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Preface

The theory of probability and mathematical statistics is becoming indispensable
knowledge for an increasing number of engineers and scientists. This is caused by
the enlarging significance of the economic and societal consequences of technolo-
gical systems due to uncertainties affecting performance. That is why the funda-
mental concepts and procedures used to analyse, design, execute and utilize these
systems are, at present, based on the theory of probability and mathematical
statistics.

However, these probabilistic and statistical concepts are still not properly under-
stood or interpreted by experts, including engineers and scientists involved in the
various stages of system developments. The present book is an attempt to improve
this undesirable situation by providing easily understandable descriptions of seem-
ingly intricate probabilistic concepts. The objective of the book is to provide a
concise and transparent explanation of the most important concepts commonly used
in engineering and science.

The book is based on the lecture notes of the author, used in undergraduate and
graduate courses at technical universities. The text is written in simple language using
limited mathematical tools and emphasising the didactic aspects. All the theoretical
concepts and procedures have been systematically illustrated by numerical examples.
Selected, commercially available software products (in particular Excel and
MATHCAD) are utilized in the practical numerical examples given.

Other than a basic knowledge of undergraduate mathematics, no special
prerequisites are needed. This book is in the form of a text book, but can also be
used as a reference handbook by undergraduate and graduate students, engineers
and scientists, and by all specialists in the field of statistical evaluation of data,
reliability analysis and risk assessment.

Due to the limited scope of the book, some concepts and procedures have been
introduced without due theoretical development. In such cases, a reference to
specialised literature is provided. However, in order to make the text understandable,
the theoretical procedures are often illustrated by explanatory examples, which
extend the main text and also indicate further possible applications of the general
theoretical concepts.
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Chapter 1
Introduction

The theory of probability and mathematical statistics is becoming an indispensable
tool in the analysis of many contemporary tasks in engineering and science. Wide-
ranging experience confirms that probability is one of the most important concepts
in modern science. In spite of that, comprehensive understanding of the fundamen-
tal principles of the theory of probability and statistics still seems to be inadequate.
Consequently, the results of numerous applications are often understood and
interpreted loosely and imprecisely.

Nevertheless, an increasing number of procedures applied in various technical
fields are nowadays based on the theory of probability and mathematical statistics
[1, 2]. The majority of new professional rules and provisions, codes of practice and
standards are based on principles of the theory of probability and statistics
[3-5]. Consequently, many engineers, scientists, experts, public officers and other
experts participating in any process of decision making are directly or indirectly
confronted with new knowledge, procedures and terminology [3, 6-8]. The present
book is an attempt to provide a concise introductory text aimed at all classes of
involved specialists, experts and the general public.

It is well recognised that many technological systems including engineering
works suffer from a number of significant uncertainties which may appear at all
stages of design, execution and use [9, 10]. Some uncertainties can never be
avoided or eliminated entirely and must therefore be taken into account when
analysing, designing, executing and using the system. The following types of
uncertainties can be generally recognised [11]:

— Natural randomness of actions, material properties and geometric data;
— Statistical uncertainties due to limited available data;

— Uncertainties of theoretical models due to simplifications;

— Vagueness due to inaccurate definitions of performance requirements;
— Gross errors in design, execution and operation of the system;

— Lack of knowledge of the behaviour of elements in real conditions.

Note that the order of the listed uncertainties corresponds approximately to the
decreasing scope of current knowledge, as well as to the lack of theoretical tools,
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2 1 Introduction

making it problematic to take these uncertainties into account in any analysis.
Depending on the nature of the system, environmental conditions and applied
influences, some types of uncertainties may become critical, while some may turn
out to be insignificant.

The above uncertainties are sometimes classified into two main groups:

— Aleatoric (random) uncertainties;
— Epistemic (notional) uncertainties.

Some of the above mentioned uncertainties are mainly aleatoric (for example
natural randomness), the other can be classified as epistemic (for example lack of
knowledge). Nevertheless theoretical tools to analyse uncertainties are confined
primarily to the theory of probability and mathematical statistics.

The natural randomness and statistical uncertainties (mainly aleatoric) may be
relatively well described by the available methods of the theory of mathematical
statistics. In fact the International Standards [3—-5] provide some guidance on how
to proceed. However, lack of reliable experimental data, i.e. statistical uncertainty,
particularly in the case of new elements, actions, environmental influences, and also
specific geometrical data, causes significant problems.

Moreover, the available sample data are often not homogeneous and are
obtained under differing conditions (for example in the case of material properties,
imposed loads, environmental influences and hidden internal dimensions). Then, it
becomes difficult — if not impossible — to use these data for developing general
theoretical models.

Uncertainties regarding applied theoretical models used to analyse the system
may be, to a certain extent, assessed on the basis of theoretical and experimental
investigation. The vagueness caused by inaccurate definitions (in particular of some
performance requirements) may be partially described by the theory of fuzzy sets.
Up to now, however, these methods have been of little practical significance, as
suitable experimental data are very difficult to obtain. Knowledge about the
behaviour of new materials and structural systems is gradually improving thanks
to newly developing theoretical tools and experimental techniques.

The lack of available theoretical tools is obvious in the instances of gross error
and lack of knowledge (epistemic uncertainties), which are, nevertheless, often the
decisive causes of system failures. In order to limit the gross errors caused by
human activity, quality management systems, including the methods of statistical
inspection and control (see for example [3-5]), can be effectively applied.

A number of theoretical methods and operational techniques have been devel-
oped and used to control the unfavourable effects of various uncertainties during a
specified working life. Simultaneously, the theory of reliability has been developed
to describe and analyse the uncertainties in a rational way, and to take them into
account in analysis and verification of system performance. In fact, the develop-
ment of the whole reliability theory was initiated by observed insufficiencies and
failures caused by various uncertainties. At present the theory of reliability is
extensively used in many technical areas to develop and calibrate operational
procedures for assessing reliability.
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That is why the theory of probability and mathematical statistics is becoming an
indispensable discipline in many branches of engineering and science. This is also
caused by the increasing economic and social consequences of various failures
affecting the performance of complex technological systems. Fundamental
concepts and procedures used in analysis of these systems are inevitably based on
the theory of probability and mathematical statistics.

The objective of this book is to provide a concise description of basic theoretical
concepts and practical tools of probability theory and mathematical statistics that
are commonly used in engineering and science. The book starts with the funda-
mental principles of probability theory that are supplemented by evaluation of
experimental data, theoretical models of random variables, sampling theory, distri-
bution updating and tests of statistical hypotheses. In addition two-dimensional
random samples and a short description of random functions are provided.
Examples concerning various technical problems are used throughout the book to
illustrate basic theoretical concepts and to demonstrate their potential when applied
to the analysis of engineering and scientific systems. The text is structured into
12 chapters and 7 annexes as follows.

The basic concepts of probability theory, including the Bayesian approach, are
introduced in Chap. 2. Chapter 3 deals with the necessary techniques for evaluation
of statistical data. General concepts used to describe various discrete and continu-
ous random variables are generally introduced in Chap. 4. Selected theoretical
models of discrete and continuous random variables commonly used in engineering
and science are presented in Chaps. 5 and 6. Chapter 7 is devoted to fundamental
linear and nonlinear functions of random variables describing engineering and
scientific problems. The estimation of population parameters, together with sam-
pling distributions, is described in Chap. 8. One of the keywords of engineering and
scientific applications is the term fractile (sometimes called quantile); relevant
statistical techniques for determining the fractiles of theoretical models and for
estimating them from limited sample data are described in Chap. 9. The testing of
statistical hypotheses is covered in Chap. 10. Two-dimensional samples and
populations, coefficients of correlation and regression (including their estimation
from a sample), and tests of the population coefficients of correlation and regression
are described in Chap. 11. Finally, random functions, more and more frequently
applied in engineering and science, are briefly introduced in Chap. 12. Annexes
summarize characteristic of random samples, parameters of population, theoretical
models of random variables, parameters of functions of random variables,
techniques for estimating fractiles, conventional models of random variables, and
include a brief table of standardized normal distribution.

The book is based on limited mathematical tools and all the theoretical
procedures are systematically illustrated by numerical examples. The text is written
in simple language with an emphasis on didactic aspects. Except for a basic
knowledge of undergraduate mathematics, no special prerequisites are required.
The aim of the book is to provide a concise introductory textbook and handbook
that will provide quick answers to practical questions.
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The size of the book has been kept deliberately limited and, consequently, some
procedures are introduced without detailed theoretical development. In such cases a
reference to specialised literature is provided (particularly to the book [1] and other
publications [12—-19]). In order to make the text understandable, the theoretical
procedures are often explained with the help of illustrative examples that supple-
ment the main text and indicate further possible applications of the theoretical
concepts in engineering and science. Due to the limited extend of the book
numerical values of random variables required in examples are mostly taken from
easily accessible tables provided by software products like EXCEL, MATHCAD,
STATISTICA and numerous other products, or from Statistical tables available on
the internet. A brief numerical table for the distribution function of a normal
distribution is also provided in Appendix 7.

The book has the character of a text book, but can be used also as a concise
handbook. It is primarily intended for undergraduate and graduate students of
engineering and science, for engineers, scientific workers, and other specialists
participating in the field of evaluation of statistical data, reliability analysis, risk
assessment and decision making.
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Chapter 2
Basic Concepts of Probability

The basic concepts of the theory of probability, frequently applied in engineering
and scientific tasks, are best illustrated by practical examples. Fundamental terms
like “experiment”, “random event” and ‘“sample space” are supplemented by
descriptions of the common relations between random events. The key notion of
probability is defined, taking into account historical approaches and practical
interpretations related to engineering and scientific applications. The basic rules
for the calculation of probability are illustrated by numerical examples. The
essential concept of conditional probability is clarified in detail and was used to
develop the Bayes’ theorem. Various applications of the theorem are demonstrated
by examples taken from engineering. An extension of the Bayes’ theorem is used to
develop operational procedures for probability updating.

2.1 Experiment, Random Event, Sample Space

This chapter gives a concise overview of the most important concepts and terms of
the theory of probability, especially those which are most often used in reliability
analyses of civil engineering works and systems. The presentation of some concepts
and laws is rather intuitive without rigorous mathematical proofs. More detailed
explanations of all the relevant concepts, theorems and rules may be found in
specialised literature [1, 2].

The most significant fundamental concepts of the theory of probability applied in
structural reliability include:

— Experiment;
— Random event; and
— Sample space (space of events).

These terms are used in classical probability theory, but are also applicable in
contemporary probability theory based on the theory of sets.

M. Holicky, Introduction to Probability and Statistics for Engineers, 5
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6 2 Basic Concepts of Probability
2.1.1 Experiment

An experiment in the theory of probability is understood as the realization of a
certain set of conditions z. In the classical approach to the theory of probability it is
often assumed that the experiments can be repeated arbitrarily (e.g. tossing a dice,
testing a concrete cube) and the result of each experiment can be unambiguously
used to declare whether a certain event occurred or did not occur (e.g., when tossing
a dice, obtaining or not obtaining a predetermined number, or when a concrete cube
exceeds or does not exceed a specified value).

However, in practical applications of the theory of probability the assumption of
arbitrary repeatable experiments, each of which leads to an unequivocal result
(even though not known beforehand), is not always realistic (e.g. in the construction
industry, where usually only a very limited number of experiments can be
performed). Contemporary usage of the theory of probability allows for more
general concepts, wherein terms such as experiment, event and sequence of events
are related to the general theory of sets.

The concept of an experiment remains applicable in general. However, specifi-
cation of the conditions z is of the utmost importance, irrespective of whether the
experiment can be realistically carried out. In some cases the experiment can only
be carried out hypothetically. In any case, the specification of the conditions & needs
to be as accurate and as complete as possible. The results and interpretation of any
experiment should always be related to these conditions. The comparison of
experiments carried out under different conditions may lead to serious mistakes
and misunderstandings. Description of the appropriate set of conditions and their
verification should therefore become an indispensable part of every probabilistic
analysis.

2.1.2 Random Event

Probability theory deals with the results of experiments that are not unequivocally
determined in advance by the appropriate set of conditions z, or with experiments
for which a set of conditions that would lead to an unequivocal result either cannot
be provided during an experiment, or is not known at all (or partly unknown). An
experiment of this kind is called a random experiment. The result of a random
experiment is characterised by events that could, but will not necessarily, occur
when the conditions 7 are realized. Such events are called random events and are
usually denoted by a capital letter from the beginning of the alphabet, e.g. A or B
(possibly with an index). An event that will necessarily occur every time the
conditions z are realized is called a certain event — denoted here by the symbol
U; an event that can never occur is called an impossible event — usually denoted
as V.
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2.1.3 Sample Space

The sample space A of a certain random experiment denotes all events which can
occur by the realization of a specified set of conditions z, i.e. those which can be
outcomes of the experiment under consideration. The sample space can be finite
(tossing a dice), or infinite (testing a concrete cube in a testing machine). In some
cases a system of elementary events can be found, i.e. a system of events that cannot
be further divided (e.g. tossing a dice numbers 1-6 represents such elementary
events). In other cases the system of elementary events is not obvious, or does not
exist (testing a cube in a testing machine).

All the fundamental terms that have been introduced — experiment, set of
conditions 7, event and sample space A — are clarified by the following three simple
examples, which constitute an integral part of this summary. Besides a complemen-
tary explanation of the relevant terms, the following examples provide further
information on the general principles and mathematical tools used to describe
real conditions and accepted simplifying assumptions.

Example 2.1. Tossing a dice is a traditional (and from an educational viewpoint a
very useful) example of a random experiment. In this case the set of conditions 7 is
trivial. The dice is balanced and symmetrical and cast in a correct way that will not
affect the number obtained when the dice is tossed.

The certain event U denotes the event where any of the numbers 1, 2, 3,4, 5 or
6 occur.

The impossible event V denotes the event when other numbers appear (e.g. 0, 7,
9 etc.).

Elementary events E;, i = 1, 2 to 6, which cannot be further divided, denote the
number i = 1, 2 to 6. If the given set of conditions x is satisfied, the occurrence of
every elementary event is equally possible. In this case we can say that it is a system
of equally possible elementary events.

Random events A;, for example the appearance of the number 1, can be denoted
as A; = E;; the appearance of the even numbers as A, = E, U E4 U Eg; the
appearance of the numbers divisible by three as A; = E3 U Eg; the appearance of
the numbers divisible by two or three as Ay = E; U E3 U E4 U Eg, etc. The sample
space A (i.e. the total of all possible events which may occur at a toss) is, in this
case, obviously finite.

Example 2.2. The cylinder strength of a specific concrete is examined. The
random experiment is the loading of a test cylinder into a testing machine. The
set of conditions z includes the composition, treatment and age of concrete,
the dimensions of the cube, the speed of the loading, etc. The investigated random
event is the failure of the concrete cylinder at a certain level of loading. If the
loading is sufficiently high, the cylinder always fails; at sufficiently low levels of
loading the failure will never occur. At the loading level corresponding to the
characteristic cylinder strength of concrete the failure may occur (e.g. 5 % of all
cases on average) or may not (e.g. 95 % of all cases).
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Fig. 2.1 The number of Number of failed cylinders
failed cylinders versus the 20
loading level

15

10

10 20 30 40 50
Loading level [MPa]

Elementary events can be defined in many ways, e.g. by a system of intervals of
equal width within a certain loading range. Consider concrete of the grade C
20 having the characteristic cylinder strength 20 MPa. The possible range of
loading from 10 to 50 MPa is split into the intervals of 4 MPa and elementary
events are defined as the failure of a cylinder at the loading level within each
interval. Figure 2.1 shows the results of 50 experiments under specified conditions
7. Solid bars in each interval indicate the number of failed cylinders. It follows from
Fig. 2.1 that two cylinders failed at the loading level of 18-22 MPa, nine cylinders
failed in the next interval of 22-26 MPa, 17 cylinders failed in the interval of
24-30 MPa, etc. Without doubt, it is not a system of equally possible events (see
Fig. 2.1). The sample space A consists of any one-sided or two-sided interval and is
obviously infinite. Figure 2.1 shows a frequently used graphical representation of
experimental results, called a histogram, which is commonly used for the develop-
ment of probabilistic models describing basic variables.

Example 2.3. Consider throwing a dart onto a board indicated in Fig. 2.2. Each
throw represents one realization of a random experiment. The set of conditions z
includes the distance of the board from the throwing point, the size of the board, the
type of dart and other conditions for throwing.

It is assumed that every point of the board can be hit with equal likelihood, and
that the board is always hit (these are, undoubtedly, questionable assumptions).

The hitting of the whole board is therefore a certain event U.

An impossible event V is a throw that misses the board.

A random event, though, may be the hitting of any smaller area, A or B, drawn on
the board (Fig. 2.2), or of any combination of such areas. The system of all possible
areas on the board represents an infinite sample space A.
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Fig. 2.2 An example of
throwing a dart onto a U
board — Venn diagram

2.2 Relations Between Random Events

Example 2.3 indicates a common representation of random events (see Fig. 2.2)
using oval figures illustrating the mutual relations between the random events A, B,
C,. .. (such a representation is called a Venn diagram). In Fig. 2.2 the certain event
U is represented by the whole rectangle, two random events A and B are symbolized
by the ovals. Let us consider some basic relations between events A and B, which
lead to the definition of other important terms and to the derivation of some general
relationships between the random events. Other diagrams similar to Fig. 2.2 may
illustrate all the following relationships and combinations of random events. A
detailed explanation including formal mathematical proofs of all rules may be
found in specialised literature [3, 4].

If an event B occurs every time the conditions 7 are realized, as a result of which
an event A occurs, we say that event A implies event B, which is usually symboli-
cally denoted as A C B. If the events A and B occur simultaneously every time the
conditions 7 are realized, we say that an intersection of the two events occurs. An
intersection of the events A and B is denoted as A N B. If at least one of the events A
and B occurs at every realization of the conditions z, a union of the two events
occurs. This is denoted by A U B. If event A occurs but event B does not, then the
difference A—B of the two events occurs. Events A and A are complementary events
(we also say that event A is the opposite of event A) if it holds simultaneously that
AUA=Uand AN A=YV.It can be shown that the following simple rules (the
commutative, associative and distributive laws) hold for the intersection and union
of random events:

ANB=BNA, AUB=BUA @2.1)
(ANB)NC=ANBNC), (AUB)UC=AUBUC) 2.2)
(ANB)UC=(AUC)N(BUC), AUBNC)=(AUB)N(AUC) (2.3)

These basic rules lead to the definition of more complicated relations of the
intersection and the union of a system of events A;:
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ﬂAi =A NANA3N...NA,
UJAi=auauasu.. 04, (2.4)
The following rules (the so-called de Morgan rules), the validity of which

follows from the above relations, are sometimes effectively applied in practical
computations of probabilities of complex events

UA,-:AmA_zm...mA_,l (2.5)

The use of these rules is evident from the two following examples.

Example 2.4. A simple serial system loaded by forces P consists of two elements
as shown in Fig. 2.3. Failure F of the system may occur due to failure F; of the
element 1 or due to failure F, of the element 2:

F=F UF,

The complementary event F (no failure) is, according to relation (2.5), described
by an event for which it holds

F=F UF,=F NF,

Example 2.5. A town C is supplied with water from two sources, A and B, by a
pipeline, which consists of three independent branches 1, 2 and 3 (see the scheme in
Fig. 2.4). Let us denote F as the failure of branch 1, F, the failure of branch 2 and
F5 the failure of branch 3. In a case where the sources A and B have sufficient
capacity to supply the town C, the lack of water in that town is described by the
event (F; N F») U F3; here, either the branch 3 fails or the branches 1 and 2 fail. For
the analysis of this event, however, it may be expedient to study a complementary
event describing the sufficiency of water in the town C.

According to de Morgan’s rules the complementary event of the sufficiency of
water in the town C is described by the event

(FINF)UF3 = (F{UF,) NF3

where the event (F; UF,) represents sufficient water in the junction of branches
1 and 2, which is at the same time the beginning of branch 3.
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Fig. 2.3 A serial system P 1 2 P
0 0 O
Fig. 2.4 Water supply A
system of a town C from 1
sources A and B 3
»o C
2

B

Fig. 2.5 Staticall
g y P P

determinate truss structure

Example 2.6. Let us consider the statically determinate truss structure shown in
Fig. 2.5, consisting of seven members and loaded by forces P. The aim is to
describe an event F as that in which a structural failure occurred. Let F; denote
the event in which a failure of the elementi = 1, 2, ..., 7 occurred.

The failure of the whole structure (event F) occurs if a failure of at least one of
the members occurs. Therefore it holds that

With regard to the conditions of manufacture of the individual members the
events F; may be mutually dependent and thus are not exclusive. In the computation
of the probability of failure it may then be expedient to consider the complementary
event F for which it holds, according to de Morgan’s rules (2.5)

F— Fi

-
D

F;=

i=1 i=1

Similar relationships may be effectively used when analysing complex technical
systems.
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The following additional terms are often used. We say that a system of events A;
forms a complete system of events if the union of these events is a certain event U.
In that case at least one event, A;, always occurs. A complete system of mutually
exclusive events is another term that is sometimes used when analysing complex
events. In that case only one event A; always occurs.

2.3 Definitions of Probability

2.3.1 Classical Definition

Probability describes the occurrence of random events. The definition of probability
is, however, a mathematically intricate problem. Historically it has experienced an
interesting evolution, reflecting the remarkable development of the theory of
probability and its practical applications. The classical definition of probability is
based on a complete system of elementary events. Let an event A consist of m out of
n, equally likely elementary events where the total number n is formed by a
complete system of mutually exclusive events. The probability of event A is then
given by the quotient

P(A) =m/n (2.6)

For probability defined in this way it obviously holds that
0<PA)=m/n<1 2.7)
PU)=n/n=1, P(V)=0/n=0 (2.8)

It can also be shown for a system of mutually exclusive events A; that the
probability of the union of these events is given by the relation

=Y _PlA] 2.9)

The classical definition of probability is fully acceptable for many elementary
cases, such as the tossing of a dice in Example 2.1. However, if the dice is not
symmetrical, the classical definition obviously fails. Examples 2.2 and 2.3 further
indicate that a finite system of elementary events is not sufficient for the fundamen-
tal problems of civil engineering. In the attempt to deal with these insufficiencies
other definitions of probability gradually emerged.
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2.3.2 Geometrical Definition

The geometrical definition of probability is related to the throwing of a dart in
Example 2.3. According to this definition, the probability of an event A is equal to
the quotient of the surface area of event A, the denoted area(A), and of the surface
area of the certain event U, the denoted area(U), i.e. by the quotient

P(A) = area(A)/area(U) (2.10)

Thus, the geometric definition attempts to eliminate one insufficiency of the
classical definition, which lies in the finite number of elementary events. However,
this definition still does not take into account the reality that not all the points on the
board (event U) have the same possibility of occurrence. Obviously, the “surface
area” is not an appropriate measure of occurrence; this difficulty is still to be solved.

2.3.3 Statistical Definition

The statistical definition of probability is based on the results of an experiment
repeated many times. Let us consider a sequence of n realizations of an experiment.
Assume that a certain event A comes up m(A) times out of these n experiments. It
appears that the relative frequency of the occurrence of the event A, i.e. the fraction
m(A)/n, attains an almost constant value with an increasing number of realizations
n. This phenomenon is called the statistical stability of relative frequencies, i.e. of
the fraction m(A)/n. The value to which the relative frequency m(A)/n approaches as
n increases (n — 00) is accepted as an objective measure of the occurrence of the
event A and is called the probability P(A) of the event A:

P(A) = fim ")

n—oo N

@2.11)

However, the assumption of statistical stability and convergence indicated in
Eq. (2.11) (i.e. the limit of the quantity derived from the results of experiments)
causes some mathematical difficulties.

2.3.4 Axiomatic Definition

The classical, geometrical as well as statistical definitions of probability attempt to
define not only the probability, but also to propose a rule for its computation —
something that is extremely difficult and perhaps impossible, to achieve.
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The long-term effort to define the basic terms of the theory of probability seems
to reach fruition with the so-called axiomatic system, which is accepted all over the
world. The axiomatic system defines only the term of probability and its funda-
mental properties without providing any practical instructions for its determination.

Note that Egs. (2.7, 2.8, and 2.9) characterize the common properties of the
classical, geometrical as well as statistical definition of probability:

1. The probability of a certain event is equal to 1;

2. The probability of an impossible event is equal to 0; and

3. If an event A is a union of partial and mutually exclusive events Aj, A,, ..., A,,
then the probability of event A is equal to the sum of probabilities of the partial
events.

The axiomatic definition of probability introduces these general properties as
axioms. Probability P is a real function, defined in a sample space A above the
certain event U with these properties:

1. If A € A, then
P(A)=>0 (2.12)
2. For the certain event U, it holds that
P(U) =1 (2.13)

3.IfA; € A,i=1,2,... and if for arbitrary i and j A; N A; =V, then
o0 o0
Pl Jai) = ZP(A[) (2.14)
i=1 i=1

It can be seen that the above-mentioned three axioms are confirmed by the
classical, geometrical and statistical definitions. Moreover, the axiomatic definition
of probability also fits the new concept of probability as a measure of the fulfilment
of a statement or requirement, often assessed only by intuition and a subjective view
(an expert judgement). This subjective definition is sometimes called Bayesian
probability. However, it should be noted that in this approach the concept of
reproducible (repeatable) random events, which forms the basis for the probability
determination of an event, is completely impossible.

Note that by using the above axioms, the modern theory of probability transfers
into the general theory of sets. Probability is then defined as a non-negative additive
function of sets, which can be interpreted as a generalization of the term “surface
area” in the geometrical definition of probability.
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2.4 Basic Rules for the Computation of Probabilities

Using Egs. (2.6, 2.7, 2.8, and 2.9) or axioms Eqgs. (2.12, 2.13, and 2.14), other rules,
which can be useful in computations of probabilities, can be derived. If A;, i =
1,2, ... n, form a complete system of events, then it evidently holds that

P<0A,—> =P(U)=1 (2.15)

If an event A is a union of partial and mutually exclusive events, A;,i = 1,2,...,n,
we can write

P(A) = P(OA,) = ZH:P(A,«) (2.16)

For the probability of the union of two arbitrary events A and B (which do not
have to be exclusive) the principle of the summation of probabilities holds

P(AUB) = P(A) + P(B) — P(ANB) (2.17)

which follows from Eq. (2.16) for mutually exclusive events A and B — (A N B), of
which the union is the studied event A U B.

IfA;,i =1,2,...,n,isacomplete system of mutually exclusive events, then we
obtain from Eq. (2.15)

P(OA,—) = iP(A,-) =P(U)=1 (2.18)

From Eq. (2.18) for complementary events A and A it follows that

P(A) =1 —P(A) (2.19)

Example 2.7. Let us determine the probability that a serial system described in
Example 2.4 will fail. Let P(F|) = 0.05, P(F,) = 0.05 and P(¥| N F;) = 0.02.
Then, considering the relation (2.17), we find that

P(F\ UF,) = P(F\) + P(F,) — P(F) N F,) = 0.05 + 0.05 — 0.02 = 0.08

Note that the events F; and F, are not exclusive (failures of both elements can
occur simultaneously). If they were exclusive, the probability of failure would be
0.10. Other details concerning this example will be provided in the next section by
the principle of multiplication of probabilities.
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2.5 Conditional Probability

Conditional probability P(A|B) of the event A under a complementary condition that
another event B has occurred simultaneously (or before), and has a non-zero
probability, is an important concept in the contemporary theory of probability
which is often used in the theory of structural reliability. The conditional probabil-
ity P(A|B) is defined as the fraction

P(A|B) = P(ANB)/P(B) (2.20)

This relation is the basis of the so-called Bayes concept of the theory of
probability (Thomas Bayes (1702-1761)). In two special cases important
simplifications of relation (2.20) are valid. If events A and B are exclusive,
ie. AN B =V, then P(A|B) = 0; if an event A implies an event B, i.e. it holds
that A C B, then P(A|B) = P(A)/P(B). If B C A, then P(A|B) = 1. These rules
follow directly from the basic properties of probability described in Sects. 2.2 and
2.3.

A general rule for the multiplication of probabilities follows from Eq. (2.20)

P(ANB) = P(B) P(A|B) (2.21)

Consider again the special cases. If the events A and B are exclusive,
i.e. AN B =V, then P(A|B) = 0 and also P(A N B) = 0; if A C B, then P(A|B) =
P(A)/P(B) and P(A N B) = P(B); if, conversely, B C A, then P(A|B) = 1 and
P(A N B) = P(B).

We say that events A and B are independent (the occurrence of event B does not
influence the probability of the occurrence of event A) if it holds that P(A|B) =
P(A). Consider the special cases introduced above. If events A and B are exclusive,
then they are dependent because P(A|B) = 0 # P(A) (if A is not an impossible
event). If A C B, then A and B are dependent events, because P(A|B) = P(A)/
P(B) # P(A), if conversely B C A, then the events A and B are dependent, because
P(A|B) = 1 # P(A). Therefore independent events A and B must not be exclusive,
i.e. A N B # V, and satisfy the trivial relations A ¢ B and B ¢ A.

If two events A and B are independent (and therefore it holds that A N B # V,
A ¢ B and B ¢ A), then it follows from Eq. (2.21)

P(ANB) = P(A) P(B) (2.22)

Relation (2.22) is the principle of the multiplication of probabilities, according
to which the probability of intersection (a simultaneous occurrence of two indepen-
dent random events) is given by the product of their probabilities. This fundamental
rule is needed for probability integration in the theory of reliability.

Example 2.8. Taking into account relation (2.21), the following relation can be
written for the probability of failure of a serial system, as described in Example 2.7
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P(F) = P(F| UF,) = P(F\) 4+ P(F,) — P(F) N Fy)
= P(F}) + P(F,) — P(F1)P(F,|F;) = 0.10 — 0.05P(F,|F,)

If the events F| and F, are independent, then P(F,|F;) = P(F,) and the failure
probability is given as

P(F) = P(F) UF,) = P(F,) + P(F,) — P(F,) P(F,) = 0.10 — 0.0025 = 0.0975

If the events F; and F, are perfectly dependent (F; C F»), i.e. P(F5|Fy) = 1,
then

P(F) = P(F; UF,) = P(F,) 4+ P(F,) — P(F) = 0.10 — 0.05 = 0.05

The serial system acts in this case as a single element. Thus, in general, the
probability of failure of the serial system under consideration fluctuates from 0.05
to 0.0975 depending on the degree of dependence of the events F; and F’.

Assume that an event A can occur only by the realization of one of the mutually
exclusive events B;, i = 1,2, ..., n (n = 5 in Fig. 2.5), for which the probabilities
P(B;) are known. If the conditional probabilities P(A|B;) are also known (obviously
P(A|B5) = 0), then the probability of the event A can be assessed as

Z P(B;) P(A|B)) (2.23)

which is called the theorem of total probability.

2.6 Bayes’ Theorem

When an event A occurs, it is natural to investigate which of the events B; caused A,
i.e. what is the probability of the individual hypotheses B; assuming that A occurred
(see Fig. 2.6), which is denoted as the probability P(B;|A). A very important relation
follows from relations (2.20, 2.21 and 2.23)

P(B;)P(A|B;)

(
anP P(A|B;)

i=1

P(Bi|A) = (2.24)

which is often referred to as the Bayes rule or theorem.

The following important usage of the theory of structural reliability illustrates
the common procedure for the practical application of the Bayes rule. If the failure
of a structure, denoted as event A, can be caused by one of the hypotheses B; whose
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Fig. 2.6 An event A and
mutually exclusive events B;

probabilities of occurrence P(B;) are known from previous experience, and if the
conditional probabilities P(A|B;) that the failure A occurred in consequence of a
hypothesis B; are also known, then the probability of failure P(A) can be determined
from the principle of total probability described by Eq. (2.23).

If, however, the failure A did occur, i.e. the event A occurred, and then the
probabilities of the individual hypotheses, which could have caused the failure, are
of importance. We are therefore interested in the conditional probabilities P(B;|A),
which can be determined by use of the Bayes rule (2.24).

The practical use of relations (2.23) and (2.24) is illustrated by the following
examples.

Example 2.9. For the assessment of an existing reinforced concrete structure,
control tests are available which indicate that the actual strength is lower than the
characteristic value 20 MPa (event B;) with the probability p,’ = P(B;) = 0.05,
and greater than 20 MPa (event B,) with the probability p,’ = P(B,) = 0.95. For
the subsequent verification of the strength of the concrete, an inaccurate
non-destructive method is used. Let A denote the possibility that the concrete
strength assessed by the non-destructive method is greater than 20 MPa. Assume
that errors of the non-destructive method can be expressed by conditional
probabilities

P(A|B;) = 0.30, P(A|B,) = 0.90

Thus, due to the inaccuracy of the non-destructive method, concrete with a
strength lower than 20 MPa can be considered as concrete with a strength greater
than 20 MPa with a probability of 0.30; at the same time, concrete of a strength
greater than 20 MPa can be considered with a probability of 0.90.

The probability of the occurrence of event A (non-destructive strength is greater
than 20 MPa) follows from the principle of complete probability (2.23)

2
P(A) = P(B;)P(A|B;) = 0.05 * 0.30 + 0.95 % 0.90 = 0.87

=1
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This means that when using the inaccurate non-destructive method, concrete
strength greater than 20 MPa will be predicted with a probability 0.87. Note that if
the non-destructive tests were absolutely accurate, e.g. if the conditional
probabilities were

P(AIB)) = 0, P(A[B,) =

it would follow from Eq. (2.23)

2
= "P(B/)P(AB;) = 0.05+0+0.95 1 =0.95
i=1

However, from a practical point of view another question is more important:
what is the probability P(B,|A) of hypothesis B, that concrete for which the
non-destructive test indicates a strength greater than 20 MPa (meaning that event
A occurred) really does have a strength greater than 20 MPa (meaning that event B,
occurred)? This probability can be assessed directly by using the Bayes rule (2.24)
for the probability of hypotheses

P(B14) — P(B2)P(A[B)) 0.95 % 0.90 008
2 2 T 0.05%030+095%090
ZP )P(A|B))

Thus, if the strength is greater than 20 MPa according to the non-destructive test,
then the probability that the concrete really does have a strength greater than
20 MPa increases from the original value of 0.95-0.98.

Bayes’ rule is widely applied in many other practical situations in engineering
practice, e.g. in situations where previous information about the distribution of
probabilities is updated with regard to newly acquired knowledge. This important
procedure of probability updating is described in the following section.

2.7 Probability Updating

Bayes’ rule (2.24) is often applied to the so-called updating of the distribution of
probabilities, which is based on random experiments (often repeated) isolated in
time. Similarly, as in Sect. 2.5, it is assumed that these probabilities P(B;) are known
from previous experience (sometimes remote, vague or merely subjective). That is
why they are called original (a priori) probabilities and they are denoted simply as
pi = P(B).

Experiments are then carried out to determine the conditional probabilities
P(A|B,) of the studied event A, under the assumption that event B; occurred, the
outcomes of which can be considered as the measures of likelihood that the cause of
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event A was the very event B;. These conditional probabilities, or values propor-
tional to them, are therefore called likelihoods /; < P(A|B;); the symbol < means
“proportional to” (likelihoods /; thus need not necessarily be normalized to the
conventional interval <0, 1>). We are inquiring about updated (a posteriori)
probabilities p;” = P(B,|A) of an event (i.e. hypothesis) B; updated in accordance
with the result of a new experiment (concerning event A). An important relation for
p” follows directly from the Bayes rule (2.24):

p// = p: li
R
j

(2.25)

Formula (2.25) obviously holds generally for likelihoods which, unlike
probabilities, are not normalized to the interval <0, 1> and only express the
relative contribution of the events (hypotheses) B; on the observed event A.

Relation (2.25) is a basis for the updating of probabilities, which is often applied
in many engineering procedures, particularly in the assessment of existing
structures. It is in these cases that present information is combined with previous
(often subjective) information, i.e. with information about a structure at various
points in time, usually quite remote. This is the reason why it is necessary to verify
the conditions under which the previous information was obtained and to resist the
temptation to apply non-homogeneous data, which may be misleading and could
lead to serious mistakes and misunderstandings.

Example 2.10. Consider again the reinforced concrete structure described in
Example 2.9. We observe that from previous control tests original (a priori)
probabilities are known: p," = P(B;) = 0.05 (the probability that the real strength
is lower than the characteristic value of 20 MPa, which is event B;) and p,’ =
P(B,) = 0.95 (the probability that the real strength is greater than 20 MPa, event B).

In the subsequent assessment of the structure supplementary tests of concrete
strength are carried out using core samples, which are sufficiently accurate (unlike
the non-destructive tests from previous Example 2.9). Thus in analysing the results
it is not necessary to consider the inaccuracies. These tests suggest that the
likelihood of event B; is /; o< P(A|B;) = 0.2 and the likelihood of event B, is
I, x P(A|B,) = 0.8 (the likelihoods introduced being already normalized).
Updated (a posteriori) probabilities follow from relation (2.25)

. P 0.05 % 0.20 B
PL= 5 = 00520204 095080 U
!
' 0.95 % 0.80
pl =122 - =0.99

2 "~ 0.05%0.20 + 0.95 % 0.80
;Pﬂj
=
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Thus the updated (a posteriori) distribution of probabilities p;” is more
favourable than the original (a priori) distribution of probabilities p;’.

Note that when the supplementary tests suggest that the likelihoods of both
events By and B, are equal, e.g. [ = P(A|B,) = I, = P(A|B,) = 0.5, the updated
probabilities equal the original ones (p;/ = p;”). If, however, the analysis of event A
showed that the likelihood of event B, is greater than the likelihood of event B,,
e.g. I} < P(A|B;) = 0.7 and I,  P(A|By) = 0.3, the a posteriori probabilities
change significantly:

. P 0.05 + 0.70 ol
Py T T T 0055070+ 0955030
!
,_ Phh 0.95 % 0.30 oo
P2=5 0.05%0.70 + 0.95 %030
!

The updated (a posteriori) distribution of probabilities p;” is then less favourable
than the original (a priori) distribution p;/. However, the influence of the a priori
distribution still seems to prevail; it disappears only in the case of an extreme
distribution of likelihoods, e.g. when /; approaches one (/; < P(A|B;) — 1) and at
the same time /, approaches zero (I, < P(A|B,) — 0). But, in practice, the distri-
bution of likelihoods is usually similar to the distribution of a priori probabilities.

Example 2.11. Tensile components of an existing structure have been designed for
a load of 2 kN. After reconstruction, the load on each of these components is
increased to 2.5 kN. Prior experience shows that the elements are able to resist a
load of 2.5 kN (event B) with a probability p,’ = P(B) = 0.8 and they fail with a
probability p’, = P(B) = 0.2. Furthermore, it is known from prior experience that
half of these components cannot withstand a load of 2.5 N but are able to bear a
lower load of 2.3 kN (event A). Knowing this, the probability p,’ = P(B) = 0.8 can
be updated by testing one of these components up to 2.3 kN.

Let us suppose that the test is successful, i.e. the element does not fail with the
2.3 kN load. The likelihood of event B, i.e. I; & P(A|B) = 1, and of event B, i.e.
I, < P(A|B) = 0.5, are estimated from the result of this test. Then an a posteriori
probability follows from relation (2.25),

Pk B 0.80 % 0.10

= =0.89
z o, 0.80% 1.0+ 0.20% 0.5
J=

/.
Py =

Thus the a priori probability p;’ = 0.8 is updated to the value p,;” = 0.89. The
updating of probabilities can now be repeated by another test where the a posteriori
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probability obtained in the previous step will be considered as a priori information.
If the other test is also successful, then the new a posteriori probability will be

p_ Pl 089%10 oo
P T 0894104011405

This repetitive procedure of updating probabilities is quite characteristic in
practical applications.

However, what happens when the first test is not successful? If the likelihoods /;
and [, are estimated in this case as /; o< P(A|B) = 0.5 and [, < P(A|B) = 1.0, it
follows for the a posteriori probability p,”

o Pl 0.80 % 0.5 067
P2, 080%05+020%1.0

which is an unfavourable reduction of the original (a priori) value p;’ = 0.8. In
such a case it may be useful to carry out additional tests and repeat the updating.

2.8 Bayesian Networks

The Bayesian (causal) networks represent important extensions of Bayes’ theorem
more and are increasingly used in a number of different fields. Several software
tolls have recently been developed to analyse The Bayes’ (for example Hugin,
GeNie, [3] both of which are available on the internet).

The term “Bayesian networks” was coined by Judea Pearl in 1985 [5, 6] to
emphasize three aspects:

— The often subjective nature of the input information.

— The reliance on Bayes’ conditioning as the basis for updating information.

— The distinction between causal and evidential modes of reasoning, which
underscores Thomas Bayes’ famous paper of 1763.

Acyclic directed graphs in which nodes represent random variables and arcs
(arrows) show the direct probabilistic dependencies among them (causal links). In
addition to the chance nodes, the Bayesian network may include deterministic
nodes, decision nodes and utility (value) nodes.

— Chance nodes, drawn usually as ovals, denote random variables that may be
described by discrete (in some cases also by continuous) distribution.

— Deterministic nodes, drawn usually as double ovals, denote deterministic
variables.
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B-Human error

Fig. 2.7 Bayesian network

describing failure of a system A-Material fault

— Decision nodes, drawn as rectangles, denote variables that are under the deci-
sion-maker’s control and are used to model the decision-maker’s options.

— Utility nodes (also called Value nodes), drawn usually as hexagons, denote
variables that contain information about the decision-maker’s goals and
objectives. They express the decision-maker’s preference for a particular out-
come, rather than those outcomes which may have directly preceded it.

The theory of Bayesian network evaluation is quite an extensive topic that is
outside the scope of this introductory text. Further information may be found in
publications [5—7]. In general, the calculation of probabilities is based on the
concept of conditional probabilities and on the theorem of total probability
(Sect. 2.5). Consider the simple network of three chance nodes shown in Fig. 2.7.
It describes the failure of a system (chance node C) assumed to be caused by
material faults (chance node A) and human error (chance node B).

The probability distribution of chance node C follows from the generalised
theorem of total probability (Sect. 2.5) as

P(C) =), P(CilAB))P(A)P(B)) (2.26)

Here the subscripts &, i and j denote the states of the chance nodes (two or more).
Other procedures of Bayesian network analysis (probability updating, introducing
evidence) are provided in special publications [5—7] and software products [3]. The
following example illustrates only the main procedure of network evaluation
indicated by Eq. (2.26).

Example 2.12. Consider the example indicated in Fig. 2.7. The input data of the
network consists of the initial probabilities of the parent’s nodes A and B, and the
conditional probabilities of the child node C. The three nodes have two alternative
states only: negative (fault, error, failure) and positive (no fault, no error, safe). The
following two tables show the initial probabilities of nodes A and B, and the
conditional probabilities of the child node C.

Initial probabilities of chance nodes A and B

Node A Node B
A — Fault 0.05 B, — Fault 0.10
A, — No fault 0.95 B, — No fault 0.90

Conditional probabilities of chance node C (C, — Failure, C, — Safe)
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Node A Ay — Fault A, — No fault

Node B B, — Error B, — No error B, — Error B, — No error
P(C,1A,B) 0.5 0.1 0.1 0.01
P(C,IA,B) 0.50 0.9 0.9 0.99

The resulting probabilities of node C follows from Eq. (2.26) as

P(C,) = P(C1|A1,B)P(A1)P(B;) + P(C1|A, B2)P(A;)P(B>)
+ P(Cl |A2,Bl)P(A2)P(Bl) =+ P(C] |A2,BZ)P(A2) P(Bz) =0.025

P(C,) = P(C|A1,B1)P(A1)P(B1) + P(C2|A1, B2)P(A;)P(B>)
+ P(C2|A2, B1)P(A2)P(B1) + P(C1|A2, B2)P(Az) P(B,) = 0.975

Thus the failure probability of the system is P(C;) = 0.025; the complementary
safe state has a probability of P(C,) = 0.975.

Example 2.13. Figure 2.8 shows an example of an influential diagram describing a
structure under persistent and fire design situations.

The influential diagram in Fig. 2.8 contains seven chance nodes of oval shape
(nodes number 1,2,3,4,5,12,14), four decision nodes of rectangular shape
(6,5,15,16) and six utility nodes of diamond shape (8,9,10,11,13,17).

Note that each decision affects the state of the utility nodes and at the same time
may generate some costs. For example the decision concerning the sprinklers
(decision node 6) affects the state of chance node 2 (extent of the sprinklers) and
at the same time generates some additional costs (utility node 8) caused by the
installation of sprinklers (which may represent a considerable investment). The
sprinklers (chance node 2) may further affect the amount of smoke (chance node
12), the development of any fire (chance node 3) having at least two states: fire stop
and fire flashover.

Utility nodes 8, 10 and 17 may be described by the amount of money needed; the
other utility nodes (nodes 9, 11 and 13) may also include social consequences, such
as injury and loss of human life. Then, however, there is the problem of finding a
common unit for economic and social consequences. In some cases these two
aspects of consequence are combined, and include some compensation costs for
loss of human life; in other cases they are systematically separated for ethical
reasons.

Thus the influential diagram offers both the probabilistic analysis and the utility
aspect of the system. In such a way the influential diagram is a powerful tool for
investigating any system, and for providing rational background information for
decision-makers.
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Fig. 2.8 Bayesian network describing a structure designed to withstand fire

2.9 Notes on the Fuzzy Concept

Present methods for analysing uncertainties in engineering and science also include
the application of fuzzy sets and fuzzy logic. The concept of fuzzy sets is an
extension of the classical crisp set theory. It was introduced by L.A. Zadeh in
1965 [4]. Its application in engineering was indicated in later publications [8, 9].
Fuzzy concepts are often regarded as concepts which, in their application, are
neither completely true nor completely false, or which are partly true and partly
false. In mathematics and statistics, a fuzzy variable (such as “the temperature”,
“performance” or “serviceability”) is a value which could lie within a certain range
defined by quantitative limits, and can be usefully described verbally with impre-
cise categories (such as “high”, “medium” or “low”).

The difference between the classical “crisp” set and a fuzzy set can be described
as follows. In classical crisp set theory any element in the universe is either a
member of a given set or not. An indicator function attains just two values 1 or 0. In
a fuzzy set the indicator may attain any value in the interval <0,1> and is termed by
Zadeh [4] the membership function. If the membership is 1, then the element is
definitely a member of the set; if the membership is 0, then the element is definitely
not a member.

The basic properties of membership function are indicated in Fig. 2.9. Point x is a
full member of fuzzy set A, point x’ is partly a member of A, and x"is not a member
of A. In a mathematical way, fuzzy set A is symbolically represented by a pair (A,v)
where A is the fuzzy set and v is the mapping A — <0,1> of a set A to the interval
<0,1>. The mapping v is called membership function.

The following example illustrates a possible application of the fuzzy concept in
engineering. The example indicates an analysis of vagueness or imprecision in the
definition of structural performance, as described in detail in paper [10].
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x is fully a
4 member of fuzzy
L.setd

x'is partly a
member of fuzzy set 4

x""isnota
member of fuzzy set 4

Fig. 2.9 A fuzzy set A

Example 2.14. Fuzziness due to vagueness and imprecision in the definition of
performance requirement R is described by the membership function vg(x)
indicating the degree of a structure’s membership in a fuzzy set of damaged
(unserviceable) structures; here x denotes a generic point of a relevant performance
indicator (a deflection or a root mean square of acceleration) considered when
assessing structural performance. Common experience indicates that a structure is
losing its ability to comply with specified requirements gradually and within a
certain transition interval <ry, r,>.

The membership function vg(x) describes the degree of structural damage (lack
of functionality). If the rate (the first derivative) dvg(x)/dx of the “performance
damage” in the interval <ry, r,> is constant (a conceivable assumption), then the
membership function vz(x) has a piecewise linear form as shown in Fig. 2.10. It
should be emphasized that vg(x) describes the non-random (deterministic) part of
uncertainty in the performance requirement R related to economic and other
consequences of inadequate performance. In addition, the randomness of require-
ment R at any damage level v = vg(x) may be described by the probability density
function @z (xlv) (see Fig. 2.10), for which a normal distribution, having the constant
coefficient of variation Vx = 0.10, is commonly assumed.

The fuzzy probabilistic measure of structural performance is defined [10] by the
damage function ®g(x) given as the weighted average of damage probabilities
reduced by the corresponding damage level (some theoretical aspects of the exam-
ple are clarified later in this book, details of the theoretical development are given in
[10]). Applied terms and additional details may be found in documents [11-14].
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Here N denotes a factor normalizing the damage function ®z(x) to the conven-

tional interval <0, 1> (see Fig. 2.10) and x’ is a generic point of x. The density of the
damage @g(x) follows from (1) as

1
1
be) = [v dutole) o
0
The damage function ®z(x) and density function @g(x) may be considered as a
generalized fuzzy-probability distribution of the performance requirement, R, one

that is derived from the fuzzy concept and the membership function vg(x) and can
be used similarly as classical probability distributions.
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Chapter 3
Evaluation of Statistical Data

The evaluation of statistical data representing a random sample taken from a
particular population is frequently moment the first step in many engineering and
scientific tasks. The concept of a general population and the random samples taken
from it is introduced and supplemented by the definition of commonly used sample
characteristics. Emphasis is put on the characteristics, summarized in Appendix 1,
that usually provide the initial background information for the specification of a
theoretical model of population. Sample characteristics regularly used in engineer-
ing and science describe the location, dispersion, asymmetry and kurtosis of
statistical data. The general rules and computational techniques used for determin-
ing sample characteristics of a single random sample, and also for the combination
of two random samples, are illustrated by examples.

3.1 Population and Random Sample

The concepts of population and random sample are extremely important for the
appropriate interpretation of statistical data and their analysis. Population, or “the
universe”, is the totality of items under consideration. A population may be finite
(N sampling units) or infinite. Rather than examining the entire group of N units a
small part of the population, that is a sample of n units, may be examined instead. A
precise definition regarding a population is often difficult to come by, but must be
provided in order to interpret outcomes of statistical investigation correctly
[1, 2]. An excellent description of the basic technique is given in [3, 4] and a
short review is provided in [5]. The correct terminology and procedures are
available in International Standards [6-8].

A sample is one or more units taken from a population and is intended to provide
information on that population. It may serve as a basis for decision-making about
the population, or about the process which produced it. The term “random sample”
refers to the samples that are taken from a population in such a way that all possible
units have the same probability of being taken. The number of sampling units,
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DOI 10.1007/978-3-642-38300-7_3, © Springer-Verlag Berlin Heidelberg 2013


http://dx.doi.org/10.1007/978-3-642-38300-7_BM1

30 3 Evaluation of Statistical Data

called sample size n, may be considerably different. Commonly, samples are
considered to be very small (n < 10), small (n < 30), large (n > 30) or very
large (n > 100). Obviously, with increasing size the samples become more repre-
sentative. However, the sampling procedure is equally important.

If a sample is representative of a population, important conclusions about it can
often be inferred from an analysis of the sample. This phase of statistics is called
inductive statistics, or statistical inference, and is covered in subsequent chapters.
The phase of statistics that seeks only to describe and analyse a given sample is
called descriptive, or deductive, statistics to which is devoted this Chapter.

Example 3.1. A factory produces 70 units of the same type. A random sample of
10 units can be taken from the population of 70 units using a table, or a generator of
random numbers within a range of 1-70. A sample can then be created by taking the
units whose serial numbers are equal to ten generated random numbers.

3.2 Characteristics of Location

The basic characteristic of sample location (or its main tendency) is the sample
mean miyx given as

"
mxzﬁzlxi (3.1)

Here x; denotes sample units. If the sample units are ordered from the smallest to
greatest unit then the subscripts i are generally changed to (i), and the units are then
denoted x;).

Another characteristic of location is median defined the point separating ordered
sequence of data into two parts such that half of the data is less than the median and
half of the data greater than the median.

Example 3.2. A random sample of measurements of concrete strength contains ten

measurements x; = {27; 30; 33; 29; 30; 31; 26; 38; 35; 32}in MPa. The measured

data, in order of scale, is x;, = {26; 27; 29; 30; 30; 31; 32; 33; 35; 38}in MPa:
The sample mean my and the median niyx are given as

1
my (Zx,-) =31.1MPa, my =

— E (X(S) + X(6)> = 305 MPa

N =

3.3 Characteristics of Dispersion

The basic characteristic of dispersion is called the variance
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2 _
Sy =

S =

Zl (x; — my)* (3.2)

In practical applications the standard deviation sy is commonly used instead of
“variance”.

Another measure of dispersion that is frequently applied in engineering and
science is called the coefficient of variation

Sx
ny

Vxy =

(3.3)

This is, in fact, a measure of relative dispersion normalised by the sample mean
my. It is frequently used in engineering when the sample mean my is not very small.
If the sample mean my is relatively small then the standard deviation should be used
instead.

In the case of very small samples (n < 10) additional measure of dispersion,
called sample range, is sometimes used; it is defined simply as the difference
between of the greatest and smallest sample unit, x,;) — X().

In same specific cases also the mean deviation MD, or average deviation, defined
as the mean of differences |x; — myx| is also used

1
MDy = -~ > b= myl (3.4)

Example 3.3. The variance of the sample given in Example 3.1 x; = {27; 30; 33;
29; 30; 31; 26; 38; 35; 32}in MPa is given as

J—
sy == (x; —mx)* = 11.69(MPa)’

n 1

The standard deviation is thus
sy = /5% = V11.69 = 3.42 MPa

Example 3.4. The coefficient of variation of the data in the random sample given
in Example 3.2 x; = {27; 30; 33; 29; 30; 31; 26; 38; 35; 32} in MPa, is given as

3.42

:m:O.ll =11%

Vx

Example 3.5. Considering ordered measurements from Example 3.2 x;, = {26;
27; 29; 30; 30; 31; 32; 33; 35; 38}in MPa, the variation range and the mean
deviations are:
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X(n> —X(l) =38 —26 =12 MPa

 —
MDy =~ Zz’:l lx; — my| = 2.72MPa

3.4 Characteristics of Asymmetry and Kurtosis

The characteristics of asymmetry and peakedness (kurtosis) are used less frequently
than the characteristics of location (the mean my) and the characteristic of disper-
sion (the variance s3). However, the characteristics of asymmetry and peakedness
provide valuable information about the nature of the sample, in particular the
distribution of observation to the left and right of the mean and the concentration
of observation about the mean. This information, concerning in particular the
skewness, may be extremely useful for determining the appropriate theoretical
model (probability distribution) of population.

The following moment characteristics are most often used. The coefficient of
asymmetry is defined on the basis of the central moment of the third order as

1 n
ayxy = g Zi:l (Xl' — mx)3 (35)
X

Similarly the coefficient of kurtosis is related to the central moment of the fourth
order as

1
=g > —my)t =3 (3.6)
X

Note that the above defined coefficients of asymmetry and kurtosis should be
close to zero for samples taken from population having normal distribution.

The coefficient of asymmetry is positive when more sample data is on the left of
the mean, positive when more data is on the right of the mean. The coefficient of
kurtosis is positive when the sample data is located mostly in the vicinity of the
mean, negative when the data is distributed more uniformly. Both these
characteristics (skewness ay and kurtosis ey) are strongly dependent on abnormal
deviations of some sample units (outliers), or errors, particularly in the case of small
samples (n < 30). Then their evaluation may be highly uncertain (and may suffer
from so-called statistical uncertainty due to limited data).

Example 3.6. Considering again data from Example 3.2 given as x; = {27; 30; 33;
29; 30; 31; 26; 38; 35; 32} in MPa, the coefficients of asymmetry and kurtosis are:
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ay = ns3 > =0.46

nS4 Y i—my)t—3=-044

The positive coefficient of asymmetry indicates that more observations are on
the left of the mean (in fact 6 of 10 values are on the left of the mean). A slightly
negative coefficient of kurtosis indicates low peakedness (observed values seem to
be distributed slightly more uniformly than those of normal distribution). Note that
the investigated sample is very small (10 values only), and the coefficients obtained,
axand ex may be inaccurate.

It is interesting to note that there is an empirical relationship between the
skewness ay the mean my, the median sy and the standard deviation sy (called
sometimes as Pearson coefficient of skewness) in the form

ax ~ 3(myx — nix) /sx°

Considering the results of previous Examples 3.2 and 3.3 my = 31.1 MPa,
myx = 30.5MPa, sy = 3.42 MPa and it follows that

3(31.1 — 30.5)

3.42 =053

ax ~

This seems to be a good approximation of the above obtained moment skewness
ax = 0.46. It also demonstrates the intuitively expected result that if the median my
is less than the mean my, then the skewness ax is positive. Consequently more data is
located left of the mean than right of the mean.

3.5 General and Central Moments

Most of the samples characteristics described above belong to so called moment
characteristics that are based on general or central moments of the data. The general
moment (about the origin) of the order / (/ = 1, 2,3, .. .) is defined as the arithmetic
mean of the sum of /-powers

% 1 n
me=- Zi:l xﬁ 3.7

The central moment (about the mean) of the order / is similarly given as
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1
mp=—>" (xi—my) (3.8)

The moment characteristics can be then defined as follows.

my = mj (3.9

Sx = /Ny (310)
m

@:7% (3.11)
2

ex="3-3 (3.12)
my

In numerical calculation it is sometime useful to apply the following relations
between the general and central moments

my = m — mj (3.13)
m3 = mj — 3mxm;, + me( (3.14)
my = mj; — 4mxm; + 4m§m§ — 3m§ (3.15)

When computers are used to evaluate statistical samples Egs.. (3.13, 3.14, and
3.15) are not directly used.

3.6 Combination of Two Random Samples

Sometimes it is necessary to combine two random samples taken from one popula-
tion, assuming that the characteristics of both the samples are known, but the
original observations x; are not available. It must be emphasised that only homoge-
neous samples of the same origin (taken from one population under the same
conditions) should be combined. Violation of this important assumption could
lead to incorrect results.

Assume that a first sample of the size n; has the characteristics my, s, a;, while a
second sample of the size n, has the characteristics m,, s,, a,. Only three basic
characteristics are considered here (the coefficients of kurtosis are rarely available
for combined samples). The resulting characteristics of a combined sample of the
size n can be determined from the following expressions:
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n=mn;+m (3.16)

m = Tt namy 3.17)
n

nys? + mps:  mn
2= 22 T2 g — ) (3.18)

n n?

nls?al + ngsgag n 3n1n2(m1 — m2) (9% — 9%) B nlnz(nl — n2)(m1 — m2)3
n n? n?

(3.19)

It is interesting to note that the standard deviation s is dependent not only on the
standard deviations of two initial samples s; and s,, but also on the means of both
the samples. Similarly, the skewness a also depends on the characteristics of the
lower order (means and standard deviations). The relationship for the kurtosis is not
included as it is not commonly used.

It should be noted that if the original data is available then it can be analysed as
one sample; relationships (3.16, 3.17, 3.18, and 3.19) can then be used for checking
newly obtained results. The most important thing is the verification of the hypothe-
sis that both samples are taken from one population.

Example 3.7. An example of the practical application of Egs. (3.16, 3.17, 3.18,
and 3.19) is shown underneath.

Samples n m s a v

Sample 1 10 30.1 44 0.5 0.15
Sample 2 15 29.2 4.1 0.5 0.14
Combined 25 29.56 4.25 0.53 0.14

Note that a different number of sample units may affect the characteristics of the
resulting combined sample. An EXCEL sheet has been developed for calculation if
this is the case.

Sometimes it may occur that the size of one sample, say 7, is not known, and
only the first two characteristics m, s are available. This is a typical situation when
updating previous data with the characteristics m,, 51, using newly observed data of
the size n, with the characteristics m,, s,. Then the Bayesian approach may be used
for assessing the unknown value 7, and a corresponding degree of freedom v. The
following text is presented here as a guide on how to proceed in that case, just for
information and without the appropriate mathematical clarification.

In accordance with the Bayesian concept [1, 3], the unknown value n; and a
corresponding degree of freedom v; may be assessed using the relations for the
coefficients of variation of the mean and standard deviation V(u) and V(o), (the
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parameters u and o are considered as random variables in Bayes’ concept) for
which it holds

= [s1/ (V)P v = 1/(2\/(6)2) (3.20)

Both unknown variables n; and v; may be assessed independently (generally
vy # n; — 1), depending on previous experience with a degree of uncertainty of the
estimator of the mean y and the standard deviation ¢ of the population. Note that for
a new sample it holds that v, = n, — 1.

When the sample size n; and the degree of freedom v, are estimated, the degree
of freedom v is given as [3]

v=uv+uwr,—1 if ny>1, v=vi+uv, if ny=0 (3.2

Then the resulting size of the combined sample n and the mean m is given by
Egs. (3.16) and (3.17); the standard deviation s is determined from a modified
Eq. (3.18) as

§F = uls% + uzs§ + % (my — mz)z} /v (3.22)

The above relationship may be easily applied using the EXCEL sheet or other
software tools.

Example 3.8. Suppose that from the prior production of a given type of concrete
the following information is available regarding its strength

my =30.1MPa, V(u) =0.50, s; =44 MPa, V(c)=0.28.

For the unknown characteristics n; and v it follows from Eq. (3.20) that

44 1\ 1
=l——| = =——=6
" <30.1 0.50) 0 v=3 0%

Thus, the following characteristics are subsequently considered: n; = 0 and
vy = 6.

To verify the quality of the concrete, new measurements have been carried out
using specimens from the same type of concrete. The following strength
characteristics have been obtained:

nm=>5 wv=n-—-1=4my=292 MPa, s, =4.6 MPa.

Using Egs. (3.16, 3.17, 3.18 and 3.19), the updated characteristics are as follows:
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n=0+5=35
v=6+4=10

0x30.1+5x29.2
m =

5 =29.2 MPa

0x5
§2 = 6x4ﬁ+4x56%%%%%w1—29ﬂzﬂO:4§ME¥

Thus, using the previous information, the standard deviation of the new
measurements could be decreased from s = 5.6 MPa to s = 4.5 MPa.

However, it should be noted that the combination of the previous information
with the current measurements might not always lead to favourable results. For
example, if the coefficients of variation are w(u) = 0.2 and w(c) = 0.6, then the
unknown characteristics n; and v, follow from Eq. (3.20) as

44 1\* 1
”12(30.10.2) = oe !
In this case
n=14+5=6
v=14+4—-1=4

1 x30.1+5x29.2
m =

G = 29.35 MPa

1x5
ﬁ::1x442+4x562+—%—@01—2932/4:60¥MH¥

In this case, the mean increased slightly from 29.2 to 29.35, while the standard
deviation increased considerably, from 5.6 to 6.03. However, this is an extreme
case, caused by unfavourable estimates of n;, v; and v following on from
Egs. (3.20) and (3.21). In practical applications these equations should be applied
with caution, particularly in extreme cases similar to the above example. In
connection with this warning, an important assumption mentioned at the beginning
of this section should be stressed. Only those samples that are evidently taken from
the same population can be used for combining or updating statistical data; other-
wise the results of the combination of two random samples may lead to incorrect
results. On the other hand when two or more samples are taken from one population
then their combination is always valuable.
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3.7 Note on Terminology and Software Products

It should be mentioned that documents such as ISO 3534 and software products
EXCEL, MATHCAD and STATISTICA provide slightly modified terminology
and definitions for basic moment characteristics.

In general two modifications are commonly used for the characteristic of
dispersion:

— The characteristic called here “the sample standard deviation” is also denoted as
“the standard deviation of a sample”, or as “the population standard deviation”
(when n is the population size), and is given as

Z (i — my)? (3.23)

— The sample estimate of the population standard deviation called here a point
estimate of the population standard deviation and denoted by the symbol §x (see
also Chap. 8) is sometimes called the sample standard deviation

1 n
fX = \/n — 1 Zl (.X,' — mX)2 (324)

Expression (3.23) corresponds to Eq. (3.2) for the sample standard deviation.
Expression (3.24) represents a point estimate of standard deviation that is derived
from the mean of the distribution describing the sample variance (based on the
z” random variable and discussed in Chap. 8).

Similar modifications of sample characteristics are also available for the skew-
ness and kurtosis. The “sample skewness” a defined here by Eq. (3.5) can be written
in simplified form as

ax = 3/2 ns3 Z (325)

STATISTICA, EXCEL, MATHCAD and some other software products provide
a point estimate of the population skewness dyx (see Chap. 8) as

. n? _/n(n—1)
ay = (’1_17 nfxg Z j — mx = Wd}( (326)

Note that the population estimate S is used in Eq. (3.26). If the sample standard
deviation is used then the estimate of the population skewness would be
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2

= O
ax_(n—l 3 Zl 1 mX _(n—l)(n—Z)aX (327)

The factor enhancing the sample skewness ay in Eq. (3.27) (the fraction
containing the sample size n) is slightly greater than the similar factor in
Eq. (3.26) (for n > 30 by less than 5 %); the difference diminish with increasing
sample size n

Similar modifications of sample characteristics may be found for kurtosis based
on the central moment of the fourth order (see Eq. (3.6)). The relevant formulae can
be found in the help component of the relevant software products. However,
kurtosis is evaluated in practical applications very rarely and only for very large
samples (n > 100).

3.8 Grouped Data, Histogram

When analyzing large size of statistical data n, it is often useful to group them into a
limited number of classes k (usually 7 < k£ < 20) and to determine the number of
units belonging to each class n; (i = 1,2,...k), called class frequency (Zn; = n).
Each class is represented by class mark x} which is the midpoint of the class interval
limited by its lower and upper class limit.

Commonly, the grouped data are presented graphically in the form of a histo-
gram, which is a column diagram showing frequency n; or relative frequency n;/n
for each class. Histograms are very useful graphical tools providing valuable
information about the overall character of the sample. Visual investigation of the
histogram is always recommended. It may provide an initial understanding of the
sample nature.

The mean my is given by the general moment of the first order Eq. (3.7), which
for grouped data is written as

1 k
my =m; =— Zi:l nix; (3.28)

The central moments (about the mean) of the order / are for grouped data given
as

1 k N
m =~ Z,-:1 ni(x; — my)' (3.29)

The moment characteristics of grouped data can be determined using the general
formulae (3.10, 3.11, and 3.12). Also the relationships between the general and
central moments provided by Egs. (3.13, 3.14, and 3.15) can be used in the
numerical evaluation of grouped data.
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Fig. 3.1 Histogram of the 25
grouped data form Example n
3.9 (90 observations of
concrete strength)

20

17 19 21 23 25 27 29 31 ,* 33
1

Example 3.9. Results of n = 90 tests of concrete strength are grouped into k = 9
classes as indicated in the table below and in the histogram in Fig. 3.1. Visual
investigation of the histogram indicates that the sample is well-ordered (without
outliers), symmetric (the skewness is expected to be close to zero) and slightly less
spiky (more flat) than commonly used normal distribution (a bit of negative kurtosis
is expected).

Class Class interval in Class mark x7 in Frequency Product Product

i MPa MPa n; nix; ni(x; — mX)2
1 16-18 17 1 17 71.309
2 18-20 19 3 57 124.593
3 20-22 21 12 252 237.037
4 22-24 23 15 345 89.630
5 24-26 25 20 500 3.951
6 26-28 27 18 486 43.556
7 28-30 29 11 319 139.062
8 30-32 31 8 248 246.914
9 32-34 33 2 66 114.173
Sum - - 90 2,290 1,070.222

The table shows the class intervals, class marks x7 (in MPa), frequency »n; and

products n;x} and n,»(xjf — mx)2 used to calculate the general moments of the first
order, and the central moment of the second order. The moments of the order 3 and
4 would be necessary for calculation of the skewness ay and kurtosis ey.

It follows from Eqs. (3.7) and (3.10) and the numerical results shown in the last
row of the above table that the sample mean and standard deviation are

mx = 2290/90 = 25.44 MPaand sx = (m,)*> = (1070.222/90)°7
= 3.45MPa
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The coefficient of variation vy = 3.45/25.44 ~ 0.14 is relatively high and
indicates a somewhat low quality of material. The other moment characteristics
can be similarly found using the central moments of higher order and general
Egs. (3.11) and (3.12). This way it can be found that the sample skewness is almost
zero, a = 0.03, and the kurtosis e = —0.53. So the sample is really symmetrical
and slightly more uniform than the normal distribution.
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Chapter 4
Distributions of Random Variables

Two different categories of random variables are commonly used in engineering
and scientific applications of probability and statistics: discrete and continuous
random variables. Every random variable can be described by distribution function
and corresponding probability density function. Commonly used distribution
functions are defined by a limited number of parameters. Similarly as in the case
of sample characteristics, distribution parameters, summarized in Appendix 1, are
used to characterise the location, dispersion, asymmetry and peakedness of a
distribution. So called standardized random variables, having the means equal to
zero and variances equal to 1, are often applied in numerical methods used to
analyse the random properties of engineering and scientific systems.

4.1 Random Variables

Most of the experiments in engineering and science result in random events that can
be described by real numbers, for example by the strength of a material, or the
content of a specified substance. A set of all these numbers, hypothetically obtained
from a given population, form a random variable having a certain probability
distribution.

In general, a variable which may take any of the values of a specified set of
values, and which is associated with a probability distribution is called a random
variable [1, 2]. A comprehensive treatment is provided in [3, 4], a short review
in [5]. A correct terminology of basic terms and a description of statistical
procedures is provided in standards [6-8].

Two basic types of random variables are recognized. A variable, which may take
only isolated values is said to be a “discrete” random variable. A variable which
may take any of the values of a specified set of values is called a continuous random
variable. These two basic types of random variables are commonly used in engi-
neering and scientific applications.

M. Holicky, Introduction to Probability and Statistics for Engineers, 43
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4.2 Distribution Function

The distribution function of a random variable X is a function ®(x) defined as the
probability that X is less than or equal to any real value x of the variable X, thus

®(x) =P(X < x) 4.1)
Here X denotes a random variable and x any real value. The general properties of

distribution function ®(x) of a discrete or continuous random variable X follows
directly from the definition (4.1):

0 <Px)=<1; ®(—0)=0; D(o0)=1 4.2)
If x; <x;, then ®(x;) < @(x;) 4.3)
P()C] <X< Xz) = (I)(_Xz) — <I>(x1) 4.4)

The above Eq. (4.4) illustrates an important relationship between occurrence
probability P(x; < X < x;) of a random variable X in a given interval x; < X < x,
and distribution function ®(x).

4.3 Discrete Random Variables

A discrete random variable X attains only a countable number of values x;, say xi,
X3, X3, ..., for example O, 1, 2, .... The general form of the distribution function
(4.1) is then written as

D(x) =P(X <x)=> _ Plx)= Z.x-fg,‘-, P(X = x;) (4.5)

X < Xj
The distribution is fully described by probabilities p; of individual values x;
P(x,-) = P(X = x,~) = Ppi (46)

The distribution function ®(x;) and probabilities p; of individual values x; are
shown in Fig. 4.1.

Example 4.1. Consider a random variable X that attains the values 1, 2, 3,...,
N with a constant probability
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Fig. 4.1 Distribution
function and probabilities of
a discrete random variable X

P(x)
I -
0.5+
o s
X Xy )‘63 Xy X5
Here i = 1, 2, 3, ..., N. This distribution is called discrete uniform (rectangle)

distribution. Its distribution function is

Note that if N = 6 then the random variable describes the outcomes of throwing
a dice, i.e. Numbers 1, 2, 3, 4, 5 and 6.

Example 4.2. A special case of a discrete random variable is the so-called
degenerated random variable X that attains only a certain value p with the proba-
bility P(x = u) = 1, thus any other value with zero probability. It is, in fact, not a
random variable as it attains only one value.

4.4 Continuous Random Variables

A continuous random variable X is fully described by distribution function ®(x), for
which the full notation ®y(x) is used when necessary, or by probability density
function @(x) (the full notation is @x(x)). The distribution function ®(x) is the
integral of the probability density function ¢(x), which is a non-negative real
function describing the relative frequency of the variable X.
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Fig. 4.2 Distribution and D(x)
probability density function T
of a continuous random
variable X
0.5+
%,
X
| Lo
0.5+

p=(x,)
M/O x

o) = olom @7)

Thus, the probability density function ¢@(x) can be obtained as the derivative of
the distribution function (when it exists)

(4.8)

Their mutual dependence is obvious from Fig. 4.2 (an analogue to Fig. 4.1).
The value x,,, indicated in Fig. 4.2, denotes an important value of the random
variable X called a fractile (also called a quantile); it is the value that corresponds to
the probability p = P(X < x,) = ®(x,,) that variable X is less than, or equal to, x,,.
It follows from Eqgs. (4.4) and (4.7)

Plx <X <x) =®(xp) — O(xy) = r @(x)dx 4.9)

X1

The above Eq. (4.9) illustrates an important relationship between the distribution
function ®(x) and probability density function @(x).

Example 4.3. Consider a continuous random variable X having the domain xe<a,
b> and the distribution function (see Fig. 4.3)
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Fig. 4.3 Uniform
distribution 1
O(x) = (x—a)/(b—a)
Distribution function
X
I
a b
o(x) = 1/(b-a) Probability density
function
X
a b
X—d
d(x) =
(x) b—a

Then the probability density function follows from Eq. (4.8) as a constant
independent of x

This type of distribution of continuous random variables is called uniform or
rectangular distribution. It has a number of practical applications in numerical
calculations and simulation techniques.

4.5 Parameters of Random Variables

Distribution function and probability density functions are commonly described by
distribution parameters. The moment parameters, based on general and central
moments, are more often used. The general moments of a discrete and continuous
random variable of the order / are defined as follows.

U= Zxﬁp(x,-) (4.10)

W= Jx’fp(x)dx (4.11)

X
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The general moment g of the first order is used to define the mean u of the
random variable as a basic measure of distribution location

u=y (4.12)

The central moments of a discrete and continuous random variable of the order /
are defined as follows.

p=y (i —p' Px) (4.13)

i

W= J (x — p) p(x)dx (4.14)

X

The central moment of the first order is obviously zero, y; = 0. The central
moments of orders 2, 3 and 4 are used to define other important parameters. The
moment of order 2 defines the variance ¢°

o’ =i, (4.15)
The square root of the variance is called the standard deviation o

o=\ (4.16)

Standard deviation is commonly used in all types of applications of mathematical
statistics as a basic measure of dispersion. The relative measure of dispersion, used
frequently and particularly in engineering, is called the coefficient of variation V.
It is defined as a ratio of the standard deviation ¢ and the mean y as:

v=2 4.17)
U

Here it is assumed that the mean is not zero, u # 0. If the mean is very small
(close to zero), then direct use of the variance or standard deviation is preferable.
Nevertheless, the coefficient of variation V is frequently used as an important
measure of relative dispersion that is often applied as an indicator of material
properties and the quality of production.

The central moments of order 3 and 4 are used to define skewness a (a measure
of asymmetry) and kurtosis € (a measure of peakedness).

)

a=-—
o3

(4.18)
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8:%— (4.19)

If the skewness a is positive then the distribution is skewed to the right, in a case
of negative skewness the distribution is skewed to the left. In many engineering
applications, the skewness is an important parameter that may significantly affect
the results of statistical analysis. However, due to the lack of commonly available
data assessment of the skewness may be difficult.

The kurtosis ¢ is the degree of peakedness relative to normal distribution (that is
why the value 3 is subtracted in Eq. (4.19)). If the distribution has a relatively high
peak, the kurtosis is positive; if the distribution is flat-topped the kurtosis is
negative. In most of the engineering applications only three moment parameters
are used (the mean, variance and skewness). As a rule there is not sufficient data to
specify the kurtosis.

The central moments u,, u3, and p4 can be expressed using the general moments
as follows.

oy = iy — u? (4.20)
py = sy — 3ty + 24 (4.21)
py = ply — dupts + 67y — 3u* (4.22)

These relationships can be derived from the definitions (4.10, 4.11, 4.12, 4.13,
and 4.14). They can be very useful in the practical evaluation of moment parameters
as indicated by the following Example 4.2.

Example 4.4. Consider the uniform (rectangular) distribution, described in Example
4.1, having the probability density function @(x) = 1/(b—a). The mean u and the
variance follow from Egs. (4.12) and (4.15) and Eq. (4.20) as

b
1 a-+b
= dx:
K be—a 2
h 1 b’ 3
’ 2 T —a
= d_x:
t be—a 3(b —a)
2
2 / 2 (b_a) b—a
- = - = ,0 =

It follows from Egs. (4.18) and (4.19) that the skewness of a uniform distribution
is zero, a = 0 (it’s a symmetrical distribution), and the kurtosis is negative,
e = —1,2 (it’s a flat-topped or platykurtic distribution).
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Example 4.5. Skewness ay of any continuous variable X with the probability
density function @x(x) follows from Eqgs. (4.14) and (4.18) in an integral form as

ax = [ (e ) o

X
X

In practical applications the integration is often done numerically.

4.6 Standardized Random Variable

Standardized random variables are regularly used in tables of random variables, in
subsequent numerical calculations and in simulation techniques. The standardized
random variable has zero mean and variance equal to 1. Both the original random
variable X and the corresponding standardized variable U have the same type of
distribution. If the original variable X has the mean uy and standard deviation oy,
then the corresponding standardized random variable U is defined by the transfor-
mation formula

u—X"H (4.23)
ox

The inverse transformation of the standardized variable U to the original variable
Xis

X =uy +oxU (4.24)

Equation (4.24) is often used when determining a particular value x, (for
example a fractile) of the original variable X from the corresponding value u, of
the standardized variable U, which is commonly available in tables, in electronic
form on the internet or can be obtained from available software products and tools.

Any type of continuous distribution ®x(x) of the original random variable X can
be transformed into the standardized distribution ®;;(u). As it is a linear transfor-
mation, the type of distribution of both variables is the same.

The distribution functions of the original variable X and the transformed variable
U (the cumulative probabilities of corresponding values of both variables) must be
equal, thus

In addition, it is obvious that the differentials of the both the distribution
functions must be equal, thus
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¢y (u) du = @y (x) dx (4.26)

From the linear transformation (4.24) it follows, for the differentials of random
variables X and U, that

dx = oxdu 4.27)

Substituting Eq. (4.27) into Eq. (4.26) the probability density function @y (u) of
the standardized random variable U can be expressed in terms of density function
Px(x) as

oy (u) = @y (x)ox (4.28)

The concept of the standardized random variable can be generalized and applied
to any type of distribution.

Example 4.6. Consider again the uniform distribution described in Example 4.3:
the probability density function @(x) = 1/(b — a), the mean u = (a + b)/2, the
standard deviation ¢ = (b — a)/(2\/3). The transformation formulas (4.23) and
(4.24) become

X—ab oX—a—b
U="p="5"V3
23 —a
b —

X — +a Ub a

The domain of the standardized variable U is the interval <—v3, V3>. The
distribution function and probability density functions of the variable U are

O) == +5 o) = 5=

A particular value x,, (for example a fractile) of the original variable X can be
obtained from the corresponding value u, of the standardized variable U following
transformation formula (4.24)

This type of relationship between a fractiles x,, of the actual variable X and the
corresponding fractile u, of the standardized variable U (which is usually com-
monly available) is frequently used in practice.
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Example 4.7. A random variable X has the probability density function @x(x)
given as

ex(x)=1/5 2<x<3

The mean, standard deviation and skewness of the variable X follow from
Egs. (4.12, 4.13, 4.14, 4.15, and 4.16) as

1

3 1
= — dx:—
Hx SJ,ZX )

1 25 5
‘7)2(:§J Z(X—O,S)zdx:_- ox =>V3

12’ 6
11 3
Ox )

The same results can be obtained from a numerical evaluation of Example 4.4.
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Chapter 5
Selected Models of Discrete Variables

Discrete random variables are often applied to engineering and science problems
when analysing the number occurrence of a certain event. An elementary but
fundamental type of discrete variable that attains only two different values is
described by alternative distribution. It can be generalized for a countable number
of trial repetitions into binomial and hypergeometric distribution. Time-dependent
event are often described by Poisson distribution. The other types of discrete
distributions including geometric, negative binomial and multinomial distribution
are applied less frequently. In addition to specific distribution parameters, the usual
moment parameters, particularly the mean and standard deviation, are used to
characterise the distributions. A review of theoretical models provides Appendix 2.

5.1 Alternative Distribution

Discrete random variables are described in detail in books [1-4] including numeri-
cal tables. A number of engineering and scientific applications are given particu-
larly in [1, 3].

The basic type of discrete distribution of a random variable X is alternative
distribution. The variable X attains only two values 1 and 0 and its probabilistic
function is given as

Px=1)=p, Px=0)=1-p 3.1

Using Egs. (4.10, 4.12 and 4.15) the mean, variance and standard deviation
follows as

p=0(1-p)+lp=p (5.2)

2 2 2
oo=0-p)+0-pp=p(-p) (5.3)
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o=p(—p) (5:4)

Though it is a simple distribution, its importance in theoretical developments
and engineering applications is remarkable. Most of the discrete random variables
attaining the values 0, 1, 2, ... can be expressed as the sum of alternative random
variables; for example, the number of positive trials in a number of independent
experiments. Alternative distribution is also used to develop binomial and Bernoulli
distribution.

Example 5.1. A factory device is utilized for 80 % of work time only. The
probability that the device is in operation is therefore P(x = 1) = p = 0.8, that
the device is out-of-action P(x = 0) = 1 — p = 0.2. Using Egs. (5.2, 5.3 and 5.4),
the mean of the operating time is obviously 4 = p = 0.8, its standard deviation
o = [p(1-p)1°° = 04. It is interesting to note that the coefficient of variation (the
relative measure of dispersion) of the operating time is V = o/u = 0.5.

5.2 Binomial Distribution

Consider n independent random trials carried out under the same (invariant)
conditions. In each trial a certain event A may occur with the same probability
P(A) = p (called the probability of success), while the probability of complemen-
tary event is P(A) = 1 — p = q. (called the probability of failure). The probability
function gives probabilities that within » independent trials the number of success-
ful trials (event A occurs) is x. This may occur through a number of different
combinations of x successful trials within the total of n trials. The number of such

combinations k is given by the combination number

Each combination may occur with the probability p*¢" " ‘x successes and n—x
failures). Thus, the resulting probability function may be expressed as

P(x,n,p) = (Z)p“q”“‘ = (Z)px(l -p)" (5.6)

Example 5.2. Binomial distribution is often linked to the so-called Bernoulli
experiment. In a box there are N balls, X white balls and N—X back ones. The
probability that a white ball will be pulled out of the box is
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X
P=N
The probability that a black ball will be chosen is

N-X

1=7N

Obviously p + ¢ = 1 (complementary probabilities). In a series of # trials, in
which a ball taken from the box will be always returned back, these probabilities do
not change (invariant conditions). The number of white balls x taken out of the box
is 0, 1, 2, ..., n and their probabilities P(0;n;p), P(1;n;p), P(2;n;p) may be deter-
mined using Eq. (5.6). For example the probability that in a series of » trials a white
boll will never be, or will always be, pulled out is

P(0,n,p) = ¢"

n

P(n,n,p) =p

The mean, variance, standard deviation, skewness and kurtosis of binomial
distribution may be derived using the so-called moment developing function [1]

u=np (3.7

o® = npg = np(1 —p) (5.8)

o = \/pq (5.9)

a:i%% (5.10)

P (5.11)
npq

The coefficient of variation follows from Eqgs. (5.7) and (5.9) as
V=,/— (5.12)

Figure 5.1 shows two probability functions P(x; 5; 0.8) and P(x; 10; 0.8)
assuming the probability p = 0.8 (the meanu = np = 4and 8).

Example 5.3. In a factory five independent machines are utilized, each of which is
in operation for 80 % of the work time. The mean, the standard deviation and the
coefficient of variation are given by Eqgs. (5.7, 5.9 and 5.12).
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Fig. 5.1 Probability 0.6
function P(x,n,p) of the P(x;n;p) P(x;5;0.8)
binomial distribution
[/ P(x;10;0.8)
0.4 u /
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[
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|
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u=5-08=4; o=./npqg=0.89;, V=0.22

The probability that only two machines are in operation at any one time may be
determined using binomial distribution, as follows.

P(2;5;0.8) = (;)0.820.25‘2 =~ (.05

Thus, there is a small probability 0.05 that only two machines will be in
operation during work time.

5.3 Hypergeometric Distribution

Consider a population of N elementary events (for example of certain products),
X of which belong to the event A (non-conforming products), N—X belong to the
complementary event A (conforming products). The probability function P(x;n;X;N)
describes the probability that x events from n randomly chosen elementary events
(note that max{0,n + X—N} < x < min{X,n}) belong to the (positive) event A.
Using the classical definition of probability, explained in Sect. 2.3, the probability
function can be derived as

(G)
X n—x
Px;n;X;N) = ~—~4—>——= (5.13)
N
(")
Hypergeometric distribution differs from the Bernoulli experiment, described in
the previous section, by the fact that elementary events affect the subsequent
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probability of attaining event A and A (the products are not returned to the
population) as illustrated by the following example.

Example 5.4. In a population of N = 100 products there are X = 30
non-conforming units. The probability function is given as

(30) (100 — 30)
X n—x
P(x;n;70;100) =
100
n
The probability that in-between 3 randomly chosen units, n = 3, is one, x = 1,
non-conforming is then

(30)( 70 )

1 )\3-1) 30.70-69-3

P(1;3;30;100) = <100 = 10099 o5 = 0448
3 >

So, there is a relatively high probability 0.448 that 1 from 3 chosen products is
non-conforming.

Similarly as in case of Bernoulli distribution, the hypergeometric distribution is
often characterized by two complementary probabilities

X N-X
=—: =—=1- 5.14
p=y 4 N p (5.14)
The mean, variance, standard deviation, coefficient of variation and skewness
follow can be obtained from general expressions (4.10, 4.12, 4.16 and 4.18).

u=np (5.15)
N N-—n

2

o :npql_l%[ np(l—p)N_1 (5.16)

_(N=20)/IN=T)(N —2n) _ (1-2p)/(N=D)(N —2n)
VnX(N =X)(N—n)(N=2) /np(1—p)(N —n)(N —2)

(5.18)

Obviously for an increasing population N the basic moment characteristics of
binomial and hypergeometric distributions are approaching (see also Appendix 2).
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5.4 Poisson Distribution

The Poisson distribution is frequently used to describe the time dependent occur-
rence of random events. Let n independent events belonging to a given result A
occurs within an interval T. Thus, an average c of these events occurs within a time
unit

n

=7 (5.19)

A natural question is to assess the probability that x of these events occurs in a
given interval ¢, (+ < T). It is assumed that n events occurring in the interval T are
mutually independent and, consequently, the probability that each of these events
occurs in the time interval ¢ is

P=7 (5.20)

Using binomial distribution (see Eq. (5.6)) the probability function can be now
approximated as

P(x) = (Z)p"'(l - (521)

Applying now a limit procedure for P(x) with T — oo, the probability function
(5.21) can be expressed in the usual form

X

P(x,1) = ;e—ﬂ (5.22)

Here the parameter A denotes the average number of events within the time
period ¢ given by the mean of Poisson distribution

nt
U ot = (5.23)

Using the moment developing function, the variance, standard deviation and
skewness of the variable X can be derived as

? =4 o=Vi a=1/Vi (5.24)

Figure 5.2 indicates the probability function P(x,4) for two average numbers of
events A within the time period #, A = 0.2 = 0.2 and 2.
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Example 5.5. An automatic machine delives two components in 1 min. During a
period of 8 h 38 components do not comply with the requirements. The basic
parameters and the probability function given by Eqgs. (5.22) and (5.23) are then

38 5 0.2¢
c:mzo.o& tzimin; A=cxt=02; Px)= e 02

x!
The probability that in a series of five components two or more components will
be non-conforming can be calculate as

P(x>2)=1-P(0) - P(1) = 0.0175

5.5 Geometric Distribution

There are other distributions of discrete random variable that are not so frequently
used in engineering applications. These types of distributions include geometric
distribution, negative binomial distribution, multinomial distribution and multi
hypergeometric distribution. In general, these distributions are particular cases of
the previous type of discrete distributions. Description of other types of distribution
may be found in specialized literature [1]. Let us consider briefly a geometric
distribution that has some important engineering applications.

The geometric distribution in question is related to the binomial distribution
described in Sect. 5.2. It describes the probability P(n) that within » trials (n = 1,
2, 3,) the Bernoulli experiment will be successful just once. For example the first
n—1 trials are unsuccessful (no event A is observed) and subsequent trial number n
is successful (event A occurs). The probability of the successful trial is p, probabil-
ity of the unsuccessful trial is 1 — p = g. Thus the probability that n—1 trials are
unsuccessful and then trial number 7 is successful can be expressed as
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P(n, p)=p(1—p)" ' =pq"! (5.25)

Equation (5.25) describes geometric sequence and that is why the distribution is
called geometric distribution. It should be noted that there is an alternative formu-
lation of the geometric distribution when the domain of » = 0, 1, 2,...Then in
Eq. (5.25) the exponent of g is n. Here the formulation (5.25) is accepted.

The mean and standard deviation of the variable » is given as

My =1/p;  on=+/q/p (5.26)
For small probability p the second expressions (5.26) may be approximated as
o, = 1/p (5.27)

Thus, for small p the standard deviation o, is approximately equal to the mean p,,
and coefficient variation V,, = o0,/u, approaches one; in fact V,, follows from
expressions (5.26) as

Vi=gqg=1-p=1 (5.28)
The distribution is highly asymmetric having the skewness

1+¢q 2—-p
a, = = ~2 (5.29)
Vi—-p 1-—p

The geometric distribution may have an important engineering or scientific
applications. Assume that the time (or space) interval 7 is discretized into n basic
intervals in such a way that the probability p of occurrence of a specified event A in
any interval is approximately the same (assumption of the geometric distribution).
Then the probability P(n, p) given by Eq. (5.25) offers a relationship between the
number of basic intervals n (reoccurrence time) and the probability p of the event A
in one basic interval. The mean reoccurrence time y,, and its standard deviation o,
can be assessed by Eq. (5.27) as

Hy =0 = 1/p (5.30)

The coefficient of variation V,, ~ 1 indicates a great uncertainty in assessment of
the reoccurrence time (the number of basic intervals) 7.

The probability function P(n, p) is a monotonously decreasing function shown in
Fig. 5.3 for two probabilities p = 0.02 and 0.05, having the mean and standard
deviation equal to p, =~ ¢, ~ 50 and 20.

Example 5.6. Assume that the time is discretized into a number of intervals having
the same duration of 1 year. The occurrence of annual extremes of a certain climatic
actions (for example due temperature, snow or wind) can be assumed to be mutually
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Fig. 5.3 Probability 0.05
function of the geometric
distribution P(n,p) 0.04

0.03

0.02

0.01

independent. Let us define A as an event whereby a particular intensity of the action
(the critical or characteristic value) is exceeded by the annual extreme with the
probability p. Then the reoccurrence of the critical value may be expected within
the time T (number n of time intervals) called the return period. The mean of the
return period p; may be assessed by Eq. (5.30) as

Hr =, = l/p

However, it should be emphasized that the return period T is a random variable
(assumed here to be described by geometric distribution) that has standard devia-
tion o7 approximately equal to the mean uy (see Eq. (5.30))

or=o0,~1/p

If the probability p of event A is specified by the value p = 0.02 then the mean
reoccurrence time is assessed as ur ~ l/p = 50 years (Fig. 5.3). The standard
deviation o7 is also approximately equal to 50 years. The coefficient of variation
Vr = 1 confirms a considerable uncertainty in the assessment of the return period 7.

It should be mentioned that the probability function P(n, p) is a monotonously
decreasing function of n with a high asymmetry (see Fig. 5.3). It indicates that the
reoccurrence time 7 less than the mean ur = p, = 1/p is more likely than the right
of the mean (see Example 3.6). That is however valid provided that the assumed
geometric distribution is applicable (the probability p that event A occurs in any
basic interval is the same).

Example 5.7. Codes of practice commonly specify the characteristic value of wind
speed as the speed that on average occurs once in 50 years (the so-called 50 years
wind speed). It means that the characteristic value can be expected in any 1 year
period with the probability 0.02. The probability that a building will be subjected to
the characteristic wind speed during the year number n = 10 follows from
Eq. (5.25) as
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P(10,0,02) = 0.02 x 0.98!°"! = 0.017

The probability that the structure will be exposed to the characteristic load
during the 50 years can then be expressed as the sum of geometric series

| 1—0.98%
P(X<50)=5"" 0.02x 098" = 0.02—— 7 = 0.636

Thus, during the first 50 years the probability that the structure will be exposed to the
characteristic wind pressure is greater (P(X < 50) = 0.636) than the complementary
probability that it will occur after 50 years of structural existence (P(X > 50) = 0.364).
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Chapter 6
Selected Models of Continuous Variables

Most of the random variables used in engineering and scientific applications are
described by continuous variables that may attain any value from a given interval.
The probability density function of a continuous random variable is often
interpreted as the limiting case of a histogram when the number of observations
is increasing to infinity. An elementary type of continuous distribution is the
uniform distribution describing a variable that may attain any value from a given
interval with an equal chance. Frequently used distributions, having the probability
density function of a typical bell shape, and applied in engineering and science,
include the normal, lognormal, Beta as well as different types of extreme value
distributions like the Gumbel, Weibull and Frechet distributions. Other types of
continuous distributions are applied less frequently. A review of selected models of
continuous random variables is provided in Appendix 3.

6.1 Normal Distribution

From a theoretical and practical point of view the most important type of distribu-
tion of a continuous random variable is the well-known normal (Laplace-Gauss)
distribution [1-4]. A symmetric normal distribution of a variable X is defined on an
unlimited interval — oo < x < oo (which can be undesirable in some practical
applications) and depends on two parameters only — on the mean g and standard
deviation . Symbolically it is often denoted as N(u, o). This distribution is
frequently used as a theoretical model of various types of random variables
describing some loads (self-weight), mechanical properties (strengths), and geo-
metrical properties (outer dimensions). It is convenient for a symmetric random
variable with a relatively low variance (a coefficient of variation V < 0.2). It may
fail for asymmetric variables with a greater variance and a significant skewness
a > 0.3.

The probability density function of a normal random variable X with the mean py
and standard deviation oy is given by the exponential expression

M. Holicky, Introduction to Probability and Statistics for Engineers, 63
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RN IR YR
@(x)_axmexp[ 2( oy >‘| (61)

The proof that uy and oy are the mean and standard deviation of the random
variable X described by the probability density function (6.1) follows from general
Egs. (4.13,4.14, 4.15 and 4.16). Furthermore, using Eqs. (4.18) and (4.19) it may be
shown that the skewness ay and kurtosis &y of the normal random variable X are
zero, ay = ex = 0.

No analytical expression is available for the distribution function ®(x). Never-
theless, numerical tables for the probability density function as well as for the
distribution function are commonly available in literature [1, 2] and on the internet.
A brief numerical table for the distribution function ®(x) is also available in
Appendix 7. All these tables give the probability density function ¢(u«) and the
distribution function ®(u) of the standardized variable U that is derived from the
actual variable X using the formula (4.23) (applicable for any distribution)

_X—ny
ox

U (6.2)

Here ux and oy denote the mean and standard deviation of the actual variable X.
The standardized random variable U has a zero mean and a standard deviation equal
to one; the normal standardized distribution is symbolically denoted N(O, 1).

The probability density function of the standardized random variable U having
the normal distribution N(0, 1) follows from Egs. (6.1) and (6.2) as

1 2
Py(u) = Noraiai (— %) (6.3)

Tabulated values of the probability density function ¢ () and corresponding
distribution function ®(u), given in Appendix 7, are transformed to the original
random variable X using the transformation formula (6.2) in a modified form (4.24).

The probability density function of the normal distribution is a symmetrical
function (skewness a = 0,0) as indicated in Fig. 6.1, where it is shown together
with a log-normal distribution (described in the next Section) as having a coefficient
of skewness a = 1,0. Both probability density functions are shown for the
standardized random variable U defined by Eq. (6.2) and having zero mean and
unit standard deviation.

Note that the probability density function of the standardized normal distribution
is plotted for u within the interval <—3,4+3>. This interval covers a high occurrence
probability (0.9973) of the variable U (in technical practice such an interval of the
actual variable is sometimes denoted as +3¢ interval).

Example 6.1. Let us denote as u, the value of the standardised normal variable for
which the distribution function is equal to a specified probability p, thus
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Fig. 6.1 Normal and log-normal distribution (skewness @ = 1.0)

D(up) = p

The corresponding value x,, of the original variable X, having the mean uy and
standard deviation oy, follows from transformation formula (6.2) as

Xp = Uy + U, 0%

If the probability p = 0.05 then it follows from tables of the standardised
distribution N(0, 1) that u, = —1.645 (see also Appendix 7) and the corresponding
value of the original random variable X is

X, = puy — 1.645 oy

If the probability p = 0.001 then u, = —3.09 and x, = ux—3.09 ox.

6.2 Lognormal Distribution

A general three parameter log-normal distribution is defined on a one-sided limited
interval xo < x < oo or —00 < x < Xg [3-6]. It is an asymmetric distribution that
partly eliminates one of the undesirable properties of the normal distribution,
i.e. the infinite definition domain. A general log-normal distribution is dependent
on three parameters, and for that reason is often called the three-parameter
log-normal distribution. Commonly, the moment parameters can be applied to
define the distribution: the mean uy, the standard deviation ox and the skewness
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ay. Instead of the skewness ay (when it is unknown or uncertain), the lower or upper
bounds xy may be used.

A random variable X has a log-normal (general three-parameter) distribution if
the transformed random variable

Y =In|X — xo| (6.4)

has a normal distribution. In this relation xy denotes the lower or upper bound of the
variable X, which depends on the skewness ay. If the variable has a mean px and
standard deviation oy, then the lower or upper bound can be expressed as

Xo = py — ox/c (6.5)

Here the coefficient ¢ is given by the value of skewness ay according to the
relation

ax = ¢ + 3¢ (6.6)

from which follows an explicit relation for ¢ [6]

1/3 1/3
c= [<q/a}2{+4+ax> — (\/a§(+4—ax) 12_1/3 (6.7)

The dependence of the limit x, on the coefficient « is apparent from Table 6.1,
where the lower bound uy = —1/c of the standardized variable U = (X—u x)/ox is
given for selected values of the coefficient of skewness ax > 0. For ay < 0 values
of uq with the inverse sign (i.e. positive) are considered. A log-normal distribution
with the skewness ay = 0 becomes a normal distribution (g = —1/c — + o0).

When specifying a theoretical model, it is therefore possible to consider either
the skewness ay or, alternatively, the lower or upper bound of the distribution x,
(in addition to the mean py and standard deviation oy). Generally, the first alterna-
tive is preferable because more credible information is usually available for the
coefficient of skewness than for the lower or upper bound. In general, the moment
parameter called the coefficient of skewness provides a better characterisation of
the overall distribution of the population (particularly of large populations) than the
lower or upper bounds.

The probability density function and distribution function of the general three-
parameter log-normal distribution may be obtained from the well-known normal
distribution by using a modified (transformed) standardized variable u’ obtained
from the original standardized random variable u = (x—ux)/ox as [6]

(a2 + (VT )
- In(1 + ¢?)

sign(ay) (6.8)
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Table 6.1 The coefficient u ax 0 05 1.0 15 20
for selected coefficient of
skewness ay > 0

uy = —1/c —00 —6.05 -3.10 —2.14 —1.68

Here sign(ay) equals +1 for ay > 0 and —1 for ay < 0. The probability density
function @pn(u) and the distribution function @y (1) = @pnx(x) of the
log-normal distribution are given as

_ ¢(u')
PNy (u) = (|u +H) (L1 (6.9)
O nx(x) = Pny(u) = O(u) (6.10)

Here ¢(«') and ®(1') denote the probability density and distribution function of
the standardized normal variable.

A special case of the three-parameter log-normal distribution is the popular
log-normal distribution with the lower bound at zero (xo = 0) called here
two-parameter log-normal distribution. This distribution depends on two
parameters only — the mean py and the standard deviation oy (a symbolic notation
LN(u, o) is then used). In such a case it follows from Eq. (6.5) that the coefficient ¢
is equal to the coefficient of variation VY. It further follows from Eq. (6.6) that the
skewness ay of the log-normal distribution with the lower bound at zero is given by
the coefficient of variation Vy as

ax =3Vx +V; (6.11)

Thus, the log-normal distribution with the lower bound at zero (xo = 0) has
always a positive skewness. Consequently, applications of the log-normal distribu-
tion with the lower bound at zero (xo = 0) can thus lead to unrealistic theoretical
models (usually underestimating the occurrence of negative and overestimating the
occurrence of positive deviations from the mean), particularly for higher values of
the coefficient of variation V. Then the three-parameter log-normal distribution
may be used. Although the occurrence of negative values can also be undesirable
(unrealistic for most mechanical quantities), it is usually negligible from a practical
point of view.

Example 6.2. The skewness may have a relatively high value (greater than 0.5);
e.g. for the coefficient of variation equal to 0.30 a coefficient of skewness
a, = 0.927 is obtained from Eq. (6.11).

The log-normal distribution is widely applied in the theory of reliability as a
theoretical model for various types of random variables [6]. In general it can be
used for one-sided limited asymmetric random variables including material
properties, actions, and geometrical data. In particular, the log-normal distribution
with the lower bound at zero (xo = 0) is commonly used for resistance properties
(strengths) of various materials (concrete, steel, timber, masonry).
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Fig. 6.2 Probability density functions for the concrete cover depth

Example 6.3. A concrete cover depth X of a reinforced concrete cross-section has
the mean u = 25 mm and the standard deviation ¢ = 10 mm. The probability
density function @(x) for a normal distribution and for a two-parameter
log-normal distribution (with the lower bound at zero) is shown in Fig. 6.2.

It follows from Fig. 6.2 that the normal distribution predicts some occurrence of
negative values of the concrete cover depth, which may not correspond to reality.
On the other hand, the log-normal distribution with the lower bound at zero
may overestimate the occurrence of positive deviations, which may not be accept-
able and may affect the resulting random variable bending resistance of the cross-
section.

The overestimation of the occurrence of extreme positive deviations is due to a
high skewness a = 1.36 (given by Eq. (6.11)) of the two-parameter log-normal
distribution. Note that the available experimental data on a concrete cover depth
indicate that in most cases the skewness of the distribution is less than 1, and if no
other evidence is available, then the value a ~ 0.5 is recommended to be assumed.

6.3 Gamma Distribution

Another popular type of one-sided limited distribution is Pearson’s distribution type
III. Its detailed description is available in [1]. A special case of Pearson’s distribu-
tion type III with the lower bound at zero is gamma distribution. The probability
density function of this important distribution is dependent on two parameters only:
on the mean p and standard deviation o. To simplify the notation two auxiliary
parameters A and k are often used

A ep(-k) L u w2
W) = A k= (%) (6.12)
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Here T'(k) denotes the gamma function of the parameter k. The moment para-
meters of the gamma distribution follow from Eq. (6.12) as

k \//; 2 206 302
_r — = ="y = 6.13
K A’ ¢ A ¢ Vk o p € 2 ( )

The curve is bell shaped for k£ > 1, i.e. for a skewness a < 2 (in the inverse case
the gamma distribution is a decreasing function of x). For k — oo, the gamma
distribution approaches the normal distribution with parameters y and o.

Gamma distribution is applied in much the same way as the log-normal distri-
bution with the lower bound at zero. However, it differs from the log-normal
distribution by its skewness, which is equal to the double of the coefficient of
variation (¢ = 2w) and is considerably lower than the skewness of the log-normal
distribution with the lower bound at zero. In accordance with Eq. (6.11) it has the
skewness ay = 3Vy + Vj. That is why gamma distribution is more convenient for
describing some geometrical quantities and variable actions.

Example 6.4. A sample of experimental measurements of a concrete cover depth has
the following characteristics: a sample size n = 157, m = 26.8 mm, s = 11.1 mm,
and a = 0.40. Itis arelatively large sample, which can be used for assessing skewness
(long-term experience may be available to verify the obtained value). A histogram of
the experimental measurements and theoretical models of the normal distribution,
log-normal distribution with the origin at zero, gamma distribution and beta distribu-
tion (described in the following Section) is shown in Fig. 6.3. It appears that the
gamma and beta distributions are the most suitable theoretical models. However,
it follows from Eq. (6.13) that the skewness of the gamma distribution is 2 x 11.1/
26.3 = 0.83, thus about double the value assessed from the measurements. Obvi-
ously, the beta distribution would be the most suitable model.

To choose an appropriate theoretical model for experimental data is, in general, a
complicated task. Information about theoretical methods (the so-called goodness of
fit tests) provided by mathematical statistics can be found in literature [1-3]. In this
textbook only some practical aspects and procedures will be indicated.

6.4 Beta Distribution

Beta distribution (also called Pearson’s distribution type I) is defined on a two-sided
interval <a, b> (this interval can be arbitrarily extended and then the distribution
approaches the normal distribution). Generally, the beta distribution depends on four
parameters and is used mainly in those cases where the domain of the random
variable is evidently limited (some actions and geometrical data, e.g. the weight of
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Fig. 6.3 Histogram and theoretical models for concrete cover depth of reinforcement

a subway car, fire load intensity, a concrete reinforcement cover depth). The princi-

pal difficulty in a practical application of the beta distribution is the necessity of

estimating four parameters, for which credible data may not always be available [6].
The beta distribution is usually written in the form

C(—a) =)

") B —a o

where ¢ and d are the so-called shape parameters and B(c,d) is the beta function
(also called the Euler integral). The lower and upper bounds are given as

c+d+1
a=pu—cgo, b=u+dgo, g:\/T (6.15)

where g is an auxiliary parameter. The parameters ¢ and d can be derived from
Eq. (6.15) as

. M—a((ﬂ—a)(b—ﬂ)_1>, d:b—ﬂ<(ﬂ—a)(b—ﬂ)_1> 6.16)

b—a o2 b—a o2
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The moment parameters of the beta distribution can be expressed in terms of the
parameters a, b, ¢ and d as

_a+(b—a)c _ (b—a)
#= (c+d) ~ o= (cg + dg) 6.17)
_ 2g(d—c¢) _38%2(c+d)’ +cdc+d—6)
T lerdr2) T (crd+2)crd+3) 3 ©.18)

Note that the skewness a and kurtosis ¢ are dependent on only the parameters ¢ and
d (they are independent of the limits a and b). That is why the parameters ¢ and d are
called the shape parameters. In practical applications the distribution is used forc¢ > 1
and d > 1 (otherwise the curve is J or U shaped); for c = d = 1 it becomes a uniform
distribution; for ¢ = d = 2 it is the so-called parabolic distribution on the interval
<a, b>. When ¢ = d, the curve is symmetric around the mean. When d — oo, the
curve becomes type III Pearson’s distribution (see Sect. 3.5). If ¢ = d — oo, it
approaches the normal distribution. Depending on the shape parameters ¢ and d the
beta distribution thus covers various special types of distribution. The location of the
distribution is given by the parameters a and b.

Beta distribution can be defined in various ways. If all four parameters a, b, ¢ and
d are given, it is possible to assess the moment parameters u, o, a and ¢ from
Egs. (6.15, 6.16, 6.17, and 6.18). In practical applications, however, two other
combinations of input parameters are likely to be applied [6]:

1. The input parameters are y, o, a and b. The remaining parameters ¢ and d will be
assessed from Egs. (6.15) and (6.16), the moment parameters @ and & from
Egs. (6.17) and (6.18).

2. The input parameters are y, o, @ and one of the limits a (for @ > 0) or b (for
a < 0). The remaining parameters of distributions b (or a), ¢ and d will be
assessed by means of Egs. (6.15, 6.16 and 6.17).

The beta distribution with the lower bound a = 0 is often used in practical
applications. It can be shown that in such a case the beta distribution is defined as

a<2v (6.19)

where V = o / u is the coefficient of variation. For @ = 2 V the curve becomes type
IIT Pearson’s distribution (see Sect. 3.5). Therefore, if the input parameters are the
mean yu, the standard deviation ¢ and the skewness a < 2 V, the beta distribution
with a lower limit at zero (a¢ = 0) is fully described. The upper limit of the beta
distribution with the lower bound at zero follows from the relation (6.15)

, _Hle ;L d) _u(l _|(_2v:v (E Z)aw)) (6.20)
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In Eq. (3.32) the parameters ¢ and d are given as

a 2w—a)’ —(4+4a?)

=—— 6.21
2w (wa+2)* —(4 +a?) (021
o 2
d:g(Zw a)2 (44a*) 2+ aw 622)
2 (wa+2)"—(4+a2)a—2w

Equations (6.21) and (6.22) follow from the general Egs. (6.13, 6.14, 6.15, 6.16
and 6.17) for the lower bound a = 0.

Example 6.5. Given a mean y = 25 mm, a standard deviation 10 mm (V' = 0.40),
and a skewness a = 0.5, let us assess the parameters of a beta distribution with an
origin at zero (a = 0) for a reinforcement cover layer. The inequality in Eq. (6.19)
is thereby satisfied (0.5 < 2 x 0.4). From Eqgs. (6.21) and (6.22) it follows that

05 (2x04—0.5)—(4+052
c=- (2 x ) @05 4 406
2x04(04x05+2)"—(4+0.5?)

— 2 _ 2
;05 (2x04 0.5)2 (4+405%)2+405x04 o
2 (04x05+2)"—(4+05%)05-2x04

For the upper bound of the distribution it follows from Eq. (6.20) that

_25(4.407 + 12.926)

b= =98.32
4.407 98.326

Figure 6.4 shows the beta distribution with the parameters assessed above
together with the corresponding normal, log-normal and Gamma distributions
that have the same mean y and standard deviation ¢. Obviously, there are consider-
able differences between the distributions indicated in Fig. 6.4.

The normal distribution (skewness a = 0) predicts the occurrence of negative
values, which may not comply with the real conditions for the reinforcement cover
depth. The log-normal distribution with the lower bound at zero has a skewness
a = 1.264 (given by Eq. (6.11)), which does not correspond to experimental results
and leads to an overestimation of the occurrence of positive deviations (which may
further lead to unfavourable consequences for the resistance of the reinforced
concrete element). The gamma distribution has a skewness a =2V = 0.8
(Eq. (6.13)) and is closer to the experimental value 0.5. The most convenient
model seems to be the beta distribution with a skewness @ = 0.5 obtained from
experimental data.

The above discussion can be supplemented by statistical tests (see Chap. 10 and
books [1-3]). On the other hand, it should be mentioned that goodness of fit tests
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Probability density ¢(x)
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Fig. 6.4 Normal, log-normal, gamma and beta distributions for the concrete cover depth of
reinforcement in a reinforced concrete element

often fail and do not lead to an unambiguous conclusion. In such a case the selection
of a convenient model depends on the character of the basic variable, on available
experience and on common experience.

6.5 Gumbel Distribution

The extreme values (maximal or minimal) in a population of a certain size are
random variables and their distribution is extremely important for the theory of
structural reliability. Three types of distribution of extreme values are usually
covered in specialised literature, and are denoted as types I, IT and III. Each of
the types has two versions — one for the distribution of minimal values, the second
for the distribution of maximal values. All these types of distribution have a simple
exponential shape and are convenient to work with. The extreme value distribution
of type I, which is commonly called the Gumbel distribution, is described in detail.
Descriptions of the other types of distribution can be found in specialised literature
[1,2].

The distribution function of type I for the maximal values distribution version
(the Gumbel distribution of maximum values) has the form [6]

®(x) = exp(—exp(—c(x — Xmod))) (6.23)

It is a distribution defined within an infinite interval, which depends on two
parameters: on the mode x,,q and the parameter ¢ > 0. By differentiating the
distribution function we obtain the probability density function in the form
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@(x) = ¢ exp(—c(x — Xmod) — exp(—c(x — Xmod))) (6.24)

Both these parameters are related to the mean y and standard deviation o

6
Xmod = H — 0.577a§ (6.25)

c="_ (6.26)

The skewness and kurtosis of the distribution are constant: @« = 1.14, ¢ = 2.4.

An important feature of the Gumbel distribution is the easy transformation of the
distribution function ®(x) of an original random variable having the mean yx and
standard deviation ¢ to the distribution function ®y(x) for the maxima of
populations that are N times greater than the original population. If individual
original populations constituting a new N times greater population are mutually
independent, then the distribution function ®y(x) is given as

Dy (x) = (D(x))" (6.27)
By the substitution of Eq. (6.23) into Eq. (6.27) ®y(x) can be written as
Dy (x) = exp(—exp(—c(x — Xmoa — InN/c))) (6.28)

It follows from Eqs. (6.23) and (6.27) that the mean u,, and standard deviation oy
of the maxima of the new N times greater population are

uy=p+In(N/c)=p+0.78 In(No),on =0 (6.29)

Thus the standard deviation of the original population does not change and
oy = o, but the mean yyy is greater than the original value y by In(N/c).

The distribution function of type I, for the minimal values distribution (Gumbel
distribution of minimum values) has the form

®(x) =1 — exp(— exp(—c(¥moa — X))) (6.30)
This distribution is symmetric to the distribution of maximal values given by
Eq. (6.23). It is therefore also defined within an open interval and depends on two

parameters: on the mode x,,,og and parameter ¢ > 0. By differentiating the distribu-
tion function we obtain the probability density function in the form

@(x) = ¢ exp(—c (Xmoa — ¥) — exp(—¢ (Xmoa — X))) (6.31)

Both these parameters can be assessed from the mean u and standard deviation o
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5
xos = 41 057750 6.32)
T

¢ (6.33)
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Example 6.6. One-year maxima of wind pressure are described by a Gumbel
distribution with a mean g, = 0.35 kN/m?, 6; = 0.06 kN/m?. The corresponding
parameters of 50-year maximum value distribution, i.e. parameters pso and o5,
follow from Eq. (6.29)

Hso = 0.35+0.78 x In(50 x 0.06) = 0.53 kN/m?, 650 = 0.06 kN/m?

Figure 6.5 shows both the distributions of 1-year and 50-year maxima of wind
pressure described by a Gumbel distribution.

The probability density functions of the minimum values are symmetric to the
shape of maximal values relative to the mode x,,.q, as is apparent from Fig. 6.6.

In a similar way, type II distribution, the so-called Fréchet distribution, and type
IIT distribution, the so-called Weibull distribution, are defined. All three types of
distribution complement each other with regard to possible values of the skewness
a. Each type covers a certain area of skewness, as shown in Fig. 6.7.

Types I and II of the extreme values distribution are often applied in the
description of quantities of which the maximal values are studied (actions), and
type III distribution is applied for quantities of which the minimal values are studied
(e.g. strength and other material properties).

Types I and II of the extreme values distribution are often applied in the
description of quantities of which the maximal values are studied (actions), and
type III distribution is applied for quantities of which the minimal values are studied
(e.g. strength and other material properties).

6.6 Basic Rules for Selecting Distribution

Commonly used continuous distributions (normal, two- and three-parameter
log-normal distribution, gamma and beta distribution) may be selected using a
simple guide based on two basic parameters: relative measure of variance — the
coefficient of variation V; and a measure of asymmetry — the coefficient of skew-
ness a. The basic rules may be summarized as follows:

1. If the skewness a is close to zero, @ =~ 0O (the distribution is symmetric) then
most likely the best distribution to use would be the normal distribution.
However, it should be remembered that the definition domain of the normal
distribution is infinite <—o0, co> and, generally there is a nonzero probability
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Fig. 6.5 Distribution of maximum wind pressure over the periods of 1 year and 50 years
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Fig. 6.6 The Gumbel distribution of the minimum and maximum values

of occurrence of negative values (not negligible when the coefficient of variation
V > 0.2). Then truncated (one sided or two sided limited) normal distribution or
beta distribution may be applied.

. If the skewness a is not negligible, @ > 0 (the distribution is asymmetric) then

several distribution could be used: the two-parameter log-normal, the three-
parameter log-normal, the gamma and beta distributions. The two-parameter
log-normal distribution, the three-parameter log-normal distribution and gamma
distributions are one sided limited distribution, whereas the beta distribution is
two sided limited distribution. The two-parameter log-normal and gamma



6.6 Basic Rules for Selecting Distribution 77

Fig. 6.7 Types of Distribution of the maximum values
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distributions are limited by zero, the three-parameter lognormal distribution by
lower bound (if the skewness is positive) or upper bound (if the skewness is
negative).

Figure 6.8 indicates possible combinations of the coefficient of variation V
(horizontal axis) and the positive coefficient of skewness a (vertical axis) that
could be accepted by selected continuous distributions: two- and three-parameter
log-normal distribution, gamma and beta distribution. In addition to these
distributions the Gumbel distribution is also included in Fig. 6.8; its skewness
a = 1.14 (independent of the coefficient of variation V) is indicated by a horizontal
dashed line.

Other types of distribution less frequently applied in engineering and science
may be found in books [3, 4, 7, 8]. A brief review of conventional distributions
provides Appendix 6.

Example 6.7. Consider a non-negative random variable described in Example 6.5.
For some physical reasons the random variable has only positive values limited by
zero and an unknown upper bound. Assume the mean y = 25 mm, a standard
deviation 10 mm (coefficient of variation V = 0.40), and a skewness @ = 0.5. As
the skewness a is significant (not negligible), however less than 2 V, a < 2 V, it
follows from Fig. 6.8 that the beta distribution with lower bound at the origin seems
to be the appropriate type of continuous distribution. Its upper bound is 98.326
(given by Eq. (6.22), see also Example 6.5).

A second possible distribution is the three-parameter log-normal distribution,
which is very general and certainly can take account of the given parameters.
However in that case the lower bound is a negative value. It follows from Table 6.1
that the standardised value of the lower bound is ug = —6.05 that therefore
Xo = 25—6.05 -10 = —35.5. Consequently, there is some probability of occurrence
of negative values X that can be calculated from Egs. (6.8) and (6.10) as
P(X < 0) = &x(0) =~ 0.0014.

Another possibility is to use two-parameter log-normal distribution (with the
lower bound at zero). However, due to its high coefficient of variation Vx = 0.4 this
distribution has a relatively high skewness equal to 3 Vy + Vy° = 1.264
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2
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Fig. 6.8 Combinations of the coefficient of variation V and skewness «a allowed for by various
continuous distributions

(Eq. (6.11)). This one sided limited distribution may well fit the left tail of the
distribution but at the same time it amplifies the positive deviations of the random
variable from its mean (there is no upper bound of the distribution).
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Chapter 7
Functions of Random Variables

Functions of random variables defining resulting random variables as functions of
several input random variables regularly enter many engineering and scientific
applications. The elementary functions of a single continuous variable and two or
more independent variables, reviewed in Appendix 4, are supplemented by
functions several random variables. A special function of a single random variable
is the extreme value of samples taken from a population described by various types
of so-called extreme value distributions. These distributions play a substantial role
in a number of practical applications. Another important function of a random
variable is the updating of its probability distribution when newly obtained infor-
mation is taken into account. This procedure is developed as an extension of Bayes”
theorem. Finally, the distribution of a sum of several random variables is discussed
in conjunction with the central limit theorem.

7.1 Function of a Single Random Variable

The functions of random variables enter many engineering and scientific
applications. The distributions of the resulting random variables and their
parameters are derived in detail in publications [1-3]. The following short review
of basic rules and computational procedures are adapted from the description
provided in book [4], paper [5] (for mutually independent variables) paper [6]
(for dependent variables).

The general form of a function Z (resulting variable) of a single random variable
X is expressed as

Z = f(X) (7.1)

Assuming that f(X) is a single value function (one-to one mapping), then a given
value z of the random variable Z corresponds to a particular value x = f~'(z), where
f~!(z) denotes the inverse function to f(x) or inverse mapping of z to x.

M. Holicky, Introduction to Probability and Statistics for Engineers, 79
DOI 10.1007/978-3-642-38300-7_7, © Springer-Verlag Berlin Heidelberg 2013
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If the transformation function f(x) is an increasing function of x, then for a given
value z = f(x) the probabilities P(Z < z) and P(X < x) are equal, and the probabil-
ity distribution function ®(z) of the transformed variable Z may be expressed in
terms of the distribution function ®@y(x) simply as

@y (z) = By (f(x)) = Oy (x) = Ox(f!(2)) (7.2)
This equation can be written in the integral form (see Eq. (4.7)) as

)

@)= | = J :

cpx<x>dx=J o @)de (73)

o0 —00

It follows from Egs. (7.2) and (7.3) that the probability elements @,(z)dz and
@x(x)dx are also equal

©z(2)dz = @y (x)dx (7.4)

Equation (7.4) clearly indicates that the relationship between the probability
density functions @(z) and @x(x) depends on the differentials dz and dx of continu-
ous variables Z and X. Consequently the probability density @(z) of the
transformed variable Z is related to the probability density functions @x(x) as
follows

dx

Pz(2) = ox(x) - (71.5)

Equation (7.4) may be generalised for a monotonous (both increasing and
decreasing) transformation function f(X) as follows

df~1(z)
dz

Pz(2) = @x(x) (7.6)

= e(r)

Example 7.1. A random variable X has a normal distribution N(¢,0) having the
mean u and standard deviation o:

)= e [—% = }

A new random variable U (standardized normal variable) is introduced by
transformation formula defining standardised random variables
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The differential du = dx/o and the ratio of the differentials dx/du = o . Then it
follows from Eq. (7.5) that the new probability density function @y (u) of the
transform variable U is

o o4

This formula is already known from Chap. 6 (Eq. (6.3)) for a standardised
random variable having the normal distribution N(0,1) (the mean equals zero and
the standard deviation equals 1).

Example 7.2. The wind pressure P can be expressed in terms of wind speed S as
P =1(S) = ks’

Here & denotes a quantity dependent on several characteristics of structure and
its surroundings, but independent of the velocity S. The ratio of differentials ds/dp
follows from the transformation formula as

ds_ 1
dp  2v/kp

Then the probability density function @p(p) of the wind pressure can be derived
from the density of wind velocity @g(s) using Eq. (7.5) as

(ps( r/ k)
2\/kp
The moment parameters of the transformed random variable P may be obtained

by integration considering the above derived probability density function @p(p). It
may, however, require approximations using numerical procedures.

Pp(p) =

7.2 Function of Two Random Variables

The probability distribution of a function of two variables may be derived in much
the same way in the case of one random variable. Consider a function of two
mutually independent random variables X and Y:

Z=1{(X,Y) (7.7)

The probability density function @z(z) of the resulting random variable Z can be
expressed as
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_ of1(z,
oxy(f l(zyy),y)’%’dy

- JOO ‘goX,Y(x? £ (x, Z))’W

—00

dx (7.8)

In general, Eq. (7.8) may not be easily applied and usually numerical integration
has to be used. That is why different approximate techniques are frequently applied
in engineering applications. A simple procedure for assessing moment parameters
of the resulting random variable Z is described in the following Section.

Example 7.3. As an example consider the sum of two random variables
Z=X+Y
The inverse functions and their derivatives are
x=z—y and y=z—x

Bxiﬁi

Eiazil

The probability density function @z(z) follows from Eq. (7.8) as
pz(2) = J €0X,Y(Z —y,y) dy= J Pxy(x,z — x)dx
—00 —00

Furthermore, if X and Y are mutually independent random variables, then the
probability joint density of the two random variables equals to the product of
densities of each random variable, thus

(Px,y(xa ¥) = ox(X) oy (y)

The resulting probability density ¢@(z) can then be written as

92(2) = j ox(z =), 0y(y) dy = j ox()ey(z — x) dx
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7.3 Parameters of Functions of Independent Random
Variables

Another approach to investigating the functions of mutually independent random
variables, and to assessing the probability distribution of the resulting random
variable Z, is to estimate the basic moment parameters (the mean u , standard
deviation o and skewness ay ) using the Taylor expansion of the transformation
function f(X, Y,...) into a power series [5].

Thus instead of deriving probability distribution of the transformed random
variable Z, moment parameters of the resulting random variable are estimated
first and then used to approximate the distribution of the variable Z. Three basic
moment parameters are considered for all random variables in the following: the
mean y, the standard deviation o and the skewness a. (supplemented by appropriate
subscripts).

Consider a function of independent random variables X, Y, ..., resulting in the
variable Z given by a general relationship

Z=f(X,Y,...) (7.9)
The variable Z is therefore also a random variable having moment parameters yi,

07, az, for which (using the Taylor expansion of f (X, Y,...) into a power series)
approximate relationships may be found

yz:fl(,ux,,uy,...ax,ay,...7ax,ay’...) (710)
GZ:fz(ﬂx,ﬂy,...Gx,Gy,...,(lx,C{y,...) (711)
az :f3(ﬂx,//ty,...Jx,()'y,...,(){x,ay,...) (712)

Appendix 4 provides relationships (7.10, 7.11 and 7.12) for elementary forms of
functions (7.9) considering one or two independent random variables X and Y.
These relationships may be effectively applied to simplify a number of common
expressions describing the behaviour of the resulting random variable Z, such as a
capacity of structural members.

Example 7.4. Consider a simple product of two random variables X and Y.
Equation (7.9) is then written as

Z=aX+bY +c¢

Here symbols a, b and ¢ denote constants. Using formulae in Appendix 4 the
following relationships for the basic moment parameters of Z can be found

Hz = apx + buy +¢


http://dx.doi.org/10.1007/978-3-642-38300-7_BM1
http://dx.doi.org/10.1007/978-3-642-38300-7_BM1

84 7 Functions of Random Variables

2_ 22 22
o6; =a‘cy +boy

_ a%‘%ax + b36§,ay

z 3
0z

For a numerical illustration let us consider a difference of two random variables
Z=X-Y

Parameters of X (lognormal distribution) are uy = 100, ox = 10, ax = 0.301.
Parameters of X (Gumbel distribution) are: uy = 50, oy = 10, ay = 1.14.

py = 100 — 50 = 50
05, = oy + o3 = 10> + 10* = 14.14?

oyax +oyay 103 x 0.301 — 10° x 1.14
a7z = 3 =

= =-0.30
o5 14.143

Note that due to the difference of input variables the resulting variable Z has a
negative skewness —0.30.

Example 7.5. Consider a simple product of two random variables X and Y.
Equation (7.9) is then written as

Z=XxY

Using Appendix 4 the following relationships for the basic parameters may be
found

Hz = Px X fy
V;=Vi+ Vi +V3Vy

V)%ax + V%a’y +6 V)Z(WIZ/ V)?’((Xx + V%ay +6 V)Z(V)Z/
aZ = =
(V2 + V2 + V3V vz

Note that the product Z of two random variables X and Y having the normal
distribution (a¢x = ay = 0) is not a normal variable. If, for example, Vx = 0.1 and
Vy = 0.2, then it follows, using the above formulae, that the resulting coefficient of
variation V; = 0.22 and the skewness a; = 0.11.

Example 7.6. Considering wind pressure P = ks” described in Example 7.2, the
moment parameters of pressure P may be well approximated as follows:
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~ 2 2
Hp = k(ﬂs + Us)
~ 2 1/2
op = k20 (,uS + ,usasag)

N Sﬂgag(ag +3Vy)
ap = - 3

Op
The above expression may be effectively used to approximate a theoretical
model for distribution of the pressure P. If, for example, the mean g = 30 m/s,
standard deviation og = 3 m/s (coefficient of variation Vg = 0.1) and skewness
ag = 1.14 (Gumbel distribution), then

up = 909k
op = 190k
ap =122

Compared with the original variable S, the coefficient of variation and skewness
of the transformed variable P increased: Vp &~ 0.21 and ap ~ 1.22.

7.4 Parameters of Functions of Dependent Random
Variables

Parameters of functions of two mutually dependent variables can be found in a
paper [6]. Considering again the transformation function (7.10), basic moment
parameters of the resulting variable Z formulae are provided for basic moment
parameters (see Egs. (3.9, 3.10 and 3.11)):

— The mean u,
— The central moments of the second power (variance) >, = azz
— The central moment of the third power piz3 from which the skewness is derived

as az = /423/(723
The above moments of the variable Z are expressed as function of the relevant

moments of variables X and Y:

— The means px and py
— The central moments uy; and uy; (for i = 1,2,3,4)
— The product moment py; y; (fori = 1,2,3 and j = 1,2,3)

An example of the transformation function and the resulting moments taken
from the paper [6] is shown below
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Z=aX+bY +c (7.13)
Uy =apuy +buy+c (7.14)

Hzy = @ pxs + D pys + 2a buy, y, (7.15)

fz3 = @iy + D lys + 30 buy, vy + 3abuy, v, (7.16)

Similar expressions are available for a number of linear and nonlinear functions
commonly encountered in engineering applications.

Example 7.7. Consider a sum of two normally distributed and dependent random
variables X and Y given by Eq. (7.13). The central moments of the third power and
skewness of both these variables is zero. Then the moment parameters of the
variable Z follow from Eqgs. (7.14, 7.15 and 7.16) as

Hz = apx + buy + ¢

0'22 = a2(7X2 + h26y2 + 2a bpoxoy

Here p = ux yi/(ox oy) denotes the coefficient of correlation. Note that in this
case of normally distributed random variables X and Yuzz; = puxz = pys = Uz,
v1 = Mx1y2 = 0. Consequently the skewness of the variable Z is zero.

In case of a simple difference Z = X—Y (@ = 1, b = —1 and ¢ = 0), the above
expressions become

Hz = Bx — Hy

2 2 2
o7° = ox” + oy —2/)6)(6)/

7.5 Updating of Probability Distributions

A special case of transformation of a random variable X is the updating of its
probability distribution. The prior probability density function @x(x) (provided by
previous experience) may be updated using new information expressed by a
likelihood function L(//x). If the prior probabilities are described by a continuous
probability density function ¢x(x) of a random variable X likelihood by a function
L(I/x), where I denotes the outcomes of additional investigation I, then a posteriori
(updated) probability density @x(xl/) may be derived from (7.17) by using integra-
tion instead of the summation as
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o) = o 717

Note that the likelihood L(/lx) is a function describing the potential (it may not be
probability) that the outcome of the updating investigation / (information obtained
from I) is due to the occurrence of x. Formulae (7.17) can be used for the updating
of distribution functions when additional experimental investigations are used for
assessing new or existing structures.

Example 7.8. Assume that a variable X has a normal prior distribution with
probability density function @x(x) having the mean g and the standard deviation o.
Additional investigation indicated that the likelihood function L(/lx) is described by
a general three-parameter log-normal distribution having the same standard devia-
tion o but the mean equal to u + 0.5 o and the skewness @ = 1. Using a numerical
integration it follows that the updated distribution @x(xI/) has the following moment
parameters

xy = px +0.180x
GX\I = O.64(7X
ax; = 0.39

Figure 7.1 shows the prior probability density @(u), likelihood L(/lu) and the
updated probability density function ¢@(ul/) using standardized random variable U.

It follows from Fig. 7.1 that the updated distribution has considerably lower
variability than the prior distribution. Obviously updating of probability
distributions may be extremely effective when assessing the characteristic values
of the resistance variables using additional tests.

7.6 Central Limit Theorem

The central limit theorem has a number of variants. The following description is
devoted only to practical applications of the theorem devoted to the sum of a
number of random variables. In its classical form the central limit theorem states
[7] that the mean of a sufficiently large number of independent observations, each
taken from a certain population with a finite mean and variance, is approximately
normally distributed. Moreover the distribution has the same mean as the parent
distribution and a variance equal to the variance of the parent distribution divided
by the sample size.

Thus, in this variant, the central limit theorem considers a sample taken from
one distribution (generally non-normal) of the mean y and variance o°. It can be
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Fig. 7.1 Prior probability density @(u), likelihood L(/lu) and the updated probability density
function @(ull)

shown [3] that with increasing sample size n, distribution of the sample mean
m approaches the normal distribution N (y,a/\/n) with the same mean y as the parent
distribution and with the reduced standard deviation 6/\n. The formal representa-
tion of this finding may be written like this:

DM o
=2 N(,\/ﬁ) (7.18)

In other variants of the central limit theorem, convergence of the mean to the
normal distribution also occurs for non-identical parent distributions, as long as
they comply with certain conditions. This outcome holds even when the parent
distributions are non-normal. So, although the distribution of the sample mean
reflects the properties of the parent distribution (particularly its location p), the
shape of this sampling distribution is symmetrical (normal) and primarily affected
by the sample size n.

In general, the distribution of the means tends to be normal as the sample size
increases regardless of the distribution from which the mean is taken, except when
the moments of the distribution do not exist. However, all practical distributions
applied in engineering and science have definite moments, and thus the central limit
theorem applies. Because of that remarkable result the central limit theorem plays
an important role in many statistical procedures, including the estimation of the
population parameters, testing of statistical hypothesis and quality control.

The central limit theorem may be interpreted in a broad sense as follows: most
natural phenomena are dependent on a number of random variables X; and may
be approximately described by a sum Y = Y X,. If the random variables X; are
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mutually independent variables of an identical distribution with the mean p,
variance o> and with an existing third moment, then the variable ¥ approaches a
normal distribution [3] of the mean nu and variance no”.(the standard deviation
o). The formal representation may be written as

Y =" X; ~ N(nu, Vo) (7.19)

Many natural phenomena in the real world may be approximated by a sum of
other random variables and its distribution, as indicated in Eq. (7.19). Conse-
quently, such variables are expected to follow some kind of normal distribution
(with different means and standard deviations) depending on a number of random
variables X;. This finding seems to be an extremely important piece of information
for the general understanding of the natural phenomena, one that depends on many
uncertainties.

However, practical experience from engineering and science clearly indicates
that some random variables follow somewhat asymmetric (non-normal) distribu-
tion patters; for example, variables (like strength of materials) that are dependent on
the product rather than on a sum of other variables. Then the resulting variable
follows asymmetric log-normal distribution. Obviously some natural phenomena
are the results of more complex relationships, and need to be described by theoreti-
cal models based on experimental evidence. Nevertheless, in many cases a normal
distribution is a good approximation and should be considered whenever there is a
lack of convincing statistical data.

Example 7.9. Consider a population (generally non-normal, say two parameter
log-normal LN2) of the mean y = 100 and variance 6> = 225 (the standard devia-
tion o = 15, coefficient of variation V = o/u = 0.15). If the sample size is limited
to n = 9, then in accordance with Eq. (7.18) the sample mean tends to approach
normal distribution

The standard deviation of the resulting normal distribution is given as o/\n =
15/3 = 5.

Figure 7.2 shows both distributions, the parent distribution LN2(100,15) and the
distribution of the sample mean N(100,5). Note that the parent distribution LN2
(100,15) is asymmetrical (positive skewnessa = 3 V + V3 = 0.453), the sampling
distribution of the mean is symmetrical (normal) N(100,5)

Example 7.10. Consider the sum of n = 4 independent random variables X;

4
Y = lei, uy, =05, oy, =0.1
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Fig.7.2 Probability density ¢(x) of the parent distribution LN2(100,15) and sampling distribution
N(100,5) of the mean m for the sample size n = 9

The mean py and standard deviation oy follow from Eq. (7.19) as
Uy =4x05=2, oy=,4x%x01=02

Note the difference between the sum of mutually independent variables X; and
the multiple of a single variable Y = 4 x X, where X is a random variable having
the same distribution as the input variables X; which in the sum are considered to be
identical (or perfectly dependent). It follows from Annex 4 that in this case the
mean puy is not changed (uy = 4 X uy), but the standard deviation oy is different.
The standard deviation oy of the resulting variable Y is now given simply as the
product n x oy of the multiplication factor n and the standard deviation ox = oy,
(not \n X oy as in case of independent variables X;). Thus

py =4x05=2, oy =4x0.1=04

In the first case a sum of independent random variables X; the coefficient of
variation Vy = 0.2/2 = 0.1, in the second case Vy = 0.4/2 = 0.2. There is also a
difference in distribution of the variable Y. In the first case the sum Y tends to be
normally distributed, in the second case the simple multiple Y has the same type of
distribution as X (¥ has the same skewness as X, see Annex 4). This example clearly
illustrates the significance of mutual dependency of input random variables X; on
the distribution of the resulting variable Y.
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7.7 Extreme Value Distribution

The extreme values (the maximum and minimum values) of samples are of great
interest and importance to many engineering and scientific applications. In particu-
lar several natural phenomena (flooding, snow and temperature extremes) can be
well described by one of the extreme value distributions. This Section is devoted to
a short description of the classical extreme value theory and models.

Consider a set of independent and identically distributed random variables (X},
X5, ..., X,) having the probability density function ¢x(x) and distribution function
@y (x). Samples (x1, X2, . . ., X,,) of the size n are created in such a way that each x; of
each sample is taken from the corresponding population of variables X;,. A hypo-
thetical infinite number of the samples (x;, x,, ..., X,,) represents set of random
variables (X;, X5, ..., X,,). The maximum values of the samples may be then
expressed as the maximum of the random variables (X, X5, .. ., X,,), thus

Y, = max(X1,X2, ...X,) (7.20)

The distribution function @y, (y) of the maximum value Y,, is therefore defined
as

Oy, (y) =P(X; <3,X2 <y,...X, <y) = [@x(y)]" (7.21)

Here the assumption of independent random variables (X, X5, ...X,) is taken
into account (see Eq. (2.22) for the probability of intersection of independent
events).

The probability density function @y (y) is derived from Eq. (7.21)

_ 4oy, (y)

& = el exy) (7.22)

@y, ()

Obviously, the resulting distribution depends on the sample size n and the initial
distribution of the variable X.

Similarly the minimum value of samples (x1, X, . . ., X,,) of the size n, when each
X; is taken from the corresponding population X; may be written as

Y] :l’nil’l(Xl,Xz, X,,) (723)

The distribution function ®y(y) can now be derived from the complementary
(survival) function as

1—®y,(y) =PX; >y, X >y,...X, >y) = [1 — Ox(y)]" (7.24)

Thus the distribution function is
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Dy, (y) =1 - [1 = @x(y)]" (7.25)
The probability density function is then

_ dq)Yl (y)

= = OO ex ) (7.26)

Py, (v)

Equations (4.22) and (4.26) provide an exact solution for probability density
functions of the maximum and minimum value of a sample of n observations taken
from any type of initial population (including a normally distributed population).
These relationships have been used to derive so-called extreme value distributions,
including Gumbel, Weibull and Frechet distributions, as introduced in Sect. 6.5.

Example 7.11. Consider the exponential distribution
Dy (x) =1 —exp (—4ix)
The corresponding distribution function is

- d‘bx(x)
oy

Px (%) = Aexp(—4x)

The distribution function ®y, (y) follows from Eq. (7.21) as

Dy, () = [@x(y)]" = [1 — exp(—Ax)]"

The corresponding probability density function is

or,0) = ‘I’d—y(y) — Inl — exp(—ay)]"" exp(~2y)

Note that the exponential functions are convenient for modeling extreme value
distributions.

Example 7.12. Consider the Gumbel distribution of maximum values defined in
Sect. 6.5 as

®(x) = exp (—exp(—c(x — Xmoa)))
The probability density function is given as

px(x) = dq);(x) = cexp(—c(x — Xmod)) — exp(—¢(x — Xmod))
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Using Eq. (7.21) the distribution function of the maximum value of a sample of
N observations (capital N is used as in Sect. 6.5) may be derived from Eq. (7.21) as

@y, (y) = [@x(7)]" = exp(—exp(—c(x —xmod —InN/c)))

This expression is already provided in Sect. 6.5 by Eq. (6.28). The probability
density function follows from Eq. (7.21) as

ddy(y)

o 0) == = =N [@x ()" oy ()

For practical use of this equation the previous two expressions for [@y ()"~
and @y (y) should be adjusted and substituted.
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Chapter 8
Estimations of Population Parameters

The estimation of population parameters from limited sample data is an indispens-
able part of any engineering and scientific application of probability and mathemat-
ical statistics. Based on appropriate sampling distributions, two types of estimate
are commonly applied: point and interval estimates. Point estimates of the popula-
tion mean and variance are obtained as the mean of relevant sampling distributions
evaluated for the sample mean and variance. Interval estimates are obtained as the
intervals of relevant sampling distribution that cover the population parameters with
a given probability called confidence level. Guidance is given on how to specify the
sample size of an experimental investigation with the accuracy required for the
estimate of the population mean. Notes on estimating the population skewness are
also provided. A review of basic formulae used for point estimates of the population
mean, variance and skewness is provided in Appendix 1.

8.1 Sampling Distributions

The concept of population and samples has already been introduced in Chap. 3,
with references to more detailed descriptions provided in [1-4]. It is necessary to be
reminded here that the population is the totality of items under consideration.
Depending on the actual conditions, it may have a limited or an unlimited number
of items or units. The term “item” or “unit” denotes an actual or conventional object
on which a set of observations can be made [5, 6]. When bulk material or continu-
ous material is considered then the unit is a defined quantity of material having a
physical or hypothetical boundary (container, time interval)

A precise and comprehensive definition of a population is the first important step
in any statistical investigation. The population is commonly characterized by a
number of relevant aspects, including time, geographic region, production technol-
ogy, producer, etc. These aspects are substantial for the correct interpretation of
obtained results.

M. Holicky, Introduction to Probability and Statistics for Engineers, 95
DOI 10.1007/978-3-642-38300-7_8, © Springer-Verlag Berlin Heidelberg 2013
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A sample is one or more units taken from a population and intended to provide
information on the population and possibly to serve as the basis for a decision on the
population. The number of sampling units is called sample size. If the sampling
units are taken from the population in such a way that each unit has the same chance
to be taken, then the sample is called a random sample. In what follows only
random samples are considered.

The constants providing information about the population are called parameters
and denoted here mostly by Greek letters; the corresponding quantities obtained
from a sample are called characteristics and are denoted by Roman letters. Obvi-
ously sample characteristics (discussed in Chap. 3) are not constants but random
variables (called often statistics) that differ from sample to sample and that are
described by special types of distributions, called sampling distributions. The most
important sampling distributions are available in literature [1-4] and their numeri-
cal representations are provided by several software products (EXCEL,
STATISTCA, MATHCAD, MATLAB etc.) or from statistical tables available as
a public domain on the internet. A concise table of standardized normal distribution
is provided in Appendix 7.

The sampling distributions are therefore introduced here very briefly. The
distribution of the sample means is described as the normal distribution (this
important sampling distribution has been introduced in Chap. 6 and a table of its
distribution function is given in Appendix 7). The sample variance is described by
*-distribution, r-distribution is used for estimation of the means when the popula-
tion variance is unknown, and F-distribution is used for the testing of two sample
variances. A short introduction of these sampling distributions is given below; the
numerical values used in the examples are obtained from the above-mentioned
sources.

8.1.1 y’-Distribution

The random variable y” is the sum of the squares of normalised random variables U;
having normal distribution.

pe @D

The distribution depends on one parameter only, v = 1,2,3.. ., called the degree
of freedom (the number of independent summands). It can be shown that the
moment parameters are as follows

e =v, 0p=+/(), ap=2/2/v), e =12/v (8.2)

For example, if the number of the independent variables U; is v = 9 then
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0.2

e

Fig. 8.1 Probability density @(°) for v = 9 degree of freedom

Hp =9, op =424, ap =047, €, =133

Probability density function @(y?) for v = 9 is shown in Fig. 8.1.

8.1.2 t-Distribution

The random variable ¢ is a ratio of two random variables: the normalised normal
variable U and a function of the y* random variable degree of freedom v:

U
t= (8.3)
\/Z
It can be shown that the moment parameters are as follows
v 6
=0, o= PR for v>2, =0, €,=U_4 for
v>4 (8.4)

Obviously it is a symmetrical distribution around zero (u, = a, = 0). As
indicated in Fig. 8.2 with an increasing degree of freedom it approaches the
standardised normal distribution N(0,1) (the distribution function is provided in
Appendix 7).
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Fig. 8.2 Normal N(0,1) and #-distribution for degree of freedom v = 9

8.1.3 F-Distribution

Random variable F is a fraction of two scaled random variables having y*-distribution
defined as

10
_u

F= Z (8.5)
V)

for vy >2 (8.6)

The moment parameters of F-distribution are as follows

V2

Uy = for v, >2 (8.7)

1/2—2

) 21 + 1, —2)

_ f 4 8.8

oF vy —2 vi(va —4) or ¥ > 8.8)
22u; + 12 —2) 2(vy — 4)

v,—06 1/1(1/1—1-1/2—2)

aF = for v, >6 (8.9)
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F
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Fig. 8.3 Probability density function of F' — distribution
v + vy —2)(vivy + 6v1 + 61y — 8) +4u
eF:3(1/2—4)(l bl CILE l 2= 8) L_1] for
vi(vy +v2 —2)(va — 8) (12 — 6)
vy > 8 (8.10)

This distribution is used for testing statistical hypothesis concerning the differ-
ence between two sample standard deviations. The probability density distribution
@(F) for v = 11 and v, = 9 (used in Chap. 10) is shown in Fig. 8.3.

8.2 Point Estimate of the Mean

The sample mean m given by Eq. (3.1) has in general normal distribution N(,u,a/\/n)
having the mean and standard deviation

By =H, Om=0//n (8.11)

Here u and o denote the mean and standard deviation of the population. Equation
(8.11) holds approximately for any population distribution (due to the theorem of
central tendency). Thus the unbiased estimate 7z of the population mean y is simply
equal to the sample mean m, thus
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=m (8.12)

This trivial result for the point estimate of the population mean is independent of
the sample size n. However, it follows from Eq. (8.11) that the standard deviation
o,, of the sample mean m may be relatively large, particularly for small samples and
a great variance of the population. For example, if the sample size is only n = 4,
then the standard deviation 6,, = 0/2 and the point estimate (8.12) may suffer from
a significant statistical uncertainty.

8.3 Point Estimate of the Variance

The sample variance s> given by Eq. (3.2) can be described by »* distribution with
v = n—1 degree of freedom. The random variable y* follows from Egs. (8.1) and

(3.2) (substituting 37 (x; — m)* = ns?) as

n 2 2
X;i—m A
poThlim o

Here, the degree of freedom arises from the residual sum-of-squares in the
numerator, and in turn the n — 1 degree of freedom of the underlying residual
vector {x; — m}. The sum of the residuals is necessarily 0. If n—1 values are known,
then the last one can be thus found. That means the residuals are constrained to lie in
a space of dimension n—1. One says that “there are n—1 degree of freedom for the
residual.”

The unbiased estimate §° of the population variance ¢~ corresponds to the mean
ly» of the random variable ;(2 defined by Eq. (8.2), that is

2

o =n>=n—1 (8.14)
S

The best estimate § of the population standard deviation ¢ corresponding to the
mean . of the 2 distribution of the sample variance s> follows from Eq. (8.14) as

n 2
§—= ] :,/Zl (xi —m) (8.15)
n—1 n—1

So, the denominator n—1 in the estimate (Eq. (8.15)) is due to the fact that the
best estimate is derived from the mean of the y*-distribution describing the sample
variance s°.
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Example 8.1. Consider the sample of measurements of a steel tensile strength
having the standard deviation s = 20.51 MPa that is determined from a sample of

the size n = 100. Obviously the best estimate §° of the population variance
o” follows from Eq. (8.15)

[ n /100
S=s P 0.5 99 0.6 a

However, if the sample size would be limited to n = 10 and the sample standard
deviation would be the same s = 20.51 MPa (as before for n = 100), then the point
estimate of the population standard deviation would be greater

§= g —2 :20.51,/9:21.62 MPa
n—1 9

8.4 Interval Estimate of the Mean

In general the interval estimates provide better information about the possible range
of the population parameters. The interval estimates that cover the population
parameters always correspond to some confidence level (probability close to 1)
that the parameter will be covered by the interval. Commonly, the confidence level
1-2p = 0.90 or 0.95 is accepted, where the probability p = 0.05 or 0.025 denotes
a one sided probability that the estimation limits will be exceeded.

The interval estimates of the population mean depends on whether the popula-
tion standard deviation ¢ is known or unknown. If the population standard deviation
is unknown then instead of ¢ the sample standard deviation s and appropriate
sampling distribution is to be considered.

84.1 Knownoc

The interval that covers the population mean with the confidence level 1-2p follows
from Egs. (8.11) and (8.12) as

(8.16)

Here u, and u;_, denotes the fractiles of standardised normal variable
corresponding to the probabilities p and 1—p.
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Example 8.2. The sample mean of the yield point determined from a sample of
100 observations is 250.5 MPa. The standard deviation of the population is known
from previous experience as ¢ = 20.51 MPa. The interval estimate corresponding
to the confidence level 0.95 (p = 0.025) is then

20.51

250.5 - 1.96 —
/100

20.51

—— < <2505+ 1.96
Voo ¥

246.5 MPa < u < 254.5 MPa

Here the values —u, = u;_, = 1.96 can be obtained from any commonly
available software products (EXCEL, STATISTICA MATHCAD, MATLAB).

8.4.2 Unknown ¢

If the population standard deviation ¢ is unknown then the sample standard devia-
tion s has to be used. The interval estimate corresponding to the confidence level
1-2p is given as
s s

<pu<m+t_p—F—— (8.17)

vn—1 n—1

Here ¢, and #,_, denotes the fractiles of -distribution corresponding to the the
n—1 degree of freedom and probabilities p and 1—p.

m+t,

Example 8.3. Consider a similar case as Example 8.2. The sample mean of the yield
point and its standard deviation are now determined from a sample of 10 observations
only. Assume the same numerical values yielding the sample mean m = 250.5 MPa,
the sample standard deviation s = 20.51 MPa. The interval estimate of the popula-
tion mean corresponding to the confidence level 1 — 2p = 0.95 (p = 0.025) and to
the degree of freedom v=10-1=19 (—f 05 = to975s = 2.262 follows from
Eq. (8.17) as

20.51 20.51
250.5 —2.262 ——— < p < 250.5 4 2.262 ——

Vo Vo
235.0MPa < y < 266.0 MPa

Comparing this interval estimate with the previous one in Example 8.2, it is clear
that due to the unknown standard deviation ¢ the interval is slightly broader.
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8.5 Interval Estimate of the Variance

The interval estimate of unknown population variance and standard deviation is
derived from y*-distribution introduced in Sect. 8.1. The confidence level is
now expressed as l-p;—p,, where p; and 1—p, denote the probabilities
corresponding to the lower and upper fractiles ;(21 and )(%_m specified for v = n—1
degree of freedom. It follows from Eq. (8.13) that the interval covering the
population standard deviation is

s <o < s (8.18)
Xi-p, Xpy

As a rule the confidence level 1-p;—p, is 0,90 or 0,95 usually assuming the
probabilities p; = p, = 0.05 or 0.025.

Example 8.4. Consider the sample standard deviation from previous example
s = 20.51 MPa determined from a sample of 10 observations. Considering
the confidence level 1-p;—p, = 0.90 and p; = p, = 0.05, v = n—1 =9, then
)(%Aos = 3.325 and ;(%'95 = 16.92 (see Fig. 8.1). It follows from Eq. (8.18)

10 10
\J—220.51 2 2051
16.02°0°1 <0 <1/335520°

15.77 < 0 < 35.57

This example clearly indicates that the interval covering the population standard
deviation ¢ with the probability 0.90 may be significantly broad and that the point
§ = 21.62 MPa obtained for sample size n = 10 in Example 8.1 suffer from a great
statistical uncertainty.

8.6 Specification of the Sample Size

It is expected that random samples obtained by experimental investigation will
represent well the populations that are being studied. In particular it is often
required that the estimated population mean is satisfactorily accurate and has a
limited error. It clearly follows from the Sect. 8.1 that the relative error in the
estimated population mean y depends on the sample size n. Determination of an
appropriate sample size n is therefore an important step in any experimental
investigation. The adequate statistical procedure depends on whether the population
standard deviation ¢ is known or unknown.
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8.6.1 Known o

If the population coefficient of variation ¢ is known (from previous experience or
from similar populations) then the maximum deviation of the population mean
estimate follows from Eq. (8.16) as

(8.19)

c
Up 7’7

Then the relative error o can be obtained by dividing the above absolute error by
the population mean y. Then

c 1 Vv
Upy— —= U, —=
Puvnl [P/

Here V = o/u denotes the population coefficient of variation. The required
sample size can then be expressed in terms of the coefficient V as

2
n> (%) (8.21)

5:

(8.20)

Here u,, denotes the normalised normal random variable corresponding to the
probability p; Thus, the probability (confidence level) that the relative error § will
not be exceeded is 1—2p (commonly equal to 0.90 or 0.95).

Example 8.5. It is known that the concrete strength has a coefficient of variation
V = 0.13. If the relative error in estimating the population mean u should be at the
most 10 % (that corresponds to 6 < 0.10), then it follows from Eq. (8.21) that the
number of specimens to be investigated should be

1.96 x 0.13\?
227 =65
>( 0.1 >

So, at least 7 specimens should be used.

8.6.2 Unknown ¢

If the population standard deviation o is unknown, then the sample standard
deviation s and f-distribution are to be considered. Then Egs. (8.19, 8.20 and
8.21) become
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S
L 8.22
"m‘ (8:22)

K 1 %

P Y PRI S S VR 8.23
pm\/n—l‘ p\/n—1’ ( )

1 2
n> (%V) 1 (8.24)

Here ¢, denotes the p-fractile of the ¢- distribution corresponding to the proba-
bility p and to the sample coefficient of variation v = s/m.

Example 8.6. Assume that the sample coefficient of variation v = 0.13 is deter-
mined from a small sample of the size n = 7 (degree of freedom v = 6). If the
relative error in estimating the population mean y should be at the most 10 % (that
corresponds to 6 < 0.10), then it follows from Eq. (8.24) that the number of
specimens to be investigated should be

2.44 13\?2

Here 1, =2.447 is determined for v =6 and p = 0.025. So, at least
12 specimens should be tested, more than in the case of known ¢ when only
7 specimens are required.

8.7 Estimation of the Skewness

The sample skewness a (the coefficient of asymmetry without subscrip) is a very
sensitive sample characteristic substantially affected by deviations and possible
errors of observed data, particularly in the case of small samples. It is strongly
recommended that the sample skewness (as well as kurtosis) be evaluated with the
utmost caution. In particular dubious data and outliers should be carefully verified,
tested and if need be deleted from further investigation.

The corresponding sampling distribution is complicated and its description is
beyond the scope of this introductory text. As already indicated in Chap. 3 by
Egs. (3.26) and (3.27) there are alternative expressions commonly used for an
unbiased point estimate of the population skewness. STATISTICA software
products provide another expression, assuming that the population standard devia-
tion ¢ is known

n n’ ms

ey e D M i v T PR
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Here m3 denotes the third central moment given by Eq. (3.8). If the population
standard deviation o is unknown then it should be substituted by the estimate § given
by Eq. (8.15). The resulting expression for the point estimate of the population
skewness a then becomes

i " " n(n—1 u
az(nl)(nz)ﬁaZl(xi—mp:(n(_z)sS)nZl = m)?

— %a (8.26)

Here the sample skewness a is given by Eq. (3.5). The expression (Eq. (8.26))
gives the same result as Eq. (3.26), and is commonly used by software products
(EXCEL, MATLAB and MATHCAD and other statistical packages).

The enhanced factor of the sample skewness a in Eq. (8.26) is greater than 1 and
with increasing sample size n the factor decreases and ultimately approaches 1. It
should be noted that the population standard deviation ¢ may surprisingly increase
the estimate a given by Eq. (8.25) compared with the expression Eq. (8.26) (the
population standard deviation ¢ may be less than the population estimate §).
However, the differences between expressions Egs. (8.25) and (8.26) are significant
only for small samples (sample size n < 30) and diminish with increasing »; if the
sample size n > 30 then the enhanced factor according to expression Eq. (8.25) is
less than 1,10, the enhanced factor according Eq. (8.26) less than 1,05 (see also
discussion in Sect. 3.7).

Uncertainty in evaluating skewness is usually characterized by the variance o2
(the standard deviation o;) of the point estimate ¢ made from limited sample data
taken from the normal population

) 6n(n—1)
% -t ) t3) (8.27)

An approximate value of the variance Eq. (8.27) is 6/n but this is inaccurate for
small samples of the size n < 30. For the sample size n > 30 (recommended for
estimating population skewness) the standard deviation o; of the point estimate a
can be approximated as

642 \/6/n. (8.28)

Approximately, it can be stated that if the point estimate is, in absolute value,
greater than a double of this value, then the skewness is considered to be significant
and the population is assumed to be asymmetric (not normal). The above procedure
for estimating population skewness & is illustrated by the following numerical
example.
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Example 8.7. Consider the sample skewness a = 1,00 determined from a sample
of 30 observations.

The estimated population skewness @, in accordance with Eq. (8.25) used in
STATISTICA, assuming the population standard deviation ¢ is known, and the

ratio “3 is equal to 1, is given as

30%

——1.00=1.11
29 x 28 00

d =
The formula Eq. (8.26) yields assuming the sample skewness a ~ 3 = 1

V30 %2
a :%1.00 —1.05

Obviously, the enhanced factor obtained from formula Eq. (8.25) (involving the
population standard deviation o) is slightly greater than that obtained from
Eq. (8.26) (in which the estimate of population standard deviation § is considered).

If the population is normal, then the standard deviation of the estimate can be
assessed using Eq. (8.28)

0a = /6/n =045

The skewness is to be considered as significant because
a=1.00>2x045

Thus, the population from which the sample is taken cannot be considered as
symmetric (normally distributed).
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Chapter 9
Fractiles of Random Variables

A fractile is the value of a random variable corresponding to a given probability of
occurrence of values smaller than the fractile. It is an important concept used in
many engineering and scientific applications. If a random variable is defined by a
known theoretical model then the fractile is simply the point at which the distribu-
tion function attains the specified probability. However, estimation of fractiles from
limited sample data without having a theoretical model of the random variable is a
more complicated task. Two different methods are commonly used: the classical
coverage method and the prediction method. Operational techniques are provided
for both methods and their comparison, taking into account the confidence level of
the coverage method offered. In addition, the Bayessian approach to fractile
estimation is explained, by way of updating prior data with newly obtained infor-
mation. A review of fundamental procedures provides Annex 5.

9.1 Fractiles of Theoretical Models

One of the most important keywords in the theory of structural reliability is the term
“fractile” of a random variable X (or of its probability distribution). In some
publications and software products the term “quantile” [1, 2] is used, but more
frequently the term fractile [3—5] is accepted (used also in this book). For a given
probability p, the p-fractile x,, denotes such a value of the random variable X, for
which it holds that values of the variable X smaller than or equal to x,, occur with the
probability p. If ®(x) is the distribution function of the random variable X, then it
follows from Eq. (4.1) that the value ®(x,) is equal to the probability p, thus the
fractile x,, can be defined as

P(X < x,) = D(x,) = p ©.1)

M. Holicky, Introduction to Probability and Statistics for Engineers, 109
DOI 10.1007/978-3-642-38300-7_9, © Springer-Verlag Berlin Heidelberg 2013
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Distribution function ®(u)
1.0

0.8 +

0.6 +

044

0.2 +

3.0

Probability density ¢(u)
0.5

Fig. 9.1 Definition of the fractile for a standardised random variable U

The same definition holds for a standardised random variable U (given by the
transformation Eq. (4.23)), when in Eq. (9.1) U is substituted for X and u, is
substituted for x,. Figure 9.1 illustrates the definition given in Eq. (9.1).

Fractiles u,, of standardised random variables U are commonly available in
tables. Figure 9.1 illustrates the definition of the fractile described by Eq. (9.1)
for a standardised random variable U; it shows the distribution function ®(u), the
probability density function ¢(u), the probability p (equal to 0.05) and the fractile u,,
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(equal to —1.645) for the distribution of a standardised variable U having the
normal distribution.

In general, the fractile x,, of an original random variable X may be calculated
using tables for u, available for standardised random variables U with a relevant
type of distribution. It follows from the transformation Eq. (4.23) that the fractile x,,
may be determined from the standardised random variable u, (found in available
tables) using the relationship

Xp = p+upo = pu(l+u,V) 9.2)

where p denotes the mean, o the standard deviation and V the coefficient of
variability of the observed variable X.

If the probability p < 0.5, then the value x,, is often called the lower fractile, for
p > 0.5 the x, is called the upper fractile. Figure 9.2 shows the lower and upper
fractiles u,, of a standardised random variable U with a normal distribution for
probabilities p = 0.05 and 0.95, and thus denoted u( s and g os.

The values u,, of the lower fractile of a standardised random variable U having a
normal distribution for selected probabilities p are given in Table 9.1. Considering
the symmetry of the normal distribution, the values u, of the upper fractile can be
assessed from Table 9.1 by the substitution of p with 1—p and by changing the sign
of values u, (from negative to positive). Detailed tables can be found, for example
in textbooks [1, 2], in the standard ISO 12491 [5], and in specialised literature.

For a standardised random variable having a general three-parameter log-normal
distribution the value u, of the standardised random variable is dependent on the
skewness a. The values u,, for selected skewnesses a and probabilities p are given in
Table 9.2.

The fractile corresponding to the probability p = 0.05 is usually applied for an
assessment of the characteristic value of material properties (strength of concrete,
yield strength of steel, masonry strength). However, the design values of dominant
variables are fractiles which correspond to a lower probability (p = 0.001), the
design values of non-dominant variables are fractiles corresponding to a greater
probability (p = 0.10).

In the case of a log-normal distribution with the lower bound at zero, which is
described in Sect. 6.2, it is possible to calculate the fractile from the value of the
fractile upormp Of a standardised random variable having the normal distribution
using the relation

X, = ——— exp| Unormp/In(1 +V 9.3
I T2 p P ( ) 9.3)

where unomp i the fractile of a standardised random variable with a normal
distribution, y is the mean and V the coefficient of variation of the variable X. An
approximation of Eq. (9.3) is often applied in the form
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Probability density ¢(u)

0.4
0.3
0.2
0.1
p=0.05
wo0s = -1.645 Uggs = 1.645
0.0 i i
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

Standardized random variable U having normal distribution

Fig. 9.2 The lower and upper fractiles of a standardised random variable U having a normal
distribution

Table 9.1 Fractile u, of a standardised random variable having the normal distribution

p 1077 100% 107°  107* 0.001 0010 0.050 0.100 0.200 0.500
5199 4753 4265 3719 3.091 2327 1.645 1.282 0.841 0.000

7”{)

Xp 22 pexp(Unormyp X V) 9.4)

whose accuracy is fully satisfying for V' < 0.2, but is commonly used for greater V
as well.

Example 9.1. Let us assess the fractile x, of a normal and two parameter
log-normal distribution (with the lower limit at zero) for probabilities p = 0.001;
0.01; 0.05 and 0.10, assuming the coefficient of variation V = 0.3. We know that
the log-normal distribution with the lower limit at zero has, in this case, a positive
skewness a = 0.927 (according to Eq. (6.11)), which needs to be known for
interpolation in Table 9.2. The resulting values x;, are given in the following table
in the form of dimensionless ratios xp/u (the ratio of the fractile to the mean), which
were assessed in different ways for the normal and for the log-normal distribution.
Table of the fractions x,/u.

Probability p
Fraction x,,/u for 0.001 0.010 0.050 0.100
Normal distribution, Equation (9.2), Table 9.1 0.073 0.302 0.506 0.615

Log-normal distribution, Equation (9.2), Table 9.2 0.385 0.483 0.591 0.658
Log-normal distribution, Equation (9.3), Table 9.1 0.387 0.484 0.591 0.657
Log-normal distribution, Equation (9.4), Table 9.1 0.396 0.496 0.610 0.681
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The above table of ratios x,/u shows the expected difference between the
fractiles of normal and log-normal distributions. The lower fractile of the normal
distribution is significantly lower than the corresponding fractile of the log-normal
distribution, particularly for small probabilities p. The table also shows that the
approximate formula Eq. (9.4) provides satisfactory results for computation of
the fractile of the log-normal distribution (the error will decrease by decreasing
the coefficient of variation V).

The fractile of the gamma distribution can be calculated from the available
tables for type III Pearson distribution [5, 6]. To calculate the fractile of the beta
distribution, the available tables of an incomplete beta function may be used, or it
can be assessed by an integration of the probability density function according to
definition Eq. (9.1). However, when it is needed (and neither appropriate tables nor
software products are available), the fractile of the beta distribution, which is bell
shaped (for shape parameters ¢ > 2 and d > 2), may be assessed approximately
from Eq. (9.2) using the table values of u, for a standardised log-normal distribu-
tion, having the same skewness a as the beta distribution. An analogical procedure
may be also used for other types of distribution.

The fractile x, can be easily assessed for the Gumbel distribution. From
Eq. (6.23) and definition Eq. (9.1) follows an explicit relation for x, directly
dependent on the probability p

Xp = Xmod — % In(—In(p)) =2 u — (0.45+ 0.78In(— In(p)))o 9.5)

where the mode x,,,,q and parameter ¢ are substituted by relations Egs. (6.25) and
(6.26).

Example 9.2. Let us determine the upper fractile of the wind pressure from
Example 6.6 described by a Gumbel distribution when a probability p = 0.98 is
considered. It is known from Example 6.6 that for the 1-year maximum g; = 0.35
kN/m?, 6; = 0.06 kN/m>. The fractile xyoz for such parameters follows from
Eq. (9.5)

X008 = 0.35 — (0.45 + 0.78 x In(—1n(0.98))) x 0.06 = 0.51 kN /m>

The corresponding fractile of the maximum for a period of 50 years (as shown in
Example 6.6 where uso = 0.53 kN/m?, 659 = 0.06 kN/m?) is

X008 = 0.53 — (0.45 + 0.78 x In(—1n(0.98))) x 0.06 = 0.69 kN /m>

Simple mathematical operations with the Gumbel distribution, including the
computation of fractiles, are the main reasons why this distribution is so popular.
The Gumbel distribution is frequently used as a theoretical model of random
variables describing climatic and other variable actions that are defined on the
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basis of the maximal values in a given period of time (for example in one or several
years).

9.2 Fractile Estimation from Samples: Coverage Method

Theoretical models are very rarely known precisely in practical applications. In
civil engineering, it is often necessary to assess the fractile of a random variable (for
example, the strength of a new or unknown material) from a limited sample, the size
n of which may be very small (n < 10). Furthermore, random variables may have a
high variability (the coefficient of variation is sometimes greater than 0.30). The
assessment of the fractile of a population from a very small sample is then a serious
problem, which is solved in mathematical statistics by various methods of estima-
tion theory. In the following, three basic methods are briefly described: the cover-
age method, the prediction method and the Bayesian method for the estimate of the
population fractile.

The keyword of the coverage method for fractile estimation from a sample of
limited size n is confidence 7, i.e. the probability (usually 0.75, 0.90 or 0.95) that the
estimated value covers the population fractile (that is why the method is called the
coverage method). The estimator x,, .oy, Of the lower fractile x,, is determined by
the coverage method in such a way that

P(x/’,cover < x]’) =Y (9.6)

Thus, the estimator x,, cover is lower (on the safe side) than the unknown fractile
X, with the probability (confidence) y.

In the following summary practical formulas are given without being derived,
assuming that the population has a general three-parameter distribution
characterised by the skewness a, which is assumed to be known from previous
experience. Besides that, it is assumed that the mean y of the population is never
known in advance and that the estimate is based on the average m obtained from a
sample. The standard deviation s of the population is assumed to be either known, in
which case it is used, or unknown, in which case the sample standard deviation s is
used instead.

If the standard deviation o of the population is known from previous experience,
the estimator x,, cover Of the lower p-fractile is given by the relation

xP,Cover =m—Kpo (97)

If the standard deviation of the population ¢ is unknown, then the sample

standard deviation s is considered

=m— ks (9.8)
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The coefficients of estimation x,, = x (@, p, 7, n) and k, = k (a, p, y, n) depend on
the skewness a, on the probability p corresponding to the fractile x,,, which is
estimated, on the confidence y and on the size » of the population. The knowledge
of the confidence y that the estimate x,, cover Will be on the safe side of the real value
is the greatest advantage of the classic coverage method. In documents [7, 8] the
confidence y is recommended by the value 0.75. In cases of the demands of
increased reliability, when a detailed reliability analysis is required, a higher
value of confidence, say 0.95 may be more appropriate [4].

9.3 Fractile Estimation from Samples: Prediction Method

According to the prediction method [5] the lower p-fractile x), is estimated by the
so-called prediction limit x,, preq, for which it holds that a new value x;, . | randomly
drawn from the population will be lower than the estimate X, ;,.q With only the
probability p, i.e. it holds that

P,y < x,,’pred) =p 9.9)

It can be shown that for a growing n the estimator x,, r.q defined in this way is
asymptomatically approaching the unknown fractile x,,. It can also be shown that
the estimator x,, ,.q corresponds approximately to the estimator obtained by the
coverage method x;, cover for a confidence y = 0.75.

If the standard deviation o of the population is known, then the lower p-fractile is
estimated by the value x,, ,.q according to the relation

x[’,pred :eru!’(l/nJr 1)1/26 (9.10)

where u, = u (@, p) is the p-fractile of a standardised log-normal distribution,
having the skewness a.

If, however, the standard deviation of the population is unknown, then the
sample standard deviation s must be considered instead of ¢

Xp,pred:m+t17(1/n+1)l/25 .11

where 7, = t(a, p, v) is the p-fractile of the generalised Student’s z-distribution for
v = n—1 degrees of freedom, which has a skewness a (information about the
Student’s distribution and about the number of degrees of freedom may be obtained
from Sect. 8 and from other specialised sources [1, 2])
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Table 9.3 Coefficients x, and —u,(1/n + 1)]/2 from Eqgs. (9.7) and (9.10) for p = 0.05 and a
normal distribution of the population (when o is known)

Sample size n
Coefficients 3 4 5 6 8 10 20 30 00
y =075 203 198 195 192 188 1.8 179 177 1.64
K, y = 0.90 239 229 222 217 210 205 193 188 164
y = 0.95 260 247 238 232 223 217 201 195 1.64
—u,(1/n + D2 189 1.83 180 1.77 174 172 168 1.67 1.64

9.4 Comparison of the Coverage and Prediction Methods

The coverage and predictive methods represent two basic procedures of estimation
of the population’s fractile from an available sample of a limited size n. If the
standard deviation of the population ¢ is known, then Egs. (9.7) and (9.10) are
applied, in which two analogical coefficients x,, and —u,(1/n + 1)"? appear. Both of
these coefficients depend on the sample size n; the coefficient x,, of the coverage
method depends more on the confidence y. Table 9.3 shows the coefficients x,, and
—u,(1/n + 12 for p = 0.05 and selected values of n and y when a normal
distribution of the population is assumed.

It follows from Table 9.3 that both the coefficients approach with n — oo the
value 1.64, valid for a theoretical model of normal distribution (see Table 9.1). The
coefficient k,, of the coverage method increases with increasing confidence y. Note
that for a confidence y = 0.75 it holds that x, = —u,(1/n + 1)"?. Thus, for
y = 0.75 the coverage method leads to approximately the same estimate as the
prediction method, X, cover = Xp prea (for y > 0.75 the X, cover < Xp pred)-

If the standard deviation of the population ¢ is unknown, Egs. (9.8) and (9.11)
are applied, in which two analogical coefficients k, and —z,(1/n + 1)/ appear.
Both of these coefficients depend again on the sample size n, but the coefficient k,
of the coverage method depends more on the confidence y. Table 9.4 and Fig. 9.3
show the values of coefficients k, and —t,(1/n + DY for p = 0.05 and selected
values of 7 and y when a normal distribution of the population is assumed.

It is obvious from Table 9.4 and Fig. 9.3 that with increasing the sample size n
both the coefficients &, and —z,(1/n + 1)"/% approach the value 1.64, which is valid
for a theoretical model of normal distribution (see Table 9.1). In the case of the
coverage method, the coefficient k, increases with increasing confidence y and the
relevant estimates X, cover Of the lower fractile decrease (on the safe side). Note that
as in the case of the known standard deviation ¢ both coefficients are approximately
equal, k, = —1,(1/n + 1)!/? and for the confidence y = 0.75 the coverage method
leads to approximately the same estimate, X, cover = Xppred> as the prediction
method.

Also the skewness (asymmetry) of the population @ may significantly affect the
estimate of the population’s fractile. Tables 9.5 and 9.6 show the coefficients k),
from Eq. (9.8) for three values of the skewness « = —1.0, 0.0 and 1.0, a probability
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Table 9.4 Coefficients k, and —1,(1/n + 1)1/2 from Eqgs. (9.8) and (9.11) for p = 0.05 and a
normal distribution of the population (when ¢ is unknown)

Coefficient

Sample size n

3

4

5

6

8

10 20 30 0
y =075 315 268 246 234 219 210 193 187 1.64
k, y = 0.90 531 396 340 3.09 275 257 221 208 164
y =095 766 514 420 371 319 291 240 222 1.64
—t,(1/n + 1) 337 263 233 218 200 192 176 173 1.64
10
| Coefficients kpand —tp(1/n+1)'2
5
1.64 F
F —tp(l/n+1)”2 > "
0 1 1 1 1 1 1
0 5 10 15 20

Fig. 9.3 Coefficients k, and —t,(1/n + D2 for p = 0.05 and a normal distribution of the
population (when o is unknown)

Table 9.5 Coefficient k, from Eq. (9.8) for p = 0.05, y = 0.75 and a log-normal distribution
having the skewness a (when o is not known)

Sample size n

Skewness 3

4

10

20

30

00
a=—1.00 431 3.58 3.22 3.00 2.76 2.63 2.33 223 1.85
a = 0.00 3.15 2.68 2.46 2.34 2.19 2.10 1.93 1.87 1.64
a = 1.00 2.46 2.12 1.95 1.86 1.75 1.68 1.56 1.51 1.34

Table 9.6 Coefficient k, from Eq. (9.8) for p = 0.05, y = 0.95 and a log-normal distribution
having the skewness a (when o is not known)

Sample size n

Skewness 3

4

6

8

10 20 30 00
a=—1.00 10.9 7.00 5.83 5.03 4.32 3.73 3.05 2.79 1.85
a = 0.00 7.66 5.14 4.20 3.71 3.19 291 2.40 222 1.64
a = 1.00 5.88 391 3.18 2.82 2.44 2.25 1.88 1.77 1.34
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Fig. 9.4 Coefficient k, for p = 0.05 and a confidence y = 0.95 (when ¢ is unknown)

p = 0.05 and confidences y = 0.75 (Table 9.5) and y = 0.95 (Table 9.6). Values of
the coefficients from Table 9.6 are shown in Fig. 9.4.

It is evident from Tables 9.5 and 9.6 that as the sample size n increases, the
coefficients k, approach the values of u,,, which are valid for a theoretical model of
log-normal distribution (see Table 9.2). Thus, the influence of the skewness does
not disappear when n — ©0, and it is especially significant for small samples and a
greater confidence y = 0.95 (see Fig. 9.4).

A similar dependence on the skewness may be observed in the case of the
generalised Student’s ¢-distribution for which the fractiles ¢, are given in Table 9.7.
These values #, are applied with the prediction method using formula (9.11) and
further in the Bayes method. That is why Table 9.7 gives the values of fractiles 7,
directly depending on the number of degrees of freedom v. As in Tables 9.6 and 9.7,
the probability p = 0.05 and three skewnesses @ = —1.0; 0.0 and 1.0 are
considered.

It follows from Table 9.7 that as the size of the sample # increases, the values of
t, approach the theoretical values of u,, which are valid for a model of the
log-normal distribution with the appropriate skewness, and are given in Table 9.2.
Therefore, the influence of the skewness again (as in the case of k,) does not
disappear for n — oo, but it is especially significant for small samples
(it increases with a decreasing sample size n).

Example 9.3. A sample of size n = 5 measuring the strength of concrete has an
average m = 29.2 MPa and a standard deviation s = 4.6 MPa. It can be assumed
that the population is normal and that its standard deviation ¢ is unknown. The
characteristic strength f., = x,,, where p = 0.05 is firstly assessed by the coverage
method. If the confidence is y = 0.75, then it follows from Eq. (9.8) and Table 9.4
that

=29.2-2.46 x4.6 =179 MPa

Xp ,cover
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Table 9.7 Coefficient —t, from Eq. (9.11) for p = 0.05 and a log-normal distribution with the
skewness a (when ¢ is unknown)

Coefficient —t, for v = —1 degrees of freedom
Skewness 3 4 5 6 8 10 20 30 00
a = —1.00 2.65 2.40 227 2.19 2.19 2.04 1.94 1.91 1.85
a = 0.00 2.35 2.13 2.02 1.94 1.86 1.81 1.72 1.70 1.64
a = 1.00 1.92 1.74 1.64 1.59 1.52 1.48 1.41 1.38 1.34

If a higher confidence y = 0.95 is required, then

Xp cover = 292 —4.20 x 4.6 = 9.9 MPa
If the predictive method is used, then it follows from Eq. (9.11) and Table 9.4
that

Xp preg = 29-2 = 2.33 x 4.6 = 18.5 MPa

The characteristic strength obtained by the predictive method is only a little
greater than the value according to the coverage method with the confidence
y = 0.75. However, if a higher confidence y = 0.95 is required, then the predictive
method leads to a value which is almost twice as great as the value obtained by the
coverage method.

If the sample comes from a population with a log-normal distribution and a
positive skewness a = 1, then the coverage method with the confidence y = 0.75
(Table 9.5) gives an estimator

=29.2-1.95x4.6 =20.2 MPa

x[’ ,cover

which is a value that is 13 % greater than when the skewness is zero.
Similarly, it follows for the predictive method from Eq. (9.11) and Table 9.7 that

/1
Xppred = 29.2 — 1.74 x 3 +1x4.6 =204 MPa

where the value #, = —1.74 is given, in Table 9.7, fora = 1.0 and v = 5—-1 = 4.
The resulting strength is in this case is 10 % greater than the value which
corresponds to the normal distribution (o = 0).
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9.5 Bayesian Estimation of Fractiles

If previous experience is available for a random variable (for example, in the case of
a long-term production), it is possible to use the so-called Bayes method, which
generally follows the idea of updating the probabilities described in Sect. 2.7. The
Bayes method of fractile estimation is described here without deriving any impor-
tant relations. A more detailed description is given in documents ISO [6, 8] and
other specialised literature [1].

Let us assume that a sample of a size n with an average m and a standard
deviation s is available. In addition, that an average m’' and a sample standard
deviation s’ assessed from an unknown sample of an unknown size n’ are known
from previous experience. It is, however, assumed that both the samples come from
the same population having a mean y and standard deviation ¢. The two samples
may then be combined. This would be a simple task if the individual values of the
previous set were known, but it is not the case. However, the Bayes method must
still be used.

The characteristics of the combined sample are generally given by relations
(6, 8]

n =n+n (9.12)

V=v+J/-1ifnd > 1, =v+ifn =0

m" = (mn+m'n")/n"

2 2 2 2
S" _ (I/S2 T y/s/ + an + n/m/ _ n//m// )/1/”

The unknown values n’ and v/ may be assessed using the relations for the
coefficients of variation of the mean and standard deviation v(u) and v(o),
(parameters u and o are considered as random variables in the Bayes concept) for
which it holds [6, 8]

W =15 /)] = 1/ (2(0)°) 9.13)

Both the unknown variables »n’ and v/ are assessed independently (generally
vV # n'—1), depending on previous experience concerning the degree of uncer-
tainty of the estimate of the mean y, and the standard deviation ¢ of the population.

The next step of the procedure applies the prediction method of fractile estima-
tion. The Bayes estimator x,, g.yes Of the fractile is given by a relationship similar to
Eq. (9.11) for a predictive estimator, assuming that the standard deviation ¢ of the
population is not known

Xp Bayes = m// + l‘”p(l/l’l” + 1)1/2S// (914)
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where t; = t; (a,p, V') is a fractile of a generalised Student’s r-distribution having
an appropriate skewness a, for v/ degrees of freedom (which is generally different
from the value n”—1).

If the Bayes method is applied for an assessment of material strength, advantage
may be taken of the fact that the long-term variability is constant. Then the
uncertainty of an assessment of ¢ and the value v(o) are relatively small, and the
variables v/ assessed according to Eq. (9.13) and v assessed according to Eq. (9.12)
are relatively high. This factor may lead to a favourable decrease of the value t; and
to an augmentation of the estimate of the lower fractile of x, according to
Eq. (9.14). On the other hand, uncertainties in assessment of the mean y and the
variable v(u) are usually great, and previous information may not significantly
affect the resulting values n” and m”.

If no previous information is available, then n’ =1/ = 0 and the resulting
characteristics m”, n”, s”, V" equal the sample characteristics m, n, s, v. In this
case the Bayes method is reduced to the prediction method and Eq. (9.14) becomes
Eq. (9.11); if o is known, Eq. (9.10) is used. This particular form of the Bayes
method, when no previous information is available, is considered in international
documents CEN [7] and ISO [8].

Example 9.4. If previous experience were available for Example 9.3, the Bayes
method could be used. Let us suppose that the information is

m' = 30.1 MPa, v(u) = 0.50, s’ = 4.4 MPa, v(c) = 0.28.

It follows from Eq. (9.13) that

. 44 1\ 1y 1 6
n = _— V = —8M8M =
30.1 0.50 ’ 2 x 0.282

Further on these values are thus considered: ' = 0 and v/ = 6. Because v =
n—1 = 4, it follows from Eq. (9.12)

n" =51 =10, m" = 29.2 MPa, s = 4.5 MPa.

From Eq. (9.14) the fractile estimate follows as

1
X Bayes = 29.2 — 1.81 x ’/g 4+ 1 x 4.5 =20.3 MPa

where the value t; = 1.81 is given in Table 9.7 for ¢ = 0, and " = 10. The

resulting strength is thus greater (by 10 %) than the value obtained by the predictive
method.

If the population has a log-normal distribution with the skewness a = 1, then it
follows from Eq. (9.14) considering the value t; = 1.48, given in Table 9.7, that
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/1
Xp Bayes = 29.2 — 1.48 X 3 +1x4.5=219MPa

which is a value greater by 8 % than the Bayes estimator for a = 0.

Examples 9.3 and 9.4 clearly show that the estimate of characteristic strength
(a fractile with the probability p = 0.05) assessed from one sample may be
expected within a broad range (in Examples 9.3 and 9.4 from 9.9 to 21.9 MPa),
depending on the applied method, required confidence, previous information, and
on assumptions concerning the population. Note that besides the alternatives
considered in Examples 9.3 and 9.4 concerning confidence level and skewness,
knowledge of the standard deviation ¢ of the population and the assumption of a
normal distribution or even a negative skewness (in the case of some high- strength
materials) may be applied.

In general, more significant differences in the resulting fractiles may occur when
the design values of strength are estimated, i.e. fractiles corresponding to a small
probability, than when characteristic values (p = 0.001) are considered. However,
a direct estimate of such fractiles from very small (n < 10) or small samples
(10 < n < 30) of the population can be made only if a sufficient amount of
information concerning the distribution of the relevant random variable is available.
In such a case, it is advisable to compare the results of a direct assessment of the
design value with an indirect assessment when the characteristic value is estimated
first as a 5 % fractile — then the design value is determined using material partial
factors.
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Chapter 10
Testing of Statistical Hypotheses

The testing of statistical hypotheses is one of the essential topics of mathematical
statistics, and is often used in engineering and scientific applications. In general, a
given hypothesis about a population based on limited sample data is verified
specifying a certain high probability (0.95) that the hypothesis is accepted. The
complementary small probability (0.05), called significance level, is the probability
that the hypothesis will be rejected, even though it is correct (Type I error). Another
error may occur when the hypothesis is accepted, although incorrect (Type II error).
Operational techniques are provided for testing the deviation of a sample mean
from the population mean, testing the deviation of a sample variance from the
population variance, testing the difference between two sample means, and testing
difference between two sample variances. Two additional frequently applied tests
are included: tests of good fit of a given theoretical model, and the testing of outliers
in a sample.

10.1 Statistical Tests

Statistical hypotheses are statements, assumptions, or guesses about populations
that are to be verified using limited sample data. The procedures of testing the
hypotheses consist of specific rules enabling a decision about the population to be
made on the basis of sample information. Such decisions are called statistical
decisions [1, 2]. The additional terminology used here also follows the standards
[3-5]. An important statistical technique concerns tests of outliers [6].

A typical testing procedure may be described as follows: a certain random
variable characterizing the hypothesis, called tested variable x, is defined and its
probability distribution is investigated. In particular its critical values x,, (one or two
values), are specified in such a way that an unfavourable value of x occurs only with
a small probability a, called the significance level (commonly between 0.01 and
0.05). The critical values x,, are specified fractiles of tested variables that define the

M. Holicky, Introduction to Probability and Statistics for Engineers, 125
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acceptance and rejection region (see Fig. 10.1). As a rule there are two critical values
X,1 and x,,, corresponding to the probabilities p; = @/2 and p, = 1—a/2 [1, 2].

Let the data available from a sample yield the value of the tested variable equal
to xo, called the test value. Then, if the test value x, is within the margin of
acceptance delineated by the critical values x,, the hypothesis is accepted; if test
value x, is outside the margin of acceptance (i.e. inside the rejection area), the
hypothesis is rejected. The whole test procedure may be summarized by the
following steps:

. Tested variable x is defined.

. The critical values x, are specified for the significance level a.
. The test value x is evaluated using sample information.

. The statistical decision is made:

RIS S

(a) If xo is inside the acceptance margin, the hypothesis is accepted.
(b) If x is inside the rejection area the hypothesis is rejected.

It should be emphasised that statistical decisions are made with limited informa-
tion, and will therefore show some errors regarding any decision that is made. There
will always be some non-zero probability that a hypothesis will be rejected when it
should have been accepted; this error is called Type I error. The Type I error occurs
with the probability equal to the significance level a. Commonly, the significance
level is a small probability, typically @ = 0.05 (a more strict significance, level) or
a = 0.01 (less strict significance level), that the hypothesis will be rejected
incorrectly. So, with an increasing significance level (probability) a the decision
becomes more strict (i.e. the chance of rejecting the hypothesis increases).

However, there is another error which cannot be avoided, and this is called Type
IT error. It refers to the decision that a hypothesis is accepted when it should be
rejected. Analysis of the probability of Type II error is more complicated than just
the specification of the significant level a (which is the probability of a Type I error)
and will not be discussed here in detail. Nevertheless, it should be mentioned that
with a decreasing probability of Type I error (significance level a), the probability
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of Type II error increases. Note that both types of errors (Type I and Type II) may
generally occur in statistical decisions.

Regions of acceptance and rejection for tests based on the standardised random
variable u having normal distribution are shown in Fig. 10.1, together with the
critical values u,; = uy,p = —1.96 and u,, = uy_,pn = 1.96 corresponding to a
significance level of @ = 0.05.

10.2 Deviation of Sample Mean from Population Mean

The hypothesis that a sample having the mean m is taken from a population with the
mean u is to be tested. The sample size is denoted by n. The testing procedure
depends on whether the standard deviation of the population ¢ is known or
unknown and the sample standard deviation s must be used instead of o.

10.2.1 Known Standard Deviation

If the population standard deviation ¢ is known, the mean m is a normally
distributed random variable with the mean m and the variance o*/n. Then the
difference of the sample mean m from the population mean p is tested using a
variable expressed as

m

L/ (10.1)

o

u =

Here u is the normally distributed standardised random variable. The tested
value u, evaluated for a particular sample mean m, is compared with the critical
value u,, specified for a given significance level a.

Example 10.1. Consider a test based on the standardised normal variable u. If the
significance level @ = 5 % (2.5 % on each side of the distribution), then the critical
values u, are taken from the standardised normal distribution (numerical values
determined from table in Annex 7 or by a software product) as

up.02s = —1.96;  upg75 = 1.96)

Thus the critical values may be expressed as u, = +1.96. Note that if the
significance level a =1 % (0.5 % on each side) then the critical values are
u, = £2.576.

Example 10.2. A sample of n = 16 tests of concrete strength yields the mean
value m = 28.8 MPa. From long term production it follows that the population
mean is 4 = 31.0 MPa and standard deviation ¢ = 4.20 MPa. The hypothesis that
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the sample mean is equal to the population mean is to be tested. From Eq. (10.1) the
test value follows as

28.8 —31.0
Uy = T\/E = -2.095

It follows from Example 10.1 that for the significance level @ = 5 % the critical
values —u,, = uy_4p = 1.96. Obviously the test value ug = —2.095 is outside the
acceptance region delineated by the critical value +1.96 (see also Fig. 10.1) and the
hypothesis that the sample is taken from the population having the mean ¢ = 31.0
MPa is to be rejected.

However, if the significance level @ = 1 % (with decreasing error of Type I and
with increasing error of the Type II), the critical values are +2.576 and the
hypothesis that a sample having the mean m = 28.8 MPa is taken form the
population having the mean y = 31.0 MPa is to be accepted.

10.2.2 Unknown Standard Deviation

If the population standard deviation ¢ is unknown, then it should be substituted by
its point estimate s, and instead of the tested variable u the variable ¢ should be used.
Then Eq. (10.1) becomes

n—1 (10.2)

The variable ¢ has t-distribution with n—1 degrees of freedom. For large samples
(n > 30) the r-distribution can be approximated by the standardized normal
distribution.

Example 10.3. Consider again the sample of n = 16 tests from Example 10.2 with
the mean m = 28.8 MPa and standard deviation s = 4.20 MPa. The hypothesis that
the sample is taken from the population having the mean is y = 31.0 MPa is to be
tested. From Eq. (10.2) the test value follows as

28.8 —31.0
to =" 27 \/15 = —2.029
0 4.20

For the significance level a = 5 % the critical value —f,, = #|_4» = 2.131 for
v = 16—1 = 15 degrees of freedom (taken from tables or determined by using a
software products). The test value ug = —2.029 is then inside the acceptance area
42.131 and the hypothesis is to be accepted.
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10.3 Deviation of Sample Variance from Population
Variance

The deviation of the variance s* of a sample of n units taken from a population
having the variance o7 is to be tested. The tested variable is defined as y* variable
that has already been introduced in Chap. 8.

2
) NS

= (10.3)

o2

Here the variable y* should be considered with n—1 degrees of freedom. The
critical values of the variable y* should be defined separately for the critical values
given by the lower boundary )(1%1 and the upper boundary )([272 corresponding to the
significance levels @ = p; + 1—p; ( xz-distribution is asymmetrical).

Example 10.4. The variance of the sample of n = 16 tests in Example 10.3 is
5.1 MPa. Its deviation from the population standard deviation ¢ = 4.2 should be
tested on the significance level @ = 1—p, = 2.5 % (only the upper boundary is
considered). It follows from Eq. (10.3) that the test value

16 x 5.12

2 _ _

The critical value can be determined from tables or by software products for

v = 16—1 = 15 degrees of freedom as ;(32 :;((2)‘975 =275. As ;(% <)(§2 the

deviation of the sample variance from the population variance is insignificant. The

probability density function @(y?) for v = 15 degrees of freedom is shown in
Fig. 10.2.

10.4 Difference Between Two Sample Means

Consider two samples of sizes n; and n,, the means m; and m, and variances O'%

and a%. The difference between the means m; and m, (it is assumed that m; > m,)
is to be tested. The statistical tests have two different procedures, depending on the
following circumstances:

— The variances are known but generally different, 67 # o3
— The variances are unknown and sample variances s7 and s5 must be considered
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10.4.1 Variances are Known

If the variances are known but generally different, 67 # o3, then it could be shown
(see also Sect. 10.2) that the following tested variable is a standardised normal
variable

= (10.4)

The critical value u,, and u; _,,» (the lower and upper values) are determined for
a specified significance level @, similarly as in Sect. 10.2.

Example 10.5. There are two producers of bricks with the following
characteristics of tests concerning strength (in MPa):

— =12, m = 1073, 6, = 1.512
— 1y =10, m> = 9.84, 6, = 1.603

The test value follows from Eq. (10.4) as

10.73 — 9.84
Uy = ————=1.330

/1.5122 1.6032
12 + 10

Considering the significance level a = 0.05 the critical values u, are u,, =
—1.96 and u,_,;, = 1.96. The difference between the means is insignificant (the
test value is within the margin of acceptance as u,;, < ug < U;_,pp) and the
hypothesis that the mean values of the brick strengths is the same in both factories
can be accepted.

10.4.2 Variances are Unknown

If the variances are unknown sample variances s% and s% must be considered then
it could be shown (see also Sect. 10.2) that the following tested variable has the
t-distribution

fo= L " M2 (10.5)

The critical values #,, and #;_,/, are based on the combination of two critical
values 1,2 and f, 4, of t-distribution and degrees of freedom v; = n;—1 and
v, = np—1 appropriate to the samples involved and can be expressed as
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5t 5
la ni—1 +ha ny—1
2
1 2
n—1 ny—1

la/2 = 7’1—(1/2 = 5 2 (10.6)

Here the symmetry of ¢-distribution is taken into account.

Example 10.6. There are two producers of bricks with the following
characteristics of brick testings:

- np = 12, ny = 1073, S = 1.492
- np, =10, my, = 9.84, 5, = 0.813

The test value follows from Eq. (9.4) as

10.73 —9.84
to = 228y 6os

/1.4922 | 0.8132
11 + 9

The critical value follows from Eq. (10.6) considering vy = 11, v, =9,
a = 0.05, t; 4o = —2.201 and t,,,p, = —2.262 (determined by tables or using
software products):

22011492 4 2 262 0813

=2.217
2 2
1.19]2 0.8913

—[%:[17%:

As in the previous Example 10.4, the difference between the means is insignifi-
cant, as the test value is within the margin of acceptance f,, < #y < t;_4 and the
hypothesis that the mean value of the strength in both factories is the same can be
accepted.

10.5 Difference Between Two Sample Variances

Consider again two samples of the sizes n; and n,, the means m; and m, and
variances s7 and s3. The statistical hypothesis that both samples are taken from
populations with the same variance o~ (its value is not needed) is to be tested. In this
case the tested variable is defined using sampling distribution F for vy = n;—1 and
v, = np—1 degrees of freedom:

n
_ n—1
=
nz—l b

©
=

(10.7)

Y
o
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Fig. 10.2 Probability 0.1
density function ¢(y?) for @ ‘
v = 15 degrees of freedom L l

0.075
0.05 ‘
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0

0

The subscripts referring to samples are commonly chosen in such a way that

57 > s3. So the critical value F, > 1 (a one-sided critical area for the significance
level @ = 0.05 or 0.01).

Example 10.7. Consider the two samples from Example 10.6:

- np=12,5; = 1492
- np =10, 5, = 0.813

The statistical hypothesis that variances of corresponding populations are equal
is to be tested on the significance level @ = 0.05. The test value F follows from
Eq. (10.7):

F():i—
9

The critical value F), = F,_, = Fy s (the upper fractile 0.95) for n;,—1 = 11
and n,—1 = 9 degrees of freedom is 3.10 (see Fig. 8.3) and the hypothesis is
therefore rejected (the difference between the variances is significant as
Fo > F, = 3.10).

10.6 Tests of Good Fit

The statistical hypothesis that a given sample of n observations is taken from a
population of a certain type of distribution ®(x) can be examined using different
tests. The most general seems to be the y*-test that can be used for both discrete and
continuous random variables. Another popular test is called the K-test (developed
by A.N. Kolmogorov).
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25

17 19 21 23 25 27 29 31 x; 33

Fig. 10.3 Frequencies n;, and the theoretical frequencies 7;A®(x;) assuming normal distribution,
4 = 25.44 MPa and standard deviation o = 3.45

The definition domain of a random variable x is discretised by the values x;
(i=1, 2, ...k) into k classes and the class frequencies n; are compared with the
relevant theoretical values n [®(x;,;) — DP(x;)] = n AD(x). The classes should be
adjusted to the condition that the minimum theoretical class frequency is
5, n A®(x) > 5. The tested variable is then given as

2
£ = Zk [7; — nAD(x;)] (10.8)

The critical value ;(12, = x1_, is determined for specified significance level a.
Typically a = 0.05 as a strict level or @ = 0.01 for less strict level. The critical
value ;(5 corresponds to the upper fractile having the probability « = 1—p (0.05 and
0.01) of being exceeded. The degree of freedom is in this case givenas v = k—c—1,
where ¢ denotes number of distribution parameters that are determined using
sample data (¢ = 2 for normal distribution).

Example 10.8. Consider the test results described in Example 3.9. The following
table summarises the y*-test and illustrates the use of Eq. (10.8). It shows classes
1-9, class marks x; (in MPa), the frequency n;, and the theoretical frequencies
n;A®(x;) assuming the normal distribution having the mean y = 25.44 MPa and
standard deviation ¢ = 3.45. The table also indicates the calculation of the test
variable y°.

The frequencies n;, and n;A®(x;) are also shown in Fig. 10.3. For each class the
full columns represent the observed frequencies n; and the transparent columns the
theoretical frequencies n;A®(x;). It appears from a visual investigation of Fig. 10.3



134 10 Testing of Statistical Hypotheses

25

20

o(x)
15

10 +

0-
16 18 20 22 24 26 28 30 32X 34

Fig. 10.4 Histogram and probability density function ¢(x) of normal distribution

that the differences n,—n;A®(x;) are not substantial, and that the normal distribution
pattern may fit the observed data well.

i X; n; ;AP (x;) [ni —n A®(x,)] n; n;AD(x;) [n; — n AD(x;))
1 17 1 1.044 0.002

2 19 3 3.645 0.416

3 21 12 9.093 8.450 16 13.770 4973
4 23 15 16.209 1.461 15 16.209 1.461
5 25 20 20.646 0.417 20 20.646 0.417
6 27 18 18.792 0.627 18 18.792 0.627
7 29 11 12.222 1.494 11 12.222 1.494
8 31 8 5.680 5.380 10 7.560 5.954
9 33 2 1.887 0.013

P 18.260 89.198 14.925

In order to comply with the recommendation to combine classes when the
theoretical frequency n A®(x) is less than 5, the first three and last two classes are
combined. Then the test value y* follows from Eq. (10.8) as

2F =14.925/89.198 = 0.167

The critical value for the confidence level @ = 0.05andv = k—c—1 = 6—-2—-1 =3
degress of freedom is y7 = yi , = ¥gos = 7.815 and the hypothesis that normal
distribution fits the observed data well is confirmed.

A visual inspection of Fig. 10.4 confirms the test conclusion that the normal
distribution, having the mean u = 25.44 MPa and standard deviation ¢ = 3.45, fit
the available data of concrete strength well.
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Example 10.9. A sample of 100 observations is split into 8 classes, taking into
account conditions concerning the theoretical class frequency n A®(x) > 5.
Then the test value is determined using Eq. (10.8) as y34s = 1.55. The critical
value ;(]2, is determined for significance level @ = 0.05 (upper fractile 0.95), and
v=8 —2—1=15 degrees of freedom (¢ =2 for normal distribution). The
critical value is then y345 = 11.07. Obviously, normal distribution is a suitable
theoretical model.

Figure 10.4 shows the histogram of the data together with the probability density
function of the normal distribution having the mean y = 25.44 MPa and standard
deviation ¢ = 3.45 MPa.

10.7 Tests of Outliers

If the minimum or maximum observation of a sample is at a markedly greater
distance from the remaining observations, then it could be an outlier (caused by an
error in the observation). It should be verified by a statistical test to determine
whether the deviation of such an observation is just random or significant, and then
it may be discounted from any further evaluation.

Two tests of outliers are commonly used: Grubbs test and Dixons test. In both
cases it is assumed that the sample has been taken from a population having the
normal distribution. Sample data are ordered upward into a raw:

X(1) < X(2) < X(@3) <...< -X(nfl) < X(n) (109)

The extreme values x;y and x;, are to be tested.

10.7.1 Grubbs Test

The Grubbs test was developed by F.E. Grubbs. The procedure is dependend on
whether the standard deviation of the population o is known or not. If ¢ is known,
then the tested variable is given as

m— X Xy —m
M or 70 = (n)
o o

(10.10)

If o is unknown, then the sample standard deviation s should be used instead of
o, and the tested variable is then given as

(10.11)
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The critical values 7, and r;, are given in special tables that are available on the

internet and copied below for the usual significance levels @ = 1—p = 0.05 and
0.01. If

<t or vy<7, (10.12)

then the deviations of the extreme values are considered as random. In the opposite
case the deviations are considered to be significant and the relevant observations
should be discounted from any further evaluation.

Example 10.10. The relative compaction of sand and gravel are recorded using
12 randomly chosen specimens:

0.83; 0.88; 0.84; 0.78; 0.82; 0.82; 0.86; 0.81; 0.98; 0.83; 0.85; 0.80

Sample data are ordered upwards into a row as follows:

0.78 < 0.80 < 0.81 <0.82 <082 <083 <083 <084 <085<086<
0.88 < 0.98

The value 0.98 seems to be dubious. The mean and standard deviation of the
above sample are m = 0.842 and s = 0.049. The test value follows from
Eq. (10.11) as

;098 —0.8342

_ =281
ro 0.049 816

The critical value for the significance level @ = 0.01 is 7, g9 = 2.663. Thus the
observed value 0.98 is really an outlier and should be deleted from further analysis.
Critical values 7, and T;) for the Grubbs test

n a: 0.05 0.01 n a: 0.05 0.01

3 1.412 1.414 15 2.493 2.800
4 1.689 1.723 16 2.523 2.837
5 1.869 1.955 17 2.551 2.871
6 1.996 2.130 18 2.577 2.903
7 2.093 2.265 19 2.600 2.932
8 2.172 2.374 20 2.623 2.959
9 2.237 2.464 21 2.644 2.984
10 2.294 2.540 22 2.664 3.008
11 2.343 2.606 23 2.683 3.030
12 2.387 2.663 24 2.701 3.051
13 2.426 2.714 25 2.717 3.071

14 2.461 2.759
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10.7.2 Dixon Test

The Dixon test, developed by W.J. Dixon, is based directly on the sample data
Eq. (10.9) and does not need sample characteristics (the mean and standard devia-
tion). If the minimum observation x;, is dubious, then the tested variable is defined
as

0y =20 (10.13)
Xy = (1)

or, if X, is also dubious then the tested variable is

=2 (10.14)
K1) = X1

Similarly, if the maximum value x,, is dubious then the tested variable is

o= "D (10.15)
X = X)

or, if x(; is also dubious then the tested variable

@'y _ M) =Xy (10.16)
Xy — X2

The critical values w, and w;, are given in special tables that are available on the

internet and copied below for the common significance level @ = 1—p = 0.05 and
0.01. If

wo < w, or a)l() < w',, (1017)

then the deviations of the extreme values are considered as random. In the opposite
case the deviations are considered to be significant and the relevant observations
should be discounted from any further evaluation.

Critical values w, and a);, for the Dixon test

n a: 0.05 0.01 n a: 0.05 0.01

3 0.941 0.988 17 0.320 0.416
4 0.765 0.889 18 0.313 0.407
5 0.642 0.780 19 0.306 0.398
6 0.560 0.698 20 0.300 0.391
7 0.507 0.637 21 0.295 0.384
8 0.468 0.590 22 0.290 0.378
9 0.437 0.555 23 0.285 0.372

(continued)
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10 0.412 0.527 24 0.281 0.367
11 0.392 0.502 25 0.277 0.362
12 0.376 0.482 26 0.273 0.357
13 0.361 0.465 27 0.269 0.353
14 0.349 0.450 28 0.266 0.349
15 0.338 0.438 29 0.263 0.345
16 0.329 0.426 30 0.260 0.341

Example 10.11. Let us apply the Dixon test for the data describe in Example
10.10. As the maximum observation x(,, = 0.98 is dubious, the following
observations are needed

Xy = 0.78; X(”,l) = 0.88; )C<n> =0.98
The test value follows from Eq. (10.15) as

, 098088

@0 =098 078 O

The critical value for n = 12 and the significance level a = 0.01 is w, = 0.482
(obtained from tables on internet). Thus, the maximum value x,) = 0.98 is really
an outlier and should be deleted from further analysis.
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Chapter 11
Correlation and Regression

Two dimensional random variables are frequently investigated in engineering and
scientific applications. Normal distribution is commonly assumed as a theoretical
model for the population of two dimensional random variables. The mutual linear
dependence of the two variables is described by the coefficient of correlation.
Regression lines are used to analyse the dependence of one random variable, on
one hand as the dependent variable, on the other as the independent variable. While
the correlation is a symmetrical property with respect to the two random variables,
regression is influenced by the choice of a dependent or independent variable. The
estimate of the coefficients of correlation and regression from sample data is an
extremely important task, as only limited samples for two dimensional random
variables are commonly available. For the same reason testing concerning the
coefficient of correlation and regression is an essential step in many engineering
and scientific applications.

11.1 Two-Dimensional Random Variables

Very often in engineering or scientific practice a relationship between two or more
variables has to be investigated. It is then desirable to express this relationship in
mathematical form. It should be emphasised that correlation theory investigates the
mutual dependence of two or more variables, while regression analysis studies the
dependence of one random variable (as a dependent variable) on the other variable
that is considered independent [1, 2].

When only two variables are involved, then we talk about simple correlation or
regression. When more than two variables are involved, then multiple correlation
or regression is applied [3, 4]. This chapter will consider only simply correlation
and regression. A detailed discussion concerning the multivariate random variables,
probabilistic models, parameters of population and sample characteristics can be
found in specialist literature [1, 2].

M. Holicky, Introduction to Probability and Statistics for Engineers, 139
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If two variables (two characteristics) X and Y are studied for each item (entity),
every time a set of conditions 7 (see Sect. 2.1) is realised, i.e. a certain random event
is realised, and given that the variable X takes on the very value x, and the variable
Y takes on the very value y, then the variables X and Y form a pair of joint random
variables. An example is the force X and the weight Y studied when a concrete cube
fails when loaded under given conditions into a test machine. It is certainly possible
to study more than two characteristics, e.g. the force, weight and moisture content.

In the following, only two-dimensional random variables, having two normally
distributed components (two joint random variables), X and Y, are analysed. The
realisations of each component are denoted by the small letters x and y. The
summary of all possible realizations, x and y, of a pair of joint random variables,
X and Y, is called the two-dimensional population. Similarly, as in the case of the
one-dimensional random variable, the two-dimensional random variable is
described by the distribution of probabilities, i.e. by a function which determines
the probability that the random variables X and Y make up part of some given sets
(for continuous random variables), or take on some given values (for discrete
random variables). The two-dimensional distribution function ®(x, y) (sometimes
denoted ®xy(x, y)) gives, for every pair of values x, y, the probability that the
random variable X is less than, or equal to, x, and the random variable Y is less than,
or equal to, y

@(x,y) =PX <x; Y <y) (11.1)

The probability density function of a continuous random variable ¢(x) is the
derivative (if it exists) of the distribution function

_ Po(xy)
p(x,y) = “oxdy (11.2)

The marginal distribution function of the variable X, ®y(x), is a special case of
the distribution function ®(x, y) without any constraint on the variable Y, i.e. for all
realizations Y < oo

D(x,00) =PX <x; Y <o0)=Dx(x) (11.3)

The marginal distribution function of the variable Y, ®y(y), is defined in a

similar way. It is a special feature of the distribution function ®(x, y), without

any constraint on the variable X, i.e. for the sum of all possible realizations of the
variable X < oo

®(00,y) =P(X <o00; ¥ <y)=dy(y) (11.4)

We can say that the random variables X and Y are independent if it holds that
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®(x,y) = ®(x,00)  P(00;y) = Dx(x)Pr(y) (11.5)
Then it holds for the probability density function that

P(x,y) = @x(x) Py (y) (11.6)

where @y(x) and @y(y) are the marginal probability density functions of the
variables X and Y.

The two-dimensional random variable is described by moment parameters and
various types of distribution (usually by the normal), in a similar way to
one-dimensional variables. Besides the one-dimensional moments which lead to
the definition of averages uy, gy, and the standard deviations oy, oy, the joint
moments of both variables X and Y are also applied. The most important one is
the joint central moment of the first order oxy, which is called the covariance

oxr = 900 = )0~ sty (117

The covariance provides the basis for the definition of the correlation coefficient
Pxy

pxy = (11.8)

OxOy

It always holds for the value of the correlation coefficient that —1 < pxy < +1.
If the variables X and Y are independent, then pxy = 0. An inverse proposition
holds only in the case of the two-dimensional normal distribution (which is
commonly applied and is described below). In the case of multivariate random
variables X [X;, X»,... X,], the covariance o;; and the correlation coefficients p;;
between the individual components X, X,... X;, form matrices. The matrix of
covariances is applied in the transformation of the vector of dependent variables to
the vector of independent random variables, which are used in reliability analysis of
more complex problems (see the software product STRUREL).

11.2 Two-Dimensional Normal Distribution

A two-dimensional normal distribution of two continuous random variables X and
Y, having the parameters ., 4y, 6, 6, and a correlation coefficient p,, = p, is given
by the following equation
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1

2oy 6y /1 — p?

oo ((52) 20 (S52) (552) + (552 )) o

The marginal distributions ¢x(x) and @y(y) are also normal and have parameters
Ux, ox and uy, oy similar to the conditional distributions for given y = y, and
X = Xo, which have parameters yu, + p(yo—py)ox/oy, ax(l—pz)l/ 2 and Uy + plxg —
Ux)o ylox, oy(1 — pz)” 2 [1]. The conditional distributions may come in useful for
(very frequent) indirect experimental verification of properties of one of the joint
random variables X and Y by means of the other.

Similarly, as in the case of the one-dimensional random variable through
transformations, the standardized random variables U and V are given as

P(x,y) =

(11.10)

The standardized two-dimensional normal distribution can then be written in the
form

1 1 ) 2)
uy) =————exp| ——— (u* — 2puv +v (11.11)
wlu,v) 2ny/1 = p? p( %1*p5( P )

The bivariate normal distribution can be generalized [1, 2] to a distribution of
multivariate random variables described by the vector X [X;, X»,. .. X,,], where the
covariance’s and correlation coefficients between the individual components X,
X5,. .. X, form matrices.

11.3 Two-Dimensional Samples

As a result of the sampling procedure, paired observations xy,yi; X2,Y2;- - 3 XpVn,
may be obtained and analysed in a similar way to one dimensional random samples.
Thus the sample means my and my, and sample standard deviations sy and sy, may
be obtained using the formulae given in Chap. 3. However, in addition to these
moment characteristics, so-called product-moments can be generally defined. In the
following, only the first order product moment, called covariance, is considered.

Using a sample of paired observations x,y;; xX2,y2;. . .; X,,,Y,,, the sample covari-
ance is given as

1
Sxy = — Z(Xi_mx)(yi_my) (11.12)

n -
i
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Note that an unbiased estimate of the population’s covariance should have the
denominator n—1 similar to the case of the one dimensional random variable
discussed in Chap. 8. Analogically to (11.8), the sample correlation coefficient
follows as

Sxy Z (x; — mx)()’i - my)
— SxSy B \/Z (xi _ mX)2 Z (y: _ mY)2

1 1

(11.13)

The sample correlation coefficient ryy is often used for the numerical expression
of the mutual linear dependence between X and Y in a number of paired
observations. The value of ryy lies between —1 and +1. If it equals one of these
limits, it means that the dependence between X and Y in a number of paired
observations is exactly linear. When possible, a scatter diagram showing the
observed set should be used to verify the linearity, and possibly to reduce the
domain so that the assumption of linearity is justified.

Usually, the coefficient of correlation is used to classify verbally the degree of
mutual dependence of random variables X and Y. The following scale is sometimes
used:

Iryy | < 0.3 low degree of dependence
0.3 < Irgy | < 0.5 some degree of dependence
0.5 < Irxy | < 0.7 significant degree of dependence
0.7 < Irgy | £ 0.9 high degree of dependence
0.9 < lrygyl very high degree of dependence

The above scale provides only an indicative marking of mutual dependence that
is not based on any objective criteria.

Example 11.1. Measurements of ten components yield as a rule positive
deviations from the nominal width and high shown in the following table.

i 1 2 3 4 5 6 7 8 9 10
X; 3 4 4 5 6 7 7 8 8 9
Yy 4 6 5 6 7 4 8 7 6 9

The following characteristics can be found
my = 6.1; my = 6.2; sy = 1.92; sy = 1.54; sxy = 1.88; rxy = 0.64
The coefficient of correlation ryy = 0.64 indicates a significant degree of mutual

dependence of deviations from width and height. The point graph of observed
values is shown in Fig. 11.1.
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11.4 Regression Lines

Regression lines describe a linear dependence of one of the variables Y or X on the
other variable considered as an independent variable. The regression line of the
dependent variable Y on the independent variable X is written as

Y =ap+a X (11.14)

The constants ag and a; denote the coefficients of regression of ¥ on X. Similarly,
the regression line of dependent X on independent Y is written as

X=0by+bY (11.15)
The constants by and b; are the coefficients of regression of X on Y. Figure 11.1
shows regression lines (11.4) and (11.15) for the data of Example 11.1.

The regression coefficients ay and @, (and similarly by and b;) are commonly
derived using the well known method of the least squares minimising the residuum

> a0 —a) (11.16)
Using this method it can be shown that the regression coefficients are
ap = my — rxymxsy/sx (11.17)
ay = rxySy/sx (11.18)
Similarly the regression coefficients by and b, are given as

b() = myx — I‘Xymxsx/Sy (1119)



11.5 Estimation of the Coefficient of Correlation 145

Fig. 11.2 Regression lines 10
of Example 11.2 gl ¥

Y=3.07+051X

X=115+0.80Y

bl = VXst/SY (1120)

Example 11.2. Measurements of ten components described in Example 11.1
indicate the following regression coefficients (Fig. 11.2)
ap =62 — 0.64 x 6.1 x 1.54/1.92 = 3.07; a; = 0.64 x 1.54/1.92 = 0.51
by =6.1 —0.64 x 6.2 x 1.92/1.54 = 1.15; b; = 0.64 x 1.92/1.54 = 0.80
So, the regression lines of Y on X and X on Y are
Y=307+051Xand X =1.15+080Y
Note that the regression lines intersect at the mean point (my = 6.1; my = 6.2).

11.5 Estimation of the Coefficient of Correlation

The sampling distribution of the coefficients of correlation r = ryy can be
approximated by normal distribution, using the transformation (a simplified nota-
tion for r is used for rxy in the following)

1 1+r
=1 11.21
z 2 " 1—r ( )
The mean and standard deviation of the transformed variable z are
1 1
g = ~intP (11.22)
2 1—p
1
0. = (11.23)
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Here p denotes the coefficient of the correlation of the population, and # is again
size of the sample that has been used to determine the coefficient of correlation.

The point estimate of the population coefficient of correlation p is equal to the
sample coefficient of correlation r. The interval estimate of p can be made using the
transformation (11.21). The two sided interval estimate can be expressed as

z4u, o, < p, <z+u_po; (11.24)

This interval covers the unknown mean g, with the confidence level (probability
coefficient) 1—2p; u,, and u; _,, are the standardized normal variables corresponding
to the probabilities indicated in the subscripts. Taking into account the standard
deviation o, given by Eq. (11.23), the interval estimate given by Eq. (11.24) can be
written as

PR S (11.25)
n—73 n—3

The whole estimation procedure for the population coefficient of correlation p
can be summarised by the following main steps.

Transformation of r into the variable z.

Determination of values u,, and u; _,, for specified confidence level 1-2p.
Determination of the interval estimate of u, using Eq. (11.25).
Recalculation of the population using transformation (11.22).

Example 11.3. Consider a sample of n = 16 observations having the sample
coefficient of correlation r = 0.73. The interval estimate for the population coeffi-
cient of correlation should be determined by the confidence level 1-2p = 0.95.
The above mentioned estimate procedure yields

— For r = 0.73 the transformed variable z = 0.9287
For p = 0.025 the standardised variables are u,, = —1.96 and u; _, = 1.96
The interval estimate for the variable z

1.96 1.96

0.9287 — ——22 < 4 < 0.9287 4+ ——20
Ji6-3 - /16 -3

0.3851 < u, < 1.4723

The interval estimate of the population correlation coefficient p

0.37 < p < 0.90
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11.6 Estimation of the Coefficients of Regression

The population coefficients of regression ay, ay, o, 1, corresponding to the sample
coefficients aq, aj, by, by, are to be estimated. It is assumed that a sample of
n observations is described by the characteristics my, my, Sx, Sy, and the sample
coefficients of regression ay, ai, by, b;.

It can be shown that the sampling distributions of regression coefficients are
normal, with the mean and standard deviation of the coefficient aq as

o . _ Oy my
,Ltao = Qo, (700 = 7% 1 +§ (1126)

The mean and standard deviation of the coefficient a, are

H, =ay; 04 or (11.27)

1 l:S)(\/ﬁ

Similar expressions hold for the regression coefficients by and b.

Taking into account Egs. (11.26) and (11.27), it follows that the point estimates
of the population regression coefficients ay, a;, fo, 1 are equal to the sample
coefficients ag, a;, bo, b;.

The interval estimates covering the unknown population coefficients with the
confidence level (probability) 1—2p are given by similar expressions to those given
in Chap. 8. For the regression coefficient ay it holds that

ap + u,,Dfao <ay <ay+ ul,,,Dfao (11.28)

Substituting the standard deviation Df,, with the expression given in Eq. (11.26)
it follows that

2 DfY m2
ap+ u 1+—<a0 < ap+u 1+ (11.29)
4 \/— P\/— S}z{

The population standard deviation oy is generally unknown, and must be
assessed by using the estimate of residual variance s%,‘x about the regression line

with the expression

1 n
S%{\x Th_2 Zi:l (i — ao — arxi)’ (11.30)
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The residual variance si‘ x given by Eq. (11.30) represents a point estimate of the

variance as a sum of residuum squares divided by the degree of freedom to n—2.
Then the interval estimate of the population coefficient ag (11.28) may be written as

Dfyx my Dfyx my
ao + 1, % 1+—X<a0 <ap+h o, 14X (11.31)
vn vn S
Due to the assessment of the population standard deviation by residual standard
deviation, ¢ random variable is used instead of the standardised normal u variable.
Similarly the interval estimate of the population coefficient ; is given as

up DfY ulfp D)Y
- — < < _— 11.3
a; + \/_ E (24 a; + \/_ E ( 2)

Again, the assessment of population variance using the residual variance
Eq. (11.31) can be written as

t, Dfyx ti—p Dfyix
P f‘ <a1<a1—|—QA

ay +—=
! \/ESX \/ﬁ Sx

The resulting inequalities Eqs. (11.31) and (11.33) can also be written for the
population coefficients of regression f, and /.

(11.33)

Example 11.4. A sample of n = 16 measurements of cubic strength Y and cylin-
drical strength X of concrete yields the regression coefficients ay = 0.39 and
a; = 1.03 that are considered as the point estimates of the population coefficients
ap and a;. To determine the interval estimates the following quantities are evaluated:

my = 14.3 MPa; sy = 2.96 MPa; Syjx = 1.92 MPa

For specified confidence level 0.95 (p = 0.025), and the degree of freedom to

n—2 = 14, the value 7, = —2.145 and t,_, = 2.145. The interval estimates are

1.92 1432 1.92 1432
039 —2.145-224/1 <ap <039 +2.145-22 ] 1 42
TV Tao@ = + VA

2.145 1.92 2.145 1.92

103 -2 2202 <103 -2 20

V16 296 =1 V16 2.96

Thus the resulting interval estimates are
—4.69 <ap <547

0.68 < ap < 1.38
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11.7 Boundaries of the Regression Line

It is interesting to know that the region where the population regression line ¥ =
ap + a; X may occur with a given confidence level (probability) 1—2p. It can be
derived from the above estimates of the population regression coefficients o and a;
that the location of the regression line is limited by the lower and upper limits given
by the following inequality

D X — my)*
ao+ X + 1, \J;YEXUIJF( - x) < ap+
X

D X — my)*
< ap +a1X+t1p% 1 +(S—2m") (11.34)
X

The variable ¢ is again taken from ¢ distribution for n—2 degree of freedom.

Example 11.5. Considering Example 11.4 Eq. (11.34) may be written as

1.92 (X —14.3)°
0.39 + 1.03,X — 2.145 1 < X <0.39 4 1.03,X
+ 1 e + 3962 ap + ay + 1
1.92 (X —14.3)
2145 14+ 2——L
+ V16 + 2.962

The graphical representation of this inequality is shown in Fig. 11.3. The curves
denoted as the lower and upper limits represent the limits of the area where the
population regression line is expected with a confidence level (probability) of 0.95.
There is only a small probability 0.025 that the regression line will be above or
below the designated area. Obviously, with increasing confidence level, the
expected region of the population regression line is getting larger.

11.8 Tests of Correlation Coefficient

There are two frequently used tests concerning the sample coefficient of correlation
r to verify the hypothesis that:

— A sample is taken from a population having the coefficient of correlation p,
— Two samples are taken from populations having the same coefficient of correla-
tion p.
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Fig. 11.3 Boundaries of the 25
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In the first case the difference between the sample coefficient r and the popula-
tion coefficient of correction p is assessed, considering a given significance level a
(0.01 or 0.05). The tested variable is defined as

u=(z—p)Vn—-3 (11.35)

Here, the variable z is given by the transformation (11.21) of the sample
coefficient r, and y,.by the same transformation, but for the population coefficient
p. The test value u, is compared with the critical values taken from the standardised

normal variable u,; = ugp = —1.96 and u,, = u_qp = 1.96 for the significance
level @ = 0.05 oruy,; = e = —2.58 and up, = uy_qpp = 2.58 for the significance
level a = 0.01.

Example 11.6. The coefficient of the correlation 0.34 of the wind speed at 2 and
10 m aboveground level is evaluated from a sample of n = 1,187 observation. The
hypothesis that the sample is taken from a population having the coefficient of
correlation p = 0.4 is to be tested. The test value follows from Eq. (11.35) as

up = (0.3541 — 0.4236)v/ 1187 — 3 = 2.391
The critical value u,; = u;_,p» = 2.58 is greater than the test value and the

hypothesis is accepted.
In the second case the tested variable is defined as

u=—a_2 (11.36)

Here again the transformation (11.21) is used for sample coefficients of
correlations 7y and r, to get the variables z; and z,. The critical values are the
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same as in the first case: u,; = ugp = —1.96 and u,; = u;_qp = 1.96 for the
significance level a = 0.05 or u,; = uep = —2.58 and up, = uy_qp = 2.58 for
the significance level @ = 0.01.

Example 11.7. Two samples similar to that in Example 11.6 are available:

- ny = 1,187, ry = 0.34
— ny =956,r, =040

The test value follows from Eq. (11.36) as
_0.3541 —0.4236

/1 1
1187-3 + 9563

Assuming the significance level a = 0.05, the critical value u,,; = uq» = —1.96
and the difference of the two coefficients of correlation is insignificant.

Up = —1.597

11.9 Tests of Regression Coefficients

As mentioned previously, in Sect. 11.8, there are two types of tests concerning the
coefficients of regression ay and a; and the population coefficients oy and «;
(regression of ¥ on X, see Sect. 11.4). The following hypotheses are to be tested:

— A sample having the regression coefficients @ and a, is taken from a population
with the coefficients ay and «;

— Two samples are taken form populations with the same coefficients of
regression.

Analogous test are applied for the coefficients by and b; and f, and f; for the
regression of variable X on Y. The following procedures concern only regression of
Y on X and the first type of the tests.

Assuming that the population standard deviation oy is known, the tested variable
of the first type of the tests is given as

u8 :w (11.37)
2
niy
Oy 1+§‘_%
u(l) :W (11.38)
Oy

The critical values are taken from the standardised normal variable u,,; = u,p» =
—1.96 and uy,, = u;_qp = 1.96 for the significance level a = 0.05 or u,; = uyp =
—2.58 and u,» = u; _ op = 2.58 for the significance level a = 0.01.



152 11 Correlation and Regression

If the standard deviation oy is unknown, then it must be substituted by the
residual standard deviation syjy, and the tested variable of the first type of tests
becomes

0 - (“0—70‘0)\/2 (11.39)
my
SY|X 1 +—2
Sk

o = @z a)scy/n (11.40)

Sy|x

In this case, the critical values are taken from the ¢ distribution #,; = #,, and
Iy = t1_qp for the significance level @ = 0.05 or 0.01 and v = n—2 for the degree
of freedom.

Example 11.8. Consider again the sample mentioned in Example 11.6: the sample
size is n = 1,187, the coefficient of regression ay = 5.4 ms~! and a; = 1.85, the
residual standard deviation sy. = 3.66 ms~'. The characteristics of the indepen-
dent random variable X are my = 13.2 ms™ ' and sy = 2.12 ms™'. The hypothesis
that the population coefficients of regression are @y = 4 ms~ ' and a; = 2 is to be
tested.

The test value follows from Egs. (11.39) and (11.40) as

540-4.0
£ (540 —4.0)vn _ 2.09

3.66,/1+ 132

1.85 — 2.00)12y/11
t(l):( 85 3022) 87 _ 599

Considering the significance level @ = 0.05 and the number of the degree of
freedom v = n — 2 = 1,185, the critical values may be taken from a standardised
normal variable as u,; = u,p = —1.96, and u,, = u;_,pp = 1.96. The difference
of the sample coefficients from the population coefficients is significant, and the
hypothesis rejected.
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Chapter 12
Random Functions

Random functions and random fields are applied in current engineering and scien-
tific tasks more and more frequently. Random functions are actually random
variables that are functions of deterministic arguments, for example of time, planar
or spatial coordinates. A brief introduction to random functions includes a defini-
tion of the basic parameters such as the mean, variance and autocorrelation func-
tion. The definition of the stationary and ergodic functions is supplemented by a
description of the spectral representation of stationary random functions. The
fundamental properties of random functions and operations with commonly used
random functions are illustrated by practical examples.

12.1 Basic Concepts

A random function or a random field X(#) of a deterministic argument ¢ (spatial or
planar coordinates, time) is a function delivering for a given argument ¢ a random
variable X = X(¢) [1-4]. In agreement with previously used symbols random
functions will be denoted by capitals, such as X(¢), Y(¢), Z(¢). . ., their individual
realizations by the lower case letters x(#), y(¢), z(¢). ... If the fixed values of the
argument are denoted by #, f,, t3... then the corresponding random variables
represent a system of different random variables

X(1),X(12),X(13) ... (12.1)

If the number of arguments #; i = 1,2,.., m increases then the system of random
variables (12.1) describes sufficiently well the random function X(#). Thus, the
random function is a generalisation of the system of random variables.

Example 12.1. The inside temperature of a structure depends on a number of
circumstances difficult to describe completely. Consequently the temperature is
considered as a random function X(¢) of the deterministic argument ¢ representing
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the spatial coordinates and time. Similarly, wind speed may be considered as a
random function of the coordinates and time.

12.2 Parameters of Random Function

The mean my(f) of a random function X(¢) is defined analogously to the mean of
random variables described in Sect. 4.5. Taking into account the fact that the
probability density @y (x,7) of a random function X(¢) is generally dependent on
two variables, on a point x of variable X = X(#) and on the deterministic argument ¢,
then the mean ux(?) is a generalisation of the definition (4.11)

[o.¢]

uy (1) = J Xy (x, £)dx (12.2)

—00

The mean px(?) is a deterministic function of ¢ that represents the basic compo-
nent of the random function X () describing its location (or central tendency). The
difference X(r) — px(¢) is called the fluctuation component of the function X(z).

This fluctuation component is used to define the variance o%() of the random

function X(7) in a similar way to defining the variance 6% of a random variable

X given by Eq. (4.14). Thus the variance 6% (7) is defined as

(1) = jw X() — g () Py, e (12.3)

—00

The variance 6% () is a measure of dispersion of the random function X(f) around

the mean ux(f) as indicated in Fig. 12.1.
Instead of the variance o%(f) the standard deviation ox(f) is often used in
technical applications. Following relationship (4.16) the standard deviation is

defined as the square root of the variance

ox(t) = \/o%(1) (12.4)

It is interesting to note that although the realization x(#) and the mean px(¢) of the
random function X(#) in Fig. 12.1 have a similar shape, the character of the random
function Y(¢) in Fig. 12.2 is different. Nevertheless, both random functions X(¢) and
Y(¢) have the same variance. If, for example, for the given argument ¢, a realisation
x(t;) of the function X(¢) is above the mean ux(#,), then it is very likely that also the
value x(#,) of the same realisation at a nearby point #, will also be above the mean
ux(t>). This cannot be said about the random function Y(#) shown in Fig. 12.2. So, it
can be intuitively stated that values of the random function X(¢) have a greater
degree of mutual correlation than the values of the random function Y().
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Fig. 12.1 Random function
X

Fig. 12.2 Random function 1
Y(@0)

Note that the subscripts X,Y indicating the random functions X(#) and Y(¢) may be
omitted in unambiguous cases.

12.3 Correlation Function

The mutual dependence of two random variables X(#;) and X(#,) can be expressed
by the coefficient of correlation discussed in detail in Chap. 11. However, the
random variables X(¢;) and X(#,) depend on deterministic arguments ¢; and t,
Consequently, the covariance (11.7) becomes a function of #; and f, and is com-
monly called the correlation function, sometimes the auto-correlation function
(even though strictly speaking it should be called the covariance function, this
being the name used in literature). Following the general principles of Chap. 11, the
correlation function Kx(#;,t,) is defined as


http://dx.doi.org/10.1007/978-3-642-38300-7_11
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Kx(t, 1) = JJ (xl - ﬂx(h)) (Xz —Hx(fz))qoz(xhxzm,l‘z)dxldxz (12.5)

—00

Here, ¢,(x1,x2,11,%,) denotes two dimensional probability density function, as
used previously in Chap. 11.

The correlation function Kx(#y,t,) defined by Eq. (12.5) has several important
properties that are essential from a practical point of view. Firstly, it follows
directly from the definition (12.5) that for an identical argument #; = t, = ¢ the

correlation function Kx(#;,t,) becomes the variance 6)2((1)

Kx(t,1) = 6%(1) (12.6)

So, the correlation function Kx(#;,t,) automatically includes information on the
variance 5)2((1) that does not need to be specified separately.

There are another three basic properties of the correlation function Kx(#,,) that
can be derived from the definition (12.5) indicated in Fig. 12.3:

1. The correlation function Kx(t;,t,) is symmetrical with respect to ¢; and ¢,
Kx(t,12) = Kx(t2,11) (12.7)
2. It follows from the definition (12.5) that
Kx(t1,12) < ox(t1)ox(t2) (12.8)

3. The correlation function of a random function X(¢) and the sum Y(¢) of function
X(#) and a deterministic function &(?), Y(¢) = X(f) + &(¢) is the same

Kx(t1,12) = Ky(t1,12) (12.9)

Instead of the correlation function Kx(t1,t,) so-called normalised correlation
function (corresponding to the coefficient of correlation defined for two random
variables (11.8)) is used

Kx(t1,1)

_— 12.10
Gx(ll)ﬁx(ll) ( )

Rx(t1, 1) =

It follows from the property (12.8) that the normalised correlation function
(12.10) is a function of two variables, and that its values are within the interval
<—1, 1> similar to the values of the coefficient of correlation (12.8).

When two random functions, say X(f) and Y(s), are involved together then
mutual correlation function may be needed


http://dx.doi.org/10.1007/978-3-642-38300-7_11
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Fig. 12.3 Correlation
function Kx(t,t)

153

V4

Kxy(t,s) = Jro (x - ,uX(t)) (y - yy(s))(pz(x,y, t,8)dxdy (12.11)

—00

The random functions X(#) and Y(s) are said to be mutually dependent when the
correlation function Kxy (¢, s) is not exactly equal zero. Together with the correlation
function Kxy (¢, s) the normalised correlation function Rxy (¢, s) is used

ny<l, S)

RXY(I, S) = m

(12.12)

Example 12.2. Consider a random function describing harmonic vibration
X(t) = Acos(wt + €)

Here A = 0 and € are random variables, ® = 0 is assumed to be a constant. If the
phase shift € is independent of A and € has a uniform distribution within the interval
<0, 2n> then the random function is fully described by the joint distribution

1
Aje)=—p(A);0<e<2
#(Ae) = -p(A):0 <e <2

The mean of the random function follows from Eq. (12.2) as

00,27

ux(t) = JAJL qu)(A)A cos(wt + €)dAde = 0
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The correlation function may be obtained from the definition (12.5) in the form

1
Kx(t1,1) = 524 coslw (11 = 12)]

The variance is obtained from Eq. (12.6)

1
Kx(1,1) = o3 (1) = EﬂlzﬁA

Finally, the normalised correlation function follows Eq. (12.10)

Kx(t,12)

70_)((“)0_)(02) = cos[a) (2‘1 — 2‘2)}

Rx(t1,1) =

Note that with increasing lf; — f,| — oo the correlation function does not
converge at zero but always fluctuates within the interval <—1, 1>.

12.4 Stationary Random Functions

The stationary random functions represent an important group of random functions
by which many mathematical operations may be substantially simplified. That is
why non-stationary functions are often transformed into stationary functions.

A random function is stationary if its mean ux(f) is constant (and may be denoted
simply as uy), and if the correlation function Kx(#1,t,) depends on the difference
t, — t, = 7 thus

px(t) = py;  Kx(ti,0) = Kx(t1 — t2) = Kx(7) (12.13)

The correlation function Kx(z) depends now on one variable z only. Conse-
quently it follows from Eq. (12.6) that the variance is constant

Kx(0) = oy (12.14)

Equations (12.7) and (12.8) can now be stationary functions simplified as
follows:

— The correlation function Kx(z) is even function as
Kx(—1) = Kx(7) (12.15)

— It follows from the definition (12.8) that
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KX(T) < 0)2( (12.16)

The normalised correlation function R(z) of a stationary random function X(¢)
follows from Eq. (12.10) as

Ry(7) = KXY) (12.17)

Ox

Example 12.3. Consider a random function with a simple correlation function
(subscript indicating the random function is omitted)

K(7) = o exp(—clz|)

The correlation function K (z) = 62 exp(—c|z|) is shown in Fig. 12.4 for selected
values of the constant c.

Note that for ¢ approaching O, the correlation function becomes constant
(as indicated in Fig. 12.4 by the dashed line). In that case, the values of the random
functions at two different points are completely dependent and the function is
reduced to the random variable. With an increasing constant ¢, the correlation
function K(7) = azexp(—clrl) approaches the horizontal axes 7 (except 7 = 0 where
K@) = 0'2). This is the case when the values of the random function at two different
points are mutually independent (their correlation is zero).

Example 12.4. Another commonly used correlation function (the subscript
indicating the random function is omitted) of stationary random function is

K(z) = o® exp(—colz|) cos(c17)

Here ¢y Z 0 and c¢; Z 0 are constants determining the shape of the correlation
function. The function is shown in Fig. 12.5. While the correlation function
described in the previous Example 12.2 attains only positive values, the above
correlation function fluctuates periodically from positive to negative values. For
¢; = 0 both the correlation functions are identical.

12.5 Ergodic Random Functions

Most of the stationary random functions comply with another important property in
that — they are ergodic. A random function is said to be ergodic if all required
properties of the function may be deduced from one realisation in a sufficiently
large interval of the argument 7. In mathematical formulation (subscript X is
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Fig. 12.4 Correlation K(r) =o’exp(—c|7|)
function K(7) = ozexp
(—clzl) of a stationary
random function

Fig. 12.5 Correlation
function K(z) = azexp

(—coltl)cos(cq7) of a N
stationary random function \
~ 27/c

omitted) a function is said to be ergodic if the following relationships concerning
the mean p and correlation function K(z) are valid.

o0 ) 1 T
Uy = Jioo xp(x,t)dt = Tlirgoﬁ J Tx(t)dt (12.18)
Kx(7) = JJ (x1 = p) (2 — p)@a (x1, X2, 11, 12 )dx1dxy
1 T
= lim — J,T [e() — W) [x(t + 7) — ulde (12.19)

It is well to note that there are stationary random functions which are not
ergodic. Figure 12.6 shows such an example.

Example 12.5. A random function Y(¢) is given by a sum of the stationary ergodic
function X(f) and the random variable Z (mutually independent).
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Fig. 12.6 An example of a ¥ |
stati functi |
stationary random function . /L7!\ P

which is not ergodic

Z3

Three realizations of Y(¢) are shown in Fig. 12.6. The mean and correlation
function of Y(¢) are

Hy (1) = px (1) + .
Ky(‘[) = Kx(‘[) + 6%

The mean py(f) depends on a particular realization of Z (there are three
realizations zj, z, and z3 as shown in Fig. 12.5) and cannot be determined from
one realization y,(t) of Y(¢). Thus Y(¢) is an example of stationary but not ergodic
random function.

It should be mentioned that the definition of ergodic random function is not
unified. The ergodic properties are sometimes required only with respect to the
mean or the correlation function (not with respect to both).

12.6 Spectral Representation of Random Functions

The spectral representation of random function is commonly understood as its
expression in the form of a sum of harmonic functions having different amplitudes
and frequencies. It’s a special case of canonic decomposition of random functions
when the coordinate functions are

cos wyt,sin wit, k=0, 1, 2,... (12.20)
Here o, denotes the frequencies of the coordinate functions (12.20).

Consider a stationary random function X(¢) in the definite interval <—T, T>. The
corresponding correlation function Kx(z) has the definition domain of the argument
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T =t — t, the interval <—2T, 2T>. It is known that any even function can be
expressed using the Fourier sequence with cosine function only:

Kx(r) =" Dicosayr, = k% (12.21)
1 2T
Do=5r L Kx(7)de (12.22)
1 2T
Dy = T J Kx(7) cos(wyr)dr (12.23)
0

This is a canonic representation of the correlation function from which the
canonic representation of the of stationary random function follows as

X(z) = pux + Z:io (Aj cos wiT + By cOS @ycT) (12.24)

The coefficients A, and B, are mutually independent random variables of the
zero means and the variance D;. The expression (12.24) is called the spectral
decomposition of the random function X(¢).

Substituting = = 0 into Eq. (12.21) the variance of the random function X(¢)
follows as

o = ZZO Dy (12.25)

Thus the variance of the function is equal to the sum of variance of all the
harmonic functions of the spectral decomposition. Equation (12.25) indicates that
the variance 0)2( can be decomposed into partial variances D, corresponding to
frequencies @y. Distribution of the partial variances D;, with regard to the
frequencies wy, shown in Fig. 12.7, is called spectrum of the stationary random
function.

The above procedure can be extended to the infinite interval <—oo, co> in
which the summation is replaced by integrals. In this way the partial variances Dy,
(12.23) are replaced by the spectral density function S(w) of the stationary random
function given by the integral

S(w) = % JOC Kx(7) cos(wr)dr (12.26)

—00

The spectral density S(w) is a continuous even function that generalizes the
partial variances D, given in Eq. (12.23). The correlation function Kx(z) can then be
expressed on the basis of the spectral density S(w) as
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Fig. 12.7 Spectrum of a Dy
stationary random function l

Ky(z) =+ JOC S(®) cos (wr)dw (12.27)

—00

Equations (12.26) and (12.27) represent formulae of the Fourier transformation
that are commonly written in a complex form (in the following formulae i = V—1)
as

S(w) = }T Jio Kx(7) exp (—iwt)dr (12.28)
Kx(7) :% JOO S(w) exp (—iwt)dw (12.29)

The variance (12.25) can be now given in an integral form

oy = Kx(0) = J:C S(w)dw (12.30)

Thus the integral (12.28) of the spectral density S(w) is equal to the variance of
the stationary random function. This finding is frequently used in practical assess-
ment of the variance of stationary random function.

Example 12.6. A random function has the correlation function (subscript
indicating the random function is omitted)

K1) =o*(1 =), s/ <1
The spectral density S(w) follows from Eq. (12.26)

o” [ 462 ) (@
S(w) = - J_Oc (1= [z]) cos(wr) dz = —sin (E)
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Appendix 6: Conventional Probabilistic Models

Introduction

Probabilistic models of basic variables used in different reliability studies often
deviate from each other. Obviously, the reliability studies based on different
probabilistic models may lead to different results, to a greater or lesser degree,
and to undesirable discrepancies in recommendations concerning the partial safety
factors, combination factors and other elements of reliability. It is the aim of this
Appendix to propose conventional models in order to enable an efficient compari-
son of reliability studies of various structural members made of different materials
(steel, concrete, composite). It is intended that this Appendix be used independently
of the main text, hence it has been written as a self-contained document with its own
references and figures.

The probabilistic models of basic variables presented in this Appendix are
intended to be used primarily for calibration procedures expected in the near future
in connection with the incorporation of Eurocodes [1, 2, 3, 4] and ISO standard
[5] into the national systems of codes. Proposed models are specified considering
middle values of action variances, common structural conditions and normal
quality control of material properties. Recent documents of JCSS [6, 7], CIB reports
[8-11], SAKO report [13] and other references [14—18] are taken into account.

Conventional Models

The following conventional models of basic variables are primarily intended to be
used in time-invariant reliability analyses (using Turkstra’s combination rule) of
simple reinforced concrete and steel members. However, the annual maximum
value distribution supplemented by appropriate parameters describing time-variant
properties can also be applied in time-variant reliability analysis.

Table 1 includes three fundamental categories of basic variables (actions, mate-
rial strengths and geometric data), supplemented by uncertainty factors for action
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effects and structural resistance. Note that the data indicated in summary Table 1
represents only reasonable conventional models, which may not be adequate in
some specific cases (for example, for the wind load of high-rise buildings).

For the purpose of comparative and calibration studies, the mean values yy of all
the variables X are related to the characteristic value Xy used in the design calcula-
tion. The last column of Table 1 shows the occurrence probability of value X as
being smaller than the characteristic value X

P{X < Xk} = q)X(Xk) (1)

Here @y denotes the distribution function of the basic variable X. Note that due
to several reasons (historical development of codified values, quality control of
materials) these probabilities in general differ from those recommended for
specifications of the characteristic values Xy in the Eurocodes (for example, the
actual probability of the material strengths X being less than X is only 0.02, rather
than the recommended value 0.05, as given in EN 1990 [1]).
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u
zZ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.0 03413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 03643 03665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 03849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 04032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 04147 0.4162 0.4177
1.4 04192 0.4207 04222 04236 0.4251 04265 04279 04292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 04713 04719 04726 04732 0.4738 0.4744 0.4750 04756 0.4761 0.4767
2.0 04772 04778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 04826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
22 04861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
23 04893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 04911 0.4913 0.4916
24 04918 04920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
25 04938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 04953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 04975 04976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
29 04981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 04987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
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