
Continuous Release Planning in a Large-Scale

Scrum Development Organization at Ericsson

Ville T. Heikkilä1, Maria Paasivaara1,
Casper Lassenius1, and Christian Engblom2

1 Department of Computer Science and Engineering,
Aalto University, Helsinki, Finland

{ville.t.heikkila,maria.paasivaara,casper.lassenius}@aalto.fi
2 Oy LM Ericsson Ab, Kirkkonummi, Finland

christian.engblom@ericsson.com

Abstract. Scrum development at large-scale requires a release planning
process that supports the agile way of working and planning. Most of
the existing release planning processes are plan-driven and ill suited for
a large Scrum organization. This case study describes how release plan-
ning was conducted in a 350-person Scrum development organization
with over 20 teams at Ericsson in 2011, and the related challenges and
benefits. Data was collected with 39 interviews which were transcribed,
coded and analysed. The release planning process was continuous and
characterized by regular scoping and prioritization decisions, and by in-
cremental elaboration of features. The challenges were the overcommit-
ment caused by external pressure, managing non-feature specific work,
and balancing between development efficiency and building generalist
teams. The benefits were the increased flexibility and decreased develop-
ment lead time, waste eliminated in the planning process, and increased
developer motivation.

Keywords: release planning, scrum, scaling agile, case study.

1 Introduction

The Scrum agile software development method [1] has become mainstream in the
software development community [2]. Scrum was originally created for small co-
located teams [1]. Scrum emphasizes face-to-face communication [1], which puts
a limit on the maximum practical size of the development team [3]. The early
normative Scrum literature provided little guidance for the long-term planning
of software, as the focus was on the planning and development of software one
iteration (sprint) at a time in a single team, single project context [1]. However,
large development organizations soon started to adopt Scrum practices [2]. In
large organizations, there are multiple levels of planning which are performed
on different time horizons and by different actors [4,5,6]. We adopt a three-
level planning model where the levels are strategic planning, release planning
and operational planning. Strategic planning is the interface between business

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 195–209, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 V.T. Heikkilä et al.

management and development and it is performed on a long term, multi-release
time horizon [4]. Release planning, in agile software development context, is
concerned with deciding the feature content of the next release and on planning
how to most efficiently create that content [7]. Operational planning is concerned
with how the implementation of the features is achieved on a day-to-day basis [5].
The early Scrum literature describes operational planning in depth, superficially
covers release planning, and almost completely ignores strategic planning [1].

One way to scale a Scrum development organization is to employ multiple
small Scrum teams [6,8,9]. In a such organization, the strategic planning is mostly
agnostic towards the development method [4] and the operational planning can
follow the Scrum practices [1]. However, release planning must support the Scrum
development organization by providing goals and direction on how the release
should be constructed [4]. Although successful release planning is an important
success factor in agile software development projects [10] and a challenging aspect
of agile adoption in market-driven product development [11], there is very little
empirical research literature of large-scale agile release planning. Thus, there is a
clear need for empirical research that describes how release planning is conducted
in large agile organizations. To start filling this gap in the empirical research,
we conducted a case study in a large organization that had adopted Scrum. The
case organization was a node development organization of Ericsson. The specific
research questions were:

RQ1: What was the release planning process?
RQ2: What were the challenges related to the release planning process?
RQ3: What were the benefits of the continuous release planning process?

The rest of this paper is organized as follows: We first review existing related work
on release planning in large-scale agile development organizations in Section 2.We
describe our research methods in Section 3. We describe the case organization in
Section 4. In Section 5, we describe the results of the case study. In Section 6, we
discuss the case and threats to the validity of our results. Finally, in Section 7, we
provide conclusions and directions for future work.

2 Release Planning in Large-Scale Agile Development

Most release planning research has focused on proposing mathematical opti-
mization models [12]. This approach has resulted in models which either are too
simple to be useful in practice, or so complex that practitioners find it difficult
to provide the necessary input values and find it hard to trust the output, as
they cannot comprehend the process that created it [13,14,15]. In addition, the
models typically contain assumptions which do not hold in many software devel-
opment organizations; the models assume a common understanding of require-
ments, while in reality such understanding arises thorough continuous knowledge
generation and sharing. The models assume that the requirements selection cri-
teria are stable, while in reality the criteria and their weights may change over
time. The models assume that dependencies between requirements are clearly

Continuous Release Planning in Large-Scale Scrum 197

Table 1. Details of the data collection

Interviews 39 (Finland 28, Hungary 11)
Rolesa Middle and upper managers (6), Agile coach (1), Scrum Masters (6),

Developers (13), Line managers (3), Product owners (7), Technical
specialists / architects (5)

Interview lengths Managers & the coach: 2-3h, others: 1-2h
aTotal of 41 roles. Two interviewees had dual roles.

defined and pairwise, while in reality the dependencies are often unclear and
complex. Finally, the models assume that development capacity is the main con-
straint, while in reality combined domain and system knowledge often is the
critical resource [15].

The existing empirical research on release planning in large-scale agile develop-
ment is scarce. When using Scrum, large-scale release planning can be performed
in joint release planning sessions where all development teams and other stake-
holders come together to plan the next release [6,16].

3 Data Collection and Analysis

Our case was purposefully selected, as it provided an opportunity to perform
an information rich study [17,18] in a large organization with a long history of
developing a complex product. The organization had adopted Scrum gradually
over the 18 months preceding the interviews, which made the project an excellent
candidate for the study. We first interviewed nine people who had managerial
roles (who were our key informants [18]). They provided us with an overview
of the organization history, goals, growth, structure and the planning process
used in the organization. To enable the triangulation of data sources [17], the
rest of the interviewees had different roles, belonged to different Scrum teams
and had different amounts of experience. All interviews were voice-recorded. The
first three authors conducted the interviews. We selected the general interview
guide approach [17] in order to maintain adaptability to the roles and individ-
ual experiences of the interviewees while simultaneously making sure that the
relevant topics were explored. We updated the interview guide constantly based
on new insights from the previous interviews [17]. We asked the interviewees to
describe their own experiences of how the release planning process worked and
the successes and challenges in the release planning process. Details of the data
collection are shown in Table 1.

The interviews were transcribed by a professional transcription company. We
coded the interviews with a process that was inspired by the grounded-theory
method [19]. During the coding process, we combined related concepts into new
concepts and categories using the constant comparison technique [19]. In total,
we coded 625 passages (with some minor overlap). Finally, we extracted passages
related to categories of planning and organization and re-read all the passages to
construct the descriptions of the release planning process and the challenges and

198 V.T. Heikkilä et al.

benefits related to it. The challenges and benefits included in the results were
perceived as the most important by multiple interviewees from multiple roles in
the organization.

4 The Case Organization

4.1 Background

This paper is based on a case study of an Ericsson node development unit in
2011. The unit developed a large systems product consisting of both software
and hardware. The product was a single node which handled specific type of
traffic in telecommunications networks. The development of this product had
started over ten years ago and at the time of the study it was used by operators
all over the world, while the further development of the product still continued.
The focus of this paper was on the organization that developed the software of
the product.

The organization begun the process improvement initiative in 2009. The ex-
isting, plan-driven process worked quite well, but the management wanted to
decrease the development lead time, improve flexibility, increase motivation of
the developers, and increase the efficiency of quality assurance. The manage-
ment studied different options and chose Scrum as a best fit for their needs.
They started with one pilot Scrum team to test the approach. Soon a few more
teams were created, and in quick succession the rest of the Scrum teams were
formed. At the time of the interviews in 2011, all of the over twenty development
teams, spread across two sites in Finland and Hungary, had been using Scrum
for almost a year. The transformation did not stop there and the way of work-
ing was continuously improved, as reflected by the interviewees who called the
transformation a “journey”.

Before the transformation, the development had been arranged as a tradi-
tional plan-driven project organization. The release planning had begun two
years before the release date when the scope of the next release was decided by
the product management. Technical specialists then created an implementation
plan for the requirements and the plans were handed to the developers for imple-
mentation. When the implementation was ready, the software was put thorough
multiple stages of testing and verification, and finally shipped as a part of the
generally available products and as software updates.

4.2 Case Organization Structure

The development organization and its stakeholders are illustrated in Figure 1. In
the rest of this section, we describe the roles and responsibilities of the members
of the case organization.

Product Owner Team. The organization of product owners deviated from the
basic Scrum model [1]. Instead of having team-specific product owners, a product

Continuous Release Planning in Large-Scale Scrum 199

Fig. 1. The case organization structure

owner team (PO team) had been created to accommodate the large number of
teams and the globally distributed structure of the organization. The PO team
consisted of a Chief product owner (Chief PO) and ten proxy product owners
(PPOs). The whole PO team was jointly responsible for the feature development
to mitigate personnel risks. The PPOs rotated between teams when features
were completed. Based on the size of the features, one PPO could work with
two of cross-functional teams when both teams were developing their own small
features, or a group of two to three PPOs could take collectively responsibility
of one large feature developed by several teams. The Chief PO was responsi-
ble for managing the PO Team. The Chief PO acted as an arbiter between the
development organization and the stakeholders external to the development or-
ganization. The main task of the PO team was to manage and synchronize the
work of the development teams.

Development Teams. The Scrum development organization was arranged
around Scrum development teams [1]. These teams of 6-7 persons were origi-
nally formed with the goal of having all the needed competence for end-to-end
development in each team. However, the managers soon realized that this goal
would be very challenging to achieve with a large, over ten-year-old product,
since the different areas of the product required very specific technical knowl-
edge. Thus, the development teams, in practice, were usually assigned features
that were best suited for the competence and previous experience of the team
members. The teams had different amounts of experience of Scrum development
practices and of working in a cross-functional way. The teams on both sites were
located near each other to allow the teams to easily visit each other.

200 V.T. Heikkilä et al.

Stakeholders. There were several stakeholders that had an important role in
the release planning process, but who did not belong to the development or-
ganization. A product management function was responsible for the long term
planning of the product from the business perspective. A single product manager
(PM) was responsible for the software part of the product and she was also the
main point of contact between the development organization and the product
management. The PM mostly communicated with the Chief PO although the
other members of the development organization could contact the PM directly,
if required. In addition, there was an early phases program manager who was
responsible for managing the early phases of the release planning process. The
product management and the development organization were assisted by techni-
cal specialists who were people with extensive knowledge of telecommunication
technology.

5 Results

In this section, we present our results. In Section 5.1, we describe the work items,
decision makers and process steps of the release planning process. We describe
challenges found in the case in Section 5.2 and benefits created by the release
planning process in Section 5.3.

5.1 Release Planning Process

The new continuous release planning process, depicted in Figure 2, contained
five feature decisions, F0 to F4. The decisions were made by two steering groups,
which both had weekly meetings. Decisions F0-F2, which were made by the port-
folio steering group, belonged to the early phases where the feasibility, profitabil-
ity and risk of the feature were studied and no actual feature implementation
was performed. Decisions F3-F4 were made by the development steering group.

The public releases of the software were tied to the calendar year. Two major
versions of the software and two smaller maintenance updates of the software
were published each year. The new development model would have allowed more
frequent public releases, but the customers preferred the aforementioned release
schedule. The contents of each release were tentatively planned by the product
management. The actual contents of a release were based on the features that
were completed in time. Following the F-process, those features which had passed
the F4-milestone could be included. In the rest of this section, we describe the
steps, the planning artefacts, and the stakeholders of the release planning process
in detail.

Work Items. The case organization had three level work item hierarchy. The
levels were called features, epics and user stories. All three level work items were
stored in the product backlog, which was in an electronic backlog management
tool Jira.

Continuous Release Planning in Large-Scale Scrum 201

Fig. 2. The release planning process

Features were the main way that requirements were managed in the new pro-
cess. The Chief PO was responsible for maintaining and prioritizing the product
backlog on the feature level. The size of features varied considerably from a single
team for a couple of months to a year for ten teams.

Epics were split from features. Epics were large, semi-independent functional
requirements that produced value on their own. Each epic was typically team-
specific. The purpose of the epic-level was to decrease dependencies between
teams working on the same feature by grouping related user stories, and to
provide a view to the multi-sprint development plan of the feature. Epics were
split into user stories by the PPO(s) responsible for the feature together with the
team responsible for the epic in the team’s bi-weekly grooming sessions. The user
stories were also estimated in the grooming sessions. The teams had a physical
sprint backlog which contained the team’s user stories.

Portfolio Steering Group. The portfolio steering group consisted of repre-
sentatives from all stakeholders of the development organization, including the
product manager, the Chief PO, the early phases program manager and the
technical specialists. The group made decisions related to the early phases of
feature development. Any number of F0-, F1- and F2-decisions could be made
in a single portfolio steering group meeting, which were held once a week.

Development Steering Group. The development steering group included the
Chief PO and the product manager. Selected PPOs and other stakeholders from
the organization could also participate in the meetings if deemed necessary. The
group made decisions during the implementation of the feature. Any number
of F3- and F4-decisions could be made in a single development steering group
meeting, which were held once a week.

202 V.T. Heikkilä et al.

F0-Decision. The first step in the F-decision process was the F0-decision. Be-
fore the F0-decision, the product manager and the early phases programmanager
had to have a very rough idea of the feature. When time was right, the early
phases program manager presented the feature idea in a portfolio steering group
meeting. The steering group then decided to either take the feature into devel-
opment, to postpone it, or to abandon it. If the feature was postponed, it would
be brought into F0-decision later on. If the feature was taken into development,
the creation of a one pager could begin.

One Pager. The one pager described on an abstract level what the feature was
and why it was needed, including the rough estimates of the cost and business
impact of the feature, and the intended release which would tentatively include
the feature. The goal was to fit all the information on a single presentation slide,
hence the name one pager. The early phases PM had the official responsibility
of creating the one pager, but in practice it was written by a technical specialist.
The maximum effort of writing the one pager was one or two days, and the time
given to the writing was two weeks.

F1-Decision. The F1-decision could be made after the one pager was ready. The
Chief PO presented the one pager to the group. The portfolio steering group then
decided to either to abandon the feature or to create a feature concept study
(FCS). If the portfolio steering group decided to create the FCS, the group could
then decide either to initiate the FCS immediately or to postpone it, based on
how urgent and large the feature was. In case the FCS was initiated immediately,
the steering group selected a PPO and team(s) for writing it. If the FCS was
postponed, the assignment would be made in a later portfolio steering group
meeting. If the feature was not abandoned, the feature was added to the product
backlog and prioritized by the Chief PO.

Feature Concept Study. The writing of the feature concept study begun after
the F1-decision to initiate it had been made. The purpose of the FCS was to
provide the information that was needed to decide whether the feature should
be implemented. The FCS was written by a virtual team consisting of a PPO,
who was primarily responsible for the study, and members from one or several
teams. The virtual team members were typically from the teams that would
be assigned to implement the feature. The virtual team was assisted by the
technical specialists if required. Having developers to contribute to the FCS was
a notable change from the previous planning process where the developers did
not contribute to requirements planning. The length and the writing time of a
FCS varied by the size of the feature, but the goal was to get the writing done
in under two weeks.

F2-Decision. The F2-decision was the last step in the early phases program.
When the feature concept study was ready, the Chief PO presented it to the
portfolio steering group, which then decided to either take the feature into de-
velopment or to abandon it. If the feature was taken into development, it was

Continuous Release Planning in Large-Scale Scrum 203

given a non-binding target release. The Chief PO had the option to postpone
the beginning of the implementation if he though that there was more impor-
tant work and the target release could be reached nevertheless. Otherwise, the
team(s) begun the development of the feature immediately.

Feature Implementation. The implementation of a feature could officially be-
gin after a F2-decision to implement the feature was done and when the Chief PO
decided it was time to start the implementation. Typically, the implementation
was started by the PPO and the team(s) that created the FCS. In large features,
more teams were added during the implementation when they become available.
When the feature neared completion, the number of teams was reduced to one
or two teams that were responsible for finalizing the feature, and the rest of the
teams were freed to develop other features. On the team level the planning was
performed mostly following the basic Scrum process [1].

F3-Decision. When the implementation of a feature was close to completion,
the Chief PO proposed F3-decision in the development steering group, which
meant that the Chief PO gave a commitment for the completion date of the
feature. If the development steering group agreed to the commitment, a F3-
decision was made by the group, which meant that marketing of the feature
could begin. Otherwise the feature needed to be further developed before the
F3-decision.

F4-Decision. When a feature was implemented, tested and integrated into the
product, the Chief PO proposed a F4-decision in the development steering group.
The steering group could then make a F4-decision which meant that the feature
could be included in the next (or a later) public release of the product.

5.2 Challenges

Overcommitment Caused by External Pressure. According to the inter-
views, the product management still worked in the ”old world” way. They re-
quested long-term feature development plans from the PO team, which were
not available in the new release planning process, and pressurised them to
give premature feature commitments when the release date was approaching.
This caused overcommitment by the development organization and decreased
the flexibility of the development.

. . . perhaps the product management is not in the new way of working, it easily
goes with the old model that we plan one big release . . . it feels like we plan a
big future release and see what can fit in it. – A proxy product owner

The case organization tried to mitigate this issue in two ways. First, they tried
to improve the predictability of the development by increasing the detail level of
FCS’s, and by increasing the amount of slack in effort estimates. Second, they
created the concept of a minimum marketable feature, which was the set of
functionality they could commit to delivering very probably by the next release.

204 V.T. Heikkilä et al.

Managing Non-feature Specific Work. In the previous, plan-driven develop-
ment model the responsibilities of the project management were clearly defined.
In the new model, the PO team assumed the responsibility of feature definition
and management, but it was unclear who took care of the other project man-
agement tasks. These included the handling of the system planning, non feature
specific problem reports, system documentation, and external change requests.
The PO team had started to have regular meetings where they addressed such
issues although it was contrary to the their originally planned responsibilities.

Every week we notice things that are not taken care by anybody, that somebody
took care of when we had the project organization. . . . For example the product
documentation that is not directly related to any feature.
– A proxy product owner

An additional problem was the prioritization of system improvement work. All
features, epics and user stories originated from the product backlog. The devel-
opers had difficulties getting system improvement included into the backlog, and
if they got it in, they had difficulties getting it included in a development sprint.
They also had difficulties finding time to perform system improvement work, as
implementing features was implicitly prioritized higher. The development orga-
nization attempted to mitigate this issue by making each team take in at least
one system improvement user story every sprint.

. . . it is very difficult to participate in things affecting the whole organization
or the testing of the whole product, because I have the sprint backlog and I have
to get the sprint done first and then if there is time I can perform those things.
– A developer

Balancing between Development Efficiency and Building Generalist
Teams. Initially the goal of the development organization was to create cross-
functional generalist teams that could implement features in all components of
the software. However, they quickly realized that many components were tech-
nically very difficult and required years of experience to completely understand.
This had, in several occasions, caused very long lead times (one to half a year)
before a team could implement anything useful in a component. Thus, the port-
folio steering group had started mostly assigning features to teams that had the
best pre-existing competency in the affected components. Balancing between the
development efficiency and building generalist teams was seen difficult especially
near the release date when the pressure to get features completed was mounting.

. . . building the competencies has been one of the biggest challenges. . . . we have
very difficult products where the transfer [of knowledge] is very challenging, it
cannot be done in a couple of sprints, it requires several months, in practice.
We’ve had to yield in that, we had to give it to the best [team] . . .
– A scrum master

Continuous Release Planning in Large-Scale Scrum 205

5.3 Benefits

Increased Flexibility and Decreased Development Lead Time. In the
previous model the release planning was conducted during the first six moths of
the two-year project. The changes that could be made to the release after the
first six months were typically very small, as they needed to pass thorough a
tardy change management process. In the worst case, a feature had over three
year lead time from a customer request to a public release.

. . . [previously] releasing one package took 18-24 months. In the beginning we
performed this system planning which took maybe half an year. And if you did
not get the right contents in the release during the first half a year . . . it was
immensely difficult to get any changes into the project. . . . If some essential
functionality was missing from it, we missed the train, I had to wait to the end
of the current project and then the two years after [that]. Which was a very
long time – The product manager

The new process was seen as improvement to the flexibility of development. The
new release planning process allowedmaking changes to the contents of the release
on a relative short notice. The feature development schedule was no more tied
to the release schedule, which immensely decreased the lead time of the feature
development.

Now it is like, okay, let’s add it to the list. And no worries about where we are
going with the change. It’s there and in a way nothing was changed even though
a new thing was added to the list. I think it is a really good improvement. The
flexibility is on another level. – The product manager

Eliminating Waste in the Planning Process. The general concept in the
process was that in the F0-F2 steps the sunk costs would be relatively small,
and thus early identification of too expensive or infeasible features would save
development resources. In addition, by employing the minimum marketable fea-
ture concept, the case organization was able to concentrate on developing the
most important parts of the features.

What is good in it [the F-decision process] is that . . . it in a way divides the
decision making, which is a good thing. We can cut it [the feature] at any point,
. . . if we see that the feature passes the time window or otherwise. It gives
structure to the decision making and enables us to make smaller decisions and
in that way separate the feature decision from the release decision. – A manager

Increased Developer Motivation. The developers were included in the fea-
ture planning starting from the early phases, which allowed them to contribute
to the planning and gave them the visibility to the big-picture of the feature.
This increased the motivation of the developers.

. . . one of the product management involved in the [feature] travelled here to
[Hungary] and had a one-day workshop. Why [the feature] is needed for the
customer, what information they get, what kind of reasoning [is] behind this
feature. . . . It was a motivation boost for the team, to see that what they are
doing is really, means something for the [customers]. – A developer

206 V.T. Heikkilä et al.

6 Discussion

6.1 RQ1: What Was the Release Planning Process?

Before the agile transformation, the releases were planned by project managers
as traditional projects with set resources, schedule and goals. In the new agile
process, the release planning was a continuous process where features were ini-
tiated based on the availability of resources and the priority of the feature. The
release planning process was characterized by regular scoping and prioritization
decisions and incremental elaboration of the features before the implementation.
The release planning was a collaborative action and the developers took part
in the feature planning in early phases of the feature elaboration. Our results
support Benestad’s and Hannay’s observations on release planning [15]. In con-
trast, most of the proposed models for software release planning treat release
planning as an activity that is either performed at the beginning of the release
project or over lengthy iterations during the release project and conducted by
a few authoritative decision makers in isolation [12,14]. The structure of the de-
velopment organization was similar to the structure proposed by Leffingwell [6].
However, Leffingwell proposes that the tentative contents of each release should
be planned on the user story level in the beginning of each release project [6].

6.2 RQ2: What Were the Challenges Related to the Release
Planning Process?

The product management expected precise long-term plans from the develop-
ment organization. After the transformation, such plans were not created. Many
developers would have preferred detailed implementation plans, but such plans
were not created any more. Both issues are symptoms of friction between the
previous plan driven process and the new agile process. The longing for detailed
implementation plans will likely disappear as the developers become more expe-
rienced in planning. The conflict between an agile development organization and
a plan-driven product management is a recognized challenge in large-scale agile
development [2,20]. By employing the minimum marketable feature concept, the
case organization was able to provide relatively reliable long term plans without
sacrificing flexibility. Although the minimum marketable feature concept is not
new in the software development management literature [6,21], it was employed
in the case in a novel way to combine long-term planning with flexibility.

There were many tasks which the development teams did not have the com-
petency to perform, for example system level documentation and system level
technical planning. In addition, the development of some components required
extensive experience and specialized skills. Identifying who should perform such
work was a challenge in the case. Initially, Scrum guidance emphasised true
cross-functional teams [1]. Several authors of later normative agile development
guidance have taken the stance that in large, complex systems there is a place
for limited specialization both on the system level and the team level [6,9,22],
and our results support this notion.

Continuous Release Planning in Large-Scale Scrum 207

6.3 RQ3: What Were the Benefits of the Continuous Release
Planning Process?

The biggest benefit from the new release planning process was the drastically de-
creased feature development lead time. The lead time decreased, approximately,
from a minimum of two years to a minimum of three months. The short lead
time was enabled by the continuous nature of the release planning process and
by the flexibility of the Scrum development organization. The short lead time in-
creased the responsiveness of the case organization to customer requests, which
created a clear competitive edge [23].

Another benefit was the reduced planning waste. According to the product
development queue theory [23], unnecessary inventory is a form of waste that
should be eliminated. Compared with the previous, plan driven-process, the
incremental elaboration of features in the early phases of the release planning
process drastically decreased the inventory of plans and technical specifications
waiting on a shelf to be implemented.

The results indicated that software developer’s motivation increased because
they were included in the decision making and given understanding of the big
picture. The existing research on developer motivation [24] supports this result.

6.4 Generalizability and Threats to Validity

In the discussion about the validity of this research, we rely on the definitions
of validity and reliability proposed by Yin [18]. Internal validity is not relevant,
as this research was neither explanatory nor causal [18]. The main threat to
the construct validity of this research was the accuracy of the descriptions. To
increase the construct validity, we interviewed multiple persons for each role in
the case organization, if possible. The interviews were coded and analysed by the
first author. To increase the construct validity, the second and the third author
reviewed the analysis. Furthermore, the fourth author of this article was one of
our key informants and he also reviewed the analysis.

The external validity of a case study concerns the domain to which the results
can be generalized [18]. Based on our study, we can create a hypothesis of the
significant characteristics of the domain. First, the system under development
was large, multifaceted and technically demanding. Second, the product and
release management organizations worked in a plan-driven way and were separate
from the development organization. Third, the number of development teams was
relatively large. Fourth, the development was distributed on two sites. The results
are likely generalizable to single site development, but it difficult to hypothesize
how generalizable the results are when the development is distributed on three
or more sites.

The main threat to the reliability [18] of this research is the variability in the
data collection. The data collection was conducted using the general interview
guide approach [17], which introduced variability to the topics discussed in the
interviews. However, the large number of interviewees and multiple interview-
ers allowed data source and investigator triangulation [17] which increased the
reliability of the results.

208 V.T. Heikkilä et al.

7 Conclusions and Further Work

Release planning is a crucial task in market-driven requirements engineering
[11]. Large development organizations have increasingly started adopting agile
software development methods [2]. The traditional, plan-driven release planning
models are not well suited for agile development organizations where scoping
decisions must be made constantly and detailed requirements analysis is per-
formed alongside the implementation [14]. If the release planning process does
not support the agile development organization, the development organization
will not be able to work efficiently towards the high level goals of the company.

Our case study provides a detailed description of how a large-scale Scrum
organization in Ericsson performed release planning, and of the challenges and
benefits related to the release planning process. The continuous release planning
process is characterized by regular scoping and prioritization decisions, and by
the incremental elaboration of features. The challenges were the overcommitment
caused by external pressure, managing non-feature specific work and balancing
between development efficiency and building generalist teams. The benefits were
the waste eliminated in the planning process, the increased flexibility and the de-
creased development lead time. Our study contributes to the growing knowledge
base on scaling agile software development methods.

We will continue to study the case organization as the Scrum development
organization becomes more mature and all the stakeholders have had time to
adjust to the new development and planning processes. Specifically, we are in-
terested in studying how the product management organization is changed to
better work with the Scrum development organization. In addition, it would
be interesting to study how other large organizations that have adopted agile
development methods perform release planning.

Acknowledgment. We would like to thank Oy LM Ericsson Ab for making
this study possible and all the anonymous interviewees for providing valuable
contributions to this research. We would like to thank the TiViT Cloud Software
Finland-program for funding this research.

References

1. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice-Hall,
Upper Saddle River (2002)

2. VersionOne, Inc.: 6th Annual ”State of Agile Development” Survey (2011)

3. Cockburn, A.: Agile software development. Addison-Wesley, Boston (2002)
4. Rautiainen, K., Lassenius, C., Sulonen, R.: 4CC: A framework for managing soft-

ware product development. Eng. Manag. J. 14(2), 27–32 (2002)
5. Cohn, M.: Agile estimating and planning. Prentice Hall Professional Technical

Reference, Upper Saddle River (2005)
6. Leffingwell, D.: Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley, Upper Saddle River (2011)

Continuous Release Planning in Large-Scale Scrum 209

7. Ruhe, G., Saliu, M.O.: The art and science of software release planning. IEEE
Softw. 22(6), 47–53 (2005)

8. Schwaber, K.: The enterprise and scrum. Microsoft Press, Redmond (2007)
9. Augustine, S.: Managing Agile Projects. Prentice Hall Professional Technical Ref-

erence, Upper Saddle River (2008)
10. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software

projects. J. Syst. Softw. 81(6), 961–971 (2008)
11. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile

principles on market-driven software product development. J. Softw. Maint. Evol.-
R. 22(1), 53–80 (2010)

12. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A
systematic review on strategic release planning models. Inform. Softw. Tech. 52(3),
237–248 (2010)

13. Carlshamre, P.: Release planning in market-driven software product development:
Provoking an understanding. Requir. Eng. 7(3), 139–151 (2002)

14. Jantunen, S., Lehtola, L., Gause, D.C., Dumdum, U.R., Barnes, R.J.: The chal-
lenge of release planning. In: Proceedings of the Fifth International Workshop on
Software Product Management, pp. 36–45 (2011)

15. Benestad, H.C., Hannay, J.E.: A comparison of model-based and judgment-based
release planning in incremental software projects. In: Proceeding of the 33rd In-
ternational Conference on Software Engineering, pp. 766–775. ACM, New York
(2011)

16. Heikkilä, V., Rautiainen, K., Jansen, S.: A revelatory case study on scaling agile
release planning. In: Proceedings of the 36th Euromicro Conference on Software
Engineering and Advanced Applications, pp. 289–296. IEEE Computer Society
(2010)

17. Patton, M.Q.: Qualitative research and evaluation methods, 3rd edn. Sage Publi-
cations, Thousand Oaks (2002)

18. Yin, R.K.: Case study research: design and methods, 4th edn. Sage Publications,
Thousand Oaks (2009)

19. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience
of software development. Empir. Softw. Eng. (2011)

20. Lyon, R., Evans, M.: Scaling up pushing scrum out of its comfort zone. In: Pro-
ceedings of the Agile 2008 Conference, pp. 395–400 (2008)

21. Denne, M., Cleland-Huang, J.: The incremental funding method: Data-driven soft-
ware development. IEEE Softw. 21(3), 39–47 (2004)

22. Larman, C., Vodde, B.: Practices for scaling lean & agile development: large, mul-
tisite, and offshore product development with large-scale scrum. Addison-Wesley,
Upper Saddle River (2010)

23. Reinertsen, D.G.: Principles of product development flow: second generation lean
product development. Celeritas Publishing, Redondo Beach (2009)

24. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: A systematic literature review. Inform. Softw. Tech. 50(9-10), 860–878
(2008)

	Continuous Release Planning in a Large-Scale Scrum Development Organization at Ericsson
	1 Introduction
	2 Release Planning in Large-Scale Agile Development
	3 Data Collection and Analysis
	4 The Case Organization
	4.1 Background
	4.2 Case Organization Structure

	5 Results
	5.1 Release Planning Process
	5.2 Challenges
	5.3 Benefits

	6 Discussion
	6.1 RQ1: What Was the Release Planning Process?
	6.2 RQ2: What Were the Challenges Related to the Release Plannin Process?
	6.3 RQ3: What Were the Benefits of the Continuous Release Planning Process?
	6.4 Generalizability and Threats to Validity

	7 Conclusions and Further Work
	References

