
H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 121–134, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Visualizing and Managing Technical Debt in Agile 
Development: An Experience Report 

Paulo Sérgio Medeiros dos Santos1, Amanda Varella2, Cristine Ribeiro Dantas2,  
and Daniel Beltrão Borges2 

1 Federal University of Rio de Janeiro, System Engineering and Computer Science  
Department, Cidade Universitária – Centro de Tecnologia. 

Rio de Janeiro, Brazil 
pasemes@cos.ufrj.br 

2 Petrobras, Exploitation and Production Business Solutions, Centro 
20031-912 Rio de Janeiro, Brazil 

{amanda.varella,cristine.dantas, 
daniel.borges}@petrobras.com.br 

Abstract. This paper reports the experience of an architecture team of a 
software development department with 25 agile teams in supporting technical 
decisions regarding technical practices. The main motivation to use technical 
debt metaphor was its acknowledged potential in driving software development 
and maintenance decisions, especially those long term maintenance tradeoffs 
which are usually less visible to developers and decision makers in general. We 
propose the use of a "technical debt board" with main technical debt categories 
to manage and visualize the high-level debt, combined with tools to measure it 
at low-level (software metrics and other kind of static analysis). We have found 
that our approach improved the teams’ awareness about the technical debt, 
stimulated a beneficial competition between teams towards the debt payment 
and enhanced the communication regarding technical decisions. 

Keywords: technical debt, software quality, visualization, agile practices. 

1 Introduction  

One of the main tenets that make agile methods effective is the right balance between 
the importance given to the people developing the software and the engineering 
practices dedicated to keep its quality. In establishing this balance, agile teams can 
leverage from the embodied tacit knowledge in the team and the technical readiness 
for change of the software product [1] to attain its primary objective: deliver value. 

However, this equilibrium can be hard to achieve. And, if not consciously 
monitored, it seems that it can be more easily inclined towards the people or 
management side. The following aspects help explain this situation. First, the agile 
development de-emphasis to long-term planning in favor of short-term adaptiveness, 
although it represents a strength in a rapidly changing development environment, can 
create a temptation to neglect best practices that are essential to long-term success [2]. 
Second, most major agile methods such as Scrum and Crystal are more focused in the 



122 P.S.M. dos Santos et al. 

managerial aspects of software development than in providing engineering guidance 
[3] – one important exception is Extreme Programming. Last, the engineering 
practices commonly used in agile methods require highly qualified professionals [4] 
which must be able to deal with the lack of upfront design and investment in the life 
cycle architecture [1, 5] besides, these professionals must be capable of realizing 
automated testing and continuous integration [6]. 

In fact, all these aspects are implicitly present in the agile manifesto 
(http://agilemanifesto.org/). We cite four principles directly related to this discussion: 
(i) the continuous delivery of valuable software to the client, (ii) continuous attention 
to technical excellence and good design enhances agility, (iii) simplicity – the art of 
maximizing the amount of work not done – is essential and (iv) welcome changing 
requirements, even late in development. Combining the ideas of these principles, we 
have the following challenge: how to balance quality, simplicity, agility and welcome 
change in delivering value to the client? 

Thus, although delivering value is the ultimate objective of agile methods, 
delivering it as fast as possible without an adequate attention to the engineering 
practices can represent a problem. In 1992 Ward Cunningham created a metaphor to a 
code that is written in a fast and “dirty” way or, more technically, code that is 
produced taking shortcuts that fall short of best practices. He called this metaphor 
Technical Debt [7]. Like a financial debt, the technical debt incurs interest payments, 
which come in the form of the extra effort that has to be done in future development 
because of inappropriate design choices [8]. This includes all aspects of software 
development including its documentation, test cases and source code. 

There are many reasons to get into technical debt – not all bad, especially when it 
is taken in a conscious manner. In addition, technical debt is not limited to practices 
and techniques associated with the code design itself. More broadly, technical debt 
can be characterized by aspects associated with the development of the software 
product as a whole [9], including: lack of automated tests, unnecessary coupled code, 
duplicated code, infrastructure related issues like flawed automatic building, lack of 
continuous integration and automated deployment. 

Although the issues related with the technical debt are in the surface technical, this 
type of issues cannot always be objectively addressed. It is not possible to pay the 
technical debt simply saying to the developers: you must write automated tests, don’t 
couple your code, don’t duplicate your code or refactor your code. When dealing with 
this kind of situation, cultural factors must also be managed in order to make 
developers capable of dealing with tension between engineering best practices and 
other factors such as ship date and skills of engineers that are available. 

This paper reports an experience of how a software development department of a 
big oil company located in Brazil dealt with a scenario similar to the one described 
above. In an advanced stage of agile adoption, the department was facing a condition 
where the managerial aspects were already fairly consolidated with the introduction of 
Scrum, but the engineering practices were lagging behind in terms of maturity. We 
describe how we have used the technical debt metaphor to stimulate software 
developers to bring the managerial/engineering equilibrium to an optimal state where 
the value delivery is maximized in long-term. 



Visualizing and Managing Technical Debt in Agile Development: An Experience Report 123 

2 Background 

As an oil and gas company, Petrobras (http://www.petrobras.com.br) develops 
software in areas which demands increasingly innovative solutions in short time 
intervals. The company started officially with Scrum in March of 2009, using its 
lightweight framework to create collaborative self-organizing teams that could 
effectively deliver products. After the first team had adopted Scrum with a relative 
success, the manager noticed that the framework could be used in other teams, and 
thus he invested in training and coaching so that the teams could also have the 
opportunity to try the methodology. At that time, only the software development 
department for E&P, whose software helps to Exploit and Produce oil and gas, had 
management endorsement in adopting scrum and agile practices that would let teams 
deliver better products faster. About one year and half later, all teams in the 
department were using Scrum as its software development process. The developers 
and the stakeholders in general noticed expressive gains with the adoption of Scrum. 
The results had varied from the skill of the team leadership in agile methodologies, 
customer participation, level of collaboration between team members, technical 
expertise among other factors.  

The architecture team of the software development department for E&P was 
composed of four employees, whose responsibility was to help teams and offer 
support for resolution of problems related to agile methods and architecture. At that 
time, it had to work with 25 teams which had autonomy regarding its technical 
decisions. In fact, autonomy was one of the main managerial concerns when adopting 
agile methods.  

After Scrum adoption, there was active debate, training and architectural meetings 
about whether Agile engineering practices should also be adopted in parallel with 
managerial practices; in hindsight, it would have accelerated the benefits had they 
been adopted. But the constraints of time and budget, decisions made by non-
technical staff, and the bureaucracy in areas such as infrastructure and database, led to 
the postponement of those efforts initially. Moreover, the infrastructure area had only 
build and continuous integration (CI) tools available. And, unfortunately, these tools 
were not taken seriously by the teams. The automated deployment was relatively new 
and was postponed because of fear of implementing it in immature phase. Other tools 
and monitoring mechanisms were not used by the teams even so the architecture team 
was aware of its possible benefits.  

Despite all initiatives in training and supporting in agile practices such as 
configuration management, automated tests and code analysis, teams, represented by 
25 focal points in architectural meetings, did not show much interest in adopting 
many agile practices – particularly technical practices. Delivering the product on the 
date agreed with the customer and maintaining the legacy code were the most urgent 
issues. Analyzing retrospectively it seems that the main cause for this situation was 
that debt was getting accrued unconsciously. Serving the client was a much more 
visible and imperative goal. This can be one explanation for the ineffectiveness of 
prior attempts in introducing technical practices. Be it by the means of specialized 
training or by the support of the architecture team.  



124 P.S.M. dos Santos et al. 

With these not so effective attempts to promote continuous improvement with 
teams, the architecture team sought a way to motivate them to experiment agile 
practices without a top-down “forced adoption”. The technical debt metaphor, 
described in next section, was the basis for the approach. 

3 Related Works and the State of the Practice  

Technical debt has been a central theme among researchers and practitioners in the 
last years as an alternative perspective for software development and maintenance 
decisions. It offers a real world metaphor which is naturally understandable by most 
software stakeholders and serves as tool to evaluate the tradeoffs between proposed 
enhancements, corrective maintenance and technical/non-functional improvements. 
Besides that appeal, what seems to be the most significant contribution of the 
technical debt prism is that it brings to the light the long term maintenance tradeoffs 
which are usually less visible to developers and decision makers in general. 

It is possible to identify three main effort directions in the technical literature and 
informal sources (blogs) related to technical debt.  

The first are those [10, 11, 12, 13] seeking to identify the main properties of 
technical debt and conceptualize the main sources of its accumulation. This includes 
interviews with practitioners to see how they interpret technical debt and how it 
manifests in their daily activities [10, 13]. In addition, it also includes discussions 
about technical debt characteristics, such as described in [11] and [12]: visibility (to 
make it visible for daily decisions), value (to estimate its size and help deciding when 
it should be paid) and intentionality (unintentional, when it is a result of low quality 
work and intentional, for tactical (short-term) and strategic (long-term) reasons). 

The second group [14, 15, 16, 19] is linked to how the debt can be managed and 
deciding when it should paid. There are many approaches to do that. In [14] four of 
them are cited, including the simple cost-benefit analysis, where the cost of paying the 
interest versus principal is analyzed, and the portfolio-based, where technical debt 
items are treated as assets that composes a portfolio managed to maximize the return 
of investment or minimize the investment risk. Both [15] and [16] are cost-benefit 
approaches and [19] proposes a portfolio-based approach. Valuing and making 
technical debt visible are the basic inputs for these approaches. And, in fact, these two 
properties are directly related to each other as it only possible to manifest something 
that can be observable (in this case, valued). Examples of technical debt measurement 
ranges from the use of rough estimates [15, 19] to the more precise quantitative data 
based on source code metrics [16]. 

The use of source code or, generally, “low-level” software metrics to estimate a 
value for technical debt forms the third main active area. In [17], automatic static 
analysis is empirically evaluated as mean to quantify the values of technical debt at 
code level. And in [18] the relative technical debt value associated with three code 
smells (data class, duplicated code and god class) is investigated.  

Despite the effort on identifying means of how technical debt can be measured 
(and visualized), it seems that only low level aspects are being focused on. The use of  
 



Visualizing and Managing Technical Debt in Agile Development: An Experience Report 125 

static analysis tools and source code metrics are self-explanatory examples. And even 
on those works that describe how it can be estimated qualitatively, the attention is 
turned to software products and not to software practices. For instance, examples of 
technical debt items in [15] are: architectural design violations, test skipped, outdated 
documentation and design debt. 

Given the context aforementioned, especially regarding the role of the architecture 
team serving various teams in parallel and the fact that the teams have autonomy in its 
technical decisions, there was a need for the technical debt estimation and 
visualization in a “macro-level”, i.e., not only associated with source code aspects but 
with technical practices involving the product in general. This would give the 
opportunity to see the actual state of the department and indicate the “roadmap” for 
future interaction with the development teams. 

The actions involved in introducing this kind of visualization and the management 
activities based on that visualization are described in next section.  

4 Actions 

Given the challenge in addressing the issues caused by the technical debt, the 
architecture team started to discuss some initiatives that could help the area: (i) 
recognize that the lack of attention paid to the technical debt was a problem (teams 
and management), (ii) visualize the existing technical debt, (iii) quantifying the 
amount of technical debt, (iv) create mechanisms of feedback to see the technical debt 
rising or decreasing and (v) take actions to correct implementations that lead to 
technical debt.  

It is important to mention that these actions were not planned upfront, but they 
emerged according to the feedback that the architecture team was having in trying to 
implement the technical debt awareness in the department. 

4.1 Recognize That the Lack of Attention Paid to the Technical Debt Was a 
Problem 

The first step the architecture team had to take was to make sure every developer 
knew the concept of technical debt. As in the pair “reckless x inadvertent” in Martin 
Fowler’s [8] quadrant of technical debt, most of the team members did not know the 
exact meaning of technical debt. The architecture team then started to do a series of 
presentations about the theme. What is technical debt; what is its size; why do we 
accumulate technical debt and how do we pay it; and how to benefit from technical 
debt were topics presented to the audience. 

The architecture team had also the challenge to speak to different audiences. More 
technical presentations were made to the teams, but to the upper level management, 
another language was needed, so everyone could understand the topic by their own 
point of view. 

At that time, many teams were already struggling with problems of poor 
architecture, rework, delays, and poor quality. All of these issues where impacting the 
relationship with their clients. 



126 P.S.M. dos Santos et al. 

4.2 Visualize the Existing Technical Debt 

The software development department was already having some initial Kanban [21] 
implementations. As one of the main principles of Kanban is visualization, these ideas 
were permeating the minds of the group, and many initiatives of change management 
were taking visualization into account. 

The architecture team modeled a board, where the lines corresponds to teams and 
the columns are the categories and subcategories of technical debt, based on the work 
of Chris Sterling [9] as illustrated in Figure 1. 
 

 

Fig. 1. Technical debt categories 

In each cell, formed by the pair team x technical debt category, the maturity of the 
team was evaluated according to predefined criteria. Examples of these criteria are 
displayed in Table 1. For full description please see Appendix A. Notice that in the 
real board shown in Figure 2, we used the colors red, yellow and green to show the 
compliance level of each criterion. So, we kept the reference to these colors in the text 
even though Figure 1 uses a gray scale (white = green, yellow = light gray and red = 
dark gray). 

The criteria just provided a direction of what kind of practices would be focused, 
but not give directives on how it could be achieved. This was the moment where the 
architecture team could offer its support. In addition, the criteria were not a rigid 
target. For instance, for unit tests, the ideal coverage level was dependent on the 
system architecture, technologies involved (e.g., programming language and 
frameworks), the criticality of the application and other factors. All of this was subject 
of discussion between the development teams and the architecture team. And that was 
one of the biggest benefits on bringing the debt visible. 

The architecture team, in its internal conversations, was concerned that this 
approach could make the teams feel compelled to follow the orientations. This was 
not the objective, on the contrary the objective was to make teams aware of the  
 



Visualizing and Managing Tec

Table 1. C

 Con

Red There 

Yellow There is a j

Green There is a job s
team is comm

(compiling

 
problem and take their ow
teams were not capable of
consulted for support. Thu
points and it was explained 
allow the visualization of t
possibility to monitor thei
objective way, focusing on
resistance. Actually, many 
to improve their overall wo
 

chnical Debt in Agile Development: An Experience Report 

Criteria examples for technical debt assessment 

ntinuous Integration Unit Tests 

is no job in the CI Tool. There are no Unit Tests.

job scheduled in the CI Tool. There are some Unit Test

scheduled in the CI Tool and the 
mitted to keep the build working 
g and with unit tests passing). 

There are Unit tests in a lev
that the team is comfortab

with. 

n actions to amend their technical difficulties. And if 
f addressing the problem, the architecture team should
us, this initiative was first presented to the teams’ fo
that the main objective was not to constrain anyone, bu

their actual state regarding the technical debt and have 
ir own progress. The proposal was presented in a v
n the engineering issues. The focal points did not o
of them thought that the initiative was a good opportun
rk (even with their own “problems” exposed). 

Fig. 2. Real technical debt board 

127 

. 

ts. 

vel 
ble 

the 
d be 
ocal 
ut to 

the 
very 
ffer 
nity 

 



128 P.S.M. dos Santos et al. 

After the design of the technical debt board, each team was invited to a rapid 
meeting in front of the board, where all team members talked about the status of each 
criterion, translating it to the respective color. During these meeting the teams could 
also conclude that some categories were not relevant or applicable for their systems. 
This meeting should happen every month, so that the progress of each category could 
be updated. At the end of the meeting, the team members agreed which of the 
categories would be the aim for the next meeting or, to put it another way, where they 
would invest their efforts in reducing the technical debt. The real board is presented in 
Figure 2. Blank cells represent categories not relevant or applicable. Team names 
from in the first column were removed from the figure. 

4.3 Quantifying the Amount of Technical Debt 

To measure the technical debt at source code level, the architecture team has made 
use of the tool Sonar (http://www.sonarsource.org/) [20]. Sonar has a plugin that 
allows estimating how much effort would be required to fix each debt of the project. 
Sonar considers as debts: cohesion and complexity metrics, duplications, lack of 
comments, coding rules violation, potential bugs and no unit tests or useless ones. The 
details of its formula can be found in [20]. The important aspect is that an estimative 
is calculated, and Sonar shows the results financially and the effort in man days 
necessary to take the debt to zero (the daily rate of the developer in the context of the 
project must be informed). 

It is important to mention that Sonar, in fact, use many other tools internally to an-
alyze the source code – each one for different aspects of the analysis. It works as an 
aggregator to display results of other tools such as PMD, Findbugs, Cobertura and 
Checkstyle among others.  

4.4 Create Mechanisms of Feedback to See the Technical Debt Evolution 

Having a visualization of the actual state of the technical debt and having it quantified 
was important step. However, having the debt quantified in a tool, and making some 
adjustments in the course of the system once a month would not be enough. The 
teams could make the debt rise during a whole month without even knowing about it. 

To address this situation, the architecture team created a virtual tiled board (Figure 
3), where each tile had information about the build state of each team in the 
department. The major information was the actual state of the build and the project 
name (which was removed from figure). If everything was ok (compilation and 
automated tests), the tile is green (white in Figure 3), if the compilation was broken, 
the tile turns red (dark gray in Figure 3) and if there were failed tests, the tile turns 
yellow (light gray in Figure 3). Besides the build information, there is other 
information: total number of tests, number of failed tests, test coverage, number of 
lines and technical debt (calculated in Sonar). 

The virtual tiled board was placed in a big screen in a place where everybody in the 
room could see it from their workplaces. The main objective was that when the team 
members saw their failed build and that instant feedback would lead them to make 
corrective actions so the build could go green again. 



Visualizing and Managing Technical Debt in Agile Development: An Experience Report 129 

 

Fig. 3. Some of the virtual tiled board cells in detail (project names were removed from it) 

4.5 Take Actions to Correct Implementations That Lead to Technical Debt 
Rising 

As the mechanisms of feedback were implemented, the teams had instant information 
about what should be done to lower the levels of technical debt. With this 
information, they could prioritize which categories they would try to improve in the 
next month. If the team had some difficulties addressing any of the categories, they 
could call upon the architecture team support. In the following months after the board 
implementation, the architecture team kept making presentations about each category 
and how to deal with them. 

5 Lessons Learned 

In general terms, we think that the aforementioned actions can lead to small changes 
that over time will add up to significant positive change for teams and organizations. 
The main evidence for that, in our experience, is summarized below.  

5.1 Make Visible. Don’t Dictate. 

The line between being firm about the value of implementing Agile practices and 
sensitive to the freedom and independence of teams is a difficult one to take right. 
With the board exposed, the approach was to encourage teams to self-evaluate theirs 



130 P.S.M. dos Santos et al. 

technical debt, instead of someone, in our case the architecture team, pointing out 
problems. As a result, the teams showed initiative on seeking the architecture team for 
help with issues related to technical debt, as for instance, how to implement 
automated deployment or how to improve the source code testability for unit tests.  

From the moment the debts were inserted, interest began to be contracted, and at 
some future time it may have to be paid. Making them visible and managing them, 
allowed strategic decision making to choose the best time to pay them – once it was 
possible to see how it was accumulating and its possible impacts/costs throughout the 
software development lifecycle.  

Visualization was a powerful way to simplify complexity, expose the reality and, 
consequently, motivate teams to improve. 

5.2 Improved Communication 

Again, visibility was a key enabler to improve communication among development 
teams, architecture team and upper management. It turned the discussions around 
technical issues focused and oriented much efforts towards a common (visible) goal. 
The meetings around the board is now a regular practice in the department and in 
many situations development teams have opportunity to discuss about (the once 
unfamiliar) techniques to deal with their debt.  

Another important benefit of the afore-described approach was establishing the 
basic concepts and tools around the technical debt theme which, again, facilitated the 
discussions. Developers are now more aware of the main factors that can contribute to 
the technical debt accumulation, are more open to discuss about it and know how to 
measure and address (technical practices) it.  

5.3 Debts Paid at a Rate Higher than Expected 

Besides the mentioned benefits, it was observed that debts were paid at a rate higher 
than expected. We interpreted this as a result of the competition among teams. In 
addition, we have noticed that this was stimulated by the introduction of gamification 
elements. Gamification [23] is the application of game elements and digital game 
design techniques to non-game problems, such as business and social impact 
challenges. It is used in applications and processes to improve user engagement, 
timeliness, and learning.  

To apply gamification elements in our context items such as trophies exposed at 
the board of technical debt motivated teams to improve quality and pay debts. Every 
improvement made at the board, earned the team a trophy (the board in Figure 2 has 
some attached to it). This made visible how teams were evolving and kept the 
motivation for sustaining the progress. 

We have calculated a raw estimative of how the technical debt payment progressed 
in the first year. To measure this progress, we kept the technical debt evolution 
history in a spread sheet, but only for the first thirteen projects (i.e., the first technical 
debt board) – this data was not made public. The progress was measured in the 
following manner. Supposing that the red/yellow/green represents an interval scale, 
the difference between red/yellow and yellow/green is one unit – for a max of 416 



Visualizing and Managing Technical Debt in Agile Development: An Experience Report 131 

“units of debt” representing the worst situation of all projects “in red” in a board with 
thirteen projects. Considering the initial state of the board, the projects had 327 units 
of debt. From this initial state in 06-17-2011 to almost one year after in 05-14-2012, 
the projects already had 226 units. This constituted a progress of 30% which was 
above our initial expectations considering past experiences in fomenting technical 
improvements. It represented a great (visible) achievement in our department. It is 
interesting to notice, in addition, that this progress was not homogeneous among 
teams. Some teams evolved faster than others. And that, in our view, was one of the 
factors that stimulated competition. 

The virtual tiled board also played an interesting role in bringing additional 
gamification elements to the technical debt management as teams immediately started 
to react to the red or yellow colors for broken builds. This was a result of an emerging 
social commitment of being seen different among their peers who kept their build 
green. The build status changes minutes after the source code check-in/commit by the 
team and this rapid feedback loop caused a strong change in the culture of the team 
members who after just a couple of weeks were already treating the build status with a 
high priority. This improved the perception of the teams in keeping their main/trunk 
branch closer to a deployable state as possible. 

Thus, in addition to visibility, gamification was a powerful mechanism to motivate 
teams in monitor their technical debt. 

6 Final Remarks 

After Scrum adoption, the most visible symptoms of dysfunction in our software 
development department were related to agile engineering practices, where teams 
were accumulating a huge amount of technical debt. This paper showed how an 
architecture team at Petrobras has managed the technical debt in an agile context, 
seeking to reduce the high costs generated by debt issued. Working the change 
management iteratively, getting feedback for new actions, the intense use of 
visualization, the application of concrete measurements, and working together with 
the teams in a collaborative, not imposing manner, all that in context had proved to be 
powerful tools to obtain the desired results.  

Another important contribution of this paper was proposing an approach for 
addressing the technical debt at a high-level. The proposed approach, besides the use 
of tools to estimate technical debt based on low-level source code metrics and reports, 
involves people to analyze the main contributing technical debt factors and plans the 
appropriate time to deal with it. In this manner, the board as a visual instrument has 
demonstrated to be useful in our context.  

References 

1. Boehm, B.: Get ready for agile methods, with care. Computer 35, 64–69 (2002) 
2. Dinakar, K.: Agile development: overcoming a short-term focus in implementing best 

practices. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object 
Oriented Programming Systems Languages and Applications, pp. 579–588. ACM, New 
York (2009) 



132 P.S.M. dos Santos et al. 

3. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile 
methods: a comparative analysis. In: Proceedings of the 25th International Conference on 
Software Engineering, pp. 244–254 (2003) 

4. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is Extreme Programming Just Old Wine 
in New Bottles. Journal of Database Management 16, 41–61 (2005) 

5. Mishra, D., Mishra, A.: Complex software project development: agile methods adoption. 
Journal of Software Maintenance and Evolution: Research and Practice 23, 549–564 
(2011) 

6. Svensson, H., Host, M.: Introducing an Agile Process in a Software Maintenance and 
Evolution Organization. In: 9th European Conference on Software Maintenance and 
Reengineering, CSMR 2005, pp. 256–264 (2005) 

7. Cunningham, W.: The WyCash portfolio management system. SIGPLAN OOPS Mess. 4, 
29–30 (1992) 

8. Fowler, M.: Technical Debt (2009), 
http://martinfowler.com/bliki/TechnicalDebt.html 

9. Sterling, C.: Managing Software Debt: Building for Inevitable Change. Addison-Wesley 
Professional (2010) 

10. Lim, E., Taksande, N., Seaman, C.: A Balancing Act: What Software Practitioners Have to 
Say about Technical Debt. IEEE Software 29, 22–27 (2012) 

11. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack, 
A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N.: Managing 
technical debt in software-reliant systems. In: Proceedings of the FSE/SDP Workshop on 
Future of Software Engineering Research, pp. 47–52. ACM, New York (2010) 

12. McConnell, S.: Technical Debt,  
http://forums.construx.com/blogs/stevemcc/archive/ 
2007/11/01/technical-debt-2.aspx (2007) 

13. Klinger, T., Tarr, P., Wagstrom, P., Williams, C.: An enterprise perspective on technical 
debt. In: Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 35–38. 
ACM, New York (2011) 

14. Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetro, A.: Using 
technical debt data in decision making: Potential decision approaches. In: 2012 Third 
International Workshop on Managing Technical Debt (MTD), pp. 45–48 (2012) 

15. Seaman, C., Guo, Y.: Measuring and Monitoring Technical Debt. In: Zelkowitz, M. (ed.) 
Advances in Computers. Academic Press (2011) 

16. Zazworka, N., Seaman, C., Shull, F.: Prioritizing design debt investment opportunities. In: 
Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 39–42. ACM, New 
York (2011) 

17. Vetrò, A.: Using automatic static analysis to identify technical debt. In: Proceedings of the 
2012 International Conference on Software Engineering, pp. 1613–1615. IEEE Press, 
Piscataway (2012) 

18. Fontana, F.A., Ferme, V., Spinelli, S.: Investigating the impact of code smells debt on 
quality code evaluation. In: 2012 Third International Workshop on Managing Technical 
Debt (MTD), pp. 15–22 (2012) 

19. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In: Proceedings 
of the 2nd Workshop on Managing Technical Debt, pp. 31–34. ACM, New York (2011) 

20. Gaudin, O.: Evaluate your technical debt with Sonar (2009),  
http://www.sonarsource.org/ 
evaluate-your-technical-debt-with-sonar/  



Visualizing and Managing Technical Debt in Agile Development: An Experience Report 133 

21. Anderson, D.: Kanban: Successful Evolutionary Change for Your Technology Business. 
Blue Hole Press (April 7, 2010)  

22. Gaillot, E.: What is Coding Dojo (2012),  
http://codingdojo.org/cgi-bin/wiki.pl?WhatIsCodingDojo 

23. Werbach, K.: Gamification, University of Pennsylvania (2012),  
https://www.coursera.org/course/gamification  

Appendix A - Technical Debt Criteria 

 Red Yellow Green 

Automatic 
Construction 

No build tool 
used 

Build tool is used but 
build is dependent on 
local configuration 

Build tool is used and 
build is not dependent 
on local configuration 

Continuous 
Integration 

There is no job in 
the CI Tool 

There is a job 
scheduled in the CI 
Tool 

There is a job scheduled 
in the CI Tool and the 
team is committed to 
keep the build working 

Automatic 
Deployment 

Deployment is 
manual 

Deployment is an 
automated process 
using a build tool 
command 

Deployment is an 
automated process 
using the CI Tool 

Continuous 
Delivery 

Release to 
staging 
environments is 
manual 

Release is an 
automated process for 
validated artifacts 
using a build tool 
command 

Release is an automated 
process using a build 
pipeline 

Style 
Good Practices 
Bugs 

No static analysis 
tool used 

Static analysis tool is 
configured with static 
rules 

Static analysis tool is 
configured and the team 
is committed to keep 
high levels of rules 
compliance 

Architecture No architecture 
analysis tool used 

Architecture analysis 
tool is configured 
with architectural 
(dependency) rules 

Architecture analysis 
tool is configured and 
the team is committed 
to keep high levels of 
rules compliance 

Tests: Unit/ 
Integration/ 
Acceptance/ 
Performance/ 
Load/ Security 

No Tests Some Tests There are tests in a level 
that the team is 
comfortable with 



134 P.S.M. dos Santos et al. 

Statistics No statistics on 
the code quality 

Statistic on the code 
quality are collected 

Statistic on the code 
quality are collected and 
the team is committed 
to keep high levels of 
quality 

Monitoring No monitoring The monitoring tool is 
configured to alert the 
team when the 
application is not 
responding 

The monitoring tool is 
configured to alert the 
team when the 
application or any of its 
dependences are not 
responding 

 


	Visualizing and Managing Technical Debt in Agile Development: An Experience Report
	1 Introduction
	2 Background
	3 Related Works and the State of the Practice
	4 Actions
	4.1 Recognize That the Lack of Attention Paid to the Technical Debt Was a Problem
	4.2 Visualize the Existing Technical Debt
	4.3 Quantifying the Amount of Technical Debt
	4.4 Create Mechanisms of Feedback to See the Technical Debt Evolution
	4.5 Take Actions to Correct Implementations That Lead to Technical Debt Rising

	5 Lessons Learned
	5.1 Make Visible. Don’t Dictate.
	5.2 Improved Communication
	5.3 Debts Paid at a Rate Higher than Expected

	6 Final Remarks
	References




