
Micro Patterns in Agile Software

Giulio Concas, Giuseppe Destefanis,
Michele Marchesi, Marco Ortu, and Roberto Tonelli

Department of Electrical and Electronic Engineering (DIEE)
University of Cagliari

Cagliari, Italy
{concas,giuseppe.destefanis,michele,

marco.ortu,roberto.tonelli}@diee.unica.it

Abstract. In this paper we present a study on micro patterns in dif-
ferent releases of two software systems developed with Object Oriented
technologies and Agile process. Micro patterns are design decisions in
code that can be easily automatically recognised. Gil and Maman intro-
duced the concept to support providing objective assessment of design
decisions [1]. They catalogued 27 micro patterns that capture a variety
of programming practices in Java. Micro patterns can be a useful met-
rics in order to measure the quality of software by showing that certain
categories of micro patterns are more fault prone than others, and that
the classes that do not correspond to any category of micro patterns
are more likely to be faulty. In our study we present some empirical re-
sults on two case studies of systems developed with Agile methodologies,
and compare them to previous results obtained for non Agile systems.
In particular we have verified that the distribution of micro patterns
in a software system developed using Agile methodologies does not dif-
fer from the distribution studied in other systems, and that the micro
patterns fault-proneness is about the same. We also analyzed how the
distribution of micro patterns changes in different releases of the same
software system. We demonstrate that there is a relationship between
the number of faults and the classes that do not match with any micro
patterns. We found that these classes are more likely to be fault-prone
than the others even in software developed with Agile methodologies.

Keywords: agile, micro pattern, data mining, object oriented
programming.

1 Introduction

Software quality metrics [20] aim measuring how much a software is good espe-
cially from the point of view of being error-free and easy to modify and maintain.
Software quality metrics tend to measure whether software is well structured, not
too simple and not too complex, with cohesive modules that minimize their cou-
pling. Many quality metrics have been proposed for software, depending also on
the paradigm and languages used there are metrics for structured programming,
object-oriented programming, aspect-oriented programming, and so on. In this

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 210–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Micro Patterns in Agile Software 211

paper, we will focus on micro patterns metrics. Micro patterns are design deci-
sions in code that can be easily and automatically recognized. Gil and Maman
introduced the concept to support providing objective assessment of design deci-
sions [1]. They catalogued 27 micro patterns that capture a variety of program-
ming practices in Java, from inheritance, to data encapsulation, to the emulation
of typical practices of procedural programming. The 27 micro patterns proposed
by Gil and Maman were shown by them to be present in 75 % of classes they ana-
lyzed. Some of those patterns are regarded as anti patterns [10] representing prac-
tices that are considered to be poor design practice although it is important to
emphasize that there is no agreement about which micro patterns are considered
anti patterns. Thus classes can be divided into 2 categories: MP (Micro Patterns)
andNMP (noMicro Pattern) namely those thatmatch one ormore of the 27 micro
patterns, and those that do not match any micro patterns. Given the purpose of
micro patterns, a question naturally arises as to whether there is a relationship be-
tween the use of different patterns and the quality of the code. In particular there
are no studies investigating the diffusion and the distribution of micro patterns in
software systems developed using Agile methodologies [2].

In this work we will present the possible use of micro patterns metrics to
indirectly assess the quality of the developed software, by showing the relation-
ship between micro patterns and faults and in this context, we assess the ability
of micro patterns to discriminate the usage of Agile practices. We present re-
sults on different releases of two software systems on two industrial case-study.
We understand that the presented evidence is anecdotal, but with real software
projects it is very difficult to plan multi-project researches of this kind. This
is because software houses tend to be very secretive about their projects. We
hope that other researchers will try to replicate the presented results on similar
projects whose data they can access. The target of our research is the evolution
of a software project consisting of the implementation of floss-AR, a program to
manage the Register of Research of universities and research institutes. floss-AR
was developed with a full object-oriented (OO) approach and released with GPL
v.2 open source license. The second system is a Web application, which has been
implemented through a specialization of an open source software project, jAPS
(Java Agile Portal System) [6], that is a Java framework for Web portal creation.
This system is certified as a software developed using Agile methodologies.

In order to verify the use of Agile methodologies during the development
phases of the analyzed systems, we submitted a questionnaire to the developers
such as to have greater knowledge about Agile methodologies used.
We decided to organize our paper answering to the following research questions:

• RQ1: Do software systems developed with Agile methodologies have a dif-
ferent distribution of micro patterns with respect to non Agile open source
systems?

• RQ2: Is the micro patterns faults-proneness the same for Agile and non
Agile software?

• RQ3: Does the micro patterns distribution change during software
evolution? If yes, how?



212 G. Concas et al.

2 Related Works

After the work of Gil and Maman that defines the catalog of the micro patterns
[1], several works have appeared in this field. Arcelli and Maggioni suggest a
novel approach for the detection of micro patterns which is aimed at identifying
types that are very close and similar to a correct micro patterns implementation,
even if some of the methods and/or attributes of the type do not comply with the
constraints defined by the micro patterns [4]. The new interpretation is based on
the number of attributes (NOA) and the number of methods (NOM) of a type.
Similar studies to those discussed in our work have been conducted for design
patterns [5]: Heuzeroth et al. presented an approach to support the understand-
ing of software systems by detecting design patterns automatically using static
and dynamic analyses [7]. Aversano et al. report an empirical study showing that
for three open source projects, the number of defects in design-pattern classes is
in several cases correlated with the scattering degree of their induced crosscut-
ting concerns, and also varies among different kinds of patterns [8]. Destefanis
et al. [3] analyzed the relationship between faults and the remaining 25% of
classes that do not match with any micro pattern. They found that these classes
are more likely to be fault-prone than the others. Tasharofi et al. [14] provide
a set of high-level process patterns for Agile development which have been de-
rived from a study of seven Agile methodologies based on a proposed generic
Agile Software Process. These process patterns can promote method engineer-
ing by providing classes of common process components with can be used for
developing, tailoring, and analyzing Agile methodologies. Concas et al. in [13]
studied and discussed the evolution of the classical software metrics and their
behavior related to the Agile practices adoption level. The authors show that,
in the reported case study, a few metrics are enough to characterize with high
significance the various phases of the project. Consequently, software quality, as
measured using these metrics, seems directly related to Agile practices adoption.

3 Methodology

The goal of this paper is to investigate the possible relationship between Ag-
ile methodologies and micro patterns. We submitted to the developers of the
floss-AR software system, a questionnaire in order to evaluate the effective use
of Agile methodologies in the early stages of software development [17]. We de-
veloped a custom Java tool, based on Gil and Maman’s research [1] in order
to extract from the software systems analyzed the data relative to the micro
patterns distribution. We tested our tool on the data-set used in [1] finding the
same results. The tool works in two steps:

• the first step consists in parsing the source code and in generating a series of
files containing information relative to the various classes, fields, methods,
calls and so on;

• in the second step the tool calculates the presence of the micro patterns for
each class of the analyzed system, using the files produced in the first step.



Micro Patterns in Agile Software 213

The tool uses the definitions given by Arcelli and Maggioni described in [4]. The
class is assigned to only one micro pattern, the one with the highest GSR (Global
Similarity Ratio). GSR is a real number between zero (complete absence of the
micro pattern) and one (presence of the micro pattern as defined in [1]). Inter-
mediate values indicate a partial presence of the micro pattern. Each software
system analyzed is characterized by a GSR matrix where each row represents the
value for a class and each column contain a GSR value for each micro pattern.
The correlation between columns of the GSR matrix provides important infor-
mation about the relationship between different micro patterns, for example if
the matching of one micro pattern with a class implies the matching of an other
micro pattern with the same class. We analyzed the two systems developed using
Agile methodologies and we have studied the distribution and the evolution of
micro patterns through different releases.

The micro patterns catalog contains several categories that in the literature
are considered like anti patterns [12] as descriptive of bad programming practices
not related to the object orientation techniques.

In [3] Destefanis et al. show that there are other micro patterns categories
prone to fault and that the classes of a software system that does not belong
to any category of micro patterns are more prone to faults. In this paper we
analyzed the different releases of the floss-AR system in order to verify if:

– also in this case there is a relationship between the number of faults and anti
micro patterns;

– there is a relationship between number of faults and micro patterns more
fault prone;

– there is a relationship between number of faults and classes that do not
belong to any micro patterns category.

The analysis cannot have statistical significance (because it is performed on a
single system), but it is however interesting and a good starting point to further
studies. To establish the link between source code and fix operation we adopt
the traditional heuristics proposed by Bachmann and Bernstein [11]:

1. Scan through the change logs for bug report in a given format (e.g. fix bug,
fix issue and so on).

2. Exclude all false-positive bug numbers (e.g. r420, 2009-05-07 10:47:39 -0400
and so on).

3. Check if there are other potential bug number formats or false positive num-
ber formats, add the new formats and scan the change logs iteratively.

4. Check if potential bug numbers exist in the bug- tracking database with
their status marked as fixed.

Based on these heuristics we mine the source code repository (such as CVS
and SVN) for commit that fixed a bug. Knowing how many time a class have
been debugged and knowing the micro patterns associated (if any) to the class
we could then evaluate the fault proneness of micro patterns for the system
analyzed.



214 G. Concas et al.

4 Results

In this section we present the results of the survey to developers and on the
analysis performed on the source code of the Agile systems. In particular we
show how the Agile development impacts on the micro patterns statistics, and
on the fault proneness of micro patterns, anti patterns and the set composed by
the classes that do not match with andy micro patterns of the catalog (no micro
patterns category: NMP).

4.1 Survey

The results of the survey clearly show that Agile development has been applied
for the floss-AR system. Tabs. 1 2 3 resume the survey’s results.

Table 1. floss-AR developers survey (5 developers)

Question Very good Good Discrete Adequate Not ade-
quate

How would you describe the
collaboration of the team?

4 1 0 0 0

Table 2. floss-AR developers survey (5 developers)

Question Yes No

The collaboration inside the team increased the
productivity?

5 0

Did you take part in developing the whole sys-
tem?

3 2

Do you have favourite programming styles? 2 3

Have the project decisions been discussed to-
gether with the team?

5 0

Did you interact directly with the customer? 4 1

Did you use refactoring? 5 0

The questions are divided in three groups according to the format of the
possible answers. The first question requires an answer with 5 possibilities, in
the second set the questions are posed in a YES or NO form, while in the third
set the questions require a short sentence answer.

For developing floss-AR the following Agile practices have been applied:

• Pair programming
• Stand Up Meeting
• Refactoring
• On Site Customer

According to further discussions with the developers team, we are also able to
identify four main phases of development:



Micro Patterns in Agile Software 215

Table 3. floss-AR developers survey (5 developers)

Question Answer

Which Agile methodologies did you use dur-
ing development? • Pair Programming

• Stand Up Meeting
• Refactoring
• On Site Customer

How often did you interact with the customer? 1-2 times per month

How often did you use refactoring? 2-3 times per month

• Phase 1 (Initial Agile): a phase characterized by the full adoption of all
practices, including testing, refactoring and pair programming. This is the
phase leading to the implementation of a key set of the system features.
In practice, specific classes to model and manage the domain of research
organizations, roles, products, and subjects were added to the original classes
managing the content management system, user roles, security, front end
and basic system services. The new classes include service classes mapping
the model classes to the database, and allowing their presentation and user
interaction.

• Phase 2 (Cowboy Coding): this is a critical phase, characterized by a mini-
mal adoption of pair programming, testing and refactoring, because a public
presentation was approaching, and the system still lacked many of the fea-
tures of competitors’ products. So, the team rushed to implement them,
compromising the quality.

• Phase 3 (Refactoring): an important refactoring phase, characterized by the
full adoption of testing and refactoring practices and by the adoption of a rig-
orous pair programming rotation strategy. The main refactorings performed
were Extract Superclass, to remove duplications and extract generalized fea-
tures from classes representing research products, and corresponding service
classes, and Extract Hierarchy applied to a few big classes, such as an Action
class that managed a large percentage of all the events occurring in the user
interface. This phase was needed to fix the bugs and the bad design that
resulted from the previous phase.

• Phase 4 (Mature Agile): Like Phase 1, this is a development phase char-
acterized by the full adoption of the entire set of practices, until the final
release.

4.2 Source Code Analysis

We next report the results on how Agile methodologies can impact on the micro
patterns distribution and on the fault proneness of the code. In Tabs. 4 5 we report
the micro patterns distributions for each release of the floss-AR and Japs systems,
in order to show how such distributions evolve from one release to the next.



216 G. Concas et al.

Table 4. jAPS micropattern distribution (%)

MP 1.0 1.2 1.4 1.6 1.6.2 1.8 1.8.2 2.0

DESIGNATOR 2.14 1.79 2 3.3 3 4.32 6.83 9.6

TAXONOMY 0 0 0 0 0 0 0 0

POOL 0 0 0 0.55 0.54 0.27 0 0.35

JOINER 0 0 0 0 0 0 0 0

FUNCTIONPOINTER 27.1 23.3 27.5 18.7 19.5 18.1 16.7 7.18

FUNCTIONOBJECT 0.71 6.1 0 2.2 2.7 1.89 2.02 1.22

COBOLLIKE 0 0 0 0.27 0.27 0.81 0.75 0.5

STATELESS 0.71 0 1 0.82 0.82 1.08 1.01 1.22

COMMONSTATE 0 0 0 0 0 0 0 0.17

IMMUTABLE 0 3.2 0 0.82 0.82 0.81 0.75 0.87

RESTRICTEDCREATION 0.35 0.4 0.33 0.55 0.54 0.54 0.5 0.17

SAMPLER 0 0 0 0 0 0 0 0

BOX 4.64 15.4 3.98 0.27 0.27 0.27 0.25 1.4

COMPOUNDBOX 7.5 10 12.3 7.1 17.9 7.02 6.83 11.9

CANOPY 0 0 0 0 0 0 0 0

RECORD 0 0 0 0 0 0 0 0

DATAMANAGER 0.35 0.35 0 0 0 0 0 0

SINK 15.3 3.9 15.6 4.14 3.5 2.7 2.78 2.45

OUTLINE 0 0 0 0 0 0 1.0 0.35

TRAIT 0 0 0 0 0 0 1.3 1.1

STATEMACHINE 0.71 0 0.66 0.82 0.82 0.54 0.5 5.4

PURETYPE 0 0 0 0 0.5 0.8 0.3 0.2

AUGMENTEDTYPE 0 0 0 0 0 0 0 0

PSEUDOCLASS 0 0 0 0 0 0 0 0

IMPLEMENTOR 0 0.71 0.3 0.27 0.27 0.27 0.25 0.35

OVERRIDER 0 0 0.3 0.82 0.82 0.54 0.5 0.87

EXTENDER 25 27.9 27.5 36.1 35.9 37.2 34.6 25.1

TOTAL 84 73 85.7 77 76.6 76.4 74.4 75.1

Both systems respect the Gil and Maman statement that about 75% of classes
belong to at least one micro pattern. This means that micro patterns are good
descriptors also for software developed with Agile methodologies. The distri-
butions of micro patterns among classes roughly respect the same proportions
found for software developed with traditional methodologies [3]. In fact previous
results show that Extender, Sink and Function Pointer are the most common
micro patterns, while Taxonomy, Pool, Sampler and Record are almost absent.
One key point is the behavior of anti patterns, which are indicators of bad
programming practices [19]. The overall anti patterns behavior is captured by
Function Pointer, because classes belonging to others anti patterns, like Pool or
Record, are a very small fraction of the total number of classes. Such behav-
ior is displayed in Fig.1 (left side), which shows an overall decreasing trend in
the usage of anti patterns. This suggests that the constant application of Agile
methodologies during software development across different releases may impact



Micro Patterns in Agile Software 217

Table 5. floss-AR micro patterns distribution (%)

MP CA SAR SS OS 2.1.1

DESIGNATOR 1.5 1.5 1.6 1.38 0.9

TAXONOMY 0 0 0 0 0

POOL 0.2 0.2 0.36 0.3 0.76

JOINER 0 0 0 0 0

FUNCTIONPOINTER 20.2 19.7 22.8 17.8 13.31

FUNCTIONOBJECT 2.5 2.4 2 4.45 1.53

COBOLLIKE 0.17 0.17 0.14 0.46 0.13

STATELESS 0.4 0.3 0.29 1.07 2.57

COMMONSTATE 0.2 0.2 0.14 0.15 0.06

IMMUTABLE 0.2 0.2 0.14 0.76 0.06

RESTRICTEDCREATION 0.1 0.1 0.29 0.30 0.06

SAMPLER 0 0 0 0 0

BOX 2 2 3.21 0.15 13.79

COMPOUNDBOX 7.9 8.2 7.45 10.4 12.61

CANOPY 0 0 0 0 0

RECORD 0 0.2 0 0.2 1.6

DATAMANAGER 0 0 0 1.68 1.74

SINK 18.9 18.6 17.2 3.53 14.77

OUTLINE 0 0 0 0.3 1.1

TRAIT 0.33 0.3 0.29 1.2 0.13

STATEMACHINE 0.17 0.17 0.29 0.15 0.06

PURETYPE 0 0 0 0.3 0.1

AUGMENTEDTYPE 0 0 0 0 0

PSEUDOCLASS 0 0 0 0 0

IMPLEMENTOR 1.7 1.22 1.46 2.61 0.69

OVERRIDER 0.33 0.34 0.29 1.07 0.2

EXTENDER 28.4 28.8 27.7 28.4 16.58

TOTAL 85.1 84.8 85.8 75.5 81.6

positively the software quality, carrying as side effect the reduction in the use of
bad programming practices.

4.3 Micro Patterns and Faults

Next we examine the relationship among micro patterns and faults in the floss-
AR releases. The top part of Tab. 6 shows the distribution of faulty classes
among non micro patterns (NMP) and micro patterns (MP). It must be noted
that NMP classes are only 25% of the total classes, and nevertheless they own
the larger percentage of faulty classes, except for the last release, where the
percentage of faulty classes is the same as the percentage of NMP in the entire
release. This result for the first four releases is in agreement with those reported
in [3], where NMP own most of the faults. This means that software developed
through the adoption of Agile methodologies does not differ from other software



218 G. Concas et al.

Fig. 1. Left side: floss-AR - Right side: Japs

Table 6. FlossAR fault-prone analysis

OS(%) CA(%) SAR(%) SS(%) 2.1.1(%)

Distribution of faulty classes NMP 63.12 62.41 71.63 70.92 23.4

among NMP and MP MP 36.87 37.58 28.36 29.07 76.59

Percentage of MP faults

Fault Percentage of AMP 12.76 12.05 7.8 7.8 23.4
Fault Percentage of fault-prone MP faults 18.43 14.89 11.34 13.47 32.62
Fault Percentage of other MP 5.67 10.63 9.21 7.8 20.56

with respect to such distribution. The result for the last release is somehow
unexpected, and we cannot explain it with the data at our disposal. Further
analysis are needed in order to understand the reasons for this inversion in the
fault proneness.

The bottom part of Tab. 6 shows how faults are distributed among the differ-
ent MP categories: anti micro patterns (AMP), fault-prone MP, and other MP,
where fault prone MP are identified by the analysis performed in [3]. Also in this
case the total percentage of faulty classes in the last release is different than in
previous releases, but the distribution among AMP, fault prone MP, and other
MP is again respected. These results confirm that also in Agile systems the most
fault prone micro patterns are Extender and Compound Box, and that also the
AMP classes are more fault prone than others.

4.4 Discussion

According to these results, we can now answer to the research questions:



Micro Patterns in Agile Software 219

RQ1: Do software systems developed with Agile methodologies have
a different distribution of micro patterns with respect to non Agile
open source systems?

The answer to this research question is negative. According to tabs. 4, 5, the
distributions of classes across micro patterns is roughly the same described in
[3], where 8 systems were analyzed. They are very similar for both Japs and
floss-AR, in all the releases analyzed. This result suggests that the use of Agile
methodologies and programming practices does not influence the distribution of
micro patterns in the classes.

RQ2: Is the micro patterns faults-proneness the same for Agile and
non Agile software?

The answer to this question is positive except for the last release of floss-AR.
Comparing the results obtained for the first 4 releases of floss-AR analyzed
(Tab. 6, top part) NMP classes are by far the most fault prone classes. The
more detailed analysis reported in Tab. 6 (bottom part) shows that among the
classes matching with at least one micro pattern the Extender and Compound
box micro patterns as well as the anti patterns are the most fault prone. This
result confirms the findings reported in [3] and shows that the fault prone micro
patterns distributions in Agile software is similar to the one found in systems
developed without the adoption of Agile methodologies.

RQ3: Does the micro patterns distribution change during software
evolution? If yes, how?

The answer to this research question is not univocal. In general we have shown
that across all the releases the micro patterns distribution remains the same,
with the exception of the anti patterns classes. In fact we found a decrease
of the percentage of anti patterns classes in both systems across the releases.
This may be related to the continuous adoption of Agile methodologies during
development and maintenance.

5 Threats to Validity

Threats to construct validity are related to the Agile methodologies not used
during the system’s development (like TDD and continuous integration). This
may influence our conclusion that the use of agile methodologies may improve
software quality, given that agile development has been adopted partially. An-
other threat to construct validity is related to the relationship between micro
patterns and faults. We assume, based on previous works, that MP are related
to software defectiveness. This result has not been generalized to all software
systems, thus not necessarily the micro patterns catalogue is directly related to
software defectiveness. Nevertheless we believe that our work can build a first
step in this direction. Threats to internal validity are related to the fact that
with different values of micro patterns could be possible to observe different
correlations. Threats to external validity are related to generalization of our



220 G. Concas et al.

conclusions. With regard to the system studied in this work we considered only
open source systems written in Java, and this could affect the generality of the
discussion and thus our results are not representative of all environments or pro-
gramming languages. Commercial software is typically developed using different
platforms and technologies, with strict deadlines and cost limitation, and by de-
velopers with different experiences. This might result in different micro patterns
distributions, which is another threat for the external validity. Another threat
regards the relationships among anti patterns and faults, which has been stud-
ied only for the floss-AR system. Finally we have another threat to conclusion
validity: there is not an estimated error on the recognition of a particular micro
pattern for a given class.

6 Conclusions

The goals of this research were the analysis of micro patterns distribution in Agile
open source software and the analysis of the relationship between MP-NMP and
faulty classes. We used the Java tool discussed in [3] in order to extract the
data relative to the micro patterns distribution in the two Agile software system
studied.

For the floss-AR system we analyzed the change log for bug report and ex-
tracted fix operation according to the traditional heuristic proposed in [11]. We
also submitted to the floss-AR developers team a questionnaire in order to eval-
uate the effective use of Agile methodologies, while for Japs this is certified on
the web site [6].

Our analysis shows that the micro pattern distribution among classes is the
same for the two systems, and remains roughly the same as the one found in
non agile systems. Thus the adoption of agile methodologies does not influence
such distribution. For example, Gil and Maman statement’s that about 25% of
classes does not match with any micropattern, is confirmed also in the two agile
systems analyzed, for all the releases.

The analysis of fault prone classes shows that in agile systems the Extender
and Compound box micro patterns are fault prone, as well as the AMP classes.
In particular the most fault prone classes are those not belonging to any micro
pattern. The last release of floss-AR represents an exception to this rule, even if
the percentage of faulty classes belonging to NMP (23.4%), is still larger than
the percentage of NMP classes in all the systems (18.4%).

Finally we found that the micro patterns distribution across the releases is
unchanged, with the exception of the anti pattern classes, which displays a de-
creasing trend.

We can conclude that micro patterns may be helpful to evaluate the quality
of an Agile software project during the development process. A tool like the one
used in the present work could be used in order to monitor the different stages
of development, and possibly to control the temporal evolution of each category
of micro patterns. It can be seen from our empirical results that classes that do
not correspond to any micro patterns are more fault-prone and this supports



Micro Patterns in Agile Software 221

that the use of a design methodology increases the quality of the code.
Considering the natural adaptiveness of Agile development it could be useful to
monitor the evolution of the most fault-prone micro patterns in order to increase
the software quality and decrease the amount of defects.

Acknowledgment. This research is supported by Regione Autonoma della
Sardegna (RAS), Regional Law No. 7-2007, project CRP-17938 LEAN 2.0

References

1. Gil, J.Y., Maman, I.: Micro pattern in Java Code. In: Proceedings of the 20th
Object Oriented Programming Systems Languages and Applications, San Diego,
CA, USA, p. 97116 (2005)

2. Agile Manifesto, http://www.agilemanifesto.org

3. Destefanis, G., Tonelli, R., Tempero, E., Concas, G., Marchesi, M.: Micro Pattern
Fault-Proneness. In: 2012 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 302–306. IEEE (September 2012)

4. Arcelli, F., Maggioni, S.: Metrics-based Detection of Micro pattern to improve the
Assesment of Software Quality. In: Proceedings of 1st Symposium on Emerging
Trends in Software Metrics (ETSM 2009), Italy (May 2009)

5. Gamma, E., Helm, R., Jhonson, R., Vlissides, J.: Design Pattern: Elements of
Reusable Object-Oriented Software. Addison Wesley (1995)

6. JAPS: Java agile portal system, http://www.japsportal.org

7. Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic Design Pattern De-
tection. In: IWPC 2003 Proceedings of the 11th IEEE International Workshop on
Program Comprehension (2003)

8. Aversano, L., Cerulo, L., Di Penta, M.: Relationship between design pattern defects
and crosscutting concern scattering degree: an empirical study. IET Softw. 3(5),
395–409 (2009)

9. Dorairaj, S., Noble, J., Malik, P.: Understanding Team Dynamics in Distributed
Agile Software Development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp.
47–61. Springer, Heidelberg (2012)

10. Bloch, J.: Effective Java Programming Language Guide. Addison-Wesley (June
2011)

11. Bachmann, A., Bernstein, A.: Software process data quality and characteristics:
a historical view on open and closed source projects. In: IWPSE-Evol 2009 Pro-
ceedings of the Joint International and Annual ERCIM Workshops on Principles
of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops. ACM
(2009)

12. Destefanis, G., Tonelli, R., Concas, G., Marchesi, M.: An analysis of anti micro
patterns effects on fault proneness in large Java systems. In: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pp. 1251–1253. ACM (March
2012)

13. Concas, G., Marchesi, M., Destefanis, G., Tonelli, R.: An empirical study of soft-
ware metricsfor assessing the phases of an agile project. International Journal of
Software Engineering and Knowledge Engineering 22, 525–548 (2012)

http://www.agilemanifesto.org
http://www.japsportal.org


222 G. Concas et al.

14. Tasharofi, S., Ramsin, R.: Process Patterns for Agile Methodologies. In: Ralyté,
J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method Engineer-
ing: Fundamentals and Experiences. IFIP, vol. 244, pp. 222–237. Springer, Boston
(2007)

15. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River (2003)

16. Empirical studies of agile software development: A systematic review. Tore Dyba,
Torgeir Dingsoyr. SINTEF ICT, S.P. Andersensv. 15B, NO-7465 Trondheim, Nor-
way

17. Hoda, R., Noble, J., Marshall, S.: How much is just enough?: some documentation
patterns on Agile projects. In: Proceedings of the 15th European Conference on
Pattern Languages of Programs, EuroPLoP 2010, Article 13, 13 pages. ACM, New
York (2010)

18. Martinez, J., Diaz, J., Perez, J., Garbajosa, J.: Software Product Line Engineering
Approach for Enhancing Agile Methodologies. In: Abrahamsson, P., Marchesi, M.,
Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 247–248. Springer, Heidelberg
(2009)

19. Bloch, J.: Effective Java Programming Language Guide. Addison-Wesley (June
2011)

20. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)


	Micro Patterns in Agile Software
	1 Introduction
	2 Related Works
	3 Methodology
	4 Results
	4.1 Survey
	4.2 Source Code Analysis
	4.3 Micro Patterns and Faults
	4.4 Discussion

	5 Threats to Validity
	6 Conclusions
	References




