
 123

LN
BI

P
14

9

14th International Conference, XP 2013
Vienna, Austria, June 2013
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Hubert Baumeister
Barbara Weber (Eds.)

Lecture Notes
in Business Information Processing 149

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Hubert Baumeister
Barbara Weber (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

14th International Conference, XP 2013
Vienna, Austria, June 3-7, 2013
Proceedings

13

Volume Editors

Hubert Baumeister
Technical University of Denmark
Department of Applied Mathematics and Computer Science
Lyngby, Denmark
E-mail: huba@dtu.dk

Barbara Weber
University of Innsbruck
Department of Computer Science
Innsbruck, Austria
E-mail: barbara.weber@uibk.ac.at

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-38313-7 e-ISBN 978-3-642-38314-4
DOI 10.1007/978-3-642-38314-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938169

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

In the last decade, interest in agile and lean software development has been con-
tinuously growing. Agile and lean software development has moved from a way of
working—restricted in the beginning to some early adopters—to the mainstream
way of developing software. Changing from traditional development processes to
a more agile and lean mindset is not always easy. Companies often face big
challenges during this transition process, and all too often benefits cannot be
achieved as expected. A close collaboration between academia and practice is an
important cornerstone to better understand all the various facets of agile and
lean software development processes facilitating their adoption.

For the last 14 years, the XP conference series has actively participated in
promoting agility and spreading the research results in this field. In addition,
since the beginning, the XP conference series has been a place of close interac-
tion between practitioners and researchers to meet and discuss new ideas, and
experiences.

XP 2013 continued in the tradition of this conference series by providing
an interesting and multifaceted program, including research papers, tutorials,
workshops, panels, lightening talks, interactive presentations, experience reports,
and open space.

These proceedings contain the selected research papers submitted to the
research track of the conference, covering various themes related to agile and
lean software development processes such as teaching and learning, development
teams, agile practices, experiences and lessons learned, large-scale projects, and
architecture and design.

All of the submitted research papers went through a rigorous peer-review
process. Each paper was reviewed by at least three members of the Program
Committee. Of the 52 papers submitted, only 17 were accepted (33%).

We hope that you find the proceedings of XP 2013 useful for your professional
and academic activities.

We would like to thank everyone who contributed toward making XP 2013
a success including the authors, the sponsors, the reviewers, the volunteers, and
the Chairs.

March 2013 Hubert Baumeister
Barbara Weber

Organization

General Chair Ralph Miarka
Academic Chair Hubert Baumeister, Barbara Weber
Industry and Practices Michael Leber, Christian Hassa
Workshops and Tutorials Charlie Poole, Martin Heider
Exceutives and Management Diana Larsen
PhD Symposium Johanna Hunt
Open Space Charlie Poole, Diana Larsen
Panels Steven Fraser
Event Management Claudia Lembach
Student Volunteers Johanna Hunt
Publicity Olaf Lewitz

Research Program Committee

Muhammad Ali Babar IT University of Copenhagen, Denmark
Hubert Baumeister Technical University of Denmark, Denmark
Robert Biddle Carleton University, Canada
Luigi Buglione Engineering.IT / ETS, Italy
Ivica Crnkovic Mälardalen University, Sweden
Simon Cromarty Red Gate Software, UK
Torgeir Dingsøyr SINTEF ICT, Norway
Tore Dyb̊a SINTEF and Department of Informatic,

University of Oslo, Norway
Amr Elssamadisy Gemba Systems, USA
Steven Fraser Cisco, USA
Juan Garbajosa Technical University of Madrid (UPM), Spain
Alfredo Goldman University of São Paulo - USP, Brazil
Des Greer Queens University Belfast, UK
Rashina Hoda The University of Auckland, New Zealand
Helena Holmstrom Olsson Gothenburg University, Sweden
Johanna Hunt University of Sussex, UK
Kirsi Korhonen NSN, Finland
Pasi Kuvaja University of Oulu, Finland
Stig Larsson Effective Change AB, Sweden
Casper Lassenius Aalto University, Finland
Lech Madeyski Wroclaw University of Technology, Porland
Michele Marchesi DIEE - University of Cagliari, Italy
Grigori Melnik Microsoft, Canada
Alok Mishra Atilim University, Ankara, Turkey
Nils Brede Moe SINTEF ICT, Norway

VIII Organization

Ana Moreno University Madrid, Spain
Oscar Nierstrasz SCG - University of Bern, Switzerland
Maria Paasivaara Helsinki University of Technology, Finland
Jennifer Perez Technical University of Madrid (UPM), Spain
Kai Petersen Blekinge Institute of Technology/Ericsson AB,

Sweden
Adam Porter University of Maryland, College Park, USA
Outi Salo Nokia, Finland
Helen Sharp The Open University, UK
Alberto Sillitti Free University of Bozen-Bolzano, Italy
Darja Smite Blekinge Institute of Technology, Sweden
Giancarlo Succi Free University of Bozen-Bolzano, Italy
Marco Torchiano Politecnico di Torino, Italy
Stefan Van Baelen iMinds, Belgium
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Hironori Washizaki Waseda University, Japan
Barbara Weber University of Innsbruck, Austria
Werner Wild EVOLUTION, Austria
Laurie Williams North Carolina State University, USA
Agust́ın Yagüe Universidad Politecnica de Madrid, Spain

Additional Reviewers

Caracciolo, Andrea
Chis, Andrei
Dı́az, Jessica
Fernández Sánchez, Carlos
Kurs, Jan

Oliveira, Renan
Santos, Viviane
Tonin, Graziela
Wernli, Erwann

Organization IX

Sponsors

Boris Gloger

Cisco Research

Zühlke

Anecon

Techtalk

IdeaScale

Rally Software

X Organization

Event MiLe GmbH

OBJEKTspektrum

Computerwelt

Austrian Computer Society

Austrian Airlines

Certum Airportservice

Table of Contents

Teaching and Learning

Barriers to Learning in Agile Software Development Projects 1
Jeffry S. Babb, Rashina Hoda, and Jacob Nørbjerg

Early Start in Software Coaching . 16
Thomas Vikberg, Arto Vihavainen, Matti Luukkainen, and
Jaakko Kurhila

Introducing Programmers to Pair Programming: A Controlled
Experiment . 31

A.S.M. Sajeev and Subhajit Datta

Development Teams

Team Performance in Agile Development Teams: Findings from 18
Focus Groups . 46

Torgeir Dingsøyr and Yngve Lindsjørn

The Practice of Not Knowing for Sure: How Agile Teams Manage
Uncertainties . 61

Denniz Dönmez and Gudela Grote

Key Challenges of Improving Agile Teamwork . 76
Nils Brede Moe

Agile Practices

Effects of Negative Testing on TDD: An Industrial Experiment 91
Adnan Causevic, Rakesh Shukla, Sasikumar Punnekkat, and
Daniel Sundmark

Investigating the Impact of Experience and Solo/Pair Programming on
Coding Efficiency: Results and Experiences from Coding Contests 106

Dietmar Winkler, Martin Kitzler, Christoph Steindl, and Stefan Biffl

Experiences and Lessons Learned

Visualizing and Managing Technical Debt in Agile Development:
An Experience Report . 121

Paulo Sérgio Medeiros dos Santos, Amanda Varella,
Cristine Ribeiro Dantas, and Daniel Beltrão Borges

XII Table of Contents

How Are Agile Methods and Practices Deployed in Video Game
Development? A Survey into Finnish Game Studios 135

Jussi Koutonen and Mauri Leppänen

Inter-organizational Co-development with Scrum: Experiences
and Lessons Learned from a Distributed Corporate Development
Environment . 150

Raoul Vallon, Stefan Strobl, Mario Bernhart, and Thomas Grechenig

Large Scale Projects

A Metrics Model to Measure the Impact of an Agile Transformation in
Large Software Development Organizations . 165

Jeanette Heidenberg, Max Weijola, Kirsi Mikkonen, and Ivan Porres

Perspectives on Productivity and Delays in Large-Scale Agile
Projects . 180

Deepika Badampudi, Samuel A. Fricker, and Ana M. Moreno

Continuous Release Planning in a Large-Scale Scrum Development
Organization at Ericsson . 195

Ville T. Heikkilä, Maria Paasivaara, Casper Lassenius, and
Christian Engblom

Architecture and Design

Micro Patterns in Agile Software . 210
Giulio Concas, Giuseppe Destefanis, Michele Marchesi,
Marco Ortu, and Roberto Tonelli

Feature Usage Diagram for Feature Reduction . 223
Sarunas Marciuska, Cigdem Gencel, Xiaofeng Wang, and
Pekka Abrahamsson

The Effect of Complexity and Value on Architecture Planning in Agile
Software Development . 238

Michael Waterman, James Noble, and George Allan

Author Index . 253

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 1–15, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Barriers to Learning in Agile Software
Development Projects

Jeffry S. Babb1, Rashina Hoda2, and Jacob Nørbjerg3

1 Department of Computer Information and Decision Management, West Texas A&M
University, 2403 Russell Long Blvd. Canyon, Texas USA, 79016

 jbabb@mail.wtamu.edu
2 Electrical and Computer Engineering, The University of Auckland,

38 Princes St, Auckland, New Zealand
 r.hoda@auckland.ac.nz

3 Department of IT Management, Copenhagen Business School,
 60 Howitzvej, 2000 Frederiksberg, Denmark 

jno.itm@cbs.dk 

Abstract. The adoption of agile methods promises many advantages for indi-
vidual, team, and organizational learning. However, environmental, structural,
and organizational/cultural constraints often find teams adapting agile software
development methods rather than engaging in full adoption. We present results
from two qualitative studies of teams and organizations that have, in many cas-
es, adapted agile software methods to suit their needs through the omission or
alteration of aspects of the method. In many cases, aspects of an agile method
that are most related to learning were those that were modified or omitted. This
paper utilizes the results of these studies to identify common and emergent bar-
riers to learning. Often these barriers to learning exist according to organiza-
tional culture and the extent to which that culture influences attitudes, norms,
and behaviors pertaining to learning. We present these barriers to learning and
provide insight to the causes, effects, and potential ameliorations for these
barriers.

Keywords: Agile software development, learning, organizational culture, XP,
Scrum, Dialogical Action Research, Grounded Theory.

1 Introduction

Organizations and development teams adopting agile principles and practices are
often faced with dilemmas governing the degree to which these practices should be
adopted [5]. Moreover, given that many agile methods stress principles and practice
over plan and prediction, Beck [6] asserts that, while the whole adoption of an agile
method, such as XP, will realize a synergy that is greater than the sum or parts, strict
orthodoxy in the use of the methods is not prescribed or mandated. As such, a wide
range of choices, complications, and barriers exist for those who adopt an agile me-
thod. This paper is concerned with the implications of partial and modified adoption,

2 J.S. Babb, R. Hoda, and J. Nørbjerg

and the issues surrounding the effective utilization of agile methods as pertains to
organizational culture and learning.

Some of the research questions we aim to answer are: How are XP and Scrum
practices related to learning? Which practices support learning about the customer's
needs and how the product under development will help meet those needs, and which
practices support skills development (improving developers' capability, their know-
ledge about tools, change/improve processes and practices etc.)?

In this paper we share experiences from two studies, both conducted via engaged,
action-oriented, and evidence-grounded methods, whereupon we seek to illuminate
the issues highlighted in our research questions. This paper offers a post-hoc reflec-
tion on the outcomes of these studies as they relate to our research questions. Our first
study focuses on the adoption issues related to individual and team learning in the
adoption and adaptation of XP into the software practices of a small shop in Virginia,
USA. Our second examines agile adoption and use among 58 practitioners in 23 dif-
ferent organizations, in both New Zealand and India. In both studies the analytic
processes of Glaser’s grounded theory research techniques are used to distill the pat-
terns of attitudes and behaviors which inform our observations regarding the barriers
to learning in the use of agile methods.

The common patterns which emerge between the two studies suggest that barriers
to learning can be classified into four main areas: Multiple Goals (Projects), Exces-
sive Iteration Pressure, Level of Customer Involvement, and Organizational Culture.
As individual, team, and customer/organizational learning are each high probability
outcomes of the utilization of agile methods, the emergence of barriers to this learning
may be counter intuitive, given the inherent propensity for learning as a result of
adoption [29]. However, in the two studies highlighted there were indeed various
barriers to learning which emerged as the result of the adoption, and in some cases
adaptation, of agile methods.

The rest of the paper is structured as follows: Section 2 presents the related work in
this area, followed by the Research Design in section 3. We then present the Results
of the two studies in section 4, followed by a discussion of the results and the
Conclusion.

2 Related Works: Agile Methods, Knowledge and Learning

The agile approach to software development emphasize team-work, a situated, itera-
tive and emerging solution process, and personalized knowledge capture and sharing
[3,8, 9, 15, 18, 26, 27, 29]. Chau et al. [8] compare the strategies of agile and so-
called traditional or Tayloristic software development and discuss how agile practices
and principles support a personalized and team based approach to knowledge sharing
and learning in software development.

Melnik and Maurer [25] argue the importance of direct personal relationships for
effective knowledge exchange. Based on an experiment they argue that intermediaries
and documentation based communication lead to distortions and information loss
in when passing information from requirements analysts to software designers.

 Barriers to Learning in Agile Software Development Projects 3

The implication is that agile software development projects must have direct personal
interactions between different stakeholders; e.g. as expressed in the principles of cus-
tomer-on-site (XP) and frequent and direct customer contact (Scrum).

Studies of agile practice show, however, that agile teams rarely adopt all agile
practices, and that they will often adapt the practices they use to local circumstances
and contexts [3, 7, 16, 17, 24, 31]. The question, therefore, arises how the adaptation,
manifested as either non-use or modification, of particular agile practices impact
knowledge building, sharing and learning in agile software development teams and
projects. In this paper, we will explore this question through the analysis of agile
practices.

Based on Schön's [30, 31] theory of the reflective practitioner, as well as on earlier
research about knowledge in software development, we identify three kinds of know-
ledge building, sharing and reflection in agile software development projects: 1)
knowledge about the product being developed, 2) the skills and experience required to
build the product, 3) and ongoing reflection on the process itself. In the next section
we will give a brief account of the underlying theory and concepts, and elaborate on
our understanding of the three types of knowledge.

2.1 Knowledge and Learning in Agile Software Development

The agile development process is iterative, with several releases of intermediate prod-
ucts towards the culmination in a final product. The process embraces change as the
developers' and the customer's understanding of the problem and the desired qualities
of the solution emerge. Thus, agile software development processes resemble Schön's
[30] description of how skilled designers solve difficult problems in areas such as
architecture, management and industrial design [2, 13, 26]. According to this view on
design and problem solving, problems are complex and multi-faceted and the proper-
ties of the "correct" or "best" solution are not easily determined beforehand. Nor can
the solution be found through a pre-determined set of steps; i.e. a method. To solve
such problems, the skilled designer, the reflective practitioner, engages in reflection-
in-action, an "ongoing conversation with the situation", sketching and testing solu-
tions against his understanding - or framing - of the problem, changing and evolving
both the problem framing, the understanding of the desired properties of the solution,
and the solution itself, in the process [30, 31].

Reflection-in-action depends upon the knowledge and skills of the practitioner and
at the same time adds to this knowledge. As the process progresses, his understanding
and framing of the problem and the solution change and deepen. In the process, he
draws upon his repertoire of previous problems, fragments of solutions, tools and
techniques. The repertoire influences both how he frames the problem, his solution
process, and the solutions he develops in the process.

This description of design and problem solving, and how it relies on the knowledge
and skills of the designer, resonates well with studies of software design practice. In a
study of how software developers solve a difficult design problem, Guindon [12, 14]
describes how previous experience and familiarity with specific programming tech-
niques and design patterns formed the designer's appreciation of the problem and

4 J.S. Babb, R. Hoda, and J. Nørbjerg

choice of a solution. She also observes how the designers' understanding of the prob-
lem and hence of the requirements for the solution, change and deepen as they repeat-
edly assess the evolving solution against the problem.

The agile development process is strongly related to reflective practice as stated
above. One should bear in mind, however, that Schön [29] discusses the problem solv-
ing behaviour of the individual practitioner, whereas agile development is carried out
by teams of developers in close collaboration with a customer. Thus, an agile devel-
opment process must enable sharing of experience and skills within the developer
team, as well as between the team and the customer. Agile software development prac-
tices, such as customer-on-site, frequent releases, planning game, pair programming,
user stories, acceptance tests, and refactoring all support this goal [2, 15, 24, 26].

A software process that is not constantly monitored and improved risks process
erosion [8] and ongoing learning, reflection and improvement are an intrinsic part of
an agile team's responsibilities [8, 31]. Schön [30] uses the term reflection-on-action
to describe how the practitioner reflects upon, and improves his solution process and
its outcome. Like reflection-in-action, reflection-on-action is a personalized process
that builds on and improves the individual practitioner's experience and expertise, but
team-based reflection-on-action is implicitly supported by agile practices. Hazzan and
Tomayko [14] demonstrate how the dialogue among developers and between devel-
opers and customers in agile practices such as planning game, pair programming and
refactoring can induce team-based reflection-on-action. Likewise Babb and Nørbjerg
[3] suggest adding techniques and tools to agile development practices in order to
explicate reflection-on-action in agile development teams.

We derive three types of knowledge building, knowledge sharing, and learning
from this account of the agile development process and reflective practice. We will
use these three types in our discussion of barriers to knowledge sharing and learning
in agile teams.

First, there is the knowledge about the problem and the solution that the developers
and customer(s) build and share in the course of the agile project; i.e. the understand-
ings and insights that evolve as they engage in reflection-in-practice. This includes an
understanding of the problem and how the solution - the software - contributes to
solving that problem. Note that this knowledge is not static but changes and evolves
as the project progresses. Note also that this knowledge is not genuinely shared
among all stakeholders: the customer cannot and should not understand all the tech-
nical details of the evolving software product, nor can the developers expect to com-
pletely share the customer's understanding of his world. Hence there is the need for
ongoing dialogue between the development team and the customer.

The second type of knowledge concerns the expertise and skills that the stakehold-
ers bring to the process - their repertoire Schön [30]. In the software development
case this includes the developers' knowledge of software development techniques and
tools, knowledge of previous solutions to "similar" problems, and their familiarity
with software development practices. By sharing their repertoire, developers can
learn from each other and thus increase the team's joint capabilities.

Finally, the agile development team must engage in reflection-on-action in order
to learn from experiences and improve performance. The team may, for example,

 Barriers to Learning in Agile Software Development Projects 5

discuss how to improve the accuracy of their estimates during a Sprint planning meet-
ing, or two programmers may reflect upon whether the process they just used to solve
a problem can be transferred to other situations [15].

3 Research Design

This paper is based on the findings from two separate studies of agile practices: The
first is a longitudinal Action Research study in a small software company in the USA
[2, 3]. The other is a Grounded Theory study of agile practices in 23 different organi-
zations in India and New Zealand [16, 17, 18].

At the time of study, all the organizations had introduced or were in the process of
introducing agile practices based on either XP, Scrum, or a combination thereof. They
would also adapt the agile practices based on local needs or constraints. In this con-
text, adaptation means that the agile team may adopt a practice, but modify it or
choose to not use it at all.

For the present paper we have identified adapted practices in both studies and the
underlying causes; e.g. lack of customer involvement may be a cause for adaptation of
the original "customer-on-site" practice. Through identification of common patterns,
we were then able to group individual causes into a smaller set of common causes
which are presented later in the results section. We now describe the research set-up
of the two studies.

3.1 The Longitudinal Small-Shop Study

The small shop study is a longitudinal study of the introduction of agile practices and
learning tools and techniques into SSC (a fictive name), a software company in the
eastern USA consisting of the owner/founder and 4 developers.

The study used Dialogical Action Research [21] which uses practitioner and re-
searcher dialog as the principle means by which interventions are introduced into the
practitioner’s setting. Dialogical AR - as action research in general - proceeds in
cycles, each cycle contributes to solving the practitioner’s problem as well as to the
researcher's knowledge and thorough reporting to the research community in general.

During the practitioner-researcher partnership, the researcher conducted interviews
with the practitioners and observed them in their daily work. Interviews and observa-
tions were documented in transcripts, supplemental documents, and field notes. Dur-
ing the 9 months of fieldwork the researcher was present onsite twice per week on
average. Each visit usually lasted for a period of 1-4 hours. The data collected during
this period consisted of:

• 26 recorded and transcribed dialogs with the company owner and lead devel-
oper, and various combinations of the team based on progress in a given itera-
tion of the Dialogical AR cycle.

• Internal SSC documents
• Field notes taken while observing the practitioners’ work

6 J.S. Babb, R. Hoda, and J. Nørbjerg

The data collected during the initial phase of the partnership were coded, using open,
axial, and selective coding, in order to derive common themes related to SCC’s me-
thod use. This initial analysis resulted in the recommendation to introduce XP into
SSC and the method was introduced incrementally over the following months. The
researcher continuously documented and analyzed how and why the practitioners
adopted and adapted XP throughout this part of the project. It is the results from this
latter analysis which forms the basis for the discussion in the present paper.

In the final phase of the Dialogical AR partnership, the researcher introduced ex-
plicit tools and techniques to support XP at SSC with on-going reflection-on-action at
SSC. This is, however, beyond the scope of this paper and is described elsewhere [2].

3.2 The Grounded Theory Study

The Grounded Theory (GT) study was carried out over a period of 4 years using
Glaser’s classic GT method [11]. Using GT, the researcher – one of the authors of this
paper – conducted iterative rounds of data collection and constant comparison method
of text analysis. Data was collected from 58 agile practitioners in 23 different organi-
zations in New Zealand and India through face-to-face, semi-structured interviews of
approximately an hour each, using open-ended questions as well as observations of
the workplaces and practices.

All participants used Scrum or a combination of Scrum and XP. All participants
were practicing fundamental Agile practices such as iterative and incremental devel-
opment (with varying iteration lengths), iteration planning, estimation and planning of
user stories and tasks, testing, status report meetings (such as daily standup), frequent
release of working software, and some form of retrospective meetings. A majority of
the participants engaged in test-driven development and pair programming (on de-
mand). Some participants were certified Scrum Masters. Participants belonged to
organizations ranging from as small as 10 people to as large as 300,000 employees.
Their domains ranged from health, telecommunications, entertainment, agriculture,
energy, to software product development for multiple domains. The project duration
varied from 2 to 12 months and team sizes ranged from 2 to 20 people on different
projects. Participants varied in their levels of experience of using agile practices from
novice to mature with several years’ experience.

Data was analyzed using GT’s open, selective, and theoretical coding procedures.
Codes arising from one interview were constantly compared to those arising from all
other interviews using the constant comparison method. This led to identifying com-
mon themes or patterns in data at increasing levels of abstraction. A number of find-
ings were made from the GT study with respect to agile practices and have been
described elsewhere [16, 17, 18].

We discovered a number of barriers to learning across the dimensions of reflec-
tion-in-action, repertoire, and reflection-on-action in the findings from both
the -studies. We have analyzed examples of non-adherence or modifications to agile
practices in order to identify the underlying causes of the adaptation/non-use. In each
case we also identify the effect on learning and knowledge sharing. We describe these
barriers in the next section.

 Barriers to Learning in Agile Software Development Projects 7

4 Results: Barriers in Practice

In this section, we describe the categories of "barriers in practice" as identified in the
two studies. These are: Multiple Goals (Projects), Excessive Iteration Pressure, Level
of Customer Involvement, and Organizational Culture.

4.1 Multiple Goals (Projects)

In the longitudinal study, SSC is a small company with 20-40 individual customers at
any given time. Furthermore, the company's projects spanned from as little as a week
or two to three months (and beyond). The high number of customers and - very short -
projects had implications for the adoption and adaptation of the practices of pair pro-
gramming and customer as team member.

It was difficult for SSC to fully embrace the idea of pair programming although
both the manager and the developers understood that this technique increases reflec-
tion and awareness among the developers and hence may contribute significantly to
productivity. With each developer working on several projects simultaneously, and
often only one person being active on a given project at a given point in time, it was
infeasible in practice to apply pair programming in a systematic way. Programmers
would, however, team up to explore and solve difficult programming problems and to
create spike solutions. In this way the programmers used pair programming to im-
prove their individual and shared knowledge of programming techniques and tools.
This adaptation of pair programming, however, curtailed the adoption of collective
code ownership and sharing.

SSC could not adopt the principle of customer as team member in the way
prescribed by the XP method. With anywhere from 20 to 40 projects underway at
varying stages of completion or maintenance, augmenting the “team” by 20 to 40
members was not realistic. Instead Daphne, the founder/owner, would act as a proxy
for the customer and write user stories, and later acceptance tests, based on her notes
or her memory of a client’s intentions. Thus, the customers' needs and intentions were
not communicated directly to the developers in the customers' own language, but were
mediated through Daphne's interpretations and language.

In the Grounded Theory study, we discovered a co-relation between team members
being split across multiple projects and their ability to perform group programming –
working together in an open-plan workspace while sharing the same code-base and
collaborating closely. Group programming in agile teams provides opportunities for
learning among team members.

“I think in our business, software developing, it's a complex subject and it's im-
possible for one person to know about everything, so it's a day-by-day thing...This is a
normal step and everybody is learning each day.” – Participant P14, Developer, New
Zealand

Continuous learning involves different types of learning: learning Agile practices,
learning new or complex technical skills, learning cross-functional skills, and learning
from the team's own experiences - all of which fuel self-improvement. Where team
members were split across multiple projects, their ability to perform group program-
ming was curtailed.

8 J.S. Babb, R. Hoda, and J. Nørbjerg

“What I think a affected our project...[the developer] was working on another
project, he didn't have enough time, so he didn't have the space to chat with anybody,
to discuss ideas with anybody, to work with anybody, so he was really just on his own,
and I think that really impacted a lot of the work he did in the last few months ...
When you're working in a team like this [Agile team] and you've got to work quite
closely, the individuals in the team matter.” – Participant P21, Customer Rep, New
Zealand

As a consequence the benefits of group programming, such as team-based reflec-
tion-in-action as a result of working together, were diminished. On the other hand,
some other teams where members were largely dedicated to single projects at a time
provided a strong learning environment, especially for new-comers who would pair
up with more experienced members to learn new technologies.

“I had never worked on the Spring framework before, but in this project it's com-
pletely related to Spring framework, and Spring transaction management and all, so I
started learning it...we were pairing each with other, that time it was beneficial be-
cause the other person was quite okay...and he knew about the Spring frame-work
and he had done it before in some other project. So it helped me to learn it more fast-
er, because he used to say: ‘okay, you have to go with this stuff, and you can do it'. So
that was a major advantage.” – Participant P16, Developer, New Zealand.

It was obvious that while dedicated resources on projects performing group pro-
gramming were able to benefit from enhanced learning opportunities, resources split
across multiple projects suffered from diminished opportunities for learning.

4.2 Excessive Iteration Pressure

We defined “iteration pressure” as the pressure to deliver to a committed team goal
every iteration. Iteration pressure, in itself, is not detrimental to the team, in fact some
amount of iteration pressure is necessary to motivate teams to deliver their goals.
Short iteration lengths or an extremely high and unsustainable development velocity,
on the other hand, can cause excessive iteration pressure. For instance, in the GT
study, a developer found one week iterations to be very demanding:

“I'm always feeling the need to rush, rush, rush!...after one week [iteration], we
want to remove all these stickies [tasks] from the wall. So it's always pressure...if you
have [longer] development time, then I can adjust my work like if we spent a little bit
longer than we expected, I can catch up next week.” – Participant P15, Developer,
New Zealand

Creating and maintaining a continuous learning environment requires teams to set
some explicit time aside for learning each iteration. Excessive iteration pressure, on
the other hand, implies they may not have any extra time to spare for learning:

“I'd be interested to learn various agile techniques for requirements gathering,
such as events and themes, and I'd love to try and use some of them in an Agile
project. It's just [that] I haven't really had a lot of time to think about it. [Scrum] is
very action oriented.” - Participant P4, Business Analyst, New Zealand

 Barriers to Learning in Agile Software Development Projects 9

“You need to actually allow time for other team members to learn what you do and
for you to learn what they do. Often we tend to fill up our sprints with so much that a
good teaching environment isn't necessarily there...they can see what you're doing
but you need to be able to take the time to explain in really good detail.” - Participant
P8, Tester, New Zealand

Excessive iteration pressure was, therefore, found to be a barrier to learning in
agile teams.

4.3 Customer Involvement

The original XP and Scrum practices to support customer collaboration are the ‘on-
site customer’ and ‘product owner’ respectively. In practice, several factors contribute
to less than ideal levels of customer involvement. These include skepticism towards
agile practices, geographic distance including off-shoring setups, inability or unwil-
lingness to collaborate, etc. [17].

In the longitudinal small-shop study, the change to XP increased the level of ongo-
ing interaction with customers. Negotiating requirements with a key customer had
previously been the responsibility of a key partner who was the main contractor. This
had led to estimation and quality issues. After the introduction of XP, Daphne, the
founder and CEO of SSC, insisted on engaging directly with the customer, using user
stories to capture user requirements iteratively and respond to change. A drawback of
this setup was that she was the prime – sometime only – liaison with customers. As
such the repertoire of learning that can be derived from interactions with the customer
was limited to Daphne, while the rest of the team did not get a chance to learn about
the customer domain, business cases, and requirements in the same way.

Where the teams were suffering from inadequate customer involvement, a single
team representative coordinating with the customer – or a coordinator role – emerged
in most of the relatively new agile teams in the GT study [17]. It was mostly played
by a business analyst or by developers. The coordinator was responsible for capturing
customer requirements and relaying them to the team. Similarly, they would pass on
questions from the team to the customer and elicit clarifications on requirements or
prioritization. Another role identified in the GT study was that of a translator – a
person responsible for understanding and translating between business language used
by customers and the technical terminology used by the team, to improve communica-
tion between the two [18]. In relatively new agile teams, the translator role was most-
ly played by a single individual usually also playing the coordinator role. Both these
roles involved close learning and in-depth understanding about the customer domain
and requirements.

Lack of these roles altogether or where these roles are limited to individuals, be-
comes a barrier to learning for the whole agile team. Where the coordinator and trans-
lator roles were played by single individuals on new agile teams, they were useful in
overcoming the challenges of inadequate customer involvement, however, it provided
limited opportunities for other members to learn about the customer domain and re-
quirements. In more mature teams – practicing agile for more than a year – most mem-
bers of the team were able to play the coordinator and translator roles and interact

10 J.S. Babb, R. Hoda, and J. Nørbjerg

directly with the customer. This provided better opportunities for all members of the
team to develop a repertoire of learning about the customer and their requirements.

4.4 Organizational Culture

Organizational culture has been defined as “a standard set of basic suppositions in-
vented, discovered or developed by the group when learning to face problems of ex-
ternal adaptation and internal integration.” [18]. Senior management has a strong
contribution in setting up overall corporate vision and values and maintaining the
organization culture. Agile teams require organization structures that are informal in
practice, where the boundaries of hierarchy do not prohibit free flow of information
and feedback. In an informal organizational structure, the senior management encou-
rages a strong learning environment with active mechanisms for knowledge manage-
ment across the board.

In the longitudinal study, at the time when XP was introduced to SSC, the found-
er/CEO had all important knowledge about the company's processes, customers
and products, and she would work hard to "mold" new employees into her ways of
thinking:

“And even though we haven't written a formal methodology, which I guess is just
in my head, and I have conformed Fred [a developer] to what's in my head...Luckily,
he has been trainable and has listened to what I do... Fred was content with deliver-
ing back to me exactly what I asked for so I've molded Fred into my way of thinking,
so I guess the methodology is in my head.” – Daphne, CEO, SSC

This knowledge transfer process took time away from other important tasks and
she hoped that having a formal method which everyone knew and could use, would
take some of that pressure away from her. Her strong belief that her own knowledge
and capabilities held the key to productivity and quality did, however, create obstacles
for the kind of team learning intended in XP and other Agile methods. She saw the
method as a more effective way to codify and transfer her ideas of best practices to
the developers, rather than a vehicle for genuine knowledge sharing and skill devel-
opment. This was evident in her approach to pair programming, daily stand-up
meetings, and user stories. She immediately valued pair programming for skills de-
velopment and saw developer pairing as a means for skills transfer from herself to one
deveoper and through him to the next, and so on. Citing her own higher skill and ex-
perience level, Daphne saw spike solutions and pair programming as means to elevate
her employees’ skills until parity with her own skills was reached. On the other hand
she was less confident to let the developers pair on their own without her guidance
and support. She would be concerned that developers would "reinvent the wheel" and
spend time finding solutions to problems she had solved already.. As a consequence -
and also because of the resource and structural issues discussed above - she would
neither support, nor endorse pair programming as a practice to be used across the
board.

This view on learning as transferring knowledge and skills from management to
developers, creates barriers to the team's own reflection and. It is feasible that collec-
tive code ownership will remain unachievable in SSC in practice.

 Barriers to Learning in Agile Software Development Projects 11

Daphne's influence on the introduction and use of XP also had some positive im-
pact on learning. To her, both user stories and daily stand-up meetings became means
to monitor productivity and progress. She would, therefore, actively engage in these
practices, thereby reinforcing their effect on learning and reflection.

In the GT study, we found that agile organizations, where all the teams operate us-
ing agile software development, are characterized by informal organizational struc-
tures. Informality in organizational structure promotes openness. Openness was one
of the most common traits mentioned by participants, that made the organizational
culture conducive for agile teams. In such organizations, team members are free to
voice opinions, raise concerns, and freely share knowledge within and across teams.
This was achieved in a few cases through knowledge repositories in the form internal
project wikis where all important project information, domain knowledge, business
cases, and technical tasks were recorded.

5 Discussion

Our discussion and analysis of the results of the two studies, as they related to the
emerging theme of barriers to learning, will be presented in two steps: 1) an overview
of adapted practices and the implications for learning, using the, and 2) discussion of
the underlying causes of the adaptation/non-use.

We first summarize results, as they pertain to each identified barrier and the effect
this has on learning and knowledge sharing within the agile teams. (See table 1)

Many of the barriers to learning and knowledge sharing emerge as the result of
conflict and friction between constraints endogenous to the development team and, in
some cases, the organization in which the development team is located. Company
size, organizational culture, principle industry type, and team size, each play an in-
fluencing role concerning the adaptation of the agile method. Whereas agile methods
are generally effective, they are not so codified that complete orthodox adoption is
necessary. However, while ample instruction exists on the learning cycles inherent in
XP and Scrum, experiences from both studies suggest that engagement in the reflec-
tive and learning-oriented practices are not always followed or are not sufficiently
institutionalized. Thus there are structural and contextual hindrances for, knowledge
sharing, reflection and learning in agile projects. Perhaps as profit is largely attached
to the delivery and acceptance of working software, the learning cycles that improve-
ment team and personal development may be eschewed in favor of moving forward to
the next opportunities for billable hours, progress on projects, and productivity.

The learning that arises from the use of agile methods is also manifold. Some
learning is related to improvements in a team’s ability to understand the requirements
of the project and to adapt the changes in requirements. Since these are productive
aspects of agile methods which enable the delivery of working software (and thus
revenue), this type of learning would be encouraged. Other learning relates to the
improvement of developers’ and teams’ skills and expertise, and is perhaps, although
counter-intuitively, reduced or omitted in favor of learning activities which are more
directly related to the bottom line.

12 J.S. Babb, R. Hoda, and J. Nørbjerg

Table 1. Summary of Barriers to Learning and Knowledge Sharing in the Adaptation of Agile
Methods

Barrier Agile practices
affected

Effect on learning and knowledge sharing

Multiple
goals
(projects)

Customer-on-site
Pair programming
Collective code
ownership

The product being developed: Developers did not have
direct access to the customer's needs and requirements.
Developers did not share knowledge about the emerging
product.

Excessive
iteration
pressure

Daily stand-up
Retrospectives
Pair programming

Skills and experience: The developers had insufficent time
to experiement with new techniques and exchange new
ideas.
Reflection-on-action: Not enough time to reflect upon and
improve practices and results.

Customer
involve-
ment

Customer-on-site The product being developed: Developers did not have
direct access to the customer's needs and requirements.

Organiza-
tional
culture

Pair programming
Spike solutions
User stories
Stand-up meetings

Skills and experience: Skills and experience transferred
from a strong "expert" to other developers. No collective
sharing
Reflection-on-action: One person's view dominates reflec-
tion and improvement activities. Reduced team-based re-
flection and improvement.

Similar to Hazzan and Tomayko [15], we observe, that although practices in XP

and other agile methods support reflection and learning, practical and contextual is-
sues create barriers to learning which are not simple to resolve. That is, the learning
that is possible from the utilization of agile methods is challenged by the natural en-
tropy inherent in the particulars and context faced by a given team or organization.
We conveniently characterize the constraints and proclivities of a given team as part
and parcel of their organizational and/or managerial culture. Therefore, as agile me-
thods emphasize knowledge sharing and learning at the team level, the team is si-
tuated within, influenced by, and perhaps, bound by, an organizational culture. There
are many agile principles and practices, such as collective code ownershp, stand-up
meetings, and retrospectives in which organizational culture is driving the barriers we
identify from the highlighted studies.

Many of the barriers to learning, which resulted from ommission or partial en-
gagement of learning-oriented agile practices, resulted from individual, team, and
management dilemmas [33]. In the case of the longitundial study at SCC, many deci-
sions made which were detrimental the realization of the full benefit of agile practices
were cognizant of the potential costs. The dilemma was typically a matter of prioritiz-
ing other short-term or existential constraints. However, organizational culture can
influence the degree to which a team benefits from an inherent culture or disposition
towards the indoctination of learning practices.

Argyris and Schön [1] characterize the problem of cultural threats to learning
as a Learning Paradox, wherein disconnect arises in what is discussable and

 Barriers to Learning in Agile Software Development Projects 13

not-discussable in the context of organizational norms. In the case of a small shop,
such as SCC, there may be an involved owner who, rightfully insists on maintaining
discretion on practices. Overall, organizational culture may have great impact on
whether the team will engage in reflection-in-action and double-loop learning de-
pending on what is discussable. This was evident in the Dialogical AR partnership at
SSC where certain persistent problems related to one of their strategic partnerships
precluded organizational learning for the team. This was so as SSC was too con-
strained by and codependent with their strategic partner to allow the not-discussable
to enter into their reflections and learning.

This matter of organizational culture constitutes a particularly wicked problem as a
learning culture - in spite of its seemingly problematic nature - may not be easily
removed, since it is tied into the company's history, and - ultimately - the fund-
er/owner's ambition to keep the company afloat. These sort of deeper structural prob-
lems which - in practice - limit the application of certain XP elements, are perhaps
unavoidable. Evidence from the Grounded Theory studies also suggest many structur-
al constraints which, at times, revealed the pace required for constant revenue-
generating and forward-moving action, left some developers in a state where the
productive trains of Scrum were dutifully engaged, while some of the more reflective
and learning-oriented practices were curtailed.

We are left with a central question which is only partially answered by the evi-
dence from our studies: what is the opportunity cost of trading the organizational and
team learning aspects of agile methods for their productivity and adaptability aspects?
In both studies, cracks and fissures in team learning were apparent. Certainly the im-
plications these tradeoffs have for the long-term effectiveness of the team are worth
further study. Perhaps metrics for learning and greater discipline for the specification
of learning could be made more integral to the agile methods. However, it may be
somewhat antithetical to the premise of agile methods that learning becomes a quanti-
fiable metric. In any case, the importance of individual and team learning as a bypro-
duct of agile method use is quite established, however, the mechanics to ensure that
learning outcomes are inculcated as being concomitantly and equally important as
product outcomes are perhaps not as integral to agile methods as we purport.

6 Conclusion

Even though software companies and practitioners aim to follow agile practices, they
(or their managers) face challenging conditions as identified in our two studies. The
answer to this is not, however, to insist that practitioners follow agile practices to the
letter or abandon the agile practices altogether. Agile practitioners often end up adapt-
ing agile practices to different contexts and constraints, thus creating barriers to
knowledge sharing and learning. For example, inadequate customer involvement
leads to the emergence of adapted practices of using the coordinator and translator
roles in place of ‘on-site customer’ or ‘product owner’. When played strictly by single
individuals on relatively new agile teams, these adapted roles limit the rest of the
team’s ability to acquire knowledge and enable learning about the customer domain.

14 J.S. Babb, R. Hoda, and J. Nørbjerg

Awareness of the barriers to learning described in this paper will help agile practi-
tioners better grasp the risks associated with adapting agile practices and consciously
include opportunities for learning and knowledge sharing when practicing agile.
However, awareness alone may be insufficient as many of these barriers are structu-
rally tied to the organizational context. The dilemmas and constraints that many agile
teams and practitioners face may result in practices that forestall the learning mechan-
isms inherent in many agile practices. While more study into this area is needed, it
seems that concepts related to reflective practice hold the most promise in allowing
the individual practitioner opportunities to individually react and adjust to barriers to
learning in the use of agile methods.

References

1. Argyris, C., Schön, D.: Organizational Learning II – Theory, Method, and Practice. Addi-
son-Wesley, Boston (1996)

2. Babb, J.J.: Towards a reflective-agile learning model and method in the case of small shop
software development: evidence from an action research study. PhD., Virginia Common-
wealth University (2009)

3. Babb, J.J., Nørbjerg, J.: A Model for Reflective Learning in Small Shop Agile Develop-
ment. In: Molka-Danielsen, J., Nicolajsen, H.W., Persson, J.S. (eds.) Engaged Scandina-
vian Research. Selected Papers of the Information Systems Research Seminar in
Scandinavia, Molde, Norway, vol. 1, pp. 23–38. Tapir Akademisk Forlag (2010)

4. Bansler, J.P., Bødker, K.: A Reappraisal of Structured Analysis: Design in an Organiza-
tional Context. ACM Transactions on Information Systems 11(2), 165–193 (1993)

5. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Ad-
dison-Wesley, Boston (2004)

6. Beck, K.: Extreme Programming Explained. Addison-Wesley, Boston (2000)
7. Cao, L., Mohan, K., Xu, P., Ramesh, B.: A framework for adapting agile development me-

thodologies. European Journal of Information Systems 18, 332–343 (2009)
8. Chau, T., Maurer, F., Melnik, G.: Knowledge Sharing: Agile Methods vs. Tayloristic Me-

thods. In: Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE 2003. IEEE Computer Society (2003)

9. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston (2002)
10. Coleman, G., O’Connor, R.: Investigating software process in practice: A grounded theory

perspective. J. Syst. Softw. 81(5), 772–784 (2008)
11. Fitzgerald, B., Russo, N.L., Stolterman, E.: Information Systems Development. Methods

in Action. McGraw-Hill (2002)
12. Glaser, B., Strauss, A.L.: The Discovery of Grounded Theory. Aldine, Chicago (1967)
13. Guindon, R.: Designing the Design Process: Exploiting Opportunistic Thoughts. Human-

Computer Interaction 5, 305–344 (1990)
14. Guindon, R.: Knowledge exploited by experts during software systems design. Interna-

tional Journal of Man-Machine Studies 33, 279–304 (1990)
15. Hazzan, O., Tomayko, J.: The Reflective Practitioner Perspective in eXtreme Program-

ming. In: Maurer, F., Wells, D. (eds.) XP/Agile Universe 2003. LNCS, vol. 2753, pp.
51–61. Springer, Heidelberg (2003)

16. Hoda, R., Kruchten, P., Noble, J., Marshall, J.: Agility in Context. In: Object-Oriented
Programming, Systmes, Languages and Applications Conference, OOPSLA 2010,
Reno/Tahoe, NV. ACM (2010)

 Barriers to Learning in Agile Software Development Projects 15

17. Hoda, R., Noble, J., Marshall, S.: Agile Undercover: When Customers Don’t Collaborate.
In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp.
73–87. Springer, Heidelberg (2010)

18. Holz, H., Maurer, F.: Knowledge Management Support for Distributed Agile Software
Processes. In: Henninger, S., Maurer, F. (eds.) LSO 2003. LNCS, vol. 2640, pp. 60–80.
Springer, Heidelberg (2003)

19. Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading (1990)
20. Kautz, K., Madsen, S., Nørbjerg, J.: Persistent Problems and Practices in Information Sys-

tems Development. ISJ (2007) (accepted for publication)
21. Lee, A.S., Mårtensson, P.: Dialogical Action Research at Omega Corporation, Richmond,

VA, pp. 1–39 (2004)
22. Madsen, S., Kautz, K., Vidgen, R.: A framework for understanding how a unique and local

IS development method emerges in practice. European Journal of Information Systems 15,
225–238 (2006)

23. Mangalaraj, G., Mahapatra, R., Nerur, S.: Acceptance of software process innovations –
the case of extreme programming. European Journal of Information Systems 18, 344–354
(2009)

24. Mathiassen, L., Pries-Heje, J., Ngwenyama, O. (eds.): Improving Software Organizations.
From Principles to Practice, The Agile Software Development Series. Addison-Wesley,
Boston (2002)

25. Melnik, G., Maurer, F.: Direct Verbal Communication as a Catalyst of Agile Knowledge
Sharing. In: Agile Development Conference (ADC 2004). IEEE Computer Society (2004)

26. Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: A
case study of a Scrum project. Information and Software Technology 52, 480–491 (2010)

27. Nerur, S., Balijepally, V.: Theoretical Reflections on Agile Development Methodologies.
Commun. ACM 50(3), 79–83 (2007)

28. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addi-
son-Wesley, Boston (2013)

29. Schein, E.H.: Oraganizational Culture and Leadership, 1st edn. Jossey-Bass Publishers,
San Franciso (1985)

30. Schön, D.A.: The Reflective Practitioner. How Professionals Think in Action. Basic Books
(1983)

31. Schön, D.A.: Designing as reflective conversation with the materials of a design situation.
Knowledge-Based Systems 5(1), 3–13 (1992)

32. Senapathi, M., Srinivasan, A.: Understanding post-adoptive agile usage: An exploratory
cross-case analysis. The Journal of Systems and Software 85, 1255–1268 (2012)

33. Steiner, L.: Organizational dilemmas as barriers to learning. The Learning Organiza-
tion 5(4), 193–201 (1998)

34. Stolterman, E.: How System Designers Think about Design and Methods. Some Reflec-
tions Based on an Interview Study. Scandinavian Journal of Information Systems 3, 137
(1991)

Early Start in Software Coaching

Thomas Vikberg, Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila

Department of Computer Science, University of Helsinki, Finland
{tvikberg,avihavai,mluukkai,kurhila}@cs.helsinki.fi

http://www.cs.helsinki.fi/rage

Abstract. The demand for software coaching and coaches is increasing.
As our programming courses are organized according to the Extreme
Apprenticeship method, it is relatively safe and straightforward to al-
low students to participate as coaches in our CS1 course even as early
as their second semester. Safety is ensured by the hierarchical struc-
ture of CS1 course personnel that provides enough peer and faculty sup-
port for students undertaking the task of coaching. We briefly describe
the Extreme Apprenticeship method as well as the organization and the
learning objectives in our coaching environment. Results acquired from
student coaches (N=46) indicate that the learning experience of coach-
ing is highly valued and deemed especially educational for the coaches
without harming the learning results of the coachees.

Keywords: agile software coaching, software engineering best practices,
coach development, cognitive apprenticeship, extreme apprenticeship.

1 Introduction

Emergence of lean and agile methods [1,2,3] has led to an increasing demand for
software engineers that are able to perform as coaches for individual developers
and teams. To satisfy this demand, higher education institutions with software
engineering (SE) education have to give their students opportunities to learn
agile coaching skills as well as traditional hard SE skills. As coaching is about
working with people [4], learning to coach requires educational structures which
involve interaction and cooperation, i.e. opportunities to practice coaching. Time
and experience are needed to become an effective agile coach [4]. Therefore, it
is beneficial to start practicing it as early as possible, given that supporting
conditions can be put in place.

An agile coach not only performs as a teacher, facilitator, collaborator and a
mentor, but in addition, an important part is being a coach [5]. Coaches guide
people on their path towards better expertise through emphasizing best software
engineering practices. Acting as a coach requires skills outside the traditional CS
degree that consists of e.g. mathematics, programming, databases and architec-
ture design. Agile coaches perform as agents of change and rely upon teamwork-
related skills as well as other social skills. These skills are typically embedded
only within the “hidden curriculum” within CS degrees which means that their
realization is often not assessed or developed.

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Early Start in Software Coaching 17

A traditional approach for coping with the emerging need for coaches in formal
higher education would be to offer lecture-based courses titled along the lines of
“software engineering coaching”. Such courses or modules would introduce the
students to e.g. project management methods such as Scrum [1] and Kanban [6]
by covering their main principles and practises. Another approach would be to
place the students to coach e.g. capstone projects, possibly under the instruction
of faculty members of the institution. Such courses can be completed only in the
later part of a CS degree as students taking the course should have hands-on
experience in larger software engineering projects before they can be put to coach
and share the responsibility of capstone-projects (see e.g. [7,8]).

The approach to software coaching presented in this paper is a mix of hands-
on experience with clearly stated learning objectives with a twist: coaching starts
very early in the degree programme. The approach is a formal part of the degree.
However, it is not a course in the traditional sense: there is no lecturing, and no
summative assessment of the students; the only course structure is the specific
way that we organize our programming courses. The course design includes heavy
interaction between every participant and a hierarchy of people which allows
team-teaching and participation of junior coaches.

Noteworthy is that in our approach to teaching programming, a significant
part of our students (ca. 20%) act as coaches in introductory programming
courses (CS1) at a very early stage of their studies, as early as their second
semester. Working as a coach to novice programmers gives the student valu-
able experience on technical as well as inter- and intra-personal aspects in pro-
gramming, e.g. communicating with people with different CS knowledge levels,
experiencing and truly understanding the meaningfulness of best programming
practices [9]. The coaches are being exposed to thousands and thousands of lines
of code from different programmers and are taken into the community of prac-
tice [10,11] of a team of coaches. Students are given a chance and an explicit
responsibility to see what it can be like to be on the other side of the “teaching
podium”; this is expected to both empower the students as well as give insight
into what it takes to facilitate learning.

Our approach for organizing coaching opportunities for the students inter-
twines with our apprenticeship-based method of organizing our programming
courses. In the rest of the paper we first briefly describe the apprenticeship-
based educational method. We continue by describing the coaching study path
offered within our degree, where students are being coached and act as coaches.
We then concentrate on the early coaching experiences of the students, and how
the coaching opportunity is organized within our educational setting. Results
are gathered and presented from 46 students, who have participated as junior
coaches at an early stage of their studies.

2 Extreme Apprenticeship Education

There is a long tradition of apprenticeship-based education in CS, especially in
learning to program (see e.g. [12,13]). As an ongoing effort we have developed

18 T. Vikberg et al.

a version of apprenticeship-based education called the Extreme Apprenticeship
method (XA) that is in use in programming courses at our institution [14,15]. XA
is based on contemporary interpretations of apprenticeship education in which
the emphasis is on teaching crafts that require abstract thinking [16,17,18].

As is typical for apprenticeship education, XA is based on modeling, scaf-
folding and fading. First, the student is provided with a conceptual model of
the programming process in the form of course material, screen casts and few
a lectures. Second, students are exposed to tasks, i.e. exercises, that are to be
completed under scaffolding. Here, scaffolding refers to temporary support given
to students, which allows them to reach the intended learning objectives. A sig-
nificant part of the process of scaffolding is given by instructors who perform
as coaches for the students. Scaffolding is also built into the learning material
and exercises which guide the students to discover the content knowledge that
is part of the learning objectives of the programming course.

Students complete programming tasks from day one. They are allowed to
experience feelings of satisfaction from completing the programming tasks by
themselves. Those giving the support must restrain themselves from giving full
answers to the exercises, rather, just enough hints so that the students are able
to discover the answers themselves. In XA, the aim is to get everyone to succeed
in getting started, and receive enough support to progress further in the course.
Many students are spending numerous hours practicing in our XA computer
labs. Scaffolding needs to be temporary, and the support given by instructors
fades away after it has served its purpose. In the exercise material, this fading
means progression to ever larger and more open-ended assignments.

In addition to the adaptations of the three phases described above, XA relies
on two key principles: (1) The craft can only be mastered by actually practicing
it, as long as it is necessary; and, (2) bi-directional continuous feedback between
the learner and the instructor is of utmost importance, in order to make progress
and show the progress to both parties [19].

A sufficient amount of practice is ensured by the fact that there are literally
hundreds of exercises to be completed. The instructors play a crucial role when
interacting with the students. They do not only help the students, but also gather
necessary information which is used for continuously assessing the progress of
learning in the course. XA relies on this information when the tasks for the
upcoming weeks are selected and crafted.

XA has been successfully employed in several courses [19,20,21], recently also
outside the XA’s “home university” [22]. XA has also been adapted to teaching
university mathematics [23].

3 Coaching as Part of the Degree

The software engineering (SE) track at the Department of Computer Science at
the University of Helsinki offers various courses that incorporate people skills:
SE; SE Project; Software Processes and Quality; Software Project Management
and Group Dynamics. Coaching and Engaging in Global Agile Software Teams

Early Start in Software Coaching 19

Fig. 1. SE-specific courses at the University of Helsinki. The courses with dashed bor-
ders are elective courses relevant for coaching. The arrows indicate prerequisites. The
figure differs slightly from that in [20] due to minor curriculum updates.

is a specific coaching course targeted for students at the end of their Master’s
studies. Topics of the course are agile software development as a concept, agile
methodology in distributed settings, and coaching of agile teams taught through
problem- and case-based learning techniques. Students also have the opportunity
to work under agile coaches in the Master’s degree capstone project Software
Factory [24]. Due to the technical prerequisites, all of these courses are offered
quite late in the studies, see Fig. 1 for placement of the SE courses in the degree
programme.

A purpose of the SE subtrack of the department is to educate experts on the
path towards software craftsmanship [25,26,27]. This involves getting the students
to focus on software quality, receive a broad understanding of the field and pursue
continuous improvement. The courses forming our CS1 are purposefully designed

20 T. Vikberg et al.

and marketed to be the first steps on a road towards true SE expertise1. The em-
phasis is not only on learning to program, but also on how to program accord-
ing to industry best practices with the intention to write understandable, easily
maintainable and correctly working code. As even the first programming course
emphasizes best practices in the industry, it is a suitable setting for our early start
in software coaching2.

In this way coaching is embedded in the curriculum early on. First, students
are themselves coached when they participate in CS1. Then they can act as
junior coaches in CS1. At this stage, coaching means facilitating the learning of
a single CS1 participant.

A broader view of coaching is experienced in the SE Project in which students
are coached by the faculty and graduate TAs. At the start of the SE project,
the coach of each project group acts in the roles of product owner and scrum
master, but during the project they gradually help project participants to take
the responsibilities of these roles [20]. After participating in the SE project, many
of the students showing interest and capability for coaching are hired as TAs to
coach future SE projects.

After starting their Master’s degree studies, many of the students specializing
in SE take part in the Software Factory where they are again coached, this time
by experienced agile coaches from our faculty. Besides experiences of coaching
and being coached, the Master’s degree studies contain many courses on topics
related to coaching that give students more opportunities for self-reflection and
deepening their theoretical knowledge on the topic. Of course not all CS students
follow through the entire coaching track, but those who specialize in SE have
the opportunity to experience coaching from multiple perspectives.

This interplay between observing a coach while being coached and acting as
coach and thus modeling coaching to others throughout the studies, is fully em-
bedded in the curriculum. It facilitates the progress to become an agile coach as
“becoming an agile coach entails education, experience, and practice [...] ’being’
an agile coach in all you do sets a powerful example for everyone you coach” [5].

4 Coaching “Course”

The early coaching approach is structured through a format that emphasizes
active student engagement over everything else, selection of motivated coaching
candidates, and scaffolding of coaches by senior faculty members. The structure
is technically a course with study credit to formalize it as a genuine part of a

1 The CS1 courses can be found as MOOCs at http://mooc.fi entitled Object-
Oriented Programming with Java [21].

2 In apprenticeship education, the term “coaching” has been used to refer to the ac-
tivities of the course teacher (see e.g. [28,29]). We want to emphasize that coaching
in our context is considered a different act from teaching, even if the coaches in CS1
perform as mentors and teaching assistants (TAs) [30]. Coaching is something that
the students do, in order to learn coaching (in addition to helping fellow students to
learn programming).

Early Start in Software Coaching 21

degree. (See Fig. 1 for the position of the course CS1 Coaching within the SE
track.) It is important that coaching is a formal activity of the department, as
it sets the message that the students are allowed and encouraged to participate,
and that they are expected to learn from the experience, even if they are not
taught in a traditional sense.

When XA-based CS1 courses began in 2010, the coaching course was not a
part of the teaching organization of the course. The students received coaching by
teaching assistants selected by the routine selection process of the department.
The initial idea of giving students the opportunity to act as coaches as early
as possible came from the students themselves. An eager student who had just
finished XA-based CS1 approached the faculty in charge of the course and asked
– even demanded – to be allowed to help in coaching the students in the next
semester CS1 course. After realizing the additional benefits for our evolving CS
curriculum SE track, in which agile software engineering principles and practices
play a major role [20], the faculty welcomed the voluntary coaches. From the
very beginning it was decided that the students’ coaching involvement in the
CS1 course was to be organized formally, i.e. students would earn study credits
depending on the amount of their involvement.

Initially, this “coaching course” was not marketed nor included in the official
study plan. Therefore, the first iterations had only a few participating junior
coaches, based on word-of-mouth recruiting. After the initial experiment, the
number of students has steadily increased: during the fall 2012 semester we had
26 students as junior coaches and 6 students as senior coaches, coaching our
185 new CS1 students. We aim to have roughly a 1:5 coach-to-student ratio in
order to make sure that there are enough CS1 students to be coached in the XA
computer labs.

4.1 Connecting Coaching to XA

There are clear similarities and synergies between XA education and students
as future agile coaches. Fraser et al. state the most important purpose of agile
coaching as “facilitating learning” [31]. This same goal is shared by instructors
providing scaffolding for students in XA. A good agile coach tries to make herself
unnecessary as soon as possible, i.e. helps the team and the team members to
flourish [5] bridging directly to the idea of the scaffolding and fading phases in
the teaching framework of apprenticeship-based teaching [17,29].

As XA is a form of apprenticeship education, the “pyramid” of the stake-
holders is essential in organizing the CS1 programming course: (1) there are
responsible teachers (tenured teachers also working as coaches) that are on the
top of the pyramid, crafting material and exercises, coordinating and controlling
the operation; (2) senior coaches (teaching assistants on a payroll) who work
as coaches and contribute to exercises in addition to helping the students; (3)
junior coaches (students taking the CS1 Coaching course), who learn to assist
novice programmers by helping students in the XA labs and by being a part of
the teaching team; and finally, (4) students of the CS1 course (potential junior
coaches of future courses).

22 T. Vikberg et al.

XA emphasizes individual efforts of students with continuous interaction be-
tween all parties, so using XA as a training ground for aspiring coaches is only
natural. Junior coaches are typically students in a very early stage of their stud-
ies (the CS1 Coaching course can be taken after only one semester of studies);
advancing to the stage of a senior coach might take as little as two semesters.

Apprenticeship-based learning stresses the importance of a situative view of
learning, which emphasizes that learning activities should take place in the same
context as they are practiced [16,11,18]. This is also considered in the coaching
activities, which take learning of coaching into a genuine environment. All of
the stakeholders in coaching, i.e. teachers in charge, senior and junior coaches,
form a community of practice [10,11] of coaches for the duration of the course
[30]. The community negotiates its meaning by supporting students and actually
seeing the results of their participation in coaching.

4.2 Embedding Coaching Course into CS1

The ultimate goal of our SE curriculum is to educate proficient experts in the field
of SE. Following the practice of constructive alignment [32] the CS1 Coaching
course has its own formal learning objectives3 that are available for the faculty
and students alike. The learning objectives, arranged in a matrix (see Tab. 1),
state the principal themes, prerequisites and the evaluation criteria as learning
objectives.

The objectives are presented in the form of (1) approaches the learning ob-
jective, which states the minimum requirements for the activity, (2) reaches the
learning objectives which mark the requirement of full completion of the course
and (3) deepens the learning objective which states possible additional objectives
and future directions that might be taken into consideration during the activity
but are not required.

4.3 Selection of Coaches

The main requirements for participation in the CS1 Coaching course are the
student’s willingness to act as an instructor and a decent-to-good grade from
CS1, ability to produce quality code and some technical skills (see Tab. 1).

Applications to register as a junior coach are sent well before the start of
the term using an online application form. When applying, one needs to type
in an open application as well as basic background information such as related
grades. If the applicant passes initial filtering (good progress of studies so far),
and not known to the course staff beforehand, the applicant is invited for an
interview. The interview serves as a guarantee of the necessary people skills
needed to be allowed to instruct novice programmers. So far, all applicants have
been accepted. As CS1 is organized three times each academic year, it has been

3 All mandatory and most of the steadily recurring courses have publicly available
learning objective matrices, so students are familiar with them and expect them for
every new course.

Early Start in Software Coaching 23

Table 1. Learning objectives for CS1 Coaching

Principal
theme

Enhancing programming
skills of peer-students

Instruction skills Technical tools

Prerequisite
knowledge

Good performance in CS1 and
capability to produce quality
code

Is capable of
using VCS and
other necessary
tools

Approaches
the learning
objectives

Understands
programming code that others
have written

Notices mistakes in the
readability of code written by
others

Notices mistakes in the design
of programs made by others

Is capable of instructing
different kinds of people

Gives and receives oral
feedback

Attends scheduled meetings
and performs the instruction
duties

Deepens the
skills to use
VCS and other
tools

Solves CS1 tasks
and recognizes
different
kinds of mistakes
in them

Reaches the
learning
objectives

Recognizes correct solutions of
others, even if they differ from
own solutions

Can instruct mentored
students, so that they are
capable of correcting their
problems with their program-
ming code

Is encouraging

Understands that people
differ as learners

Does not obtrude own
solutions, but functions in
a learner centered fashion

Speaks less than the students

Can function as a member of a
team of instructors

Recognizes good
and bad auto-
mated tests

Deepens the
learning
objectives

Is capable of creating useful
tasks and automated tests for
CS1 course material

Recognizes factors which
help improvement as a
teacher

Makes students enthusiastic of
programming

possible to allocate most of the junior coach applicants; if not right away, then
in the next cycle. It must be stressed that the selected junior coaches become a
part of a teaching team and are not expected to perform coaching alone in the
XA lab.

Senior coaches are recruited among the more experienced students from the
department who have good grades and pace of studies and can show skills in
coaching either through performing well as a junior coach, performing well as a
teaching assistant in other duties at the department or through work- or hobby-
related experience. Unlike the junior coaches, the senior coaches are employees of
the department and are therefore subject to standard employement regulations.

4.4 What the Coaches Do

The junior coaches have enrolled voluntarily in an elective SE course. They are
motivated and have shown willingness to improve as coaches of novice program-
mers. This deliberate practice [33,34] of coaching skills is the main tool used
to pursue the learning objective of the CS1 Coaching course. In practice, the
coaches obtain only little training prior to actual coaching, and are expected to
learn while coaching.

24 T. Vikberg et al.

The main task of the coaches is to be a vital part of the scaffolding that makes
XA-based programming education possible [29,19,30]. The coaches support the
students to learn programming by providing individual and interactive feedback
to the students. This means that coaches help novice programmers make work-
ing software, review their code and point them towards necessary information.
An important aspect is that the coaches are expected to embrace the ideas of
the students and not obtrude their own solutions on the students, but function
in a learner-centered fashion (see Tab. 1). In addition to the soft- and hard-skill
related benefits, e.g. communication, experiencing the meaningfulness of best
programming practices, we engage our new students in our department’s com-
munity: the presence of young junior coaches is expected to make the transition
from secondary school to the university easier for freshmen students [35].

In addition to the actual coaching, the coaches are encouraged to complete
all the CS1 programming exercises before they are released to students. This
strengthens their programming routine as well as helps them to direct more
time to actual scaffolding instead of wasting time trying to remember what the
exercises were about. To increase the formation of the community of coaches,
the coaches are encouraged to discuss the exercises with each other, for example
in IRC chat. This medium also serves as the main support mechanism for the
coaches outside the XA computer lab and the weekly meetings.

An important aspect of the programming exercises of the CS1 course is that
the solutions are automatically assessed by an assessment server through a plug-
in in the IDE the students use (see [36] for details). The server runs automated
tests in order to check for the correctness of the solutions and performs the
bookkeeping of the course. This ensures that the coaches can concentrate on
coaching, not on trivial correctness checks and error-prone human bookkeeping
of student progress.

The junior coaches reflect on the upcoming material and act as beta-testers
for the material and exercises by searching for weaknesses in automated tests and
inconsistencies in course material. This gives the faculty an opportunity to do
improvements before the exercises and course material are released to the course
participants. It gives the coaches an opportunity to learn to recognize good and
bad automated tests and also leads to a high-quality material as coaches help to
make sure that there are no mistakes left in the exercises.

Before the first contact with the students, a 2-hour meeting is organized for
the coaches. Faculty members together with the coaches (both junior and se-
nior) go through necessary administrative issues as well as the most important
pedagogical practices of coaching CS1. The most crucial information has been
gathered in a coaches’ set of guidelines and responsibilities that both the coaches
and faculty members sign personally.

The guidelines are formulated in an instructive and inclusive manner so that
the coaches should observe and proactively coach everyone in trouble. Feedback
to the students needs to be constructive and positive. Coaches are instructed to
be active even if the students do not ask any questions.

Early Start in Software Coaching 25

Coaches concentrate not only to the correctness but also to the style of the
code: indentation; naming of variables, methods and classes; and method length.
In addition, coaches push the students to refactor their code towards a clearer
and more maintainable solution so that “the person sitting in the next seat
should also understand the solution”.

While interviewing the applicants for junior coaches, we have noticed that
most, if not all, have a good sense of how an instructor is supposed to scaffold
students in the CS1 course. Most of the applicants can already determine what
type of coaching is beneficial to students and what is not, e.g. one should only
nudge the student towards a correct solution and never give the solution. This
is not surprising since all the students applying for the coaching course have so
far participated in the XA-based CS1 course themselves.

Despite good prerequisites, the learning objectives could not be obtained with-
out proper scaffolding of the juniors themselves. This scaffolding is conducted
by the faculty member(s) in the form of meetings and peer-support. The faculty
members as teachers in charge of the course are naturally also present in the XA
labs. Students as coaches also perform implicit self-reflection with other coaches
while instructing, as well as participate actively in discussions in an online chat.

During the course the responsible teachers organize biweekly face-to-face meet-
ings where all participants of the coaching community are present. Meetings are
typically organized as retrospectives, further introducing agile software devel-
opment practices [3]. In the meetings, the teachers responsible for the course
inspect and reflect on what has been done during the past two weeks, and bring
up good and bad experiences and practices to the awareness of the whole team.
The team identifies top good practices and marks them as to-be-kept, i.e. they
should work also during the next weeks. Top bad practices are marked as to-be-
improved that deserve special focus during the next few weeks. The goal is to
have a few of the to-be-improved turned into good practices for the future.

5 Results and Evaluation

The results show that facilitating software coaching as an early part of a CS
curriculum is possible. We started XA-based education in 2010 and the first
junior coaches entered the stage in spring 2011. From the fall 2010 to fall 2012
semesters, we have had 101 persons working in our XA labs in different roles.
Out of the 101 persons, 78 have served as junior coaches, and 59 as senior coaches
(as some have served as both). During the two years, we have been able to offer
5468 hours of targeted hands-on guidance to our CS1 students. This has been
done while improving the pass rate [37] and raising the demand level [20] of CS1.

In order to gain some sense of the learning from the junior coaching experi-
ences, we posted a questionnaire to all the students that have been junior coaches
in XA-based CS1. We received 46 replies which results in a response rate of 59%.
Figure 2 shows the questions and the distribution of the coaches’ answers.

One of the main themes of coaching is how to improve the programming skills
of students in CS1. This puts some demand on the skills of the coaches them-
selves. To give appropriate feedback to CS1 students, the coach needs to learn

26 T. Vikberg et al.

I have become more proficient ...

N/A
0 %

1
0 %

2
2 %

3
22 %

4
54 %

5
22 %

... in reading code
written by others

= x̃= 4, 2 = N/A
2 % 1

6 %
2

24 %

3
26 %

4
32 %

5
10 %

... in reading automated tests
 = 2.96, x̃= 3, 2 = 2.15

N/A
0 %

1
0 %

2
6 %

3
27 %

4
49 %

5
18 %

... in understanding problems
posed by students

 = 3.72, x̃= 4, 2 = 1.03
N/A
2 %

1
0 %

2
8 %

3
36 % 4

42 %

5
12 %

... as an instructor and mentor
 = 3.64, x̃= 4, 2 = 0.66

N/A
14 %

1
2 %

2
16 %

3
42 %

4
22 %

5
4 %

... as a member of a
team of teachers

 = 3.00, x̃= 3, 2 = 1.04
N/A
2 % 1

4 %
2

20 %

3
39 %

4
27 %

5
8 %

... at recognizing learning
styles of others

 = 3.11, x̃= 3, 2 = 1.29

Fig. 2. Post-course survey of junior coaches (N=46) with Likert scale (1=not at all,
5=a lot). N/A stands for “cannot say” and is not considered in calculating the mean
μ and variance σ2. Median is denoted by x̃.

to communicate not only verbally but through written code. This is not only a
valuable exercise for the coaches but also intended to make the coaches realize
the importance of best programming practices. In the end, if the code is unread-
able to others, the maintainability and the functionality of the code diminishes.
The learning objective is therefore not only to recognize these problems but to
be able to help other students overcome them. We can see in Fig. 2 that “I
have become more proficient in reading program code written by others” scores
uniformly high (μ=3.96), with low variance (σ2=.53).

The other main theme of the course is improving coaching and instruction
skills. Here, the learning objective is to encounter different kinds of learners

Early Start in Software Coaching 27

and recognize their ways of thinking. This skill should make the junior coaches
understand that their own ways of looking at things, e.g. tackling a programming
task, might differ from those of others. As modern software development is done
in teams, an understanding of different working habits and styles is crucial. This
is further emphasized by the fact that the apprentices perform team teaching,
i.e. coach together along with others, and have to agree with faculty about
the practices of coaching and instruction. As we can see in Fig. 2, all of these
interpersonal skills score relatively high (“member of a team”, “understanding
questions”, “as instructor and mentor”, “recognizing learning styles”).

The junior coaches should also deepen their knowledge about the use of profes-
sional software development tools. The course material and exercises are main-
tained using a version control system, and automated testing plays a key role
in how the course is formed [21,36]. We can see in Fig. 2 that “in reading au-
tomated tests” the score variance is very high (σ2=2.15). This is probably due
to the varying roles of the junior coaches as some take a more active role in
creating and debugging tests. We do not view this as a problem per se as it is
only natural for coaches to serve in different roles. Automated tests have been
used in CS1 material only for a relatively short period of time and are evolving
rapidly. It is expected that the role of automated tests will grow in future.

In addition to the Likert scale questions, coaches were able to tell if they had
any coaching-related background. As expected, eager coaches tend to have some
earlier experiences. Even though more than half reported something, background
experiences were mostly minuscule, such as a week as a substitute teacher, or
group leader in the boy scouts.

Open comments revealed that the coaching experience was highly valued.
Quotes such as “coaching is hard but awesome!” crystallize the feelings of many
coaches. Other, more targeted open comments included “learning to cope with
chaos” and “learning to be more patient”, as well as references to “learning to
switch fast between mental tasks”. Maybe the most insightful comment noted
enhanced metacognitive skills:

Coaching in the XA lab enhanced my view of programming. Afterwards
I have noticed how beneficial it was to go through the whole problem
solving process from the beginning with another person. That is, from
reading the assignment given, all the way to completing the tests. Other
people might start to tackle the problem from a completely other angle.
This, of course, opens up new paths in my own way of programming.

6 Conclusions

We have been able to give our students an opportunity to act as coaches in a
realistic setting at an early stage of their studies. The most important bene-
fit for the students that are participating in coaching very early is the experi-
ence that can be used for reflection on upcoming coaching-related courses, as
well as when being coached. The experience is also expected to help students to

28 T. Vikberg et al.

understand the importance of coaching as it pertains to software maintainability,
development performance and sensed meaningfulness of software engineering.

In our earlier research, we have seen that the results of CS1 have been signif-
icantly improving when using the XA-based approach [19]. Deploying “rookie”
students as coaches has not deteriorated the course results. In fact, the number
of coaches has allowed us to significantly increase the amount of support and lab
times available for our students.

Having a course where students are able to act as coaches during an early part
of their studies is only one step. In our curriculum, the students are first coached
in CS1, then become coaches, and later on are coached again. This interplay of
roles is available throughout the curriculum, and becomes more “real” as the
students proceed in their studies. After being a coach for individuals, students
are coached as a part of a team, and later on have the opportunity to coach
a team. Although there may be risks involved in our approach, e.g. related to
the learning of the students, they are out of scope for this paper. For additional
information, see [30].

As coaching is about guiding individuals and teams towards better working
practises, it is important that all stakeholders are involved. In our approach,
course instructors participate in the coaching activities, and coach the coaches
as well as the students. All participants need to spend time in the changing
environment to understand the need for change; adaptation should only happen
after inspection and only if new practises can bring genuine additional value.

Coaching can be realized by e.g. leading by example, or by gently nudging the
participants into a direction, where they are able to realize their mistakes and
thus improve. In essense, it is about giving as much freedom as possible while
providing scaffolding when needed. The goal is that the coached individuals and
teams become self-directed entities that are able to respond to change, and strive
to reach their full potential.

Acknowledgements. We thank the anonymous reviewers for their valuable
feedback. We also wish to thank Mr. Matti Tahvanainen, who was the first eager
student to demand the start of this activity as a formal way to be a part of
XA-based education.

This work has been partly funded by a grant from the Centennial Foundation
of Technology Industries in Finland.

References

1. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice Hall
(2002)

2. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley Professional (2003)

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. The XP Series. Addison-Wesley Professional (2004)

4. Davies, R., Sedley, L.: Agile Coaching. Pragmatic Bookshelf Series. Pragmatic
Bookshelf (2009)

Early Start in Software Coaching 29

5. Adkins, L.: Coaching Agile Teams: A Companion for ScrumMasters, Agile Coaches,
and Project Managers in Transition. Addison-Wesley Professional (2010)

6. Anderson, D.J.: Kanban. Blue Hole (2010)
7. Hedin, G., Bendix, L., Magnusson, B.: Coaching coaches. In: Marchesi, M., Succi,

G. (eds.) XP 2003. LNCS, vol. 2675, pp. 154–160. Springer, Heidelberg (2003)
8. Hedin, G., Bendix, L., Magnusson, B.: Teaching extreme programming to large

groups of students. Journal of Systems and Software 74(2), 133–146 (2005)
9. Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship. Robert

C. Martin series. Prentice Hall (2009)
10. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Learning

in Doing Series. Cambridge University Press (1998)
11. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation.

Learning in Doing. Cambridge University Press (1991)
12. Astrachan, O., Reed, D.: AAA and CS 1: The applied apprenticeship approach to

CS 1. SIGCSE Bulletin 27, 1–5 (1995)
13. Kölling, M., Barnes, D.J.: Enhancing apprentice-based learning of Java. In: Proc. of

the 35th SIGCSE Technical Symposium on Computer Science Education, SIGCSE
2004, pp. 286–290. ACM, New York (2004)

14. Vihavainen, A., Paksula, M., Luukkainen, M.: Extreme apprenticeship method in
teaching programming for beginners. In: Proc. of the 42nd ACM Technical Sym-
posium on Computer Science Education, SIGCSE 2011, pp. 93–98. ACM (2011)

15. Vihavainen, A., Paksula, M., Luukkainen, M., Kurhila, J.: Extreme apprenticeship
method: key practices and upward scalability. In: Proc. of the 16th Annual Joint
Conference on Innovation and Technology in Computer Science Education. ITiCSE
2011, pp. 273–277. ACM (2011)

16. Brown, J., Collins, A., Duguid, P.: Situated cognition culture of learning. Educa-
tional Researcher 18(1), 32 (1989)

17. Collins, A., Brown, J., Holum, A.: Cognitive apprenticeship: Making thinking vis-
ible. American Educator 15(3), 6–46 (1991)

18. Collins, A., Greeno, J.G.: Situative view of learning. In: Aukrust, V.G. (ed.) Learn-
ing and Cognition, pp. 64–68. Elsevier Science (2010)

19. Kurhila, J., Vihavainen, A.: Management, structures and tools to scale up per-
sonal advising in large programming courses. In: Proc. of the 2011 Conference on
Information Technology Education, SIGITE 2011, pp. 3–8. ACM (2011)

20. Luukkainen, M., Vihavainen, A., Vikberg, T.: Three years of design-based research
to reform a software engineering curriculum. In: Proc. of the 13th Annual Con-
ference on Information Technology Education, SIGITE 2012, pp. 209–214. ACM
(2012)

21. Vihavainen, A., Luukkainen, M., Kurhila, J.: Multi-faceted support for MOOC in
programming. In: Proc. of the 13th Annual Conference on Information Technology
Education, SIGITE 2012, pp. 171–176. ACM (2012)

22. Dodero, G., Di Cerbo, F.: Extreme apprenticeship goes blended: An experience.
In: 12th IEEE International Conference on Advanced Learning Technologies, pp.
324–326 (2012)

23. Hautala, T., Romu, T., Rämö, J., Vikberg, T.: Extreme apprenticeship method in
teaching university-level mathematics. In: Proc. of the 12th International Congress
on Mathematical Education, International Commission on Mathematical Instruc-
tion (2012)

24. Abrahamsson, P., Kettunen, P., Fagerholm, F.: The set-up of a valuable software
engineering research infrastructure of the 2010s. In: Workshop on Valuable Software
Products (2010)

30 T. Vikberg et al.

25. McBreen, P.: Software Craftsmanship: The New Imperative. Addison-Wesley Pro-
fessional (2001)

26. Martin, R.C.: The Clean Coder: A Code of Conduct for Professional Programmers.
Robert C. Martin Series. Prentice Hall (2011)

27. Luukkainen, M., Vihavainen, A., Vikberg, T.: A software craftsman’s approach to
data structures. In: Proc. of the 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE 2012, pp. 439–444. ACM (2012)

28. Bareiss, R., Radley, M.: Coaching via cognitive apprenticeship. In: Proc. of the
41st ACM Technical Symposium on Computer Science Education, SIGCSE 2010,
pp. 162–166. ACM (2010)

29. Caspersen, M.E., Bennedsen, J.: Instructional design of a programming course:
a learning theoretic approach. In: Proc. of the 3rd International Workshop on
Computing Education Research, ICER 2007, pp. 111–122. ACM (2007)

30. Vihavainen, A., Vikberg, T., Luukkainen, M., Kurhila, J.: Massive increase in eager
TAs: Experiences from extreme apprenticeship-based CS1. To appear in: Proc. of
the 18th Annual Joint Conference on Innovation and Technology in Computer
Science Education (July 2013)

31. Fraser, S., Lundh, E., Davies, R., Eckstein, J., Larsen, D., Vilkki, K.: Perspectives
on agile coaching. In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009.
LNBIP, vol. 31, pp. 271–276. Springer, Heidelberg (2009)

32. Biggs, J., Tang, C.: Teaching for quality learning at university: what the student
does. Society for Research into Highter Education. McGraw-Hill (2007)

33. Ericsson, K.A., Krampe, R.T., Tesch-Romer, C.: The role of deliberate practice
in the acquisition of expert performance. Psychological Review 100(3), 363–406
(1993)

34. Litzinger, T.A., Lattuca, L.R., Hadgraft, R.G., Newstetter, W.C.: Engineering edu-
cation and the development of expertise. Journal of Engineering Education 100(1),
123–150 (2011)

35. Clark, M., Lovric, M.: Suggestion for a theoretical model for secondary-tertiary
transition in mathematics. Mathematics Education Research Journal 20, 25–37
(2008)

36. Vihavainen, A., Vikberg, T., Luukkainen, M., Pärtel, M.: Scaffolding students’
learning using Test My Code. To appear in: Proc. of the 17th Annual Joint Con-
ference on Innovation and Technology in Computer Science Education (July 2013)

37. Vihavainen, A., Luukkainen, M.: Results from a three-year transition to the ex-
treme apprenticeship method. To appear in: Proc. of the 13th IEEE International
Conference on Advanced Learning Technologies (July 2013)

Introducing Programmers to Pair Programming:

A Controlled Experiment

A.S.M. Sajeev1 and Subhajit Datta2

1 University of New England, Australia
sajeev@une.edu.au

http://mcs.une.edu.au/~sajeev
2 IBM Research, Bangalore, India

subhajit.datta@acm.org

http://www.dattas.net

Abstract. Pair programming is a key characteristic of the Extreme Pro-
gramming (XP) method. Through a controlled experiment we investigate
pair programming behaviour of programmers without prior experience
in XP. The factors investigated are: (a) characteristics of pair program-
ming that are less favored (b) perceptions of team effectiveness and how
they relate to product quality, and (c) whether it is better to train a
pair by giving routine tasks first or by giving complex tasks first. Our
results show that: (a) the least liked aspects of pair programming were
having to share the screen, keyboard and mouse, and having to switch
between the roles of driver and navigator (b) programmers solved com-
plex problems more effectively in pairs compared to routine problems,
however, perceptions of team effectiveness was higher when solving rou-
tine problems than when solving complex problems and (c) programmers
who started pair programming with routine tasks and moved on to com-
plex tasks were more effective than those who started with complex ones
and moved on to routine ones. We discuss how these results will assist
the industry in inducting programmers without prior pair-programming
experience into XP process environments.

Keywords: pair programming, empirical software engineering, agile
methods, extreme programming, software process, controlled experiment.

1 Introduction

Pair programming is one of the key concepts in agile methods such as XP. It
involves two people working as a team to complete a programming task, usually
involving, design, coding and testing of the task. One of the pair starts acting as
the driver (who will do the keyboard activities) and the other as the navigator
(who will watch, analyze, comment and, in general, guide the driver), and the
two switch between these roles multiple times for the duration of the task.

Prior research has shown that pair programming when compared to solo pro-
gramming can produce better outcomes (e.g. [1], [2]), even though others found
the argument inconclusive (e.g. [3], [4]). Nevertheless, the popularity of agile

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mcs.une.edu.au/~sajeev
http://www.dattas.net

32 A.S.M. Sajeev and S. Datta

methods compared to heavy-weight processes means that increasingly more pro-
grammers and software engineers will be required to do pair programming. This
includes both professionals with work experience and fresh graduates. The ques-
tion then is what to expect when engineers without prior background in pair-
programming are brought into the XP method and how best to “prepare” them
to be effective pair programmers. Addressing such questions will assist the in-
dustry to fine tune their induction processes for new pair programmers. The
main objective of this paper is to report on an empirical study that advances
research in these directions.

We specifically address the following research questions:

– What aspects of pair programming are valued most and least by program-
mers that are new to pair programming?

– Do new pair programmers work better as a pair in routine problems or in
complex problems?

– How best to prepare a pair? Are pairs that start with routine tasks and move
on to complex tasks more effective than pairs that start with complex tasks
and move on to routine tasks?

In order to address these research questions, we conducted a randomised con-
trolled experiment. Compared to an observational study, a controlled experiment
allows us to set controls in order to measure accurately the effect of treatment
on the experimental group. It reduces the effect of confounding variables which
otherwise could be present in observational studies were the researcher has little
control over the events.

There is significant work in the literature on various aspects of pair program-
ming. This involves both experienced pair programmers and those who are new
to pair programming. However, as discussed in Section 6, the questions we in-
vestigate here have not been explored in the literature with the view of better
understanding how programmers without pair-programming experience could be
prepared for the method.

The rest of the paper is organized as follows. In the next section, we review
the related literature. In Section 3, we describe the research method. Section 4
gives the results of the analysis and in Section 5 we discuss the limitations of the
study. Finally, in Section 6 we conclude the paper by discussing the implications
of our results for the Information Technology (IT) industry.

2 Literature Review

The literature related to our study can be roughly classified into three themes:
those investigating models and frameworks for pair programming, those testing
the question “is pair programming better than solo programming”, and those
investigating the benefits of pair programming.

In investigating frameworks, Fronza et al. collected data non-invasively in an
industrial development team for 10 months to understand how pair program-
ming helps the integration of novices in a team [5]. Using social network analysis

Introducing Programmers to Pair Programming: A Controlled Experiment 33

techniques, the authors analyzed developer interactions and proposed a model
for novice integration in teams engaged in spontaneous pair programming. Gal-
lis et al., on the other hand, have pointed out the contradiction in the claims
around pair programming, which they attribute to the lack of theoretical foun-
dation supporting empirical research [6]. To address this situation, the authors
presented a framework for pair programming research by identifying and catego-
rizing important independent, dependent, and context variables, and exploring
their relationships. This work was extended by Ally et al.based on a study of pair
programming using the Delphi technique [7]. The authors concluded that Gallis
et al.’s framework needed to include an additional category of factors relating
to organizational matters.

A number of studies compared pair programming with solo programming. Lui
and Chan [8] investigated the research question “do pairs outperform individuals
in procedural solution tasks?” using Programming Aptitude Test [PAT] rather
than traditional programming tasks; the reasoning was that PAT is indepen-
dent of programming language proficiency and thus language proficiency would
not become a confounding variable. They used a measure called REAP (Rela-
tive Effort Afforded by Pairs) to compare sole programming productivity with
pair-programming productivity. Lui and Chan [8] also introduced the concept
of repeat programming in studying pair programming; this is where the pairs
repeated the same programming task multiple times. They used the term novice
to mean that a programmer is doing a repeated task for the first time, and the
term expert for one who has repeated the same task several times. They con-
cluded that “novice-novice pairs against novice-solos are much more productive
in terms of elapsed time and software quality than expert-expert pairs against
expert solos”. Madeyski investigated how pair programming fares vis-a-vis solo
programming for thoroughness and fault detection effectiveness of test suites and
did not find support for anecdotal evidence that the former facilitates these ac-
tivities [4]. Arisholm et al [1] conducted a one-day controlled experiment to test
the effectiveness of pair programming with respect to complex tasks. They used
junior, intermediate and senior staff from local industries as subjects. They com-
pared pair-programming with individual programming, as well as they studied
effectiveness in using pair programming in simpler tasks versus complex tasks.
Dyb̊a et al. examined the fundamental assumption behind pair programming –
that two heads are better than one – by conducting a meta-analysis of existing
studies around pair programming’s effects on quality, duration, and effort [2].
They concluded that whether two heads are indeed better than one is a nuanced
question, and the answer depends on programming exercise and task complex-
ity. They found empirical evidence that two heads can achieve higher correctness
on complex programming tasks and be able to finish simpler tasks earlier. In a
subsequent paper the authors extended their results and concluded that, higher
quality on complex tasks comes with the price of higher effort and reduced com-
pletion time is offset by lower quality [9]. The authors emphasized the need for
more attention to moderating factors while exploring the effects of pair pro-
gramming. Vanhanen and Lessenius reported results from a study of three pair

34 A.S.M. Sajeev and S. Datta

programming and two solo programming teams performing the same 400-hour
fixed effort project with a focus on understanding the aspects of productivity,
defects, design quality, knowledge transfer, and enjoyment of work [10]. They
found that pairs have an initial “learning time” that increases the development
effort upfront vis-a-vis solo programming. Although this difference tapers off
later in the development cycle, it affects the overall productivity of the pairs.
Complexity of tasks was found not to influence effort difference between pair
and solo programming. Pair programmers delivered systems with higher num-
ber of defects, but had higher knowledge transfer; they also gave weak evidence
for higher enjoyment of work. In a subsequent work, the authors studied the
perceived effects of pair programming vis-a-vis solo programming in large scale,
industrial software development [11]. They surveyed 28 developers and found
pair programming’s positive effects were maximum for learning, schedule adher-
ence, knowing other developers, and team spirit. Vanhanen and Korpi summarize
the experiences of extensive pair programming in an industrial project [12]. They
found that frequent rotation between the driver/navigator roles improved knowl-
edge transfer, and the developers perceived that pair programming was better
suited for complex tasks rather than easy tasks. Xu and Rajlich conducted a
case study with six students in a graduate software engineering course who were
assigned to work on incremental changes to an application either individually or
in pairs [13]. They found that the paired students delivered their change requests
more quickly and with a higher quality. Similarly, Sison reported results from
an experiment on the use of pair programming by undergraduate students in
a software engineering course at a Philippine university [14]. The author found
evidence that defect densities were significantly lower for programs written by
pair programming vis-a-vis those written by non pair programming teams.

On the benefits of pair programming, Begel and Nagappan reported results
from a longitudinal study of pair programming at Microsoft [15]. They found
that pair-programming’s biggest benefits were perceived to be fewer bugs, wider
understanding of code, and overall higher code quality. Additionally, most of
the study’s participants were more amenable to a partner with complementary
skills, flexibility, and good communication skills. Coman et al. examined the
dynamics of the pairing process in a mature agile team of 16 developers in a
three months study and found support for the claim that pair programming is
useful for training and knowledge transfer [16].

3 Research Method

3.1 Participants

Our participants are 144 students of the two year Master of Technology (MTech)
program at the International Institute of Information Technology, Bangalore
(IIT-B); they were enrolled in a software engineering course mandatory for all
MTech students. The experiment was conducted as part of programming skills
assessments in the course for which they received credit. All students had an

Introducing Programmers to Pair Programming: A Controlled Experiment 35

undergraduate computing degree in science or engineering. Sixty nine percent
of the students had no work experience, 7% had less than a year’s experience,
and the remaining 24% had more than one year experience in the industry with
maximum four years; 89% of those with work experience worked as program-
mers or software developers. Of the 144 subjects who participated in the study,
only seven had prior experience with pair programming; these seven subjects
participated in the experiment, but were excluded from the analysis of results.
(One of them was part of the control and two formed a pair, the remaining
four formed pairs with non-experienced subjects; those four non-experienced
subjects were also excluded from the analyses in order to avoid their partners’
pair-programming experience confounding the results.)

All participants were proficient (through work experience and/or prior course-
work) in object oriented analysis, design and programming, and rated their Java
programming skills at level 3 or above, on a scale of 0 = novice, 5 = expert.
Even then, participants were allowed to complete their assigned programming
tasks in either Java or C++. (There was only one submission in C++.)

Thus consistent with our research objectives, our subjects were a collection
of fresh graduates and professionals with work experience up to four years, but
none with prior experience in pair-programming.

3.2 Method

Our research method was a randomized concurrent controlled experiment span-
ning three sessions of programming. In a controlled experiment, one group acts
as control (in our case, they consisted of solo programmers) and the other acts
as the experimental group (in our case, pair programmers). In a randomized
experiment, each participant is chosen at random to be in the control group or
in the experimental group, and in a concurrent experiment, all groups do the
activities (in technical terms, undergo the treatment) at the same time.

The subjects were randomly divided into an experimental group and a con-
trol group; this was done by drawing lots from a bowl. The experimental group
consisted of 50 pairs of programmers whereas the control group consisted of
44 solo programmers. (As mentioned in the previous section, the pairs and con-
trols that involved people with prior pair-programming experience were excluded
from analysis thus resulting in 45 pairs and 43 controls.) Both the experimental
group and the control group were further divided into two sub-groups in a two-
factorial design; for reasons explained below, one subgroup was named Routine-
to-Complex cohort, and the other, Complex-to-Routine cohort (See Figure 1).

3.3 Procedure

The experiment was organized as follows:

1. Approval to conduct the study was obtained by the second author from the
institute authorities.

36 A.S.M. Sajeev and S. Datta

Fig. 1. Formation of experimental and control groups

2. An introductory lecture was given to all participants on pair-programming
by the second author (who is an adjunct professor at the Institute) to ensure
that all participants understood, in theory, the principles and practices of
pair-programming.

3. An experiment is an event that occurs over a pre-defined time period. This
means that we need to abstract real-world entities to fit into the framework
of the experiment. In our case, we needed to model routine tasks and chal-
lenging tasks that pair programmers would encounter in the industry. We
abstracted them into a set of programming problems of three levels of com-
plexity (easy, moderately difficult and hard). The problems were selected
from end of the chapter exercises of standard Java programming textbooks
with appropriate modifications; each problem was annotated with a particu-
lar level of difficulty. In addition to that, the second author1 and each of the
four teaching assistants (TA) who assisted him solved the problems indepen-
dently to confirm their differential level of complexity. For the easy level, we
had four exercises that were interchangeable in terms of their difficulty, and
similarly for the medium level. For the challenging level, we had two exercises
that were interchangeable in terms of their difficulty. To ensure problems at
the same level are of similar difficulty, they were selected from the same
textbooks and further confirmed by ensuring they take similar amount of
time to solve.

4. We prepared a set of test cases (input and expected output) for each problem.
The subjects were given, in addition to the problem specification, a subset
of the test cases to assist them in deciding when a task is complete. The full
set of test cases were used by the researchers to give a quality score to the
program produced. The quality score to the solution given was out of 10,

1 Those interested in replicating the experiment may contact this author for the ex-
ercises.

Introducing Programmers to Pair Programming: A Controlled Experiment 37

where 0 means does not compile, 5 means means passes 50% of the tests and
10 means passes all tests.

5. The experiment was conducted in three sessions (see Figure 2). The Routine-
to-Complex cohort was given the easy problems in the first session, then
in Session 2, problems of medium complexity and finally in Session 3, a
challenging problem. The Complex-to-Routine cohort solved problems in
the other direction as shown in the figure. Since we selected a sufficient
number of problems, those given in a session were not reused in another;
this was to prevent subsequent sessions being affected by any discussions by
the participants outside the experiment of solutions and problems they have
worked on in a session.

6. At the end of each session, both a quantitative and qualitative evaluation
of the groups were conducted. For quantitative evaluation, as mentioned
above, the programs were tested for correctness; this was done by the TAs
under the second author’s supervision and a score of 0 to 10 is given. For
qualitative evaluation, each individual in the experimental groups was given
a team-effectiveness questionnaire. The questionnaire measured on a five
point Likert scale (where 1 = disagree strongly, 3 = neither agree nor disagree
and 5 = agree strongly) each programmer’s perceptions on the effectiveness
of pair programming. These perceptions were also analysed separately (as
described in Section 4.1) to identify how the subjects favoured different pair
programming practices.

Fig. 2. Organization of the cohorts

3.4 Statistical Tests

For comparison between mean values of two groups, we used the independent
samples t-tests [17]. The significance level, α was set at 0.05. Levene’s test was
used to check homogeneity of variances. The analysis were conducted using SPSS

38 A.S.M. Sajeev and S. Datta

software package. We did not adjust for the potential Type-1 error increase
from multiple tests; Bonferroni’s adjustment, for instance, lowers the alpha level
for multiple tests; however, some researchers recommend presenting the p-value
instead of adjusting the alpha-level and let the readers decide on the results (for
example, see [18]). Eta-squared was used to determine the effect size; a value of
0.01 is considered a small effect whereas 0.14 or above is a large effect [19].

4 Results

4.1 Pair Programming Characteristics

Figure 3 shows in descending order how the subjects favored different character-
istics of pair programming. The explanation for the features is given in Table 1.
The most favored ones were that pair program allowed good discussions of the
problems and solution strategies, and that it was helpful in developing teamwork
skills. The least favored characteristics were the need to regularly swap the roles
of driver and navigator and the need to share the screen, keyboard and mouse.
Also, the statement: pair programming makes programming faster was among
the least agreed items.

Fig. 3. Mean score on a 5-point Likert scale3for different pair programming character-
istics (5 is strong agreement and 0 is strong disagreement)

4.2 Routine versus Challenging Development

Routine development is where programmers are familiar with the work and gen-
erally know how to proceed to completion, whereas challenging development is
where the task that the pair has to address needs lateral thinking and exploring

3 Strictly speaking, Likert scale is ordinal, however, it is not uncommon for researchers
to use it as an interval scale (for example: see [20]).

Introducing Programmers to Pair Programming: A Controlled Experiment 39

Table 1. Full form of the programming characteristics in charts

Programming Char-
acteristics

Likert Item

Discussing strategies Our team was good in discussing the problems and solu-
tion strategies

Teamwork Pair programming is helpful in developing teamwork
skills

Pairing is fun I found pair programming fun

Healthy differences In our team, we sorted out differences in a healthy man-
ner

Increasing self awareness Working with a partner makes it easy to understand what
I am doing and why I am doing it

Code inspection Having a partner is beneficial for learning to read another
programmer’s code

Catching mistakes My partner and I caught each other’s mistakes

Better programs I believe, pair programming leads to better programs
than individual programming

Learning experience I have learned more working in pairs than when I have
worked individually

Trusting the partner My level of trust in my partner is very high

Rapid Debugging My team found errors more rapidly than if we were work-
ing individually

Faster completion Without pair programming I would have taken longer to
complete the programming task(s)

Sharing keyboard It was easy to share the keyboard, screen and mouse

Switching roles In my team, we changed the role of ‘driver’ and ‘naviga-
tor’ fairly regularly

of different strategies in order to come up with a good solution. Intuitively, one
could hypothesize that pair programming is more useful and effective for chal-
lenging tasks since it literally doubles the brain power. We tested this hypothesis
by taking into consideration only the tasks completed in Session 1. The first ses-
sion in our experiment is where new teams were formed. Not considering all
sessions avoids any confounding influence of growing familiarity of partnerships
on team effectiveness.

In Session 1, we had the R2C cohort (see Figure 2) solve easy problems and
the C2R cohort solve a challenging problem; both cohorts consisted of an experi-
mental group of pairs and a control group of solo programmers. In the discussion
below, the pairs of the Session-1 R2C cohort are referred as the routine-group
(that is, the group that solved easy problems) and the pairs of the Session-1 C2R
cohort as the complex-group (that is, the group that solved a complex problem).

The questions we investigated are:

a) Is there a significant difference between the mean results of the routine-group
and the complex-group?

b) Is the mean result of the routine-group significantly better than the mean
result of the corresponding control group?

c) Is the mean result of the complex-group significantly better than the mean
result of the corresponding control group?

40 A.S.M. Sajeev and S. Datta

The effectiveness of a group is measured using its (i) mean test score and (ii)
mean team-effectiveness score. The answer to Question (a) could tell us which
group has performed better, however, that answer would not be relevant unless
that group has also performed better in test results than its corresponding control
group; otherwise, we did not have to use pair programming to achieve the better
results. Thus, answers to Questions (b) and (c) together with (a) should tell us
which kinds of problems, pairing is better suited for.

With respect to mean test scores, there is significant difference between the
routine-group and the complex-group with (as should be expected) the routine-
group scoring much higher mean test scores (M = 7.06, SD = 2.5) than the
complex-group (M = 1.32, SD = 1.32), p < 0.0001, η2 = 0.678 There is also
significant difference in perceived team effectiveness, with the routine group per-
ceiving higher effectiveness (M = 4.33, SD = 0.39) than the complex group
(M = 3.99, SD = 0.5), p = 0.001. The practical significance is also large
(η2 = 0.126). It may be the case that, when the teams are able to get better test
scores (which is not unexpected with routine problems) they feel that their team
is more effective. When the routine pairs were compared with their control group
in test scores, however, there was no significant difference (M = 7.06, SD = 2.5
versus M = 6.19, SD = 3.46; p = 0.306). On the other hand, when the complex
pairs were compared with their control group, there was significant difference
albeit with a moderate effect size (M = 1.32, SD = 1.32 versus M = 0.86, SD =
0.36; p = 0.025; η2 = 0.07). This is a very interesting result. Pair programmers
achieved significantly better results than their corresponding solo programmers in
solving complex problems, however, they perceived pair programming to be less
effective. On the other hand, pairs solving routine problems did not fare any
better in test scores than solo programmers doing the same activity, even then,
the routine pairs perceived their teams to be more effective than their complex
counterparts.

4.3 Training Pairs

The main challenges in the industry generally comes not from addressing routine
tasks, but from having to solve complex tasks. Therefore, we tested what is a
better approach in preparing new pairs to solve complex tasks. We explore the
question of whether it is better to start new pairs with routine tasks and then
move on to complex tasks, or start them with complex tasks. The reasoning
behind the former approach is that with easy tasks there is likely to be less
tension between the pairs and it gives them time to know each other better
before moving on to complex ones. On the other hand, a possible reasoning
behind starting pairs with complex tasks first could be that such a problem
would force the pairs to put their heads together and work, whereas if a team is
started with easy tasks, it might be a hindrance for the individuals to engage in
teamwork thinking that “I could do this myself; having somebody sitting next
to me is a distraction”.

As explained in Section 3 and Figure 2, we had two cohorts of programming
pairs, one cohort (the R2C cohort) started with easy problems and moved on

Introducing Programmers to Pair Programming: A Controlled Experiment 41

to intermediate and complex problems whereas the other cohort (the C2R co-
hort) started with a complex problem and moved on to intermediate and easy
problems. In other words, both cohorts did exactly the same number of easy,
intermediate and complex problems, but in two different directions. For each
cohort, as given in Figure 1 there was an experimental group and a control
group.

As in the previous section, we tested whether there is a statistically significant
difference in the test scores and team effectiveness scores between the R2C and
C2R experimental groups in solving complex problems. We then compared each
cohort independently with its control to test whether the effect is in fact from
pair-programming.

Both in terms of test scores and team effectiveness scores, the cohort that
started with easy problems (R2C) performed better in complex problem solving
than the cohort that started straightaway with a complex problem (C2R) as
shown in Table 2.

Table 2. Difference in scores between R2C and C2R cohorts

Cohort Mean Std. Dev. p η2

Test scores
Routine-to-Complex 3.89 2.01

< 0.0001 0.361
Complex-to-Routine 1.36 1.35

Team effectiveness
Routine-to-Complex 4.34 0.48

0.001 0.122
Complex-to-Routine 3.97 0.51

The difference in test scores between experimental and control groups in both
R2C (p=0.03) and C2R (p=0.044) were significant indicating that pair program-
mers produced better outcomes than their solo counterparts in solving complex
problems irrespective of whether they started with a complex problem or an easy
problem.

5 Limitations

As in any empirical research there are several limitations to our study. It would
have been ideal to conduct this experiment in an industrial setting with a mix-
ture of fresh and experienced employees as participants. However, we believe, our
choice of subjects does not invalidate the findings because even though the sub-
jects come from a software engineeringMasters degree program, their background
makes them good proxies for fresh and experienced industry employees. Besides,
when Höst et al. [21] compared the use of students with industry professionals,
they found no significant differences in tasks involving software engineering judg-
ment; they concluded that students can be used instead of professional software
engineers if they are senior masters students rather than undergraduates.

Another limitation of the experiment is that we used graded Java exercises
as proxies for routine, intermediate and complex industry tasks. The pair-
programming tasks used in an industry generally will be part of a larger software

42 A.S.M. Sajeev and S. Datta

product, whereas, the tasks we gave were standalone Java exercises. Since our
aim is to identify pair programming behavior which is unlikely to be different
whether the task is a standalone program or a well defined part of a larger soft-
ware system, this abstraction is unlikely to have affected the external validity of
the results.

Another threat to external validity is that we tested pair programming in
isolation, whereas, in the industry, pair programming is likely to be only one
part of the implementation of the Extreme Programming process. Any influence
of other features of XP on pair programming is not included in our experiment.

We did not measure time of completion of tasks therefore were unable to
measure success in terms of how fast the different cohorts completed their tasks.

We did not use the same tasks for more than one session; this was deliberately
done to avoid the participants discussing the solution with other groups outside
of the experiment. Instead, we chose several tasks of similar level of difficulty
for different sessions. A threat to internal validity occurs if the level of difficulty
varied; as explained in Section 3, we reduced this threat by independently solving
each problem prior to the experiment and assessing their difficulty.

6 Discussions and Conclusion

Our study has similarities and differences with prior research discussed in Sec-
tion 2. Our finding of the appropriateness of using new pairs for complex tasks
concur with results of [1] and [2] which found experienced pair programmers also
giving better outcomes in the case of complex tasks. Our primary focus, however,
was not testing whether pair programming is “better” than solo programming;
instead we used solo programmers as controls in identifying significant differences
among cohorts of pair programmers. Additionally, we measured pair program-
ming success both in terms of test results and perceived team effectiveness of
pairs and compared the two measures, whereas prior literature largely measures
effectiveness in terms of time and test results. Further, whereas prior work such
as [15] investigated benefits of pair programming in general, we looked at the
degree of acceptance of different features of pair programming with the view of
identifying the ones that worries programmers new to the method.

As agile methods such as XP get increasingly adopted in the industry, soft-
ware engineers and programmers who have not experienced the concept of pair-
programming will need to be inducted into it. Our results, as discussed below,
provide a number of guidelines for the software industry to make the induction
smoother.

6.1 Pair-Programming Practices

While programmers appreciate the general benefits of pair programming such as
the ability to discuss problem-solving strategies with the teammate, developing
teamwork skills and learning to sort out differences in a healthy manner, it is
the manual aspects of pair programming that needs attention. Aspects such as

Introducing Programmers to Pair Programming: A Controlled Experiment 43

the need to work with a shared screen, keyboard and mouse and the need to
switch roles between driver and navigator were comparatively less liked by our
participants who were new to pair programming.

There are two ways to address these issues. One is education and practice: that
is, while introducing pair programming to new programmers, it is not enough
to tell them how it works, but also there should be sufficient training sessions
for them to practice and become comfortable with its routine aspects such as
sharing of the screen. Another way which industrial engineers and researchers
could investigate is the possibility of having two screens duplicating the same
information, and perhaps also having two keyboards and mice (where the input
devices get locked and unlocked with a simple click as the pairs change roles).
Further research is needed to see whether such technical solutions will help or
hinder pair-programming outcomes.

6.2 Pair Programming Effectiveness

We found a dichotomy between team effectiveness and product quality. Per-
ception of team effectiveness increased as pairs achieved success irrespective of
whether the same success could be achieved through solo programming. Thus
the pairs who were solving easy tasks found their teams to be more effective
than the pairs who were solving complex problems. However, for managers, pair-
programming can be considered effective, not just when it achieves better test
results, but when it achieves better results than what a solo programmer could
achieve. In our results, the pairs solving complex problems were getting signifi-
cantly higher test scores than the solo programmers who were solving the same
complex tasks, whereas, there was no statistically significant difference in the
test scores between pairs and solo programmers who were solving easy tasks.

This demonstrates that, irrespective of how new pair programmers feel about
their team effectiveness, pair programming results in better product quality when
they are used for complex tasks. Thus new pairs attempting complex tasks may
not feel that their team is working as effectively as it should, however, they are
likely to produce significantly better results than solo programmers attempting
the same tasks. On the other hand, for easy tasks, pair-programmers may feel
that their team is working well, however, their performance in terms of test
results is not significantly better than solo programmers, and therefore, it may
not be worthwhile employing pairs in easy or routine tasks.

6.3 Training Pair Programmers

In the previous subsection, we mentioned that employing pairs in routine or
easy tasks may not be worthwhile. However, there is one important reason to
employ pairs in easy tasks, and that is to get them prepared for complex tasks.
Whether new pairs programmed easy tasks first before moving on to complex
tasks, or tackled complex tasks first, they performed significantly better in solv-
ing complex tasks than their solo counterparts. However, more important is the

44 A.S.M. Sajeev and S. Datta

finding that the pairs who started with easy tasks first got better test and team-
effectiveness outcomes when solving complex tasks, than the pairs which started
with a complex task straightaway. The possible reason is that the former cohort
got to work on their team-building skills while on easier tasks and therefore were
better prepared to tackle the complex tasks as a team. Thus, when programmers
are inducted into pair programming, it is likely to pay off if pairs are started
with easy problems before moving on to complex ones. Throwing pairs in at the
deep end thinking along the lines that a big challenge will encourage them to
work together would not be an effective strategy.

In conclusion, successful induction of programmers into pair-programming
depends on us understanding how programmers without prior experience would
respond in such situations. This paper contributes to that effort by addressing
a number of research questions on achieving effectiveness.

Acknowledgments. We thank the teaching assistants who helped us with the
conducting of the experiment and the anonymous referees for their valuable
reviews.

References

1. Arisholm, E., Gallis, H., Dyb̊a, T., Sjøberg, D.: Evaluating pair programming with
respect to system complexity and programmer expertise. IEEE Transactions on
Software Engineering 33(2), 65–86 (2007)

2. Dyb̊a, T., Arisholm, E., Sjøberg, D., Hannay, J., Shull, F.: Are two heads better
than one? on the effectiveness of pair programming. IEEE Software 24(6), 12–15
(2007)

3. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair pro-
gramming on product quality. In: Proceedings of the 27th International Conference
on Software Engineering, pp. 495–504. ACM (2005)

4. Madeyski, L.: On the effects of pair programming on thoroughness and fault-finding
effectiveness of unit tests. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007.
LNCS, vol. 4589, pp. 207–221. Springer, Heidelberg (2007)

5. Fronza, I., Sillitti, A., Succi, G.: An interpretation of the results of the analysis of
pair programming during novices integration in a team. In: Proceedings of the 3rd
International Symposium on Empirical Software Engineering and Measurement,
pp. 225–235. IEEE Computer Society (2009)

6. Gallis, H., Arisholm, E., Dyba, T.: An initial framework for research on pair pro-
gramming. In: Proceedings of International Symposium on Empirical Software En-
gineering, pp. 132–142. IEEE (2003)

7. Ally, M., Darroch, F., Toleman, M.: A framework for understanding the factors
influencing pair programming success. In: Baumeister, H., Marchesi, M., Holcombe,
M. (eds.) XP 2005. LNCS, vol. 3556, pp. 82–91. Springer, Heidelberg (2005)

8. Lui, K., Chan, K.: Pair programming productivity: Novice–novice vs. expert–
expert. International Journal of Human-Computer Studies 64(9), 915–925 (2006)

9. Hannay, J., Dyb̊a, T., Arisholm, E., Sjøberg, D.: The effectiveness of pair program-
ming: A meta-analysis. Information and Software Technology 51(7), 1110–1122
(2009)

Introducing Programmers to Pair Programming: A Controlled Experiment 45

10. Vanhanen, J., Lassenius, C.: Effects of pair programming at the development team
level: an experiment. In: International Symposium on Empirical Software Engi-
neering, 10 pages. IEEE (2005)

11. Vanhanen, J., Lassenius, C.: Perceived effects of pair programming in an industrial
context. In: 33rd EUROMICROConference on Software Engineering and Advanced
Applications, pp. 211–218. IEEE (2007)

12. Vanhanen, J., Korpi, H.: Experiences of using pair programming in an agile
project. In: 40th Annual Hawaii International Conference on System Sciences, pp.
274b–274b. IEEE (2007)

13. Xu, S., Rajlich, V.: Pair programming in graduate software engineering course
projects. In: Proceedings of the 35th Annual Conference on Frontiers in Education,
pp. F1G–F1G. IEEE (2005)

14. Sison, R.: Investigating pair programming in a software engineering course in an
asian setting. In: Proceedings of the 15th Asia-Pacific Software Engineering Con-
ference, pp. 325–331. IEEE (2008)

15. Begel, A., Nagappan, N.: Pair programming: what’s in it for me? In: Proceed-
ings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 120–128. ACM (2008)

16. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-
programming in a mature agile team. In: Abrahamsson, P., Baskerville, R., Con-
boy, K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp.
127–136. Springer, Heidelberg (2008)

17. Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics. W. H. Free-
man & Co., New York (2006)

18. Perneger, T.: What’s wrong with bonferroni adjustments. BMJ (British Medical
Journal) 316(7139), 1236–1238 (1998)

19. Cohen, J.: Statistical power analysis for the behavioral sciences. Lawrence Erlbaum
(1988)

20. Haag, S., Raja, M., Schkade, L.: Quality function deployment usage in software
development. Communications of the ACM 39(1), 41–49 (1996)

21. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects: a comparative study
of students and professionals in lead-time impact assessment. Empirical Software
Engineering 5(3), 201–214 (2000)

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 46–60, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Team Performance in Agile Development Teams:
Findings from 18 Focus Groups

Torgeir Dingsøyr1,2 and Yngve Lindsjørn3

1 SINTEF,
NO-7465 Trondheim, Norway
torgeird@sintef.no

2 Department of Computer and Information Science,
Norwegian University of Science and Technology

3 University of Oslo, Norway
ynglin@ifi.uio.no

Abstract. How to make teams perform well is increasingly important in
software development, as agile development methods prescribe development in
small teams. Team performance has been studied in a number of research fields,
and there are many models of what enables team performance. A central
question then is how relevant these models are for agile development teams.
This article investigates the following research question: What factors do agile
software practitioners perceive to influence effective teamwork, through a focus
group study with 92 participants in 18 groups. The main findings are that what
agile practitioners perceive foster and hinder team performance seems to
comply well with what is stated in an existing research-based model. However,
agile practitioners seem to place insufficient focus on backup behaviour. Agile
practitioners place much emphasis on physical and technical infrastructure of
the development team as enablers of team performance.

Keywords: team performance, agile software development, software
engineering, software process improvement, focus group.

1 Introduction

Agile software development methods have led to a number of changes in the way
software is developed [1]. One of the principles behind the agile manifesto states that
"the best architectures, requirements, and designs emerge from self-organizing
teams". While there are reports of major improvement with agile development
methods over traditional development methods [2], team performance is still a
challenge. Stray et al. [3] summarize the following challenges to teamwork: Team
members solve the wrong tasks by working on low priority items, critical decisions
are taken without team commitment due to a lack of communication, and many agile
teams spend little time on reflecting on their work process, thus not releasing the
potential of learning.

Team performance has been studied in a number of research fields, like
management science and psychology, resulting in teamwork effectiveness models.

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 47

In this article, we are interested in what practitioners in agile development teams
perceive as factors that influence team effectiveness. Are established models from
other disciplines relevant for agile teams, or do we need to develop our own? This
work is a part of a larger research programme on teamwork in agile development, and
based on a focus group study, we ask the following research question: What factors
do agile software practitioners perceive to influence team performance?

This article is structured as follows: In Section 2, we first present central
definitions and related work regarding teamwork in general and in particular from the
literature on agile software development. We then present the team performance
model we use to structure the output from focus groups. Section 3 describes how
focus groups were carried out, and how data was gathered and analysed. Section 4
describes the results and findings, in Section 5, we discuss the results through our
research questions. In Section 6, we conclude, and state implications for practice,
theory and further work.

2 Teamwork and Team Performance

A common definition of a team is “a small number of people with complementary
skills who are committed to a common purpose, set of performance goals, and
approach for which they hold themselves mutually accountable” [4]. In the second
edition of the book describing XP, Beck and Andres states that "a variety of people
work together in interlinking ways to make a project more effective. They have to
work together as a group for each to be successful" [5].

There are a number of studies of teamwork in agile software development, on a
range of topics. Some have focused on topics relevant for team composition, like
personality [6] and individual characteristics [7]. Others have focused on establishing
task-effective norms in groups [8], what motivates team members [9-11], and the
importance of a team vision [12]. Yet others have focused on how teams use daily
stand-up meetings to communicate [13], how teams make decisions [14], and how to
achieve self-management [15, 16]. Some have suggested frameworks to assist
improvement of teamwork [17, 18].

Another stream of research has focused on team performance in agile software
development teams. Team performance refers to evaluations of the results of the
teamwork. Such results are: The quality of the developed software, the ability of the
team to meet project goals and budgets and the motivation of team members to work
together in the future. Moe et al. used two team performance models to explain
teamwork in a project adopting Scrum: The Salas et al. model [19] and the Dickinson
McIntyre model [20]. Melo et al. used the "Input Process Output" model to identify
team productivity factors in a multiple case study [21]. For a further discussion of
team performance models, see [22].

In the general teamwork literature, we find a number of team performance models.
Salas et al. [23] identify 136 models and frameworks in a literature review. However,
there is a lack of consensus concerning the conceptual structure of teamwork
behaviours [24]. Some have criticized that studies of teamwork have been fragmented
and not suitable for practical use [25]. A recent review of this body of research by

48 T. Dingsøyr and Y. Lindsjørn

Salas et al. [25] tries to answer this critique and make the studies practically usable,
suggesting the “Big Five” core components of teamwork. Other strengths of the Salas
model is that it originates from a solid literature review, and is one of the most cited
team performance models.

Salas et al. [25] argue that teams require a complex mixture of factors that include
organizational support and individual skills, and also teamwork skills. Therefore,
Salas et al. have condensed the knowledge on teamwork into the “Big Five”
framework. The five components are: team leadership, mutual performance
monitoring, backup behaviour, adaptability, and team orientation. Each of the “Big
Five” is required for team performance, but each component may be manifested
differently across most teams task types because of constraints of team task and
varying needs of the team [25]. The “Big Five” require three coordinating
mechanisms: shared mental models, closed-looped communication, and mutual trust.

Building on the theoretically and empirically grounded “Big Five” framework, we
describe each component of the framework in Table 1.

Table 1. Definitions of teamwork components in the "Big Five" teamwork model by
Salas et al. [25]

Teamwork component Definition
Team leadership Ability to direct and coordinate the activities of other team members,

assess team performance, assign tasks, develop team knowledge, skills,
and abilities, motivate team members, plan and organize, and establish a
positive atmosphere

Mutual performance
monitoring

The ability to develop common understandings of the team environment
and apply appropriate task strategies to accurately monitor team-mate
performance

Backup behaviour Ability to anticipate other team members’ needs through accurate
knowledge about their responsibilities. This includes the ability to shift
workload among members to achieve balance during high periods of
workload or pressure

Adaptability Ability to adjust strategies based on information gathered from the
environment through the use of backup behaviour and reallocation of
intrateam resources. Altering a course of action or team repertoire in
response to changing conditions (internal or external)

Team orientation Propensity to take other’s behaviour into account during group
interaction and the belief in the importance of team goal’s over
individual members’ goals

Shared mental models An organizing knowledge structure of the relationships among the task
the team is engaged in and how the team members will interact.

Mutual trust The shared belief that team members will perform their roles and
protect the interests of their team-mates

Closed-loop
communication

The exchange of information between a sender and a receiver
irrespective of the medium, where the information is received

3 Method

We conducted 18 focus group sessions to investigate our research question. Some of
the advantages of focus groups include the ability to collect large and rich amounts of

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 49

research data, that the researcher can interact directly with respondents for
clarification of responses or follow-up questions and that focus group participants can
react to and build upon responses from other focus group members [26]. Focus groups
are applicable to quickly obtain information on emerging phenomena through
structured, moderated discussions with groups of practitioners. We now describe the
main steps of conducting the focus groups:

Planning: For each focus group, we developed a plan, which included the agenda of
the day and a set of exercises for the participants. Each workshop was planned for 90
minutes and included the following agenda items:

1. Introduction: Purpose and overview of the workshop, motivation for the
importance of teamwork in software development.

2. Group exercise 1: Brief introduction of all group members, completion of
context questionnaire for each participant. Brainstorm on "What fosters
effective teamwork" (documented on green stickers), and then on "What
hinders effective teamwork" (documented on yellow stickers).

3. Presentation team performance model: The research-based Salas et al model.
4. Group exercise 2: Presentation of results from the brainstorm session within

groups, categorization of stickers according to the model of team
performance. Moderated discussions in the group on placement of stickers.

5. Summary: Presentation of results of the group, feedback on the workshop,
information on minutes and further research on teamwork.

Recruitment: In total 92 persons participated in the 18 focus groups. Three were
conducted at conferences on agile software development: Two at the Norwegian agile
conference (Smidig 2011 and Smidig 2012), and one at XP2012. The participants
signed up for a workshop on "Effective Agile Teamwork", and were divided into
groups on arrival. Smidig 2012 had five groups, Smidig 2012 three, and XP2012
three. There were 4-6 participants in each focus group.

In addition we conducted focus groups within four companies that participated in a
research project on effective teamwork in Norway. In two of the companies the
participants included whole projects, while in one company we divided the whole
development department into three focus groups. In the fourth company, participants
were recruited for a focus group after working hours, which resulted in another two
groups with members from a variety of projects.

From the context questionnaire that all participants filled out, we see that the
participants were mainly software developers (39%), followed by Scrum masters
(18%), team leaders (12%) and project managers (10%). Most of the participants were
using the Scrum software development method (59%), followed by Kanban (22%),
Lean software development (9%) and eXtreme Programming (8%). As for gender,
65% were male, and 35% female. The participants worked in teams with 3 to 20
members (average 8.4, standard deviation 3.2). The teams had on average 6.6 full
time members (standard deviation 3.1). Further, the teams the participants worked in
were collaborating with up to 35 other teams. However, 55 participants were working

50 T. Dingsøyr and Y. Lindsjørn

in teams that did not collaborate with other teams. The participants had on average
11.9 years of experience with software development (standard deviation 8.4), and 4.3
years with experience with agile software development (standard deviation 2.5).

Conducting the focus group: The rooms were set up with one table per group. Walls
were covered with flip-over charts with numbered areas for grouping of stickers from
the brainstorming session. Groups were given stickers in the right colour at the start of
each task in order to avoid that participants confused the colours. An example of room
set-up is given in Figure 1. At stage 4 in the agenda, groups were given a sheet
explaining the teamwork model.

Fig. 1. Room set-up with one table per group and space for documenting results on flip-overs
on walls

Moderation: The focus groups were moderated by the first author during agenda
items 1, 3 and 4, and by both authors by discussing with groups during items 2 and 4.
The discussions mainly involved deciding where to classify items in the team
performance model.

Documentation of results, processing and analysis: We made minutes from all focus
groups by taking pictures of the final results, showing groups of items that foster or
inhibit team performance. This was documented for each teamwork component in the
model, and we also documented items that did not fit into the model, see Figure 2 for
example results from one group at the XP2012 conference workshop.

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 51

Fig. 2. Partial results of focus group for teamwork component "closed-loop communication"
Items that fosters teamwork in green, items that hinders effective teamwork in yellow

In total, the groups found seven items that they were not able to fit into the model.
These were classified by the researchers. Examples of such items were "teamsize" and
"too difficult work tasks" what were moved to team leadership. The minutes were sent
to all participants. Then, we recorded items, whether they were marked as fostering or
hindering teamwork in a spreadsheet. The text on four stickers were unreadable in the
minutes, and this left a total of 1183. These were first read to check that the topics
identified was categorized into the right teamwork component. 17 items were moved
from one component to another.

The questionnaire that all participants filled out was also coded in a spreadsheet, to
provide descriptive statistics of the participant population.

Analysis included a quantitative and qualitative part. The quantitative analysis
consisted of counting the number of items marked as fostering or hindering
teamwork. The qualitative analysis consisted of thematic grouping of items marked
within each teamwork component. For example, in Figure 2, the stickers
"communication barriers within the team" and "direction communications without
barriers" (in the upper left corner) were coded as teamwork component "closed-loop
communication", while "distances" and "different working hours" were coded as sub-
component "co-location. The names of sub-components were all stated as if they were
factors that foster team performance, for example most of the stickers identified in the
brainstorming for the subcomponent "planning" was aspects of "bad planning".

4 Results

The result of our grouping of items into teamwork components is shown in Table 2.
In total 1183 items were placed in the eight teamwork component groups. We see that
team leadership, closed-loop communication and team orientation received the
highest numbers of stickers indicating items that foster team performance. Closed-
loop communication, shared mental models and mutual trust received the largest

52 T. Dingsøyr and Y. Lindsjørn

Table 2. Number of stickers with items fostering or hindering team performance, and the
number of items considered as most important by the focus groups. Numbers are shown for
each teamwork component.

Teamwork component Foster Hinder Total
Team leadership 90 139 229
Mutual performance monitoring 49 22 71
Backup behaviour 44 57 101
Adaptability 46 50 96
Team orientation 91 65 156
Shared mental models 104 59 163
Mutual trust 97 58 155
Closed-loop communication 122 90 212
Sum 643 540 1183

numbers of items that could hinder team performance. Further, closed-loop
communication mutual trust and shared mental models received the highest numbers
of markers indicating that participants viewed these as important.

For the qualitative analysis, we have chosen to display results from the two groups
with highest total number of items identified: Team leadership and closed-loop
communication. Note that many stickers only shows that many are aware of this
factor, it is not necessarily an important factor.

Team leadership: This component includes 139 items that foster effective teamwork,
and 90 that hinders effective teamwork. 66 stickers simply described "leadership" (14
fostering and 52 hindering). See Table 3 and Figure 3 for a grouping of both fostering
and hindering items.

Table 3. Main sub-components of team leadership, with selected items that foster and hinder
team performance

Sub-Component Items
Foster Hinder

Planning

Good planning Bad planning
Participative planning Too thorough planning
Adequate planning Short-sighted planning

Shielding from
interruptions

Reduce unnecessary interruptions Interruptions
Shielding the team Work day split up
Someone protecting the team Change the agreed content

Work processes
Slack to think big Heavy process
Responsibility process in place Unnecessary processes

Adequate resources

Full time members Part-time resources
Capacity Lack of resources
Availability Resource allocation

Infrastructure
Working infrastructure Lack of tools
Good work conditions Lack of technical infrastructure
Access to tools Unnecessary tools

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 53

Fig. 3. Characteristics of team leadership. For each subcategory, the number of items marked
as fostering to the left and the number of items marked as hindering to the right.

In addition we find the following groups with more than three items: "team
members take responsibility", "team composition", "interesting work tasks", "social
atmosphere", "well defined tasks", "engaged team members", "absence of conflicts",
"balance between team members", "common goals", "frequent communication",
"focus on setting priorities", "having the right focus", "self management", and
"visualising status and progress".

Table 4. Main sub-components of closed-loop communication, with selected items that foster
and hinder team performance

Sub-Component Items
Foster Hinder

Co-location

Physical presence People are distributed
Co-location Distance
Physically placed together Not co-located

Openness

Open communication Secrecy
Openness in the team Retaining information
Open dialogue

Infrastructure

Process support tools Bad tools
Suitable office spaces Bad office facilities
Tools that work

Visualising status
and progress

Informative workspace No whiteboards
Visualise things that go well
Whiteboard/taskboard

Social atmosphere
Good atmosphere Scolding
Fun Antisocial environment
Friendly tone Bad atmosphere

0

2

4

6

8

10

12

14

16

18

20

Planning Shielding from
Interrup ons

Work process Adequate resources Infrastructure

54 T. Dingsøyr and Y. Lindsjørn

Fig. 4. Characteristics of closed-loop communication. For each subcategory, the number of
items marked as hindering to the left and the number of items marked as fostering to the right.

Closed-loop communication: This component includes 90 items that foster effective
teamwork, and 122 that hinder effective teamwork. Many stickers simply described
"communication", in total 63 (23 hindering, and 40 fostering). See Table 4 and Figure
4 for a grouping of both fostering and hindering items. The sub-components that
received the highest number of items indicating factors that both foster and hinder
effective teamwork was "co-location", "openness", "infrastructure", "visualizing
status and progress", and a "social atmosphere".

In addition to these five groups, we also find the following groups with three items
or more: "frequent communication", "absence of conflicts", "absence of
interruptions", "absence of introvert team members", "customer available", "common
language and culture", "team leadership", "slow response" and "follow-up".

5 Discussion

We now proceed to discuss our research questions: What factors do agile software
practitioners perceive to influence effective teamwork?

From the results section and Table 2, we see that the results of the focus groups
fitted well into the general research-based model of team performance. The
participants themselves only put 7 out of 1183 items in an "other" group, and these
were later categorized by the researcher into the team components. If we interpret the
number of stickers generated by all groups for a teamwork component as a sign of the
perceived significance for team performance, we see that the components cluster in
three groups: Team leadership and closed-loop communication have 229 and 212
items respectively. Shared mental models, team orientation, and mutual trust have

0

5

10

15

20

25

Co-loca on Openness Infrastructure Visualising status and
progress

Social atmosphere

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 55

around 160 items. The last group of components: backup behaviour, adaptability and
mutual performance monitoring range from 71 to 101 items (Table 2).

In their description of the "Big Five" model, Salas et al. [25] suggest that team
leadership and team orientation will be especially important in the initial stages of
team development, when the team is exploring their task interrelationships and the
roles of team members. If we divide teamwork into phases, Salas et al. hypothesize
that adaptability, team orientation and closed-loop communication will be the most
important before engaging in complex tasks. Then mutual performance monitoring,
backup behaviour and adaptability are expected to increase in importance as the team
is working on the tasks. It is interesting that there were not more stickers related to
adaptability, as this is central in agile software development. Maybe this is something
the participants take for granted in agile development.

The practitioners who participated in focus groups emphasized many of the same
factors as Salas with team leadership, closed-loop communication, and team
orientation. Components that are given attention by Salas, adaptability, mutual
performance monitoring, and backup behaviour are given less attention by
practitioners.

In a study of an agile development team introducing Scrum, Moe et al. [20] found
that team orientation, team leadership and backup behaviour was particularly
challenging. The first two are given much focus by practitioners, while the third
receives less attention. A multiple case study in two companies by Stray et al. [3]
discovered challenges related to communication (closed-loop communication),
learning (shared mental models, backup behaviour) and selecting the tasks according
to the priority list (team orientation). Compared to our focus group findings, we see
that team orientation and closed-loop communication jointly receives much attention,
while the practitioners place less emphasis on backup behaviour (shared mental
models in the mid-range).

If we go further into details, we will compare the definition team leadership by
Salas to the sub-components identified by agile development practitioners in the focus
groups (Table 5). From the sub-components, we find a number of topics related to
directing and coordinating the activities of team members, like "planning", "common
goals", "self management", "focus on setting priorities", "frequent communication"
and "visualising status and progress". The latter is also related to assessing team
performance. Related to assigning tasks, we find "adequate resources", "well defined
tasks" and "self management". We do not see sub-components that we can connect to
"developing team knowledge, skills and abilities". Maybe this could be because many
include this in their definition of a "self managing" team. As for motivating team
members, we have "engaged team members", "interesting work tasks" and "absence
of conflicts". The last item in Salas et al.´s list is to plan, organize and establish a
positive atmosphere. Here we have "planning", "infrastructure", "team composition",
"shielding from interruptions", "balance between team members", "work process" and
"social atmosphere". In all, it seems like the participants in focus groups have an
understanding of team leadership which is similar to the one described in Salas et al.,
with the exception of focus on "develop team knowledge, skills and abilities".

56 T. Dingsøyr and Y. Lindsjørn

Table 5. Team leadership, definition by Salas et al. and sub-components identified in focus
groups. The list of sub-components is according to frequency, with the sub-components with
most items listed first.

Sub-components from focus
group

Planning, shielding from interruptions, work process, adequate
resources, infrastructure, team members take responsibility, team
composition, interesting work tasks, social atmosphere, well
defined tasks, engaged team members, absence of conflicts,
balance between team members, common goals, frequent
communication, focus on setting priorities, having the right focus,
self management, visualising status and progress

Definition by Salas et al. Ability to direct and coordinate the activities of other team
members, assess team performance, assign tasks, develop team
knowledge, skills, and abilities, motivate team members, plan and
organize, and establish a positive atmosphere

If we do a detailed examination of closed-loop communication, the definition by

Salas et al. is simply that a sender and a receiver exchanges information irrespective
of medium (Table 6). The sub-component "co-location" received in total 40 stickers
with either co-location promoting effective teamwork or the lack of co-location
hindering effective teamwork. It seems then that many teams perceive co-location as
important for good communication. Also, a number of other sub-components were
related to the set-up of the team, like "infrastructure", "visualising status and
progress". A number of sub-components focused on the quality of communication:
"openness", "frequent communication", "absence of conflicts", "absence of
interruptions", "customer available", and that there should not be "slow response".
Some emphasized that good communication requires a "common language and
culture" and a "social atmosphere". Some also included "follow-up" and "team
leadership" here, the latter indicating a special role for a team leader with respect to
ensuring good communication. To summarize, practitioners in agile development
teams seem to place much emphasis on physical and technical infrastructure as
enablers of closed-loop communication, shown by many stickers with topics in sub-
components co-location, infrastructure, visualising status and progress.

Table 6. Closed-loop communication, definition by Salas et al. and sub-components identified
in focus groups. The list of sub-components is according to frequency, with the sub-
components with most items listed first.

Sub-components from focus
group

Co-location, openness, infrastructure, visualising status and
progress, social atmosphere, frequent communication, absence
of conflicts, absence of interruptions, absence of introvert team
members, customer available, common language and culture,
team leadership, slow response, follow-up

Definition by Salas et al. The exchange of information between a sender and a receiver
irrespective of the medium

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 57

One question is what would have happened with our analysis if we had used
another team performance model? Note that we conducted the brainstorming session
on what fosterer and hinder effective teamwork (items 2 on the agenda) independent
of any model. The model was first introduced when all items related to team
performance had been introduced. We expected a larger number of items that the
focus group participants would not be able to relate to the model, as the Salas et al.
model is focused on a practical model with a limited number of factors. For example
the "Input Mediator Output" model [27] has a far larger number of factors, like
characteristics of team members with respect to diversity and emergent states of a
team, like "empowerment" and "cohesion". However, it would be an interesting task
to analyse the material with respect to other models to see if they are fitting equally
well.

6 Conclusion

In this article, we report findings from a focus group study on how team performance
is seen by practitioners in agile software development teams. We conducted 18 focus
groups with a total of 92 participants, where participants brainstormed on factors that
foster or hinder teamwork, and relate this to the Salas et al. model of team
performance. We asked the following research question: What factors do agile
software practitioners perceive to influence effective teamwork?

Our main findings are the following:

• The Salas model seem to fit well with what practitioners perceive as factors that
affect team performance. Only 7 of 1183 stickers were not placed in the model by
the groups (and all of these were later found to fit by the researchers).

• After number of stickers identified, the teamwork components cluster in three
main groups: 1) team leadership and closed-loop communication, 2) shared
mental models, team orientation, and mutual trust, 3) mutual performance
monitoring, backup behaviour and adaptability.

• Backup behaviour has been found to be challenging in studies of agile
development teams, and is one of the components with the lowest number of
stickers. This could indicate a lack of awareness of this factor with respect to
team performance.

• The practitioners understanding of team leadership seems similar to description
in Salas et al. [25], except for a lack of focus on "develop team knowledge, skills
and abilities".

• Further, practitioners in agile development teams seem to place much emphasis
on physical and technical infrastructure as enablers of closed-loop
communication, shown by many stickers with topics in sub-components co-
location, infrastructure, visualising status and progress.

This study has the following implications for theory: First of all this study confirms
previous findings from case studies showing that general theory on teamwork is of
high relevance to agile software development teams. Second, this focus group

58 T. Dingsøyr and Y. Lindsjørn

suggests that team leadership is perceived as important, and practitioners’ view of
team leadership corresponds to how it is described in the team performance model of
Salas et al.

Implications for practice are that much of the advice given in general team research
will be relevant for agile software development teams. In particular what agile teams
should focus more on in order to enable team performance is backup behaviour,
which receives little attention in this study and has been shown in case studies to be
problematic.

This focus group study has the following limitations: First of all, the opinions on
team performance expressed by the focus groups might diverge from a representative
sample of agile development practitioners. 67% of participants signed up voluntarily
for the focus group workshops, either in a company or in one of the three conferences.
Thus, our participants are likely to be more than averagely interested in teamwork.
Second, focus groups are often criticized for enabling groupthink. For collecting items
that foster or hinder team performance, we avoided this effect by individual
brainstorming sessions. However, in the discussions where groups placed items in the
Salas model, groupthink might influence placement. We tried to minimize this effect
by critically examining the results of the groups and moving 17 items from one
teamwork component to another. For the analysis, one could argue that the "Big Five"
model should be replaced by another teamwork model, as agile teams are said to be
self-managing and this model is not particularly tailored for self-managing teams.
However, we argue that first of all, many teams that use agile development methods
are not self-managing. Second, we can interpret the team leadership tasks as tasks that
are the responsibility of the whole team and not of a team leader for teams that are
self-managing.

In the future we plan to carry out a detailed analysis as we have done for the two
main teamwork components for all teamwork components in the model. We hope
then to be able to identify even further characteristics of what agile practitioners
perceive as important in teamwork, and what might differentiate from what
researchers or team members in other disciplines see as important.

Acknowledgments. We are very grateful to the 92 participants in our team
performance focus groups who were willing to share their experience about
teamwork. Also, we would like to thank Viktoria Gulliksen Stray at the University of
Oslo for comments on a previous version of this article. This article was written in the
TeamIT project, supported by the Research Council of Norway through grant
193236/I40.

References

[1] Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A Decade of Agile Methodologies:
Towards Explaining Agile Software Development. Journal of Systems and Software 85,
1213–1221 (2012)

[2] Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

 Team Performance in Agile Development Teams: Findings from 18 Focus Groups 59

[3] Gulliksen Stray, V., Moe, N.B., Dingsøyr, T.: Challenges to Teamwork: A Multiple Case
Study of Two Agile Teams. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.)
XP 2011. LNBIP, vol. 77, pp. 146–161. Springer, Heidelberg (2011)

[4] Katzenbach, J.R., Smith, D.K.: The Discipline of Teams. Harvard Business Review 71,
111–120 (1993)

[5] Beck, K., Andres, C.: Extreme Programming Explained: Embrace Chage, 2nd edn.
Addison-Wesley (2004)

[6] Young, S.M., Edwards, H.M., McDonald, S., Thompson, J.B.: Personality Characteristics
in an XP Team: A Repertory Grid Study. In: Proceedings of Human and Social Factors of
Software Engineering, HSSE, St. Louis, Missouri, USA, pp. 1–7 (2005)

[7] Seger, T., Hazzan, O., Bar-Nahor, R.: Agile Orientation and Psychological Needs, Self-
Efficacy, and Perceived Support: A Two Job-Level Comparison. In: Agile, Toronto, pp.
3–14 (2008)

[8] Teh, A., Baniassad, E., van Rooy, D., Boughton, C.: Social Psychology and Software
Teams: Establishing Task-Effective Group Norms. IEEE Software 29, 53–58 (2012)

[9] Whitworth, E., Biddle, R.: The Social Nature of Agile Teams. In: Agile, Washington,
DC, pp. 26–36 (2007)

[10] Beecham, S., Sharp, H., Baddoo, N., Hall, T., Robinson, H.: Does the XP environment
meet the motivational needs of the software developer? An empirical study. In: Agile,
Washington, DC, pp. 37–49 (2007)

[11] Tessem, B., Maurer, F.: Job Satisfaction and Motivation in a Large Agile Team. In:
Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 54–
61. Springer, Heidelberg (2007)

[12] Acuña, S.T., Gómez, M., Juristo, N.: Towards understanding the relationship between
team climate and software quality—a quasi-experimental study. Empirical Software
Engineering 13, 401–434 (2008)

[13] Stray, V.G., Moe, N.B., Aurum, A.: Investigating Daily Team Meetings in Agile
Software Projects. In: Cortellessa, V., Muccini, H., Demirors, O. (eds.) 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications, pp.
274–281 (2012)

[14] Moe, N.B., Aurum, A., Dybå, T.: Challenges of shared decision-making: A multiple case
study of agile software development. Information and Software Technology 54, 853–865
(2012)

[15] Hoda, R., Noble, J., Marshall, S.: Developing a grounded theory to explain the practices
of self-organizing Agile teams. Empirical Software Engineering 17, 609–639 (2012)

[16] Moe, N.B., Dingsøyr, T., Dybå, T.: Overcoming Barriers to Self-Management in
Software Teams. IEEE Software 26, 20–26 (2009)

[17] Moe, N.B., Dingsøyr, T., Røyrvik, E.A.: Putting Agile Teamwork to the Test – An
Preliminary Instrument for Empirically Assessing and Improving Agile Software
Development. In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP,
vol. 31, pp. 114–123. Springer, Heidelberg (2009)

[18] Kettunen, P., Moilanen, S.: Sensing High-Performing Software Teams: Proposal of an
Instrument for Self-monotoring. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 77–
92. Springer, Heidelberg (2012)

[19] Moe, N.B., Dingsøyr, T.: Scrum and team effectiveness: Theory and practice. In: 9th
International Conference on Agile Processes in Software Engineering and Extreme
Porgramming, Limerick, Ireland, pp. 11–20 (2008)

[20] Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: A
case study of a Scrum project. Information and Software Technology 52, 480–491 (2010)

60 T. Dingsøyr and Y. Lindsjørn

[21] de O. Melo, C., Cruzes, D.S., Kon, F., Conradi, R.: Interpretative case studies on agile
team productivity and management. Information and Software Technology 55, 412–427
(2013)

[22] Dingsøyr, T., Dybå, T.: Team Effectiveness in Software Development: Human and
Cooperative Aspects in Team Effectiveness Models and Priorities for Future Studies. In:
Workshop on Co-operative and Human Aspects of Software Engineering, International
Conference on Software Engineering, ICSE, Zürich, Switzerland, pp. 27–29 (2012)

[23] Salas, E., Stagl, K.C., Burke, C.S., Goodwin, G.F.: Fostering Team Effectiveness in
Organizations: Toward an Integrative Theoretical Framework. In: 52nd Nebraska
Symposium on Motivation, Lincoln, NE, pp. 185–243 (2007)

[24] Rousseau, V., Aube, C., Savoie, A.: Teamwork behaviors - A review and an integration
of frameworks. Small Group Research 37, 540–570 (2006)

[25] Salas, E., Sims, D.E., Burke, S.C.: Is there a “Big five” in teamwork? Small Group
Research 36, 555–599 (2005)

[26] Stewart, D.W., Shamdasani, P.N., Rook, D.: Focus Groups: Theory and Practice. Sage
Publications (2007)

[27] Mathieu, J., Maynard, M.T., Rapp, T., Gilson, L.: Team effectiveness 1997-2007: A
review of recent advancements and a glimpse into the future. Journal of Management 34,
410–476 (2008)

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 61–75, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Practice of Not Knowing for Sure:
How Agile Teams Manage Uncertainties

Denniz Dönmez and Gudela Grote

Department of Management, Technology, and Economics
ETH Zurich, Switzerland

{ddonmez,ggrote}@ethz.ch

Abstract. Uncertainties are ubiquitous in software development. They impact
almost every aspect of a development project. Most uncertainties are viewed as
threats to project efficiency and there are strong calls to their reduction.
However, uncertainties can pose opportunities for creativity and innovation in
some situations. The literature has been dominated by discussions that focus on
requirements uncertainties. We aim to extend these discussions by drawing
attention to additional types of uncertainties, namely resource, task, and output
uncertainties. In this empirical study we investigate the potential of agile
software development methods to manage these different types of uncertainties,
and examine the mechanisms available to development teams. Our results
reveal how some agile teams seized mechanisms to harvest positive and
mitigate negative impacts of uncertainties. Drawing upon these results, we
discuss several antecedents of successful uncertainty management.

Keywords: Uncertainties, Uncertainty Management, Agile Software
Development Methods, Scrum, Empirical Study.

1 Introduction

In this study, we examine the potential of agile software development (ASD) methods
to manage diverse uncertainties, which play a major role in software development
projects [1,2,3]. Uncertainties have a significant impact on a project’s performance as
they result in situations that require adequate, oftentimes quick, reactions. They can
be manifested in diverse conditions including unexpected events, or a lack of
confidence in an estimation, and may consist of anything that is potentially important
but not known for sure. Uncertainty is broadly defined as the absence of complete
information [4] and linked to the inability of accurate predictions [5]. Because
incomplete information can lead to costly delays, redundant work and other
inefficiencies, uncertainties are unwanted impediments to most software developers
and project managers. The elimination of uncertainties becomes feasible as more
information becomes available during the course of a project [6,7] and has long been
connected to reduced software project risks and costs [8,24]. However, in some
situations, uncertainties can play an important role to foster innovation and
productivity [9]. This is mostly the case when high levels of bureaucracy and
exuberantly structured project management approaches suffocate creative thinking

62 D. Dönmez and G. Grote

and developers do not enjoy sufficient flexibility to react to dynamic problems and
changing environments. Therefore, the adequate handling of uncertainties is crucial
for a project’s outcome. A team’s capability to react adequately to unforeseen future
events can result from well-managed uncertainties [10], whereas a highly structured
project management approach may result in badly managed uncertainties [11].
Uncertainty management is not equivalent to the elimination of uncertainties.
Uncertainties cannot be eliminated entirely in software development projects [10].
Instead, uncertainty management includes two main mechanisms; minimisation of
uncertainties and coping with uncertainties [12]. In an attempt to establish the
flexibility that is needed for this, many development teams have turned to agile
development methods, which stress the importance of situation-dependent problem
solving through an ‘inspect-and-adapt’ approach [10]. ASD methods, such as Scrum,
deliberately encourage high flexibility and adaptability through iterative development
processes, and foster communication among project stakeholders in order to enable
quick and effective adaption to unexpected events. In this context, requirements
uncertainties have been extensively studied, e. g. in [4], as the literature has been
dominated by discussions that focus on technical aspects. Yet, little attention has been
paid to identify the mechanisms that may be necessary to address different types of
uncertainties, which exist in software development. We address this gap by studying
additional types of uncertainties, which have been largely ignored. We aim to
contribute to a more complete understanding of uncertainty management in software
development by addressing four different types of uncertainties, namely resource,
requirements, task and output uncertainties.

Resource uncertainties refer to incomplete information about the availability of
resources that are required for the accomplishment of planned project tasks.
Necessary but unavailable resources range from human resources subject to
spontaneous temporal unavailability to process artefacts, such as delayed deliverables.
Requirements uncertainties refer to ambiguous or changing customer demands.
Requirements are a major source of uncertainties in software development and have
been discussed by several authors [3,13,16], who argue that agile software
development becomes especially important under conditions of frequent changes.
Task uncertainties refer to a lack of clarity regarding the details of desired outcomes
and appropriate solutions to problems. Uncertainty is high when tasks have
unexpected dependencies or undiscovered problems with envisioned solutions exist.
Output uncertainties result from incomplete information about the quantity or
quality of product features that a team is able to implement in a given time. They are
often linked to insufficient task or process knowledge resulting in unplanned delays.

The purpose of this paper is to examine the mechanisms that professional software
development teams draw upon to manage these uncertainties. Thereby we shed light
on different existing practices that are suggested by ASD methods, as well as
established in extension to them, which are seized to approach a topic with significant
influence on development projects. Apart from the identification of ASD practices,
we present mechanisms that teams utilised to complement ASD methods in order to
carry out their work. Our focus includes the potential of ASD to provide both the
structure and flexibility necessary for the effective management of uncertainties.

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 63

2 Research Method

We applied qualitative methods for data collection and analysis, using mainly
interview and observation techniques. In addition, project artefacts, such as
documents and drawings, were collected during company visits. We applied
observational techniques when we had the possibility to attend team meetings,
witness conference calls (e. g. with clients and other project stakeholders) and
conduct spontaneous informal interviews, for instance during lunch or coffee breaks.
Field notes produced from these conversations were not included in the data analysis,
but enriched our understanding of organisational and team processes and the projects’
contextual settings.

2.1 Data Collection

Data collection took place in agile software development teams in three companies
based in Switzerland. In total, 19 semi-structured interviews with individuals were
conducted. Participants were members of 5 different teams and consisted of 15 men
and 4 women, which reflects the teams’ gender distribution. Table 1 summarises the
data sources. The project teams are referred to by letters for confidentiality reasons.

We interviewed at least two and as many as five members of each team, including
at least one person with official team leadership responsibility (i. e. Scrum Master,
Product Owner, team or project leader). No stakeholders external to the teams were
interviewed. This limitation was, however, mitigated through the fact that the teams
had very close contact to them, because they worked for the same companies, and
were informed about their perceptions concerning the projects. Interviews lasted from
20 minutes to one hour, with an average length of 38 minutes, and were audio-
recorded. In addition, we had the chance to engage in informal conversations with
almost all team members at multiple occasions as we visited each team several times.

During the interviews we focused on the interviewees’ experiences with uncertain
situations. We designed semi-structured interview questions that centred on different
types of uncertainties. Each interview began with general questions, such as the
current status of the project, and then moved to examples of recently experienced
situations in which the team had to deal with incomplete information or unexpected
events. We also collected experiences with negative, as well as positive outcomes of
unexpected events. Interviewees were asked to describe situations they experienced
(e. g., ‘Could you give me an example of a situation in which your team faced the
unexpected fallout of a team member?’ or ‘Please describe a situation in which you
faced a task and it was not clear to you how to accomplish it’) and how their team
reacted to that particular situation. Special attention was paid to leadership and
collaboration mechanisms including how decisions were made, and how
communication took place. During the interviews we pursued interesting clues rather
than strictly adhere to our interview guideline; we encouraged informants to wander
freely in their answers and probed whenever possible.

The teams we approached apply Scrum in large company projects, mostly using
sprint lengths of two weeks. According to the team members’ expertise, several roles

64 D. Dönmez and G. Grote

are established with overlapping responsibilities. Most teams employ specialised
developers (e.g., front and back end), testers, designers (software architects), and
requirements engineers. All teams are part of the IT development departments of their
respective companies, and develop software solutions that are used by other
departments of their organisations. The teams differed in several important aspect
including not only characteristics, such as team size, but also their choice of
leadership style and coordination mechanisms.

Team A is part of a telecom company. Its 19 team members are split into two sub-
teams, which are collocated and share one Product Owner and Scrum Master. The
team is interdisciplinary and pair programming is used for most development tasks.
At the time of data collection, the team had been working together for one year.
Teams B and C work for a bank. While Team C has 6 collocated developers, Team B
consists of 11 developers who are dispersed over three locations (two in Switzerland,
one in India). Teams D and E are employed by an insurance company and are all
collocated. While Team D is the smallest team of our study (it consists of the 4
members who were interviewed), Team E counts 9 team members.

Table 1. An overview of project, team and study participant details

Team
code

Project profile Team size Number of inter-
viewees incl. roles

A The project had been set up 2 years before
data collection in order to develop an
application for customer order
management of future products. Scrum has
been used from the beginning. Sprint
lengths are 2 weeks.

19 team
members
split into 2
functional,
collocated
sub-teams.

5 interviews:
A1-A5 developers;
plus several informal
interviews with the
Scrum Master (A6)

B The project was started 1.5 years earlier
with the aim to develop and maintain
several products for internal company use.
Scrum has been used from the beginning
with 2 week sprints.

12 team
members

4 interviews:
B1 Product Owner
B2-B4 developers

C Releases of a company-internal application
are developed in cooperation with internal
clients for the last 3 years, using Scrum
since 2.5 years with 4 week sprints.

10 team
members

2 interviews:
C1 Scrum Master
C2 developer

D For the previous 2 years, Scrum was used
to develop new versions of a customer
management system. Sprint lengths were
usually 2 weeks but varied sometimes.

8 team
members

4 interviews:
D1 Scrum Master
D2 developer
D3 Product Owner
D4 developer

E The project serves the development of new
company communication technologies and
started 1 year prior to data collection using
Scrum. Sprints were 2 weeks in length.

5 team
members and
1 Scrum
coach

4 interviews:
E1 Product Owner
E2 developer
E3 developer
E4 Scrum coach

5 teams 19 interviews

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 65

2.2 Data Analysis

Transcripts of interviews constitute the primary data in this study. All interviews were
coded to reflect different types of uncertainties, which resulted from earlier
ethnographically informed [14] work, and mechanisms seized for their management.
We coded the data openly until no new codes emerged, i. e. theoretical saturation [15]
was reached. The codes were grouped according to the types of uncertainties they
addressed, and summarised into concepts regarding the underlying uncertainty
management practices. Those practices that were connected to organisational rather
than team or project management characteristics, such as hiring power, were ignored,
as not all teams were in the position to apply them.

3 Results

We present practices that are used by teams to manage different types of
uncertainties. The results are grouped according to categories of uncertainties that
were identified in the interviews. Some uncertainty management practices are related
explicitly to agile software development (ASD), whereas others are not. Several
practices are mutually dependent or contribute to the management of multiple
uncertainties. Results are summarised in Table 1 at the end of the section.

3.1 Resource Uncertainties

Resources consist of technological artefacts or infrastructure, as well as human
resources required in the development process. An inadequate level of resources
results either from insufficient supply or excess demand for resources. Uncertain
availability of resources causes threats to the success of a project.

Unavailability of Artefacts. The unavailability of technical infrastructure, software
licenses, or other artefacts can render a team unproductive. Such threats need
uncertainty management practices in order to reduce the risk of the inability to
complete development tasks. Teams in this study routinely applied risk analysis
techniques, however, some reported not to do so systematically. Participants stated
they usually thought about risk in the moment when they find themselves in need to
respond to an unexpected event and faced a strategic decision, such as to reduce
product features or search for substitute functionality. One participant remarked:

“detailed planning would not have helped because the unexpected events were
unexpected” (C1, Scrum Master)

Decision analysis was conducted according to “a common sense process” (C2,
developer) by thinking about opportunities and possible consequences. One common
practice was to call a team meeting in order to gather possible solutions for
workarounds and make due as good as possible without satisfying their excess
demand for the scarce resource.

66 D. Dönmez and G. Grote

Quality of Input. Resources available only in unpredictable levels of quality were
named as one major source of dissatisfaction in Team A, where deliverables from
external departments often were below the team’s expected quality. This was
especially the case when erroneous items were received that caused unexpected
additional work. Team members could not successfully manage input quality
uncertainty because causes were rooted in the organisational structure and differing
team cultures. The team members complained about the number of bugs in systems
they relied on and which were not improved by the supplier. To our knowledge, they
did not try to engage their suppliers in close collaboration in an attempt to explain
their quality requirements. Moderation was sought from higher level authorities,
however, addressing the problem remained a recurring task of the Product Owner.

Availability of Human Resources. One central aspect of uncertainty management in
software development is the management of human resources. It ranges from hiring to
training and developing, and eventually letting go team members. The duration of an
onboarding process (i. e. the phase of integration until a new team member becomes
productive) significantly impacts project costs. New team members are required to
learn a broad range of tasks reaching from administrative work to specific
development tasks. To increase knowledge transfer, documentation of procedures and
pair programming sessions were used in most teams.

Knowledge transfer is also crucial when a team member leaves, or is temporarily
unavailable. Breaching functional separation of roles was seen as important by all
teams, however, in some cases this was not feasible either due to expertise or
individual differences of team members. We found that status and roles were created
according to seniority and expertise, and had consequences based on team member
expectations regarding decision-making and leadership toward conflict solving.

One developer reported that informal leadership structures collapsed after one
dominant decision maker had left the team, and the developer was left in the in the
unwanted role of his successor because he had become the most senior team member:

“the team dynamics changed completely after [the colleague] had left the team.
[…] For me now the pressure is much bigger, because I am expected to take over his
role now, but I am not this person. There is a lot more pressure for me, because a lot
of requests come to me and I must make a lot more decisions now.” (A1, developer)

When team members could anticipate their absence from work, or had regular
absences because they did not work full time on the project, clusters of sub-teams
were formed by the teams so that each team member had a functional substitute.
Knowledge sharing and collaboration lied in the responsibilities of the team members
and worked best in teams that used pair programming routinely. Team A had the
policy that no pair could stay together for more than one task so that knowledge
sharing would be maximised.

In one case, a developer was idle because of his inability to support his colleagues.
This resulted from expertise differences and an unexpected difficulty which put his
task on hold. The problem was solved by an anticipatory planning meeting with the
Product Owner that was called to forecast future work packages and start anticipated
tasks.

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 67

Team E reported that developers were disturbed frequently during their work by
requests from other departments (in which they previously worked). The team solved
this problem by extending the practice of process visualisation to include the external
disturbers and transparently displaying the frequency of their requests:

“especially in the beginning of the development we were disturbed very often.
That was really troublesome. […] So we made a wall with who was disturbed more
than 15 minutes and counted them, and that put them off so that they didn’t come any
more.” (E1, Product Owner)

3.2 Requirements Uncertainties

Requirements uncertainties have been identified to cause irregularities and costly
delays in many projects [16,25]. ASD teams use several mechanisms to manage
requirements uncertainties, the effect of which we found to depend largely on
communication effectiveness. Complementary to following the suggested
collaborative sessions of the Scrum framework, all teams established additional
communication structures that reflected their demand for information and integration
of stakeholders into the project.

Lack of Details about Demanded Functionality or insufficient understanding of
business context posed problems in several cases, which were addressed by customer
representatives in the teams, i. e. either Product Owner or a developer with the
mandate to communicate with a certain customer. As there is no substitute for
business environment knowledge, one team had business representatives integrated as
team members who were, however, not working full time with the team. This
interdisciplinary not only increased the team’s heterogeneity but also starkly
increased the availability of rapid requirement clarifications compared to the other
teams. Another team had the opposite problem of a customer not stopping to add
items to the list of requested features. This was solved through the Product Owner
centring discussions on a prototype:

"When you ship something, people start to imagine how they can do business with
it. [...] the requirements phase was never ending. Instead, with a prototype, you stop
discussions and then you can say: let's focus on this part." (B1, Product Owner)

Ambiguous Information was experienced as a major cause of uncertainty by many
participants. Most teams had implemented the common Scrum policy of allowing
work items to be commenced only when they were declared ‘ready’ for development
after an evaluation of their ambiguity. When this was not the case, teams prepended
investigative work to the requirements until they felt to have sufficiently clear
information. Participants referred to such investigations as ‘Spikes’ (a time period
with constrained duration that is used to expand knowledge and reduce requirements
or task uncertainty by investigating a specific issue).

Requirement clarification meetings served to increase communication within teams
as well as with external stakeholders, and to reduce ambiguities and, hence,
uncertainties regarding requirements. One participant stressed the point that, with

68 D. Dönmez and G. Grote

team autonomy, clarification lies in the responsibility of the team member. When
information was required from unavailable stakeholders, other tasks needed to be
turned to while awaiting reply. However, task idleness can become a process risk.
One developer stressed the importance of repeatedly requesting required information:

 “too many stories came in while too many others were idle. They were blocked
and we did not inquire about them again, but this is important. […] it is important to
ask [the informants/customers] again, and ask again, and ask again […] to keep
bugging until something happens.” (A2, developer)

Unexpected Requirement Changes were reported to occur seldom because of the
rule that tasks are fixed during an iteration, which most teams adhered to.
Requirements, such as product features, were exchanged only in emergency situations
during an on-going sprint. With most teams running iterations of two weeks, project
managers usually agreed to refrain from altering anything more than the priorities of
tasks against the rhythm of the sprints. Instead, tasks were usually introduced through
changing product backlog items and their priorities.

3.3 Task Uncertainties

Uncertainty concerning the best way to approach a task was a common theme during
the interviews. The most frequently mentioned forms of task uncertainty were missing
knowledge about the scope of a task, and lacking clues concerning the optimal
solution, which resulted in time-consuming exploratory work.

Quality of a Solution. Finding the optimal solution to a problem requires skills,
experience and oftentimes teamwork in order to pool knowledge and discuss
possibilities and likely consequences. Expertise was shared with new team members
through mentoring systems and pair programming sessions. Some teams by default
implemented special task forces assigned to a problem, whereas others implemented
frequent consultation meetings. Content specific knowledge was shared in order to
qualify more team members to join discussions:

“in our team we do a bit of everything; design, development, testing… I’m just a
regular team member and I have to adjust myself to every role” (A2, developer)

The functional separation of roles and responsibilities was less present than the
separation according to expertise. Participants stressed that, despite the existence of
distinct roles among team members, functional boundaries were often breached
according to status resulting mainly from expertise:

“There are roles, sure. But sometimes they are not that strict. A tester who does
only testing, a developer who does only development, a designer who does only
design, these exist… but when you look at the team as a whole, then they don’t –
everybody here can work according to his skills” (A1, developer)

Unexpected Difficulties. Developers often got stuck due to lack of experience or task
specific knowledge, or because unexpected difficulties arise with a work item.

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 69

Participants reported that clear signalling of task completion status helped within a
system of transparent process visualisation (usually the task board or an online tool).
When cards on a Scrum board were used, they were marked clearly as blocked. This
signalled when help was needed or delays expected if demand for team member
support remained unmet.

Task Sequence and Process Uncertainty results from incomplete information about
a task’s dependencies, which are intransparent especially in complex environments
where no formal documentation is available. This requires (sometimes informal)
meetings to understand the systemic environment. Participants reported that meetings,
e.g. during coffee breaks and lunch, contributed significantly to their understanding of
the overall process in which they worked. Consequently, some teams institutionalised
common coffee breaks, e. g. once per day with the whole team.

Almost all teams tried to counteract a lack of process transparency using process
visualisations including Scrum boards and keeping information visible on large sheets
attached to a wall. Participants viewed it as the responsibility of the Scrum Master to
prioritise tasks, sequentially order them, and make sure the tasks that are picked up
belong to one story. Although team members were self-organised in their eyes, many
relied on mechanisms that provided them with tasks to be completed. At the same
time, developers felt they needed details about the overall process.

3.4 Output Uncertainties

The output a team can produce depends much on its resources and capabilities.
Erroneous assumptions, unexpected difficulties or emergencies can force a team to
deliver less than expected product features or result in diminished quality, e. g. when
thorough testing is omitted.

Time Required to Accomplish a Task and Amount of Accomplishable Work.
Output uncertainty was found in most teams in the form of a temporal uncertainty
with regard to accomplishable work items in a given time period. Team members
were stopped from working on a particular task because of unrelated emergencies that
required immediate action, or because of underestimated required work effort. When
tasks remained unfinished at the end of a sprint, most teams tried to break off
unfinished parts into a new task, which was referred to the subsequent iteration, or
they rescheduled the whole task. To mitigate the effects of distractions by
emergencies, dependencies between tasks were minimised through assigning
independent groups of developers to separated task bundles and formulating tasks as
small as possible in size. This way, delays stemming from interdependent tasks could
me avoided.

When uncertain about the amount of work that can be accomplished during an
iteration, agile software developers usually rely on estimations. Estimation meetings
served our participants to pool knowledge from all team members in order to predict
the workload of an unknown task as accurately as possible. However, in many cases
specific expertise impeded the participation of more than a few team members, while
the remaining ones considered themselves disqualified for discussions and therefore

70 D. Dönmez and G. Grote

blindly trusted their peers’ judgements. All teams performed estimation meetings at
the beginning of a sprint, and most re-estimated tasks on a regular basis (e. g., every
second day) as new information became available. Conservative estimates served as
uncertainty buffers. Participants reported that the accuracy of task estimations largely
depended on technological expertise, knowledge about the business environment, and
team cohesion, which is related to the time a team had spent together.

The extension of an iteration in the case of unfinished work was a solution applied
by one team in order not to “drag old tasks into a new sprint” (D1, Scrum Master),
but strongly discouraged by others, including a Scrum coach.

Project Status. All teams faced uncertainty about the amount of work remaining.
Mitigation was largely drawn from daily status meetings in combination with a
system established to signal transparently not only the status of task accomplishment
but also the backlog of unattended work items. Daily status meetings were reported to
reduce output uncertainties through the frequent possibility to monitor and report
current output, as every developer gave a daily account for any completed and newly
commenced task. This, however, was usually limited by the temporal horizon of one
iteration. Long-term output was monitored and task distribution moderated by
specially designated roles, such as the Product Owner, Scrum Master, or business
representatives. In some situations, team members were drawn too deeply into daily
activities that the overall direction fell into oblivion. One Product Owner reported that
when she and the Scrum Master both were absent for a few days, the team

 “lost track over its tasks and when [they] came back the team was way out of
focus […], they were taking tasks without tracking progress” (B1, Product Owner).

Quality. Variations in the delivered quality were mitigated by the attempt to involve
customers in the testing, which focussed on the functionality important to them
despite not being qualified software testers. Establishing mutual support among team
members contributed to maintaining quality standards. When the team develops a
sense of shared responsibility, developers are more likely to support their colleagues:

 “I have the responsibility for the whole result and not just for my part”
(A1, developer).

Code Errors were reported to be a frequent impediment. In order to avoid them, teams
relied on early testing as much as possible, which was constrained by limited access
to deployment systems in some cases. Several teams had successfully integrated the
functional roles of developers and testers in their team, however, one interviewee
warned that it might be detrimental if a developer tests his own code because he will
have a narrow sense of the functionality and waste resources.

Unexpected errors during the release of a product were reported to appear less
frequently when there is close collaboration with (external) stakeholders and their
involvement in release planning activities. Having a release plan that is followed step-
wise enables the team to identify the locus of errors quicker. One developer reported
delays and decreased functionality of a released product version that could have been
avoided if the affected database administrators had participated in a release kick off
meeting organised by his team to have everybody on the same page.

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 71

Table 2. Uncertainties and applied practices to manage them. Practices that were employed as
suggested ASD methods are denoted by (1): Scrum or (2): XP.

Type Uncertainty or unexpected event Uncertainty management practice

Resource Availability of process artefacts Discussing workarounds with the team in
case necessary artefacts are missing,
Analysing risks systematically.

 Quality of input Collaborating closely with suppliers in order
to develop understanding for differences(1,2).

 Availability of human resources Working with redundant roles (1) and skills,
Maintaining a knowledge base,
Using transparency enhancing tools, such as
publicly displayed charts or workflows (1,2).

 Duration for new team members to
become productive

Recruiting within the organisation,
Keeping documents of company and team
procedures updated,
Pair programming to support faster
knowledge transfer (2).

Require-
ment

Lack of details about demanded
functionality

Integrating stakeholders into the project (1,2),
Directly communicating with customers
(1,2),
Early prototyping to focus discussions (1,2).

 Ambiguous information Performing investigative tasks until prev.
defined clarity criteria are fulfilled (1).

 Unexpected changes Allowing change requests only at certain
points in time, i. e. not during sprints (1).

Task Quality of a problem solution Sharing of content specific knowledge
among team to improve discussions,
Pooling team members into task forces,
Pair programming (2).

 Unexpected difficulties Signalling of blocked tasks (1,2),
Cultivating mutual team member support.

 Task sequence or process
uncertainty

Improving processes via team reflections (1),
Recognising the importance of informal
meetings.

Output Time required to accomplish a task Minimising task sizes and dependencies,
Matching levels of dependencies to
developer availabilities.

 Amount of accomplishable work Regularly updating task estimations (1,2).
 Project status Separation of responsibilities according to

temporal perspectives (1); long-term planners
moderate task distribution and prioritisation.

 Quality of the product Early and frequent testing (1,2),
Establishing shared team responsibility (1,2),
Integration of functional roles (1),
Involving external stakeholders through
direct communication, esp. of plans (1,2).

72 D. Dönmez and G. Grote

4 Discussion

Agile software development (ASD) ‘embraces’ uncertainties by acknowledging the
necessity to react flexibly to unforeseen and unforeseeable events during the course of
a project. Our results reveal several mechanisms that are used by agile teams to
address different types of uncertainties. The power to manage requirements
uncertainties, for which ASD methods are well suited, was especially evident. In
addition, ASD teams employ mechanisms to manage resource, task, and output
uncertainties. However, in our study their management was complemented in many
cases by practices that were not explicitly proposed by ASD methods.

Attempts to control uncertainties are less present in ASD than the emphasis on
maintaining flexibility to cope with them. Flexibility is an important prerequisite for
the effective management of uncertainties. Without flexibility, a team cannot mitigate
the impact of unexpected difficulties or unforeseen dependencies. An inflexible team
has insufficient capacity to react adequately to unexpected events, and limited access
to a number of practices including the swapping of roles, or dynamically assigning the
complementary skills of pair programmers to an emergent task. Positive effects of
flexibility surface especially with regard to changing environments. For example,
ineffective planning time is reduced when flexible task sequences allow the collection
of information required for planning at the point in time at which it is needed.

Team autonomy and the redundancy of critical resources are important contributors
to levels of flexibility that enable teams to become better uncertainty managers.

Team coordination and leadership style are closely connected to levels of
autonomy and differ substantially between teams. Agile teams rely heavily on
structures that support mechanisms for coordination and collaboration. On the basis of
structural routines, ASD teams seize a variety of coordination and collaboration
mechanisms that help them to collaborate on a wide range of issues [17]. Participants
in our study profited from frequent status meetings, the use of physical artefacts and
collocation. The benefit of having clearly defined roles and responsibilities, especially
for tasks with shared responsibility, surfaced in situations of their absence. Explicitly
defined routines provide important guidelines in situations where efficiency is crucial.
The positive effects of collocation, and team members’ redundant competence have
already been discussed in previous research [18,19].

The relationship between flexibility and structure (also referred to as stability or
stable structures) has been studied in the literature most prominently in connection
with organisational exploration and exploitation [20]. Many authors believe that
exploration and exploitation constitute opposite but complementary team
characteristics. The notion of exploration refers to flexibility, the creation of
knowledge and discovery of new solutions, as opposed to exploiting existing
knowledge and solutions by relying on established structures.

It has been argued that a balance needs to be achieved between flexibility and
structure in order to optimally address uncertainties [9]. On the one hand, flexibility is
necessary to cope with the fast changes and the uncertainties that govern software
development. On the other hand, structure needs to be established for efficient work
processes and effective knowledge management. Teams who employ both display the
ambidexterity that is important for creativity and innovation. These play a vital role in

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 73

ASD teams who are constantly pushed to deliver novel solutions. Teams must rely on
the potential for creativity that is rooted in adequate collaborative processes [21].
Therefore, the same mechanisms that support the management of uncertainty foster
creative thinking and create potential for innovation that requires the application of
creative solutions to new problems. However, ASD methods themselves can also
provide sources of uncertainties when the flexibility they create remains unmet by the
establishment of adequate structures.

One way of seizing organisational ambidexterity is to move flexibly within the
boundaries of structured work processes, or to use given structures that allow flexible
reactions. Agile software developers routinely apply a number of concepts connected
to uncertainty management that organisational researchers found in high-risk teams or
action teams. For example, organisational bricolage (defined as ‘making do by
applying combinations of the resources at hand to new problems and opportunities’
by [22]) was found in a study of fire fighters and film crews who routinely had to
adapt to unexpected events [23]. One mechanism the teams used was to reorder the
sequences of the work process by taking advantage of their knowledge of the work
progression and how tasks fit together. Reordering the work involved changing the
sequence in which pieces of the overall project were completed. Agile software teams
routinely engage in similar practices by prioritising work tasks, evaluating their
content and required estimated effort, and re-prioritising them in the event of an
unexpected change. The sequential order of tasks is changed in case of unforeseen
impediments. Formal roles exist in teams, but are not dominant. Instead, teams rely on
a functional hierarchy that is characterised by informal roles according to skills and
expertise, while responsibility often remains shared by the entire team. In order to
ensure broad knowledge and capabilities across all team members, the breaching of
formally assigned roles is common.

5 Limitations

In this study a small number of teams was studied. All teams operated in large
company environments where additional contextual constraints apply that may not be
generalizable to small firms with different organisational infrastructures. For example,
large companies may have less difficulty to temporarily mitigate resource
uncertainties in emergency situations because they have more access to resources.

Data collection was performed in a narrow period of time and did not allow us to
observe the projects’ developments on a larger scale. Our analysis is based mainly on
interviews. In order to mitigate limiting factors to our analysis, we visited the teams in
their work environments, in almost all cases more than once, and spoke with several
team members and project managers to enhance our understanding of the projects.

6 Conclusion

In this paper, we addressed under-discussed aspects regarding different types of
uncertainties in software development projects, and identified practices to manage
them. We presented findings from an empirical study that involved five agile software
development (ASD) teams. A total of 19 interviews were conducted to explore the

74 D. Dönmez and G. Grote

teams’ challenges associated with uncertainties. We investigated practices to manage
four types of uncertainties; resource uncertainty (concerning the availability of human
resources and process artefacts), requirements uncertainties (represented by customer
demands), task uncertainty (referring to unexpected problems, such as dependencies
on delayed input), and output uncertainty (incomplete information concerning the
deliverable schedule and scope of the product). The identification of these practices
extends our understanding of systematic uncertainty management and possible
strategies that are available to teams, which is important in the face of increasing
complexity of software projects and, hence, increasing sources of uncertainties. A key
output from this study is a set of practices for the effective management of different
types of uncertainties, the antecedents of which we discussed based on our insights.

ASD methods provide powerful tools to reduce a number of uncertainties, or cope
with them in case they are not eliminable. For example, mechanisms exist to support
the estimation of the time to finish a task with satisfactory accuracy, or to react to
frequent changes of requirements. Still, agile teams sometimes have to go beyond the
possibilities provided by ASD methods in order to adequately react to uncertainties.
For uncertainties, such as the time required to make a new team member productive,
ASD practices offer little specific advice, and self-organising agile teams have to
complement them by missing mechanisms.

The potential to manage uncertainties depends not only on the structures that ASD
methods provide, but also on the organisational context and the competence of the
team itself. In order to design effective uncertainty management policies one must,
therefore, keep in mind mutual dependencies among different types of uncertainties.
We recommend that project managers pay attention to systemic dependencies and
mutual relationships of uncertainties that affect the performance of a team.

In this study, we focused on the practice of uncertainty management through the
lens of four types of uncertainties that were discussed with the participants of this and
other studies in order to produce a representative set of uncertainties that ASD teams
face. However, the possibility exists that our list is still incomplete and further types
of uncertainties are of importance for other teams. We therefore suggest that future
research concentrates on producing a complete taxonomy of uncertainties.

Acknowledgements. We thank the participants of this study and their managers for
the possibility to explore their projects and spending much of their time explaining
and answering questions. We also thank two anonymous reviewers who provided
valuable comments and suggestions for this publication.

References

1. Williams, L., Cockburn, A.C.: Agile Software Development: It’s about Feedback and
Change. IEEE Computer 36 (2003)

2. Nerur, S., Mahapatra, R.K., Mangalaraj, G.: Challenges of Migrating to Agile
Methodologies. Communications of the ACM 48, 73–78 (2005)

3. Laplante, P.A., Neill, C.J.: Uncertainty: A Meta-Property of Software. In: 29th Annual
IEEE/NASA Software Engineering Workshop, pp. 228–233 (2005)

 The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties 75

4. Nidumolu, S.: Standardization, Requirements Uncertainty and Software Project
Performance. Information & Management 31, 135–150 (1996)

5. Milliken, F.J.: Three Types of Perceived Uncertainty about the Environment: State, Effect,
and Response Uncertainty. The Academy of Management Review 12, 133–143 (1987)

6. McConnell, S.: Software Estimation: Demystifying the Black Art. Microsoft Press (2006)
7. Stutzke, R.D.: Estimating Software-Intensive Systems. Addison-Wesley Professional

(2005)
8. Boehm, B.: Software Engineering Economics. IEEE Transactions on Software

Engineering 10 (1984)
9. Grote, G., Kolbe, M., Waller, M.J.: On the Confluence of Leadership and Coordination in

Balancing Stability and Flexibility in Teams. Paper presented at the 72nd Annual Meeting
of the Academy of Management, Boston (2012)

10. Wang, X., Conboy, K.: Understanding Agility in Software Development through a
Complex Adaptive Systems Perspective. Presented at the European Conference on
Information Systems, December 1 (2009)

11. Boehm, B.W., Turner, R.: Balancing Agility and Discipline. Addison-Wesley (2004)
12. Grote, G.: Uncertainty Management at the Core of System Design. Annual Reviews in

Control 28, 267–274 (2004)
13. Maruping, L.M., Venkatesh, V., Agarwal, R.: A Control Theory Perspective on Agile

Methodology Use and Changing User Requirements. Information Systems Research 20,
377–399 (2009)

14. Robinson, H., Segal, J., Sharp, H.: Ethnographically-Informed Empirical Studies of
Software Practice. Information and Software Technology 49, 540–551 (2007)

15. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Sociology Press, Aldine (1967)

16. Ebert, C., De Man, J.: Requirements Uncertainty: Influencing Factors and Concrete
Improvements. Presented at the 27th International Conference on Software Engineering,
ICSE (2005)

17. Sharp, H., Robinson, H.: Collaboration and Co-ordination in mature eXtreme Programming
Teams. International Journal of Human-Computer Studies 66, 506–518 (2008)

18. Moe, N., Dingsoyr, T., Dyba, T.: Overcoming Barriers to Self-management in Software
Teams. IEEE Software (2009)

19. Dorairaj, S., Noble, J., Malik, P.: Understanding Team Dynamics in Distributed Agile
Software Development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 47–61.
Springer, Heidelberg (2012)

20. Lavie, D., Stettner, U., Tushman, M.L.: Exploration and Exploitation Within and Across
Organizations. The Academy of Management Annals 4, 109–155 (2010)

21. Hoegl, M., Parboteeah, K.P.: Creativity in Innovative Projects: How Teamwork Matters.
Journal of Engineering and Technology Management 24, 148–166 (2007)

22. Baker, T., Nelson, R.: Creating Something from Nothing: Resource Construction through
Entrepreneurial Bricolage. Administrative Science Quarterly 50, 329–366 (2005)

23. Bechky, B.A., Okhuysen, G.A.: Expecting the unexpected? How SWAT Officers and Film
Crews handle Surprises. Academy of Management Journal 54, 239–261 (2011)

24. Boehm, B.W., Abts, C., Brown, W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D.J., Steece, B.: Software Cost Estimation with COCOMO II. Prentice Hall, Upper
Saddle River (2000)

25. Racheva, Z., Daneva, M., Buglione, L.: Supporting the Dynamic Reprioritization of
Requirements in Agile Development of Software Products. In: Proceedings of the Second
International Workshop on Software Product Management, IWSPM (2008)

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 76–90, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Key Challenges of Improving Agile Teamwork

Nils Brede Moe

SINTEF, Strindveien 4,
NO-7465 Trondheim, Norway
nils.b.moe@sintef.no

Abstract. Inspect and adapt is essential to succeed with agile software
development. Our objective was to understand the challenges of software
process improvement in agile software development teams. We designed a
multiple case study consisting of five projects in three software product
companies that applied Scrum. We collected data in semi-structured interviews.
We found that long-term quality was often in conflict with short-term progress,
specialization hinders self-management, process related problems are difficult
to solve and there are major organizational barriers to self-management. The
main conclusion drawn from this work is that software process improvement
challenges in agile software development are the problems of increasing
redundancy to create conditions for the team to self-manage, to learn how to
learn, and to improving agile software development as a large long-term
organizational change project.

Keywords: Agile software development, multiple case study, software process
improvement, single-loop and double-loop learning, learning to learn,
retrospective, self-management, team.

1 Introduction

Agile software development is characterized by repeated cycles of thought-action-
reflection that foster an environment of learning and adaptation [1]. In Agile
development, the empowered self-managing team should base work coordination on
face-to-face communication, and is responsible for improving the software
development process through frequent reflection. This has been stated in three of the
twelve principles of the Agile Manifesto1:

• The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

• At regular intervals the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

1 http://agilemanifesto.org

 Key Challenges of Improving Agile Teamwork 77

Agile software development comprises a number of practices and methods [2-4].
Which practices and methods to choose depend on the type and size of the project and
the company culture. Also, the various agile software development methods (e.g.
Extreme Programming and Scrum) support different part of the life cycle and differ to
a large degree in the way they cover project management [5]. Therefore several agile
methods and practices are often combined in a project. In other words, software
companies need to learn how to improve and change their agile development
processes. One can argue that commitment to learning rather than a commitment to
any particular agile method is more important to have success with agile software
development.

While inspection and adapting is the core of agile software development, there are
only a few studies focusing on software process improvement (SPI) and agile
development. One such study is the work by Ringstad et al [6] who conclude that that
process improvement, although a central concept in agile development is hard to
achieve. In the study by Salo and Abrahamsson [7], the authors found that a large
portion of the of the agreed improvement actions remained undone. Salo and
Abrahamsson argue that there is a need for new SPI mechanisms for agile software
development. Further, a study by Qumer and Henderson-Sellers [8] suggests a
framework which can be used to create, modify, and tailor situation-specific agile
software processes. The model includes among others an agility measurement model
and an agile adoption and improvement model. However, this framework was only
explored in a limited way.

It’s one thing to describe models for how to improve the development process in
industry projects running; it’s quite another to enable such teams to improve the work
processes in practice. Therefore, this study focus on the main barriers and challenges
we have seen in empirical studies on the team and organizational level when
improving the software development process in agile teams. We have therefore
identified the following research question:

What are the software process improvement challenges in agile software

development?

To investigate this research question we conducted a case study of SPI in three
companies doing agile software development. The main contribution of this paper is
that the teams need to increase redundancy for enabling self-management, which is a
prerequisite for the teams to improve. Also the teams need to learn how to learn, and
to perceive improving agile software development as a large long-term organizational
change project.

The remainder of this paper is organized as follows: The next section outlines the
background and relevant literature on process improvement in agile software
development and organizational learning. Section 3 describes the research methods
used, Section 4 reports our results, Section 5 discusses the findings, and Section 6
concludes.

78 N.B. Moe

2 Background

As information technology’s role in the modern economy grows in importance,
society makes exponentially greater demands on the diversity and quality of the
software being produced. Time-to-market can spell the difference between a
successful product release and bankruptcy. Software process improvement (SPI) is a
primary approach to improving software quality and reliability, employee and client
satisfaction, and return on investment [9].

In this section we first present background information on software process
improvement in an agile context, and then SPI and organizational learning.

2.1 SPI in Agile Software Development

In software development there is a long tradition of work on software processes [9,
10]. Software process improvement (SPI) is about making things better – as opposed
to fire fighting or handling crises. It is a way to look at how software developers can
do their work better. If software developers only concentrate on solving a problem or
correcting a fault, they risk not finding the underlying causes. In the worst case, their
actions can make things worse. In addition to identifying problems, the result of SPI
should be to identify underlying causes of the problem, define, implement, and
evaluate the results of the actions, and finally to carry out possible changes in the
rest of the organization. When engaging in process improvement, the goal is to learn
about what happened in a process, and to use that knowledge to improve the process
as well as the resulting services and products. The improvement work need to be
continuous [11].

Agile software development addresses the improvement and management of
software development practices on the team-level and within ongoing projects, and
seek to move ownership and responsibility from the organizational-level to the team-
level [12]. Further, in agile development, processes are practices which evolve
dynamically within the team as it adapts to the particular circumstances [13]. Salo and
Abrahamsson [7] argue that the SPI in an agile environment is concerned with
constant reflection and therefore continuous improvement. The primary focus is on
the immediate use of the experiences of developers in improving the ongoing project.

Aaen et al [14] describe SPI in the agile mindset as decentralized with an emphasis
on project and team level standardization of processes. Key to this approach is the
support for adaptive SPI practices. Learning takes place within the project through
continuous sense-and-response cycles, which identify current weaknesses, initiate
new efforts, and implement their results as the project evolves and delivers its
outcomes.

The agile team is also supposed to be self-managing and empowered, which means
from a socio-technical perspective that the team members are responsible for
managing, monitoring, and improving their own processes [15]. Therefore, SPI in
agile software development can be classified as a bottom-up approach.

 Key Challenges of Improving Agile Teamwork 79

2.2 Organizational Learning and SPI

One of the most important driving forces for software process improvement is that the
software developers actually learn how to improve their activities [16-18]. SPI can be
seen as an organizational change mechanism. The learning process when conducting
SPI demands group learning [16], because software development is a highly
collaborative activity carried out within teams, projects, departments, and companies;
it always concerns a group of people. Agile software development supports group
learning through frequent feedback sessions involving the whole development team.

In their theory of learning, Argyris and Schön [19] distinguish between what they
call single and double-loop learning in organizations. Single-loop learning is to
change practice as problems arise in order to avoid the same problem in the future.
For example, management often engages in single-loop learning by monitoring
development costs, software quality, sales, client satisfaction, and other indicators of
performance to ensure that the organizational activities remain within established
limits, keeping the organization “on course”. In single-loop learning, if outcomes of
actions are not met, the actions are changed slightly to achieve the desired results. It is
a feedback loop from observed effects to making some changes or refinements that in
turn influence the effects, see Figure 1.

Double-loop learning, on the other hand, is when time is taken to understand the
factors that influence the effects, and the nature of this influence, called the governing
values [19]. It is about using the problems being experienced to understand their
underlying causes, and then to take some action to remedy these causes. One example
is what happens when a software error is corrected. Correcting the error itself can be
seen as single loop learning, but if something is done with whatever caused the error
to be introduced, that is considered double-loop learning. The changes based on this
type of understanding will be more thorough. One example is the introduction of the
self-managing agile team, which requires that operating norms and rules are allowed
to change (double-loop learning) along with transformation in the wider environment
[20]. When focus is on single-loop learning, norms and values remain unchanged
[21]. Single-loop learning is nevertheless predominant in most organizations [19].

Fig. 1. Single and double-loop learning [19]

To sum up, in single-loop learning a specific problem is solved, while in double-
loop learning, a set of governing values (goals and constraints) is questioned, which
may impact many future problems. Single-loop learning is about asking “are we doing
things right?”, while double-loop learning is about asking “are we doing the right
things?”.

ConsequenceActions Error

Expectation

Governing
values

Single-Loop Learning

Double-Loop Learning

80 N.B. Moe

3 Research Method

Since the goal of this research is to explore and provide insight into the phenomenon
of SPI in agile software development, it is important to study software development
teams in practice. Therefore, we chose a multiple case study. Case studies are
especially useful for such exploratory research where an in-depth understanding of a
phenomenon in its context is desired [22]. Because variations in culture across
software organizations can have important implications for SPI outcomes [23] we
designed a multiple case study based on the assumption that the cases from different
companies will produce contradictionary results.

3.1 Study Context

As part of on action research program, the author of this paper designed a Scrum
training program together with the three companies under study. On the first day of
the agile training the participants were introduced to Scrum by an experienced Scrum
trainer. The second day focused on tailoring agile practices to the projects, which
were later included in this study. After introducing agile software development in the
companies, the teamwork and the agile development processes were regularly
evaluated, and improvement measures were suggested. Five teams were observed (see
Table 1) over three years. In addition to the initial training program, the Scrum
masters were given extra training and coaching.

Table 1. Teams and data collection sources

 No. of developers Team no Team size Project length No. of interviews
MidSoft 16 1 6 11 months 12

2 6 12 months 12

NorSoft 60 3 7 20 months 13

EastSoft 150 4 8 30 months 11

5 7 30 months 11

This particular study was initially part of a multiple case study on barriers to self-

management in software teams [24]. While the multiple case study (ibid) identified
barriers to self-management, this study focuses on the phenomena of software process
improvement. We relied on interviews in this study. A brief description of each
company will now be given.

3.1.1 NorSoft
This company is one of the leading producers of receiving stations for data from
meteorological and earth observation satellites. The company works with large
development projects, both as a prime contractor and a subcontractor. Clients range

 Key Challenges of Improving Agile Teamwork 81

from universities to companies such as Lockheed Martin and Alcatel, and government
institutions such as the European Space Agency and the Norwegian Meteorological
Institute. Most of the software systems developed at NorSoft run on Unix and the
remainder - on Linux operating system.

The company has approximately 60 employees. The staff is stable and highly
skilled, many with Master’s degrees in computer science, mathematics, or physics,
and it has what can be described as an engineering culture.

3.1.2 EastSoft
EastSoft has approximately 150 employees in three organizational units. About 80%
of the employees have a Master’s or a Doctoral degree. Most of the people working in
the software development department have been trained as engineers (2/3 of the staff)
rather than professional software developers (1/3 of the staff) but the proportion of
software developers is increasing. The company aims to hire highly skilled staff. Most
of the projects relied on the .NET framework in Visual Studio using C#. EastSoft
produces specialized software for the engineering domain. The company sells mass-
market software, but also writes client specific software on a contract basis. In
addition to Norway, the company conducts software development in its offices in
China, Eastern Europe, and the UK. All developers and project managers in the
projects investigated were located at the company’s headquarters in Oslo, Norway.

3.1.3 MidSoft
This company was established in 1996. It has three regional divisions and one
separate ICT division. The ICT division consists of a consulting department, an IT
management department, and a development department. In addition to software
development projects for outside clients, the ICT division develops and maintains a
series of off-the-shelf software products, which are developed in-house. During the
study, the development department had about 16 employees, divided into a Java and a
.NET group.

The company develops a software system for archiving, planning, and
coordination, with a combination of textual user interfaces and map functionality. The
clients are from all over Norway; one important client was the local government of a
Norwegian city’s.

3.2 Data Analysis

All material from the transcribed interviews where imported into NVivo, and has been
read and coded several times. Coding was done by assigning interesting expressions
of opinions in the text to a specific category with other similar expressions. In this
way, concepts were identified and their properties and dimensions were discovered in
the data. Events, happenings, objects, and actions/interactions, which were found to
be conceptually similar in nature or related in meaning, were grouped under more
abstract concepts termed categories. A category represents a phenomenon, that is a
problem, an issue, or an event that is defined as being significant to the respondents or
to the phenomena observed.

82 N.B. Moe

One example is the phrase “the retrospective turned out to be just another nice
meeting without really discussing the problems”, which was coded into the category
“Retrospective do not give value”. This expression was then seen as one explanation
for why the team stopped doing retrospectives.

4 Results

Because different companies mean different organizational culture we assumed that
the cases from different companies would produce contradictionary results. However
from analyzing the results we found similar results: that short development cycles
provided continuous and rapid loops of iterative learning, to enhance the processes,
and to guide the improvement. The self-managing team was responsible for these
improvement initiatives. However, all teams under study experienced major SPI
challenges, especially related to becoming truly self-managing and to handling
problems reported during team reflection (team learning).

Four key SPI challenges emerged from the cases:

• Long-term quality is in conflict with short-term progress
• Specialization hinders self-management
• Process problems are difficult to solve
• There are major organizational barriers to self-management

4.1 Key Challenge 1: Long-Term Quality Is in Conflict with Short-Term
Progress

Short iterations in agile software development are about creating the most business
value for the client (immediate value creation). However, this often seemed to be in
conflict with the need for long-term quality, which was especially evident when
observing the tension between keeping the time schedule and meeting the quality
requirements.

While short iterations and frequent testing made it possible to fix defects
continually, several teams were not strict about the “done” criteria - what does it mean
that a component or a feature is finished? Teams stopped performing thorough testing
at the end of iterations in order to be able to deliver all planned features. The main
reason for too little testing was that the team felt they needed to show progress, i.e. to
deliver what was decided upon in the planning meeting (team 2). Some Scrum
masters and team members even tried to give the impression that the team was better
than it actually was. The desire to keep the time schedule in some of the teams
hindered the recognition of serious problems with, for instance, a third party
component, testing, integration, or performance (team 1). As a consequence, all teams
experienced quality problems

Another challenge was that it seemed difficult to prioritize other quality related
processes (e.g. refactoring and code review) that would improve the quality in the
long run, when these activities would reduce the pace of producing new features.

 Key Challenges of Improving Agile Teamwork 83

Furthermore, it seemed difficult to prioritize architectural work and design. One
product owner felt that the team was so busy implementing features that no one was
taking care of the biggest concern, which was to build architecture to last for ten years
(team 4). The team, on the other hand, interpreted the feedback from the product
owner during the feedback meetings as a critique to how fast they developed new
features. As a result the team tried to speed up even more. Four years later the whole
architecture had to be rebuild.

All teams discussed the conflicts related to the challenges above in the
retrospectives and daily meetings. Still, they found it difficult to give priority to
quality improvement activities when planning and conducting the sprint. The reason
was that keeping the schedule and delivering features according to the plan was seen
as more important by the team.

4.2 Key Challenge 2: Specialization Hinders Self-management

The team members of a self-managing agile team are responsible for managing,
monitoring and improving their own processes. Therefore, the ability of the teams to
self-manage was essential for the ability to identify problems, problem solving, and
subsequently to determine how SPI was progressing in the companies. However,
problems regarding self-management occurred in all teams, and were challenging
throughout all projects. Reasons were team members not being genuinely committing
to the team plan, as well as missing shared leadership and shared decision-making in
the team. Specialization is identified as the main reason for this, and the results
supporting this finding are outlined below.

Because of specialization, it was usually prescribed who should do what in the
project. Hence, developers mostly worked independently on particular modules
according to their specific knowledge, and they were seldom involved in the work of
other developers. As a consequence a team member focused on his or her own work,
and less on the team processes.

Another effect of specialization was lack of team commitment resulting in team
members giving higher priority to individual goals, even though the team goals should
be the priority in a self-managing team. A number of the respondents explained that
because of specialization, they found it difficult to commit to work they were not
involved in, and consequently it was problematic for them to take part in decisions
regarding work of others. This made shared decision-making hard; an individual and
decentralized decision-making process resulted in difficulties aligning process
improvement decisions on the team-level because team members did not know what
others were doing.

Finally, because of specialization the teams developed unrealistic plans. The
planning meeting is where the team is expected to do shared planning and decision-
making. However, the meetings often ended up with only a few people talking and the
rest listening. Some people even fell asleep. The poorly managed planning meetings
resulted in unrealistic plans with too many tasks, which again affected the quality of
the software being developed. As described earlier, some teams pretended to be more
effective than they really were. As a consequence, a new iteration often started by

84 N.B. Moe

completing what was officially done in the previous iteration. The effect was that the
plans became even more unrealistic (everyone knew this), and consequently the team
members focused even more on their own goals and individual plans and less on
improving the team processes.

4.3 Key Challenge 3: Process Problems Are Difficult to Solve

In Scrum, the retrospective meeting is the most important meeting for discussing and
suggesting how to solve process related problems. However, because of highly
specialized developers and the problems this caused for self-management in the
teams, improvement work was challenging and improvement measures were often
motivated by individual needs (e.g. solving technical problems, getting new
development infrastructure) instead of what the whole team needed.

Through various Scrum meetings, there was a high focus on reporting problems.
However, all companies seemed to have difficulties solving their process related
problems. The two main reasons, why process related problems were difficult to
solve, were related to difficulties with team reflection in the retrospective meeting and
the lack of process related problems being reported. These two main reasons will now
be described.

There were several signs of problems with the team reflection. As an example,
team 1 reported the same problems in several consecutive retrospectives (e.g. lack of
backup, problems not being reported, and lack of feedback), but no measures were
taken to address the cause of the problems. When process issues were discussed,
teams often ended up talking about the symptoms and not the cause of the problems.
In addition, teams usually discussed whether they were doing things right according
to the Scrum theory, but they seldom discussed whether they were doing the right
things. One example was the conflict between the need for quality and the need for
short-term progress. When a team experienced problems with the product quality, the
team discussed how to improve the testing process and the testing framework. The
real problem however was found in the interviews, when several developers explained
that short-term progress was seen as more important by the team than the quality.

For problems to be solved, first they have to be identified. However, some process
problems were not reported or talked about. This became evident when comparing
data from observations of daily work and interviews with observations from
retrospectives and daily meetings. Team members mostly reported problems related to
technology (e.g. development tools, bugs, and integration of third party components).
They seldom talked about important process problems such as why the backlog was
never completed, why the sprint plan often ended up being unrealistic, why meetings
often became unproductive, why some developers were mostly silent in the planning
meetings, or why some developers often ended up working on other issues than
originally planned.

To understand why problems were not solved it is therefore important to
understand why problems were not reported. One reason was that some of the team
members perceived the problems as personal and wanted to solve these problems
themselves. Another reason was that some felt that there was too little trust within the

 Key Challenges of Improving Agile Teamwork 85

team and between the team and the product owner; hence, they did not feel confident
reporting problems. In team 1 the developers started reporting fewer problems
because they did not trust the Scrum master to handle the problems correctly. They
felt he was overreacting to problems stated in the daily meetings.

Another team experienced relationship problems with the product owner, since he
never gave clear priority to the features for the next iteration. The Scrum master
explained that the team newer confronted the product owner regarding this issue. A
third reason for not reporting problems was that when the problems were not handled,
the team members stopped reporting them. This was seen in team 4, where the team
stopped conducting retrospectives for a long period because they felt this type of
meeting did not give any value.

4.4 Key Challenge 4: There Are Major Organizational Barriers to
Self-management

The implementation of self-managing teams is difficult, if not impossible, if there are
critical barriers at the organizational level. Misalignment between team structure and
organizational structure can be counterproductive, and attempts to implement self-
managing teams can cause frustration for both developers and management. Two
important barriers to self-management on the organizational level were identified.

First, shared resources were a challenge because when developers worked on two
or more projects in parallel, and different team goals or needs were in conflict, it
threatened at least one of the self-managing teams. In addition, some developers had
to stop suddenly what they were doing, and support projects they had worked on
earlier, without even being formally allocated to such projects. Developers explained
that if they got involved in a project, he or she felt bound to it forever. The reason for
this was that parts of the organization expected developers to work even if no
resources were provided. This was a part of the company culture. When team
members knew they would always lose resources during an iteration, it did not make
sense for them to commit to the team plane or trying to improve the developing
process.

Second, a self-managing team needs generalists —members with multiple skills
who can perform each other’s jobs as needs arise. However, all companies relied on
specialization, and company incentives often supported this culture. An example was
found in EastSoft, where one of the most prestigious roles was a chief architect. In the
project studied, the chief architect participated in important decision meetings with
the management; the management trusted him, and he had much influence on future
strategy of their products. Becoming a chief architect was seen as positive both from
an individual and the company perspective. Because the chief architect was the one
solely responsible for the architecture, other team members were rarely involved in
the decision-making. In NorSoft, developers were found protecting their knowledge,
that is defending their code by not letting others work on it. If the code was important,
then the developers became important to the company. Three years before introducing
Scrum, NorSoft had to let some developers go, but not any of the “important”
specialists. Therefore, letting others work on your code was considered a risk that

86 N.B. Moe

could result in a loss of job or position in the company. It was understood that the
development process could be improved, because being the only one working on
important parts of the code was stressful during hectic periods and delayed the team
as a whole.

5 Discussion

The previous chapter described four key findings from studying SPI in three agile
companies. To summarize the results briefly: Problems were reported frequently,
which made agile software development a strong infrastructure for SPI, but process
related problems were difficult to solve. This was caused by problems related to
learning and self-management. The self-managing team is the one responsible for SPI
on the project level. However, this requires that the team is really able to self-manage;
as a team they need to take important decisions about what to improve and how to do
it. For a team to self-manage the team autonomy must be strong and the team needs to
adopt double-loop learning and learn to learn. In addition, the team must be able to
affect managerial decisions, which influence the ability to improve the team’s internal
processes. This section will discuss the results in light of the research question.

5.1 Creating Conditions for Self-management

Individual goals were found to be more important than team goals, which reduced the
team autonomy and the possibility to self-manage. Interaction between group
members became difficult and, therefore, threatened collaboration, cooperation, and
subsequently the teamwork and the possibility to improve the work process. The
observed effects are in agreement with the findings of Kraut and Streeter in their
survey on coordination in software development [25]. One explanation why team
members did not reduce their individual autonomy was that it was seen as beneficial
by the developers. While the organizations seldom debated this problem of high
individual autonomy, they frequently experienced and discussed its symptoms.
Examples of symptoms were team members making their own individual plans, not
reporting problems, taking decisions without informing others, known as decision-
hijacking [26], and team members taking decisions based on expert power, known as
technocracy [20].

Through frequent planning, daily, and retrospective meetings, team level autonomy
increased, which enabled the team to self-manage. Team members experienced this as
a positive change; however, at the same time they saw it as rigid control of each team
member. This is in agreement with Barker [27], who pointed out that self-managing
teams may end up controlling group members more rigidly than with traditional
management styles. It can be argued that it caused resistance against change because
the need for reducing the individual autonomy was not seen as an immediate
improvement by the individuals. Resistance against change also made it difficult for

 Key Challenges of Improving Agile Teamwork 87

the team to improve their development processes. Hence, this was a challenge for
software process improvement in the agile teams.

Teams were also hindered from affecting managerial decisions, which influenced
the ability to improve the team’s internal processes. Management outside the team did
not always respect the team’s efforts for improvement, which caused the teams to
experience symbolic self-management. Symbolic self-management is a well-known
obstacle to true self-management [28]. There seem to be two reasons why
management outside the team did not respect or support improvement measures
suggested by the team.

First, management did not agree with or understand the reason for the problems
reported, because management activities and processes had changed little since the
adoption of agile software development in the organization. Examples of the areas
with the greatest need for organizational changes were management of resources
across teams and handling support. Changing the organizational culture at project
level was probably also seen as a threat because it conflicted with existing and
established habits of the management. The effect of such threats is confirmed by the
argument of van Solingen et al. [16] explaining why SPI and organizational learning
are difficult, and Schneider et al [29] who found that management might end up
blocking emerging process change when they do not understand the implication of
change.

Second, top management was not involved in the process improvement discussion
in the Scrum meetings, although it is a prerequisite for becoming a well-functioning
SPI organization [11, 30]. Salo and Abrahamsson [31] found that without support
from the organizational level, a majority of improvement measures agreed upon
within project teams cannot be implemented. One example of an organizational SPI
issue not addressed at the organizational level was the need for building redundancy,
to make developers cooperate more, and to make the team flexible and adaptable to
changing conditions. However, building redundancy requires additional resources,
which should be the responsibility of the organization [32]. However, the top
management did not see the specialization as a problem, and then did not allocate
resources for handling this problem.

5.2 Learning to Learn

Although the teams frequently reported problems, they experienced difficulties
making the necessary changes to solve them. It can be argued that when an
organization only suggests improvement measures without being able to implement
them, only a potential for improvement exist. The main reason was that team
members either did not manage or were not willing to discuss the underlying cause of
problems. Some developers wanted to avoid interpersonal conflict, and some found it
more important to conform to other group members, which is an indication of a lack
of openness in the team. As a result the teams experienced ineffective decision-
making when discussing the need for improvement. This is in agreement with the
findings of McAvoy and Butler [21] on reasons for ineffective decision-making in
agile teams. The effect of lack of openness on SPI is also in agreement with van

88 N.B. Moe

Sollingen et al [16], who argue that openness and the ability to discuss the underlying
problems is one of the most important prerequisites for software process improvement
and organizational learning. Because the teams were not able to create a climate for
openness and change the way decisions were made, they did not improve the way of
reflecting and learning together. In other words, they did not learn to learn. Learning
to learn is also known as deutero-learning [19].

A team has learned to learn when it is questioning if we are doing things right
(single-loop learning), if we are doing the right things (double-loop learning), and if
we make these decisions, when answering “are we doing the right things?” correctly.
The teams did mostly single-loop learning by focusing on improving existing agile
practices. There were two explanations for this. First, several proponents of agile
development claim universal applicability of agile methods, which results in teams
focusing on doing things according to the book, and not on questioning if they were
doing the right things. Second, some teams tried to give the impression that they were
doing better than they actually were. The desire to keep the schedule hindered the
recognition of serious problems with the code quality. Impression management [20] is
a face-saving process where team members seek to protect themselves from
management. This generates shared norms and patterns of group-thinking, which
prevent people from addressing key issues.

From an organizational learning perspective, it can be claimed that engaging
mostly in single-loop learning was a challenge to SPI, because this stopped the teams
from questioning if they were doing the right things, and start learning to learn.
Moreover, after several SPI problems were not solved, team members stopped
reporting them, which again affected the ability to improve and to become self-
managing. For a team to become self-managing it needs to change the operating
norms and rules within the team, as well as in the wider environment.

6 Conclusions and Further Work

Software process improvement in agile software development is planned, executed,
and evaluated by the empowered self-managing team. The team’s ability to
implement self-management, i.e. shared leadership, shared decision-making, and high
team autonomy, was therefore a key SPI challenge, while specialization was the main
obstacle to achieving this. Process problems were identified but often not solved,
therefore only the potential for improvement existed. Software process improvement
from an organizational learning perspective was particularly challenging because it
became evident that the organizations had problems to engage in double-loop learning
and to learn how to learn. Making SPI work in agile software development required a
change in skills, procedures, structure, strategy, and culture, which required changes
on the individual, project, and organizational level.

The main conclusion drawn from this work is that SPI challenges in agile software
development are the problems of increasing redundancy to create conditions for the
team to self-manage, to learn how to learn, and to perceive improving agile software
development as a large long-term organizational change project.

 Key Challenges of Improving Agile Teamwork 89

Acknowledgments. This work was supported by the Research Council of Norway
through grant 193236/I40. We appreciate the input received from managers and
project participants of the investigated company. I am grateful to Torgeir Dingsøyr
who gave me valuable feedback.

 References

1. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48(5), 72–78 (2005)

2. Erickson, J., Lyytinen, K., Siau, K.: Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Research. Journal of Database Management 16(4),
88–100 (2005)

3. Cohen, D., Lindvall, M., Costa, P.: An Introduction to Agile Methods. In: Zelkowitz, M.V.
(ed.) Advances in Computers. Advances in Software Engineering. Elsevier, Amsterdam
(2004)

4. Abrahamsson, P., et al.: Agile software development methods - Review and analysis. VTT
Electronics. VTT Publications (2002)

5. Abrahamsson, P., et al.: New directions on agile methods: a comparative analysis (2003)
6. Ringstad, M.A., Dingsøyr, T., Moe, N.B.: Agile Process Improvement: Diagnosis and

Planning to Improve Teamwork. In: O‘Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.)
EuroSPI 2011. CCIS, vol. 172, pp. 167–178. Springer, Heidelberg (2011)

7. Salo, O., Abrahamsson, P.: An iterative improvement process for agile software
development. Software Process: Improvement and Practice 12(1), 81–100 (2007)

8. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption and
improvement of agile methods in practice. Journal of Systems and Software 81(11),
1899–1919 (2008)

9. Mathiassen, L., Ngwenyama, O.K., Aaen, I.: Managing change in software process
improvement. IEEE Software 22(6), 84–91 (2005)

10. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE
Software 19(4), 92–99 (2002)

11. Aaen, I., et al.: A conceptual map of software process improvement. Scand. J. Inf. Syst. 13,
123–146 (2001)

12. Lycett, M., et al.: Migrating agile methods to standardized development practice.
Computer 36(6), 79–85 (2003)

13. Aaen, I.: Essence: Facilitating Agile Innovation. In: Abrahamsson, P., Baskerville, R.,
Conboy, K., Fitzgerald, B., Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 1–
10. Springer, Heidelberg (2008)

14. Aaen, I., Börjesson, A., Mathiassen, L.: Navigating Software Process Improvement
Projects. In: Baskerville, R.L., Mathiassen, L., Pries-Heje, J., DeGross, J.I. (eds.) Business
Agility and Information Technology Diffusion. IFIP, pp. 53–71. Springer, Boston (2005)

15. Trist, E.: The evolution of socio-technical systems: a conceptual framework and an action
research program, in Occasional paper No 2 1981, Ontario Quality of Working Life
Centre, Toronto, Ontario

16. van Solingen, R., et al.: From process improvement to people improvement: enabling
learning in software development. Information and Software Technology 42(14), 965–971
(2000)

17. Børjesson, A., Mathiassen, L.: Successful process implementation. IEEE Software 21(4),
36–44 (2004)

90 N.B. Moe

18. Dybå, T.: Improvisation in Small Software Organizations. IEEE Software 17(5), 82–87
(2000)

19. Argyris, C., Schön, D.A.: On Organizational Learning II: Theory, Method and Practise.
Addison Wesley, Reading (1996)

20. Morgan, G.: Images of Organizations, p. 504. SAGE Publications, Thousand Oaks (2006)
21. McAvoy, J., Butler, T.: The role of project management in ineffective decision making

within Agile software development projects. European Journal of Information
Systems 18(4), 372–383 (2009)

22. Yin, R.K.: Case study research: design and methods, 4th edn. Sage, Thousand Oaks (2008)
23. Muller, S.D., Kraemmergaard, P., Mathiassen, L.: Managing Cultural Variation in

Software Process Improvement: A Comparison of Methods for Subculture Assessment.
IEEE Transactions on Engineering Management 56(4), 584–599 (2009)

24. Moe, N.B., Dingsøyr, T., Dybå, T.: Overcoming Barriers to Self-Management in Software
Teams. IEEE Software 26(6), 20–26 (2009)

25. Kraut, R.E., Streeter, L.A.: Coordination in software development. Communications of the
ACM 38(3), 69–81 (1995)

26. Aurum, A., Wohlin, C., Porter, A.: Aligning Software Project Decisions: A Case Study.
International Journal of Software Engineering and Knowledge Engineering 16(6), 795–818
(2006)

27. Barker, J.R.: Tightening the Iron Cage - Concertive Control in Self-Managing Teams.
Administrative Science Quarterly 38(3), 408–437 (1993)

28. Tata, J., Prasad, S.: Team Self-management, Organizational Structure, and Judgments of
Team Effectiveness. Journal of Managerial Issues 16(2), 248–265 (2004)

29. Schneider, K., von Hunnius, J.P., Basili, V.R.: Experience in implementing a learning
software organization. IEEE Software 19(3), 46–49 (2002)

30. Dybå, T.: An empirical investigation of the key factors for success in software process
improvement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)

31. Salo, O., Abrahamsson, P.: Integrating agile software development and software process
improvement: a longitudinal case study. In: International Symposium on Empirical
Software Engineering (ISESE), pp. 187–196. IEEE, Noosa Heads (2005)

32. Fægri, T.E., Dybå, T., Dingsøyr, T.: Introducing knowledge redundancy practice in
software development: Experiences with job rotation in support work. Information and
Software Technology 52(10), 1118–1132 (2010)

Effects of Negative Testing on TDD:

An Industrial Experiment

Adnan Causevic1, Rakesh Shukla2,
Sasikumar Punnekkat1, and Daniel Sundmark1

1 Mälardalen University, Sweden
{adnan.causevic,sasikumar.punnekkat,daniel.sundmark}@mdh.se

2 Infosys Ltd. India
rakesh shukla@infosys.com

Abstract. In our recent academic experiments, an existence of positive
test bias, that is lack of negative test cases, was identified when a test
driven development approach was used. At the same time, when defect
detecting ability of individual test cases was calculated, it was noted that
the probability of a negative test case to detect a defect was substantially
higher than that of a positive test case.

The goal of this study is to investigate the existence of positive test
bias in test driven development within an industrial context, and mea-
sure defect detecting ability of both positive and negative test cases. An
industrial experiment was conducted at Infosys Ltd. India, whose em-
ployees voluntarily signed up to participate in the study and were ran-
domly assigned to groups utilizing test driven development, test driven
development with negative testing, and test last development. Source
code and test cases created by each participant during the study were
collected and analysed.

The collected data indicate a statistically significant difference be-
tween the number of positive and negative test cases created by industrial
participants, confirming the existence of positive test bias. The difference
in defect detecting ability of positive and negative test cases is also statis-
tically significant. As a result, similarly to our previous academic study,
29% of all test cases were negative, contributing by revealing as much as
71% of all the defects found by all test cases. With this industrial exper-
iment, we confirmed the existence of a positive test bias in an industrial
context, as well as significantly higher defect detecting ability of negative
test cases.

Keywords: Test-driven Development, Industrial Experiment, Quality
of Testing.

1 Introduction

Performing efficient and effective software testing often comes with many chal-
lenges. Increased complexity of software systems, the need for a specific domain
knowledge or the lack of testing experience are just a few obstacles a tester is

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 91–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

92 A. Causevic et al.

faced with in day to day activities. Today, with the presence of Agile methods,
the quality of the software product becomes everyone’s responsibility, not just
the quality assurance or the testing department. A potential problem here is
that not every member of the team has the appropriate expertise and sufficient
training in quality assurance methods.

Test driven development (TDD) is one example of how developers can fo-
cus on the quality of software by writing executable and automated test scripts
before writing the actual code. TDD was introduced as part of the eXtreme
Programming (XP) methodology [1]. By writing test cases before the code, de-
velopers use tests to guide them in the correct implementation of the required
functionality. In the literature, TDD is also referred as a test-first approach [2].

TDD was identified, in our industrial survey [3], as a preferred but not of-
ten used practice in industry. An interpretation of this finding could be that
“respondents would like to use TDD to a significantly higher extent than they
actually do”. One reason for this preference towards TDD, could be that aca-
demic research results often highlight improvements in the code quality when
TDD is utilized [4–8]. In our further investigations, a systematic literature re-
view [9] was performed for the purpose of identifying any obstacles for a full
scale adoption of TDD in an industrial context. Developer’s inability to write
efficient and effective automated test cases is considered to be one of the limiting
factors. During the autumn semester in 2011, an academic experiment was con-
ducted with master students with the intention of comparing testing efficiency
and effectiveness of agile (test-first) and traditional (test-last) developers. This
experiment [10] allowed us to investigate various software testing quality met-
rics in test-driven development by using created test cases, thus investigating
the significance of a previously identified limiting factor.

Although we could not find any differences in the quality metrics for testing
among the test-first and the test-last group of developers, we did notice that
both groups created a much higher number of positive test cases compared to
the negative ones. This effect, also known as positive test bias [11, 12], was
present for both the test-first and test-last group. Interestingly, when measuring
defect detecting ability of test cases, negative test cases detected much more
defects compared to the positive ones. But since this was a limited study in
an academic context, a larger study in an industrial context was needed to
confirm the external validity of our findings and to verify if such an effect exists
in the industry and to what extent, when compared to the academic results.
Additionally, we want to investigate how test-driven development could utilize
creation of negative tests while still “driving” the development. In this paper we
present the results of such an industrial experiment.

Effects of Negative Testing on TDD 93

2 Related Work

Empirical studies, performed for the purpose of investigating potential benefits
of TDD focus mainly on the differences in the quality of the produced code.
This was one of the finding we noticed in our systematic literature review [9],
where we listed 48 empirical studies that had effects of TDD as the focus of the
investigation. In most cases, TDD was in the primary focus of the investigation,
but in some studies TDD was used together with a different practice, e.g. pair-
programming.

However, one study was identified with the focus on quality attributes of test
cases when a test-first approach was used. Madeyski [13] investigated how usage
of TDD can impact branch coverage and mutation score indicators. In his ex-
periment, 22 students were divided in two groups: the test-first and the test-last,
with the task of developing a web based conference paper submission system.
This experiment shows no statistically significant differences in branch coverage
and mutation score indicators, between the test-first and the test-last groups. To
the best of our knowledge, after performing our systematic review, we noticed
one additional study [14] with the focus on developer’s testing ability when fol-
lowing test driven development approach. This was an industrial observational
experiment where developers performed programming tasks in their own offices
without the control of researchers. Once developers submitted their code and
test cases, researchers performed mutation testing to identify complementary
test cases to the ones created during TDD process. Those unit tests, created by
researchers, were still able to find several software faults in the submitted code.

In our previous academic study [10] we measured the code coverage and the
mutation score indicators in a very similar way as it was done by Madeyski in his
study. In accordance with the results of Madeyski, we were not able to notice any
differences between the experiment groups. For the experiment presented in this
paper, we have opted not to measure and analyse those attributes. The reason
is that both those indicators are considered as an internal quality attributes of
a test suite, while we are more interested in measuring the actual effectiveness
of a test cases with respect to the defect detection. Specially, this is useful to
distinguish what effect positive and negative test cases have on the overall test-
ing effort. This is why our study design enforces programming interface for all
participants, allowing us to execute the test cases of one participant on the code
of all other participants.

Having results from our previous studies pointing out that experiment partic-
ipants have a very small focus on “negative” test cases (existence of a positive
test bias), the experiment performed in this study has a built-in mechanism of
differentiating whether a particular test case is of a positive or negative type.
More detailed explanation of what exactly constitute a negative test case, how
we measure defect detecting efficiency and other concepts introduced in this
study are presented in the following section.

94 A. Causevic et al.

3 Methodology and Study Design

Before going into the details of the experiment design, its execution and the
analysis of the collected data, we would like to present to the reader several
concepts which are defining the methodology used this study.

Negative Testing
By the term negative test case, we refer to a test case that was created for the
purpose of exercising a program in a way that was not explicitly specified in
the requirement. On the other hand, a positive test case exercises a program
behaviour as it is specified in the requirement.

For example, a specification might state: “... numbers are accepted as an
input to the program ... ”, and testing such a program with any numerical input
is considered as positive testing. For the same program, if testing is performed
by providing a character input, that can be called negative testing.

Even in the case of an implicit specification, for example: “... only numbers are
accepted as an input to the program ... ”, testing using character inputs can still
be considered negative testing, unless it is explicitly stated in the specification
how the program should behave upon receiving character inputs.

Quality of Testing
Quality of software has been an active research area for the past few decades
and several software measures ranging from simple lines of code to various com-
plexity measures can be found in the literature to evaluate and improve the
software quality from process or product perspectives [15]. However there had
been no consensus on the universal applicability of any specific software quality
metric and their usage had been more context specific and based on the intended
objectives.

For our study we are primarily interested in formulating measures that can
help in evaluating and improving the quality of testing, a topic which so far has
not received much research attention. Obviously quality of testing is strongly
related to the ability of test cases in finding defects in the code. However, in
the context of new development paradigms like TDD, test cases are created
by developers more as a safety net of the implemented functionality. They are
capable of detecting wrong changes on the current software implementation,
but they are not primarily focussing on finding defects. As a result the final
set of test cases that accompany a software solution developed using TDD will
show only its correctness but no defects in the same. In order to realistically
measure the quality of testing we need to essentially have access to an ideal test
suite which is capable of finding all the defects. Our approach here will be to
approximate such an ideal test suite by combining all the test suites developed
by several individual developers working on the same problem. Given such a
set of multiple implementations and associated test suites, we are then able to
cross-compare the ability of test cases to find defects.

Effects of Negative Testing on TDD 95

Defect Detecting Ability
Defect detecting ability represents a total number of defects a particular test
case can find in all the implementations of the same problem created by different
developers. This number could be also calculated for all test cases created by a
single developer, but more interestingly in the context of this study is to calculate
how many defects are detected by negative and positive test cases.

Additionally, considering the differences in the expertise levels of the devel-
opers, we would like to give a higher quality value to a test case that is capable
of finding defects in an implementation of high quality. Hence the evaluation of
the quality of test cases will be much more meaningful if we jointly address it
together with the quality of code in which we apply them.

Quality of Code (Qcode)
Main reason why we need to calculate quality of code attribute is to support
calculation of Quality of Tests attribute. Quality of the code for every developer
(i) is calculated using next formula:

Qcode(i) = 1− NFTC(i)

NTC

where, NTC is a total number of test cases created by all developers andNFTC(i)
represent total number of failing test cases on the code of a developer (i) by
executing all test cases from all developers. Once we calculated Quality of Code
value for each developer, we can now reward test cases who are able to detect
defects in the underlying code.

Quality of Tests (Qtests)
Quality of test cases for a developer (i) is calculated as a sum of the quality of
each test case (j) from a set of test cases (n) of that developer (i):

Qtests(i) =

n∑
j=1

QTC(i.j)

To calculate the quality of an individual test case (j) of a developer (i) we need
to know on which developers’ code this test case is failing (m ∈ M). Sum of the
Quality of Code values (Qcode) of those developers will define the quality of a
particular test case (j):

QTC(i.j) =
m∑

k=1

Qcode(k)

Once this calculation is done for every developer, we can have a much better
understanding of how much each and every test case contribute to the overall

96 A. Causevic et al.

quality of testing. In the context of this study, it is interesting to observe how
much negative and positive test cases contribute to the quality of testing.

3.1 Study Design

The design of this experiment originates from the academic study elaborated
in [16]. However, to accommodate all challenges with performing such an exper-
iment in industrial context (professional developers in an industrial settings),
some modifications to the academic study design had to be done.

This experiment was setup with several goals in mind. As the main goal, we
wanted to investigate if the effect of a positive test bias could be identified in
an industrial setting regardless if the test last approach or TDD was used. We
wanted to be able to examine the existence of such an effect by calculating the
effectiveness of the provided tests. As an additional goal, in case the positive test
bias effect existed, we wanted to investigate if it is possible to eliminate such an
effect by providing participants with the support for the negative tests. Based
on these goals, the following research questions were defined:

RQ1: Does the effect of positive test bias exists in an industrial context?
RQ2: Is the defect detecting ability of negative test cases the same as the positive

ones?
RQ3: Is the quality of negative test cases the same as that of positive test cases?
RQ4: Is there a difference in the quality of produced tests based on the usage of

a specific development practice?

In order to perform statistical testing, with respect to the stated research ques-
tions, following null and alternate hypotheses were formulated:

H1
0 There is no difference between the total number of positive and negative
test cases created by experiment participants.

H1
a There is a difference between the total number of positive and negative test
cases created by experiment participants.

H2
0 There is no difference between the number of failing assertions detected by
positive and negative test cases.

H2
a There is a difference between the number of failing assertions detected by
positive and negative test cases.

H3
0 There is no difference between the quality of positive and negative test
cases.

H3
a There is a difference between the quality of positive and negative test cases.

H4
0 There is no difference in the quality of testing based on the usage of a
specific development practice.

H4
a There is a difference in the quality of testing based on the usage of a specific
development practice.

Effects of Negative Testing on TDD 97

4 Experiment Design

The experiment was performed within Infosys Ltd.1 India in September 2012,
as part of the Infosys InStep2 internship program. Participants of this experi-
ment are Infosys employees spread around several development centres in India
and even some employees participating from the Infosys client’s (on-site) loca-
tions. The set of participant locations include: Bangalore, Beaverton, Brussels,
Chennai, Hyderabad, Mangalore, Melbourne, Mysore, Pune, Trivandrum.

Since the participants of the experiment were not located at one single place,
we have opted for a semi-controlled version of the experiment design, compared
to the previous fully controlled academic study. This way, participants did not
have to be physically present at the same time in the same room to perform
their experiments under a supervisor in a controlled environment. Additionally,
participants could decide when it was most convenient for them to work on the
experiment task, based on their current project related duties, deliverables or
deadlines.

At first, the researchers needed to create training materials for each group
of participants: (i) Test Last (TL); (ii) TDD; and (iii) TDD with the Support
for Negative Testing (TDD+). Upon receiving the list of the experiment partic-
ipants, the researchers randomly divided them into the three previously men-
tioned groups. The number of participants in each group was kept as equal as
possible. Using the Microsoft SharePoint3 infrastructure, the training material
was distributed by creating a SharePoint Workspace folder for each individual
participant. In order for participants to access their SharePoint Workspaces,
the researchers sent an invitation email to each participant. Each participant
worked individually on an implementation of a defined problem in Java using the
Eclipse [17] integrated development environment (IDE). Test cases were written
using the jUnit [18] testing framework. The implementation was enforced with
the provided programming interface. Upon completing their tasks, the partici-
pants of the experiment updated their SharePoint Workspace with their solution
to the problem.

The Bowling Game Score Calculator problem was used for the experiment.
The specification was based on the Bowling Game Kata (i.e., the problem also
used by Kollanus and Isomöttönen to explain TDD [19]). From our experience, on
average, 3 hours are needed to fully implement the problem and usually around
10 test cases are created during implementation when following TDD approach.
Detailed information about the problem and instructions are provided on the
first author’s webpage4.

Participants assigned to the TDD group were instructed to use TDD steps
to develop software solution. Instructions for TDD were given as prescribed
by Flohr and Schneider [20]. Participants assigned to the TDD+ group were

1 http://www.infosys.com
2 http://www.infosys.com/instep
3 http://sharepoint.microsoft.com
4 http://www.mrtc.mdh.se/~acc01/infosys-experiment

http://www.infosys.com
http://www.infosys.com/instep
http://sharepoint.microsoft.com
http://www.mrtc.mdh.se/~acc01/infosys-experiment

98 A. Causevic et al.

instructed to use the same TDD steps with the addition to the very first step.
Basically, they were instructed to follow TDD, but also to occasionally write a
negative test case based on the input space, domain knowledge, etc. (but not
explicitly stated in the requirements). Participants assigned to the Test Last
(TL) group were instructed to use traditional (test-last) approach for software
development and they were considered as a control group for this experiment.

It was expected that some participants may not be familiar with the us-
age of the jUnit testing framework and/or Eclipse IDE. To avoid such prob-
lems, video tutorials were created for each group of participants. Additionally,
participants were given an Eclipse project code skeleton which included one
simple test case. Specific details of the study, i.e. instruction material, video tu-
torials and code skeleton, can be found at http://www.mrtc.mdh.se/ acc01/

infosys-experiment.
The participants were instructed, upon finalizing their software implementa-

tion, to save the source code together with the test cases in their individual
and predefined SharePoint Workspace. Additionally, participants had to com-
plete a simple questionnaire stating their opinions on the quality of the provided
solution.

5 Execution

The first author of this paper stayed at Infosys development center in Bangalore,
India, from 3rd to 28th of September 2012. During the first week of internship it
was decided that the experiment will be executed from 10th till 21st of Septem-
ber, 2012. First week was used to prepare training video material, instructions
and survey questions for the experiment.

A list of over 100 email addresses of Infosys employees was previously obtained
by the second author, who directly promoted this experiment among employees
of Infosys. Those employees were randomly distributed in three groups: TL, TDD
and TDD+.

Participants were informed that their enrolment in this experiment would
support the current research activities within Infosys, but the exact details of
the experiment, as well as the goal of the experiment, were not shared with them.
Additionally, participants were explained that their source code and test cases
would be analysed anonymously and this activity will not be used in any way
for the internal employee evaluation.

For each participant, a SharePoint Workspace was created with the dedicated
training material and instructions placed in it. As an alternative files could be
obtained from Internet. In particular, Eclipse IDE should be obtained as well as
an experiment instruction document. Video tutorials were also hosted outside
of Infosys intranet and the link was provided to participants. In some cases,
Microsoft Office Communicator was used to transfer the required files.

http://www.mrtc.mdh.se/~acc01/infosys-experiment
http://www.mrtc.mdh.se/~acc01/infosys-experiment

Effects of Negative Testing on TDD 99

Participation in the experiment was not time-boxed and subjects were given
an opportunity to work on their implementations until they have enough confi-
dence in the quality of the submitted solution.

Since one way of measuring the quality of test cases was using a total number
of failing assertions, a Java code skeleton was created and provided to subjects to
enforce usage of the same programming interface which would ease the process
of executing the test cases of a subject X on the code of a subject Y.

Upon finishing their development task, participants uploaded software solu-
tion to their dedicated SharePoint Workspace or sent their solutions by email to
the first author.

Table 1 present the number of solutions submitted for the experiment analysis
by participants of the experiment.

Table 1. Distribution of solutions per groups

Group Submitted Removed Analysed

TL 19 8 11

TDD 21 10 11

TDD+ 20 9 11

Total 60 27 33

Once the submitted solutions were individually inspected (code was visually
reviewed and tests were executed), several submitted solutions had to be removed
before the analysis. Reasons for removal are listed below:

Incomplete solutions
Manually looking at the code it was possible to identify that some provided
solutions were not completed. We can only assume they were submitted as
such due to external deadlines.

Own failing test cases
Number of solutions had test cases which were failing on their own code.
This was usually a sign of an uncompleted solution.

Small number of test cases (≤ 3)
In case a submitted solution did not have a minimum of 3 test cases (average
was 13,8), such would be removed from the analysis.

Wrong test cases
It is very important not to have a false positives in the test cases. In case a
test case is expecting a wrong result, the same was removed from the test
suite, but if most of the test cases are wrong, then the complete solution was
removed from analysis.

Different programming interface
Some solutions used a different programming interface which prevented ex-
ecuting other participants test cases on its code, or executing its test cases
on other participants code.

100 A. Causevic et al.

6 Analysis

This section provides the analysis of the collected data. The analysis was per-
formed using the R software environment for statistical computing [21]. Ag-
gregated data and the analysis script for R are provided on the first author’s
webpage5.

Positive Test Bias
One of the first thing we wanted to investigate with this experiment is the
existence of a positive test bias within our participants as defined in the research
questionRQ1. We used theWilcoxon signed rank test for paired nonparametric
data in order to test the H1

0 null hypothesis with α = 0.05. With a p-value
of 0.00000731 we can reject the null hypothesis and confirm that a difference
between the created number of positive and negative test cases is significantly
different for our industrial participants.

Defect Detecting Ability
As previously discussed, it is important to compare defect detecting ability of
both positive and negative test cases. By doing that we can explore further how
lack of negative tests could potentially affect the overall testing effectiveness as
defined in research question RQ2. Again, the Wilcoxon signed rank test for
paired nonparametric data was used in order to test theH2

0 null hypotheses with
α = 0.05. We can reject the stated hypothesis since the p-value is 0.00000302,
confirming that there is a significant difference in the efficiency of positive and
negative test cases.

Quality of Test Cases
By calculating the quality of tests, as defined in section 3, we are able to com-
pare quality of negative and positive test cases and investigate if there are any
differences between them. This additional analysis is important because even if
we are detecting more defects with one type of test cases (negative in this case),
we need to make sure that those defects are not detected, for example, only in
the code of a lower quality. With this analysis we are addressing research ques-
tion RQ3.Wilcoxon signed rank test for paired nonparametric data was once
again used in order to test the H3

0 null hypotheses with α = 0.05. We can reject
the stated hypothesis as well, since there is a significant difference (p-value is
0.00000277) in the quality of positive and negative test cases.

Quality of Testing
As an additional goal of this study, we wanted to cross-compare the quality of
tests created by our participants, regardless of the development approach they
were using, thus addressing the research question RQ4. The Mann-Whitney

5 http://www.mrtc.mdh.se/~acc01/infosys-experiment

http://www.mrtc.mdh.se/~acc01/infosys-experiment

Effects of Negative Testing on TDD 101

nonparametric test was used in order to test the H4
0 null hypotheses with α =

0.05. We can not reject stated hypothesis (p-value is 0.4102955), leading to
the conclusion that there is no statistically significant difference in the quality
of tests produced by participants using TDD and TL.

7 Interpretation

In this section we discuss the results of our experiment, implications they can
have on further research, and potential threats to their validity.

7.1 Evaluation of Results and Implications

Our previous academic experiment [16] was performed with a limited number of
participants and although we could see some trends, it was difficult to evaluate
statistical significance of the collected data. However, the industrial experiment
presented in this study enabled us to perform hypothesis testing using statistical
methods on the data we collected.

With the industrial experiment data we can confirm the following hypothesis:

H1
0 There is a difference between the total number of positive and negative test
cases created by experiment participants.

H2
0 There is a difference between the number of failing assertions detected by
positive and negative test cases.

H3
0 There is a difference between the quality of positive and negative test cases.

71.33%

28.67%

74.82%

25.18%

70.62%

29.38%

68.99%

31.01%

0

25

50

75

100

All TDD TDD+ TL

Groups

P
er

ce
nt

ag
e

(%
)

Negative Test Cases Positive Test Cases

Differences in Number of Test Cases Created

Fig. 1. Number of Test Cases

When looking at the actual differences in the number of created positive and
negative test cases, as shown in Figure 1, we can notice that a very similar 70%-
30% ratio exists for all groups individually as well as for all participants test
cases combined together. Although this may sound like a problem itself, there

102 A. Causevic et al.

28.85%

71.15%

35.19%

64.81%

27.44%

72.56%

25.81%

74.19%

0

25

50

75

100

All TDD TDD+ TL

Groups

P
er

ce
nt

ag
e

(%
)

Negative Test Cases Positive Test Cases

Differences in Number of Defects Found by Test Cases

Fig. 2. Defects found by Test Cases

23.81%

76.19%

29.85%

70.15%

22.33%

77.67%

21.14%

78.86%

0

25

50

75

100

All TDD TDD+ TL

Groups

P
er

ce
nt

ag
e

(%
)

Negative Test Cases Positive Test Cases

Differences in Quality of Test Cases

Fig. 3. Quality of Test Cases

is no actually (to the best of our knowledge) scientifically proven optimal ratio
of positive and negative test cases. The ratio of 70%-30% might work just fine.
This is why we emphasize on measuring the defect detection ability of test cases.

Figure 2 represents the ratio of defects found by positive and negative test
cases. There are two interesting observation with this figure: (i) the ratio seems
to be the opposite (30%-70%) and (ii) the data presented in this graph is not
normalised. When we combine those two observations, we can see that with less
than 30% of test cases in our test suite (negative test cases), we are discovering
as much as 70% of all the defects detected by a complete test suite.

As a final step in confirming significance of the effectiveness of negative test
cases, Figure 3 presents the ratio to what extent positive and negative test cases
are contributing to the overall Quality of Tests score for individual groups and
for all participants together. As we defined in section 3 of this paper, Quality of
Tests measurement was needed since every defect that was detected by a test

Effects of Negative Testing on TDD 103

case was considered of equal importance, which may not represent a realistic
situation. By rewarding test cases who are failing on the code of high quality, we
could differentiate between the raw number of defects detected and the actual
quality they bring into the overall testing effort.

The ratio of quality between positive and negative test cases goes beyond
of 30%-70%, confirming that negative test cases are detecting more number of
defects, but are also detecting defects on the code of a higher quality, resulting
in finding defects that are not commonly discovered by positive test cases.

7.2 Threats to Validity - Reservations

The major advantage of this experiment, compared to our previous academic
efforts, is the usage of a large number of industrial developers instead of a small
number of master students as the experiment subjects. However, setting up
an experimental study in an industrial environment brings many challenges for
researchers. Inability to have a full control of the experiment represent the major
threat to the validity of this study, which was due to the nature of distributed
work at our industrial partner. Additional threat to the validity of this study is
the usage of a small scale object of investigation. In our experience from previous
academic experiments, on average around 3 hours is needed to fully complete
the experiment task. Considering project related duties, deadlines and other
responsibilities of our industrial participants, we decided that this task should
be convenient for this experiment as well. Furthermore, because of several day to
day activities of our industrial participants, experiment was not executed in one
day but rather kept open for two weeks which could represent another potential
threat to the validity of this study. Another possible validity threat could be the
lack of a domain knowledge of the object for most of the experiment subjects.

Internal validity of the study was addressed by using statistical tests to per-
form hypothesis testing, as well as by providing the data as part of this publi-
cation, in an aggregated form. Additionally, by providing sufficient information
about the experiment design as well as training and instruction materials, we
are addressing reliability threats related to the replication of this study.

8 Conclusions and Future Work

Test driven development, by definition, is a development methodology and not
a test design technique. Test cases are considered only as an artefact of the
development activity and as such, in their nature, tests have to “drive” the de-
velopment in the positive sense. This is one of the reason we focused our research
activities on the analysis of test cases created using TDD approach and their
efficiency in terms of defect detection. By identifying specific testing knowledge,
complementary to the testing skills of a TDD developer, we would enable de-
velopers to achieve higher quality of software products, eventually leading to a
higher adoption of TDD in industry.

Based on our academic results from previous experiments as well as results
from this industrial study, it is evident that positive test bias (i.e. lack of negative

104 A. Causevic et al.

test cases) is present when test driven development approach is being followed.
On average, in our studies, around 70% of test cases where positive while 30%
where negative. However, this effect was not only constrained to TDD since test
last or traditional developers experienced the same problem as well.

When measuring defect detecting effectiveness and quality of test cases, an
opposite ratio was present. Effectiveness and quality of negative test cases were
above 70% while positive test cases contributed only by 30%. These results made
evident what importance negative test cases have as part of a test suite. The chal-
lenge is how to intuitively create them without disturbing the “driving” of the
development when following TDD. This problem was approached with TDD+
group of participants in this experiment (test driven development group with the
support for negative testing). Essentially, we instructed this group to optionally
write a negative test case when they consider it convenient. But, based on our
results, this did not create any differences. Our reasoning for this could be again
the effect of positive thinking that TDD requires, as well as a general problem
of when to consider convenient to write a negative test case. Currently, we are
investigating the possibility of extending test-driven development with particu-
lar test design technique, to facilitate consideration of unspecified requirements
during the development to a higher extent and thus minimise the impact of a
potentially inherent effect of a positive test bias in TDD.

Acknowledgments. This work was supported by the Infosys InStep6 internship
program and the SYNOPSIS project at Mälardalen University.

References

1. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Longman Publishing Co., Inc., Boston (2000)

2. Koskela, L.: Test driven: practical tdd and acceptance tdd for java developers.
Manning Publications Co., Greenwich (2007)

3. Causevic, A., Sundmark, D., Punnekkat, S.: An industrial survey on contemporary
aspects of software testing. In: Proceedings of the 3rd International Conference on
Software Testing, Verification and Validation (ICST), pp. 393–401 (2010)

4. George, B., Williams, L.: A structured experiment of test-driven development.
Information and Software Technology 46(5), 337–342 (2003)

5. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31, 226–
237 (2005)

6. Janzen, D.S., Saiedian, H.: On the influence of test-driven development on soft-
ware design. In: Conference on Software Engineering Education and Training, pp.
141–148 (2006)

7. Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and effi-
ciency of the test driven development. In: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, ESEM 2007,
pp. 285–294. IEEE Computer Society, Washington, DC (2007)

6 http://www.infosys.com/instep

http://www.infosys.com/instep

Effects of Negative Testing on TDD 105

8. Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven de-
velopment in an industry-sponsored capstone project. In: Proceedings of the 2009
Sixth International Conference on Information Technology: New Generations, pp.
229–234. IEEE Computer Society, Washington, DC (2009)

9. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption of
test driven development: A systematic review. In: 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation (ICST), pp. 337–346
(March 2011)

10. Causevic, A., Punnekkat, S., Sundmark, D.: Quality of testing in test driven de-
velopment. In: 2012 Eight International Conference on the Quality of Information
and Communications Technology (QUATIC) (September 2012)

11. Teasley, B.E., Leventhal, L.M., Mynatt, C.R., Rohlman, D.S.: Why Software Test-
ing Is Sometimes Ineffective: Two Applied Studies of Positive Test Strategy. Journal
of Applied Psychology 79(1), 142–155 (1994)

12. Leventhal, L.M., Teasley, B., Rohlman, D.S., Instone, K.: Positive Test Bias in Soft-
ware Testing Among Professionals: A Review. In: Bass, L.J., Unger, C., Gornos-
taev, J. (eds.) EWHCI 1993. LNCS, vol. 753, pp. 210–218. Springer, Heidelberg
(1993)

13. Madeyski, L.: The impact of test-first programming on branch coverage and muta-
tion score indicator of unit tests: An experiment. Inf. Softw. Technol. 52, 169–184
(2010)

14. Shelton, W., Li, N., Ammann, P., Offutt, J.: Adding criteria-based tests to test
driven development. In: Proceedings of the 2012 IEEE Fifth International Con-
ference on Software Testing, Verification and Validation, ICST 2012, pp. 878–886.
IEEE Computer Society, Washington, DC (2012)

15. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach,
2nd edn. PWS Publishing Co., Boston (1998)

16. Causevic, A., Sundmark, D., Punnekkat, S.: Test case quality in test driven devel-
opment: A study design and a pilot experiment. In: 16th International Conference
on Evaluation Assessment in Software Engineering (EASE 2012), pp. 223–227 (May
2012)

17. Eclipse, http://www.eclipse.org
18. jUnit Framework, http://www.junit.org
19. Kollanus, S., Isomöttönen, V.: Understanding tdd in academic environment: expe-

riences from two experiments. In: Proceedings of the 8th International Conference
on Computing Education Research, Koli 2008, pp. 25–31. ACM, New York (2008)

20. Flohr, T., Schneider, T.: Lessons learned from an XP experiment with students:
Test-first needs more teachings. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006.
LNCS, vol. 4034, pp. 305–318. Springer, Heidelberg (2006)

21. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0

http://www.eclipse.org
http://www.junit.org

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 106–120, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Investigating the Impact of Experience and Solo/Pair
Programming on Coding Efficiency:

Results and Experiences from Coding Contests

Dietmar Winkler1, Martin Kitzler2, Christoph Steindl2, and Stefan Biffl1

1 Christian Doppler Laboratory for Software Engineering Integration
for Flexible Automation Systems, Vienna University of Technology, Institute of Software

Technology and Interactive Systems, Favoritenstrasse 9-11/188, 1040 Vienna, Austria
{dietmar.winkler,stefan.biffl}@tuwien.ac.at

2 Catalysts GmbH; Huemerstraße 23, 4020 Linz, Austria
{martin.kitzler,christoph.steindl}@catalysts.cc

Abstract. Developing working software is a key goal of software development.
Beyond software processes, following traditional or agile approaches, coding
strategies, i.e., solo and pair programming, are important aspects for
constructing high quality software code. In addition developer experience has a
critical impact on coding efficiency and code quality. Pair programming aims at
increasing coding efficiency, code quality, and supports learning of
development team members. Several controlled experiments have been
conducted to investigate benefits of different development strategies, learning
effects, and the impact on code quality in academia and industry. Nevertheless,
reported study limitations and various results in different contexts require more
studies to fully understand the effects of experience and programming
strategies. Coding contests can be promising approaches to (a) involve different
participant groups, e.g., junior and senior programmers and professionals, and
(b) can represent a well-defined foundation for planning and executing large-
scale empirical studies. In this paper we present coding contests as a promising
strategy for conducting empirical studies with heterogeneous groups of
participants and report on a set of findings from past coding contests. Main
results are (a) that the concept of coding contests is a promising way for
supporting empirical research and (b) the results partly confirm previous studies
that report on the benefits of pair programming and development experience.

Keywords: Coding Contests, Large Scale Controlled Experiments, Solo
Programming, Pair Programming, Developer Experience.

1 Introduction

The main goal of software development practices is the construction of high-quality
software products. Software processes, e.g., traditional or more flexible agile
processes, aim at providing a basic project structure to plan and monitor the overall

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 107

project progress [14]. In addition, constructive practices (e.g., pair programming) are
required to deliver pieces of software code and analytic practices (e.g., reviews,
inspections, and testing) enable efficient testing of constructed software components.
Previous studies focused on comparing pair programming and analytic methods, e.g.,
peer reviews [9] or software inspection [13], and suggest a combination of
constructive and analytic approaches [17] to bundle individual benefits. Test-driven
development (TDD) is a well-known and well-established software engineering
practice for software development [3] including four steps: (a) select the most
valuable requirement from a prioritized backlog, (b) develop tests (test-first
approach), (c) construct required code fragments to make test case runs successful,
and (d) refactoring of constructed software code afterwards. Thus, test case
definition and code construction are tightly intertwined. Typically, test driven
development is a key practice in agile development processes, e.g., in Scrum or
eXtreme Programming.

An important question is whether individuals perform better than teams (e.g., pairs)
working on the same piece of software in terms of a fast delivery of software
components at a high level of quality. Some empirical studies (e.g., [8][10][15][16])
reported on benefits on programming performance in various courses in academic
environment. Arisholm et al. report on an evaluation of pair programming with focus
on complexity and programmer experience, also involving industry people [2]. They
came to the conclusion that there are mainly benefits for junior programmers rather
than intermediates and senior programmers. In addition programming in pairs enables
knowledge transfer, training and a common understanding of the product [5][11].

Typically planning and executing controlled experiments require a high effort for
preparation and execution. Many studies focus on student experiments rather than
involving industry people, who must be hired and paid [18]. As a consequence readers
might claim the relevance of the studies for industry because of background
knowledge and experience of participants. Thus a key question is how we can include
a higher number of professionals in controlled experiments to increase external
validity of the aspects under investigation. From the authors perspective coding
contests, i.e., some kind of quiz or challenge, can motivate juniors, seniors and
professionals to solve challenging tasks in controlled environments as a foundation
for conducting empirical studies with heterogeneous groups of participants.

In this paper we (a) present the concept of coding contests and (b) report on a set of
findings from a past coding contest, conducted by Catalysts in Vienna, Austria, and
Cluj, Romania, in the fall of 2012, to investigate the impact of programming
strategies, i.e., solo and pair programming, and developer experience on coding
performance. Thus, the remainder of this paper is structured as follows: Section 2
summarizes related work on studies in the area of solo and pair programming and
coding challenges as a vehicle for empirical studies. Section 3 highlights the research
issues. We present the concept of coding contests and the study design in Section 4
and our initial findings in Section 5. Finally, Section 6 summarizes, concludes and
identifies future work.

108 D. Winkler et al.

2 Related Work

This section summarizes related work on programming in teams, i.e., pair
programming (Section 2.1) and coding challenges and contests (Section 2.2).

2.1 Solo Programming and Programming in Teams

In contrast to solo programming, where every developer works on his own, pair
programming is an established agile software development practice, typically
included in an agile software development process like eXtreme Programming and
Scrum. Basically, pair programming includes two engineers sharing a common
environment and working at the same piece of software. Pair Programming includes
two roles, (a) a driver, who implements upcoming tasks, e.g. based on the TDD
approach, and (b) an observer, who supports the driver in his implementation task and
conduct implicit quality assurance activities (e.g., inspection and continuous reviews).
These roles may change frequently. This approach aims at increasing software
productivity at a higher level of software quality [15].

Several studies have been published investigating the effects of pair programming
in comparison to solo programming in different contexts, e.g., Hulkko et al. [6]
reported on a study from four software development projects in industry and
concluded that pair programming did not provide as extensive quality benefits and
productivity increase as claimed in literature. Parrish et al. [12] also reported that two-
person teams working independently are more productive than working concurrently.
Dyba et al. [4] investigated effectiveness, project duration, and quality and came to
the conclusion that expected benefits strongly depend on developer expertise and
complexity of tasks and there is a need for additional studies to get a deeper insight in
performance measures of pair programming.

2.2 Empirical Studies and Coding Contests

Basically empirical studies and experiments represent an important foundation to
evaluate processes, methods, and products to get evidence on tool application and/or
human based activities [7]. Nevertheless, it is often difficult to recruit a sufficient (and
large) number of participants to enable empirical evidence with respect to the topic
under investigation. Many empirical studies involve students as participants who
might be comparable to juniors rather than professionals in an industry context. On
the other hand professionals in industry typically do not participate in experiments
because of resource limitations and cost. Thus, studies typically focus on pilot
evaluations, student experiments, and small-scale prototype applications. Thus, there
might be strong limitations regarding the validity of results which should be
addressed appropriately.

To overcome these limitations and to motivate participants from academia as well
as from industry, challenges and contests can be promising options for carrying out

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 109

empirical studies. Coding contests exist for more than 30 years like the “ACM
International Collegiate Programming Contest” [1] which was held for the first time
in 1977. Up to now the number of different contests as well as the number of
participants is increasing. Usually contests focus on solving as much of the given
tasks as fast and as efficiently as possible. These tasks typically focus on
algorithmically problems and the developers should have a fundamental knowledge
on algorithms, data structures, and mathematics.

ACM’s International Collegiate Programming Contest (ICPC1) and the
International Olympiad in Informatics (IOI2) are providing a platform to identify the
best coders in a group of universities or countries. Motivation for the participants is to
earn medals (IOI) for themselves or achieve the highest ranking within their
organization, e.g., within their university (ICPC). Participation at ICPC is limited to 3
students per university, IOI participants are at most three juniors (aged below 20
years) from every participating country. Thus, the target group of candidate
participants is limited. Challenges and contests are also excellent platforms for
recruiting purposes and are sometimes addressed by companies. For instance Google
CodeJam3 attracts a wide range of people because of very high price money and the
opportunity to get hired by the company. Challenge244 is designed for three-person
teams (similar to ICPC) with 24 hours continuous duration and well-known for
innovative tasks. TopCoder5 is a crowd-sourcing contest where developers can submit
solutions for a defined problem. The results are used to identify the best overall
solution, which can be used by companies and/or governmental organizations.

The Catalysts Coding Contest (CCC6) offers a moderate prize money and allows
participants to choose whether they prefer working on their own or in teams. All
participants work on a set of consecutive tasks with increasing complexity within a
level-based structure. This level-based structure (the levels have to be solved in
sequence) enables a direct comparison of the performance of all participants/teams
per level. In addition there are no restrictions that hinder participating. Another
benefit is the availability of (anonymous) results on an open data server for further
investigations available for academia and industry. Thus the CCC is a promising
approach for conducting large-scale empirical studies.

3 Research Questions and Variables

This section presents the initial research questions and the variables used in the
coding contest.

1 International Collegiate Programming Contest: http://icpc.baylor.edu/
2 International Olympiad in Informatics: http://www.ioinformatics.org/
3 Google Code Jam: http://code.google.com/codejam/
4 Challenge24: http://ch24.org/
5 TopCoder: http://www.topcoder.com/
6 Catalyst Coding Contest (CCC): http://www.catalysts.cc/contest/

110 D. Winkler et al.

3.1 Research Questions

Based on the related work and open issues we identified two important research
questions to address (a) coding contests as vehicle for empirical studies and (b) effects
of construction software code in teams on time, experience, and team size.

RQ 1. How can we apply coding contests to support controlled experiments? The
basic setting of coding contests can help designing and executing controlled
experiments easily. In addition our assumption is that coding contests can address and
motivate different groups of participants, i.e., junior developers, senior developers,
and professionals. The distribution of different skill levels enable comparing the
effects based on experiences and skills in a common environment and could enable
easy replication and knowledge generation on the investigated research issues.

RQ 2. What are the effects of constructing software code in teams? We apply a
level-based concept of the coding contest to address two aspects, (a) time effects on
software construction per level and (b) defects per level considering participant
experience and team-size, i.e., solo and pair programming. Further we derived four
hypotheses:

• H1.0. High experienced participants (professionals) perform similar than less
experienced participants (juniors) in terms of required time per level. The
alternative hypothesis H1.1 is that experienced participants perform better.

• H2.0: High experienced participants and less experiences participants deliver a
similar number of defects per level. The alternative hypothesis H2.1 is that more
experience participants deliver fewer defects.

• H3.0: Individuals perform similar than pairs in terms of required time per level.
The alternative hypothesis H3.1 is that pairs perform better, i.e., requires less time
to complete a level.

• H4.0: Individuals and pairs deliver a similar number of defects per level. The
alternative hypothesis H4.1 is that pairs deliver fewer defects per level.

3.2 Variables

According to Wohlin et al. [18] we defined a set of variables: Independent variables
include the contest level concept, task descriptions, and a pre-defined set of test-cases
per level. Dependent variables are the duration of working time (per level), the
number of defects found during test runs, participant experience, and team size.

4 Study and Coding Contest Design

This section summarizes the experiment process, i.e., coding contest setting (Section
4.1), participants (Section 4.2), study material (Section 4.3), data collection and
analysis process (Section 4.4). Finally we present some limitations and important
threats to validity and illustrate how we addressed them (Section 4.5).

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 111

4.1 Experiment Process and Coding Contest Setting

Coding contests are promising approaches for conducting large-scale empirical
studies in controlled environments involving a heterogeneous group of participants.
Basically the coding contest is structured in four steps (see Fig. 1): (1) Contest
Preparation includes setup of the material (see Section 4.3), contest advertisements,
and organizational issues; (2) Registration of Participants, i.e., individuals and teams
(pairs); (3) Contest Execution & Data Collection; and (4) Data Analysis and Award
Ceremony.

Fig. 1. Coding Contest Process Steps

In contrast to other contests and challenges (see Section 2.2 for some examples)
where participants (a) have to select one problem out of a bunch of available
problems to be solved and/or (b) restrictions of participation, the CCC is open to all
interested people from school, academia, and industry and provides only one problem
(after the other) to be solved by all participants. Note that all participants receive
similar task-descriptions and have to submit their test results to verify successful task
completion. After completing one task the next task will be available to the
participants. Every task is assigned to a defined level, which extends the previous
level in complexity and/or size. Note that the CCC consists of an overall number of 7
levels, i.e., 7 tasks.

Fig. 2. Study Setting / Level Design of the Coding Contests (Level 1)

Fig. 2 presents an overview of activities at task level 1 and highlights the
interaction between the quiz master and the participants. The quiz master, i.e., one of
the authors, is responsible for distributing the individual tasks per level to the

Task Level 1

Check Level 1 (Re-)Submit Results

Feedback

Task Level 2

3a
3b

Quiz Master

Participants / TeamsDistribution of Tasks to
Participants (Level 1)

1

2

3a

3

- Level Passed
- Level Failed

Level
Passed

Distribution of the next Task
to participants (Level 2)

112 D. Winkler et al.

participants and teams (step 1 in Fig. 2). The participants work on their assigned tasks
and submit their results (step 2 in Fig. 2). The results are automatically compared with
expected results by a server application (CatCoder). The participants receive a
feedback whether the submitted results are correct or not (step 3 in Fig. 2). Note that
there is no additional information but just the information whether the results are
correct/not correct. Based on the feedback there are two options: (a) the participant
continue working on their task assignment in case the feedback has been negative,
i.e., some defects have been identified, (step 3b in Fig. 2) and resubmit updated
results (step 2 in Fig. 2); (b) the feedback has been positive, i.e., no defects have been
found, and the participants passed the level (step 3a in Fig. 2). In parallel the
participants increased their level and received a new task assignment related to this
next level and continue working on the new assignment. The contest is finished after
the participants solved all tasks successfully or the contest time is up (note that there
is an upper time limit for the overall contest of 4 hours).

4.2 Participants

The presented empirical study is based on a coding contest carried out in Vienna,
Austria, and Cluj, Romania, in the fall of 2012. During the enrollment phase of the
contest via Internet individual participants or teams of participants were able to
register for the contest. After closing the registration, an overall number of 173
participants had registered for the coding contest. After study completion and an
initial check for consistency and availability of collected data, a number of
participants have to be excluded from evaluation. An overall number of 51 (about
30% of the 173 registered people) participants were excluded because they did not did
not show up after their prior registration, did not provide the required information,
i.e., experience level, or did not agree to provide their data for further evaluation. As
there was no restriction to programming languages, the participants (122 remaining
people) used a wide range of different languages, i.e., Java (28 participants, 23%), C#
(27 participants, 22%), C/C++ (40 participants, 33%), and others (27 participants,
22%). To focus on the most prominent (i.e., top three) programming languages we
excluded languages, applied by only a small subset of participants, from evaluation.
The authors are aware that there might be an impact on the programming language
but we did not consider this impact in context of the paper. Finally, the analysis is
based on an overall number of 95 participants.

Table 1. Experience-Level and Programming Experience [years]

 Junior Senior Professionals Total
Mean 3.3 5.8 9.8 6.0

Std.Dev 1.43 3.36 5.8 4.27
Min 1 2 5 1
Max 6 15 25 5

At the beginning of the contest the participants were asked to provide data on their

experience level based on their current activities, i.e., junior developers (beginners,

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 113

e.g., up to undergraduate students), senior developers (experienced programmers,
typically graduate students) and professionals from industry. In addition we captured
data on their software development experience in terms of project participation or
working experience in industry. Main reason was to see whether the reported skill
level seems to fit to the years of experiences. Table 1 presents the share of experience
years of participants and skill classes. As expected, junior developers had on average
less working experience compared to senior developers and professionals. Note that
seniors (maybe even juniors) could also work in industry and might be considered as
“professionals” but we did not investigate this possible overlap in this paper.

4.3 Study Material

Study material includes (a) technical infrastructure and (b) contest material, i.e., task
description, requirements and test cases.

Technical infrastructure. Every participant had to bring his own workstation and local
software environment. Because programming language and development environment
are not restricted, it is the best way for participants to work in their own and well-
known development environment. Internet connection is enabled to browse for
additional material and to get access to the coding contest environment. The contest
environment, e.g., network connectivity and the result server, was provided by
Catalysts. After login into the contest environment, a general and encrypted task
description can be downloaded by the individual participants. After starting the
contest, the task description related to the first level is available for download
(password protected). The password for each consecutive level is visible only for
individuals or groups that completed the previous level. Note that teams are allowed
to work on distributed computers but have to upload the results by using one single
account. The results have to be submitted to the control center (i.e., CatCoder) which
delivers feedback (correct or incorrect results) to the participants. Note that a level is
considered to be completed if all test cases succeed and the results are correct.

Contest Material. The whole task (i.e., general task description) for the contest was to
write a lip reading program that calculates the most likely sentence that was formed
by a number of input mouth shapes. A mouth shape, in the context of this coding
contest, consisted of four pieces: upper lip, lower lip, teeth, and the tongue. Every
mouth shape represents one or more letters or syllables of the English alphabet.

• Level one, two, and three were easy tasks to provide the baseline for the later
levels: Recognize a letter, recognize a word (out of a dictionary), and recognize a
word including syllables. Syllables are tricky because they represent two or more
letters of the English letters which makes the search for matching words more
complex. All possible mouth shapes and which letters/syllables they can
represent was provided in the task description and an additional file. The
dictionary held 18,609 real English words and was provided in another file inside
the task package.

114 D. Winkler et al.

• In level four, the task was to calculate the likelihood that a particular letter or
syllable is followed by another letter of syllables (based on the dictionary).

• This provides the syllable likelihood which is used in level five: Since a group of
mouth shapes could match many different words, the likelihood for all words has
to be calculated and the most likely word will be the result.

• The goal for level six was to calculate the likelihood of the words (interpreted out
of mouth shapes) inside a sentence. A file with 551,620 words (Collection of
Shakespeare texts) provided the baseline.

• In the final level (level seven) the teams received only a number of mouth shapes
and they had to guess the most likely sentence said. Note that this exercise is
based on words inside sentences based on Shakespeare texts.

4.4 Data Collection and Analysis

For analysis purposes, we captured all communication data, i.e., time stamps, number
of iterations, and defects per task/level (at least one defect lead to another iteration),
and the submitted results (code fragments) for analysis purposes. In this paper we
focus on the test results and do not analyze the delivered source code.

Data Collection. Communication data is captured in a log file including submitted
results, test cases, timestamp, user name, and test case values. In addition participants
are asked to submit their source code in a designated folder structure. Note that source
code submission is voluntarily. CatCoder, the server application that hosts the contest,
extracts the information of the log file and generates a human-readable spreadsheet
presentation including the list of participants ordered by rank. In addition registration
data, experience levels, and years of experience (a control value) is available in a
database log file for further usage.

Data Analysis. The final result set (i.e., a spreadsheet) holds data of individual
participants, experience data, team information (solo or pair programming), and
required duration and defects per level. Note that we used the data in an anonymous
way by removing confident and private data for evaluation. For evaluation purposes
we removed participants who did not provide the requested data or did not permit
further data analysis (see Section 4.2 for details). We applied descriptive statistics for
data analysis and the t-test at a significance level of 95% for hypothesis testing.

4.5 Limitations and Threats to Validity

Every empirical study has to deal with several threats to validity. We discuss the most
important threats and highlight how we addressed them in the study setting:
Conclusion validity. The study included 95 participants with different backgrounds,
i.e., junior and senior developers and professionals. In addition there might be a
specific subset of programmers who participate in challenges and contests. Another
aspect is that seniors (maybe even juniors) could also work in industry and might be

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 115

considered as “professionals” but we did not investigate these possible effects in this
paper. We applied the t-test at a significance level of 95% for hypothesis testing. To
address internal validity considerations, the coding contest has a history going back to
2007 and several pilot studies and contests have already been run. Thus the study
setup has been proved several times. We avoided communication between the
participants but we allowed communication within study teams. We captured the skill
level and the years of programming experience prior to the study (during registration).
The study duration was limited to 240 minutes (4 hours). Construct validity focuses
on the relation between theory and observations. The study is based on related work
and previous coding contests and addresses efficiency and duration, common
variables in empirical studies. External threats to validity focus on the participants
across different skill levels, i.e., junior and senior developers and professionals. We
used a classroom setting to monitor and control study variables, supported by the
contest organization team. The contest organization team was responsible for correct
contest execution, e.g., they reported whether a pair followed the intended pair
programming rules.

5 Results

This section summarizes the initial findings of the coding contest carried out in
Vienna, Austria and Cluj, Romania in the fall of 2012.

5.1 Coding Contest Effort and Levels

Table 2 presents the mean effort (Table 2a) of participants based on the last
completed (and submitted) task and the individual level achieved (Table 2b). Note
that the time stamp is registered on submission time. For example, if the participant
successfully completed level 1 and 2 and did not complete level 3; the timestamps for
level 1 and 2 are used for calculating the overall working duration; level 2 is the final
and highest level. Table 2 presents the results of this analysis step. Regarding the
contest effort there is a similar mean overall duration for completing the tasks (2:23
for juniors and 2:11 for professionals). We did not observe any significant differences
regarding the mean working duration. It is notable that the standard deviation (SD) for
juniors is some higher.

Table 2a. (a) Overall Effort [hh:min] Table 2b. (a) Completed Levels

 Junior Senior Prof. Total Junior Senior Prof. Total
Mean 2:23 2:20 2:11 2:19 Mean 1.8 2.6 2.2 2.3

SD 1:02 0:56 0:46 0:55 SD 0.93 1.69 0.67 1.39
Min 0:37 0:55 0:58 0:37 Min 1 1 1 1
Max 3:57 3:58 3:33 3:58 Max 4 7 3 7

The analysis of the maximum level reached by the participants is quite interesting.

Again, as expected juniors (highest level on average: 1.8) completed on average a

116 D. Winkler et al.

lower level compared to seniors (highest level on average: 2.6) and professionals
(highest level on average 2.2). It was quite surprising that seniors achieved on average
a higher level compared to professionals. It is also notable that professionals had the
lowest maximum level (maximum level 3) compared to seniors (maximum level 7)
and juniors (maximum level 4). This finding is quite surprising and requires a more
detailed investigation on the reasons of this effect.

Table 3 presents the results of the analysis of the level-based contest, including the
number of participants who completed every level. This number decreases over time,
starting from 95 participants and completing with 4 participants who finished the last
level (i.e., level 7). It is notable that level 5 and 6 was completed quite fast (less than
20 min on average) by a small number of participants (6 participants completed level
5 and 5 participants completed level 6). Regarding defects delivered in the submitted
results, it is notable that level 1 submissions included on average 3.13 defects per
participant or team. Nevertheless, the maximum number of defects is 72 at level 1 (an
explanation of this high average value). It is also notable that the 5 participants who
completed level 6 did not deliver any defect.

Table 3. Overall Effort and Defects per Level

 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
Total 95 68 28 11 6 5 4

Effort mean 1:03 1:06 1:06 0:48 0:20 0:13 0:51
Effort SD 0:42 0:39 0:38 0:23 0:10 0:05 0:21

Min 0:14 0:11 0:12 0:16 0:07 0:08 0:28
Max 3:46 2:49 2:35 1:35 0:32 0:19 1:16

Defects mean 3.13 1.6 2.18 1.18 1.83 0 1.75
Defect SD 8.87 2.59 2.83 1.78 1.94 0 2.06

Min 0 0 0 0 0 0 0
Max 72 12 11 5 5 0 4

5.2 Developer Experience

Table 4 presents the analysis results of the individual experience groups, i.e., Juniors,
Seniors, and Professionals, and the individual levels (level 1-7) of the coding contest.

Table 4. Effort and Defects per Level and Experience Level

 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
Juniors 24 13 4 2 0 0 0

Effort mean 1:17 1:32*1 1:05 1:09*2 - - -
SD 0:50 0:53 0:28 0:03 - - -

Min 0:29 0:21 0:26 1:07 - - -
Max 3:45 2:49 1:30 1:11 - - -

Defects mean 2.9 1.31 1 1 - - -
SD 5.58 2.06 1.41 1.41 - - -

Min 0 0 0 0 - - -
Max 19 7 3 2 - - -

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 117

Table 4. (continued)

 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
Seniors 51 38 18 9 6 5 4

Effort mean 0:59 0:56*1 1:11 0:43*2 0:20 0:13 0:51
SD 0:41 0:31 0:35 0:23 0:10 0:05 0:21

Min 0:13 0:11 0:22 0:16 0:07 0:08 0:28
Max 3:34 2:17 2:14 1:35 0:32 0:19 1:16

Defects mean 4.08*3 1.89 2.56 1.22 1.83 0 1.75
SD 11.36 3.1 2.43 1.92 1.94 0 2.06

Min 0 0 0 0 0 0 0
Max 72 12 6 5 5 0 4

Professionals 20 17 6 0 0 0 0
Effort mean 0:57 1:09 0:50 - - - -

Effort SD 0:31 0:33 0:53 - - - -
Min 0:25 0:22 0:12 - - - -
Max 2:09 2:10 2:35 - - - -

Defects mean 1.0*3 1.18 1.83 - - - -
Defect SD 2.27 1.51 4.49 - - - -

Min 0 0 11 - - - -
Max 8 5 6 - - - -

Note that Juniors did not complete any levels above 4 and Professionals did not

complete levels above 3. We applied a t-test to test effort and delivered defects per
group of participants. Between Juniors and Seniors there was a significant difference
regarding the duration required to complete level 2(*1) and level 4(*2). In both cases the
Seniors were significantly faster. Between Seniors and Professional there was a slight
significant (93%) difference at the level 1 defects(*3). We did not observe any
additional significant differences.

5.3 Development and Programming Approach

Table 5 presents the analysis results of the development and programming approach,
i.e., solo and pair programming and the individual levels of the coding contest.

Table 5. Effort and Defects per Level and Solo/Pair Programming Approach

 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7
Solo Programmer 53 40 19 8 5 4 3

Effort mean 1:00 1:00 0:59 0:50 0:21 0:13 0:59
SD 0:40 0:37 0:36 0:25 0:10 0:06 0:17

Min 0:14 0:10 0:12 0:16 0:07 0:08 0:43
Max 3:34 2:32 2:14 1:35 0:32 0:19 1:16

Defects mean 3.23 1.7 1.79 1:62 2.2 0 2.33
SD 10.61 2.93 2.23 1.92 1.92 0 2.08

Min 0 0 0 0 0 0 0
Max 72 12 6 5 5 0 4

118 D. Winkler et al.

Table 5. (continued)

Pairs 42 28 9 3 1 1 1
Effort mean 1:06 1:14 1:20 0:44 0:13 0:14 0:28

SD 0:45 0:39 0:42 0:20 0 0 0
Min 0:16 0:12 0:26 0:28 0:13 0:14 0:28
Max 3:46 2:49 2:35 1:07 0:13 0:14 0:28

Defects mean 3 1.46 3 0 0 0 0
SD 6.14 2.06 3.84 0 0 0 0

Min 0 0 0 0 0 0 0
Max 27 7 11 0 0 0 0

We did not observe any significant differences between the two groups. The

number of participants who completes more than four levels was too low executing
statistical tests. There was only one pair that completed 7 compared to three single
programmers on the other hand.

5.4 Final Scoring and Ranking

Based on the summarized results we calculated the overall score of the top-10
performers (see Table 6 for details). It has to be mentioned that the “best participant”
was a pair programming team, follow by seven solo programmers and concluded by
two pairs. No Professional made it into the top 10; only two Junior reached rank 8 and
10. Seniors were the dominating group. A reason for this could be that younger
programmers can handle the stress easier and deliver faster results while the older
Professionals who spend much time to create a solid solution. Another reason could
be that professionals who are experts on frameworks and architecture are unfamiliar
with programming from the scratch but they prefer starting from a sound code base.

Table 6. Top-10 Score of the Coding Contest

Rank Levels Compl Total Defects Program.Appr Exp. Level Years of Exp.
1 7 0 Pair Senior 7
2 7 7 Solo Senior 15
3 7 9 Solo Senior 10
4 7 10 Solo Senior 7
5 6 12 Solo Senior 7
6 5 23 Solo Senior 6
7 4 13 Solo Senior 6
8 4 6 Solo Junior 3
9 4 13 Pair Senior 6

10 4 4 Pair Junior 4

6 Discussion, Conclusion and Future Work

Experiences and/or benefits of software development practice, i.e., solo and pair
programming, depend on several factors, as indicated in the related work section, e.g.,

Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency 119

complexity of the product and experience of developers. While pair programming
works well in an educational environment, there are controversial results in industry
projects. Nevertheless, additional studies are necessary to fully understand the effect
of programming practice in different contexts. Coding contests are a promising option
to (a) recruit and motivate a large number of participants at different background and
experience levels (e.g., juniors, seniors, and professionals) and (b) enable an easy
execution of controlled experiments.

RQ1 focuses on the question how coding contests can support controlled experiments.
The coding contest setting presented in this paper attracted people from different
areas, i.e., from university and industry, and enable including a heterogeneous group
of participants. In addition the basic technical environment and the classroom setting
enable the control of relevant parameters and variables important for a controlled
experiment. Thus, we conclude that coding contests fits well to requirements given by
controlled experiments.

RQ2 focuses on the investigation of experience and team-structure (solo vs. pair
programming) and the effects on code construction. We applied the level-based
concept of coding contests to evaluate a set of hypothesis:

• H1 states that professionals perform similar than juniors without considering the
team approach (H1.0). The results showed that juniors required more time on
average to solve their tasks and complete on average fewer levels compared to
professionals. A surprising finding was that the maximum reached level for
juniors was higher than for professionals. We did not observe any significant
differences. Based on the findings H1.0 cannot be rejected and H1.1 must be
rejected.

• H2 assumed that professionals deliver similar defects on average compared to
juniors. The results showed that professionals delivered fewer defect compared to
juniors at the first 2 levels and more at the third level. Note that professionals did
not reach level 4+. Another interesting finding was that the seniors delivered
most defects at every level, but – in contrast to professionals (maximum level 3)
and juniors (maximum level 4) – 4 seniors completed the contest with level 7,
i.e., the final level. H2.0 is not supported by the findings.

• H3 focuses on team effects, i.e., how solo programmers perform in contrast to
pair programmers. The results showed on average a higher effort for completing
level 1-3 and similar or less effort for level 4-7. This finding indicates benefits
for pair programmers regarding more complex tasks. Note that the winner of the
contest is a pair programming team and there are 3 pair programming teams in
the top 10 but there are 7 solo programmers in the top score. However,
hypothesis is not supported by the results and, thus, rejected.

• H4 assumes that pairs promise delivering higher product quality, i.e., fewer
defects. The results support this assumption for all levels, except level 3. Note
that pair programming teams did not deliver any defect regarding the contest
levels 4-7, but there was only one pair programming team who completed level 5
to 7. Thus, this hypothesis must be rejected.

120 D. Winkler et al.

The results presented in the paper showed initial results of the coding contest,
conducted in the fall of 2012. Thus, future work will include additional and in-depth
analysis of the initial findings, including the investigation of the effects of different
programming languages, different locations, and in-depth analysis of source code and
test cases with respect to code and test case quality. The team from Catalysts has
already conducted several contests in the past (starting in 2007) and is also planning
upcoming coding contests in the future. Thus, future work will also include the
analysis of results in a series of contests, in terms of replication and/or the
introduction of new measures, related to upcoming research challenges for
consideration in future contests .

References

[1] Amraii, S.A.: Observations on teamwork strategies in the ACM international collegiate
programming contest. Magazine Crossroads 14(1) (2007)

[2] Arisholm, E., Gallis, H., Dyba, T., Sjoberg, D.I.K.: Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise. IEEE TSE 33(2) (2007)

[3] Beck, K.: Test Driven Development by Example. Addison-Wesley Longman (2002)
[4] Dyba, T., Arisholm, E., Sjoberg, D.I.K., Hannay, J.E., Shull, F.: Are two heads better

than one? On the Effectiveness of Pair Programming. IEEE Software 24(6) (2007)
[5] Cockburn A., Williams L.: The costs and the benefits of pair programming. In: XP
[6] Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair

Programming on Product Quality. In: Proceedings of ICSE, pp. 495–504 (2005)
[7] Juristo, N., Moreno, A.M.: Basics in Software Engineering Experimentation. Springer

(2010)
[8] McDowell, C., Werner, L., Bullock, H., Fernald, J.: The Effects of Pair Programming on

Performance in an introductory programming course. In: Proc. of the 33rd SIGCSE
Techn. Symp. on Computer Science Education, pp. 38–42 (2002)

[9] Müller, M.: Two controlled experiments concerning the comparison of pair programming
to peer reviews. Journal of Systems and Software 78, 166–179 (2005)

[10] Nawrocki, K., Wojciechowski, A.: Experimental Evaluation of Pair Programming. In:
Proc. of the 12th European Software Control and Metrics Conf., pp. 269–276 (2001)

[11] Padberg, F., Müller, M.: Analyzing the Cost and Benefit of Pair Programming. In: Proc.
of the Int. Symposium on Software Metrics, pp. 166–177 (2003)

[12] Parrish, A., Smith, R., Hale, D., Hale, J.: A field study of developer pairs: Productivity
impacts and implications. IEEE Software 21(2), 76–79 (2004)

[13] Phongpaibul, M., Boehm, B.: An empirical comparison between pair development and
software inspection in Thailand. In: Proc. of ISESE, pp. 85–94 (2006)

[14] Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley Longman (2010)
[15] Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair

programming. IEEE Software, 19–25 (2000)
[16] Williams, L., McDowell, C., Nagappan, N., Fernald, J., Werner, L.: Building Pair

Programming Knowledge through a Family of Experiments. In: Proc. of ISESE (2003)
[17] Winkler, D., Varvaroi, R., Goluch, G., Biffl, S.: An Empirical Study On Integrating

Analytical Quality Assurance Into Pair Programming. Short Paper, ISESE (2006)
[18] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:

Experimentation in Software Engineering. Springer (2012)

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 121–134, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Visualizing and Managing Technical Debt in Agile
Development: An Experience Report

Paulo Sérgio Medeiros dos Santos1, Amanda Varella2, Cristine Ribeiro Dantas2,
and Daniel Beltrão Borges2

1 Federal University of Rio de Janeiro, System Engineering and Computer Science
Department, Cidade Universitária – Centro de Tecnologia.

Rio de Janeiro, Brazil
pasemes@cos.ufrj.br

2 Petrobras, Exploitation and Production Business Solutions, Centro
20031-912 Rio de Janeiro, Brazil

{amanda.varella,cristine.dantas,
daniel.borges}@petrobras.com.br

Abstract. This paper reports the experience of an architecture team of a
software development department with 25 agile teams in supporting technical
decisions regarding technical practices. The main motivation to use technical
debt metaphor was its acknowledged potential in driving software development
and maintenance decisions, especially those long term maintenance tradeoffs
which are usually less visible to developers and decision makers in general. We
propose the use of a "technical debt board" with main technical debt categories
to manage and visualize the high-level debt, combined with tools to measure it
at low-level (software metrics and other kind of static analysis). We have found
that our approach improved the teams’ awareness about the technical debt,
stimulated a beneficial competition between teams towards the debt payment
and enhanced the communication regarding technical decisions.

Keywords: technical debt, software quality, visualization, agile practices.

1 Introduction

One of the main tenets that make agile methods effective is the right balance between
the importance given to the people developing the software and the engineering
practices dedicated to keep its quality. In establishing this balance, agile teams can
leverage from the embodied tacit knowledge in the team and the technical readiness
for change of the software product [1] to attain its primary objective: deliver value.

However, this equilibrium can be hard to achieve. And, if not consciously
monitored, it seems that it can be more easily inclined towards the people or
management side. The following aspects help explain this situation. First, the agile
development de-emphasis to long-term planning in favor of short-term adaptiveness,
although it represents a strength in a rapidly changing development environment, can
create a temptation to neglect best practices that are essential to long-term success [2].
Second, most major agile methods such as Scrum and Crystal are more focused in the

122 P.S.M. dos Santos et al.

managerial aspects of software development than in providing engineering guidance
[3] – one important exception is Extreme Programming. Last, the engineering
practices commonly used in agile methods require highly qualified professionals [4]
which must be able to deal with the lack of upfront design and investment in the life
cycle architecture [1, 5] besides, these professionals must be capable of realizing
automated testing and continuous integration [6].

In fact, all these aspects are implicitly present in the agile manifesto
(http://agilemanifesto.org/). We cite four principles directly related to this discussion:
(i) the continuous delivery of valuable software to the client, (ii) continuous attention
to technical excellence and good design enhances agility, (iii) simplicity – the art of
maximizing the amount of work not done – is essential and (iv) welcome changing
requirements, even late in development. Combining the ideas of these principles, we
have the following challenge: how to balance quality, simplicity, agility and welcome
change in delivering value to the client?

Thus, although delivering value is the ultimate objective of agile methods,
delivering it as fast as possible without an adequate attention to the engineering
practices can represent a problem. In 1992 Ward Cunningham created a metaphor to a
code that is written in a fast and “dirty” way or, more technically, code that is
produced taking shortcuts that fall short of best practices. He called this metaphor
Technical Debt [7]. Like a financial debt, the technical debt incurs interest payments,
which come in the form of the extra effort that has to be done in future development
because of inappropriate design choices [8]. This includes all aspects of software
development including its documentation, test cases and source code.

There are many reasons to get into technical debt – not all bad, especially when it
is taken in a conscious manner. In addition, technical debt is not limited to practices
and techniques associated with the code design itself. More broadly, technical debt
can be characterized by aspects associated with the development of the software
product as a whole [9], including: lack of automated tests, unnecessary coupled code,
duplicated code, infrastructure related issues like flawed automatic building, lack of
continuous integration and automated deployment.

Although the issues related with the technical debt are in the surface technical, this
type of issues cannot always be objectively addressed. It is not possible to pay the
technical debt simply saying to the developers: you must write automated tests, don’t
couple your code, don’t duplicate your code or refactor your code. When dealing with
this kind of situation, cultural factors must also be managed in order to make
developers capable of dealing with tension between engineering best practices and
other factors such as ship date and skills of engineers that are available.

This paper reports an experience of how a software development department of a
big oil company located in Brazil dealt with a scenario similar to the one described
above. In an advanced stage of agile adoption, the department was facing a condition
where the managerial aspects were already fairly consolidated with the introduction of
Scrum, but the engineering practices were lagging behind in terms of maturity. We
describe how we have used the technical debt metaphor to stimulate software
developers to bring the managerial/engineering equilibrium to an optimal state where
the value delivery is maximized in long-term.

Visualizing and Managing Technical Debt in Agile Development: An Experience Report 123

2 Background

As an oil and gas company, Petrobras (http://www.petrobras.com.br) develops
software in areas which demands increasingly innovative solutions in short time
intervals. The company started officially with Scrum in March of 2009, using its
lightweight framework to create collaborative self-organizing teams that could
effectively deliver products. After the first team had adopted Scrum with a relative
success, the manager noticed that the framework could be used in other teams, and
thus he invested in training and coaching so that the teams could also have the
opportunity to try the methodology. At that time, only the software development
department for E&P, whose software helps to Exploit and Produce oil and gas, had
management endorsement in adopting scrum and agile practices that would let teams
deliver better products faster. About one year and half later, all teams in the
department were using Scrum as its software development process. The developers
and the stakeholders in general noticed expressive gains with the adoption of Scrum.
The results had varied from the skill of the team leadership in agile methodologies,
customer participation, level of collaboration between team members, technical
expertise among other factors.

The architecture team of the software development department for E&P was
composed of four employees, whose responsibility was to help teams and offer
support for resolution of problems related to agile methods and architecture. At that
time, it had to work with 25 teams which had autonomy regarding its technical
decisions. In fact, autonomy was one of the main managerial concerns when adopting
agile methods.

After Scrum adoption, there was active debate, training and architectural meetings
about whether Agile engineering practices should also be adopted in parallel with
managerial practices; in hindsight, it would have accelerated the benefits had they
been adopted. But the constraints of time and budget, decisions made by non-
technical staff, and the bureaucracy in areas such as infrastructure and database, led to
the postponement of those efforts initially. Moreover, the infrastructure area had only
build and continuous integration (CI) tools available. And, unfortunately, these tools
were not taken seriously by the teams. The automated deployment was relatively new
and was postponed because of fear of implementing it in immature phase. Other tools
and monitoring mechanisms were not used by the teams even so the architecture team
was aware of its possible benefits.

Despite all initiatives in training and supporting in agile practices such as
configuration management, automated tests and code analysis, teams, represented by
25 focal points in architectural meetings, did not show much interest in adopting
many agile practices – particularly technical practices. Delivering the product on the
date agreed with the customer and maintaining the legacy code were the most urgent
issues. Analyzing retrospectively it seems that the main cause for this situation was
that debt was getting accrued unconsciously. Serving the client was a much more
visible and imperative goal. This can be one explanation for the ineffectiveness of
prior attempts in introducing technical practices. Be it by the means of specialized
training or by the support of the architecture team.

124 P.S.M. dos Santos et al.

With these not so effective attempts to promote continuous improvement with
teams, the architecture team sought a way to motivate them to experiment agile
practices without a top-down “forced adoption”. The technical debt metaphor,
described in next section, was the basis for the approach.

3 Related Works and the State of the Practice

Technical debt has been a central theme among researchers and practitioners in the
last years as an alternative perspective for software development and maintenance
decisions. It offers a real world metaphor which is naturally understandable by most
software stakeholders and serves as tool to evaluate the tradeoffs between proposed
enhancements, corrective maintenance and technical/non-functional improvements.
Besides that appeal, what seems to be the most significant contribution of the
technical debt prism is that it brings to the light the long term maintenance tradeoffs
which are usually less visible to developers and decision makers in general.

It is possible to identify three main effort directions in the technical literature and
informal sources (blogs) related to technical debt.

The first are those [10, 11, 12, 13] seeking to identify the main properties of
technical debt and conceptualize the main sources of its accumulation. This includes
interviews with practitioners to see how they interpret technical debt and how it
manifests in their daily activities [10, 13]. In addition, it also includes discussions
about technical debt characteristics, such as described in [11] and [12]: visibility (to
make it visible for daily decisions), value (to estimate its size and help deciding when
it should be paid) and intentionality (unintentional, when it is a result of low quality
work and intentional, for tactical (short-term) and strategic (long-term) reasons).

The second group [14, 15, 16, 19] is linked to how the debt can be managed and
deciding when it should paid. There are many approaches to do that. In [14] four of
them are cited, including the simple cost-benefit analysis, where the cost of paying the
interest versus principal is analyzed, and the portfolio-based, where technical debt
items are treated as assets that composes a portfolio managed to maximize the return
of investment or minimize the investment risk. Both [15] and [16] are cost-benefit
approaches and [19] proposes a portfolio-based approach. Valuing and making
technical debt visible are the basic inputs for these approaches. And, in fact, these two
properties are directly related to each other as it only possible to manifest something
that can be observable (in this case, valued). Examples of technical debt measurement
ranges from the use of rough estimates [15, 19] to the more precise quantitative data
based on source code metrics [16].

The use of source code or, generally, “low-level” software metrics to estimate a
value for technical debt forms the third main active area. In [17], automatic static
analysis is empirically evaluated as mean to quantify the values of technical debt at
code level. And in [18] the relative technical debt value associated with three code
smells (data class, duplicated code and god class) is investigated.

Despite the effort on identifying means of how technical debt can be measured
(and visualized), it seems that only low level aspects are being focused on. The use of

Visualizing and Managing Technical Debt in Agile Development: An Experience Report 125

static analysis tools and source code metrics are self-explanatory examples. And even
on those works that describe how it can be estimated qualitatively, the attention is
turned to software products and not to software practices. For instance, examples of
technical debt items in [15] are: architectural design violations, test skipped, outdated
documentation and design debt.

Given the context aforementioned, especially regarding the role of the architecture
team serving various teams in parallel and the fact that the teams have autonomy in its
technical decisions, there was a need for the technical debt estimation and
visualization in a “macro-level”, i.e., not only associated with source code aspects but
with technical practices involving the product in general. This would give the
opportunity to see the actual state of the department and indicate the “roadmap” for
future interaction with the development teams.

The actions involved in introducing this kind of visualization and the management
activities based on that visualization are described in next section.

4 Actions

Given the challenge in addressing the issues caused by the technical debt, the
architecture team started to discuss some initiatives that could help the area: (i)
recognize that the lack of attention paid to the technical debt was a problem (teams
and management), (ii) visualize the existing technical debt, (iii) quantifying the
amount of technical debt, (iv) create mechanisms of feedback to see the technical debt
rising or decreasing and (v) take actions to correct implementations that lead to
technical debt.

It is important to mention that these actions were not planned upfront, but they
emerged according to the feedback that the architecture team was having in trying to
implement the technical debt awareness in the department.

4.1 Recognize That the Lack of Attention Paid to the Technical Debt Was a
Problem

The first step the architecture team had to take was to make sure every developer
knew the concept of technical debt. As in the pair “reckless x inadvertent” in Martin
Fowler’s [8] quadrant of technical debt, most of the team members did not know the
exact meaning of technical debt. The architecture team then started to do a series of
presentations about the theme. What is technical debt; what is its size; why do we
accumulate technical debt and how do we pay it; and how to benefit from technical
debt were topics presented to the audience.

The architecture team had also the challenge to speak to different audiences. More
technical presentations were made to the teams, but to the upper level management,
another language was needed, so everyone could understand the topic by their own
point of view.

At that time, many teams were already struggling with problems of poor
architecture, rework, delays, and poor quality. All of these issues where impacting the
relationship with their clients.

126 P.S.M. dos Santos et al.

4.2 Visualize the Existing Technical Debt

The software development department was already having some initial Kanban [21]
implementations. As one of the main principles of Kanban is visualization, these ideas
were permeating the minds of the group, and many initiatives of change management
were taking visualization into account.

The architecture team modeled a board, where the lines corresponds to teams and
the columns are the categories and subcategories of technical debt, based on the work
of Chris Sterling [9] as illustrated in Figure 1.

Fig. 1. Technical debt categories

In each cell, formed by the pair team x technical debt category, the maturity of the
team was evaluated according to predefined criteria. Examples of these criteria are
displayed in Table 1. For full description please see Appendix A. Notice that in the
real board shown in Figure 2, we used the colors red, yellow and green to show the
compliance level of each criterion. So, we kept the reference to these colors in the text
even though Figure 1 uses a gray scale (white = green, yellow = light gray and red =
dark gray).

The criteria just provided a direction of what kind of practices would be focused,
but not give directives on how it could be achieved. This was the moment where the
architecture team could offer its support. In addition, the criteria were not a rigid
target. For instance, for unit tests, the ideal coverage level was dependent on the
system architecture, technologies involved (e.g., programming language and
frameworks), the criticality of the application and other factors. All of this was subject
of discussion between the development teams and the architecture team. And that was
one of the biggest benefits on bringing the debt visible.

The architecture team, in its internal conversations, was concerned that this
approach could make the teams feel compelled to follow the orientations. This was
not the objective, on the contrary the objective was to make teams aware of the

Visualizing and Managing Tec

Table 1. C

 Con

Red There

Yellow There is a j

Green There is a job s
team is comm

(compiling

problem and take their ow
teams were not capable of
consulted for support. Thu
points and it was explained
allow the visualization of t
possibility to monitor thei
objective way, focusing on
resistance. Actually, many
to improve their overall wo

chnical Debt in Agile Development: An Experience Report

Criteria examples for technical debt assessment

ntinuous Integration Unit Tests

is no job in the CI Tool. There are no Unit Tests.

job scheduled in the CI Tool. There are some Unit Test

scheduled in the CI Tool and the
mitted to keep the build working
g and with unit tests passing).

There are Unit tests in a lev
that the team is comfortab

with.

n actions to amend their technical difficulties. And if
f addressing the problem, the architecture team should
us, this initiative was first presented to the teams’ fo
that the main objective was not to constrain anyone, bu

their actual state regarding the technical debt and have
ir own progress. The proposal was presented in a v
n the engineering issues. The focal points did not o
of them thought that the initiative was a good opportun
rk (even with their own “problems” exposed).

Fig. 2. Real technical debt board

127

.

ts.

vel
ble

the
d be
ocal
ut to

the
very
ffer
nity

128 P.S.M. dos Santos et al.

After the design of the technical debt board, each team was invited to a rapid
meeting in front of the board, where all team members talked about the status of each
criterion, translating it to the respective color. During these meeting the teams could
also conclude that some categories were not relevant or applicable for their systems.
This meeting should happen every month, so that the progress of each category could
be updated. At the end of the meeting, the team members agreed which of the
categories would be the aim for the next meeting or, to put it another way, where they
would invest their efforts in reducing the technical debt. The real board is presented in
Figure 2. Blank cells represent categories not relevant or applicable. Team names
from in the first column were removed from the figure.

4.3 Quantifying the Amount of Technical Debt

To measure the technical debt at source code level, the architecture team has made
use of the tool Sonar (http://www.sonarsource.org/) [20]. Sonar has a plugin that
allows estimating how much effort would be required to fix each debt of the project.
Sonar considers as debts: cohesion and complexity metrics, duplications, lack of
comments, coding rules violation, potential bugs and no unit tests or useless ones. The
details of its formula can be found in [20]. The important aspect is that an estimative
is calculated, and Sonar shows the results financially and the effort in man days
necessary to take the debt to zero (the daily rate of the developer in the context of the
project must be informed).

It is important to mention that Sonar, in fact, use many other tools internally to an-
alyze the source code – each one for different aspects of the analysis. It works as an
aggregator to display results of other tools such as PMD, Findbugs, Cobertura and
Checkstyle among others.

4.4 Create Mechanisms of Feedback to See the Technical Debt Evolution

Having a visualization of the actual state of the technical debt and having it quantified
was important step. However, having the debt quantified in a tool, and making some
adjustments in the course of the system once a month would not be enough. The
teams could make the debt rise during a whole month without even knowing about it.

To address this situation, the architecture team created a virtual tiled board (Figure
3), where each tile had information about the build state of each team in the
department. The major information was the actual state of the build and the project
name (which was removed from figure). If everything was ok (compilation and
automated tests), the tile is green (white in Figure 3), if the compilation was broken,
the tile turns red (dark gray in Figure 3) and if there were failed tests, the tile turns
yellow (light gray in Figure 3). Besides the build information, there is other
information: total number of tests, number of failed tests, test coverage, number of
lines and technical debt (calculated in Sonar).

The virtual tiled board was placed in a big screen in a place where everybody in the
room could see it from their workplaces. The main objective was that when the team
members saw their failed build and that instant feedback would lead them to make
corrective actions so the build could go green again.

Visualizing and Managing Technical Debt in Agile Development: An Experience Report 129

Fig. 3. Some of the virtual tiled board cells in detail (project names were removed from it)

4.5 Take Actions to Correct Implementations That Lead to Technical Debt
Rising

As the mechanisms of feedback were implemented, the teams had instant information
about what should be done to lower the levels of technical debt. With this
information, they could prioritize which categories they would try to improve in the
next month. If the team had some difficulties addressing any of the categories, they
could call upon the architecture team support. In the following months after the board
implementation, the architecture team kept making presentations about each category
and how to deal with them.

5 Lessons Learned

In general terms, we think that the aforementioned actions can lead to small changes
that over time will add up to significant positive change for teams and organizations.
The main evidence for that, in our experience, is summarized below.

5.1 Make Visible. Don’t Dictate.

The line between being firm about the value of implementing Agile practices and
sensitive to the freedom and independence of teams is a difficult one to take right.
With the board exposed, the approach was to encourage teams to self-evaluate theirs

130 P.S.M. dos Santos et al.

technical debt, instead of someone, in our case the architecture team, pointing out
problems. As a result, the teams showed initiative on seeking the architecture team for
help with issues related to technical debt, as for instance, how to implement
automated deployment or how to improve the source code testability for unit tests.

From the moment the debts were inserted, interest began to be contracted, and at
some future time it may have to be paid. Making them visible and managing them,
allowed strategic decision making to choose the best time to pay them – once it was
possible to see how it was accumulating and its possible impacts/costs throughout the
software development lifecycle.

Visualization was a powerful way to simplify complexity, expose the reality and,
consequently, motivate teams to improve.

5.2 Improved Communication

Again, visibility was a key enabler to improve communication among development
teams, architecture team and upper management. It turned the discussions around
technical issues focused and oriented much efforts towards a common (visible) goal.
The meetings around the board is now a regular practice in the department and in
many situations development teams have opportunity to discuss about (the once
unfamiliar) techniques to deal with their debt.

Another important benefit of the afore-described approach was establishing the
basic concepts and tools around the technical debt theme which, again, facilitated the
discussions. Developers are now more aware of the main factors that can contribute to
the technical debt accumulation, are more open to discuss about it and know how to
measure and address (technical practices) it.

5.3 Debts Paid at a Rate Higher than Expected

Besides the mentioned benefits, it was observed that debts were paid at a rate higher
than expected. We interpreted this as a result of the competition among teams. In
addition, we have noticed that this was stimulated by the introduction of gamification
elements. Gamification [23] is the application of game elements and digital game
design techniques to non-game problems, such as business and social impact
challenges. It is used in applications and processes to improve user engagement,
timeliness, and learning.

To apply gamification elements in our context items such as trophies exposed at
the board of technical debt motivated teams to improve quality and pay debts. Every
improvement made at the board, earned the team a trophy (the board in Figure 2 has
some attached to it). This made visible how teams were evolving and kept the
motivation for sustaining the progress.

We have calculated a raw estimative of how the technical debt payment progressed
in the first year. To measure this progress, we kept the technical debt evolution
history in a spread sheet, but only for the first thirteen projects (i.e., the first technical
debt board) – this data was not made public. The progress was measured in the
following manner. Supposing that the red/yellow/green represents an interval scale,
the difference between red/yellow and yellow/green is one unit – for a max of 416

Visualizing and Managing Technical Debt in Agile Development: An Experience Report 131

“units of debt” representing the worst situation of all projects “in red” in a board with
thirteen projects. Considering the initial state of the board, the projects had 327 units
of debt. From this initial state in 06-17-2011 to almost one year after in 05-14-2012,
the projects already had 226 units. This constituted a progress of 30% which was
above our initial expectations considering past experiences in fomenting technical
improvements. It represented a great (visible) achievement in our department. It is
interesting to notice, in addition, that this progress was not homogeneous among
teams. Some teams evolved faster than others. And that, in our view, was one of the
factors that stimulated competition.

The virtual tiled board also played an interesting role in bringing additional
gamification elements to the technical debt management as teams immediately started
to react to the red or yellow colors for broken builds. This was a result of an emerging
social commitment of being seen different among their peers who kept their build
green. The build status changes minutes after the source code check-in/commit by the
team and this rapid feedback loop caused a strong change in the culture of the team
members who after just a couple of weeks were already treating the build status with a
high priority. This improved the perception of the teams in keeping their main/trunk
branch closer to a deployable state as possible.

Thus, in addition to visibility, gamification was a powerful mechanism to motivate
teams in monitor their technical debt.

6 Final Remarks

After Scrum adoption, the most visible symptoms of dysfunction in our software
development department were related to agile engineering practices, where teams
were accumulating a huge amount of technical debt. This paper showed how an
architecture team at Petrobras has managed the technical debt in an agile context,
seeking to reduce the high costs generated by debt issued. Working the change
management iteratively, getting feedback for new actions, the intense use of
visualization, the application of concrete measurements, and working together with
the teams in a collaborative, not imposing manner, all that in context had proved to be
powerful tools to obtain the desired results.

Another important contribution of this paper was proposing an approach for
addressing the technical debt at a high-level. The proposed approach, besides the use
of tools to estimate technical debt based on low-level source code metrics and reports,
involves people to analyze the main contributing technical debt factors and plans the
appropriate time to deal with it. In this manner, the board as a visual instrument has
demonstrated to be useful in our context.

References

1. Boehm, B.: Get ready for agile methods, with care. Computer 35, 64–69 (2002)
2. Dinakar, K.: Agile development: overcoming a short-term focus in implementing best

practices. In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications, pp. 579–588. ACM, New
York (2009)

132 P.S.M. dos Santos et al.

3. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile
methods: a comparative analysis. In: Proceedings of the 25th International Conference on
Software Engineering, pp. 244–254 (2003)

4. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is Extreme Programming Just Old Wine
in New Bottles. Journal of Database Management 16, 41–61 (2005)

5. Mishra, D., Mishra, A.: Complex software project development: agile methods adoption.
Journal of Software Maintenance and Evolution: Research and Practice 23, 549–564
(2011)

6. Svensson, H., Host, M.: Introducing an Agile Process in a Software Maintenance and
Evolution Organization. In: 9th European Conference on Software Maintenance and
Reengineering, CSMR 2005, pp. 256–264 (2005)

7. Cunningham, W.: The WyCash portfolio management system. SIGPLAN OOPS Mess. 4,
29–30 (1992)

8. Fowler, M.: Technical Debt (2009),
http://martinfowler.com/bliki/TechnicalDebt.html

9. Sterling, C.: Managing Software Debt: Building for Inevitable Change. Addison-Wesley
Professional (2010)

10. Lim, E., Taksande, N., Seaman, C.: A Balancing Act: What Software Practitioners Have to
Say about Technical Debt. IEEE Software 29, 22–27 (2012)

11. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCormack,
A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N.: Managing
technical debt in software-reliant systems. In: Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, pp. 47–52. ACM, New York (2010)

12. McConnell, S.: Technical Debt,
http://forums.construx.com/blogs/stevemcc/archive/
2007/11/01/technical-debt-2.aspx (2007)

13. Klinger, T., Tarr, P., Wagstrom, P., Williams, C.: An enterprise perspective on technical
debt. In: Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 35–38.
ACM, New York (2011)

14. Seaman, C., Guo, Y., Izurieta, C., Cai, Y., Zazworka, N., Shull, F., Vetro, A.: Using
technical debt data in decision making: Potential decision approaches. In: 2012 Third
International Workshop on Managing Technical Debt (MTD), pp. 45–48 (2012)

15. Seaman, C., Guo, Y.: Measuring and Monitoring Technical Debt. In: Zelkowitz, M. (ed.)
Advances in Computers. Academic Press (2011)

16. Zazworka, N., Seaman, C., Shull, F.: Prioritizing design debt investment opportunities. In:
Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 39–42. ACM, New
York (2011)

17. Vetrò, A.: Using automatic static analysis to identify technical debt. In: Proceedings of the
2012 International Conference on Software Engineering, pp. 1613–1615. IEEE Press,
Piscataway (2012)

18. Fontana, F.A., Ferme, V., Spinelli, S.: Investigating the impact of code smells debt on
quality code evaluation. In: 2012 Third International Workshop on Managing Technical
Debt (MTD), pp. 15–22 (2012)

19. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In: Proceedings
of the 2nd Workshop on Managing Technical Debt, pp. 31–34. ACM, New York (2011)

20. Gaudin, O.: Evaluate your technical debt with Sonar (2009),
http://www.sonarsource.org/
evaluate-your-technical-debt-with-sonar/

Visualizing and Managing Technical Debt in Agile Development: An Experience Report 133

21. Anderson, D.: Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press (April 7, 2010)

22. Gaillot, E.: What is Coding Dojo (2012),
http://codingdojo.org/cgi-bin/wiki.pl?WhatIsCodingDojo

23. Werbach, K.: Gamification, University of Pennsylvania (2012),
https://www.coursera.org/course/gamification

Appendix A - Technical Debt Criteria

 Red Yellow Green

Automatic
Construction

No build tool
used

Build tool is used but
build is dependent on
local configuration

Build tool is used and
build is not dependent
on local configuration

Continuous
Integration

There is no job in
the CI Tool

There is a job
scheduled in the CI
Tool

There is a job scheduled
in the CI Tool and the
team is committed to
keep the build working

Automatic
Deployment

Deployment is
manual

Deployment is an
automated process
using a build tool
command

Deployment is an
automated process
using the CI Tool

Continuous
Delivery

Release to
staging
environments is
manual

Release is an
automated process for
validated artifacts
using a build tool
command

Release is an automated
process using a build
pipeline

Style
Good Practices
Bugs

No static analysis
tool used

Static analysis tool is
configured with static
rules

Static analysis tool is
configured and the team
is committed to keep
high levels of rules
compliance

Architecture No architecture
analysis tool used

Architecture analysis
tool is configured
with architectural
(dependency) rules

Architecture analysis
tool is configured and
the team is committed
to keep high levels of
rules compliance

Tests: Unit/
Integration/
Acceptance/
Performance/
Load/ Security

No Tests Some Tests There are tests in a level
that the team is
comfortable with

134 P.S.M. dos Santos et al.

Statistics No statistics on
the code quality

Statistic on the code
quality are collected

Statistic on the code
quality are collected and
the team is committed
to keep high levels of
quality

Monitoring No monitoring The monitoring tool is
configured to alert the
team when the
application is not
responding

The monitoring tool is
configured to alert the
team when the
application or any of its
dependences are not
responding

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 135–149, 2013.
© Springer-Verlag Berlin Heidelberg 2013

How Are Agile Methods and Practices Deployed
in Video Game Development?

A Survey into Finnish Game Studios

Jussi Koutonen and Mauri Leppänen

Department of Computer Science and Information Systems
P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

jussi.koutonen@sysdrone.fi, mauri.leppanen@jyu.fi

Abstract. Agile methods and practices are largely deployed in software engi-
neering. Game development shares many features that have given rise to the
emergence of agility in software engineering. There is, however, a lack of un-
derstanding of the extent to which agile methods and practices are actually dep-
loyed in video game development and with which impacts. This paper reports
on a survey into Finnish game studios. It shows that Scrum and, to a lesser de-
gree, XP and Kanban are frequently used in the game studios. The most positive
impacts of agility concern communication, quality of video games, and finding
fun and implementable features earlier.

Keywords: video game development, Scrum, XP, Kanban, agile practices.

1 Introduction

The game industry is increasingly expanding. In 2007 the software portion of video
game revenue was $9.5 billion, exceeding that of movies industry [38]. According to
the forecast by PricewaterhouseCoopers [45], total global spending on video games
will expand to $83.0 billion in 2016, growing at a 7.2 percent compound annual rate.
The growth is expected to be rapid especially in the segment of online and wireless
games with smartphones and tablets.

Game industry faces, however, a number of challenges. Players’ expectations of
getting “wow” and flow reactions in terms of visual appearance, script, sound world
and technological novelty are growing. The games have to offer better and better
player experience and co-experience [9]. Developing groundbreaking video games is
very demanding [13]. The projects involve people with various expertise, making
envisioning, communication, coordination and control most complicated [27, 36, 44].
Development budgets of high profile games are approaching the ones of Hollywood
movies. Furthermore, game industry is a very competitive and risky field [42]. A
publisher accepts a great risk in investing tens of millions for a development project
without knowing whether the game is a success or not. It is estimated that only the top
5% of products make a profit. Industry employment is also fairly volatile, similar to
other artistic industries [12].

136 J. Koutonen and M. Leppänen

Game development has been traditionally based on the waterfall model or some of
its variants [12, 50]. Due to its inspirational and unpredictable nature [56], many
teams favor iterative processes including prototypes [44, 36]. An iterative process
enables testing ideas in earlier phases and making rapid changes if necessary. This
way a game’s features emerge while the developers continually play-test to aspire a
fun, entertaining and compelling game. An iterative and incremental way of working
is inherent in agile methods [3], such as Scrum [54], XP (eXtreme Programming)
[11], Lean [43] and Kanban [5, 32].

Although there is a large array of studies on games and their development, most of
them discuss some specific issues, e.g. details of game mechanics or game expe-
rience. There are only some studies on game development methods and processes
(e.g. [12, 57, 49, 50]). Yet fewer are those studies [27, 39, 40, 55, 56] that address
agile game development. In particular, understanding of agile methods in use and
their impacts on game development is yet to be achieved.

The research problem of our study is: To which extent game studios deploy agile
methods and practices, and how they impact on game development? We accom-
plished the study as a survey targeted to Finnish game studios. The game industry has
grown in Finland perhaps faster than in most countries. The total revenue of the Fin-
nish game industry was estimated to be 335 million euro in 2011 [18]. Most of the
studios are small, but there also are some large and successful studios, such as Rovio
Entertainment (http://www.rovio.com/en/) whose product Angry Birds has become a
worldwide phenomenon. The game has been downloaded more than 1 billion times
(summer 2012). Another flourishing studio is Supercell with its Clash of Clans.

The remainder of the paper is organized into six sections. In Section 2 we shortly
discuss video games and game development. In Section 3 the agile approach and agile
methods and their use in software engineering are outlined. Section 4 provides a lite-
rature review of agile game development. In Section 5 we describe our research me-
thod and process, and Section 6 reports on the results of the survey. The paper ends
with a summary and conclusion.

2 Video Games and Game Development

A video game is a game played by electronically manipulating images produced by a
computer program on a monitor or other display (Oxford Dictionary). There is a large
variety of game genres categorized by e.g. gameplay interaction, purpose, platform,
and publisher [6, 63]. Every game has its rules. In addition to specific rules, game
rules produce emergent properties such as player experience or playability that are
quite difficult to predict or design. Player experience is different from that obtained
from other home entertainments [52]. Looking at TV or films, reading books and
listening music are passive entertainments which contain no interaction, whereas
playing games a person can affect future events with his/her actions. Games can be
fun in many respects [24]: sensation, fantasy, narrative, challenge, fellowship, discov-
ery, expression, and submission.

 How Are Agile Methods and Practices Deployed in Video Game Development? 137

Developing games is a complex endeavor [22, 13, 42] due to e.g. multiple discip-
lines, a large number of roles, divergent ambitions, conflicts of interests [21], and
difficulties in anticipating what kind game will have a success in rapidly changing
markets. These entail problems in schedules (cf. crunch time), coordination, team
building, testing, and product family engineering [42, 19, 22, 39, 26]. Game develop-
ment is particularly difficult for innovative, completely new kinds of games [33].

Game development is often compared to software engineering [42, 39, 36], and in-
deed, its outcome is software and to produce it similar phases have to go through.
However, video games also resemble films in terms of creativity and aethestic com-
ponents. Crawford [17] argues that game design is an art, science, a craft, or any
combination of the three. There is one unique aspect that seems to separate the video
game from traditional software: the requirement to be fun [35]. This requirement,
unlike many others in software engineering, has no metric that can be applied. What
is fun for one audience may not be for another. However, fun must be supported by
and validated at each stage of the development process. To do this, games must be
developed in a highly iterative manner.

There exists no single game development process model, which could act as a
standard for the industry [37, 15]. Studios have different semi-formal or formal pro-
cedures [8] and philosophies [37]. However some commonalities exist. Development
of a commercial game is usually divided into multiple phases which are defined by
milestones [48, 49, 50]. Contracts between publishers and developers are typically
based on these milestones [21]. Earlier the development process was based on the
waterfall model or some of its variants [50, 12]. Nowadays, many teams use iterative
processes including prototypes [44, 36], and some of them have adopted agile me-
thods and practices [27, 39, 40].

There are some generic models that synthesize features of multiple methods of
game development. Van de Weerd [61] used a formal method comparison approach to
construct a reference method to give an overview of the phases, activities, steps and
deliverables in the game development process. Manninen et al. [36] propose game
development to consist of six major phases: concept, pre-production, production,
quality assurance, release & launch, and post-release. Typical for game development
is that the process is iterative [34, 56].

3 Agile Development

Software engineering has radically changed since the new millennium. The agile
approach emerged to provide new values, principles and practices [3], particularly for
situations characterized by e.g., hard to predefine and volatile requirements, first-to-
market thinking, release orientation, dependence on good people, and negotiable qual-
ity [7, 14, 16]. The values emphasize individuals and interactions over processes and
tools, working software over comprehensive documentation, customer collaboration
over contract negotiation, and responding to change over following a plan [3]. These
have led to incremental, iterative and adaptive development.

138 J. Koutonen and M. Leppänen

Agility is a highly multifaceted concept with different meanings [16, 1, 25]. Con-
boy [16] develops a definition and formative taxonomy of agility, based on a litera-
ture review of agility across a number of disciplines. The definition goes as follow:
agility means “the continual readiness of an ISD method to rapidly or inherently
create change, proactively or reactively embrace change, and learn from change while
contributing to perceived customer value (economy, quality, and simplicity), through
its collective components and relationships with its environment.” [16, p. 340).

Agility is believed to reduce time-to-market, help coping with rapidly changing re-
quirements and priorities, lower defect rates, improve product quality and process
productivity, increase customer-value, as well as reach sustainable pace and balanced
workload, thus improving developers’ motivation and morale.

There is a large array of agile methods and principles, such as Scrum, eXtreme
Programming (XP), DSDM, FDD, Kanban and Lean. The most used methods are
Scrum, XP, and their combination and variants [58]. In the following, we shortly
outline Scrum, XP and Kanban.

Scrum is “a framework within which people can address complex adaptive prob-
lems” [54]. In the literature, it is often said to be an agile method. Scrum has been
built on three “pillars” (transparency, inspection, and adaptation), three main roles
(development team, product owner, Scrum master), five events (sprint, sprint plan-
ning meeting, daily scrum, sprint review, and sprint retrospective), and three main
artifacts (product backlog, sprint backlog, increment) [54]. Although the Scrum Guide
[54] does not explicitly define a process, it is commonly associated with some kind of
process model (see e.g. [2]).

XP (eXtreme Programming) is “a lightweight methodology for small to medium-
size teams developing software in the face of vague or rapidly changing require-
ments” [10]. It provides a large set of practices that are divided into 13 primary
practices and 11 corollary practices [11], meaning that the latter ones should be im-
plemented after the primary practices have been taken into use. The set of XP practic-
es include e.g., sitting together, cross-functional team, informative work space,
stories, pair programming, quarterly cycle, ten-minutes build, continuous integration,
and test-first programming.

Kanban has been derived from Lean thinking [62,43, 5]. In the simplest form, it is
based on three principles [32]: visualize the workflow, limit WIP (work in progress),
and measure the lead time. The first principle guides to split the work into pieces,
write each item on a card and put on a kanban board. The second principle means that
explicit limits are assigned to how many items may be in progress at each workflow
state. The third principle tells to optimize the process to make lead times as small and
predictable as possible.

In software engineering, the adoption of agile methods has already bridged the
“crossed chasm” [59, 20, 4]. According to the latest survey [58] more than 80% of
respondents said their organizations have adopted agile development practices. Scrum
and Scrum/XP variants continue to make up more than two-thirds of the methods
being used. Kanban and Scrumban were used in 6 % of the organizations.

 How Are Agile Methods and Practices Deployed in Video Game Development? 139

4 Agile Game Development

There is a myriad of academic publications on agile software development, but only a
few of them address agile game development. Here, we first quote Keith [27] and
Musil et al. [39] to describe how they see the usage of agile values, principles and
practices in game development. After that, we describe some empirical studies [40,
41, 56, 55] on how agile methods and practices are used in game development.

Clinton Keith [27] states that the values of the Agile Manifesto, with minor
changes, are applicable for game development. He applies Scrum practices and
presents four game development stages: concept, pre-production, production and post-
production. In concept stage, ideas are generated, possibly prototyped, on a regular
basis in time-boxed sprints. In pre-production stage, teams explore what is fun and
how they are going to build assets to support it during production. They also create
levels and other assets that represent production quality. In production stage, teams
focus on creating an eight- to twelve-hour experience using the core mechanics and
processes discovered during pre-production. This stage focuses on efficiency and
incremental improvements. In post-production stage, teams polish the game expe-
rience, with the content brought to shippable quality. After that, the game is submit-
ted to hardware testing.

Keith [27] criticizes some Scrum practices. Especially, the use of the sprint back-
log in production stage causes problems in practice. That is why, he suggests Lean
principles, in particular kanban, for production stage. From XP, suitable practices are
informative working space, pair programming, continuous integration, test-driven
development, user stories and short releases [27].

Musil et al. [39] propose a game development process, which is composed of three
phases: pre-production, production and project closure. The main tasks of pre-
production are to identify possible software project candidates, as well as to carry out
requirement analysis, risk assessment and general project requirements like financing.
Production receives the complete project package from pre-production and creates a
sellable product with the given time, money and quality. The overall production
workflow is based on Scrum, whereby it is separated into the three process time lines:
vision loop, sprint loop, and validation loop. Project closure covers the distribution of
the final game as well as retrospective analysis (post mortems), processing of created
tools and integration of lessons-learned into the company’s knowledge base.

Musil et al. [40] conducted a web-survey in the Austrian game industry (20 game
studios) to identify the state of the practice and possible future trends regarding
process and method support. Nine process methods were provided for the selection
grouped into flexible (Scrum, XP, Agile/Lean), traditional (RUP, Crystal Clear,
PSP/TSP) and unstructured methods (others). 23% of the respondents did not use any
software process, but developed games ad-hoc. 77% of the studios applied flexible
methods, and 61,5 % Scrum.

Petrillo and Pimenta [41] investigated how Agile principles and practices were
adopted in game development, by gathering evidences through a postmortem analysis
of 20 game development projects. 13 agile practices of Scrum, XP and Agile model-
ing methods were identified, including qualified team, belief in the success of the

140 J. Koutonen and M. Leppänen

project, creativity stimulus, focus on the product, version control, using simple tools,
and programming good practices. As can be seen, the list also contains general prac-
tices, not only agile practices.

Stacey and Nandhakumar [56] studied three computer game studios and recognized
similarities between game development and agile development: getting feedback is
equally important value although feedback in game development comes mostly from
in-house, not from customers, and a fluid communication is an important value in
agile development, as well as in game development. They noticed that the studios did
not deploy agile methods as such but rather some of agile practices. Schofield [55]
discusses the use of five XP practices (test-driven development, pair programming,
continuous design, real customer involvement and energized work) in game develop-
ment. He states that XP encourages the designer to steer the game during develop-
ment and make more changes in the game design. XP practices focus development
energy into delivering results quickly and keeping the project flexible.

5 Research Method and Process

Our research objective was to find out to which extent Finnish game studios deploy
agile methods and practices and how their usage impacts on game development. From
alternative research methods (e.g., case study, action research, and postmortem analy-
sis) we selected survey [29] because data collected from a large population enables
better generalization. To make the threshold of answering lower, we used an unsuper-
vised survey [28] in which participants completed and submitted an online question-
naire through web browser and answers were recorded anonymously.

We took several steps to ensure that enough people return the survey with mea-
ningful information [29]. First, we wanted to select respondents that are knowledgea-
ble, willing and motivated to answer the questions. We used the language that is close
to the one the practitioners use in their work. We presented questions in simple and
unambiguous sentences to avoid misunderstandings and in a well-structured form to
increase the clarity. The persons were also promised a copy of the research report for
their reflection and benchmarking.

The population of the survey contained all the Finnish game studios with five or
more employees. The size limit was based on an assumption that work in very small
studios is not well organized and may apply more or less ad hoc ways of working. To
find respondents, we contacted two professional associations, the Finnish Game Devel-
opers (http://www.pelinkehittajat.fi/) and Neogames (http://www.hermia.fi/neogames/).
Using their lists of the member studios we asked each studio to name a knowledgeable
person. This way we found 45 suitable studios, from which 37 gave direct contact in-
formation. We sent the invitation letter to them in July 2011, and got answers from 20
companies.

The questionnaire addresses four themes: background information, game develop-
ment process, deployment of agile methods and practices, and experiences. Background
theme concerns the general information about the game studios (no. of employees, age),
their products (no. of game platforms and game genres), and development projects

 How Are Agile Methods and Practices Deployed in Video Game Development? 141

(size, no. of concurrent projects). These are relevant for analyzing impacts on the ways
of developing games and applying agile methods and practices. In Game development
process theme we were keen to learn which development tasks are accomplished and in
which phases. These questions are based on a general phase structure derived from
Keith [27] and Manninen et al. [36]. Unfortunately, we are not able here to report on the
answers to these questions due to the space available.

Agile methods and practices theme was defined first to reveal which agile methods
(Scrum, XP, Kanban, other) are used in each of the phases. Second, we wanted to find
out which of nine Scrum practices, nine XP practices and three Kanban principles are
deployed in the studios. Finally, in Experience theme we examined experiences the
game studios had got from applying agile methods and practices. The questions were
presented in the form of statements derived from Petrillo et al. [42], Musil et al. [40],
and Keith [27].

The questionnaire was edited through several iterations, including pre-testing by
four persons. After receiving the answers we followed the recommendations by Kit-
chenham [31]: the number of the answers for each question was checked (four res-
pondents did not answer the questions about the use of agile methods and practices),
for closed questions the distributions were calculated, and the answers to open ques-
tions were used to clarify the interpretation of the structured data.

The quality of a research study should be assessed in terms of reliability and validi-
ty. Reliability “is concerned with how well we can reproduce the survey data” [30].
“If another researcher later on conducted the same study, the results should be the
same” [51]. We enhanced the repeatability of the survey by using the structured, web-
based and pre-tested questionnaire, thus minimizing a researcher’s effect on respon-
dents.

Validity is concerned with “how well the instrument measures what it is supposed
to measure” [30]. External validity is concerned with the extent to which it is possible
to generalize the research results [51]. External validity is dependent on the size of
the sample in relation to the population and its representativeness. We got a rather
reliable estimate of the number of the Finnish game studios suitable to our study
(N=45), and received answers from 20 studios. The response rate (44%) can be consi-
dered to be fairly good for making generalizations with regard to this population. In
other countries, the sizes, funding principles and labor markets of the game studios, as
well as the diffusion stage of agile methods in general can differ from those in Fin-
land. Without knowing the contextual factors, generalization should be considered
with care. On the other hand, the Austrian survey [40] shows that in corresponding
circumstances the use of agile methods can be similar. Internal validity can be as-
sessed in terms of several types of validity. Here, we consider content validity that is a
subjective assessment of how appropriate the instrument seems to persons with the
knowledge of the subject matter [30]. In order to address the subject matter in a prop-
er way, the themes and questions were strongly based on relevant literature on game
development and agile approach. The questionnaire was pre-tested by four persons.

142 J. Koutonen and M. Leppänen

6 Results

6.1 Background Information of the Game Studios

Based on the answers, the game studios were rather young: seven (35 %) studios had
been on the markets for 0-2 years, eight (40 %) studios for 3-5 years and three studios
for 5-10 years. Only one studio was over 10 year old. They were also rather small;
half of the studios had 15 or less employees, five (25%) studios had16-50 employees,
and only two (10%) studios had more than 50 employees. The most common game
platforms were PC (70%) and mobile devices (65%). Nine (45 %) companies concen-
trated on one platform, while the others made games for 2-6 platforms. The most
common game genres were Casual (70%), Action-adventure (30%), Platformer
(30%), Adventure (25%), and Strategy (20%). Other genres included Simulation,
Music, Racing, Serious and Role-playing games. Eight (40%) companies developed
games of three or more genres.

Game development projects normally took less than one year. In seven (35%)
companies, projects took less than half a year in average, in six (30%) companies ½-
1 year, and in six companies for 1-2 years. In one company the projects took in aver-
age more than 3 years. The size of the project team was commonly 1-5 persons (35
%) or 6-15 (60%) persons. In one company, the size of the project team was 16-30
persons.

The last question of this theme concerned the number of concurrent projects. Five
(25 %) companies had only one project at a time, six (30%) companies two projects,
three (15%) companies three projects, four (20%) companies four projects and two
(10%) companies five or more projects.

6.2 Agile Methods Used in the Game Studios

In the third part of the questionnaire, the respondents were asked about agile methods
(Scrum, XP, Lean, Kanban, other) they are using in the game development phases
(concept definition, pre-production, production, post-development, other phase).
Scrum was the most common method: more than 50% of the companies deployed
Scrum in production, pre-production and post-production phases, and more than 30%
also in concept definition phase. The second common method (25%) was “Other
method”. Lean was deployed in about 10 % of the studio in all the phases except post-
production. Kanban was used only by one studio (in concept definition phase). Sur-
prisingly, XP was not mentioned in this context. A likely reason for this is that XP
was not recognized as a method but a set of practices. This is line in the finding of
Stacey et al (2008) that game studios did not deploy agile methods as such but rather
some of agile practices. Another explanation is that the studios using a customized
mix of Scrum and XP answered “Other method”. Young studios did not use agile
methods so largely as older ones, perhaps due to their more ad-hoc like processes.
Three respondents explained their “Other method” answer saying that they use cus-
tomized Scrum or other agile method. One answer to the open question elaborates that

 How Are Agile Methods and Practices Deployed in Video Game Development? 143

for concept definition they select a method case-by-case; sometimes Scrum, some-
times a “one-man innovation process”.

6.3 Agile Practices Used in Game Studios

The questions of this part addressed the use of nine Scrum, nine XP and three Kanban
practices in the game development phases, with the following options: ”in all the
phases”, ”in concept definition”, “in pre-production”, ”in production”, ”in post-
production”, ”not used” and ”do not know”. Four respondents did not answer to the
questions about the Scrum practices, and eight respondents did not answer to the
questions about the XP and Kanban practices.

Scrum practices were most commonly used in the game studios (see Table 1). Yet,
for each of the Scrum practices 25 - 44 % of the respondents said they do not use it.
Daily Scrum and Sprints were the most deployed practices in ”All phases”. Most of
the Scrum practices were more often used in pre-production and production phases
than in concept definition and post-production phases.

Table 1. The use of Scrum practices in game development phases ([1] = all phases, [2] =
concept definition, [3] = pre-production, [4] = production, [5] = post-production, [6] = not used,
[7] = do not know) (n = 16)

Scrum practices [1] [2] [3] [4] [5] [6] [7]

Daily Scrum 5 0 3 4 3 6 0

Sprint 5 2 7 7 4 4 0

Sprint planning meeting 1 2 3 6 7 3 6 0

Sprint planning meeting 2 1 3 5 7 3 6 0

Sprint review meeting 3 1 4 6 4 6 1

Sprint retrospective 1 1 4 5 2 7 1

Sprint burn down chart 0 1 3 6 2 7 1

Product backlog 4 2 7 8 5 4 0

Sprint backlog 4 1 7 8 5 4 0

From the large set of the XP practices [11] we selected those nine that were men-

tioned in existing literature on game development. The answers showed that XP prac-
tices are largely used (see Table 2). The most used XP practices were cross-functional
teams, informative work spaces and continuous integration. The most uncommon XP
practices were Quarterly cycle and Ten-minutes build. The latter result seems a bit
surprising because Continuous integration and Ten-minutes build are commonly used
together. Pair programming and Test-first programming were not largely used al-
though they belong to the set of the primary XP practices [11].

Kanban practices were quite slightly used in the game studios. ”Limit Work in
Progress (WIP)” was deployed in all the phases only by two game studios. Work Vi-
sualization was used in all the phases by one company, and another company dep-
loyed it in concept definition. No game studio ”measures the lead time”.

144 J. Koutonen and M. Leppänen

Table 2. The use of XP practices in game development phases ([1] = all phases, [2] = concept
definition, [3] = pre-production, [4] = production, [5] = post-production, [6] = not used, [7] =
do not know) (n = 12)

XP practices [1] [2] [3] [4] [5] [6] [7]

Sitting together 4 3 2 1 1 6 0

Cross-functional team 5 2 3 3 2 4 0

Informative work space 4 2 3 3 2 4 2

User stories 2 1 2 2 0 7 1

Pair programming 1 1 2 1 1 7 2

Quarterly cycle 0 0 0 1 0 11 1

Ten-minutes build 0 0 0 0 1 9 2

Continuous integration 3 0 4 4 4 4 0

Test-first programming 2 0 4 1 0 6 3

6.4 Impacts of Agile Methods and Practices to Game Development

Finally, we asked the respondents’ opinions about the impacts of agile methods and
practices on game development. The questions about potential positive impacts were
presented in the form of statements (e.g. Quality of code has improved), to which the
respondents could answer: “Agree”, “Partly agree”, “Partly disagree”, “Disagree”, or
“Do not know”. The statements were based on assumptions of, and findings from
empirical studies on, impacts of the agile approach on software engineering [53, 11]
and game development [27, 40, 42]. They were divided into two groups: those con-
cerning development work, and those involving project management. Four respon-
dents did not answer to these questions. The summary of the answers is presented in
Figures 1 and 2.

From Figure 1 we can conclude that all the statements of the impacts got more pos-
itive (agree, partly agree) than negative (partly disagree, disagree) answers. The most
positive impacts was perceived as regards to communication between the profession-
als (60%), quality of games (more than 60%), and finding fun (60%) and implement-
able (60%) features more quickly. Other positive impacts involve such issues as team
awareness and problems in game design. Interestingly, improvements in quality of
code (30%) and communication between the stakeholders (35%) were not expe-
rienced so largely. Some of the issues were considered difficult to assess (cf. Testing
games, Quality of code).

From Figure 2 we can see that the opinions are divided more strongly than above.
The most positive impact was seen to occur in the easiness of project management
(65%), scope management (55%), and sticking to the dead line (50%). Instead, de-
spite the use of agile practices there still existed problems in feature creep and
overwork, especially in the later part of the project. Some of the issues on project
management were difficult to assess (cf. replacements in the personnel).

In the final question, the respondents were asked to describe potential negative im-
pacts of using agile practices on game development. Examples of the negative im-
pacts reported are:

 How Are Agile Methods and Practices Deployed in Video Game Development? 145

0 % 20 % 40 % 60 % 80 % 100 %

Communication between the professionals has improved

Communication between the stakeholders has improved

It is possible more quickly to find fun of a game

It is possible more quickly to find implementable features

Number of bugs has decreased

Problems in game design have diminished

Problems in documentation have diminished

Quality of code has improved

Quality of games has improved

Team awareness has improved

Testing a game has become easier

Agree Partly agree Partly disagree Disagree Do not know

Fig. 1. Positive impacts of agile methods and practices to game development work (n = 16)

0 % 20 % 40 % 60 % 80 % 100 %

Feature creep does not cause problems in schedule, budget or
quality

Impact of replacements in the personnel have diminished

It is easier to estimate schedule and budget

It is not necessary to cut down almost ready features in the late
phase

Need for overwork has diminished esp. in the late phase

Problems in scope management have diminished

Project management has become easier

Projects get ready in schedule

Agree Partly agree Partly disagree Disagree Do not know

Fig. 2. Positive impacts of agile methods and practices to project management of game devel-
opment (n = 16)

"Agile methods transfer responsibility to teams and rules of working get an essen-
tial role. This does not necessarily suit all the teams. "

"Taking the inevitability of changes a bit too much for granted creates a window of
opportunity for feature creep"

"At the worst, there exists continuous crunch time if [rules for] sprints are taken
too seriously.”

146 J. Koutonen and M. Leppänen

7 Discussion and Conclusion

This paper explores the use of agile methods and practices in Finnish game studios.
Based on the survey, the Finnish game studios are rather young and small, yet includ-
ing some fairly large ones (e.g. Rovio Entertaiment, 224 employees in 2011, 500+ in
2012). The game platforms are mostly PC and mobile devices. Development projects
in average are small in terms of development time and number of employees. Reasons
for that presumably are the industry’s rapidly changing and risky nature, funding
problems, and small job market. In this regard, the situation resembles the one in Aus-
tria [40].

All the studios, except one, deployed agile methods at least in some of the devel-
opment phases. The most commonly mentioned method was Scrum, as was also the
case in the Austrian survey [40]. XP, Lean and Kanban were used in the smaller scale.
Some studios applied a mix of several agile methods, but not in the way Keith [27]
suggested, i.e. the use of Lean and Kanban in production phase. Instead, agile
processes resembled more the one suggested by Musil et al. [39]. No dependences
between the use of agile methods, on the one hand, and the size of the studios or the
number of the concurrent projects, on the other hand, were found.

At the level of agile practices, the survey showed that Sprint and its related events
(Daily Scrum, Sprint planning, Sprint review) and artifacts (Product, Sprint backlog)
from Scrum, as well as cross-functional teams, informative work space, and conti-
nuous integration from XP were in large use. These findings were as expected when
taking into account special features of game development [33, 42, 44]. Compared to a
large survey on Agile and Lean usage in Finnish software industry in 2011 [47], agile
methods and practices were less frequently used in game development.

The survey indicated that agile methods and practices benefit game development in
many ways. An iterative and incremental process enables inventing, designing and
testing ideas of a playable game and betters the quality of the game (cf. [55]). Bene-
fits were also perceived as faster recognition of fun and implementable features, and
as better communication. The finding that quality code was not improved makes to
suspect that continuous integration was not always applied in a proper manner (cf.
together with automated testing). Although agility was seen to help scope manage-
ment, estimation of schedule and budget, and sticking to the schedule, there were still
problems as regards overwork and feature creep (cf. [42]).

As the survey included quite a large sample of the game studios in Finland, it pro-
vides a good descriptive view to the state of agile game development. However, the
study has some limitations. First, the findings can only be generalized into the con-
texts with situational features similar to Finland. Second, to obtain a deeper insight
into the use of agile methods and practices in the game studios, how this use evolves
[60], and how it affects the productivity and quality of game development, we need a
series of case studies. We should also pay more attention to ways the game studios
customize and deploy agile methods and practices to match them to their needs. De-
spite of these limitations, the study provides interesting information about the current
state of agile adoption in game development, which is of value for those who are con-
sidering how to improve the productivity and quality of their game development.

 How Are Agile Methods and Practices Deployed in Video Game Development? 147

References

1. Abbas, N., Gravell, A.M., Wills, G.B.: Historical roots of agile methods: Where did ‘Agile
Thinking’ come from? In: Abrahamsson, P., Baskerville, R., Conboy, K., Fitzgerald, B.,
Morgan, L., Wang, X. (eds.) XP 2008. LNBIP, vol. 9, pp. 94–103. Springer, Heidelberg
(2008)

2. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods
– Review and analysis, vol. 478. VTT Publications (2002)

3. Agile Alliance: Agile Manifesto (2001), http://agilemanifesto.org/
4. Ambler, S.W.: Surveys Exploring the Current State of Information Technology Practices

(2011), http://www.ambysoft.com/surveys (accessed April 2011)
5. Anderson, D.: Kanban – Successful evolutionary change for your technology business.

Blue Hole Press (2010)
6. Apperley, T.: Genre and game studies: towards a critical approach to video game genres.

Simulation Gaming 37(6), 6–23 (2006)
7. Baskerville, R., Pries-Heje, J.: Short cycle time systems development. Information Sys-

tems Journal 14, 237–264 (2004)
8. Bates, B.: Game design, 2nd edn. Thomson Course Technology (2004)
9. Battarbee, K.: Co-experience. Understanding user experience in social interaction. Disser-

tation thesis, University of Art and Design, Helsinki, Finland (2003)
10. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley (1999)
11. Beck, K., Anders, C.: Extreme programming explained: embrace change, 2nd edn. Addi-

son-Wesley (2004)
12. Bethke, E.: Game development and production. Wordware Publishing, Inc. (2003)
13. Blow, J.: Game Development: Harder Than You Think. Queue 1(10), 28–37 (2004)
14. Boehm, B., Turner, R.: Rebalancing your organization’s agility and discipline. In: Maurer,

F., Wells, D. (eds.) XP/Agile Universe 2003. LNCS, vol. 2753, pp. 1–8. Springer, Heidel-
berg (2003)

15. Chandler, H.: The game production handbook, 2nd edn. Infinity Science Press (2009)
16. Conboy, K.: Agility from first principles: reconstructing the concept of agility in informa-

tion systems development. Information Systems Research 20(3), 329–354 (2009)
17. Crawford, C.: The art of computer game design. McGraw-Hill (1984)
18. FIGMA (2012), http://www.figma.fi/index.php/tiedotteet/

113-suomen-pelimyynti-laski-viime-vuonna-pelikehittajat-
huikeassa-kasvussa

19. Flynt, J., Salem, O.: Software Engineering for Game Developers, 1st edn. Software Engi-
neering Series. Course Technology PTR (2004)

20. Forrester: From agile development to agile engagement. Forrester Research (May 2009),
http://www.forrester.com/research

21. Fullerton, T., Swain, C., Hoffman, S.: Game design workshop: designing, prototyping and
playtesting games. CMP Books, San Francisco (2004)

22. Gershenfeld, A., Loparco, M., Barajas, C.: Game plan: the insider’s guide to breaking in
and succeeding in the computer and video game business. St. Martin’s Griffin Press, New
York (2003)

23. Gibson, A.: Agile game development and fun. Technical Report, University of Colorado,
Department of Computer Science (2007)
http://www.cs.colorado.edu/department/publications/
theses/docs/bs/andrea_gibson.pdf

148 J. Koutonen and M. Leppänen

24. Hunicke, R., LeBlanc, M., Zubek, R.: MDA: A formal approach to game design and game
research. In: Proc. of the Challenges in Game AI Workshop (2004)

25. Iivari, J., Iivari, N.: The relationship between organizational culture and the deployment of
agile methods. Information and Software Technology 53(5), 509–520 (2011)

26. Kanode, C., Haddad, H.: Software engineering challenges in game development. In: 6th
Intern. Conf. on Information Technology: New Generations, pp. 260–265 (2009)

27. Keith, C.: Agile game development with Scrum. Addison-Wesley (2010)
28. Kitchenham, B., Pfleeger, S.: Principles of survey research. Part 1: Turning lemons in le-

monade. SIGSOFT Software Engineering Notes 26(6), 16–18 (2001)
29. Kitchenham, B., Pfleeger, S.: Principles of survey research. Part 2: Designing a survey.

SIGSOFT Software Engineering Notes 27(1), 18–20 (2002)
30. Kitchenham, B., Pfleeger, S.: Principles of survey research. Part 4: questionnaire evalua-

tion. SIGSOFT Software Engineering Notes 27(3), 20–23 (2002)
31. Kitchenham, B., Pfleeger, S.: Principles of survey research. Part 6: Data analysis.

SIGSOFT Software Engineering Notes 28(2), 24–27 (2003)
32. Kniberg, H., Skarin, M.: Kanban and Scrum – making the most of both, Enterprise soft-

ware Development Series, InfoQ (2009)
33. Koivisto, E., Suomela, R.: Using prototypes in early pervasive game development. In:

Sandbox Symposium, San Diego (2007)
34. Kreimeier, B.: Game design methods: A 2003 survey (2003),

http://www.gamasutra.com/view/feature/2892/
game_design_methods_a_2003_survey.php

35. Lewis, C., Whitehead, J.: The Whats and the Whys of games and software engineering. In:
Proc. of Workshop on Games and Software Engineering, pp. 1–4 (2011)

36. Manninen, T., Kujanpää, T., Vallius, L., Korva, T., Koskinen, P.: Game production
process: A preliminary study. University of Oulu, Finland (2006)

37. McGuire, M., Jenkins, O.: Creating Games: Mechanics, Content, and Technology. A K Pe-
ters (2009)

38. Moore, M., Novak, J.: Game industry career guide. Cengage Learning, Delmar (2010)
39. Musil, J., Schweda, A., Winkler, D., Biffl, S.: Improving video game development: Facili-

tating heterogeneous team collaboration through flexible software processes. In: Riel, A.,
O’Connor, R., Tichkiewitch, S., Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 83–
94. Springer, Heidelberg (2010)

40. Musil, J., Schweda, A., Winkler, D., Biffl, S.: A survey on a state of the practice in video
game development, Report IFS-QSE 10/04. Institute of Software Technology and Interac-
tive Systems, Vienna (2010)

41. Petrillo, F., Pimenta, M.: Is agility out there? Agile practices in game development. In:
Proc. of the ACM Int. Conf. on Design of Communication, pp. 9–15 (2010)

42. Petrillo, F., Pimenta, M., Trindade, F., Dietrich, C.: What went wrong? A survey of prob-
lems in game development. ACM Computer in Entertainment 7(1) (2009)

43. Poppendieck, M., Poppendieck, T.: Lean software development – An Agile toolkit. Addi-
son & Wesley (2003)

44. Potanin, R.: Forces in play: the business and culture of videogame production. In: Proc. of
the 3rd International Conf. on Fun and Games, pp. 135–143 (2010)

45. PricewaterhouseCoopers: Global entertainment and media outlook 2012-2016; Video
games (2012),
http://www.pwc.com/gx/en/global-entertainment-media-outlook/
segment-insights/video-games.jhtml

46. Rabin, S.: Introduction to game development. Charles River Media (2005)

 How Are Agile Methods and Practices Deployed in Video Game Development? 149

47. Rodriguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in Fin-
nish software industry. In: Proc. of ESEM 2012 Conference, pp. 139–148 (2012)

48. Rollings, A., Morris, D.: Game Architecture and Design. The Coriolis Group (2000)
49. Rouse, R.: Game Design: Theory & Practice. Wordware, Inc. (2000)
50. Rucker, R.: Software engineering and computer games. Addison Wesley (2002)
51. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering 14(2), 131–164 (2009)
52. Sanders, E.: Virtuosos of the experience domain. In: IDSA Education Conf. (2001)
53. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice-Hall (2002)
54. Schwaber, K., Sutherland, J.: The Scrum guide – The definitive guide to Scrum: The rules

of the game (2011), http://www.scrum.org/storage/scrumguides/Scrum_
Guide.pdf

55. Schofield, B.: Embracing fun: Why extreme programming is great for game development.
Gamasutra: The Art & Business of Making Games (March 2007)

56. Stacey, P., Nandhakumar, S.: Opening up to agile games development. Comm. of the
ACM 51(12), 143–146 (2008)

57. Tran, M., Biddle, R.: Collaboration in serious game development: a case study. In: Proc. of
the 2008 Conf. on Future Play, pp. 49–56 (2008)

58. VersionOne: State of Agile Survey – The state of Agile Development (2011),
http://www.versionone.com/pdf/2011_State_of_
Agile_Development_Survey_Results.pdf

59. Vijayasarathy, L., Turk, D.: Agile software development: a survey of early adopters. Jour-
nal of Information Technology Management 19(2), 1–8 (2008)

60. Wang, X., Coboy, K., Pikkarainen, M.: Assimilation of agile practices in use. Information
Systems Journal 22(6), 435–455 (2012)

61. van de Weerd, I., de Weerd, S., Brinkkemper, S.: Developing a reference method for game
production by method comparison. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B.
(eds.) Situational Method Engineering: Fundamentals and Experiences. IFIP, vol. 244, pp.
313–327. Springer, Boston (2007)

62. Womack, J., Jones, D.: Lean thinking: Banish waste and create wealth in your corporation.
Simon & Schuster (1996)

63. Ye, Z.: Genres as a tool for understanding and analyzing user experience in games. In:
Proc. of Conf. on Human Factors in Computing Systems, pp. 773–774 (2004)

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 150–164, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Inter-organizational Co-development with Scrum:
Experiences and Lessons Learned from a Distributed

Corporate Development Environment

Raoul Vallon, Stefan Strobl, Mario Bernhart, and Thomas Grechenig

Research Group for Industrial Software, Vienna University of Technology
Vienna, Austria

raoul.vallon@inso.tuwien.ac.at

Abstract. Distributed development within a single organization adds a lot of
overhead to every software development process. When a second organization
joins for co-development, complexity reaches the next level. This case study
investigates an agile approach from a real world project involving two
unaffiliated IT organizations that collaborate in a distributed development
environment. Adaptations to the regular Scrum process are identified and
evaluated over a six-month-long period of time. The evaluation involves a
detailed problem root cause analysis and suggestions on what issues to act first.
Key lessons learned include that team members of one Scrum team should not
be distributed over several sites and that every site should have at least one
Scrum master and one product owner.

Keywords: distributed development, agile development, Scrum, software
development process, subcontracting, virtual teams.

1 Introduction

Agile development has gained widespread popularity over the last ten years in very
different domains (e.g. embedded software projects [1], mobile application
development [2] or aerospace [3]). It has been adopted by large companies such as
Intel [4], Microsoft [5], Yahoo! [6] or SAP [7] and has thus found its way in multi-
team and multi-site corporate environments. Although originally designed for
collocated teams, related agile studies have reported the adaption of agile principles to
e.g. a distributed Scrum [8], [9] or Extreme Programming (XP) [10] implementation
in recent years.

Distributed development challenges one of the core strengths of Scrum: team
members need to interact and communicate on a daily basis to form self-organizing
teams and meet sprint goals. However, distributed environments complicate
communication and coordination [11]. Technical tool support plays a bigger role in
the process [12], [13] as well as knowledge management and transfer [14].
Consequently team members need to work harder to synchronize and meet sprint
goals.

 Inter-organizational Co-development with Scrum 151

This case study strives to contribute to this field of research by investigating an
agile distributed development approach based on Scrum. The process implementation
involves two unaffiliated Austrian IT organizations, which are separated by about 300
kilometers. According to Kajko-Mattsson et al. [15], expected problem fields include
communication, customer collaboration, trust, training and technical issues. We will
further investigate the adaptations to Scrum and the compromises that need to be
made, when two organizations with different corporate cultures join forces to develop
software.

We defined the following research question:

RQ: How can agile development be applied to an inter-organizational, multi-site and
multi-team development environment and what challenges, if any, emerge in this
setting?

The rest of the paper is organized as follows. Section 2 describes the research settings
and applied methods. Section 3 provides an observation of strengths and weaknesses
in the process implementation. Section 4 conducts a problem root cause analysis.
Section 5 discusses results including lessons learned, suggestions for practice and
related work. Section 6 provides the conclusion.

2 Research Design

The case study covers a six-month-long period of time including evaluation and
presentation of results. The nature of the case study is exploratory according to Yin’s
research on the application of case studies [16]. As such, it strives to identify problem
areas in the field of agile distributed development and serves as a prelude to further
follow-up studies. Findings of this exploratory study are put in context with related
studies during the discussion of results.

2.1 Research Settings

Two unaffiliated organizations, the main supplier (MS) and the additional supplier
(AS), collaborate to develop three software products that share a common codebase.
Both suppliers have successfully applied regular Scrum before and chose to
implement an adapted version of Scrum to better suit the needs of a distributed
development environment. The two organizations develop at their own sites,
separated by about 300 kilometers.

The MS is a large company whose IT department is involved in the development of
the three software products. It is solely responsible for requirements engineering with
all three customers and provides the bigger part of the development staff.

The AS is a medium-sized core software development company and a
subcontractor to the MS for the development of the three products. It complements
the MS’s development with additional staff and know-how but has no contact with
customers.

152 R. Vallon et al.

Table 1 shows the distribution of team members over the two suppliers. The MS
has one product owner (PO) for each software product and three Scrum masters (SM)
serving three teams. The AS does neither have a PO nor a SM on site.

Table 1. Distribution of team members over the two suppliers

Co-Developers Dev Test SM PO Sum
Main Supplier (MS) 11 3 3 3 20
Additional Supplier (AS) 8 2 0 0 10
Overall 19 5 3 3 30

2.2 Research Method

The research is divided into three phases.

Observations. One of the authors examined the Scrum implementation in use as an
external observer. As such, he took part in various meetings and conducted interviews
with members of all roles (product owner, Scrum master, developer, tester). The
interviews lasted from 20 to 45 minutes and have been audio-recorded. He took field
notes, pictures and collected planning sheets and meeting minutes. He has been
granted read-only access to several electronic tools involved such as the issue tracking
system. This phase lasted for three months.

Case Analysis. After the observation phase the collected data was analyzed. The
authors extracted problems from the following sources: retrospective meetings,
interviews, field notes, meeting minutes and the project documentation. Problems
were categorized in problem clusters and root causes suggested in a problem root
cause analysis. The approach was top-down, i.e. most prominent problem clusters
were analysed first according to the authors’ evaluation. This phase lasted for two
months.

Presentation of Results. The last phase involved a presentation and discussion of
results with team members including lessons learned, suggestions for practice and
related studies. This was the concluding step in the last month.

3 Observation Phase

The following observations summarize the different aspects of the Scrum
implementation applied in the case study including strengths and weaknesses.

Formation of Scrum Teams. Three Scrum teams have been formed across all
products and based on logical requirement areas. Figure 1 shows the distribution of
team members. The product owner and the Scrum master roles are both on the MS’s
site. The AS complements the MS with additional developers and testers (QA) but has

no official Scrum roles. Ho
masters for the AS. They
impediments with the MS.
site once a week for face to

Fig. 1. Distribution of Scrum
developers and QA but has no

Each Scrum team holds
members of the MS and
meeting is established for in

Fig. 2. Scrum of Scrums (SoS
virtual QA Scrum team and als

It is held daily at the MS
MS handles all inter-team c
teams, but hold an additio
representative to the SoS. Pr

Inter-organizational Co-development with Scrum

owever, two developers have emerged as unofficial Scr
y care most for the process implementation and disc

One of these unofficial Scrum masters travels to the M
 face updates and discussions.

m team members: the AS joins the MS’s Scrum team w
official Scrum roles

a daily video conference meeting, where respective te
AS participate. Additionally a Scrum of Scrums (S

nter-team communication, as pictured in figure 2.

S) is held at the MS only. Testers of all three Scrum teams for
so participate in the SoS.

S’s site. Since the AS does not have official Scrum roles,
coordination. Testers (QA) are assigned to the three Scr
onal daily meeting to stay synchronized and also sen
roduct owners also participate to evaluate the progress.

153

rum
cuss

MS’s

with

eam
SoS)

rm a

 the
rum

nd a

154 R. Vallon et al.

Two-Tiered Planning Process. Planning covers one month, i.e. two sprints. It is a
two-tiered process: at first, planning is done at the MS’s site with one of the two
unofficial Scrum masters of the AS present. The Scrum teams decide, which of the
prioritized user stories in the product backlogs they want to implement in the next two
sprints.

The second level planning continues at the AS’s site: The unofficial Scrum master
returns from the MS with pre-estimated (via planning poker [17]) user stories for the
AS. Team members volunteer for certain tasks until all tasks are assigned. When a
team member accepts a task, it adjusts the original estimation of the MS to his own.
One of the unofficial Scrum masters updates a planning spreadsheet during the
meeting and shares it with the MS afterwards.

Joint Sprint Review. The sprint review is held after each sprint. It is primarily held at
the MS, but the AS joins via video conference. Additionally, one of the AS’s Scrum
masters is present at the MS’s site to represent the AS in person as well. The rest of
the AS’s team is mainly observing the review, but can raise questions or concerns
when necessary. The review consists of feature demonstrations and discussions about
different areas of the current product increments and takes about two hours.

Joint Retrospective. The sprint retrospective is held monthly after two sprints with
the same setup as the sprint review. The retrospective is divided into six steps (the
AS’s on-site representative conducts the steps on behalf of his colleagues):

1. Individual evaluation of the last month from good to bad on a 15-part scale. Each
team member may put one point on the scale drawn on paper.

2. Evaluation and discussion of the measures taken against impediments since the last
retrospective.

3. Every participant writes three remarks (either positive or negative) on paper and
puts them on the flipchart, shortly presenting each.

4. The individual remarks from step 3 are clustered to topics.
5. Every participant has three points that can be assigned to one or more of the

clustered topics according to his personal weighting.
6. Measures for the top three topics are discussed that will be implemented in the next

two sprints.

Product and Sprint Backlog. Each product owner maintains a product backlog on
the MS’ site for his product. At the time of the observation phase the AS did not have
access to the product backlog, but worked with the sprint backlog only (planning
spreadsheet from the two-tiered planning process).

Scrum Board. Both the MS and the AS are using paper Scrum boards. Each Scrum
team operates one board. Since the two suppliers are based at different locations, six
boards would be needed, but the AS currently only uses one general board on his site

 Inter-organizational Co-development with Scrum 155

covering all three teams. The workflow on the board is defined as: User Stories, TO
DOs, In Progress, Review and Done.

The first column User Stories contains user stories from the backlog. Sticky notes
of the same color are used to break the user stories into smaller tasks that run through
the remaining workflow. The column Review denotes the tasks being reviewed and
tested by a colleague (at any supplier’s site). Tasks in Done are production-ready.
Tasks on the Scrum board are also marked with the issue tracking number of the
electronic tool in use. The Scrum boards of both suppliers are synchronized every day
during the daily Scrums (for each team).

Burndown Chart. The burndown charts are drawn and updated on paper at the MS’s
site only (one per team). The AS does not operate one on his own, but the MS
includes the AS’s tasks in his chart.

Behavior Driven Development. The two suppliers develop software using behavior
driven development (BDD) [18], which is an extension to test driven development
(TDD) [19]. The goal is to define the software’s behavior in terms of human readable,
but executable acceptance criteria [18]:

 Given some initial context,
 When an event occurs,
 Then ensure some outcomes.

These acceptance criteria can be automated to test the correct behavior of the
software. They should be understandable to the customer yet precise enough to be
executable. BDD also helps provide a common language and reference point for
stakeholders, business analysts, developers and testers.

Means of Communication. The main means of communication between the two
suppliers are joint meetings via video conference and telephone calls. Individual
concerns are discussed in emails, instant messaging and screen sharing sessions.

3.1 Retrospective

In the three retrospective meetings during the observation phase, issues overweighed
strengths by far due to the complex development environment. Named strengths were
improved communication and collaboration in general and continuous improvement.
Team members identified the following drivers for improvement:

• Willingness and commitment to change and improve
• Good working atmosphere and employee attitude
• Highly motivated people
• Team work

The list of problems taken from retrospective meetings is notably longer. Both team
members of the MS and AS reported to suffer from constant stress in the two-week
sprint due to the following reasons:

156 R. Vallon et al.

• Workload too high in relation to available staff
• Planning delay in general and also between the two suppliers
• Too little time to follow BDD workflow in a two-week sprint

Late planning was reported since inter-organizational planning was frequently not
ready until a few days into the sprint iteration. This made it very hard for team
members to reach sprint goals. The BDD workflow introduced a lot of overhead.
Testers constantly struggled to finish automation of BDD scenarios within the Sprint
which resulted in broken test cases and thus bad code quality. Problems with the
speed of remote access for the AS arose, which slowed down co-development.
Minor issues regarding the quality of use cases were also reported.

3.2 Interviews

Three prominent issues have been identified from one on one semi-structured
interviews that have been stressed by all interviewees. One of these issues, overhead
of communication and coordination, addressed the inadequate quality of video
conferences, especially with larger groups (joint sprint review/retrospective). A lack
of electronic tool support has also been criticized, especially by the AS. The AS did
not have access to the main paper Scrum boards and burndown charts at the MS’s site
and progress was synchronized mostly during daily Scrum meetings. Two-tiered
sprint planning put pressure on team members’ commitment since planning took too
long and was frequently not ready at the beginning of new sprint iterations.

3.3 Summary

Table 2 provides an overview of observed problems and their weighting by team
members during retrospective meetings. After all of the interviews were conducted,
each interviewee was asked to select the most prominent problem out of three
problems that arose in all interviews. The ranking is also shown in table 2.

Table 2. Observed problems in the case study

Source Problems Weighting by team members
Retrospectives High Stress-Level 30,7%
 Late Planning 25,8%
 BDD Workflow 12,9%
 Code Quality 12,9%
 Remote Access for AS 9,7%
 Use Cases 8,0%
Interviews Communication and Coordination

Overhead
1st

 Lack of Tool-Support 2nd
 Two-Tiered Sprint Planning 3rd

 Inter-organizational Co-development with Scrum 157

4 Case Analysis

After the observation phase, the data collected was analyzed. Problems were
identified and clustered from different sources: retrospective meetings, interviews,
field notes, meeting minutes and the project documentation. The result was eight
problem clusters with the following top-down prioritization: distributed development,
transparency, commitment, planning, estimation, predictability, self-organizing teams
and tools. The problem clusters have been analyzed for two months. Table 3 shows
the result of the analysis: problem clusters and corresponding identified root causes in
the case study.

Table 3. Problem clusters and identified root causes

Problem Clusters Identified Root Causes
Distributed Development No Official Scrum Roles at the AS

Joint Estimation and Planning
Inter-Company Distribution of Team Members

Transparency Suppliers not Collocated
Communication Issues
Little Documentation
No Overview over All Teams

Commitment Commitment Fails with Insufficient Planning
Commitment Fails with Late Planning
Commitment Fails with Frequent Changes
Little Respect for Iterations

Planning Late Actual Beginning of Sprint
Little Participation of AS
Little Information for AS

Estimation User Story Estimation in Hours
Pre-estimations by MS

Predictability No Proper Sprint Velocity
Further Impediments for Better Predictability

Self-Organizing Teams Tasks Assigned to Team Members
Estimations Based on Individuals
Cross-Team Working Agreements

Tools Tools Lack Scrum Compatibility
Limited Remote Access for AS
Paper Scrum Board and Burndown Chart

Distributed Development. All three Scrum teams are staffed by members of both
suppliers, yet all product owners and Scrum masters are on the MS’s site.
Nevertheless, two of the AS’s team members have emerged that do more coordination
work than their colleagues. They care more for the Scrum process than others (Scrum
master) and travel to the MS to attend meetings and discuss user stories in person
(product owner). The team members on the AS’s site are 10 people distributed over

158 R. Vallon et al.

three different Scrum teams. It is very hard to remain self-organizing and in
compliance with the Scrum process, when contact to the remaining team members is
hard to establish and no role is officially assigned to look after the process at the AS’s
site.

This poses a big problem for the AS, as these two to three team members are
separated from the rest of the MS-based team. As a result, the AS has formed a virtual
team to manage his own resources with a single paper Scrum board covering all three
teams. The follow-up planning session is also held for the whole AS’s virtual team,
including members of all three real Scrum teams.

Transparency is a big issue between the two suppliers due to the physical distance of
300 kilometers. The whole process becomes more complex and less transparent. Low
quality video conferences and little available documentation further handicap
communication and coordination. There is no high level overview of the progress of
all three teams available to everyone since Scrum boards and burndown charts are
drawn on paper.

Commitment is hard to achieve with late planning and frequent changes within the
sprint iteration. The teams cannot commit to sprint goals when the user stories are not
properly and timely specified. As a result, estimations are not reliable.

Planning and Estimation. The MS pre-estimates user stories and uses this estimation
as a basis for planning. The AS is thus not adequately involved in the planning
process apart from updating the estimations of the MS (for his own user stories only).
Planning is often not ready until a few days into the sprint, which causes delays for
both suppliers. Estimation is done in hours. This does not represent complexity well
because different people need different amounts of time to work on a user story.

Predictability. Sprint velocity cannot be properly measured because the MS runs a
paper burndown chart that is based solely on tasks (derived from user stories). The
only available ratio is tasks per sprint, which does not represent any complexity
because it does not take into account hours (or story points). Further impediments to a
better predictability are a varying understanding of the BDD workflow among team
members and code quality issues.

Self-organizing Teams. Two developers emerged at the AS’s site that do more
coordination work and impediment handling than others. The distributed environment
complicates coordination between teams and it is hard for the AS to efficiently
complement the MS-based teams. Moreover, cross-team working agreements
regarding the BDD workflow need to be elaborated and agreed upon to reduce
interdependency issues.

Tools. The electronic tools in use all lack Scrum support, which prevents a proper
process implementation. There are currently four paper Scrum boards in use, three at
the MS’s site for each team and a combined one at the AS’s. These are cumbersome

 Inter-organizational Co-development with Scrum 159

to synchronize, which slows down the tracking of other teams’ progress. The
burndown charts are also drawn on paper and only available to the MS.

5 Discussion

The six-month-long case study involved two suppliers MS and AS from unaffiliated
organizations, which joined forces to co-develop three software products. The
research question was “How can agile development be applied to an inter-
organizational, multi-site and multi-team development environment and what
challenges, if any, emerge in this setting?

The following adaptations to the Scrum process have been made for the case

study’s setting:

• Two unofficial Scrum master-like roles emerged at the AS that frequently paid
visits to the 300-kilometers-away MS to improve the flow of information

• Three Scrum teams have been formed, each consisting of members from both
development partners

• Joint daily Scrum/two-week review and monthly retrospective meetings are held
via video conference calls

• Scrum of Scrums is held daily at the MS’s site without participation of the AS
• Two-tiered planning process (MS first, AS second) in use covering two sprints

The analysis showed that finding a working Scrum implementation is indeed very
challenging in an inter-organizational distributed development setting. Eight problem
clusters were identified as illustrated in figure 3. The relation between problem
clusters may not be as linear in real-world projects, but it serves as an illustration of
underlying constraints. It should also be regarded as an impulse on what problems to
act first: the suggested approach is bottom-up starting with enabling truly self-
organizing teams.

Fig. 3. Proposed identified relation of problem clusters. Problems should be solved bottom-up
from self-organizing teams to distributed development.

Self-organizing teams are one of the central components of Scrum and need to be
established first. Predictability evolves when long-lived self-organizing teams are
allowed to work in sprint iterations without outside interference. Estimation and
planning can only be accurate once predictability is reliable. The case study shows
that commitment cannot be achieved without timely planning. Providing transparency
is one of Scrum’s highest goals, i.e. making impediments visible to everyone. All the
precedent problem categories need to be solved before transparency can be achieved.

160 R. Vallon et al.

Distributed development is the central problem in this case study, since the two
suppliers are not collocated. Collaboration can only be improved by solving the other
problem categories first. Choosing the right tools for the specific project setting
supports the whole value stream and has even greater impact in distributed
development environments as team members need to rely more heavily on electronic
means of communication.

The major problem in the Scrum implementation was that the process was focused
on the MS. This observation is supported by numerous identified root causes during
the problem root cause analysis:

• No official Scrum roles at the AS
• Little participation of AS
• Little information for AS
• Paper Scrum boards and burndown charts
• Pre-estimations by MS
• Limited remote access for AS

Due to these reasons, planning and commitment frequently failed during the
observation phase in the case study. During retrospective meetings the general
consensus was that communication and coordination between the suppliers is
improving, but one on one interviews still disclosed many problems.

The MS is the main contractor in this project environment. Greater involvement of
the AS could lead to a more efficient development output. Scrum does not work well
in a hierarchical setting as the formation of self-organizing teams is denied and
transparency is decreased.

5.1 Lessons Learned

Inter-organizational Co-development Adds Another Layer of Complexity. The
case study shows that co-development between unaffiliated organizations adds new
complexity and challenges to overcome. The reasons are often organizations varying
in size and corporate culture. The introduction of hierarchies has no space in agile
development. The case study shows that overall transparency and thus efficiency will
decrease. In terms of development output, distributed teams cannot compete with
collocated teams on average due to the complexities involved. Hence the decision to
distribute development should be considered carefully.

Increased Effort for Self-organizing Teams. Both suppliers have run regular Scrum
before. Retrospective meetings and observations showed that the distribution of
development across two suppliers complicated software development. The level and
willingness of cooperation between team members determines success or failure. In
general, it is harder for teams to remain self-organizing as more effort is needed to
synchronize with distant team members.

Organizational Change Takes Time. The larger the organization, the harder it is to
introduce changes. This could especially be observed with the MS, where changes

 Inter-organizational Co-development with Scrum 161

took long to be realized compared to the AS which is smaller in size. Compromises
had to be made to deal with organizational impediments such as the switch to paper
boards.

Beware of a Superficial Scrum Adoption. The number one organizational
impediment to a successful adoption of agile principles is silver bullet thinking and
superficial adoption [20]. The case study showed that although distributed
development caused many problems, underneath many “regular” Scrum values have
not been met, such as self-organizing teams and the respect for iterations.

5.2 Suggestions for Practice

A lot of coordination and synchronization overhead was introduced by having multi-
site Scrum teams. We suggest forming single-site Scrum teams only. For this case
study’s setting an additional Scrum team on the AS’s site can be formed including a
Scrum master and a product owner instead of having three multi-site teams. The on-
site Scrum master and product owner also enforce an equal involvement of all
sites in the distributed Scrum process. Additionally decent electronic tool support
for the Scrum process is essential in a distributed environment for inter-team
coordination.

These measures help increase transparency and improve overall development
output. The case study showed that the appreciation of agile core values such as the
respect for iterations is of major importance especially in distributed development
environments.

5.3 Related Studies

The suggestion to form single-site Scrum teams aligns with one of the best practices
of the Scrum Alliance: form distributed but isolated Scrum teams that are linked
through the Scrum of Scrums [21]. However, Sutherland et al. provides a success
story in [21] stating that distributed integrated teams (over two sites) are more
efficient than the suggested best practice. Our exploratory study shows many
identified problems with the latter approach. Hence, we suggest implementing the
Scrum Alliance’s best practice, especially if team members are not agile experts. Vax
et al. also conclude in [22] that you need the right expertise and team for distributed
Scrum.

Penttinen et al. propose guidelines in [23] for three types of subcontracting teams
in Scrum: sub-contractor team (team with only sub-contractor members), mixed team
(an on-site mixed team) and a virtual team (a multi-site mixed team). In our case
study we had three virtual teams. Penttinen et al. also conclude that a virtual team is
the most complex option and most of the time a temporary one.

Instead of an on-site Scrum master or product owner, Paasivaara et al. mention
the possibility of having an “ambassador/rotating guru” in [8], who is sent to other
sites for a longer period of time. This measure serves as a compromise between a full
on-site Scrum master/product owner and the short-term visits conducted in the case
study at hand.

162 R. Vallon et al.

In related publications we can see a growing interest in bringing agile to (globally)
distributed software development [24], [25]. One of the conclusions over several case
studies reviewed by Hossain et al. in [24] is that Scrum needs to be extended to work
in a distributed setting, which has also been shown in our case study.

5.4 Limitations

Since this is a single case study, generalizability of results is limited. One of the
authors took the role of an external observer to minimize bias. As such, he was not
part of the team and thus was not able to fully capture each detail of daily work.

6 Conclusion

This case study investigated a Scrum-based agile approach to distributed development
between two unaffiliated organizations. We identified that the prominent problem was
that the developing partners formed an unequal partnership. The MS provided two
thirds of the staff involved. The AS joined as a subcontractor with developers and
testers but had no Scrum roles on site. Joint retrospective meetings showed that the
stress level was very high for both development partners. The main reason was a
weak flow of information between the MS and the AS, which resulted in frequent
issues with planning and estimations. Although the coordination and communication
improved over time, it has still been the main issue in most interviews conducted.

The fact that two unaffiliated organizations joined forces to develop a software
product added a new layer of complexity to distributed development. The Scrum
adaptations included moving most regular Scrum meetings to video conference ones,
but the process implementation was strongly focused on the MS: The Scrum of
Scrums was held in person at the MS’s site only and the AS did not have any official
Scrum roles. The paper Scrum board and burndown charts were also based at the
MS’s site which decreased transparency for the AS.

We suggest the formation of single-site self-organizing teams instead of multi-site
ones. Scrum masters and product owners should be present on all sites to ensure an
equal involvement of all developing parties in the process and improve the flow of
information. The case study further showed that an extensive electronic tool support is
crucial to the self-organization of teams in a distributed development environment.

References

1. Xie, M., Shen, M., Rong, G., Shao, D.: Empirical Studies of Embedded Software
Development Using Agile Methods: a Systematic Review. In: 2nd International Workshop
on Evidential Assessment of Software Technologies, pp. 21–26. ACM, New York
(2012)

2. Scharff, C., Verma, R.: Scrum to Support Mobile Application Development Projects in a
Just-in-time Learning Context. In: 2010 ICSE Workshop on Cooperative and Human
Aspects of Software Engineering, pp. 25–31. ACM, New York (2010)

 Inter-organizational Co-development with Scrum 163

3. Vander Leest, S.H., Buter, A.: Escape the waterfall: Agile for aerospace. In: 28th Digital
Avionics Systems Conference, pp. 6.D.3-1–6.D.3-16 (2009)

4. Chen, J.Q., Dien, P., Wang, B., Vogel, D.R.: Light-Weight Development Method: A Case
Study. In: 2007 International Conference on Service Systems and Service Management,
pp. 1–6 (2007)

5. Begel, A., Nagappan, N.: Usage and Perceptions of Agile Software Development in an
Industrial Context: An Exploratory Study. In: 1st International Symposium on Empirical
Software Engineering and Measurement, pp. 255–264 (2007)

6. Chung, M.-W., Drummond, B.: Agile at Yahoo! From the Trenches. In: 2009 Agile
Conference, pp. 113–118. IEEE Computer Society, Washington, DC (2009)

7. Schnitter, J., Mackert, O.: Large-Scale Agile Software Development at SAP AG. In:
Maciaszek, L.A., Loucopoulos, P. (eds.) ENASE 2010. CCIS, vol. 230, pp. 209–220.
Springer, Heidelberg (2011)

8. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using Scrum in Distributed Agile
Development: A Multiple Case Study. In: 4th International Conference on Global
Software Engineering, pp. 195–204 (2009)

9. Bannerman, P.L., Hossain, E., Jeffery, R.: Scrum Practice Mitigation of Global Software
Development Coordination Challenges: A Distinctive Advantage? In: 45th Hawaii
International Conference on System Science, pp. 5309–5318 (2012)

10. Hildenbrand, T., Geisser, M., Kude, T., Bruch, D., Acker, T.: Agile Methodologies for
Distributed Collaborative Development of Enterprise Applications. In: 2008 International
Conference on Complex, Intelligent and Software Intensive Systems, pp. 540–545 (2008)

11. Korkala, M., Abrahamsson, P.: Communication in Distributed Agile Development: A Case
Study. In: 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 203–210 (2007)

12. Dullemond, K., van Gameren, B., van Solingen, R.: How Technological Support Can
Enable Advantages of Agile Software Development in a GSE Setting. In: 4th International
Conference on Global Software Engineering, pp. 143–152 (2009)

13. Niinimäki, T.: Face-to-face, Email and Instant Messaging in Distributed Agile Software
Development Project. In: 6th International Conference on Global Software Engineering
Workshop, pp. 78–84 (2011)

14. Dorairaj, S., Noble, J., Malik, P.: Knowledge Management in Distributed Agile Software
Development. In: 2012 Agile Conference, pp. 63–73 (2012)

15. Kajko-Mattsson, M., Azizyan, G., Magarian, M.K.: Classes of Distributed Agile
Development Problems. In: 2010 Agile Conference, pp. 51–58 (2010)

16. Yin, R.K.: Applications of Case Study Research (Applied Social Research Methods). Sage
Publications (2011)

17. Grenning, J.: Planning Poker or How to Avoid Analysis Paralysis While Release Planning
(2002), http://renaissancesoftware.net/files/articles/
PlanningPoker-v1.1.pdf

18. North, D.: Behavior Modification. The evolution of behavior-driven development. Better
Software Magazine (March 2006)

19. Beck, K.: Test Driven Development By Example. Addison-Wesley Professional (2003)
20. Larman, C., Vodde, B.: Scaling Lean & Agile Development. Thinking and Organizational

Tools for Large-Scale Scrum. Addison-Wesley, Boston (2009)
21. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed Scrum: Agile Project

Management with Outsourced Development Teams. In: 40th Hawaii International
Conference on System Sciences, p. 274a (2007)

22. Vax, M., Michaud, S.: Distributed Agile: Growing a Practice Together. In: 2008 Agile
Conference, pp. 310–314 (2008)

164 R. Vallon et al.

23. Penttinen, M., Mikkonen, T.: Subcontracting for Scrum Teams: Experiences and
Guidelines from a Large Development Organization. In: 7th International Conference on
Global Software Engineering, pp. 195–199 (2012)

24. Hossain, E., Ali Babar, M., Paik, H.: Using Scrum in Global Software Development: A
Systematic Literature Review. In: 4th International Conference on Global Software
Engineering, pp. 175–184 (2009)

25. Jalali, S., Wohlin, C.: Agile Practices in Global Software Engineering – A Systematic
Map. In: 5th International Conference on Global Software Engineering, pp. 45–54 (2010)

A Metrics Model to Measure the Impact

of an Agile Transformation in Large Software
Development Organizations

Jeanette Heidenberg1,2,3, Max Weijola1,2, Kirsi Mikkonen3, and Ivan Porres1,2

1 Åbo Akademi University, Department of Information Technologies,
Joukahaisenkatu 3-5 A, 20520 Turku, Finland

Givenname.Surname@abo.fi
2 Turku Centre for Computer Science, Joukahaisenkatu 3-5 B, 20520 Turku, Finland

3 Ericsson R&D Center Finland, Hirsalantie 11, 02420 Jorvas, Finland
Givenname.Surname@ericsson.com

Abstract. As the adoption of agile and lean methods continues to grow,
measuring the effects of such a transformation can be valuable but chal-
lenging due to the many variables influencing the outcome of a software
project. In this paper we present a metrics model developed for measuring
the effects of an agile and lean transformation on software development
organizations. The model was developed iteratively in cooperation with
industry partners within the Cloud Software Finland research project.
The resulting metrics model is applicable to projects of any size, com-
plexity and scope, using metrics that support agile and lean values. The
model can be used to measure both past and ongoing projects, regardless
of whether the process model used is plan driven or agile. In order to
evaluate the metrics model, the proposed model has been piloted in an
industry setting.

Keywords: Metrics, Measurements, SPI, Transformation, Lean, Agile.

1 Introduction

Agile and lean software development methods keep growing in popularity among
software companies of all sizes. Recent surveys performed by both academic
researchers and IT consultants show agile and lean adoption ranging from 55%,
as reported by Rodriguez et.al. [1], to 80%, as reported by VersionOne [2], in
companies ranging in size from 11 to over 1000 employees [1].

The benefits of agile and lean deployment has been discussed extensively in
the literature [3,4,5,6,7,8]; and so has the drawbacks of plan driven software
development [9,6]. The discourse, however, mostly deals with the differences
between the two ways of working in qualitative terms. The quantitative impact
of agile and lean adoption in software organizations still needs further study [10].

Quantitatively and objectively comparing a development organization before
and after an agile transformation is a challenging task. In this article, we use
the term agile transformation to denote a sudden, disruptive change in the de-
velopment process in an organization in order to adopt agile methods. In a large

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 165–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

166 J. Heidenberg et al.

scale agile transformation there are many factors affecting the outcome, and
measuring the impact of only the transformation while excluding other factors
is difficult. Since the transformation is performed in a real industry context, not
in a controlled academic environment, there will inevitably be uncontrollable
factors such as changes in the economic climate, shift in demand, and changes
in the performance of the sales staff [11]. One can also expect uncontrollable
factors internal to the software development organization, such as turnover of
development staff, to impact the results.

Any transformation of the way of working may require a notable investment
from the organization, both in a monetary aspect, as well as in disrupted work-
ing routines and possible resistance to change among some of the employees.
Cohn [11] mentions phenomena such as waterfallacies and agile phobies as ex-
amples of such resistance. The organization may have embarked on the trans-
formation with the goal of increasing the delivered value, and may after the
transformation ask itself: Was the transformation worth the effort?. For this
reason, an organization may look for a way of quantifying the impact of the
transformation, despite the challenge of performing such measurements in an
industry setting.

Indeed, this need for quantifying the impact of agile and lean transforma-
tions arose among the industry partners of the Cloud Software Finland research
project [12] as a complement to already used qualitative measurements, such
as interviews and surveys. It led us to formulate our research question: “How
can the changes of an agile transformation be measured by quantitative objective
metrics?”

In this article, we propose a software process improvement (SPI) metrics
model for quantitatively comparing a software development organization before
and after an agile and lean transformation. The model was iteratively devel-
oped and refined to focus on measuring efficiency, business value and lead-time
with a number of industry partners within the Cloud Software Finland research
project. The metrics proposed in the model are based on a goal question metrics
(GQM) approach [13] where both the questions and metrics have been chosen
and refined with a set of criteria to allow comparison between plan driven and
agile. The questions and metrics were also chosen to continuously support the
organization’s agile transformation and new way of working.

The remainder of this paper is structured as follows. Section 2 gives a short
background and we present previous work done in the field. In Section 3 our
context and research method are described in more detail, including metrics se-
lection criteria (Section 3.3). The goal for the transformation metrics model is
presented in Section 4. Section 5 describes the partial literature survey under-
taken to map the current state of agile and lean metrics. Our proposed metrics
are described in Section 6. A pilot case and examples of the metrics in the model
in an organization is presented in Section 7. The metrics are validated against
the selected set of criteria in Section 8. Discussion and conclusion are presented
in sections 9 and 10 respectively.

An Agile Transformation Metrics Model 167

2 Background and Previous Work

Metrics in software development have been the subject of both research and
practice for a long time resulting in many proposed best practices. Due to
the introduction of agile and lean methods during the early 2000’s, new best
practices and research have been reported for metrics applied in agile settings
[14,15,16,17,18,19].

Hartmann and Dymond suggest that agile metrics should affirm and reinforce
lean and agile principles [14], since using inappropriate (plan driven) metrics
can not only be inefficient but also threaten an emerging agile culture. Petersen
and Wohlin discusses measurements used in lean manufacturing (e.g. Capacity
Utilization), which are inappropriate in a software engineering setting due to the
creative nature of the work [16]. Dubinsky et al. discusses the benefits of tailoring
custom measurements for an organization as a means of communicating what
behavior is considered important and therefore measured [15].

The topic of empirically comparing development processes has been identified
as relevant by researchers. Mainly the reported findings have supported the
deployment of agile methods. In the recent work of Concas et al. [20], software
quality metrics were related with certain agile development phases and practices.
However, the topic is still in need for further study [19,8], as very few reports on
quantitative, empirical studies comparing the situation before and after an agile
transformation exist.

One study that compares the effects of moving from a plan driven to an agile
approach to software development is the case study by Petersen and Wohlin
from 2010 [8]. The focus in the case study was on qualitative data gathered
from interviews, with only a few quantitative performance metrics included for
support. Our focus, however, is on quantitative data.

Another study comparing a transformation is the recent case study by Sjøberg,
Johnsen and Solberg [19] focusing on the effects of a company migrating from
Scrum to Kanban. They do use quantitative metrics, focusing on the variables
lead time, quality, and productivity. The fact that they are mainly comparing
two agile approaches limits the applicability of their research in our setting.

Two studies that we found useful for our work are Petersen’s and Wohlin’s
work on flow [16], in combination with Staron and Meding’s work on bottle-
necks [18]. The main difference is in the purpose of the research. Their purpose
was to continuously improve an agile way of working, by analysing the current
way of working in order to find improvement opportunities. Our need for com-
paring the situation before and after a transformation is slightly different.

3 Research Question, Method and Context

3.1 Context

The need for a metrics model emanated from Finnish software companies col-
laborating with universities in the Cloud Software Finland [12] research project.
One of the goals of this project is to support the Finnish software industry in

168 J. Heidenberg et al.

transforming their operations with the help of agile and lean methods. The size
of the companies range from fairly large organizations, developing complex em-
bedded software systems to smaller companies providing software development
and consultancy services. Furthermore, both the software development processes
and cultures of the companies in the project vary to a great extent. Some or-
ganizations have completed agile and lean transformations, whereas others are
in different stages of transformation. Within this research project, there were
already studies ongoing focusing on the qualitative measurement of agile and
lean transformations, whereas our work pursues the quantitative aspect of the
same transformations.

3.2 Research Question

As agile and lean methods are gaining popularity, we agree with previous work
[10,19] that establishing a model for measuring the impact of a transformation
is relevant for both researchers and practitioners. With this in mind and in the
context described above, we formulate the following research question.

RQ - How can the changes of an agile transformation be measured by quanti-
tative objective metrics?

As an answer to this question, we create a metrics model to be used for measuring
an agile transformation. In order to ensure that the metrics model is useful
for comparing the situation before and after a transformation, we set up the
following criteria for selecting the metrics of the model.

– C1. The metrics must be applicable to both plan driven and agile projects.
– C2. The metrics must support the agile principles (as described in the agile

manifesto [21]).
– C3. The metrics must be feasible to collect for both past and on going

projects.
– C4. The metrics must be possible to collect and use in projects of any scope,

size and complexity.
– C5. The metrics must be objective, i.e. metrics colletion should not require

the judgment and interpretation of experts.

3.3 Research Method

The metrics model in this paper has been iteratively developed in a series of
workshops with both industry experts and researchers. Much valuable knowl-
edge have also been obtained through literature study and the software research
community.

The metrics model in this paper was developed in five distinct steps. As the
first step, in early 2011, the goal for the model was defined and iteratively refined
with respect to goal coordinates according to the GQM method [13] as described
in Section 4. The second step involved refinement of the goal and probing for

An Agile Transformation Metrics Model 169

candidate metrics during formal and informal workshops (Section 4). When pro-
posals for the goal and questions were available, as the third step a literature
survey was undertaken to map the state of the art in agile and lean transfor-
mation metrics. The literature survey is described in Section 5, with the goal of
discovering metrics already proven useful and relevant in literature. The fourth
step consisted of iteratively evaluating the metrics discovered in the literature
survey against both the questions in the first and second step, as well as against
the selection criteria presented in the research question in Section 3.2. Finally,
as the fifth step, when both researchers and industry representatives reached
an agreement on the metrics to be included in the model, a pilot evaluation
was performed to exemplify the data gathering and visualization of a subset of
metrics at Ericsson R&D Center Finland, further described in Section 7.

4 Defining the Goal and Questions for the Transformation
Metrics Model

In this section we describe the background to the GQM [13] approach as the
foundation to the metrics model. We start with the background leading to the
model, followed by an overview of the goal and questions derived from collabo-
ration with industry partners.

4.1 Background and Development of the Model

Based on the needs and state of the industrial partners in the Cloud Software
Finland research project a measurement model was jointly developed and iter-
ated using a GQM [13] approach. Our main partner in the early iterations of
the metrics model was Ericsson R&D Center Finland and as the model matured
and was refined other partners joined the research effort.

In this work we have based our transformation metrics model on agile metrics
best practices from literature to support the agile transformation during the
measurements, as described in Section 2.

4.2 Goal

The general goal of transforming and improving development operations was
identified in a project wide survey in 2011 (see Section 3.1). This goal was further
discussed and defined in 2011 within the case company and subsequently iterated
to clarify the goal coordinates issue, object and viewpoint as described by Basili
et al. [13]. The beginning stage of defining the measurement goal consisted of a
workshop day with open discussions.

From a later workshop, held in a world café [22] format, the GQM coordinate
issues of the goal, business value delivery and efficiency were extracted to be
of key importance. The workshop participants represented many different roles
in the organization, such as: Scrum masters, developers, testers, product owners
and line managers. The last coordinate issue, end-to-end lead time, was at

170 J. Heidenberg et al.

the time of the workshop counted as part of efficiency, but was later discovered
to be more important and subsequently separated.

The final GQM goal coordinates are presented below:

Purpose: Improve
Issue: End-to-end lead time, business value delivery and efficiency
Object: The software development process
Viewpoint: From the whole organizations and customer viewpoint

The iterations and refinement of the goal coordinates were finalized during fall
2011 resulting in the following goal:

Goal: Improve end-to-end lead time, business value delivery and efficiency
for the software development process from the whole organization’s and cus-
tomer’s viewpoint.

When improving the lead time, business value delivery and efficiency, there is a
risk that the quality suffers. In order to ensure that this has not been the case,
we also added quality as an issue to measure.

4.3 Questions

Based on the goal and aforementioned coordinate issues, four questions were
proposed:

Q. 1: Are we more responsive in the new way of working?
Q. 2: Do we have better throughput in the new way of working?
Q. 3: Do we have a better workflow distribution in the new way of working?
Q. 4: Do we have better product quality in the new way of working?

4.4 Metrics

The final step in the GQM modeling was to determine the metrics to be used.
This step proved to be the most challenging and time consuming. According to
Basili et. al. [13] one important factor in choosing metrics is to maximize the
use of existing data sources. The use of existing data sources was particularly
important in the research setting since the researchers were separate from the
measured organization and the transformation was already taking place.

As input towards finding the right metrics for each question, the researchers
conducted a literature survey as described in Section 5 and analyzed the results.
From the state of the art in metrics, best practices were extracted. These acted
as a base for selecting and crystallizing the right metrics in the GQM approach
for the current research setting.

The four questions and the eight metrics chosen for inclusion in the metrics
model are described in more detail in Section 6. In the next section, Section 5,
we describe the literature survey undertaken to map the current state of research
in SPI and agile metrics.

An Agile Transformation Metrics Model 171

5 Literature Survey

A literature survey was performed to map the current status of Software Process
Improvement (SPI) evaluation and agile metrics. The literature research was
performed by the researchers in October 2011 as an on-line search in the following
collections: SpringerLink [23] , IEEE Xplore [24] and ACM Digital Library [25].

The search strings used were: Lead-Time AND Lean, Lead Time AND Lean,
Business Value AND Lean, Business-Value AND Lean, Metric AND Lean, Met-
rics AND Lean, Metrics AND Agile, Metric AND Agile. The search terms were
entered in each database manually, which can lead to some inconsistencies due
to human error. The titles of the search results were evaluated and the abstracts
of relevant publications were further examined. The relevant publications were
saved and subjectively ordered by precedence with numbers from 1-3 depend-
ing on assessment of the researchers and the number of times the publications
appeared in the search results.

After the on-line search phase was finished the abstracts of the saved pub-
lications (70 in total) were evaluated a second time and relevant articles were
chosen for reading. This method of both systematically and subjectively elicit-
ing relevant articles depended on the research environment where the research
questions were not completely finalized from the beginning.

Additionally some research was conducted in on-line journals such as Agile
Journal [26] to further broaden the understanding of the topics and related
terminology from practitioners and the agile community.

Approximately 20 articles were chosen as relevant for the future work at the
end of the literature research. These were studied in detail and annotated, also
interesting references were further examined resulting in a big matrix of pub-
lications, their goals and metrics. The matrix was discussed by the researchers
and candidate metrics were selected for the metrics model.

In addition to the concrete metrics discovered in the literature survey, many
proposed best practices for agile measurement have been presented and discussed
in literature [14,15,27]. The best practices were a valuable input in the work of
creating the metrics model, although not all practices could be satisfied.

Subsequent workshops with industry representatives strengthened the poten-
tial use of some metrics, whereas other metrics proved difficult to gather from,
e.g., old projects and had to be abandoned for this work. The resulting metrics
for each question is presented in Section 6.

6 Proposed Metrics

The metrics for the model were chosen with the selection criteria, described in
Section 3.2, in mind. Besides the applicability to both agile and plan driven
settings, the availability and objectivity of the data are of importance.

Two metrics were chosen for each of the questions to add redundancy in
case some metric would prove to not be possible to collect. The relatively high
number of metrics also represents the different organizations that have been

172 J. Heidenberg et al.

collaborating in this work. When applying the model (as described in Section 7),
organizations are encouraged to consider how many questions to try to answer
and which metrics are possible to collect to answer these questions.

The metrics are defined by a textual description, the measured attribute and
the actual metric, as described by Meneely et al. [28].

6.1 Q. 1: Are We More Responsive in the New Way of Working?

With this question we want to investigate if the response time has improved.
This question relates to the better end-to-end lead time in the specified goal.

Responsiveness is often regarded as a key factor in software development. As
Reinertsen [29] argues, in areas where response time is important, this is the
only metric that should be used for improving service. One such important area
is support operations where solving bugs and problems quickly is of high value
to stakeholders.

Similarly, during development of new features, fast lead-time is important
for numerous competitive advantages such as fast feedback loops and reducing
the risk of requirements becoming outdated (waste), both examples of where
decisions might decay over time [30].

Metric 1 – Customer Service Request (CSR) Turnaround Time. The
first metric measures the turnaround for customer service requests. The met-
ric is calculated from a timestamp when the request first comes to the de-
velopment organization and from a timestamp when the request is resolved.
Attribute: Time
Metric: CSR date solved - CSR date created.

Metric 2 – Cycle-Time per Feature. The second metric measures cycle-
time for features selected for development. Quick cycle-time is essential for
competitive advantages as noted by Petersen [17]. The metric is calculated
from a timestamp when the feature is added to the backlog and timestamp
when the feature is ready for delivery. Cycle-time is regarded as a part of
the lead-time. This metric also supports metric 4 – Business value / Work
effort, since shorter cycle-time makes more frequent releases easier.
Attribute: Time
Metric: Feature delivery ready date - Feature added to backlog date.

6.2 Q. 2: Do We Have Better Throughput in the New Way of
Working?

Where the first question concerned timeliness, this question aims to investigate
whether the total amount of value delivered is greater in the new way of working
during similar time periods and projects. The benefits of increased throughput
have been discussed widely, including Andersson [31].

Metric 3 – Functionality / Work Effort. With the second question’s first
metric we want to measure how much functionality (also denoted as product

An Agile Transformation Metrics Model 173

size [27]) that can be delivered in relation to a certain work effort. The
proposed metric is the ratio of test points, as described by Dubinsky et al. in
[15,27] divided by total time spent on the development measured in person
hours. This metric (similarly to metric 1) also supports metric 4, since more
functionality can be split into more frequent releases.
Attribute: Throughput
Metric: Test points / Person hours

Metric 4 – Business Value / Work Effort. Business value is measured
as more frequent major releases [11] in relation to the work effort (person
hours).
Attribute: Throughput
Metric: Number of major releases in a year / Person hours

6.3 Q. 3: Do We Have a Better Workflow Distribution in the New
Way of Working?

The third question, concerning workflow distribution characterizes the new it-
erative way of working, as this is one of the goals for an agile transformation.
Measuring the workflow helps the organization identify that a change in the way
of working has indeed taken place.

Metric 5 – Commit Pulse. Commit pulse measures how continuous integra-
tion is within sprints [15,27] by counting the number of check-ins daily. The
check-in data can be visualized in a diagram with days on the x-axis and
number of commits on the y-axis. The aim is to have an even check-in pulse
throughout sprints without high spikes of commits at the end of sprints.
Attribute: Regularity
Metric: Number of days between commits

Metric 6 – Flow. Measuring the flow in an organization supports responsive-
ness as proposed by Petersen & Wohlin [16], connecting also this metric back
to the first questions. Having a continuous smooth flow without bottlenecks
allows the development organization to better respond quickly to customer
requests.
Attribute: Flow
Metric: Flow diagrams

6.4 Q. 4: Do We Have Better Product Quality in the New Way of
Working?

With the three previous questions concerning the improvement of the develop-
ment process, the final question takes into account the quality aspect of the
product developed. Improvements in other areas must not take place at the
expense of product quality.

174 J. Heidenberg et al.

Metric 7 – Number of External Trouble Reports (TR). External trou-
ble reports are defect reports submitted from external users. This metric
measures the total number of external trouble reports during a certain time
period in a release of software in the old way of working compared to total
number of external trouble reports from a similar project and similar time
period in the new way of working.
Attribute: Amount
Metric: Number of external TR’s originating from a certain release

Metric 8 – Days Open, External Trouble Reports. The final metric
measures the average days external trouble reports have been unsolved from
creation until solved. This metric is related to Question 1: Are we more re-
sponsive. . . , but it also measures the quality of the product. If trouble reports
consistently take longer to solve, then it is likely that the defects found are
more complicated or that the code base is more difficult to maintain. Both
of these are indications that the quality of the product has deteriorated.
Attribute: Time
Metric: TR date solved - TR date created

7 Using the Metrics Model in an Organization

To exemplify the use of the metrics model in an organization, data was gathered
and analyzed from the agile and lean transformation Ericsson R&D Center Fin-
land carried out during 2008-2011. Examples of these are displayed in Figure 1
and Figure 2, where Metric 1 and Metric 8 are shown respectively, with data
plotted from both before, during and after the transformation. For the baseline,
old Way of Working (WoW), a set of features was selected from a typical devel-
opment project in the plan driven development process from a two year period
during 2007-2009. The new WoW was represented by a similar set of features
from the agile and lean development process from a similar two year period in
2011-2012. Additionally some data was analyzed from the time (in 2010) when
the transformation was taking place.

The collection of the data was considered cheap with respect to the amount
of time necessary to extract the data by Ericsson R&D Center Finland repre-
sentatives. The researchers gained access to the raw data files as well as were
familiarized with the organization’s terminology. Due to confidentiality, only
trends can be shown in the metric visualizations, where all scales are linear and
start the y-axis from zero.

8 Validation of the Model with Respect to the Criteria

In Section 3.2 we listed five criteria used for selecting the metrics of the proposed
model. In this section we explain why we consider these criteria to be fulfilled
by the included metrics.

An Agile Transformation Metrics Model 175

Question 1

Question 2

Question 3

Question 4

Metric 2

Metric 1

Metric 3

Metric 4

Metric 5

Metric 6

Metric 7

Maintained
quality?

Better workflow
distribution?

Better
throughput?

More
responsive?

Number of
External TR:s

Flow

Commit pulse

Business Value
/MH

Functionality
/MH

Responsiveness
per feature (e2e)

CSR turnaround
time

External TR:s
Days open

Metric 8

Better?

Goal

Fig. 1. Metric 1: Average number of days
open for CRSs

Fig. 2. Metric 8: TRs average days open

8.1 C1 and C4: Plan Driven and Agile Projects, Independent of
Scope, Size and Complexity

With the exception of the workflow distribution metrics (Metrics 5 and 6 – com-
mit pulse and flow), all the selected metrics are such that they measure the
development effort from an external point of view. The time and effort for deliv-
ering service requests, features, functionality, business value, and trouble reports
are measured looking at the point when they enter and exit the development or-
ganization. As such they ignore the internal process used to produce the result,
and thus render the metrics independent of the internal process model used, i.e.
plan driven or agile (C1). As the metrics do not consider the internal workings
of the project measured, it is also agnostic to scope, size and complexity (C4).

In contrast, the workflow distribution metrics have the express purpose to
illustrate the difference between the two process models, in order to verify that
a change in way of working has indeed taken place. Metric 5 (commit pulse) is
trivial to collect in any organization using a version control tool for the produced
source code, regardless of the process model used. Metric 6 (flow) requires that
the organization uses some form of time tracking tool for the development activ-
ities, and has continued to do so after the transformation. This may not always
be the case.

8.2 C2: Support for Agile Values

As noted by Hartmann and Dymond, the inappropriate use of metrics can
threaten an emerging agile and lean culture [14]. For this reason, we were

176 J. Heidenberg et al.

careful to select metrics that support agile values (C2). The core values and prin-
ciples described by the agile manifesto [21] are centered around responsiveness,
early delivery of working software, cooperation and communication, technical
excellence, simplicity, self-organization and human interaction. Throughout the
selection process, these values have served as a guide.

8.3 C3: Feasible to Collect for Both Past and Ongoing Projects

From a research point of view, it would be ideal to have the opportunity to define
what metrics to collect a year before a transformation takes place. In reality, the
need to measure a transformation arises at the start of the transformation at
the earliest, and sometimes not until the transformation is complete. For this
reason, the metrics defined should be feasible to collect after the fact. Any metrics
initiative is a trade-off between cost of data collection and metric accuracy. In
this case the trade-off becomes more pronounced due to the fact that it can be
extremely costly to gather data for past projects. By working closely together
with industrial partners and verifying that the data we ask for can be collected,
we have achieved a model that is usable for both past and ongoing projects.

8.4 C5: Objective

All the data collected is quantitative and, with the exception of Metric 6 (flow,)
requires no interpretation of experts. The entry and exit dates for implemented
items as well as the number of items present should all be objective information
present in the documentation of the projects measured. The flow metric is a
slightly more complex metric that requires plotting and analysis of the plotted
curve. This does not compromise the objectivity of the metric, but makes the
implications of it slightly more cumbersome to analyze.

9 Discussion and Future Work

The metrics model proposed in this paper is intended to be a practical tool for
use in software development organizations undergoing transformation from more
traditional ways of working to agile and lean ones. The main challenge lies in
the contrast between the old and new; in finding metrics that can be used in
and accepted by both worlds. Especially the agile and lean philosophy rules out
certain traditional productivity metrics such as lines of code per person hour
or capacity utilization. This type of metric can, however, still be found in the
agile literature. An example of a metric we chose not to use is churn (number of
added, deleted and modified lines of code) per developer as presented by Sjøberg,
Johnsen and Solberg [19]. We expected that this type of metric would meet with
resistance and even be considered harmful in the agile way of working. Instead,
we focused on measuring throughput in terms of the produced functionality and
business value.

An Agile Transformation Metrics Model 177

Another challenge in comparing the old and new way of working of an orga-
nization undergoing transformation is the fact that not all measurable changes
originate from the transformation itself. In a real world situation, other factors
will always impact the measurements. By choosing metrics that measure the
operations of the development organizations (such as lead-times and defect re-
ports), rather than metrics that measure the operations of the whole company
(such as revenue and customer satisfaction) we hope to have minimized the effect
of external factors. Internal factors, however, such as development staff turnover,
cannot be factored out. This is a known limitation of this metrics model, which
should be taken into account when the model is used. Any organization using
the model should analyze and list the internal factors expected to impact the
measurements. It is also worth noting that no metric model is immune to manip-
ulation. For this reason, it is crucial that the collection of data be transparent,
reproducable and honestly reported in order for the results to be trustworthy

The agile and lean community emphasises produced value as a measurement
for productivity. The challenge we faced with this metric is that it is typically not
collected in traditional ways of working. In fact, we found through our literature
research that it is rarely collected in agile or lean ways of working. One could
assume that the business value of a product could easily be extracted in hindsight
by looking at the revenue produced for a product. This may work if the product
catalog is simple, but proved to be impossible with the complex product portfolio
of the software companies in the Cloud project. We have suggested a model for
expressing business value for complex products in agile projects [32], but this
proved costly to recreate after the fact for plan driven projects. The metric
we used for measuring produced business value: the number of major releases,
proved to be practical in both worlds, but can be argued to be a bit imprecise.
This is an area we would still like to investigate further.

The metrics model developed here was created with the specific needs of our
partners in mind. We are currently planning to investigate the general applica-
bility of this model by running a series of case studies in different companies
undergoing similar transformations.

10 Conclusions

In this paper we have proposed a metrics model for comparing development
in plan driven processes to agile and lean development processes. The metrics
model has been piloted with data from Ericsson R&D Center Finland, showing
that the data needed for the model is indeed feasible to be collected both for
ongoing, agile projects and past, plan driven projects and that the metrics are
sensitive to an organizational transformation.

Our intention with the metrics model is twofold: 1) To contribute to current
research in the field of comparing the effects of changing software development
processes with a metrics model applied in an industry setting. 2) To support
organizations by enabling them to show the benefits of agile and lean transfor-
mations with the use of quantitative objective data to complement qualitative
studies in the field.

178 J. Heidenberg et al.

Our proposed metrics model consists of eight metrics, combined into pairs,
connected to four questions, all aiming for one goal. Both the questions and
the goal were iteratively developed during workshops in which both researchers
and industry partners participated. The metrics were carefully selected to be
compliant with a set of five criteria to maximize their usefulness in measuring
agile and lean transformations.

Future work includes first and foremost applying the metrics model in different
case companies to further validate the usefulness and applicability of the metrics
model.

Acknowledgements. This work was funded by the CLOUD Software Finland
project [12]. From Ericsson R&D Center Finland we would like to thank Chris-
tian Engblom, Kaisa Kettunen, Leena Pitkäranta, and Outi Väättänen for their
help and support. We also wish to thank Marta Olszewska from Åbo Akademi
for her participation in the project.

References

1. Rodŕıguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in finnish software industry. In: Proceedings of the ACM-IEEE, ESEM 2012, pp.
139–148. ACM, New York (2012)

2. VersionOne: State of agile survey (2011), http://versionone.com/pdf/2011

State of Agile Development Survey Results.pdf

3. Ebert, C., Abrahamsson, P., Oza, N.V.: Lean software development. IEEE Soft-
ware 29(5), 22–25 (2012)

4. Šmite, D., Moe, N., Ågerfalk, P.: Agility Across Time and Space: Implementing
Agile Methods in Global Software Projects. Springer (2010)

5. Anderson, D.: Agile Management for Software Engineering: Applying the Theory
of Constraints for Business Results. The Coad Series. Prentice Hall (2004)

6. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. The
Agile Software Development Series. Prentice Hall (2007)

7. Parnell-Klabo, E.: Introducing lean principles with agile practices at a fortune 500
company. In: Proceedings of the Conference on AGILE 2006, pp. 232–242. IEEE
Computer Society, Washington, DC (2006)

8. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental
software development approach with agile practices. Empirical Softw. Engg. 15(6),
654–693 (2010)

9. Royce, W.W.: Managing the development of large software systems: concepts and
techniques. In: Proceedings of IEEE WESCON 26 (1970)

10. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Inf. Softw. Technol. 50(9-10), 833–859 (2008)

11. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-
Wesley Professional (2009) ISBN 978-0321579362

12. Cloud Software Finland: Cloud software finland, www.cloudsoftwareprogram.org

13. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley (1994)

http://versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
http://versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results.pdf
www.cloudsoftwareprogram.org

An Agile Transformation Metrics Model 179

14. Hartmann, D., Dymond, R.: Appropriate Agile Measurement: Using Metrics and
Diagnostics to Deliver Business Value. In: AGILE 2006 Conference (Agile 2006).
IEEE Computer Society (2006)

15. Dubinsky, Y., Talby, D., Hazzan, O., Keren, A.: Agile Metrics at the Israeli Air
Force. In: Proceedings of the Agile Development Conference, ADC 2005, pp. 12–19.
IEEE Computer Society, Washington, DC (2005)

16. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Soft-
ware: Practice and Experience 41(9), 975–996 (2011)

17. Petersen, K.: An Empirical Study of Lead-Times in Incremental and Agile Soft-
ware Development. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS,
vol. 6195, pp. 345–356. Springer, Heidelberg (2010)

18. Staron, M., Meding, W.: Monitoring bottlenecks in agile and lean software devel-
opment projects – A method and its industrial use. In: Caivano, D., Oivo, M.,
Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS, vol. 6759, pp. 3–16.
Springer, Heidelberg (2011)

19. Sjøberg, D.I., Johnsen, A., Solberg, J.: Quantifying the effect of using kanban versus
scrum: A case study. IEEE Software 29, 47–53 (2012)

20. Concas, G., Marchesi, M., Destefanis, G., Tonelli, R.: An empirical study of soft-
ware metrics for assessing the phases of an agile project. International Journal of
Software Engineering and Knowledge Engineering 22(04), 525–548 (2012)

21. Agile Alliance: Agile manifesto, www.agilemanifesto.org/
22. World Cafe: World cafe, http://www.theworldcafe.com/method.html
23. Springer: Springer link, www.springerlink.com/
24. IEEE: IEEEXplore, www.ieeexplore.ieee.org/
25. ACM Digital Library: ACM Digital Library, www.dl.acm.org/
26. Agile Journal: Agile journal, www.agilejournal.com/
27. Hazzan, O., Dubinsky, Y.: Agile software engineering. Undergraduate topics in

computer science. Springer, Berlin (2008) ISBN: 978-1-84800-199-2
28. Meneely, A., Smith, B., Williams, L.: Validating software metrics: A spectrum of

philosophies. ACM Transactions on Software Engineering and Methodology
29. Reinertsen, D.G.: The Principles of Product Development Flow: Second Generation

Lean Product Development. Celeritas Publishing (2009)
30. Cockburn, A.: What engineering has in common with manufacturing and why it

matters - ac (September 2006)
31. Andersson, D.: Agile management for software engineering: applying the theory of

constraints for business results. Pearson Education Inc. (2004)
32. Heidenberg, J., Weijola, M., Mikkonen, K., Porres, I.: A model for business value in

large-scale agile and lean software development. In: Winkler, D., O’Connor, R.V.,
Messnarz, R. (eds.) EuroSPI 2012. CCIS, vol. 301, pp. 49–60. Springer, Heidelberg
(2012)

www.agilemanifesto.org/
http://www.theworldcafe.com/method.html
www.springerlink.com/
www.ieeexplore.ieee.org/
www.dl.acm.org/
www.agilejournal.com/

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 180–194, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Perspectives on Productivity and Delays
in Large-Scale Agile Projects

Deepika Badampudi1, Samuel A. Fricker1, and Ana M. Moreno2

1 Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
2 Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

deba10@student.bth.se, samuel.fricker@bth.se,
anamaria.moreno@upm.es

Abstract. Many large and distributed companies run agile projects in
development environments that are inconsistent with the original agile ideas.
Problems that result from these inconsistencies can affect the productivity of
development projects and the timeliness of releases. To be effective in such
contexts, the agile ideas need to be adapted. We take an inductive approach for
reaching this aim by basing the design of the development process on
observations of how context, practices, challenges, and impacts interact. This
paper reports the results of an interview study of five agile development
projects in an environment that was unfavorable for agile principles. Grounded
theory was used to identify the challenges of these projects and how these
challenges affected productivity and delays according to the involved project
roles. Productivity and delay-influencing factors were discovered that related to
requirements creation and use, collaboration, knowledge management, and the
application domain. The practitioners’ explanations about the factors' impacts
are, on one hand, a rich empirical source for avoiding and mitigating
productivity and delay problems and, on the other hand, a good starting point
for further research on flexible large-scale development.

Keywords: Inductive process improvement, large-scale agile development,
grounded theory.

1 Introduction

Agile methods promise lightweight, fast, and nimble development of software solutions
[1]. The values and principles of agile methods suit project environments particularly
well that are characterized by small, competent, and collocated teams that aim at
creating rapid value with small products for well-collaborating customers. The methods’
rapid and continuous feedback from customer to development team allows a shared
understanding to emerge, rather than requiring requirements to be pre-determined and
specified up-front.

Many organizations are appealed by the idea of generating rapid value with
emergent requirements. However, when attempting to use agile methods for large-
scale product innovation, these organizations discover misalignments between method
and environment [29]. Large scale implies distributed collaboration, coordination

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 181

among teams, and the presence of many stakeholders that need to be satisfied in
addition to the project customer. Product and technology novelty imply competence
gaps, potentially both for customer and project team [15]. Misalignments affect
project success negatively or lead to failure [9].

To improve project performance, companies invest in process improvement. Such
learning organizations actively collect experience and modify their behavior to reflect
the insights they have gained [16]. In mature areas, such process improvement is often
based on prescriptive frameworks, such as CMMI [10], that benchmark industry best
practices. When best practices for specific improvement goals have not been
established yet, inductive approaches are used to guide process improvements [5, 27].
An inductive approach exposes past experience and allows the organization to learn
from it. If they are attractive enough, the results from inductive process development
ultimately become part of prescriptive benchmarking frameworks.

This paper reports early results of such inductive process improvement that aimed
at enhancing productivity and reducing delays of large-scale agile development in a
particular software development organization. The organization enabled large-scale
software product innovation for a multi-national company, a market and technology
leader in multiple industry sectors. The organization noticed a misalignment of
project needs for predictability and dependability with agile practices. It used
inductive process improvement to assess and improve the productivity of their
development projects. The assessment elicited challenges and their impact on project
roles to identify how to avoid these challenges and to mitigate their effects. The
results are a condensed rich description of real-world experiences that enables
evidence-based definition of a prescriptive framework to diagnose and improve
agility for large-scale software product innovation.

The remainder of this paper is structured as follows. Section 2 describes related
work and motivates the research. Section 3 describes the research method. Sections 4
and 5 characterize and discuss the results. Section 6 summarizes and concludes.

2 Related Work

Many organizations feel pressure to produce more at lower costs [23]. Productivity
improvements require software projects to reduce development cost, while still
ensuring that solutions are technically correct and satisfactory to stakeholders.
Usually, this is achieved by increasing development efficiency and avoiding rework.
Productivity is also closely related to predictability. Wrong estimates and scheduling
problems increase the error rate of investment decisions [12]. Productivity problems
and delays affect the company’s bottom line because market share erodes rapidly and
the market is entered with a little attractive product [3].

A variety of factors affect productivity and delays. The ability to plan is a key
determinant: requirements engineering, prototyping, and reuse reduce the need for error
correction and rework [2, 3]. Requirements engineering, in particular, enables effort
estimation, project negotiation, progress tracking, and high test coverage [12]. Project
management problems such as customer and management changes, unrealistic project
plans, staffing problems, and inability to track problems early lead to delays [17].

182 D. Badampudi, S.A. Fricker, and A.M. Moreno

Other determinants are software architecture, team size, and tooling. Software
architecture limits the number of developers that can effectively work together on a
software solution [7]. Small teams with better programmers are more productive than
large teams [3]. Tools, finally, have positive or negative effects on productivity [6].

Many companies believe that agile methods effectively address productivity
problems, in particular because they enable continuous change instead of costly
upfront requirements specifications [23]. Some companies were successful:
phenomenal productivity was achieved with a shared backlog, shared code ownership,
and joint daily Scrum meetings even in globally distributed development [32, 33].
Productivity improvements were also reported in other studies [8].

Productivity suffers if methods are used in an incompatible environment, however.
Agile methods shift success determinants from good planning to frequent releases and
strong communication [9]. This shift is difficult for companies that are used to
heavyweight sequential processes [25] and companies that are confronted with
interdependent teams and stakeholders located at different locations [9]. Challenges
appear in development and management processes [4, 11]. However, they can be
addressed with appropriate practices for improving communication, sharing
knowledge, managing trust, and adapting processes [22, 28].

Companies that have adopted agile practices and discover that their development
environment is incompatible have limited support for improving development
performance. An enabler for identifying effective practices is to understand the
development context and how it enables, respectively inhibits success [19]. Without
such knowledge, projects outside the agile “sweet spot” [21] feel forced to change
again the development method and, due to lack of alternatives, will probably fall back
to the old traditional way of development, losing some of the benefits that agile
frameworks can provide.

3 Research Methodology

Our work aimed at understanding productivity impediments of projects for large-scale
software product development. The here presented embedded multi-case study [34]
was part of an inductive process development effort [27] in a software development
organization of a multi-national company. The effort aimed at improving the
organization’s agile development practices by capturing the experience of the
employees. Members of multiple projects were interviewed to identify challenges in
the application of agile techniques. Grounded theory [31] was used to analyze the
impact of these challenges on the various roles involved in the software projects and
to understand how productivity problems can be avoided and mitigated. The cause-
effect form of the resulting analysis not only supports the specific process
improvement, but also represents an empirical basis for the definition of a situational
framework with guidelines for flexible large-scale development.

To understand the challenges of the agile projects and the impacts of these
challenges, the following research questions were posed:

− RQ1: Which challenges led to productivity problems and delays?
− RQ2: How were the involved project roles affected by these challenges?

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 183

Data collection and analysis proceeded iteratively and in parallel. The collected data
was analyzed to build a model of causes and effects for the observed challenges.
Information needs from the analysis indicated the roles that needed to be interviewed.
For example, if an interviewee mentioned a challenge in a particular activity, then the
project role responsible for that activity was selected for the next interview. Our
industry partner’s quality manager identified relevant projects and interviewees to
ensure representativeness for the organization and the application domains of the
developed software products. A total of 14 representatives for the following roles
were selected: product manager, global project manager, architect, integration
manager, technology manager, scrum master, developer, and tester. A brief
description of each role is provided in the next section. The data collection continued
until the saturation point where no new data about the challenges could be obtained.

Semi-structured interviews [30] were used for data collection. During the
interviews, the purpose of the study was explained and open-ended questions about
challenges and the impact of the challenges were asked. The initial questionnaire was
continuously refined on the basis of the analysis results and the information needs
discovered during the analysis. Each interview lasted approximately 120 minutes. The
interviews were recorded and transcribed.

The transcribed data was analyzed using grounded theory [31] by following the
steps iteratively. Pre-coding: we have identified the parts of our transcripts that
pertained to challenges and impacts. Open coding: we have defined codes to label the
identified challenges, their causes, and their impacts. Each challenge and impact then
was described from the interviewees’ perspectives in terms of its characteristics
(Table 1). Axial coding: we connected challenges with conditions that gave rise to the
challenges (Table 2) and the impacts of the challenges (Tables 3 and 4). Selective
coding: we then identified the central traits of the observed large-scale challenges and
discussed them in relation to previous literature and potential solutions.

Flexible research is confronted with the following threats to validity [30]:
reactivity, respondent bias, researcher bias, reliability, and generalizability.

Reactivity refers to the way in which the researcher’s presence alters the behavior
of the subjects involved in the research. This threat to validity was addressed by
letting the interviewing researcher stay at the development organization for a
prolonged period of time and develop trusted relationships with the interviewees.

Respondent bias refers to the risks of obtaining answers that respondents judge are
those the researchers want and of having information withheld that can be used
against the respondents. This threat to validity was reduced by aligning the study
goals with the interests of the study participants: understanding how to improve their
development processes. To check correctness of the obtained answers, one of the
researchers studied the company’s standard processes and participated as observers in
project meetings. Further threat reduction was achieved by triangulating the data
among the interviewees.

Researcher bias refers to the preconceptions and assumptions the researcher brings
into the study. Researcher bias could have manifested in the selection of the projects
and interviewees. This threat to validity was reduced by letting the quality manager of
the organization, who was interested in correct and useful results, select the projects
and the interviewees and review the questionnaire. The open-ended interview
questions allowed the interviewees to share answers they judged to be important.

184 D. Badampudi, S.A. Fricker, and A.M. Moreno

Reliability refers to how carefully the research was performed and how honestly
the results were presented. Reliability was achieved by following the above-described
research design, by transcribing all interviews, by managing coding results with a
qualitative analysis tool, and maintaining a chain of evidence.

Generalizability refers to how far the obtained results are applicable and valid. To
support generalization beyond the studied organization we developed a model of
challenges, causes, and impacts that can be used for generating hypotheses about
determinants for productivity and delays in large-scale software product development.
In addition, the results were compared with related work to indicate consistency and
differences with previous state of knowledge.

4 Results

4.1 The Development Organization

We studied a development organization of a Global 500 company. The company
served a large number of markets with a widely diversified portfolio of products,
systems, and services. Many of the products were built on leading technologies and
contained a significant amount of software.

The development organization developed software solutions with projects
requested by product managers. Many of these solutions were established for 5 to 10
years and represented critical parts of products and larger systems that included both
hardware and software. The largest software had approximately 5 million lines of
code. The products and services targeted customers in a number of industry sectors.
They were managed by product managers that worked remotely and acted as product
owners to the development projects. The projects were globally distributed with 25 to
100 members allocated to up to 10 Scrum teams and located at up to 4 development
sites. Important roles of the Scrum teams were the Scrum master responsible for a
team’s work process, the developers responsible for component design and
implementation, and the testers responsible for quality assurance. Important members
of the global project teams were the product manager responsible for product success,
the project manager responsible for coordinating the Scrum teams in the global
project, the architect responsible for overall product design, the integration manager
responsible for composing the overall product, and the technology manager
responsible for the development organization. An independent organization verified
compliance to regulations.

The development organization had adopted agile development processes, in
particular Scrum, for over 5 years and followed agile practices like short iterations,
daily stand-up meetings, pair programming, and test-first development. Kano analysis
was used for prioritization at the project level and planning poker for development
iterations. State-of-art tools were used to manage the product repository that included
requirements, agile project management, code, and testing artifacts.

The projects were not implementing Scrum to the letter. Deviations were due to
compliance, business practices, and distribution of teams. FDA regulations imposed
documentation and traceability requirements, and external testing of the product was
not possible until the entire product was ready. Most projects had contracts signed

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 185

early, and workshops disrupted the regular flow of work. These deviations were one
source for the challenges the study discovered.

4.2 Challenges That Affected Productivity and Delays

The practitioners reported a wide range of challenges they perceived affected
development productivity and timeliness of software releases. The challenges related
to requirements creation and use, collaboration, knowledge, and the product
repository. Table 1 gives an overview of the most problematic productivity and
delay-affecting challenges that have been reported by the interviewees.

Table 1. Challenges that affected productivity and delays in the agile projects (italics: quotes)

Category Challenge Characteristics
Requirements
Creation

Requirements Quality
(RQ)

Sometimes requirements are not mature enough. If a new technology needs
to be implemented, then the requirements are not always well understood.

Non-functional
Requirements (NFR)

Sometimes product managers are not fully aware of the non-functional
requirements. Also the demonstrations do not demonstrate the NFRs. This
comes as a defect when the product goes into system testing.

Estimates (ES) If the project is for 2 years, it is ok to have estimates much bigger. They might
be more than even a man month. In the last step where we plan the single
sprint they should be down to single days.

Competitors’ Influence
(CI)

Time-to-market is influenced by the competitors. It may happen that the
competitors come up with a similar product. Then the product needs to release
earlier with at least the same features like the competitors to avoid sales loss.

Requirements
Use

Requirements
Selection (RS)

How to split the requirements, how to phase them across different phases of
the project, I would say, continues to be a challenge.

Requirements Stability
(RV)

When there is a change, it takes a couple of sprints to align everything
together. The impact of change can be felt for a longer time

Testing Completeness
(TC)

Incomplete testing is another aspect. Some workflows are not fully tested.

Integration (IN) Global integration reports defects for skipped functionality. This happens
because some other team changes something which was not available to us
for testing and that has cost us the defect.

Clarity of Done (CD) Perspective of developers and product managers differ sometimes due to poor
understanding of requirements. What we consider done is not considered
done by product manager sometimes

Collaboration Communication Quality
(CQ)

Communication is another aspect as all team members are not in the same
place. The communication between the engineering project head and the
product manager is less.

Decision-making (DM) All the key stakeholders from all teams should be involved in release planning
along with the product manager and customer. That would lead to
development of a concrete plan.

Team Dynamics (TD) The scrum masters have own motives in completing their tasks.
Test Infrastructure (TI) When the developers finish the development the scrum server is not available

for testing.
Team Stability (TS) Sometimes resources leave the project. Then recalculations need to be done.

The project may take 15 months instead of 10 months.
Knowledge Domain and

Technology
Knowledge (DTK)

Using a new technology without evaluating it could be a potential risk that can
cause a plan to get derailed.

Product
Repository

Progress
Measurement (PM)

Testing may result in re-implementing the user story. This is not always
updated to the release backlog.

Documentation Quality
(DQ)

Developer pairs code without writing comments because they know each
other. But a third person faces lot of issues.

186 D. Badampudi, S.A. Fricker, and A.M. Moreno

A majority of the challenges related to requirements creation or use. The creation
of clear, mature, and complete-enough requirements that are correctly estimated and
lead to a stable project and a well-integrated accepted solution was here as important
as in other software development efforts. The use of an agile process did not change
this need. The challenges RQ, NFR, ES, and RV are consistent with those reported by
studies of large-scale market-driven requirements engineering [20]. New challenges
were CI and CD that reflected the importance of product management decisions.
Connected to the agile development process were RS, TC, and IN that were due to
splitting complex requirements and implementing them stepwise.

The next important group of challenges related to collaboration, knowledge, and
the product repository. The collaboration challenges CQ, DM, and TD and the
product repository challenges PM and DQ are well-known global software
development challenges [18]. The challenge of domain and technology learning DTK
is well-known in product innovation [24]. New challenges were the problems of test
infrastructure TI and team stability TS. None of these challenges were removed by the
agile processes.

4.3 Causes for the Challenges

The practitioners suggested that the challenges were caused by six conditions present
in the environment of the development projects. The rationales for why the causes
gave rise to the challenges characterize the misalignment of the organization’s
characteristics and how the agile processes were implemented. Table 2 gives an
overview.

Table 2. Conditions that gave rise to productivity and delay-affecting challenges (italics: quotes)

Condition Challenge Rationale
Project
Complexity

Requirements Quality
(RQ)

If a new [complex] technology needs to be implemented then the
requirements are not always well understood.

Requirements Stability
(RV)

Requirements changes might also come from the development teams.
Sometimes a team realized that they needed support from other teams or
other components.

Multiple Teams Integration (IN)

Other teams change something which was not available to us for testing
and that has cost us the defect.

Clarity of Done (CD) People don't want to report yellow or red. If you have many teams that all
report green, but still have open tasks, this does not give a correct
indication of work done

Test Infrastructure (TI) It happens that the team is ready for beta testing but the beta sites are
not available for testing as other teams use the same site.

Progress Measurement
(PM)

Teams do not always updated requirements that result from defects to
the [global] release backlog. As a result release burndown gives a wrong
indication on the project progress.

Multiple Sites Communication Quality
(CQ)

Lack of communication across locations. Time zones are different. This
causes delay when queries need to be answered.

Decision-making (DM), Sometimes meetings are not done jointly due to time differences. Then
only the minutes of meeting are shared after the meeting.

Team Dynamics (TD) Every scrum group would have their own priorities to finish their tasks.
This creates more problems when teams are multi-site.

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 187

Table 2. (continued)

Condition Challenge Rationale
Product
Characteristics

Non-functional
Requirements (NFR)

There is no denial that NFRs like scalability are ignored in agile projects.

Documentation Quality
(DQ)

Test cases need to be written at a later stage as a cleanup process due
to FDA regulations.

Requirements Selection
(RS)

How to split the requirements, how to phase them across different
phases of the project, I would say, continues to be a challenge.

Testing Completeness
(TC)

Due to FDA regulations external testing is only done at the end of release
and not after each sprint.

Knowledge
Limitations

Domain and Technology
Knowledge (DTK)

If the domain is not understood there could be lot of errors.

Estimates (ES) It depends how mature the team is. There are overestimations because
of which the team needs to stretch.

Integration (IN) The involved people are still learning about the system. We want to be
more efficient and have better quality of the integrated product.

Product complexity, multiple teams, and multiple sites were conditions related to

the scale of the development effort. The development was highly parallel and
introduced a need for coordinating teams with joint meeting, shared documentation,
consistent progress measurement, and a joint product repository. Shared resources
such as test infrastructure needed to be managed. Perturbations, such as requirements
changes, perturbed the development streams that needed to be stabilized again.

NFR, RS, and TC were challenges due to misalignments of the agile process with
product characteristics. NFR cut across implementation activities of many iterations
and were not easily handled with backlogs. Similarly, implementation with short
iterations required splitting features, such as the support of a workflow, into multiple
parts even-though they would have been preferred to be implemented as a whole. The
product domain was regulated and imposed constraints on development
documentation and process such as traceability and certification tests.

Deep knowledge of the domain, technologies, the product, and the development
organization was needed for effective development. The unavoidable learning was
accompanied with estimation and product quality problems.

4.4 Impact of Challenges on Productivity and Delay of Scrum Teams

The Scrum team members reported that the challenges caused problems in project
planning, in shared understanding (SU) and coordination between the team, other
teams, and stakeholders, and in software quality assurance (SQA). Table 3 gives an
overview of the impact of the challenges on the Scrum teams.

Table 3. Impact of Challenges on Scrum Team (italics: quotes).

Role Challenge Impact Rationale / Mechanism

Scrum

Master

Requirements

Quality (RQ)

Planning: Planning uncertainty and

overestimation.

There are overestimations when requirements

not clear or they are missing.

Estimates (ES) Planning: Overestimation. If I didn’t estimate the size of the feature or

predict the feature to be unstable then my

schedule gets extended.

188 D. Badampudi, S.A. Fricker, and A.M. Moreno

Table 3. (continued)

Role Challenge Impact Rationale / Mechanism

Developer Estimates (ES) Planning: Inadequate time budget

for implementation.

Estimates from unqualified people do not

match real effort.

Requirements

Stability (RV)

Planning: Deviations from software

design and project schedule.

The reasons for deviation are evolving

requirements and some technical challenges.

Decision-making

(DM)

Planning: Project plan was not

concrete enough.

Involvement of all the key stakeholders from all

teams … will lead to development of a

concrete plan.

Test Infrastructure

(TI)

Planning: Deviations from project

schedule.

Also external factors affect the schedule.

Developers finish the development, but the

scrum server is not available for testing.

Domain or

Technology

Knowledge (DTK)

Planning: Deviations from project

schedule.

Using a new technology without evaluating it

could be a potential risk that can cause a plan

to get derailed.

Communication

Quality (CQ)

SU and Coordination: Coordination

problems and misunderstandings

between stakeholders and

developers.

We lack communication across locations. Time

zones are different. This causes delay when

queries need to be answered. They think about

dependencies, but forget to tell.

Decision-making

(DM)

SU and Coordination: Team

coordination and component

consistency problems.

Workshops should be conducted by having all

stakeholders in one place.

Domain or

Technology

Knowledge (DTK)

SU: Software design conflicts

between teams at different sites.

The European architects are not aware of the

latest technology and still implement [the old]

concepts in new solutions. We learned SE

much later with new technology. So we have a

problem in accepting that.

Documentation

Quality (DQ)

SU: Code understanding difficulties

and delayed code changes and bug

fixing.

Developer pairs code without writing

comments because they know each other. But

a third person faces lot of issues.

Clarity of Done

(CD)

SQA: Failed acceptance of features. Perspectives of developers and product

managers differ sometimes. What we consider

done is not by product manager.

Tester Requirements

Selection (RS)

Planning: Varying test effort

between sprints with ineffective use

of test resources. Re-work of tests.

During the sprints the test cases are written

just for requirements without considering the

[whole] workflow … When the workflow starts

coming, the test cases have to be modified to a

large extent.

Decision-making

(DM)

SQA: Insufficient alignment of

software design and tests.

Testers don’t always get into design

discussions because they are pre-occupied

with testing the previous sprints.

Most of the planning problems were visible in the uncertainty of estimates and

plans that led to inadequate time budget and deviations from project schedule. They
affected Scrum masters and developers. The uncertainties were caused by unclear and

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 189

unstable requirements, insufficient qualification, competence, and participation of
decision-makers, and scarce shared resources. Testers were confronted with another
kind of planning problem. Splitting the implementation of requirements over multiple
releases led to uneven distribution of effort and to re-work of test cases.

The problems in shared understanding with other teams and with stakeholders were
encountered by developers. These problems were visible in misunderstandings and
coordination problems that led to inconsistent design and development results and
ultimately resulted in re-work. The problems were caused by challenges of insufficient
knowledge, communication, documentation, and participation in decision-making.

The quality assurance problems were encountered by developers and testers.
Software and tests were insufficiently aligned and features failed acceptance by
stakeholders and users. These problems were caused by problems in shared
understanding and insufficient participation in decision-making had to be corrected
with re-work.

4.5 Impact of Challenges on Productivity and Delay of Global Project Teams

The managers and architects indicated that the challenges caused problems in plan
quality, in development capacity, in coordination between teams, in shared
understanding between teams and stakeholders, and in software quality assurance.
Table 4 gives an overview.

Table 4. Impact of Challenges on Global Projects (italics: quotes)

Role Challenge Impact Rationale / Mechanism

Product

Manager

Competitors’

Influence (CI)

Planning: Changes in time-to-

market and priorities.

The competitors come up with a similar product. Then

the product needs to release earlier with at least the

same features.

Team Stability

(TS)

Planning: Re-planning with

scope reduction or deadline

postponement.

[When project members leave] the management does

not have budget for additional head count. In that

case the deadline is increased or the scope reduced.

Project

Manager

Testing

Completeness

(TC)

Planning: Underestimated effort

for bug-fixing.

The external testing is only done at the end of a

release and not after each sprint. It might reveal that

the algorithm is not fully tuned to real world cases.

Another 2 or 3 weeks are spent on adjusting the

product.

Communication

Quality (CQ)

SU: Misunderstandings between

product and project managers

and remote team members

The reason for delay is lack of clarity at each

development step - design, coding, and testing. This

is because of limited communication across multiple

sites.

Team

Dynamics (TD)

Coordination: Coordination

problems between teams.

Typically interdependency is not really considered.

Every scrum group has its own priorities to finish its

tasks.

190 D. Badampudi, S.A. Fricker, and A.M. Moreno

Table 4. (continued)

Role Challenge Impact Rationale / Mechanism

 Progress

Measurement

(PM)

Coordination: Coordination

problems among development

teams.

Re-implementation due to bugs or changes from

customer is not updated to the release backlog. Some

scrum teams may not be aware of the changes.

Architect Non-functional

Requirements

(NFR)

Planning and SQA: Defect

discovery in system testing or

feature delivery. Late costly

changes.

Demonstrations do not demonstrate the NFRs. This

comes as a defect in large scale testing or in test of

the system limits. This requires change of design,

which is costly.

Requirements

Stability (RV)

Planning and Coordination:

Solution redesign during

development. Plan changes.

Increased coordination effort.

Changes in NFRs caused refactoring of design and

code.

Integration (IN) SQA: Irreproducible defects at

integration testing and difficult

root-cause analysis.

Other components may have caused the defect. We

see a trend that defects at this stage are not

reproducible or consistent. Fixes for these defects are

not easy.

Integration

Manager

Integrations

(IN)

Capacity: Not enough people

working on integration

A dedicated integration team was not setup until last

year: there are not enough people working on it as

the people who are involved are still learning about

the system.

Communication

Quality (CQ)

Coordination: Incomplete

awareness of dependencies.

Even though at some instance they think about

dependencies then they may forget to tell. Then we

don’t find out.

Technology

Manager

Estimation (ES) Capacity: Teams overloaded

with work.

Actual work is much more than people would think.

Requirements

Stability (RV)

Capacity: Congested backlogs. The impact of change can be felt for a long time.

Clarity of Done

(CD)

Coordination: Wrong

understanding of real progress.

If all [teams] report green but they still have some

open tasks then at the end to the management it is all

green.

Many of the problems at the global project level were not visible at the Scrum team

level and related to enabling and coordinating the teams and integrating their results.
Problems of shared understanding were less a concern than on Scrum team level.
Planning problems were experienced at a similar extent, but with different causes.

The planning problems affected first product managers, project managers, and
architects. Market changes and resource problems led to scope and deadline changes.
Requirement changes and failed external regulatory tests led to redesign, delays, and
increased coordination effort. Related were capacity problems that were stated by the
integration and technology managers. The learning process and repercussions of
changes congested backlogs, overloaded teams, and introduced delays.

Coordination problems were mentioned by all interviewed roles except the product
managers. Sub-optimized plans, inconsistent reporting, insufficient communication, and
requirements changes caused misaligned work, inconsistent work results, and wrong

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 191

understanding of real progress. The communication challenges also introduced
problems of shared understanding between management and remote teams. Together
with ignored and unstable NFR they led to hard problems in quality assurance.

5 Discussion

Many of the reported challenges were well known. They represented a selection of
challenges reported in market-driven requirements engineering [20], global software
engineering [18], and innovation [24]. Agile development did not change importance
of these challenges. Instead it added the previously hidden angle of product
management and introduced new problems such as those due to stepwise
implementation of complex requirements.

The development organization showed a need for predictability, dependability,
stability, and effective use of an appropriate amount of resources. On a global level, it
turned to solutions offered by planning, coordination, and communication. The
complexity of the products and of the organization, however, led to the described
challenges that generated productivity problems and delays. The problems generated
by these challenges differed depending on the organizational level. The Scrum teams
struggled mainly with plan stability and adherence, shared understanding, and quality
assurance. The global projects battled mainly with project plans, enabling and
coordinating the Scrum teams, and integrating results.

The study results were partially consistent with previous research on determinants
for productivity and delays. Many determinants of the studied projects were the same
as the determinants of pre-agile projects [2, 3, 12, 17]. Requirements could only be
stabilized when the product and product use were clear enough. Unclear requirements,
limited knowledge of domain, technology, and the organization, and communication
problems led to uncertain estimates, unstable plans and integration, and quality
problems with the consequent need for rework.

Determinants that were not reported by the subjects to be problematic were team
sizing [3] and tooling [6]. They seemed to have been adequately addressed by the
organization.

The study discovered new determinants that affected productivity and delay:
stability of markets and organization, consistency of the development process with
product characteristics, and support of complexity of the organization. Releases of
competitive products and personnel fluctuation affected scope, deadlines, and
capacity. Complex requirements, regulations that imposed documentation and product
certification, and separation of product development and maintenance were difficult
to handle with the chosen agile approach. Shared understanding, collaboration
between teams, and consistent reporting were addressed unsatisfactorily, especially
because they led to costly ripple effects.

Solutions are known that can help to avoid many of the challenges and mitigate
their impact on productivity problems and delays. For example, an approach to
stabilizing requirements is structured handshaking between stakeholders and
development teams with implementation proposals [13]. Implementation proposals

192 D. Badampudi, S.A. Fricker, and A.M. Moreno

allow focusing design and prototyping on critical features and stabilizing the
concerned requirements with stakeholder feedback. Sufficient coverage of
requirements with implementation proposals increased reliability of project plans.

Requirements structuring with feature trees modularizes specifications and plans
according to alternative decision options [14]. Such modularization reduces planning
complexity, simplifies progress reporting, and integrates backlogs of individual teams
in a consistent manner.

Collocation of some members of distributed teams with scrum masters and product
owners and regular, well-prepared global scrum team meetings improves shared
understanding and team coordination, and reduces integration problems [33]. Other
collections of practices exist and provide concrete approaches for addressing
challenges related to scaling agile development [22].

The overall development throughput can be improved by capturing the flow of
software development by tracking the lifecycle stage of features and visualizing
progress with cumulative flow diagrams [26]. This specific approach can be used as
an early warning system and for identifying bottlenecks.

The list of solutions is by far not exhaustive. Selection of an appropriate
combination of practices and evaluation of their effects is the concern of the next
process improvement steps at the studied organization. Research towards
understanding the fundamental principles of productivity and delays in large-scale
agile development will support that work.

6 Conclusions

This paper presented the results of an empirical study that examines the challenges
that affected productivity and delays encountered in large-scale agile development of
a global product company. Data was collected from 14 interviewees and covered 8
roles in 5 relevant projects.

In relation to RQ1, which challenges led to productivity problems and delays, 17
challenges were identified that were caused by project and organizational complexity,
by product characteristics, and by knowledge limitations. Many of the challenges
were well known, but have not been removed by the agile development process.
Instead, the agile focus added new problems such as those due to stepwise
implementation of complex requirements.

RQ2 asked how the involved project roles were affected by these challenges. The
interviewees identified 28 mechanisms of how the challenges affected the roles. The
problems at the global project level were mostly about enabling, planning, and
coordinating the Scrum teams and integrating their results. The problems at the Scrum
teams level were about shared understanding, planning, and quality assurance.

Interestingly, the organization did not abolish planning for their large projects.
Instead, consistent with previous research on productivity and delays, it wanted
predictability, dependability, stability, and effective use of resources. Known
determinants for productivity and delays were confirmed and new ones related to

 Perspectives on Productivity and Delays in Large-Scale Agile Projects 193

software product management, process-product alignment, and process-organization
alignment discovered.

In sum, the study describes an in-depth analysis of an organization that has adopted
agile processes for large-scale product development, discovered misalignments of this
approach with the project context, and intends to adjust its processes to improve
productivity and delays. The results are a basis for selecting appropriate solutions and
for better understanding principles of productivity and delays with future theoretical
and empirical studies.

Acknowledgments. This work was funded by The Knowledge Foundation in Sweden
under a research grant for the Blekinge Engineering Software Qualities (BESQ)
project. We would like to thank our anonymous industry partner for enabling the here
reported research.

References

1. Abrahamsson, P., et al.: Agile software development methods: Review and analysis,
vol. 478. VTT Publications, Espoo (2002)

2. Basili, V.R., Briand, L., Melo, W.: How Reuse Influences Productivity in Object-Oriented
Systems. Communications of the ACM 39(10), 104–116 (1996)

3. Blackburn, J., Scudder, G., Van Wassenhove, L.: Improving Speed and Productivity of
Software Development: A Global Survey of Software Developers. IEEE Transactions on
Software Engineering 22(12), 875–885 (1996)

4. Boehm, B., Turner, R.: Management Challenges to Implementing Agile Processes in
Traditional Development Organizations. IEEE Software 22(5), 30–39 (2005)

5. Briand, L., El Emam, K., Melo, W.: An inductive method for software process
improvement: concrete steps and guidelines. In: El Emam, K., Madhavji, N. (eds.)
Elements of Software Process Assessment & Improvement. Wiley-IEEE Computer Society
(2001)

6. Bruckhaus, T., et al.: The Impact of Tools on Software Productivity. IEEE Software 13(5),
29–38 (1996)

7. Cain, J., McCrindle, R.: An Investigation into the Effects of Code Coupling on Team
Dynamics and Productivity. In: 26th Annual International Computer Software and
Applications Conference (COMPSAC 2002), Oxford, UK (2002)

8. Cardozo, E., et al.: SCRUM and productivity in software projects: a systematic literature
review. In: 14th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2010), Keele, UK (2010)

9. Chow, T., Cao, D.-B.: A survey study of critical success factors in agile software projects.
Journal of Systems and Software 81(6), 961–971 (2007)

10. CMMI Product Team, CMMI for Development, Version 1.3. Carnegie Mellon University
(2010)

11. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization. IEEE
Computer 36(6), 74–78 (2003)

12. Damian, D., et al.: Requirements payoff: An empirical study of the relationship between
requirements practice and software productivity, quality and risk management. University
of Victoria (2003)

194 D. Badampudi, S.A. Fricker, and A.M. Moreno

13. Fricker, S., et al.: Handshaking with Implementation Proposals: Negotiating Requirements
Understanding. IEEE Software 27(2), 72–80 (2010)

14. Fricker, S., Schumacher, S.: Release Planning with Feature Trees: Industrial Case. In:
Regnell, B., Damian, D. (eds.) REFSQ 2011. LNCS, vol. 7195, pp. 288–305. Springer,
Heidelberg (2012)

15. Garcia, R., Calantone, R.: A Critical Look at Technological Innovation Typology and
Innovativeness Terminology: A Literature Review. The Journal of Product Innovation
Management 19(2), 110–132 (2002)

16. Garvin, D.: Building a Learning Organization. Harvard Business Review 71(4), 78–91
(2000)

17. Genuchten, V.: Why is Software Late? An Empirical Study of Reasons For Delay in
Software Development. IEEE Transactions on Software Engineering 17(6), 582–590
(1991)

18. Herbsleb, J., Moitra, D.: Global Software Development. IEEE Software 18(2), 16–20
(2001)

19. Hoda, R., et al.: Agility in Context. In: OOPSLA/SPLASH 2010, Reno/Tahoe, Nevada,
USA (2010)

20. Karlsson, L., et al.: Requirements Engineering Challenges in Market-Driven Software
Development - An Interview Study with Practitioners. Information and Software
Technology 49(6), 588–604 (2007)

21. Kruchten, P.: Scaling Down Large Projects to Meet the Agile Sweet Sport. In: IBM
developerWorks. IBM (2004)

22. Leffingewell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley (2007)

23. Lindvall, M., et al.: Agile Software Development in Large Organizations. IEEE
Computer 37(12), 26–34 (2004)

24. Lynn, G., Morone, J., Paulson, A.: Marketing and Discontinuous Innovation. California
Management Review 38(3), 8–37 (1996)

25. Nerur, S., Mahapatra, R.K., Mangalaraj, G.: Challenges of Migrating to Agile
Methodologies. Communications of the ACM 48(5), 73–78 (2005)

26. Petersen, K., Wohlin, C.: Measuring the flow in lean software development. Software
Practice and Experience 41(9), 975–996 (2010)

27. Pettersson, F., et al.: A practitioner’s guide to light weight software process assessment
and improvement planning. Journal of Systems and Software 81(6), 972–995 (2007)

28. Ramesh, B., et al.: Can Distributed Software Development be Agile? Communications of
the ACM 49(10), 41–46 (2006)

29. Reifer, D., Maurer, F., Erdogmus, H.: Scaling Agile Methods. IEEE Software 20(4), 12–14
(2003)

30. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner
Researchers, 2nd edn. Blackwell Publishing (2002)

31. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. SAGE Publications (1998)

32. Sutherland, J., et al.: Fully Distributed Scrum: Linear Scalability of Production between
San Francisco and India. In: Agile Conference (AGILE 2008), Toronto, Canada (2009)

33. Sutherland, J., et al.: Disributed Scrum: Agile Project Management with Outsourced
Development Teams. In: 40th Hawaii International Conference on System Sciecnes,
Hawaii, USA (2007)

34. Yin, R.K.: Case study research: Design and methods. SAGE Publications (2008)

Continuous Release Planning in a Large-Scale

Scrum Development Organization at Ericsson

Ville T. Heikkilä1, Maria Paasivaara1,
Casper Lassenius1, and Christian Engblom2

1 Department of Computer Science and Engineering,
Aalto University, Helsinki, Finland

{ville.t.heikkila,maria.paasivaara,casper.lassenius}@aalto.fi
2 Oy LM Ericsson Ab, Kirkkonummi, Finland

christian.engblom@ericsson.com

Abstract. Scrum development at large-scale requires a release planning
process that supports the agile way of working and planning. Most of
the existing release planning processes are plan-driven and ill suited for
a large Scrum organization. This case study describes how release plan-
ning was conducted in a 350-person Scrum development organization
with over 20 teams at Ericsson in 2011, and the related challenges and
benefits. Data was collected with 39 interviews which were transcribed,
coded and analysed. The release planning process was continuous and
characterized by regular scoping and prioritization decisions, and by in-
cremental elaboration of features. The challenges were the overcommit-
ment caused by external pressure, managing non-feature specific work,
and balancing between development efficiency and building generalist
teams. The benefits were the increased flexibility and decreased develop-
ment lead time, waste eliminated in the planning process, and increased
developer motivation.

Keywords: release planning, scrum, scaling agile, case study.

1 Introduction

The Scrum agile software development method [1] has become mainstream in the
software development community [2]. Scrum was originally created for small co-
located teams [1]. Scrum emphasizes face-to-face communication [1], which puts
a limit on the maximum practical size of the development team [3]. The early
normative Scrum literature provided little guidance for the long-term planning
of software, as the focus was on the planning and development of software one
iteration (sprint) at a time in a single team, single project context [1]. However,
large development organizations soon started to adopt Scrum practices [2]. In
large organizations, there are multiple levels of planning which are performed
on different time horizons and by different actors [4,5,6]. We adopt a three-
level planning model where the levels are strategic planning, release planning
and operational planning. Strategic planning is the interface between business

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 195–209, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 V.T. Heikkilä et al.

management and development and it is performed on a long term, multi-release
time horizon [4]. Release planning, in agile software development context, is
concerned with deciding the feature content of the next release and on planning
how to most efficiently create that content [7]. Operational planning is concerned
with how the implementation of the features is achieved on a day-to-day basis [5].
The early Scrum literature describes operational planning in depth, superficially
covers release planning, and almost completely ignores strategic planning [1].

One way to scale a Scrum development organization is to employ multiple
small Scrum teams [6,8,9]. In a such organization, the strategic planning is mostly
agnostic towards the development method [4] and the operational planning can
follow the Scrum practices [1]. However, release planning must support the Scrum
development organization by providing goals and direction on how the release
should be constructed [4]. Although successful release planning is an important
success factor in agile software development projects [10] and a challenging aspect
of agile adoption in market-driven product development [11], there is very little
empirical research literature of large-scale agile release planning. Thus, there is a
clear need for empirical research that describes how release planning is conducted
in large agile organizations. To start filling this gap in the empirical research,
we conducted a case study in a large organization that had adopted Scrum. The
case organization was a node development organization of Ericsson. The specific
research questions were:

RQ1: What was the release planning process?
RQ2: What were the challenges related to the release planning process?
RQ3: What were the benefits of the continuous release planning process?

The rest of this paper is organized as follows: We first review existing related work
on release planning in large-scale agile development organizations in Section 2.We
describe our research methods in Section 3. We describe the case organization in
Section 4. In Section 5, we describe the results of the case study. In Section 6, we
discuss the case and threats to the validity of our results. Finally, in Section 7, we
provide conclusions and directions for future work.

2 Release Planning in Large-Scale Agile Development

Most release planning research has focused on proposing mathematical opti-
mization models [12]. This approach has resulted in models which either are too
simple to be useful in practice, or so complex that practitioners find it difficult
to provide the necessary input values and find it hard to trust the output, as
they cannot comprehend the process that created it [13,14,15]. In addition, the
models typically contain assumptions which do not hold in many software devel-
opment organizations; the models assume a common understanding of require-
ments, while in reality such understanding arises thorough continuous knowledge
generation and sharing. The models assume that the requirements selection cri-
teria are stable, while in reality the criteria and their weights may change over
time. The models assume that dependencies between requirements are clearly

Continuous Release Planning in Large-Scale Scrum 197

Table 1. Details of the data collection

Interviews 39 (Finland 28, Hungary 11)
Rolesa Middle and upper managers (6), Agile coach (1), Scrum Masters (6),

Developers (13), Line managers (3), Product owners (7), Technical
specialists / architects (5)

Interview lengths Managers & the coach: 2-3h, others: 1-2h
aTotal of 41 roles. Two interviewees had dual roles.

defined and pairwise, while in reality the dependencies are often unclear and
complex. Finally, the models assume that development capacity is the main con-
straint, while in reality combined domain and system knowledge often is the
critical resource [15].

The existing empirical research on release planning in large-scale agile develop-
ment is scarce. When using Scrum, large-scale release planning can be performed
in joint release planning sessions where all development teams and other stake-
holders come together to plan the next release [6,16].

3 Data Collection and Analysis

Our case was purposefully selected, as it provided an opportunity to perform
an information rich study [17,18] in a large organization with a long history of
developing a complex product. The organization had adopted Scrum gradually
over the 18 months preceding the interviews, which made the project an excellent
candidate for the study. We first interviewed nine people who had managerial
roles (who were our key informants [18]). They provided us with an overview
of the organization history, goals, growth, structure and the planning process
used in the organization. To enable the triangulation of data sources [17], the
rest of the interviewees had different roles, belonged to different Scrum teams
and had different amounts of experience. All interviews were voice-recorded. The
first three authors conducted the interviews. We selected the general interview
guide approach [17] in order to maintain adaptability to the roles and individ-
ual experiences of the interviewees while simultaneously making sure that the
relevant topics were explored. We updated the interview guide constantly based
on new insights from the previous interviews [17]. We asked the interviewees to
describe their own experiences of how the release planning process worked and
the successes and challenges in the release planning process. Details of the data
collection are shown in Table 1.

The interviews were transcribed by a professional transcription company. We
coded the interviews with a process that was inspired by the grounded-theory
method [19]. During the coding process, we combined related concepts into new
concepts and categories using the constant comparison technique [19]. In total,
we coded 625 passages (with some minor overlap). Finally, we extracted passages
related to categories of planning and organization and re-read all the passages to
construct the descriptions of the release planning process and the challenges and

198 V.T. Heikkilä et al.

benefits related to it. The challenges and benefits included in the results were
perceived as the most important by multiple interviewees from multiple roles in
the organization.

4 The Case Organization

4.1 Background

This paper is based on a case study of an Ericsson node development unit in
2011. The unit developed a large systems product consisting of both software
and hardware. The product was a single node which handled specific type of
traffic in telecommunications networks. The development of this product had
started over ten years ago and at the time of the study it was used by operators
all over the world, while the further development of the product still continued.
The focus of this paper was on the organization that developed the software of
the product.

The organization begun the process improvement initiative in 2009. The ex-
isting, plan-driven process worked quite well, but the management wanted to
decrease the development lead time, improve flexibility, increase motivation of
the developers, and increase the efficiency of quality assurance. The manage-
ment studied different options and chose Scrum as a best fit for their needs.
They started with one pilot Scrum team to test the approach. Soon a few more
teams were created, and in quick succession the rest of the Scrum teams were
formed. At the time of the interviews in 2011, all of the over twenty development
teams, spread across two sites in Finland and Hungary, had been using Scrum
for almost a year. The transformation did not stop there and the way of work-
ing was continuously improved, as reflected by the interviewees who called the
transformation a “journey”.

Before the transformation, the development had been arranged as a tradi-
tional plan-driven project organization. The release planning had begun two
years before the release date when the scope of the next release was decided by
the product management. Technical specialists then created an implementation
plan for the requirements and the plans were handed to the developers for imple-
mentation. When the implementation was ready, the software was put thorough
multiple stages of testing and verification, and finally shipped as a part of the
generally available products and as software updates.

4.2 Case Organization Structure

The development organization and its stakeholders are illustrated in Figure 1. In
the rest of this section, we describe the roles and responsibilities of the members
of the case organization.

Product Owner Team. The organization of product owners deviated from the
basic Scrum model [1]. Instead of having team-specific product owners, a product

Continuous Release Planning in Large-Scale Scrum 199

Fig. 1. The case organization structure

owner team (PO team) had been created to accommodate the large number of
teams and the globally distributed structure of the organization. The PO team
consisted of a Chief product owner (Chief PO) and ten proxy product owners
(PPOs). The whole PO team was jointly responsible for the feature development
to mitigate personnel risks. The PPOs rotated between teams when features
were completed. Based on the size of the features, one PPO could work with
two of cross-functional teams when both teams were developing their own small
features, or a group of two to three PPOs could take collectively responsibility
of one large feature developed by several teams. The Chief PO was responsi-
ble for managing the PO Team. The Chief PO acted as an arbiter between the
development organization and the stakeholders external to the development or-
ganization. The main task of the PO team was to manage and synchronize the
work of the development teams.

Development Teams. The Scrum development organization was arranged
around Scrum development teams [1]. These teams of 6-7 persons were origi-
nally formed with the goal of having all the needed competence for end-to-end
development in each team. However, the managers soon realized that this goal
would be very challenging to achieve with a large, over ten-year-old product,
since the different areas of the product required very specific technical knowl-
edge. Thus, the development teams, in practice, were usually assigned features
that were best suited for the competence and previous experience of the team
members. The teams had different amounts of experience of Scrum development
practices and of working in a cross-functional way. The teams on both sites were
located near each other to allow the teams to easily visit each other.

200 V.T. Heikkilä et al.

Stakeholders. There were several stakeholders that had an important role in
the release planning process, but who did not belong to the development or-
ganization. A product management function was responsible for the long term
planning of the product from the business perspective. A single product manager
(PM) was responsible for the software part of the product and she was also the
main point of contact between the development organization and the product
management. The PM mostly communicated with the Chief PO although the
other members of the development organization could contact the PM directly,
if required. In addition, there was an early phases program manager who was
responsible for managing the early phases of the release planning process. The
product management and the development organization were assisted by techni-
cal specialists who were people with extensive knowledge of telecommunication
technology.

5 Results

In this section, we present our results. In Section 5.1, we describe the work items,
decision makers and process steps of the release planning process. We describe
challenges found in the case in Section 5.2 and benefits created by the release
planning process in Section 5.3.

5.1 Release Planning Process

The new continuous release planning process, depicted in Figure 2, contained
five feature decisions, F0 to F4. The decisions were made by two steering groups,
which both had weekly meetings. Decisions F0-F2, which were made by the port-
folio steering group, belonged to the early phases where the feasibility, profitabil-
ity and risk of the feature were studied and no actual feature implementation
was performed. Decisions F3-F4 were made by the development steering group.

The public releases of the software were tied to the calendar year. Two major
versions of the software and two smaller maintenance updates of the software
were published each year. The new development model would have allowed more
frequent public releases, but the customers preferred the aforementioned release
schedule. The contents of each release were tentatively planned by the product
management. The actual contents of a release were based on the features that
were completed in time. Following the F-process, those features which had passed
the F4-milestone could be included. In the rest of this section, we describe the
steps, the planning artefacts, and the stakeholders of the release planning process
in detail.

Work Items. The case organization had three level work item hierarchy. The
levels were called features, epics and user stories. All three level work items were
stored in the product backlog, which was in an electronic backlog management
tool Jira.

Continuous Release Planning in Large-Scale Scrum 201

Fig. 2. The release planning process

Features were the main way that requirements were managed in the new pro-
cess. The Chief PO was responsible for maintaining and prioritizing the product
backlog on the feature level. The size of features varied considerably from a single
team for a couple of months to a year for ten teams.

Epics were split from features. Epics were large, semi-independent functional
requirements that produced value on their own. Each epic was typically team-
specific. The purpose of the epic-level was to decrease dependencies between
teams working on the same feature by grouping related user stories, and to
provide a view to the multi-sprint development plan of the feature. Epics were
split into user stories by the PPO(s) responsible for the feature together with the
team responsible for the epic in the team’s bi-weekly grooming sessions. The user
stories were also estimated in the grooming sessions. The teams had a physical
sprint backlog which contained the team’s user stories.

Portfolio Steering Group. The portfolio steering group consisted of repre-
sentatives from all stakeholders of the development organization, including the
product manager, the Chief PO, the early phases program manager and the
technical specialists. The group made decisions related to the early phases of
feature development. Any number of F0-, F1- and F2-decisions could be made
in a single portfolio steering group meeting, which were held once a week.

Development Steering Group. The development steering group included the
Chief PO and the product manager. Selected PPOs and other stakeholders from
the organization could also participate in the meetings if deemed necessary. The
group made decisions during the implementation of the feature. Any number
of F3- and F4-decisions could be made in a single development steering group
meeting, which were held once a week.

202 V.T. Heikkilä et al.

F0-Decision. The first step in the F-decision process was the F0-decision. Be-
fore the F0-decision, the product manager and the early phases programmanager
had to have a very rough idea of the feature. When time was right, the early
phases program manager presented the feature idea in a portfolio steering group
meeting. The steering group then decided to either take the feature into devel-
opment, to postpone it, or to abandon it. If the feature was postponed, it would
be brought into F0-decision later on. If the feature was taken into development,
the creation of a one pager could begin.

One Pager. The one pager described on an abstract level what the feature was
and why it was needed, including the rough estimates of the cost and business
impact of the feature, and the intended release which would tentatively include
the feature. The goal was to fit all the information on a single presentation slide,
hence the name one pager. The early phases PM had the official responsibility
of creating the one pager, but in practice it was written by a technical specialist.
The maximum effort of writing the one pager was one or two days, and the time
given to the writing was two weeks.

F1-Decision. The F1-decision could be made after the one pager was ready. The
Chief PO presented the one pager to the group. The portfolio steering group then
decided to either to abandon the feature or to create a feature concept study
(FCS). If the portfolio steering group decided to create the FCS, the group could
then decide either to initiate the FCS immediately or to postpone it, based on
how urgent and large the feature was. In case the FCS was initiated immediately,
the steering group selected a PPO and team(s) for writing it. If the FCS was
postponed, the assignment would be made in a later portfolio steering group
meeting. If the feature was not abandoned, the feature was added to the product
backlog and prioritized by the Chief PO.

Feature Concept Study. The writing of the feature concept study begun after
the F1-decision to initiate it had been made. The purpose of the FCS was to
provide the information that was needed to decide whether the feature should
be implemented. The FCS was written by a virtual team consisting of a PPO,
who was primarily responsible for the study, and members from one or several
teams. The virtual team members were typically from the teams that would
be assigned to implement the feature. The virtual team was assisted by the
technical specialists if required. Having developers to contribute to the FCS was
a notable change from the previous planning process where the developers did
not contribute to requirements planning. The length and the writing time of a
FCS varied by the size of the feature, but the goal was to get the writing done
in under two weeks.

F2-Decision. The F2-decision was the last step in the early phases program.
When the feature concept study was ready, the Chief PO presented it to the
portfolio steering group, which then decided to either take the feature into de-
velopment or to abandon it. If the feature was taken into development, it was

Continuous Release Planning in Large-Scale Scrum 203

given a non-binding target release. The Chief PO had the option to postpone
the beginning of the implementation if he though that there was more impor-
tant work and the target release could be reached nevertheless. Otherwise, the
team(s) begun the development of the feature immediately.

Feature Implementation. The implementation of a feature could officially be-
gin after a F2-decision to implement the feature was done and when the Chief PO
decided it was time to start the implementation. Typically, the implementation
was started by the PPO and the team(s) that created the FCS. In large features,
more teams were added during the implementation when they become available.
When the feature neared completion, the number of teams was reduced to one
or two teams that were responsible for finalizing the feature, and the rest of the
teams were freed to develop other features. On the team level the planning was
performed mostly following the basic Scrum process [1].

F3-Decision. When the implementation of a feature was close to completion,
the Chief PO proposed F3-decision in the development steering group, which
meant that the Chief PO gave a commitment for the completion date of the
feature. If the development steering group agreed to the commitment, a F3-
decision was made by the group, which meant that marketing of the feature
could begin. Otherwise the feature needed to be further developed before the
F3-decision.

F4-Decision. When a feature was implemented, tested and integrated into the
product, the Chief PO proposed a F4-decision in the development steering group.
The steering group could then make a F4-decision which meant that the feature
could be included in the next (or a later) public release of the product.

5.2 Challenges

Overcommitment Caused by External Pressure. According to the inter-
views, the product management still worked in the ”old world” way. They re-
quested long-term feature development plans from the PO team, which were
not available in the new release planning process, and pressurised them to
give premature feature commitments when the release date was approaching.
This caused overcommitment by the development organization and decreased
the flexibility of the development.

. . . perhaps the product management is not in the new way of working, it easily
goes with the old model that we plan one big release . . . it feels like we plan a
big future release and see what can fit in it. – A proxy product owner

The case organization tried to mitigate this issue in two ways. First, they tried
to improve the predictability of the development by increasing the detail level of
FCS’s, and by increasing the amount of slack in effort estimates. Second, they
created the concept of a minimum marketable feature, which was the set of
functionality they could commit to delivering very probably by the next release.

204 V.T. Heikkilä et al.

Managing Non-feature Specific Work. In the previous, plan-driven develop-
ment model the responsibilities of the project management were clearly defined.
In the new model, the PO team assumed the responsibility of feature definition
and management, but it was unclear who took care of the other project man-
agement tasks. These included the handling of the system planning, non feature
specific problem reports, system documentation, and external change requests.
The PO team had started to have regular meetings where they addressed such
issues although it was contrary to the their originally planned responsibilities.

Every week we notice things that are not taken care by anybody, that somebody
took care of when we had the project organization. . . . For example the product
documentation that is not directly related to any feature.
– A proxy product owner

An additional problem was the prioritization of system improvement work. All
features, epics and user stories originated from the product backlog. The devel-
opers had difficulties getting system improvement included into the backlog, and
if they got it in, they had difficulties getting it included in a development sprint.
They also had difficulties finding time to perform system improvement work, as
implementing features was implicitly prioritized higher. The development orga-
nization attempted to mitigate this issue by making each team take in at least
one system improvement user story every sprint.

. . . it is very difficult to participate in things affecting the whole organization
or the testing of the whole product, because I have the sprint backlog and I have
to get the sprint done first and then if there is time I can perform those things.
– A developer

Balancing between Development Efficiency and Building Generalist
Teams. Initially the goal of the development organization was to create cross-
functional generalist teams that could implement features in all components of
the software. However, they quickly realized that many components were tech-
nically very difficult and required years of experience to completely understand.
This had, in several occasions, caused very long lead times (one to half a year)
before a team could implement anything useful in a component. Thus, the port-
folio steering group had started mostly assigning features to teams that had the
best pre-existing competency in the affected components. Balancing between the
development efficiency and building generalist teams was seen difficult especially
near the release date when the pressure to get features completed was mounting.

. . . building the competencies has been one of the biggest challenges. . . . we have
very difficult products where the transfer [of knowledge] is very challenging, it
cannot be done in a couple of sprints, it requires several months, in practice.
We’ve had to yield in that, we had to give it to the best [team] . . .
– A scrum master

Continuous Release Planning in Large-Scale Scrum 205

5.3 Benefits

Increased Flexibility and Decreased Development Lead Time. In the
previous model the release planning was conducted during the first six moths of
the two-year project. The changes that could be made to the release after the
first six months were typically very small, as they needed to pass thorough a
tardy change management process. In the worst case, a feature had over three
year lead time from a customer request to a public release.

. . . [previously] releasing one package took 18-24 months. In the beginning we
performed this system planning which took maybe half an year. And if you did
not get the right contents in the release during the first half a year . . . it was
immensely difficult to get any changes into the project. . . . If some essential
functionality was missing from it, we missed the train, I had to wait to the end
of the current project and then the two years after [that]. Which was a very
long time – The product manager

The new process was seen as improvement to the flexibility of development. The
new release planning process allowedmaking changes to the contents of the release
on a relative short notice. The feature development schedule was no more tied
to the release schedule, which immensely decreased the lead time of the feature
development.

Now it is like, okay, let’s add it to the list. And no worries about where we are
going with the change. It’s there and in a way nothing was changed even though
a new thing was added to the list. I think it is a really good improvement. The
flexibility is on another level. – The product manager

Eliminating Waste in the Planning Process. The general concept in the
process was that in the F0-F2 steps the sunk costs would be relatively small,
and thus early identification of too expensive or infeasible features would save
development resources. In addition, by employing the minimum marketable fea-
ture concept, the case organization was able to concentrate on developing the
most important parts of the features.

What is good in it [the F-decision process] is that . . . it in a way divides the
decision making, which is a good thing. We can cut it [the feature] at any point,
. . . if we see that the feature passes the time window or otherwise. It gives
structure to the decision making and enables us to make smaller decisions and
in that way separate the feature decision from the release decision. – A manager

Increased Developer Motivation. The developers were included in the fea-
ture planning starting from the early phases, which allowed them to contribute
to the planning and gave them the visibility to the big-picture of the feature.
This increased the motivation of the developers.

. . . one of the product management involved in the [feature] travelled here to
[Hungary] and had a one-day workshop. Why [the feature] is needed for the
customer, what information they get, what kind of reasoning [is] behind this
feature. . . . It was a motivation boost for the team, to see that what they are
doing is really, means something for the [customers]. – A developer

206 V.T. Heikkilä et al.

6 Discussion

6.1 RQ1: What Was the Release Planning Process?

Before the agile transformation, the releases were planned by project managers
as traditional projects with set resources, schedule and goals. In the new agile
process, the release planning was a continuous process where features were ini-
tiated based on the availability of resources and the priority of the feature. The
release planning process was characterized by regular scoping and prioritization
decisions and incremental elaboration of the features before the implementation.
The release planning was a collaborative action and the developers took part
in the feature planning in early phases of the feature elaboration. Our results
support Benestad’s and Hannay’s observations on release planning [15]. In con-
trast, most of the proposed models for software release planning treat release
planning as an activity that is either performed at the beginning of the release
project or over lengthy iterations during the release project and conducted by
a few authoritative decision makers in isolation [12,14]. The structure of the de-
velopment organization was similar to the structure proposed by Leffingwell [6].
However, Leffingwell proposes that the tentative contents of each release should
be planned on the user story level in the beginning of each release project [6].

6.2 RQ2: What Were the Challenges Related to the Release
Planning Process?

The product management expected precise long-term plans from the develop-
ment organization. After the transformation, such plans were not created. Many
developers would have preferred detailed implementation plans, but such plans
were not created any more. Both issues are symptoms of friction between the
previous plan driven process and the new agile process. The longing for detailed
implementation plans will likely disappear as the developers become more expe-
rienced in planning. The conflict between an agile development organization and
a plan-driven product management is a recognized challenge in large-scale agile
development [2,20]. By employing the minimum marketable feature concept, the
case organization was able to provide relatively reliable long term plans without
sacrificing flexibility. Although the minimum marketable feature concept is not
new in the software development management literature [6,21], it was employed
in the case in a novel way to combine long-term planning with flexibility.

There were many tasks which the development teams did not have the com-
petency to perform, for example system level documentation and system level
technical planning. In addition, the development of some components required
extensive experience and specialized skills. Identifying who should perform such
work was a challenge in the case. Initially, Scrum guidance emphasised true
cross-functional teams [1]. Several authors of later normative agile development
guidance have taken the stance that in large, complex systems there is a place
for limited specialization both on the system level and the team level [6,9,22],
and our results support this notion.

Continuous Release Planning in Large-Scale Scrum 207

6.3 RQ3: What Were the Benefits of the Continuous Release
Planning Process?

The biggest benefit from the new release planning process was the drastically de-
creased feature development lead time. The lead time decreased, approximately,
from a minimum of two years to a minimum of three months. The short lead
time was enabled by the continuous nature of the release planning process and
by the flexibility of the Scrum development organization. The short lead time in-
creased the responsiveness of the case organization to customer requests, which
created a clear competitive edge [23].

Another benefit was the reduced planning waste. According to the product
development queue theory [23], unnecessary inventory is a form of waste that
should be eliminated. Compared with the previous, plan driven-process, the
incremental elaboration of features in the early phases of the release planning
process drastically decreased the inventory of plans and technical specifications
waiting on a shelf to be implemented.

The results indicated that software developer’s motivation increased because
they were included in the decision making and given understanding of the big
picture. The existing research on developer motivation [24] supports this result.

6.4 Generalizability and Threats to Validity

In the discussion about the validity of this research, we rely on the definitions
of validity and reliability proposed by Yin [18]. Internal validity is not relevant,
as this research was neither explanatory nor causal [18]. The main threat to
the construct validity of this research was the accuracy of the descriptions. To
increase the construct validity, we interviewed multiple persons for each role in
the case organization, if possible. The interviews were coded and analysed by the
first author. To increase the construct validity, the second and the third author
reviewed the analysis. Furthermore, the fourth author of this article was one of
our key informants and he also reviewed the analysis.

The external validity of a case study concerns the domain to which the results
can be generalized [18]. Based on our study, we can create a hypothesis of the
significant characteristics of the domain. First, the system under development
was large, multifaceted and technically demanding. Second, the product and
release management organizations worked in a plan-driven way and were separate
from the development organization. Third, the number of development teams was
relatively large. Fourth, the development was distributed on two sites. The results
are likely generalizable to single site development, but it difficult to hypothesize
how generalizable the results are when the development is distributed on three
or more sites.

The main threat to the reliability [18] of this research is the variability in the
data collection. The data collection was conducted using the general interview
guide approach [17], which introduced variability to the topics discussed in the
interviews. However, the large number of interviewees and multiple interview-
ers allowed data source and investigator triangulation [17] which increased the
reliability of the results.

208 V.T. Heikkilä et al.

7 Conclusions and Further Work

Release planning is a crucial task in market-driven requirements engineering
[11]. Large development organizations have increasingly started adopting agile
software development methods [2]. The traditional, plan-driven release planning
models are not well suited for agile development organizations where scoping
decisions must be made constantly and detailed requirements analysis is per-
formed alongside the implementation [14]. If the release planning process does
not support the agile development organization, the development organization
will not be able to work efficiently towards the high level goals of the company.

Our case study provides a detailed description of how a large-scale Scrum
organization in Ericsson performed release planning, and of the challenges and
benefits related to the release planning process. The continuous release planning
process is characterized by regular scoping and prioritization decisions, and by
the incremental elaboration of features. The challenges were the overcommitment
caused by external pressure, managing non-feature specific work and balancing
between development efficiency and building generalist teams. The benefits were
the waste eliminated in the planning process, the increased flexibility and the de-
creased development lead time. Our study contributes to the growing knowledge
base on scaling agile software development methods.

We will continue to study the case organization as the Scrum development
organization becomes more mature and all the stakeholders have had time to
adjust to the new development and planning processes. Specifically, we are in-
terested in studying how the product management organization is changed to
better work with the Scrum development organization. In addition, it would
be interesting to study how other large organizations that have adopted agile
development methods perform release planning.

Acknowledgment. We would like to thank Oy LM Ericsson Ab for making
this study possible and all the anonymous interviewees for providing valuable
contributions to this research. We would like to thank the TiViT Cloud Software
Finland-program for funding this research.

References

1. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice-Hall,
Upper Saddle River (2002)

2. VersionOne, Inc.: 6th Annual ”State of Agile Development” Survey (2011)

3. Cockburn, A.: Agile software development. Addison-Wesley, Boston (2002)
4. Rautiainen, K., Lassenius, C., Sulonen, R.: 4CC: A framework for managing soft-

ware product development. Eng. Manag. J. 14(2), 27–32 (2002)
5. Cohn, M.: Agile estimating and planning. Prentice Hall Professional Technical

Reference, Upper Saddle River (2005)
6. Leffingwell, D.: Agile software requirements: lean requirements practices for teams,

programs, and the enterprise. Addison-Wesley, Upper Saddle River (2011)

Continuous Release Planning in Large-Scale Scrum 209

7. Ruhe, G., Saliu, M.O.: The art and science of software release planning. IEEE
Softw. 22(6), 47–53 (2005)

8. Schwaber, K.: The enterprise and scrum. Microsoft Press, Redmond (2007)
9. Augustine, S.: Managing Agile Projects. Prentice Hall Professional Technical Ref-

erence, Upper Saddle River (2008)
10. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software

projects. J. Syst. Softw. 81(6), 961–971 (2008)
11. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile

principles on market-driven software product development. J. Softw. Maint. Evol.-
R. 22(1), 53–80 (2010)

12. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S.B., Shafique, M.U.: A
systematic review on strategic release planning models. Inform. Softw. Tech. 52(3),
237–248 (2010)

13. Carlshamre, P.: Release planning in market-driven software product development:
Provoking an understanding. Requir. Eng. 7(3), 139–151 (2002)

14. Jantunen, S., Lehtola, L., Gause, D.C., Dumdum, U.R., Barnes, R.J.: The chal-
lenge of release planning. In: Proceedings of the Fifth International Workshop on
Software Product Management, pp. 36–45 (2011)

15. Benestad, H.C., Hannay, J.E.: A comparison of model-based and judgment-based
release planning in incremental software projects. In: Proceeding of the 33rd In-
ternational Conference on Software Engineering, pp. 766–775. ACM, New York
(2011)

16. Heikkilä, V., Rautiainen, K., Jansen, S.: A revelatory case study on scaling agile
release planning. In: Proceedings of the 36th Euromicro Conference on Software
Engineering and Advanced Applications, pp. 289–296. IEEE Computer Society
(2010)

17. Patton, M.Q.: Qualitative research and evaluation methods, 3rd edn. Sage Publi-
cations, Thousand Oaks (2002)

18. Yin, R.K.: Case study research: design and methods, 4th edn. Sage Publications,
Thousand Oaks (2009)

19. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience
of software development. Empir. Softw. Eng. (2011)

20. Lyon, R., Evans, M.: Scaling up pushing scrum out of its comfort zone. In: Pro-
ceedings of the Agile 2008 Conference, pp. 395–400 (2008)

21. Denne, M., Cleland-Huang, J.: The incremental funding method: Data-driven soft-
ware development. IEEE Softw. 21(3), 39–47 (2004)

22. Larman, C., Vodde, B.: Practices for scaling lean & agile development: large, mul-
tisite, and offshore product development with large-scale scrum. Addison-Wesley,
Upper Saddle River (2010)

23. Reinertsen, D.G.: Principles of product development flow: second generation lean
product development. Celeritas Publishing, Redondo Beach (2009)

24. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: A systematic literature review. Inform. Softw. Tech. 50(9-10), 860–878
(2008)

Micro Patterns in Agile Software

Giulio Concas, Giuseppe Destefanis,
Michele Marchesi, Marco Ortu, and Roberto Tonelli

Department of Electrical and Electronic Engineering (DIEE)
University of Cagliari

Cagliari, Italy
{concas,giuseppe.destefanis,michele,

marco.ortu,roberto.tonelli}@diee.unica.it

Abstract. In this paper we present a study on micro patterns in dif-
ferent releases of two software systems developed with Object Oriented
technologies and Agile process. Micro patterns are design decisions in
code that can be easily automatically recognised. Gil and Maman intro-
duced the concept to support providing objective assessment of design
decisions [1]. They catalogued 27 micro patterns that capture a variety
of programming practices in Java. Micro patterns can be a useful met-
rics in order to measure the quality of software by showing that certain
categories of micro patterns are more fault prone than others, and that
the classes that do not correspond to any category of micro patterns
are more likely to be faulty. In our study we present some empirical re-
sults on two case studies of systems developed with Agile methodologies,
and compare them to previous results obtained for non Agile systems.
In particular we have verified that the distribution of micro patterns
in a software system developed using Agile methodologies does not dif-
fer from the distribution studied in other systems, and that the micro
patterns fault-proneness is about the same. We also analyzed how the
distribution of micro patterns changes in different releases of the same
software system. We demonstrate that there is a relationship between
the number of faults and the classes that do not match with any micro
patterns. We found that these classes are more likely to be fault-prone
than the others even in software developed with Agile methodologies.

Keywords: agile, micro pattern, data mining, object oriented
programming.

1 Introduction

Software quality metrics [20] aim measuring how much a software is good espe-
cially from the point of view of being error-free and easy to modify and maintain.
Software quality metrics tend to measure whether software is well structured, not
too simple and not too complex, with cohesive modules that minimize their cou-
pling. Many quality metrics have been proposed for software, depending also on
the paradigm and languages used there are metrics for structured programming,
object-oriented programming, aspect-oriented programming, and so on. In this

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 210–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Micro Patterns in Agile Software 211

paper, we will focus on micro patterns metrics. Micro patterns are design deci-
sions in code that can be easily and automatically recognized. Gil and Maman
introduced the concept to support providing objective assessment of design deci-
sions [1]. They catalogued 27 micro patterns that capture a variety of program-
ming practices in Java, from inheritance, to data encapsulation, to the emulation
of typical practices of procedural programming. The 27 micro patterns proposed
by Gil and Maman were shown by them to be present in 75 % of classes they ana-
lyzed. Some of those patterns are regarded as anti patterns [10] representing prac-
tices that are considered to be poor design practice although it is important to
emphasize that there is no agreement about which micro patterns are considered
anti patterns. Thus classes can be divided into 2 categories: MP (Micro Patterns)
andNMP (noMicro Pattern) namely those thatmatch one ormore of the 27 micro
patterns, and those that do not match any micro patterns. Given the purpose of
micro patterns, a question naturally arises as to whether there is a relationship be-
tween the use of different patterns and the quality of the code. In particular there
are no studies investigating the diffusion and the distribution of micro patterns in
software systems developed using Agile methodologies [2].

In this work we will present the possible use of micro patterns metrics to
indirectly assess the quality of the developed software, by showing the relation-
ship between micro patterns and faults and in this context, we assess the ability
of micro patterns to discriminate the usage of Agile practices. We present re-
sults on different releases of two software systems on two industrial case-study.
We understand that the presented evidence is anecdotal, but with real software
projects it is very difficult to plan multi-project researches of this kind. This
is because software houses tend to be very secretive about their projects. We
hope that other researchers will try to replicate the presented results on similar
projects whose data they can access. The target of our research is the evolution
of a software project consisting of the implementation of floss-AR, a program to
manage the Register of Research of universities and research institutes. floss-AR
was developed with a full object-oriented (OO) approach and released with GPL
v.2 open source license. The second system is a Web application, which has been
implemented through a specialization of an open source software project, jAPS
(Java Agile Portal System) [6], that is a Java framework for Web portal creation.
This system is certified as a software developed using Agile methodologies.

In order to verify the use of Agile methodologies during the development
phases of the analyzed systems, we submitted a questionnaire to the developers
such as to have greater knowledge about Agile methodologies used.
We decided to organize our paper answering to the following research questions:

• RQ1: Do software systems developed with Agile methodologies have a dif-
ferent distribution of micro patterns with respect to non Agile open source
systems?

• RQ2: Is the micro patterns faults-proneness the same for Agile and non
Agile software?

• RQ3: Does the micro patterns distribution change during software
evolution? If yes, how?

212 G. Concas et al.

2 Related Works

After the work of Gil and Maman that defines the catalog of the micro patterns
[1], several works have appeared in this field. Arcelli and Maggioni suggest a
novel approach for the detection of micro patterns which is aimed at identifying
types that are very close and similar to a correct micro patterns implementation,
even if some of the methods and/or attributes of the type do not comply with the
constraints defined by the micro patterns [4]. The new interpretation is based on
the number of attributes (NOA) and the number of methods (NOM) of a type.
Similar studies to those discussed in our work have been conducted for design
patterns [5]: Heuzeroth et al. presented an approach to support the understand-
ing of software systems by detecting design patterns automatically using static
and dynamic analyses [7]. Aversano et al. report an empirical study showing that
for three open source projects, the number of defects in design-pattern classes is
in several cases correlated with the scattering degree of their induced crosscut-
ting concerns, and also varies among different kinds of patterns [8]. Destefanis
et al. [3] analyzed the relationship between faults and the remaining 25% of
classes that do not match with any micro pattern. They found that these classes
are more likely to be fault-prone than the others. Tasharofi et al. [14] provide
a set of high-level process patterns for Agile development which have been de-
rived from a study of seven Agile methodologies based on a proposed generic
Agile Software Process. These process patterns can promote method engineer-
ing by providing classes of common process components with can be used for
developing, tailoring, and analyzing Agile methodologies. Concas et al. in [13]
studied and discussed the evolution of the classical software metrics and their
behavior related to the Agile practices adoption level. The authors show that,
in the reported case study, a few metrics are enough to characterize with high
significance the various phases of the project. Consequently, software quality, as
measured using these metrics, seems directly related to Agile practices adoption.

3 Methodology

The goal of this paper is to investigate the possible relationship between Ag-
ile methodologies and micro patterns. We submitted to the developers of the
floss-AR software system, a questionnaire in order to evaluate the effective use
of Agile methodologies in the early stages of software development [17]. We de-
veloped a custom Java tool, based on Gil and Maman’s research [1] in order
to extract from the software systems analyzed the data relative to the micro
patterns distribution. We tested our tool on the data-set used in [1] finding the
same results. The tool works in two steps:

• the first step consists in parsing the source code and in generating a series of
files containing information relative to the various classes, fields, methods,
calls and so on;

• in the second step the tool calculates the presence of the micro patterns for
each class of the analyzed system, using the files produced in the first step.

Micro Patterns in Agile Software 213

The tool uses the definitions given by Arcelli and Maggioni described in [4]. The
class is assigned to only one micro pattern, the one with the highest GSR (Global
Similarity Ratio). GSR is a real number between zero (complete absence of the
micro pattern) and one (presence of the micro pattern as defined in [1]). Inter-
mediate values indicate a partial presence of the micro pattern. Each software
system analyzed is characterized by a GSR matrix where each row represents the
value for a class and each column contain a GSR value for each micro pattern.
The correlation between columns of the GSR matrix provides important infor-
mation about the relationship between different micro patterns, for example if
the matching of one micro pattern with a class implies the matching of an other
micro pattern with the same class. We analyzed the two systems developed using
Agile methodologies and we have studied the distribution and the evolution of
micro patterns through different releases.

The micro patterns catalog contains several categories that in the literature
are considered like anti patterns [12] as descriptive of bad programming practices
not related to the object orientation techniques.

In [3] Destefanis et al. show that there are other micro patterns categories
prone to fault and that the classes of a software system that does not belong
to any category of micro patterns are more prone to faults. In this paper we
analyzed the different releases of the floss-AR system in order to verify if:

– also in this case there is a relationship between the number of faults and anti
micro patterns;

– there is a relationship between number of faults and micro patterns more
fault prone;

– there is a relationship between number of faults and classes that do not
belong to any micro patterns category.

The analysis cannot have statistical significance (because it is performed on a
single system), but it is however interesting and a good starting point to further
studies. To establish the link between source code and fix operation we adopt
the traditional heuristics proposed by Bachmann and Bernstein [11]:

1. Scan through the change logs for bug report in a given format (e.g. fix bug,
fix issue and so on).

2. Exclude all false-positive bug numbers (e.g. r420, 2009-05-07 10:47:39 -0400
and so on).

3. Check if there are other potential bug number formats or false positive num-
ber formats, add the new formats and scan the change logs iteratively.

4. Check if potential bug numbers exist in the bug- tracking database with
their status marked as fixed.

Based on these heuristics we mine the source code repository (such as CVS
and SVN) for commit that fixed a bug. Knowing how many time a class have
been debugged and knowing the micro patterns associated (if any) to the class
we could then evaluate the fault proneness of micro patterns for the system
analyzed.

214 G. Concas et al.

4 Results

In this section we present the results of the survey to developers and on the
analysis performed on the source code of the Agile systems. In particular we
show how the Agile development impacts on the micro patterns statistics, and
on the fault proneness of micro patterns, anti patterns and the set composed by
the classes that do not match with andy micro patterns of the catalog (no micro
patterns category: NMP).

4.1 Survey

The results of the survey clearly show that Agile development has been applied
for the floss-AR system. Tabs. 1 2 3 resume the survey’s results.

Table 1. floss-AR developers survey (5 developers)

Question Very good Good Discrete Adequate Not ade-
quate

How would you describe the
collaboration of the team?

4 1 0 0 0

Table 2. floss-AR developers survey (5 developers)

Question Yes No

The collaboration inside the team increased the
productivity?

5 0

Did you take part in developing the whole sys-
tem?

3 2

Do you have favourite programming styles? 2 3

Have the project decisions been discussed to-
gether with the team?

5 0

Did you interact directly with the customer? 4 1

Did you use refactoring? 5 0

The questions are divided in three groups according to the format of the
possible answers. The first question requires an answer with 5 possibilities, in
the second set the questions are posed in a YES or NO form, while in the third
set the questions require a short sentence answer.

For developing floss-AR the following Agile practices have been applied:

• Pair programming
• Stand Up Meeting
• Refactoring
• On Site Customer

According to further discussions with the developers team, we are also able to
identify four main phases of development:

Micro Patterns in Agile Software 215

Table 3. floss-AR developers survey (5 developers)

Question Answer

Which Agile methodologies did you use dur-
ing development? • Pair Programming

• Stand Up Meeting
• Refactoring
• On Site Customer

How often did you interact with the customer? 1-2 times per month

How often did you use refactoring? 2-3 times per month

• Phase 1 (Initial Agile): a phase characterized by the full adoption of all
practices, including testing, refactoring and pair programming. This is the
phase leading to the implementation of a key set of the system features.
In practice, specific classes to model and manage the domain of research
organizations, roles, products, and subjects were added to the original classes
managing the content management system, user roles, security, front end
and basic system services. The new classes include service classes mapping
the model classes to the database, and allowing their presentation and user
interaction.

• Phase 2 (Cowboy Coding): this is a critical phase, characterized by a mini-
mal adoption of pair programming, testing and refactoring, because a public
presentation was approaching, and the system still lacked many of the fea-
tures of competitors’ products. So, the team rushed to implement them,
compromising the quality.

• Phase 3 (Refactoring): an important refactoring phase, characterized by the
full adoption of testing and refactoring practices and by the adoption of a rig-
orous pair programming rotation strategy. The main refactorings performed
were Extract Superclass, to remove duplications and extract generalized fea-
tures from classes representing research products, and corresponding service
classes, and Extract Hierarchy applied to a few big classes, such as an Action
class that managed a large percentage of all the events occurring in the user
interface. This phase was needed to fix the bugs and the bad design that
resulted from the previous phase.

• Phase 4 (Mature Agile): Like Phase 1, this is a development phase char-
acterized by the full adoption of the entire set of practices, until the final
release.

4.2 Source Code Analysis

We next report the results on how Agile methodologies can impact on the micro
patterns distribution and on the fault proneness of the code. In Tabs. 4 5 we report
the micro patterns distributions for each release of the floss-AR and Japs systems,
in order to show how such distributions evolve from one release to the next.

216 G. Concas et al.

Table 4. jAPS micropattern distribution (%)

MP 1.0 1.2 1.4 1.6 1.6.2 1.8 1.8.2 2.0

DESIGNATOR 2.14 1.79 2 3.3 3 4.32 6.83 9.6

TAXONOMY 0 0 0 0 0 0 0 0

POOL 0 0 0 0.55 0.54 0.27 0 0.35

JOINER 0 0 0 0 0 0 0 0

FUNCTIONPOINTER 27.1 23.3 27.5 18.7 19.5 18.1 16.7 7.18

FUNCTIONOBJECT 0.71 6.1 0 2.2 2.7 1.89 2.02 1.22

COBOLLIKE 0 0 0 0.27 0.27 0.81 0.75 0.5

STATELESS 0.71 0 1 0.82 0.82 1.08 1.01 1.22

COMMONSTATE 0 0 0 0 0 0 0 0.17

IMMUTABLE 0 3.2 0 0.82 0.82 0.81 0.75 0.87

RESTRICTEDCREATION 0.35 0.4 0.33 0.55 0.54 0.54 0.5 0.17

SAMPLER 0 0 0 0 0 0 0 0

BOX 4.64 15.4 3.98 0.27 0.27 0.27 0.25 1.4

COMPOUNDBOX 7.5 10 12.3 7.1 17.9 7.02 6.83 11.9

CANOPY 0 0 0 0 0 0 0 0

RECORD 0 0 0 0 0 0 0 0

DATAMANAGER 0.35 0.35 0 0 0 0 0 0

SINK 15.3 3.9 15.6 4.14 3.5 2.7 2.78 2.45

OUTLINE 0 0 0 0 0 0 1.0 0.35

TRAIT 0 0 0 0 0 0 1.3 1.1

STATEMACHINE 0.71 0 0.66 0.82 0.82 0.54 0.5 5.4

PURETYPE 0 0 0 0 0.5 0.8 0.3 0.2

AUGMENTEDTYPE 0 0 0 0 0 0 0 0

PSEUDOCLASS 0 0 0 0 0 0 0 0

IMPLEMENTOR 0 0.71 0.3 0.27 0.27 0.27 0.25 0.35

OVERRIDER 0 0 0.3 0.82 0.82 0.54 0.5 0.87

EXTENDER 25 27.9 27.5 36.1 35.9 37.2 34.6 25.1

TOTAL 84 73 85.7 77 76.6 76.4 74.4 75.1

Both systems respect the Gil and Maman statement that about 75% of classes
belong to at least one micro pattern. This means that micro patterns are good
descriptors also for software developed with Agile methodologies. The distri-
butions of micro patterns among classes roughly respect the same proportions
found for software developed with traditional methodologies [3]. In fact previous
results show that Extender, Sink and Function Pointer are the most common
micro patterns, while Taxonomy, Pool, Sampler and Record are almost absent.
One key point is the behavior of anti patterns, which are indicators of bad
programming practices [19]. The overall anti patterns behavior is captured by
Function Pointer, because classes belonging to others anti patterns, like Pool or
Record, are a very small fraction of the total number of classes. Such behav-
ior is displayed in Fig.1 (left side), which shows an overall decreasing trend in
the usage of anti patterns. This suggests that the constant application of Agile
methodologies during software development across different releases may impact

Micro Patterns in Agile Software 217

Table 5. floss-AR micro patterns distribution (%)

MP CA SAR SS OS 2.1.1

DESIGNATOR 1.5 1.5 1.6 1.38 0.9

TAXONOMY 0 0 0 0 0

POOL 0.2 0.2 0.36 0.3 0.76

JOINER 0 0 0 0 0

FUNCTIONPOINTER 20.2 19.7 22.8 17.8 13.31

FUNCTIONOBJECT 2.5 2.4 2 4.45 1.53

COBOLLIKE 0.17 0.17 0.14 0.46 0.13

STATELESS 0.4 0.3 0.29 1.07 2.57

COMMONSTATE 0.2 0.2 0.14 0.15 0.06

IMMUTABLE 0.2 0.2 0.14 0.76 0.06

RESTRICTEDCREATION 0.1 0.1 0.29 0.30 0.06

SAMPLER 0 0 0 0 0

BOX 2 2 3.21 0.15 13.79

COMPOUNDBOX 7.9 8.2 7.45 10.4 12.61

CANOPY 0 0 0 0 0

RECORD 0 0.2 0 0.2 1.6

DATAMANAGER 0 0 0 1.68 1.74

SINK 18.9 18.6 17.2 3.53 14.77

OUTLINE 0 0 0 0.3 1.1

TRAIT 0.33 0.3 0.29 1.2 0.13

STATEMACHINE 0.17 0.17 0.29 0.15 0.06

PURETYPE 0 0 0 0.3 0.1

AUGMENTEDTYPE 0 0 0 0 0

PSEUDOCLASS 0 0 0 0 0

IMPLEMENTOR 1.7 1.22 1.46 2.61 0.69

OVERRIDER 0.33 0.34 0.29 1.07 0.2

EXTENDER 28.4 28.8 27.7 28.4 16.58

TOTAL 85.1 84.8 85.8 75.5 81.6

positively the software quality, carrying as side effect the reduction in the use of
bad programming practices.

4.3 Micro Patterns and Faults

Next we examine the relationship among micro patterns and faults in the floss-
AR releases. The top part of Tab. 6 shows the distribution of faulty classes
among non micro patterns (NMP) and micro patterns (MP). It must be noted
that NMP classes are only 25% of the total classes, and nevertheless they own
the larger percentage of faulty classes, except for the last release, where the
percentage of faulty classes is the same as the percentage of NMP in the entire
release. This result for the first four releases is in agreement with those reported
in [3], where NMP own most of the faults. This means that software developed
through the adoption of Agile methodologies does not differ from other software

218 G. Concas et al.

Fig. 1. Left side: floss-AR - Right side: Japs

Table 6. FlossAR fault-prone analysis

OS(%) CA(%) SAR(%) SS(%) 2.1.1(%)

Distribution of faulty classes NMP 63.12 62.41 71.63 70.92 23.4

among NMP and MP MP 36.87 37.58 28.36 29.07 76.59

Percentage of MP faults

Fault Percentage of AMP 12.76 12.05 7.8 7.8 23.4
Fault Percentage of fault-prone MP faults 18.43 14.89 11.34 13.47 32.62
Fault Percentage of other MP 5.67 10.63 9.21 7.8 20.56

with respect to such distribution. The result for the last release is somehow
unexpected, and we cannot explain it with the data at our disposal. Further
analysis are needed in order to understand the reasons for this inversion in the
fault proneness.

The bottom part of Tab. 6 shows how faults are distributed among the differ-
ent MP categories: anti micro patterns (AMP), fault-prone MP, and other MP,
where fault prone MP are identified by the analysis performed in [3]. Also in this
case the total percentage of faulty classes in the last release is different than in
previous releases, but the distribution among AMP, fault prone MP, and other
MP is again respected. These results confirm that also in Agile systems the most
fault prone micro patterns are Extender and Compound Box, and that also the
AMP classes are more fault prone than others.

4.4 Discussion

According to these results, we can now answer to the research questions:

Micro Patterns in Agile Software 219

RQ1: Do software systems developed with Agile methodologies have
a different distribution of micro patterns with respect to non Agile
open source systems?

The answer to this research question is negative. According to tabs. 4, 5, the
distributions of classes across micro patterns is roughly the same described in
[3], where 8 systems were analyzed. They are very similar for both Japs and
floss-AR, in all the releases analyzed. This result suggests that the use of Agile
methodologies and programming practices does not influence the distribution of
micro patterns in the classes.

RQ2: Is the micro patterns faults-proneness the same for Agile and
non Agile software?

The answer to this question is positive except for the last release of floss-AR.
Comparing the results obtained for the first 4 releases of floss-AR analyzed
(Tab. 6, top part) NMP classes are by far the most fault prone classes. The
more detailed analysis reported in Tab. 6 (bottom part) shows that among the
classes matching with at least one micro pattern the Extender and Compound
box micro patterns as well as the anti patterns are the most fault prone. This
result confirms the findings reported in [3] and shows that the fault prone micro
patterns distributions in Agile software is similar to the one found in systems
developed without the adoption of Agile methodologies.

RQ3: Does the micro patterns distribution change during software
evolution? If yes, how?

The answer to this research question is not univocal. In general we have shown
that across all the releases the micro patterns distribution remains the same,
with the exception of the anti patterns classes. In fact we found a decrease
of the percentage of anti patterns classes in both systems across the releases.
This may be related to the continuous adoption of Agile methodologies during
development and maintenance.

5 Threats to Validity

Threats to construct validity are related to the Agile methodologies not used
during the system’s development (like TDD and continuous integration). This
may influence our conclusion that the use of agile methodologies may improve
software quality, given that agile development has been adopted partially. An-
other threat to construct validity is related to the relationship between micro
patterns and faults. We assume, based on previous works, that MP are related
to software defectiveness. This result has not been generalized to all software
systems, thus not necessarily the micro patterns catalogue is directly related to
software defectiveness. Nevertheless we believe that our work can build a first
step in this direction. Threats to internal validity are related to the fact that
with different values of micro patterns could be possible to observe different
correlations. Threats to external validity are related to generalization of our

220 G. Concas et al.

conclusions. With regard to the system studied in this work we considered only
open source systems written in Java, and this could affect the generality of the
discussion and thus our results are not representative of all environments or pro-
gramming languages. Commercial software is typically developed using different
platforms and technologies, with strict deadlines and cost limitation, and by de-
velopers with different experiences. This might result in different micro patterns
distributions, which is another threat for the external validity. Another threat
regards the relationships among anti patterns and faults, which has been stud-
ied only for the floss-AR system. Finally we have another threat to conclusion
validity: there is not an estimated error on the recognition of a particular micro
pattern for a given class.

6 Conclusions

The goals of this research were the analysis of micro patterns distribution in Agile
open source software and the analysis of the relationship between MP-NMP and
faulty classes. We used the Java tool discussed in [3] in order to extract the
data relative to the micro patterns distribution in the two Agile software system
studied.

For the floss-AR system we analyzed the change log for bug report and ex-
tracted fix operation according to the traditional heuristic proposed in [11]. We
also submitted to the floss-AR developers team a questionnaire in order to eval-
uate the effective use of Agile methodologies, while for Japs this is certified on
the web site [6].

Our analysis shows that the micro pattern distribution among classes is the
same for the two systems, and remains roughly the same as the one found in
non agile systems. Thus the adoption of agile methodologies does not influence
such distribution. For example, Gil and Maman statement’s that about 25% of
classes does not match with any micropattern, is confirmed also in the two agile
systems analyzed, for all the releases.

The analysis of fault prone classes shows that in agile systems the Extender
and Compound box micro patterns are fault prone, as well as the AMP classes.
In particular the most fault prone classes are those not belonging to any micro
pattern. The last release of floss-AR represents an exception to this rule, even if
the percentage of faulty classes belonging to NMP (23.4%), is still larger than
the percentage of NMP classes in all the systems (18.4%).

Finally we found that the micro patterns distribution across the releases is
unchanged, with the exception of the anti pattern classes, which displays a de-
creasing trend.

We can conclude that micro patterns may be helpful to evaluate the quality
of an Agile software project during the development process. A tool like the one
used in the present work could be used in order to monitor the different stages
of development, and possibly to control the temporal evolution of each category
of micro patterns. It can be seen from our empirical results that classes that do
not correspond to any micro patterns are more fault-prone and this supports

Micro Patterns in Agile Software 221

that the use of a design methodology increases the quality of the code.
Considering the natural adaptiveness of Agile development it could be useful to
monitor the evolution of the most fault-prone micro patterns in order to increase
the software quality and decrease the amount of defects.

Acknowledgment. This research is supported by Regione Autonoma della
Sardegna (RAS), Regional Law No. 7-2007, project CRP-17938 LEAN 2.0

References

1. Gil, J.Y., Maman, I.: Micro pattern in Java Code. In: Proceedings of the 20th
Object Oriented Programming Systems Languages and Applications, San Diego,
CA, USA, p. 97116 (2005)

2. Agile Manifesto, http://www.agilemanifesto.org

3. Destefanis, G., Tonelli, R., Tempero, E., Concas, G., Marchesi, M.: Micro Pattern
Fault-Proneness. In: 2012 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 302–306. IEEE (September 2012)

4. Arcelli, F., Maggioni, S.: Metrics-based Detection of Micro pattern to improve the
Assesment of Software Quality. In: Proceedings of 1st Symposium on Emerging
Trends in Software Metrics (ETSM 2009), Italy (May 2009)

5. Gamma, E., Helm, R., Jhonson, R., Vlissides, J.: Design Pattern: Elements of
Reusable Object-Oriented Software. Addison Wesley (1995)

6. JAPS: Java agile portal system, http://www.japsportal.org

7. Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic Design Pattern De-
tection. In: IWPC 2003 Proceedings of the 11th IEEE International Workshop on
Program Comprehension (2003)

8. Aversano, L., Cerulo, L., Di Penta, M.: Relationship between design pattern defects
and crosscutting concern scattering degree: an empirical study. IET Softw. 3(5),
395–409 (2009)

9. Dorairaj, S., Noble, J., Malik, P.: Understanding Team Dynamics in Distributed
Agile Software Development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp.
47–61. Springer, Heidelberg (2012)

10. Bloch, J.: Effective Java Programming Language Guide. Addison-Wesley (June
2011)

11. Bachmann, A., Bernstein, A.: Software process data quality and characteristics:
a historical view on open and closed source projects. In: IWPSE-Evol 2009 Pro-
ceedings of the Joint International and Annual ERCIM Workshops on Principles
of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops. ACM
(2009)

12. Destefanis, G., Tonelli, R., Concas, G., Marchesi, M.: An analysis of anti micro
patterns effects on fault proneness in large Java systems. In: Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pp. 1251–1253. ACM (March
2012)

13. Concas, G., Marchesi, M., Destefanis, G., Tonelli, R.: An empirical study of soft-
ware metricsfor assessing the phases of an agile project. International Journal of
Software Engineering and Knowledge Engineering 22, 525–548 (2012)

http://www.agilemanifesto.org
http://www.japsportal.org

222 G. Concas et al.

14. Tasharofi, S., Ramsin, R.: Process Patterns for Agile Methodologies. In: Ralyté,
J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method Engineer-
ing: Fundamentals and Experiences. IFIP, vol. 244, pp. 222–237. Springer, Boston
(2007)

15. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River (2003)

16. Empirical studies of agile software development: A systematic review. Tore Dyba,
Torgeir Dingsoyr. SINTEF ICT, S.P. Andersensv. 15B, NO-7465 Trondheim, Nor-
way

17. Hoda, R., Noble, J., Marshall, S.: How much is just enough?: some documentation
patterns on Agile projects. In: Proceedings of the 15th European Conference on
Pattern Languages of Programs, EuroPLoP 2010, Article 13, 13 pages. ACM, New
York (2010)

18. Martinez, J., Diaz, J., Perez, J., Garbajosa, J.: Software Product Line Engineering
Approach for Enhancing Agile Methodologies. In: Abrahamsson, P., Marchesi, M.,
Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 247–248. Springer, Heidelberg
(2009)

19. Bloch, J.: Effective Java Programming Language Guide. Addison-Wesley (June
2011)

20. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

Feature Usage Diagram for Feature Reduction

Sarunas Marciuska, Cigdem Gencel, Xiaofeng Wang, and Pekka Abrahamsson

Free University of Bolzano-Bozen
Marciuska@inf.unibz.it,

{Cigdem.Gencel,Xiaofeng.Wang,Pekka.Abrahamsson}@unibz.it

Abstract. Feature creep, if not managed well, cause software bloat.
This in turn makes software applications become slower. Currently, soft-
ware industry urgently requires mechanisms and approaches to reduce
unnecessary or low value features. In this paper, we introduce a mod-
elling notation, so called Feature Usage Diagram, and an approach to
identify and visualize the required information for decision makers when
reducing features. We conducted a case study using a real web applica-
tion to validate and evaluate the Feature Usage Diagram elements and
notation. The results showed that the Feature Usage Diagram is easy
to learn and understand. Moreover, by visualising useful information, it
has potential to support developers when making decisions for feature
reduction.

Keywords: feature creep, feature reduction, feature usage, feature
location, concern graphs, latent lattice.

1 Introduction

The family of agile and lean methods have been increasingly adopted by many
companies in the past decade. The main focus of these methods is to build
systems in such a way that allows the software products to reach market in a
shorter time and respond to changes more quickly [1]. However, feature creep [2,3]
to existing systems is a significant problem that agile and lean methods have not
suggested adequate practices and techniques to tackle. In fact, recent studies [13]
indicate that 30 to 50 percent of features contained in many software products
have no or marginal value. Usually, such features, after being added during the
life cycle, loose value in time.

Unmanaged feature creep can cause software bloat [4], which in turn makes
a computer application become slower and therefore, requires higher hardware
capacity. Software bloat also increases cost for maintenance. One of the most
recent example of software bloat is Nokia Symbian 60 smartphone platform. The
feature set of the system grew so much that it was too expensive to maintain it,
and therefore, it was abandoned [14].

Currently, lean start-up [5,6] software business development methodology
tackles the feature creep problem by finding a minimum viable product that
contains only essential and the most valuable features. Feature driven develop-
ment [30] tries to address the feature creep problem by focusing on features that

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 223–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

224 S. Marciuska et al.

have the highest value for customers. However, not all companies start develop-
ment from scratch and use feature driven development methodology. And even
if they do, it is not easy to determine the value of a feature to make a decision.
Therefore, there is an urgent need [14] to define mechanisms and approaches for
feature reduction.

To the best of our knowledge, there is no approach that deals with the fea-
ture reduction problem completely. Most of the methods and techniques in the
literature could be applied to address only some parts of the problem (such as
feature identification and location). Furthermore, as they were not specifically
developed for feature reduction purposes, they require improvements to be useful
in this context (see Section 2 for a review of these approaches).

In this paper, our focus is on presenting the required information about fea-
tures for informed decision making in feature reduction. We introduce an ap-
proach and a modelling notation, so-called Feature Usage Diagram, to visualise
the features, their relations, and attributes (such as information about the usage
of each feature by the users to indicate one dimension of value that is stated
as significant [31] for feature reduction). We also present a case study which we
conducted to evaluate the usefulness of the Feature Usage Diagram for feature
reduction purposes in practice.

This paper is structured as follows: Section 2 discusses the related work. Sec-
tion 3 presents the Feature Usage Diagram. Section 4 provides details of the
case study and the results. Section 6 concludes the work and gives future work
directions.

2 Related Work

Feature reduction involves identifying features, locating them, determining the
value of each, and then systematically removing the ones with less value from
the software (see Fig. 1).

In this section we present the related work, which in some way deals with
different parts of the feature reduction problem, even though not particularly
developed for these purposes, but could be helpful for the aims of this study.
We identified related studies in three areas: feature identification and location,
feature usage monitoring and feature visualization.

2.1 Feature Identification and Location

For feature reduction, decision makers require to know the features, their loca-
tions and relations in between. As locating features depends on identifying the
features as an initial step, we present related work for feature identification and
location together under this subsection. A recent systematic literature review on
feature location [11] categorizes the existing techniques as below:

1. Dynamic [15,16,17]. These techniques use dynamic analysis to locate the
features during runtime. Developers provide a scenario, and then links be-
tween different elements of the scenario are generated during runtime.

Feature Usage Diagram 225

Fig. 1. A Generic Feature Reduction Process

As a result, a graph is generated that shows which classes and methods
are called for each part of the scenario. The main advantage of these tech-
niques is that it shows exactly which parts of the code are called during the
execution time.

2. Static [18,19,20]. These techniques use static analysis to locate features from
the source code. The code is statically analysed and then the dependencies
between features are explored. Finally, developers validate the nodes and
connections in the graph. The main advantage of these approaches is that
they do not require executing the system in order to create a dependency
graph. In addition, the results present detailed information such as relations
between variables and methods.

3. Textual [21,22,23,24,25]. Textual analysis examine the textual parts of the
code to locate features. Developers provide query with feature descriptions
and the method using information retrieval and language processing tech-
niques checks the variables, classes, method names, and comments to locate
them. The main advantage of these techniques is that they map real features
to code.

4. Historical [26,27]. Historical techniques use information from software repos-
itories to locate features. The idea is to query features from comments, and

226 S. Marciuska et al.

then associate them to the lines that were changed in that commit. The main
advantage of these techniques is that they can map features to a very low
granularity of the source code, that is to exact lines.

Even though most of the existing techniques are promising for our purposes, none
of them or their combinations provide a solution for automatic and complete
feature set identification as they were not designed for this purpose from the
beginning. Dynamic feature location techniques rely on user predefined scenarios,
so they cannot generate a complete features set if the given scenario is not
complete. Static analysis generate a set of features dependent on the source
code, so they involve a lot of noise (i.e. variable names that do not represent
features). Textual and historical approaches depend on the developer queries
and the textual attributes of the source code. Due to these limitations of the
current techniques, we decided to manually identify features and their relations
for the case study presented in Section 4.

2.2 Feature Usage Monitoring

Another significant information for feature reduction is the value of each feature.
In this work, we focus on only one dimension of value: usage of features by users
(i.e. which feature was used by whom and when). Other dimensions will be
tackled in the future work.

There are two commonly applied methods to monitor how users use the fea-
tures of a system: 1) extend the software with code that is responsible for mon-
itoring, or 2) design an application that intercepts all events triggered by the
observed system when it is used.

The main issue using the former method is that the added piece of software
increases the complexity of the overall software. In addition, depending on the
country where the software is used, the hidden data collection about users activ-
ities might violate the privacy laws. Existing tools that use the second approach
(such as OpenSpan Desktop Analytics [9] and Google Analytics [10]) overcome
afore mentioned limitations, because they do not modify the software that is
being monitored. However, such tools are able to show only which applications
are running on an operating system or web browser. They do not provide any
details related to the feature usage.

Another set of tools such as Microsoft Spy++ [8], or the method presented
by Atterer et al. [7] provide detailed information on how users use a system by
monitoring activities of users, such as mouse clicks and key strokes. However
these tools collect too much noise, because they were not created with the aim
to identify the usage of the features. For example, such tools catch the events
raised by random mouse clicks which do not change the behaviour of the system.
Then it becomes difficult to automatically filter out the noise and determine
which unique features were executed. Having all of those limitations in mind we
decided to create custom tool that identifies the feature usage in the case study
presented in Section 4.

Feature Usage Diagram 227

2.3 Feature Visualization

The decision makers require not only that the important information is captured,
but also visualised in a proper way for practical reasons. Therefore, we reviewed
related work for features visualisation. Most of this work come from software
product line engineering and feature location fields.

The software product line approaches visualize features by Feature Diagram
[28,29] that expresses commonality and variability within the domain (see Fig. 2).
Feature Diagram shows hierarchical relations between features and displays in-
formation related to the whole product line, but not for each product. Therefore,
this diagram is not useful for our purposes in this paper.

Fig. 2. Feature Diagram

Existing feature location techniques visualize the output of their result using
a concern graph [19], or concept lattice [25]. The concern graph displays the
classes, methods and variables of the system and their relation (see Fig. 3).
However, such visualization does not represent the features that system users
are using. For example, class or method might cover several features, while a
variable might represent only a part of a feature. Therefore, this graph is also
not useful for our purposes.

Fig. 3. Concern Graph

The concept lattice (see Fig. 4) represents not only code related parts of the
system, but also concepts that can be related to the front end features.

This diagrams contains two layers: feature representation layer and code rep-
resentation layer. The feature layer represents the scenarios or user queries.

228 S. Marciuska et al.

Fig. 4. Concept Lattice

The code layer represent the code dependencies associated to those features
identified by feature location techniques.

In the ideal case, the concept lattice could represent the complete features
list and their relationships. However, to have only such diagram for visualizing
the usage of features is not enough, because it does not include usage related
attributes in the feature layer. In addition links between features are not directed
(that is, users can access feature B from feature A, but not vice versa). In this
study, we extended the feature layer of concept lattice in order to overcome these
limitations and developed the Feature Usage Diagram.

3 Feature Usage Diagram

To provide the required information as an input to decision making for feature
reduction in an understandable and practical way, we developed a diagram and
associated notation, called the Feature Usage Diagram (see Fig. 5).

Fig. 5. Feature Usage Diagram

Feature Usage Diagram 229

The main model elements of the Feature Usage Diagram are: Feature, Feature
Group, Directed Link among Features and Directed Link to Feature Group.
We present each of the model elements and their attributes in the following
paragraphs.

3.1 Feature

Feature is one of the key elements in feature reduction. In this work we adopt
the definition of feature presented by Eisenbarth et al. [12] – ”a feature is an
observable unit of behaviour of a system triggered by the user”. For example,
a case where a user has to enter his email, password and press login button in
order to login is different from the case where system remembers his credentials
and he has just to press a login button in order to login. In the first scenario
we can observe that user used three features, while in the second only one, even
though the final state was the same (that is, the user logged into the system). In
the example provided in Fig. 5 the Feature Usage Diagram presents six features
in total.

Attributes of Feature Element: Each Feature has two attributes: Feature name
and Feature usage. Feature Name shows the name of a Feature. Feature Usage
shows how many times a Feature was used. This attribute provides one of the
key information for feature reduction decision. Features that have small relative
feature usage values indicate that software might need to go for feature reduction.
For example, if a feature is used one hundred times while others are used millions
of times, then the first feature should be considered for removal, because it has
a relatively small usage in comparison to the other system features. Fig 5 shows
that feature A was used 45 times, because it is indicated in its usage attribute.

3.2 Directed Link between Features

Directed Link between Features represents an access path between two Features.
It can be uni-directed, or bi-directed. If there is a way to access feature B from
feature A and there is no way to access Feature A from Feature B it means that
the link between those features is uni-directed A − > B. On the contrary, if
there is a possibility to reach Feature B from Feature A and vice versa, then the
link A < − > B is bi-directed. The example presented in Fig. 5 contains three
bi-directed links between Feature A and Feature C, Feature D and Feature E,
and Feature D and Feature F. The remaining directed links have single direction.

Attributes of Directed Link between Features: Link Cardinality attribute on each
Directed Link shows how many times a Feature, which the link is pointing to, was
accessed from another Features. For feature reduction it provides an important
information about the ways how users are using the features. It might reveal
unexpected links that are not used, or are not necessary. Therefore, expert might
decide to remove those links from the system. In the example provided in Fig. 5,
the Link Cardinality value on the link between feature B and feature C shows
that Feature B was accessed from a Feature C 17 times.

230 S. Marciuska et al.

3.3 Feature Group

Feature Group element is created to group Features that have the same access to
the Features that are outside the group. In this way, the Feature Usage Diagram
could be represented at a higher level of abstraction, and thus more understand-
able. The idea is based on the fact that if a system has n Features and those
Features are not grouped, then in the worst case there could be n ∗ (n− 1) Uni-
Directed Links among those Features. Therefore, each k groups of the size m
reduces the worst case complexity to (n−k ∗ (m− 1))∗ (n− 1−k∗ (m− 1))+k∗
m∗(m−1). For example, if we have 100 Features, then in the worst case we need
to consider 100 ∗ 99 = 9900 Directed Links. However, if it is possible to group
those Features to 10 Feature Groups in such a way that each group contains 10
similar Features, then we need to consider only 90 + 900 = 990 Directed Links.
In this case, the complexity would decrease 10 times. In the example provided
in Fig. 5 there is one Feature Group named ”Feature Group A”. It contains 3
Features: Feature D, Feature E, and Feature F.

Attributes of Feature Group: Group Name attribute is used to name a Feature
Group.

3.4 Directed Link to Feature Group

Directed Link to feature Group shows how a Feature Group is connected to other
Feature Groups, or Features. These links do not have any attributes, but if the
grouping would be removed then all the features of the group would inherit this
link. For example, in Fig. 5 grouping container has a uni-directed link to Feature
A. This means that Feature D, Feature E and Feature F have uni-directed link to
Feature A as well. Obviously, by removing the Feature Group, the Feature Usage
Diagram would be extended with inherited links and cardinality attributes on
these links, and thus the complexity of the diagram would increase. During the
case study (see in Section 4) we discovered that in some situations it is useful
to draw a Cyclic bi-directed Link on the corner of a Feature Group and leave
all the Features within it disconnected. It means that all Features within that
group have Bi-directed Links among each other (see Fig 6 Menu Items group).

4 Case Study Conduct

We conducted a case study to evaluate the Feature Usage Diagram. We selected
the case application as the nextrailer.net web based movie recommender system
that has 20 daily users. During the time of the case study, the system contained
approximately 30 Features and 200 Directed Links between them.

Our research questions were as follows:

Feature Usage Diagram 231

1. RQ1: – Is the Feature Usage Diagram easy to learn and understandable to
use?

2. RQ2 – Is the Feature Usage Diagram notation complete to represent features
and their dependencies (nothing is redundant or missing)?

3. RQ3: – Is the visualised information on the Feature Usage Diagram useful
for decision making in feature reduction?

RQ1 and RQ2 were answered in Phase 1 and RQ3 in Phase 2.
We used a purposive sampling when choosing the case study participants.

12 Computer Science students (MSc and PhD students in the Free University
of Bolzano) participated in the first phase of the case study. The participants
were heterogenous with respect to their programming and modelling experience
in industry (experience levels varied from a few years to more than ten years).
Furthermore, they were from 6 different nationalities with different backgrounds.
In the second phase, 3 developers of the case application were the participants
of the case study.

4.1 Phase 1

In the first phase of the case study, we gave a brief introduction of the Feature
Usage Diagram notation to the participants, and provided them detailed ma-
terial about the notation in a printed form (see Section 3). We asked them to
draw a Feature Usage Diagram for the nextrailer.net website, leaving usage and
cardinality attributes empty.

The participants used the Google Drawing graphical editor. During the ses-
sion, we observed how the participants were modelling the given system and
took notes. For each participant, we measured the time to complete the Feature
Usage Diagrams. At the end of the case study we collected the diagrams. Before
the case study, the first author of this paper draw the Feature Usage Diagram
for the case application in order to be able to compare the relative learning time
of the participants (RQ1).

To investigate whether the participants understood and correctly used the
notation to model the Features, Feature Group elements and Directed Links
(RQ1), we introduced 3 developers of the nextrailer.net website the notation
and asked them to come up with a complete and correct version of the diagram.
We then compared the diagrams drawn by the participants to this version. At
the end, we made an unstructured interview with each participant to answer our
RQ2.

4.2 Phase 2

In the second phase, we designed a JavaScript library and inserted it in nex-
trailer.net website in order to fill the final complete and correct version of the
Feature Usage Diagram with the usage information. The library was designed to
intercept all ”on click” events raised by DOM elements that have title attribute.

232 S. Marciuska et al.

In the next step, the developers of the system were asked to insert unique
title attributes on each element that correspond to the features. The following
information was sent to our server when the users use the system: The IP ad-
dress of the user that triggers the event, the timestamp of the event, and the
title attribute of the event. Having this information, we could determine which
relation of the Feature Usage Diagram was executed to determine the cardinality
information. For example, if Feature B is triggered after Feature A, then we draw
a uni-directed link from Feature A to Feature B and increased the cardinality
value for the link.

We collected usage data for 30 days. Then we wrote a script that parsed the
database and computed the usage information for each feature (links between
features and cardinality of the links). Later, we inserted these information to
the correct version of Feature Usage Diagram and interviewed the developers to
answer RQ3.

5 Results and Analysis

Phase 1: Our first observation was that the participants did not use the addi-
tional material about the notation provided before the case study saying that
the short introduction given at the beginning of the session was sufficient. On
average, it took 25-30 minutes to complete the Feature Usage Diagrams of the
nextrailer.net website. There was not high variation among the completion time
per participant and the participants used only 5-10 minutes more than the first
author of this paper who completed the same task in about 20 minutes. These
indicated that the Feature Usage Diagram notation was easy to learn (RQ1).

After reviewing the collected Feature Usage Diagrams from the participants,
we observed that all the participants could identify the Features and Feature
Groups. However, most of the diagrams were missing a number of Directed Links
between Features (20-30 percent). In addition, some of the models contained
few non exiting links. When we interviewed the participants to investigate the
reasons, they reported that these were analysis mistakes and therefore not related
to any misunderstanding about the introduced notation. Thus, we concluded
that the Feature Usage Diagram notation is understandable to use (RQ1).

Then we interviewed the participants by asking whether the elements of the
Feature Usage Diagram were complete for representing the Features and their
relations (RQ2). A few participants suggested using the same notation for the
Directed Links to Features and the Directed Links to Feature Groups as they
thought these links were redundant. We explained that the attributes on the
Directed Links will be populated during the second phase based on which links
are abstracted and will be inherited, and which represent the lowest granularity.
Then the participants agreed with using different notation for these elements.

Some of the participants reported that most of the Features in the Feature
Groups were connected with each other with Bi-directed Links and a special
notation for such situations would be more practical. During the case study
one participant added Cyclic Bi-directed Link on a Feature Group, meaning

Feature Usage Diagram 233

that all Features inherit this link (see Fig 6 Menu Items group). We decided
to incorporate this suggestion in the Feature Usage Diagram notation (see in
Section 3.4).

The biggest challenge reported by the participants was to model Features that
change state (that is, in some case Features and their Links are visible at the
website, while in other cases they are hidden). In this situation, we suggested to
model Features as if they are always visible, because the state of a Feature can
be detected by analysing the usability scenarios. For example, if such a Feature is
used it means that all scenarios when this Feature is hidden should be excluded.

In addition, several participants mentioned that a modelling tool support
would be much more practical. They indicated that such a tool could verify
whether the Feature Usage Diagram contains duplicates as well. Moreover, they
stated that a tool could allow to collapse the elements to show the relationship
between Features and Feature Groups at a higher granularity level or expand
them to see at a lower granularity. And by means of a tool, they said that it would
also be possible to partially automatically generate the Feature Usage Diagram
from the website, which then would require validation by the developers.

Phase 2: The fragment of the final version of the Feature Usage Diagram agreed
upon by the developers at the beginning of Phase 2 is presented in Fig. 6. The
fragment of this diagram populated with the usage information attributes is
presented in Fig. 7.

During the interviews, all developers mentioned that the Feature Usage Di-
agram would be very useful for making a decision for feature reduction (RQ3).
However, they also added that there were other aspects of value which should

Fig. 6. Fragment of nextrailer.net Feature Usage Diagram chosen by developers

234 S. Marciuska et al.

Fig. 7. Fragment of nextrailer.net Feature Usage Diagram with usage attributes

be taken into account as well. For example, the features Login and Report are
valuable for the company as these collect important information for the com-
pany, but these features are not used by many users. In addition, the developers
pointed out that a Feature could appear to be rarely used if it is hidden and is not
easy to notice. Nevertheless, the developers said that having such information is
very useful for value maximisation reasons by relocating those features to other
places. Finally, the developers added that cardinality information is important
to understand usage patters and having such information would help in making
decisions for how to modify a system, generating more value and understanding
the impact of such modifications.

5.1 Threats to Validity

We discuss the validity threats of this study according to the categorization
suggested by Runeson and Host for case studies [32]: 1) Construct validity, 2)
Internal validity, 3) External validity, and 4) Reliability.

Construct Validity. Construct validity refers to what extent the operational
measures represent what is investigated according to the research questions.
To answer the RQ1, we measured the time spent by each participant to learn
the notation and draw the Feature Usage Diagram for the case application.
One possible threat could have been previous knowledge of some participants
which could affect the learning time. Therefore, none of the participants were
introduced to the Feature Usage Diagram before the case study conduct. In
order to measure how easy to learn the notation, we compared the amount of
time spent by each participant to that of the first author of this paper to get a
relative figure.

Another potential threat was due to how we evaluated the model elements in
the Feature Usage Diagrams drawn by the participants. We compared the results

Feature Usage Diagram 235

to a correct and complete version agreed upon by the developers of the case
application. Here, one validity threat could have been if the agreed upon version
would have had errors. To mitigate this threat we used subject triangulation,
that is we asked 3 developers to separately draw the Feature Usage Diagrams,
and then by cross-checking to come up with a final agreed version.

Another validity threat could have been that the participants interpreted the
interview questions not in the same was as the researchers really meant. To
mitigate this, we had a discussion with each participant about what we meant
by each term we used in our questions (e.g ’usefulness’ in RQ3).

Internal Validity. Internal validity concerns the causality relation between the
treatment and the outcome, and whether the results do follow from the data. In
our case, one threat could have been related to background of participants of the
study. We chose the participants by making a background check to ensure that
that they have minimum skills in Computer Science to be able to understand the
concepts. We could not totally control the domain knowledge of the participants
that could have an effect on the time spent for task completion. However, as
there was not a high variation among the participants, we believe that this did
not affect the results of this study significantly.

External Validity. External validity refers to what extent it is possible to gen-
eralise the findings to different or similar contexts. One validity threat could
have been the small number of participants in the sample. As the participants
selected were heterogeneous with respect to their programming and modelling
experience in industry, we believe that the results of this study can be general-
ized to some extent. On the other hand, as we conducted only one case study
using a web application, we do not know how much the results are generalisable
to other type of applications. Further case studies are required.

Reliability. Reliability reflects to what extent the data and the analysis depend
on the specific researchers. Two of the operational measures used in this study
are objective. Therefore, we do not see a validity threat for the interpretation
and analysis of these measures. However, a validity threat might have been due
to interpretation of the answers of the participants. To mitigate this threat, we
validated with each participant how we interpreted their answers.

6 Conclusions

In this paper, we introduce a new diagram to visualise the Features, their re-
lationships and their usage information. The results of the case study indicates
that the Feature Usage Diagram elements and notation is easy to learn by novice
users. The features and and their dependencies could be captured completely fol-
lowing the notation.

Furthermore, the case study showed that the Feature Usage Diagram has
potential to aid developers in decision making for feature reduction purposes as
information on usage of the features is stated to be one of the important value
aspects of features.

236 S. Marciuska et al.

As future work, we plan to investigate other aspects of feature value and
extend the Feature Usage Diagram to incorporate these aspects as well. We
will explore how usage can be maximized by relocating features in different
places of a system. We will also apply feature Usage Diagram to analyse complex
systems with a high number of features, to better understand the usefulness of
our approach.

In addition, we aim to develop a tool to support developers when drawing Fea-
ture Usage Diagrams. In addition, we will explore the ways how to automatically
generate a part of the diagram.

References

1. Highsmith, J.A.: Agile software development ecosystems. Addison-Wesley Profes-
sional (2002)

2. Davis, F.D., Venkatesh, V.: Toward preprototype user acceptance testing of new
information systems: implications for software project management. IEEE Trans-
actions on Engineering Management (2004)

3. Senyard, A., Michlmayr, M.: How to have a successful free software project. In:
Proceedings of the 11th Asia-Pacific Software Engineering Conference, pp. 84–91
(2004)

4. Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky, G.: Software bloat analysis:
Finding, removing, and preventing performance problems in modern large-scale
object-oriented applications. In: Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research (2010)

5. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Inno-
vation to Create Radically Successful Businesses. Journal of Product Innovation
Management (2011)

6. Taipale, M.: Huitale – A Story of a Finnish Lean Startup. In: Abrahamsson, P.,
Oza, N. (eds.) LESS 2010. LNBIP, vol. 65, pp. 111–114. Springer, Heidelberg (2010)

7. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In: Proceedings
of the International Conference on World WideWeb (2006)

8. Microsoft Spy++, http://msdn.microsoft.com/en-us/library/aa264396
(v=vs.60).aspx (last visited on the November 27, 2012)

9. OpenSpan Desktop Analytics, http://www.openspan.com/products/desktop

analytics (last visited on the November 27, 2012)
10. Google Analytics, http://www.google.com/analytics (last visited on the Novem-

ber 27, 2012)
11. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature Location in Source

Code: A Taxonomy and Survey. Journal of Software Maintenance and Evolution:
Research and Practice (2011)

12. Eisenbarth, T., Koschke, R., Simon, D.: Locating Features in Source Code. IEEE
Computer (2003)

13. Ebert, C., Dumke, R.: Software Measurement. Springer (2007)
14. Ebert, C., Abrahamsson, P., Oza, N.: Lean Software Development. IEEE Software,

22–25 (2012)
15. Eisenberg, A.D., De Volder, K.: Dynamic Feature Traces: Finding Features in Un-

familiar Code. In: Proceedings of 21st IEEE International Conference on Software
Maintenance, Budapest, Hungary, pp. 337–346 (2005)

http://msdn.microsoft.com/en-us/library/aa264396(v=vs.60).aspx
http://msdn.microsoft.com/en-us/library/aa264396(v=vs.60).aspx
http://www.openspan.com/products/desktop_analytics
http://www.openspan.com/products/desktop_analytics
http://www.google.com/analytics

Feature Usage Diagram 237

16. Bohnet, J., Voigt, S., Dollner, J.: Locating and Understanding Features of Complex
Software Systems by Synchronizing Time, Collaboration and Code-Focused Views
on Execution Traces. In: Proceedings of 16th IEEE International Conference on
Program Comprehension, pp. 268–271 (2008)

17. Edwards, D., Wilde, N., Simmons, S., Golden, E.: Instrumenting Time-Sensitive
Software for Feature Location. In: Proceedings of International Conference on Pro-
gram Comprehension, pp. 130–137 (2009)

18. Chen, K., Rajlich, V.: Case Study of Feature Location Using Dependence Graph.
In: Proceedings of 8th IEEE International Workshop on Program Comprehension,
pp. 241–249 (2000)

19. Robillard, M.P., Murphy, G.C.: Concern Graphs: Finding and describing concerns
using structural program dependencies. In: Proceedings of International Conference
on Software Engineering, pp. 406–416 (2002)

20. Trifu, M.: Using Dataflow Information for Concern Identification in Object-
Oriented Software Systems. In: Proceedings of European Conference on Software
Maintenance and Reengineering, pp. 193–202 (2008)

21. Petrenko, M., Rajlich, V., Vanciu, R.: Partial Domain Comprehension in Software
Evolution and Maintenance. In: International Conference on Program Comprehen-
sion (2008)

22. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An Information Retrieval Ap-
proach to Concept Location in Source Code. In: Proceedings of 11th IEEE Working
Conference on Reverse Engineering, pp. 214-223 (2004)

23. Grant, S., Cordy, J.R., Skillicorn, D.B.: Automated Concept Location Using In-
dependent Component Analysis. In: Proceedings of 15th Working Conference on
Reverse Engineering, pp. 138–142 (2008)

24. Hill, E., Pollock, L., Vijay-Shanker, K.: Automatically Capturing Source Code
Context of NL-Queries for Software Maintenance and Reuse. In: Proceedings of
31st IEEE/ACM International Conference on Software Engineering (2009)

25. Poshyvanyk, D., Marcus, A.: Combining formal concept analysis with informa-
tion retrieval for concept location in source code. In: Program Comprehension,
pp. 37–48 (2007)

26. Chen, A., Chou, E., Wong, J., Yao, A.Y., Zhang, Q., Zhang, S., Michail, A.:
CVSSearch: searching through source code using CVS comments. In: Proceedings
of IEEE International Conference on Software Maintenance, pp. 364–373 (2001)

27. Ratanotayanon, S., Choi, H.J., Sim, S.E.: Using Transitive changesets to Support
Feature Location. In: Proceedings of 25th IEEE/ACM International Conference
on Automated Software Engineering, pp. 341–344 (2010)

28. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
491–503. Springer, Heidelberg (2005)

29. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature mod-
els. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer,
Heidelberg (2004)

30. Palmer, S.R., Felsing, M.: A practical guide to feature-driven development. Pearson
Education (2001)

31. Smith, J.B., Colgate, M.: Customer value creation: a practical framework. The
Journal of Marketing Theory and Practice, 7–23 (2007)

32. Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. In: Empirical Software Engineering, pp. 131–164 (2009)

The Effect of Complexity and Value

on Architecture Planning in Agile
Software Development

Michael Waterman, James Noble, and George Allan

Victoria University of Wellington, New Zealand
{Michael.Waterman,kjx,George.Allan}@ecs.vuw.ac.nz

Abstract. A key feature of agile software development is its prioritisa-
tion of responding to changing requirements over planning ahead. If an
agile development team spends too much time planning and designing
architecture then responding to change will be extremely costly, while
not doing enough architectural design puts the project at risk of failure.
Striking the balance depends heavily on the context of the system be-
ing built, the environment and the development teams. This Grounded
Theory research into how much architecture agile teams design up-front
has identified system complexity as an important factor in determining
how much planning a team does up-front, while system size, although
related to complexity, has a much less direct impact. Furthermore, when
determining how much design to do up-front, value to the customer can
be a more important factor than overall development cost. Understand-
ing these factors can help agile teams to determine how much up-front
planning is appropriate for the systems they develop.

Keywords: Software architecture, agile software development,Grounded
Theory.

1 Introduction

A software architecture represents the high-level structure and behaviour of a
software system [1] and can be difficult to change once development has started
[2]. Architecture is about planning ahead – getting the design of the system right
and avoiding costly refactoring during development. On the other hand, one of
the key features of agile software development is the ability to respond to chang-
ing requirements in preference to planning ahead [3]. There is therefore a tension
between up-front architecture design and agile methods. Many agile teams deal
with this tension through just enough up-front design to allow development to
begin [4]. How much just enough is depends on the context, where context is
made up of technical factors, environmental factors and the team itself.

This paper presents results from ongoing research that examines the relation-
ships between complexity and size, value and cost, and the effects that they
have on how much architectural planning teams do up-front. Understanding

H. Baumeister and B. Weber (Eds.): XP 2013, LNBIP 149, pp. 238–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Effect of Complexity and Value on Architecture Planning 239

these factors can help agile teams to determine how much up-front planning is
appropriate for the systems they develop.

Following this introduction, section 2 discusses the problem of architecture
planning in agile development, section 3 describes the research methodology
used (Grounded Theory), section 4 presents the findings of this research and
section 5 discusses the results in context of the literature. Section 6 discusses the
limitations of the research, and finally section 7 concludes the paper.

2 Background

2.1 The Tension between Agile and Architecture

There are many definitions of software architecture. Kruchten defined software
architecture as “the set of significant decisions about the high level structure and
the behaviour of the system” [1]; Booch extended this by noting ‘significant’ can
be measured by the cost of change [2]. We can therefore summarise architecture
as comprising the planning and design decisions that are made up-front and are
difficult to change once development has started. Examples of architectural deci-
sions are the choice of technology stack (including the development frameworks),
architectural styles or patterns and the system’s high level components.

Delivering value to the customer and other stakeholders lies at the heart of
being agile; many of the twelve principles of the agile manifesto directly relate to
delivering value earlier and faster [3]. Scrum and XP maximise value by prioritis-
ing tasks according to business priorities [5,6], and Lean places high importance
on value streams and eliminating waste [7,8].

Agile methods focus on value through delivering software frequently, respond-
ing to changing and evolving requirements in preference to planning ahead, de-
livering quality, and simplicity [3]. Behind its ability to respond to changing and
evolving requirements is the principle of ‘the simplest thing that will work’, or
YAGNI – ‘you ain’t gonna need it’: any additional work, such as developing
features that might be required, will be wasted if those features never actually
make it into the final product [6].

Architecture design is often seen as contrary to the philosophy of YAGNI,
delivering little immediate value to the customer [9]. Agile developers therefore
often avoid or minimise architectural planning [10], with the architecture being
either neglected entirely or only implicitly defined. Too little architecture may
lead to an accidental architecture [11] – one that has not been carefully thought
through – and may lead to gradual failure of the project, while on the other
hand too much architecture planning will at best delay the start of development,
and at worst lead to expensive architectural rework if the requirements change
significantly.

The agile principle of YAGNI is therefore in tension with architectural
planning.

240 M. Waterman, J. Noble, and G. Allan

2.2 The Subjectivity of Up-Front Architecture Decision-Making

Agile methodology instructions generally advise developers to deal with the ten-
sion between agile and architecture by designing just enough architecture to
start development, with the rest being completed during development as required
[4,12,13]. How much is just enough depends heavily on context, with context de-
pending on environmental factors such as the organisation and the domain, as
well as specific factors such as project size, criticality, business model, archi-
tecture stability, team distribution, governance, rate of change and the age of
system [9]. More than this however; context also includes social influences [14],
such as the background and experience of the architects. Booch and Fairbanks
noted that a particular system may have more than a single correct architec-
ture [15,16], and two architects are likely to produce different architectures for
the same problem with the same boundaries [14]. Taylor described architec-
ture as being as much about ‘soft’ (subjective) factors as it is about objective
design [17].

2.3 The Effect of Size on Up-Front Planning

Boehm undertook a study [18] using the COCOMO II model [19] in which he
demonstrated a relationship between the level of up-front architectural effort
and the overall development effort (and hence cost). This study showed that
up-front architectural effort is a compromise between the amount of time spent
planning up-front and the amount of time spent on rework caused by doing too
little, with a ‘sweet spot’ at the overall minimum cost. The location of this sweet
spot is highly dependent on the context of the system; Boehm’s study illustrated
the impact of the size of the system, with a larger system requiring more time
spent resolving architectural issues than a smaller system for any given level of
up-front planning. This difference is due to the diseconomies of scale of software
development [18].

Figure 1 shows that an increase in size from 100 KSLOC (thousand equivalent
source lines of code) to 10,000 KSLOC increases the up-front planning sweet spot
from around 20 per cent of the total effort to around 40 per cent of the total
effort.

2.4 The Research Gap

There has been very little empirical research on the relationship between soft-
ware architecture and agile development to date [20]. Breivold et al. performed
a survey of the literature and concluded that studies have been small, diverging,
and in some cases, performed in an artificial setting [20]. Dyb̊a and Dingsøyr
also noted the need for more knowledge of software development in general,
particularly through empirical studies [21]. This lack of research does not mean
that it is not an important issue: at the XP2010 conference, how much archi-
tectural effort was rated as the second-equal most burning question facing agile
practitioners [22].

The Effect of Complexity and Value on Architecture Planning 241

0

20

40

60

80

100

0 10 20 30 40 50

Pe
rc

en
ta

ge
 o

f
tim

e
ad

de
d

to

 o
ve

ra
ll

sc
he

du
le

Percentage of time for architecture and risk resolution

Architecting

Rework

Total

Sweet spot

10,000 KSLOC

100 KSLOC

Fig. 1. The effect of system size on the up-front architecture sweet spot, from Boehm
[18]

This paper presents results from ongoing research that helps address this gap
by investigating the relationships between complexity and size, value and cost,
and how they affect how much architectural planning teams do up-front. These
results can be used to guide agile development teams when making decisions on
how much up-front architecture design and planning is appropriate for systems
they develop.

3 Research Method

This research into up-front architecture uses the qualitative Grounded Theory
methodology [23]. Qualitative methods such as Grounded Theory are used to in-
vestigate people, interactions and processes. As noted above, architecture is very
dependent on the architects themselves and the development teams. Qualitative
research is generally inductive – it develops theory from the research, unlike de-
ductive research which aims to prove (or disprove) a hypothesis or hypotheses.
Because of the scarcity of literature on the relationship between architecture and
agile methods [20], an inductive methodology that will develop a new hypothe-
sis is more suitable for this research. We selected Grounded Theory because it
is a systematic and rigorous method [24] that allows researchers to develop a
substantive theory that explains the processes observed in a range of cases [25].

3.1 Data Collection

In this research, we collected data primarily through face-to-face semi-structured
interviews with agile practitioners who design or use architecture, or who are

242 M. Waterman, J. Noble, and G. Allan

otherwise architecture stakeholders. Participants were typically architects, de-
velopers, project leaders/managers and customers, and are all involved with
business-type applications. We collected additional data in the form of docu-
mentation and discussions by email and telephone to seek further information
or clarifications on earlier interviews.

3.2 Data Analysis

The first step of data analysis, open coding, can begin as soon as the first data
is obtained. In open coding, phenomena in the data are methodically identified
and labelled using a code that summarises the meaning of the the data [26].

As open coding progresses, emerging codes are compared with earlier codes;
codes with related themes are aggregated into higher levels of abstraction called
concepts. This process, called constant comparison [27], continues at the concept
level, with similar concepts being aggregated into a third level of abstraction
called categories. Categories are the highest conceptual elements of Grounded
Theory analysis; a Grounded Theory research project may have hundreds of dif-
ferent codes but will typically have no more than four or five categories [28].
The relationships between the categories are analysed and focused using selec-
tive coding; a dominant category emerges as the core category, which becomes
central to the emerging theory. Throughout the analysis process, memos – free
form notes ranging anywhere in size from a sentence to several pages – are writ-
ten to record thoughts and ideas about developing relationships between codes,
concepts and categories, and to aid the development of the theory [29].

Grounded Theory uses iteration to ensure a wide coverage of the factors that
may affect the emerging theory [26]: later data collection is dependent on the
results of earlier analysis. Data collection and analysis continue until saturation
is reached, which occurs when no new insights are learned, and all variations
and negative cases can be explained [30].

We can illustrate the Grounded Theory process with an example from this
research. One participant commented that they had regular tax law changes that
meant regular changes to their requirements:

“You’ve got your taxation changes coming in on specific dates throughout
the year, so those are generally around our release dates, because we have
to stay compliant with that.” (P3, development manager)

We coded this as ‘having regulatory changes’.
Similarly another participant commented on the pharmaceutical regulations

that affected his company’s product:

“The regulations keep changing every six months.” (P23, senior manager)

We also coded this as ‘having regulatory changes’.
Codes that had similar themes to this example included ‘having changes in

usage patterns or system load’, ‘requirements evolving’ and ‘understanding of
requirements changing’. We combined these similar codes into a concept called
‘having unstable requirements’. Figure 2 shows the relationship between the
underlying codes and ‘having unstable requirements’.

The Effect of Complexity and Value on Architecture Planning 243

Fig. 2. An example of a concept emerging from its codes

We have analysed thirty two interviews to date. Participants were gathered
through industry contacts, agile interest groups and through direct contact with
relevant organisations. Almost all participants were very experienced developers,
and most were also very experienced in agile development. Organisation types
vary from development consultancies, government departments, mass-market
product developers and single contractors. Different types of agile development
are included, with most participants using Scrum; other methods included XP,
Lean and bespoke methods. Most participants adapted their processes to some
extent to suit their team or customer’s requirements. The inclusion of this range
of participants and systems enables the research to include the effects of different
factors on architecture decision making.

We asked participants to select a project that they had been involved with to
discuss during the interview. Types of projects varied hugely, from green fields
to system redevelopment, from standalone systems to multi-team enterprise sys-
tems, and from start-up service providers and ongoing mass market product
development to bespoke business systems. Systems varied from highly critical
systems such as air traffic control and health record management, to business
critical systems such as banking and retail, through to largely non-critical admin-
istration and entertainment broadcast systems. We also obtained documentation
where possible to corroborate the interview data.

To maintain confidentiality, the participants are referred to using codes P1 to
P32. A summary of participants and their projects are listed in table 1.

4 Findings

This paper presents findings on the effects that complexity and size have on up-
front effort, and on using value rather than cost to determine how much effort a
team should put into architectural planning. An earlier paper [29] captured the
effects of architectural frameworks and templates, and the architects’ experience,
on the amount of up-front effort required in architectural design.

We used the Grounded Theory category “complexity over size” to form the
basis for part of these results. This category consists of the concepts “indi-
cators of complexity”, “up-front effort affected by complexity of system” and
“up-front effort affected by size of system” (figure 3a). The concept “indicators
of complexity” in turn emerged from the codes “complexity leading to multiple
frameworks”, “frameworks reducing architectural complexity”, “legacy systems

244 M. Waterman, J. Noble, and G. Allan

Table 1. Participant summary

Role Organisation
type

Domain Agile
methods

Team size
or no. of
teams

Duration System description

P1 Developer Government
agency

Health Single
developer

1 team
member

6 months Web-based, .NET

P2 Dev./
architect

Start-up E-commerce Scrum 3 team
members

Ongoing .NET, cloud-based

P3 Dev.
manager

Vendor Human
resources

Scrum 3 teams Ongoing Web-based, .NET,

P4 Director of
architec-
ture

Government dept. Digital
archiving

Scrum 5
developers

Ongoing Java, rich client, suite
of standalone tools

P5 Coach/dev.
manager

Start-up Entertainment Scrum/
kanban

Various N/A Various

P6 Man. Dir./
lead dev.

Vendor Telecoms Informal,
iterative

1–3
developers

Ongoing Suite of standalone
applications

P7 BA Telecoms operator Telecoms Scrum 12 team
members

1 year+ Suite of web-based
services

P8 Lead
developer

Government dept. Digital
archiving

Scrum 4–14 team
members

1 year+ Ruby on Rails, Java
back-end

P9 Developer Financial services Telecoms Bespoke 2–24 team
members

3 years Web-based system

P10 Coach Multinat.
hardware vendor

Transport Scrum/XP 500–800
developers

Several
years

Large distributed
web-based system

P11 Architect Government Government
services

Scrum 8 team
members

Several
years

Web-based services,
.NET

P12 Senior
developer

Service provider Financial
services

Scrum 6–7
developers

7 months .NET, suite of
web-based applications

P13 Architect Government Health Scrum 12 team
members

4 years Monolithic .NET app

P14 Architect Government Animal health Scrum 6–8 team
members

18 months .NET, large GIS
component

P15 Customer Start-up service
provider

Retail
(electricity)

Scrum 7
developers

Ongoing (3
years)

Ruby On Rails

P16 CEO/chief
engineer

Start-up Retail
(health)

XP 5 team
members

5 months Ruby On Rails

P17 Manager/
coach

Government Statistics Scrum 6 dev +
admin

2–3 years Web-based, PHP using
DAO pattern

P18 Dev.
manager

Multinat.
hardware vendor

Health Scrum 15 team
members

Ongoing
(>2 years)

Web-based, Java
platform

P19 Dev.
manager

Start-up service
provider

Retail
(travel)

Lean 4
developers

Ongoing
(<1 year)

PHP/Symfony,
Javascript/Backbone

P20 Coach and
trainer

Independent
consultant

N/A Scrum N/A N/A N/A

P21 Manager/
coach

Service provider Retail
(publishing)

Scrum 3 teams; 40
total

Several
years

.NET, Websphere
Commerce, SAP,
others.

P22 Senior
manager

Service provider Contact man-
agement/marketing

Scrum/XP More than
40 total

N/A .NET

P23 Senior
manager

Vendor Pharmaceut-
ical

Own
methods

3 teams Ongoing Various web based,
client/server

P24 Customer Start-up service
provider

Retail
(electricity)

Scrum 7
developers

Ongoing (3
years)

Ruby On Rails web
applications

P25 Team lead Service provider Banking Scrum 1 team Ongoing .NET, single tier web
P26 Team lead Government Water

management
Scrum 8 team

members
1 year .NET, web based, 7 tier

P27 CEO/coach Start-up service
provider

Retail
(electricity)

Scrum 7
developers

Ongoing (3
years)

Ruby On Rails

P28 Technical
lead

Service provider Broadcasting Scrum 42 team
members

N/A Python with Django,
CMSs for multiple
websites

P29 Dev.
manager

Banking Banking Kanban 20 team
members

Ongoing Web based, AJAX,
interface to mainframe

P30 Consulting
architect

Service provider Telecoms Scrum 7 team
members

2 years+ Python with Django
and Twisted, NoSQL

P31 Enterprise
architect

Government Transport Bespoke 7 team
members

13 week
pilot

Web services, SOA
using .NET/WCF

P32 Software
dev.
director

Vendor Government FDD, kanban N/A N/A N/A

The Effect of Complexity and Value on Architecture Planning 245

(a) (b)

Fig. 3. (a) the category “complexity over size” emerging from its concepts; (b) the
concept “indicators of complexity” emerging from its codes.

are complex” and “many integration points lead to complexity” (figure 3b). The
other concepts likewise emerged from their respective codes; they are not listed
here for the sake of brevity.

4.1 The Effect of Complexity on Up-Front Architecture Effort

Participants reported that the complexity of a system is an important deter-
minant of how much architecture planning a team does up-front. System com-
plexity is caused by demanding requirements and quality attributes, and results
in design decisions that are intertwined and have multiple dependencies [31].
Complexity may extend or break the limits of the development frameworks be-
ing used, and therefore increases the decision-making effort required to select
appropriate frameworks and tools, and to design a suitable architecture. A less
complex system will require less effort and a less sophisticated design.

For example, a participant in this research described how complexity affects
up-front architectural effort in his work:

“Typically, [the length of the start-up phase] depends on the complexity.”
[...] “The project that I am working on now is not a very complex ar-
chitecture. For that I don’t think we need a visual modelling tool – just
a simple whiteboard or flipchart with coloured Post-Its can work.” (P21,
manager/agile coach)

Participants noted that complexity can often be indicated by the need to use
bespoke components and libraries, by the need to use multiple technologies,
having many integration points, and by having to work with legacy systems.
These are explored below.

Bespoke Components: Modern vendor frameworks such as .NET, Hibernate
and Ruby on Rails provide standard solutions to problems, reducing the up-front
effort required to build a system, and enabling architectural changes to be made
with a lot less effort [29]. Frameworks are used by development teams to greatly
reduce the amount of up-front architecture and development effort required,
particularly in business-type applications, with participants commenting that
they did not need to make as many architectural decisions when using modern
frameworks:

246 M. Waterman, J. Noble, and G. Allan

“You choose the proper plug-ins and then you get the functionality that
you are looking for.” (P16, CEO)

What used to be considered architectural decisions ten years ago are now some-
times considered design decisions, or even simply configuration decisions:

“Those [structural] decisions can be very emergent nowadays; I don’t think
they’re nearly as intractable” (P29, development manager).

Frameworks, however, cannot always provide a complete solution. There are
frequently parts of systems that cannot be implemented using components or
libraries from the frameworks and have to be designed and developed from
scratch. These may be because the problem is unique or because the framework
components do not meet non-functional requirements such as performance. Non-
framework components increase complexity and result in extra up-front effort as
teams first identify the parts of the system that cannot be implemented using
pre-built components, and then perform analysis and experiments to come up
with satisfactory bespoke replacements:

“There were a number of architectural things that were developed in-house.
[...] We wrote our own data binding framework for instance. [...] We did a
bit of prototyping, we built the data binding framework that we came up as
a result of all of those factors. We had a bit of a go with what Microsoft
had off the shelf previously, found it painful and limiting, and felt that
it confirmed our decision to go our own way with data binding.” (P13,
architect)

Multiple Technologies: Like the need for bespoke components, a system with
complex requirements may not be able to be implemented entirely using a single
vendor framework, and instead may require multiple frameworks to implement
the required features and functionality. Not only does selecting these frameworks
require extra up-front planning, but setting up automatic testing platforms,
continuous integration delivery and other related set up activities become more
difficult and require more effort:

“If it’s really horribly complex and you’ve got to request all sorts of bits
of infrastructure from all over the show to get it to work then it definitely
slows down iteration zero.” (P29, development manager)

Legacy Systems: Legacy systems are older systems that were created using
outdated techniques and technology [32], and are no longer being ‘engineered’
but rather are simply patched as requirements change [33] without considera-
tion of the technical debt being incurred [9]. These patches add to the system’s
complexity [34]:

“Systems become more complex with age. Just the burden of code – entropy
over time and all that.” (P32, Software Development Director)

Good engineering practices such as simplicity, modularity and high cohesion are
eroded, and continuing to develop, or even interfacing with, these entropic legacy

The Effect of Complexity and Value on Architecture Planning 247

systems is a source of complexity that requires more up-front exploration and
proofs of concept to ensure that integration is possible.

Integration: Participants identified integration points, or interfaces to external
systems, as a major source of complexity in the systems being developed, partic-
ularly when the other systems are legacy or are built from different technologies.
Integration with other systems require data and communications to be mapped
between the systems, which adds to the up-front effort to ensure integration is
possible with the technologies being used.

“Today’s systems tend to be more interconnected – they have a lot more
interfaces to external systems than older systems which are typically stan-
dalone. They have a lot higher level of complexity for the same sized sys-
tem.” (P14, solutions architect)

4.2 The Effect of Size on Up-Front Architecture Effort

The size of a system is frequently considered by the literature as a factor in
determining how much up-front architectural effort is required [9,18] (section
2.3). Contrarily, the participants in this research reported that size is not as
important as complexity:

“In my experience, the complexity of an organisation’s systems landscape
has a greater influence on the amount of fore-thought required than the
budget or size of any particular initiative” (P10, agile coach)

Size may be measured explicitly by using a metric such as lines of code or num-
ber of components, or implicitly using a metric such as the project’s budget or
development time required. Size typically has some correlation with complexity:
a small system is usually not very complex, and a large system has the potential
for a high level of complexity. The relationship is not linear however; sometimes
there may only be a small correlation.

A system, independent of size, may not have any of the sources of complexity
described above – bespoke components, integration, multiple technologies and
legacy systems – and hence will have a low level of complexity, and will require
less up-front architectural effort:

“If we have size that just extends the time, it’s of little concern to us.
It’s just a slightly larger backlog, management overhead.” (P32, software
development director)

Specifically, a large system that can be implemented entirely using the compo-
nents and libraries of a framework with an acceptable level of risk is often not
very complex, and will require less up-front effort than a similar sized complex
system. For example, P27’s team was building a large system that had com-
plex requirements and complex functionality, but the team was able to decouple
this complexity from the architecture through implementing the system entirely
within the boundaries of Ruby on Rails. They were therefore able to build the
system with very little up-front planning:

248 M. Waterman, J. Noble, and G. Allan

“We talk to a lot of systems, we interface with a lot of systems, we’ve got
customer web requests coming in, we’ve got iPhone requests coming in,
from a software point of view there’s a lot of moving parts. The [function-
ality] is very, very complex – but the physical architecture itself that it sits
on is nice and standard. [...] It’s a just well adopted Ruby On Rails stack.
We deliberately try not to do anything different. Go with what’s proven, go
with what works. [...] We don’t have architectural discussions – we don’t
need to – the problem’s [already] been solved.” (P27, CEO/agile coach)

Another participant, P26, described a .NET system that he built as having an
‘enterprise-grade architecture’ that was too big for the system being built: it
had more layers and levels of abstraction than required. Despite this extra size,
he believed the extra complexity was minor, describing the additional up-front
effort required for this larger architecture designed for a larger system as being
minimal, with most of the extra effort coming during development when getting
new team members up to speed with the architecture.

Conversely, even a small system may require a lot of up-front planning if it is
complex:

“It could have been a very small thing that created a big iteration zero.”
(P29, development manager)

The use of frameworks to avoid complexity allowed some participants (such as
P27) to completely avoid up-front planning, allowing them to increase their
agility and respond to change and deliver early value much more effectively.

4.3 Using Value and Cost Minimisation to Determine How Much
Up-Front Architectural Effort

Section 2.3 above described Boehm’s analysis which uses the minimum effort
(and hence cost) to determine the sweet spot of architectural effort. While “cost
is always a concern” (P10) in agile development, in some situations agile teams
are more concerned about delivering business value to their customer – at the
expense of cost.

For many businesses, particularly those building a new commercial mass mar-
ket product or service, the value of software is the economic value that it adds
to the business, and is measured by participants in this research in terms of cash
flow or net present value, with early value being provided by early adopters of
the service. When faced with a decision of either doing more architectural plan-
ning up-front (and delaying the release) or minimising architectural planning
(and releasing as early as possible with less functionality), the teams consider
which option will provide the most value to the business:

“Today they’ve got an opportunity for a business idea that might make
them some money – if they don’t pounce on it it’s gone regardless of how
clever they think they are.” (P26, team lead)

and
“If they [build] the big system, then they will never reach their end cus-
tomer and make their money.” (P22, senior manager)

The Effect of Complexity and Value on Architecture Planning 249

An early release may be in the form of a Minimum Viable Product [35], which
is a marketing experiment – a release with limited functionality designed to
determine which features are desirable, rather than a fully functional version of
the software.

Focusing on business value and minimising the up-front effort may lead to
the need to re-design the architecture later and increase the overall cost. By this
stage the customer is in a better position to pay for that rework:

“Maybe it’ll cost a lot more to replace it a year later, but you already have
some business...” (P22, senior manager)

and
“[Designing for a million users] is a problem you can have once you’ve
got a million users and you’ve got a million users worth of revenue...”
(P27, CEO/agile coach)

Agile teams must therefore consider value, and not just cost, as a measure for
determining the level of up-front architectural planning the team does.

5 Discussion

This study of agile practitioners has found that the complexity of a system is
an important factor in determining how much up-front architecture planning is
required. Indicators of complexity include bespoke components, multiple tech-
nologies, integration with other systems, and dealing with legacy systems. On
the other hand, system size by itself is not a good determinant of up-front effort,
a result that is at odds with Boehm’s analysis [18], described above in section
2.3. That analysis presented a clear relationship between the up-front architec-
tural effort sweet spot and system size (see figure 1), due to the diseconomies of
scale of software development. Boehm’s analysis is based on data derived from
the COCOMO II cost model, a model released in 1996 that calculates the cost
of development of software systems using a complex regression algorithm and
historical parameters, calibrated with the experiences obtained from a set of 161
software projects [18].

There may be a number of reasons for the difference between Boehm’s result
and these findings.

Boehm’s analysis did not distinguish between complexity and size. The data
that COCOMO II is based on is likely to be from projects from the mid 1990s
or earlier. COCOMO II therefore predates modern frameworks that developers
currently use to reduce complexity and up-front effort. When considering systems
that do not use modern frameworks, there may be a good correlation between
size and complexity which allows size to be used as a proxy for complexity.

The importance of the effect of early delivery on value was noted by Boehm
in the context of software economics [36]: “The primary value realized may not
be in cost avoidance but rather in reduced time to market.” COCOMO II, a cost
model, does not consider the benefit gained from early delivery of value, simply
using cost to determine the sweet spot. Poort and van Vliet similarly proposed
a method of determining the level of up-front architecture which is based on

250 M. Waterman, J. Noble, and G. Allan

prioritising risk and minimising cost [37]. They claimed that stakeholder value
is implicit in the presence of the solution’s goals and business requirements.
However this assumption is not appropriate for agile development, because firstly
it assumes that the solution’s goals and business requirements do not change
after development has started, and secondly it assumes that there is no value in
delivering functionality to the end user before development of the entire system
has been completed.

Boehm and Turner presented an earlier comparative model similar to figure 1
which had risk exposure (rather than effort) as the dependent (y-axis) variable
[38]. Risk exposure included the business risk of delay caused by spending too
much time on architectural planning, and is therefore more appropriate for agile
development. Higher levels of risk exposure caused by higher levels of up-front
planning would cause the sweet spot to move towards the less-planning end of
the scale. Poort and van Vliet did not consider business risk [37].

Abrahamsson, Babar and Kruchten [9] listed a number of factors that they
suggested can affect the level of up-front planning, including the rate of change
of requirements, governance, team distribution, stability of the architecture and
the business model. These factors are not discussed in this paper.

6 Limitations

A substantive Grounded Theory is only applicable to the domain being studied
[30], and therefore cannot be assumed to be applicable to other contexts, or in
general. The result is therefore, to some extent, dependent on the participants
selected for the research. For example, these results cannot be applied to embed-
ded software because we did not include any participants who develop embedded
software systems.

7 Conclusion

This paper considers the relationships between complexity and size, value and
cost, and how they affect how much up-front planning agile teams do.

Previous analysis undertaken by Boehm using the COCOMO II model presents
a clear relationship between size and up-front architecture planning. However, re-
sults from this research show that the relationship between system complexity and
up-front planning is more important than the relationship between size and up-
front planning. Complexity, caused by demanding requirements and quality at-
tributes, greatly increases the up-front planning required, and may be indicated
by the need to build bespoke components, which are requiredwhere the framework
does not provide the functionality needed or cannot meet non-functional require-
ments such as performance, by the need for multiple frameworks, by the need for
many integration points with other systems, and by the need to work with legacy
systems. While complexity is closely related to size, size in itself does not always
directly affect the amount of up-front planning, particularly if the system has a
low level of complexity.

The Effect of Complexity and Value on Architecture Planning 251

The need for architecture planning is in tension with agile’s need to respond to
changing requirements: too much planning results not only in unnecessary effort
but also wasted effort if requirements change, while too little planning leads to
more effort to address architectural problems that arise. Therefore the minimum
overall cost is sometimes used to determine how much up-front planning a team
should do. However, in agile development, the need to provide early value to the
customer may override the need to minimise overall cost, if early value will lead
to an improved cash flow for the customer. To provide early value, the team may
do less up-front planning, potentially with more architectural rework later when
the customer’s cash flow is more able to support that architectural effort.

Agile teams must consider complexity and value when determining how much
architectural design to do up-front. Further results from this research will explore
other factors that influence how much up-front design is required.

References

1. Kruchten, P.: The Rational Unified process – an Introduction. Addison Wesley
(1998)

2. Booch, G.: Architectural organizational patterns. IEEE Software 25(03), 18–19
(2008)

3. Beck, K., et al.: Agile manifesto (2001), http://agilemanifesto.org/
4. Ambler, S.W.: Agile architecture: Strategies for scaling agile development,

http://www.agilemodeling.com/essays/agileArchitecture.html

5. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The scrum primer (2010), http://
assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf

6. Beck, K.: Extreme Programming Explained: Embrace Change, 2nd edn. Addison-
Wesley Professional (2005)

7. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley Professional (2003)

8. Coplien, J.O., Bjørnvig, G.: Lean Architecture for Agile Software Development.
John Wiley and Sons, Ltd. (2010)

9. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and architecture: Can they
coexist? IEEE Software 27(02) (2010)

10. Kruchten, P.: Agility and architecture: an oxymoron? In: SAC 21 Workshop: Soft-
ware Architecture Challenges in the 21st Century (2009)

11. Booch, G.: The accidental architecture. IEEE Software 23(03), 9–11 (2006)
12. Booch, G.: An architectural oxymoron. IEEE Software 27(05), 96 (2010)
13. Avram, A.: 10 suggestions for the architect of an agile team (September 2010),

http://www.infoq.com/news/2010/09/Tips-Architect-Agile-Team

14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
SEI Series in Software Engineering. Addison-Wesley (2003)

15. Booch, G.: The irrelevance of architecture. IEEE Software 24(03), 10–11 (2007)
16. Fairbanks, G.: Just Enough Software Architecture: A Risk Driven Approach. Mar-

shall and Brainerd (2010)
17. Taylor, P.R.: The Situated Software Architect. PhD thesis, Monash University

(December 2007)
18. Boehm, B.: Architecting: How much and when? In: Oram, A., Wilson, G. (eds.)

Making Software. O’Reilly (2011)

http://agilemanifesto.org/
http://www.agilemodeling.com/essays/agileArchitecture.html
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://www.infoq.com/news/2010/09/Tips-Architect-Agile-Team

252 M. Waterman, J. Noble, and G. Allan

19. Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., Steece, B.:
Software Cost Estimation with COCOMO II with CD-Rom, 1st edn. Prentice Hall
PTR, Upper Saddle River (2000)

20. Breivold, H.P., Sundmark, D., Wallin, P., Larson, S.: What does research say about
agile and architecture? In: Fifth International Conference on Software Engineering
Advances (2010)

21. Dyb̊a, T., Dingsøyr, T.: What Do We Know about Agile Software Development?
IEEE Software 26(05), 6–9 (2009)

22. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practition-
ers. IEEE Software 27(05), 8–9 (2010)

23. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine de Gruyter (1967)

24. Allan, G.: The legitimacy of Grounded Theory. In: European Conference on Re-
search Methods (keynote address) (July 2006)

25. Strauss, A., Corbin, J.: Grounded theory methodology. In: Denzin, N.K., Lincoln,
Y.S. (eds.) Handbook of Qualitative Research. Sage Publications, Inc. (1994)

26. Allan, G.: A critique of using grounded theory as a research method. Electronic
Journal of Business Research Methods 2 (July 2003)

27. Bryman, A.: Social Research Methods, 3rd edn. Oxford University Press (2008)
28. Glaser, B.G.: The grounded theory perspective III: Theoretical coding. Sociology

Press (2005)
29. Waterman, M., Noble, J., Allan, G.: How much architecture? Reducing the up-front

effort. In: Agile India 2012, pp. 56–59 (February 2012)
30. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Quali-

tative Analysis. SAGE Publications Ltd. (2006)
31. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-

sions. In: WICSA 2005, pp. 109–120 (2005)
32. Bennett, K.: Legacy systems: Coping with stress. IEEE Software 12(01), 19–23

(1995)
33. McGovern, L.: What is legacy code? (2008),

http://www.flickspin.com/en/software_development/what_is_legacy_code

34. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68, 1060–1076 (1980)

35. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses. Crown Publishing Group (2011)

36. Boehm, B., Sullivan, K.: Software economics: a roadmap. In: Proceedings of the
Conference on The Future of Software Engineering, ICSE 2000, pp. 321–343. ACM,
New York (2000)

37. Poort, E.R., van Vliet, H.: Architecting as a risk- and cost management discipline.
In: WICSA 2011, pp. 2–11 (2011)

38. Boehm, B.: Get ready for agile methods, with care. IEEE Computer 35(01), 64–69
(2002)

http://www.flickspin.com/en/software_development/what_is_legacy_code

Author Index

Abrahamsson, Pekka 223
Allan, George 238

Babb, Jeffry S. 1
Badampudi, Deepika 180
Bernhart, Mario 150
Biffl, Stefan 106
Borges, Daniel Beltrão 121

Causevic, Adnan 91
Concas, Giulio 210

Dantas, Cristine Ribeiro 121
Datta, Subhajit 31
Destefanis, Giuseppe 210
Dingsøyr, Torgeir 46
Dönmez, Denniz 61
dos Santos, Paulo Sérgio Medeiros 121

Engblom, Christian 195

Fricker, Samuel A. 180

Gencel, Cigdem 223
Grechenig, Thomas 150
Grote, Gudela 61

Heidenberg, Jeanette 165
Heikkilä, Ville T. 195
Hoda, Rashina 1

Kitzler, Martin 106
Koutonen, Jussi 135
Kurhila, Jaakko 16

Lassenius, Casper 195
Leppänen, Mauri 135

Lindsjørn, Yngve 46
Luukkainen, Matti 16

Marchesi, Michele 210
Marciuska, Sarunas 223
Mikkonen, Kirsi 165
Moe, Nils Brede 76
Moreno, Ana M. 180

Noble, James 238
Nørbjerg, Jacob 1

Ortu, Marco 210

Paasivaara, Maria 195
Porres, Ivan 165
Punnekkat, Sasikumar 91

Sajeev, A.S.M. 31
Shukla, Rakesh 91
Steindl, Christoph 106
Strobl, Stefan 150
Sundmark, Daniel 91

Tonelli, Roberto 210

Vallon, Raoul 150
Varella, Amanda 121
Vihavainen, Arto 16
Vikberg, Thomas 16

Wang, Xiaofeng 223
Waterman, Michael 238
Weijola, Max 165
Winkler, Dietmar 106

	Preface
	Organization
	Table of Contents
	Teaching and Learning
	Barriers to Learning in Agile Software Development Projects
	1 Introduction
	2 Related Works: Agile Methods, Knowledge and Learning
	2.1 Knowledge and Learning in Agile Software Development

	3 Research Design
	3.1 The Longitudinal Small-Shop Study
	3.2 The Grounded Theory Study

	4 Results: Barriers in Practice
	4.1 Multiple Goals (Projects)
	4.2 Excessive Iteration Pressure
	4.3 Customer Involvement
	4.4 Organizational Culture

	5 Discussion
	6 Conclusion
	References

	Early Start in Software Coaching
	1 Introduction
	2 Extreme Apprenticeship Education
	3 Coaching as Part of the Degree
	4 Coaching“Course”
	4.1 Connecting Coaching to XA
	4.2 Embedding Coaching Course into CS1
	4.3 Selection of Coaches
	4.4 What the Coaches Do

	5 Results and Evaluation
	6 Conclusions
	References

	Introducing Programmers to Pair Programming: A Controlled Experiment
	1 Introduction
	2 Literature Review
	3 Research Method
	3.1 Participants
	3.2 Method
	3.3 Procedure
	3.4 Statistical Tests

	4 Results
	4.1 Pair Programming Characteristics
	4.2 Routine versus Challenging Development
	4.3 Training Pairs

	5 Limitations
	6 Discussions and Conclusion
	6.1 Pair-Programming Practices
	6.2 Pair Programming Effectiveness
	6.3 Training Pair Programmers

	References

	Development Teams
	Team Performance in Agile Development Teams: Findings from 18 Focus Groups
	1 Introduction
	2 Teamwork and Team Performance
	3 Method
	4 Results
	5 Discussion
	6 Conclusion
	References

	The Practice of Not Knowing for Sure: How Agile Teams Manage Uncertainties
	1 Introduction
	2 Research Method
	2.1 Data Collection
	2.2 Data Analysis

	3 Results
	3.1 Resource Uncertainties
	3.2 Requirements Uncertainties
	3.3 Task Uncertainties
	3.4 Output Uncertainties

	4 Discussion
	5 Limitations
	6 Conclusion
	References

	Key Challenges of Improving Agile Teamwork
	1 Introduction
	2 Background
	2.1 SPI in Agile Software Development
	2.2 Organizational Learning and SPI

	3 Research Method
	3.1 Study Context
	3.2 Data Analysis

	4 Results
	4.1 Key Challenge 1: Long-Term Quality Is in Conflict with Short-Term Progress
	4.2 Key Challenge 2: Specialization Hinders Self-management
	4.3 Key Challenge 3: Process Problems Are Difficult to Solve
	4.4 Key Challenge 4: There Are Major Organizational Barriers to Self-management

	5 Discussion
	5.1 Creating Conditions for Self-management
	5.2 Learning to Learn

	Conclusions and Further Work
	References

	Agile Practices
	Effects of Negative Testing on TDD: An Industrial Experiment
	1 Introduction
	2 Related Work
	3 Methodology and Study Design
	3.1 Study Design

	4 Experiment Design
	5 Execution
	6 Analysis
	7 Interpretation
	7.1 Evaluation of Results and Implications
	7.2 Threats to Validity - Reservations

	8 Conclusions and Future Work
	References

	Investigating the Impact of Experience and Solo/Pair Programming on Coding Efficiency: Results and Experiences from Coding Contests
	1 Introduction
	2 Related Work
	2.1 Solo Programming and Programming in Teams
	2.2 Empirical Studies and Coding Contests

	3 Research Questions and Variables
	3.1 Research Questions
	3.2 Variables

	4 Study and Coding Contest Design
	4.1 Experiment Process and Coding Contest Setting
	4.2 Participants
	4.3 Study Material
	4.4 Data Collection and Analysis
	4.5 Limitations and Threats to Validity

	5 Results
	5.1 Coding Contest Effort and Levels
	5.2 Developer Experience
	5.3 Development and Programming Approach
	5.4 Final Scoring and Ranking

	6 Discussion, Conclusion and Future Work
	References

	Experiences and Lessons Learned
	Visualizing and Managing Technical Debt in Agile Development: An Experience Report
	1 Introduction
	2 Background
	3 Related Works and the State of the Practice
	4 Actions
	4.1 Recognize That the Lack of Attention Paid to the Technical Debt Was a Problem
	4.2 Visualize the Existing Technical Debt
	4.3 Quantifying the Amount of Technical Debt
	4.4 Create Mechanisms of Feedback to See the Technical Debt Evolution
	4.5 Take Actions to Correct Implementations That Lead to Technical Debt Rising

	5 Lessons Learned
	5.1 Make Visible. Don’t Dictate.
	5.2 Improved Communication
	5.3 Debts Paid at a Rate Higher than Expected

	6 Final Remarks
	References

	How Are Agile Methods and Practices Deployed in Video Game Development? A Survey into Finnish Game Studios
	1 Introduction
	2 Video Games and Game Development
	3 Agile Development
	4 Agile Game Development
	5 Research Method and Process
	6 Results
	6.1 Background Information of the Game Studios
	6.2 Agile Methods Used in the Game Studios
	6.3 Agile Practices Used in Game Studios
	6.4 Impacts of Agile Methods and Practices to Game Development

	7 Discussion and Conclusion
	References

	Inter-organizational Co-development with Scrum: Experiences and Lessons Learned from a Distributed Corporate Development Environment
	1 Introduction
	2 Research Design
	2.1 Research Settings
	2.2 Research Method

	3 Observation Phase
	3.1 Retrospective
	3.2 Interviews
	3.3 Summary

	4 Case Analysis
	5 Discussion
	5.1 Lessons Learned
	5.2 Suggestions for Practice
	5.3 Related Studies
	5.4 Limitations

	6 Conclusion
	References

	Large Scale Projects
	A Metrics Model to Measure the Impact of an Agile Transformation in Large Software Development Organizations
	1 Introduction
	2 Background and Previous Work
	3 Research Question, Method and Context
	3.1 Context
	3.2 Research Question
	3.3 Research Method

	4 Defining the Goal and Questions for the Transformation Metrics Model
	4.1 Background and Development of the Model
	4.2 Goal
	4.3 Questions
	4.4 Metrics

	5 Literature Survey
	6 Proposed Metrics
	6.1 Q. 1: Are We More Responsive in the New Way of Working?
	6.2 Q. 2: Do We Have Better Throughput in the New Way of
	6.3 Q. 3: Do We Have a Better Workflow Distribution in the New
	6.4 Q. 4: Do We Have Better Product Quality in the New Way of Working?

	7 Using the Metrics Model in an Organization
	8 Validation of the Model with Respect to the Criteria
	8.1 C1 and C4: Plan Driven and Agile Projects, Independent of
	8.2 C2: Support for Agile Values
	8.3 C3: Feasible to Collect for Both Past and Ongoing Projects
	8.4 C5: Objective

	9 Discussion and Future Work
	10 Conclusions
	References

	Perspectives on Productivity and Delays in Large-Scale Agile Projects
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Results
	4.1 The Development Organization
	4.2 Challenges That Affected Productivity and Delays
	4.3 Causes for the Challenges
	4.4 Impact of Challenges on Productivity and Delay of Scrum Teams
	4.5 Impact of Challenges on Productivity and Delay of Global Project Teams

	5 Discussion
	6 Conclusions
	References

	Continuous Release Planning in a Large-Scale Scrum Development Organization at Ericsson
	1 Introduction
	2 Release Planning in Large-Scale Agile Development
	3 Data Collection and Analysis
	4 The Case Organization
	4.1 Background
	4.2 Case Organization Structure

	5 Results
	5.1 Release Planning Process
	5.2 Challenges
	5.3 Benefits

	6 Discussion
	6.1 RQ1: What Was the Release Planning Process?
	6.2 RQ2: What Were the Challenges Related to the Release Planning Process?
	6.3 RQ3: What Were the Benefits of the Continuous Release Planning Process?
	6.4 Generalizability and Threats to Validity

	7 Conclusions and Further Work
	References

	Architecture and Design
	Micro Patterns in Agile Software
	1 Introduction
	2 Related Works
	3 Methodology
	4 Results
	4.1 Survey
	4.2 Source Code Analysis
	4.3 Micro Patterns and Faults
	4.4 Discussion

	5 Threats to Validity
	6 Conclusions
	References

	Feature Usage Diagram for Feature Reduction
	1 Introduction
	2 Related Work
	2.1 Feature Identification and Location
	2.2 Feature Usage Monitoring
	2.3 Feature Visualization

	3 Feature Usage Diagram
	3.1 Feature
	3.2 Directed Link between Features
	3.3 Feature Group
	3.4 Directed Link to Feature Group

	4 Case Study Conduct
	4.1 Phase 1
	4.2 Phase 2

	5 Results and Analysis
	5.1 Threats to Validity

	6 Conclusions
	References

	The Effect of Complexity and Value on Architecture Planning in Agile Software Development
	1 Introduction
	2 Background
	2.1 The Tension between Agile and Architecture
	2.2 The Subjectivity of Up-Front Architecture Decision-Making
	2.3 The Effect of Size on Up-Front Planning
	2.4 The Research Gap

	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Findings
	4.1 The Effect of Complexity on Up-Front Architecture Effort
	4.2 The Effect of Size on Up-Front Architecture Effort
	4.3 Using Value and Cost Minimisation to Determine How Much

	5 Discussion
	6 Limitations
	7 Conclusion
	References

	Author Index

