

A. Haller et al. (Eds.): WISE 2011 and 2012 Combined Workshops, LNCS 7652, pp. 321–334, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Web Services Variability Description Language
(WSVL) for Business Users Oriented Service

Customization

Tuan Nguyen, Alan Colman, and Jun Han

Faculty of Information and Communication Technology,
Swinburne University of Technology, Melbourne, Australia

{tmnguyen,acolman,jhan}@swin.edu.au

Abstract. To better facilitate business users in customizing Web services,
customization options need to be described at a high level of abstraction. In
contrast to related efforts that describe customization options at the technical
level of service description, we propose a Web Services Variability description
Language (WSVL) that facilitates the representation of such options at business
level. The language has several advantages. Firstly, it does not require people,
who perform customization, to have knowledge of Web service technologies.
Thus, the language enables business users-friendly service customization.
Secondly, the language captures not only what can be customized, but also how
and where customization operations should happen in a service-oriented way.
This self-described property removes the need for a separate procedure for
governing service customization. Consequently, this property eases the
adoption of the language. We elaborate the design of the language using a case
study and describe its usages from both consumers and providers’ viewpoints.

Keywords: Service variability, Service customization, Service description
language, Feature model, Software Product Line (SPL).

1 Introduction

Services in Service Oriented Architecture (SOA) often contain many variants due to
the variability in consumer requirements. In order to address such variability, service
customization has proved to be an efficient approach [1-3]. Service customization
refers to a consumer-driven process of deriving a service variant, which contains
adequate service capability for a particular consumer, from a super-service, which
contains a superset of all service capability required for all service variants.

In order to support service customization, customizable services need to be
described. However, related work in the literature proposes approaches which are
oriented toward IT professionals [2, 3]. In particular, all these approaches are
concerned with expressing variant service capabilities in the service interface
description (i.e. messages, operations, and data types) and exposing those variant
service capabilities to service consumers for selection. Customizing services in these

322 T. Nguyen, A. Colman, and J. Han

ways presumes that people who perform service customization have IT background
and are very familiar with the technical description of services. And even for IT
professionals, these approaches are still challenging because of the large number of
variant service capabilities and dependencies among them [1].

In order to facilitate business professionals in customizing services, customization
options need to be described at a high-level of abstraction. From business
professionals’ viewpoint, it is more important to know about what it is that a service
variant will achieve, rather than how to technically invoke its capability. In other
words, it is more beneficial for business professionals to be able to customize services
at the problem space (i.e. business level service variability), rather than the solution
space (i.e. technical realization of such variability). To this end, we are developing a
feature-based service customization framework that captures and represents service
variability at the business level so that it is much easier to customize services [1].

In this paper, we propose a language, namely Web Services Variability description
Language (WSVL), for describing customizable services. WSVL adds variability
description capability into WSDL, a de facto standard for describing services. Further,
a WSVL document is self-described and captures not only the information on what
customization options are, but also the information on how and where to perform such
customization (i.e. the exchange of customization requests and responses) in a
service-oriented way. The self-described property removes the need of defining a
separate, informal service customization procedure which is likely to vary from one
provider to another. Thus, it eases the adoption of the language. In addition to
enabling service consumers to customize and consume one service variant, the WSVL
language also allows service consumers to manage variability inter-dependencies
between their applications and customizable partner services in case there are more
than two service variants from the same customizable partner service involves.

The rest of the paper is structured as follows. Section 2 presents a case study that
will be used throughout the paper to demonstrate the language. We elaborate
motivations and designs of different aspects of WSVL in section 3. Section 4 presents
the application of WSVL by demonstrating how consumers utilize WSVL documents
in customizing services and how providers develop customizable services based on
WSVL documents. Section 5 discusses related work and points to future work. We
conclude the paper in section 6.

2 Case Study

Swinsure Insurance is an insurance company providing various types of building
insurances to various consumers (e.g. insurance brokers, business users or personal
users). In exposing its capability as a Web service (namely Swinsure WS), Swinsure
Insurance has identified the following variations in its consumer requirements:

• Some consumers only need to get a quote and others will go on to purchase
policies.

• Some consumers need to be able to view and update purchased policies.

 A WSVL for Business Users Oriented Service Customization 323

• There are two policy types, namely residential insurance and business
insurance, depending on the purpose of using a building.

• Consumers are able to include extra cover (i.e. accidental damage, fusion
cover and extended third party liability) in their policies.

• When purchasing a policy, some consumers choose to use online credit card
payment while others prefer to be issued a cover note and pay on invoice.

Note that these variations cannot be arbitrarily combined. Instead, there are
dependencies among them. These dependencies come from both consumers’ need and
Swinsure Insurance’s business policies. In particular, Swinsure Insurance has
identified the following constraints:

• Those consumers who need to update policies also need to view policies.
• The extended third party liability extra cover is only available to business

insurance policies.

In order to efficiently provide this Web service to consumers, Swinsure Insurance
decides to develop a customizable service so that consumers can customize the
service on their own while satisfying constraints imposed by the provider. In addition,
Swinsure Insurance needs to describe its customizable service in a comprehensive and
convenient way so that consumers can easily perform the customization. In the
following section, we describe how to use WSVL for these purposes.

3 Web Service Variability Description Language (WSVL)

3.1 Overview

A WSVL document contains 4 different sections:

• Feature Description section describes the variability of the service by
means of features.

• Customization Description section describes information related to
customization operations.

• Capability Description section captures full service capability (i.e.
superset of capability of all service variants).

• Mapping Description denotes the mapping between variant features and
variant service capabilities.

Elements of the Feature Description section and the Mapping Description section
are defined by our WSVL schema. Elements of the Customization Description
extend the existing elements in WSDL due to semantic similarities. And elements
of the Capability Description are existing WSDL elements. In the following
subsections, we will describe each of these descriptions in detail.

3.2 Feature Description

One essential part of a service variability description is to express what can vary. This
involves two types of information [5]. Firstly, what are variant service capabilities?

324 T. Nguyen, A. Colman, and J. Han

Secondly, what are dependencies among those variant service capabilities?
Dependencies describe mutual inclusion and exclusion relationships among variant
service capabilities. From consumers’ viewpoint, it is also important that such
variability is described at an appropriate level of abstraction for better comprehension.
Therefore, in contrast to all related work focusing on capturing variability at the
technical level, we support the description of variability at the business level.

To this end, the concepts of features and feature models from the Software Product
Line (SPL) research domain well-suit our purpose [6]. SPL is a software engineering
paradigm that aims to develop a family of software products from reusable core
assets. In SPL, a feature model is used to capture the commonalities and differences
among a family of software products [7]. Features are visible characteristics used to
differentiate one family member from others. A feature model is a hierarchy of
features with composed-by relationship between a parent feature and its child features.
In addition, there are cross-tree constraints that typically describe inclusion or mutual
exclusion relationships. A feature model is an efficient abstraction of variability and
provides an effective means for communicating variability between different
stakeholders. Therefore, the use of feature models in capturing business level service
variability will provide an appropriate level of abstraction for service customization.

While there are many manifestations of feature modeling techniques, e.g. [8-11], in
our work we exploit the cardinality-based feature modeling technique [12, 13]. The
main reason for this choice is that the concepts of feature cardinality and group
cardinality well suit the needs of service customization. A feature cardinality,
associated with a feature, determines the lower bound and the upper bound of the
number of the feature that can be part of a product. A group cardinality, associated
with a parent feature of a group of features, limits the number of child features that
can be part of a product when the parent feature is selected.

Swinsure Insurance Web Service

Create PolicyView Policy Update Policy

Quote Purchase

[1-1][0-1] [0-1]

[a-b]

Feature
Group

CardinalityComposed-of
relationship

Feature

Legend Constraints
“Update Policy” requires “View Policy”
“Residential” excludes “Extended Third Party
Liability”

[1-1]

Policy Type Extra Cover

Residential Business

[1-1] [0-1]

[1-1] [0-1]

[1-3]

Accidental Damage Fusion Cover

Payment Method

[1-1]

[1-1]

Credit Card Cover Note

Extended Third Party Liability

Fig. 1. Feature-based variability representation for the case study

 A WSVL for Business Users Oriented Service Customization 325

Figure 1 demonstrates a feature model capturing variability of the case study. In
the figure, cardinality represented above a feature is feature cardinality, while the one
represented below a feature is group cardinality. In this feature model, feature
“Create Policy” is mandatory (i.e. this feature is required by all consumers) while
feature “View Policy” and “Update Policy” are optional (i.e. the necessity of these
features are decided by consumers). Feature “Create Policy” is composed by a
mandatory feature “Quote” and an optional feature “Purchase”. “Policy Type” is a
mandatory feature and is also a feature group with two grouped features, namely
“Residential” and “Business”. The group cardinality of this feature group is [1-1]
which implies that consumers have to select one of these two alternative features for
their service variants. All other features are described in a similar fashion.

Figure 1 also defines two constraints. These constraints represent dependencies
between feature “Update Policy” and feature “View Policy”, as well as between
feature “Residential” and feature “Extended Third Party Liability”. These constraints
and the feature hierarchy precisely capture the variability of Swinsure WS.

The Feature Description section in a WSVL document represents the feature
model. In particular, it contains description of feature hierarchy and description of
feature constraints. Based on the feature description, consumers can specify a feature
configuration and request a particular service variant. A feature configuration is a
specialized form of a feature model in which all variability is resolved, i.e. all variant
features are selected or removed.

Figure 2 presents an extracted XML from Swinsure WSVL for a partial feature
hierarchy description, the feature constraint description, and a complete feature
configuration. The feature configuration describes one consumer with minimum
requirements. In this configuration, all optional features are not selected by the
consumer when customizing the service.

<featureDescription>

<featureHierarchy>
<feature name="SwinsureInsuranceWebService">

<feature name="CreatePolicy”>
<feature name="Quote”>

<feature name="PolicyType”>
<feature name="Residential"/>

</feature>
</feature>

</feature>
</feature>

</featureHierarchy>
</featureDescription>

<feature name="CreatePolicy" minCardinality="1"
maxCardinality="1">

<feature name="Quote" minCardinality="1"
maxCardinality="1">

<feature name="PolicyType" minCardinality="1"
maxCardinality="1">

<featureGroup minCardinality="1" maxCardinality="1">
<feature name="Residential“/>
<feature name="Business“/>

</featureGroup>
</feature>

</feature>
</feature>

<featureConstraint>
<constraint>

<constraintDesc>if (//UpdatePolicy) then (//ViewPolicy) else true();</constraintDesc>
</constraint>
<constraint>

<constraintDesc>if (//Residential) then not (//ExtendedThirdPartyLiability) else true();</constraintDesc>
</constraint>

</featureConstraint>

Partial feature hierarchy description

A feature configuration

Feature constraint description

Fig. 2. Extracted XML for feature model and feature configuration

326 T. Nguyen, A. Colman, and J. Han

3.3 Customization Description

In addition to the information about what can vary, a WSVL document needs to
define how and where such variation can be requested. This is the information about
how consumers should construct customization requests, where they should send
those requests, and what should be expected as responses from service providers. The
Customization Description section in a WSVL document is used for this purpose.

The Customization Description defines a set of customization operations that
consumers may use to customize the service. One typical operation is the one that
accepts a feature configuration as the request and returns a reference to WSDL
description of a service variant as the response. However, there are many other
possible customization operations. For instance, a customization operation might
accept an incomplete feature configuration and return a revised WSVL document.
This usage enables multi-stage service customization. Or service providers can group
resolutions of several variant features into predefined packages. A service consumer
can send one package as the request and the provider responses with an updated
WSVL. Because of this variety, we have made the Customization Description
generic, rather than confining it to describing only typical operations.

Customization operations can be described using conventional elements in WSDL
due to the semantic similarity between the Customization Description and
conventional service description. However, in order to clearly separate service
operations for service customization and service operations for service consumption,
we extend existing elements in WSDL to describe customization operations. Figure 3
presents an extract of Swinsure WSVL for the customization description. The
customization operation “swinsureCustomizationOperation” is specified using
element <<wsvl:operation>> which inherit the element <<wsdl:operation>>.
Similarly, <<wsvl:portType>> is used to enclose all customization operations.
Further, <<wsvl:binding>> specifies the binding of customization operations to
transport and messaging protocols which are HTTP and SOAP respectively in the
example. Lastly, <<wsvl:port>> specifies the endpoint to which a consumer can
exchange customization requests and responses. As can be seen from the example, the
Customization Description section provides sufficient information for governing
service customization. Consequently, it makes WSVL documents self-described.

<wsvl:portType name=“swinsureCustomizationPortType">

<wsvl:operation name="swinsureCustomizationOperation“/>
</wsvl:portType>
<wsvl:binding name="swinsureBinding" type=“swinsureCustomizationPortType">

<soap:binding style="document“ transport="http://schemas.xmlsoap.org/soap/http" />
<wsvl:operation name=“swinsureCustomizationOperation“/>

</wsvl:binding>
<wsdl:service name="swinsureCustomizationFrontend">

<wsvl:port binding="swinsureBinding" name="swinsurePort">
<soap:address location="http://localhost:9000/swinsureCustomizationFrontend" />

</wsvl:port>
</wsdl:service>

Fig. 3. Extracted XML for customization description

 A WSVL for Business Users Oriented Service Customization 327

3.4 Capability Description

One typical usage of customizable service descriptions is allowing service consumers
to customize services. In such situation, the combination of feature description and
customization description is sufficient. However, we also consider an advanced use of
a customizable service in which the service is used in another customizable service
and there are dependencies among their variants. In particular, the derivation of one
variant of a customizable composite service requires a particular variant of a
customizable partner services. We call such dependency as variability
inter-dependencies [15]. To support variability inter-dependencies, WSVL needs to
incorporate additional information explained in this section and the next one.

Let us consider an example in Figure 4. Swinbroker is building a customizable
insurance quoting business process that reuses Swinsure WS. Depending on the type
of policy its users request (i.e. residential or business), the Swinbroker will derive
different business process variants that interact with different variants of Swinsure
WS. In particular, for users requesting residential quoting, the Swinbroker will
customize Swinsure WS with feature “Residential” enabled and feature
“ExtraCover” disabled. The derived process variant will invoke the operation
getQuoting4Residential() of the corresponding service variant. And for users
requesting business quoting, the Swinbroker will customize Swinsure WS with
feature “Business” enabled and feature “ExtraCover” disabled to be able to invoke
the operation getQuoting4Business() of another service variant.

In such situation, it is necessary that Swinbroker knows not only the feature model
of Swinsure WS, but also the consequence of customizing the service based on the
feature model. That is, how they should interact with service variants which are the
result of service customization. And such information should be made available
before the service is actually customized (e.g. while Swinbroker models its business
process). To this end, the WSVL document needs to describe full capability of a
customizable service [16]. This full capability is the superset of capability of all
service variants. We reuse WSDL elements for this purpose.

Quoting

getQuote4Residential

Swinbroker Swinsure WS

{“Residential”=true,
“ExtraCover”=false}

PostQuoteProcessing

PreQuoteProcessing

getQuote4Business
{“Business”=true ,
“ExtraCover”=false}

Sub-process Task

Fig. 4. Variability inter-dependencies between Swinbroker process and Swinsure WS

328 T. Nguyen, A. Colman, and J. Han

<wsdl:portType name="quotingPortType">
<wsdl:operation name="getQuote4Residential"/>
<wsdl:operation name="getQuote4Business"/>

</wsdl:portType>
<wsdl:portType name="purchasingPortType“>

<wsdl:operation name=“purchasePolicyByCreditCard"/>
<wsdl:operation name=" purchasePolicyByCoverNote"/>

</wsdl:portType>

Fig. 5. Extracted XML for service capability description

Figure 5 presents an excerpt of the capability description for Swinsure WS. There
are two <<wsdl:portType>> of which the “quotingPortType” is available to all
consumers while the “purchasingPortType” is only available if feature “Purchase” is
selected. Among two operations of the “quotingPortType”, the operation
“getQuote4Residential” (or “getQuote4Business”) is only available if the
corresponding feature “Residential” (or “Business”) is selected and feature
“ExtraCover” is disabled. Similarly, for two operations of the
“purchasingPortType”, the operation “purchasePolicyByCreditCard” (or
“purchasePolicyByCoverNote”) is only available if the corresponding feature
“CreditCard” (or “CoverNote”) is selected.

3.5 Mapping Description

The full service capability description is the superset of the capability of all service
variants. However, a WSVL document also needs to explicitly describe what
capabilities are available if a feature is selected or disabled. We call a condition over a
set of features from which we decide the existence of a variant service capability as
presence condition. For example in Figure 4, the operation “getQuote4Residential”
operation only exists in service variants if feature “Residential” is true (consequently
feature “Business” is false because these two features are alternative) and feature
“ExtraCover” is false. Or for the extracted XML in Figure 5, the portType
“purchasingPortType” only exists in service variants if feature “Purchase” is true.
Therefore, a presence condition can be expressed as a conjunction over a set of
features involved.

A presence condition needs to be associated with relevant variant service
capabilities. To this end, we introduce the concept of links as a mapping between a
feature and relevant elements [17]. Each link has an additional attribute specifying
whether feature should be selected or disabled for the presence of the elements. Since
a presence condition is a conjunction over a set of features, the association of a
presence condition and elements can be expressed as a set of links mapping relevant
features and the elements. This approach does not require the use of a certain
condition expression language for representing the presence condition in a WSVL
document. Thus, we can avoid imposing more constraints on consumers in order to
interpret the WSVL document.

 A WSVL for Business Users Oriented Service Customization 329

<mappingInfo>

<link name="LResidential">
<featureRef ref="fd:Residential" presence="true"/>
<serviceElementRef ref="tns:getQuote4Residential” target="operation" />

</link>
<link name="LExtraCover">

<featureRef ref="fd:ExtraCover" presence=“false"/>
<serviceElementRef ref="tns:getQuote4Residential” target="operation" />

</link>
<link name="LPurchase">

<featureRef ref="fd:Purchase" presence="true"/>
<serviceElementRef ref="tns:purchasingPortType” target="portType" />

</link>
</mappingInfo>

Fig. 6. Extracted XML for mapping description

Figure 6 presents an extracted XML from the mapping description section of
Swinsure WSVL. The first two links associates feature “Residential” and feature
“ExtraCover” with the operation “getQuote4Residential” operation with the
“presence” attribute of <<featureRef>> elements are “true” and “false”
respectively. These two links together specifies above mentioned presence condition
that the operation “getQuote4Residential” is available only if “Residential” is true
and “ExtraCover” is false. Similarly, the third link specifies that the portType
“purchasingPortType” only exists if feature “Purchase” is true.

With regard to the types of element that will be objects of presence conditions, we
consider only port types or operations. While there might be variants in message
formats and data types that require presence conditions, we argue that those
variabilities should be escalated to variabilities in operations (i.e. a separate operation
for each variant message format/data types) and port types. This escalation enables
simpler implementation of WSVL-based customizable services because in general
each operation is transformed to a method in the service implementation [18]. As
shown in Figure 6, types of elements are described using the attribute “target” of the
corresponding <<serviceElementRef>>.

4 Application of WSVL

In order to illustrate the feasibility and applicability of WSVL we describe how
service consumers and service providers utilize a WSVL document for service
customization. While the mechanisms described in following subsections can be
generalized, we just use them as one solution for validating the usefulness and the
feasibility of the WSVL language. The explanation is based on Swinsure WSVL.

4.1 WSVL for Service Consumers

While WSVL uses XML which is a machine-readable format, many business
professionals are not familiar with writing XML documents manually given an XML
schema. Therefore, customizing services described in WSVL will be easier for

330 T. Nguyen, A. Colman, and J. Han

Fig. 7. Customizing services by business professionals

business professionals with the use of appropriate tools. We describe one such tool in
this subsection. The tool is compatible with the WSVL schema to demonstrate the
language’s feasibility.

Figure 7 presents a screenshot of how business professionals can customize
Swinsure WS in an intuitive and simple way. We extend the open source feature
modeling tool to implement this plugin [19]. Information from the variability
description section in the WSVL document is used to reproduce feature model on the
consumer side. Feature model is then rendered to the business professionals through
an interactive interface so that they can select features they need and remove features
they do not need. As there exist feature constraints in the feature model, such
constraints are used to validate business professionals’ selection, as well as
automatically propagate the selection through the feature configuration [14]. This
helps to reduce the time and overhead during the customization process, as well as
avoiding mistakes. For example, when a business professional selects feature
“Residential”, feature “Extended Third Party Liability” is automatically disabled due
to the constraint between the two features (cf. Figure 1). Once the business
professional finishes the customization, he can send a request for a service variant
based on the generated feature configuration.

The feature configuration will be embedded in a SOAP message and be sent to the
customization endpoint as specified in the customization description section of
the WSVL document. As the result, the consumer will be issued an URL from which
the consumer can retrieve the WSDL document of the generated service variant.

4.2 WSVL for Service Providers

We have implemented Swinsure WS as an atomic service. Figure 8 presents its
software architecture. Swinsure WS has a customization Web service frontend that

 A WSVL for Business Users Oriented Service Customization 331

Service container

Customization
frontend

Customized service
implementor

Customization request

Customization response

Service request

Service response

Consumer

Runtime customization engine

Service
context

Annotated service implementor

Service variant

Fig. 8. Architecture for Swinsure WS

accepts a customization request (i.e. a feature configuration) from service consumers.
The feature configuration is then passed to the Runtime customization engine which
dynamically generates and deploys a service variant from an Annotated service
implementor (described below). The reference to the WSDL of the generated service
variant is returned to service consumers through the customization frontend.
Consumers can then consume the service by invoking the service variant.

The Customization frontend is the Web service implementation of the
customization description in the WSVL document. The Annotated service
implementor is the implementation of service capability description in the WSVL
document. The implementation contains additional annotations that specify presence
conditions of variant portTypes and variant operations. An example of these
annotations is shown with italic underline font in Figure 9. Note that these additional
annotations are based on the information on the mapping description section of the
WSVL document. The interface PurchasingPortType which implements the portType
“PurchasingPortType” in the WSVL document is only available in a service variant
if all features in the enabledFeatureList are selected and all features in the
disabledFeatureList are removed. In this case, the interface is only available if feature
“Purchase” is true. Similarly, the operation “PurchasePolicyByCreditCard” (or
“PurchasePolicyByCoverNote”) is only available in a service variant if feature
“CreditCard” (or “CoverNote”) is true. Based on these additional annotations, the
runtime customization engine can derive and deploy a particular service variant that
exposes appropriate service capability. Note that the Service context component of a

@WebService(name = "purchasingPortType")
@FeatureMapping(enabledFeatureList={"Purchase"}, disabledFeatureList={})
public interface PurchasingPortType {

@WebMethod
@FeatureMapping(enabledFeatureList={"CreditCard"}, disabledFeatureList={})
public PurchasePolicyByCreditCardResponse purchasePolicyByCreditCard(PurchasePolicyByCreditCard request);

@WebMethod
@FeatureMapping(enabledFeatureList={"CoverNote"}, disabledFeatureList={})
public purchasePolicyByCoverNoteResponse purchasePolicyByCoverNote(purchasePolicyByCoverNote request);

}

Fig. 9. Annotated service implementor

332 T. Nguyen, A. Colman, and J. Han

Publishing WSVL document

Generated WSDL document
for a particular service variant

Fig. 10. Snapshots for published WSVL and WSDL documents

service variant stores information about what features are selected and what features
are disabled for the service variant. The use of this component enables the correct
business logic of the service variant during its execution in case dynamic switching
between alternative behaviors for service variants is required.

Figure 10 presents screenshots of how a WSVL document for a customizable
service (cf. left panel) and how the generated WSDL document for a particular
service variant (cf. right panel) are published. The demonstrated service variant is the
response for the feature configuration shown in Figure 7.

5 Discussion and Future Work

Describing customizability of a Web service has been a focus in a number of
approaches [2, 3, 20]. Stollberg [2] makes explicit variants of service description
elements (e.g. operations or data types) as well as constraints among them so that end
users can select the appropriate variant. In contrast, Liang [3] defines customization
policies that express which elements in the service description can be changed and
what kind of changes is allowed. These customization policies are then used by
consumers in customizing the service description. Tosic [20] lists all possible service
variants from which consumers can select the most appropriate one. While these
approaches are different in the way they represent customization options, they all
focus on capturing variability at the technical level of service description.
Consequently, the approaches cannot be used by business professionals who have a
little knowledge of the underlying Web service technologies.

 A WSVL for Business Users Oriented Service Customization 333

The work on WSVL is strongly influenced by the ideas of feature models from the
SPL research domain [7, 12, 21]. And there are many variability description
languages for representing feature models, e.g. [22-25]. Since our service
customization framework utilizes the cardinality-based feature modeling technique
[1, 12], we have develop the feature description part in the WSVL schema based on
concepts of this technique. However, our contribution in developing WSVL is not
about the representation of feature models in the WSVL Schema. Instead, we design
the language so that it is self-described, comprehensive, and business users-friendly.

We have presented in the paper one way of developing a customizable service
based on WSVL documents. We believe that such approach can be generalized to
have a semi-automated process for developing customizable services using Model
Driven Engineering (MDE) techniques. For example, additional annotations can be
added as extension to JAX-WS [18] so that the skeleton of the service implementation
(i.e. annotated service implementor) can be automatically generated from a WSVL
document. Further, the software architecture for customizable services can be revised
to have a middleware supporting customizable services.

6 Conclusion

In this paper, we define a Web Services Variability description Language (WSVL) that
can be used to describe customizable services. The language facilitates business
professionals to customize services on the consumer side by raising the level of
abstraction at which customization options are described. To this end, we exploit the
concept of feature models from SPL so that business professionals can reason about and
customize services at the business level. The language is self-described because it
describes not only what can be customized (i.e. feature description section), but also how
and where such customization operations can be performed (i.e. customization
description section). Furthermore, the language can be used to produce and consume one
particular service variant, as well as support variability inter-dependencies between the
service and other customizable service when more than one variant is involved (i.e.
mapping description and capability description sections). The usage of the language is
demonstrated thoroughly using a case study. We also describe how the language can be
used by both consumers and providers with respect to service customization. As the
future work, we plan to derive techniques for facilitating service providers in developing
and deploying customizable services based on WSVL documents.

Acknowledgments. This research was carried out as part of the activities of, and
funded by, the Smart Services Cooperative Research Centre (CRC) through the
Australian Government’s CRC Programme (Department of Innovation, Industry,
Science and Research).

References

1. Nguyen, T., et al.: A Feature-Oriented Approach for Web Service Customization. In: IEEE
International Conference on Web Services, pp. 393–400 (2010)

2. Stollberg, M., Muth, M.: Service Customization by Variability Modeling. In: Dan, A.,
Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 425–434.
Springer, Heidelberg (2010)

334 T. Nguyen, A. Colman, and J. Han

3. Liang, H., et al.: A Policy Framework for Collaborative Web Service Customization. In:
Proc. of the 2nd IEEE Int. Sym. on Service-Oriented System Engineering (2006)

4. Christensen, E., et al.: Web Services Description Language (WSDL) 1.1, March 15 (2001),
http://www.w3.org/TR/wsdl

5. Schmid, K., et al.: A customizable approach to full lifecycle variability management.
Science of Computer Programming 53(3), 259–284 (2004)

6. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag New York, Inc. (2005)

7. Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study, in
Technical Report, Softw. Eng. Inst., CMU. p. 161 pages (November 1990)

8. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

9. Griss, M.L., et al.: Integrating Feature Modeling with the RSEB. In: Proceedings of the 5th
International Conference on Software Reuse. IEEE Computer Society (1998)

10. Schobbens, P.-Y., et al.: Generic semantics of feature diagrams. Comput. Netw. 51(2),
456–479 (2007)

11. Kang, K.C., et al.: FORM: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng. 5, 143–168 (1998)

12. Czarnecki, K., et al.: Formalizing cardinality-based feature models and their specialization.
Software Process: Improvement and Practice 10(1), 7–29 (2005)

13. Czarnecki, K., et al.: Cardinality-based feature modeling and constraints - a progress
report. In: Proceedings of International Workshop on Software Factories, OOPSLA (2005)

14. Benavides, D., et al.: Automated analysis of feature models 20 years later: A literature
review. Information Systems 35(6), 615–636 (2010)

15. Nguyen, T., et al.: Managing service variability: state of the art and open issues. In: Proc.
of the 5th Int. Workshop on Variability Modeling of Software-Intensive Systems (2011)

16. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

17. Didonet, M., et al.: Weaving Models with the Eclipse AMW plugin. In: Proceedings of
Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

18. Kotamraju, J.: JSR224 - The Java API for XML-Based Web Services (JAX-WS) 2.2,
December 10 (2009), http://jcp.org/aboutJava/communityprocess/
mrel/jsr224/index3.html

19. Czarnecki, K.: Feature Modeling Plug-in,
http://gsd.uwaterloo.ca/projects/fmp-plugin/

20. Tosic, V., et al.: WSOL — Web Service Offerings Language. In: Web Services, E-
Business, and the Semantic Web, pp. 57–67 (2002)

21. Chen, L., et al.: Variability management in software product lines: a systematic review. In:
Proc. of the 13th Int. Software Product Line Conf. (2009)

22. Boucher, Q., et al.: Introducing TVL, a Text-based Feature Modelling Language. In: Proc.
of the 4th Int. Workshop on Variability Modeling of Soft. Intensive Syst., pp. 159–162
(2010)

23. Mendonca, M., et al.: S.P.L.O.T.: software product lines online tools. In: Proceeding of the
24th ACM SIGPLAN Conference Companion on OOPSLA. ACM (2009)

24. Benavides, D., et al.: On the Modularization of Feature Models. In: First European
Workshop on Model Transformation (2005)

25. Cechticky, V., et al.: XML-Based Feature Modelling, in Software Reuse: Methods,
Techniques and Tools, pp. 101–114 (2004)

	A Web Services Variability Description Language
(WSVL) for Business Users Oriented Service
Customization

	1 Introduction
	2 Case Study
	3 Web Service Variability Description Language (WSVL)
	3.1 Overview
	3.2 Feature Description
	3.3 Customization Description
	3.4 Capability Description
	3.5 Mapping Description

	4 Application of WSVL
	4.1 WSVL for Service Consumers
	4.2 WSVL for Service Providers

	5 Discussion and Future Work
	6 Conclusion
	References

