
The Effect of Complexity and Value

on Architecture Planning in Agile
Software Development

Michael Waterman, James Noble, and George Allan

Victoria University of Wellington, New Zealand
{Michael.Waterman,kjx,George.Allan}@ecs.vuw.ac.nz

Abstract. A key feature of agile software development is its prioritisa-
tion of responding to changing requirements over planning ahead. If an
agile development team spends too much time planning and designing
architecture then responding to change will be extremely costly, while
not doing enough architectural design puts the project at risk of failure.
Striking the balance depends heavily on the context of the system be-
ing built, the environment and the development teams. This Grounded
Theory research into how much architecture agile teams design up-front
has identified system complexity as an important factor in determining
how much planning a team does up-front, while system size, although
related to complexity, has a much less direct impact. Furthermore, when
determining how much design to do up-front, value to the customer can
be a more important factor than overall development cost. Understand-
ing these factors can help agile teams to determine how much up-front
planning is appropriate for the systems they develop.

Keywords: Software architecture, agile software development,Grounded
Theory.

1 Introduction

A software architecture represents the high-level structure and behaviour of a
software system [1] and can be difficult to change once development has started
[2]. Architecture is about planning ahead – getting the design of the system right
and avoiding costly refactoring during development. On the other hand, one of
the key features of agile software development is the ability to respond to chang-
ing requirements in preference to planning ahead [3]. There is therefore a tension
between up-front architecture design and agile methods. Many agile teams deal
with this tension through just enough up-front design to allow development to
begin [4]. How much just enough is depends on the context, where context is
made up of technical factors, environmental factors and the team itself.

This paper presents results from ongoing research that examines the relation-
ships between complexity and size, value and cost, and the effects that they
have on how much architectural planning teams do up-front. Understanding

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 238–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



The Effect of Complexity and Value on Architecture Planning 239

these factors can help agile teams to determine how much up-front planning is
appropriate for the systems they develop.

Following this introduction, section 2 discusses the problem of architecture
planning in agile development, section 3 describes the research methodology
used (Grounded Theory), section 4 presents the findings of this research and
section 5 discusses the results in context of the literature. Section 6 discusses the
limitations of the research, and finally section 7 concludes the paper.

2 Background

2.1 The Tension between Agile and Architecture

There are many definitions of software architecture. Kruchten defined software
architecture as “the set of significant decisions about the high level structure and
the behaviour of the system” [1]; Booch extended this by noting ‘significant’ can
be measured by the cost of change [2]. We can therefore summarise architecture
as comprising the planning and design decisions that are made up-front and are
difficult to change once development has started. Examples of architectural deci-
sions are the choice of technology stack (including the development frameworks),
architectural styles or patterns and the system’s high level components.

Delivering value to the customer and other stakeholders lies at the heart of
being agile; many of the twelve principles of the agile manifesto directly relate to
delivering value earlier and faster [3]. Scrum and XP maximise value by prioritis-
ing tasks according to business priorities [5,6], and Lean places high importance
on value streams and eliminating waste [7,8].

Agile methods focus on value through delivering software frequently, respond-
ing to changing and evolving requirements in preference to planning ahead, de-
livering quality, and simplicity [3]. Behind its ability to respond to changing and
evolving requirements is the principle of ‘the simplest thing that will work’, or
YAGNI – ‘you ain’t gonna need it’: any additional work, such as developing
features that might be required, will be wasted if those features never actually
make it into the final product [6].

Architecture design is often seen as contrary to the philosophy of YAGNI,
delivering little immediate value to the customer [9]. Agile developers therefore
often avoid or minimise architectural planning [10], with the architecture being
either neglected entirely or only implicitly defined. Too little architecture may
lead to an accidental architecture [11] – one that has not been carefully thought
through – and may lead to gradual failure of the project, while on the other
hand too much architecture planning will at best delay the start of development,
and at worst lead to expensive architectural rework if the requirements change
significantly.

The agile principle of YAGNI is therefore in tension with architectural
planning.



240 M. Waterman, J. Noble, and G. Allan

2.2 The Subjectivity of Up-Front Architecture Decision-Making

Agile methodology instructions generally advise developers to deal with the ten-
sion between agile and architecture by designing just enough architecture to
start development, with the rest being completed during development as required
[4,12,13]. How much is just enough depends heavily on context, with context de-
pending on environmental factors such as the organisation and the domain, as
well as specific factors such as project size, criticality, business model, archi-
tecture stability, team distribution, governance, rate of change and the age of
system [9]. More than this however; context also includes social influences [14],
such as the background and experience of the architects. Booch and Fairbanks
noted that a particular system may have more than a single correct architec-
ture [15,16], and two architects are likely to produce different architectures for
the same problem with the same boundaries [14]. Taylor described architec-
ture as being as much about ‘soft’ (subjective) factors as it is about objective
design [17].

2.3 The Effect of Size on Up-Front Planning

Boehm undertook a study [18] using the COCOMO II model [19] in which he
demonstrated a relationship between the level of up-front architectural effort
and the overall development effort (and hence cost). This study showed that
up-front architectural effort is a compromise between the amount of time spent
planning up-front and the amount of time spent on rework caused by doing too
little, with a ‘sweet spot’ at the overall minimum cost. The location of this sweet
spot is highly dependent on the context of the system; Boehm’s study illustrated
the impact of the size of the system, with a larger system requiring more time
spent resolving architectural issues than a smaller system for any given level of
up-front planning. This difference is due to the diseconomies of scale of software
development [18].

Figure 1 shows that an increase in size from 100 KSLOC (thousand equivalent
source lines of code) to 10,000 KSLOC increases the up-front planning sweet spot
from around 20 per cent of the total effort to around 40 per cent of the total
effort.

2.4 The Research Gap

There has been very little empirical research on the relationship between soft-
ware architecture and agile development to date [20]. Breivold et al. performed
a survey of the literature and concluded that studies have been small, diverging,
and in some cases, performed in an artificial setting [20]. Dyb̊a and Dingsøyr
also noted the need for more knowledge of software development in general,
particularly through empirical studies [21]. This lack of research does not mean
that it is not an important issue: at the XP2010 conference, how much archi-
tectural effort was rated as the second-equal most burning question facing agile
practitioners [22].



The Effect of Complexity and Value on Architecture Planning 241

0

20

40

60

80

100

0 10 20 30 40 50

Pe
rc

en
ta

ge
 o

f 
tim

e 
ad

de
d 

 
to

 o
ve

ra
ll 

sc
he

du
le

 

Percentage of time for architecture and risk resolution 

Architecting 

Rework 

Total 

Sweet spot 

10,000 KSLOC 

100 KSLOC 

Fig. 1. The effect of system size on the up-front architecture sweet spot, from Boehm
[18]

This paper presents results from ongoing research that helps address this gap
by investigating the relationships between complexity and size, value and cost,
and how they affect how much architectural planning teams do up-front. These
results can be used to guide agile development teams when making decisions on
how much up-front architecture design and planning is appropriate for systems
they develop.

3 Research Method

This research into up-front architecture uses the qualitative Grounded Theory
methodology [23]. Qualitative methods such as Grounded Theory are used to in-
vestigate people, interactions and processes. As noted above, architecture is very
dependent on the architects themselves and the development teams. Qualitative
research is generally inductive – it develops theory from the research, unlike de-
ductive research which aims to prove (or disprove) a hypothesis or hypotheses.
Because of the scarcity of literature on the relationship between architecture and
agile methods [20], an inductive methodology that will develop a new hypothe-
sis is more suitable for this research. We selected Grounded Theory because it
is a systematic and rigorous method [24] that allows researchers to develop a
substantive theory that explains the processes observed in a range of cases [25].

3.1 Data Collection

In this research, we collected data primarily through face-to-face semi-structured
interviews with agile practitioners who design or use architecture, or who are



242 M. Waterman, J. Noble, and G. Allan

otherwise architecture stakeholders. Participants were typically architects, de-
velopers, project leaders/managers and customers, and are all involved with
business-type applications. We collected additional data in the form of docu-
mentation and discussions by email and telephone to seek further information
or clarifications on earlier interviews.

3.2 Data Analysis

The first step of data analysis, open coding, can begin as soon as the first data
is obtained. In open coding, phenomena in the data are methodically identified
and labelled using a code that summarises the meaning of the the data [26].

As open coding progresses, emerging codes are compared with earlier codes;
codes with related themes are aggregated into higher levels of abstraction called
concepts. This process, called constant comparison [27], continues at the concept
level, with similar concepts being aggregated into a third level of abstraction
called categories. Categories are the highest conceptual elements of Grounded
Theory analysis; a Grounded Theory research project may have hundreds of dif-
ferent codes but will typically have no more than four or five categories [28].
The relationships between the categories are analysed and focused using selec-
tive coding; a dominant category emerges as the core category, which becomes
central to the emerging theory. Throughout the analysis process, memos – free
form notes ranging anywhere in size from a sentence to several pages – are writ-
ten to record thoughts and ideas about developing relationships between codes,
concepts and categories, and to aid the development of the theory [29].

Grounded Theory uses iteration to ensure a wide coverage of the factors that
may affect the emerging theory [26]: later data collection is dependent on the
results of earlier analysis. Data collection and analysis continue until saturation
is reached, which occurs when no new insights are learned, and all variations
and negative cases can be explained [30].

We can illustrate the Grounded Theory process with an example from this
research. One participant commented that they had regular tax law changes that
meant regular changes to their requirements:

“You’ve got your taxation changes coming in on specific dates throughout
the year, so those are generally around our release dates, because we have
to stay compliant with that.” (P3, development manager)

We coded this as ‘having regulatory changes’.
Similarly another participant commented on the pharmaceutical regulations

that affected his company’s product:

“The regulations keep changing every six months.” (P23, senior manager)

We also coded this as ‘having regulatory changes’.
Codes that had similar themes to this example included ‘having changes in

usage patterns or system load’, ‘requirements evolving’ and ‘understanding of
requirements changing’. We combined these similar codes into a concept called
‘having unstable requirements’. Figure 2 shows the relationship between the
underlying codes and ‘having unstable requirements’.



The Effect of Complexity and Value on Architecture Planning 243

Fig. 2. An example of a concept emerging from its codes

We have analysed thirty two interviews to date. Participants were gathered
through industry contacts, agile interest groups and through direct contact with
relevant organisations. Almost all participants were very experienced developers,
and most were also very experienced in agile development. Organisation types
vary from development consultancies, government departments, mass-market
product developers and single contractors. Different types of agile development
are included, with most participants using Scrum; other methods included XP,
Lean and bespoke methods. Most participants adapted their processes to some
extent to suit their team or customer’s requirements. The inclusion of this range
of participants and systems enables the research to include the effects of different
factors on architecture decision making.

We asked participants to select a project that they had been involved with to
discuss during the interview. Types of projects varied hugely, from green fields
to system redevelopment, from standalone systems to multi-team enterprise sys-
tems, and from start-up service providers and ongoing mass market product
development to bespoke business systems. Systems varied from highly critical
systems such as air traffic control and health record management, to business
critical systems such as banking and retail, through to largely non-critical admin-
istration and entertainment broadcast systems. We also obtained documentation
where possible to corroborate the interview data.

To maintain confidentiality, the participants are referred to using codes P1 to
P32. A summary of participants and their projects are listed in table 1.

4 Findings

This paper presents findings on the effects that complexity and size have on up-
front effort, and on using value rather than cost to determine how much effort a
team should put into architectural planning. An earlier paper [29] captured the
effects of architectural frameworks and templates, and the architects’ experience,
on the amount of up-front effort required in architectural design.

We used the Grounded Theory category “complexity over size” to form the
basis for part of these results. This category consists of the concepts “indi-
cators of complexity”, “up-front effort affected by complexity of system” and
“up-front effort affected by size of system” (figure 3a). The concept “indicators
of complexity” in turn emerged from the codes “complexity leading to multiple
frameworks”, “frameworks reducing architectural complexity”, “legacy systems



244 M. Waterman, J. Noble, and G. Allan

Table 1. Participant summary

Role Organisation
type

Domain Agile
methods

Team size
or no. of
teams

Duration System description

P1 Developer Government
agency

Health Single
developer

1 team
member

6 months Web-based, .NET

P2 Dev./
architect

Start-up E-commerce Scrum 3 team
members

Ongoing .NET, cloud-based

P3 Dev.
manager

Vendor Human
resources

Scrum 3 teams Ongoing Web-based, .NET,

P4 Director of
architec-
ture

Government dept. Digital
archiving

Scrum 5
developers

Ongoing Java, rich client, suite
of standalone tools

P5 Coach/dev.
manager

Start-up Entertainment Scrum/
kanban

Various N/A Various

P6 Man. Dir./
lead dev.

Vendor Telecoms Informal,
iterative

1–3
developers

Ongoing Suite of standalone
applications

P7 BA Telecoms operator Telecoms Scrum 12 team
members

1 year+ Suite of web-based
services

P8 Lead
developer

Government dept. Digital
archiving

Scrum 4–14 team
members

1 year+ Ruby on Rails, Java
back-end

P9 Developer Financial services Telecoms Bespoke 2–24 team
members

3 years Web-based system

P10 Coach Multinat.
hardware vendor

Transport Scrum/XP 500–800
developers

Several
years

Large distributed
web-based system

P11 Architect Government Government
services

Scrum 8 team
members

Several
years

Web-based services,
.NET

P12 Senior
developer

Service provider Financial
services

Scrum 6–7
developers

7 months .NET, suite of
web-based applications

P13 Architect Government Health Scrum 12 team
members

4 years Monolithic .NET app

P14 Architect Government Animal health Scrum 6–8 team
members

18 months .NET, large GIS
component

P15 Customer Start-up service
provider

Retail
(electricity)

Scrum 7
developers

Ongoing (3
years)

Ruby On Rails

P16 CEO/chief
engineer

Start-up Retail
(health)

XP 5 team
members

5 months Ruby On Rails

P17 Manager/
coach

Government Statistics Scrum 6 dev +
admin

2–3 years Web-based, PHP using
DAO pattern

P18 Dev.
manager

Multinat.
hardware vendor

Health Scrum 15 team
members

Ongoing
(>2 years)

Web-based, Java
platform

P19 Dev.
manager

Start-up service
provider

Retail
(travel)

Lean 4
developers

Ongoing
(<1 year)

PHP/Symfony,
Javascript/Backbone

P20 Coach and
trainer

Independent
consultant

N/A Scrum N/A N/A N/A

P21 Manager/
coach

Service provider Retail
(publishing)

Scrum 3 teams; 40
total

Several
years

.NET, Websphere
Commerce, SAP,
others.

P22 Senior
manager

Service provider Contact man-
agement/marketing

Scrum/XP More than
40 total

N/A .NET

P23 Senior
manager

Vendor Pharmaceut-
ical

Own
methods

3 teams Ongoing Various web based,
client/server

P24 Customer Start-up service
provider

Retail
(electricity)

Scrum 7
developers

Ongoing (3
years)

Ruby On Rails web
applications

P25 Team lead Service provider Banking Scrum 1 team Ongoing .NET, single tier web
P26 Team lead Government Water

management
Scrum 8 team

members
1 year .NET, web based, 7 tier

P27 CEO/coach Start-up service
provider

Retail
(electricity)

Scrum 7
developers

Ongoing (3
years)

Ruby On Rails

P28 Technical
lead

Service provider Broadcasting Scrum 42 team
members

N/A Python with Django,
CMSs for multiple
websites

P29 Dev.
manager

Banking Banking Kanban 20 team
members

Ongoing Web based, AJAX,
interface to mainframe

P30 Consulting
architect

Service provider Telecoms Scrum 7 team
members

2 years+ Python with Django
and Twisted, NoSQL

P31 Enterprise
architect

Government Transport Bespoke 7 team
members

13 week
pilot

Web services, SOA
using .NET/WCF

P32 Software
dev.
director

Vendor Government FDD, kanban N/A N/A N/A



The Effect of Complexity and Value on Architecture Planning 245

(a) (b)

Fig. 3. (a) the category “complexity over size” emerging from its concepts; (b) the
concept “indicators of complexity” emerging from its codes.

are complex” and “many integration points lead to complexity” (figure 3b). The
other concepts likewise emerged from their respective codes; they are not listed
here for the sake of brevity.

4.1 The Effect of Complexity on Up-Front Architecture Effort

Participants reported that the complexity of a system is an important deter-
minant of how much architecture planning a team does up-front. System com-
plexity is caused by demanding requirements and quality attributes, and results
in design decisions that are intertwined and have multiple dependencies [31].
Complexity may extend or break the limits of the development frameworks be-
ing used, and therefore increases the decision-making effort required to select
appropriate frameworks and tools, and to design a suitable architecture. A less
complex system will require less effort and a less sophisticated design.

For example, a participant in this research described how complexity affects
up-front architectural effort in his work:

“Typically, [the length of the start-up phase] depends on the complexity.”
[...] “The project that I am working on now is not a very complex ar-
chitecture. For that I don’t think we need a visual modelling tool – just
a simple whiteboard or flipchart with coloured Post-Its can work.” (P21,
manager/agile coach)

Participants noted that complexity can often be indicated by the need to use
bespoke components and libraries, by the need to use multiple technologies,
having many integration points, and by having to work with legacy systems.
These are explored below.

Bespoke Components: Modern vendor frameworks such as .NET, Hibernate
and Ruby on Rails provide standard solutions to problems, reducing the up-front
effort required to build a system, and enabling architectural changes to be made
with a lot less effort [29]. Frameworks are used by development teams to greatly
reduce the amount of up-front architecture and development effort required,
particularly in business-type applications, with participants commenting that
they did not need to make as many architectural decisions when using modern
frameworks:



246 M. Waterman, J. Noble, and G. Allan

“You choose the proper plug-ins and then you get the functionality that
you are looking for.” (P16, CEO)

What used to be considered architectural decisions ten years ago are now some-
times considered design decisions, or even simply configuration decisions:

“Those [structural] decisions can be very emergent nowadays; I don’t think
they’re nearly as intractable” (P29, development manager).

Frameworks, however, cannot always provide a complete solution. There are
frequently parts of systems that cannot be implemented using components or
libraries from the frameworks and have to be designed and developed from
scratch. These may be because the problem is unique or because the framework
components do not meet non-functional requirements such as performance. Non-
framework components increase complexity and result in extra up-front effort as
teams first identify the parts of the system that cannot be implemented using
pre-built components, and then perform analysis and experiments to come up
with satisfactory bespoke replacements:

“There were a number of architectural things that were developed in-house.
[...] We wrote our own data binding framework for instance. [...] We did a
bit of prototyping, we built the data binding framework that we came up as
a result of all of those factors. We had a bit of a go with what Microsoft
had off the shelf previously, found it painful and limiting, and felt that
it confirmed our decision to go our own way with data binding.” (P13,
architect)

Multiple Technologies: Like the need for bespoke components, a system with
complex requirements may not be able to be implemented entirely using a single
vendor framework, and instead may require multiple frameworks to implement
the required features and functionality. Not only does selecting these frameworks
require extra up-front planning, but setting up automatic testing platforms,
continuous integration delivery and other related set up activities become more
difficult and require more effort:

“If it’s really horribly complex and you’ve got to request all sorts of bits
of infrastructure from all over the show to get it to work then it definitely
slows down iteration zero.” (P29, development manager)

Legacy Systems: Legacy systems are older systems that were created using
outdated techniques and technology [32], and are no longer being ‘engineered’
but rather are simply patched as requirements change [33] without considera-
tion of the technical debt being incurred [9]. These patches add to the system’s
complexity [34]:

“Systems become more complex with age. Just the burden of code – entropy
over time and all that.” (P32, Software Development Director)

Good engineering practices such as simplicity, modularity and high cohesion are
eroded, and continuing to develop, or even interfacing with, these entropic legacy



The Effect of Complexity and Value on Architecture Planning 247

systems is a source of complexity that requires more up-front exploration and
proofs of concept to ensure that integration is possible.

Integration: Participants identified integration points, or interfaces to external
systems, as a major source of complexity in the systems being developed, partic-
ularly when the other systems are legacy or are built from different technologies.
Integration with other systems require data and communications to be mapped
between the systems, which adds to the up-front effort to ensure integration is
possible with the technologies being used.

“Today’s systems tend to be more interconnected – they have a lot more
interfaces to external systems than older systems which are typically stan-
dalone. They have a lot higher level of complexity for the same sized sys-
tem.” (P14, solutions architect)

4.2 The Effect of Size on Up-Front Architecture Effort

The size of a system is frequently considered by the literature as a factor in
determining how much up-front architectural effort is required [9,18] (section
2.3). Contrarily, the participants in this research reported that size is not as
important as complexity:

“In my experience, the complexity of an organisation’s systems landscape
has a greater influence on the amount of fore-thought required than the
budget or size of any particular initiative” (P10, agile coach)

Size may be measured explicitly by using a metric such as lines of code or num-
ber of components, or implicitly using a metric such as the project’s budget or
development time required. Size typically has some correlation with complexity:
a small system is usually not very complex, and a large system has the potential
for a high level of complexity. The relationship is not linear however; sometimes
there may only be a small correlation.

A system, independent of size, may not have any of the sources of complexity
described above – bespoke components, integration, multiple technologies and
legacy systems – and hence will have a low level of complexity, and will require
less up-front architectural effort:

“If we have size that just extends the time, it’s of little concern to us.
It’s just a slightly larger backlog, management overhead.” (P32, software
development director)

Specifically, a large system that can be implemented entirely using the compo-
nents and libraries of a framework with an acceptable level of risk is often not
very complex, and will require less up-front effort than a similar sized complex
system. For example, P27’s team was building a large system that had com-
plex requirements and complex functionality, but the team was able to decouple
this complexity from the architecture through implementing the system entirely
within the boundaries of Ruby on Rails. They were therefore able to build the
system with very little up-front planning:



248 M. Waterman, J. Noble, and G. Allan

“We talk to a lot of systems, we interface with a lot of systems, we’ve got
customer web requests coming in, we’ve got iPhone requests coming in,
from a software point of view there’s a lot of moving parts. The [function-
ality] is very, very complex – but the physical architecture itself that it sits
on is nice and standard. [...] It’s a just well adopted Ruby On Rails stack.
We deliberately try not to do anything different. Go with what’s proven, go
with what works. [...] We don’t have architectural discussions – we don’t
need to – the problem’s [already] been solved.” (P27, CEO/agile coach)

Another participant, P26, described a .NET system that he built as having an
‘enterprise-grade architecture’ that was too big for the system being built: it
had more layers and levels of abstraction than required. Despite this extra size,
he believed the extra complexity was minor, describing the additional up-front
effort required for this larger architecture designed for a larger system as being
minimal, with most of the extra effort coming during development when getting
new team members up to speed with the architecture.

Conversely, even a small system may require a lot of up-front planning if it is
complex:

“It could have been a very small thing that created a big iteration zero.”
(P29, development manager)

The use of frameworks to avoid complexity allowed some participants (such as
P27) to completely avoid up-front planning, allowing them to increase their
agility and respond to change and deliver early value much more effectively.

4.3 Using Value and Cost Minimisation to Determine How Much
Up-Front Architectural Effort

Section 2.3 above described Boehm’s analysis which uses the minimum effort
(and hence cost) to determine the sweet spot of architectural effort. While “cost
is always a concern” (P10) in agile development, in some situations agile teams
are more concerned about delivering business value to their customer – at the
expense of cost.

For many businesses, particularly those building a new commercial mass mar-
ket product or service, the value of software is the economic value that it adds
to the business, and is measured by participants in this research in terms of cash
flow or net present value, with early value being provided by early adopters of
the service. When faced with a decision of either doing more architectural plan-
ning up-front (and delaying the release) or minimising architectural planning
(and releasing as early as possible with less functionality), the teams consider
which option will provide the most value to the business:

“Today they’ve got an opportunity for a business idea that might make
them some money – if they don’t pounce on it it’s gone regardless of how
clever they think they are.” (P26, team lead)

and
“If they [build] the big system, then they will never reach their end cus-
tomer and make their money.” (P22, senior manager)



The Effect of Complexity and Value on Architecture Planning 249

An early release may be in the form of a Minimum Viable Product [35], which
is a marketing experiment – a release with limited functionality designed to
determine which features are desirable, rather than a fully functional version of
the software.

Focusing on business value and minimising the up-front effort may lead to
the need to re-design the architecture later and increase the overall cost. By this
stage the customer is in a better position to pay for that rework:

“Maybe it’ll cost a lot more to replace it a year later, but you already have
some business...” (P22, senior manager)

and
“[Designing for a million users] is a problem you can have once you’ve
got a million users and you’ve got a million users worth of revenue...”
(P27, CEO/agile coach)

Agile teams must therefore consider value, and not just cost, as a measure for
determining the level of up-front architectural planning the team does.

5 Discussion

This study of agile practitioners has found that the complexity of a system is
an important factor in determining how much up-front architecture planning is
required. Indicators of complexity include bespoke components, multiple tech-
nologies, integration with other systems, and dealing with legacy systems. On
the other hand, system size by itself is not a good determinant of up-front effort,
a result that is at odds with Boehm’s analysis [18], described above in section
2.3. That analysis presented a clear relationship between the up-front architec-
tural effort sweet spot and system size (see figure 1), due to the diseconomies of
scale of software development. Boehm’s analysis is based on data derived from
the COCOMO II cost model, a model released in 1996 that calculates the cost
of development of software systems using a complex regression algorithm and
historical parameters, calibrated with the experiences obtained from a set of 161
software projects [18].

There may be a number of reasons for the difference between Boehm’s result
and these findings.

Boehm’s analysis did not distinguish between complexity and size. The data
that COCOMO II is based on is likely to be from projects from the mid 1990s
or earlier. COCOMO II therefore predates modern frameworks that developers
currently use to reduce complexity and up-front effort. When considering systems
that do not use modern frameworks, there may be a good correlation between
size and complexity which allows size to be used as a proxy for complexity.

The importance of the effect of early delivery on value was noted by Boehm
in the context of software economics [36]: “The primary value realized may not
be in cost avoidance but rather in reduced time to market.” COCOMO II, a cost
model, does not consider the benefit gained from early delivery of value, simply
using cost to determine the sweet spot. Poort and van Vliet similarly proposed
a method of determining the level of up-front architecture which is based on



250 M. Waterman, J. Noble, and G. Allan

prioritising risk and minimising cost [37]. They claimed that stakeholder value
is implicit in the presence of the solution’s goals and business requirements.
However this assumption is not appropriate for agile development, because firstly
it assumes that the solution’s goals and business requirements do not change
after development has started, and secondly it assumes that there is no value in
delivering functionality to the end user before development of the entire system
has been completed.

Boehm and Turner presented an earlier comparative model similar to figure 1
which had risk exposure (rather than effort) as the dependent (y-axis) variable
[38]. Risk exposure included the business risk of delay caused by spending too
much time on architectural planning, and is therefore more appropriate for agile
development. Higher levels of risk exposure caused by higher levels of up-front
planning would cause the sweet spot to move towards the less-planning end of
the scale. Poort and van Vliet did not consider business risk [37].

Abrahamsson, Babar and Kruchten [9] listed a number of factors that they
suggested can affect the level of up-front planning, including the rate of change
of requirements, governance, team distribution, stability of the architecture and
the business model. These factors are not discussed in this paper.

6 Limitations

A substantive Grounded Theory is only applicable to the domain being studied
[30], and therefore cannot be assumed to be applicable to other contexts, or in
general. The result is therefore, to some extent, dependent on the participants
selected for the research. For example, these results cannot be applied to embed-
ded software because we did not include any participants who develop embedded
software systems.

7 Conclusion

This paper considers the relationships between complexity and size, value and
cost, and how they affect how much up-front planning agile teams do.

Previous analysis undertaken by Boehm using the COCOMO II model presents
a clear relationship between size and up-front architecture planning. However, re-
sults from this research show that the relationship between system complexity and
up-front planning is more important than the relationship between size and up-
front planning. Complexity, caused by demanding requirements and quality at-
tributes, greatly increases the up-front planning required, and may be indicated
by the need to build bespoke components, which are requiredwhere the framework
does not provide the functionality needed or cannot meet non-functional require-
ments such as performance, by the need for multiple frameworks, by the need for
many integration points with other systems, and by the need to work with legacy
systems. While complexity is closely related to size, size in itself does not always
directly affect the amount of up-front planning, particularly if the system has a
low level of complexity.



The Effect of Complexity and Value on Architecture Planning 251

The need for architecture planning is in tension with agile’s need to respond to
changing requirements: too much planning results not only in unnecessary effort
but also wasted effort if requirements change, while too little planning leads to
more effort to address architectural problems that arise. Therefore the minimum
overall cost is sometimes used to determine how much up-front planning a team
should do. However, in agile development, the need to provide early value to the
customer may override the need to minimise overall cost, if early value will lead
to an improved cash flow for the customer. To provide early value, the team may
do less up-front planning, potentially with more architectural rework later when
the customer’s cash flow is more able to support that architectural effort.

Agile teams must consider complexity and value when determining how much
architectural design to do up-front. Further results from this research will explore
other factors that influence how much up-front design is required.

References

1. Kruchten, P.: The Rational Unified process – an Introduction. Addison Wesley
(1998)

2. Booch, G.: Architectural organizational patterns. IEEE Software 25(03), 18–19
(2008)

3. Beck, K., et al.: Agile manifesto (2001), http://agilemanifesto.org/
4. Ambler, S.W.: Agile architecture: Strategies for scaling agile development,

http://www.agilemodeling.com/essays/agileArchitecture.html

5. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The scrum primer (2010), http://
assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf

6. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley Professional (2005)

7. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley Professional (2003)

8. Coplien, J.O., Bjørnvig, G.: Lean Architecture for Agile Software Development.
John Wiley and Sons, Ltd. (2010)

9. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and architecture: Can they
coexist? IEEE Software 27(02) (2010)

10. Kruchten, P.: Agility and architecture: an oxymoron? In: SAC 21 Workshop: Soft-
ware Architecture Challenges in the 21st Century (2009)

11. Booch, G.: The accidental architecture. IEEE Software 23(03), 9–11 (2006)
12. Booch, G.: An architectural oxymoron. IEEE Software 27(05), 96 (2010)
13. Avram, A.: 10 suggestions for the architect of an agile team (September 2010),

http://www.infoq.com/news/2010/09/Tips-Architect-Agile-Team

14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
SEI Series in Software Engineering. Addison-Wesley (2003)

15. Booch, G.: The irrelevance of architecture. IEEE Software 24(03), 10–11 (2007)
16. Fairbanks, G.: Just Enough Software Architecture: A Risk Driven Approach. Mar-

shall and Brainerd (2010)
17. Taylor, P.R.: The Situated Software Architect. PhD thesis, Monash University

(December 2007)
18. Boehm, B.: Architecting: How much and when? In: Oram, A., Wilson, G. (eds.)

Making Software. O’Reilly (2011)

http://agilemanifesto.org/
http://www.agilemodeling.com/essays/agileArchitecture.html
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://www.infoq.com/news/2010/09/Tips-Architect-Agile-Team


252 M. Waterman, J. Noble, and G. Allan

19. Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., Steece, B.:
Software Cost Estimation with COCOMO II with CD-Rom, 1st edn. Prentice Hall
PTR, Upper Saddle River (2000)

20. Breivold, H.P., Sundmark, D., Wallin, P., Larson, S.: What does research say about
agile and architecture? In: Fifth International Conference on Software Engineering
Advances (2010)

21. Dyb̊a, T., Dingsøyr, T.: What Do We Know about Agile Software Development?
IEEE Software 26(05), 6–9 (2009)

22. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practition-
ers. IEEE Software 27(05), 8–9 (2010)

23. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine de Gruyter (1967)

24. Allan, G.: The legitimacy of Grounded Theory. In: European Conference on Re-
search Methods (keynote address) (July 2006)

25. Strauss, A., Corbin, J.: Grounded theory methodology. In: Denzin, N.K., Lincoln,
Y.S. (eds.) Handbook of Qualitative Research. Sage Publications, Inc. (1994)

26. Allan, G.: A critique of using grounded theory as a research method. Electronic
Journal of Business Research Methods 2 (July 2003)

27. Bryman, A.: Social Research Methods, 3rd edn. Oxford University Press (2008)
28. Glaser, B.G.: The grounded theory perspective III: Theoretical coding. Sociology

Press (2005)
29. Waterman, M., Noble, J., Allan, G.: How much architecture? Reducing the up-front

effort. In: Agile India 2012, pp. 56–59 (February 2012)
30. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Quali-

tative Analysis. SAGE Publications Ltd. (2006)
31. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-

sions. In: WICSA 2005, pp. 109–120 (2005)
32. Bennett, K.: Legacy systems: Coping with stress. IEEE Software 12(01), 19–23

(1995)
33. McGovern, L.: What is legacy code? (2008),

http://www.flickspin.com/en/software_development/what_is_legacy_code

34. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68, 1060–1076 (1980)

35. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses. Crown Publishing Group (2011)

36. Boehm, B., Sullivan, K.: Software economics: a roadmap. In: Proceedings of the
Conference on The Future of Software Engineering, ICSE 2000, pp. 321–343. ACM,
New York (2000)

37. Poort, E.R., van Vliet, H.: Architecting as a risk- and cost management discipline.
In: WICSA 2011, pp. 2–11 (2011)

38. Boehm, B.: Get ready for agile methods, with care. IEEE Computer 35(01), 64–69
(2002)

http://www.flickspin.com/en/software_development/what_is_legacy_code

	The Effect of Complexity and Value on Architecture Planning in Agile Software Development

	1 Introduction
	2 Background
	2.1 The Tension between Agile and Architecture
	2.2 The Subjectivity of Up-Front Architecture Decision-Making
	2.3 The Effect of Size on Up-Front Planning
	2.4 The Research Gap

	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Findings
	4.1 The Effect of Complexity on Up-Front Architecture Effort
	4.2 The Effect of Size on Up-Front Architecture Effort
	4.3 Using Value and Cost Minimisation to Determine How Much

	5 Discussion
	6 Limitations
	7 Conclusion
	References




