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Abstract. Recently, we introduced a morphological texture contrast
(MTC) operator that allows detection of textural and non-texture regions
in images. In this paper we provide comparison of the MTC with other
available techniques. We show that, in contrast to other approaches, the
MTC discriminates between texture details and isolated features, and
does not extend borders of texture regions. Using the ideas underlying
the MTC operator, we develop a complementary operator called morpho-
logical feature contrast (MFC) that allows extraction of isolated features
while not being confused by texture details. We illustrate an application
of the MFC operator for extraction of isolated objects such as individ-
ual trees or buildings that should be distinguished from forests or urban
centers. We furthermore provide an example of how this operator can
be used for detection of isolated linear structures. We also derive an
extended version of the MFC that works with vector-valued images.

1 Introduction

This paper focuses on the problem of distinguishing isolated features, also called
individual features, from features that are part of a texture1. We refer to the
latter features as texture details. This problem may occur when one wants to
detect texture regions, but distinguish them from isolated features that should
not be assigned to a texture class. The dual problem occurs when it is necessary
to detect isolated features avoiding detection of parts of neighboring or back-
ground texture even if texture details are similar to features of interest. Here we
consider both problems, namely detection of texture and of individual features.

Although a large variety of texture classification methods has been developed,
much less attention has been given to the apparently simpler problem of texture
detection that discriminates between high contrast texture (of any type) and
non-texture regions. This is not a simple task if accurate localization is required
and if texture must be distinguished from individual features.

In [1] it was proposed to use the difference between maximal and minimal
intensities (MaxMin difference) in a pixel neighborhood for a fast segmentation

1 By features we mean small image elements, for example blobs, ridges or edges.
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of an image into textured and non-texture regions. A standard deviation (StD) is
frequently used as a measure of texture that describes its smoothness [2]. In [3],
where the Local Binary Patterns (LBP) approach was developed, the authors
also suggested to incorporate a variance-based descriptor for texture classifica-
tion purposes. While the LBP descriptor is related to inherent texture proper-
ties, a complementary variance-based descriptor measures texture contrast. The
amplitude modulation function (AMF), derived from the amplitude-modulation
frequency-modulation model [4], can locally capture texture contrast. Though
each of the texture contrast descriptors mentioned above can be used to discrim-
inate between texture regions and non-texture areas, also called smooth areas
in this paper, they cannot distinguish individual features from texture details.

Recently, several descriptors were suggested to approach this problem. In [5]
the PanTex index was developed to detect settlements in panchromatic satellite
imagery. The operator is able to distinguish texture areas from individual linear
features such as roads or borders between homogenous cultivated fields in satel-
lite images. The PanTex index is defined as a minimal contrast among contrast
measures derived from the gray-level co-occurrence matrixes (GLCM) [6], com-
puted for different orientations of displacement vectors. The PanTex method,
however, does not distinguish other individual features, such as isolated peaks
or small isotropic blobs, from texture.

The component count (CC) method [7] is based on the product of two mea-
sures computed in small image blocks. The first one is the sum of the number
of connected components (component count) in the background and the fore-
ground obtained by simple binarization of image blocks. The second measure is
the difference between average intensities in the background and the foreground.
This descriptor is supposed to discriminate blocks covering texture and individ-
ual step edges at the borders between homogenous regions. A similar idea of
counting the number of local extrema (texture primitives) for detection of tex-
ture regions was proposed earlier in [8]. Since this method does not take into
account contrast of texture primitives, it can be very sensitive to noise.

Another disadvantage that all the above texture descriptors have in common,
is that they extend or blur the edges of texture regions preventing accurate lo-
calization of texture borders. Recently, we introduced a morphological texture
contrast (MTC) descriptor that does not suffer from the above disadvantages
[9]. This operator, briefly reviewed in Sec. 2, measures the difference between
upper and lower texture envelopes estimated by means of alternating morpho-
logical filters [10]. Its qualitative performance was illustrated in [9] using only
few remotely sensed images and no quantitative comparison was provided. In
Sec. 3 we provide a quantitative comparison using artificially created images
and qualitative comparison using a set of standard test images.

As we stated in the beginning of this section, the dual problem to the problem
of texture detection is detection of individual features while distinguishing them
from texture details. This problem has mainly been treated in the context of edge
detection capable of discarding texture surroundings. For example, recently in
[11] a surround inhibition mechanism was introduced to improve edge detection
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at region boundaries. In [12] a normal complexity measure was proposed that
is able to separate isolated curves and isolated edges from texture in binary im-
ages. The paper provides an original theoretical framework, but it seems to be
computationally very expensive.

In Sec. 4 we show how the ideas underlying the MTC operator lead to a
Morphological Feature Contrast (MFC) operator that aims at detection of small
isolated objects, rather than edges, in textured background. We illustrate the
potential of the MFC operator on gray-scale images and also derive its exten-
sion to vector-valued images. Additionally, we show how the MFC operator can
be incorporated into a scheme for extraction of isolated linear structures.

2 Detection of Texture Regions: The Morphological
Texture Contrast (MTC) Operator

Below, we define the morphological texture contrast (MTC) transformation
ψMTC(f) that we recently introduced in [9] for localization of high contrast
textured regions. It uses alternating morphological filters, γrϕr and ϕrγr, which
are closing ϕ followed by opening γ and opening followed by closing, respec-
tively. r denotes the size of the structuring element (SE). Alternating filters are
usually employed for noise filtering. We use them to estimate texture envelopes.
The difference between upper and lower envelopes2 defines a measure of texture
contrast, which can serve as an indicator of the presence of texture

ψMTC(f) = |γrϕr(f)− ϕrγr(f)|+ , (1)

where the argument f denotes a 1D signal or a 2D gray-scale image, and | · |+
is defined as

|ν|+ �
{
ν, ν > 0
0, otherwise .

A remarkable property of these envelopes is that they coincide at individual
features, thereby yielding low response at individual features even if they are of
high contrast.

The results of applying this transformation to an artificial 1D signal and to
a remotely sensed image of a forested area are shown in Fig. 1 and Fig. 2(a,b),
respectively. Throughout this paper we use a square SE, where the size refers to
its side length. The size r of the SE in Eq. (1) should be chosen to be larger than
the maximal distance between details in textured regions. Features that stand
apart from texture details farther than r are treated as individual features and
are suppressed correspondingly. In general, we can use different sizes r1 �= r2 for
SEs in |γr2ϕr1(f) − ϕr2γr1(f)|+. While r1 should be chosen to be larger than
the maximal distance between texture details, r2 should be chosen to be smaller

2 Since in the 2D case, ϕrγr and γrϕr are not ordered [13], a lower envelope might be
above an upper envelope. However, it can be shown that regions where this happens
are small in the sense that an erosion with a structuring element of size r completely
removes these regions.
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Fig. 1. Left: An artificial signal composed of a slow varying component, a texture
region, and individual features. Upper and lower envelopes of the texture obtained
with alternating morphological filters are shown by red and green dashed lines. Right:
Extraction of the texture region and individual features with the MTC (Sec. 2) and
the MFC (Sec. 4) operators.

than the minimal size of texture regions. Thus, using r1 �= r2 adds an additional
degree of control of the minimal number of clustered details to be regarded as a
texture. Comparison of Fig. 2(b) and (c) illustrates this point.

(a) (b) (c) (d)

Fig. 2. (a) Pan-chromatic satellite image of 1360x1160 pixel size4. (b) and (c) The
MTC descriptor. r1 = r2 = 30 in (b) and r1 = 30, r2 = 35 in (c). (d) Extraction of in-
dividual dark features, i.e. individual trees, using the ψ−

MFC operator5 with r1 = r2 = 30
(Sec. 4). Note that trees in forest areas are almost completely suppressed.

The MTC operator is bias invariant, ψMTC(f) = ψMTC(f + a), where a ∈ R

is a constant, invariant to signal inversion3, ψMTC(f) = ψMTC(a− f), and pro-
portional to signal magnitude ψMTC(af) = aψMTC(f). An important property
of the MTC transformation is that it neither extends nor blurs the edges of
textured regions, thereby allowing accurate localization of texture borders. This
property is illustrated in Fig. 3 in the rightmost column.

3 Comparison of Texture Contrast Descriptors

In this section we qualitatively and quantitatively compare the performance of
the MTC algorithm with the CC, the MaxMin difference, the StD, the LBP

3 Bias invariant and self-complementary operators [14] are invariant to signal inversion.
4 The image was captured by the GeoEye-1 satellite ( c© GeoEye 2011).
5 High values of the transformation are represented by dark tones.
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contrast, the AMF, and the PanTex algorithms. We denote by w a scale pa-
rameter required for all algorithms. To allow a consistent comparison, a few
algorithms were slightly modified as follows.

In the CC algorithm we avoided several parameters suggested by the authors
since they need to be adjusted for each type of image. Specifically, we used the
simple product of contrast and number of connected components. Instead of
disjoint blocks, a sliding window of the single size w was used to compute the
texture measure at each pixel as in the other compared methods. In the PanTex
algorithm we used a square root of contrast measure derived from the GLCM
matrix. This contrast measure can actually be computed without explicit calcu-
lation of the GLCM matrix. The GLCM contrast measure was estimated within
a window of arbitrary size w, such that displacement vectors of the length w

3
were determined by all pixels on a circle of radius w

3 .
To compute the LBP local variance and the AMF measures we used a Matlab

code available online6. In the LBP we used the square root of local variance
computed as a variance of 4(w − 1) equally spaced point samples on a circle of
radius w

2 . In the AMF approach we set the largest period of a sinusoid in the
Gabor filters to 3w pixels. Note that similar to the MTC operator, all the algo-
rithms, after the small modifications described above (except for AMF), are bias
invariant, invariant to signal inversion and proportional to signal magnitude.

3.1 Qualitative Comparison

The contrast descriptors obtained using the compared transformations are shown
in the first three columns in Fig. 3. All the descriptors have high values in
textured areas and low values in smooth areas. However, contrary to the MTC
operator, the other approaches yield also high responses at isolated features
(edges, ridges, peaks) that do not belong to texture. The PanTex descriptor
partially succeeded to suppress isolated curvilinear structures.

To better visualize the accuracy in texture localization, the texture descriptors
were superimposed on the enlarged part of the satellite image in the forth column
of Fig. 3, where the contrast of red tones is proportional to the values of the
descriptors. Since the distribution of descriptor values is strongly bimodal, one
can distinguish two major levels of texture descriptors, low and high, that appear
as a gray-reddish and saturated red overlayed on the original image. As can
be seen from these images, another advantage of the MTC operator is that it
does not extend the borders of texture regions as other methods do. The CC
method does not extend borders of texture regions, instead it generates a halo
near texture borders and around individual features. This effect does not occur
in the original version of the CC method, in which disjoint/overlapping block
processing was performed (which, however, would not allow accurate texture
localization). The LBP method also leaves rings around individual trees due to
high response at distances equal to the radius of the circle used to compute the
variance of samples on it.

6 Matlab sources are available at http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
and http://cvsp.cs.ntua.gr/software/texture/

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://cvsp.cs.ntua.gr/software/texture/
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Fig. 3. Comparison of texture contrast descriptors. The first two original images are
of size 512x512 pixels; the third image is the same as in Fig. 2(a); the forth image is
an enlarged part of the third image. w = 10 for the first two images and w = 30 for
the satellite images. Further details can be found in Sec. 3 and Sec. 3.1.
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3.2 Quantitative Comparison

In order to quantitatively compare the ability of the methods to distinguish be-
tween texture and non-texture areas we quantify separability between distribu-
tions of texture descriptors in these areas. We used the Fisher criterion [15] that
measures the distance between distribution means relative to their compactness.

The criterion is given by (μ1−μ2)
2

σ2
1+σ2

2
, where μ denotes a class mean and σ2 denotes

a class variance. Since ground truth data is required to define textured and non-
texture regions, we created an artificial data set of gray-scale images along with
corresponding masks of texture regions and non-texture areas, whereby the last
also include individual features.

The data set consists of 100 images of 300x300 pixels with circular texture
clusters and individual features (clusters may overlap, see the upper-left image
in Fig. 5). The number of clusters and their diameters were chosen uniformly
randomly and varied from 2 to 4 and from 60 to 120 pixels, respectively. The
diameter of both individual features and texture details was 5 pixels. Texture
details within clusters were placed at positions on a regular grid with random
Gaussian offsets. The distance between nodes of the regular grid was set to 9
pixels. The amplitude of texture details and individual features varied randomly
with normal distribution. White noise was added followed by smoothing with an
averaging filter with a 3x3 kernel. The standard deviation of the noise was equal
to one third of the amplitude of the texture details.

In the first two experiments we set the mean amplitude of individual features
equal and triple, respectively, of the amplitude mean of texture details. Fig. 4(a,
b) show the resulting separability measure for the size parameter w from 10 to 70
pixels. The figures show superiority of the MTC operator when discriminating
non-texture regions from texture areas. These figures also reveal a high degree
of immunity of the MTC approach to individual features with high magnitude.

In the third experiment we restrict the class of non-texture areas to areas
adjacent to texture regions and to individual features including their neighbor-
hood. Fig. 4(c) shows separability between such restricted non-texture areas and
texture regions when mean amplitude of texture details and individual features
were equal. A comparison of Fig. 4(c) and Fig. 4(a) confirms that the superiority
in the performance of the MTC operator stems from its ability to distinguish
texture from isolated features as well as from regions adjacent to texture borders.

4 Extraction of Isolated Features: The Morphological
Feature Contrast (MFC) Operator

Using the ideas underlying the MTC operator, below we propose a Morpholog-
ical Feature Contrast (MFC) operator that extracts isolated structures while
suppressing texture details of textured background. Using alternating morpho-
logical filters, upper and lower texture envelopes were estimated in the MTC
approach. To extract bright or dark individual features, we suggest using the
difference between the original signal and one of its envelopes, as defined in the
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Fig. 4. (a) and (b): The measure of separability between texture and non-texture
regions as a function of the scale parameter w. The mean amplitude of individual
features is equal to the amplitude of texture details in (a) and tripled in (b). (c) The
measure of separability of texture regions from areas around individual features and
smooth areas adjacent to texture borders. The mean amplitude of individual features
equals the amplitude of texture details.

following equations

ψ+
MFC(f) = |f − γr2ϕr1(f)|+ , (2)

ψ−
MFC(f) = |ϕr2γr1(f)− f |+ . (3)

If one is interested in both dark and bright features, ψMFC = ψ+
MFC + ψ−

MFC

should be used. We call ψ+
MFC and ψ−

MFC white and black MFC, respectively.
Similar to the MTC transformation, ψMFC is bias invariant, invariant to signal
inversion, and proportional to signal magnitude. The MFC operators applied to
a 1D artificial signal are illustrated in Fig. 1. The size r1 of the SE should be
greater than the maximal distance between details of texture to be suppressed.
The size r2 should be greater than the size of features to be extracted. If not
stated otherwise, we use equal sizes for both SEs.

It can be shown that ψMFC is equal to max(ϕγ(f), f)−min(γϕ(f), f), while
ψ+
MFC and ψ−

MFC are equal to operators that were already defined in [16] as
f −min(γϕ(f), f) and max(ϕγ(f), f)− f , and were used for detection of defects
in the noisy background of a metallic surface.

Fig. 5 and Fig. 2(d) show examples of the MFC operators ψMFC and ψ−
MFC

applied to gray-scale images. One can observe that various individual features/
objects were highlighted while texture areas were simultaneously suppressed. For
example, in the middle image in Fig. 5 the forest texture area and the texture of
the village center on the right were suppressed, while isolated buildings outside
the dense village center were preserved in the output image.

The MFC operator is capable of suppressing texture areas even if composed
of details of higher magnitude and similar shape in relation with the magnitude
and shape of individual features. Although several methods were developed to
extract object boundaries (edge features) from textured background, we are not
aware of other techniques that perform qualitatively similar to the MFC when
extracting blob-like features (as well as features of an arbitrary shape).



448 I. Zingman, D. Saupe, and K. Lambers

Fig. 5. First row: 312x312 artificial, 2570x1870 satellite4, and 1010x690 digital cam-
era images. Second row: individual features extracted by means of the MFC operator
ψMFC

5. r1 = 30, r2 = 10 for the artificial image; r1 = r2 = 90 for the satellite image,
and r1 = r2 = 25 pixels for the digital camera image.

4.1 Application of the MFC Operator to Extraction of Isolated
Linear Features

Above we have shown that the MFC operators are capable of extracting features
of different types with width smaller than r2. Specific features can be extracted
by a sequence of standard morphological transformations, with the structuring
element shaped similarly to features. Here we illustrate advantages of the use of
the MFC within such a sequence for the case of linear features.

The remotely sensed images in Fig. 6 (left) contain rectangular structures
composed of linear walls, which used to be livestock enclosures. A black top-
hat transform removes background and emphasizes small dark structures in the
image. A subsequent filter γlin obtained by the point-wise maximum of morpho-
logical openings with linear SE at different orientations extracts narrow linear
structures longer than the length of the structuring element. In the resulting
image shown in Fig. 6 (middle) linear walls were highlighted but also texture de-
tails were emphasized. Furthermore, an appropriate threshold setting is required
to obtain a binary map of features.

To remove texture while keeping isolated features, the MFC operator ψ+
MFC

may be applied7 prior to γlin. This sequence of operators completely removes
most texture details. Non-zero pixels of the resulting image are shown in black
in Fig. 6 (right). No threshold selection was required to obtain the binary
map of linear features. We are currently evaluating the potential of using the

7 The ψ−
MFC could also be directly applied to the initial image.
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Fig. 6. Left: Satellite images4 of 600x600 pixels size with man-made structures (linear
walls). Middle: Black top-hat transform followed by an opening filter γlin obtained by
the point-wise maximum of morphological openings with linear structuring elements
at different orientations5. Right: Black top-hat transform followed by ψ+

MFC and sub-
sequent γlin. Non-zero pixels are shown in black. Parameters: 5x5 SE in the top-hat
operator, r1 = 5, r2 = 10 in ψ+

MFC; the length of the linear SE in γlin equals 15 pixels.

MFC operators for extraction of linear features within the Silvretta Historica
project8.

4.2 Extension of the MFC Operator to Vector-Valued Images

In this section we generalize the MFC operators from gray-scale to vector-valued
discrete images, where each pixel is attributed by a vector of values. A multi-
spectral image is an example of such a vector-valued image. The problem with
extending morphological operators to vector-valued images lies in the lack of a
natural ordering of vectors. However, some morphological transformations de-
fined in terms of arithmetic differences between morphological operators can
naturally be extended to vector-valued images without the need to chose a vec-
torial order. Examples of such extended transformations were recently proposed
for morphological gradient and for top-hat in [18], [19]. Using similar ideas we
derive an extended version of the MFC operators below.

The MFC operator defined in Eq. (3) can be rewritten in the following form
ψ−
MFC(f) = |εr2δr2δr1εr1(f) − f |+ where δ and ε denote morphological dilation

and erosion, respectively. r1, r2 denote sizes of SEs B
(1)
p and B

(2)
p , respectively,

centered at p. Omitting the details of derivation, the last equation can further
be transformed to

[ψ−
MFC(f)](x) = min

k∈B
(2)
x

max
j∈B

(3)
k

min
i∈B

(1)
j

|f(i)− f(x)|+ , (4)

8 Details on this project can be found in [17].
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where B(3) denotes the structuring element B(1) dilated by B(2). Similarly,

[ψ+
MFC(f)](x) = min

k∈B
(2)
x

max
j∈B

(3)
k

min
i∈B

(1)
j

|f(x)− f(i)|+ . (5)

We now define a new vectorial MFC operator ψMFC(f̄) that applies to vector-
valued images f̄ . We replace the non-negative difference between intensity values
in the last two equations by a suitable metric distance D between vectors,

[ψMFC(f̄)](x) = min
k∈B

(2)
x

max
j∈B

(3)
k

min
i∈B

(1)
j

D(f̄(x), f̄(i)) . (6)

In contrast to ψ+
MFC(f) and ψ

−
MFC(f), the ψMFC(f̄) operator extracts both dark

and bright structures when applied to multispectral images. If one is interested
in extraction of either dark or bright features only, pseudo-distances may be
used. For example, instead of using D∞ distance, pseudo distances defined by
D+

∞(f̄ , ḡ) = max
i

|fi − gi|+ and D−
∞(f̄ , ḡ) = max

i
|gi − fi|+ may be employed.

Vectorial operators may be preferable to independent processing of channels
of a vector-valued image followed by integration of the results. On the other
hand, in many cases, independent processing produces similar or even better
results due to smaller levels of output noise. A comparative evaluation of the
vectorial MFCs is beyond the scope of this paper.

5 Summary

We have shown how alternating morphological filters can be used to design op-
erators for detection of texture regions and isolated features. The comparison of
the morphological texture contrast (MTC) operator based on visual inspection
and quantitative experiments, reveals its superiority over other methods used for
texture detection. This operator is very attractive for various applications due
to its ability to discriminate texture from isolated features irrespectively of their
high magnitude, good localization properties, and simplicity. The complemen-
tary morphological feature contrast (MFC) operator was proposed for extraction
of isolated features in images containing also texture background. We show that
the MTC and the MFC have a similar structure and are of special interest where
it is important to distinguish isolated features from texture details. An extension
of the MFC operator was derived that allows the MFC operator to work directly
with vector-valued images. We have also proposed a simple scheme based on the
MFC operator for detection of isolated linear structures.
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