
 

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 61–75, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

The Practice of Not Knowing for Sure:  
How Agile Teams Manage Uncertainties 

Denniz Dönmez and Gudela Grote 

Department of Management, Technology, and Economics 
ETH Zurich, Switzerland 

{ddonmez,ggrote}@ethz.ch 

Abstract. Uncertainties are ubiquitous in software development. They impact 
almost every aspect of a development project. Most uncertainties are viewed as 
threats to project efficiency and there are strong calls to their reduction. 
However, uncertainties can pose opportunities for creativity and innovation in 
some situations. The literature has been dominated by discussions that focus on 
requirements uncertainties. We aim to extend these discussions by drawing 
attention to additional types of uncertainties, namely resource, task, and output 
uncertainties. In this empirical study we investigate the potential of agile 
software development methods to manage these different types of uncertainties, 
and examine the mechanisms available to development teams. Our results 
reveal how some agile teams seized mechanisms to harvest positive and 
mitigate negative impacts of uncertainties. Drawing upon these results, we 
discuss several antecedents of successful uncertainty management. 

Keywords: Uncertainties, Uncertainty Management, Agile Software 
Development Methods, Scrum, Empirical Study. 

1 Introduction 

In this study, we examine the potential of agile software development (ASD) methods 
to manage diverse uncertainties, which play a major role in software development 
projects [1,2,3]. Uncertainties have a significant impact on a project’s performance as 
they result in situations that require adequate, oftentimes quick, reactions. They can 
be manifested in diverse conditions including unexpected events, or a lack of 
confidence in an estimation, and may consist of anything that is potentially important 
but not known for sure. Uncertainty is broadly defined as the absence of complete 
information [4] and linked to the inability of accurate predictions [5]. Because 
incomplete information can lead to costly delays, redundant work and other 
inefficiencies, uncertainties are unwanted impediments to most software developers 
and project managers. The elimination of uncertainties becomes feasible as more 
information becomes available during the course of a project [6,7] and has long been 
connected to reduced software project risks and costs [8,24]. However, in some 
situations, uncertainties can play an important role to foster innovation and 
productivity [9]. This is mostly the case when high levels of bureaucracy and 
exuberantly structured project management approaches suffocate creative thinking 



62 D. Dönmez and G. Grote 

 

and developers do not enjoy sufficient flexibility to react to dynamic problems and 
changing environments. Therefore, the adequate handling of uncertainties is crucial 
for a project’s outcome. A team’s capability to react adequately to unforeseen future 
events can result from well-managed uncertainties [10], whereas a highly structured 
project management approach may result in badly managed uncertainties [11]. 
Uncertainty management is not equivalent to the elimination of uncertainties. 
Uncertainties cannot be eliminated entirely in software development projects [10]. 
Instead, uncertainty management includes two main mechanisms; minimisation of 
uncertainties and coping with uncertainties [12]. In an attempt to establish the 
flexibility that is needed for this, many development teams have turned to agile 
development methods, which stress the importance of situation-dependent problem 
solving through an ‘inspect-and-adapt’ approach [10]. ASD methods, such as Scrum, 
deliberately encourage high flexibility and adaptability through iterative development 
processes, and foster communication among project stakeholders in order to enable 
quick and effective adaption to unexpected events. In this context, requirements 
uncertainties have been extensively studied, e. g. in [4], as the literature has been 
dominated by discussions that focus on technical aspects. Yet, little attention has been 
paid to identify the mechanisms that may be necessary to address different types of 
uncertainties, which exist in software development. We address this gap by studying 
additional types of uncertainties, which have been largely ignored. We aim to 
contribute to a more complete understanding of uncertainty management in software 
development by addressing four different types of uncertainties, namely resource, 
requirements, task and output uncertainties. 

Resource uncertainties refer to incomplete information about the availability of 
resources that are required for the accomplishment of planned project tasks. 
Necessary but unavailable resources range from human resources subject to 
spontaneous temporal unavailability to process artefacts, such as delayed deliverables. 
Requirements uncertainties refer to ambiguous or changing customer demands. 
Requirements are a major source of uncertainties in software development and have 
been discussed by several authors [3,13,16], who argue that agile software 
development becomes especially important under conditions of frequent changes. 
Task uncertainties refer to a lack of clarity regarding the details of desired outcomes 
and appropriate solutions to problems. Uncertainty is high when tasks have 
unexpected dependencies or undiscovered problems with envisioned solutions exist. 
Output uncertainties result from incomplete information about the quantity or 
quality of product features that a team is able to implement in a given time. They are 
often linked to insufficient task or process knowledge resulting in unplanned delays. 

The purpose of this paper is to examine the mechanisms that professional software 
development teams draw upon to manage these uncertainties. Thereby we shed light 
on different existing practices that are suggested by ASD methods, as well as 
established in extension to them, which are seized to approach a topic with significant 
influence on development projects. Apart from the identification of ASD practices, 
we present mechanisms that teams utilised to complement ASD methods in order to 
carry out their work. Our focus includes the potential of ASD to provide both the 
structure and flexibility necessary for the effective management of uncertainties. 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 63 

 

2 Research Method 

We applied qualitative methods for data collection and analysis, using mainly 
interview and observation techniques. In addition, project artefacts, such as 
documents and drawings, were collected during company visits. We applied 
observational techniques when we had the possibility to attend team meetings, 
witness conference calls (e. g. with clients and other project stakeholders) and 
conduct spontaneous informal interviews, for instance during lunch or coffee breaks. 
Field notes produced from these conversations were not included in the data analysis, 
but enriched our understanding of organisational and team processes and the projects’ 
contextual settings. 

2.1 Data Collection 

Data collection took place in agile software development teams in three companies 
based in Switzerland. In total, 19 semi-structured interviews with individuals were 
conducted. Participants were members of 5 different teams and consisted of 15 men 
and 4 women, which reflects the teams’ gender distribution. Table 1 summarises the 
data sources. The project teams are referred to by letters for confidentiality reasons. 

We interviewed at least two and as many as five members of each team, including 
at least one person with official team leadership responsibility (i. e. Scrum Master, 
Product Owner, team or project leader). No stakeholders external to the teams were 
interviewed. This limitation was, however, mitigated through the fact that the teams 
had very close contact to them, because they worked for the same companies, and 
were informed about their perceptions concerning the projects. Interviews lasted from 
20 minutes to one hour, with an average length of 38 minutes, and were audio-
recorded. In addition, we had the chance to engage in informal conversations with 
almost all team members at multiple occasions as we visited each team several times. 

During the interviews we focused on the interviewees’ experiences with uncertain 
situations. We designed semi-structured interview questions that centred on different 
types of uncertainties. Each interview began with general questions, such as the 
current status of the project, and then moved to examples of recently experienced 
situations in which the team had to deal with incomplete information or unexpected 
events. We also collected experiences with negative, as well as positive outcomes of 
unexpected events. Interviewees were asked to describe situations they experienced 
(e. g., ‘Could you give me an example of a situation in which your team faced the 
unexpected fallout of a team member?’ or ‘Please describe a situation in which you 
faced a task and it was not clear to you how to accomplish it’) and how their team 
reacted to that particular situation. Special attention was paid to leadership and 
collaboration mechanisms including how decisions were made, and how 
communication took place. During the interviews we pursued interesting clues rather 
than strictly adhere to our interview guideline; we encouraged informants to wander 
freely in their answers and probed whenever possible. 

The teams we approached apply Scrum in large company projects, mostly using 
sprint lengths of two weeks. According to the team members’ expertise, several roles 



64 D. Dönmez and G. Grote 

 

are established with overlapping responsibilities. Most teams employ specialised 
developers (e.g., front and back end), testers, designers (software architects), and 
requirements engineers. All teams are part of the IT development departments of their 
respective companies, and develop software solutions that are used by other 
departments of their organisations. The teams differed in several important aspect 
including not only characteristics, such as team size, but also their choice of 
leadership style and coordination mechanisms. 

Team A is part of a telecom company. Its 19 team members are split into two sub-
teams, which are collocated and share one Product Owner and Scrum Master. The 
team is interdisciplinary and pair programming is used for most development tasks. 
At the time of data collection, the team had been working together for one year. 
Teams B and C work for a bank. While Team C has 6 collocated developers, Team B 
consists of 11 developers who are dispersed over three locations (two in Switzerland, 
one in India). Teams D and E are employed by an insurance company and are all 
collocated. While Team D is the smallest team of our study (it consists of the 4 
members who were interviewed), Team E counts 9 team members. 

Table 1. An overview of project, team and study participant details 

Team 
code 

Project profile Team size Number of inter-
viewees incl. roles 

A The project had been set up 2 years before 
data collection in order to develop an 
application for customer order 
management of future products. Scrum has 
been used from the beginning. Sprint 
lengths are 2 weeks. 

19 team 
members 
split into 2 
functional, 
collocated 
sub-teams. 

5 interviews: 
A1-A5 developers; 
plus several informal 
interviews with the 
Scrum Master (A6) 

B The project was started 1.5 years earlier 
with the aim to develop and maintain 
several products for internal company use. 
Scrum has been used from the beginning 
with 2 week sprints. 

12 team 
members 

4 interviews: 
B1 Product Owner 
B2-B4 developers 

C Releases of a company-internal application 
are developed in cooperation with internal 
clients for the last 3 years, using Scrum 
since 2.5 years with 4 week sprints. 

10 team 
members 

2 interviews: 
C1 Scrum Master 
C2 developer 

D For the previous 2 years, Scrum was used 
to develop new versions of a customer 
management system. Sprint lengths were 
usually 2 weeks but varied sometimes. 

8 team 
members 

4 interviews: 
D1 Scrum Master 
D2 developer 
D3 Product Owner 
D4 developer 

E The project serves the development of new 
company communication technologies and 
started 1 year prior to data collection using 
Scrum. Sprints were 2 weeks in length. 

5 team 
members and 
1 Scrum 
coach 

4 interviews: 
E1 Product Owner 
E2 developer 
E3 developer 
E4 Scrum coach 

5 teams   19 interviews 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 65 

 

2.2 Data Analysis 

Transcripts of interviews constitute the primary data in this study. All interviews were 
coded to reflect different types of uncertainties, which resulted from earlier 
ethnographically informed [14] work, and mechanisms seized for their management. 
We coded the data openly until no new codes emerged, i. e. theoretical saturation [15] 
was reached. The codes were grouped according to the types of uncertainties they 
addressed, and summarised into concepts regarding the underlying uncertainty 
management practices. Those practices that were connected to organisational rather 
than team or project management characteristics, such as hiring power, were ignored, 
as not all teams were in the position to apply them. 

3 Results 

We present practices that are used by teams to manage different types of 
uncertainties. The results are grouped according to categories of uncertainties that 
were identified in the interviews. Some uncertainty management practices are related 
explicitly to agile software development (ASD), whereas others are not. Several 
practices are mutually dependent or contribute to the management of multiple 
uncertainties. Results are summarised in Table 1 at the end of the section. 

3.1 Resource Uncertainties 

Resources consist of technological artefacts or infrastructure, as well as human 
resources required in the development process. An inadequate level of resources 
results either from insufficient supply or excess demand for resources. Uncertain 
availability of resources causes threats to the success of a project. 
 
Unavailability of Artefacts. The unavailability of technical infrastructure, software 
licenses, or other artefacts can render a team unproductive. Such threats need 
uncertainty management practices in order to reduce the risk of the inability to 
complete development tasks. Teams in this study routinely applied risk analysis 
techniques, however, some reported not to do so systematically. Participants stated 
they usually thought about risk in the moment when they find themselves in need to 
respond to an unexpected event and faced a strategic decision, such as to reduce 
product features or search for substitute functionality. One participant remarked: 
 

“detailed planning would not have helped because the unexpected events were 
unexpected” (C1, Scrum Master) 
 
Decision analysis was conducted according to “a common sense process” (C2, 
developer) by thinking about opportunities and possible consequences. One common 
practice was to call a team meeting in order to gather possible solutions for 
workarounds and make due as good as possible without satisfying their excess 
demand for the scarce resource. 



66 D. Dönmez and G. Grote 

 

Quality of Input. Resources available only in unpredictable levels of quality were 
named as one major source of dissatisfaction in Team A, where deliverables from 
external departments often were below the team’s expected quality. This was 
especially the case when erroneous items were received that caused unexpected 
additional work. Team members could not successfully manage input quality 
uncertainty because causes were rooted in the organisational structure and differing 
team cultures. The team members complained about the number of bugs in systems 
they relied on and which were not improved by the supplier. To our knowledge, they 
did not try to engage their suppliers in close collaboration in an attempt to explain 
their quality requirements. Moderation was sought from higher level authorities, 
however, addressing the problem remained a recurring task of the Product Owner.  
 
Availability of Human Resources. One central aspect of uncertainty management in 
software development is the management of human resources. It ranges from hiring to 
training and developing, and eventually letting go team members. The duration of an 
onboarding process (i. e. the phase of integration until a new team member becomes 
productive) significantly impacts project costs. New team members are required to 
learn a broad range of tasks reaching from administrative work to specific 
development tasks. To increase knowledge transfer, documentation of procedures and 
pair programming sessions were used in most teams. 

Knowledge transfer is also crucial when a team member leaves, or is temporarily 
unavailable. Breaching functional separation of roles was seen as important by all 
teams, however, in some cases this was not feasible either due to expertise or 
individual differences of team members. We found that status and roles were created 
according to seniority and expertise, and had consequences based on team member 
expectations regarding decision-making and leadership toward conflict solving. 

One developer reported that informal leadership structures collapsed after one 
dominant decision maker had left the team, and the developer was left in the in the 
unwanted role of his successor because he had become the most senior team member: 
 

“the team dynamics changed completely after [the colleague] had left the team. 
[…] For me now the pressure is much bigger, because I am expected to take over his 
role now, but I am not this person. There is a lot more pressure for me, because a lot 
of requests come to me and I must make a lot more decisions now.” (A1, developer) 
 
When team members could anticipate their absence from work, or had regular 
absences because they did not work full time on the project, clusters of sub-teams 
were formed by the teams so that each team member had a functional substitute. 
Knowledge sharing and collaboration lied in the responsibilities of the team members 
and worked best in teams that used pair programming routinely. Team A had the 
policy that no pair could stay together for more than one task so that knowledge 
sharing would be maximised. 

In one case, a developer was idle because of his inability to support his colleagues. 
This resulted from expertise differences and an unexpected difficulty which put his 
task on hold. The problem was solved by an anticipatory planning meeting with the 
Product Owner that was called to forecast future work packages and start anticipated 
tasks. 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 67 

 

Team E reported that developers were disturbed frequently during their work by 
requests from other departments (in which they previously worked). The team solved 
this problem by extending the practice of process visualisation to include the external 
disturbers and transparently displaying the frequency of their requests: 
 

“especially in the beginning of the development we were disturbed very often. 
That was really troublesome. […] So we made a wall with who was disturbed more 
than 15 minutes and counted them, and that put them off so that they didn’t come any 
more.” (E1, Product Owner) 

3.2 Requirements Uncertainties 

Requirements uncertainties have been identified to cause irregularities and costly 
delays in many projects [16,25]. ASD teams use several mechanisms to manage 
requirements uncertainties, the effect of which we found to depend largely on 
communication effectiveness. Complementary to following the suggested 
collaborative sessions of the Scrum framework, all teams established additional 
communication structures that reflected their demand for information and integration 
of stakeholders into the project. 
 
Lack of Details about Demanded Functionality or insufficient understanding of 
business context posed problems in several cases, which were addressed by customer 
representatives in the teams, i. e. either Product Owner or a developer with the 
mandate to communicate with a certain customer. As there is no substitute for 
business environment knowledge, one team had business representatives integrated as 
team members who were, however, not working full time with the team. This 
interdisciplinary not only increased the team’s heterogeneity but also starkly 
increased the availability of rapid requirement clarifications compared to the other 
teams. Another team had the opposite problem of a customer not stopping to add 
items to the list of requested features. This was solved through the Product Owner 
centring discussions on a prototype: 

"When you ship something, people start to imagine how they can do business with 
it. [...] the requirements phase was never ending. Instead, with a prototype, you stop 
discussions and then you can say: let's focus on this part." (B1, Product Owner) 
 
Ambiguous Information was experienced as a major cause of uncertainty by many 
participants. Most teams had implemented the common Scrum policy of allowing 
work items to be commenced only when they were declared ‘ready’ for development 
after an evaluation of their ambiguity. When this was not the case, teams prepended 
investigative work to the requirements until they felt to have sufficiently clear 
information. Participants referred to such investigations as ‘Spikes’ (a time period 
with constrained duration that is used to expand knowledge and reduce requirements 
or task uncertainty by investigating a specific issue). 

Requirement clarification meetings served to increase communication within teams 
as well as with external stakeholders, and to reduce ambiguities and, hence, 
uncertainties regarding requirements. One participant stressed the point that, with 



68 D. Dönmez and G. Grote 

 

team autonomy, clarification lies in the responsibility of the team member. When 
information was required from unavailable stakeholders, other tasks needed to be 
turned to while awaiting reply. However, task idleness can become a process risk. 
One developer stressed the importance of repeatedly requesting required information: 

 “too many stories came in while too many others were idle. They were blocked 
and we did not inquire about them again, but this is important. […] it is important to 
ask [the informants/customers] again, and ask again, and ask again […] to keep 
bugging until something happens.” (A2, developer) 
 
Unexpected Requirement Changes were reported to occur seldom because of the 
rule that tasks are fixed during an iteration, which most teams adhered to. 
Requirements, such as product features, were exchanged only in emergency situations 
during an on-going sprint. With most teams running iterations of two weeks, project 
managers usually agreed to refrain from altering anything more than the priorities of 
tasks against the rhythm of the sprints. Instead, tasks were usually introduced through 
changing product backlog items and their priorities. 

3.3 Task Uncertainties 

Uncertainty concerning the best way to approach a task was a common theme during 
the interviews. The most frequently mentioned forms of task uncertainty were missing 
knowledge about the scope of a task, and lacking clues concerning the optimal 
solution, which resulted in time-consuming exploratory work. 
 
Quality of a Solution. Finding the optimal solution to a problem requires skills, 
experience and oftentimes teamwork in order to pool knowledge and discuss 
possibilities and likely consequences. Expertise was shared with new team members 
through mentoring systems and pair programming sessions. Some teams by default 
implemented special task forces assigned to a problem, whereas others implemented 
frequent consultation meetings. Content specific knowledge was shared in order to 
qualify more team members to join discussions: 

“in our team we do a bit of everything; design, development, testing… I’m just a 
regular team member and I have to adjust myself to every role” (A2, developer) 
 

The functional separation of roles and responsibilities was less present than the 
separation according to expertise. Participants stressed that, despite the existence of 
distinct roles among team members, functional boundaries were often breached 
according to status resulting mainly from expertise: 

“There are roles, sure. But sometimes they are not that strict. A tester who does 
only testing, a developer who does only development, a designer who does only 
design, these exist… but when you look at the team as a whole, then they don’t – 
everybody here can work according to his skills” (A1, developer) 
 
Unexpected Difficulties. Developers often got stuck due to lack of experience or task 
specific knowledge, or because unexpected difficulties arise with a work item. 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 69 

 

Participants reported that clear signalling of task completion status helped within a 
system of transparent process visualisation (usually the task board or an online tool). 
When cards on a Scrum board were used, they were marked clearly as blocked. This 
signalled when help was needed or delays expected if demand for team member 
support remained unmet. 
 
Task Sequence and Process Uncertainty results from incomplete information about 
a task’s dependencies, which are intransparent especially in complex environments 
where no formal documentation is available. This requires (sometimes informal) 
meetings to understand the systemic environment. Participants reported that meetings, 
e.g. during coffee breaks and lunch, contributed significantly to their understanding of 
the overall process in which they worked. Consequently, some teams institutionalised 
common coffee breaks, e. g. once per day with the whole team. 

Almost all teams tried to counteract a lack of process transparency using process 
visualisations including Scrum boards and keeping information visible on large sheets 
attached to a wall. Participants viewed it as the responsibility of the Scrum Master to 
prioritise tasks, sequentially order them, and make sure the tasks that are picked up 
belong to one story. Although team members were self-organised in their eyes, many 
relied on mechanisms that provided them with tasks to be completed. At the same 
time, developers felt they needed details about the overall process. 

3.4 Output Uncertainties 

The output a team can produce depends much on its resources and capabilities. 
Erroneous assumptions, unexpected difficulties or emergencies can force a team to 
deliver less than expected product features or result in diminished quality, e. g. when 
thorough testing is omitted. 
 
Time Required to Accomplish a Task and Amount of Accomplishable Work. 
Output uncertainty was found in most teams in the form of a temporal uncertainty 
with regard to accomplishable work items in a given time period. Team members 
were stopped from working on a particular task because of unrelated emergencies that 
required immediate action, or because of underestimated required work effort. When 
tasks remained unfinished at the end of a sprint, most teams tried to break off 
unfinished parts into a new task, which was referred to the subsequent iteration, or 
they rescheduled the whole task. To mitigate the effects of distractions by 
emergencies, dependencies between tasks were minimised through assigning 
independent groups of developers to separated task bundles and formulating tasks as 
small as possible in size. This way, delays stemming from interdependent tasks could 
me avoided. 

When uncertain about the amount of work that can be accomplished during an 
iteration, agile software developers usually rely on estimations. Estimation meetings 
served our participants to pool knowledge from all team members in order to predict 
the workload of an unknown task as accurately as possible. However, in many cases 
specific expertise impeded the participation of more than a few team members, while 
the remaining ones considered themselves disqualified for discussions and therefore 



70 D. Dönmez and G. Grote 

 

blindly trusted their peers’ judgements. All teams performed estimation meetings at 
the beginning of a sprint, and most re-estimated tasks on a regular basis (e. g., every 
second day) as new information became available. Conservative estimates served as 
uncertainty buffers. Participants reported that the accuracy of task estimations largely 
depended on technological expertise, knowledge about the business environment, and 
team cohesion, which is related to the time a team had spent together. 

The extension of an iteration in the case of unfinished work was a solution applied 
by one team in order not to “drag old tasks into a new sprint” (D1, Scrum Master), 
but strongly discouraged by others, including a Scrum coach. 
 
Project Status. All teams faced uncertainty about the amount of work remaining. 
Mitigation was largely drawn from daily status meetings in combination with a 
system established to signal transparently not only the status of task accomplishment 
but also the backlog of unattended work items. Daily status meetings were reported to 
reduce output uncertainties through the frequent possibility to monitor and report 
current output, as every developer gave a daily account for any completed and newly 
commenced task. This, however, was usually limited by the temporal horizon of one 
iteration. Long-term output was monitored and task distribution moderated by 
specially designated roles, such as the Product Owner, Scrum Master, or business 
representatives. In some situations, team members were drawn too deeply into daily 
activities that the overall direction fell into oblivion. One Product Owner reported that 
when she and the Scrum Master both were absent for a few days, the team  

 “lost track over its tasks and when [they] came back the team was way out of 
focus […], they were taking tasks without tracking progress” (B1, Product Owner). 
 
Quality. Variations in the delivered quality were mitigated by the attempt to involve 
customers in the testing, which focussed on the functionality important to them 
despite not being qualified software testers. Establishing mutual support among team 
members contributed to maintaining quality standards. When the team develops a 
sense of shared responsibility, developers are more likely to support their colleagues: 

 “I have the responsibility for the whole result and not just for my part” 
(A1, developer). 
 
Code Errors were reported to be a frequent impediment. In order to avoid them, teams 
relied on early testing as much as possible, which was constrained by limited access 
to deployment systems in some cases. Several teams had successfully integrated the 
functional roles of developers and testers in their team, however, one interviewee 
warned that it might be detrimental if a developer tests his own code because he will 
have a narrow sense of the functionality and waste resources. 

Unexpected errors during the release of a product were reported to appear less 
frequently when there is close collaboration with (external) stakeholders and their 
involvement in release planning activities. Having a release plan that is followed step-
wise enables the team to identify the locus of errors quicker. One developer reported 
delays and decreased functionality of a released product version that could have been 
avoided if the affected database administrators had participated in a release kick off 
meeting organised by his team to have everybody on the same page. 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 71 

 

Table 2. Uncertainties and applied practices to manage them. Practices that were employed as 
suggested ASD methods are denoted by (1): Scrum or (2): XP. 

Type Uncertainty or unexpected event Uncertainty management practice 
  

Resource Availability of process artefacts Discussing workarounds with the team in 
case necessary artefacts are missing, 
Analysing risks systematically. 

 Quality of input Collaborating closely with suppliers in order 
to develop understanding for differences(1,2). 

 Availability of human resources Working with redundant roles (1) and skills, 
Maintaining a knowledge base, 
Using transparency enhancing tools, such as 
publicly displayed charts or workflows (1,2). 

 Duration for new team members to 
become productive 

Recruiting within the organisation, 
Keeping documents of company and team 
procedures updated, 
Pair programming to support faster 
knowledge transfer (2). 

  

Require-
ment 

Lack of details about demanded 
functionality 

Integrating stakeholders into the project (1,2), 
Directly communicating with customers 
(1,2), 
Early prototyping to focus discussions (1,2). 

 Ambiguous information Performing investigative tasks until prev. 
defined clarity criteria are fulfilled (1). 

 Unexpected changes Allowing change requests only at certain 
points in time, i. e. not during sprints (1). 

  

Task Quality of a problem solution Sharing of content specific knowledge 
among team to improve discussions, 
Pooling team members into task forces, 
Pair programming (2). 

 Unexpected difficulties Signalling of blocked tasks (1,2), 
Cultivating mutual team member support. 

 Task sequence or process 
uncertainty 

Improving processes via team reflections (1), 
Recognising the importance of informal 
meetings. 

  

Output Time required to accomplish a task Minimising task sizes and dependencies, 
Matching levels of dependencies to 
developer availabilities. 

 Amount of accomplishable work Regularly updating task estimations (1,2). 
 Project status Separation of responsibilities according to 

temporal perspectives (1); long-term planners 
moderate task distribution and prioritisation. 

 Quality of the product Early and frequent testing (1,2),  
Establishing shared team responsibility (1,2), 
Integration of functional roles (1), 
Involving external stakeholders through 
direct communication, esp. of plans (1,2). 



72 D. Dönmez and G. Grote 

 

4 Discussion 

Agile software development (ASD) ‘embraces’ uncertainties by acknowledging the 
necessity to react flexibly to unforeseen and unforeseeable events during the course of 
a project. Our results reveal several mechanisms that are used by agile teams to 
address different types of uncertainties. The power to manage requirements 
uncertainties, for which ASD methods are well suited, was especially evident. In 
addition, ASD teams employ mechanisms to manage resource, task, and output 
uncertainties. However, in our study their management was complemented in many 
cases by practices that were not explicitly proposed by ASD methods. 

Attempts to control uncertainties are less present in ASD than the emphasis on 
maintaining flexibility to cope with them. Flexibility is an important prerequisite for 
the effective management of uncertainties. Without flexibility, a team cannot mitigate 
the impact of unexpected difficulties or unforeseen dependencies. An inflexible team 
has insufficient capacity to react adequately to unexpected events, and limited access 
to a number of practices including the swapping of roles, or dynamically assigning the 
complementary skills of pair programmers to an emergent task. Positive effects of 
flexibility surface especially with regard to changing environments. For example, 
ineffective planning time is reduced when flexible task sequences allow the collection 
of information required for planning at the point in time at which it is needed. 

Team autonomy and the redundancy of critical resources are important contributors 
to levels of flexibility that enable teams to become better uncertainty managers.  

Team coordination and leadership style are closely connected to levels of 
autonomy and differ substantially between teams. Agile teams rely heavily on 
structures that support mechanisms for coordination and collaboration. On the basis of 
structural routines, ASD teams seize a variety of coordination and collaboration 
mechanisms that help them to collaborate on a wide range of issues [17]. Participants 
in our study profited from frequent status meetings, the use of physical artefacts and 
collocation. The benefit of having clearly defined roles and responsibilities, especially 
for tasks with shared responsibility, surfaced in situations of their absence. Explicitly 
defined routines provide important guidelines in situations where efficiency is crucial. 
The positive effects of collocation, and team members’ redundant competence have 
already been discussed in previous research [18,19]. 

The relationship between flexibility and structure (also referred to as stability or 
stable structures) has been studied in the literature most prominently in connection 
with organisational exploration and exploitation [20]. Many authors believe that 
exploration and exploitation constitute opposite but complementary team 
characteristics. The notion of exploration refers to flexibility, the creation of 
knowledge and discovery of new solutions, as opposed to exploiting existing 
knowledge and solutions by relying on established structures. 

It has been argued that a balance needs to be achieved between flexibility and 
structure in order to optimally address uncertainties [9]. On the one hand, flexibility is 
necessary to cope with the fast changes and the uncertainties that govern software 
development. On the other hand, structure needs to be established for efficient work 
processes and effective knowledge management. Teams who employ both display the 
ambidexterity that is important for creativity and innovation. These play a vital role in 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 73 

 

ASD teams who are constantly pushed to deliver novel solutions. Teams must rely on 
the potential for creativity that is rooted in adequate collaborative processes [21]. 
Therefore, the same mechanisms that support the management of uncertainty foster 
creative thinking and create potential for innovation that requires the application of 
creative solutions to new problems. However, ASD methods themselves can also 
provide sources of uncertainties when the flexibility they create remains unmet by the 
establishment of adequate structures. 

One way of seizing organisational ambidexterity is to move flexibly within the 
boundaries of structured work processes, or to use given structures that allow flexible 
reactions. Agile software developers routinely apply a number of concepts connected 
to uncertainty management that organisational researchers found in high-risk teams or 
action teams. For example, organisational bricolage (defined as ‘making do by 
applying combinations of the resources at hand to new problems and opportunities’ 
by [22]) was found in a study of fire fighters and film crews who routinely had to 
adapt to unexpected events [23]. One mechanism the teams used was to reorder the 
sequences of the work process by taking advantage of their knowledge of the work 
progression and how tasks fit together. Reordering the work involved changing the 
sequence in which pieces of the overall project were completed. Agile software teams 
routinely engage in similar practices by prioritising work tasks, evaluating their 
content and required estimated effort, and re-prioritising them in the event of an 
unexpected change. The sequential order of tasks is changed in case of unforeseen 
impediments. Formal roles exist in teams, but are not dominant. Instead, teams rely on 
a functional hierarchy that is characterised by informal roles according to skills and 
expertise, while responsibility often remains shared by the entire team. In order to 
ensure broad knowledge and capabilities across all team members, the breaching of 
formally assigned roles is common. 

5 Limitations 

In this study a small number of teams was studied. All teams operated in large 
company environments where additional contextual constraints apply that may not be 
generalizable to small firms with different organisational infrastructures. For example, 
large companies may have less difficulty to temporarily mitigate resource 
uncertainties in emergency situations because they have more access to resources. 

Data collection was performed in a narrow period of time and did not allow us to 
observe the projects’ developments on a larger scale. Our analysis is based mainly on 
interviews. In order to mitigate limiting factors to our analysis, we visited the teams in 
their work environments, in almost all cases more than once, and spoke with several 
team members and project managers to enhance our understanding of the projects. 

6 Conclusion 

In this paper, we addressed under-discussed aspects regarding different types of 
uncertainties in software development projects, and identified practices to manage 
them. We presented findings from an empirical study that involved five agile software 
development (ASD) teams. A total of 19 interviews were conducted to explore the 



74 D. Dönmez and G. Grote 

 

teams’ challenges associated with uncertainties. We investigated practices to manage 
four types of uncertainties; resource uncertainty (concerning the availability of human 
resources and process artefacts), requirements uncertainties (represented by customer 
demands), task uncertainty (referring to unexpected problems, such as dependencies 
on delayed input), and output uncertainty (incomplete information concerning the 
deliverable schedule and scope of the product). The identification of these practices 
extends our understanding of systematic uncertainty management and possible 
strategies that are available to teams, which is important in the face of increasing 
complexity of software projects and, hence, increasing sources of uncertainties. A key 
output from this study is a set of practices for the effective management of different 
types of uncertainties, the antecedents of which we discussed based on our insights. 

ASD methods provide powerful tools to reduce a number of uncertainties, or cope 
with them in case they are not eliminable. For example, mechanisms exist to support 
the estimation of the time to finish a task with satisfactory accuracy, or to react to 
frequent changes of requirements. Still, agile teams sometimes have to go beyond the 
possibilities provided by ASD methods in order to adequately react to uncertainties. 
For uncertainties, such as the time required to make a new team member productive, 
ASD practices offer little specific advice, and self-organising agile teams have to 
complement them by missing mechanisms. 

The potential to manage uncertainties depends not only on the structures that ASD 
methods provide, but also on the organisational context and the competence of the 
team itself. In order to design effective uncertainty management policies one must, 
therefore, keep in mind mutual dependencies among different types of uncertainties. 
We recommend that project managers pay attention to systemic dependencies and 
mutual relationships of uncertainties that affect the performance of a team. 

In this study, we focused on the practice of uncertainty management through the 
lens of four types of uncertainties that were discussed with the participants of this and 
other studies in order to produce a representative set of uncertainties that ASD teams 
face. However, the possibility exists that our list is still incomplete and further types 
of uncertainties are of importance for other teams. We therefore suggest that future 
research concentrates on producing a complete taxonomy of uncertainties. 

Acknowledgements. We thank the participants of this study and their managers for 
the possibility to explore their projects and spending much of their time explaining 
and answering questions. We also thank two anonymous reviewers who provided 
valuable comments and suggestions for this publication. 

References 

1. Williams, L., Cockburn, A.C.: Agile Software Development: It’s about Feedback and 
Change. IEEE Computer 36 (2003) 

2. Nerur, S., Mahapatra, R.K., Mangalaraj, G.: Challenges of Migrating to Agile 
Methodologies. Communications of the ACM 48, 73–78 (2005) 

3. Laplante, P.A., Neill, C.J.: Uncertainty: A Meta-Property of Software. In: 29th Annual 
IEEE/NASA Software Engineering Workshop, pp. 228–233 (2005) 



 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 75 

 

4. Nidumolu, S.: Standardization, Requirements Uncertainty and Software Project 
Performance. Information & Management 31, 135–150 (1996) 

5. Milliken, F.J.: Three Types of Perceived Uncertainty about the Environment: State, Effect, 
and Response Uncertainty. The Academy of Management Review 12, 133–143 (1987) 

6. McConnell, S.: Software Estimation: Demystifying the Black Art. Microsoft Press (2006) 
7. Stutzke, R.D.: Estimating Software-Intensive Systems. Addison-Wesley Professional 

(2005) 
8. Boehm, B.: Software Engineering Economics. IEEE Transactions on Software 

Engineering 10 (1984) 
9. Grote, G., Kolbe, M., Waller, M.J.: On the Confluence of Leadership and Coordination in 

Balancing Stability and Flexibility in Teams. Paper presented at the 72nd Annual Meeting 
of the Academy of Management, Boston (2012) 

10. Wang, X., Conboy, K.: Understanding Agility in Software Development through a 
Complex Adaptive Systems Perspective. Presented at the European Conference on 
Information Systems, December 1 (2009) 

11. Boehm, B.W., Turner, R.: Balancing Agility and Discipline. Addison-Wesley (2004) 
12. Grote, G.: Uncertainty Management at the Core of System Design. Annual Reviews in 

Control 28, 267–274 (2004) 
13. Maruping, L.M., Venkatesh, V., Agarwal, R.: A Control Theory Perspective on Agile 

Methodology Use and Changing User Requirements. Information Systems Research 20, 
377–399 (2009) 

14. Robinson, H., Segal, J., Sharp, H.: Ethnographically-Informed Empirical Studies of 
Software Practice. Information and Software Technology 49, 540–551 (2007) 

15. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative 
Research. Sociology Press, Aldine (1967) 

16. Ebert, C., De Man, J.: Requirements Uncertainty: Influencing Factors and Concrete 
Improvements. Presented at the 27th International Conference on Software Engineering, 
ICSE (2005) 

17. Sharp, H., Robinson, H.: Collaboration and Co-ordination in mature eXtreme Programming 
Teams. International Journal of Human-Computer Studies 66, 506–518 (2008) 

18. Moe, N., Dingsoyr, T., Dyba, T.: Overcoming Barriers to Self-management in Software 
Teams. IEEE Software (2009) 

19. Dorairaj, S., Noble, J., Malik, P.: Understanding Team Dynamics in Distributed Agile 
Software Development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 47–61. 
Springer, Heidelberg (2012) 

20. Lavie, D., Stettner, U., Tushman, M.L.: Exploration and Exploitation Within and Across 
Organizations. The Academy of Management Annals 4, 109–155 (2010) 

21. Hoegl, M., Parboteeah, K.P.: Creativity in Innovative Projects: How Teamwork Matters. 
Journal of Engineering and Technology Management 24, 148–166 (2007) 

22. Baker, T., Nelson, R.: Creating Something from Nothing: Resource Construction through 
Entrepreneurial Bricolage. Administrative Science Quarterly 50, 329–366 (2005) 

23. Bechky, B.A., Okhuysen, G.A.: Expecting the unexpected? How SWAT Officers and Film 
Crews handle Surprises. Academy of Management Journal 54, 239–261 (2011) 

24. Boehm, B.W., Abts, C., Brown, W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., 
Reifer, D.J., Steece, B.: Software Cost Estimation with COCOMO II. Prentice Hall, Upper 
Saddle River (2000) 

25. Racheva, Z., Daneva, M., Buglione, L.: Supporting the Dynamic Reprioritization of 
Requirements in Agile Development of Software Products. In: Proceedings of the Second 
International Workshop on Software Product Management, IWSPM (2008) 


	The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties
	1 Introduction
	2 Research Method
	2.1 Data Collection
	2.2 Data Analysis

	3 Results
	3.1 Resource Uncertainties
	3.2 Requirements Uncertainties
	3.3 Task Uncertainties
	3.4 Output Uncertainties

	4 Discussion
	5 Limitations
	6 Conclusion
	References




