 
positions are degenerate. All combinations of the four nucleotide possibilities (a, c, g and 
u) and the three secondary structure labels (dot, left bracket and right bracket) result in 
twelve possibilities. The easiest thing to do with any column that has a degenerate prima-
ry or secondary structure is simply to discard that column. 
 

A: a / . C: c / . D: g / . E: u / . 

F: a / [ G: c / [ H: g / [ I: u / [ 

K: a / ] L: c / ] M: g / ] N: u / ] 

(a) 

 

(b) 

Fig. 1. a) Mixed primary-secondary structure alphabet for use in standard alignment algorithms 
b) Special-purpose scoring matrix for distance metric calculation 

Any protein alignment algorithm is then run using a scoring matrix of the form shown 
in Figure 1b. The value p is a positive quantity giving credit for matching the secondary 
structure and the value q is a positive quantity giving credit for matching the primary 
structure. The secondary structure is given in dot-bracket notation, where a dot indicates 
that the column is not base paired, a left bracket indicates that the column is intra-
molecularly paired with another column to the right and a right bracket indicates that the 
column is paired with another column to the left. Since pseudoknots are not allowed in 
covariance models, this notation is unambiguous as to which column is paired with which. 

Since the number of families may be quite large, it is recommended not to generate 
a distance score for every pair of families. Instead, choose a small number of reference 
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families at random (or perhaps, with some inspection, judiciously) and find distances 
to all families relative to these few. A pseudo-transitive estimate of family distances 
can then be found as a combination of the distances from one family to each reference 
family and from the other family to each reference family. We may similarly think of 
the set of distances from a family to each reference family as a feature set and use any 
clustering algorithm that can handle multiple features to form the families into clusters. 

2.2 Support Vector Machine Clustering Method 

The particular clustering method used for the results in this work is a support vector ma-
chine (SVM). SVM clustering is discussed in [20] and a Matlab toolbox to implement 
SVM clustering is available at [21]. A set of ten reference families were used such that a 
ten dimensional clustering was undertaken. In order to keep as much diversity in the 
reference families as possible, the following method was used. First, fifty families were 
chosen at random and the distances computed between all pairs. Then the two most dis-
tant families of the fifty were selected. A third was selected such that the average dis-
tance between the first two and the third was maximized. This pattern was repeated until 
a set of ten (hopefully very diverse) families were found. 

2.3 Model Combination 

In the paper by Jiang and Wiese [19], the method of model combination is a pair-wise 
combination process which selects base-paired alignment columns from one family or 
the other and unpaired alignment columns from both such that column numbers in the 
combined model exactly match column numbers in the original two family align-
ments. It appears that a combined alignment is generated and input to the cmbuild 
program of the Infernal program suite. Presumably, the combined alignment has 
number of sequences equal to the lesser of the number of sequences in each original 
family and that one half the number of combined alignment sequences is randomly 
chosen from each original alignment for unpaired columns. The output parameter file 
from the cmbuild program is then used in the cmsearch program for database search. 

In this work another approach is used. Instead of building up combined models for 
more than two families by iterative pair-wise merging, it is done in a single iteration. 
First, all of the mixed primary-secondary structure alphabet representations of the 
families in a cluster are processed using a multiple alignment program. All of the 
sequences from all of the family members in the cluster are then placed in one big 
alignment file where the output of the multiple alignment on the mixed primary-
secondary structure is used as a guide to placement in the combined alignment file. 
This can result insertions and deletions in individual sequences. Deleted columns 
simply do not appear in the final alignment. Inserted columns result in a unknown 
nucleotide, but there is a symbol available for such an unknown. The result is input in 
the cmbuild program to generate a parameter file. This method has the advantages of 
using all of the available sequence data to build the combined model and the use of 
multiple alignment to jointly find the secondary structure rather than building it up 
pair-wise sequentially, which generates a result that depends on the order of the build. 
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3 Comparision with Base Pair Conflict Measurement 

The families used in the Jiang and Wiese [19] paper are taken from Rfam and have 
accession number RF00007, RF00020, RF00015, RF00029, and RF 00050. Respec-
tively, these are U12 (minor spliceosomal  RNA, 63 sequences), U5 (U5 spliceosom-
al RNA, 181 sequences), U4 (U4 spliceosomal RNA, 178 sequences), Intron_gpII 
(group II catalytic intron, 98 sequences), and FMN (FMN riboswitch -- RFN element, 
146 sequences). The number of sequences listed is the number of ‘seed’ sequences, 
which are the sets of highly curated sequences used to build Rfam models. Far more 
putative members of these families exist in the Rfam database which are the result of 
search with the models. Hierarchical clustering of these five families resulted in the 
following grouping: {(U12 U5) [U4 (Intron_grpII FMN) ]}. 

Using the distance metric proposed in this work and SVM clustering into three 
groups results in grouping U12 and U5 together and grouping Intron_grpII and FMN 
together, which is consistent with the base pair conflict metric. However, using two 
groups results in grouping U12, U5, and U4 together and grouping Intron_grpII and 
FMN together, which is different than the base pair conflict results. In other words, 
the mixed primary-secondary alignment results in the grouping: {[(U12 U5) U4] (In-
tron_grpII FMN)}. Interestingly, the functionally similar spliceosomal families are 
grouped together. 

Due to the small number of families studied in Jiang and Wiese [19] the advantag-
es of using all the available sequence data and doing joint rather than pair-wise se-
quential structural combination is hard to access. For the five families chosen, the 
difference between the least and most number of sequences is not great (63 versus 
181) and therefore the amount of information lost is relatively small. The U12/U5 
combined model is based on 63 sequences, the Intron_gpII/FMN combined model is 
based on 98 sequences, and the U4/Intron_gpII/FMN combined model is based on 98 
sequences (a five-way combined model is not reported). If one of the families had 
only four seed sequences (not an unusual situation in Rfam), the loss of information 
would be much greater. The fact that only the U4/Intron_gpII/FMN  combined model 
has more than two families means that the use of multiple alignment in this work 
versus sequential pair-wise is of little significance. 

Table 1 shows a comparison between the scores generated by the original Rfam 
models, the Jiang/Wiese combined models and combined models using the methods 
of the present work. Three sequences are analyzed from each family: 
AANN01056468, AAVX01293999, AAB01008960 (U12); CAAE01011861, 
Z149914, AATU010003637 (U5); ABDC013119198, AABS01000042, X67145 
(U4); AJ315331, X55026, X04465 (Intron_gpII), CP000724, AE00633, L0922288 
(FMN). Hereafter, these sequences are referred to as U12.1, U12.2, U12.3, U5.1, etc. 
The scores shown are log likelihood ratios (with the logs in base 2), so an increase of 
1.0 in score is associated with a factor of two reduction in false alarm rate for a given 
sensitivity. Both the Jiang/Wiese results and the present work increase in false alarm 
rate over using individual models by a large amount. 

Scores in the 40 to 50 range are generally considered to be acceptable for CM-based 
ncRNA gene search, so even though there is a very large degradation in score, many of the 
models in the tables may still be considered acceptable. In general, the scores using the 
methods of this work (MPS) are higher than those using the base pair conflict metric  
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Table 1. Original, Base Pair Conflict and Mixed Primary-Secondary Structure Metric Scores 

 Original Base Pair Conflict Mixed Primary-Secondary Structure 

Sequence 
No 
Grouping 

U2 + U5 
or  
gpII + FMN

U4 + 
gpII + 
FMN 

U2 + U5 
or 
gpII + FMN

U4 +  
gpII + 
FMN 

U2 + 
U5 + 
U4 

U12.1 155 35 - 72 - 64 
U12.2 129 63 - 68 - 58 
U12.3 119 40 - 45 - 39 
U5.1 112 88 - 93 - 83 
U5.2 95 72 - 81 - 75 
U5.3 93 76 - 83 - 77 
U4.1 125 - 19 - 35 72 
U4.2 115 - 18 - 34 68 
U4.3 104 - 3 - 28 61 
gpII.1 64 58 17 53 23 - 
gpII.2 63 14 12 52 27 - 
gpII.3 53 11 14 48 22 - 
FMN.1 120 71 11 88 43 - 
FMN.2 118 71 13 89 41 - 
FMN.2 94 58 2 64 32 - 

(BPC). Two combined models for three families are shown for MPS. The combined mod-
el for U4/Intron_gpII/FMN would not normally be selected using the MPS methods since 
the clustering does not select this as a group, but is included for comparison with the BPC 
method. The combined model using MPS does in fact do better than that of BPC, but its 
usefulness is marginal, with scores in the 20-40 range. What is really striking is that the 
combined model for U12/U5/U4, which is the grouping MPS selects is much better. In 
fact, using the two combined models U12/U5/U4 and Intron_gpII/FMN from the MPS 
method covers all five families with no score less than 39. 

Clearly a much larger study is needed to determine if the reduction in number of fami-
ly models is large over the whole Rfam database, but these results do seem promising. 

4 Results with Two Known RFAM Clans 

As a further study of how the proposed distance metric performs, two clans were  
selected from the Rfam database: CL00014 and CL00015. These two clans were  
selected because they each contain several families. CL00014, the CRISPR-1 clan, 
contains the families CRISPR-DR2, CRISPR-DR4, CRISPR-DR14, CRISPR-DR17, 
CRISPR-DR25, CRISPR-DR43 and CRISPR-DR66. CL00015, the CRISPR-2 clan, 
contains the families CRISPR-DR5, CRISPR-DR7, CRISPR-DR63 and CRISPR-
DR64. Many of the 102 clans listed in the Rfam database contain only two families. 
Also, these two clans are clearly related in that both contain Clustered Regularly In-
terspaced Short Palindromic Repeats (CRISPR), but the curators of Rfam believe that 
they are not so closely related as to warrant being in the same clan. 
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The best clustering results for the eleven families listed above seem to come from 
having four clusters. The first cluster has six members, four from the CRISPR-1clan : 
DR-66, DR-17, DR-25 and DR-4 and two from the CRISPR-2 clan: DR-5 and DR-63. 
The second cluster contains DR-64 and DR-7, both from the CRISPR-2 clan. The 
third cluster contains DR-14 and DR-43, both from the CRISPR-1 clan. The fourth 
cluster contains only DR-2 from the CRISPR-1 clan. Only one of the clusters contains 
members from two different clans. However, the clans organization is designed to 
group together ncRNA families that are functionally related, not families with similar 
sequences. The two are often consistent, but not always. A closer look at the structure 
of the families in the clusters is shown in Table 2, where the assigned clustering 
makes a lot more sense. Cluster 1 contains a single stem-loop structure with a short 
loop and 5 to 7 base pairs in the stem. Cluster 2 contains a single stem-loop with a 
longer loop. Cluster 3 contains no base pairing and cluster 4 contains a family whose 
secondary structure just does not fit in with any of the others. 

Table 2. Structures in CRISPR Families 

Family 
Dot-bracket notation secondary structure (top) 

Consensus primary structure (bottom) 

Cluster 1:  
DR-66 .....<<<<<<<...>>>>>>>............... 
 

DR-17 

RKUUUAAUCCCUUGUARGGAUUCUUUAKUUAUGGAAC 

......<<<<<<....>>>>>>... 
 

DR-25 

CUUUCUAAUCCCUYUUGGGAUUUWC 

.....<<<<<<....>>>>>>.... 

 

DR-4 

CUUUCaaucCCUUaUGGgauuCaUC 

.....<<<<<.....>>>>>........ 
GUUcACuGCCGuAcAGGCaGcuuAgAAA 

DR-5 
...............<<<<<<<...>>>>>>>..... 
gUUaaAAuuaaaaAAaauCCCuAUuaGGGauuGAAAc 

DR-63 ..............<<<<<<<<...>>>>>>>>.... 
 
 
Cluster 2: 

GUCAAAACACAAAAUAAUUCCCUUUGGGAAUUGAAMC 

DR-64 .............<<<<..........>>>>...... 
AUACGAAACGUUGAUCCAUCAAAACAAGGAUUGAGRC 

DR-7 ............<<<<<..........>>>>>..... 
 
 
Cluster 3: 

guUugaGAgaAaaAuCCAcUAAAACAAGGaUuGAAAC 

DR-14 ............................. 
AUUUACAUAcCAcAUAGUUAAUAUAAAAC 

DR-43 ............................. 
 
Cluster 4: 

CUUUAUAUCCCACUACGUUCAGAUAAAAC 
 

DR-2 .<<<.....<<<...>>>........>>>. 
GuUuCAAUuCCucAaaGGuAggaUaaaAaC 
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This analysis points out why relying on Rfam clans to cluster families into com-
binable groups may not be a very good idea. Since the combined models are being 
used as pre-filters, there does not need to be any biological meaning to the clustering 
of families. 

5 Conclusion 

A new metric for the distance between ncRNA families based on alignment of con-
sensus structures in a mixed primary-secondary structure alphabet has been presented. 
Comparison with the existing base pair conflict metric shows that this metric is poten-
tially more effective when used for clustering of ncRNA families prior to model com-
bination. A new model combination method was also presented which potentially 
finds better combined models due to use of all the available sequence data and to a 
single round combination instead of sequential pair-wise combination. 

More analysis is needed to determine if the new model combination method is 
more effective since the potential strengths of the method lie in cases where more 
than two families are combined. This is not likely to become apparent without large-
scale processing of the Rfam models into combined models. 
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Abstract. In this paper it is introduced a new methodology for the
analysis of barcode sequences. Barcode DNA is a very short nucleotide se-
quence, corresponding for the animal kingdom to the mitochondrial gene
cytochrome c oxidase subunit 1, that acts as a unique element for identi-
fication and taxonomic purposes. Traditional barcode analysis uses well
consolidated bioinformatics techniques such as sequence alignment, com-
putation of evolutionary distances and phylogenetic trees. The proposed
alignment-free approach consists in the use of two different compression-
based approximations of Universal Similarity Metric in order to compute
dissimilarity matrices among barcode sequences of 20 datasets belonging
to different species. From these matrices phylogenetic trees are com-
puted and compared, in terms of topology and branch length, with trees
built from evolutionary distance. The results show high similarity values
between compression-based and evolutionary-based trees allowing us to
consider the former methodology worth to be employed for the study of
barcode sequences

Keywords: Barcode DNA, Compression–Based distances, Universal
Similarity Metric, Phylogenetic trees.

1 Introduction

DNA barcoding aims at discovering and isolating a very short part of DNA of
living organism for identification and taxonomic purposes [1, 2]. The very basic
idea is to find and define, for each kingdom of life, such as animals, plants,
fungi and so on, a single gene that works as a true “barcode” providing unique
identification. In the animal kingdom, mitochondrial gene cytochrome c oxidase
subunit 1 (COI) has proven to be the best barcode sequence [3]. DNA barcoding
has been used for the study of the biodiversity of several species, such as fishes,
birds and some bugs [4–7].

The analysis of barcode sequences, both for identification and taxonomic pur-
poses, is carried out by means of classic bioinformatics methodologies, based on
sequence alignment and computation of dissimilarity matrices that can be used
to build phylogenetic trees or to make identification of unknown species through
well known threshold values [8].
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In this paper, an alignment-free methodological approach for the analysis
of barcode sequences is proposed. It is based on compression-based distances
derived from Universal Similarity Metric (USM) [9]. USM is a class of dis-
tance measures, founded on rigorous information theory concepts defined in the
Kolmogorov complexity [10]. Unfortunately, Kolmogorov complexity is not
computable, therefore there exists a set of USM approximations based on data
compression. Compression-based methods have the advantage that they do not
require a prior alignment of genomic sequences and above all they hold on strong
theoretical assumptions. Evolutionary distances, in turn, are based on stochastic
estimates and they do not define a distance metric.

In order to justify the use of compression–based distances for the study of
barcode sequences, several datasets, belonging to different kinds of species, have
been downloaded from Bold database [8]; for each dataset, a set of phylogenetic
trees have been build according to the most common bioinformatics algorithms
(see Section 3) a set of phylogenetic trees. Those trees, then, have been com-
pared with phylogenetic trees obtained through state-of-the-art methods based
on evolutionary distances [11].

2 Background

USM distance, as defined in [9], is “universal” in the sense it can be applied to
different type of input data. In fact, it has been used for classification and clus-
tering activities in several application domains, from text processing to language
analysis, from music to image files [12]. A first attempt to use one of the USM
approximations, called Normalized Compression Distance (NCD), for the study
of genomic sequences has been done in [12]. The result of that work was a phy-
logenetic tree obtained considering complete mammalian mtDNA sequences of
24 species belonging to Eutherian order. In [13] another approximation of USM,
based on GenCompress compressor [14], has been applied in order to compute a
phylogenetic tree of a larger dataset containing mammalian mtDNA sequences
of 34 taxa. The authors stated that USM is able to provide meaningful results
when applied to very large genomic sequences and a small number of taxa.

A very important experimental assessment regarding the use of USM for dif-
ferent type of biological datasets has been carried out in [15]. By considering six
different datasets, both of protein and genomic (complete mitochondrial genome)
sequences, the authors tested two USM approximations, namely NCD and Uni-
versal Compression Dissimilarity (UCD), with several compressors in order to
obtain phylogenetic trees. Those trees were then compared with gold standard
taxonomies using classic tree comparison algorithms, F-measure [16] and Robin-
son metric [17], and they also concluded compression-based methods are allowed
to be considered when dealing with biological datasets.

A different use of USM for clustering, through Self-Organizing Maps, and
generation of topographic representations of bacteria datasets, considering 16S
rRNA gene, was done in [18, 19], where topographic maps of three bacteria phyla
were built from both evolutionary distance and NCD, showing similarities and
differences between maps.
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Fig. 1. Overall framework of the proposed methodology (lower workflow) compared
with classic pipeline (upper workflow)

In our work, we want to demonstrate that USM, and in general compression–
based distances, are also suited for the analysis of short barcode sequences,
about 650 bp long, and for several datasets composed of very different species.
Moreover, in order to compare phylogenetic trees obtained through evolutionary
distances and compression-based methods, we adopt more recent and complete
comparison tree algorithms that take into account relevant topological features
of phylogenetic trees and not only basic different pairings.

3 Methods

In this Section it is presented the overall framework of our methodology; then in
the following subsection, the tools and algorithms adopted in order to perform
our experimental tests will be described in detail.

In Fig. 1 there are both the workflow of our proposed methodology, the lower
one, and the classic workflow, the upper one, usually adopted for the analysis of
gene sequences for phylogenetic purposes. After downloading barcode sequences
from BOLD database [8], our approach consists in compressing the genomic
sequences using GenCompress compressor [14], computing two different approx-
imations of USM, as explained in Section 3.1, and finally building phylogenetic
trees using state-of-the-art algorithms. On the other hand, classic methodology
comprises sequence alignment, computation of evolutionary distance and finally
generation of phylogenetic trees. Trees obtained with our and classic approach
were then analyzed by means of two different tree comparison algorithms that
consider different tree properties: topology and branch length.

3.1 Compression-Based Dissimilarity Measures

Universal Similarity Metric (USM) is a class of distance measures based on Kol-
mogorov complexity [10] and introduced by Li et al. [9]. USM allows to compare
two generic data files and it has been demonstrated that it is a similarity metric,
i.e the identity axiom, the triangle inequality and the symmetry axiom hold. The
key idea of USM is to find a shared information content between two objects.
Since it has been demonstrated Kolmogorov complexity is not computable, it
needs to be approximated.
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In our work, two different USM’s approximations used for the comparison
of genomic sequences have been considered: Normalized Compression Distance
(NCD) [12] and the distance defined in [13] that for ease of explanation we
call Information-Based Distance (IBD). In both kinds of distance, Kolmogorov
complexity is approximated by means of the size of the compressed version of
the sequence itself. NCD and IBD are defined respectively in Eq. 1 and Eq. 2:

NCD(x, y) =
C(xy)−min {C(x), C(y)}

max {C(x), C(y)} (1)

IBD(x, y) = 1− C(x)− C(x|y)
C(xy)

(2)

There C(x) and C(y) are the sizes, in bytes, of the compressed sequences x and
y; whereas C(xy) is the size of the compressed sequence obtained through the
concatenation between x and y. C(x|y) is the size of the compression of sequence
x with respect to the reference sequence y, that is the information required to
obtain x from y [20]. This kind of conditional compression is also known as
vertical compression [20].

Both NCD and IBD’s purpose is to find the shared information content be-
tween two sequences: NCD can be computed using a general purpose normal
compressor; IBD has been introduced considering GenCompress compressor [14]
to heuristically approximate Kolmogorov complexity.

GenCompress [14] is a compression algorithm optimized to work with DNA
sequences. It follows the approach of Lempel and Ziv dictionary based compres-
sors [21], taking advantage of the fact that a genomic sequence has just a four
characters (a, c, g, t) dictionary. GenCompress, in fact, gives the best compres-
sion ratios only when dealing with DNA sequences: if it is applied to sequences
containing more than the four nucleotide characters, it acts as a generic ascii-text
compressor. GenCompress algorithm also implements a conditional version, i.e.
it computes the compression of sequence x given another sequence as reference.

In this paper GenCompress is used when computing both NCD and IBD so
that it is possible a direct comparison among results obtained by means of both
kinds of distances.

3.2 Phylogenetic Inference

There are several methods to build a phylogenetic tree from molecular data
[11, 22]. In our work two of the most used methods are considered: Unweighted
Pair Group Method with Arithmetic Mean (UPGMA) [23] and Neighbor Join-
ing (NJ) [24]. Both algorithms belong to the so called distance–based methods
because they need a dissimilarity matrix among input sequences before building
the tree. According to the adopted evolutionary distance model, like for instance
Kimura 2–parameter [25], Tajima–Nei [26], Tamura–Nei [27], there can be dif-
ferent distance matrices and, consequently, different phylogenetic trees.

UPGMA is the simplest phylogenetic reconstruction algorithm, it creates
an ultrametric tree (dendogram) and its basic assumption is that it builds a
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correct tree if the rate of nucleotide or amino acid substitution is the same for
all evolutionary lineages.

NJ considers different rates of evolution among tree’s branches and it is very
reliable if the input dissimilarity matrix is very close to the true evolutionary
distances among sequences. NJ uses a clustering algorithm that, starting from a
star topology, at each iteration pairs the nearest elements, obtaining at the end
a binary tree.

3.3 Comparison of Phylogenetic Trees

In phylogenetic studies, it is possible to obtain different phylogenetic trees ac-
cording to the used algorithm or the considered gene or set of genes. For this
reason, several algorithms for tree comparison have been developed. The most
popular is the method proposed by Robinson and Foulds [17], also known as
symmetric distance. It computes the distance between two phylogenetic trees by
considering the number of transformations, or shifts, needed to reconstruct the
first tree from the second one, or vice-versa. Symmetric distance can be seen as
a generalization of edit metrics [28] to phylogenetic trees.

In order to compare phylogenetic trees obtained through evolutionary dis-
tances and compression based distances, two more recent comparison algorithms,
whose approach is rather different from Robinson method, have been considered:
the tool presented by Nye et al. [29] and the K tree score, introduced in [30].

Nye’s algorithm aims at matching branches (edges) within two trees which
share similar topological features. This topological feature is the partition of leaf
elements created by every branch in a tree. The similarity score for each pair
of edges between two trees is given comparing the shared leaf nodes belonging
to the two corresponding partitions. This process builds a sort of alignment
between the two trees to compare. While Robinson metric gives each topological
difference the same penalty, in Nye’s algorithm different pairings have a lesser
penalty if their topological features are preserved, that is they belong to the same
corresponding partitions. This way similarity between trees is not expressed by
a mere number of edit operations, but by considering topological properties.

This fact is better explained looking at Fig. 2, where two phylogenetic trees
obtained through evolutionary distance (on the left) and compression-based dis-
tance (on the right) are shown. Thicker branches in both trees highlight a lower
similarity between the corresponding subtrees; whereas thin edges identify a
perfect match among the two partitions. Using Robinson metric, on the other
hand, all pairs of not corresponding leaf nodes are considered as a wrong pairing,
ignoring any topological feature.

K score is an extension of branch length distance (BLD) defined in [31] and it
allows to obtain a similarity score depending on the similarity between branch
length of both trees. Once again it differs from symmetric distance because
this one does not consider branch lengths when computing the similarity score.
Those two algorithms offer two kinds of comparison: Nye tool gives a score based
only on the similarity between trees topologies; K score takes into account the
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Fig. 2. Comparison between phylogenetic trees obtained from evolutionary distance
(left) and compression-based distance (right). Thicker edges mean the corresponding
partitions within the two tress have not exactly the same leaf nodes.

similarity between branch length’s trees. This way we can test our results both
in terms of topology and branch length similarity.

4 Results

In this section we report experimental tests used for evaluating two compression-
based algorithms (NCD and IBD). The evaluation is based on the comparison
of phylogenetic trees generated with both UPGMA and NJ algorithms.

4.1 Dataset Description

In order to test the performance of the discussed compression-based algorithms,
we used 20 datasets from “Barcode of Life Data” Systems (BOLD) Project [8].
Among more than 1000 available datasets, we considered a subset composed
by those datasets that respect two main criteria: first, for each dataset all the
sequences (representing species or specimens) are the mitochondrial COI-5P gene
and second, all the datasets belong to different familia of the animal kingdom.
From this subset, we randomly selected 20 datasets.

All datasets used during experimental tests are reported in Table 1. The
first column shows datasets acronyms, as reported in BOLD database. For each
dataset, Table 1 reports four features: the number of specimens and species (re-
spectively second and third column); the number of sequences having at least
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Table 1. 20 Datasets selected from Barcode of Life Data System. Some datasets are
clustered in 5 groups of distinctive features.

Dataset #Specimens #Species Sequences with Length of Distinctive features

(sequences) undefined bases sequences G1 G2 G3 G4 G5

1 JTB 225 53 1/225 658-899 �
2 DLTC 67 40 1/67 689-1821 �
3 Onychophora 210 52 2/210 451-884 �
4 AGWEB 33 33 29/33 460-890 � � �
5 GBFCJ 202 61 14/202 537-1446 � �
6 GZPSE 78 23 6/78 601-658 �
7 RDMYS 37 6 12/37 636 � �
8 ARCPU 52 28 3/52 901 �
9 BRBP 106 17 0/106 658 � �
10 AGFDO 22 22 0/22 901 � � �
11 AECI 30 30 0/30 605-679 � �
12 SIBHI 85 38 0/85 673-694 �
13 BLSPA 86 86 4/86 604-658 �
14 ABSMC 72 46 1/72 650-657

15 AGFSU 48 42 1/48 605-680

16 AGLUO 46 38 1/46 633-639

17 DSALA 44 12 5/44 649-651

18 FBLOT 64 34 2/64 419-658

19 MJMSL 198 76 9/198 559-658

20 WXYZ 34 9 1/34 650-680

one undefined base (forth column) and the range of sequences’ length (fifth
column).

The last column is composed by 5 sub-columns that indicate a particular set
of features. The meaning of each group is reported in the following, whereas the
analogies among these datasets will be investigated in the next Section:

– G1: Datasets in this group contain some sequences much longer than the
other ones of the same dataset;

– G2: In these datasets there is an high percentage of sequences with undefined
bases;

– G3: All the sequences in these datasets have the same length;
– G4: Sequences in these datasets do not have undefined bases;
– G5: These datasets contain sequences with one specimen for each species.

The BOLD system provides, for each dataset, a distance matrix obtained by
default using the Kimura 2-parameter distance model. With regards to the
compression-based algorithms, since they require as input a list of sequences in
order to generate the distance matrix, we also downloaded a list of (pre-aligned)
COI-5P gene sequences for each dataset.
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Table 2. Similarity and K-score among phylogenetic trees: evolutionary technique
with Kimura 2-parameter distance versus compression based algorithms (both NCD
and IBD)

Dataset Tree similarity (Nye et al.) K-Score

NCD IBD NCD IBD

UPGMA NJ UPGMA NJ UPGMA NJ UPGMA NJ

1 JTB 0.75 0.61 0.85 0.59 0.1852 — 0.2090 —

2 DLTC 0.86 0.79 0.84 0.77 0.6842 — 0.6973 —

3 Onychophora 0.89 0.77 0.92 0.81 0.1165 — 0.1333 —

4 AGWEB 0.73 0.76 0.77 0.89 0.0667 0.0674 0.0775 0.0779

5 GBFCJ 0.80 0.72 0.82 0.72 0.1170 — 0.1155 —

6 GZPSE 0.84 0.86 0.85 0.85 0.0588 — 0.0714 —

7 RDMYS 0.78 0.60 0.81 0.87 0.0472 — 0.0587 —

8 ARCPU 0.87 0.94 0.87 0.87 0.0562 — 0.0720 —

9 BRBP 0.99 0.89 0.99 0.82 0.0772 — 0.1149 —

10 AGFDO 0.92 0.88 0.92 0.88 0.0315 0.0323 0.0607 0.0632

11 AECI 0.89 0.82 0.90 0.82 0.0517 — 0.0839 —

12 SIBHI 0.92 0.90 0.94 0.90 0.0581 — 0.0976 —

13 BLSPA 0.88 0.82 0.85 0.79 0.0424 0.0485 0.0621 0.0672

14 ABSMC 0.97 0.93 0.92 0.95 0.0720 — 0.1211 —

15 AGFSU 0.84 0.84 0.89 0.85 0.0609 0.0598 0.0910 0.0954

16 AGLUO 0.97 0.90 0.98 0.90 0.0394 0.0442 0.0615 0.0646

17 DSALA 0.91 0.88 0.91 0.88 0.0706 — 0.0940 —

18 FBLOT 0.89 0.81 0.90 0.82 0.0655 — 0.1011 —

19 MJMSL 0.88 0.82 0.88 0.79 0.0912 — 0.1211 —

20 WXYZ 0.92 0.79 0.95 0.76 0.0629 — 0.0926 —

4.2 Experimental Tests

Experimental tests aim to evaluate the quality of phylogenetic reconstructions
obtained by means of compression-based algorithm. Using aforementioned eval-
uation techniques, we compare phylogenetic trees that have been generated with
the two most used algorithms: UPGMA and NJ.

Results are reported in Table 2. This table is composed by three main columns:
the first one contains dataset acronyms, the second one the “Tree Similarity”
scores and the last one the “K Score”. Second and third columns, in turn, contain
sub-columns in order to show results obtained with UPGMA and NJ trees with
both NCD and IBD distances. In the “Tree Similarity” columns, each number
represents a percentage value, where “1” means trees have the same topology,
that implies the compression-based algorithm preserves the evolutionary tax-
onomy. Numbers in bold type are the best scores for each dataset. The “K
Score” column, instead, reports values that measure the difference between two
trees in terms of branch length. In this case, lower values mean higher similarity
among trees. Unfortunately, NJ algorithm sometimes generates trees with nega-
tive branches that can not be computed by K score algorithm: in fact, although
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Fig. 3. Pie chart representing the percentage of similarity between evolutionary and
compression-based tree for each datasets

mathematically the neighbor joining algorithm is admitted to produce negative
values, biologically a tree with some negative branches is meaningless [31]. In
this situation, a “−” symbol is reported.

First of all, considering the tree similarities results, we can state that the
compared trees are quite similar. More in detail, considering the best values
for each dataset, we obtained the pie chart in Fig. 3. The most of datasets are
between 85% and 95% and four of them have a topological similarity greater
than 95%. Only the fifth dataset (GBFCJ) gives the a result of 82%.

These results are not so surprising because the quality of retrieved datasets
are different each other, looking at the five groups of datasets reported in Table
1. Group G1 contains some sequences much longer than the other ones: for these
datasets, compression-based similarity algorithms give poor results, since they
take into account mutual length of sequence.

Group G2 is composed by four datasets with several sequences that contain
some special symbol (i.e. Y or N) to represent undefined nucleotides. In this
case, as previously said in Section 3, the GenCompress algorithm works as a
generic compressor of ASCII string, reducing its performance. For instance, the
dataset GBFCJ, belonging both to first and to second group, shows the lowest
value of tree similarity (82%). Another dataset belonging to G1 and G2 groups,
is AGWEB. This dataset, with respect to GBFCJ, has an higher value of tree
similarity (89%), because it has a lower spread in sequences length.

Groups G3 and G4 in Table 1 contain those datasets with respectively the
same length for all sequences and with a complete COI-5P gene sequencing.
BRBP dataset belongs to both these groups and represents the best one among
datasets used in this paper, since it has no sequences with undefined bases and all
the sequences have the same length of 658-bp, representing COI-5P gene length
proposed as a potential ’barcode’ in [2]. This dataset, composed of 106 elements,
reaches a value of 99% tree similarity with its corresponding evolutionary tree.
It is interesting to notice that the other datasets having sequence length close to
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658-bp, and that do not belong to the first or the second group, score the best
results, such as AGLUO (98%) and SIBHI (94%).

Group G5 reports datasets with a single specimen (sample) for each species.
In terms of tree similarity, datasets with only a specimen for each species do not
produce better results than datasets with more than a specimen for each specie,
with both compression-based distances. In other words, compression algorithm
works fine also at specimens level.

Considering the type of compression-based distances, obtained results demon-
strate in the most of case (75%) IBD reaches highest values in terms of tree sim-
ilarity, especially when UPGMA is used for generate trees, with the exception
of datasets in G1 of Table 1. In fact, for datasets with an high percentage of
sequences with undefined bases, NJ is able to better represent the evolutionary
tree, for instance AGWEB has 87% of undefined bases and reaches the better
value of similarity (89%) with IBD and NJ algorithm. This means that in all
cases IBD algorithm is able to preserve the topology of an evolutionary tree of
DNA barcode sequences.

As for the K-score column in Table 2, results confirm all the considerations
previously said, except for compression distance algorithm analysis. In fact, in
terms of differences in the relative tree branch length, it appears NCD algorithm
works better than IBD. It is possible to notice that datasets in group G1 of Table
1 score lesser results, e.g. DLTC (0.684), whereas datasets in group G4 score the
best results, e.g. AGFDO (0.031).

5 Conclusion

In this paper we presented a deep analysis about the use of compression-based
methods, such as NCD and IBD, for the study of short DNA barcode sequences.
NCD and IBD are both approximations of Universal Similarity Metric, that
is a class of general-purpose distances based on non-computable Kolmogorov
complexity. In previous works, USM and its approximations have been applied
in the case of the analysis of complete mitochondrial genome of few species:
there they showed how phylogenetic trees obtained through USM had a very
similar topology to those ones obtained through classic bioinformatics methods
based on sequence alignment and evolutionary distances computing. By em-
ploying compression-based methods there is no need to align input sequences
and moreover USM represents a distance metric, whereas evolutionary distances
are stochastic distance estimates lacking metric properties such as triangle in-
equality. In this work we extended the use of NCD and IBD to DNA barcode
sequences, typically 650 bp long. We compared phylogenetic trees of 20 datasets
obtained from NCD and IBD, using NJ and UPGMA algorithms, with trees
of the same datasets obtained from Kimura 2-parameter evolutionary distance.
The comparison was done by means of two different algorithms, considering both
topological and branch length similarities. The results we presented show that
trees obtained from compression-based methods are very similar (above 90%),
and in some cases equal, to the ones built from classic distance. In few situations,
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characterized by some flaws in input datasets, we obtained similarity scores of
about 85%, demonstrating compression-based methods are robust enough to deal
with noisy datasets. In the near future we are going to provide other comparisons
between trees using other kinds of evolutionary distances and phylogenetic recon-
struction algorithms so that we can definitively use compression-based methods
for the study of phylogenetic relationships with DNA barcode sequences.
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Niccolò Bassani, Federico Ambrogi, and Elia Biganzoli

University of Milan
{niccolo.bassani,federico.ambrogi,elia.biganzoli}@unimi.it

http://www.unimi.it

Abstract. Over the last years miRNA microarray platforms have pro-
vided insights in the biological mechanisms underlying onset and
development of several diseases and have thus become a very popular
instrument for profiling thousands of miRNA simultaneously. However,
because of large variety of microarray platforms available, an assess-
ment of their performance in terms of both within-platform reliability
and between-platform agreement is needful. In particular, assessment of
platform concordance has been a very relevant issue in the past decade.
To date, only a few studies have evaluated this problem in the field of
miRNA microarray, and mostly by using improper statistical methods
such as the Pearson and Spearman correlation coefficients. In this work
we suggest to use a recently proposed modified version of the classical
Bland-Altman approach for comparing clinical measurement methods.
This modified version is useful in that allows not only to evaluate agree-
ment between different miRNA microarray platforms, but also to assess
which are the potential sources of disagreement/bias between them.

Two samples were profiled using Affymetrix, Agilent and Illumina
miRNA platform using three technical replicates each, and pairwise
agreement between platforms was evaluated within each sample. Our
results suggest that, after bias correction, Illumina and Agilent show the
best patterns of agreement for both samples involved in the experiment,
whereas Affymetrix is the one which seem to ”disagree” most, suggesting
that a linear relationship as that hypothesized by the measurement error
model used is not able to capture the complexity of the phenomenon.

In the future it will be interesting to apply this method also to the
comparison of microarray and NGS platform, a topic which is becoming
more and more relevant, also by adopting non-linear measurement error
models to depict relationships between platforms.

Keywords: microRNA,microarrays, agreement, measurement error
model, Bland-Altman.

1 Introduction

MicroRNAs are small non-coding RNA molecules which have been shown to
play a critical role in tumorigenesis [1–4] and in several other pathologies [5–7].
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In order to measure miRNA intensity levels, several methods, such as RT-qPCR,
high-throughput sequencing and microarrays, have been developed that enable
researchers to profile thousands of miRNAs simultaneously across different ex-
perimental conditions [8]. MiRNA microarrays in particular, since their first
appearance in 2004 [9], have known a relevant spread in life sciences and are
now routinely used in bio-molecular laboratories.

Nonetheless, there’s been a substantial lack of evaluation of between-platform
agreement This issue has a long history which dates back to almost ten years ago,
when researchers first tried to evaluate comparability between different cDNA
platforms, obtaining quite disheartening results which were mainly caused by
lack of standardized protocols for management and processing of this ”new”
kind of data. Subsequent studies showed that patterns of reproducibility be-
tween platforms were much stronger than what had initially been found, and
microarray platforms became a standard tool in most laboratories [10].

In the context of miRNA microarrays, only few studies have attempted at
evaluating between-platform concordance [11, 12]. Results were reported mainly
as correlation coefficients (both Pearson and Spearman) for evaluating inter-
platform performance, calculated on a subset of microRNA which depended on
detection calls concordant between platforms, i.e. miRNA which were called as
”detected/present” on all platforms considered for the analysis. Additionally,
Sato and colleagues assessed between-platforms reproducibility also in terms of
miRNAs which were commonly differentially expressed between samples for all
platforms [11].

As a matter of fact, many papers dealing with this issue in gene expression
suffered from several limitations which have propagated also in miRNA stud-
ies, both in the pre-processing of data and in the statistical methods adopted.
For the pre-processing, for instance, most work filter data according to some
intensity-based criterion, thus excluding from the analysis genes/miRNA which
are ”switched-off”, posing a relevant problem: which is their expression profile
between platforms in samples where they are ”turned on”? Excluding genes
because of their low intensity can severely bias results in both directions, by
over- and under-estimating real patterns of agreement/reproducibility. In terms
of statistical methods, instead, the most reported statistical ”measure” to assess
concordance (or comparability, as it is called in some papers) is the correlation
coefficient (Pearson and/or Spearman), a measure that has been already crit-
ically discussed with respect to its appropriateness to evaluate reproducibility
[13]. That is, an index which aims at quantifying the linear relationship between
two variables X and Y is used to tell whether X and Y show some pattern of
concordance.

Moreover, all of the works published on this topic considered the intensity
values as unaffected by some measurement error, that is assumed that no dif-
ference existed between ”real” and ”observed” value. Such an assumption has a
direct implication also on the computation of simple correlation coefficient, since
the relationship between X and Y tends to become milder if some measurement
error is present and is not considered [14]. In addition to this, we believe that
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evaluating platform agreement is a complex issue that can not be reduced simply
to the computation of some index, mainly because it is not only important to as-
sess agreement/concordance between arrays, but also, and probably even more,
eventual disagreement, its sources and how to correct for it. For this reason, we
suggest to use a modified version of the classical Bland-Altman approach for as-
sessing agreement [15, 16], a well-known approach in the context of clinical and
laboratory research. This modified version [18] takes into account measurement
error to evaluate sources of possible disagreement between two measurement
methods (in our case microarray platforms) and to correct for it according to
a linear measurement error model . The paper is organized as follows: in sec-
tion 2 we present platforms and sample features, as well as experimental design
and pre-processing of data. Moreover, we illustrate the modified Bland-Altman
methods; in section 3 main results of the study are briefly presented; in section
4 advantages and drawbacks over other approaches are critically discussed and
in section 5 we summarize main results of the study and outline possible future
developments of this work.

2 Materials and Methods

2.1 miRNA Microarray Platforms

Affymetrix GeneChip c© miRNA Array. The Affymetrix GeneChip c©
miRNA Array (Affymetrix Santa Clara, CA, USA) includes 46227 perfect match
(PM) probes, representing 7815 probesets, of which only 847 (10.83%) represents
human microRNA; the remaining act as control probe sets which are expected
not to be expressed when human samples are hybridized. This annotation refers
however to an old version of the array, since, at present time, more than 1000
microRNAs have been discovered and characterized [17]. The array contains 4
identical probes for each miRNA, located in specific spots on the array, with a
length between 16 and 25-mer.

Intensity .CEL files were obtained from the scan images and imported to
Affymetrix c© miRNA QC Tool software (Version 1.0.33.0) to quantify the signal
value. We assessed QC by plotting the average intensity of the oligo spike-in
and background probe sets (included in Control target content) across all the
arrays. According to Genisphere, oligo spike-in 2, 23, 29, 31 and 36 probe sets
should present a value of more than 1000 intensity units to accept array quality.
The miRNA arrays were detected using Affymetrix detection algorithm, based
on non parametric Wilcoxon Rank-Sum test, applied independently on each ar-
ray and probe/probe set; a p-value greater than 0.06 stands for not detected
above background [19]. For data normalization, we chose default method ob-
taining log2 expression values (expression values data matrix) from the raw data
(intensity values data matrix). Briefly, this method involves the following three
steps: grouping the background probes intensities based on GC content, where
the median intensity of each bin was the correction value for each probe with
the same GC content; a quantile normalization and, finally, a median polish
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summarization. To obtain a single intensity value for each microRNA mapped
on the array log2 intensity measures for replicated spots were averaged.

Agilent Human miRNA Microarray (V1). The Agilent Human miRNA
Microarray (V1) platform contains information on 961 microRNAs, of which 851
(88.55%) are human microRNAs, for each of which there’s a variable number of
replicated probes mapping to it. Notably, these probes are not all different, and
there are sub-levels of replication within each set of replicated probes: that is,
out of 16 replicated probes (constituting a probeset) for miRNA A there could
be four groups of 4 probes with the same nucleotide sequence, for instance. Of
all the microRNAs, both human and non-human, 97.7% have 16 replicates, and
this includes all the human microRNAs. One miRNA shows 182 replicates and is
labelled as NegativeControl on the array, representing the level of background
noise. In terms of probe replication within each probeset, if we consider only
human microRNA we find that 308 miRNAs (36.2%) are ”interrogated” by 4
different sequences, 56 (6.6%) by 3 sequences, 483 (56.8%) by 2 sequences and
4 (0.5%) by a single sequence.

Images were scanned using the Agilent Feature Extraction (AFE) software
(Version ), obtaining the TotalGeneSignal (TGS) for all microRNAs on the array.
Negative values were transformed by adding the absolute value of the minimum
TGS intensity in the experiment as extracted by the AFE + 2 before log2 trans-
formation [20]. Data extracted from AFE were imported in the R environment
[21] and processed using the AgiMicroRna package, available in Bioconductor
[22, 23].

Illumina humanMI V2. Illumina humanMI V2 platform contains 1145 miR-
NAs of which 858 (74.93%) are human miRNAs. Each miRNA is quantified by a
large series of copies of the same oligonucleotides which are attached to a ”bead”.
This bead-level information is then collapsed into a single intensity measure for
each microRNA by means of a proprietary algorithm by Illumina, Inc. Raw data
were processed using the proprietary BeadStudio software (Version 3.3.8), and
background subtraction was performed according to the method developed by
Irizarry et al. for Affymetrix microarrays [24].

2.2 Samples

The two samples involved in the study are a renal tumor cell line named A498
(ATCC, Manassas, VA, USA) [25] and a pool of twenty different human normal
tissues (namely hREF), obtained from the First Choice c© Human Total RNA
Survey Panel, (Ambion Inc, Austin, TX, USA). RNA material was analyzed in
different labs, as follows: Affymetrix processing took place at the Biomedical
Technologies Institute of the University of Milan (Segrate, Italy), Illumina and
Agilent processing was performed at the Department of Experimental Oncology
of the National Cancer Institute (Milan, Italy). For both samples three technical
replicates for each platform were performed, leading to a total of 18 arrays, 6
for each different microarray platform.
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2.3 miRNA Selection and Normalization

We selected human miRNAs common to all platforms according to their name
and confirmed by search on miRBase (Release 18, November 2011). Unlike other
published works, we did not filter miRNAs on detection basis because such an
approach could possibly introduce a bias in results. That is, some of the miRNAs
which are filtered out because are ”switched-off” could show patterns of within-
and/or between-platform disagreement in another experiment where they are
”turned-on”, thus leading to an over-estimate of the level of reliability. The choice
of considering only human microRNAs should circumvent this issue, and at the
same time provide relevant information since human microRNAs are commonly
those that are of major interest in biomolecular investigation.

Moreover, no data normalization was performed. Generally, almost all works
who focused on comparing microarray platforms applied some normalization
to their data (for instance [11, 12]), but this is a non trivial issue which is
to be carefully evaluated since, to date, normalization for miRNA microar-
ray has been largely debated, with results that have been somehow discordant
(see for instance [26–28]), so that no ”gold-standard” methods exists. Addi-
tionally, normalizing data in the context of assessing platform agreement poses
some other relevant problems. That is, if we normalize data on two differ-
ent platforms and then compare normalized data, we are not simply assess-
ing concordance/agreement/reproducibility between platforms, but evaluating
a sort of normalization/platform interaction to understand whether that spe-
cific normalization leads to concordant data. So, we could find high level of
between-platforms agreement due not to the platforms themselves but to the
normalization used or, on the other hand, the same normalization on different
platforms could highlight patterns of discordance that can not be ascribed to
the platforms. Nonetheless, comparing un-normalized data exposes to the risk of
finding poor concordance because of incidental batch effects occurred in the ex-
periment which may lead to an under-estimate of the ”real” agreement between
platforms. In this paper we have chosen to use non normalized data, so that we
could assess performance of different platforms ”per se”.

2.4 Between-Platform Agreement

Agreement between platforms was evaluated using a modified version of the
Bland-Altman approach. Such a modification, suggested by Liao et al. [18] in
a non-genomic study context, allows not only to assess whether two methods
of measurement are concordant but also to provide information on the eventual
sources of disagreement. In a nutshell, the method involves the estimation, for
each platform pair and separately for each sample, of a measurement error model,
i.e. a model where also the independent variable(s) X are assumed to be affected
by some uncertainty, of the form:

Yi = a0 + boX
0
i + εi (1)
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Xi = X0
i + δi (2)

where (X0
i , Y

0
i ), i = 1, ..., n are the unobserved true values of the two measure-

ment methods to be compared, i.e. miRNAs intensities on the two platforms, a0
and b0 are the intercept and the slope of the model, which conceptually have the
same meaning and interpretation as in the OLS linear model. The εi and δi are
the i.i.d. error components of the model, which follow a normal distribution with
0 mean and variances σ2

ε and σ2
δ , respectively. To estimate this model one needs

to know the ratio λ of the error variances of X and Y , possibly by means of
replication or, when replication is not feasible, by setting it equal to 1, thus as-
suming equal error variances for both methods. In this study we have evaluated
both strategies, using the technical replicates to estimate λ by fitting a linear
model using the factor ”replicate” as independent variable and considering the
estimated residual variance as the sample error variance for the platform. Once
the parameters of the model are estimated, modified versions of the agreement
interval for Y −X , which is here assumed to follow a Normal distribution with
mean a0 + (b0 − 1)X0

i and standard deviation
√
(1 + λ)σδ, that was proposed

by Bland & Altman [14, 16] are estimated according to the bias (fixed or pro-
portional) one wishes to correct for when comparing two platforms, and results
are visualized graphically. Under condition of perfect agreement (i.e. a = 0 and
b = 1), then the new agreement interval has the following form:

Δ =
(
−t1−α/2,n−1

√
1 + λσ̂δ,+t1−α/2,n−1

√
1 + λσ̂δ

)
(3)

However, in some cases it is known that some bias exists between the two meth-
ods, both fixed and/or proportional. In the first case, i.e. when only a fixed bias
between the two methods is present, this is equivalent to a situation when the
intercept in the model is different from 0 (i.e. the confidence interval for the
parameter does not contain the value 0) and the slope b0 of the model is not
different from 1 (i.e. the value 1 is included in the relative confidence interval).
This means that the two methods possibly differ by a fixed shift, which is rep-
resented by the estimate of a0, which leads to the following modified agreement
interval:

Δ =
(
a0 − t1−α/2,n−1

√
1 + λσ̂δ, a0 + t1−α/2,n−1

√
1 + λσ̂δ

)
(4)

Similarly, the two methods could differ only by a proportional bias described by
the slope of the model (i.e. a0 = 0 and b0 �= 1), leading to a modified agreement
interval which has the following form:

Δ =
(
(b0 − 1)Xi − t1−α/2,n−1

√
1 + λσ̂δ, (b0 − 1)Xi + t1−α/2,n−1

√
1 + λσ̂δ

)
(5)

Finally, the two methods could differ both by a fixed and a proportional bias
(i.e. a0 �= 0 and b0 �= 1), which leads to this interval:

Δ =
(
a0 + (b0 − 1)Xi − t1−α/2,n−1

√
1 + λσ̂δ, a0 + (b0 − 1)Xi + t1−α/2,n−1

√
1 + λσ̂δ

)
(6)



Assessing Agreement between miRNA Microarrays 123

Notably, the Xi are the actual measured values of the ”reference” method X.
Once the proper interval has been computed, depending on the inference on
the parameters, one can visualize the results by plotting the differences between
measurement methods versus the sample labels (when no bias or only fixed bias
is present) or versus the sample labels ordered according to the values of the X
method (when only proportional or both biases are present), then adding the
lines representing the agreement interval and evaluating how many subjects lie
within the interval. If no more than a predefined number of k subjects show
Y −X differences that lie outside these intervals than the two methods are said
to be in agreement. The choice of the threshold k depends on the tolerance one
wishes to accept: the lower the tolerance for disagreeing subjects, the lower the
value of k.

Since our aim is to assess global agreement of expression profiles between
platforms rather than evaluating single miRNAs concordance between arrays,
we considered the microRNAs to be the subjects and the different platforms to
be the measurement methods, and compared all array pairs separately for each
cell line.

3 Results

To perform agreement evaluation, we averaged miRNAs intensities across tech-
nical replicates for each array and for each sample. Then, we evaluated pair-wise
arrays agreement in terms of miRNA lying within the modified agreement in-
terval described in section 2.4. Estimates of the measurement error model for
error-variance ratio λ equal to 1 are presented in table 1.

Table 1. Estimates of the linear measurement error model, λ = 1

a0 b0
Pair Estimate CI95% Estimate CI95%

Agilent vs Affymetrix -12.4128 (-16.9575 , -11.8681) 2.8265 (2.7461 , 2.9068)
A498 Illumina vs Affymetrix -17.4064 (-18.6406 , -16.1722) 4.2889 (4.1679 , 4.4098)

Illumina vs Agilent 2.1916 (1.7773 , 2.6058) 1.3254 (1.2407 , 1.4100)

Agilent vs Affymetrix -6.1037 (-6.4471 , -5.7603) 1.9610 (1.8964 , 2.0255)
hREF Illumina vsAffymetrix -4.7630 (-5.5006 , -4.0254) 2.4418 (2.3472 , 2.5363)

Illumina vs Agilent 3.6033 (3.3791 , 3.8274) 1.0925 (1.0371 , 1.1479)

It appears that the relationship between Agilent and Illumina is the one which
is closest to the agreement line with intercept 0 and slope 1 for both samples,
whereas models which include the Affymetrix platform for line A498 show a
very negatively large intercept (-12,4128 and -17.4064) which possibly reflects
the technical bias already highlighted for this samples. However, if we consider
line hREF we can note that also in this case Affymetrix is the array which
deviates most from the line of perfect agreement with both Illumina and Agilent,
whereas these two show patterns very close to concordance (slope = 1.0925,
CI95%: 1.0371 - 1.1479).
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Since the confidence intervals suggest an intercept different from 0 and a slope
different from 1 for all comparisons in both samples, we build the agreement
intervals following formula 6, and visualize results for lines A498 and hREF in
figure 1. At the top of each graph we have reported the proportion of microRNA
which are found to be in agreement after bias correction, i.e. miRNA that lie
within the agreement interval.

(a) A498 - Agilent - Affymetrix (b) A498 - Illumina - Affymetrix (c) A498 - Illumina - Agilent

(d) hREF - Agilent - Affymetrix (e) hREF - Agilent - Affymetrix (f) hREF - Illumina - Agilent

Fig. 1. Agreement intervals for the modified Bland-Altman method, λ = 1

If we consider A498 comparisons (upper panels) results are substantially worse
when Affymetrix platform is considered: 74.17% (CI95%: 71.02 - 77.15) of mi-
croRNA, i.e. 603, lie within the agreement interval for the comparison Agilent -
Affymetrix, 56.46% (CI95%: 52.97 - 59.90), i.e. 459, for the comparison Illumina
- Affymetrix. Comparing Illumina and Agilent results in 95.45% (CI95%: 93.78 -
96.78), i.e. 776, microRNA in the agreement interval. hREF comparisons, on the
other hand, show better patterns of agreement after bias correction, resulting
in 82.53% (CI95%: 79.75 - 85.08) of microRNA, i.e. 671, within the agreement
interval for the comparison Agilent - Affymetrix, 82.78% (CI95%: 80.01 - 85.31)
for the comparison Illumina - Affymetrix, i.e. 673, and 97.79% (CI95%: 96.52
- 98.68) for the comparison of Illumina and Agilent, i.e. 795 microRNA out of
813. Confidence intervals for the proportions were computed using the Clopper-
Pearson exact method [29].
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Yet, these results of this modified version of the Bland-Altman plot showed so
far rely on the validity of the assumption λ = 1 which, though reasonable in many
practical situations, could be misleading in the context of microarrays. That is,
assuming an error variance which is the same for very different platforms may
be not the best choice. For this reason, we have fitted a random effects model for
each platform and sample, and the estimates of λ were obtained by computing
proper ratios of the residual error variances (see table 2). We can see that the
estimates for the comparison Illumina - Agilent are quite close to 1 for both
samples (1.125 (CI95%: 1.039 - 1.218) for hREF and to 1.352 (CI95%: 1.248 -
1.463)), whereas the estimates for the other comparison are quite different from
1, in particular for Affymetrix-related comparisons in A498 line. Given these
estimates, we expect the results for the concordance analysis to be substantially
similar for the Illumina - Agilent comparison, whereas relevant differences are
expected for the remaining pairs, in particular for samples A498.

Table 2. Estimates of λ and CI95%. Values obtained as ratio of σ2
ε (error variance of

Y) and σ2
δ (error variance of X).

λ CI95%

Agilent - Affymetrix 4.125 3.810 - 4.466
A498 Illumina - Affymetrix 5.576 5.150 - 6.037

Illumina - Agilent 1.352 1.248 - 1.463

Agilent - Affymetrix 2.608 2.409 - 2.824
hREF Illumina - Affymetrix 2.935 2.711 - 3.178

Illumina Agilent 1.125 1.039 - 1.218

Estimates of model parameters using these values for λ produces results pre-
sented in table 3. By comparing these estimates with those presented in table
1, we can see that for all comparisons and in both samples the intercepts de-
crease and the slopes increase, though these changes are much steeper for the
Affymetrix-related comparisons, whereas for Illumina vs Agilent the differences
do not appear to be that relevant.

Graphical results are reported in figure 2. Line A498 (upper panels) shows
better results with respect to those obtained when λ = 1, in particular when

Table 3. Estimates of the linear measurement error model, λ estimated

a0 b0
Pair Estimate CI95% Estimate CI95%

Agilent vs Affymetrix -7.902 (-7.965, -7.838) 2.048 (2.021, 2.076)
A498 Illumina vs Affymetrix -6.497 (-6.556, -6.437) 2.407 (2.380, 2.434)

Illumina vs Agilent 2.804 (2.545, 3.063) 1.171 (1.104, 1.238)

Agilent vs Affymetrix -4.160 (-4.250, -4.071) 1.618 (1.585, 1.651)
hREF Illumina vs Affymetrix -0.668 (-0.779, -0.558) 1.720 (1.683, 1.756)

Illumina vs Agilent 3.757 (3.555, 3.958) 1.062 (1.009, 1.114)
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Table 4. Number and proportion of miRNA lying within the agreement intervals,
estimated according to the measurement error model parameters estimated by setting
λ = 1 and by estimating it via random effects models. Confidence intervals for the
proportions were computed using the Clopper-Pearson exact method [29].

λ = 1 λ estimated

Comparison % (CI95%) n % (CI95%) n

Agilent - Affymetrix 74.17 (71.02 - 77.15) 603 78.84 (75.87 - 81.60) 641
A498 Illumina - Affymetrix 56.46 (52.97 - 59.90) 459 73.43 (70.25 - 76.44) 597

Illumina - Agilent 95.45 (93.78 - 96.78) 776 96.31 (94.77 - 97.50) 783

Agilent - Affymetrix 82.53 (79.75 - 85.08) 671 84.26 (81.57 - 86.70) 685
hREF Illumina - Affymetrix 82.78 (80.01 - 85.31) 673 89.91(87.63 - 91.90) 731

Illumina - Agilent 97.79 (96.52 - 98.68) † 795 97.54 (96.23 - 98.49) † 793
†: the platform pair is in agreement

Affymetrix platform is involved. In fact, an increase of almost 5% is seen when
Agilent and Affymetrix are compared: from 74.17% (CI95%: 71.02 - 77.15) with
λ = 1 to 78.84% (75.87 - 81.6) with λ estimated. Additionally, if we consider
the Illumina-Affymetrix comparison, there’s an increase in the proportion of
concordant miRNA from 56.46% (CI95%: 52.97 - 59.90) to 73.43% (CI95%: 70.25
- 76.44). For hREF, Illumina and Agilent show similar patterns of concordance
with respect to the value of λ: 97.79% (CI95%: 96.52 - 98.68), i.e. 795 miRNA,
for λ = 1 and 97.54% (CI95%: 96.22 - 98.49), i.e. 793 miRNA, for λ = 1.125
(estimated value). The comparison Affymetrix - Agilent shows a slight increase in
the percentage of concordant miRNA, with only 84.26% (CI95%: 81.57 - 86.70),
i.e. 685, miRNA in the agreement interval, whereas Illumina and Affymetrix
show the largest increase in proportion of concordant miRNA: 89.91% (CI95%:
87.64 - 91.9).

In table 4 detailed results on percentages of microRNA lying within the agree-
ment intervals visualized in figures 1 and 2 are reported. By comparing results
not only according to the parameter λ but also with respect to the different
samples, we can note that Affymetrix platform shows moderate-to-low levels of
concordance with both Agilent and Illumina irrespectively of the sample consid-
ered. In general, the worst comparison appears to be the one between Affymetrix
and Illumina, which shows a relevantly lower proportion of concordant miRNAs
for all λ and samples.

To have a better view of these results, we have plotted the point and interval
estimates separately for each sample in figure 3, but keeping the same range for
the Y-axis, to better highlight differences. Let us focus on hREF results, since
the technical issues on A498 lines may lead to biased conclusions: Illumina and
Agilent show similar patterns of moderate-to-poor agreement with Affymetrix
platform when λ = 1 is considered, but when we estimate it the number of
concordant miRNAs seems to increase slightly more for the Illumina-Affymetrix
than for the Agilent-Affymetrix comparison. Notably, Illumina and Agilent show
very satisfactory levels of agreement in both samples for both choices for the
parameter λ.

Finally, to assess agreement we need to choose a value for the threshold k,
the maximum number of subjects (i.e. microRNA) that we are willing to accept



Assessing Agreement between miRNA Microarrays 127

(a) A498 - Agilent - Affymetrix (b) A498 - Illumina - Affymetrix (c) A498 - Illumina - Agilent

(d) hREF - Agilent - Affymetrix(e) hREF - Illumina - Affymetrix (f) hREF - Illumina - Agilent

Fig. 2. Agreement intervals for the modified Bland-Altman method, λ estimated

(a) A498 (b) hREF

Fig. 3. Confidence intervals for the proportion of concordant miRNAs according to
different choices/estimates for the parameter λ
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to lie outside the estimated agreement interval. By choosing a value of k =41
(�0.05 *813), we can say that only Illumina and Agilent can be considered to
be in agreement, whereas Affymetrix shows moderate-to-poor concordance with
both Agilent and Illumina.

4 Discussion

Assessing agreement between different methods of measurement is a task which
has rarely been addressed in microarray literature, where the focus has always
been more on the evaluation of a linear relationship between platforms or with
”gold-standard” assays such as qPCR, mainly via computation of correlation
coefficients. Such an approach has often been biased by the selection of miRNAs
used to do the computations, in that often only miRNAs concordantly detectable
between platforms [12, 11] were chosen, possibly leading to an overestimate of the
real level of correlation between arrays. To avoid this issue we have considered
all common human microRNA that were common (i.e. matched by name) on all
the platforms considered for the experiment. Additionally, correlation coefficients
are computed assuming that intensity/expression values do not suffer from some
measurement error, thus leading to possible under-estimates of the real level
of correlation between platforms [15], whereas the proposed method takes into
account the presence of an additive measurement error in the measurements
from both platforms being compared and incorporates it in the linear model to
estimate relationship between arrays.

The method is a modified version of the well-known Bland-Altman plot, a
graphical technique commonly used to assess agreement between clinical mea-
surements, and we have applied it in the field of microRNA array platforms by
using it in a slightly different way. In a nutshell, commonly there are n subjects
on which we measure some biological quantities using k measurement methods
(k ≥ 2) and our goal is to evaluate whether measurements from the k meth-
ods agree using information on n samples. Had we followed this procedure, each
miRNA should have been evaluated separately (since the microRNA is the bio-
logical quantity of interest) and the intensities in the n samples (in our case the
two cell lines) would have been compared between the k platforms (in our case
3) jointly for both cell lines. Actually, we have considered the microRNAs to be
”subjects” (so that n = 813) and the whole profile of intensity on a platform
to be the vector of measurements to be compared between different platforms
(that is, k = 3), separately for each cell line.

By setting a ”strong” threshold at 95%, equivalent to 772 microRNAs, we con-
clude that Agilent and Illumina arrays are concordant according to agreement
interval derived from the estimation of the measurement error model, irrespec-
tive of the method for choosing the value of λ. The choice of this threshold
is subjective, and should depend on the issue at hand; our choice was due to
the fact that it is likely that a few miRNAs exist which do not agree because of
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unwanted technical issues not attributable to the platform itself, but also to the
need to reduce the number of false positives (i.e. falsely concordant platforms).
This last point is crucial in the field of microarrays, since the comparability of
results from different platforms as a tool for validating a lab’s own results has
gained much relevance in omic research and relies on the assumption that the
two platforms are ”linked” in that what they say about the profile of inten-
sity/expression for a sample is similar, net of the different measurement and
analytic scale of the platform itself.

One of the major issues here was, of course, the choice/estimation of the
λ parameter. We have already discussed that setting it equal to 1 is a strong
assumption which, though reasonable in many practical situations, is likely to
be violated in microarrays. To circumvent this issue, we estimated the error
variance by means of replication, fitting a random effects linear model to each
platform and sample, but also this strategy presents some drawbacks, since the
assumptions underlying the model can be questionable. In the context of random
effects models, a Bayesian framework exists that might result in better estimates,
yet its performance need to be carefully studied [30].

Notably, the measurement error model considered here is just one of the possi-
ble models that could be fitted. Actually, the linearity of the relationship between
poorly concordant platform pairs can be questioned, so that the differences we
have found could be due to a non-linearity of the relationship or to a lack-of-fit
of the regression line, which can be accounted for by considering different func-
tional forms for the x variable, both in a linear and in a non-linear context. In
particular, non linear measurement error models [31] and regression splines [32]
can be considered as valuable alternatives.

5 Conclusions

In this study we have addressed the issue of between-platform agreement be-
tween three different miRNA microarray platforms by making use of a modified
version of the Bland-Altman plot which incorporates a measurement error linear
regression model to build corrected agreement intervals. Our results show that
Agilent and Illumina were the most concordant platform showing good patterns
of agreement, whereas Affymetrix-related comparisons showed poor agreement
for both lines. Whereas for line A498 this could be explained by technical issues
on one replicate, for line hREF this is possibly due to a non-linear relationship
between the arrays, thus suggesting to consider different functional forms to
achieve a better characterization of the relationship.

The proposed method can thus be used to assess agreement in various contexts
and, though supposing a simple linear relation exists between arrays, allows to
estimate it in terms of model parameters corrected for the presence of measure-
ment error, an issue which is often neglected in microarray studies.
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7. Paraboschi, E.M., Soldà, G., Gemmati, D., Orioli, E., Zeri, G., Benedetti, M.D.,
Salviati, A., Barizzone, N., Leone, M., Duga, S., Asselta, R.: Genetic Association
and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients. Interna-
tional Journal of Molecular Sciences 12(12), 8695–8712 (2011)

8. Ach, R.A., Wang, H., Curry, B.: Measuring microRNAs: Comparisons of microar-
ray and quantitative PCR measurements, and of different total RNA prep methods.
BMC Biotechnology 8, 69 (2008)

9. Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic,
P., Constantine-Paton, M., Horvitz, H.R.: Microarray analysis of microRNA ex-
pression in the developing mammalian brain. Genome Biology 5(9), R68.1–R68.13
(2004)

10. Yauk, C.L., Berndt, M.L.: Review of the Literature Examining the Correlation
Among DNA Microarray Technologies. Environmental and Molecular Mutagene-
sis 48(5), 380–394 (2007)

11. Sato, F., Tsuchiya, S., Terasawa, K., Tsujimoto, G.: Intra-Platform Repeatabil-
ity and Inter-Platform Comparability of MicroRNA Microarray Technology. PLoS
ONE 4(5), e5540 (2009)

12. Yauk, C.L., Rowan-Carroll, A., Stead, J.D.H., Williams, A.: Cross-platform anal-
ysis of global microRNA expression technologies. BMC Genomics 11, 330 (2010)

13. Chen, J.J., Hsueh, H.M., Delongchamp, R.R., Lin, C.J., Tsai, C.A.: Reproducibility
of microarray data: a further analysis of microarray quality control (MAQC) data.
BMC Bioinformatics 8, 412 (2007)

14. Bland, J.M., Altman, D.G.: Measurement error and correlation coefficients. British
Medical Journal 313(7048), 41–42 (1996)

15. Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between
two methods of clinical measurement. Lancet 327(8476), 307–310 (1986)

16. Altman, D.G., Bland, J.M.: Measurement in medicine: the analysis of method
comparison studies. Statistician 32, 307–317 (1983)

17. http://www.mirbase.org/

http://www.mirbase.org/


Assessing Agreement between miRNA Microarrays 131

18. Liao, J.J.Z., Capen, R.: An Improved Bland-Altman Method for Concordance As-
sessment. The International Journal of Biostatistics 7(1), 9 (2011)

19. Affymetrix: Affymetrix c© miRNA QC Tool guide, Santa Clara, California (2008)
20. Lopez-Romero, P., Gonzales, M.A., Callejas, S., Dopazo, A., Irizarry, R.A.: Pro-

cessing of Agilent microRNA array data. BMC Research Note 3(18) (2010)
21. R Development Core Team. R: A Language and Environment for Statistical Com-

puting, Vienna, Austria (2011) ISBN 3-900051-07-0, http://www.R-project.org/
22. Lopez-Romero, P.: Pre-processing and differential expression analysis of Agilent

microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics 12,
64 (2011)

23. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S.,
Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus,
S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith,
C., Smyth, G., Tierney, L., Yang, J.Y., Zhang, J.: Bioconductor: Open software
development for computational biology and bioinformatics. Genome Biology 5, R80
(2004)

24. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J.,
Scherf, U., Speed, T.P.: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 4(2), 249–264 (2003)

25. Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H.,
Parks, W.P.: In vitro cultivation of human tumors: establishment of cell lines de-
rived from a series of solid tumors. J. Natl. Cancer Inst. 51(5), 1417–1423 (1973)

26. Hua, Y.J., Tu, K., Tang, Z.Y., Li, Y.X., Xiao, H.S.: Comparison of normalization
methods with microRNA microarray. Genomics 92, 122–128 (2008)

27. Rao, Y., Lee, Y., Jarjoura, D.: A Comparison of Normalization Techniques for
MicroRNA Microarray Data. Statistical Applications in Molecular Genetics Biol-
ogy 7, 22 (2008)

28. Pradervand, S., Weber, J., Thomas, J., Bueno, M., Wirapati, P.A., Lefort, K.,
Dotto, G.P., Harshman, K.: Impact of normalization on miRNA microarray ex-
pression profiling. RNA 15, 493–501 (2009)

29. Clopper, C., Pearson, E.S.: The use of confidence or fiducial limits illustrated in
the case of the binomial. Biometrika 26, 404–413 (1934)

30. Chung, Y., Rabe-Hesketh, S., Gelman, A., Liu, J., Dorie, V.: Avoiding Bound-
ary Estimates in Linear Mixed Models Through Weakly Informative Priors. U.C.
Berkeley Division of Biostatistics Working Paper Series, paper 284 (2012)

31. Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error
in Nonlinear Models: A Modern Perspective. Chapman & Hall/CRC, New York
(2006)

32. Berry, S.M., Carroll, R.J., Ruppert, D.: Bayesian Smoothing and Regression
Splines for Measurement Error Problems. Journal of the American Statistical As-
sociation 97(457), 160–168 (2002)

http://www.R-project.org/


Extracting Key Pathways from Gene Signature

and Genetic Aberrations in Subtypes of Cancer

Peikai Chen1, Yubo Fan2, Tsz-kwong Man3, Ching C. Lau3,
Y.S. Hung1, and Stephen T.-C. Wong2

1 Department of Electrical and Electronic Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong

{pkchen,yshung}@eee.hku.hk
2 Department of Systems Medicine and Bioengineering, The Methodist Hospital

Research Institute, Weill Cornell Medical College, Houston, USA
{yfan,stwong}@tmhs.org

3 Texas Children’s Cancer and Hematology Centers and Dan L. Duncan Cancer
Center, and Department of Pediatrics, Baylor College of Medicine, Houston, USA

{ctman,cclau}@txch.org

Abstract. Subtypes of cancer are characterized with subtype-specific
aberrations and gene signature. While the gene signature is related to the
consequences of the cancerous process, some of the genetic abnormalities
such as copy number aberrations (CNAs) can have tumorigenic roles by
perturbing various biological pathways. Bridging the gap between the
aberrations and signature genes, by extracting networks that reflect the
within-subtype variations, may help gain insights on the mechanisms of
a cancer and its subtypes.

We report a systemic approach to extract pathways. Using multivari-
ate regression, we model the expression of a signature gene as dependent
on the CNA-affected genes. The weighted �1-norm penalty on the regres-
sion produces a sparse matrix, from which a bipartite graph is extracted
and subtype specific networks uncovered. For each individual network, we
develop an network-growing algorithm by utilizing within-subtype vari-
ations, to further identify non-signature targets. To evaluate the clinical
relevance of the extracted networks, we derived a goodness-of-fit metric
based on Cox proportional hazard rate model and ranked the networks
based on this metric. The method was applied to two medulloblastoma
datasets and the resulting networks demonstrate both dataset-invariance
and biological-interpretability.

Keywords: pathways, copy number aberrations, cancer, subtypes,
LASSO, �1-norm.

1 Introduction

Pathways play important roles in the normal functioning of biological systems,
and when dysregulated, the development of cancer as well. Pathways can be dys-
regulated by a number of factors, including aberrant genetic events such as copy
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number aberrations (CNAs), causing loss-of-function or gain-of-function conse-
quences that may be tumorigenic. In fact, genetic abnormalities are important
features of the cancer genome [1]. However, given the massive numbers of observ-
able and un-observable errors in the cancer genome, detecting and establishing
the cancer-causing ones is challenging.

On the other hand, a cancer is now believed to consist of several major sub-
types, each with distinct behaviors ranging from molecular profile, clinical per-
formance to drug response, etc. These cancer subtypes are now found in breast
cancer [2], glioblastoma [3] and medulloblastoma [4], etc. Some theories of cancer
subtypes suggest that they may have been caused by the hits (e.g. CNAs) on
different pathways, such as Wnt and Shh pathways [5]. Therefore, uncovering the
pathways in the subtypes would help understand the underlying mechanisms.

Subtype non-specific pathway analysis is widely studied. For example, Lee et
al. [6] developed an algorithm that, given a pathway, greedily searches a subset of
its member genes that demonstrate significant condition-responsive expressions.
A score based on the weighted sum of the t-statistics of individual genes in this
subset is assigned to the pathway as an activity indicator. Hundreds of curated
pathways are tested before some top ones surface as disease-related candidates.
More works in oncogenic pathway identification can be found in [7–10].

By and large, it came to be realized that these disease related expression
networks may be the consequences of certain perturbations at the DNA level.
Perturbing factors including mutations [11], single-nucleotide polymorphisms
(SNPs) [12], CNAs [13], microRNAs [14], etc. were tested on various gene expres-
sion datasets to identify the error-induced networks. Most of these approaches
make use of pairwise regression between the regulators and the expression net-
works. But in a real network, a responsive gene could be the superimposed
effect of regulations by multiple regulators; conversely, a regulator can regulate
multiple targets. As a result, individual association between pairs of genes may
overstate the co-regulations. These issues will have to be addressed.

To this end, a systemic approach to extract genetic aberrations perturbed
network in cancer subtypes is proposed which shall be elaborated in the sequel
of the paper. We applied the approach to the pediatric brain tumor of medul-
loblastoma, and report results thereof, in later sections.

2 Approach

Suppose we are given a cancer dataset with n samples, the i-th member of
which contains a measurement vector (xi, yi, ci), where xi ∈ R

M is the set of
expressions for all M genes, yi ∈ {1, ...,K} is the class label, ci = {cij |cij ∈
{0, 1, 2, 3, ...}, j = 1, ...,M} is the copy number vector. Here, the class labels are
obtained by the subtyping method described in Section 5.1. For each subtype k,
a set of signature genes Ωk ∈ {1, ...,M} are obtained by the method described
in Section 5.3; and a set of recurrent CNA-affected genes specific to k, denoted
as Φk ∈ {1, ...,M} are detected by the method in Section 5.2. The copy number
cij is discrete and cij = 2 refers to the normal case, otherwise it is either losses
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(cij = 0, 1) or gains (cij > 2). The following assumes we are building networks for
subtype k only, but the process is applicable to all subtypes; and for simplicity,
denote Ωk as Ω, Φk as Φ, and NΩ = |Ω| and NΦ = |Φ| .

2.1 Weighted-Penalized Regression for Identifying CNA Regulators

For a signature gene ω ∈ Ω, whose expression is denoted by a variable Xω, we
want to know the regulators whose expressionsXω depends on. Further, although
we exclude genes with recurrent CNAs to be in the signature (Section 5.2), ω
may contain some non-recurrent CNAs among the samples. As a result, Xω may
be affected by its own copy numbers, which we use a variable Xω to denote.
Assuming linear dependency, we have:

Xω = μω + αωCω +
∑
ϕ∈Φ

βϕXϕ + εω (1)

where Xϕ is the variable denoting the expression of a candidate regulator ϕ ∈
Φ and βϕ the corresponding coefficient, and εω the error term assumed to be
from identically independently Gaussian distribution N (0, σ2

ε ). Cω is the copy
number profile of gene ω. For simplicity, it is denoted that θ = (μω , αω, βϕ),
and Zω = (1, Cω , Xϕ), so that Xω = θTZω + εω. Unfortunately, the number
of candidate regulators NΦ is often prohibitively huge (in the hundreds, say).
Further, only a few top regulators are of interest, whereas regulators with weak
inter-dependency with Xω are assumed to be not functionally related. For this
purpose, an �1-norm penalty is imposed on θ, leading to a log-likelihood function:

L (θ;xω ,Z) = −
n∑

i=1

(xiω − θT zi)
2 − λ||θ||
1 +Const. (2)

= −(xω − ZT θ)2 − λ||θ||
1 +Const. (3)

where Z = [z1, ..., zn], zi = [1, ciω, {xiϕ}]T , Const. is a parameter independent
constant, and λ is a positive scalar serving as a scale of penalty. Maximization
of Eq. 3 is equivalent to LASSO, which constrains that ||θ||
1 is smaller than a
certain value λ0 [15]. It can be shown that Eq. 3 is concave and there exists a

unique solution θ̂ for a given λ > 0, even when NΦ > n. Further, most entries
of θ̂ are 0 or close to 0, and the exact number of non-zero elements depends on
the value of λ. Specifically, small value of λ leads to fewer 0-valued regression
coefficients and large λ has a reverse effect. Depending on λ, the regression can
be controlled to be arbitrarily over- or under-fit. To reduced the arbitrariness,
λ is chosen such that the goodness-of-fit metric R2

ω = 1 − RSS/σ2
ω equals an

ω-independent ratio, say, R2
ω = 0.6, ∀ω. With this, the penalized regression

above can be efficiently trained, resulting in a sparse matrix of coefficients Θ̂ =
[θ̂1, ..., θ̂NΩ ].

Note that in here, the regression is conducted across all samples, regardless
of their class labels. To see the reason for doing so, denote the expression of a
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candidate regulator ϕ by Xϕ and the copy number by Cϕ, and we can have a
model:

Xϕ = μϕ + γϕCϕ + πϕ + εϕ (4)

where μϕ is the expected mean, γϕ is the copy number coefficient, π represents
some other regulations on Xϕ, and εϕ is the measurement error. Assuming or-
thogonality, we have:

var(Xϕ) = γ2
ϕvar(Cϕ) + var(πϕ) + var(εϕ) (5)

Note that Φ has already been chosen in a subtype-specific manner, which means
Cϕ has most of its CNAs confined within k; and Cϕ is mostly in aberrant and
monotonic (i.e., mostly gains or mostly losses) states in k since it is recurrent.
And the dependency of var(πϕ) on subtype varies. Consequently, if we want
to see the impact of Cϕ on Xω through Xϕ, i.e., the variance of Xω as ex-
plained by var(Cϕ), the regression needs to include all samples. The regres-
sion directly on Cϕ is avoided because large numbers of (candidate) regulator
genes tend to be physically adjacent and have the same CNA profile, making it
non-distinguishable among them. Also, whereas Cϕ can be regarded as a step-
functioned event over time, i.e., the copy number is static; Xϕ may experience
some dynamics, from Cϕ or from interactions with the target genes, particularly
when ϕ is in some feedback mechanisms. The inter-dependency between Xω and
Xϕ captured at the time of measurement may thus to some degree reflects both
the static and dynamic regulations of Xω by Cϕ.

In Eq. 3, ZZT � H may be rank-decifient, i.e., NΦ > n. Then in the original
LASSO, when λ0 is sufficiently large that the norm-ball ||θ||
1 ≤ λ0 includes
a solution θ to xω = ZT θ; there will be infinite optimal solutions, given by
θ+N (ZT ), where N (·) denotes the null space. In the unconstrained LASSO in
Eq. 3, if λ0 is controlled to be small, but there exist a few candidate regulators
whose expressions demonstrate strong collinearity, such that the correspond-
ing rows of H are highly similar, so are the corresponding columns, then the
quadratic objective function has very slow gradient along the surface of the con-
strained norm-ball. As a result, the numerical algorithm tends to randomly select
one of them to be non-zero coefficient and set other collinear regulators to be
zero (see Fig. 1A).

To handle such cases, we introduce some weights in θ. This tells the algo-
rithm that when ties occur, a preference is made to reduce the randomness. To
summarize, the problem is re-formulated as:

minimize
∑

ξ wξ|θξ|
s.t. 1− 1

n (xω − ZT θ)2/var(xω) = r
(6)

where r ∈ (0, 1) and wξ > 0 are pre-specified. This is a quadratically constrained
quadratic programming problem and can be uniquely solved to a desirable ac-
curacy. The weights ωξ can either be based on prior knowledge, such as bioin-
formatics data-bases, or based on prediction from normal samples.



136 P. Chen et al.

Fig. 1. A, Collinear regulators and the contour of objective function (dashed curves). B,
A schematic illustration of within-subtype co-regulations in the non-signature targets.
Top-panel: a regulator with copy numbers (blue, predominantly in B) and expressions;
middle and bottom: non-signature and signature targets. Horizontal: samples. Note
the within-subtype co-expression in Subtype B. C and D, schematic illustration of
open-loop and feedback networks.

2.2 Networks Extraction

The sparsity method above results in a bipartite graph from the CNA regulators
(i.e., Φ) to the signature genes (i.e., Ω). As a result, multiple signature genes
may share a common regulator. If the regulators are functionally responsible
for the signature genes, then the co-regulated genes should demonstrate some
degree of co-expression.

Note that Ω is also chosen in a subtype-specific manner. Regression in this
respect might result in over-optimism as any two signature genes may naturally
tend to inter-correlate. To analyze the effect, in a similar fashion as Xϕ, we
model the variance of Xω by:

var(Xω) = α2
ωvar(Cω) +

∑
β2
ϕvar(Xϕ) + σ2

ε (7)

= α2
ωvar(Cω) +

∑
β2
ϕγ

2
ϕvar(Cϕ) +

∑
β2
ϕvar(πϕ) +

∑
β2
ϕvar(εϕ) + σ2

ε

(8)
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Since within subtype k, var(Cϕ) is close to zero, the within-subtype variation
of Xω would largely depend on its own copy number changes and the regulating
term var(πϕ), plus some error terms. The size of var(πϕ) depends on the nature
of regulations. If the signature gene is a downstream target, being regulated
by an open-loop mechanism, on/off switching effect might dominate, and the
within-subtype variations of Xω might be by pure noise. If instead the signature
gene is caught in some feedback processes, the within-subtype variation of Xω is
highly meaningful. Assuming constant noise, the latter case shall have a stronger
within-subtype inter-correlation with Xϕ. This is illustrated in Fig. 1B.

By the above assumption, the target genes of a regulator can be categorized
into two groups: the feed-back (F) and open-loop (O) targets. A framework for
network extraction is proposed as below:

1. Perform the penalized regression as in Eq. 6, obtaining a sparse matrix of
B̂ = [β̂1, ..., β̂NΩ ]. A bipartite graph G(u, v) can be created with G(u, v) = 1,

if B̂u,v > 0, ∀ u and v.
2. Divide the target genes into two groups F and O. A target gene is assigned

to the set F if its within-subtype correlations with regulator is empirically
significant, determined by means of bootstrapping.

After extraction, the network can be summarized by Fig. 1C. It is speculated that
some more genes may have been involved in the co-regulation (dashed circles)
in-between the regulator set R and the target sets F and O. This set of genes
is referred to as the non-signature targets T . They may not be significantly
differentially expressed as the signature genes as a result of certain feedback
mechanisms, but still possess rich clues about the within subtype interactions.
Finding this set of non-signature targets may further improve the biological-
interpretability of the networks.

Denote the set of non-signature and non-regulator genes by Ψ = {ψ|ψ =
1, ...,M, ψ /∈ Ωk ∪ Φk , ∀k}, and the expression of a gene ψ by a variable Xψ.
Further denote the dependency by D, where D = 1 means ψ is dependent and
D = 0 means not dependent. Then under the two states, the log-likelihood ratio
(LLR) is given by:

LLR(ψ) = 2 log
sup{L(D = 1|Xψ, Xı, Xj)}
sup{L(D = 0|Xψ, Xı, Xj)}

(9)

for all ı ∈ F and all j ∈ R. Here L(D = 0|Xψ, Xı, Xj) refers to the case where
knowing Xı and Xj does not increase our knowledge about Xψ, i.e., Xψ ∼
N (μψ , σ

2
ψ). On the contrary, L(D = 1|Xψ, Xı, Xj) refers to the case where Xψ ∼

N (μψ +
∑

αıXı +
∑

αjXj, σ
2
ψ). The statistic LLR(ψ) can be approximated by

a χ2
N distribution, where N is the size of the set F ∪R. To account for the large

number of testings, the FWER criterion is imposed.

3 Results and Discussion

We applied the proposed approach to datasets of the pediatric cerebellar tumor
of medulloblastoma (MB). Currently, the prognosis for MB patients is poor and
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Fig. 2. Subtype-specific copy number aberrations. A, WNT subtype. B, SHH subtype.
C: NWS subtype. In each sub-plot, the red curves refer to copy number gains, and blue
curves refer to copy number losses.

affected individuals hardly survive to adulthood. Patients of MB demonstrate
obvious subgrouping effects in gene expression patterns, copy number profiles,
clinical performances, etc. Generally accepted subtypes include the Wnt-pathway
and Shh-pathway associated subtypes. Studies have pointed some genetic aber-
rations, including point mutations [16], loss of heterozygosity [17], copy number
aberrations [18], etc., to be susceptible loci. Some of these aberrations occur in
signaling pathways critical during brain development. It is of interest to know
how aberrations can perturb the normal regulation of these signaling pathways,
and indeed, also what pathways are involved other than the well known Wnt and
Shh pathways, in the subtypes of MB. The followings present the implementation
of the proposed approach and findings thereof.
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3.1 Dataset-Invariant and Subtype-Specific Gene Signature and
Aberrations

Two publicly available MB datasets, MB1 and MB2 (see 5.1), were used. To
facilitate discussion, the three subtypes in MB1 are referred to as WNT, SHH and
NWS, respectively; while those in MB2 are referred to as wnt, shh and nws. Gene
signature detection by the method 5.3 in were applied to both datasets. Table 1
shows the result. It can be seen that there is strong correspondence between the
subtypes in the two datasets. And a substantial percentage of signature genes are
dataset-invariant. The overlapping signature genes were used as the set Ωk for
each subtype. This set contains a large number of functionally related genes, that
reflect the subtype-specific disease process. For example, in the WNT subtype,
some top-ranked genes in ΩWNT include LEF1, WIF1, FZD10, TGFA, WNT11,
DKK1, etc., corresponding to the activation of the Wnt-pathway. Likewise, the
SHH subtype signature ΩSHH is abundantly enriched with Shh-pathway genes.
While the gene signatures in WNT and SHH are quite well-known (and hence
the subtype names), a large quantity of novel signature genes were uncovered for
the NWS subtype, which is dissected into various numbers of subtypes by recent
studies (see 5.1). For example, RREB1, a transcription factor binding to Ras-
responsive elements, is uniquely over-expressed in NWS. RREB was shown to
be mediating some cancer [19]. Other signature genes include the Wnt-pathway
genes NLK, FZD1/7, TCF4, SOX4; Protein Kinase-A pathway genes AKAP6/9,
GNG3, H3F3A/B, PLCB4, PP1R10, PRKAR2B, etc. (see Supplementary for a
complete list for ΩNWS) To summarize, the signatures of subtypes have strong
functional implications about the particular processes underlying the subtypes.

The subtype-specific recurrent CNAs were detected on SNP arrays of MB1
(see 5.2). Fig. 2 shows the subtype-specific copy number landscapes. The WNT
subtype is dominant with significant copy number losses on Chr6. The SHH sub-
type has significantly recurrent losses on Chr9q and Chr10q, and includes genes
such as NOTCH1. NOTCH1 is a known suppressor in some cancer [20] and
recently shown to interact with Shh-pathway in regulating neocortical progeni-
tors [21]. Copy loss of this gene may reduce its tumor-suppressing capacity. The
NWS subtype is characterized with gains on Chr7, Chr17q and losses on Chr8,
Chr11 and Chr16. Of note, there is only marginal overlap between the signa-
ture genes and CNA-affected genes. For example, |Ωk ∩ Φk| = (13, 28, 16) for
k = (WNT, SHH, NWS), respectively. This perhaps suggests that the signature
genes are not mechanic responses induced by their own CNAs, but rather the
consequences of some processes, for which a network extraction approach may
help bridge the gap.

3.2 Significantly Reproducible Networks Characterize
Subtype-Specific Processes

Since our model does not use copy numbers, but instead the expressions of CNA-
affected genes. The set of CNA genes can be assumed to be candidate regulators
of MB2 as well. In fact, the copy number landscape by arrayCGH in [4] shows
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Table 1. Cross-dataset comparison of subtype signatures

Subtypes of MB2
Subtypes of MB1 wnt shh nws MB1 signatures

WNT 421 9 25 455 (92.5%)
SHH 13 160 6 323 (49.5%)
NWS 18 0 201 212 (94.8%)

MB2 signatures 568 (74.1%) 194 (82.5%) 310 (64.8%)

very similar patterns as in MB1. It is found that most of the signature genes
have normal copy numbers, the Cω term in Eq. 1 can be dropped. In this way,
both expression datasets can be used to construct the regulatory networks. As a
result, the same sets of candidate regulators and signature were used in the two
datasets.

We implemented the weighted-penalty �1-norm regression model to both
datasets. The weighting wϕ for a regulator ϕ was selected based on the within-
subtype variation of Xϕ. As a result, in case of ties, the candidate regulator with
higher within-subtype variance (therefore higher var(πϕ)) is chosen. To estimate

the standard errors for the coefficients β̂ϕ, a bootstrapping on the samples was

performed with 10,000 resamplings. β̂ϕ is deemed significantly non-zero if its
99% empirical confidence interval does not include zero. To determine the non-
randomness of the networks, we compute the ratio of dataset-invariant edges,
i.e., (u, v) for which |G(u, v)| > 0 in both MB1 and MB2, by:

ratio =
#dataset-invariant edges ∗ 2

#significant edges in MB1 +#significant edges in MB2
(10)

In all, 11090, 4488 and 6079 significant edges are found in the three subtypes
(WNT, SHH and NWS) of MB1, respectively; and another 11289, 4640 and 8034
edges are found in the three subtypes of the MB2 dataset, respectively. Of these,
3829, 1183 and 2099 edges are found in both datasets in the three subtypes,
respectively. These correspond to overlapping ratios (Eq. 10) of 34.2%, 25.9% and
29.7%, respectively. These overlapping ratios are all found to be very significant
by bootstrapping (P < 10−6) and that indicates strong reproducibility of the
uncovered networks. These overlapping edges automatically form three networks
and are shown in Fig. 3.

3.3 Feedback Genes and Non-signature Targets Capture
Within-Subtype Co-regulations

The signature genes are categorized into the feedback genes (F) and open-loop
genes (O) by a correlation-based method. A signature gene is said to be in F if
it is highly correlated (among the within-subtype samples) with the regulators,
otherwise it is said to be in O. A NΦ-by-NΩ matrix Z is formed where each entry
Zϕ,ω refers to the within-subtype correlation between ϕ and ω. Suppose Z is row-
wise zero-meaned. Take the SVD, Z = UΣV T , and the projection z1 = UT

·1Z,
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Fig. 3. The reproducible networks pointing from the CNA regulators to the gene sig-
nature for each subtype

Table 2. Feed-back genes and non-signature target genes

Subtypes Feed- back genes (F) non-signature target genes (T )

WNT AHI1, CD47, ODZ3, REEP5,
PLCB1, IBTK, SMAP1, IFT57,
CST6, MAPKBP1, ILVBL,
MED23, ACY1, PHIP, KCND3,
LOC282997, SFRS18, PELI2,
MTO1, TBC1D2B, ZBTB24,
FBXO9, MAPKAPK3, AQP3,
PRPF4B, COTL1, DSE

KCNE2, AMBP, CXorf57, MED14,
GYPA, RHCE, KLHL23, C3orf32,
ZNF407, IFNA8, AFF2, HIVEP3,
PTN, RPL41, SPINLW1, UPK2,
KCNC4, CLTB, PCDHB1, RXRG,
DECR2, S100G, SPINT3, TSHB,
GNAL

SHH LPPR4, PDLIM3, GLI1, SLC6A8,
GAB1, ABCB4, ATOH1,
EPB41L4A, F8A1, KPNA1,
EP400, CYLD, LHFPL2, NAP1L1,
CBFA2T2, BAHCC1, NAP1L1,
ARHGAP19

MUC4, CD8B, KIR3DL1,
GPR135, CTDSPL, SSX4,
FLJ23519, ACVR1B, CSF2,
LOC388907, AQP6, SLC14A2,
IGHG1, LOC100131825, OR10H3,
ABCB11, IDS, STIM1, GPD2,
MFAP3L, TNP2, LDHAL6B,
PIP5K1A, PDE4C, KIR2DL1,
KCNJ1

NWS FOXG1, RYBP, H3F3A, TST,
CBX1, TES, NRCAM, WIPI1,
SOX4, ROR1, KIAA0195, MED13,
DYRK2, CDK5R1, SLC6A3,
KIDINS220, PGS1, PECR, FZD7

AGTR2, RAB7A, OTC, NEK1,
IGJ, OLFM4, IGL@, LTF, HTR3B,
MAP2K5, IGH@, MFI2, TFF1,
LOC339562, PPYR1, PLD1,
GDNF, RNF185, NCKIPSD,
SULT1C2, PSG6, NPY2R,
SEMG2, PDZRN4, KIR3DX1,
CD34, KCNJ15, TNIP3, IL10,
SULT2A1, LOC100101117, GLS,
IVD, DAZ1, CSF3R, SIX2,
HNRNPD, IGHA1, SLC5A1, TAC-
STD2, IL1R1, THBS1, MFAP5,
CPA3, GP5
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where U·1 is the first column of U . 1,000 smooth bootstraps are performed to

determine the empirical confidence interval (eCI) of z
(i)
1 , for i = 1, ..., NΩ. If the

eCI of z
(i)
1 does not include zero, it is said to be in F . In total, 28, 19 and 21

genes in the three subtypes are found to be dataset-invariant feedback genes,
respectively (see Table 2). Note that some key pathway genes, such as GLI1,
ATOH1 that associate with the Shh-pathway appears in the SHH subtype. While
few Wnt-pathway genes appear in the WNT subtype. This indicates that the
dysregulating mechanism of WNT subtype may be different from that of the SHH
subtype, in the sense that the latter contains more within-subtype interaction
than the former. This in turn may be due to the multiple feedbacks that fine
tune the Shh-pathway [22]. The feedback genes of the NWS are characterized
with occasional Wnt-pathway genes such as FZD7 and SOX4, but the roles are
not very clear.

The log-likelihood based non-signature target identification procedure (cf.
Eq. 9) was applied on each subtype specific network to identify the non-signature
target genes (T ) and summarized in Table 2. Of note, GSEA analysis reveals
that the non-signature target genes of the WNT subtype do not seem to be very
relevant with the Wnt pathway. This may confirm the aforementioned theory
that the Wnt-pathway may have been permanently turned on in the WNT sub-
type and as a result feedbacks and within subtype interactions are less obvious.
In the SHH subtype, immunity-related pathways are significantly represented,
including Antigen processing and presentation (p=0.00453), Natural killer cell
mediated cytotoxicity (p=0.0148), etc. In the NWS subtype, there is a significant
enrichment of JNK MAPK Pathway (p=0.0238).

4 Conclusion

In this work, we have presented a method, utilizing the orthogonality of vari-
ances, to build a penalized model that extract clinically related networks in
subtypes of cancer. The results of the method to medulloblastoma demonstrates
strong dataset-independence and strong biological interpretability. As an ex-
tension, our work indicates that signature genes and aberrations in cancer and
its subtypes do not just co-exist by chance, but instead are functionally inter-
correlated and experimentally observably. It is thus possible and useful to link
them up and uncover the individualized cancer mechanisms. Our successful appli-
cation to medulloblastoma allows the extension of the approach to other cancers,
where subtypes also widely exist.

5 Methods

5.1 Datasets and Subtyping

Two medulloblastoma datasets were used. The first data set containing 74 sam-
ples is from Cho et al. [23]. The second data set containing 62 samples is from
Kool et al. [4] (GEO accession number: GSE10327). For convenience, the two
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data sets are referred to as MB1 and MB2, respectively. Note that MB2 uses a
newer gene expression array and contains more probesets than MB1. For sim-
plicity, only probesets common to both MB1 and MB2 are used.

Subtyping results from both the Cho and Kool studies were used as class
labels for the corresponding data sets, respectively. Of note, the two studies re-
ported different numbers of subtypes in medulloblastoma. But in both subtyping
results, roughly three super-subtypes can be summarized: (1) the Wnt-pathway
associated subtype; (2) the Shh-pathway associated subtype, and; (3) the non-
Wnt/non-Shh (NWS) patients. While the former two subtypes are now widely
accepted, major debates still center around the exact subtyping patterns in the
NWS patients. For convenience, we refer to the third category as the NWS sub-
type. The subtypes and numbers of cases are summarized as below:

codes in the codes in the
current codes source # cases current codes source # cases
MB1 74 MB2 62

WNT 6 7 wnt A 9
SHH 3 18 shh B 15
NWS 1, 2, 4, 5 49 nws C, D, E 38

5.2 Reccurent CNAs Detection

Only the first dataset, MB1, has public copy number information. The SNP ar-
rays matching with the expressions samples were downloaded from GEO (acces-
sion no.: GSE19399). Copy number profiles ci for sample i were inferred from the
sample-matched SNP arrays, by Genotyping Console (Affymetrix, CA). Regions
with significantly recurrent CNAs were detected by GISTIC [24] on GenePattern
(genepattern.broadinstitute.org), with subtype-specific data from these SNP ar-
rays. This results in a set of candidate CNA regulators Φk for each subtype k.
The numbers of candidate regulators in each subtype are summarized as below:

ΦWNT ΦSHH ΦNWS

gains losses gains losses gains losses
# genes 0 359 0 281 692 561

5.3 Subtype Signature Detection

To identify the subtype signatures, a three step algorithm is developed: (i)
detection of differentially expressed genes (DEGs), (ii) detection of subtype-
specific DEGs, or subtype signature, and (iii) ranking of genes within a subtype
signature.

To detect the DEGs, given expressions ej = [x1j , ..., xnj ] for gene j ∈ {1, ...,M}
and the subtype label y, an ANOVA is performed to test: H0 : μj

1 = .. = μj
K ,

where μj
k is the mean of the within-subtype mean of gene j for subtype k. To

account for the large number of comparisons, we use the family-wise error rate
(FWER) as corrected by the Holm-Bonferroni ( [25]) method to select the top
DEGs.
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In a multiclass setting, subtype-specific DEGs can be detected via post-hoc
analysis. For each of the DEGs detected in the ANOVA, Tukey’s ( [26]) honest
significance test (TukeyHSD) is followed to conduct a pair-wise comparison of its
expression in one subtype with that in another. A DEG is said to be specific to a
subtype, if the TukeyHSD signs of it in that subtype’s comparisons with all other
subtypes are identical, i.e., all positive or all negative, and the corresponding
adjusted p-values are all significant. It is worth noting that no restrictions are
imposed on other adjusted p-values in the TukeyHSD test, which allows for slight
inter-subtype variations in the non-specific subtypes.

Finally, a ranking of each subtype’s specific genes is needed to provide an
order of functional relevance for these genes. To this end, for each subtype, a
comparison for each of the detected signature genes in this subtype, against
all other samples as a group, is performed. The subtype signature genes are
ordered according to their corresponding p-values. LIMMA [27] with BH [28]
false discovery rate (FDR) control is applied in this step. At the end of these
steps, we obtain a set of ranked signature genes Ωk for subtype k.
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Abstract. In previous work, semi-supervised Fuzzy c-means (ssFCM)
was used as an automatic classification technique to classify the Notting-
ham Tenovus Breast Cancer (NTBC) dataset as no method to do this
currently exists. However, the results were poor when compared with
semi-manual classification. It is known that the NTBC data is highly
non-normal and it was suspected that this affected the poor results. This
motivated a further investigation into alternative distance metrics to ex-
plore their effect on classification results. Mahalanobis, Euclidean and
kernel-based distance metrics were used on 100 sets of randomly-selected
labelled data. It was found that ssFCM with Euclidean distance success-
fully and automatically identified the six classes in close agreement with
those of Soria et al. We showed that there is also high agreement in the
key features that define the breast cancer classes with those of Soria et
al. The superiority of Euclidean distance for classifying this dataset, as
compared to Mahalanobis distance is unexpected as it can only generate
spherical clusters while Mahalanobis distance can generate hyperellip-
soidal ones including spherical ones. We expected Mahalanobis distance
to generate the hyperellipsoidal clusters that would best fit NTBC data.

Keywords: semi-supervised, fuzzy c-means, breast cancer classification,
distance metrics.

1 Introduction

The Nottingham Tenovus Breast Cancer (NTBC) dataset has been used in
studies to understand the mechanism of breast cancer and characteristics of
its subgroups [1,2]. The dataset contains 25 immunohistochemical features for
1076 patients. Soria and colleagues [1] successfully identified six clinically novel
and useful subgroups while maintaining the three main clinical groups, Luminal,
Basal and HER2. However, the methodology used was semi-manual, involving vi-
sual inspection and the use of heuristics and other techniques to aggregate results
from different unsupervised clustering techniques. A fully automated method
(post initialisation) for identifying these subgroups is needed. No unsupervised
clustering technique has been found to do this so far.
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c© Springer-Verlag Berlin Heidelberg 2013
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Semi-supervised Fuzzy c-means (ssFCM) is a successful pattern recognition
technique applied in many types of biological and medical data. To name a few
achievements, Bensaid et al. [3] applied it in MRI image segmentation and Tari
et al. [4] grouped functionally related genes with prior knowledge from Gene
Ontology annotations. ssFCM have also been shown to produce good classifica-
tion results in popular benchmark datasets from the UCI repository such as Iris,
Wine and Wisconsin Original and Diagnostic Breast Cancer [5,6].

Previously, we applied ssFCM [5] (Pedrycz97) as an automatic method for
classifying the dataset with an overarching aim to preserve the main clinical
groups and ideally identify the same subgroups as Soria et al. In doing so, we
hope to make the prediction of breast cancer types for future patients more
efficient. We used ssFCM to perform classification using class labels from [1].
However, a low degree of agreement (Kappa Index) was found.

Distance metrics are an important part of Fuzzy c-means as they are used to
measure similarity, which provide additional structural information in terms of
the characteristics of data patterns relative to the cluster. The degree of simi-
larity enables us to determine how strongly a data pattern belong to a certain
group. Mahalanobis, Euclidean and kernel-based distance metrics use different
approach to represent structural information of the dataset, which measure sim-
ilarity [7]. They are chosen for investigation as they popular distance metrics in
ssFCM [3,4,5]. Hidden structural information can be uncovered using suitable
distance metrics that can improve classification results.

In the original Pedrycz97 algorithm, Mahalanobis distance metric was used.
In this work, we investigate Euclidean and kernel-based distance metrics in
Pedrycz97 on varying amounts of labelled data across 100 sets of randomly
selected labelled data. Three evaluation techniques, classification rates, Kappa
Index and Normalised Mutual Information, are used to measure agreement with
classification by Soria et al. because they provide varied treatments to agreeing
and disagreeing classification. Clinical insights of NTBC can be found in [1] and
are beyond the scope of this paper.

The rest of the paper is organised as follows: The semi-supervised Fuzzy c-
means algorithm is explained in Sect. 2, followed by a brief description of the
distance metrics used in our study in Sect. 3. In Sect. 4, we describe the dataset,
experimental design and evaluation techniques used. Experimental results are
reported in Sect. 5 and are discussed in Sect. 6. Finally, the conclusion is found
in Sect. 7.

2 Semi-supervised Fuzzy c-Means

Fuzzy c-means is a clustering method which allow a data pattern to belong
to more than one cluster, which gives a more realistic representation of data
than a binary approach. Membership values are used to indicate the degree of
belongingness a data pattern has to clusters and thus determine which cluster
a data pattern is assigned to. For a data pattern, membership values to each
cluster can range from zero to one and the sum of membership values for all
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clusters must equal to one. A high membership value to a cluster means a high
possibility of belonging to this cluster.

Semi-supervised Fuzzy c-Means (ssFCM) use some labelled data patterns in
the dataset to guide the identification of similar data patterns. This can be very
valuable when some cases can be labelled. But, labelled data patterns are often
sparse and they are time-consuming and labour-intensive to collect.

In [5], the FCM objective function is extended to include supervised learning
component represented as the second term as follows:

J =

c∑
i=1

N∑
k=1

up
ikd

2
ik + α

c∑
i=1

N∑
k=1

(uik − fikbk)
pd2ik, (1)

where uik is the membership value of data pattern k in cluster i, dik is the
distance between data pattern k and cluster centre vi, fik is the membership
value of labelled data pattern k in cluster i, b is a boolean vector indicating if a
pattern is labelled, c is the number of clusters, N the number of data patterns
in the dataset and p is the fuzzifier parameter (which is commonly 2) and α is
a parameter for maintaining balance between the supervised and unsupervised
learning components.

The algorithm involves iteratively calculating the cluster centres and the mem-
bership matrix U containing uik to minimise the objective function until a termi-
nation criterion is satisfied. In this work, we use ssFCM by Pedrycz and Waletzky
[5] because it has been shown to produce good classification results. The algo-
rithm is summarised as follows:

1. Initialise labelled data membership matrix F and initial membership matrix
U0

2. Calculate cluster centres V = [vi] with U using equation:

vi =

∑N
k=1 u

2
ikxk∑N

k=1 u
2
ik

(2)

3. Update partition matrix, U using equation :

uij =
1

1 + α

⎧⎨
⎩1 + α(1 − bj

∑c
l=1 flj)∑c

l=1(
dij

dlj
)2

+ αfijbj

⎫⎬
⎭ (3)

4. If ||U′ −U|| < ε, stop. Else, go to step 2 with U = U′

Note that all data patterns, labelled and unlabelled data patterns undergo unsu-
pervised learning. This means that that memberships of labelled data patterns
are updated at each iteration.

3 Distance Metrics

In this section, we briefly describe the distance metrics used. These distance
metrics, their differences and behaviours in ssFCM are discussed in detail in [7].
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3.1 Mahalanobis

The Mahalanobis distance is formally defined [8] as:

dM (x) =
√
(x = μ)TS−1(x− μ) (4)

It is the distance between a vector x = (x1,x2, ...xn)
T which belong to a group

of vectors with a mean μ = (μ1, μ2, ...μn)
T and S is the covariance matrix of the

group.
The Mahalanobis distance metric in ssFCM [5] takes into account the member-

ship as well as the similarity between the data pattern and the cluster center. The
inverse covariance matrix, Mi normalises dimensions of different scales, prevent-
ing dominance from dimensions with greater scales. Thus, it is scale-invariant.
It forms hyperellipsoidal clusters. The Mahalanobis distance is computed as
follows:

d2M (i, k) = (xk − vi)
TMi(xk − vi) (5)

where Mi is a positive definite matrix, its inverse defined as:

Mi
−1 =

[
1

ρidet(Pi)

] 1
n

Pi (6)

and Pi is the fuzzy covariance matrices defined as:

Pi =

∑N
k=1 u

2
ik(xk − vi)(xk − vi)

T∑N
k=1 u

2
ik

(7)

3.2 Euclidean

The Euclidean distance metric forms spherical clusters and does not reflect scale
differences among dimensions in high-dimensional datasets. It is computed as
follows:

d2E(i, k) = ||xk − vi||2

3.3 Kernel-Based

The kernel methods solve non-linear problems by mapping the input space into
higher dimensional space (the ‘kernel trick’ [9]), which is applied to distances
metrics in [10]. The idea here is to transform xk, a data point from a D-
dimensional input space to a higher F-dimensional space resulting in Φ(xk).
The kernel-based distance is defined as:

d2K(i, k) = ||Φ(xk)− Φ(vi)||2

= K(xi,xi)− 2K(xk,vi) +K(vi,vi)

We use Gaussian radial basis function as the kernel function in the form:

K(a, b) = e
−||a−b)||2

σ2

This yield a distance of the form

d2K(i, k) = 2(1−K(xk,vi))
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Table 1. Number of data patterns in each class and the number of not classified and
classified data patterns according to classification by Soria et al

class 1 class 2 class 3 class 4 class 5 class 6 not classified classified

202 153 80 82 69 77 413 663

4 Experiment

In this section, we describe the dataset and the steps taken to carry out our
investigation.

4.1 Dataset

The Nottingham Tenovus Breast Cancer dataset contains 25 immunohistochem-
ical features for 1076 patients. There are three main clinical groups, Luminal,
Basal and HER2 and six subgroups where class 1, 2 and 3 belongs to the Lumi-
nal group, class 4 and 5 to the Basal group and class 6 to HER2. Each class is
described by key features [1] as follows:

– class 1: ER+, PgR+, CK7/8+, CK18+, CK19+, HER3+, HER4+
– class 2: ER+, PgR+, CK7/8+, CK18+, CK19+, HER3-, HER4-
– class 3: ER+, PgR-, CK7/8+, CK18+, CK19+, HER3+, HER4+
– class 4: ER-, p53+, CK5/6+, CK14+
– class 5: ER-, p53-, CK5/6+, CK14+
– class 6: ER-, HER2+

ER and PgR are hormone receptors. CK7/8, CK18 and CK19 are luminal cytok-
eratins. CK5/6 and CK14 are basal cytokeratins. HER2, HER3 and HER4 are
EGFR family members. p53 is a tumour suppressor gene. The + or - at the end
of each feature indicates high or low levels respectively. The class distribution
and the number of classified and unclassified data patterns are found in Table 1.

4.2 Experimental Design and Set-Up

Figure 1 displays how the experiment is conducted to classify the Nottingham
Tenovus Breast Cancer (NTBC) dataset. Labels from classification by Soria et
al. are used to generate membership values which are then used to initialise the
supervision matrix F which contains membership values for labelled data. In-
stead of using random initialisation of membership values, we use the supervision
matrix F to initialise the membership matrix U0. In doing so, a better starting
point is given to the algorithm instead of a random starting point. We use only
data patterns which are classified by Soria et al. for investigation and the 413
data patterns which are not classified are disregarded.

We experimented with varying amounts of labelled data; 10%, 20%, 30%,
40%, 50% and 60% of the 663 classified data patterns. To select data patterns
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Fig. 1. Flowchart of the experiment to classify the Nottingham Tenovus Breast Cancer
dataset

to be labelled, an equal number of data patterns is randomly selected from each
class. This is to prevent data patterns from a particular class to be selected
more frequently than others. We experiment with each varying amount across
100 different sets of labelled data.

From the selected labelled data, we initialise the F matrix. To initialise mem-
bership values in F, the selected labelled data patterns belonging to their re-
spective classes will be given a membership of 0.9 and (1-0.9)/(6-1)=0.02 for
classes they do not belong to. The high 0.9 membership value is arbitrarily cho-
sen to indicate a data pattern’s high possibility of belonging to the class while
a 0.02 value indicates otherwise. Unlabelled data patterns have a membership
value of 1/c ≈ 0.1667 to indicate equal possibility of belonging to the classes.
In the original Pedrycz97, all data patterns are assigned memberships based on
their given labels and stored in F. They are then selected to be labelled and
unlabelled for the algorithm using the boolean vector in Equation (1), b. In our
case, we have selected the labelled data for the algorithm and generated their
memberships prior to running the algorithm. We set our F = U0, where they
contain memberships of both labelled and unlabelled data and bk is 1 for all k
(in Equation (3)). The α value is set to be N/M where M is the number of
labelled data.

To determine the class of a data pattern xk, we choose the class with the high-
est membership value. The classes assigned by ssFCM to the 663 data patterns
are then compared with classification by Soria et al. using various evaluation
techniques, which will be explained next.

4.3 Evaluation

Three different measures are used to evaluate the performance of the ssFCM
algorithm. They are classification rate, Normalised Mutual Information and Co-
hen’s Kappa Index. They are briefly explained as follows:

The Classification Rate (CR) simply calculates the number of matching clas-
sification over the total number of data patterns.

Normalised Mutual Information (NMI) [11] calculates the comparison of clus-
terings in terms of label matching and distribution and normalises this calcula-
tion. The NMI equation is as follows:
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NMI(X,Y ) =
I(X ;Y )√
H(X)H(Y )

(8)

I(X ;Y ) denotes Mutual Information between variables X and Y and H(X) and
H(Y ) denote the entropy of variablesX and Y respectively. I(X ;Y ) is computed
as follows:

I(X ;Y ) = H(X,Y )−H(X |Y )−H(Y |X) (9)

where H(X |Y ) and H(Y |X) are conditional entropies and H(X,Y) are joint
entropy. NMI values close to zero denotes poor classification while a near 1
value indicates otherwise.

The Cohen’s Kappa (κ) Index [12] is given by:

κ =
po − pe
1− pe

where po is the ratio of agreements between the two sources and pe is the ratio
of chances of agreement.

Classification rate tends to give a more optimistic view than Kappa Index and
NMI because it only takes into account of agreements and completely disregards
disagreements. Both Kappa Index and NMI take into account of agreements and
disagreements where there is some sort of penalty for disagreements. In NMI,
H(X |Y ) and H(Y |X) represent the disagreements. In Kappa, the disagreements
are taken into account in the form of a probability of random agreement, pe.

5 Results

Table 2 shows the classification rates, Kappa and NMI values respectively for
classifying NTBC data using the three distance metrics, Mahalanobis (M), Eu-
clidean (E) and kernel-based (K). The results are displayed in the form:

Table 2. Results from evaluation techniques (ET), classification rates (CR), Kappa
(κ) and Normalised Mutual Index (NMI) values for NTBC data using distance metrics
(DM), Mahalanobis (M), Euclidean (E) and Kernel-based (K) distances. The results
from the best performing distance metric is italicised.

DM ET 10% 20% 30% 40% 50% 60%

M
CR 0.500±0.060 0.587±0.054 0.664±0.044 0.713±0.046 0.757±0.051 0.792±0.055
κ 0.370±0.063 0.482±0.061 0.575±0.053 0.639±0.057 0.693±0.065 0.737±0.069

NMI 0.363±0.032 0.436±0.030 0.499±0.030 0.553±0.033 0.604±0.041 0.649±0.049

E
CR 0.819±0.028 0.896±0.025 0.941±0.015 0.970±0.007 0.983±0.005 0.991±0.003
κ 0.775±0.035 0.871±0.031 0.927±0.019 0.963±0.008 0.979±0.006 0.989±0.004

NMI 0.767±0.022 0.827±0.019 0.879±0.018 0.926±0.013 0.952±0.012 0.972±0.010

K
CR 0.250±0.088 0.305±0.062 0.357±0.040 0.437±0.033 0.520±0.022 0.613±0.016
κ 0.081±0.097 0.154±0.068 0.227±0.047 0.326±0.038 0.422±0.027 0.529±0.020

NMI 0.402±0.029 0.373±0.028 0.353±0.030 0.365±0.028 0.400±0.025 0.450±0.030
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Fig. 2. Classes of data patterns plotted on a graph using the first and second principal
components: (a) Classification from rules by Soria et al. and (b) Classification using
Euclidean distance in Pedrycz97 with 60% labelled data

mean±standard deviation. The mean and standard deviation take into account
the results obtained from classification with 100 different sets of labelled data.
The results show using Euclidean distance produced the best agreements. At
only 10% labelled data, a mean Kappa value of 0.775 can be achieved using Eu-
clidean distance, which is very a favourable result. At about 30% labelled data,
above 0.9 values can be achieved according to classification rate and Kappa In-
dex. At 60%, it could achieve values near one for all three evaluation measures.
The kernel-based distance gave the worst results because even with 60% labelled
data, the evaluation records lower values than Mahalanobis and Euclidean dis-
tance.

Figure 2 shows a graphical representation of classification by Soria et al. and
the best classification using Euclidean distance in Pedrycz97 with 60% labelled
data. The best classification in this case is the solution with the highest clas-
sification rate, Kappa and NMI values. Principal Component Analysis is used
on the dataset for the sole purpose of visualisation and no feature selection has
been carried out. The first two components are used to plot the location of the
data patterns. It can be observed that the location of the classes are similar in
the two classifications, showing that Pedrycz97 with Euclidean distance is able
to identify the six subgroups, as those from Soria et al.

Figure 3 show the statistical summary of each features for each of the six
classes in the NTBC dataset. Visual comparison of key features which describe
classes (found in Fig. 5 in [1]) between this figure and Fig. 4 in [1] reveals high
agreement between the two. For instance in class 1, there is agreement in the
interquartile range and averages for key features ER, PgR, CK7/8, CK18, CK19,
HER3 and HER4 between Fig. 3 and Fig. 4 in [1].
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(b) class 2
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(c) class 3
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(d) class 4
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(e) class 5
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(f) class 6

Fig. 3. Boxplot showing statistical summaries of all the features for the six classes
obtained from Euclidean distance Pedrycz97 with 60% labelled data
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6 Discussion

Euclideandistance inPedrycz97 successfully classify theNTBCdatasetwithKappa
values of 0.775±0.035 using 10% and almost complete agreement with a near one
Kappa value at 60% of labelled data. The three evaluations give an average of 0.787
at 10% and of 0.984 at 60%, which are very favourable results. Visual inspection of
the graphs in Fig. 2 and boxplots comparisons showed that the six classes identi-
fied using Pedrycz97 have high agreementwith those by Soria et al. Using some su-
pervision information from classification by Soria et al., Pedrycz97with Euclidean
distance is able to automatically produce classification almost identical to that by
Soria et al. This also further verify the breast cancer classification by Soria et al.

It is unexpected that the best classification results are produced using Eu-
clidean distance when Mahalanobis have been shown to produce better classifi-
cations [6,7]. In [7], Bouchachia and Pedrycz showed that Mahalanobis distance
produced the best classification in comparison with Euclidean on UCI datasets
Wine, Diabetes and Breast Cancer. Euclidean distance can only generate spher-
ical clusters while Mahalanobis distance can generate hyperellipsoidal clusters,
including elliptical and spherical clusters. We are unsure as to why Euclidean
distance has produced the most favourable result. Perhaps, the spherical clusters
generated by Euclidean distance ideally capture the structural characteristics of
the dataset and its subgroups because the features in NTBC are in scale with
one another. Perhaps, the non normally-distributed features in NTBC may have
been responsible for the unexpected experimental results. It could also perhaps
be due to Mahalanobis distance used in ssFCM where the covariance is weighted
by fuzzy memberships. The weighted covariance in the distance metric may not
necessarily produce a meaningful model. Further investigation is required to as-
certain whether the data distribution, the scales of the features or the weighted
version of Mahalanobis distance is the reason for the results obtained.

7 Conclusion

Mahalanobis, Euclidean and kernel-based distance metrics are experimented in
semi-supervised Fuzzy c-Means algorithm, Pedrycz97 on Nottingham Tenovus
Breast Cancer dataset across different sets of labelled data. Using Euclidean
distance, Pedrycz97 successfully and automatically classify the NTBC dataset
into the six subgroups by Soria et al., further affirming the findings by Soria et al.
It was able to achieve an almost complete agreement with classification by Soria
et al. This is unexpected as Mahalanobis distance metric has been established
to perform better classifications. There are several speculations which require
further investigation. Firstly, an investigation in other distance metrics within
the Pedrycz97 algorithm to achieve a better classification of the NTBC dataset
is to be carried out. Secondly, we wish to look into establishing a relationship
between the distance metrics in ssFCM and the nature of the dataset in terms
of distribution and scales. Also, further studies is required to find out if a fuzzy
weighted version of Mahalanobis distance metric is causing less meaningful model
to be produced for this dataset.
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Abstract. In this paper, we present two kinds of covariance to apply
principal component analysis (PCA) to high dimension low sample-size
(HDLSS) data. A typical example of this type of data is microarray data.
High dimension low sample-size data means data in which the number of
dimensions (variables) is much larger than the number of objects (sample
size). PCA is a well-known method to reduce the number of variables and
to obtain the latent structure of data as the similarity of objects in lower
dimensional space spanned by the obtained principal components. It is
well known that we cannot obtain correct solutions as the eigen-values of
the covariance matrix of variables when dealing with HDLSS data and
that the result of ordinary PCA is based on eigen-values of the covari-
ance matrix of variables, therefore if we apply ordinary PCA for HDLSS
data, we cannot obtain the correct result. In order to solve this prob-
lem, we propose two new types of covariance that exploit the results of
fuzzy clustering. First, covariance defines a degree of contribution of ob-
jects to clustering as the weights of the covariance by the use of the
result of fuzzy clustering. Second we use the correlation between classifi-
cation structures of two objects which are obtained as the fuzzy clustering
results.

Keywords: clustering, fuzzy logic, symbolic data, interval-valued data.

1 Introduction

High dimension low sample-size data is one major concern of today’s data anal-
ysis. The main reason for this problem is that this type of data has irrelevant
and redundant variables related with the curse of dimensionality, so clustering
techniques tend to obtain poor clustering results and PCA has a mathematical
problem. It is known that the covariance matrix of objects approximately be-
comes a scaled identity matrix as the number of variables increases with a fixed
number of objects, so, all the eigen-values of the covariance matrix of variables
are approximately the same in this case. In addition, it is known that the largest
eigen-value of sample covariance matrix of variables does not converge to the
population counterpart. [1], [2], [6], [8] This means that mathematically we can-
not obtain correct solutions as eigen-values of the covariance matrix of variables
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for HDLSS data. Therefore, if we apply ordinary PCA to HDLSS data in which
the number of variables is much larger than the number of objects, then we
cannot obtain any correct results. In order to overcome these problems, several
clustering methods which use the idea of subsets of variables and the weights
of variables for clusters have been proposed. [5], [7] However, in these methods,
statistical assumption is needed to define the weights and the calculation to ob-
tain the estimate of the results is complicated. In this paper, we propose simple
techniques to obtain the results exploiting the merit of fuzzy clustering in which
we can obtain a robust result as continuous values. In addition, we use interval-
valued representation which is a type of data representation in symbolic data
analysis. [3], [4] Numerical examples show better performance for our proposed
methods. In this paper, we present two kinds of principal component analyses
for HDLSS data based on two kinds of covariance of variables.

The rest of this paper is structured as follows. Section 2 describes a new co-
variance of variables including correlation of classification structures. We show
that this covariance can measure similarity between correlation of variables and
correlation of classification structures. In addition, this covariance can measure
the dissimilarity between variables included the dissimilarity between the classi-
fication structures for the fixed two variables. Section 3 presents the PCA based
on the covariance of variables with correlation of classification structures. Sec-
tion 4 describes the variable selection criterion using the fuzzy clustering result.
This criterion can show how the classification structure obtained by dissimilarity
of objects at each variable can match to the given classification as the external
information to the data. According to the value of this criterion for each vari-
able, we can select the significant variables. In addition, based on these selected
variables, we discuss how to obtain the data in which the number of objects is
larger than the number of variables which is an ordinary type of data. In order
to obtain this data, we exploit the representation of interval-valued data. Based
on a fuzzy clustering result from the data of the selected variables, Section 5 de-
scribes a transformation method from single-valued data to interval-valued data
in order to obtain ordinary form data which is the data in which the number
of objects is larger than the number of variables. Based on the ordinary form
interval-valued data, we show how to obtain a fuzzy clustering result. Section
6 mentions the PCA based on covariance with weights of the fuzzy clustering
result of the interval-valued data. Section 7 shows several numerical examples of
the two proposed PCA for a microarray data. Finally, section 8 is the conclusion.

2 Covariance of Variables with Correlation of
Classification Structures

Suppose we obtain a data as a high-dimension low-sample size data. That is,
in this data the number of attributes (dimensions) is very much larger than the
number of objects. We denote this situation as p >> n. The data matrix of
variables with respect to objects as follows:

X = (xai), a = 1, · · · , p, i = 1, · · · , n, p >> n. (1)
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Then we define a new covariance of variables as follows [15]:

cab ≡ s∗ab + ŝ∗ab, (2)

where s∗ab shows correlation of degree of belongingness of variables a and b over
the K clusters and ŝ∗ab shows correlation of variables a and b over n objects.
That is,

s∗ab ≡
1

K − 1

K∑
k=1

u∗
aku

∗
bk, ŝ∗ab ≡

1

n− 1

n∑
i=1

x∗
aix

∗
bi,

where

u∗
ak ≡

uak − 1
K

σ
(u)
a

, x∗
ai ≡

xai − x̄a

σ
(x)
a

, (3)

σ(u)
a =

√√√√√√
K∑

k=1

(uak −
1

K
)2

K − 1
, σ(x)

a =

√√√√√√
n∑

i=1

(xai − x̄a)
2

n− 1
, x̄a =

n∑
i=1

xai

n
.

In equation (3), uak is a fuzzy grade which represents the degree of belongingness

of a variable a to a cluster k, and satisfies the conditions, uak ≥ 0,
∑K

k=1 uak =
1. uak is obtained as a fuzzy clustering result. Now we define a dissimilarity d∗ab
is as follows [10]:

d∗ab =
1

K − 1

K∑
k=1

(u∗
ak − u∗

bk)
2 1

p− 1

n∑
i=1

(x∗
ai − x∗

bi)
2

= 4{1 + s∗abŝ
∗
ab − (s∗ab + ŝ∗ab)}.

(4)

That is, d∗ab shows dissimilarity between variables a and b and this dissimilar-
ity measures not only the dissimilarity between the data with respect to the
variables, but also the dissimilarity between two classification structures of vari-
ables a and b. This dissimilarity is based on fuzzy self-organized dissimilarity.
[10] Then, from equation (4), the correlation between variables a and b shown
in equation (2) can be rewritten as follows:

cab ≡ s∗ab + ŝ∗ab = s∗abŝ
∗
ab −

d∗ab
4

+ 1. (5)

From equations (4) and (5), we can see that this correlation can measure the
similarity between the correlation of data and the correlation of classification
structures for fixed variables a and b, and the dissimilarity between the variables
including dissimilarity between two classification structures for the variables a
and b.

Note that ordinarily PCA uses the correlation matrix with respect to variables
of data, Ŝ = (ŝ∗ab), to obtain the principal components. However, in the case of
the high-dimension low-sample size data, we cannot obtain any correct solution
by using only Ŝ. However, by adding the s∗ab which is the correlation of degree of
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belongingness of variables a and b over the K clusters to the ordinary correlation
ŝ∗ab, we can use the correlation with respect to variables and obtain the solution of
the PCA. This is the merit for using the proposed correlation shown in equation
(2) instead of the ordinary correlation ŝ∗ab.

3 PCA Based on Covariance of Variables with
Correlation of Classification Structures

The α-th principal component zα of X (p >> n) is defined as follows:

zα = Xtlα, (6)

where ltα = (lα1, lα2, · · · , lαp), and lα satisfies the condition, ltαlα = 1. lα is
obtained as the corresponding eigen-vector for the α-th largest eigen-value of
C = (cab) shown in equation (2). The following is the algorithm of this PCA.

[Step 1] Set the obtained data shown in equation (1).

[Step 2] Set the number of clusters K. Apply the data shown in equation (1) to
a fuzzy clustering method and obtain the fuzzy clustering result.

[Step 3] Using the obtained fuzzy clustering result in step 2 and the data shown
in equation (1), calculate the normalized values shown in equation (3).

[Step 4] Using the obtained normalized values in step 3 and equation (4), calcu-
late covariance shown in equation (5). Apply the obtained covariance
matrix to ordinary principal component analysis and obtain the result.

4 Variable Selection Based Fuzzy Clustering

Suppose the observed data X = (xai) shown in equation (1) has external infor-
mation for classification as data is labeled into K̂ classes. The labeled data are
shown as follows:

Xk̂ = (xaik̂
), ik̂ = 1, · · · , nk̂, a = 1, · · · , p, k̂ = 1, · · · , K̂, (7)

where
∑K̂

k̂=1 nk̂ = n. Objects in X is ordered according to the label’s order. We
propose a variable selection criterion to reduce the number of variables based on
the external information of the classification as follows:

C(a) =
1

n

⎛
⎝ n1∑

i1=1

ui11a + · · ·+
nK̂∑

iK̂=1

uiK̂K̂a

⎞
⎠ , a = 1, · · · , p, (8)

where uik̂k̂a
shows degree of belongingness of an object ik̂ to a class k̂ with

respect to a variable a. The object ik̂ corresponds to an object labeled to a
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class k̂ which is represented as xik̂
= (x1ik̂

, · · · , xpik̂
)t in equation (7). uik̂k̂a

is

assumed to satisfy the following conditions:

uik̂k̂a
∈ [0, 1], ∀ik̂, k̂, a,

K̂∑
k̂=1

uik̂k̂a
= 1, ∀ik̂, a. (9)

From equation (9), the criterion shown in equation (8) can show how the obtained
classification structure at each variable adjusts to the given external classifica-
tion structure and 0 ≤ C(a) ≤ 1. The larger value of C(a) shows the greater
explanatory power for the external classification information. Therefore, using
a threshold for C(a), we can select variables capable of explaining the external
classification information of data. In order to obtain the clustering results uik̂k̂a

,

we use a fuzzy clustering. We use the uika as a general notation. Suppose dija is
(i, j)-th element of a distance matrixDa and shows dissimilarity between objects
i and j with respect to a variable a. This is defined as follows:

Da = (dija), dija =
√
(xai − xaj)2, i, j = 1, · · · , n, a = 1, · · · , p. (10)

For the fuzzy clustering method in which the target data dij is dissimilarity data,
the fanny method [9] is used. The objective function of this method is defined
as follows:

J(Ũ) =

K∑
k=1

⎛
⎝ n∑

i=1

n∑
j=1

(ũik)
m(ũjk)

mdij/2

n∑
s=1

(ũsk)
m

⎞
⎠ . (11)

Where, ũik shows degree of belongingness of an object i to a cluster k and
satisfies the conditions, ũik ∈ [0, 1], ∀i, k,

∑K
k=1 ũik = 1, ∀i. m, (1 < m < ∞)

shows a control parameter which can control fuzziness of the belongingness. dij
shows dissimilarity between objects i and j. The purpose of this method is to
estimate Ũ = (ũik) which minimize equation (11). In equation (11), the objective
function with respect to a variable a is redefined by using (10) as follows [11]:

J(Ua) =

K∑
k=1

⎛
⎝ n∑

i=1

n∑
j=1

(uika)
m(ujka)

mdija/2

n∑
s=1

(uska)
m

⎞
⎠ , a = 1, · · · , p. (12)

Where Ua, (a = 1, · · · , p) is a matrix for a-th variable whose element uika shows
degree of belongingness of an object i to a cluster k with respect to a variable
a. uika can be estimated by minimizing equation (12) under the conditions,

uika ∈ [0, 1], ∀i, k, a,
∑K

k=1 uika = 1, ∀i, a.

5 Transformation to Interval-Valued Data

If the number of variables p is extremely large when compared with the number of
objects n (p >> n), then the variable selection has a problem; when the threshold
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value for C(a) is large, loss of the data information will be large, consequently
the selected variables are not sufficient to explain the data structure. Likewise,
when the threshold value for C(a) is small, then still we have the problem of
p > n. In order to solve this problem, we propose a method to summarize the
selected variables and transform the remained data after the variable selection
to form data as p < n. Suppose the remained data after the variable selection
shown in the previous section is as follows:

X̃ = (x̃ãi), i = 1, · · · , n, ã = 1, · · · , p̃, (13)

where p̃ < p, however it is still p̃ > n. First, we transform the data to include
the external classification information of objects. We use interval to represent
each class with respect to each variable as follows:

Y = (yãk̂) = ([y
ãk̂
, yãk̂]), ã = 1, · · · , p̃, k̂ = 1, · · · , K̂, (14)

where yãk̂ = [y
ãk̂
, yãk̂] shows the interval-valued data of the ã-th variable with

respect to a class k̂ which has the minimum value y
ãk̂

and the maximum value
yãk̂. From equations (7) and (13), y

ãk̂
and yãk̂ are obtained as follows:

y
ãk̂

= min
ik̂

x̃ãik̂
, yãk̂ = max

ik̂
x̃ãik̂

, ã = 1, · · · , p̃. (15)

Equation (15) means that K̂ classes over the objects which is given as exter-
nal classification information are expressed by K̂ intervals. Since the purpose of
this study is identifying a subspace spanned by variables so that the subspace
has strong discriminative power adjusted for the externally given classification
structure of data, we assume that the given classification structure has a well
separated structure. That is, we do not consider the outliers of data for classes.
Although the interval representation of data is sometimes sensitive for the out-
liers of data, this is the reason why we can use the interval representation to
the classes based on the given classification structure. In order to obtain the
similarity structure of variables over the K̂ classified objects, we classify the
data shown in equation (14). The dissimilarity between yã = (yã1, · · · , yãK̂) and
yb̃ = (yb̃1, · · · , yb̃K̂) [4] is defined as

dãb̃ =

K̂∑
k̂=1

sup{d(x, yb̃k̂)|x ∈ yãk̂}, d(x, yb̃k̂) = inf{d(x, y)|y ∈ yb̃k̂} (16)

and

db̃ã =

K̂∑
k̂=1

sup{d(yãk̂, y)|y ∈ yb̃k̂}, d(yãk̂, y) = inf{d(x, y)|x ∈ yãk̂}. (17)

Where, d(x, y) shows distance between x and y, ∀x ∈ yãk̂, ∀y ∈ yb̃k̂. There-

fore, dãb̃ �= db̃ã, (ã �= b̃). We use the symmetric part of the dissimilarity as
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d̃ãb̃ = (dãb̃ + db̃ã)/2. Applying this dissimilarity d̃ãb̃ to the fanny method shown
in equation (11), we obtain a fuzzy clustering result

Ũ = (ũãk̃), ã = 1, · · · , p̃, k̃ = 1, · · · , K̃, (18)

under the conditions ũãk̃ ∈ [0, 1], ∀ã, k̃,
∑K̃

k̃=1 ũãk̃ = 1, ∀ã, where K̃ is a number

of categories satisfied K̃ < n. Based on the result shown in equation (18), the
data shown in equation (13) is categorized into K̃ categories as follows:

X̃k̃ = {x̃ã | pãk̃ = 1}, x̃ã = (x̃ã1, . . . , x̃ãn), k̃ = 1, · · · K̃, (19)

where pãk̃ satisfy

ũãk̃ = max
1≤k̃≤K̃

ũãk̃ → pãk̃ = 1, ã = 1, . . . , p̃,

under the condition of
∑K̃

k̃=1 pãk̃ = 1. In the case that max1≤k̃≤K̃ ũãk̃ is not
unique, we select the first category which appears to have the maximum degree
of belongingness over the categories. We rewrite the data sets X̃k̃ shown in
equation (19) as follows:

X̃k̃ = (x̃ãk̃i
), i = 1, · · · , n, ãk̃ = 1, · · · , p̃k̃, k̃ = 1, · · · , K̃, (20)

where
∑K̃

k̃=1 p̃k̃ = p̃.

In order to create the K̃ < n type data, variables included to the same
category are summarized for a fixed object by using an interval as follows:

Ỹ = (ỹik̃) = ([ỹ
ik̃
, ỹik̃]), i = 1, · · · , n, k̃ = 1, · · · , K̃, (21)

where ỹik̃ = [ỹ
ik̃
, ỹik̃] shows the interval-valued data of the i-th object with

respect to a category k̃ which has the minimum value ỹ
ik̃

and the maximum

value ỹik̃. From equation (20), ỹ
ik̃

and ỹik̃ are obtained as follows:

ỹ
ik̃

= min
ãk̃

x̃ãk̃i
, ỹik̃ = max

ãk̃

x̃ãk̃i
, i = 1, · · · , n. (22)

Equation (22) shows that uncertainty of variables for a category with respect
to a fixed object that is represented by an interval. Since K̃ < n in equation
(21), we can apply this data to a clustering method shown in equation (11) in
order to classify the objects. First, we calculate the dissimilarity between objects
ỹi = (ỹi1, · · · , ỹiK̃) and ỹj = (ỹj1, · · · , ỹjK̃) [4] as follows:

dij =

K̃∑
k̃=1

sup{d(x, ỹjk̃)|x ∈ ỹik̃}, d(x, ỹjk̃) = inf{d(x, y)|y ∈ ỹjk̃}, (23)

dji =

K̃∑
k̃=1

sup{d(ỹik̃, y)|y ∈ ỹjk̃}, d(ỹik̃, y) = inf{d(x, y)|x ∈ ỹik̃}. (24)
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Where, d(x, y) shows distance between x and y, ∀x ∈ ỹik̃, ∀y ∈ ỹjk̃. From
equations (23) and (24), dij �= dji, (i �= j). We use the symmetric part of the

dissimilarity as follows: ˜̃dij = (dij +dji)/2. Applying this dissimilarity ˜̃dij to the
fanny method shown in equation (11), we obtain a fuzzy clustering result

˜̃U = (˜̃uik), i = 1, · · · , n, k = 1, · · · ,K, (25)

under the conditions,

˜̃uik ∈ [0, 1], ∀i, k,
K∑

k=1

˜̃uik = 1, ∀i, (26)

where K is a number of clusters satisfying K < n.

6 PCA Based on Covariance with Weights of Fuzzy
Clustering Result

First, we discuss single-valued PCA which is interpreted geometrically as finding
a projected space spanned by vectors that show direction of the principal com-
ponents. Let L be a nonempty subset of the inner product space X . Then we
define a mapping PL from X into the subsets of L called the metric projection
onto L. Then PL(o1) is defined as follows:

PL(o1) = {o2 ∈ L| ‖ o1 − o2 ‖= d(o1, L)},

where o1 ∈ X and d(o1, L) = info2∈L ‖ o1−o2 ‖ . Let L be a convex Chebyshev
set in which for each o1 ∈ X , there exists at least one nearest point in L. Then
PL is nonexpansive, that is,

‖ PL(o1)− PL(o2) ‖≤‖ o1 − o2 ‖, ∀o1,o2 ∈ X. (27)

The problem of the PCA is that the metric projection only satisfies equation
(27) and PCA does not consider the size of values shown as follows [12], [14]:

C(o1,o2) =‖ o1 − o2 ‖ − ‖ PL(o1)− PL(o2) ‖ .

Our obtained data is interval-valued data. The empirical joint density function
for bivariate a and b for interval-valued data has been defined [3], [4] as follows:

f(ỹk, ỹl) =
1

n

n∑
i=1

Ii(ỹk, ỹl)/||Z(i)||, (28)

where Ii(ỹk, ỹl) is the indicator function where each element of (ỹk, ỹl) is or is
not in the rectangle Z(i) = ỹik × ỹil consisted of two sides which are intervals
[ỹ

ik
, ỹik] and [ỹ

il
, ỹil]. ỹk and ỹl are random variables. ||Z(i)|| is the area of this

rectangle. ỹk is k-th column vector of Ỹ in equation (21) and is shown as follows:
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ỹk = (ỹ1k, · · · , ỹnk)t = ([ỹ
1k
, ỹ1k], · · · , [ỹnk, ỹnk])

t. We extend the empirical joint
density function shown in equation (28) as follows [12], [14]:

f̃(ỹk, ỹl) =
1

n

n∑
i=1

(wiIi(ỹk, ỹl)/||Z(i)||,

wi =
K∑

k=1

um
ik/

n∑
i=1

K∑
k=1

um
ik, i = 1, · · · , n, m ∈ (1,∞), (29)

where uik, i = 1, · · · , n, k = 1, · · · ,K show the obtained degree of belongingness
of the objects to the clusters when K is the selected appropriate number of
clusters. Then fuzzy covariance for interval-valued data between variables k and
l is derived as follows:

ĉkl =

∫ ∞

−∞

∫ ∞

−∞
(ỹk − ¯̃yk)(ỹl − ¯̃yl)f̃(ỹk, ỹl)dỹkdỹl, ¯̃yk =

1

2n

n∑
i=1

(ỹ
ik
+ ỹik). (30)

Substituting equation (29) into equation (30), and from equation (26), we have
obtained the following [12], [14]:

ĉkl = (1/(4n))

n∑
i=1

wi(ỹik + ỹ
ik
)(ỹil + ỹ

il
)− (1/n)¯̃yl

n∑
i=1

(wi(ỹik + ỹ
ik
))/2

−(1/n)¯̃yk

n∑
i=1

(wi(ỹil + ỹ
il
))/2 + (1/n)¯̃yk ¯̃yl.

(31)

From equations (26) and (29), wi satisfy the following condition:

wi > 0,

n∑
i=1

wi = 1. (32)

In a hard clustering when uik ∈ {0, 1},
∑K

k=1 uik = 1 is satisfied, the weights wi

in equation (29) is
wi = 1/n, ∀i. (33)

Since uik satisfies the conditions shown in equation (26), the weight wi in equa-
tion (29) shows how an object is clearly classified for the obtained classification
structure. If an object i is clearly classified to a cluster, then the weight wi be-
comes larger, and if the classification situation with respect to an object i is an
uncertainty situation, then the value of wi becomes smaller. Therefore, it can be
seen that the weights shown in equation (29) show a degree of fuzziness of the
clustering with respect to each object and the proposed fuzzy covariance ma-
trix for interval-valued data, Ĉ = (ĉkl), k, l = 1, · · · , K̃ shown in equation (31)
involve a classification structure over the variables which is obtained by reflect-
ing the dissimilarity structure of objects in a higher dimensional space shown
as ‖ o1 − o2 ‖ in equation (27). Therefore, based on the covariance matrix, we
obtain principal components as the solution in which we can solve the problem
of the ordinary PCA. The following is the algorithm for this PCA.
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[Step 1] Set the obtained data shown in equation (1) to the form of data shown
in equation (7).

[Step 2] Set the number of clusters K and determine the value of the control
parameter m. Apply the data shown in equation (7) to a fuzzy clus-
tering method shown in equation (12) and obtain the fuzzy clustering
result Ua, a = 1, · · · , p.

[Step 3] Using the obtained Ua, a = 1, · · · , p in step 2, calculate the criterion
of variable selection shown in equation (8). Using the obtained values
of U(a), select variables which satisfy U(a) > ε, where ε is given.

[Step 4] Using the selected variables in step 3, formulate the data shown in
equation (13). Create the interval-valued data shown in equation (14)
by using the data shown in equation (13) and values shown in equation
(15).

[Step 5] Calculate distance between variables shown in equations (16), (17) and
obtain the symmetric part of this distance.

[Step 6] Set the number of categories K̃ and determine the value of the control
parameter m. Apply the obtained distance in step 5 to the fuzzy clus-
tering shown in equation (11) and obtain the fuzzy clustering result
shown in equation (18).

[Step 7] Using the obtained result in step 6, formulate the data shown in equa-
tions (19) and (20). Create the interval-valued data shown in equation
(21) by using the data shown in equation (20) and values shown in
equation (22).

[Step 8] Calculate distance between objects shown in equations (23), (24) and
obtain the symmetric part of this distance.

[Step 9] Set the number of clusters K and determine the value of the control
parameter m. Apply the obtained distance in step 8 to the fuzzy clus-
tering shown in equation (11) and obtain the fuzzy clustering result
shown in equation (25).

[Step 10] Using the fuzzy clustering result in step 9, calculate the weights wi

shown in equation (29). Using the calculated weights and the data
shown in equation (21), calculate the covariance shown in equation
(31). Apply the obtained covariance matrix to ordinary principal com-
ponent analysis and obtain the result.

7 Numerical Example

We use gene expression data for prostate cancer. [16] The data consists of 32
objects (subjects) with respect to 12626 variables (genes) shown in equation (1).
As external classification information, 32 objects are labeled into two clusters of
which 23 objects (microarrays) are based on mRNA extracted from microdissec-
tion of tumor tissue and 9 objects (microarrays) from normal tissue mRNA. The
purpose is to identify variables (genes) and obtain the categories of variables
(genes) which explain the classification structure of the two classes (a class of 23
objects with cancer and a class of 9 objects without cancer).
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Using the variable selection criterion shown in equation (8), we obtained values
of the criterion for each variable (gene). Figure 1 shows frequency distribution
of the criterion values. Figure 2 shows variance of values of the criterion for each
range. From figures 1 and 2, we can see that variance of the values which are
larger than 0.8 is significantly smaller when compared with other ranges. This
means that robustness for the selection of the threshold value is strong when we
select the values which are larger than 0.8. Therefore, we selected variables which
have more than 0.8 for the criterion. 90 variables (genes) are selected. Based on
the classification of variables described in section 3, we obtained 6 categories
from 90 variables. The number of categories is determined based on clarity of
the clustering results.

Using the transformed 32× 6 interval-valued data shown in equation (21), in
order to check the classification ability, figure 3 shows the result of the proposed
clustering method shown in equation (25) when m = 2 in equation (11). The
number of clusters is determined as 2 based on a criterion shown in [12], [13].
In this figure, objects 1-23 show 23 objects (microarrays) are based on mRNA
extracted from microdissection of tumor tissue and objects 24-32 show 9 objects
(microarrays) from normal tissue mRNA. The value of the ordinate shows the
degree of belongingness of objects to each cluster. From this figure, it can be
seen that the proposed clustering method successfully classified the two classes.
This result shown in figure 3 can be used for the prediction of a new object. That
is, since we know the selected 90 variables are effective for the discrimination
of two classes, we just need to observe the values of the 90 variables (genes).
According to the obtained 6 categories of the 90 variables, we create the interval-
valued data for the new object using equation (13). Adding the newly obtained
interval-valued data to the original data set and applying it to the clustering
method shown in section 3, we can obtain the result of fuzzy clustering shown in
equation (25) for the new object. From this result, we can discriminate to which
classes this object belongs. That is, we can identify the classifier as the result of
fuzzy clustering shown in figure 3.
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From the obtained data shown in equation (1) and obtained weights from the
result of fuzzy clustering shown in equation (29), we obtained the covariance
shown in equation (31). Using this covariance, we obtain the principal compo-
nents shown in figure 4. From this figure, we can see the objects classified into
two clusters; 1-23 are from shavings of prostate tissue with cancer and 24-32 are
from shavings of prostate tissue without cancer.
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Table 1. Comparison of Cumulative Proportion
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Fig. 5. Result of Proposed PCA shown in Section 3

Table 1 shows a comparison of values of cumulative proportion which is the
sum of the first and the second proportions corresponding to the first and the
second principal components shown in the result of figure 4 and the result of
the centers method. [3], [4] This is a method of applying the data consisting
of centers of intervals to the conventional PCA. This method is also identical
with a method in which we use the conventional empirical joint density function
shown in equation (28) and derive the covariance and then apply the obtained
covariance into the conventional PCA. From equation (33), this method is the
same as a case in which we use a hard clustering in a high dimensional space
in our proposed PCA. From equations (32) and (33), for the fair comparison
of fuzzy and hard clustering, we multiplied n to equation (31). From the result
shown in table 1, we can see that the proposed PCA could obtain a better result.

Figure 5 shows the result of PCA shown in equation (6). From the result
shown in figure 5, we can see that the objects are successfully classified into the
two given groups. That is, in this figure, 24 - 32 show objects without cancer and
the other numbers show objects with cancer. Note that in this case, we do not
use any external information of the classes in the data, however, we can obtain
the adaptable clustering result by using the proposed method shown in section



Two Covariances Harnessing Fuzzy Clustering 171

−40000−30000−20000−10000      0  10000

   
 0

 5
00

0
10

00
0

15
00

0
20

00
0

−20000

−15000

−10000

 −5000

     0

  5000

 10000

Comp 1

C
om

p 
2

C
om

p 
3

12

3

4
5

6

7

8

9
10

11

12

13

14
15

16

17

18

19

20

21

2223

24
25

26

27

28

29

30

31

32

Fig. 6. Result of Ordinary PCA

3. Figure 6 shows a result of ordinary PCA. From this figure, we cannot see any
clear classification of the two given groups.

8 Conclusions

This paper presents principal component analyses based on covariances harness-
ing fuzzy clustering for high dimension low sample-size data. Numerical examples
show a better performance by applying microarray data which is a typical high
dimension low sample-size data to the proposed methods.
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Abstract. We investigated random matrix theory (RMT) and covari-
ance matrix filtering with shrinkage techniques to characterize eigende-
composition of a 190 × 190 covariance matrix based on 750 genes and
18 tumor classes. Principal component subtraction using the first PC
resulted in the most favorable outcome concerning eigenvector partici-
pation ratios, class-specific influence scores, and unsupervised clustering
of arrays. By fitting the Marčenko-Pastur density function, we deter-
mined that 86.8% of the covariance matrix eigenvalues were below the
threshold value of λ+ = 0.5025, suggesting that they reside in the noise
region. Removal of noise eigenvector effects in the data were not as in-
formative as removal of only the first eigenvector, however, there were
interesting properties observed among the 25 non-zero eigenvalues after
noise removal – mostly that they were lower than the first 25 eigenvalues
of the remaining types of covariance matrices.

1 Introduction

Random matrix theory (RMT) initially became popular in nuclear physics for
describing resonance fluctuations of compound nuclei [1]. At present, random
matrices are employed in many fields ranging from probability theory to com-
plexity theory [2–5]. In the field of statistics, a commonly used random matrix is
the white Wishart matrix, Wp(n,Σ) = XXT , which is a square symmetric p×p
matrix, and has n degrees of freedom based on the number of rows of X whose
columns are constructed from uncorrelated and i.i.d. random variates. Examples
of white Wishart matrices are the sample covariance matrix C or correlation
matrix R for any n× p random data matrix X. By definition, it is known that
under zero correlation, C = R = I, the determinant and eigenvalues of I are
known to be unity. However, when the columns of X are random and assumed
to be uncorrelated, both C and R only approach I as n → ∞, due to the ob-
served spread in the empirical eigenvalue distribution. For any given dataset,
it is assumed that the sample covariance matrix C accurately represents the
population covariance matrix Σ, however, as p → n or if p > n, the eigenval-
ues become unreliable and can also take on a value of zero, resulting in lack of
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positive definiteness. With high-dimensional datasets becoming more popular in
genomic sciences and exploratory data mining, there is greater potential for the
number of dimensions to approach the sample size (p → n), leading to biased
eigenvalues of C and R. Certainly, there will be p−n zero eigenvalues whenever
p > n and one zero eigenvalue whenever p = n.

This investigation explores RMT techniques to attempt to correct for eigen-
value problems associated with a large gene expression dataset for 18 types of
tumors with 190 arrays and 750 genes (mRNAs). Firstly, we address the removal
of the first principal component (PC) of C from X and then redetermination
of C in an attempt to remove widespread correlation observed in X, which
causes the greatest eigenvalue to be biased toward exceedingly high values. We
then apply the Marčenko-Pastur law to identify the noise region of the empir-
ical eigenvalue distribution, and then remove the effects of noise eigenvectors
from X, followed by redetermination of C. This is followed by joint removal of
both the first PC and noise eigenvectors from X and redetermination of C. The
last approach involves covariance matrix filtering via shrinkage, in which we ap-
ply several shrinkage techniques to C in order to directly estimate lesser-biased
shrunken variants of C.

2 Methods

2.1 Dataset

We applied RMT to a 190×190 (array-by-array) covariance matrix for 190 DNA
microarrays and 750 genes identified using F-tests in the GCM expression data
set for 18 classes of tumors [6]. The 18 tumor classes are BR-breast, PR-prostate,
LC-lung cancer, CO-colorectal, LYF-folicular lymphoma, LYLB-large B-cell lym-
phoma, ME-melanoma, BL-bladder, UT-uterine, ALLB-leukemia, ALLT-
leukemia, AML-acute myelocytic leukemia, RE-renal, PAN-pancreatic,
OV-ovarian, MES-mesothelioma, GLI-CNS-glioblastoma, MED-CNS-
medulloblastoma. The 750 genes were selected from 16,064 informative genes
of the Affymetrix Hu6800 and Hu35KsubA chips identified using multiclass F-
tests. Altogether, the final gene expression dataset resulted in a 750 × 190 X
matrix for which n = 750 and p = 190; thus, we set up the 190 arrays as columns
ofX for covariance and correlation. Additionally, because this paper focused only
on covariance analyses and not supervised classification, we did not perform fur-
ther filtering to identify genes that were the best class predictors. Rather, the
covariance analyses performed always included the full dataset consisting of 750
genes and 190 arrays.

Techniques used in this investigation for determining the empirical eigenvalue
distribution (e.e.d.) of C are described in detail in [7], so only brief summaries
are provided in the following paragraphs. The first type of covariance matrix
we estimated was based on permuting columns of X to yield the the covariance
matrixCPERM . When columns ofX are permuted, their variances remain intact;
however, the off-diagonals representing covariance in C tends to zero. When no
corrections were made to covariance, we called the result CRAW . For component
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subtraction, gene expression xj for the jth array was regressed on scores for
the first principal component f1, where each fi1 =

∑
k ek1xik and the data

vector xj was replaced with the regression residuals to generate the fully replaced
data matrix called XRES, which resulted in the covariance matrix CRES . The
Marčenko-Pastur (MP) law [8] states that for i.i.d. columns in X and (n, p →
∞, γ = p/n), the minimum and maximum eigenvalues ofWp(n,Σ) almost surely
converge to λ− = σ2(1 − √

γ)2 and λ+ = σ2(1 +
√
γ)2, respectively. The e.e.d.

for Wp(n,Σ) based on X with i.i.d. elements is given by

f(λ) = max

(
0, 1− 1

γ

)
δ(λ) +

√
(λ+ − λ)(λ − λ−)

2πγλσ2
I(λ− ≤ λ ≤ λ+), (1)

where the max()δ(λ) term represents the density at λ = 0 for the p − n =
p(1 − 1/γ) zero eigenvalues when p > n, i.e., γ > 1, and the I() represents the
density when λ is between λ− and λ+. Particle swarm optimization was used to
obtain the best fit of f(λ) to the observed values of λ, with fitted results being
estimates of γ, σ, λ−, and λ+. Multivariate regression was used to perform the
regression analysis X = Fβ, where F is the matrix of PC scores for the noise
eigenvectors whose eigenvalues were less than λ+. The regression residuals were
used to replace the original gene expression values in X. Using the new X matrix
with noise removed, we calculated a new covariance matrix calledCMP . The joint
correction for widespread correlation and noise was accomplished by augmenting
F with f1 and regressingX on the augmented matrix to yield residuals that were
used to replaced the data in X. Covariance determination of the newly defined
X matrix resulted in the covariance matrix CRESMP .

We employed three shrinkage methods to C that were introduced by Daniels-
Kass (DK) [9], Ledoit-Wolf (LW) [10], and Schäfer-Strimmer (SS) [11]. The DK
shrinkage method shrinks eigenvalues of C that are assumed to be log-normally
distributed and forms a maximum likelihood estimator based on the log-normal
priors, where log(λj) ∼ N (log(λ), τ2) and τ2 =

∑
j(log(λj)−〈log(λ)〉)2/(p+4)−

2/n. New eigenvalues are determined as λj = exp{(2/n)/(2/n+ τ2)〈log(λ)〉 +
τ2/(2/n+ τ2)λj}. Any zero eigenvalues of C were replaced with the mean value
of λj based on the number of zero eigenvalues in the original C matrix. DK
shrinkage resulted in the covariance matrix CDK . LW shrinkage is based on
CLW = δC∗ + (1 − δ)C, where C∗ is a highly structured estimator of C, and
δ is the shrinkage intensity in the range [0,1] which is the weight applied to
the structured estimator. LW shrinkage resulted in the covariance matrix CLW .
The SS shrinkage technique to obtain CSS replaces diagonal elements of R with
ones, and off-diagonals rjk with rjk min(1,max(0, 1− λ∗)), where the shrinkage
intensity is λ∗ =

∑
j �=k var(rjk)/

∑
j �=k r

2
jk. Anytime covariance was needed from

correlation, we used the relationship cjk = rjkσjσk, whereas correlation was
obtained from covariance in the form rjk = cjk/

√
cjjckk. For each covariance

matrix described above, we calculated the inverse participation ratio [12] in the
form

IPRj =
∑
k=1

|ejk|4, (2)
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where ejk is the eigenvector element of the jth eigenvector. Large values of IPR
suggest that only several microarrays contribute to the eigenvector, whereas
small values indicate that the microarrays contribute equally. A single XY scat-
ter plot was constructed with IPRj on the y-axis and all eigenvalues of C on the
x-axis. We also determined the average class-specific influence on the eigenvector
e1 associated with λ1 by initially setting an indicator to denote the class ω of
each array using

Δlω =

{
1, if xl ∈ ω

0, otherwise
(3)

and looped over all arrays to derive the influence on e1,

IPRiω =
1

nω

n∑
l=1

Δlω |eil|2. (4)

Plots of IPRiω were constructed for all classes of arrays and e1 for each of the
covariance matrices described above.

3 Results

Figure 1 shows the empirical distribution of covarianceC (top) and correlationR
(bottom) matrix elements based on random permutation (PERM) data matrix,
no correction (RAW), data residuals after regression on first PC (RES), data
residuals after regression on noise PCs (MP), data residuals for both the first
PC and noise PCs (RESMP), Daniels-Kass (DK) shrinkage (DK), Ledoit-Wolf
(LW) shrinkage, and Schäfer-Strimmer (SS) shrinkage. For CRAW , all of the
covariance values were positive, suggesting that there exists a Perron-Frobenius
eigenvalue λ1 which is strictly larger than the other eigenvalues, as well as the
existence of an eigenvector whose elements are all positive. In fact, the values of
λ1, λ2, and λ3 with variance explained for CRAW were 121.2(0.64), 14.3(0.08),
and 6.5 (0.03) – revealing a strictly larger eigenvalue. In addition, a check of the
eigenvector e1 for λ1 indicated all elements had the same sign. It is apparent that
correlation values have a wider range than covariance, and there is more overlap
among the correlation values, especially between the component subtraction and
shrinkage results. The first and foremost observation is that removal of the effect
of the first PC from the data results in covariance values (RES) that take on
positive and negative values. The MP-based correction caused the distribution
to shift slightly rightward into positive territory. Overall, for covariance, there
was much less overlap between results of the component subtraction methods vs.
shrinkage results. The shrinkage methods did not seem to have a strong effect
on eigenvalues for C or R.

Figure 2 shows the eigenvalues of the covariance C (top) and correlation R
(bottom) matrices based on random permutation (PERM) data matrix, no cor-
rection (RAW), data residuals after regression on first PC (RES), data residuals
after regression on noise PCs (MP), data residuals for both the first PC and noise
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Fig. 1. Empirical distribution of elements of 190×190 covariance matrices C (top) and
correlation matrices R (bottom) based on random permutation (PERM) data matrix,
no correction (RAW), data residuals after regression on first PC (RES), data residuals
after regression on noise PCs (MP), data residuals for both the first PC and noise
PCs (RESMP), Daniels-Kass (DK) shrinkage (DK), Ledoit-Wolf (LW) shrinkage, and
Schäfer-Strimmer (SS) shrinkage.

PCs (RESMP), Daniels-Kass (DK) shrinkage (DK), Ledoit-Wolf (LW) shrink-
age, and Schäfer-Strimmer (SS) shrinkage. The dynamic range and overlap of
covariance-based eigenvalues is much lower than that for the correlation-based
eigenvalues. There were 165 eigenvalues (86.8%=165/190) below the maximum
noise threshold of λ+ = 0.5025, which was determined by fitting the MP law to
the eigenvalues of R. A reference line for λ+ = 0.5025 can be seen in the bot-
tom panel of Figure 2. After MP-based noise removal in X using PC scores for
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the 165 noise eigenvectors, there was by definition only 25 non-zero eigenvalues
extracted from the newly generated C matrix based on the denoised X.

For covariance, the MP-based and RESMP-based eigenvalues are distinctly
different from the bulk of eigenvalues. A major issue with eigenvalues based
on correlation is that the eigenvalues for correlation of the permutation matrix
(PERM) are not far-removed and cut through the remaining eigenvalues for
various component subtraction and shrinkage. For covariance-based eigenval-
ues, however, eigenvalues for the random permutation matrix are mostly always
unique and far-removed with little overlap with eigenvalues for the component
subtraction and shrinkage techniques. Interestingly, the MP-based noise reduc-
tion in X followed by generation of a new C matrix resulted in eigenvalues that
were more straight on a scree plot. One advantage for using C when compared
with R is that the 25 non-zero eigenvalues of CMP were mostly lower than the
first 25 eigenvalues of the other C matrices.

Figure 3 reflects the empirical eigenvalue distribution of R and the fitted re-
sults based on the MP distribution. The upper limit of noise for eigenvalues
was λ+ = 0.5025, and therefore, all eigenvalues below 0.5 were assumed to be
noise when performing the multivariate regression to generate residuals and then
CRES . Figure 4 shows results for IPRj for eigenvectors as a function of eigen-
vector of the covariance matrix C based on random permutation (PERM) data
matrix, no correction (RAW), data residuals after regression on first PC (RES),
data residuals after regression on noise PCs (MP), data residuals for both the
first PC and noise PCs (RESMP), Daniels-Kass (DK) shrinkage (DK), Ledoit-
Wolf (LW) shrinkage, and Schäfer-Strimmer (SS) shrinkage. Larger values of
IPR denote that a few arrays dominate the eigenvector while low values indicate
equal contribution to the eigenvector elements. IPRs for eigenvectors related to
the MP- and RESMP-based covariance matrices seem to occupy the distribution
at values greater than one, with random permutation results near unity, and the
remaining eigenvalues in the noise region. A majority of IPRs for RES lie near
the IPRs for the random covariance (PERM), and their small magnitude in IPR
indicates that the arrays contribute nearly equally to the various eigenvectors.

Figure 5 shows class-specific IPRiω for e1 of the covariance matrix C based on
random permutation (PERM) data matrix, no correction (RAW), data residuals
after regression on first PC (RES), data residuals after regression on noise PCs
(MP), data residuals for both the first PC and noise PCs (RESMP), Daniels-
Kass (DK) shrinkage (DK), Ledoit-Wolf (LW) shrinkage, and Schäfer-Strimmer
(SS) shrinkage. IPRs for C of the random permutation matrix of X were jumpy,
while those for C of the uncorrected data matrix (RAW) were quite similar –
which implies that the majority of arrays in all classes influenced e1 similarly.
By far, the most impressive results were obtained after removing the effect of the
first PC on the data matrix X, which is shown in the panel for RES. Results for
MP were less varied when compared with RESMP which removes effects of the
first PC and noise from X before determining C. Shrinkage methods resulted in
IPRiω values which were similar to those for RAW.



RMT and Covariance Matrix Filtering for Cancer Gene Expression 179

Fig. 2. Eigenvalues of the 190 × 190 covariance C (top) and correlation R (bottom)
matrices based on random permutation (PERM) data matrix, no correction (RAW),
data residuals after regression on first PC (RES), data residuals after regression on
noise PCs (MP), data residuals for both the first PC and noise PCs (RESMP), Daniels-
Kass (DK) shrinkage (DK), Ledoit-Wolf (LW) shrinkage, and Schäfer-Strimmer (SS)
shrinkage. A reference line for λ+ = 0.5025 for the MP distribution can be seen in the
bottom panel.
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Fig. 3. Empirical eigenvalue distribution for 190× 190 R showing the fitted line based
on the MP distribution. Upper limit of noise threshold for eigenvalues from fitted MP
distribution was λ+ = 0.5025.

Fig. 4. Inverse participation ratios IPRj for eigenvectors as a function of eigenvalue
of the 190 × 190 covariance matrix C based on random permutation (PERM) data
matrix, no correction (RAW), data residuals after regression on first PC (RES), data
residuals after regression on noise PCs (MP), data residuals for both the first PC and
noise PCs (RESMP), Daniels-Kass (DK) shrinkage (DK), Ledoit-Wolf (LW) shrinkage,
and Schäfer-Strimmer (SS) shrinkage.
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Fig. 5. Tumor class-specific influence scores IPRiω for the eigenvector e1 of the various
190× 190 covariance matrices
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Fig. 6. Force plots for the RAW (top panel) and RES (bottom panel) 190 × 190 co-
variance matrix elements. Between-array covariance is more heterogeneous for RAW
when compared with RES.

Figure 6 shows that, on the top panel, the RAW covariance between the 190
arrays is more heterogeneous when compared with between-array covariance
based on RES (bottom panel). In the bottom panel for RES, many of the arrays
in the same class are proximal with one another, especially for GLI, MED, LYYF,
LYLB, ALLB, ALLT, UT, and finally ME, and BR which are slightly scattered.
Almost the same relationships exist between arrays in various classes in the top
panel (RAW), however, there are greater scale changes.
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4 Discussion

The results obtained suggest that covariance matrices derived after component
subtraction (RES, MP, and RESMP) reflect a greater change when compared
with shrinkage results. Removal of the effects of the first PC caused a slight
increase in skewness of the positive values of Cjk in the RES covariance matrix.
Elements of the correlation matrices, Rjk, presented too much overlap between
the various type of correlation matrices, such that there is less uniqueness. Hence,
correlation is likely not as beneficial as covariance matrix filtering prior to post
hoc discrimination analysis. The Marčenko-Pastur law was instrumental for iden-
tifying an upper limit (λ+ = 0.5025) of the noise threshold for eigenvalues of R
matrix, for which there were 165 eigenvalues below this threshold.

The smaller scale of the 25 non-zero eigenvalues from CMP have the advan-
tage of representing lower variance, which represent less risk. Maximum ROI
from eigenanalysis is realized when truly non-noise eigenvectors with near-zero
eigenvalues can be found, because the dimensions that load on such eigenvectors
will typically be orthogonal. The other half of the payoff is that the mean effects
of the considered dimensions are high. Thus, the optimal eigenvector is comprised
of uncorrelated dimensions with large mean effects – essentially resulting in a
large payoff with little variance (zero eigenvalue). The most important criterion
for identifying such eigenvectors is that their eigenvalues will likely be very close
to the Marčenko-Pastur value of λ+, and confirming their merit is a challenging
task, since their existence may not be true. Inverse participation ratios (IPRs)
allowed us to observe the contribution of arrays to all of the eigenvectors that
were determined. Component subtraction using the RES approach resulted in a
majority of IPRs that were proximal to IPRs of the PERM covariance. Thus,
some of the better candidate eigenvectors have λ near 0.5 (close to λ+) and have
low values of IPR below 0.02. IPR values in this study that were above 0.04
reflect participation of only a few dimensions (arrays) and are therefore of less
interest. Recall, since eigenvalues below 0.5 fall in the noise range, IPR results
below this value are also not of great interest.

The assessment of class-specific influence scores on eigenvetor e1 associatedwith
the greatest eigenvalue λ1 also reflects that RES causes more variation among the
classes, which should be more informative for discrimination. The formulation for
class-specific influence scores summed array-specific eigenvector elements within
each class, and we therefore did not assess the individual influence of arrays.

We applied RMT and covariance matrix filtering via component subtraction
and shrinkage. All of the RAW covariance matrix elements were observed to be
positive. We have shown that the e.e.d. of eight types of covariance and corre-
lation matrices have widely varying characteristics, and primarily that 86.8% of
the eigenvalues fall in the noise region. We have found that removing widespread
correlation among the arrays results in better participation ratios, class-specific
influence scores, and between-array clustering based on force plot construction.
Our current research can address several directions, ranging from theoretical
studies of RMT and covariance filtering on gene expression, to applied investi-
gations involving discrimination of unknown test arrays. Finally, we think that
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our present work will allow us to appropriately denoise high-dimension gene
expression datasets using linear and non-linear manifold learning, prior to root-
MUSIC superresolution to exploit noise.

5 Conclusions

We investigated RMT and covariance matrix filtering with shrinkage techniques
to characterize the eigenspace of a 190 × 190 covariance matrix based on 750
genes and 18 tumor classes. Principal component subtraction using the first PC
resulted in the most favorable outcome concerning eigenvector participation ra-
tios, class-specific influence scores, and unsupervised clustering of arrays. By
fitting the Marčenko-Pastur density function, we determined that 86.8% of the
covariance matrix eigenvalues were below the threshold value of λ+ = 0.5025,
suggesting that they reside in the noise region. Removal of noise eigenvector
effects in the data were not as informative as removal of only the first eigenvec-
tor, however, there were interesting properties observed among the 25 non-zero
eigenvalues after noise removal – mostly that they were lower than the first 25
eigenvalues of the remaining types of covariance matrices.
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